Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser.
Cong, Zhenhua; Zhang, Xingyu; Wang, Qingpu; Liu, Zhaojun; Li, Shutao; Chen, Xiaohan; Zhang, Xiaolei; Fan, Shuzhen; Zhang, Huaijin; Tao, Xutang
2009-09-01
An efficient intracavity frequency-doubled Raman laser was obtained by using an SrWO(4) Raman medium, an Nd:YAG ceramic gain medium, and a KTP frequency-doubling medium. Three laser cavities, including a two-mirror cavity, a three-mirror coupled cavity, and a folded cavity, were investigated. With the coupled cavity, a 2.93 W, 590 nm laser was obtained at an incident pump power of 16.2 W and a pulse repetition frequency of 20 kHz; the corresponding conversion efficiency was 18.1%. The highest conversion efficiency of 19.2% was obtained at an incident pump power of 14.1 W and a pulse repetition frequency of 15 kHz. The obtained maximum output power and conversion efficiency were much higher than the results previously obtained with intracavity frequency-doubled solid-state Raman lasers.
NASA Astrophysics Data System (ADS)
Stappel, M.; Steinborn, R.; Kolbe, D.; Walz, J.
2013-07-01
We present a high power single-frequency ytterbium fiber amplifier system with an output power of 30 W at 1091 nm. The amplifier system consists of two stages, a preamplifier stage in which amplified spontaneous emission is efficiently suppressed (>40 dB) and a high power amplifier with an efficiency of 52%. Two different approaches to frequency doubling are compared. We achieve 8.6 W at 545.5 nm by single-pass frequency doubling in a MgO-doped periodically poled stoichiometric LiTaO3 crystal and up to 19.3 W at 545.5 nm by frequency doubling with a lithium-triborate crystal in an external enhancement cavity.
Wang, Yaoting; Liu, Jianli; Liu, Qin; Li, Yuanji; Zhang, Kuanshou
2010-06-07
We report a continuous-wave (cw) single frequency Nd:YAG blue laser at 473 nm end-pumped by a laser diode. A ring laser resonator was designed, the frequency doubling efficiency and the length of nonlinear crystal were optimized based on the investigation of the influence of the frequency doubling efficiency on the thermal lensing effect induced by energy-transfer upconversion. By intracavity frequency doubling with PPKTP crystal, an output power of 1 W all-solid-state cw blue laser of single-frequency operation was achieved. The stability of the blue output power was better than +/- 1.8% in the given four hours.
Efficient 525 nm laser generation in single or double resonant cavity
NASA Astrophysics Data System (ADS)
Liu, Shilong; Han, Zhenhai; Liu, Shikai; Li, Yinhai; Zhou, Zhiyuan; Shi, Baosen
2018-03-01
This paper reports the results of a study into highly efficient sum frequency generation from 792 and 1556 nm wavelength light to 525 nm wavelength light using either a single or double resonant ring cavity based on a periodically poled potassium titanyl phosphate crystal (PPKTP). By optimizing the cavity's parameters, the maximum power achieved for the resultant 525 nm laser was 263 and 373 mW for the single and double resonant cavity, respectively. The corresponding quantum conversion efficiencies were 8 and 77% for converting 1556 nm photons to 525 nm photons with the single and double resonant cavity, respectively. The measured intra-cavity single pass conversion efficiency for both configurations was about 5%. The performances of the sum frequency generation in these two configurations was studied and compared in detail. This work will provide guidelines for optimizing the generation of sum frequency generated laser light for a variety of configurations. The high conversion efficiency achieved in this work will help pave the way for frequency up-conversion of non-classical quantum states, such as the squeezed vacuum and single photon states. The proposed green laser source will be used in our future experiments, which includes a plan to generate two-color entangled photon pairs and achieve the frequency down-conversion of single photons carrying orbital angular momentum.
Compact and efficient CW 473nm blue laser with LBO intracavity frequency doubling
NASA Astrophysics Data System (ADS)
Qi, Yan; Wang, Yu; Wang, Yanwei; Zhang, Jing; Yan, Boxia
2016-10-01
With diode end pumped Nd:YAG directly and LBO intracavity frequency doubling, a compact, high efficient continuous wave blue laser at 473nm is realized. When the incident pump power reach 6.2W, 630mW maximum output power of blue laser at 473nm is achieved with 15mm long LBO, the optical-to-optical conversion efficiency is as high as 10.2%.
NASA Astrophysics Data System (ADS)
Li, B.; Zhao, L.; Zhang, Y. B.; Zheng, Q.; Zhao, Y.; Yao, Y.
2013-03-01
Efficient and compact green-yellow laser output at 543 nm is generated by intracavity frequency doubling of a CW diode-pumped Nd:LuVO4 laser at 1086 nm under the condition of suppressing the higher gain transition near 1064 nm. With 16 W of diode pump power and the frequency-doubling crystal LBO, as high as 2.17 W of CW output power at 543 nm is achieved, corresponding to an optical-to-optical conversion efficiency of 13.6% and the output power stability over 8 hours is better than 2.86%. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by intracavity frequency doubling of a diode pumped Nd:LuVO4 laser at 1086 nm.
Demirbas, Umit; Baali, Ilyes
2015-10-15
We report significant average power and efficiency scaling of diode-pumped Cr:LiSAF lasers in continuous-wave (cw), cw frequency-doubled, and mode-locked regimes. Four single-emitter broad-area laser diodes around 660 nm were used as the pump source, which provided a total pump power of 7.2 W. To minimize thermal effects, a 20 mm long Cr:LiSAF sample with a relatively low Cr-concentration (0.8%) was used as the gain medium. In cw laser experiments, 2.4 W of output power, a slope efficiency of 50%, and a tuning range covering the 770-1110 nm region were achieved. Intracavity frequency doubling with beta-barium borate (BBO) crystals generated up to 1160 mW of blue power and a record tuning range in the 387-463 nm region. When mode locked with a saturable absorber mirror, the laser produced 195 fs pulses with 580 mW of average power around 820 nm at a 100.3 MHz repetition rate. The optical-to-optical conversion efficiency of the system was 33% in cw, 16% in cw frequency-doubled, and 8% in cw mode-locked regimes.
Near-IR, blue, and UV generation by frequency conversion of a Tm:YAP laser
NASA Astrophysics Data System (ADS)
Cole, Brian; Goldberg, Lew; Chinn, Steve
2018-02-01
We describe generation of near-infrared (944nm, 970nm), blue (472nm, 485nm), and UV (236 nm) light by frequency up-conversion of 2 μm output of a compact and efficient passively Q-switched Tm:YAP laser. The Tm:YAP laser source was near diffraction limited with maximum Q-switched pulse peak power of 190 kW. For second harmonic generation (SHG) of NIR, both periodically poled lithium niobate (PPLN) and lithium tri-borate (LBO) were evaluated, with 58% conversion efficiency and 3.1 W of 970 nm power achieved with PPLN. The PPLN 970nm emission was frequency doubled in 20mm long type I LBO, generating 1.1 W at 485nm with a conversion efficiency of 34%. With LBO used for frequency doubling of 2.3 W of 1888 nm Tm:YAP output to 944nm, 860mW was generated, with 37% conversion efficiency. Using a second LBO crystal to generate the 4th harmonic, 545mW of 472nm power was generated, corresponding to 64% conversion efficiency. To generate the 8th harmonic of Tm:YAP laser emission, the 472nm output of the second LBO was frequency doubled in a 7mm long BBO crystal, generating 110 mW at 236nm, corresponding to 21% conversion efficiency.
Lü, Yanfei; Zhang, Xihe; Cheng, Weibo; Xia, Jing
2010-07-20
We generated efficient blue laser output at 454 nm by intracavity frequency doubling of a continuous-wave (cw) diode-pumped Nd:YLiF(4) (Nd:YLF) laser at 908 nm based on the (4)F(3/2)-(4)I(9/2) transition. With 32.8 W of incident pump power at 880 nm and the frequency-doubling crystal LiB(3)O(5), a level as high as 4.33 W of cw output power at 454 nm is achieved, corresponding to an optical conversion efficiency of 13.2% with respect to the incident pump power. To the best of our knowledge, this is the first blue laser at 454 nm generated by intracavity frequency doubling of a diode-pumped Nd:YLF.
NASA Astrophysics Data System (ADS)
Feng, Haike; Zhang, Wei; Zhang, Jie; Chen, Xiaofei
2017-05-01
The perfectly matched layer (PML) is an efficient absorbing technique for numerical wave simulation. The complex frequency-shifted PML (CFS-PML) introduces two additional parameters in the stretching function to make the absorption frequency dependent. This can help to suppress converted evanescent waves from near grazing incident waves, but does not efficiently absorb low-frequency waves below the cut-off frequency. To absorb both the evanescent wave and the low-frequency wave, the double-pole CFS-PML having two poles in the coordinate stretching function was developed in computational electromagnetism. Several studies have investigated the performance of the double-pole CFS-PML for seismic wave simulations in the case of a narrowband seismic wavelet and did not find significant difference comparing to the CFS-PML. Another difficulty to apply the double-pole CFS-PML for real problems is that a practical strategy to set optimal parameter values has not been established. In this work, we study the performance of the double-pole CFS-PML for broad-band seismic wave simulation. We find that when the maximum to minimum frequency ratio is larger than 16, the CFS-PML will either fail to suppress the converted evanescent waves for grazing incident waves, or produce visible low-frequency reflection, depending on the value of α. In contrast, the double-pole CFS-PML can simultaneously suppress the converted evanescent waves and avoid low-frequency reflections with proper parameter values. We analyse the different roles of the double-pole CFS-PML parameters and propose optimal selections of these parameters. Numerical tests show that the double-pole CFS-PML with the optimal parameters can generate satisfactory results for broad-band seismic wave simulations.
High-efficiency frequency doubling of continuous-wave laser light.
Ast, Stefan; Nia, Ramon Moghadas; Schönbeck, Axel; Lastzka, Nico; Steinlechner, Jessica; Eberle, Tobias; Mehmet, Moritz; Steinlechner, Sebastian; Schnabel, Roman
2011-09-01
We report on the observation of high-efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.05 W at 775 nm, yielding a total external conversion efficiency of 95±1%. The latter value is based on the measured depletion of the fundamental field being consistent with the absolute values derived from numerical simulations. According to our model, the conversion efficiency achieved was limited by the nonperfect mode matching into the nonlinear cavity and by the nonperfect impedance matching for the maximum input power available. Our result shows that cavity-assisted frequency conversion based on PPKTP is well suited for low-decoherence frequency conversion of quantum states of light.
NASA Astrophysics Data System (ADS)
Xu, Chang-Qing; Gan, Yi; Sun, Jian
2012-03-01
Laser displays require red, green and blue (RGB) laser sources each with a low-cost, a high wall-plug efficiency, and a small size. However, semiconductor chips that directly emit green light with sufficient power and efficiency are not currently available on the market. A practical solution to the "green" bottleneck is to employ diode pumped solid state laser (DPSSL) technology, in which a frequency doubling crystal is used. In this paper, recent progress of MgO doped periodically poled lithium niobate (MgO:PPLN) frequency doubling optical chips will be presented. It is shown that MgO:PPLN can satisfy all of the requirements for laser displays and is ready for mass production.
NASA Astrophysics Data System (ADS)
Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J.; Levitt, M. H.
1994-08-01
We describe an efficient method for the recovery of homonuclear dipole-dipole interactions in magic-angle spinning NMR. Double-quantum homonuclear rotary resonance (2Q-HORROR) is established by fulfilling the condition ωr=2ω1, where ωr is the sample rotation frequency and ω1 is the nutation frequency around an applied resonant radio frequency (rf) field. This resonance can be used for double-quantum filtering and measurement of homonuclear dipolar interactions in the presence of magic-angle spinning. The spin dynamics depend only weakly on crystallite orientation allowing good performance for powder samples. Chemical shift effects are suppressed to zeroth order. The method is demonstrated for singly and doubly 13C labeled L-alanine.
Jechow, Andreas; Schedel, Marco; Stry, Sandra; Sacher, Joachim; Menzel, Ralf
2007-10-15
A continuous-wave distributed feedback diode laser emitting at 976 nm was frequency doubled by the use of a periodically poled lithium niobate waveguide crystal with a channel size of 3 microm x 5 microm and an interaction length of 10 mm. A laser to waveguide coupling efficiency of 75% could be achieved resulting in 304 mW of incident infrared light inside the waveguide. Blue laser light emission of 159 mW at 488 nm has been generated, which equals to a conversion efficiency of 52%. The resulting wall plug efficiency was 7.4%.
NASA Astrophysics Data System (ADS)
Chen, Ming; Xiao, Xiaofei; Chang, Linzi; Wang, Congyun; Zhao, Deping
2017-07-01
In this work, a high-efficiency and tunable dual-frequency reflective polarization converter composed of graphene metasurface with twisting double L-shaped unit is firstly realized. Numerical results demonstrate that the device can convert a linearly polarized wave to its cross-polarized wave, and meantime it can also convert to a circularly polarized wave. Subsequently, one thickness of 500 nm SiO2 layer sandwiched by two graphene metasurfaces with similar pattern is stacked on the top of the two-layered structure, a four-frequency efficient reflective polarization converters is realized. Above all, those working frequencies can also be dynamically tuned within a large frequency range by adjusting the Fermi energy of the graphene, without reoptimizing and refabricating the nanostructures, which paves a novel way toward developing a controllable polarization converter for mid-infrared applications.
Tehranchi, Amirhossein; Morandotti, Roberto; Kashyap, Raman
2011-11-07
High-efficiency ultra-broadband wavelength converters based on double-pass quasi-phase-matched cascaded sum and difference frequency generation including engineered chirped gratings in lossy lithium niobate waveguides are numerically investigated and compared to the single-pass counterparts, assuming a large twin-pump wavelength difference of 75 nm. Instead of uniform gratings, few-section chirped gratings with the same length, but with a small constant period change among sections with uniform gratings, are proposed to flatten the response and increase the mean efficiency by finding the common critical period shift and minimum number of sections for both single-pass and double-pass schemes whilst for the latter the efficiency is remarkably higher in a low-loss waveguide. It is also verified that for the same waveguide length and power, the efficiency enhancement expected due to the use of the double-pass scheme instead of the single-pass one, is finally lost if the waveguide loss increases above a certain value. For the double-pass scheme, the criteria for the design of the low-loss waveguide length, and the assignment of power in the pumps to achieve the desired efficiency, bandwidth and ripple are presented for the optimum 3-section chirped-gratings-based devices. Efficient conversions with flattop bandwidths > 84 nm for lengths < 3 cm can be obtained.
NASA Astrophysics Data System (ADS)
Pilgrim, Christian G.; Rechmann, Peter; Goldin, Dan S.; Hennig, Thomas
2000-03-01
Periodontal therapy aims in a most sufficient cleaning of tooth surfaces from supra- and subgingival calculus. As a standard dental procedure teeth are treated with ultrasonic devices. The competence of the frequency doubled Alexandrite laser for a highly effective and selective removal of calculus has been repeatedly proved. Aim of the study presented here was to determine the efficiency at simulated clinical conditions of the frequency doubled Alexandrite laser (laboratory prototype, q-switched, fiber guided, wavelength 377 nm, pulse duration 1 microsecond, pulse repetition rate 70 Hz, water cooling) by quantifying it's calculus removing efficiency. The evaluated data were compared to those obtained with an ultrasonic calculus remover. In the first part of the study sample material consisted of 23 pigs' jaws. They were divided into two groups. The teeth of one group were cleaned on their buccal surfaces using an ultrasonic device (Sonosoft Lux, KaVo, Biberach, Germany; tip #9). Than hand-guided cleaning was performed until no further improvement in cleanness was visible. Cleaning time was measured. Photographic documentation was taken before and after the treatment. The teeth in the second group were cleaned engaging a frequency doubled Alexandrite laser. Treatment time was measured and photographs were taken in the same way. In the second part of the study 21 surfaces of human teeth set up in an artificial pocket model were treated with both systems again. Measurements followed the same protocol. The results strongly support the use of the frequency doubled Alexandrite laser for calculus removal.
NASA Astrophysics Data System (ADS)
Wen, Xin; Han, Yashuai; Wang, Junmin
2016-04-01
A continuous-wave Ti:sapphire laser at 795 nm is frequency doubled in a bow-tie type enhancement four-mirror ring cavity with LiB3O5 (LBO), BiB3O6 (BiBO), and periodically polled KTiOPO4 (PPKTP) crystals, respectively. The properties of 397.5 nm ultra-violet (UV) output power, beam quality, stability for these different nonlinear crystals are investigated and compared. For PPKTP crystal, the highest doubling efficiency of 58.1% is achieved from 191 mW of 795 nm mode-matched fundamental power to 111 mW of 397.5 nm UV output. For LBO crystal, with 1.34 W of mode-matched 795 nm power, 770 mW of 397.5 nm UV output is achieved, implying a doubling efficiency of 57.4%. For BiBO crystal, with 323 mW of mode-matched 795 nm power, 116 mW of 397.5 nm UV output is achieved, leading to a doubling efficiency of 35.9%. The generated UV radiation has potential applications in the fields of quantum physics.
A Double-function Digital Watermarking Algorithm Based on Chaotic System and LWT
NASA Astrophysics Data System (ADS)
Yuxia, Zhao; Jingbo, Fan
A double- function digital watermarking technology is studied and a double-function digital watermarking algorithm of colored image is presented based on chaotic system and the lifting wavelet transformation (LWT).The algorithm has realized the double aims of the copyright protection and the integrity authentication of image content. Making use of feature of human visual system (HVS), the watermark image is embedded into the color image's low frequency component and middle frequency components by different means. The algorithm has great security by using two kinds chaotic mappings and Arnold to scramble the watermark image at the same time. The algorithm has good efficiency by using LWT. The emulation experiment indicates the algorithm has great efficiency and security, and the effect of concealing is really good.
NASA Astrophysics Data System (ADS)
Qi, Yaoyao; Yu, Haijuan; Zhang, Jingyuan; Zhang, Ling; He, Chaojian; Lin, Xuechun
2018-05-01
We demonstrated a high efficiency and high average power picosecond green light source based on SHG (second harmonic generation) of an unpolarized ytterbium-doped fiber amplifier chain. Using single-pass frequency doubling in two temperature-tuned type-I phase-matching LBO crystals, we were able to generate 46 W, >70 ps pulses at 532 nm from a fundamental beam at 1064 nm, whose output is 96 W, 4.8 μJ, with a repetition frequency of 20 MHz and nearly diffraction limited. The optical conversion efficiency was ∼48% in a highly compact design. To the best of our knowledge, this is the first reported on ps green source through SHG of an unpolarized fiber laser with such a high output and high efficiency.
Removal of particulate matter emitted from a subway tunnel using magnetic filters.
Son, Youn-Suk; Dinh, Trieu-Vuong; Chung, Sang-Gwi; Lee, Jai-Hyo; Kim, Jo-Chun
2014-01-01
We removed particulate matter (PM) emitted from a subway tunnel using magnetic filters. A magnetic filter system was installed on the top of a ventilation opening. Magnetic field density was increased by increasing the number of permanent magnet layers to determine PM removal characteristics. Moreover, the fan's frequency was adjusted from 30 to 60 Hz to investigate the effect of wind velocity on PM removal efficiency. As a result, PM removal efficiency increased as the number of magnetic filters or fan frequency increased. We obtained maximum removal efficiency of PM10 (52%), PM2.5 (46%), and PM1 (38%) at a 60 Hz fan frequency using double magnetic filters. We also found that the stability of the PM removal efficiency by the double filter (RSD, 3.2-5.8%) was higher than that by a single filter (10.9-24.5%) at all fan operating conditions.
Second-harmonic generation of a dual-frequency laser in a MgO:PPLN crystal.
Kang, Ying; Yang, Suhui; Brunel, Marc; Cheng, Lijun; Zhao, Changming; Zhang, Haiyang
2017-04-10
A dual-frequency CW laser at a wavelength of 1.064 μm is frequency doubled in a MgO:PPLN nonlinear crystal. The fundamental dual-frequency laser has a tunable beat note from 125 MHz to 175 MHz. A laser-diode pumped fiber amplifier is used to amplify the dual-frequency fundamental output to a maximum power of 50 W before frequency doubling. The maximum output power of the green light is 1.75 W when the input fundamental power is 12 W, corresponding to a frequency doubling efficiency of 14.6%. After frequency doubling, green light with modulation frequencies in two bands from 125 MHz to 175 MHz and from 250 MHz to 350 MHz is achieved simultaneously. The relative intensities of the beat notes at the two bands can be adjusted by changing the relative intensities at different frequencies of the fundamental light. The spectral width and frequency stabilities of the beat notes in fundamental wave and green light are also measured, respectively. The modulated green light has potential applications in underwater ranging, communication, and imaging.
NASA Astrophysics Data System (ADS)
Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi
2018-03-01
We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.
1W frequency-doubled VCSEL-pumped blue laser with high pulse energy
NASA Astrophysics Data System (ADS)
Van Leeuwen, Robert; Chen, Tong; Watkins, Laurence; Xu, Guoyang; Seurin, Jean-Francois; Wang, Qing; Zhou, Delai; Ghosh, Chuni
2015-02-01
We report on a Q-switched VCSEL side-pumped 946 nm Nd:YAG laser that produces high average power blue light with high pulse energy after frequency doubling in BBO. The gain medium was water cooled and symmetrically pumped by three 1 kW 808 nm VCSEL pump modules. More than 1 W blue output was achieved at 210 Hz with 4.9 mJ pulse energy and at 340 Hz with 3.2 mJ pulse energy, with 42% and 36% second harmonic conversion efficiency respectively. Higher pulse energy was obtained at lower repetition frequencies, up to 9.3 mJ at 70 Hz with 52% conversion efficiency.
Ultrahigh contrast from a frequency-doubled chirped-pulse-amplification beamline.
Hillier, David; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hopps, Nicholas; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas
2013-06-20
This paper describes frequency-doubled operation of a high-energy chirped-pulse-amplification beamline. Efficient type-I second-harmonic generation was achieved using a 3 mm thick 320 mm aperture KDP crystal. Shots were fired at a range of energies achieving more than 100 J in a subpicosecond, 527 nm laser pulse with a power contrast of 10(14).
Red laser based on intra-cavity Nd:YAG/CH4 frequency doubled Raman lasers
NASA Astrophysics Data System (ADS)
Wang, Yanchao; Wang, Pengyuan; Liu, Jinbo; Liu, Wanfa; Guo, Jingwei
2017-01-01
Stimulated Raman scattering (SRS) is a powerful tool for the extension of the spectral range of lasers. To obtain efficient Raman conversion in SRS, many researchers have studied different types of Raman laser configurations. Among these configurations, the intra-cavity type is particularly attractive. Intra-cavity SRS has the advantages of high intra-cavity laser intensity, low-SRS threshold, and high Raman conversion efficiency. In this paper, An Q-switched intra-cavity Nd: YAG/CH4 frequency-doubled Raman lasers is reported. A negative branch confocal resonator with M= 1.25 is used for the frequency-doubling of Nd: YAG laser. The consequent 532nm light is confined in intra- cavity SRS with travelling wave resonator, and the focal of one mirror of cavity is overlap with the center of the other mirror of the cavity. We found this design is especially efficient to reduce the threshold of SRS, and increase conversion efficiency. The threshold is measured to be 0.62 MW, and at the pump energy of 16.1 mJ, the conversion efficiency is 34%. With the smaller magnification M, the threshold could further decrease, and the conversion efficiency could be improved further. This is a successful try to extend the spectral range of a laser to the shorter wavelength by SRS, and this design may play an important role in the fulfillment of high power red lasers.
Khripunov, Sergey; Kobtsev, Sergey; Radnatarov, Daba
2016-01-20
This work presents for the first time to the best of our knowledge a comparative efficiency analysis among various techniques of extra-cavity second harmonic generation (SHG) of continuous-wave single-frequency radiation in nonperiodically poled nonlinear crystals within a broad range of power levels. Efficiency of nonlinear radiation transformation at powers from 1 W to 10 kW was studied in three different configurations: with an external power-enhancement cavity and without the cavity in the case of single and double radiation pass through a nonlinear crystal. It is demonstrated that at power levels exceeding 1 kW, the efficiencies of methods with and without external power-enhancement cavities become comparable, whereas at even higher powers, SHG by a single or double pass through a nonlinear crystal becomes preferable because of the relatively high efficiency of nonlinear transformation and fairly simple implementation.
Achromatic phase-matching second harmonic generation for a tunable laser
Jacobson, A.G.; Bisson, S.; Trebino, R.
1998-01-20
An optical system uses a nonlinear optical medium to alter the frequency of a relatively narrow band light source tunable over a plurality of different frequencies using an optical system for passively directing light to the nonlinear medium at a correct phase matching angle. In this manner, the light from the tunable light source can be efficiently frequency-doubled or frequency-tripled without the need of moving parts. An all prism design provides a system of optimal efficiency. 6 figs.
Achromatic phase-matching second harmonic generation for a tunable laser
Jacobson, Alexander Gerson; Bisson, Scott; Trebino, Rick
1998-01-01
An optical system uses a nonlinear optical medium to alter the frequency of a relatively narrow band light source tunable over a plurality of different frequencies using an optical system for passively directing light to the nonlinear medium at a correct phase matching angle. In this manner, the light from the tunable light source can be efficiently frequency-doubled or frequency-tripled without the need of moving parts. An all prism design provides a system of optimal efficiency.
Laser diode and pumped Cr:Yag passively Q-switched yellow-green laser at 543 nm
NASA Astrophysics Data System (ADS)
Yao, Y.; Ling, Zhao; Li, B.; Qu, D. P.; Zhou, K.; Zhang, Y. B.; Zhao, Y.; Zheng, Q.
2013-03-01
Efficient and compact yellow green pulsed laser output at 543 nm is generated by frequency doubling of a passively Q-switched end diode-pumped Nd:YVO4 laser at 1086 nm under the condition of sup-pressing the higher gain transition near 1064 nm. With 15 W of diode pump power and the frequency doubling crystal LBO, as high as 1.58 W output power at 543 nm is achieved. The optical to optical conversion efficiency from the corresponding Q-switched fundamental output to the yellow green output is 49%. The peak power of the Q-switched yellow green pulse laser is up to 30 kW with 5 ns pulse duration. The output power stability over 8 hours is better than 2.56% at the maximum output power. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by frequency doubling of a passively Q-switched end diode pumped Nd:YVO4 laser at 1086 nm.
NASA Astrophysics Data System (ADS)
Kaltenbach, André; Hofmann, Julian; Seidel, Dirk; Lauritsen, Kristian; Bugge, Frank; Fricke, Jörg; Paschke, Katrin; Erdmann, Rainer; Tränkle, Günther
2017-02-01
A miniaturized picosecond pulsed semiconductor laser source in the spectral range around 560nm is realized by integrating a frequency doubled distributed Bragg reflector ridge waveguide laser (DBR-RWL) into a micromodule. Such compact laser sources are suitable for mobile application, e.g. in microscopes. The picosecond optical pulses are generated by gain-switching which allows for arbitrary pulse repetition frequencies. For frequency conversion a periodically poled magnesium doped lithium niobate ridge waveguide crystal (PPLN) is used to provide high conversion efficiency with single-pass second harmonic generation (SHG). The coupling of the pulsed radiation into the PPLN crystal is realized by a GRIN-lens. Such types of lenses collect the divergent laser radiation and focus it into the crystal waveguide providing high coupling efficiency at a minimum of space compared to the usage of fast axis collimator(FAC)/slow axis collimator (SAC) lens combinations. The frequency doubled output pulses show a pulse width of about 60 ps FWHM and a spectral width around 0.06nm FWHM at a central wavelength of 557nm at 15Å. The pulse peak power could be determined to be more than 300mW at a repetition frequency of 40 MHz.
NASA Astrophysics Data System (ADS)
Arjunan, A.; Wang, C. J.; Yahiaoui, K.; Mynors, D. J.; Morgan, T.; Nguyen, V. B.; English, M.
2014-11-01
Building standards incorporating quantitative acoustical criteria to ensure adequate sound insulation are now being implemented. Engineers are making great efforts to design acoustically efficient double-wall structures. Accordingly, efficient simulation models to predict the acoustic insulation of double-leaf wall structures are needed. This paper presents the development of a numerical tool that can predict the frequency dependent sound reduction index R of stud based double-leaf walls at one-third-octave band frequency range. A fully vibro-acoustic 3D model consisting of two rooms partitioned using a double-leaf wall, considering the structure and acoustic fluid coupling incorporating the existing fluid and structural solvers are presented. The validity of the finite element (FE) model is assessed by comparison with experimental test results carried out in a certified laboratory. Accurate representation of the structural damping matrix to effectively predict the R values are studied. The possibilities of minimising the simulation time using a frequency dependent mesh model was also investigated. The FEA model presented in this work is capable of predicting the weighted sound reduction index Rw along with A-weighted pink noise C and A-weighted urban noise Ctr within an error of 1 dB. The model developed can also be used to analyse the acoustically induced frequency dependent geometrical behaviour of the double-leaf wall components to optimise them for best acoustic performance. The FE modelling procedure reported in this paper can be extended to other building components undergoing fluid-structure interaction (FSI) to evaluate their acoustic insulation.
Fedorova, Ksenia A; Sokolovskii, Grigorii S; Khomylev, Maksim; Livshits, Daniil A; Rafailov, Edik U
2014-12-01
A compact high-power yellow-green continuous wave (CW) laser source based on second-harmonic generation (SHG) in a 5% MgO doped periodically poled congruent lithium niobate (PPLN) waveguide crystal pumped by a quantum-dot fiber Bragg grating (QD-FBG) laser diode is demonstrated. A frequency-doubled power of 90.11 mW at the wavelength of 560.68 nm with a conversion efficiency of 52.4% is reported. To the best of our knowledge, this represents the highest output power and conversion efficiency achieved to date in this spectral region from a diode-pumped PPLN waveguide crystal, which could prove extremely valuable for the deployment of such a source in a wide range of biomedical applications.
Meyn, J P; Huber, G
1994-09-15
Neodymium-doped lanthanum scandium borate [Nd:LaSc(3)(BO(3))(4)] is a new material for efficient and compact diode-pumped solid-state lasers. A simple plane-plane 3-mm-long resonator is formed by a coated Nd(10%):LaSc(3)(BO(3))(4) crystal and a coated potassium titanyl phosphate (KTP) crystal. The second-harmonic output power at 531 nm is 522 mW at 2.05-W incident pump power of the diode laser. The corresponding optical efficiency is 25%, and the conversion efficiency from the fundamental to the second harmonic is 55%. The wellknown chaotic power fluctuations of intracavity frequency-doubled lasers (green problem) are avoided by use of a short KTP crystal, between 0.5 and 2 mm in length.
Yellow light generation by frequency doubling of a diode-pumped Nd:YAG laser
NASA Astrophysics Data System (ADS)
Jia, Fu-qiang; Zheng, Quan; Xue, Qing-hua; Bu, Yi-kun; Qian, Long-sheng
2006-03-01
We demonstrate the generation of TEM00 mode yellow light in critically type II phase-matched KTiOPO4 (KTP) with intracavity frequency doubling of a diode-pumped Nd:YAG laser at room temperature. After a 150 μm thick etalon have been inserted into the cavity, the stability and beam quality of the second harmonic generation (SHG) is enhanced. A continuous wave (CW) TEM00 mode output power of 1.67 W at 556 nm is obtained at a pump level of 16 W. The total optical to optical conversion efficiency is about 10.44%. To the best of our knowledge, this is the first Watt-level yellow light generation by frequency doubling of Nd:YAG laser.
Near-infrared lasers and self-frequency-doubling in Nd:YCOB cladding waveguides.
Ren, Yingying; Chen, Feng; Vázquez de Aldana, Javier R
2013-05-06
A design of cladding waveguides in Nd:YCOB nonlinear crystals is demonstrated in this work. Compact Fabry-Perot oscillation cavities are employed for waveguide laser generation at 1062 nm and self-frequency-doubling at 531 nm, under optical pump at 810 nm. The waveguide laser shows slope efficiency as high as 55% at 1062 nm. The SFD green waveguide laser emits at 531 nm with a maximum power of 100 μW.
Micro-Welding of Copper Plate by Frequency Doubled Diode Pumped Pulsed Nd:YAG Laser
NASA Astrophysics Data System (ADS)
Nakashiba, Shin-Ichi; Okamoto, Yasuhiro; Sakagawa, Tomokazu; Takai, Sunao; Okada, Akira
A pulsed laser of 532 nm wavelength with ms range pulse duration was newly developed by second harmonic generation of diode pumped pulsed Nd:YAG laser. High electro-optical conversion efficiency more than 13% could be achieved, and 1.5 kW peak power green laser pulse was put in optical fiber of 100 μm in diameter. In micro- welding of 1.0 mm thickness copper plate, a keyhole welding was successfully performed by 1.0 kW peak power at spot diameter less than 200 μm. The frequency doubled pulsed laser improved the processing efficiency of copper welding, and narrow and deep weld bead was stably obtained.
Designation of a polarization-converting system and its enhancement of double-frequency efficiency
NASA Astrophysics Data System (ADS)
Wang, Peng; Li, Xiao; Shang, YaPing; Xu, XiaoJun
2015-08-01
A polarization-converting system is designed by using axicons and wave plate transforming naturally polarized laser to linearly polarized laser at real time to resolve difficulties of generating high-power linearly polarized laser. The energy conversion efficiency reaches 96.9% with an enhancement of extinction ratio from 29.7% to 98%. The system also keeps excellent far field divergence. In the one-way SHG experiment the double frequency efficiency reached 4.32% using the generated linearly polarized laser, much higher than that of the naturally polarized laser but lower than that of the linearly polarized laser from PBS. And the phenomenon of the SHG experiment satisfies the principle of phase matching. The experiment proves that this polarization-converting system will not affect laser structure which controls easily and needs no feedback and controlling system with stable and reliable properties at the same time. It can absolutely be applied to the polarization-conversion of high power laser and enhance the SHG efficiency and the energy efficiency.
Hansen, A K; Christensen, M; Noordegraaf, D; Heist, P; Papastathopoulos, E; Loyo-Maldonado, V; Jensen, O B; Skovgaard, P M W
2016-11-10
Watt-level yellow emitting lasers are interesting for medical applications, due to their high hemoglobin absorption, and for efficient detection of certain fluorophores. In this paper, we demonstrate a compact and robust diode-based laser system in the yellow spectral range. The system generates 1.9 W of single-frequency light at 562.4 nm by cascaded single-pass frequency doubling of the 1124.8 nm emission from a distributed Bragg reflector (DBR) tapered laser diode. The absence of a free-space cavity makes the system stable over a base-plate temperature range of 30 K. At the same time, the use of a laser diode enables the modulation of the pump wavelength by controlling the drive current. This is utilized to achieve a power modulation depth above 90% for the second harmonic light, with a rise time below 40 μs.
NASA Astrophysics Data System (ADS)
Richter, A.; Pavel, N.; Heumann, E.; Huber, G.; Parisi, D.; Toncelli, A.; Tonelli, M.; Diening, A.; Seelert, W.
2006-04-01
We describe a new approach for the generation of coherent ultraviolet radiation. Continuous-wave ultraviolet light at 320 nm has been obtained by intracavity frequency doubling of red-emitting Praseodymium lasers. Lasing at the 640-nm fundamental wavelength in Pr:LiYF4 and Pr:BaY2F8 was realized by employing an optically pumped semiconductor laser at 480 nm as pump source.Using LiB3O5 as nonlinear medium, ~19 mW of ultraviolet radiation with ~9% optical efficiency with respect to absorbed power was reached for both laser crystals; the visible-to-ultraviolet conversion efficiency was 26% and 35% for Pr:LiYF4 and Pr:BaY2F8, respectively.
Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika; Le, Tuan; Stingl, Andreas; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael
2011-06-20
For the first time a single-pass frequency doubled DBR-tapered diode laser suitable for pumping Ti:sapphire lasers generating ultrashort pulses is demonstrated. The maximum output powers achieved when pumping the Ti:sapphire laser are 110 mW (CW) and 82 mW (mode-locked) respectively at 1.2 W of pump power. This corresponds to a reduction in optical conversion efficiencies to 75% of the values achieved with a commercial diode pumped solid-state laser. However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser when pumped with our diode laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20 fs can therefore be expected.
NASA Astrophysics Data System (ADS)
Xia, Hongxing; Li, Zhengjia
2007-05-01
Photoselective laser vaporization of the prostate (PVP) is the most promising method for the treatment of benign prostatic hyperplasia (BPH), but KTP lasers used in PVP with lamp-pumped are low efficient .To increase the efficiency , we develop a 80-W, 400kHz, linearly polarized green laser based on a frequency-doubled fiber laser. A polarization-maintaining large-mode area (LMA) fiber amplifier generate polarized 1064nm fundamental wave by amplifying the seed signal from a composite Cr 4+:YAG-Nd 3+:YAG crystal fiber laser. The fundamental wave is injected into a KTP crystal with confined temperature management to achieve second harmonic generation (SHG). The overall electrical efficiency to the green portion of the spectrum is 10%.80-W maintenance-free long-lifetime KTP laser obtained can well satisfy the need of PVP.
NASA Astrophysics Data System (ADS)
Zhang, Bin; Gan, Yi; Xu, Chang-Qing
2018-06-01
The field sequential modulation of a Nd:YVO4/MgO:PPLN intra-cavity, frequency doubling green laser was studied. The modulation frequency was set at 1 kHz and the duty cycle was changed from 20% to CW operation. It was shown that the quasi-phase matched (QPM) temperature decreases with an increase of the modulation duty cycle, and in turn causing the peak efficiency to rise. It was found that the temperature change in MgO:PPLN and the thermal lens effect in Nd:YVO4 crystal were the respective origins of these observed experimental phenomena.
Generation of 369.4 nm Radiation by Efficient Doubling of a Diode Laser
NASA Technical Reports Server (NTRS)
Williams, A.; Seidel, D. J.; Maleki, J.
1993-01-01
A resonant cavity second harmonic generation system has been developed to produce 369.4 nm radiation from a 738.8 nm diode laser with 10 mW nominal output power. This system utilizes a polarization technique to lock the cavity to the laser frequency. In this paper we report on an evaluation of the system using a Titanium:Sapphire laser as the input source, and preliminary results with a diode laser source. To our knowledge, this is the deepest uv light ever produced by frequency-doubling a diode laser.
Leconte, Baptiste; Gilles, Hervé; Robin, Thierry; Cadier, Benoit; Laroche, Mathieu
2018-04-16
We present the first frequency-doubled neodymium-doped fiber laser generating multi-watt CW power near 450 nm. A bow-tie resonator incorporating a LBO nonlinear crystal is integrated within a Nd-doped fiber laser emitting near 900 nm. This scheme achieves an IR to blue conversion efficiency close to 55% without any active control of the internal resonant cavity. As a result, up to 7.5 W of linearly-polarized blue power is generated, with beam quality factors M x 2 ~1.0 and M y 2 ~1.5. A simple numerical model has been developed to optimize and analyse the IR to blue conversion efficiency in the resonant cavity. Performance limitations and prospects for further improvements are discussed.
Wan, W J; Li, H; Cao, J C
2018-01-22
The authors present an experimental investigation of radio frequency modulation on pulsed terahertz quantum cascade lasers (QCLs) emitting around 4.3 THz. The QCL chip used in this work is based on a resonant phonon design which is able to generate a 1.2 W peak power at 10 K from a 400-µm-wide and 4-mm-long laser with a single plasmon waveguide. To enhance the radio frequency modulation efficiency and significantly broaden the terahertz spectra, the QCLs are also processed into a double-metal waveguide geometry with a Silicon lens out-coupler to improve the far-field beam quality. The measured beam patterns of the double-metal QCL show a record low divergence of 2.6° in vertical direction and 2.4° in horizontal direction. Finally we perform the inter-mode beat note and terahertz spectra measurements for both single plasmon and double-metal QCLs working in pulsed mode. Since the double-metal waveguide is more suitable for microwave signal transmission, the radio frequency modulation shows stronger effects on the spectral broadening for the double-metal QCL. Although we are not able to achieve comb operation in this work for the pulsed lasers due to the large phase noise, the homogeneous spectral broadening resulted from the radio frequency modulation can be potentially used for spectroscopic applications.
Study of the spectral bandwidth of a double-pass acousto-optic system [Invited].
Champagne, Justine; Kastelik, Jean-Claude; Dupont, Samuel; Gazalet, Joseph
2018-04-01
Acousto-optic tunable filters are known as efficient instruments for spectral and spatial filtering of light. In this paper, we analyze the bandwidth dependence of a double-pass filter. The interaction geometry chosen allows the simultaneous diffraction of the ordinary and the extraordinary optical modes by a single ultrasonic frequency. We present the main parameters of a custom device (design, optical range, driving frequency) and experimental results concerning the angular deviation of the beams including the effect of optical birefringence. The spectral resolution and the side lobes' significance are discussed. Spectral bandwidth of such a system is analyzed.
Wen, Xin; Han, Yashuai; Bai, Jiandong; He, Jun; Wang, Yanhua; Yang, Baodong; Wang, Junmin
2014-12-29
We demonstrate a simple, compact and cost-efficient diode laser pumped frequency doubling system at 795 nm in the low power regime. In two configurations, a bow-tie four-mirror ring enhancement cavity with a PPKTP crystal inside and a semi-monolithic PPKTP enhancement cavity, we obtain 397.5nm ultra-violet coherent radiation of 35mW and 47mW respectively with a mode-matched fundamental power of about 110mW, corresponding to a conversion efficiency of 32% and 41%. The low loss semi-monolithic cavity leads to the better results. The constructed ultra-violet coherent radiation has good power stability and beam quality, and the system has huge potential in quantum optics and cold atom physics.
NASA Astrophysics Data System (ADS)
Wang, Junmin; Zhang, Kong; Ge, Yulong; Guo, Shanlong
2016-06-01
We have demonstrated 1.61 W of 780 nm single-frequency continuous-wave laser output with a semi-monolithic periodically poled potassium titanyl phosphate (PPKTP) crystal doubler pumped by a 2-W erbium-doped fiber amplifier boosted 1560 nm diode laser. The measured maximum doubling efficiency is 77%, and the practical value should be 80% when taking into account the fundamental-wave mode matching efficiency. The measured beam quality factor of 780 nm output, M2, is better than 1.04. Typical root-mean-square fluctuation of 780 nm output is less than 0.5% in 30 minutes. This compact frequency doubler has good mechanical stability, and can be employed for many applications, such as laser cooling and trapping, atomic coherent control, atomic interferometer, and quantum frequency standard with rubidium atoms.
High Efficiency Single Output ZVS-ZCS Voltage Doubled Flyback Converter
NASA Astrophysics Data System (ADS)
Kaliyaperumal, Deepa; Saju, Hridya Merin; Kumar, M. Vijaya
2016-06-01
A switch operating at high switching frequency increases the switching losses of the converter resulting in lesser efficiency. Hence this paper proposes a new topology which has resonant switches [zero voltage switching (ZVS)] in the primary circuit to eliminate the above said disadvantages, and voltage doubler zero current switching (ZCS) circuit in the secondary to double the output voltage, and hence the output power, power density and efficiency. The design aspects of the proposed topology for a single output of 5 V at 50 kHz, its simulation and hardware results are discussed in detail. The analysis of the results obtained from a 2.5 W converter reveals the superiority of the proposed converter.
Solid-state-based laser system as a replacement for Ar+ lasers.
Beck, Tobias; Rein, Benjamin; Sörensen, Fabian; Walther, Thomas
2016-09-15
We report on a solid-state-based laser system at 1028 nm. The light is generated by a diode laser seeded ytterbium fiber amplifier. In two build-up cavities, its frequency is doubled and quadrupled to 514 nm and 257 nm, respectively. At 514 nm, the system delivers up to 4.7 W of optical power. In the fourth harmonic, up to 173 mW are available limited by the nonlinear crystal. The frequency of the laser is mode-hop-free tunable by 16 GHz in 10 ms in the UV. Therefore, the system is suitable as a low maintenance, efficient, and tunable narrowband replacement for frequency doubled Ar+ laser systems.
Yao, Wenming; Gao, Jing; Zhang, Long; Li, Jiang; Tian, Yubing; Ma, Yufei; Wu, Xiaodong; Ma, Gangfei; Yang, Jianming; Pan, Yubai; Dai, Xianjin
2015-06-20
We present what is, to the best of our knowledge, the first report on yellow-green laser generation based on the frequency doubling of the 1.1 μm transitions in Nd:YAG ceramics. By employing an 885 nm diode laser as the end-pumping source and a lithium triborate crystal as the frequency doubler, the highest continuous wave output powers of 1.4, 0.5, and 1.1 W at 556, 558, and 561 nm are achieved, respectively. These result in optical-to-optical efficiencies of 6.9%, 2.5%, and 5.4% with respect to the absorbed pump power, respectively.
High-efficiency V-band GaAs IMPATT diodes
NASA Technical Reports Server (NTRS)
Ma, Y. E.; Benko, E.; Trinh, T.; Erickson, L. P.; Mattord, T. J.
1984-01-01
Double-drift GaAs IMPATT diodes were designed for V-band frequency operations and fabricated using molecular-beam epitaxy. The diodes were fabricated in two configurations: (1) circular mesa diodes with silver-plated (integrated) heat sinks: (2) pill-type diodes bonded to diamond heat sinks. Both configurations utilized a miniature quartz-ring package. Output power greater than 1 W CW was achieved at V-band frequencies from diodes on diamond heat sinks. The best conversion efficiency was 13.3 percent at 55.5 GHz with 1 W output power.
Diffraction-limited 577 nm true-yellow laser by frequency doubling of a tapered diode laser
NASA Astrophysics Data System (ADS)
Christensen, Mathias; Vilera, Mariafernanda; Noordegraaf, Danny; Hansen, Anders K.; Buß, Thomas; Jensen, Ole B.; Skovgaard, Peter M. W.
2018-02-01
A wide range of laser medical treatments are based on coagulation of blood by absorption of the laser radiation. It has, therefore, always been a goal of these treatments to maximize the ratio of absorption in the blood to that in the surrounding tissue. For this purpose lasers at 577 nm are ideal since this wavelength is at the peak of the absorption in oxygenated hemoglobin. Furthermore, 577 nm has a lower absorption in melanin when compared to green wavelengths (515 - 532 nm), giving it an advantage when treating at greater penetration depth. Here we present a laser system based on frequency doubling of an 1154 nm Distributed Bragg Reflector (DBR) tapered diode laser, emitting 1.1 W of single frequency and diffraction limited yellow light at 577 nm, corresponding to a conversion efficiency of 30.5%. The frequency doubling is performed in a single pass configuration using a cascade of two bulk non-linear crystals. The system is power stabilized over 10 hours with a standard deviation of 0.13% and the relative intensity noise is measured to be 0.064 % rms.
Resonance spiking by periodic loss in the double-sided liquid cooling disk oscillator
NASA Astrophysics Data System (ADS)
Nie, Rongzhi; She, Jiangbo; Li, Dongdong; Li, Fuli; Peng, Bo
2017-03-01
A double-sided liquid cooling Nd:YAG disk oscillator working at a pump repetition rate of 20 Hz is demonstrated. The output energy of 376 mJ is realized, corresponding to the optical-optical efficiency of 12.8% and the slope efficiency of 14%. The pump pulse width is 300 µs and the laser pulse width is 260 µs. Instead of being a damped signal, the output of laser comprises undamped spikes. A periodic intra-cavity loss was found by numerical analysis, which has a frequency component near the eigen frequency of the relaxation oscillation. Resonance effect will induce amplified spikes even though the loss fluctuates in a small range. The Shark-Hartmann sensor was used to investigate the wavefront aberration induced by turbulent flow and temperature gradient. According to the wavefront and fluid mechanics analysis, it is considered that the periodic intra-cavity loss can be attributed to turbulent flow and temperature gradient.
Multi-wavelength generation based on cascaded Raman scattering and self-frequency-doubling in KTA
NASA Astrophysics Data System (ADS)
Zhong, K.; Li, J. S.; Xu, D. G.; Ding, X.; Zhou, R.; Wen, W. Q.; Li, Z. Y.; Xu, X. Y.; Wang, P.; Yao, J. Q.
2010-04-01
A multi-wavelength laser is developed based on cascaded stimulated Raman scattering (SRS) and self-frequency-doubling in an x-cut KTA crystal pumped by an A-O Q-switched Nd:YAG laser. The generation of 1178 nm from cascaded SRS of 234 and 671 cm-1 Raman modes is observed. The six wavelengths, including the fundamental 1064 nm, four Stokes waves at 1091, 1120, 1146, 1178 nm, and the second harmonic generation (SHG) of 1146 nm, are tens to hundreds of millwatts for each at 10 kHz, corresponding to a total conversion efficiency of 8.72%.
NASA Technical Reports Server (NTRS)
Lu, Liang-Hung; Mohammadi, Saeed; Ma, Zhen-Qiang; Ponchak, George E.; Alterovitz, Samuel A.; Strohm, Karl M.; Luy, Johann-Friedrich; Downey, Alan (Technical Monitor)
2001-01-01
Multifinger SiGe HBTs have been fabricated using a novel fully self-aligned double-mesa technology. With the novel process technology, a common-emitter 2x2x30 sq micrometer device exhibits high maximum oscillating frequency (f(sub max)) and cut-off frequency (f(sub T)) of 78 and 37 GHz, respectively. In class-A operation, a multifinger device with l0x2x30 sq micrometer emitter is expected to provide an output power of 25.6 dBm with a gain of 10 dB and a maximum power added efficiency (PAE) of 30.33% at 8 GHz.
Frequency doubled high-power disk lasers in pulsed and continuous-wave operation
NASA Astrophysics Data System (ADS)
Weiler, Sascha; Hangst, Alexander; Stolzenburg, Christian; Zawischa, Ivo; Sutter, Dirk; Killi, Alexander; Kalfhues, Steffen; Kriegshaeuser, Uwe; Holzer, Marco; Havrilla, David
2012-03-01
The disk laser with multi-kW output power in infrared cw operation is widely used in today's manufacturing, primarily in the automotive industry. The disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency and high reliability with low investment and operating costs. Additionally, the disk laser is ideally suited for frequency conversion due to its polarized output with negligible depolarization losses. Laser light in the green spectral range (~515 nm) can be created with a nonlinear crystal. Pulsed disk lasers with green output of well above 50 W (extracavity doubling) in the ps regime and several hundreds of Watts in the ns regime with intracavity doubling are already commercially available whereas intracavity doubled disk lasers in continuous wave operation with greater than 250 W output are in test phase. In both operating modes (pulsed and cw) the frequency doubled disk laser offers advantages in existing and new applications. Copper welding for example is said to show much higher process reliability with green laser light due to its higher absorption in comparison to the infrared. This improvement has the potential to be very beneficial for the automotive industry's move to electrical vehicles which requires reliable high-volume welding of copper as a major task for electro motors, batteries, etc.
Compact and efficient blue laser sheet for measurement
NASA Astrophysics Data System (ADS)
Qi, Yan; Wang, Yu; Wu, Bin; Wang, Yanwei; Yan, Boxia
2017-10-01
Compact and efficient blue laser sheet has important applications in the field of measurement, with laser diode end pumped Nd:YAG directly and LBO intracavity frequency doubling, a compact and efficient CW 473nm blue laser sheet composed of dual path liner blue laser is realized. At an incident pump power of 12.4W, up to 1.4W output power of the compound blue laser is achieved, the optical-to-optical conversion efficiency is as high as 11.3%.
Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A
2015-05-18
We report on the influence of self-focusing and self-defocusing in the phase-mismatched frequency doubling crystal on the third harmonic generation (THG) efficiency in a two crystal frequency tripling scheme. By detuning the temperature of the doubling crystal, the impact of a phase-mismatch in second harmonic generation (SHG) on the subsequent sum frequency mixing process was investigated. It was found that adjusting the temperature not only affected the power ratio of the second harmonic to the fundamental but also the beam diameter of the fundamental beam in the THG crystal, which was caused by self-focusing and self-defocusing of the fundamental beam, respectively. This self-action was induced by a cascaded χ(2) : χ(2) process in the phase-mismatched SHG crystal. Self-defocusing was observable for positive detuning and self-focusing for negative detuning of the phase-matching temperature. Hence, the THG efficiency was not symmetric with respect to the point of optimum phase-matching. Optimum THG was obtained for positive detuning and the resulting self-defocusing in combination with the focusing lens in front of the THG stage was also beneficial for the beam quality of the third harmonic.
A millimeter wave quasi-optical mixer and multiplier
NASA Technical Reports Server (NTRS)
1977-01-01
The results of an experimental study of a biconical quasi-optical Schottky barrier diode mount design which could be used for mixing and multiplying in the frequency range 200-1000 Ghz are reported. The biconical mount is described and characteristics measured at 185 Ghz are presented. The use of the mount for quasi-optical frequency doubling from 56 to 112 Ghz is described and efficiency estimates given.
The efficiency of photovoltaic cells exposed to pulsed laser light
NASA Technical Reports Server (NTRS)
Lowe, R. A.; Landis, G. A.; Jenkins, P.
1993-01-01
Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.
Dynamic modelling of a double-pendulum gantry crane system incorporating payload
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, R. M. T. Raja; Ahmad, M. A.; Ramli, M. S.
The natural sway of crane payloads is detrimental to safe and efficient operation. Under certain conditions, the problem is complicated when the payloads create a double pendulum effect. This paper presents dynamic modelling of a double-pendulum gantry crane system based on closed-form equations of motion. The Lagrangian method is used to derive the dynamic model of the system. A dynamic model of the system incorporating payload is developed and the effects of payload on the response of the system are discussed. Extensive results that validate the theoretical derivation are presented in the time and frequency domains.
Wallis, R; Degl'Iinnocenti, R; Jessop, D S; Ren, Y; Klimont, A; Shah, Y D; Mitrofanov, O; Bledt, C M; Melzer, J E; Harrington, J A; Beere, H E; Ritchie, D A
2015-10-05
The growth in terahertz frequency applications utilising the quantum cascade laser is hampered by a lack of targeted power delivery solutions over large distances (>100 mm). Here we demonstrate the efficient coupling of double-metal quantum cascade lasers into flexible polystyrene lined hollow metallic waveguides via the use of a hollow copper waveguide integrated into the laser mounting block. Our approach exhibits low divergence, Gaussian-like emission, which is robust to misalignment error, at distances > 550 mm, with a coupling efficiency from the hollow copper waveguide into the flexible waveguide > 90%. We also demonstrate the ability to nitrogen purge the flexible waveguide, increasing the power transmission by up to 20% at 2.85 THz, which paves the way for future fibre based terahertz sensing and spectroscopy applications.
Ebert, A; Stangl, J; Kühn, R; Schafhauser, W
2003-06-01
Laser lithotripsy does not play an important role in urinary stone treatment, mostly due to ineffective fragmentation efficiency, and high purchase and maintenance costs. The aim of the following retrospective study was to show the clinical significance and efficiency of an innovative laser lithotripsy system for urinary stone treatment. Between November 1998 and October 1999, 48 patients were treated with the innovative frequency- doubled double-pulse Neodym: YAG laser lithotripter FREDDY. A total of 50 renal units were treated, 43 ureteroscopically, four ureterorenoscopically, three percutaneous-nephroscopically, and one bladder stone cystoscopically. With a median laser operation time of 5 min (range: 1-30 min) and a total procedure duration of 60 min (range: 15-180 min), a stone-free rate of upper ureteral stones of 62%, middle ureteral stones of 91% and distal ureteral stones of 100% were documented on the first day after treatment. In an observation period of 6 months, no complications were seen. In our experience Laser lithotripsy with FREDDY is an effective, simple and reliable method for the treatment of ureteral stones, with low purchase and maintenance costs. The extremely thin and highly flexible quartz fibre may extend the endoscopic spectrum to otherwise poorly accessible upper ureteral stones, the renal pelvis and renal calix stones. Therefore, a prospective validation study for comparison with ballistic lithotriptors is of great interest.
Multi-band reflector antenna with double-ring element frequency selective subreflector
NASA Technical Reports Server (NTRS)
Wu, Te-Kao; Lee, S. W.
1993-01-01
Frequency selective subreflectors (FSS) are often employed in the reflector antenna system of a communication satellite or a deep space exploration vehicle for multi-frequency operations. In the past, FSS's have been designed for diplexing two frequency bands. For example, the Voyager FSS was designed to diplex S and X bands and the TDRSS FSS was designed to diplex S and Ku bands. Recently, NASA's CASSINI project requires an FSS to multiplex four frequency (S/X/Ku/Ka) bands. Theoretical analysis and experimental verifications are presented for a multi-band flat pannel FSS with double-ring elements. Both the exact formulation and the thin-ring approximation are described for analyzing and designing this multi-ring patch element FSS. It is found that the thin-ring approximation fails to predict the electrically wide ring element FSS's performance. A single screen double-ring element FSS is demonstrated for the tri-band system that reflects the X-band signal while transmitting through the S- and Ku-band signals. In addition, a double screen FSS with non-similar double-ring elements is presented for the Cassini's four-band system which reflects the X- and Ka-band signals while passing the S- and Ku-band signals. To accurately predict the FSS effects on a dual reflector antenna's radiation pattern, the FSS subreflector's transmitted/reflected field variation as functions of the polarization and incident angles with respect to the local coordinates was taken into account. An FSS transmission/reflection coefficient table is computed for TE and TM polarizations at various incident angles based on the planar FSS model. Next, the hybrid Geometric Optics (GO) and Physical Optics (PO) technique is implemented with linearly interpolating the FSS table to efficiently determine the FSS effects in a dual reflector antenna.
NASA Technical Reports Server (NTRS)
Yelle, Roger V.; Wallace, Lloyd
1989-01-01
A versatile and efficient technique for the solution of the resonance line scattering problem with frequency redistribution in planetary atmospheres is introduced. Similar to the doubling approach commonly used in monochromatic scattering problems, the technique has been extended to include the frequency dependence of the radiation field. Methods for solving problems with external or internal sources and coupled spectral lines are presented, along with comparison of some sample calculations with results from Monte Carlo and Feautrier techniques. The doubling technique has also been applied to the solution of resonance line scattering problems where the R-parallel redistribution function is appropriate, both neglecting and including polarization as developed by Yelle and Wallace (1989). With the constraint that the atmosphere is illuminated from the zenith, the only difficulty of consequence is that of performing precise frequency integrations over the line profiles. With that problem solved, it is no longer necessary to use the Monte Carlo method to solve this class of problem.
Broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface
NASA Astrophysics Data System (ADS)
Mao, Chenyang; Yang, Yang; He, Xiaoxiang; Zheng, Jingming; Zhou, Chun
2017-12-01
In this paper, a broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface is proposed. The proposed metasurface can effectively convert linear-polarized (TE/TM) incident wave into the reflected wave with three different polarizations within the frequency bands of 5.5-22.75 GHz. Based on the electric and magnetic resonant features of the double-L-shaped structure, the proposed metasurface can convert linearly polarized waves into cross-polarized waves at three resonant frequency bands. Furthermore, the incident linearly polarized waves can be effectively converted into left/right handed circular-polarized (LHCP and RHCP) waves at other four non-resonance frequency bands. Thus, the proposed metasurface can be regarded as a seven-band multi-polarization converter. The prototype of the proposed polarization converter is analyzed and measured. Both simulated and measured results show the 3-dB axis ratio bandwidth of circular polarization bands and the high polarization conversion efficiency of cross-polarization bands when the incident wave changes from 0° to 30° at both TE and TM modes.
NASA Astrophysics Data System (ADS)
Zhang, Danfeng; Hao, Zhifeng; Qian, Yannan; Zeng, Bi; Zhu, Haiping; Wu, Qibai; Yan, Chengjie; Chen, Muyu
2018-05-01
Nanocarbon-based materials are outstanding microwave absorbers with good dielectric properties. In this study, double-layer silicone resin flexible absorbing coatings, composed of carbon-coated nickel nanoparticles (Ni@C) and carbon nanotubes (CNTs), with low loading and a total thickness of 2 mm, were prepared. The reflection loss (RL) of the double-layer absorbing coatings has measured for frequencies between 2 and 18 GHz using the Arch reflecting testing method. The effects of the thickness and electromagnetic parameters of each layer and of the layer sequence on the absorbing properties were investigated. It is found that the measured bandwidth (RL ≤ - 10 dB) of the optimum double-layer structure in our experiment range achieves 3.70 GHz. The results indicated that the double coating structure composed of different materials has greater synergistic absorption effect on impedance matching than that of same materials with different loading. The maximum RL of S1 (5 wt% CNTs)/S3 (60 wt% Ni@C) double-layer absorbing coating composed of different materials (S1 and S3) was larger than the one achieved using either S1 or S3 alone with the same thickness. This was because double-layer coating provided a suitable matching layer and improve the interfacial impedance. It was also shown that absorbing peak value and frequency position can be adjusted by double-layer coating structure.
Canver, Matthew C.; Bauer, Daniel E.; Dass, Abhishek; Yien, Yvette Y.; Chung, Jacky; Masuda, Takeshi; Maeda, Takahiro; Paw, Barry H.; Orkin, Stuart H.
2014-01-01
The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 nuclease system has provided a powerful tool for genome engineering. Double strand breaks may trigger nonhomologous end joining repair, leading to frameshift mutations, or homology-directed repair using an extrachromosomal template. Alternatively, genomic deletions may be produced by a pair of double strand breaks. The efficiency of CRISPR/Cas9-mediated genomic deletions has not been systematically explored. Here, we present a methodology for the production of deletions in mammalian cells, ranging from 1.3 kb to greater than 1 Mb. We observed a high frequency of intended genomic deletions. Nondeleted alleles are nonetheless often edited with inversions or small insertion/deletions produced at CRISPR recognition sites. Deleted alleles also typically include small insertion/deletions at predicted deletion junctions. We retrieved cells with biallelic deletion at a frequency exceeding that of probabilistic expectation. We demonstrate an inverse relationship between deletion frequency and deletion size. This work suggests that CRISPR/Cas9 is a robust system to produce a spectrum of genomic deletions to allow investigation of genes and genetic elements. PMID:24907273
MMIC Replacement for Gunn Diode Oscillators
NASA Technical Reports Server (NTRS)
Crowe, Thomas W.; Porterfield, David
2011-01-01
An all-solid-state replacement for high-frequency Gunn diode oscillators (GDOs) has been proposed for use in NASA s millimeter- and submillimeter-wave sensing instruments. Highly developed microwave oscillators are used to achieve a low-noise and highly stable reference signal in the 10-40-GHz band. Compact amplifiers and high-power frequency multipliers extend the signal to the 100-500-GHz band with minimal added phase noise and output power sufficient for NASA missions. This technology can achieve improved output power and frequency agility, while maintaining phase noise and stability comparable to other GDOs. Additional developments of the technology include: a frequency quadrupler to 145 GHz with 18 percent efficiency and 15 percent fixed tuned bandwidth; frequency doublers featuring 124, 240, and 480 GHz; an integrated 874-GHz subharmonic mixer with a mixer noise temperature of 3,000 K DSB (double sideband) and mixer conversion loss of 11.8 dB DSB; a high-efficiency frequency tripler design with peak output power of 23 mW and 14 mW, and efficiency of 16 and 13 percent, respectively; millimeter-wave integrated circuit (MMIC) power amplifiers to the 30-40 GHz band with high DC power efficiency; and an 874-GHz radiometer suitable for airborne observation with state-of-the-art sensitivity at room temperature and less than 5 W of total power consumption.
Transient effects in π-pulse sequences in MAS solid-state NMR
NASA Astrophysics Data System (ADS)
Hellwagner, Johannes; Wili, Nino; Ibáñez, Luis Fábregas; Wittmann, Johannes J.; Meier, Beat H.; Ernst, Matthias
2018-02-01
Dipolar recoupling techniques that use isolated rotor-synchronized π pulses are commonly used in solid-state NMR spectroscopy to gain insight into the structure of biological molecules. These sequences excel through their simplicity, stability towards radio-frequency (rf) inhomogeneity, and low rf requirements. For a theoretical understanding of such sequences, we present a Floquet treatment based on an interaction-frame transformation including the chemical-shift offset dependence. This approach is applied to the homonuclear dipolar-recoupling sequence Radio-Frequency Driven Recoupling (RFDR) and the heteronuclear recoupling sequence Rotational Echo Double Resonance (REDOR). Based on the Floquet approach, we show the influence of effective fields caused by pulse transients and discuss the advantages of pulse-transient compensation. We demonstrate experimentally that the transfer efficiency for homonuclear recoupling can be doubled in some cases in model compounds as well as in simple peptides if pulse-transient compensation is applied to the π pulses. Additionally, we discuss the influence of various phase cycles on the recoupling efficiency in order to reduce the magnitude of effective fields. Based on the findings from RFDR, we are able to explain why the REDOR sequence does not suffer in the recoupling efficiency despite the presence of effective fields.
Transceiver-Phased Arrays for Human Brain Studies at 7 T
2013-01-01
The paper describes technological advances in high-field (7 T) transceiver-phased arrays developed for magnetic resonance imaging of the human brain. The first part of this work describes an 8-element inductively decoupled split elliptical transceiver-phased array with selectable geometry, which provides an easy and efficient way of compensating for changes in mutual inductive coupling associated with difference in loading due to variability in head shape and size. The second part of the work describes a double-row 16-element (2 × 8) transceiver array to extend the homogeneous transmit B1 profile in the longitudinal direction. Multiplexing eight transmit channels between the two rows of the array provides homogeneous excitation over the entire volume. The final section describes design and construction of a double-tuned 31P/1H 16-element (8 at each frequency) array. The array improves transmission efficiency and B1 homogeneity at 1H frequency in comparison with 31P/1H quadrature transverse electromagnetic volume coil. For 31P studies, the array also improves transmission efficiency (38%), signal-to-noise ratio (SNR) for central brain locations (20%) and provides substantially greater SNR (up to 400%) for peripheral locations. PMID:23516332
Compact intra-cavity frequency doubled line beam green laser by a laser diode array pumped
NASA Astrophysics Data System (ADS)
Yan, Boxia; Qi, Yan; Wang, Yanwei
2016-10-01
Compact, high power, and low-cost green laser light sources are needed in projection-related applications such as digital cinema, rear-projection television, simulators, and command and control stations. We report a LD array directly pumped intracavity SHG Nd:YVO4/PPMgLN laser without lens or waveguide in this letter. A compact 3.12 W green laser was demonstrated by intra-cavity frequency doubled using a PPMgLN bulk crystal by a 19-emitter LD array pumped(single bar), the conversion efficiency from input LD array was 9.2%. A line-beam output suitable for laser projectors was generated, which has the potential to be scalable to small volumes and low costs for laser projection displays.
Visualization of vortex structures and analysis of frequency of PVC
NASA Astrophysics Data System (ADS)
Gesheva, E. S.; Shtork, S. I.; Alekseenko, S. V.
2018-03-01
The paper presents the results of the study of large-scale vortex structures in a model chamber. Methods of forming quasi-stationary vortices of various shapes by changing the geometric parameters of the chamber have been proposed. In the model chamber with a tangential swirl of the flow, a rectilinear vortex, single helical and double helical vortices were obtained. The double helical structure of the vortex is unique due to its immovability around the axis of the chamber. The resulting structures slowly oscillate around their own axes, which is called the vortex core precession; while the oscillation frequency depends linearly on the liquid flow rate. The use of stationary vortex structures in power plants will increase the efficiency of combustion chambers and reduce slagging.
Theoretical analysis of optical poling and frequency doubling effect based on classical model
NASA Astrophysics Data System (ADS)
Feng, Xi; Li, Fuquan; Lin, Aoxiang; Wang, Fang; Chai, Xiangxu; Wang, Zhengping; Zhu, Qihua; Sun, Xun; Zhang, Sen; Sun, Xibo
2018-03-01
Optical poling and frequency doubling effect is one of the effective manners to induce second order nonlinearity and realize frequency doubling in glass materials. The classical model believes that an internal electric field is built in glass when it's exposed by fundamental and frequency-doubled light at the same time, and second order nonlinearity appears as a result of the electric field and the orientation of poles. The process of frequency doubling in glass is quasi phase matched. In this letter, the physical process of poling and doubling process in optical poling and frequency doubling effect is deeply discussed in detail. The magnitude and direction of internal electric field, second order nonlinear coefficient and its components, strength and direction of frequency doubled output signal, quasi phase matched coupled wave equations are given in analytic expression. Model of optical poling and frequency doubling effect which can be quantitatively analyzed are constructed in theory, which set a foundation for intensive study of optical poling and frequency doubling effect.
NASA Astrophysics Data System (ADS)
Vyunishev, A. M.; Arkhipkin, V. G.; Baturin, I. S.; Akhmatkhanov, A. R.; Shur, V. Ya; Chirkin, A. S.
2018-04-01
The frequency doubling of femtosecond laser pulses in a two-dimensional (2D) rectangular nonlinear photonic lattice with hexagonal domains is studied experimentally and theoretically. The broad fundamental spectrum enables frequency conversion under nonlinear Bragg diffraction for a series of transverse orders at a fixed longitudinal quasi-phase-matching order. The consistent nonstationary theory of the frequency doubling of femtosecond laser pulses is developed using the representation based on the reciprocal lattice of the structure. The calculated spatial distribution of the second-harmonic spectral intensity agrees well with the experimental data. The condition for multiple nonlinear Bragg diffraction in a 2D nonlinear photonic lattice is offered. The hexagonal shape of the domains contributes to multibeam second harmonic excitation. The maximum conversion efficiency for a series of transverse orders in the range 0.01%-0.03% is obtained.
Zörcher, T; Hochberger, J; Schrott, K M; Kühn, R; Schafhauser, W
1999-01-01
In a preclinical study we have tested both in vitro and in vivo, a new type of pulsed solid-state laser system that has not been applied in urology so far and has been developed for optimized intracorporal lithotripsy of biliary, salivary, and urinary calculi. Sixty one calculi from the human urinary tract were split in vitro into fragments with a remaining particle size of = 2 mm using the prototype of a short-pulsed passively Q-switched and frequency-doubled double-pulse Neodymium:YAG laser. In a supplementary animal test, the bladder mucosa of five rabbits was directly exposed to a highly rated laser beam to be able to assess the tissue lesion potential of the system. All the 61 urinary calculi with different composition were successfully split in vitro within a short period of time (2.5 +/- 4.6 minutes). During histopathologic examination of the exposed bladder walls of the rabbits only a small tissue lesion potential with urothelium changes exclusively at the surface was ascertained. The high degree of fragmentation efficiency, the purchase and maintenance costs, which due to its design are substantially lower in comparison to other laser lithotriptors, and the high degree of safety during application make this new laser a real alternative not only to the present laser lithotripsy systems but also to common ballistic lithotriptors. Copyright 1999 Wiley-Liss, Inc.
Simulation of double-pass stimulated Raman backscattering
NASA Astrophysics Data System (ADS)
Wu, Z.; Chen, Q.; Morozov, A.; Suckewer, S.
2018-04-01
Experiments on Stimulated Raman Backscattering (SRBS) in plasma have demonstrated significantly higher energy conversion in a double-pass amplifier where the laser pulses go through the plasma twice compared with a single-pass amplifier with double the plasma length of a single pass. In this paper, the improvement in understanding recent experimental results is presented by considering quite in detail the effects of plasma heating on the modeling of SRBS. Our simulation results show that the low efficiency of single-pass amplifiers can be attributed to Landau damping and the frequency shift of Langmuir waves. In double-pass amplifiers, these issues can be avoided, to some degree, because pump-induced heating could be reduced, while the plasma cools down between the passes. Therefore, double-pass amplifiers yield considerably enhanced energy transfer from the pump to the seed, hence the output pulse intensity.
Jedrzejczyk, Daniel; Güther, Reiner; Paschke, Katrin; Jeong, Woo-Jin; Lee, Han-Young; Erbert, Götz
2011-02-01
We report on efficient single-pass, high-power second-harmonic generation in a periodically poled MgO-doped LiNbO3 planar waveguide using a distributed Bragg reflector tapered diode laser as a pump source. A coupling efficiency into the planar waveguide of 73% was realized, and 1.07 W of visible laser light at 532 nm was generated. Corresponding optical and electro-optical conversion efficiencies of 26% and 8.4%, respectively, were achieved. Good agreement between the experimental data and the theoretical predictions was observed.
Demirbas, Umit; Baali, Ilyes; Acar, Durmus Alp Emre; Leitenstorfer, Alfred
2015-04-06
We demonstrate continuous-wave (cw), cw frequency-doubled, cw mode-locked and Q-switched mode-locked operation of multimode diode-pumped Cr:LiCAF lasers with record average powers. Up to 2.54 W of cw output is obtained around 805 nm at an absorbed pump power of 5.5 W. Using intracavity frequency doubling with a BBO crystal, 0.9 W are generated around 402 nm, corresponding to an optical-to-optical conversion efficiency of 12%. With an intracavity birefringent tuning plate, the fundamental and frequency-doubled laser output is tuned continuously in a broad wavelength range from 745 nm to 885 nm and from 375 to 440 nm, respectively. A saturable Bragg reflector is used to initiate and sustain mode locking. In the cw mode-locked regime, the Cr:LiCAF laser produces 105-fs long pulses near 810 nm with an average power of 0.75 W. The repetition rate is 96.4 MHz, resulting in pulse energies of 7.7 nJ and peak powers of 65 kW. In Q-switched mode-locked operation, pulses with energies above 150 nJ are generated.
Rakhman, A.; Hafez, Mohamed A.; Nanda, Sirish K.; ...
2016-03-31
Here, a high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO 3 crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancementmore » of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.0 GeV and 50 μA.« less
Bauer, Dominik; Zawischa, Ivo; Sutter, Dirk H; Killi, Alexander; Dekorsy, Thomas
2012-04-23
We demonstrate the generation of 1.1 ps pulses containing more than 41 µJ of energy directly out of an Yb:YAG thin-disk without any additional amplification stages. The laser oscillator operates in ambient atmosphere with a 3.5 MHz repetition rate and 145 W of average output power at a fundamental wavelength of 1030 nm. An average output power of 91.5 W at 515 nm was obtained by frequency doubling with a conversion efficiency exceeding 65%. Third harmonic generation resulted in 34 W at 343 nm at 34% efficiency. © 2012 Optical Society of America
Canver, Matthew C; Bauer, Daniel E; Dass, Abhishek; Yien, Yvette Y; Chung, Jacky; Masuda, Takeshi; Maeda, Takahiro; Paw, Barry H; Orkin, Stuart H
2014-08-01
The clustered regularly interspaced short [corrected] palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 nuclease system has provided a powerful tool for genome engineering. Double strand breaks may trigger nonhomologous end joining repair, leading to frameshift mutations, or homology-directed repair using an extrachromosomal template. Alternatively, genomic deletions may be produced by a pair of double strand breaks. The efficiency of CRISPR/Cas9-mediated genomic deletions has not been systematically explored. Here, we present a methodology for the production of deletions in mammalian cells, ranging from 1.3 kb to greater than 1 Mb. We observed a high frequency of intended genomic deletions. Nondeleted alleles are nonetheless often edited with inversions or small insertion/deletions produced at CRISPR recognition sites. Deleted alleles also typically include small insertion/deletions at predicted deletion junctions. We retrieved cells with biallelic deletion at a frequency exceeding that of probabilistic expectation. We demonstrate an inverse relationship between deletion frequency and deletion size. This work suggests that CRISPR/Cas9 is a robust system to produce a spectrum of genomic deletions to allow investigation of genes and genetic elements. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Tubes in space - Very much alive
NASA Technical Reports Server (NTRS)
Kosmahl, H. G.
1983-01-01
Some advantages of TWTs over SSDs are discussed. Wideband TWTs have been developed which can produce 20 W of RF power at 20 GHz with 40 percent efficiency, a figure three or four times that available from SSDs such as FETs. The basic performance of TWTs exceeds that of SSDs for any given bandwidth and frequency. SSDs are transit time limited, and their performance deteriorates fundamentally as the reciprocal of the square of the operating frequency. Power limits for SSDs have been reached or are quickly being approached. Free electron devices such as tubes have an efficiency advantage because electrons in the vacuum travel faster than bulk charges in SSDs. Combined SSD devices are prone to burnout and incur penalties due to the need to dissipate heat. TWTs have a 6.7:1 advantage in radiator area ratio. Recent progress in TWT technology has produced a tenfold increase in CW output power, doubled to quadrupled the efficiency, and pushed frequency ranges into the terahertz region, orders of magnitude beyond the SSD cutoff.
High-efficiency piezoelectric micro harvester for collecting low-frequency mechanical energy.
Li, Xin; Song, Jinhui; Feng, Shuanglong; Xie, Xiong; Li, Zhenhu; Wang, Liang; Pu, Yayun; Soh, Ai Kah; Shen, Jun; Lu, Wenqiang; Liu, Shuangyi
2016-12-02
A single-layer zinc oxide (ZnO) nanorod array-based micro energy harvester was designed and integrated with a piezoelectric metacapacitor. The device presents outstanding low-frequency (1-10 Hz) mechanical energy harvesting capabilities. When compared with conventional pristine ZnO nanostructured piezoelectric harvesters or generators, both open-circuit potential and short-circuit current are significantly enhanced (up to 3.1 V and 124 nA cm -2 ) for a single mechanical knock (∼34 kPa). Higher electromechanical conversion efficiency (1.3 pC/Pa) is also observed. The results indicate that the integration of the piezoelectric metacapacitor is a crucial factor for improving the low-frequency energy harvesting performance. A double piezoelectric-driven mechanism is proposed to explain current higher output power, in which the metacapacitor plays the multiple roles of charge pumping, storing and transferring. An as-fabricated prototype device for lighting an LED demonstrates high power transference capability, with over 95% transference efficiency to the external load.
Numerical study of a VM type multi-bypass pulse tube cryocooler operating at 4K
NASA Astrophysics Data System (ADS)
Pan, Changzhao; Zhang, Tong; Wang, Jue; Chen, Liubiao; Cui, Chen; Wang, Junjie; Zhou, Yuan
2017-12-01
VM cryocooler is one kind of Stirling type cryocooler working at low frequency. At present, we have obtained the liquid helium temperature by using a two-stage VM/pulse tube hybrid cryocooler. As a new kind of 4K cryocooler, there are many aspects need to be studied and optimized in detail. In order to reducing the vibration and improving the stability of this cryocooler, a pulse tube cryocooler was designed to get rid of the displacer in the first stage. This paper presents a detail numerical investigation on this pulse tube cryocooler by using the SAGE software. The low temperature phase shifters were adopted in this cryocooler, which were low temperature gas reservoir, low temperature double-inlet and multi-bypass. After optimizing, the structure parameters and the best diameters of orifice, multi-bypass and double-inlet were obtained. With the pressure ratio of about 1.6 and operating frequency 2Hz, this cryocooler could supply above 40mW cooling power at 4.2K, and the total input power needs no more than 60W at 77K. Based on the highest efficiency of 77K high capacity cryocooler, the overall efficiency of this VM type pulse tube cryocooler is above 0.5% relative Carnot efficient.
Wu, Chin H; Grant, Christopher V; Cook, Gabriel A; Park, Sang Ho; Opella, Stanley J
2009-09-01
A strip-shield inserted between a high inductance double-tuned solenoid coil and the glass tube containing the sample improves the efficiency of probes used for high-field solid-state NMR experiments on lossy aqueous samples of proteins and other biopolymers. A strip-shield is a coil liner consisting of thin copper strips layered on a PTFE (polytetrafluoroethylene) insulator. With lossy samples, the shift in tuning frequency is smaller, the reduction in Q, and RF-induced heating are all significantly reduced when the strip-shield is present. The performance of 800MHz (1)H/(15)N and (1)H/(13)C double-resonance probes is demonstrated on aqueous samples of membrane proteins in phospholipid bilayers.
NASA Astrophysics Data System (ADS)
Herda, Robert; Zach, Armin
2015-03-01
We present an Erbium:Ytterbium codoped fiber-amplifer system based on Divided-Pulses-Amplification (DPA) for ultrashort pulses. The output from a saturable-absorber mode-locked polarization-maintaining (PM) fiber oscillator is amplified in a PM normal-dispersion Erbium-doped fiber. After this stage the pulses are positively chirped and have a duration of 2.0 ps at an average power of 93 mW. A stack of 5 birefringent Yttrium-Vanadate crystals divides these pulses 32 times. We amplify these pulses using a double-clad Erbium:Ytterbium codoped fiber pumped through a multimode fiber combiner. The pulses double pass the amplifier and recombine in the crystals using non-reciprocal polarization 90° rotation by a Faraday rotating mirror. Pulses with a duration of 144 fs are obtained after separation from the input beam using a polarizing beam splitter cube. These pulses have an average power of 1.85 W at a repetition rate of 80 MHz. The generation of femtosecond pulses directly from the amplifier was enabled by a positively chirped seed pulse, normally dispersive Yttrium-Vanadate crystals, and anomalously dispersive amplifier fibers. Efficient frequency doubling to 780 nm with an average power of 725 mW and a pulse duration of 156 fs is demonstrated. In summary we show a DPA setup that enables the generation of femtosecond pulses at watt-level at 1560 nm without the need for further external dechirping and demonstrate a good pulse quality by efficient frequency doubling. Due to the use of PM fiber components and a Faraday rotator the setup is environmentally stable.
Efficient two-stage dual-beam noncollinear optical parametric amplifier
NASA Astrophysics Data System (ADS)
Cheng, Yu-Hsiang; Gao, Frank Y.; Poulin, Peter R.; Nelson, Keith A.
2018-06-01
We have constructed a noncollinear optical parametric amplifier with two signal beams amplified in the same nonlinear crystal. This dual-beam design is more energy-efficient than operating two amplifiers in parallel. The cross-talk between two beams has been characterized and discussed. We have also added a second amplification stage to enhance the output of one of the arms, which is then frequency-doubled for ultraviolet generation. This single device provides two tunable sources for ultrafast spectroscopy in the ultraviolet and visible region.
NASA Astrophysics Data System (ADS)
Shi, Wei; Fang, Qiang; Fan, Jingli; Cui, Xuelong; Zhang, Zhuo; Li, Jinhui; Zhou, Guoqing
2017-02-01
We report a single frequency, linearly polarized, near diffraction-limited, pulsed laser source at 775 nm by frequency doubling a single frequency nanosecond pulsed all fiber based master oscillator-power amplifier, seeded by a fiber coupled semiconductor DFB laser diode at 1550 nm. The laser diode was driven by a pulsed laser driver to generate 5 ns laser pulses at 260 Hz repetition rate with 50 pJ pulse energy. The pulse energy was boosted to 200 μJ using two stages of core-pumped fiber amplifiers and two stages of cladding-pumped fiber amplifiers. The multi-stage synchronous pulse pumping technique was adopted in the four stages of fiber amplifiers to mitigate the ASE. The frequency doubling is implemented in a single pass configuration using a periodically poled lithium niobate (PPLN) crystal. The crystal is 3 mm long, 1.4 mm wide, 1 mm thick, with a 19.36 μm domain period chosen for quasi-phase matching at 33°C. It was AR coated at both 1550 nm and 775 nm. The maximum pulse energy of 97 μJ was achieved when 189 μJ fundamental laser was launched. The corresponding conversion efficiency is about 51.3%. The pulse duration was measured to be 4.8 ns. So the peak power of the generated 775 nm laser pulses reached 20 kW. To the best of our knowledge, this is the first demonstration of a 100 μJ-level, tens of kilowatts-peak-power-level single frequency linearly polarized 775 nm laser based on the frequency doubling of the fiber lasers.
Liu, Wei; Yao, Kainan; Huang, Danian; Lin, Xudong; Wang, Liang; Lv, Yaowen
2016-06-13
The Greenwood frequency (GF) is influential in performance improvement for the coherent free space optical communications (CFSOC) system with a closed-loop adaptive optics (AO) unit. We analyze the impact of tilt and high-order aberrations on the mixing efficiency (ME) and bit-error-rate (BER) under different GF. The root-mean-square value (RMS) of the ME related to the RMS of the tilt aberrations, and the GF is derived to estimate the volatility of the ME. Furthermore, a numerical simulation is applied to verify the theoretical analysis, and an experimental correction system is designed with a double-stage fast-steering-mirror and a 97-element continuous surface deformable mirror. The conclusions of this paper provide a reference for designing the AO system for the CFSOC system.
Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device
Haaland, C.M.; Deeds, W.E.
1999-07-13
A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.
Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device
Haaland, Carsten M.; Deeds, W. Edward
1999-01-01
A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.
Fedotchev, A I
2010-01-01
The perspective approach to non-pharmacological correction of the stress induced functional disorders in humans, based on the double negative feedback from patient's EEG was validated and experimentally tested. The approach implies a simultaneous use of narrow frequency EEG-oscillators, characteristic for each patient and recorded in real time span, in two independent contours of negative feedback--traditional contour of adaptive biomanagement and additional contour of resonance stimulation. In the last the signals of negative feedback from individual narrow frequency EEG oscillators are not recognized by the subject, but serve for an automatic modulation of the parameters of the sensory impact. Was shown that due to combination of active (conscious perception) and passive (automatic modulation) use of signals of negative feedback from narrow frequency EEG components of the patient, opens a possibility of considerable increase of efficiency of the procedures of EEG biomanagement.
Diode pumped Yb:CN laser at 1082 nm and intracavity doubling to the green spectral range
NASA Astrophysics Data System (ADS)
Liu, B.; Li, Y. L.; Jiang, H. L.
2011-08-01
A diode pumped Yb:CaNb2O6 (Yb:CN) laser at 1082 nm with a maximum output of 1.35 W at 13.3 W pump power has been demonstrated. The slope efficiency was 12.4%. Moreover, intracavity second-harmonic generation (SHG) has also been achieved with a maximum green power of 374 mW by using a LiB3O5 (LBO) nonlinear crystal. To the best of our knowledge, this is the first report on continuous wave (CW) green generation by intracavity frequency doubling Yb:CN laser.
NASA Astrophysics Data System (ADS)
Levin, M. B.; Cherkasov, A. S.
1989-02-01
An account is given of the published investigations of ways of increasing the efficiency of flashlamp-pumped lasers by frequency conversion of the exciting radiation with the aid of luminescent filters. An analysis is made of the method for calculating the efficiency of luminescent filters absorbing short-wavelength radiation and reemitting it in the absorption region of the active medium. It is shown that the use of rhodamine 6G and other phosphors as luminescent filters can double the efficiency of neodymium glass lasers, increase the efficiency of YAG:Nd3+ lasers by a factor of 1.5, and improve the efficiency of lasers activated with Ti3+ by more than an order of magnitude. The use of luminescent filters in dye lasers can double the efficiency and make it possible to reach average output powers of hundreds of watts. Promising materials for luminescent filters are considered and margins for increasing their efficiency are analyzed. The main results are reported of studies of plasma pump-spectrum converters and it is shown that promising results can be expected by combining luminescent filters and an optimized plasma converter system in an "optical boiler" enclosure.
Evolution of the Novalux extended cavity surface-emitting semiconductor laser (NECSEL)
NASA Astrophysics Data System (ADS)
McInerney, John G.
2016-03-01
Novalux Inc was an enterprise founded by Aram Mooradian in 1998 to commercialise a novel electrically pumped vertical extended cavity semiconductor laser platform, initially aiming to produce pump lasers for optical fiber telecommunication networks. Following successful major investment in 2000, the company developed a range of single- and multi-mode 980 nm pump lasers emitting from 100-500 mW with excellent beam quality and efficiency. This rapid development required solution of several significant problems in chip and external cavity design, substrate and DBR mirror optimization, thermal engineering and mode selection. Output coupling to single mode fiber was exceptional. Following the collapse of the long haul telecom market in late 2001, a major reorientation of effort was undertaken, initially to develop compact 60-100 mW hybrid monolithically integrated pumplets for metro/local amplified networks, then to frequency-doubled blue light emitters for biotech, reprographics and general scientific applications. During 2001-3 I worked at Novalux on a career break from University College Cork, first as R&D Director managing a small group tasked with producing new capabilities and product options based on the NECSEL platform, including high power, pulsed and frequency doubled versions, then in 2002 as Director of New Product Realization managing the full engineering team, leading the transition to frequency doubled products.
Jiang, Yannan; Wang, Lei; Wang, Jiao; Akwuruoha, Charles Nwakanma; Cao, Weiping
2017-10-30
The polarization conversion of electromagnetic (EM) waves, especially linear-to-circular (LTC) polarization conversion, is of great significance in practical applications. In this study, we propose an ultra-wideband high-efficiency reflective LTC polarization converter based on a metasurface in the terahertz regime. It consists of periodic unit cells, each cell of which is formed by a double split resonant square ring, dielectric layer, and fully reflective gold mirror. In the frequency range of 0.60 - 1.41 THz, the magnitudes of the reflection coefficients reach approximately 0.7, and the phase difference between the two orthogonal electric field components of the reflected wave is close to 90° or -270°. The results indicate that the relative bandwidth reaches 80% and the efficiency is greater than 88%, thus, ultra-wideband high-efficiency LTC polarization conversion has been realized. Finally, the physical mechanism of the polarization conversion is revealed. This converter has potential applications in antenna design, EM measurement, and stealth technology.
NASA Technical Reports Server (NTRS)
Cook, Anthony; McNeil, Shirley; Switzer, Gregg; Battle, Philip
2010-01-01
Precise laser remote sensing of aerosol extinction and backscatter in the atmosphere requires a high-power, pulsed, frequency doubled Nd:YAG laser that is wavelength- stabilized to a narrow absorption line such as found in iodine vapor. One method for precise wavelength control is to injection seed the Nd:YAG laser with a low-power CW laser that is stabilized by frequency converting a fraction of the beam to 532 nm, and to actively frequency-lock it to an iodine vapor absorption line. While the feasibility of this approach has been demonstrated using bulk optics in NASA Langley s Airborne High Spectral Resolution Lidar (HSRL) program, an ideal, lower cost solution is to develop an all-waveguide, frequency-locked seed laser in a compact, robust package that will withstand the temperature, shock, and vibration levels associated with airborne and space-based remote sensing platforms. A key technology leading to this miniaturization is the integration of an efficient waveguide frequency doubling element, and a low-voltage phase modulation element into a single, monolithic, planar light-wave circuit (PLC). The PLC concept advances NASA's future lidar systems due to its compact, efficient and reliable design, thus enabling use on small aircraft and satellites. The immediate application for this technology is targeted for NASA Langley's HSRL system for aerosol and cloud characterization. This Phase I effort proposes the development of a potassium titanyl phosphate (KTP) waveguide phase modulator for future integration into a PLC. For this innovation, the proposed device is the integration of a waveguide-based frequency doubler and phase modulator in a single, fiber pigtail device that will be capable of efficient second harmonic generation of 1,064-nm light and subsequent phase modulation of the 532 nm light at 250 MHz, providing a properly spectrally formatted beam for HSRL s seed laser locking system. Fabrication of the integrated PLC chip for NASA Langley, planned for the Phase II effort, will require full integration and optimization of the waveguide components (SHG waveguide, splitters, and phase modulator) onto a single, monolithic device. The PLC will greatly reduce the size and weight, improve electrical- to-optical efficiency, and significantly reduce the cost of NASA Langley s current stabilized HSRL seed laser system built around a commercial off-the-shelf seed laser that is free-space coupled to a bulk doubler and bulk phase modulator.
NASA Astrophysics Data System (ADS)
Shui, Tao; Yang, Wen-Xing; Chen, Ai-Xi; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu
2018-03-01
We propose a scheme for high-precision two-dimensional (2D) atom localization via the four-wave mixing (FWM) in a four-level double-Λ atomic system. Due to the position-dependent atom-field interaction, the 2D position information of the atoms can be directly determined by the measurement of the normalized light intensity of output FWM-generated field. We further show that, when the position-dependent generated FWM field has become sufficiently intense, efficient back-coupling to the FWM generating state becomes important. This back-coupling pathway leads to competitive multiphoton destructive interference of the FWM generating state by three supplied and one internally generated fields. We find that the precision of 2D atom localization can be improved significantly by the multiphoton destructive interference and depends sensitively on the frequency detunings and the pump field intensity. Interestingly enough, we show that adjusting the frequency detunings and the pump field intensity can modify significantly the FWM efficiency, and consequently lead to a redistribution of the atoms. As a result, the atom can be localized in one of four quadrants with holding the precision of atom localization.
NASA Astrophysics Data System (ADS)
Shukla, Mukesh Kumar; Kumar, Samir; Das, Ritwick
2016-05-01
We report 48 % efficient single-pass second harmonic generation of high-power ultrashort-pulse ({≈ }250 fs) Yb-fiber laser by utilizing type-I phase matching in LiB_3O_5 (LBO) crystal. The choice of LBO among other borate crystals for high-power frequency doubling is essentially motivated by large thermal conductivity, low birefringence and weak group velocity dispersion. By optimally focussing the beam in a 4-mm-long LBO crystal, we have generated about 2.3 W of average power at 532 nm using 4.8 W of available pump power at 1064 nm. The ultrashort green pulses were found out to be near-transform limited sech^2 pulses with a pulse width of Δ τ ≈ 150 fs and being delivered at 78 MHz repetition rate. Due to appreciably low spatial walk-off angle for LBO ({≈ }0.4°), we obtain M^2<1.26 for the SH beam which signifies marginal distortion in comparison with the pump beam (M^2<1.15). We also discuss the impact of third-order optical nonlinearity of the LBO crystal on the generated ultrashort SH pulses.
Periodically poled self-frequency-doubling green laser fabricated from Nd:Mg:LiNbO₃ single crystal.
Wang, Dong Zhou; Sun, De Hui; Kang, Xue Liang; Sang, Yuan Hua; Yan, Bo Xia; Liu, Hong; Bi, Yong
2015-07-13
Although a breakthrough in the fabrication of green laser diodes has occurred, the high costs associated with the difficulty of manufacture still present a great obstacle for its practical application. Another approach for producing a green laser, by combining a laser device and a nonlinear crystal, entails the fabrication of complex structures and exhibits unstable performance due to interface contact defects, thus limiting its application. In this work, we report the fabrication by domain engineering of high quality periodically poled LiNbO₃, co-doped with Nd³⁺ and Mg²⁺, which combines a laser medium and a high efficiency second harmonic conversion crystal into a single system that is designed to overcome the above problems. An 80 mW self-frequency doubling green laser was constructed for the first time from a periodically poled Nd:Mg:LiNbO₃ crystal of 16 mm in length. This crystal can be used for developing compact, stable, highly efficient mini-solid-state-lasers, which promise to have many applications in portable laser-based spectroscopy, photo-communications, terahertz wave generation, and laser displays.
NASA Astrophysics Data System (ADS)
Guo, Lei; Liu, Yejun; Zhou, Yufang; Wei, Xuetao; Liu, Yuying
2018-07-01
The exponential growth of the demand for broadband services has imposed great challenges on the design of spectrum-efficient optical transmission system in Passive Optical Network (PON). Recently, an innovative Orthogonal Frequency Division Multiplexing (OFDM) scheme, called Polar-OFDM (P-OFDM), has emerged as a promising solution to boost the spectral efficiency of optical transmission in PON. However, the traditional P-OFDM does not yet perform best in spectral efficiency as it only uses half of the total subcarriers. In this paper, we verify a promising complementation between Polarization Multiplexing (POLMUX) and P-OFDM aiming at higher spectral efficiency. We then propose the full-subcarriers P-OFDM by loading data on the even-indexed subcarriers of X polarization and the odd-indexed subcarriers of Y polarization, respectively. Thus, all of the subcarriers will be utilized for effective data transmission, which can double the spectral efficiency. More importantly, because the subcarriers are interlaced on different polarizations, the cross-polarization interference can be significantly mitigated, which enables the independent channel estimation and equalization at the receiver to recover the data carried on each polarization. Our evaluation results demonstrate that the proposed system realizes the double spectral efficiency of the traditional P-OFDM with reasonable Bit Error Rate (BER) performance loss.
Properties and Frequency Conversion of High-Brightness Diode-Laser Systems
NASA Astrophysics Data System (ADS)
Boller, Klaus-Jochen; Beier, Bernard; Wallenstein, Richard
An overview of recent developments in the field of high-power, high-brightness diode-lasers, and the optically nonlinear conversion of their output into other wavelength ranges, is given. We describe the generation of continuous-wave (CW) laser beams at power levels of several hundreds of milliwatts to several watts with near-perfect spatial and spectral properties using Master-Oscillator Power-Amplifier (MOPA) systems. With single- or double-stage systems, using amplifiers of tapered or rectangular geometry, up to 2.85 W high-brightness radiation is generated at wavelengths around 810nm with AlGaAs diodes. Even higher powers, up to 5.2W of single-frequency and high spatial quality beams at 925nm, are obtained with InGaAs diodes. We describe the basic properties of the oscillators and amplifiers used. A strict proof-of-quality for the diode radiation is provided by direct and efficient nonlinear optical conversion of the diode MOPA output into other wavelength ranges. We review recent experiments with the highest power levels obtained so far by direct frequency doubling of diode radiation. In these experiments, 100mW single-frequency ultraviolet light at 403nm was generated, as well as 1W of single-frequency blue radiation at 465nm. Nonlinear conversion of diode radiation into widely tunable infrared radiation has recently yielded record values. We review the efficient generation of widely tunable single-frequency radiation in the infrared with diode-pumped Optical Parametric Oscillators (OPOs). With this system, single-frequency output radiation with powers of more than 0.5W was generated, widely tunable around wavelengths of 2.1,m and 1.65,m and with excellent spectral and spatial quality. These developments are clear indicators of recent advances in the field of high-brightness diode-MOPA systems, and may emphasize their future central importance for applications within a vast range of optical wavelengths.
Tehranchi, Amirhossein; Kashyap, Raman
2009-10-12
A wavelength converter based on counterpropagating quasi-phase matched cascaded sum and difference frequency generation in lossy lithium niobate waveguide is numerically evaluated and compared to a single-pass scheme assuming a large pump wavelength difference of 75 nm. A double-pass device is proposed to improve the conversion efficiency while the response flattening is accomplished by increasing the wavelength tuning of one pump. The criteria for the design of the low-loss waveguide length, and the assignment of power in the pumps to achieve the desired efficiency, ripple and bandwidth are presented.
1.9 W yellow, CW, high-brightness light from a high efficiency semiconductor laser-based system
NASA Astrophysics Data System (ADS)
Hansen, A. K.; Christensen, M.; Noordegraaf, D.; Heist, P.; Papastathopoulos, E.; Loyo-Maldonado, V.; Jensen, O. B.; Stock, M. L.; Skovgaard, P. M. W.
2017-02-01
Semiconductor lasers are ideal sources for efficient electrical-to-optical power conversion and for many applications where their small size and potential for low cost are required to meet market demands. Yellow lasers find use in a variety of bio-related applications, such as photocoagulation, imaging, flow cytometry, and cancer treatment. However, direct generation of yellow light from semiconductors with sufficient beam quality and power has so far eluded researchers. Meanwhile, tapered semiconductor lasers at near-infrared wavelengths have recently become able to provide neardiffraction- limited, single frequency operation with output powers up to 8 W near 1120 nm. We present a 1.9 W single frequency laser system at 562 nm, based on single pass cascaded frequency doubling of such a tapered laser diode. The laser diode is a monolithic device consisting of two sections: a ridge waveguide with a distributed Bragg reflector, and a tapered amplifier. Using single-pass cascaded frequency doubling in two periodically poled lithium niobate crystals, 1.93 W of diffraction-limited light at 562 nm is generated from 5.8 W continuous-wave infrared light. When turned on from cold, the laser system reaches full power in just 60 seconds. An advantage of using a single pass configuration, rather than an external cavity configuration, is increased stability towards external perturbations. For example, stability to fluctuating case temperature over a 30 K temperature span has been demonstrated. The combination of high stability, compactness and watt-level power range means this technology is of great interest for a wide range of biological and biomedical applications.
Cha, Yong-Ho; Ko, Kwang-Hoon; Lim, Gwon; Han, Jae-Min; Park, Hyun-Min; Kim, Taek-Soo; Jeong, Do-Young
2010-03-20
We have generated continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling a high-power Ti:sapphire laser in an external enhancement cavity. An LBO crystal that is Brewster-cut and antireflection coated on both ends is used for a long-term stable frequency doubling. By optimizing the input coupler's reflectivity, we could generate 1.5 W 378 nm radiation from a 5 W 756 nm Ti:sapphire laser. According to our knowledge, this is the highest CW frequency-doubled power of a Ti:sapphire laser.
Efficient On-chip Optical Microresonator for Optical Comb Generation: Design and Fabrication
NASA Astrophysics Data System (ADS)
Han, Kyunghun
An optical frequency comb is a series of equally spaced frequency components. It has gained much attention since Nobel physics prize was awarded John L. Hall and Theodor W. Hansch for their contribution to the optical frequency comb technique in 2005. The optical frequency comb has been extensively studied because of its precision as a tool for spectroscopy, and is now widely used in bio- and chemical sensors, optical clocks, mode-locked dark pulse generation, soliton generation, and optical communication. Recently, thanks to the developments in nanotechnology, the optical frequency comb generation is made possible at a chip-scale level with microresonators. However, because the threshold power of the optical frequency comb generation is beyond the capability of the on-chip laser source, efficient microresonator is required. Here, we demonstrate an ultra-compact and highly efficient strip-slot direct mode coupler, aiming to achieve slotted silicon microresonator cladded with nonlinear polymer Poly-DDMEBT in SOI platform. As an application of the strip-slot direct mode coupling, a double slot fiber-to-chip edge coupler is demonstrated showing 2 dB insertion loss reduction compared to the conventional single tip edge coupler. For silicon nitride platform, we investigated evanescent wave coupling of microresonator, focusing on bus waveguide geometry optimization. The optimized waveguide width offers an efficient excitation of a fundamental mode in the resonator waveguide. This investigation can benefit low threshold comb generation by enhancing the extinction ratio. We experimentally demonstrated the high Q-factor micro-ring resonator with intrinsic Q of 12.6 million as well as the single FSR comb generation with 63 mW.
Analysis of mode-locked and intracavity frequency-doubled Nd:YAG laser
NASA Technical Reports Server (NTRS)
Siegman, A. E.; Heritier, J.-M.
1980-01-01
The paper presents analytical and computer studies of the CW mode-locked and intracavity frequency-doubled Nd:YAG laser which provide new insight into the operation, including the detuning behavior, of this type of laser. Computer solutions show that the steady-state pulse shape for this laser is much closer to a truncated cosine than to a Gaussian; there is little spectral broadening for on-resonance operation; and the chirp is negligible. This leads to a simplified analytical model carried out entirely in the time domain, with atomic linewidth effects ignored. Simple analytical results for on-resonance pulse shape, pulse width, signal intensity, and harmonic conversion efficiency in terms of basic laser parameters are derived from this model. A simplified physical description of the detuning behavior is also developed. Agreement is found with experimental studies showing that the pulsewidth decreases as the modulation frequency is detuned off resonance; the harmonic power output initially increases and then decreases; and the pulse shape develops a sharp-edged asymmetry of opposite sense for opposite signs of detuning.
NASA Astrophysics Data System (ADS)
Wang, Junhua; Li, Dazhen; Wang, Bo; Yang, Jing; Yang, Houwen; Wang, Xiaoqian; Cheng, Wenyong
2017-11-01
In inertial confinement fusion, ultraviolet laser damage of the fused silica lens is an important limiting factor for load capability of the laser driver. To solve this problem, a new configuration of frequency tripling is proposed in this paper. The frequency tripling crystal is placed on downstream of the focusing lens, thus sum frequency generation of fundamental frequency light and doubling frequency light occurs in the beam convergence path. The focusing lens is only irradiated by fundamental light and doubling frequency lights. Thus, its damage threshold will increase. LiB3O5 (LBO) crystals are employed as frequency tripling crystals for its larger acceptance angle and higher damage threshold than KDP/DKDP crystals'. With the limitation of acceptance angle and crystal growth size are taken into account, the tiling scheme of LBO crystals is proposed and designed optimally to adopt to the total convergence angle of 36.0 mrad. Theoretical results indicate that 3 LBO crystals titling with different cutting angles in θ direction can meet the phase matching condition. Compared with frequency tripling of parallel beam using one LBO crystal, 83.8% (93.1% with 5 LBO crystals tiling) of the frequency tripling conversion efficiency can be obtained employing this new configuration. The results of a principle experiment also support this scheme. By employing this new design, not only the load capacity of a laser driver will be significantly improved, but also the fused silica lens can be changed to K9 glass lens which has the mature technology and low cost.
Compact Double-P Slotted Inset-Fed Microstrip Patch Antenna on High Dielectric Substrate
Ahsan, M. R.; Islam, M. T.; Habib Ullah, M.; Mahadi, W. N. L.; Latef, T. A.
2014-01-01
This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show −10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications. PMID:25165750
Compact double-p slotted inset-fed microstrip patch antenna on high dielectric substrate.
Ahsan, M R; Islam, M T; Habib Ullah, M; Mahadi, W N L; Latef, T A
2014-01-01
This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show -10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications.
Second-harmonic generation in AlGaAs microdisks in the telecom range.
Mariani, S; Andronico, A; Lemaître, A; Favero, I; Ducci, S; Leo, G
2014-05-15
We report on second-harmonic generation in whispering-gallery-mode AlGaAs microcavities suspended on a GaAs pedestal. Frequency doubling of a 1.58 μm pump is observed with 7×10(-4) W(-1) conversion efficiency. This device can be integrated in a monolithic photonic chip for classical and quantum applications in the telecom band.
NASA Astrophysics Data System (ADS)
Buren, Mandula; Jian, Yongjun; Zhao, Yingchun; Chang, Long
2018-05-01
In this paper we analytically investigate the electroviscous effect and electrokinetic energy conversion in the time periodic pressure-driven flow of an incompressible viscous Newtonian liquid through a parallel-plate nanochannel with surface charge-dependent slip. Analytical and semi-analytical solutions for electric potential, velocity and streaming electric field are obtained and are utilized to compute electrokinetic energy conversion efficiency. The results show that velocity amplitude and energy conversion efficiency are reduced when the effect of surface charge on slip length is considered. The surface charge effect increases with zeta potential and ionic concentration. In addition, the energy conversion efficiency is large when the ratio of channel half-height to the electric double layer thickness is small. The boundary slip results in a large increase in energy conversion. Higher values of the frequency of pressure pulsation lead to higher values of the energy conversion efficiency. We also obtain the energy conversion efficiency in constant pressure-driven flow and find that the energy conversion efficiency in periodical pressure-driven flow becomes larger than that in constant pressure-driven flow when the frequency is large enough.
From quantum physics to digital communication: Single sideband continuous phase modulation
NASA Astrophysics Data System (ADS)
Farès, Haïfa; Christian Glattli, D.; Louët, Yves; Palicot, Jacques; Moy, Christophe; Roulleau, Preden
2018-01-01
In the present paper, we propose a new frequency-shift keying continuous phase modulation (FSK-CPM) scheme having, by essence, the interesting feature of single-sideband (SSB) spectrum providing a very compact frequency occupation. First, the original principle, inspired from quantum physics (levitons), is presented. Besides, we address the problem of low-complexity coherent detection of this new waveform, based on orthonormal wave functions used to perform matched filtering for efficient demodulation. Consequently, this shows that the proposed modulation can operate using existing digital communication technology, since only well-known operations are performed (e.g., filtering, integration). This SSB property can be exploited to allow large bit rates transmissions at low carrier frequency without caring about image frequency degradation effects typical of ordinary double-sideband signals. xml:lang="fr"
Efficient frequency conversion by stimulated Raman scattering in a sodium nitrate aqueous solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganot, Yuval, E-mail: yuvalga@sapir.ac.il, E-mail: ibar@bgu.ac.il; Bar, Ilana, E-mail: yuvalga@sapir.ac.il, E-mail: ibar@bgu.ac.il
2015-09-28
Frequency conversion of laser beams, based on stimulated Raman scattering (SRS) is an appealing technique for generating radiation at new wavelengths. Here, we investigated experimentally the SRS due to a single pass of a collimated frequency-doubled Nd:YAG laser beam (532 nm) through a saturated aqueous solution of sodium nitrate (NaNO{sub 3}), filling a 50 cm long cell. These experiments resulted in simultaneous generation of 1st (564 nm) and 2nd (599 nm) Stokes beams, corresponding to the symmetric stretching mode of the nitrate ion, ν{sub 1}(NO{sub 3}{sup −}), with 40 and 12 mJ/pulse maximal converted energies, equivalent to 12% and 4% efficiencies, respectively, for a 340more » mJ/pulse pump energy. The results indicate that the pump and SRS beams were thermally defocused and that four-wave mixing was responsible for the second order Stokes process onset.« less
Diamond Raman laser emitting at 1194, 1419, and 597 nm
NASA Astrophysics Data System (ADS)
Pashinin, V. P.; Ralchenko, V. G.; Bolshakov, A. P.; Ashkinazi, E. E.; Konov, V. I.
2018-03-01
A Raman laser based on a synthetic diamond crystal pumped by nanosecond pulses of a 1030-nm Yb : YAG laser and emitting in the IR region at the first and second Stokes wavelengths of 1194 and 1419 nm, respectively, was developed. The conversion efficiency was 34% with a slope efficiency of 50% and an average power of 1.1 W at a wavelength of 1194 nm; the average power at 1419 nm was 0.52 W. Frequency doubling of the first Stokes component in a nonlinear BBO crystal resulted in orange (597.3 nm) radiation with a pulse energy of 0.15 mJ, an average power of 0.22 W, and a maximum efficiency of 20%.
Frequency doubling in poled polymers using anomalous dispersion phase-matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalczyk, T.C.; Singer, K.D.; Cahill, P.A.
1995-10-01
The authors report on a second harmonic generation in a poled polymer waveguide using anomalous dispersion phase-matching. Blue light ({lambda} = 407 nm) was produced by phase-matching the lowest order fundamental and harmonic modes over a distance of 32 {micro}m. The experimental conversion efficiency was {eta} = 1.2 {times} 10{sup {minus}4}, in agreement with theory. Additionally, they discuss a method of enhancing the conversion efficiency for second harmonic generation using anomalous dispersion phase-matching to optimize Cerenkov second harmonic generation. The modeling shows that a combination of phase-matching techniques creates larger conversion efficiencies and reduces critical fabrication requirements of the individualmore » phase-matching techniques.« less
A low-threshold, high-efficiency microfluidic waveguide laser.
Vezenov, Dmitri V; Mayers, Brian T; Conroy, Richard S; Whitesides, George M; Snee, Preston T; Chan, Yinthai; Nocera, Daniel G; Bawendi, Moungi G
2005-06-29
This communication describes a long (1 cm), laser-pumped, liquid core-liquid cladding (L2) waveguide laser. This device provides a simple, high intensity, tunable light source for microfludic applications. Using a core solution of 2 mM rhodamine 640 perchlorate, optically pumped by a frequency-doubled Nd:YAG laser, we found that the threshold for lasing was as low as 22 muJ (16-ns pulse length) and had a slope efficiency up to 20%. The output wavelength was tunable over a 20-nm range by changing the ratio of solvent components (dimethyl sulfoxide and methanol) in the liquid core.
Ends-in Vs. Ends-Out Recombination in Yeast
Hastings, P. J.; McGill, C.; Shafer, B.; Strathern, J. N.
1993-01-01
Integration of linearized plasmids into yeast chromosomes has been used as a model system for the study of recombination initiated by double-strand breaks. The linearized plasmid DNA recombines efficiently into sequences homologous to the ends of the DNA. This efficient recombination occurs both for the configuration in which the break is in a contiguous region of homology (herein called the ends-in configuration) and for ``omega'' insertions in which plasmid sequences interrupt a linear region of homology (herein called the ends-out configuration). The requirements for integration of these two configurations are expected to be different. We compared these two processes in a yeast strain containing an ends-in target and an ends-out target for the same cut plasmid. Recovery of ends-in events exceeds ends-out events by two- to threefold. Possible causes for the origin of this small bias are discussed. The lack of an extreme difference in frequency implies that cooperativity between the two ends does not contribute to the efficiency with which cut circular plasmids are integrated. This may also be true for the repair of chromosomal double-strand breaks. PMID:8307337
Chaitanya N, Apurv; Aadhi, A; Singh, R P; Samanta, G K
2014-09-15
We report on experimental realization of optimum focusing condition for type-I second-harmonic generation (SHG) of high-power, ultrafast laser in "thick" nonlinear crystal. Using single-pass, frequency doubling of a 5 W Yb-fiber laser of pulse width ~260 fs at repetition rate of 78 MHz in a 5-mm-long bismuth triborate (BIBO) crystal we observed that the optimum focusing condition is more dependent on the birefringence of the crystal than its group-velocity mismatch (GVM). A theoretical fit to our experimental results reveals that even in the presence of GVM, the optimum focusing condition matches the theoretical model of Boyd and Kleinman, predicted for continuous-wave and long-pulse SHG. Using a focusing factor of ξ=1.16 close to the estimated optimum value of ξ=1.72 for our experimental conditions, we generated 2.25 W of green radiation of pulse width 176 fs with single-pass conversion efficiency as high as 46.5%. Our study also verifies the effect of pulse narrowing and broadening of angular phase-matching bandwidth of SHG at tighter focusing. This study signifies the advantage of SHG in "thick" crystal in controlling SH-pulse width by changing the focusing lens while accessing high conversion efficiency and broad angular phase-matching bandwidth.
NASA Astrophysics Data System (ADS)
Rymanov, Vitaly; Tekin, Tolga; Stöhr, Andreas
2012-03-01
High data rate photonic wireless systems operating at millimeter wave carrier frequencies are considered as a disruptive technology e.g. for reach extension in optical access networks and for mobile backhauling. Recently, we demonstrated 60 GHz photonic wireless systems with record data rates up to 27 Gbit/s. Because of the oxygen absorption at 60 GHz, it is beneficial for fixed wireless systems with spans exceeding 1 km to operate at even higher frequencies. Here, the recently regulated 10 GHz bandwidth within the E-band (60-90 GHz) is of particular interest, covering the 71-76 GHz and 81-86 GHz allocations for multi-gigabit wireless transmission. For this purpose, wideband waveguide photodetectors with high external quantum efficiency are required. Here, we report on double mushroom 1.55 μm waveguide photodetectors for integration in an E-band wireless transmitter module. The developed photodetector consists of a partially p-doped, partly non-intentionally doped absorbing layer centered in a mushroom-type optical waveguide, overcoming the compromise between the junction capacitance and the series resistance. For efficient fiber-chip coupling, a second mushroom-type passive optical waveguide is used. In contrast to the conventional shallow ridge waveguide approach, the mushroom-type passive waveguide allows to shift the center of the optical mode further away from the top surface, thus reducing waveguide losses due to the surface roughness. Experimentally, a very flat frequency response with a deviation up to +/-1 dB in the entire E-band has been found together with an output power level of -15.7 dBm at 10 mA photocurrent and at a frequency of 73 GHz.
High-power 266 nm ultraviolet generation in yttrium aluminum borate.
Liu, Qiang; Yan, Xingpeng; Gong, Mali; Liu, Hua; Zhang, Ge; Ye, Ning
2011-07-15
A yttrium aluminum borate [YAl(3)(BO(3))(4)] (YAB) crystal with UV cutoff wavelength of 165 nm is used as the nonlinear optical crystal for fourth harmonic generation. The fundamental frequency laser at 1064 nm from an Nd:YVO(4) master oscillator power amplifier laser was frequency doubled to 532 nm. Using the type I phase-matching YAB crystal, a 5.05 W average power 266 nm UV laser was obtained at the pulse repetition frequency of 65 kHz, corresponding to the conversion efficiency of 12.3% from 532 to 266 nm. The experimental results show great potential for the application of using YAB as a nonlinear optical crystal to get high-power fourth harmonic generation. © 2011 Optical Society of America
Enhanced dynamical stability with harmonic slip stacking
Eldred, Jeffrey; Zwaska, Robert
2016-10-26
We develop a configuration of radio-frequency (rf) cavities to dramatically improve the performance of slip-stacking. Slip-stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out themore » resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99\\% slip-stacking efficiency. We measure the longitudinal distribution of the Booster beam and use it to generate a realistic beam model for slip-stacking simulation. In conclusion, we demonstrate that the harmonic rf cavity can not only reduce particle loss during slip-stacking, but also reduce the final longitudinal emittance.« less
Enhanced dynamical stability with harmonic slip stacking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Jeffrey; Zwaska, Robert
We develop a configuration of radio-frequency (rf) cavities to dramatically improve the performance of slip-stacking. Slip-stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out themore » resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99\\% slip-stacking efficiency. We measure the longitudinal distribution of the Booster beam and use it to generate a realistic beam model for slip-stacking simulation. In conclusion, we demonstrate that the harmonic rf cavity can not only reduce particle loss during slip-stacking, but also reduce the final longitudinal emittance.« less
Epsilon-near-zero modes for tailored light-matter interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campione, Salvatore; Liu, Sheng; Benz, Alexander
Epsilon-near-zero (ENZ) modes arising from condensed-matter excitations such as phonons and plasmons are a new path for tailoring light-matter interactions at the nanoscale. Complex spectral shaping can be achieved by creating such modes in nanoscale semiconductor layers and controlling their interaction with multiple, distinct, dipole resonant systems. Examples of this behavior are presented at midinfrared frequencies for ENZ modes that are strongly coupled to metamaterial resonators and simultaneously strongly coupled to semiconductor phonons or quantum-well intersubband transitions (ISTs), resulting in double- and triple-polariton branches in transmission spectra. For the double-polariton branch case, we find that the best strategy to maximizemore » the Rabi splitting is to use a combination of a doped layer supporting an ENZ feature and a layer supporting ISTs, with overlapping ENZ and IST frequencies. As a result, this design flexibility renders this platform attractive for low-voltage tunable filters, light-emitting diodes, and efficient nonlinear composite materials.« less
Hydrodynamics of insect spermatozoa
NASA Astrophysics Data System (ADS)
Pak, On Shun; Lauga, Eric
2010-11-01
Microorganism motility plays important roles in many biological processes including reproduction. Many microorganisms propel themselves by propagating traveling waves along their flagella. Depending on the species, propagation of planar waves (e.g. Ceratium) and helical waves (e.g. Trichomonas) were observed in eukaryotic flagellar motion, and hydrodynamic models for both were proposed in the past. However, the motility of insect spermatozoa remains largely unexplored. An interesting morphological feature of such cells, first observed in Tenebrio molitor and Bacillus rossius, is the double helical deformation pattern along the flagella, which is characterized by the presence of two superimposed helical flagellar waves (one with a large amplitude and low frequency, and the other with a small amplitude and high frequency). Here we present the first hydrodynamic investigation of the locomotion of insect spermatozoa. The swimming kinematics, trajectories and hydrodynamic efficiency of the swimmer are computed based on the prescribed double helical deformation pattern. We then compare our theoretical predictions with experimental measurements, and explore the dependence of the swimming performance on the geometric and dynamical parameters.
Epsilon-near-zero modes for tailored light-matter interaction
Campione, Salvatore; Liu, Sheng; Benz, Alexander; ...
2015-10-20
Epsilon-near-zero (ENZ) modes arising from condensed-matter excitations such as phonons and plasmons are a new path for tailoring light-matter interactions at the nanoscale. Complex spectral shaping can be achieved by creating such modes in nanoscale semiconductor layers and controlling their interaction with multiple, distinct, dipole resonant systems. Examples of this behavior are presented at midinfrared frequencies for ENZ modes that are strongly coupled to metamaterial resonators and simultaneously strongly coupled to semiconductor phonons or quantum-well intersubband transitions (ISTs), resulting in double- and triple-polariton branches in transmission spectra. For the double-polariton branch case, we find that the best strategy to maximizemore » the Rabi splitting is to use a combination of a doped layer supporting an ENZ feature and a layer supporting ISTs, with overlapping ENZ and IST frequencies. As a result, this design flexibility renders this platform attractive for low-voltage tunable filters, light-emitting diodes, and efficient nonlinear composite materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakhman, A.; Hafez, Mohamed A.; Nanda, Sirish K.
Here, a high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO 3 crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancementmore » of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.0 GeV and 50 μA.« less
NASA Astrophysics Data System (ADS)
Roy, Debapriya; Biswas, Abhijit
2017-10-01
Using extensive numerical analysis we investigate effects of asymmetric sidewall spacers on various device parameters of 20-nm double gate MOSFETs associated with analog/RF applications. Our studies show that the device with underlap drain-side spacer length LED of 10 nm and source-side spacer length LES of 5 nm shows improvement in terms of the peak value of transconductance efficiency, voltage gain Av, unity-gain cut-off frequency fT and maximum frequency of oscillations fMAX by 8.6%, 51.7%, 5% and 10.3%, respectively compared to the symmetric 5 nm underlap spacer device with HfO2 spacer of dielectric constant k = 22. Additionally, a higher spacer dielectric constant increases the peak Av while decreasing both peak fT and fMAX. The detailed physical insight is exploited to design a cascode amplifier which yields an ultra-wide gain bandwidth of 2.48 THz at LED = 10 nm with a SiO2 spacer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miliordos, Evangelos; Xantheas, Sotiris S.
We propose a general procedure for the numerical calculation of the harmonic vibrational frequencies that is based on internal coordinates and Wilson’s GF methodology via double differentiation of the energy. The internal coordinates are defined as the geometrical parameters of a Z-matrix structure, thus avoiding issues related to their redundancy. Linear arrangements of atoms are described using a dummy atom of infinite mass. The procedure has been automated in FORTRAN90 and its main advantage lies in the nontrivial reduction of the number of single-point energy calculations needed for the construction of the Hessian matrix when compared to the corresponding numbermore » using double differentiation in Cartesian coordinates. For molecules of C 1 symmetry the computational savings in the energy calculations amount to 36N – 30, where N is the number of atoms, with additional savings when symmetry is present. Typical applications for small and medium size molecules in their minimum and transition state geometries as well as hydrogen bonded clusters (water dimer and trimer) are presented. Finally, in all cases the frequencies based on internal coordinates differ on average by <1 cm –1 from those obtained from Cartesian coordinates.« less
NASA Astrophysics Data System (ADS)
Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Rahim, Sharul Kamal Abdul; Vandenbosch, Guy A. E.; Narbudowicz, Adam
2017-01-01
A miniaturized dual-band antenna array using a negative index metamaterial is presented for WiMAX, LTE, and WLAN applications. This left-handed metamaterial plane is located behind the antenna array, and its unit cell is a combination of split-ring resonator, square electric ring resonator, and rectangular electrical coupled resonator. This enables the achievement of a metamaterial structure exhibiting both negative permittivity and permeability, which results in antenna size miniaturization, efficiency, and gain enhancement. Moreover, the proposed metamaterial antenna has realized dual-band operating frequencies compared to a single frequency for normal antenna. The measured reflection coefficient (S11) shows a 50.25% bandwidth in the lower band (from 2.119 to 3.058 GHz) and 4.27% in the upper band (from 5.058 to 5.276 GHz). Radiation efficiency obtained in the lower and upper band are >95 and 80%, respectively.
One joule output from a diode-array-pumped Nd:YAG laser with side-pumped rod geometry
NASA Technical Reports Server (NTRS)
Kasinski, Jeffrey J.; Hughes, Will; Dibiase, Don; Bournes, Patrick; Burnham, Ralph
1992-01-01
Output of 1.25 J per pulse (1.064 micron) with an absolute optical efficiency of 28 percent and corresponding electrical efficiency of 10 percent was demonstrated in a diode-array-pumped Nd:YAG laser using a side-pumped rod geometry in a master-oscillator/power-amplifier configuration. In Q-switched operation, an output of 0.75 J in a 17-ns pulse was obtained. The fundamental laser output was frequency doubled in KTP with 60 percent conversion efficiency to obtain 0.45 J in a 16-ns pulse at 532 nm. The output beam had high spatial quality with pointing stability better than 40 microrad and a shot-to-shot pulse energy fluctuation of less than +/-3 percent.
Maestre, H; Torregrosa, A J; Fernández-Pousa, C R; Rico, M L; Capmany, J
2008-05-01
We report a dual-wavelength continuous-wave laser at 542.4 and 546.8 nm based on an Nd(3+)-doped aperiodically poled lithium niobate crystal. Two fundamental infrared (IR) wavelengths at 1084.8 and 1093.6 nm are simultaneously oscillated and self-frequency-doubled to green. The aperiodic domain distribution patterned in the crystal allows for quasi-phase matched self-frequency-doubling of both IR fundamentals while avoiding their sum-frequency mixing.
Portin, P; Rantanen, M
2000-01-01
Analysis of the interchromosomal effects of In(2L + 2R)Cy, In(3L + 3R)LVM and their joint effect on the frequencies of single and double crossovers in the cv-v-f region of the X chromosome as well as interference showed that both inversions, occurring separately, increased the frequency of single as well as double crossovers and the coefficient of coincidence. However, when the inversions occurred together the frequencies of single crossovers no longer increased, but the frequency of double crossovers, as well as the coefficient of coincidence did increase. These results indicate firstly that the interchromosomal effects influence some precondition of exchange, but that this precondition is not an occurrence of double strand DNA breaks. Thus, the occurrence of double strand DNA breaks is not the sole condition for crossing over in Drosophila melanogaster.
NASA Astrophysics Data System (ADS)
Wan, Hongdan; Liu, Linqian; Ding, Zuoqin; Wang, Jie; Xiao, Yu; Zhang, Zuxing
2018-06-01
This paper proposes and demonstrates a single-longitudinal-mode, narrow bandwidth fiber laser, using an ultra-high roundness microsphere resonator (MSR) with a stabilized package as the single-longitudinal-mode selector inside a double-ring fiber cavity. By improving the heating technology and surface cleaning process, MSR with high Q factor are obtained. With the optimized coupling condition, light polarization state and fiber taper diameter, we achieve whispering gallery mode (WGM) spectra with a high extinction ratio of 23 dB, coupling efficiency of 99.5%, a 3 dB bandwidth of 1 pm and a side-mode-suppression-ratio of 14.5 dB. The proposed fiber laser produces single-longitudinal-mode laser output with a 20-dB frequency linewidth of about 340 kHz, a signal-to-background ratio of 54 dB and a high long-term stability without mode-hopping, which is potential for optical communication and sensing applications.
Boosted output performance of triboelectric nanogenerator via electric double layer effect
Chun, Jinsung; Ye, Byeong Uk; Lee, Jae Won; Choi, Dukhyun; Kang, Chong-Yun; Kim, Sang-Woo; Wang, Zhong Lin; Baik, Jeong Min
2016-01-01
For existing triboelectric nanogenerators (TENGs), it is important to explore unique methods to further enhance the output power under realistic environments to speed up their commercialization. We report here a practical TENG composed of three layers, in which the key layer, an electric double layer, is inserted between a top layer, made of Al/polydimethylsiloxane, and a bottom layer, made of Al. The efficient charge separation in the middle layer, based on Volta's electrophorus, results from sequential contact configuration of the TENG and direct electrical connection of the middle layer to the earth. A sustainable and enhanced output performance of 1.22 mA and 46.8 mW cm−2 under low frequency of 3 Hz is produced, giving over 16-fold enhancement in output power and corresponding to energy conversion efficiency of 22.4%. Finally, a portable power-supplying system, which provides enough d.c. power for charging a smart watch or phone battery, is also successfully developed. PMID:27703165
NASA Astrophysics Data System (ADS)
Parvini, T. S.; Tehranchi, M. M.; Hamidi, S. M.
2017-07-01
An effective method is proposed to design finite one-dimensional photonic crystal cavities (PhCCs) as robust high-efficient frequency converter. For this purpose, we consider two groups of PhCCs which are constructed by stacking m nonlinear (LiNbO3) and n linear (air) layers with variable thicknesses. In the first group, the number of linear layers is less than the nonlinear layers by one and in the second group by two. The conversion efficiency is calculated as a function of the arrangement and thicknesses of the linear and nonlinear layers by benefiting from nonlinear transfer matrix method. Our numerical simulations show that for each group of PhCCs, there is a structural formula by which the configurations with the highest efficiency can be constructed for any values of m and n (i.e. any number of layers). The efficient configurations are equivalent to Fabry-Pérot cavities that depend on the relationship between m and n and the mirrors in two sides of these cavities can be periodic or nonperiodic. The conversion efficiencies of these designed PhCCs are more than 5 orders of magnitude higher than the perfect ones which satisfy photonic bandgap edge and quasi-phase matching. Moreover, the results reveal that conversion efficiencies of Fabry-Pérot cavities with non-periodic mirrors are one order of magnitude higher than those with periodic mirrors. The major physical mechanisms of the enhancement are quasi-phase matching effect, cavity effect induced by dispersive mirrors, and double resonance for the pump and the harmonic fields in defect state. We believe that this method is very beneficial to the design of high-efficient compact optical frequency converters.
Laser Research and Development Studies for Laser Guide Star Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennington, D.; Beach, R.; Ebbers, C.
2000-02-23
In this paper we consider two CW solid state laser approaches to a 589 nm LGS system. Both are based on the technique of sum-frequency generation, but differ in the cavity architecture. Both technologies are very promising and are worth of further consideration. This preliminary proposal is intended to encompass both designs. A down select shall be performed early in the project execution to focus on the most promising option. The two design options consist of: (1) A dual-frequency resonator with intra-cavity doubling in LB0 offers the promise of a simple architecture and may scale more easily to high power.more » This design has been shown to be highly reliable, efficient and high power when used in frequency-doubled Nd:YAG lasers for programs at LLNL and in commercial products. The challenge in this design is the demonstration of a high power13 18 nm oscillator with adequate suppression of the 1064 nm line. (2) A MOPA based design uses commercial low power oscillators to produce both wavelengths, then amplifies the wavelengths before doubling. This design requires the demonstration of a 1318 nm amplifier, though the design is scaled from a kW CW amplifier already delivered to a customer at a different wavelength. The design must also demonstrate high power scaling of sum-frequency generation in the relatively new nonlinear material, PPLN. The first step in the process would be to further evaluate the two conceptual options for technical feasibility, cost and constructability. Then a down selection to one design would be conducted. Finally, R&D on that design would then proceed. Minimal testing should be required for this selection. The majority of the funding received would be allocated to development of the design selected.« less
Linear bunchers and half-frequency bunching method
NASA Astrophysics Data System (ADS)
Tang, J. Y.; Jiang, J. Z.; Shi, A. M.; Yin, Z. K.; Wang, Y. F.
2000-12-01
A new buncher system consisting of two bunchers has been designed and constructed for HIRFL injector cyclotron, working at the SFC acceleration modes of H=1 and H=3, respectively. The bunchers use saw-tooth RF waveform, but with double-gap drift tube electrodes and single-gap grid electrodes, respectively. The special merit of the design is introduction of the half-frequency bunching mode, utilizing half of the cyclotron RF frequency. With this method, a perfect longitudinal match between the injector SFC and the main cyclotron SSC has been reached theoretically, compared to the original efficiency of 50% for most cases. Detailed studies have been made concerning space charge effects, longitudinal dispersions through the yoke hole and the spiral inflector, and non-linearity in both the RF waveform and the stray electric field of electrodes.
Improvement in transmission loss of aircraft double wall with resonators
NASA Astrophysics Data System (ADS)
Sun, Jincai; Shi, Liming; Ye, Xining
1991-08-01
A little volume low frequency resonator applicable to double-wall configuration of propeller-driven aircraft was designed on the basis of the principle of Helmholtz resonator. The normal incidence absorption coefficient of the various single resonator has been measured. The agreement between theoretical and experimental results is encouraging. An array of resonators whose resonant frequency at 85 Hz and 160 Hz, respectively, are installed between aircraft double-panel, and it has been shown that transmission loss of the double wall structure with resonators improve 4 dB and 6.5 dB in 1/3rd octave bandwidth at 80 Hz and 160 Hz center frequency, respectively, and 5 dB and 7 dB at resonant frequencies, compared with that of the double wall configuration without resonators.
NASA Astrophysics Data System (ADS)
Tulea, C.; Caron, J.; Wahab, H.; Gehlich, N.; Hoefer, M.; Esser, D.; Jungbluth, B.; Lenenbach, A.; Noll, R.
2013-03-01
Several laser systems in the infrared wavelength range, such as Nd:YAG, Er:YAG or CO2 lasers are used for efficient ablation of bone tissue. Here the application of short pulses in coaction with a thin water film results in reduced thermal side effects. Nonetheless up to now there is no laser-process for bone cutting in a clinical environment due to lack of ablation efficiency. Investigations of laser ablation rates of bone tissue using a rinsing system and concerning bleedings have not been reported yet. In our study we investigated the ablation rates of bovine cortical bone tissue, placed 1.5 cm deep in water under laminar flow conditions, using a short pulsed (25 ps), frequency doubled (532 nm) Nd:YVO4 laser with pulse energies of 1 mJ at 20 kHz repetition rate. The enhancement of the ablation rate due to debris removal by an additional water flow from a well-directed blast pipe as well as the negative effect of the admixture of bovine serum albumin to the water were examined. Optical Coherence Tomography (OCT) was used to measure the ablated volume. An experimental study of the depth dependence of the ablation rate confirms a simplified theoretical prediction regarding Beer-Lambert law, Fresnel reflection and a Gaussian beam profile. Conducting precise incisions with widths less than 1.5 mm the maximum ablation rate was found to be 0.2 mm3/s. At depths lower than 100 μm, while the maximum depth was 3.5 mm.
Landau-Zener-Stückelberg-Majorana Interferometry of a Single Hole
NASA Astrophysics Data System (ADS)
Bogan, Alex; Studenikin, Sergei; Korkusinski, Marek; Gaudreau, Louis; Zawadzki, Piotr; Sachrajda, Andy S.; Tracy, Lisa; Reno, John; Hargett, Terry
2018-05-01
We perform Landau-Zener-Stückelberg-Majorana (LZSM) spectroscopy on a system with strong spin-orbit interaction (SOI), realized as a single hole confined in a gated double quantum dot. Analogous to electron systems, at a magnetic field B =0 and high modulation frequencies, we observe photon-assisted tunneling between dots, which smoothly evolves into the typical LZSM funnel-shaped interference pattern as the frequency is decreased. In contrast to electrons, the SOI enables an additional, efficient spin-flip interdot tunneling channel, introducing a distinct interference pattern at finite B . Magnetotransport spectra at low-frequency LZSM driving show the two channels to be equally coherent. High-frequency LZSM driving reveals complex photon-assisted tunneling pathways, both spin conserving and spin flip, which form closed loops at critical magnetic fields. In one such loop, an arbitrary hole spin state is inverted, opening the way toward its all-electrical manipulation.
Frequency adjustable MEMS vibration energy harvester
NASA Astrophysics Data System (ADS)
Podder, P.; Constantinou, P.; Amann, A.; Roy, S.
2016-10-01
Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators.
Laser Generation of Ultrasound.
1983-02-01
32 24 Tissue Soaked in Water on Tank ... ........ . . . . 34 25 2 Mil Teflon TFE Sample on Tank ... ........... ... 34 26 2 Mil Teflon PFA Sample on...frequency doubled from 1.06 to 0.532 um since more efficient ab- sorption of the laser took place at the latter wavelength. Von Gutfeld focused the...the temperature rise is 10000 C for aluminum but only 300 C for a plastic, since the ab- sorption depth is much larger. This is indeed confirmed by
5W intracavity frequency-doubled green laser for laser projection
NASA Astrophysics Data System (ADS)
Yan, Boxia; Bi, Yong; Li, Shu; Wang, Dongdong; Wang, Dongzhou; Qi, Yan; Fang, Tao
2014-11-01
High power green laser has many applications such as high brightness laser projection and large screen laser theater. A compact and high power green-light source has been developed in diode-pumped solid-state laser based on MgO doped periodically poled LiNbO3 (MgO:PPLN). 5W fiber coupled green laser is achieved by dual path Nd:YVO4/MgO:PPLN intra-cacity frequency-doubled. Single green laser maximum power 2.8W at 532nm is obtained by a 5.5W LD pumped, MgO:PPLN dimensions is 5mm(width)×1mm(thickness)×2mm(length), and the optical to optical conversion efficiency is 51%. The second LD series connected with the one LD, the second path green laser is obtained using the same method. Then the second path light overlap with the first path by the reflection mirrors, then couple into the fiber with a focus mirror. Dual of LD, Nd:YVO4, MgO:PPLN are placed on the same heat sink using a TEC cooling, the operating temperature bandwidth is about 12°C and the stablity is 5% in 96h. A 50×50×17mm3 laser module which generated continuous-wave 5 W green light with high efficiency and width temperature range is demonstrated.
Advances in laser technology and fibre-optic delivery systems in lithotripsy.
Fried, Nathaniel M; Irby, Pierce B
2018-06-08
The flashlamp-pumped, solid-state holmium:yttrium-aluminium-garnet (YAG) laser has been the laser of choice for use in ureteroscopic lithotripsy for the past 20 years. However, although the holmium laser works well on all stone compositions and is cost-effective, this technology still has several fundamental limitations. Newer laser technologies, including the frequency-doubled, double-pulse YAG (FREDDY), erbium:YAG, femtosecond, and thulium fibre lasers, have all been explored as potential alternatives to the holmium:YAG laser for lithotripsy. Each of these laser technologies is associated with technical advantages and disadvantages, and the search continues for the next generation of laser lithotripsy systems that can provide rapid, safe, and efficient stone ablation. New fibre-optic approaches for safer and more efficient delivery of the laser energy inside the urinary tract include the use of smaller-core fibres and fibres that are tapered, spherical, detachable or hollow steel, or have muzzle brake distal fibre-optic tips. These specialty fibres might provide advantages, including improved flexibility for maximal ureteroscope deflection, reduced cross section for increased saline irrigation rates through the working channel of the ureteroscope, reduced stone retropulsion for improved stone ablation efficiency, and reduced fibre degradation and burnback for longer fibre life.
In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting.
Chen, Xiaoyu; Janssen, Josephine M; Liu, Jin; Maggio, Ignazio; 't Jong, Anke E J; Mikkers, Harald M M; Gonçalves, Manuel A F V
2017-09-22
Precise genome editing involves homologous recombination between donor DNA and chromosomal sequences subjected to double-stranded DNA breaks made by programmable nucleases. Ideally, genome editing should be efficient, specific, and accurate. However, besides constituting potential translocation-initiating lesions, double-stranded DNA breaks (targeted or otherwise) are mostly repaired through unpredictable and mutagenic non-homologous recombination processes. Here, we report that the coordinated formation of paired single-stranded DNA breaks, or nicks, at donor plasmids and chromosomal target sites by RNA-guided nucleases based on CRISPR-Cas9 components, triggers seamless homology-directed gene targeting of large genetic payloads in human cells, including pluripotent stem cells. Importantly, in addition to significantly reducing the mutagenicity of the genome modification procedure, this in trans paired nicking strategy achieves multiplexed, single-step, gene targeting, and yields higher frequencies of accurately edited cells when compared to the standard double-stranded DNA break-dependent approach.CRISPR-Cas9-based gene editing involves double-strand breaks at target sequences, which are often repaired by mutagenic non-homologous end-joining. Here the authors use Cas9 nickases to generate coordinated single-strand breaks in donor and target DNA for precise homology-directed gene editing.
Wavelength-resolved emission spectroscopy of the alkoxy and alkylthio radicals in a supersonic jet
NASA Technical Reports Server (NTRS)
Misra, Prabhakar; Zhu, Xinming; Hsueh, Ching-Yu; Kamal, Mohammed M.
1993-01-01
Wavelength-resolved emission spectra of methoxy (CH3O) and methylthio (CH3S) radicals have been obtained in a supersonic jet environment with a resolution of 0.3 nm by dispersing the total laser-induced fluorescence with a 0.6 m monochromator. A detailed analysis of the single vibronic level dispersed fluorescence spectra yields the following vibrational frequencies for CH3O in the X(2)E state; nu(sub 1 double prime) = 2953/cm, nu(sub 2 double prime) = 1375/cm, nu(sub 3 double prime) = 1062/cm, nu(sub 4 double prime) = 2869/cm, nu(sub 5 double prime) = 1528/cm and nu(sub 6 double prime) = 688/cm. A similar analysis of the wavelength-resolved emission spectra of CH3S provides the following ground state vibrational frequencies: nu(sub 2 double prime) = 1329/cm, nu(sub 3 double prime) = 739/cm and nu(sub 6 double prime) = 601/cm. An experimental uncertainty of 20/cm is estimated for the assigned frequencies.
Slow electron acoustic double layer (SEADL) structures in bi-ion plasma with trapped electrons
NASA Astrophysics Data System (ADS)
Shan, Shaukat Ali; Imtiaz, Nadia
2018-05-01
The properties of ion acoustic double layer (IADL) structures in bi-ion plasma with electron trapping are investigated by using the quasi-potential analysis. The κ-distributed trapped electrons number density expression is truncated to some finite order of the electrostatic potential. By utilizing the reductive perturbation method, a modified Schamel equation which describes the evolution of the slow electron acoustic double layer (SEADL) with the modified speed due to the presence of bi-ion species is investigated. The Sagdeev-like potential has been derived which accounts for the effect of the electron trapping and superthermality in a bi-ion plasma. It is found that the superthermality index, the trapping efficiency of electrons, and ion to electron temperature ratio are the inhibiting parameters for the amplitude of the slow electron acoustic double layers (SEADLs). However, the enhanced population of the cold ions is found to play a supportive role for the low frequency DLs in bi-ion plasmas. The illustrations have been presented with the help of the bi-ion plasma parameters in the Earth's ionosphere F-region.
20-W 1952-nm tandem hybrid single and double clad TDFA
NASA Astrophysics Data System (ADS)
Romano, Clément; Tench, Robert E.; Delavaux, Jean-Marc
2018-02-01
A simple engineering design is important for achieving high Thulium-doped amplifier (TDFA) performance such as good power conversion, low noise figure (NF), scalable output power, high gain, and stable operation over a large dynamic range. In this paper we report the design, performance, and simulation of two stage high-power 1952 nm hybrid single and double clad TDFAs. The first stage of our hybrid amplifier is a single clad design, and the second stage is a double clad design. We demonstrate TDFAs with an output power greater than 20 W with single-frequency narrow linewidth (i.e. MHz) input signals at both 1952 and 2004 nm. An optical 10 dB bandwidth of 80 nm is derived from the ASE spectrum. The power stage is constructed with 10 μm core active fibers showing a maximum optical slope efficiency greater than 50 %. The experimental results lead to a 1 dB agreement with our simulation tool developed for single clad and double clad TDFAs. Overall this hybrid amplifier offers versatile features with the potential of much higher output power.
High energy 523 nm ND:YLF pulsed slab laser with novel pump beam waveguide design
NASA Astrophysics Data System (ADS)
Yang, Qi; Zhu, Xiaolei; Ma, Jian; Lu, Tingting; Ma, Xiuhua; Chen, Weibiao
2015-11-01
A laser diode pumped Nd:YLF master oscillator power amplifier (MOPA) green laser system with high pulse energy and high stable output is demonstrated. At a repetition rate of 50 Hz, 840 mJ pulse energy, 9.1 ns pulse width of 1047 nm infrared laser emitting is obtained from the MOPA system. The corresponding peak power is 93 MW. Extra-cavity frequency doubling with a LiB3O5 crystal, pulse energy of 520 mJ at 523 nm wavelength is achieved. The frequency conversion efficiency reaches up to 62%. The output pulse energy instability of the laser system is less than 0.6% for one hour.
Experimental quantification of the true efficiency of carbon nanotube thin-film thermophones.
Bouman, Troy M; Barnard, Andrew R; Asgarisabet, Mahsa
2016-03-01
Carbon nanotube thermophones can create acoustic waves from 1 Hz to 100 kHz. The thermoacoustic effect that allows for this non-vibrating sound source is naturally inefficient. Prior efforts have not explored their true efficiency (i.e., the ratio of the total acoustic power to the electrical input power). All previous works have used the ratio of sound pressure to input electrical power. A method for true power efficiency measurement is shown using a fully anechoic technique. True efficiency data are presented for three different drive signal processing techniques: standard alternating current (AC), direct current added to alternating current (DCAC), and amplitude modulation of an alternating current (AMAC) signal. These signal processing techniques are needed to limit the frequency doubling non-linear effects inherent to carbon nanotube thermophones. Each type of processing affects the true efficiency differently. Using a 72 W(rms) input signal, the measured efficiency ranges were 4.3 × 10(-6) - 319 × 10(-6), 1.7 × 10(-6) - 308 × 10(-6), and 1.2 × 10(-6) - 228 × 10(-6)% for AC, DCAC, and AMAC, respectively. These data were measured in the frequency range of 100 Hz to 10 kHz. In addition, the effects of these processing techniques relative to sound quality are presented in terms of total harmonic distortion.
NASA Astrophysics Data System (ADS)
Niemi, K.; O'Neill, C.; Cox, L. J.; Waskoenig, J.; Hyland, W. B.; McMahon, S. J.; Reuter, S.; Currell, F. J.; Graham, W. G.; O'Connell, D.; Gans, T.
2012-05-01
Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations.
A new solid-state, frequency-doubled neodymium-YAG photocoagulation system.
Jalkh, A E; Pflibsen, K; Pomerantzeff, O; Trempe, C L; Schepens, C L
1988-06-01
We have developed a solid-state laser system that produces a continuous green monochromatic laser beam of 532 nm by doubling the frequency of a neodymium-YAG laser wavelength of 1064 nm with a potassium-titamyl-phosphate crystal. Photocoagulation burns of equal size and intensity were placed in two rabbit eyes with the solid-state laser system and the regular green argon laser system, respectively, using the same slit-lamp mode of delivery. Histologic findings of lesion sections revealed no important differences between the two systems. In theory, the longer wavelength of the solid-state laser offers the advantages of less scattering in ocular media, higher absorption by oxyhemoglobin, and less absorption by macular xanthophyll than the 514-nm wavelength of the regular green argon laser. The solid-state laser has impressive technical advantages: it contains no argon-ion gas tube that wears out and is expensive to replace; it is much more power efficient, and thus considerably smaller and compact; it is sturdier and easily movable; it does not require external cooling; it uses a 220-V monophasic alternating current; and it requires little maintenance.
1980-11-05
content were studied using a T56 single can combustor rig. Test fuels included single and double ring aromatic types as well as paraffins blended with each...simulated by blending of petroleum based fuels and will be used to conduct research tests required to evolve the technology that may be needed to use...small vertical ° wInglet ° located just inboard of each wingtip; the implementation of supercritlcal aerodynamic wing designs; increase in frequency and
Experimental study of cavity configurations for dye lasers pumped by a copper vapor laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang Chaunshun; Sun Wei
1988-04-01
Four cavity configurations are considered for dye lasers pumped transversely by a CuBr laser at high pulse repetition frequencies. Their operating characteristics are compared. Optimum performance is found for a double-prism expander cavity equipped with a Littrow mounted grating. A single longitudinal mode lasing in the 598--640 nm range was achieved with a linewidth of 0.0012 nm and a conversion of efficiency of 7.5%, respectively. The amplified spontaneous emission was 1.5%.
High-energy, high-average-power laser with Nd:YLF rods corrected by magnetorheological finishing.
Bagnoud, Vincent; Guardalben, Mark J; Puth, Jason; Zuegel, Jonathan D; Mooney, Ted; Dumas, Paul
2005-01-10
A high-energy, high-average-power laser system, optimized to efficiently pump a high-performance optical parametric chirped-pulse amplifier at 527 nm, has been demonstrated. The crystal large-aperture ring amplifier employs two flash-lamp-pumped, 25.4-mm-diameter Nd:YLF rods. The transmitted wave front of these rods is corrected by magnetorheological finishing to achieve nearly diffraction-limited output performance with frequency-doubled pulse energies up to 1.8 J at 5 Hz.
Nonlinear Optics Technology. Volume 1. Solid State Laser Technology. Phase 3
1991-01-12
84 Figure 5.6 Modulator diffraction efficiency as a function of peak power for several 86 RF frequencies Figure 5.7 Thermal effects in the modulator. a...far-field profile of a beam making a 87 double pass through the modulator operating with a peak power of 80 W and average power of 1.6 W. b) same...AU three shown incorporate phase conjugation to provide good beam quality. Figure 1.1a is a standard phase conjugated master oscillator power
Multi-layer topological transmissions of spoof surface plasmon polaritons.
Pan, Bai Cao; Zhao, Jie; Liao, Zhen; Zhang, Hao Chi; Cui, Tie Jun
2016-03-04
Spoof surface plasmon polaritons (SPPs) in microwave frequency provide a high field confinement in subwavelength scale and low-loss and flexible transmissions, which have been widely used in novel transmission waveguides and functional devices. To play more important roles in modern integrated circuits and systems, it is necessary and helpful for the SPP modes to propagate among different layers of devices and chips. Owing to the highly confined property and organized near-field distribution, we show that the spoof SPPs could be easily transmitted from one layer into another layer via metallic holes and arc-shaped transitions. Such designs are suitable for both the ultrathin and flexible single-strip SPP waveguide and double-strip SPP waveguide for active SPP devices. Numerical simulations and experimental results demonstrate the broadband and high-efficiency multi-layer topological transmissions with controllable absorption that is related to the superposition area of corrugated metallic strips. The transmission coefficient of single-strip SPP waveguide is no worse than -0.8 dB within frequency band from 2.67 GHz to 10.2 GHz while the transmission of double-strip SPP waveguide keeps above -1 dB within frequency band from 2.26 GHz to 11.8 GHz. The proposed method will enhance the realizations of highly complicated plasmonic integrated circuits.
Surin, A A; Borisenko, T E; Larin, S V
2016-06-01
We introduce an efficient, single-mode, linearly polarized continuous wave (CW) Raman fiber laser (RFL), operating at 1178 nm, with 65 W maximum output power and a narrow linewidth of 0.1 nm. Single-pass second-harmonic generation was demonstrated using a 20 mm long MgO-doped stoichiometric periodically polled lithium tantalate (MgO:sPPLT) crystal pumped by RFL radiation. Output power of 14 W at 589 nm with 22% conversion efficiency was achieved. The possibility of further power scaling is considered, as no crystal degradation was observed at these power levels.
Nd3+-doped soft glass double-clad fibers with a hexagonal inner cladding
NASA Astrophysics Data System (ADS)
Wang, Longfei; He, Dongbing; Hu, Lili; Chen, Danping
2015-04-01
The stack-and-draw technique was used to fabricate Nd3+-doped silicate and phosphate glass double-clad step-index fibers with a non-circular inner cladding. For the silicate fiber, a maximum output power of 7.7 W was obtained from a 94 cm fiber. An output power of 1.25 W was also realized with a short length fiber of 8 cm, confirming the application potential of this fiber in single frequency lasers and pulsed amplifiers where an efficient rare-earth-doped fiber with short length is desirable. For the phosphate fiber, a maximum output power of 2.78 W was obtained from a single-mode fiber with a core diameter of up to 35 μm.
Study of noise reduction characteristics of double-wall panels
NASA Technical Reports Server (NTRS)
Navaneethan, R.; Quayle, B.; Stevenson, S.; Graham, M.
1983-01-01
The noise reduction characteristics of general aviation type, flat, double-wall structures were investigated. The experimental study was carried out on 20-by-20 inch panels with an exposed area of 18 by 18 inches. A frequency range from 20 to 5000 Hz was covered. The experimental results, in general, follow the expected trends. At low frequencies the double-wall structures are no better than the single-wall structures. However, for depths normally used in the general aviation industry, the double-wall panels are very attractive. The graphite-spoxy skin panels have higher noise reduction at very low frequencies ( 100 Hz) than the Kevlar skin panels. But the aluminum panels have higher noise reduction in the high frequency region, due to their greater mass. Use of fiberglass insulation is not effective in the low frequency region, and at times it is even negative. But the insulation is effective in the high-frequency region. The theoretical model for predicting the transmission loss of these multilayered panels is also discussed.
Study of noise reduction characteristics of double-wall panels
NASA Astrophysics Data System (ADS)
Navaneethan, R.; Quayle, B.; Stevenson, S.; Graham, M.
1983-05-01
The noise reduction characteristics of general aviation type, flat, double-wall structures were investigated. The experimental study was carried out on 20-by-20 inch panels with an exposed area of 18 by 18 inches. A frequency range from 20 to 5000 Hz was covered. The experimental results, in general, follow the expected trends. At low frequencies the double-wall structures are no better than the single-wall structures. However, for depths normally used in the general aviation industry, the double-wall panels are very attractive. The graphite-spoxy skin panels have higher noise reduction at very low frequencies ( 100 Hz) than the Kevlar skin panels. But the aluminum panels have higher noise reduction in the high frequency region, due to their greater mass. Use of fiberglass insulation is not effective in the low frequency region, and at times it is even negative. But the insulation is effective in the high-frequency region. The theoretical model for predicting the transmission loss of these multilayered panels is also discussed.
Periodontal treatment with the frequency-doubled Alexandrite laser in dogs
NASA Astrophysics Data System (ADS)
Rechmann, Peter; Hennig, Thomas; Reichart, Peter
2000-03-01
While earlier periodontal investigations have proved the frequency doubled Alexandrite laser to eliminate efficiently and selectively dental calculus as well as bacteria the aim of this study was to demonstrate the safety of this laser for removal of dental calculus with respect to the dental pulp. Four adult Labrador dogs were treated with a frequency doubled Alexandrite laser (laboratory prototype, q-switched, fiber guided, wavelength 377 nm, pulse duration 1 microsecond, pulse repetition rate 70 Hz, water cooling) to remove dental calculus. After performing a modified Widman flap procedure the buccal surface of nine teeth in the lower and upper right jaw were irradiated for four minutes per tooth. Three different laser fluences up to four times higher than the fluence required for calculus removal were used (1.5, 3 and 6 J/cm2). At three other sites of the right jaw deep cavities were prepared with a dental drill and filled with compomere material (DyractR, Dentsply, Germany) to serve as a positive control with regard to possible pulpal reactions. The corresponding teeth of the lower and upper left jaw served as controls. Animals were sacrificed one day, one week, four weeks and six weeks after treatment. Teeth were separated, fixed in formalin and decalcified. After embedding and sectioning the histological sections were stained and investigated by a totally blinded investigator (P.A.R). Histological investigations revealed that irradiation with the frequency doubled Alexandrite laser for periodontal treatment with fluences of 1.5 J/cm2 -- those fluences necessary for the selective removal of dental calculus and microbial plaque -- had no adverse side effects to the pulpal tissues. Moreover this pulpal safety study demonstrated that even applying fluences two or four times higher than those suggested for calculus removal do not lead to observable changes or alterations in the odontoblast cell layer or the pulpal tissues. No inflammatory reactions and no differences between irradiated and control teeth occurred, while the positive controls showed reactions in the odontoblast cell layer and the connective pulpal tissue.
Huang, Lin; Mills, Arthur K.; Zhao, Yuan; Jones, David J.; Tang, Shuo
2016-01-01
We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications. PMID:27231633
High static gain single-phase PFC based on a hybrid boost converter
NASA Astrophysics Data System (ADS)
Flores Cortez, Daniel; Maccarini, Marcello C.; Mussa, Samir A.; Barbi, Ivo
2017-05-01
In this paper, a single-phase unity power factor rectifier, based on a hybrid boost converter, resulting from the integration of a conventional dc-dc boost converter and a switched-capacitor voltage doubler is proposed, analysed, designed and tested. The high-power rectifier is controlled by two feedback loops with the same control strategy employed in the conventional boost-based rectifier. The main feature of the proposed rectifier is its ability to output a dc voltage larger than the double of the peak value of the input line voltage, while subjecting the power switches to half of the dc-link voltage, which contributes to reducing the cost and increasing the efficiency. Experimental data were obtained from a laboratory prototype with an input voltage of 220 Vrms, line frequency of 60 Hz, output voltage of 800 Vdc, load power of 1000 W and switching frequency of 50 kHz. The efficiency of the prototype, measured in the laboratory, was 96.5% for full load and 97% for half load.
Development of high-efficiency power amplifiers for PIP2 (Project X), Phase II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raab, Frederick
The Fermi Lab PIP II (formerly Project X) accelerator will require the generation of over a megawatt of radio-frequency (RF) power at 325 and 650 MHz. This Phase-II SBIR grant developed techniques to generate this RF power efficienly. The basis of this approach is a system comprising high-efficiency RF power amplifiers, high-efficiency class-S modulators to maintain efficiency at all power levels, and low-loss power combiners. A digital signal processor adjusts signal parameters to obtain the maximum efficiency while producing a signal of the desired amplitude and phase. Components of 4-kW prototypes were designed, assembled, and tested. The 500-W modules producemore » signals at 325 MHz with an overall efficiency of 83 percent and signals at 650 MHz with an overall efficiency of 79 percent. This efficiency is nearly double that available from conventional techniques, which makes it possible to cut the power consumption nearly in half. The system is designed to be scalable to the multi-kilowatt level and can be adapted to other DoE applications.« less
Yan, Zai You; Hung, Kin Chew; Zheng, Hui
2003-05-01
Regularization of the hypersingular integral in the normal derivative of the conventional Helmholtz integral equation through a double surface integral method or regularization relationship has been studied. By introducing the new concept of discretized operator matrix, evaluation of the double surface integrals is reduced to calculate the product of two discretized operator matrices. Such a treatment greatly improves the computational efficiency. As the number of frequencies to be computed increases, the computational cost of solving the composite Helmholtz integral equation is comparable to that of solving the conventional Helmholtz integral equation. In this paper, the detailed formulation of the proposed regularization method is presented. The computational efficiency and accuracy of the regularization method are demonstrated for a general class of acoustic radiation and scattering problems. The radiation of a pulsating sphere, an oscillating sphere, and a rigid sphere insonified by a plane acoustic wave are solved using the new method with curvilinear quadrilateral isoparametric elements. It is found that the numerical results rapidly converge to the corresponding analytical solutions as finer meshes are applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loh, K. K.; Yeo, K. S.; Shee, Y. G.
2015-04-24
A microwave photonic filter based on double-Brillouin-frequency spaced multiwavelength Brillouin-erbium fiber laser (BEFL) is experimentally demonstrated. The filter selectivity can be easily adjusted by tuning and apodizing the optical taps generated from the multiwavelength BEFL. Reconfiguration of different frequency responses are demonstrated.
A double expansion method for the frequency response of finite-length beams with periodic parameters
NASA Astrophysics Data System (ADS)
Ying, Z. G.; Ni, Y. Q.
2017-03-01
A double expansion method for the frequency response of finite-length beams with periodic distribution parameters is proposed. The vibration response of the beam with spatial periodic parameters under harmonic excitations is studied. The frequency response of the periodic beam is the function of parametric period and then can be expressed by the series with the product of periodic and non-periodic functions. The procedure of the double expansion method includes the following two main steps: first, the frequency response function and periodic parameters are expanded by using identical periodic functions based on the extension of the Floquet-Bloch theorem, and the period-parametric differential equation for the frequency response is converted into a series of linear differential equations with constant coefficients; second, the solutions to the linear differential equations are expanded by using modal functions which satisfy the boundary conditions, and the linear differential equations are converted into algebraic equations according to the Galerkin method. The expansion coefficients are obtained by solving the algebraic equations and then the frequency response function is finally determined. The proposed double expansion method can uncouple the effects of the periodic expansion and modal expansion so that the expansion terms are determined respectively. The modal number considered in the second expansion can be reduced remarkably in comparison with the direct expansion method. The proposed double expansion method can be extended and applied to the other structures with periodic distribution parameters for dynamics analysis. Numerical results on the frequency response of the finite-length periodic beam with various parametric wave numbers and wave amplitude ratios are given to illustrate the effective application of the proposed method and the new frequency response characteristics, including the parameter-excited modal resonance, doubling-peak frequency response and remarkable reduction of the maximum frequency response for certain parametric wave number and wave amplitude. The results have the potential application to structural vibration control.
IN VITRO FLOW ANALYSIS OF NOVEL DOUBLE-CUTTING, OPEN-PORT, ULTRAHIGH-SPEED VITRECTOMY SYSTEMS.
Zehetner, Claus; Moelgg, Marion; Bechrakis, Emmanouil; Linhart, Caroline; Bechrakis, Nikolaos E
2017-10-09
To analyze the performance and flow characteristics of novel double-cutting, open-port, 23-, 25-, and 27-gauge ultrahigh-speed vitrectomy systems. In vitro fluidic measurements were performed to assess the volumetric aspiration profiles of several vitrectomy systems in basic salt solution and egg white. Double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. Increase in cutting frequency to the maximum level resulted in flow reduction of less than 10% (0.0%-9.5%). Commercially available 23-, 25-, and 27-G double-cutting probes exhibited higher egg-white and basic salt solution flow rates at all evaluated cut rates, with aspirational efficiencies being 1.1 to 2.9 times the flow rates of standard single-blade vitrectomy probes of the same caliber at the maximum preset vacuum. The highest relative differences were observed at faster cut rates. The newly introduced double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. The fluidic principle of constant flow even at the highest cut rates and low vacuum levels might impact surgical strategies, especially when performing manipulations close to the retina.
NASA Astrophysics Data System (ADS)
Zhang, L. M.; Hu, J. Y.; Wu, Z. H.; Luo, E. C.; Xu, J. Y.; Bi, T. J.
2015-07-01
This article introduces a multi-stage heat-driven thermoacoustic cryocooler capable of reaching cooling capacity about 1 kW at liquefied natural gas temperature range without any moving mechanical parts. The cooling system consists of an acoustically resonant double-acing traveling wave thermoacoustic heat engine and three identical pulse tube coolers. Unlike other traditional traveling wave thermoacoustic heat engines, the acoustically resonant double-acting thermoacoustic heat engine is a closed-loop configuration consists of three identical thermoacoustic conversion units. Each pulse tube cooler is bypass driven by one thermoacoustic heat engine unit. The device is acoustically completely symmetric and therefore "self-matching" for efficient traveling-wave thermoacoustic conversion. In the experiments, with 7 MPa helium gas as working gas, when the heating temperature reaches 918 K, total cooling capacity of 0.88 kW at 110 K is obtained with a resonant frequency of about 55 Hz. When the heating temperature is 903 K, a maximum total cooling capacity at 130 K of 1.20 kW is achieved, with a thermal-to-cold exergy efficiency of 8%. Compared to previously developed heat-driven thermoacoustic cryocoolers, this device has higher thermal efficiency and higher power density. It shows a good prospect of application in the field of natural gas liquefaction and recondensation.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Ju, Jinchuan; Zhang, Jun; Zhong, Huihuang
2017-12-01
To achieve GW-level amplification output radiation at the X-band, a relativistic triaxial klystron amplifier with two-stage cascaded double-gap bunching cavities is investigated. The input cavity is optimized to obtain a high absorption rate of the external injection microwave. The cascaded bunching cavities are optimized to achieve a high depth of the fundamental harmonic current. A double-gap standing wave extractor is designed to improve the beam wave conversion efficiency. Two reflectors with high reflection coefficients both to the asymmetric mode and the TEM mode are employed to suppress the asymmetric mode competition and TEM mode microwave leakage. Particle-in-cell simulation results show that a high power microwave with a power of 2.53 GW and a frequency of 8.4 GHz is generated with a 690 kV, 9.3 kA electron beam excitation and a 25 kW seed microwave injection. Particularly, the achieved power conversion efficiency is about 40%, and the gain is as high as 50 dB. Meanwhile, there is insignificant self-excitation of the parasitic mode in the proposed structure by adopting the reflectors. The relative phase difference between the injected signals and the output microwaves keeps locked after the amplifier becomes saturated.
NASA Astrophysics Data System (ADS)
Mizoguchi, Seiya; Shimatani, Naoki; Kobayashi, Mizuki; Makino, Takaomi; Yamaoka, Yu; Kodera, Tetsuo
2018-04-01
We study hole transport properties in physically defined p-type silicon quantum dots (QDs) on a heavily doped silicon-on-insulator (SOI) substrate. We observe Coulomb diamonds using single QDs and estimate the charging energy as ∼1.6 meV. We obtain the charge stability diagram of double QDs using single QDs as a charge sensor. This is the first demonstration of charge sensing in p-type heavily doped silicon QDs. For future time-resolved measurements, we apply radio-frequency reflectometry using impedance matching of LC circuits to the device. We observe the resonance and estimate the capacitance as ∼0.12 pF from the resonant frequency. This value is smaller than that of the devices with top gates on nondoped SOI substrate. This indicates that high-frequency signals can be applied efficiently to p-type silicon QDs without top gates.
Superconducting terahertz mixer using a transition-edge microbolometer
NASA Technical Reports Server (NTRS)
Prober, D. E.
1993-01-01
We present a new device concept for a mixer element for THz frequencies. This uses a superconducting transition-edge microbridge biased at the center of its superconducting transition near 4.2 K. It is fed from an antenna or waveguide structure. Power from a local oscillator and an RF signal produce a temperature and resulting resistance variation at the difference frequency. The new aspect is the use of a very short bridge in which rapid (less than 0.1 ns) outdiffusion of hot electrons occurs. This gives large intermediate frequency (IF) response. The mixer offers about 4 GHz IF bandwidth, about 80 ohm RF resistive impedance, good match to the IF amplifier, and requires only 1-20 nW of local oscillator power. The upper RF frequency is determined by antenna or waveguide properties. Predicted mixer conversion efficiency is 1/8, and predicted double-sideband receiver noise temperatures are 260 and 90 K for transition widths of 0.1 and 0.5 Tc, respectively.
Internal resonance and low frequency vibration energy harvesting
NASA Astrophysics Data System (ADS)
Yang, Wei; Towfighian, Shahrzad
2017-09-01
A nonlinear vibration energy harvester with internal resonance is presented. The proposed harvester consists of two cantilevers, each with a permanent magnet on its tip. One cantilever has a piezoelectric layer at its base. When magnetic force is applied this two degrees-of-freedom nonlinear vibration system shows the internal resonance phenomenon that broadens the frequency bandwidth compared to a linear system. Three coupled partial differential equations are obtained to predict the dynamic behavior of the nonlinear energy harvester. The perturbation method of multiple scales is used to solve equations. Results from experiments done at different vibration levels with varying distances between the magnets validate the mathematical model. Experiments and simulations show the design outperforms the linear system by doubling the frequency bandwidth. Output voltage for frequency response is studied for different system parameters. The optimal load resistance is obtained for the maximum power in the internal resonance case. The results demonstrate that a design combining internal resonance and magnetic nonlinearity improves the efficiency of energy harvesting.
The 20 GHz spacecraft IMPATT solid state transmitter
NASA Technical Reports Server (NTRS)
Best, T.; Ngan, Y. C.
1986-01-01
The engineering development of a solid-state transmitter amplifier operating in the 20-GHz frequency range is described. This effort involved a multitude of disciplines including IMPATT device development, circulator design, multiple-diode circuit design, and amplifier integration and test. The objective was to develop a transmitter amplifier demonstrating the feasibility of providing an efficient, reliable, lightweight solid-state transmitter to be flown on a 30 to 20 GHz communication demonstration satellite. The work was done under contract from NASA/Lewis Research Center for a period of three years. The result was the development of a GaAs IMPACT diode amplifier capable of an 11-W CW output power and a 2-dB bandwidth of 300 MHz. GaAs IMPATT diodes incorporating diamond heatsink and double-Read doping profile capable of 5.3-W CW oscillator output power and 15.5% efficiency were developed. Up to 19% efficiency was also observed for an output power level of 4.4 W. High performance circulators with a 0.2 dB inserting loss and bandwidth of 5 GHz have also been developed. These represent a significant advance in both device and power combiner circuit technologies in K-band frequencies.
NASA Astrophysics Data System (ADS)
Zhu, Zihang; Zhao, Shanghong; Li, Xuan; Qu, Kun; Lin, Tao
2018-01-01
A photonic approach to generate frequency-doubled microwave waveforms using an integrated dual-polarization quadrature phase shift keying (DP-QPSK) modulator driven by a sinusoidal radio frequency (RF) signal is proposed. By adjusting the dc bias points of the DP-QPSK modulator, the obtained second-order and six-order harmonics are in phase while the fourth-order harmonics are complementary when the orthogonal polarized outputs of the modulator are photodetected. After properly setting the modulation indices of the modulator, the amplitude of the second-order harmonic is 9 times of that of the six-order harmonic, indicating a frequency-doubled triangular waveform is generated. If a broadband 90° microwave phase shifter is attached after the photodetector (PD) to introduce a 90° phase shift, a frequency-doubled square waveform can be obtained after adjusting the amplitude of the second-order harmonic 3 times of that of the six-order harmonic. The proposal is first theoretically analyzed and then validated by simulation. Simulation results show that a 10 GHz triangular and square waveform sequences are successfully generated from a 5 GHz sinusoidal RF drive signal.
Field-incidence noise transmission loss of general aviation aircraft double wall configurations
NASA Astrophysics Data System (ADS)
Grosveld, F. W.
1984-01-01
Theoretical formulations have been developed to describe the transmission of reverberant sound through an infinite, semi-infinite and a finite double panel structure. The model incorporates the fundamental resonance frequencies of each of the panels, the mass-air-mass resonances of the structure, the standing wave resonances in the cavity between the panels and finally the coincidence resonance regions, where the exciting sound pressure wave and flexural waves of each of the panels coincide. It is shown that phase cancellation effects of pressure waves reflected from the cavity boundaries back into the cavity allows the transmission loss of a finite double panel structure to be approximated by a finite double panel mounted in an infinite baffle having no cavity boundaries. Comparison of the theory with high quality transmission loss data yields good agreement in the mass-controlled frequency region. It is shown that the application of acoustic blankets to the double panel structure does not eliminate the mass-air-mass resonances if those occur at low frequencies. It is concluded that this frequency region of low noise transmission loss is a potential interior noise problem area for propeller driven aircraft having a double panel fuselage construction.
NASA Technical Reports Server (NTRS)
Rendell, Alistair P.; Lee, Timothy J.
1991-01-01
The analytic energy gradient for the single and double excitation coupled-cluster (CCSD) wave function has been reformulated and implemented in a new set of programs. The reformulated set of gradient equations have a smaller computational cost than any previously published. The iterative solution of the linear equations and the construction of the effective density matrices are fully vectorized, being based on matrix multiplications. The new method has been used to investigate the Cl2O2 molecule, which has recently been postulated as an important intermediate in the destruction of ozone in the stratosphere. In addition to reporting computational timings, the CCSD equilibrium geometries, harmonic vibrational frequencies, infrared intensities, and relative energetics of three isomers of Cl2O2 are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akulov, V A; Kablukov, S I; Babin, Sergei A
2012-02-28
This paper presents an experimental study of frequency doubling of a tunable ytterbium-doped fibre laser in KTP crystals phase-matched in the XY and YZ planes. In the XY plane, we obtained continuous tuning in the range 528 - 540 nm through intracavity frequency doubling. The second-harmonic power reached 450 mW for 18 W of multimode diode pump power, which was five times higher in comparison with single-pass frequency doubling. In a single-pass configuration in the YZ plane, we obtained a wide tuning range (527 - 551 nm) in the green spectral region and a second-harmonic power of {approx}10 mW. Themore » tuning range was only limited by the mechanical performance of the fibre Bragg grating and can potentially be extended to the entire lasing range of the ytterbium-doped fibre laser.« less
NASA Astrophysics Data System (ADS)
Kim, Yong-Hae; Han, Jun-Han; Kang, Seung-Youl; Cheon, Sanghoon; Lee, Myung-Lae; Ahn, Seong-Deok; Zyung, Taehyoung; Lee, Jeong-Ik; Moon, Jaehyun; Chu, Hye Yong
2012-09-01
We are successful to lit the organic light emitting diode (OLED) lighting panel through the magnetically coupled wireless power transmission technology. For the wireless power transmission, we used the operation frequency 932 kHz, specially designed double spiral type transmitter, small and thin receiver on the four layered printed circuit board, and schottky diodes for the full bridge rectifier. Our white OLED is a hybrid type, in which phosphorescent and fluorescent organics are used together to generate stable white color. The total efficiency of power transmission is around 72%.
NASA Technical Reports Server (NTRS)
Butler, C. F.; Shipley, S. T.; Allen, R. J.
1981-01-01
The NASA multipurpose differential absorption lidar (DIAL) system uses two high conversion efficiency dye lasers which are optically pumped by two frequency-doubled Nd:YAG lasers mounted rigidly on a supporting structure that also contains the transmitter, receiver, and data system. The DIAL system hardware design and data acquisition system are described. Timing diagrams, logic diagrams, and schematics, and the theory of operation of the control electronics are presented. Success in obtaining remote measurements of ozone profiles with an airborne systems is reported and results are analyzed.
NASA Astrophysics Data System (ADS)
Alam, Sabir Ul; Rao, A. Srinivasa; Ghosh, Anirban; Vaity, Pravin; Samanta, G. K.
2018-04-01
We report on a simple experimental scheme to generate and control the orbital angular momentum (OAM) spectrum of the asymmetric vortex beams in a nonlinear frequency conversion process. Using a spiral phase plate (SPP) and adjusting the transverse shift of the SPP with respect to the incident Gaussian beam axis, we have transformed the symmetric (intensity distribution) optical vortex of order l into an asymmetric vortex beam of measured broad spectrum of OAM modes of orders l, l - 1, l - 2, …, 0 (Gaussian mode). While the position of the SPP determines the distribution of the OAM modes, we have also observed that the modal distribution of the vortex beam changes with the shift of the SPP of all orders and finally results in a Gaussian beam (l = 0). Using single-pass frequency doubling of the asymmetric vortices, we have transferred the pump OAM spectra, l, l - 1, l - 2, …, 0, into the broad spectra of higher order OAM modes, 2l, 2l - 1, 2l - 2, …, 0 at green wavelength, owing to OAM conservation in nonlinear processes. We also observed an increase in single-pass conversion efficiency with the increase in asymmetry of the pump vortices producing a higher power vortex beam of mixed OAM modes at a new wavelength than that of the pure OAM mode.
Yuan, Suxia; Su, Yanbin; Liu, Yumei; Li, Zhansheng; Fang, Zhiyuan; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao; Sun, Peitian
2015-01-01
Chromosome doubling of microspore-derived plants is an important factor in the practical application of microspore culture technology because breeding programs require a large number of genetically stable, homozygous doubled haploid plants with a high level of fertility. In the present paper, 29 populations of microspore-derived plantlets from cabbage (Brassica oleracea var. capitata) and broccoli (Brassica oleracea var. italica) were used to study the ploidy level and spontaneous chromosome doubling of these populations, the artificial chromosome doubling induced by colchicine, and the influence of tissue culture duration on the chromosomal ploidy of the microspore-derived regenerants. Spontaneous chromosome doubling occurred randomly and was genotype dependent. In the plant populations derived from microspores, there were haploids, diploids, and even a low frequency of polyploids and mixed-ploidy plantlets. The total spontaneous doubling in the 14 cabbage populations ranged from 0 to 76.9%, compared with 52.2 to 100% in the 15 broccoli populations. To improve the rate of chromosome doubling, an efficient and reliable artificial chromosome doubling protocol (i.e., the immersion of haploid plantlet roots in a colchicine solution) was developed for cabbage and broccoli microspore-derived haploids. The optimal chromosome doubling of the haploids was obtained with a solution of 0.2% colchicine for 9–12 h or 0.4% colchicine for 3–9 h for cabbage and 0.05% colchicine for 6–12 h for broccoli. This protocol produced chromosome doubling in over 50% of the haploid genotypes for most of the populations derived from cabbage and broccoli. Notably, after 1 or more years in tissue culture, the chromosomes of the haploids were doubled, and most of the haploids turned into doubled haploid or mixed-ploidy plants. This is the first report indicating that tissue culture duration can change the chromosomal ploidy of microspore-derived regenerants. PMID:26734028
Yuan, Suxia; Su, Yanbin; Liu, Yumei; Li, Zhansheng; Fang, Zhiyuan; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao; Sun, Peitian
2015-01-01
Chromosome doubling of microspore-derived plants is an important factor in the practical application of microspore culture technology because breeding programs require a large number of genetically stable, homozygous doubled haploid plants with a high level of fertility. In the present paper, 29 populations of microspore-derived plantlets from cabbage (Brassica oleracea var. capitata) and broccoli (Brassica oleracea var. italica) were used to study the ploidy level and spontaneous chromosome doubling of these populations, the artificial chromosome doubling induced by colchicine, and the influence of tissue culture duration on the chromosomal ploidy of the microspore-derived regenerants. Spontaneous chromosome doubling occurred randomly and was genotype dependent. In the plant populations derived from microspores, there were haploids, diploids, and even a low frequency of polyploids and mixed-ploidy plantlets. The total spontaneous doubling in the 14 cabbage populations ranged from 0 to 76.9%, compared with 52.2 to 100% in the 15 broccoli populations. To improve the rate of chromosome doubling, an efficient and reliable artificial chromosome doubling protocol (i.e., the immersion of haploid plantlet roots in a colchicine solution) was developed for cabbage and broccoli microspore-derived haploids. The optimal chromosome doubling of the haploids was obtained with a solution of 0.2% colchicine for 9-12 h or 0.4% colchicine for 3-9 h for cabbage and 0.05% colchicine for 6-12 h for broccoli. This protocol produced chromosome doubling in over 50% of the haploid genotypes for most of the populations derived from cabbage and broccoli. Notably, after 1 or more years in tissue culture, the chromosomes of the haploids were doubled, and most of the haploids turned into doubled haploid or mixed-ploidy plants. This is the first report indicating that tissue culture duration can change the chromosomal ploidy of microspore-derived regenerants.
NASA Technical Reports Server (NTRS)
Wu, Te-Kao (Inventor)
1994-01-01
A multireflector antenna utilizes a frequency-selective surface (FSS) in a subreflector to allow signals in two different RF bands to be selectively reflected back into a main reflector and to allow signals in other RF bands to be transmitted through it to the main reflector for primary focus transmission. A first approach requires only one FSS at the subreflector which may be an array of double-square-loop conductive elements. A second approach uses two FSS's at the subreflector which may be an array of either double-square-loop (DSL) or double-ring (DR). In the case of DR elements, they may be advantageously arranged in a triangular array instead of the rectangular array for the DSL elements.
Remote double resonance coupling of radar energy to ionospheric irregularities
NASA Technical Reports Server (NTRS)
Kennel, C. F.
1971-01-01
Experimental results indicate that low frequency modulation of a high power radar beam, tuned to one of the critical frequencies of the ionosphere, may produce field-aligned density irregularities when the modulation frequency matches an ionospheric eigenfrequency. By choosing the radar carrier frequency and polarization, a number of interaction layers were selected. The variety of possible excitations shows that the double resonance technique may be adaptable to a number of different objectives.
Laser frequency stabilization by light shift of optical-magnetic double resonances
NASA Astrophysics Data System (ADS)
Zhan, Yuanzhi; Peng, Xiang; Lin, Zaisheng; Gong, Wei; Guo, Hong
2015-05-01
This work adopts the light shift of optical-magnetic double resonance frequency in metastable-state 4He atoms to lock the laser center frequency to the magic point. At this magic frequency, both the left-circularly and right-circularly optical pumping processes will give the same value of optical-magnetic double resonance. With this method and after locking, experimental results show that the laser frequency fluctuation is dramatically reduced to 2.79 MHz in 3600 seconds, comparing with 34.1 MHz drift in the free running mode. In application, with the locked magic laser frequency, the heading error for laser pumped 4He magnetometer can be eliminated much. The National Science Fund for Distinguished Young Scholars of China (Grant No. 61225003), the National Natural Science Foundation of China (Grant No. 61101081), and the National Hi-Tech Research and Development (863) Program.
A hybrid finite element - statistical energy analysis approach to robust sound transmission modeling
NASA Astrophysics Data System (ADS)
Reynders, Edwin; Langley, Robin S.; Dijckmans, Arne; Vermeir, Gerrit
2014-09-01
When considering the sound transmission through a wall in between two rooms, in an important part of the audio frequency range, the local response of the rooms is highly sensitive to uncertainty in spatial variations in geometry, material properties and boundary conditions, which have a wave scattering effect, while the local response of the wall is rather insensitive to such uncertainty. For this mid-frequency range, a computationally efficient modeling strategy is adopted that accounts for this uncertainty. The partitioning wall is modeled deterministically, e.g. with finite elements. The rooms are modeled in a very efficient, nonparametric stochastic way, as in statistical energy analysis. All components are coupled by means of a rigorous power balance. This hybrid strategy is extended so that the mean and variance of the sound transmission loss can be computed as well as the transition frequency that loosely marks the boundary between low- and high-frequency behavior of a vibro-acoustic component. The method is first validated in a simulation study, and then applied for predicting the airborne sound insulation of a series of partition walls of increasing complexity: a thin plastic plate, a wall consisting of gypsum blocks, a thicker masonry wall and a double glazing. It is found that the uncertainty caused by random scattering is important except at very high frequencies, where the modal overlap of the rooms is very high. The results are compared with laboratory measurements, and both are found to agree within the prediction uncertainty in the considered frequency range.
High efficiency 40 K single-stage Stirling-type pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Wu, X. L.; Chen, L. B.; Pan, C. Z.; Cui, C.; Wang, J. J.; Zhou, Y.
2017-12-01
A high efficiency single-stage Stirling-type coaxial pulse tube cryocooler (SPTC) operating at around 40 K has been designed, built and tested. The double-inlet and the inertance tubes together with the gas reservoir were adopted as the phase shifters. Under the conditions of 2.5 MPa charging pressure and 30 Hz operating frequency, the prototype has achieved a no-load temperature of 23.8 K with 330 W of electric input power at a rejection temperature of 279 K. When the input power increases to 400 W, it can achieve a cooling capacity of 4.7 W/40 K while rejecting heat at 279 K yielding an efficiency of 7.02% relative to Carnot. It achieves a cooling capacity of 5 W/40 K with an input power of 450 W. It takes 10 minutes for the SPTC to cool to its no-load temperature of 40 K from 295 K.
The time resolved SBS and SRS research in heavy water and its application in CARS
NASA Astrophysics Data System (ADS)
Liu, Jinbo; Gai, Baodong; Yuan, Hong; Sun, Jianfeng; Zhou, Xin; Liu, Di; Xia, Xusheng; Wang, Pengyuan; Hu, Shu; Chen, Ying; Guo, Jingwei; Jin, Yuqi; Sang, Fengting
2018-05-01
We present the time-resolved character of stimulated Brillouin scattering (SBS) and backward stimulated Raman scattering (BSRS) in heavy water and its application in Coherent Anti-Stokes Raman Scattering (CARS) technique. A nanosecond laser from a frequency-doubled Nd: YAG laser is introduced into a heavy water cell, to generate SBS and BSRS beams. The SBS and BSRS beams are collinear, and their time resolved characters are studied by a streak camera, experiment show that they are ideal source for an alignment-free CARS system, and the time resolved property of SBS and BSRS beams could affect the CARS efficiency significantly. By inserting a Dye cuvette to the collinear beams, the time-overlapping of SBS and BSRS could be improved, and finally the CARS efficiency is increased, even though the SBS energy is decreased. Possible methods to improve the efficiency of this CARS system are discussed too.
NASA Astrophysics Data System (ADS)
Li, Yupeng; Ding, Ding
2017-09-01
Benefiting from the high spectral efficiency and low peak-to-average power ratio, constant envelope orthogonal frequency division multiplexing (OFDM) is a promising technique in coherent optical communication. Polarization-division multiplexing (PDM) has been employed as an effective way to double the transmission capacity in the commercial 100 Gb/s PDM-QPSK system. We investigated constant envelope OFDM together with PDM. Simulation results show that the acceptable maximum launch power into the fiber improves 10 and 6 dB for 80- and 320-km transmission, respectively (compared with the conventional PDM OFDM system). The maximum reachable distance of the constant envelope OFDM system is able to reach 800 km, and even 1200 km is reachable if an ideal erbium doped fiber amplifier is employed.
Cong, Zhenhua; Zhang, Xingyu; Wang, Qingpu; Liu, Zhaojun; Chen, Xiaohan; Fan, Shuzhen; Zhang, Xiaolei; Zhang, Huaijin; Tao, Xutang; Li, Shutao
2010-06-07
A diode-side-pumped actively Q-switched intracavity frequency-doubled Nd:YAG/BaWO(4)/KTP Raman laser is studied experimentally and theoretically. Rate equations are used to analyze the Q-switched yellow laser by considering the transversal distributions of the intracavity photon density and the inversion population density. An 8.3 W 590 nm laser is obtained with a 125.8 W 808 nm pump power and a 15 kHz pulse repetition frequency. The corresponding optical conversion efficiency from diode laser to yellow laser is 6.57%, much higher than that of the former reported side-pumped yellow laser. The output powers with respect to the incident pump power are in agreement with the theoretical results on the whole.
Injection locking of a low cost high power laser diode at 461 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagett, C. J. H.; Moriya, P. H., E-mail: paulohisao@ifsc.usp.br; Celistrino Teixeira, R.
2016-05-15
Stable laser sources at 461 nm are important for optical cooling of strontium atoms. In most existing experiments, this wavelength is obtained by frequency doubling infrared lasers, since blue laser diodes either have low power or large emission bandwidths. Here, we show that injecting less than 10 mW of monomode laser radiation into a blue multimode 500 mW high power laser diode is capable of slaving at least 50% of the power to the desired frequency. We verify the emission bandwidth reduction by saturation spectroscopy on a strontium gas cell and by direct beating of the slave with the mastermore » laser. We also demonstrate that the laser can efficiently be used within the Zeeman slower for optical cooling of a strontium atomic beam.« less
Genetic parameters of egg defects and egg quality in layer chickens.
Wolc, A; Arango, J; Settar, P; O'Sullivan, N P; Olori, V E; White, I M S; Hill, W G; Dekkers, J C M
2012-06-01
Genetic parameters were estimated for egg defects, egg production, and egg quality traits. Eggs from 11,738 purebred brown-egg laying hens were classified as salable or as having one of the following defects: bloody, broken, calcium deposit, dirty, double yolk, misshapen, pee-wee, shell-less, and soft shelled. Egg quality included albumen height, egg weight, yolk weight, and puncture score. Body weight, age at sexual maturity, and egg production were also recorded. Heritability estimates of liability to defects using a threshold animal model were less than 0.1 for bloody and dirty; between 0.1 and 0.2 for pee-wee, broken, misshapen, soft shelled, and shell-less; and above 0.2 for calcium deposit and double yolk. Quality and production traits were more heritable, with estimates ranging from 0.29 (puncture score) to 0.74 (egg weight). High-producing hens had a lower frequency of egg defects. High egg weight and BW were associated with an increased frequency of double yolks, and to a lesser extent, with more shell quality defects. Estimates of genetic correlations among defect traits that were related to shell quality were positive and moderate to strong (0.24-0.73), suggesting that these could be grouped into one category or selection could be based on the trait with the highest heritability or that is easiest to measure. Selection against defective eggs would be more efficient by including egg defect traits in the selection criterion, along with egg production rate of salable eggs and egg quality traits.
Double-frequency microwave ionization of Na
NASA Astrophysics Data System (ADS)
Ruff, G. A.; Dietrick, K. M.; Gallagher, T. F.
1990-11-01
We report the ionization of Na atoms by the simultaneous application of microwave fields of two different frequencies. We conclude that the salient features of double-frequency ionization can be readily understood. Both the hydrogenlike ||m||=2 states and the nonhydrogenic ||m||=0 and 1 states ionize when the sum of the field amplitudes, the peak field, reaches the field required for ionization by a single microwave frequency, E=1/9n4 and E=1/3n5, respectively.
Technique Developed for Optimizing Traveling-Wave Tubes
NASA Technical Reports Server (NTRS)
Wilson, Jeffrey D.
1999-01-01
A traveling-wave tube (TWT) is an electron beam device that is used to amplify electromagnetic communication waves at radio and microwave frequencies. TWT s are critical components in deep-space probes, geosynchronous communication satellites, and high-power radar systems. Power efficiency is of paramount importance for TWT s employed in deep-space probes and communications satellites. Consequently, increasing the power efficiency of TWT s has been the primary goal of the TWT group at the NASA Lewis Research Center over the last 25 years. An in-house effort produced a technique (ref. 1) to design TWT's for optimized power efficiency. This technique is based on simulated annealing, which has an advantage over conventional optimization techniques in that it enables the best possible solution to be obtained (ref. 2). A simulated annealing algorithm was created and integrated into the NASA TWT computer model (ref. 3). The new technique almost doubled the computed conversion power efficiency of a TWT from 7.1 to 13.5 percent (ref. 1).
An efficient and portable SIMD algorithm for charge/current deposition in Particle-In-Cell codes
NASA Astrophysics Data System (ADS)
Vincenti, H.; Lobet, M.; Lehe, R.; Sasanka, R.; Vay, J.-L.
2017-01-01
In current computer architectures, data movement (from die to network) is by far the most energy consuming part of an algorithm (≈ 20 pJ/word on-die to ≈10,000 pJ/word on the network). To increase memory locality at the hardware level and reduce energy consumption related to data movement, future exascale computers tend to use many-core processors on each compute nodes that will have a reduced clock speed to allow for efficient cooling. To compensate for frequency decrease, machine vendors are making use of long SIMD instruction registers that are able to process multiple data with one arithmetic operator in one clock cycle. SIMD register length is expected to double every four years. As a consequence, Particle-In-Cell (PIC) codes will have to achieve good vectorization to fully take advantage of these upcoming architectures. In this paper, we present a new algorithm that allows for efficient and portable SIMD vectorization of current/charge deposition routines that are, along with the field gathering routines, among the most time consuming parts of the PIC algorithm. Our new algorithm uses a particular data structure that takes into account memory alignment constraints and avoids gather/scatter instructions that can significantly affect vectorization performances on current CPUs. The new algorithm was successfully implemented in the 3D skeleton PIC code PICSAR and tested on Haswell Xeon processors (AVX2-256 bits wide data registers). Results show a factor of × 2 to × 2.5 speed-up in double precision for particle shape factor of orders 1- 3. The new algorithm can be applied as is on future KNL (Knights Landing) architectures that will include AVX-512 instruction sets with 512 bits register lengths (8 doubles/16 singles).
NASA Astrophysics Data System (ADS)
Lee, Dicky; Moulton, Peter F.
2001-03-01
In this paper we discuss our red, green, and blue (RGB) optical parametric oscillator (OPO) light source for projection display applications. Our source consists of a diode-pumped pump laser and a LBO-based OPO. Based on our Nd:YLF gain-module design, the pump laser is frequency doubled to serve as the pump source for the OPO. The unconverted pump power is recycled as the green light for projection. The singly resonant, non-critically phase- matched OPO has, to date, generated 13 W of 898-nm signal power and an estimated 9.3 W of intra-cavity idler power at 1256 nm. With approximately 76% of pump depletion, the power of the residual green light for projection is about 5.8 W. We have extra-cavity doubled the signal to produce approximately 3.5 W of 449-nm blue light and intra-cavity doubled the idler to produce approximately 6 W of 628-nm red light. The OPO-based RGB source generates about 4000 lumens of D65-balanced white light. The overall electrical power luminous efficiency (diodes only) is about 14.6 lumens/Watt.
NASA Technical Reports Server (NTRS)
Welford, D.; Isyanova, Y.
1993-01-01
TEM(sub 00)-mode output energies up to 22.5 mJ with 23 percent slope efficiencies were generated at 1.064 microns in a diode-laser pumped Nd:YAG laser using a transverse-pumping geometry. 1.32-micron performance was equally impressive at 10.2 mJ output energy with 15 percent slope efficiency. The same pumping geometry was successfully carried forward to several complex Q-switched laser resonator designs with no noticeable degradation of beam quality. Output beam profiles were consistently shown to have greater than 90 percent correlation with the ideal TEM(sub 00)-order Gaussian profile. A comparison study on pulse-reflection-mode (PRM), pulse-transmission-mode (PTM), and passive Q-switching techniques was undertaken. The PRM Q-switched laser generated 8.3 mJ pulses with durations as short as 10 ns. The PTM Q-switch laser generated 5 mJ pulses with durations as short as 5 ns. The passively Q-switched laser generated 5 mJ pulses with durations as short as 2.4 ns. Frequency doubling of both 1.064 microns and 1.32 microns with conversion efficiencies of 56 percent in lithium triborate and 10 percent in rubidium titanyl arsenate, respectively, was shown. Sum-frequency generation of the 1.064 microns and 1.32 microns radiations was demonstrated in KTP to generate 1.1 mJ of 0.589 micron output with 11.5 percent conversion efficiency.
Growth and laser properties of Nd:Ca 4YO(BO 3) 3 crystal
NASA Astrophysics Data System (ADS)
Zhang, H. J.; Meng, X. L.; Zhu, L.; Wang, C. Q.; Cheng, R. P.; Yu, W. T.; Zhang, S. J.; Sun, L. K.; Chow, Y. T.; Zhang, W. L.; Wang, H.; Wong, K. S.
1999-02-01
Nd:Ca 4YO(BO 3) 3 (Nd:YCOB) crystal was grown by the Czochralski method, and its structure was measured by using a four circle X-ray diffractometer. The transparent spectrum from 200 to 2600 nm was measured at room temperature. The fluorescence spectrum near 1.06 μm showed that the main emission wavelength of Nd:YCOB crystal was centered at 1060.8 nm. Laser output at 1.06 μm has been demonstrated when it was pumped by a Ti:sapphire laser at the wavelength of 794 nm, the highest output power was 68 mW under pumping power of 311 mW, the pumping threshold was 163 mW and slope efficiency was 46.9%. The self-frequency doubled green light has been observed when it was pumped by a Ti:sapphire or a laser diode (LD). A 14.5 mm Nd:YCOB crystal sample cut at ( θ, φ)=(90°, 33°) was used for type I second-frequency generation (SHG) of the 1.06 μm laser pulse. The SHG conversion efficiency was 22%.
Cyclically optimized electrochemical processes
NASA Astrophysics Data System (ADS)
Ruedisueli, Robert Louis
It has been frequently observed in experiment and industry practice that electrochemical processes (deposition, dissolution, fuel cells) operated in an intermittent or cyclic (AC) mode show improvements in efficiency and/or quality and yield over their steady (DC) mode of operation. Whether rationally invoked by design or empirically tuned-in, the optimal operating frequency and duty cycle is dependent upon the dominant relaxation time constant for the process in question. The electrochemical relaxation time constant is a function of: double-layer and reaction intermediary pseudo-capacitances, ion (charge) transport via electrical migration (mobility), and diffusion across a concentration gradient to electrode surface reaction sites where charge transfer and species incorporation or elimination occurs. The rate determining step dominates the time constant for the reaction or process. Electrochemical impedance spectroscopy (EIS) and piezoelectric crystal electrode (PCE) response analysis have proven to be useful tools in the study and identification of reaction mechanisms. This work explains and demonstrates with the electro-deposition of copper the application of EIS and PCE measurement and analysis to the selection of an optimum cyclic operating schedule, an optimum driving frequency for efficient, sustained cyclic (pulsed) operation.
Alsafadi, Diya; Alsalman, Safaa; Paradisi, Francesca
2017-11-07
Enzymatic synthesis of enantiopure aromatic secondary alcohols (including substituted, hetero-aromatic and bicyclic structures) was carried out using halophilic alcohol dehydrogenase ADH2 from Haloferax volcanii (HvADH2). This enzyme showed an unprecedented substrate scope and absolute enatioselectivity. The cofactor NADPH was used catalytically and regenerated in situ by the biocatalyst, in the presence of 5% ethanol. The efficiency of HvADH2 for the conversion of aromatic ketones was markedly influenced by the steric and electronic factors as well as the solubility of ketones in the reaction medium. Furthermore, carbonyl stretching band frequencies ν (C[double bond, length as m-dash]O) have been measured for different ketones to understand the effect of electron withdrawing or donating properties of the ketone substituents on the reaction rate catalyzed by HvADH2. Good correlation was observed between ν (C[double bond, length as m-dash]O) of methyl aryl-ketones and the reaction rate catalyzed by HvADH2. The enzyme catalyzed the reductions of ketone substrates on the preparative scale, demonstrating that HvADH2 would be a valuable biocatalyst for the preparation of chiral aromatic alcohols of pharmaceutical interest.
Zhou, Liang; Kwok, Chi-Chung; Cheng, Gang; Zhang, Hongjie; Che, Chi-Ming
2013-07-15
In this work, organic electroluminescent (EL) devices with double light-emitting layers (EMLs) having stepwise energy levels were designed to improve the EL performance of a red-light-emitting platinum(II) Schiff base complex. A series of devices with single or double EML(s) were fabricated and characterized. Compared with single-EML devices, double-EML devices showed improved EL efficiency and brightness, attributed to better balance in carriers. In addition, the stepwise distribution in energy levels of host materials is instrumental in broadening the recombination zone, thus delaying the roll-off of EL efficiency. The highest EL current efficiency and power efficiency of 17.36 cd/A and 14.73 lm/W, respectively, were achieved with the optimized double-EML devices. At high brightness of 1000 cd/m², EL efficiency as high as 8.89 cd/A was retained.
Frequency-doubled green picosecond laser based on K3B6O10Br nonlinear optical crystal
NASA Astrophysics Data System (ADS)
Meng, Luping; Zhang, Ling; Hou, Zhanyu; Wang, Lirong; Xu, Hui; Shi, Meng; Wang, Lingwu; Yang, Yingying; Qi, Yaoyao; He, Chaojian; Yu, Haijuan; Lin, Xuechun; Su, Fufang; Xia, Mingjun; Li, Rukang
2018-05-01
We report a frequency-doubled green picosecond (ps) laser based on K3B6O10Br (KBB) nonlinear optical crystal with cutting angle of θ = 34.7° and φ = 30°. Through intracavity frequency doubling using a type I phase-matched KBB crystal with dimensions of 4 mm × 4 mm × 13.2 mm, the average output power of 185.00 mW green ps laser was obtained with a repetition rate of 80 MHz and pulse width of 25.0 ps. In addition, we present external frequency doubling using KBB crystal. The average output power of 3.00 W green ps laser was generated with a repetition rate of 10 kHz and pulse width of 38.1 ps, which corresponds to a pulse energy of 0.30 mJ and a peak power 7.89 MW, respectively. The experimental results show that KBB crystal is a promising nonlinear optical material.
Acousto-optical modulation of light at a doubled sound frequency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotov, V M; Averin, S V; Shkerdin, G N
2016-02-28
A method of acousto-optical (AO) Bragg diffraction is proposed that provides the amplitude modulation of optical radiation at a doubled acoustic frequency. The method is based on the double transmission of the light through the AO modulator made of a gyrotropic crystal and is experimentally tested by the example of the modulation of light with a wavelength of 0.63 μm, controlled by the paratellurite AO cell. (acoustooptics)
An L-band multi-wavelength Brillouin-erbium fiber laser with switchable frequency spacing
NASA Astrophysics Data System (ADS)
Zhou, Xuefang; Hu, Kongwen; Wei, Yizhen; Bi, Meihua; Yang, Guowei
2017-01-01
In this paper, a novel L-band multi-wavelength Brillouin-erbium fiber laser consisting of two ring cavities is proposed and demonstrated. The frequency spacing can be switched, corresponding to the single and double Brillouin frequency shifts, by toggling the optical switch. Under a 980 nm pump power of 600 mw, and a Brillouin pump power of 4 mW and wavelength of 1599.4 nm, up to 16 Stokes signals with a frequency spacing of 0.089 nm and 5 Stokes signals with double spacing of 0.178 nm are generated. A wavelength tunability of 15 nm (1593 nm - 1608 nm) is realized for both frequency spacings. The fluctuation of Stokes signals for both single and double Brillouin spacing regimes in the proposed setup is less than 1.5 dB throughout a 30 min time span.
Effect of frequency-doubling pulse Nd:YAG laser on microbial mutation
NASA Astrophysics Data System (ADS)
Zhao, Yansheng; Wang, Luyan; Zheng, Heng; Yin, Hongping; Chen, Xiangdong; Tan, Zheng; Wu, Wutong
1999-09-01
We are going to report the mutagenic effect of frequency-doubling pulse Nd:YAG laser (532 nm) on microbe. After irradiation with pulse laser, mutants of abscisic acid producing strains and erythromycin producing strains were obtained, one of which could produce 62.1% and 57% more products than control, respectively. In the study of mutagenization of Spirulina platensis caused by pulse laser, we selected a high photosynthetic strains, with improved productivity of protein and exocellular ploysaccharides of 12% and 246%, respectively. The experimental results indicate that frequency-doubling pulse laser (532 nm) is a potential new type of physical mutagenic factor.
Double-sideband frequency scanning interferometry for long-distance dynamic absolute measurement
NASA Astrophysics Data System (ADS)
Mo, Di; Wang, Ran; Li, Guang-zuo; Wang, Ning; Zhang, Ke-shu; Wu, Yi-rong
2017-11-01
Absolute distance measurements can be achieved by frequency scanning interferometry which uses a tunable laser. The main drawback of this method is that it is extremely sensitive to the movement of targets. In addition, since this method is limited to the linearity of frequency scanning, it is commonly used for close measurements within tens of meters. In order to solve these problems, a double-sideband frequency scanning interferometry system is presented in the paper. It generates two opposite frequency scanning signals through a fixed frequency laser and a Mach-Zehnder modulator. And the system distinguishes the two interference fringe patterns corresponding to the two signals by IQ demodulation (i.e., quadrature detection) of the echo. According to the principle of double-sideband modulation, the two signals have the same characteristics. Therefore, the error caused by the target movement can be effectively eliminated, which is similar to dual-laser frequency scanned interferometry. In addition, this method avoids the contradiction between laser frequency stability and swept performance. The system can be applied to measure the distance of the order of kilometers, which profits from the good linearity of frequency scanning. In the experiment, a precision about 3 μm was achieved for a kilometer-level distance.
Yu, Yeh-Wei; Xiao, Shuai; Cheng, Chih-Yuan; Sun, Ching-Cherng
2016-05-16
A simple method to decode the stored phase signal of volume holographic data storage with adequate wave aberration tolerance is highly demanded. We proposed and demonstrated a one-shot scheme to decode a binary-phase encoding signal through double-frequency-grating based shearing interferometry (DFGSI). The lateral shearing amount is dependent on the focal length of the collimated lens and the frequency difference between the gratings. Diffracted waves with phase encoding were successfully decoded through experimentation. An optical model for the DFGSI was built to analyze phase-error induction and phase-difference control by shifting the double-frequency grating longitudinally and laterally, respectively. The optical model was demonstrated experimentally. Finally, a high aberration tolerance of the DFGSI was demonstrated using the optical model.
Richieri, Raphaëlle; Boyer, Laurent; Padovani, Romain; Adida, Marc; Colavolpe, Cécile; Mundler, Olivier; Lançon, Christophe; Guedj, Eric
2012-12-03
Functional neuroimaging studies have suggested similar mechanisms underlying antidepressant effects of distinct therapeutics. This study aimed to determine and compare functional brain patterns underlying the antidepressant response of 2 distinct protocols of repetitive transcranial magnetic stimulation (rTMS). 99mTc-ECD SPECT was performed before and after rTMS of dorsolateral prefrontal cortex in 61 drug-resistant right-handed patients with major depression, using high frequency (10Hz) left-side stimulation in 33 patients, and low frequency (1Hz) right-side stimulation in 28 patients. Efficiency of rTMS response was defined as at least 50% reduction of the baseline Beck Depression Inventory score. We compared the whole-brain voxel-based brain SPECT changes in perfusion after rTMS, between responders and non-responders in the whole sample (p<0.005, uncorrected), and separately in the subgroup of patients with left- and right-stimulation. Before rTMS, the left- and right-prefrontal stimulation groups did not differ from clinical data and brain SPECT perfusion. rTMS efficiency (evaluated on % of responders) was statistically equivalent in the two groups of patients. In the whole-group of responder patients, a perfusion decrease was found after rTMS, in comparison to non-responders, within the left perirhinal cortex (BA35, BA36). This result was secondarily confirmed separately in the two subgroups, i.e. after either left stimulation (p=0.017) or right stimulation (p<0.001), without significant perfusion differences between these two subgroups. These data show that distinct successful rTMS protocols induce equivalent brain functional changes associated to antidepressive efficiency, consisting to a remote brain limbic activity decrease within the left perirhinal cortex. However, these results will have to be confirmed in a double-blind randomized trial using a sham control group. Copyright © 2012 Elsevier Inc. All rights reserved.
Demonstration of Flying Mirror with Improved Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirozhkov, Alexander S.; Kando, Masaki; Fukuda, Yuji
2009-07-25
A strongly nonlinear wake wave driven by an intense laser pulse can act as a partially reflecting relativistic mirror (the flying mirror)[S. V. Bulanov, et al., Bulletin of the Lebedev Physics Institute, No. 6, 9 (1991); S. V. Bulanov, et al., Phys. Rev. Lett. 91, 085001 (2003)]. Upon reflection from such mirror, a counter-propagating optical-frequency laser pulse is directly converted into high-frequency radiation, with a frequency multiplication factor approx4gamma{sup 2}(the double Doppler effect). We present the results of recent experiment in which the photon number in the reflected radiation was at least several thousand times larger than in our proof-of-principlemore » experiment [M. Kando, et al., Phys. Rev. Lett. 99, 135001 (2007); A. S. Pirozhkov, et al., Phys. Plasmas 14, 123106 (2007)]. The flying mirror holds promise of generating intense coherent ultrashort XUV and x-ray pulses that inherit their temporal shape and polarization from the original optical-frequency (laser) pulses. Furthermore, the reflected radiation bears important information about the reflecting wake wave itself, which can be used for its diagnostics.« less
High Frequency Supercapacitors for Piezo-based Energy Harvesting
NASA Astrophysics Data System (ADS)
Ervin, Matthew; Pereira, Carlos; Miller, John; Outlaw, Ronald; Rastegar, Jay; Murray, Richard
2013-03-01
Energy harvesting is being investigated as an alternative to batteries for powering munition guidance and fuzing functions during flight. A piezoelectric system that generates energy from the oscillation of a mass on a spring (set in motion by the launch acceleration) is being developed. Original designs stored this energy in an electrolytic capacitor for use during flight. Here we replace the electrolytic capacitor with a smaller, lighter, and potentially more reliable electrochemical double layer capacitor (aka, supercapacitor). The potential problems with using supercapacitors in this application are that the piezoelectric output greatly exceeds the supercapacitor electrolyte breakdown voltage, and the frequency greatly exceeds the operating frequency of commercial supercapacitors. Here we have investigated the use of ultrafast vertically oriented graphene array-based supercapacitors for storing the energy in this application. We find that the electrolyte breakdown is not a serious limitation as it is either kinetically limited by the relatively high frequency of the piezoelectric output, or it is overcome by the self-healing nature of supercapacitors. We also find that these supercapacitors have sufficient dynamic response to efficiently store the generated energy.
Sun, Hao; Dul, Mitchell W; Swanson, William H
2006-07-01
The purposes of this study are to compare macular perimetric sensitivities for conventional size III, frequency-doubling, and Gabor stimuli in terms of Weber contrast and to provide a theoretical interpretation of the results. Twenty-two patients with glaucoma performed four perimetric tests: a conventional Swedish Interactive Threshold Algorithm (SITA) 10-2 test with Goldmann size III stimuli, two frequency-doubling tests (FDT 10-2, FDT Macula) with counterphase-modulated grating stimuli, and a laboratory-designed test with Gabor stimuli. Perimetric sensitivities were converted to the reciprocal of Weber contrast and sensitivities from different tests were compared using the Bland-Altman method. Effects of ganglion cell loss on perimetric sensitivities were then simulated with a two-stage neural model. The average perimetric loss was similar for all stimuli until advanced stages of ganglion cell loss, in which perimetric loss tended to be greater for size III stimuli than for frequency-doubling and Gabor stimuli. Comparison of the experimental data and model simulation suggests that, in the macula, linear relations between ganglion cell loss and perimetric sensitivity loss hold for all three stimuli. Linear relations between perimetric loss and ganglion cell loss for all three stimuli can account for the similarity in perimetric loss until advanced stages. The results do not support the hypothesis that redundancy for frequency-doubling stimuli is lower than redundancy for size III stimuli.
Research on liquid impact forming technology of double-layered tubes
NASA Astrophysics Data System (ADS)
Sun, Changying; Liu, Jianwei; Yao, Xinqi; Huang, Beixing; Li, Yuhan
2018-03-01
A double-layered tube is widely used and developed in various fields because of its perfect comprehensive performance and design. With the advent of the era of a double-layered tube, the requirements for double layered tube forming quality, manufacturing cost and forming efficiency are getting higher, so forming methods of a double-layered tube are emerged in an endless stream, the forming methods of a double-layered tube have a great potential in the future. The liquid impact forming technology is a combination of stamping technology and hydroforming technology. Forming a double-layered tube has huge advantages in production cost, quality and efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lei; Department of Medical Physics, Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017; Li, Yu-Xian
2014-01-14
The transport properties in graphene-based asymmetric double velocity well (Fermi velocity inside the well less than that outside the well) and electrostatic well structures are investigated using the transfer matrix method. The results show that quantum beats occur in the oscillations of the conductance for asymmetric double velocity wells. The beating effect can also be found in asymmetric double electrostatic wells, but only if the widths of the two wells are different. The beat frequency for the asymmetric double well is exactly equal to the frequency difference between the oscillation rates in two isolated single wells with the same structuresmore » as the individual wells in the double well structure. A qualitative interpretation is proposed based on the fact that the resonant levels depend upon the sizes of the quantum wells. The beating behavior can provide a new way to identify the symmetry of double well structures.« less
Laser diode fiber optic apparatus for acupuncture treatment by the Oriental method
NASA Astrophysics Data System (ADS)
Pham, Van Hoi; Phung, Huu A.; Bui, Huy; Hoang, Cao D.; Vu, Duc T.; Tran, Minh T.; Nguyen, Minh H.
1998-08-01
The laser acupuncture equipment using laser diodes of 850, 1300 nm and optical fibers as light needles is presented. The double-frequency modulation of laser beam gives the high efficiency treatment of the low-power laser therapy by the oriental acupuncture method. The laser spot from optical fiber of 50 microns is suitable for the irradiation into special points on body or auricular by the acupuncture treatment schema. The laser intensity in pulse regime of 5 - 40 W/cm2 and irradiation time of 5 - 15 minutes are optimum for treatment of neurosis symptoms and pain-relieving.
Resonant tunneling of spin-wave packets via quantized states in potential wells.
Hansen, Ulf-Hendrik; Gatzen, Marius; Demidov, Vladislav E; Demokritov, Sergej O
2007-09-21
We have studied the tunneling of spin-wave pulses through a system of two closely situated potential barriers. The barriers represent two areas of inhomogeneity of the static magnetic field, where the existence of spin waves is forbidden. We show that for certain values of the spin-wave frequency corresponding to the quantized spin-wave states existing in the well formed between the barriers, the tunneling has a resonant character. As a result, transmission of spin-wave packets through the double-barrier structure is much more efficient than the sequent tunneling through two single barriers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gold, Steven H.; Fliflet, Arne W.
2001-08-25
This is the final report on the research program ''Development of a Thermionic Magnicon Amplifier at 11.4 GHz,'' which was carried out by the Plasma Physics Division of the Naval Research Laboratory. Its goal was to develop a high-power, frequency-doubling X-band magnicon amplifier, an advanced scanning-beam amplifier, for use in future linear colliders. The final design parameters were 61 MW at 11.424 GHz, 59 dB gain, 59% efficiency, 1 microsecond pulselength and 10 Hz repetition rate. At the conclusion of this program, the magnicon was undergoing high-power conditioning, having already demonstrated high-power operation, phase stability, a linear drive curve, amore » small operational frequency bandwidth and a spectrally pure, single-mode output.« less
Phase correlation of laser waves with arbitrary frequency spacing.
Huss, A F; Lammegger, R; Neureiter, C; Korsunsky, E A; Windholz, L
2004-11-26
The theoretically predicted correlation of laser phase fluctuations in Lambda-type interaction schemes is experimentally demonstrated. We show that the mechanism of correlation in a Lambda scheme is restricted to high-frequency noise components, whereas in a double-Lambda scheme, due to the laser phase locking in a closed-loop interaction, it extends to all noise frequencies. In this case the correlation is weakly sensitive to coherence losses. Thus the double-Lambda scheme can be used to correlate electromagnetic fields with carrier frequency differences beyond the GHz regime.
Generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier
Zhao, Zhi; Sheehy, Brian; Minty, Michiko
2017-03-29
Here, we report on the generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier. In an Yb-doped fiber master-oscillator-power-amplifier system, 2.3-ps 704 MHz pulses are first amplified in small-core fibers and then in large-mode-area rod fibers to produce 270 W average infrared power with a high polarization extinction ratio and diffraction-limited beam quality. By carrying out frequency doubling in a lithium triborate (LBO) crystal, 180 W average green power is generated. To the best of our knowledge, this is the highest average green power achieved in fiber-based laser systems.
NASA Astrophysics Data System (ADS)
Avramenko, M. V.; Roshal, S. B.
2016-05-01
A continuous model has been constructed for low-frequency dynamics of a double-walled carbon nanotube. The formation of the low-frequency part of the phonon spectrum of a double-walled nanotube from phonon spectra of its constituent single-walled nanotubes has been considered in the framework of the proposed approach. The influence of the environment on the phonon spectrum of a single double-walled carbon nanotube has been analyzed. A combined method has been proposed for estimating the coefficients of the van der Waals interaction between the walls of the nanotube from the spectroscopic data and the known values of the elastic moduli of graphite. The low-temperature specific heat has been calculated for doublewalled carbon nanotubes, which in the field of applicability of the model ( T < 35 K) is substantially less than the sum of specific heats of two individual single-walled nanotubes forming it.
NASA Astrophysics Data System (ADS)
Lin, Hong; Wang, Xinming; Liang, Kun
2010-10-01
For monitoring and forecasting of the ocean red tide in real time, a marine environment monitoring technology based on the double-wavelength airborne lidar system is proposed. An airborne lidar is father more efficient than the traditional measure technology by the boat. At the same time, this technology can detect multi-parameter about the ocean red tide by using the double-wavelength lidar.It not only can use the infrared laser to detect the scattering signal under the water and gain the information about the red tise's density and size, but also can use the blue-green laser to detect the Brillouin scattering signal and deduce the temperature and salinity of the seawater.The red tide's density detecting model is firstly established by introducing the concept about the red tide scattering coefficient based on the Mie scattering theory. From the Brillouin scattering theory, the relationship about the blue-green laser's Brillouin scattering frequency shift value and power value with the seawater temperature and salinity is found. Then, the detecting mode1 of the saewater temperature and salinity can be established. The value of the red tide infrared scattering signal is evaluated by the simulation, and therefore the red tide particles' density can be known. At the same time, the blue-green laser's Brillouin scattering frequency shift value and power value are evaluated by simulating, and the temperature and salinity of the seawater can be known. Baed on the multi-parameters, the ocean red tide's growth can be monitored and forecasted.
NASA Technical Reports Server (NTRS)
Zhang, Kuanshou; Xie, Changde; Peng, Kunchi
1996-01-01
The dependence of the quantum fluctuation of the output fundamental and second-harmonic waves upon cavity configuration has been numerically calculated for the intracavity frequency-doubled laser. The results might provide a direct reference for the design of squeezing system through the second-harmonic-generation.
NASA Astrophysics Data System (ADS)
Madin, M. Sya'aer; Ahmad Hambali, N. A. M.; Shahimin, M. M.; Wahid, M. H. A.; Roshidah, N.; Azaidin, M. A. M.
2017-02-01
In this paper, double frequency spacing of multi-wavelength Brillouin Raman fiber laser utilizing eight-shaped structure in conjunction with Raman amplifier is simulated and demonstrated using Optisys software. Double frequency multiwavelength Brillouin Raman fiber laser is one of the solution for single frequency spacing channel de-multiplexing from narrow single spacing in the communication systems. The eight-shaped structure has the ability to produce lower noise and double frequency spacing. The 7 km of single mode fiber acting as a nonlinear medium for the generation of Stimulated Brillouin Scattering and Stimulated Raman Scattering. As a results, the optimum results are recorded at 1450 nm of RP power at 22 dBm and 1550 nm of BP power at 20 dBm. These parameters provide a high output peak power, gain and average OSNR. The highest peak power of Stokes 1 is recorded at 90% of coupling ratio which is 29.88 dBm. It is found that the maximum gain and average OSNR of about 1.23 dB and 63.74 dB.
Kesharwani, Manoj K; Brauer, Brina; Martin, Jan M L
2015-03-05
We have obtained uniform frequency scaling factors λ(harm) (for harmonic frequencies), λ(fund) (for fundamentals), and λ(ZPVE) (for zero-point vibrational energies (ZPVEs)) for the Weigend-Ahlrichs and other selected basis sets for MP2, SCS-MP2, and a variety of DFT functionals including double hybrids. For selected levels of theory, we have also obtained scaling factors for true anharmonic fundamentals and ZPVEs obtained from quartic force fields. For harmonic frequencies, the double hybrids B2PLYP, B2GP-PLYP, and DSD-PBEP86 clearly yield the best performance at RMSD = 10-12 cm(-1) for def2-TZVP and larger basis sets, compared to 5 cm(-1) at the CCSD(T) basis set limit. For ZPVEs, again, the double hybrids are the best performers, reaching root-mean-square deviations (RMSDs) as low as 0.05 kcal/mol, but even mainstream functionals like B3LYP can get down to 0.10 kcal/mol. Explicitly anharmonic ZPVEs only are marginally more accurate. For fundamentals, however, simple uniform scaling is clearly inadequate.
Ahn, H J; Choi, D H; Kim, C S
2006-07-01
Paraesthesia during regional anaesthesia is an unpleasant sensation for patients and, more importantly, in some cases it is related to neurological injury. Relatively few studies have been conducted on the frequency of paraesthesia during combined spinal epidural anaesthesia. We compared two combined spinal epidural anaesthesia techniques: the needle-through-needle technique and the double segment technique in this respect. We randomly allocated 116 parturients undergoing elective Caesarean section to receive anaesthesia using one of these techniques. Both techniques were performed using a 27G pencil point needle, an 18G Tuohy needle, and a 20G multiport epidural catheter from the same manufacturer. The overall frequency of paraesthesia was higher in the needle-through-needle technique group (56.9% vs. 31.6%, p = 0.011). The frequency of paraesthesia at spinal needle insertion was 20.7% in the needle-through-needle technique group and 8.8% in the double segment technique group; whereas the frequency of paraesthesia at epidural catheter insertion was 46.6% in the needle-through-needle technique group and 24.6% in the double segment technique group.
NASA Astrophysics Data System (ADS)
Chen, Feifei; Wang, Lijuan; Wang, Xinle; Cheng, Xiufeng; Yu, Fapeng; Wang, Zhengping; Zhao, Xian
2017-11-01
The self-frequency-doubling crystal is an important kind of multi-functional crystal materials. In this work, Nd3+ doped Sr3TaGa3Si2O14 (Nd:STGS) single crystals were successfully grown by using Czochralski pulling method, in addition, the nonlinear and laser-frequency-doubling properties of Nd:STGS crystals were studied. The continuous-wave laser at 1064 nm was demonstrated along different physical axes, where the maximum output power was obtained to be 295 mW for the Z-cut samples, much higher than the Y-cut (242 mW) and X-cut (217 mW) samples. Based on the measured refractive indexes, the phase matching directions were discussed and determined for type I (42.5°, 30°) and type II (69.5°, 0°) crystal cuts. As expected, self-frequency-doubling green laser at 529 nm was achieved with output powers being around 16 mW and 12 mW for type I and type II configurations, respectively.
Window Glazing Types | Efficient Windows Collaborative
of glass. Single Clear Single Tint Double Glazing The following sections on high-performance double fills. Double Clear Double Tint Double High-Solar-Gain Low-E Double Medium-Solar-Gain Low-E Double Low -Solar-Gain Low-E Double High-Solar-Gain Low-E with Roomside (4th surface) Low-E Double Medium-Solar-Gain
DUL, MITCHELL W.; SWANSON, WILLIAM H.
2006-01-01
Purposes The purposes of this study are to compare macular perimetric sensitivities for conventional size III, frequency-doubling, and Gabor stimuli in terms of Weber contrast and to provide a theoretical interpretation of the results. Methods Twenty-two patients with glaucoma performed four perimetric tests: a conventional Swedish Interactive Threshold Algorithm (SITA) 10-2 test with Goldmann size III stimuli, two frequency-doubling tests (FDT 10-2, FDT Macula) with counterphase-modulated grating stimuli, and a laboratory-designed test with Gabor stimuli. Perimetric sensitivities were converted to the reciprocal of Weber contrast and sensitivities from different tests were compared using the Bland-Altman method. Effects of ganglion cell loss on perimetric sensitivities were then simulated with a two-stage neural model. Results The average perimetric loss was similar for all stimuli until advanced stages of ganglion cell loss, in which perimetric loss tended to be greater for size III stimuli than for frequency-doubling and Gabor stimuli. Comparison of the experimental data and model simulation suggests that, in the macula, linear relations between ganglion cell loss and perimetric sensitivity loss hold for all three stimuli. Conclusions Linear relations between perimetric loss and ganglion cell loss for all three stimuli can account for the similarity in perimetric loss until advanced stages. The results do not support the hypothesis that redundancy for frequency-doubling stimuli is lower than redundancy for size III stimuli. PMID:16840860
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale K. Kotter; Steven D. Novack
DRAFT For Submittal to Journal of Solar Energy - Rev 10.1 ---SOL-08-1091 SOLAR Nantenna Electromagnetic Collectors Dale K. Kotter Idaho National Laboratory Steven D. Novack Idaho National Laboratory W. Dennis Slafer MicroContinuum, Inc. Patrick Pinhero University of Missouri ABSTRACT The research described in this paper explores a new and efficient approach for producing electricity from the abundant energy of the sun, using nanoantenna (nantenna) electromagnetic collectors (NECs). NEC devices target mid-infrared wavelengths, where conventional photovoltaic (PV) solar cells are inefficient and where there is an abundance of solar energy. The initial concept of designing NECs was based on scaling ofmore » radio frequency antenna theory to the infrared and visible regions. This approach initially proved unsuccessful because the optical behavior of materials in the terahertz (THz) region was overlooked and, in addition, economical nanofabrication methods were not previously available to produce the optical antenna elements. This paper demonstrates progress in addressing significant technological barriers, including: 1) development of frequency-dependent modeling of double-feedpoint square spiral nantenna elements; 2) selection of materials with proper THz properties; and 3) development of novel manufacturing methods that could potentially enable economical large-scale manufacturing. We have shown that nantennas can collect infrared energy and induce THz currents, and we have also developed cost-effective proof-of-concept fabrication techniques for the large-scale manufacture of simple square loop nantenna arrays. Future work is planned to embed rectifiers into the double-feedpoint antenna structures. This work represents an important first step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity. This could lead to a broadband, high conversion efficiency low-cost solution to complement conventional PV devices.« less
Bergamasco, Christiane; Horie, Lilian Mika; Torrinhas, Raquel Susana; Waitzberg, Dan L
2015-11-01
The daily consumption of dietary fiber is frequently below suggested recommendations. Using a double-blind, controlled, randomized study, we assessed the efficiency and tolerance of a fiber-enriched orange juice to supplement fiber intake in women. After 1 week of noninterventional observation, 192 healthy adult women ingested 400 mL of orange juice for 21 days, which either was not (placebo group) or was enriched with fiber (fiber group). Orange juice ingestion was registered daily and controlled for each week during the study period. Macronutrient, fiber, and energy intake were determined using a 3-day food record, validated food chemical composition databases, and the "Pro Diet" software. Gastrointestinal symptoms were self-evaluated daily by scoring 4 grades of symptom intensity and using a visual analog scale to grade pain severity. No changes were observed for macronutrient and energy ingestion. For the placebo group (n = 97), the total fiber intake record was under the daily recommended value. In contrast, the fiber group (n = 95) displayed higher comparative values of total and soluble fiber consumption (P ≤ .001), achieving the daily recommended values of fiber intake. Both groups reported an increased frequency of slight bloating and rumbles over time (P ≤ .05). The fiber group also experienced a higher frequency of slight flatulence over time (P = .002). Consumption of fiber-enriched orange juice was efficient to achieve the daily fiber intake recommendation for women, was not accompanied by intense adverse events, and may represent a suitable method to supplement fiber intake in woman. © 2014 American Society for Parenteral and Enteral Nutrition.
Krupke, William F.; Payne, Stephen A.; Marshall, Christopher D.
2001-01-01
The invention provides an efficient, compact means of generating blue laser light at a wavelength near .about.493+/-3 nm, based on the use of a laser diode-pumped Yb-doped laser crystal emitting on its zero phonon line (ZPL) resonance transition at a wavelength near .about.986+/-6 nm, whose fundamental infrared output radiation is harmonically doubled into the blue spectral region. The invention is applied to the excitation of biofluorescent dyes (in the .about.490-496 nm spectral region) utilized in flow cytometry, immunoassay, DNA sequencing, and other biofluorescence instruments. The preferred host crystals have strong ZPL fluorecence (laser) transitions lying in the spectral range from .about.980 to .about.992 nm (so that when frequency-doubled, they produce output radiation in the spectral range from 490 to 496 nm). Alternate preferred Yb doped tungstate crystals, such as Yb:KY(WO.sub.4).sub.2, may be configured to lase on the resonant ZPL transition near 981 nm (in lieu of the normal 1025 nm transition). The laser light is then doubled in the blue at 490.5 nm.
NASA Technical Reports Server (NTRS)
Sollner, T. C. L. G.; Brown, E. R.; Goodhue, W. D.; Le, H. Q.
1987-01-01
Recent observations of oscillation frequencies up to 56 GHz in resonant tunneling structures are discussed in relation to calculations by several authors of the ultimate frequency limits of these devices. It is found that calculations relying on the Wentzel-Kramers-Brillouin (WKB) approximation give limits well below the observed oscillation frequencies. Two other techniques for calculating the upper frequency limit were found to give more reasonable results. One method employs the solution of the time-dependent Schroedinger equation obtained by Kundrotas and Dargys (1986); the other uses the energy width of the transmission function for electrons through the double-barrier structure. This last technique is believed to be the most accurate since it is based on general results for the lifetime of any resonant state. It gives frequency limits on the order of 1 THz for two recently fabricated structures. It appears that the primary limitation of the oscillation frequency for double-barrier resonant-tunneling diodes is imposed by intrinsic device circuit parameters and by the transit time of the depletion layer rather than by time delays encountered in the double-barrier region.
A series of compact rejection filters based on the interaction between spoof SPPs and CSRRs.
Zhang, Qian; Zhang, Hao Chi; Yin, Jia Yuan; Pan, Bai Cao; Cui, Tie Jun
2016-06-21
We propose a method to synthesize several band-rejection filters by etching split-ring resonators (SRRs) on the transmission line for spoof surface plasmon polaritons (SPPs), which is made of double-side or single-side corrugated metal strips. From dispersion relations, the corrugated strips can support spoof SPP modes when the operating frequency is less than the cutoff frequency. The electric field component perpendicular to the strip surface of the SPP modes can excite the complementary SRRs (CSRRs), leading to resonant modes preventing the SPP propagation near the resonant frequencies. Using this principle, single-frequency rejection filters, double-frequency rejection filters, and broad band-stop filters with bandwidth of 1.5 GHz have been designed and fabricated using the single- and/or double-side corrugated strips. Both measured results and numerical simulations demonstrate the excellent filtering characteristics of all design, which are in good agreements. The isolation of all filters can be less than -20 dB, and even reach to -38 dB at rejection frequencies. The proposed rejection and stop-band filters give important potentials to develop integrated plasmonic functional devices and circuits at microwave and terahertz frequencies.
Frequency Characteristics of the MAGLEV Double-layered Propulsion Coil
NASA Astrophysics Data System (ADS)
Ema, Satoshi
The MAGLEV (magnetically levitated vehicle) is now well along in development testing at Yamanashi Test Line. The MAGLEV power source needs to supply a variable voltage and variable frequency to propulsion coils, which installed on outdoor guideway. The output voltage of the electric power converter contains many higher harmonics, which causes many troubles such as inductive interference. Accordingly, it is necessary to clarify the frequency characteristics of the propulsion coils and the power feeding circuit. In view of this situation, experiments and the theoretical analysis concerning the frequency characteristics of the propulsion coils with single-layer arrangement and the power feeding circuit at Miyazaki Test Line had been performed by the author. But the arrangement of the propulsion coils had been changed in Yamanashi Test Line from the single-layered coils to the double-layered coils for the stability of the super-conducting magnet on board. Thus, experiments and investigations concerning the frequency characteristics(resonance characteristics)of the propulsion coils with double-layer arrangement at Yamanashi Test Line have been performed but a theoretical analysis had not been done enough. A theoretical analysis was therefore done in this paper by applying the inverted L equivalent circuit with mutual inductance and capacitance to the propulsion coil, from which the positive and zero phase characteristics of the double-layered propulsion coils were analyzed.
Little, Charles A E; Orloff, Nathan D; Hanemann, Isaac E; Long, Christian J; Bright, Victor M; Booth, James C
2017-07-25
Broadband microfluidic-based impedance spectroscopy can be used to characterize complex fluids, with applications in medical diagnostics and in chemical and pharmacological manufacturing. Many relevant fluids are ionic; during impedance measurements ions migrate to the electrodes, forming an electrical double-layer. Effects from the electrical double-layer dominate over, and reduce sensitivity to, the intrinsic impedance of the fluid below a characteristic frequency. Here we use calibrated measurements of saline solution in microfluidic coplanar waveguide devices at frequencies between 100 kHz and 110 GHz to directly measure the double-layer admittance for solutions of varying ionic conductivity. We successfully model the double-layer admittance using a combination of a Cole-Cole response with a constant phase element contribution. Our analysis yields a double-layer relaxation time that decreases linearly with solution conductivity, and allows for double-layer effects to be separated from the intrinsic fluid response and quantified for a wide range of conducting fluids.
Laser resonance ionization spectroscopy of antimony
NASA Astrophysics Data System (ADS)
Li, R.; Lassen, J.; Ruczkowski, J.; Teigelhöfer, A.; Bricault, P.
2017-02-01
The resonant ionization laser ion source is an element selective, efficient and versatile ion source to generate radioactive ion beams at on-line mass separator facilities. For some elements with complex atomic structures and incomplete spectroscopic data, laser spectroscopic investigations are required for ionization scheme development. Laser resonance ionization spectroscopy using Ti:Sa lasers has been performed on antimony (Sb) at TRIUMF's off-line laser ion source test stand. Laser light of 230.217 nm (vacuum wavelength) as the first excitation step and light from a frequency-doubled Nd:YVO4 laser (532 nm) as the nonresonant ionization step allowed to search for suitable second excitation steps by continuous wavelength scans from 720 nm to 920 nm across the wavelength tuning range of a grating-tuned Ti:Sa laser. Upon the identification of efficient SES, the third excitation steps for resonance ionization were investigated by laser scans across Rydberg states, the ionization potential and autoionizing states. One Rydberg state and six AI states were found to be well suitable for efficient resonance ionization.
Sixty GHz IMPATT diode development
NASA Technical Reports Server (NTRS)
Ma, Y. E.; Chen, J.; Benko, E.; Barger, M. J.; Nghiem, H.; Trinh, T. Q.; Kung, J.
1985-01-01
The objective of this program is to develop 60 GHz GaAs IMPATT Diodes suitable for communications applications. The performance goal of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10 year life time. During the course of the program, double drift (DD) GaAs IMPATT Diodes have been developed resulting in the state of the art performance at V band frequencies. A CW output power of 1.12 W was demonstrated at 51.9 GHz with 9.7 percent efficiency. The best conversion efficiency achieved was 15.3 percent. V band DD GaAs IMPATTs were developed using both small signal and large signal analyses. GaAs wafers of DD flat, DD hybrid, and DD Read profiles using molecular beam epitaxy (MBE) were developed with excellent doping profile control. Wafer evaluation was routinely made by the capacitance versus voltage (C-V) measurement. Ion mass spectrometry (SIMS) analysis was also used for more detailed profile evaluation.
Feng, Guitao; Li, Junyu; Colberts, Fallon J M; Li, Mengmeng; Zhang, Jianqi; Yang, Fan; Jin, Yingzhi; Zhang, Fengling; Janssen, René A J; Li, Cheng; Li, Weiwei
2017-12-27
A series of "double-cable" conjugated polymers were developed for application in efficient single-component polymer solar cells, in which high quantum efficiencies could be achieved due to the optimized nanophase separation between donor and acceptor parts. The new double-cable polymers contain electron-donating poly(benzodithiophene) (BDT) as linear conjugated backbone for hole transport and pendant electron-deficient perylene bisimide (PBI) units for electron transport, connected via a dodecyl linker. Sulfur and fluorine substituents were introduced to tune the energy levels and crystallinity of the conjugated polymers. The double-cable polymers adopt a "face-on" orientation in which the conjugated BDT backbone and the pendant PBI units have a preferential π-π stacking direction perpendicular to the substrate, favorable for interchain charge transport normal to the plane. The linear conjugated backbone acts as a scaffold for the crystallization of the PBI groups, to provide a double-cable nanophase separation of donor and acceptor phases. The optimized nanophase separation enables efficient exciton dissociation as well as charge transport as evidenced from the high-up to 80%-internal quantum efficiency for photon-to-electron conversion. In single-component organic solar cells, the double-cable polymers provide power conversion efficiency up to 4.18%. This is one of the highest performances in single-component organic solar cells. The nanophase-separated design can likely be used to achieve high-performance single-component organic solar cells.
Rb vapor-cell clock demonstration with a frequency-doubled telecom laser.
Almat, Nil; Pellaton, Matthieu; Moreno, William; Gruet, Florian; Affolderbach, Christoph; Mileti, Gaetano
2018-06-01
We employ a recently developed laser system, based on a low-noise telecom laser emitting around 1.56 μm, to evaluate its impact on the performance of an Rb vapor-cell clock in a continuous-wave double-resonance scheme. The achieved short-term clock instability below 2.5·10 -13 ·τ -1/2 demonstrates, for the first time, the suitability of a frequency-doubled telecom laser for this specific application. We measure and study quantitatively the impact of laser amplitude and frequency noises and of the ac Stark shift, which limit the clock frequency stability on short timescales. We also report on the detailed noise budgets and demonstrate experimentally that, under certain conditions, the short-term stability of the clock operated with the low-noise telecom laser is improved by a factor of three compared to clock operation using the direct 780-nm laser.
Frequency-doubled vertical-external-cavity surface-emitting laser
Raymond, Thomas D.; Alford, William J.; Crawford, Mary H.; Allerman, Andrew A.
2002-01-01
A frequency-doubled semiconductor vertical-external-cavity surface-emitting laser (VECSEL) is disclosed for generating light at a wavelength in the range of 300-550 nanometers. The VECSEL includes a semiconductor multi-quantum-well active region that is electrically or optically pumped to generate lasing at a fundamental wavelength in the range of 600-1100 nanometers. An intracavity nonlinear frequency-doubling crystal then converts the fundamental lasing into a second-harmonic output beam. With optical pumping with 330 milliWatts from a semiconductor diode pump laser, about 5 milliWatts or more of blue light can be generated at 490 nm. The device has applications for high-density optical data storage and retrieval, laser printing, optical image projection, chemical-sensing, materials processing and optical metrology.
A decision-directed network for dual-polarization crosstalk cancellation
NASA Technical Reports Server (NTRS)
Weber, W. J., III
1979-01-01
Frequency reuse in the specific form of dual-polarized microwave communication systems has grown in importance in recent years as a practical means of radio spectrum conservation. Ideally the capacity of a given frequency allocation can be doubled through dual-polarization. However, hardware imperfections and propagation effects, particularly rain depolarization, prevent the achievement of this doubling without severe system performance degradation. A decision-directed cross-polarization correction network is presented whose operation depends on only simple base-band signal processing. No pilot tones or frequency offsets are required. The loop can work with any two-dimensional signal set for digital data transmission. The loop has been experimentally verified and provides a means of doubling the data capacity with little performance degradation.
Bomsdorf, H; Röschmann, P; Wieland, J
1991-11-01
In vivo 13C spectroscopy experiments were performed using a whole-body MR system at a static field of 4 T. The main goal of the investigations was to evaluate the sensitivity increase achievable by means of 13C/1H double-resonance techniques at 4 T. Spectra from subcutaneous fat as well as muscle glycogen from the lower leg were acquired using frequency selective proton decoupling and the polarization transfer method SINEPT. With respect to measurements on subcutaneous fat, polarization transfer turned out to be more efficient than selective decoupling. About a fourfold enhancement in spectral peak intensity for the C = C line doublet of the unsaturated fatty acid chain was obtained. Combining polarization transfer with decoupling yielded a factor of 6 in signal amplitude. In contrast to that, the signal enhancement observed in measurements on the glycogen C-1 resonance was only around twofold. The lower efficiency is explained by fast T2 relaxation of the proton transition. A T2 value of about 3 ms was derived from the experimental data. Acquisition times as low as 3 min were realized for normal level glycogen in human calf muscle, enabling a time resolution adequate for dynamic studies on muscle glycogen depletion. Aspects of RF power absorption in tissue and the generally higher efficiency make polarization transfer methods preferable to selective decoupling in whole-body 13C spectroscopy at 4 T.
Double-reed exhaust valve engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Charles L.
An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapaev, V. V., E-mail: kapaev@sci.lebedev.ru; Kopaev, Yu. V.; Savinov, S. A.
2013-03-15
The characteristics of the high-frequency response of single- and double-well resonant tunneling structures in a dc electric field are investigated on the basis of the numerical solution of a time-dependent Schroedinger equation with open boundary conditions. The frequency dependence of the real part of high frequency conductivity (high-frequency response) in In{sub 0.53}Ga{sub 0.47}As/AlAs/InP structures is analyzed in detail for various values of the dc voltage V{sub dc} in the negative differential resistance (NDR) region. It is shown that double-well three-barrier structures are promising for the design of terahertz-band oscillators. The presence of two resonant states with close energies in suchmore » structures leads to a resonant (in frequency) response whose frequency is determined by the energy difference between these levels and can be controlled by varying the parameters of the structure. It is shown that, in principle, such structures admit narrow-band amplification, tuning of the amplification frequency, and a fine control of the amplification (oscillation) frequency in a wide range of terahertz frequencies by varying a dc electric voltage applied to the structure. Starting from a certain width of the central intermediate barrier in double-well structures, one can observe a collapse of resonances, where the structure behaves like a single-well system. This phenomenon imposes a lower limit on the oscillation frequency in three-barrier resonant tunneling structures.« less
A High Power Frequency Doubled Fiber Laser
NASA Technical Reports Server (NTRS)
Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute
2003-01-01
This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.
NASA Astrophysics Data System (ADS)
Kashin, V. V.; Nikolaev, D. A.; Rusanov, S. Ya; Tsvetkov, V. B.
2015-01-01
We demonstrate the employment of single-crystal optical fibres based on lithium niobate for doubling the laser radiation frequency. The measured characteristics of the fibre confirm its high quality and spatial homogeneity. Parameters of the frequency doublers for neodymium laser radiation (λ = 1 mm) based on fibre and bulk single crystals are compared. Single crystals are grown by the method of laser-heated pedestal growing with heating by radiation of a CO2 laser (LHPG-method).
NASA Astrophysics Data System (ADS)
Liu, Pengxiang; Zhang, Xinyuan; Yan, Chao; Xu, Degang; Li, Yin; Shi, Wei; Zhang, Guochun; Zhang, Xinzheng; Yao, Jianquan; Wu, Yicheng
2016-01-01
We report an experimental study on widely tunable terahertz (THz) wave difference frequency generation (DFG) with hydrogen-bonded crystals 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene) malononitrile (OH1). The organic crystals were pumped by a ˜1.3 μm double-pass KTiOPO4 optical parametric oscillator. A tuning range of 0.02-20 THz was achieved. OH1 crystals offer a long effective interaction length (also high output) for the generation below 3 THz, owing to the low absorption and favorable phase-matching. The highest energy of 507 nJ/pulse was generated at 1.92 THz with a 1.89-mm-thick crystal. Comprehensive explanations were provided, on the basis of theoretical calculations. Cascading phenomenon during the DFG process was demonstrated. The photon conversion efficiency could reach 2.9%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Pengxiang; The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071; Zhang, Xinyuan
2016-01-04
We report an experimental study on widely tunable terahertz (THz) wave difference frequency generation (DFG) with hydrogen-bonded crystals 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene) malononitrile (OH1). The organic crystals were pumped by a ∼1.3 μm double-pass KTiOPO{sub 4} optical parametric oscillator. A tuning range of 0.02–20 THz was achieved. OH1 crystals offer a long effective interaction length (also high output) for the generation below 3 THz, owing to the low absorption and favorable phase-matching. The highest energy of 507 nJ/pulse was generated at 1.92 THz with a 1.89-mm-thick crystal. Comprehensive explanations were provided, on the basis of theoretical calculations. Cascading phenomenon during the DFG process wasmore » demonstrated. The photon conversion efficiency could reach 2.9%.« less
Influence of CdS nanoparticles grain morphology on laser-induced absorption
NASA Astrophysics Data System (ADS)
Ebothé, Jean; Michel, Jean; Kityk, I. V.; Lakshminarayana, G.; Yanchuk, O. M.; Marchuk, O. V.
2018-06-01
Using external illumination of a 7 nanosecond (ns) doubled frequency Nd: YAG laser emitting at λ = 532 nm with frequency repetition 10 Hz it was established a possibility of significant changes of the absorption at the probing wavelength 1150 nm of continuous wave (cw) He-Ne laser for the CdS nanoparticles embedded into the PVA polymer matrix. The effect is observed only during the two beam laser coherent treatment and this effect is a consequence of interference of two coherent beams. It is shown a principal role of the grain morphology in the efficiency of the process, which is more important than the nanoparticle sizes. The photoinduced absorption is manifested in the space distribution of the probing laser beam. The principal role of the grain interfaces between the nanoparticle interfaces and the surrounding polymer matrix is shown. The effect is almost independent of the nanoparticle sizes. It may be used for laser operation by nanocomposites.
Graphene patterns supported terahertz tunable plasmon induced transparency.
He, Xiaoyong; Liu, Feng; Lin, Fangting; Shi, Wangzhou
2018-04-16
The tunable plasmonic induced transparency has been theoretically investigated based on graphene patterns/SiO 2 /Si/polymer multilayer structure in the terahertz regime, including the effects of graphene Fermi level, structural parameters and operation frequency. The results manifest that obvious Fano peak can be observed and efficiently modulated because of the strong coupling between incident light and graphene pattern structures. As Fermi level increases, the peak amplitude of Fano resonance increases, and the resonant peak position shifts to high frequency. The amplitude modulation depth of Fano curves is about 40% on condition that the Fermi level changes in the scope of 0.2-1.0 eV. With the distance between cut wire and double semi-circular patterns increases, the peak amplitude and figure of merit increases. The results are very helpful to develop novel graphene plasmonic devices (e.g. sensors, modulators, and antenna) and find potential applications in the fields of biomedical sensing and wireless communications.
Sine-squared shifted pulses for recoupling interactions in solid-state NMR
NASA Astrophysics Data System (ADS)
Jain, Mukul G.; Rajalakshmi, G.; Equbal, Asif; Mote, Kaustubh R.; Agarwal, Vipin; Madhu, P. K.
2017-06-01
Rotational-Echo DOuble-Resonance (REDOR) is a versatile experiment for measuring internuclear distance between two heteronuclear spins in solid-state NMR. At slow to intermediate magic-angle spinning (MAS) frequencies, the measurement of distances between strongly coupled spins is challenging due to rapid dephasing of magnetisation. This problem can be remedied by employing the pulse-shifted version of REDOR known as Shifted-REDOR (S-REDOR) that scales down the recoupled dipolar coupling. In this study, we propose a new variant of the REDOR sequence where the positions of the π pulses are determined by a sine-squared function. This new variant has scaling properties similar to S-REDOR. We use theory, numerical simulations, and experiments to compare the dipolar recoupling efficiencies and the experimental robustness of the three REDOR schemes. The proposed variant has advantages in terms of radiofrequency field requirements at fast MAS frequencies.
Ultra-wideband and broad-angle linear polarization conversion metasurface
NASA Astrophysics Data System (ADS)
Sun, Hengyi; Gu, Changqing; Chen, Xinlei; Li, Zhuo; Liu, Liangliang; Martín, Ferran
2017-05-01
In this work, a metasurface acting as a linear polarization rotator, that can efficiently convert linearly polarized electromagnetic waves to cross polarized waves within an ultra wide frequency band and with a broad incident angle, is proposed. Based on the electric and magnetic resonant features of the unit cell, composed by a double-head arrow, a cut-wire, and two short V-shaped wire structures, three resonances, which lead to the bandwidth expansion of cross-polarization reflections, are generated. The simulation results show that an average polarization conversion ratio of 90% from 17.3 GHz to 42.2 GHz can be achieved. Furthermore, the designed metasurface exhibits polarization insensitivity within a broad incident angle, from 0° to 50°. The experiments conducted on the fabricated metasurface are in good agreement with the simulations. The proposed metasurface can find potential applications in reflector antennas, imaging systems, and remote sensors operating at microwave frequencies.
Brain oscillatory substrates of visual short-term memory capacity.
Sauseng, Paul; Klimesch, Wolfgang; Heise, Kirstin F; Gruber, Walter R; Holz, Elisa; Karim, Ahmed A; Glennon, Mark; Gerloff, Christian; Birbaumer, Niels; Hummel, Friedhelm C
2009-11-17
The amount of information that can be stored in visual short-term memory is strictly limited to about four items. Therefore, memory capacity relies not only on the successful retention of relevant information but also on efficient suppression of distracting information, visual attention, and executive functions. However, completely separable neural signatures for these memory capacity-limiting factors remain to be identified. Because of its functional diversity, oscillatory brain activity may offer a utile solution. In the present study, we show that capacity-determining mechanisms, namely retention of relevant information and suppression of distracting information, are based on neural substrates independent of each other: the successful maintenance of relevant material in short-term memory is associated with cross-frequency phase synchronization between theta (rhythmical neural activity around 5 Hz) and gamma (> 50 Hz) oscillations at posterior parietal recording sites. On the other hand, electroencephalographic alpha activity (around 10 Hz) predicts memory capacity based on efficient suppression of irrelevant information in short-term memory. Moreover, repetitive transcranial magnetic stimulation at alpha frequency can modulate short-term memory capacity by influencing the ability to suppress distracting information. Taken together, the current study provides evidence for a double dissociation of brain oscillatory correlates of visual short-term memory capacity.
Zhang, Rongchun; Duong, Nghia Tuan; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy
2017-06-22
Solid-state 1 H NMR spectroscopy has attracted much attention in the recent years due to the remarkable spectral resolution improvement by ultrafast magic-angle-spinning (MAS) as well as due to the sensitivity enhancement rendered by proton detection. Although these developments have enabled the investigation of a variety of challenging chemical and biological solids, the proton spectral resolution is still poor for many rigid solid systems owing to the presence of conformational heterogeneity and the unsuppressed residual proton-proton dipolar couplings even with the use of the highest currently feasible sample spinning speed of ∼130 kHz. Although a further increase in the spinning speed of the sample could be beneficial to some extent, there is a need for alternate approaches to enhance the spectral resolution. Herein, by fully utilizing the benefits of double-quantum (DQ) coherences, we propose a single radio frequency channel proton-based 3D pulse sequence that correlates double-quantum (DQ), DQ, and single-quantum (SQ) chemical shifts of protons. In addition to the two-spin homonuclear proximity information, the proposed 3D DQ/DQ/SQ experiment also enables the extraction of three-spin and four-spin proximities, which could be beneficial for revealing the dipolar coupled proton network in the solid state. Besides, the 2D DQ/DQ spectrum sliced at different isotropic SQ chemical shift values of the 3D DQ/DQ/SQ spectrum will also facilitate the identification of DQ correlation peaks and improve the spectral resolution, as it only provides the local homonuclear correlation information associated with the specific protons selected by the SQ chemical shift frequency. The 3D pulse sequence and its efficiency are demonstrated experimentally on small molecular compounds in the solid state. We expect that this approach would create avenues for further developments by suitably combining the benefits of partial deuteration of samples, selective excitation/decoupling pulses, heteronuclear spins for spectral editing, and nonuniform sampling.
Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model
Bertram, John M; Yang, Deshan; Converse, Mark C; Webster, John G; Mahvi, David M
2006-01-01
Background An axisymmetric finite element method (FEM) model was employed to demonstrate important techniques used in the design of antennas for hepatic microwave ablation (MWA). To effectively treat deep-seated hepatic tumors, these antennas should produce a highly localized specific absorption rate (SAR) pattern and be efficient radiators at approved generator frequencies. Methods and results As an example, a double slot choked antenna for hepatic MWA was designed and implemented using FEMLAB™ 3.0. Discussion This paper emphasizes the importance of factors that can affect simulation accuracy, which include boundary conditions, the dielectric properties of liver tissue, and mesh resolution. PMID:16504153
A polarization-division multiplexing SSB-OFDM system with beat interference cancellation receivers
NASA Astrophysics Data System (ADS)
Yang, Peiling; Ma, Jianxin; Zhang, Junyi
2018-06-01
In this paper, we have proposed a polarization-division multiplexing (PDM) single-sideband optical orthogonal frequency division multiplexing (SSB-OOFDM) scheme with signal-signal beat interference cancellation receivers with balanced detection (ICRBD). This system can double channel capacity and improve spectrum efficiency (SE) with the reduced guard band (GB) due to the PDM. Multiple input multiple output (MIMO) technique is used to solve polarization mode dispersion (PMD) associated with channel estimation and equalization. By simulation, we demonstrate the efficacy of the proposed technique for a 2 ×40 Gbit/s 16-QAM SSB-PDM-OOFDM system according to the error vector magnitude (EVM) and the constellation diagrams.
Sound transmission through triple-panel structures lined with poroelastic materials
NASA Astrophysics Data System (ADS)
Liu, Yu
2015-03-01
In this paper, previous theories on the prediction of sound transmission loss for a double-panel structure lined with poroelastic materials are extended to address the problem of a triple-panel structure. Six typical configurations are considered for a triple-panel structure based on the method of coupling the porous layers to the facing panels which determines critically the sound insulation performance of the system. The transfer matrix method is employed to solve the system by applying appropriate types of boundary conditions for these configurations. The transmission loss of the triple-panel structures in a diffuse sound field is calculated as a function of frequency and compared with that of corresponding double-panel structures. Generally, the triple-panel structure with poroelastic linings has superior acoustic performance to the double-panel counterpart, remarkably in the mid-high frequency range and possibly at low frequencies, by selecting appropriate configurations in which those with two air gaps in the structure exhibit the best overall performance over the entire frequency range. The poroelastic lining significantly lowers the cut-on frequency above which the triple-panel structure exhibits noticeably higher transmission loss. Compared with a double-panel structure, the wider range of system parameters for a triple-panel structure due to the additional partition provides more design space for tuning the sound insulation performance. Despite the increased structural complexity, the triple-panel structure lined with poroelastic materials has the obvious advantages in sound transmission loss while without the penalties in weight and volume, and is hence a promising replacement for the widely used double-panel sandwich structure.
Aggarwal, Dau Dayal; Rashkovetsky, Eugenia; Michalak, Pawel; Cohen, Irit; Ronin, Yefim; Zhou, Dan; Haddad, Gabriel G; Korol, Abraham B
2015-11-27
Population genetics predicts that tight linkage between new and/or pre-existing beneficial and deleterious alleles should decrease the efficiency of natural selection in finite populations. By decoupling beneficial and deleterious alleles and facilitating the combination of beneficial alleles, recombination accelerates the formation of high-fitness genotypes. This may impose indirect selection for increased recombination. Despite the progress in theoretical understanding, interplay between recombination and selection remains a controversial issue in evolutionary biology. Even less satisfactory is the situation with crossover interference, which is a deviation of double-crossover frequency in a pair of adjacent intervals from the product of recombination rates in the two intervals expected on the assumption of crossover independence. Here, we report substantial changes in recombination and interference in three long-term directional selection experiments with Drosophila melanogaster: for desiccation (~50 generations), hypoxia, and hyperoxia tolerance (>200 generations each). For all three experiments, we found a high interval-specific increase of recombination frequencies in selection lines (up to 40-50% per interval) compared to the control lines. We also discovered a profound effect of selection on interference as expressed by an increased frequency of double crossovers in selection lines. Our results show that changes in interference are not necessarily coupled with increased recombination. Our results support the theoretical predictions that adaptation to a new environment can promote evolution toward higher recombination. Moreover, this is the first evidence of selection for different recombination-unrelated traits potentially leading, not only to evolution toward increased crossover rates, but also to changes in crossover interference, one of the fundamental features of recombination.
Juliano, Pablo; Temmel, Sandra; Rout, Manoj; Swiergon, Piotr; Mawson, Raymond; Knoerzer, Kai
2013-01-01
Recent research has shown that high frequency ultrasound (0.4-3 MHz), can enhance milkfat separation in small scale systems able to treat only a few milliliters of sample. In this work, the effect of ultrasonic standing waves on milkfat creaming was studied in a 6L reactor and the influence of different frequencies and transducer configurations in direct contact with the fluid was investigated. A recombined coarse milk emulsion with fat globules stained with oil-red-O dye was selected for the separation trials. Runs were performed with one or two transducers placed in vertical (parallel or perpendicular) and horizontal positions (at the reactor base) at 0.4, 1 and/or 2 MHz (specific energy 8.5 ± 0.6 kJ/kg per transducer). Creaming behavior was assessed by measuring the thickness of the separated cream layer. Other methods supporting this assessment included the measurement of fat content, backscattering, particle size distribution, and microscopy of samples taken at the bottom and top of the reactor. Most efficient creaming was found after treatment at 0.4 MHz in single and double vertical transducer configurations. Among these configurations, a higher separation rate was obtained when sonicating at 0.4 MHz in a vertical perpendicular double transducer setup. The horizontal transducer configuration promoted creaming at 2 MHz only. Fat globule size increase was observed when creaming occurred. This research highlights the potential for enhanced separation of milkfat in larger scale systems from selected transducer configurations in contact with a dairy emulsion, or emulsion splitting in general. Copyright © 2012 Elsevier B.V. All rights reserved.
BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks.
Yan, Winston X; Mirzazadeh, Reza; Garnerone, Silvano; Scott, David; Schneider, Martin W; Kallas, Tomasz; Custodio, Joaquin; Wernersson, Erik; Li, Yinqing; Gao, Linyi; Federova, Yana; Zetsche, Bernd; Zhang, Feng; Bienko, Magda; Crosetto, Nicola
2017-05-12
Precisely measuring the location and frequency of DNA double-strand breaks (DSBs) along the genome is instrumental to understanding genomic fragility, but current methods are limited in versatility, sensitivity or practicality. Here we present Breaks Labeling In Situ and Sequencing (BLISS), featuring the following: (1) direct labelling of DSBs in fixed cells or tissue sections on a solid surface; (2) low-input requirement by linear amplification of tagged DSBs by in vitro transcription; (3) quantification of DSBs through unique molecular identifiers; and (4) easy scalability and multiplexing. We apply BLISS to profile endogenous and exogenous DSBs in low-input samples of cancer cells, embryonic stem cells and liver tissue. We demonstrate the sensitivity of BLISS by assessing the genome-wide off-target activity of two CRISPR-associated RNA-guided endonucleases, Cas9 and Cpf1, observing that Cpf1 has higher specificity than Cas9. Our results establish BLISS as a versatile, sensitive and efficient method for genome-wide DSB mapping in many applications.
NASA Astrophysics Data System (ADS)
El-Hakim, H. A.; Mahmoud, K. R.
2017-10-01
In this paper, straightforward and efficient techniques have been addressed into double-layer structure to enlarge the operating bandwidth to include the X, Ku and K bands, in addition to increase the electromagnetic wave absorption for wide varieties of incident angles and both polarization types. To increase the band-stop resonating frequency up to 26 GHz, an additional layer of meta-surface, circuit analog radar absorber material (CAR), or a thin radar absorber material (RAM) layer is engineered. The synthesized layers are designed based on optimization process with genetic algorithm (GA) through numerical technique (Ansoft design software HFSS) for both transmission line (T.L) and the free space method to get optimal material properties suitable for the design. For different approaches, the designed structures achieved a reflectivity value less than -16 dB on average in the desired bandwidth from 8 to 26 GHz for TE/TM modes with incidence angle up to 50o.
Chromosome territories reposition during DNA damage-repair response
2013-01-01
Background Local higher-order chromatin structure, dynamics and composition of the DNA are known to determine double-strand break frequencies and the efficiency of repair. However, how DNA damage response affects the spatial organization of chromosome territories is still unexplored. Results Our report investigates the effect of DNA damage on the spatial organization of chromosome territories within interphase nuclei of human cells. We show that DNA damage induces a large-scale spatial repositioning of chromosome territories that are relatively gene dense. This response is dose dependent, and involves territories moving from the nuclear interior to the periphery and vice versa. Furthermore, we have found that chromosome territory repositioning is contingent upon double-strand break recognition and damage sensing. Importantly, our results suggest that this is a reversible process where, following repair, chromosome territories re-occupy positions similar to those in undamaged control cells. Conclusions Thus, our report for the first time highlights DNA damage-dependent spatial reorganization of whole chromosomes, which might be an integral aspect of cellular damage response. PMID:24330859
NASA Astrophysics Data System (ADS)
Yang, Xiao-tao; Zhang, Peng; Xie, Wen-qiang; Li, Lin-jun
2018-01-01
A double Q-switch (DQS) Ho:Sc2SiO5 laser modulated by a acousto-optic modulators (AOM) combined with a Cr2+:ZnSe saturable absorber (SA) was reported for the first time. The actively Q-switch (AQS) and passively Q-switch (PQS) were also studied. For the DQS mode, a maximum average output power of 2.49 W under the incident pump power of 12.5 W was obtained, corresponding to a slope efficiency of 24%. The characteristics of the DQS Ho:SSO laser versus different repetition frequencies (RF) of the AOM were researched. The maximum single-pulse energy of the DQS Ho:SSO laser was calculated to 1.98 mJ. The maximum peak power of the DQS Ho:SSO laser was 49.5 kW. The output beam quality factor M2 of DQS Ho:SSO laser was measured to be 1.15 with the highest peak power by knife-edge method at different positions.
Double diffraction in an atomic gravimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malossi, N.; Bodart, Q.; Merlet, S.
2010-01-15
We demonstrate the realization of a scheme for cold-atom gravimetry based on the recently demonstrated use of double-diffraction beam splitters [T. Leveque, A. Gauguet, F. Michaud, F. Pereira Dos Santos, and A. Landragin, Phys. Rev. Lett. 103, 080405 (2009)], where the use of two retro-reflected Raman beams allows symmetric diffraction in +-(Planck constant/2pi)k{sub eff} momenta. Although in principle restricted to the case of zero Doppler shift, for which the two pairs of Raman beams are simultaneously resonant, such diffraction pulses can remain efficient on atoms with nonzero velocity, such as in a gravimeter, when the frequency of one of themore » two Raman laser sources is modulated. Such pulses are used to realize an interferometer insensitive to laser phase noise and some of the dominant systematics. This approach reduces the technical requirements and would allow the realization of a simple atomic gravimeter. A sensitivity of 1.2x10{sup -7}g per shot is demonstrated.« less
Yu, Tae Jun; Hong, Kyung-Han; Choi, Hyun-Gyug; Sung, Jae Hee; Choi, Il Woo; Ko, Do-Kyeong; Lee, Jongmin; Kim, Junwon; Kim, Dong Eon; Nam, Chang Hee
2007-06-25
We demonstrate a long-term operation with reduced phase noise in the carrier-envelope-phase (CEP) stabilization process by employing a double feedback loop and an improved signal detection in the direct locking technique [Opt. Express 13, 2969 (2005)]. A homodyne balanced detection method is employed for efficiently suppressing the dc noise in the f-2f beat signal, which is converted into the CEP noise in the direct locking loop working at around zero carrier-envelope offset frequency (f(ceo)). In order to enhance the long-term stability, we have used the double feedback scheme that modulates both the oscillator pump power for a fast control and the intracavity-prism insertion depth for a slow and high-dynamic-range control. As a result, the in-loop phase jitter is reduced from 50 mrad of the previous result to 29 mrad, corresponding to 13 as in time scale, and the long-term stable operation is achieved for more than 12 hours.
Linear and nonlinear mechanical properties of a series of epoxy resins
NASA Technical Reports Server (NTRS)
Curliss, D. B.; Caruthers, J. M.
1987-01-01
The linear viscoelastic properties have been measured for a series of bisphenol-A-based epoxy resins cured with the diamine DDS. The linear viscoelastic master curves were constructed via time-temperature superposition of frequency dependent G-prime and G-double-prime isotherms. The G-double-prime master curves exhibited two sub-Tg transitions. Superposition of isotherms in the glass-to-rubber transition (i.e., alpha) and the beta transition at -60 C was achieved by simple horizontal shifts in the log frequency axis; however, in the region between alpha and beta, superposition could not be effected by simple horizontal shifts along the log frequency axis. The different temperature dependency of the alpha and beta relaxation mechanisms causes a complex response of G-double-prime in the so called alpha-prime region. A novel numerical procedure has been developed to extract the complete relaxation spectra and its temperature dependence from the G-prime and G-double-prime isothermal data in the alpha-prime region.
Acoustic Wave Filter Technology-A Review.
Ruppel, Clemens C W
2017-09-01
Today, acoustic filters are the filter technology to meet the requirements with respect to performance dictated by the cellular phone standards and their form factor. Around two billion cellular phones are sold every year, and smart phones are of a very high percentage of approximately two-thirds. Smart phones require a very high number of filter functions ranging from the low double-digit range up to almost triple digit numbers in the near future. In the frequency range up to 1 GHz, surface acoustic wave (SAW) filters are almost exclusively employed, while in the higher frequency range, bulk acoustic wave (BAW) and SAW filters are competing for their shares. Prerequisites for the success of acoustic filters were the availability of high-quality substrates, advanced and highly reproducible fabrication technologies, optimum filter techniques, precise simulation software, and advanced design tools that allow the fast and efficient design according to customer specifications. This paper will try to focus on innovations leading to high volume applications of intermediate frequency (IF) and radio frequency (RF) acoustic filters, e.g., TV IF filters, IF filters for cellular phones, and SAW/BAW RF filters for the RF front-end of cellular phones.
Modeling the frequency-dependent detective quantum efficiency of photon-counting x-ray detectors.
Stierstorfer, Karl
2018-01-01
To find a simple model for the frequency-dependent detective quantum efficiency (DQE) of photon-counting detectors in the low flux limit. Formula for the spatial cross-talk, the noise power spectrum and the DQE of a photon-counting detector working at a given threshold are derived. Parameters are probabilities for types of events like single counts in the central pixel, double counts in the central pixel and a neighboring pixel or single count in a neighboring pixel only. These probabilities can be derived in a simple model by extensive use of Monte Carlo techniques: The Monte Carlo x-ray propagation program MOCASSIM is used to simulate the energy deposition from the x-rays in the detector material. A simple charge cloud model using Gaussian clouds of fixed width is used for the propagation of the electric charge generated by the primary interactions. Both stages are combined in a Monte Carlo simulation randomizing the location of impact which finally produces the required probabilities. The parameters of the charge cloud model are fitted to the spectral response to a polychromatic spectrum measured with our prototype detector. Based on the Monte Carlo model, the DQE of photon-counting detectors as a function of spatial frequency is calculated for various pixel sizes, photon energies, and thresholds. The frequency-dependent DQE of a photon-counting detector in the low flux limit can be described with an equation containing only a small set of probabilities as input. Estimates for the probabilities can be derived from a simple model of the detector physics. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Rechmann, Peter; Hennig, Thomas
1996-12-01
During prior studies it could be demonstrated that engaging a frequency double Alexandrite-laser allows a fast and strictly selective ablation of supra- and subgingival calculus. Furthermore, the removal of unstained microbial plaque was observed. First conclusions were drawn following light microscopic investigations on undecalcified sections of irradiated teeth. In the present study the cementum surface after irradiation with a frequency doubled Alexandrite-laser was observed by means of a scanning electron microscope. After irradiation sections of teeth were dried in alcohol and sputtered with gold. In comparison irradiated cementum surfaces of unerupted operatively removed wisdom teeth and tooth surfaces after the selective removal of calculus were investigated. A complete removal of calculus was observed as well as a remaining smooth surface of irradiated cementum.
In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.
Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko
2015-03-23
The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.
Scattering of waves by impurities in precompressed granular chains.
Martínez, Alejandro J; Yasuda, Hiromi; Kim, Eunho; Kevrekidis, P G; Porter, Mason A; Yang, Jinkyu
2016-05-01
We study scattering of waves by impurities in strongly precompressed granular chains. We explore the linear scattering of plane waves and identify a closed-form expression for the reflection and transmission coefficients for the scattering of the waves from both a single impurity and a double impurity. For single-impurity chains, we show that, within the transmission band of the host granular chain, high-frequency waves are strongly attenuated (such that the transmission coefficient vanishes as the wavenumber k→±π), whereas low-frequency waves are well-transmitted through the impurity. For double-impurity chains, we identify a resonance-enabling full transmission at a particular frequency-in a manner that is analogous to the Ramsauer-Townsend (RT) resonance from quantum physics. We also demonstrate that one can tune the frequency of the RT resonance to any value in the pass band of the host chain. We corroborate our theoretical predictions both numerically and experimentally, and we directly observe almost complete transmission for frequencies close to the RT resonance frequency. Finally, we show how this RT resonance can lead to the existence of reflectionless modes in granular chains (including disordered ones) with multiple double impurities.
Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
Liu, Jiao; Wang, Yu; Lu, Yujiao; Zheng, Ping; Sun, Jibin; Ma, Yanhe
2017-11-16
Corynebacterium glutamicum is an important industrial workhorse and advanced genetic engineering tools are urgently demanded. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) and their CRISPR-associated proteins (Cas) have revolutionized the field of genome engineering. The CRISPR/Cas9 system that utilizes NGG as protospacer adjacent motif (PAM) and has good targeting specificity can be developed into a powerful tool for efficient and precise genome editing of C. glutamicum. Herein, we developed a versatile CRISPR/Cas9 genome editing toolbox for C. glutamicum. Cas9 and gRNA expression cassettes were reconstituted to combat Cas9 toxicity and facilitate effective termination of gRNA transcription. Co-transformation of Cas9 and gRNA expression plasmids was exploited to overcome high-frequency mutation of cas9, allowing not only highly efficient gene deletion and insertion with plasmid-borne editing templates (efficiencies up to 60.0 and 62.5%, respectively) but also simple and time-saving operation. Furthermore, CRISPR/Cas9-mediated ssDNA recombineering was developed to precisely introduce small modifications and single-nucleotide changes into the genome of C. glutamicum with efficiencies over 80.0%. Notably, double-locus editing was also achieved in C. glutamicum. This toolbox works well in several C. glutamicum strains including the widely-used strains ATCC 13032 and ATCC 13869. In this study, we developed a CRISPR/Cas9 toolbox that could facilitate markerless gene deletion, gene insertion, precise base editing, and double-locus editing in C. glutamicum. The CRISPR/Cas9 toolbox holds promise for accelerating the engineering of C. glutamicum and advancing its application in the production of biochemicals and biofuels.
Liu, Mengran; Fan, Guoli; Yu, Jiaying; Yang, Lan; Li, Feng
2018-04-17
Tuning the surface properties of supported metal catalysts is of vital importance for governing their catalytic performances in nanocatalysis. Here, we report highly dispersed nanometric gold nanoparticles (NPs) supported on Ni-Ti layered double hydroxides (NiTi-LDHs), which were employed in solvent-free and base-free selective oxidation of benzyl alcohol. A series of characterization techniques demonstrated that defect-rich NiTi-LDHs could efficiently stabilize Au NPs and decrease surface electron density of Au NPs. The as-formed Au/NiTi-LDH catalyst with a Ni/Ti molar ratio of 3 : 1 and an Au loading of 0.71 wt% yielded the highest turnover frequency value of ∼4981 h-1 at 120 °C among tested Au/NiTi-LDH catalysts with different Ni/Ti molar ratios, along with a high benzaldehyde selectivity of 98%. High catalytic efficiency of the catalyst was mainly correlated with surface cooperation between unique defects (i.e. defective Ti3+ species and oxygen vacancies) and abundant hydroxyl groups on the brucite-like layers of the NiTi-LDH support, which could lead to the preferential adsorption and activation of an alcohol hydroxyl moiety in benzyl alcohol and oxygen molecule, as well as the formation of more electron-deficient Ni3+ and Au0 species on the catalyst surface. Furthermore, the present Au/NiTi-LDH catalyst tolerated the oxidation of a wide variety of substrate structures into the corresponding aldehydes, acids or ketones. Our primary results illustrate that defect-rich NiTi-LDHs are promising supports which can efficiently modify surface structure and electronic properties of supported metal catalysts and consequently improve their catalytic performances.
A broadband double-slot waveguide antenna
NASA Astrophysics Data System (ADS)
Kisliuk, M.; Axelrod, A.
1987-09-01
A double transverse slot broadband antenna based on the H-guide transverse-slot radiator design of Kisliuk and Axelrod (1985) is described. The double transverse slot antenna may be used in microwave and mm-wave applications (as a phased array element), in imaging systems, or as a stand-alone linearly polarized antenna. The equations for calculating the radiation efficiency and the input impedance and the experimental and theoretical curves for radiation efficiency of the double-slot antenna are presented along with diagrams of the antenna and the equivalent circuit of an individual slot in a slot array.
NASA Astrophysics Data System (ADS)
Pierce, A.; Obrist, D.; Moosmuller, H.; Moore, C.
2012-04-01
Atmospheric elemental mercury (Hg0) is a globally pervasive element that can be transported and deposited to remote ecosystems where it poses — particularly in its methylated form — harm to many organisms including humans. Current techniques for measurement of atmospheric Hg0 require several liters of sample air and several minutes for each analysis. Fast-response (i.e., 1 second or faster) measurements would improve our ability to understand and track chemical cycling of mercury in the atmosphere, including high frequency Hg0 fluctuations, sources and sinks, and chemical transformation processes. We present theory, design, challenges, and current results of our new prototype sensor based on cavity ring-down spectroscopy (CRDS) for fast-response measurement of Hg0 mass concentrations. CRDS is a direct absorption technique that implements path-lengths of multiple kilometers in a compact absorption cell using high-reflectivity mirrors, thereby improving sensitivity and reducing sample volume compared to conventional absorption spectroscopy. Our sensor includes a frequency-doubled, dye-laser emitting laser pulses tunable from 215 to 280 nm, pumped by a Q-switched, frequency tripled Nd:YAG laser with a pulse repetition rate of 50 Hz. We present how we successfully perform automated wavelength locking and stabilization of the laser to the peak Hg0 absorption line at 253.65 nm using an external isotopically-enriched mercury (202Hg0) cell. An emphasis of this presentation will be on the implementation of differential absorption measurement whereby measurements are alternated between the peak Hg0 absorption wavelength and a nearby wavelength "off" the absorption line. This can be achieved using a piezo electric tuning element that allows for pulse-by-pulse tuning and detuning of the laser "online" and "offline" of the Hg absorption line, and thereby allows for continuous correction of baseline extinction losses. Unexpected challenges with this approach included different efficiencies of laser performance (e.g., frequency doubling) at the two wavelengths and temperature dependence. We will discuss improvements on the control of our system to eliminate drift due to conversion efficiency and temperature dependence. We will detail complications with operating this instrument from a mobile platform for in situ measurements in the field. Finally, we will present data acquisition and processing approaches along with results of calibration curves, and comparisons to conventional mercury analyzers (i.e., a Tekran 2537 mercury vapor analyzer) during ambient air measurements.
Rain Reevaporation, Boundary Layer Convection Interactions, and Pacific Rainfall Patterns in an AGCM
NASA Technical Reports Server (NTRS)
Bacmeister, Julio T.; Suarez, Max J.; Robertson, Franklin R.
2004-01-01
Sensitivity experiments with an atmospheric general circulation model (AGCM) show that parameterized rain re-evaporation has a large impact on simulated precipitation patterns in the tropical Pacific, especially on the configuration of the model s intertropical convergence zone (ITCZ). Weak re-evaporation leads t o the formation of a "double ITCZ" during the northern warm season. The double ITCZ is accompanied by strong coupling between precipitation and high-frequency vertical motion in the planetary boundary layer (PBL). Strong reevaporation leads to a better overall agreement of simulated precipitation with observations. The model s double ITCZ bias is reduced. At the same time, correlation between high-frequency vertical motion in the PBL and precipitation is reduced. Experiments with modified physics suggest that evaporative cooling by rain near the PBL top weakens the coupling between precipitation and vertical motion. This may reduce the model s tendency to form double ITCZs. The strength of high-frequency vertical motions in the PBL was also reduced directly through the introduction of a diffusive cumulus momentum transport (DCMT) parameterization. The DCMT had a visible impact on simulated precipitation in the tropics, but did not reduce the model s double bias in all cases.
Compact 151 W green laser with U-type resonator for prostate surgery
NASA Astrophysics Data System (ADS)
Bazyar, Hossein; Aghaie, Mohammad; Daemi, Mohammad Hossein; Bagherzadeh, Seyed Morteza
2013-04-01
We analyzed, designed and fabricated a U-type resonator for intra-cavity frequency doubling of a diode-side-pumped Q-switched Nd:YAG rod laser with high power and high stability for surgery of prostatic tissue. The resonator stability conditions were analyzed graphically in the various configurations for a U-type resonator. We obtained green light at 532 nm using a single KTP crystal, with average output power of 151 W at 10 kHz repetition rate, and with 113 ns pulse duration at 810 W input pump power. We achieved 1064-532 nm conversion efficiency of 75.8%, and pump-to-green optical-optical efficiency of 18.6%. The green power fluctuation was ±1.0% and pointing stability was better than 4 μrad. The green laser output was coupled to a side-firing medical fiber to transfer the laser beam to the prostatic tissue.
Spectrally narrowed laserlike emission in a novel organic salt, DEST: cooperative emission
NASA Astrophysics Data System (ADS)
Tan, Shida; Mishra, Alpana; Ahyi, Ayayi; Bhowmik, Achintya; Dharmadhikari, Aditya; Thakur, Mrinal
2001-03-01
We have synthesized a novel organic salt, 4'-diethylamino-N-methyl-4-stilbazolium p-toluenesulfonate (DEST). Frequency-doubled pulses (55 ps) from a Nd:YAG laser at 10 Hz repetition rate were used to pump DEST solution in methanol and a 20% conversion efficiency in laserlike emission was observed without external mirrors. The low energy PL quantum efficiency of DEST is very low. The peak of the emission spectrum was at 617 nm and the threshold pump energy for spectral-narrowing was less than 1 μJ. Beyond the threshold, the FWHM of the spectrum was found to have reduced from 70 nm to 14 nm The characteristics are similar to that of another organic salt, SPCD^1, which has been recently reported. Cooperative emission appears to play a dominant role in this emission process. 1. A. K. Bhowmik, A. Dharmadhikari, and M. Thakur, OSA Technical Digest, 467, CLEO (1999).
Lü, Xiao-Jing; Li, Ning; Weng, Chun-Sheng
2014-03-01
The effect detection of detonation exhaust can provide measurement data for exploring the formation mechanism of detonation, the promotion of detonation efficiency and the reduction of fuel waste. Based on tunable diode laser absorption spectroscopy technique combined with double optical path cross-correlation algorithm, the article raises the diagnosis method to realize the on-line testing of detonation exhaust velocity, temperature and H2O gas concentration. The double optical path testing system is designed and set up for the valveless pulse detonation engine with the diameter of 80 mm. By scanning H2O absorption lines of 1343nm with a high frequency of 50 kHz, the on-line detection of gas-liquid pulse detonation exhaust is realized. The results show that the optical testing system based on tunable diode laser absorption spectroscopy technique can capture the detailed characteristics of pulse detonation exhaust in the transient process of detonation. The duration of single detonation is 85 ms under laboratory conditions, among which supersonic injection time is 5.7 ms and subsonic injection time is 19.3 ms. The valveless pulse detonation engine used can work under frequency of 11 Hz. The velocity of detonation overflowing the detonation tube is 1,172 m x s(-1), the maximum temperature of detonation exhaust near the nozzle is 2 412 K. There is a transitory platform in the velocity curve as well as the temperature curve. H2O gas concentration changes between 0-7% during detonation under experimental conditions. The research can provide measurement data for the detonation process diagnosis and analysis, which is of significance to advance the detonation mechanism research and promote the research of pulse detonation engine control technology.
Molinos-Senante, María; Donoso, Guillermo; Sala-Garrido, Ramon; Villegas, Andrés
2018-03-01
Benchmarking the efficiency of water companies is essential to set water tariffs and to promote their sustainability. In doing so, most of the previous studies have applied conventional data envelopment analysis (DEA) models. However, it is a deterministic method that does not allow to identify environmental factors influencing efficiency scores. To overcome this limitation, this paper evaluates the efficiency of a sample of Chilean water and sewerage companies applying a double-bootstrap DEA model. Results evidenced that the ranking of water and sewerage companies changes notably whether efficiency scores are computed applying conventional or double-bootstrap DEA models. Moreover, it was found that the percentage of non-revenue water and customer density are factors influencing the efficiency of Chilean water and sewerage companies. This paper illustrates the importance of using a robust and reliable method to increase the relevance of benchmarking tools.
Resonance Frequency Tuning of a Double Ring Resonator in GaInAsP/InP: Experiment and Simulation
NASA Astrophysics Data System (ADS)
Rabus, Dominik Gerhard; Hamacher, Michael; Heidrich, Helmut
2002-02-01
A racetrack shaped double ring resonator (DRR) filter is demonstrated with radii of 200 μm. The double ring resonator contains two -3 dB multimode interference (MMI) couplers for I/O coupling and a -13 dB codirectional coupler in between the rings. A free spectral range of 50 GHz has been realized. A simulation model has been developed to describe the DRR. As fabrication tolerances do not allow the realization of two identical rings with required nm-circumference accuracy in the resonator, a frequency alignment of the resonator is indispensable. The resonance frequency tuning is performed thermally using platinum resistors which have been placed on top of the waveguides in both rings. An on-off ratio increase has been achieved of more than 3 dB, resulting in a total on-off ratio larger than 18 dB. The frequency alignment is inevitable in the case of multiple coupled micro ring resonators.
NASA Astrophysics Data System (ADS)
Maimone, F.; Celona, L.; Lang, R.; Mäder, J.; Roßbach, J.; Spädtke, P.; Tinschert, K.
2011-12-01
The electromagnetic field within the plasma chamber of an electron cyclotron resonance ion source (ECRIS) and the properties of the plasma waves affect the plasma properties and ion beam production. We have experimentally investigated the "frequency tuning effect" and "double frequency heating" on the CAPRICE ECRIS device. A traveling wave tube amplifier, two microwave sweep generators, and a dedicated experimental set-up were used to carry out experiments in the 12.5-16.5 GHz frequency range. During the frequency sweeps the evolution of the intensity and shape of the extracted argon beam were measured together with the microwave reflection coefficient. A range of different ion source parameter settings was used. Here we describe these experiments and the resultant improved understanding of these operational modes of the ECR ion source.
Maimone, F; Celona, L; Lang, R; Mäder, J; Rossbach, J; Spädtke, P; Tinschert, K
2011-12-01
The electromagnetic field within the plasma chamber of an electron cyclotron resonance ion source (ECRIS) and the properties of the plasma waves affect the plasma properties and ion beam production. We have experimentally investigated the "frequency tuning effect" and "double frequency heating" on the CAPRICE ECRIS device. A traveling wave tube amplifier, two microwave sweep generators, and a dedicated experimental set-up were used to carry out experiments in the 12.5-16.5 GHz frequency range. During the frequency sweeps the evolution of the intensity and shape of the extracted argon beam were measured together with the microwave reflection coefficient. A range of different ion source parameter settings was used. Here we describe these experiments and the resultant improved understanding of these operational modes of the ECR ion source.
Low-frequency switching in a transistor amplifier.
Carroll, T L
2003-04-01
It is known from extensive work with the diode resonator that the nonlinear properties of a P-N junction can lead to period doubling, chaos, and other complicated behaviors in a driven circuit. There has been very little work on what happens when more than one P-N junction is present. In this work, the first step towards multiple P-N junction circuits is taken by doing both experiments and simulations with a single-transistor amplifier using a bipolar transistor. Period doubling and chaos are seen when the amplifier is driven with signals between 100 kHz and 1 MHz, and they coincide with a very low frequency switching between different period doubled (or chaotic) wave forms. The switching frequencies are between 5 and 10 Hz. The switching behavior was confirmed in a simplified model of the transistor amplifier.
Time vs. Money: A Quantitative Evaluation of Monitoring Frequency vs. Monitoring Duration.
McHugh, Thomas E; Kulkarni, Poonam R; Newell, Charles J
2016-09-01
The National Research Council has estimated that over 126,000 contaminated groundwater sites are unlikely to achieve low ug/L clean-up goals in the foreseeable future. At these sites, cost-effective, long-term monitoring schemes are needed in order to understand the long-term changes in contaminant concentrations. Current monitoring optimization schemes rely on site-specific evaluations to optimize groundwater monitoring frequency. However, when using linear regression to estimate the long-term zero-order or first-order contaminant attenuation rate, the effect of monitoring frequency and monitoring duration on the accuracy and confidence for the estimated attenuation rate is not site-specific. For a fixed number of monitoring events, doubling the time between monitoring events (e.g., changing from quarterly monitoring to semi-annual monitoring) will double the accuracy of estimated attenuation rate. For a fixed monitoring frequency (e.g., semi-annual monitoring), increasing the number of monitoring events by 60% will double the accuracy of the estimated attenuation rate. Combining these two factors, doubling the time between monitoring events (e.g., quarterly monitoring to semi-annual monitoring) while decreasing the total number of monitoring events by 38% will result in no change in the accuracy of the estimated attenuation rate. However, the time required to collect this dataset will increase by 25%. Understanding that the trade-off between monitoring frequency and monitoring duration is not site-specific should simplify the process of optimizing groundwater monitoring frequency at contaminated groundwater sites. © 2016 The Authors. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.
Transmission loss of double wall panels containing Helmholtz resonators
NASA Technical Reports Server (NTRS)
Prydz, R. A.; Kuntz, H. L.; Morrow, D. L.; Wirt, L. S.
1988-01-01
Data and an analysis are presented on the use of Helholtz resonators in double wall panels (i.e., aircraft sidewalls). Several wall materials and resonator configurations were tested, and the resonators were found to substantially increase the transmission loss of the double wall system at the tuning frequency.
Transmission loss of double wall panels containing Helmholtz resonators
NASA Astrophysics Data System (ADS)
Prydz, R. A.; Kuntz, H. L.; Morrow, D. L.; Wirt, L. S.
Data and an analysis are presented on the use of Helholtz resonators in double wall panels (i.e., aircraft sidewalls). Several wall materials and resonator configurations were tested, and the resonators were found to substantially increase the transmission loss of the double wall system at the tuning frequency.
Identification and Multiplicity of Double Vowels in Cochlear Implant Users
ERIC Educational Resources Information Center
Kwon, Bomjun J.; Perry, Trevor T.
2014-01-01
Purpose: The present study examined cochlear implant (CI) users' perception of vowels presented concurrently (i.e., "double vowels") to further our understanding of auditory grouping in electric hearing. Method: Identification of double vowels and single vowels was measured with 10 CI subjects. Fundamental frequencies (F0s) of…
NASA Astrophysics Data System (ADS)
Pilgrim, Christian G.; Rechmann, Peter; Hennig, Thomas; Goldin, Dan S.
1999-05-01
Er:YAG laser as well as the frequency doubled Alexandrite laser have been suggested for the use in periodontal therapy and so for the elimination of calculus and the treatment of infected root cement. Intended is the laser application inside the gingival pocket. In consequence, both these lasers may be used in areas close to cervical or approximal location, or even on the fillings' surfaces. Light cured composite and compomer materials are in use for these types of fillings among others. Aim of the study presented here was to compare the effect of an Er:YAG laser (wavelength 2.94 μm, pulse duration 250 μs, free running. fluence 4.5 J/cm2 and 21.4 J/cm2) on compomers and composites with the result following irradiation with a frequency doubled Alexandrite laser (wavelength 377 nm, pulse duration 200 ns, fluence 3 Jcm-2 and 6 J/cm2). The surface of standardized compomer and composite samples were irradiated with both laser wavelengths (either frequency doubled Alexandrite or Er:YAG laser) using the same standardized application protocol. Scanning electron microscopic investigation showed that irradiation with both lasers causes surface changes in composites and compomers removing calculus with these lasers.
Tsuji, Takashi; Hata, Kenji; Futaba, Don N; Sakurai, Shunsuke
2017-11-16
Recently, the millimetre-scale, highly efficient synthesis of single-wall carbon nanotube (SWCNT) forests from Fe catalysts has been reported through the annealing of the magnesia (MgO) underlayer. Here, we report the double-edged effects of underlayer annealing on the efficiency and structure of the SWCNT forest synthesis through a temperature-dependent examination. Our results showed that the efficiency of the SWCNT forests sharply increased with increased underlayer annealing temperatures from 600 °C up to 900 °C due to a temperature-dependent structural modification, characterized by increased grain size and reduced defects, of the MgO underlayer. Beyond this temperature, the SWCNT fraction also decreased as a result of further structural modification of the MgO underlayer. This exemplifies the double-edged effects of annealing. Specifically, for underlayer annealing below 600 °C, the catalyst subsurface diffusion was found to limit the growth efficiency, and for excessively high underlayer annealing temperatures (>900 °C), catalyst coalescence/ripening led to the formation of double-wall carbon nanotubes. As a result, three distinct regions of synthesis were observed: (i) a "low yield" region below a threshold temperature (∼600 °C); (ii) an "increased yield" region from 600 to 900 °C, and (iii) a "saturation" region above 900 °C. The efficient SWCNT forest synthesis could only occur within a specific annealing temperature window as a result of this double-edged effects of underlayer annealing.
Rejection of randomly coinciding events in ZnMoO scintillating bolometers
NASA Astrophysics Data System (ADS)
Chernyak, D. M.; Danevich, F. A.; Giuliani, A.; Mancuso, M.; Nones, C.; Olivieri, E.; Tenconi, M.; Tretyak, V. I.
2014-06-01
Random coincidence of events (particularly from two neutrino double beta decay) could be one of the main sources of background in the search for neutrinoless double beta decay with cryogenic bolometers due to their poor time resolution. Pulse-shape discrimination by using front edge analysis, mean-time and methods were applied to discriminate randomly coinciding events in ZnMoO cryogenic scintillating bolometers. These events can be effectively rejected at the level of 99 % by the analysis of the heat signals with rise-time of about 14 ms and signal-to-noise ratio of 900, and at the level of 92 % by the analysis of the light signals with rise-time of about 3 ms and signal-to-noise ratio of 30, under the requirement to detect 95 % of single events. These rejection efficiencies are compatible with extremely low background levels in the region of interest of neutrinoless double beta decay of Mo for enriched ZnMoO detectors, of the order of counts/(y keV kg). Pulse-shape parameters have been chosen on the basis of the performance of a real massive ZnMoO scintillating bolometer. Importance of the signal-to-noise ratio, correct finding of the signal start and choice of an appropriate sampling frequency are discussed.
NASA Astrophysics Data System (ADS)
Carnevale, Diego; Ji, Xiao; Bodenhausen, Geoffrey
2017-11-01
Nitrogen-14 NMR spectra at fast magic-angle spinning rates can be acquired indirectly by means of two-dimensional techniques based on double cross polarization transfer 1H → 14N →1H. Experimental evidence is given for polycrystalline samples of glycine, l-histidine, and the dipeptide Ala-Gly. Either one-bond or long-range correlations can be favored by choosing the length of the cross polarization contact pulses. Longer contact pulses allow the detection of unprotonated nitrogen sites. In contrast to earlier methods that exploited second-order quadrupolar/dipolar cross-terms, cross polarization operates in the manner of the method of Hartmann and Hahn, even for 14N quadrupolar couplings up to 4 MHz. Simulations explain why amorphous samples tend to give rise to featureless spectra because the 14N quadrupolar interactions may vary dramatically with the lattice environment. The experiments are straightforward to set up and are shown to be effective for different nitrogen environments and robust with respect to the rf-field strengths and to the 14N carrier frequency during cross polarization. The efficiency of indirect detection of 14N nuclei by double cross polarization is shown to be similar to that of isotopically enriched 13C nuclei.
NASA Astrophysics Data System (ADS)
Kesharwani, Manoj K.; Sylvetsky, Nitai; Martin, Jan M. L.
2017-11-01
We show that the DCSD (distinguishable clusters with all singles and doubles) correlation method permits the calculation of vibrational spectra at near-CCSD(T) quality but at no more than CCSD cost, and with comparatively inexpensive analytical gradients. For systems dominated by a single reference configuration, even MP2.5 is a viable alternative, at MP3 cost. MP2.5 performance for vibrational frequencies is comparable to double hybrids such as DSD-PBEP86-D3BJ, but without resorting to empirical parameters. DCSD is also quite suitable for computing zero-point vibrational energies in computational thermochemistry.
NASA Astrophysics Data System (ADS)
Kamiyama, Kyohei; Endo, Tetsuro; Imai, Isao; Komuro, Motomasa
2016-06-01
Double covering (DC) bifurcation of a 2-torus quasi-periodic flow in a phase-locked loop circuit was experimentally investigated using an electronic circuit and via SPICE simulation; in the circuit, the input radio-frequency signal was frequency modulated by the sum of two asynchronous sinusoidal baseband signals. We observed both DC and period-doubling bifurcations of a discrete map on two Poincaré sections, which were realized by changing the sample timing from one baseband sinusoidal signal to the other. The results confirm the DC bifurcation of the original flow.
NASA Astrophysics Data System (ADS)
Alawa, Karam A.; Sayed, Mohamed; Arboleda, Alejandro; Durkee, Heather A.; Aguilar, Mariela C.; Lee, Richard K.
2017-02-01
Glaucoma is the leading cause of irreversible blindness worldwide. Due to its wide prevalence, effective screening tools are necessary. The purpose of this project is to design and evaluate a system that enables portable, cost effective, smartphone based visual field screening based on frequency doubling technology. The system is comprised of an Android smartphone to display frequency doubling stimuli and handle processing, a Bluetooth remote for user input, and a virtual reality headset to simulate the exam. The LG Nexus 5 smartphone and BoboVR Z3 virtual reality headset were used for their screen size and lens configuration, respectively. The system is capable of running the C-20, N-30, 24-2, and 30-2 testing patterns. Unlike the existing system, the smartphone FDT tests both eyes concurrently by showing the same background to both eyes but only displaying the stimulus to one eye at a time. Both the Humphrey Zeiss FDT and the smartphone FDT were tested on five subjects without a history of ocular disease with the C-20 testing pattern. The smartphone FDT successfully produced frequency doubling stimuli at the correct spatial and temporal frequency. Subjects could not tell which eye was being tested. All five subjects preferred the smartphone FDT to the Humphrey Zeiss FDT due to comfort and ease of use. The smartphone FDT is a low-cost, portable visual field screening device that can be used as a screening tool for glaucoma.
Zang, Jie; Cong, Zhenhua; Chen, Xiaohan; Zhang, Xingyu; Qin, Zengguang; Liu, Zhaojun; Lu, Jianren; Wu, Dong; Fu, Qiang; Jiang, Shiqi; Zhang, Shaojun
2016-04-04
This paper presents the tunable Stokes laser characteristics of KTiOAsO4 (KTA) crystal based on stimulated polariton scattering (SPS). When the pumping laser wavelength is 1064.2 nm, the KTA Stokes wave can be discontinuously tuned from 1077.9 to 1088.4 nm with four gaps from 1079.0 to 1080.1 nm, from 1080.8 to 1082.8 nm, from 1083.6 to 1085.5 nm, and from 1085.8 to 1086.8 nm. When a frequency doubling crystal LiB3O5 (LBO) is inserted into the Stokes laser cavity, the frequency-doubled wave can be discontinuously tuned from 539.0 to 539.5 nm, from 540.1 to 540.4 nm, from 541.3 to 541.8 nm, from 542.7 to 542.9 nm and from 543.4 to 544.2 nm. With a pumping pulse energy of 130.0 mJ and an output coupler reflectivity of about 30%, the obtained maximum Stokes laser pulse energy at 1078.6 nm is 33.9 mJ and the obtained maximum frequency-doubled laser pulse energy at 543.8 nm is 15.7 mJ. By using the most probably coupled transverse optical modes obtained from the literature, the polariton refractive indexes, and the simplified polariton Sellmeier equations, the polariton dispersion curve is obtained. The formation of the Stokes frequency gaps is explained.
NASA Astrophysics Data System (ADS)
Cruz, Wellington; Szpigel, Sérgio; Kaufmann, Pierre; Raulin, Jean-Pierre; Klopf, Michael
2017-10-01
Recent observations of solar flares at high-frequencies have provided evidence of a new spectral component with fluxes increasing with frequency in the sub-THz to THz range. This new component occurs simultaneously but is separated from the well-known microwave spectral component that maximizes at frequencies of a few to tens of GHz. The aim of this work is to study in detail a mechanism recently suggested to describe the double-spectrum feature observed in solar flares based on the physical process known as microbunching instability, which occurs with high-energy electron beams in laboratory accelerators.
Power enhanced frequency conversion system
NASA Technical Reports Server (NTRS)
Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)
2001-01-01
A frequency conversion system includes at least one source providing a first near-IR wavelength output including a gain medium for providing high power amplification, such as double clad fiber amplifier, a double clad fiber laser or a semiconductor tapered amplifier to enhance the power output level of the near-IR wavelength output. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Ra-man/Brillouin amplifier or oscillator between the high power source and the NFM device.
Organic materials with nonlinear optical properties
Stupp, Samuel I.; Son, Sehwan; Lin, Hong-Cheu
1995-01-01
The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4'-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidene) phenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl) 4'-[(4'-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it.
Organic materials with nonlinear optical properties
Stupp, S.I.; Son, S.; Lin, H.C.
1995-05-02
The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4{prime}-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidenephenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl)-4{prime}-[(4{prime}-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it. 4 figs.
Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.
Lednev, Vasily N; Pershin, Sergey M; Sdvizhenskii, Pavel A; Grishin, Mikhail Ya; Fedorov, Alexander N; Bukin, Vladimir V; Oshurko, Vadim B; Shchegolikhin, Alexander N
2018-01-01
A new approach combining Raman spectrometry and laser induced breakdown spectrometry (LIBS) within a single laser event was suggested. A pulsed solid state Nd:YAG laser running in double pulse mode (two frequency-doubled sequential nanosecond laser pulses with dozens microseconds delay) was used to combine two spectrometry methods within a single instrument (Raman/LIBS spectrometer). First, a low-energy laser pulse (power density far below ablation threshold) was used for Raman measurements while a second powerful laser pulse created the plasma suitable for LIBS analysis. A short time delay between two successive pulses allows measuring LIBS and Raman spectra at different moments but within a single laser flash-lamp pumping. Principal advantages of the developed instrument include high quality Raman/LIBS spectra acquisition (due to optimal gating for Raman/LIBS independently) and absence of target thermal alteration during Raman measurements. A series of high quality Raman and LIBS spectra were acquired for inorganic salts (gypsum, anhydrite) as well as for pharmaceutical samples (acetylsalicylic acid). To the best of our knowledge, the quantitative analysis feasibility by combined Raman/LIBS instrument was demonstrated for the first time by calibration curves construction for acetylsalicylic acid (Raman) and copper (LIBS) in gypsum matrix. Combining ablation pulses and Raman measurements (LIBS/Raman measurements) within a single instrument makes it an efficient tool for identification of samples hidden by non-transparent covering or performing depth profiling analysis including remote sensing. Graphical abstract Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.
RGB generation by four-wave mixing in small-core holey fibers
NASA Astrophysics Data System (ADS)
Horak, Peter; Dupriez, Pascal; Poletti, Francesco; Petrovich, Marco N.; Jeong, Yoonchan; Nilsson, Johan; Richardson, David J.; Payne, David N.
2007-09-01
We report the generation of white light comprising red, green, and blue spectral bands from a frequency-doubled fiber laser in submicron-sized cores of microstructured holey fibers. Picosecond pulses of green light are launched into a single suspended core of a silica holey fiber where energy is transferred by an efficient four-wave mixing process into a red and blue sideband whose wavelengths are fixed by birefringent phase matching due to a slight asymmetry of the structure arising during the fiber fabrication. Numerical models of the fiber structure and of the nonlinear processes confirm our interpretation. Finally, we discuss power scaling and limitations of this white light source.
Marinova, Polina; Lippert, Stephan; von Estorff, Otto
2017-10-01
Acoustic metamaterials appear to be of great help in the design of reliable and effective noise reduction measures in the low frequency range. The current contribution is concerned with the modeling of a low-frequency noise shield, based on a double wall arrangement, which includes membrane-type acoustic metamaterials (MAMs), considered as the most promising approach when it comes especially to the tonal noise at frequencies below 300 Hz. MAMs consist of small-sized membranes loaded with a mass. Due to their robustness and relatively simple production, MAMs have been proven to decrease the sound transmission in frequency ranges, for which poro-elastic materials have a rather negligible effect. A simulation model of a double wall panel, whose acoustic cavity is furnished with layers of metamaterials, has been developed and the sound transmission loss (STL) through the structure was calculated, using the finite element method. In order to validate the modelling approach, the STL estimation from the finite element analysis was compared to experimental measurements. The achieved results indicate a noise-decreasing possibility in tunable narrow bands as well as a broadband noise reduction for frequencies less than 300 Hz without significantly adding to the panel mass.
NASA Astrophysics Data System (ADS)
Liu, L.; Wang, H. Y.; Ning, Y.; Shen, C.; Si, L.; Yang, Y.; Bao, Q. L.; Ren, G.
2017-05-01
A sub-nanosecond seeded optical parametric generator (OPG) based on magnesium oxide-doped periodically poled lithium niobate (MgO:PPLN) crystal is presented. Pumped by an actively Q-switched diode-pumped 1 kHz, 1064 nm, Nd:YAG microlaser and seeded with a low power distributed feedback (DFB) diode continuous-wave (CW) laser, the OPG generated an output energy of 41.4 µJ and 681 ps pulse duration for the signal at 1652.4 nm, achieving a quantum conversion efficiency of 61.2% and a slope efficiency of 41.8%. Signal tuning was achieved from 1651.0 to 1652.4 nm by tuning the seed-laser current. The FWHM of the signal spectrum was approximately from 35 nm to 0.5 nm by injection seed laser. The SHG doubled the frequency of OPG signal to produce a output energy of 12 µJ with the energy conversion efficiency of 29.0% and tunanble wavelength near 826 nm.
Zhang, Yuxia; Yu, Haohai; Zhang, Huaijin; Di Lieto, Alberto; Tonelli, Mauro; Wang, Jiyang
2016-06-15
We demonstrate efficient laser-diode pumped multi-gigahertz (GHz) self-mode-locked praseodymium (Pr3+) visible lasers with broadband spectra from green to deep red for the first time to our knowledge. With a Pr3+-doped GdLiF4 crystal, stable self-mode-locked visible pulsed lasers at the wavelengths of 522 nm, 607 nm, 639 nm, and 720 nm have been obtained with the repetition rates of 2.8 GHz, 3.1 GHz, 3.1 GHz, and 3.0 GHz, respectively. The maximum output power was 612 mW with the slope efficiency of 46.9% at 639 nm. The mode-locking mechanism was theoretically analyzed. The stable second-harmonic mode-locking with doubled repetition frequency was also realized based on the Fabry-Perot effect formed in the laser cavity. In addition, we find that the polarization directions were turned with lasing wavelengths. This work may provide a new way for generating efficient ultrafast pulses with high- and changeable-repetition rates in the visible range.
Digital micromirror device-based ultrafast pulse shaping for femtosecond laser.
Gu, Chenglin; Zhang, Dapeng; Chang, Yina; Chen, Shih-Chi
2015-06-15
In this Letter, we present a new digital micromirror device (DMD)-based ultrafast pulse shaper, i.e., DUPS. To the best of our knowledge, the DUPS is the first binary pulse shaper that can modulate high repetition rate laser sources at up to a 32 kHz rate (limited by the DMD pattern rate). Since pulse modulation occurs in the frequency domain through reflective two-dimensional micromirror arrays, i.e., DMD, the DUPS is not only compact and low in cost, but also possesses a high damage threshold that is critical for high pulse energy laser applications. In this work, a grating pair was introduced in the DUPS to compensate the DMD induced dispersion. Double pulses were generated to validate the effectiveness of the DUPS and calibrate the system. Subsequently, we demonstrated arbitrary phase shaping capability by continuous tuning of group velocity dispersion (GVD) and modulation of half-spectrum shifted by π. The overall efficiency was measured to be 1.7%, while an efficiency of up to 5% can be expected when high efficiency gratings and properly coated DMDs are used.
He, Xin; Hao, Man-Zhao; Wei, Ming; Xiao, Qin; Lan, Ning
2015-12-01
Involuntary central oscillations at single and double tremor frequencies drive the peripheral neuromechanical system of muscles and joints to cause tremor in Parkinson's disease (PD). The central signal of double tremor frequency was found to correlate more directly to individual muscle EMGs (Timmermann et al. 2003). This study is aimed at investigating what central components of oscillation contribute to inter-muscular synchronization in a group of upper extremity muscles during tremor in PD patients. 11 idiopathic, tremor dominant PD subjects participated in this study. Joint kinematics during tremor in the upper extremity was recorded along with EMGs of six upper arm muscles using a novel experimental apparatus. The apparatus provided support for the upper extremity on a horizontal surface with reduced friction, so that resting tremor in the arm can be recorded with a MotionMonitor II system. In each subject, the frequencies of rhythmic firings in upper arm muscles were determined using spectral analysis. Paired and pool-averaged coherence analyses of EMGs for the group of muscles were performed to correlate the level of inter-muscular synchronization to tremor amplitudes at shoulder and elbow. The phase shift between synchronized antagonistic muscle pairs was calculated to aid coherence analysis in the muscle pool. Recorded EMG revealed that rhythmic firings were present in most recorded muscles, which were either synchronized to form phase-locked bursting cycles at a subject specific frequency, or unsynchronized with a random phase distribution. Paired coherence showed a stronger synchronization among a subset of recorded arm muscles at tremor frequency than that at double tremor frequency. Furthermore, the number of synchronized muscles in the arm was positively correlated to tremor amplitudes at elbow and shoulder. Pool-averaged coherence at tremor frequency also showed a better correlation with the amplitude of resting tremor than that of double tremor frequency, indicating that the neuromechanical coupling in peripheral neuromuscular system was stronger at tremor frequency. Both paired and pool-averaged coherences are more consistent indexes to correlate to tremor intensity in a group of upper extremity muscles of PD patients. The central drive at tremor frequency contributes mainly to synchronize peripheral muscles in the modulation of tremor intensity.
NASA Astrophysics Data System (ADS)
Karashtin, E. A.; Fraerman, A. A.
2018-04-01
We report a theoretical study of the second harmonic generation in a noncollinearly magnetized conductive medium with equilibrium spin current. The hydrodynamic model is used to unravel the mechanism of a novel effect of the double frequency signal generation that is attributed to the spin current. According to our calculations, this second harmonic response appears due to the ‘non-adiabatic’ spin polarization of the conduction electrons induced by the oscillations in the non-uniform magnetization forced by the electric field of the electromagnetic wave. Together with the linear velocity response this leads to the generation of the double frequency spin current. This spin current is converted to the electric current via the inverse spin Hall effect, and the double-frequency electric current emits the second harmonic radiation. Possible experiment for detection of the new second harmonic effect is proposed.
NASA Astrophysics Data System (ADS)
Rechmann, Peter; Hennig, Thomas
1996-04-01
During prior studies it could be demonstrated while engaging a frequency doubled Alexandrite-laser (wavelength 380 nm, pulse duration 100 ns, fluence 1 J/cm2, pulse repetition rate 110 Hz) a fast and strictly selective ablation of supra- and subgingival calculus is possible. Even the removal of unstained microbial plaque was observed. First conclusions were drawn after light microscopical investigations on undecalcified sections of irradiated teeth. In the present study the cementum surface after irradiation with a frequency doubled Alexandrite-laser was observed by means of a Scanning Electron Microscope. After irradiation sections of teeth were dried in alcohol and sputtered with gold. In comparison irradiated cementum surfaces of unerupted operatively removed wisdom teeth and tooth surfaces after the selective removal of calculus were investigated. A complete removal of calculus was observed as well as a remaining smooth surface of irradiated cementum.
A Model of High-Frequency Self-Mixing in Double-Barrier Rectifier
NASA Astrophysics Data System (ADS)
Palma, Fabrizio; Rao, R.
2018-03-01
In this paper, a new model of the frequency dependence of the double-barrier THz rectifier is presented. The new structure is of interest because it can be realized by CMOS image sensor technology. Its application in a complex field such as that of THz receivers requires the availability of an analytical model, which is reliable and able to highlight the dependence on the parameters of the physical structure. The model is based on the hydrodynamic semiconductor equations, solved in the small signal approximation. The model depicts the mechanisms of the THz modulation of the charge in the depleted regions of the double-barrier device and explains the self-mixing process, the frequency dependence, and the detection capability of the structure. The model thus substantially improves the analytical models of the THz rectification available in literature, mainly based on lamped equivalent circuits.
Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2015-07-29
A double-negative metamaterial-inspired antenna is presented for mobile wireless applications. The antenna consists of a semi-circular radiating patch and a 3 × 4 hexagonal shaped metamaterial unit cell array in the ground plane. The antenna is fed with a 50 Ω microstrip feed line. The electric dimensions of the proposed antenna are 0.20λ × 0.26λ × 0.004λ, at the low-end frequency. The proposed antenna achieves a -10 dB impedance with a bandwidth of 2.29 GHz at the lower band and 1.28 GHz at the upper band and can operate for most of the mobile applications such as upper GSM bands, WiMAX, Bluetooth, and wireless local area network (WLAN) frequency bands. The focused novelties of the proposed antenna are its small size, multi-standard operating bands, and electromagnetic absorption reduction at all the operating frequencies using the double-negative metamaterial ground plane.
NASA Astrophysics Data System (ADS)
Zhao, J. F.; Liao, T. Q.; Zhang, C.; Zhang, R. X.; Miao, C. Y.; Tong, Z. R.
2012-09-01
A 50 nm tuning range multiwavelength Brillouin-erbium fiber laser (MWBEFL) with double Brillouin frequency spacing is presented. Two separated gain blocks with symmetrical architecture, consisted by erbium-doped fiber amplifiers (EDFAs) and Brillouin gain media, are used to generate double Brillouin frequency spacing. The wider tuning range is realized by eliminating the self-lasing cavity modes existing in conventional MWBEFLs because of the absence of the physical mirrors at the ends of the linear cavity. The Brillouin pump (BP) is preamplified by the EDFA before entering the single-mode fiber (SMF), which leads to the reduction of threshold power and the generation enhancement of Brillouin Stokes (BS) signals. Four channels with 0.176 nm spacing are achieved at 2 mW BP power and 280 mW 980 nm pump power which can be tuned from 1525 to 1575 nm.
Analytic double product integrals for all-frequency relighting.
Wang, Rui; Pan, Minghao; Chen, Weifeng; Ren, Zhong; Zhou, Kun; Hua, Wei; Bao, Hujun
2013-07-01
This paper presents a new technique for real-time relighting of static scenes with all-frequency shadows from complex lighting and highly specular reflections from spatially varying BRDFs. The key idea is to depict the boundaries of visible regions using piecewise linear functions, and convert the shading computation into double product integrals—the integral of the product of lighting and BRDF on visible regions. By representing lighting and BRDF with spherical Gaussians and approximating their product using Legendre polynomials locally in visible regions, we show that such double product integrals can be evaluated in an analytic form. Given the precomputed visibility, our technique computes the visibility boundaries on the fly at each shading point, and performs the analytic integral to evaluate the shading color. The result is a real-time all-frequency relighting technique for static scenes with dynamic, spatially varying BRDFs, which can generate more accurate shadows than the state-of-the-art real-time PRT methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Dingzong; Wang, Yanhui; Wang, Dezhen
2013-06-15
Period-doubling and chaos phenomenon have been frequently observed in atmospheric-pressure dielectric-barrier discharges. However, how a normal single period discharge bifurcates into period-doubling state is still unclear. In this paper, by changing the driving frequency, we study numerically the transition mechanisms from a normal single period discharge to a period-doubling state using a one-dimensional self-consistent fluid model. The results show that before a discharge bifurcates into a period-doubling state, it first deviates from its normal operation and transforms into an asymmetric single period discharge mode. Then the weaker discharge in this asymmetric discharge will be enhanced gradually with increasing of themore » frequency until it makes the subsequent discharge weaken and results in the discharge entering a period-doubling state. In the whole transition process, the spatial distribution of the charged particle density and the electric field plays a definitive role. The conclusions are further confirmed by changing the gap width and the amplitude of the applied voltage.« less
NASA Technical Reports Server (NTRS)
Hu, Fang Q.
1994-01-01
It is known that the exact analytic solutions of wave scattering by a circular cylinder, when they exist, are not in a closed form but in infinite series which converges slowly for high frequency waves. In this paper, we present a fast number solution for the scattering problem in which the boundary integral equations, reformulated from the Helmholtz equation, are solved using a Fourier spectral method. It is shown that the special geometry considered here allows the implementation of the spectral method to be simple and very efficient. The present method differs from previous approaches in that the singularities of the integral kernels are removed and dealt with accurately. The proposed method preserves the spectral accuracy and is shown to have an exponential rate of convergence. Aspects of efficient implementation using FFT are discussed. Moreover, the boundary integral equations of combined single and double-layer representation are used in the present paper. This ensures the uniqueness of the numerical solution for the scattering problem at all frequencies. Although a strongly singular kernel is encountered for the Neumann boundary conditions, we show that the hypersingularity can be handled easily in the spectral method. Numerical examples that demonstrate the validity of the method are also presented.
High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier
NASA Astrophysics Data System (ADS)
Mu, Xiaodong; Steinvurzel, Paul; Rose, Todd S.; Lotshaw, William T.; Beck, Steven M.; Clemmons, James H.
2016-03-01
We demonstrate high power, deep ultraviolet (DUV) conversion to 266 nm through frequency quadrupling of a nanosecond pulse width 1064 nm fiber master oscillator power amplifier (MOPA). The MOPA system uses an Yb-doped double-clad polarization-maintaining large mode area tapered fiber as the final gain stage to generate 0.5-mJ, 10 W, 1.7- ns single mode pulses at a repetition rate of 20 kHz with measured spectral bandwidth of 10.6 GHz (40 pm), and beam qualities of Mx 2=1.07 and My 2=1.03, respectively. Using LBO and BBO crystals for the second-harmonic generation (SHG) and fourth-harmonic generation (FHG), we have achieved 375 μJ (7.5 W) and 92.5 μJ (1.85 W) at wavelengths of 532 nm and 266 nm, respectively. To the best of our knowledge these are the highest narrowband infrared, green and UV pulse energies obtained to date from a fully spliced fiber amplifier. We also demonstrate high efficiency SHG and FHG with walk-off compensated (WOC) crystal pairs and tightly focused pump beam. An SHG efficiency of 75%, FHG efficiency of 47%, and an overall efficiency of 35% from 1064 nm to 266 nm are obtained.
Harmonic ratcheting for fast acceleration
NASA Astrophysics Data System (ADS)
Cook, N.; Brennan, J. M.; Peggs, S.
2014-04-01
A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.
Harden, Cynthia L; Herzog, Andrew G; Nikolov, Blagovest G; Koppel, Barbara S; Christos, Paul J; Fowler, Kristen; Labar, Douglas R; Hauser, W Allen
2006-09-01
Previous reports have suggested that hormone replacement therapy (HRT) could increase seizure activity in women with epilepsy. We sought to determine whether adding HRT to the medication regimen of postmenopausal women with epilepsy was associated with an increase in seizure frequency. This was a randomized, double-blind, placebo-controlled trial of the effect of HRT on seizure frequency in postmenopausal women with epilepsy, taking stable doses of antiepileptic drugs (AEDs), and within 10 years of their last menses. After a 3-month prospective baseline, subjects were randomized to placebo, Prempro (0.625 mg of conjugated equine estrogens plus 2.5 mg of medroxyprogesterone acetate or CEE/MPA) daily, or double-dose CEE/MPA daily for a 3-month treatment period. Twenty-one subjects were randomized after completing baseline. The subjects' ages ranged from 45 to 62 years (mean, 53 years; SD, +/-5), and the number of AEDs used ranged from none to three (median, one). Five (71%) of seven subjects taking double-dose CEE/MPA had a worsening seizure frequency of at least one seizure type, compared with four (50%) of eight taking single-dose CEE/MPA and one (17%) of six taking placebo (p = 0.05). An increase in seizure frequency of the subject's most severe seizure type was associated with increasing CEE/MPA dose (p = 0.008). An increase in complex partial seizure frequency also was associated with increasing CEE/MPA dose (p = 0.05). Two subjects taking lamotrigine had a decrease in lamotrigine levels of 25-30% while taking CEE/MPA. CEE/MPA is associated with a dose-related increase in seizure frequency in postmenopausal women with epilepsy. CEE/MPA may decrease lamotrigine levels.
Frequency of glove perforation and the protective effect of double gloves in gynecological surgery.
Murta, Eddie F C; Silva, Cléber S; Júnior, Odilon R A
2003-06-01
The purposes of this prospective study were to verify the frequency of glove perforation during gynecological operations and to evaluate the efficacy of double gloving in preventing damage to the inner glove. From May 2000 to May 2001, three house staff and 12 residents were asked to place their used gloves in bags labeled with the following information: procedure performed, presence of a recognized glove perforation, and role in operating team (surgeon, first or second assistant, and instrumentalist). All glove sets were tested using the method of water pression. Damaged gloves were excluded from that analysis. In all, 35 and 51 operations were utilized with single and double gloves, respectively. There were 240 single gloves and 792 double gloves tested. Perforation occurred in 10.4% of the single gloves and 9.8% of the outer double gloves. There were no cases of perforation in the inner double gloves. In cases of operating time that lasted more than 2 h, 56% of the surgeries that used single gloves had perforation vs 58.5% of the double gloves. The first assistant had the major risk for glove perforation with the use of single or double gloves. The indicator finger of the non-dominant hand was the major risk for perforation. In conclusion, we recommend double gloving in all gynecological surgery to reduce the risk of contracting blood-borne diseases.
Maimone, F; Tinschert, K; Celona, L; Lang, R; Mäder, J; Rossbach, J; Spädtke, P
2012-02-01
The properties of the electromagnetic waves heating the electrons of the ECR ion sources (ECRIS) plasma affect the features of the extracted ion beams such as the emittance, the shape, and the current, in particular for higher charge states. The electron heating methods such as the frequency tuning effect and the double frequency heating are widely used for enhancing the performances of ECRIS or even for the routine operation during the beam production. In order to better investigate these effects the CAPRICE ECRIS has been operated using these techniques. The ion beam properties for highly charged ions have been measured with beam diagnostic tools. The reason of the observed variations of this performance can be related to the different electromagnetic field patterns, which are changing inside the plasma chamber when the frequency is varying.
Fandiño, Javier S; Muñoz, Pascual
2013-11-01
A photonic system capable of estimating the unknown frequency of a CW microwave tone is presented. The core of the system is a complementary optical filter monolithically integrated in InP, consisting of a ring-assisted Mach-Zehnder interferometer with a second-order elliptic response. By simultaneously measuring the different optical powers produced by a double-sideband suppressed-carrier modulation at the outputs of the photonic integrated circuit, an amplitude comparison function that depends on the input tone frequency is obtained. Using this technique, a frequency measurement range of 10 GHz (5-15 GHz) with a root mean square value of frequency error lower than 200 MHz is experimentally demonstrated. Moreover, simulations showing the impact of a residual optical carrier on system performance are also provided.
Yin, Qiwei; Lu, Huadong; Su, Jing; Peng, Kunchi
2016-05-01
The thermal lens effect of terbium gallium garnet (TGG) crystal in a high power single-frequency laser severely limits the output power and the beam quality of the laser. By inserting a potassium dideuterium phosphate (DKDP) slice with negative thermo-optical coefficient into the laser resonator, the harmful influence of the thermal lens effect of the TGG crystal can be effectively mitigated. Using this method, the stable range of the laser is broadened, the bistability phenomenon of the laser during the process of changing the pump power is completely eliminated, the highest output power of an all-solid-state continuous-wave intracavity-frequency-doubling single-frequency laser at 532 nm is enhanced to 30.2 W, and the beam quality of the laser is significantly improved.
Schwarze, Susanne; Schneider, Nils-Lasse; Reichl, Thomas; Dreyer, David; Lefeldt, Nele; Engels, Svenja; Baker, Neville; Hore, P. J.; Mouritsen, Henrik
2016-01-01
Magnetic compass orientation in night-migratory songbirds is embedded in the visual system and seems to be based on a light-dependent radical pair mechanism. Recent findings suggest that both broadband electromagnetic fields ranging from ~2 kHz to ~9 MHz and narrow-band fields at the so-called Larmor frequency for a free electron in the Earth’s magnetic field can disrupt this mechanism. However, due to local magnetic fields generated by nuclear spins, effects specific to the Larmor frequency are difficult to understand considering that the primary sensory molecule should be organic and probably a protein. We therefore constructed a purpose-built laboratory and tested the orientation capabilities of European robins in an electromagnetically silent environment, under the specific influence of four different oscillating narrow-band electromagnetic fields, at the Larmor frequency, double the Larmor frequency, 1.315 MHz or 50 Hz, and in the presence of broadband electromagnetic noise covering the range from ~2 kHz to ~9 MHz. Our results indicated that the magnetic compass orientation of European robins could not be disrupted by any of the relatively strong narrow-band electromagnetic fields employed here, but that the weak broadband field very efficiently disrupted their orientation. PMID:27047356
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veale, M.; Purohit, P.; Lawson, W.
In this paper we consider the design of a four-cavity, high-gain K-band gyroklystron experiment for high gradient structure testing. The frequency doubling gyroklystron utilizes a beam voltage of 500 kV and a beam current of 200 A from a magnetron injection gun (MIG) originally designed for a lower-frequency device. The microwave circuit features input and gain cavities in the circular TE{sub 011} mode and penultimate and output cavities that operate at the second harmonic in the TE{sub 021} mode. We investigate the MIG performance and study the behavior of the circuit for different values of perpendicular to parallel velocity ratiomore » (α= V{sub ⊥}/ V{sub z}). This microwave tube is expected to be able to produce at least 20 MW of power in 1μs pulses at a repetition rate of at least 120 Hz. A maximum efficiency of 26% and a large signal gain of 58 dB under zero-drive stable conditions were simulated for a velocity ratio equal to 1.35.« less
Han, Y J; Li, L H; Grier, A; Chen, L; Valavanis, A; Zhu, J; Freeman, J R; Isac, N; Colombelli, R; Dean, P; Davies, A G; Linfield, E H
2016-12-12
We report an extraction-controlled terahertz (THz)-frequency quantum cascade laser design in which a diagonal LO-phonon scattering process is used to achieve efficient current injection into the upper laser level of each period and simultaneously extract electrons from the adjacent period. The effects of the diagonality of the radiative transition are investigated, and a design with a scaled oscillator strength of 0.45 is shown experimentally to provide the highest temperature performance. A 3.3 THz device processed into a double-metal waveguide configuration operated up to 123 K in pulsed mode, with a threshold current density of 1.3 kA/cm2 at 10 K. The QCL structures are modeled using an extended density matrix approach, and the large threshold current is attributed to parasitic current paths associated with the upper laser levels. The simplicity of this design makes it an ideal platform to investigate the scattering injection process.
NASA Astrophysics Data System (ADS)
Ohde, H.; Lin, S.; Minoh, A.; Shimizu, F. O.; Aono, M.; Suzuki, T.
1996-01-01
A down-conversion to the mid-infrared region by using Stimulated Electronic Raman Scattering (SERS) in potassium vapor is described. The pump radiation is a frequency-doubled regeneratively amplified Ti:Sapphire laser with a pulse duration of 2 ps, pulse energy of 0.2 mJ, and repetition rate of 10 Hz. With the pumping frequency tuned around the potassium 4 s-5 p transition, nearly transform-limited infrared radiation tunable between 2.2 and 3.4 μm has been generated with a peak infrared energy of 12 µJ, corresponding to a quantum efficiency of 17%, and with a pulse duration of 2 ps. The present tuning range could be extended by extending the tuning range of the pump laser. In comparison, intense infrared radiation of 90 µJ energy but with a very narrow tunability around 2.9 μm has also been generated by SERS in barium vapor.
NASA Astrophysics Data System (ADS)
Lomsadze, Bachana; Cundiff, Steven T.
2018-06-01
Frequency-comb based multidimensional coherent spectroscopy is a novel optical method that enables high-resolution measurement in a short acquisition time. The method's resolution makes multidimensional coherent spectroscopy relevant for atomic systems that have narrow resonances. We use double-quantum multidimensional coherent spectroscopy to reveal collective hyperfine resonances in rubidium vapor at 100 °C induced by dipole-dipole interactions. We observe tilted and elongated line shapes in the double-quantum 2D spectra, which have never been reported for Doppler-broadened systems. The elongated line shapes suggest that the signal is predominately from the interacting atoms that have a near zero relative velocity.
Schoenly, Joshua E; Seka, Wolf; Rechmann, Peter
2010-01-01
A frequency-doubled Ti:sapphire laser is shown to selectively ablate dental calculus. The optimal transverse shape of the laser beam, including its variability under water-cooling, is determined for selective ablation of dental calculus. Intensity profiles under various water-cooling conditions were optically observed. The 400-nm laser was coupled into a multimode optical fiber using an f = 2.5-cm lens and light-shaping diffuser. Water-cooling was supplied coaxially around the fiber. Five human tooth samples (four with calculus and one pristine) were irradiated perpendicular to the tooth surface while the tooth was moved back and forth at 0.3 mm/second, varying between 20 and 180 iterations. The teeth were imaged before and after irradiation using light microscopy with a flashing blue light-emitting diode (LED). An environmental scanning electron microscope imaged each tooth after irradiation. High-order super-Gaussian intensity profiles are observed at the output of a fiber coiled around a 4-in. diameter drum. Super-Gaussian beams have a more-homogenous fluence distribution than Gaussian beams and have a higher energy efficiency for selective ablation. Coaxial water-cooling does not noticeably distort the intensity distribution within 1 mm from the optical fiber. In contrast, lasers focused to a Gaussian cross section (< or =50-microm diameter) without fiber propagation and cooled by a water spray are heavily distorted and may lead to variable ablation. Calculus is preferentially ablated at high fluences (> or =2 J/cm(2)); below this fluence, stalling occurs because of photo-bleaching of the calculus. Healthy dental hard tissue is not removed at fluences < or =3 J/cm(2). Supplying laser light to a tooth using an optical fiber with coaxial water-cooling is determined to be the most appropriate method when selectively removing calculus with a frequency-doubled Ti:sapphire laser. Fluences over 2 J/cm(2) are required to remove calculus efficiently since photo-bleaching stalls calculus removal below that value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenly, J.E.; Seka. W.; Rechmann, P.
A frequency-doubled Ti:sapphire laser is shown to selectively ablate dental calculus. The optimal transverse shape of the laser beam, including its variability under water-cooling, is determined for selective ablation of dental calculus. Intensity profiles under various water-cooling conditions were optically observed. The 400-nm laser was coupled into a multimode optical fiber using an f = 2.5-cm lens and light-shaping diffuser. Water-cooling was supplied coaxially around the fiber. Five human tooth samples (four with calculus and one pristine) were irradiated perpendicular to the tooth surface while the tooth was moved back and forth at 0.3 mm/second, varying between 20 and 180more » iterations. The teeth were imaged before and after irradiation using light microscopy with a flashing blue light-emitting diode (LED). An environmental scanning electron microscope imaged each tooth after irradiation. High-order super-Gaussian intensity profiles are observed at the output of a fiber coiled around a 4-in. diameter drum. Super-Gaussian beams have a morehomogenous fluence distribution than Gaussian beams and have a higher energy efficiency for selective ablation. Coaxial water-cooling does not noticeably distort the intensity distribution within 1 mm from the optical fiber. In contrast, lasers focused to a Gaussian cross section (<=50-mm diameter) without fiber propagation and cooled by a water spray are heavily distorted and may lead to variable ablation. Calculus is preferentially ablated at high fluences (>= 2 J/cm^2); below this fluence, stalling occurs because of photo-bleaching of the calculus. Healthy dental hard tissue is not removed at fluences <=3 J/cm^2. Supplying laser light to a tooth using an optical fiber with coaxial water-cooling is determined to be the most appropriate method when selectively removing calculus with a frequency-doubled Ti:sapphire laser. Fluences over 2 J/cm^2 are required to remove calculus efficiently since photo-bleaching stalls calculus removal below that value.« less
NASA Astrophysics Data System (ADS)
Rheinländer, B.; Anton, A.; Heilmann, R.; Oelgart, G.; Gottschalch, V.
1988-11-01
A method was developed for determination of the suitability of epitaxial InGaAsP/InP double heterostructures in fabrication of ridge-waveguide lasers. The method is based on determination of the quantum efficiency of electroluminescence.
Effects of Weight and Syntactic Priming on the Production of Cantonese Verb-Doubling
ERIC Educational Resources Information Center
Francis, Elaine J.; Matthews, Stephen; Wong, Reace Wing Yan; Kwan, Stella Wing Man
2011-01-01
Verb-doubling, where a copy of the main verb occurs both before and after the direct object, is a structure commonly used in Chinese in sentences containing a frequency or duration phrase. In Cantonese, verb-doubling is highly optional and therefore problematic for existing syntactic, semantic, and pragmatic accounts of its distribution in…
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false System specifications for double-sideband (DBS... Stations § 73.756 System specifications for double-sideband (DBS) modulated emissions in the HF... processing. If audio-frequency signal processing is used, the dynamic range of the modulating signal shall be...
Frequency-dependent ultrasound-induced transformation in E. coli.
Deeks, Jeremy; Windmill, James; Agbeze-Onuma, Maduka; Kalin, Robert M; Argondizza, Peter; Knapp, Charles W
2014-12-01
Ultrasound-enhanced gene transfer (UEGT) is continuing to gain interest across many disciplines; however, very few studies investigate UEGT efficiency across a range of frequencies. Using a variable frequency generator, UEGT was tested in E. coli at six ultrasonic frequencies. Results indicate frequency can significantly influence UEGT efficiency positively and negatively. A frequency of 61 kHz improved UEGT efficiency by ~70 % higher, but 99 kHz impeded UEGT to an extent worse than no ultrasound exposure. The other four frequencies (26, 133, 174, and 190 kHz) enhanced transformation compared to no ultrasound, but efficiencies did not vary. The influence of frequency on UEGT efficiency was observed across a range of operating frequencies. It is plausible that frequency-dependent dynamics of mechanical and chemical energies released during cavitational-bubble collapse (CBC) are responsible for observed UEGT efficiencies.
Assessment and control design for steam vent noise in an oil refinery.
Monazzam, Mohammad Reza; Golmohammadi, Rostam; Nourollahi, Maryam; Momen Bellah Fard, Samaneh
2011-06-13
Noise is one of the most important harmful agents in work environment. Noise pollution in oil refinery industries is related to workers' health. This study aimed to determine the overall noise pollution of an oil refinery operation and its frequency analysis to determine the control plan for a vent noise in these industries. This experimental study performed in control unit of Tehran Oil Refinery in 2008. To determine the noise distributions, environmental noise measurements were carried out by lattice method according to basic information and technical process. The sound pressure level and frequency distribution was measured for each study sources subject separately was performed individually. According to the vent's specification, the measured steam noise characteristics reviewed and compared to the theoretical results of steam noise estimation. Eventually, a double expansion muffler was designed. Data analysis and graphical design were carried out using Excel software. The results of environmental noise measurements indicated that the level of sound pressure was above the national permitted level (85 dB (A)). The Mean level of sound pressure of the studied steam jet was 90.3 dB (L). The results of noise frequency analysis for the steam vents showed that the dominant frequency was 4000 Hz. To obtain 17 dB noise reductions, a double chamber aluminum muffler with 500 mm length and 200 mm diameter consisting pipe drilled was designed. The characteristics of steam vent noise were separated from other sources, a double expansion muffler was designed using a new method based on the level of steam noise, and principle sound frequency, a double expansion muffler was designed.
Estimation of satellite position, clock and phase bias corrections
NASA Astrophysics Data System (ADS)
Henkel, Patrick; Psychas, Dimitrios; Günther, Christoph; Hugentobler, Urs
2018-05-01
Precise point positioning with integer ambiguity resolution requires precise knowledge of satellite position, clock and phase bias corrections. In this paper, a method for the estimation of these parameters with a global network of reference stations is presented. The method processes uncombined and undifferenced measurements of an arbitrary number of frequencies such that the obtained satellite position, clock and bias corrections can be used for any type of differenced and/or combined measurements. We perform a clustering of reference stations. The clustering enables a common satellite visibility within each cluster and an efficient fixing of the double difference ambiguities within each cluster. Additionally, the double difference ambiguities between the reference stations of different clusters are fixed. We use an integer decorrelation for ambiguity fixing in dense global networks. The performance of the proposed method is analysed with both simulated Galileo measurements on E1 and E5a and real GPS measurements of the IGS network. We defined 16 clusters and obtained satellite position, clock and phase bias corrections with a precision of better than 2 cm.
Gopalappa, Ramu; Song, Myungjae; Chandrasekaran, Arun Pandian; Das, Soumyadip; Haq, Saba; Koh, Hyun Chul; Ramakrishna, Suresh
2018-05-31
Targeted genome editing by clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) raised concerns over off-target effects. The use of double-nicking strategy using paired Cas9 nickase has been developed to minimize off-target effects. However, it was reported that the efficiency of paired nickases were comparable or lower than that of either corresponding nuclease alone. Recently, we conducted a systematic comparison of the efficiencies of several paired Cas9 with their corresponding Cas9 nucleases and showed that paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption. However, sometimes the designed paired Cas9 nickases exhibited significantly lower mutation frequencies than nucleases, hampering the generation of cells containing paired Cas9 nickase-induced mutations. Here we implemented IRES peptide-conjugation of fluorescent protein to Cas9 nickase and subjected for fluorescence-activated cell sorting. The sorted cell populations are highly enriched with cells containing paired Cas9 nickase-induced mutations, by a factor of up to 40-fold as compared with the unsorted population. Furthermore, gene-disrupted single cell clones using paired nickases followed by FACS sorting strategy were generated highly efficiently, without compromising with its low off-target effects. We envision that our fluorescent protein coupled paired nickase-mediated gene disruption, facilitating efficient and highly specific genome editing in medical research.
NASA Astrophysics Data System (ADS)
Koška, Pavel; Peterka, Pavel; Doya, Valérie; Aubrecht, Jan; Kasik, Ivan; Podrazký, Ondřej
2017-05-01
High-power operation of fiber lasers was enabled by the invention of cladding-pumping in a double-clad fiber structure. Because of existence of so called skew rays in the inner clad of the fiber, pump absorption saturates along the fiber and pumping becomes inefficient. First studies of pump absorption efficiency enhancement were focused on fibers with broken circular symmetry of inner cladding eliminating skew rays [1,2]. Later, techniques of unconventional fiber coiling were proposed [3]. However, theoretical studies were limited to the assumption of a straight fiber. Even recently, the rigorous model accounting for fiber bending and twisting was described [4-6]. It was found that bending of the fiber influences modal spectra of the pump radiation and twisting provides quite efficient mode-scrambling. These effects in a synergic manner significantly enhances pump absorption rate in double clad fibers and improves laser system efficiency. In our contribution we review results of numerical modelling of pump absorption in various types of double-clad fibers, e.g., with cross section shape of hexagon, stadium, and circle; two-fiber bundle (so-called GTWave fiber structure) a panda fibers are also analyzed. We investigate pump field modal spectra evolution in hexagonally shaped fiber in straight, bended, and simultaneously bended and twisted fiber which brings new quality to understanding of the mode-scrambling and pump absorption enhancement. Finally, we evaluate the impact of enhanced pump absorption on signal gain in the fiber. These results can have practical impact in construction of fiber lasers: with pump absorption efficiency optimized by our new model (the other models did not take into account fiber twist), the double-clad fiber of shorter length can be used in the fiber lasers and amplifiers. In such a way the harmful influence of background losses and nonlinear effects can be minimized. [1] Doya, V., Legrand, O., Mortessagne, F., "Optimized absorption in a chaotic double-clad fiber amplifier," Opt. Lett., vol. 26, no. 12, pp. 872-874, (2001). [2] Kouznetsov, D., Moloney, J. V., "Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry," J. Opt. Soc. Am. B, vol. 19, no. 6, pp. 1259-1263, June 2002. [3] Li, Y., Jackson, S. D., Fleming, S., "High absorption and low splice loss properties of hexagonal double-clad fiber," IEEE Photonics Technol. Lett., vol 16, no. 11, pp. 2502-2504, Nov. 2004. [4] Ko\\vska, P. and Peterka, P., "Numerical analysis of pump propagation and absorption in specially tailored double-clad rare-earth doped fiber," Optical and Quantum Electronics, vol. 47, no. 9, pp. 3181-3191 (2015). [5] Ko\\vska, P., Peterka, P., and Doya, V., "Numerical modeling of pump absorption in coiled and twisted double-clad fibers," IEEE J. Sel. Top. Quantum Electron., vol. 22, no. 2 (2016). [6] Ko\\vska, P., Peterka, P., Aubrecht, J., Podrazký, O., Todorov, F., Becker, M., Baravets, Y., Honzátko, P., and Kašík, I., "Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers," Opt. Express, vol. 24, no. 1, pp. 102-107 (2016).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.
2011-01-04
We formulate the Flying Mirror Concept for relativistic interaction of ultra-intense electromagnetic waves with plasmas, present its theoretical description and the results of computer simulations and laboratory experiments. In collisionless plasmas, the relativistic flying mirrors are thin and dense electron or electron-ion layers accelerated by the high intensity electromagnetic waves up to velocity close to the speed of light in vacuum; in nonlinear-media and in nonlinear vacuum they are the ionization fronts and the refraction index modulations induced by a strong electromagnetic wave. The reflection of the electromagnetic wave at the relativistic mirror results in its energy and frequency changemore » due to the double Doppler effect. In the co-propagating configuration, in the radiation pressure dominant regime, the energy of the electromagnetic wave is transferred to the ion energy providing a highly efficient acceleration mechanism. In the counter-propagation configuration the frequency of the reflected wave is multiplied by the factor proportional to the gamma-factor squared. If the relativistic mirror performs an oscillatory motion as in the case of the electron motion at the plasma-vacuum interface, the reflected light spectrum is enriched with high order harmonics.« less
Banerjee, Bhadrani; Tripathi, Anvita; Das, Adrija; Singh, Kumari Alka; Banerjee, J. P.
2015-01-01
The authors have carried out the large-signal (L-S) simulation of double-drift region (DDR) impact avalanche transit time (IMPATT) diodes based on 〈111〉, 〈100〉, and 〈110〉 oriented GaAs. A nonsinusoidal voltage excited (NSVE) L-S simulation technique is used to investigate both the static and L-S performance of the above-mentioned devices designed to operate at millimeter-wave (mm-wave) atmospheric window frequencies, such as 35, 94, 140, and 220 GHz. Results show that 〈111〉 oriented GaAs diodes are capable of delivering maximum RF power with highest DC to RF conversion efficiency up to 94 GHz; however, the L-S performance of 〈110〉 oriented GaAs diodes exceeds their other counterparts while the frequency of operation increases above 94 GHz. The results presented in this paper will be helpful for the future experimentalists to choose the GaAs substrate of appropriate orientation to fabricate DDR GaAs IMPATT diodes at mm-wave frequencies. PMID:27347524
Ligand protons in a frozen solution of copper histidine relax via a T1e-driven three-spin mechanism
NASA Astrophysics Data System (ADS)
Stoll, S.; Epel, B.; Vega, S.; Goldfarb, D.
2007-10-01
Davies electron-nuclear double resonance spectra can exhibit strong asymmetries for long mixing times, short repetition times, and large thermal polarizations. These asymmetries can be used to determine nuclear relaxation rates in paramagnetic systems. Measurements of frozen solutions of copper(L-histidine)2 reveal a strong field dependence of the relaxation rates of the protons in the histidine ligand, increasing from low (g‖) to high (g⊥) field. It is shown that this can be attributed to a concentration-dependent T1e-driven relaxation process involving strongly mixed states of three spins: the histidine proton, the Cu(II) electron spin of the same complex, and another distant electron spin with a resonance frequency differing from the spectrometer frequency approximately by the proton Larmor frequency. The protons relax more efficiently in the g⊥ region, since the number of distant electrons able to participate in this relaxation mechanism is higher than in the g‖ region. Analytical expressions for the associated nuclear polarization decay rate Teen-1 are developed and Monte Carlo simulations are carried out, reproducing both the field and the concentration dependences of the nuclear relaxation.
Synergetic effect of double-step blocking layer for the perovskite solar cell
NASA Astrophysics Data System (ADS)
Kim, Jinhyun; Hwang, Taehyun; Lee, Sangheon; Lee, Byungho; Kim, Jaewon; Kim, Jaewook; Gil, Bumjin; Park, Byungwoo
2017-10-01
In an organometallic CH3NH3PbI3 (MAPbI3) perovskite solar cell, we have demonstrated a vastly compact TiO2 layer synthesized by double-step deposition, through a combination of sputter and solution deposition to minimize the electron-hole recombination and boost the power conversion efficiency. As a result, the double-step strategy allowed outstanding transmittance of blocking layer. Additionally, crystallinity and morphology of the perovskite film were significantly modified, provoking enhanced photon absorption and solar cell performance with the reduced recombination rate. Thereby, this straightforward double-step strategy for the blocking layer exhibited 12.31% conversion efficiency through morphological improvements of each layer.
NASA Astrophysics Data System (ADS)
Lu, Dong-dong; Gu, Jin-liang; Luo, Hong-e.; Xia, Yan
2017-10-01
According to specific requirements of the X-ray machine system for measuring velocity of outfield projectile, a DC high voltage power supply system is designed for the high voltage or the smaller current. The system comprises: a series resonant circuit is selected as a full-bridge inverter circuit; a high-frequency zero-current soft switching of a high-voltage power supply is realized by PWM output by STM32; a nanocrystalline alloy transformer is chosen as a high-frequency booster transformer; and the related parameters of an LCC series-parallel resonant are determined according to the preset parameters of the transformer. The concrete method includes: a LCC series parallel resonant circuit and a voltage doubling circuit are stimulated by using MULTISM and MATLAB; selecting an optimal solution and an optimal parameter of all parts after stimulation analysis; and finally verifying the correctness of the parameter by stimulation of the whole system. Through stimulation analysis, the output voltage of the series-parallel resonant circuit gets to 10KV in 28s: then passing through the voltage doubling circuit, the output voltage gets to 120KV in one hour. According to the system, the wave range of the output voltage is so small as to provide the stable X-ray supply for the X-ray machine for measuring velocity of outfield projectile. It is fast in charging and high in efficiency.
NASA Astrophysics Data System (ADS)
Carr, J. K.; Zabuga, A. V.; Roy, S.; Rizzo, T. R.; Skinner, J. L.
2014-06-01
The spectroscopy of amide I vibrations has become a powerful tool for exploring protein structure and dynamics. To help with spectral interpretation, it is often useful to perform molecular dynamics (MD) simulations. To connect spectroscopic experiments to simulations in an efficient manner, several researchers have proposed "maps," which relate observables in classical MD simulations to quantum spectroscopic variables. It can be difficult to discern whether errors in the theoretical results (compared to experiment) arise from inaccuracies in the MD trajectories or in the maps themselves. In this work, we evaluate spectroscopic maps independently from MD simulations by comparing experimental and theoretical spectra for a single conformation of the α-helical model peptide Ac-Phe-(Ala)5-Lys-H+ in the gas phase. Conformation-specific experimental spectra are obtained for the unlabeled peptide and for several singly and doubly 13C-labeled variants using infrared-ultraviolet double-resonance spectroscopy, and these spectra are found to be well-modeled by density functional theory (DFT) calculations at the B3LYP/6-31G** level. We then compare DFT results for the deuterated and 13C18O-labeled peptide with those from spectroscopic maps developed and used previously by the Skinner group. We find that the maps are typically accurate to within a few cm-1 for both frequencies and couplings, having larger errors only for the frequencies of terminal amides.
Carr, J. K.; Zabuga, A. V.; Roy, S.; Rizzo, T. R.; Skinner, J. L.
2014-01-01
The spectroscopy of amide I vibrations has become a powerful tool for exploring protein structure and dynamics. To help with spectral interpretation, it is often useful to perform molecular dynamics (MD) simulations. To connect spectroscopic experiments to simulations in an efficient manner, several researchers have proposed “maps,” which relate observables in classical MD simulations to quantum spectroscopic variables. It can be difficult to discern whether errors in the theoretical results (compared to experiment) arise from inaccuracies in the MD trajectories or in the maps themselves. In this work, we evaluate spectroscopic maps independently from MD simulations by comparing experimental and theoretical spectra for a single conformation of the α-helical model peptide Ac-Phe-(Ala)5-Lys-H+ in the gas phase. Conformation-specific experimental spectra are obtained for the unlabeled peptide and for several singly and doubly 13C-labeled variants using infrared-ultraviolet double-resonance spectroscopy, and these spectra are found to be well-modeled by density functional theory (DFT) calculations at the B3LYP/6-31G** level. We then compare DFT results for the deuterated and 13C18O-labeled peptide with those from spectroscopic maps developed and used previously by the Skinner group. We find that the maps are typically accurate to within a few cm−1 for both frequencies and couplings, having larger errors only for the frequencies of terminal amides. PMID:24929378
NASA Astrophysics Data System (ADS)
Buchter, Scott C.; Williams, Curtis; Schulte, Alfons; Alekel, Theodore, III; Mizell, Gregory J.; Fay, William R.
1995-04-01
Noncritical temperature-tuned phase-matching and large nonlinear coefficients make potassium niobate an attractive material for frequency doubling tuneable near-infrared radiation. We have mounted a KNbO3 crystal intracavity in an argon ion pumped, continuous wave Ti:Sapphire ring laser to increase the power level of the second harmonic. Wavelength selection at the fundamental frequency is accomplished with a birefringent filter. By using the crystal orientation that defines the d32 coefficient of KNbO3 we have obtained a blue second harmonic output tuneable from 425-445 nm. The laser is also characterized by the narrow linewidth of the Ti:Sapphire ring oscillator and good temporal stability. A continuous wave, frequency doubled Ti:sapphire laser is well suited to excite the resonance Raman spectrum in heme proteins with strong absorption bands in the range of 400 to 450 nm. We demonstrate the feasibility of such a setup for Raman studies of ligand binding to myoglobin. The Raman bands yield information on the reaction dynamics and on conformational changes near the linkage between the heme and the protein. In particular, a shift of the stretch frequency of the iron- histidine bond with high pressure may be attributed to a protein conformational change.
Physiological and harmonic components in neural and muscular coherence in Parkinsonian tremor.
Wang, Shouyan; Aziz, Tipu Z; Stein, John F; Bain, Peter G; Liu, Xuguang
2006-07-01
To differentiate physiological from harmonic components in coherence analysis of the tremor-related neural and muscular signals by comparing power, cross-power and coherence spectra. Influences of waveform, burst-width and additional noise on generating harmonic peaks in the power, cross-power and coherence spectra were studied using simulated signals. The local field potentials (LFPs) of the subthalamic nucleus (STN) and the EMGs of the contralateral forearm muscles in PD patients with rest tremor were analysed. (1) Waveform had significant effect on generating harmonics; (2) noise significantly decreased the coherence values in a frequency-dependent fashion; and (3) cross-spectrum showed high resistance to harmonics. Among six examples of paired LFP-EMG signals, significant coherence appeared at the tremor frequency only, both the tremor and double tremor frequencies and the double-tremor frequency only. In coherence analysis of neural and muscular signals, distortion in waveform generates significant harmonic peaks in the coherence spectra and the coherence values of both physiological and harmonic components are modulated by extra noise or non-tremor related activity. The physiological or harmonic nature of a coherence peak at the double tremor frequency may be differentiated when the coherence spectra are compared with the power and in particular the cross-power spectra.
Specialization of the auditory processing in harbor porpoise, characterized by brain-stem potentials
NASA Astrophysics Data System (ADS)
Bibikov, Nikolay G.
2002-05-01
Brain-stem auditory evoked potentials (BAEPs) were recorded from the head surface of the three awaked harbor porpoises (Phocoena phocoena). Silver disk placed on the skin surface above the vertex bone was used as an active electrode. The experiments were performed at the Karadag biological station (the Crimea peninsula). Clicks and tone bursts were used as stimuli. The temporal and frequency selectivity of the auditory system was estimated using the methods of simultaneous and forward masking. An evident minimum of the BAEPs thresholds was observed in the range of 125-135 kHz, where the main spectral component of species-specific echolocation signal is located. In this frequency range the tonal forward masking demonstrated a strong frequency selectivity. Off-response to such tone bursts was a typical observation. An evident BAEP could be recorded up to the frequencies 190-200 kHz, however, outside the acoustical fovea the frequency selectivity was rather poor. Temporal resolution was estimated by measuring BAER recovery functions for double clicks, double tone bursts, and double noise bursts. The half-time of BAERs recovery was in the range of 0.1-0.2 ms. The data indicate that the porpoise auditory system is strongly adapted to detect ultrasonic closely spaced sounds like species-specific locating signals and echoes.
Liu, Ying; Tan, Xin; Liu, Zhengkun; Xu, Xiangdong; Hong, Yilin; Fu, Shaojun
2008-09-15
Grating beam splitters have been fabricated for soft X-ray Mach- Zehnder interferometer using holographic interference lithography. The grating beam splitter consists of two gratings, one works at X-ray laser wavelength of 13.9 nm with the spatial frequency of 1000 lines/mm as the operation grating, the other works at visible wavelength of 632.8 nm for pre-aligning the X-ray interferometer with the spatial frequency of 22 lines/mm as the pre-alignment grating. The two gratings lie vertically on the same substrate. The main feature of the beam splitter is the use of low-spatial- frequency beat grating of a holographic double frequency grating as the pre-alignment grating of the X-ray interferometer. The grating line parallelism between the two gratings can be judged by observing the diffraction patterns of the pre-alignment grating directly.
Luo, Yu; Wang, Chunhui; Wang, Li; Ding, Yucheng; Li, Long; Wei, Bin; Zhang, Jianhua
2014-07-09
High-efficiency organic light-emitting diodes (OLEDs) have generated tremendous research interest. One of the exciting possibilities of OLEDs is the use of flexible plastic substrates, which unfortunately have a mismatching refractive index compared with the conventional ITO anode and the air. To unlock the light loss on flexible plastic, we report a high-efficiency flexible OLED directly fabricated on a double-sided nanotextured polycarbonate substrate by thermal nanoimprint lithography. The template for the nanoimprint process is a replicate from a silica arrayed with nanopillars and fabricated by ICP etching through a SiO2 colloidal spheres mask. It has been shown that with the internal quasi-periodical scattering gratings the efficiency enhancement can reach 50% for a green light OLED, and with an external antireflection structure, the normal transmittance is increased from 89% to 94% for paraboloid-like pillars. The OLED directly fabricated on the double-sided nanotextured polycarbonate substrate has reached an enhancing factor of ∼2.8 for the current efficiency.
Rusu, M; Kivistö, Samuli; Gawith, C; Okhotnikov, O
2005-10-17
We report on successful realization of a picosecond visible-continuum source embedding a single mode fiber taper. The output of ytterbium mode-locked fiber laser was frequency doubled in a periodically-polled lithium niobate (PPLN) crystal to produce green pump light. Spectral brightness of the white light generated in the tapered fiber was improved by limiting the broadening just to the visible wavelengths. The influence of taper parameters, particularly the dispersion, on white light spectrum has been studied.
NASA Astrophysics Data System (ADS)
Rusu, M.; Kivistö, Samuli; Gawith, C. B. E.; Okhotnikov, O. G.
2005-10-01
We report on successful realization of a picosecond visible-continuum source embedding a single mode fiber taper. The output of ytterbium mode-locked fiber laser was frequency doubled in a periodically-polled lithium niobate (PPLN) crystal to produce green pump light. Spectral brightness of the white light generated in the tapered fiber was improved by limiting the broadening just to the visible wavelengths. The influence of taper parameters, particularly the dispersion, on white light spectrum has been studied.
Analysis of Thickness and Quality factor of a Double Paddle Oscillator at Room Temperature.
Shakeel, Hamza; Metcalf, Thomas H; Pomeroy, J M
2016-01-01
In this paper, we evaluate the quality (Q) factor and the resonance frequency of a double paddle oscillator (DPO) with different thickness using analytical, computational and experimental methods. The study is carried out for the 2 nd anti-symmetric resonance mode that provides extremely high experimental Q factors on the order of 10 5 . The results show that both the Q factor and the resonance frequency of a DPO increase with the thickness at room temperature.
Design of a solar-pumped frequency-doubled 532 nm Nd:YVO4 laser
NASA Astrophysics Data System (ADS)
Kittiboonanan, P.; Putchana, W.; Deeudomand, M.; Ratanavis, A.
2017-09-01
During the last year we have made progresson a development of a frequency-doubled 532 nm Nd:YVO4 laser pumped by solar light. The research aimed to demonstrate solar pumped lasers consisting of the optically contracted Nd:YVO4 crystal and KTP crystal with a system of laser mirrors deposited onto crystal sides. The Cassegrain reflector is used as the configuration. This solar pumped laser system is appealing for a variety applications including laser communication, imaging and defense applications.
Continuous-wave laser at 440 nm based on frequency-doubled diode-pumped Nd:GdVO(4) crystal.
Castaing, Marc; Balembois, François; Georges, Patrick
2008-09-01
We present for the first time, to the best of our knowledge, a frequency-doubled Nd:GdVO(4) laser operating in a cw on the pure three-level laser line at 880 nm. We obtained 300 mW at 440 nm for 23 W of incident pump power at 808 nm. Moreover, with a 25% output coupler we obtained a cw power of 1.9 W at the fundamental wavelength at 880 nm.
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.
1996-01-01
The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.
Yang, Xiu-Jie; Chen, Bin; Li, Xu-Bing; Zheng, Li-Qiang; Wu, Li-Zhu; Tung, Chen-Ho
2014-06-25
We report the first application of layered double hydroxide as a photocatalyst in the transformation of primary aromatic amines to their corresponding imines with high efficiency and selectivity by using oxygen in an air atmosphere as a terminal oxidant under light irradiation.
NASA Astrophysics Data System (ADS)
Lang, Ye; Chen, Yanzhong; Liao, Lifen; Guo, Guangyan; He, Jianguo; Fan, Zhongwei
2018-03-01
In high power diode lasers, the input cooling water temperature would affect both output power and output spectrum. In double face pumped slab laser, the spectrum of two laser diode arrays (LDAs) must be optimized for efficiency reason. The spectrum mismatch of two LDAs would result in energy storing decline. In this work, thermal induced efficiency decline due to spectral overlap between high power LDAs and laser medium was investigated. A numerical model was developed to describe the energy storing variation with changing LDAs cooling water temperature and configuration (series/parallel connected). A confirmatory experiment was conducted using a double face pumped slab module. The experiment results show good agreements with simulations.
On the efficiency of the golf swing
NASA Astrophysics Data System (ADS)
White, Rod
2006-12-01
A non-driven double pendulum model is used to explain the principle underlying the surprising efficiency of the golf swing. The principle can be described as a parametric energy transfer between the arms and the club head due to the changing moment of inertia of the club. The transfer is a consequence of conservation of energy and angular momentum. Because the pendulum is not driven by an external force, it shows that the golfer need do little more than accelerate the arms with the wrists cocked and let the double pendulum transfer kinetic energy to the club head. A driven double pendulum model is used to study factors affecting the efficiency of a real golf swing. It is concluded that the wrist-cock angle is the most significant efficiency-determining parameter under the golfer's control and that improvements in golf technology have had a significant impact on driving distance.
Design of a 100 MW X-band klystron
NASA Astrophysics Data System (ADS)
Eppley, Kenneth
1989-02-01
Future linear colliders will require klystrons with higher peak power at higher frequency than are currently in use. SLAC is currently designing a 100 MW klystron at 11.4 GHz as a prototype for such a tube. The gun has been designed for 440 kV and 510 amps. Transporting this beam through a 5 mm radius X-band drift tube presents the major design problem. The area convergence ratio of 190 to one is over ten times higher than is found in conventional klystrons. Even with high magnetic fields of 6 to 7 kilogauss careful matching is required to prevent excessive scalloping. Extensive EGUN and CONDOR simulations have been made to optimize the transmission and RF efficiency. The EGUN simulations indicate that better matching is possible by using resonant magnetic focusing. CONDOR calculations indicate efficiencies of 45 percent are possible with a double output cavity. We will discuss the results of the simulations and the status of the experimental program.
Power scaling of diode-pumped neodymium yttrium aluminum borate laser
NASA Technical Reports Server (NTRS)
Hemmati, Hamid
1991-01-01
Preliminary results are presented of the efficient diode-pumped operation of a neodymium yttrium aluminum borate (NYAB) laser at 531.5 nm using two 1-W diode-laser arrays for the pump. With 1380 mW of CW power incident on the crystal, as much as 51 mW of 532.5-nm laser radiation was obtained with the unoptimized cavity. The corresponding optical-to-optical conversion efficiency was 3.7 percent. A plot of the output 531.5 nm vs incident 807 nm pump power is shown. The crystal output power was critically dependent on the rotational and translational adjustment of the NYAB crystal inside the cavity. It is suggested that a crystal cut at the exact phase matching angle, placed in a cavity with proper optimal reflection and transmission mirror coatings, and pumped at proper wavelength can result in higher output power. Thus, the NYAB output power approaches that of a CW intracavity frequency doubled Nd:YAG laser.
FALCON nuclear-reactor-pumped laser program and wireless power transmission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipinski, R.J.; Pickard, P.S.
1992-12-31
FALCON is a high-power, reactor-pumped laser concept. The major strengths of a reactor-pumped laser are (1) simple, modular construction, (2) long-duration, closed-cycle capability, (3) self-contained power, (4) compact size, and (5) a variety of wavelengths (from visible to infrared). Reactor-pumped lasing has been demonstrated experimentally in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1271, 1733, 1792, 2032, 2630, 2650, and 3370 nm with intrinsic efficiency as high as 2.5%. Powers up to 300 W for 2 ms have been demonstrated. Projected beam quality for FALCON is good enough that frequency doubling at reasonablemore » efficiencies could be expected to yield wavelengths at 353, 363, 636, 867, 896, 1016, 1315, 1325, and 1685 nm. Appropriate missions for FALCON are described and include power beaming to satellites, the moon, and unmanned surveillance planes; lunar mapping; space debris removal; and laser propulsion.« less
FALCON nuclear-reactor-pumped laser program and wireless power transmission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipinski, R.J.; Pickard, P.S.
1992-01-01
FALCON is a high-power, reactor-pumped laser concept. The major strengths of a reactor-pumped laser are (1) simple, modular construction, (2) long-duration, closed-cycle capability, (3) self-contained power, (4) compact size, and (5) a variety of wavelengths (from visible to infrared). Reactor-pumped lasing has been demonstrated experimentally in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1271, 1733, 1792, 2032, 2630, 2650, and 3370 nm with intrinsic efficiency as high as 2.5%. Powers up to 300 W for 2 ms have been demonstrated. Projected beam quality for FALCON is good enough that frequency doubling at reasonablemore » efficiencies could be expected to yield wavelengths at 353, 363, 636, 867, 896, 1016, 1315, 1325, and 1685 nm. Appropriate missions for FALCON are described and include power beaming to satellites, the moon, and unmanned surveillance planes; lunar mapping; space debris removal; and laser propulsion.« less
NASA Astrophysics Data System (ADS)
Ter-Mikirtychev, V. V.
1995-09-01
Simultaneous photostability and thermostability of a room-temperature LiF:F2+ * tunable color-center laser, with an operating range over 830-1060 nm, pumped by second-harmonic radiation of a YAG:Nd3+ laser with a 532-nm wavelength has been achieved. The main lasing characteristics of the obtained LiF:F2+* laser have been measured. Twenty-five percent real efficiency in a nonselective resonator cavity and 15% real efficiency in a selective resonator cavity have been obtained. The stable LiF:F2 +* laser operates at a 1-100-Hz pulse-repetition rate with a 15-ns pulse duration, a 1-1.5-cm-1 narrow-band oscillation bandwidth, and divergency of better than 6 \\times 10-4. Doubling the fundamental frequencies of F2+ * oscillation made it possible to obtain stable blue-green tunable radiation over the 415-530-nm range.
Kato, Akio
2006-11-14
The invention provides methods for chromosome doubling in plants. The technique overcomes the low yields of doubled progeny associated with the use of prior techniques for doubling chromosomes in plants such as grasses. The technique can be used in large scale applications and has been demonstrated to be highly effective in maize. Following treatment in accordance with the invention, plants remain amenable to self fertilization, thereby allowing the efficient isolation of doubled progeny plants.
Laser ablation of dental calculus at 400 nm using a Ti:sapphire laser
NASA Astrophysics Data System (ADS)
Schoenly, Joshua E.; Seka, Wolf; Rechmann, Peter
2009-02-01
A Nd:YAG laser-pumped, frequency-doubled Ti:sapphire laser is used for selective ablation of calculus. The laser provides <=25 mJ at 400 nm (60-ns pulse width, 10-Hz repetition rate). The laser is coupled into an optical multimode fiber coiled around a 4-in.-diam drum to generate a top-hat output intensity profile. With coaxial water cooling, this is ideal for efficient, selective calculus removal. This is in stark contrast with tightly focused Gaussian beams that are energetically inefficient and lead to irreproducible results. Calculus is well ablated at high fluences >=2J/cm2 stalling occurs below this fluence because of photobleaching. Healthy hard tissue is not removed at fluences <=3 J/cm2.
UV Generation of 25 mJ/pulse at 289 nm for Ozone Lidar
NASA Technical Reports Server (NTRS)
Storm, Mark E.; Marsh, Waverly; Barnes, James C.
1998-01-01
Our paper describes a technique for generating tunable UV laser radiation between 250-300 nm capable of energies up to 30-5O mJ/pulse. The tunability of this source is attractive for selecting ozone absorption cross sections which are optimal for ozone DIAL detection throughout the troposphere. A Nd:YAG laser is used to pump a pulsed titanium sapphire laser which is then frequency tripled into the UV. Titanium sapphire (TiS) lases robustly between 750-900 nm. In initial experiments we have converted 110 mJ of 867 nm from a TiS laser into 28 mJ at 289 nm. The energy conversion efficiency was 62% for doubling into 433 nm and 25% into 289 nm.
NASA Astrophysics Data System (ADS)
Saha, Shibu; Mehan, Navina; Sreenivas, K.; Gupta, Vinay
2009-08-01
Temperature dependent optical properties of c-axis oriented ZnO thin film were investigated using surface plasmon resonance (SPR) technique. SPR data for double layer (prism-Au-ZnO-air) and single layer (prism-Au-air) systems were taken over a temperature range (300-525 K). Dielectric constant at optical frequency and real part of refractive index of the ZnO film shows an increase with temperature. The bandgap of the oriented ZnO film was found to decrease with rise in temperature. The work indicates a promising application of the system as a temperature sensor and highlights an efficient scientific tool to study optical properties of thin film under varying ambient conditions.
Fabrication of narrow pulse passively Q-switched self-stimulated Raman laser with c-cut Nd:GdVO4
NASA Astrophysics Data System (ADS)
Shen, Gao; Li, Zuo-han; Han, Ming
2016-11-01
Combining the self-stimulated Raman scattering technology and saturable absorber of Cr4+:YAG, a 1.17 μm c-cut Nd:GdVO4 picosecond Q-switched laser is demonstrated in this paper. With an incident pump power of 10 W, the Q-switched laser with average power of 430 mW for 1.17 μm, pulse width of 270 ps, repetition rate of 13 kHz and the first order Stokes conversion efficiency of 4.3% is obtained. The Q-switched pulse width can be the narrowest in our research. In addition, the yellow laser at 0.58 μm is also achieved by using the LiB3O5 frequency doubling crystal.
NASA Astrophysics Data System (ADS)
Prakash, J. Thomas Joseph; Gnanaraj, J. Martin Sam; Dhavud, S. Shek; Ekadevasena, S.
2015-09-01
Undoped and amino acid (L-Arginine and L-Valine) doped KAP crystals were grown by slow evaporation solution growth technique. The changes in the structural, spectral, optical, mechanical and thermal properties were observed. The sharp prominent peaks in the indexed powder XRD pattern confirms the crystalline nature of the sample. Optical studies reveal that the crystal is transparent in the entire visible light region. Thermal stability was checked by TG/DTA analysis. The mechanical stability was evaluated from Vicker's microhardness test. The SHG efficiency for the title materials was tested with different particle sizes by the Kurtz and Perry powder method, which established the existence of phase matching.
A double B1-mode 4-layer laminated piezoelectric linear motor.
Li, Xiaotian; Chen, Zhijiang; Dong, Shuxiang
2012-12-01
We report a miniature piezoelectric ultrasonic linear motor that is made of four Pb(Zr,Ti)O(3) (PZT) piezoelectric ceramic layers for low-voltage work. The 4-layer piezoelectric laminate works in two orthogonal first-bending modes for producing elliptical oscillations, which are then used to drive a contacting slider into continuous linear motion. Experimental results show that the miniature linear motor (size: 4 × 4 × 12 mm, weight: 1.7 g) can generate a large driving force of 0.48 N and a linear motion speed of up to 160 mm/s, using a 40 V(pp)/mm voltage drive at its resonance frequency of 64.5 kHz. The maximum efficiency of the linear motor is 30%.
Suppression of Zeeman gradients by nuclear polarization in double quantum dots.
Frolov, S M; Danon, J; Nadj-Perge, S; Zuo, K; van Tilburg, J W W; Pribiag, V S; van den Berg, J W G; Bakkers, E P A M; Kouwenhoven, L P
2012-12-07
We use electric dipole spin resonance to measure dynamic nuclear polarization in InAs nanowire quantum dots. The resonance shifts in frequency when the system transitions between metastable high and low current states, indicating the presence of nuclear polarization. We propose that the low and the high current states correspond to different total Zeeman energy gradients between the two quantum dots. In the low current state, dynamic nuclear polarization efficiently compensates the Zeeman gradient due to the g-factor mismatch, resulting in a suppressed total Zeeman gradient. We present a theoretical model of electron-nuclear feedback that demonstrates a fixed point in nuclear polarization for nearly equal Zeeman splittings in the two dots and predicts a narrowed hyperfine gradient distribution.
Strategy for improved frequency response of electric double-layer capacitors
NASA Astrophysics Data System (ADS)
Wada, Yoshifumi; Pu, Jiang; Takenobu, Taishi
2015-10-01
We propose a strategy for improving the response speed of electric double-layer capacitors (EDLCs) and electric double-layer transistors (EDLTs), based on an asymmetric structure with differently sized active materials and gate electrodes. We validate the strategy analytically by a classical calculation and experimentally by fabricating EDLCs with asymmetric Au electrodes (1:50 area ratio and 7.5 μm gap distance). The performance of the EDLCs is compared with that of conventional symmetric EDLCs. Our strategy dramatically improved the cut-off frequency from 14 to 93 kHz and this improvement is explained by fast charging of smaller electrodes. Therefore, this approach is particularly suitable to EDLTs, potentially expanding the applicability to medium speed (kHz-MHz) devices.
Design and measure of a tunable double-band metamaterial absorber in the THz spectrum
NASA Astrophysics Data System (ADS)
Guiming, Han
2018-04-01
We demonstrate and measure a hybrid double-band tunable metamaterial absorber in the terahertz region. The measured metamaterial absorber contains of a hybrid dielectric layer structure: a SU-8 layer and a VO2 layer. Near perfect double-band absorption performances are achieved by optimizing the SU-8 layer thickness at room temperature 25 °C. Measured results show that the phase transition can be observed when the measured temperature reaches 68 °C. Further measured results indicate that the resonance frequency and absorption amplitude of the proposed metamaterial absorber are tunable through increasing the measured temperature, while structural parameters unchanged. The proposed hybrid metamaterial absorber shows many advantages, such as frequency agility, absorption amplitude tunable, and simple fabrication.
Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2015-01-01
A double-negative metamaterial-inspired antenna is presented for mobile wireless applications. The antenna consists of a semi-circular radiating patch and a 3 × 4 hexagonal shaped metamaterial unit cell array in the ground plane. The antenna is fed with a 50 Ω microstrip feed line. The electric dimensions of the proposed antenna are 0.20λ × 0.26λ × 0.004λ, at the low-end frequency. The proposed antenna achieves a −10 dB impedance with a bandwidth of 2.29 GHz at the lower band and 1.28 GHz at the upper band and can operate for most of the mobile applications such as upper GSM bands, WiMAX, Bluetooth, and wireless local area network (WLAN) frequency bands. The focused novelties of the proposed antenna are its small size, multi-standard operating bands, and electromagnetic absorption reduction at all the operating frequencies using the double-negative metamaterial ground plane. PMID:28793474
The effect of gravity modulation on thermosolutal convection in an infinite layer of fluid
NASA Astrophysics Data System (ADS)
Saunders, B. V.; Murray, B. T.; McFadden, G. B.; Coriell, S. R.; Wheeler, A. A.
1992-06-01
The effect of time-periodic vertical gravity modulation on the onset of thermosolutal convection in an infinite horizontal layer with stress-free boundaries is investigated using Floquet theory for the linear stability analysis. Situations for which the fluid layer is stably stratified in either the fingering or diffusive regimes of double-diffusive convection are considered. Results are presented both with and without steady background acceleration. Modulation may stabilize an unstable base solution or destabilize a stable base solution. In addition to synchronous and subharmonic response to the modulation frequency, instability in the double diffusive system can occur via a complex conjugate mode. In the diffusive regime, where oscillatory onset occurs in the unmodulated system, regions of resonant instability occur and exhibit strong coupling with the unmodulated oscillatory frequency. The response to modulation of the fundamental instability of the unmodulated system is described both analytically and numerically; in the double-diffusive system this mode persists under subcritical conditions as a high-frequency lobe.
The effect of gravity modulation on thermosolutal convection in an infinite layer of fluid
NASA Technical Reports Server (NTRS)
Saunders, B. V.; Murray, B. T.; Mcfadden, G. B.; Coriell, S. R.; Wheeler, A. A.
1992-01-01
The effect of time-periodic vertical gravity modulation on the onset of thermosolutal convection in an infinite horizontal layer with stress-free boundaries is investigated using Floquet theory for the linear stability analysis. Situations for which the fluid layer is stably stratified in either the fingering or diffusive regimes of double-diffusive convection are considered. Results are presented both with and without steady background acceleration. Modulation may stabilize an unstable base solution or destabilize a stable base solution. In addition to synchronous and subharmonic response to the modulation frequency, instability in the double diffusive system can occur via a complex conjugate mode. In the diffusive regime, where oscillatory onset occurs in the unmodulated system, regions of resonant instability occur and exhibit strong coupling with the unmodulated oscillatory frequency. The response to modulation of the fundamental instability of the unmodulated system is described both analytically and numerically; in the double-diffusive system this mode persists under subcritical conditions as a high-frequency lobe.
Quench-induced breathing mode of one-dimensional Bose gases.
Fang, Bess; Carleo, Giuseppe; Johnson, Aisling; Bouchoule, Isabelle
2014-07-18
We measure the position- and momentum-space breathing dynamics of trapped one-dimensional Bose gases at finite temperature. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas crossover. A comparison with theoretical models taking temperature into account is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism due to the repulsive interactions. Such a mechanism is predicted for a fermionized system, and has not been observed to date. The disappearance of the frequency doubling through the crossover is mapped out experimentally, giving insights into the dynamics of the breathing evolution.
Quench-Induced Breathing Mode of One-Dimensional Bose Gases
NASA Astrophysics Data System (ADS)
Fang, Bess; Carleo, Giuseppe; Johnson, Aisling; Bouchoule, Isabelle
2014-07-01
We measure the position- and momentum-space breathing dynamics of trapped one-dimensional Bose gases at finite temperature. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas crossover. A comparison with theoretical models taking temperature into account is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism due to the repulsive interactions. Such a mechanism is predicted for a fermionized system, and has not been observed to date. The disappearance of the frequency doubling through the crossover is mapped out experimentally, giving insights into the dynamics of the breathing evolution.
A frequency doubled pressure-tunable oscillator-amplifier dye laser system
NASA Technical Reports Server (NTRS)
Moriarty, A.; Heaps, W.; Davis, D. D.
1976-01-01
A tunable high-repetition-rate oscillator-amplifier dye-laser system is reported. The dye laser described was longitudinally pumped with the second harmonic of a Nd-YAG laser operating at 10 Hz. Using three Faraday-Perot etalons and pressure tuning, a maximum fundamental output power of the order of 6 MW with a corresponding spectral width of less than 0.003 nm at 564 nm was obtained. The fundamental at 564 nm was frequency doubled to give a maximum power level of 0.6 MW of second-harmonic output power with a spectral width less than 0.0015 nm at 282 nm. Frequency stability could be maintained to within approximately 15% of the line-width.
Double exposure using 193nm negative tone photoresist
NASA Astrophysics Data System (ADS)
Kim, Ryoung-han; Wallow, Tom; Kye, Jongwook; Levinson, Harry J.; White, Dave
2007-03-01
Double exposure is one of the promising methods for extending lithographic patterning into the low k I regime. In this paper, we demonstrate double patterning of k 1-effective=0.25 with improved process window using a negative resist. Negative resist (TOK N- series) in combination with a bright field mask is proven to provide a large process window in generating 1:3 = trench:line resist features. By incorporating two etch transfer steps into the hard mask material, frequency doubled patterns could be obtained.
Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting
Yun, S. H.; Tearney, G. J.; de Boer, J. F.; Bouma, B. E.
2009-01-01
A novel technique using an acousto-optic frequency shifter in optical frequency domain imaging (OFDI) is presented. The frequency shift eliminates the ambiguity between positive and negative differential delays, effectively doubling the interferometric ranging depth while avoiding image cross-talk. A signal processing algorithm is demonstrated to accommodate nonlinearity in the tuning slope of the wavelength-swept OFDI laser source. PMID:19484034
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, J
New crystalline materials were investigated for applications in frequency conversion of near-infrared wavelengths and as gain media for tunable mid-infrared solid-state lasers. GaCa{sub 4}O(BO{sub 3}){sub 3} (GdCOB), YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB), LaCa{sub 4}O(BO{sub 3}){sub 3} (LaCOB), and Gd{sub 0.275}Y{sub 0.725}Ca{sub 4}O(BO{sub 3}){sub 3} were characterized for frequency conversion of 1 {micro}m lasers. For type I doubling at 1064 nm, LaCOB, GdCOB, and YCOB were found to have effective coupling coefficients (d{sub eff}) of 0.52 {+-} 0.05, 0.78 {+-} 0.06, and 1.12 {+-} 0.07 pm/V, respectively. LaCOB was measured to have angular and thermal sensitivities of 1224 {+-} 184 (cm-rad){supmore » -1} and < 0.10 (cm-{sup o}C){sup -1}, respectively. The effective coupling coefficient for type II noncritically phasematched (NCPM) doubling at 1064 nm in Gd{sub 0.275}Y{sub 0.725}Ca{sub 4}O(BO{sub 3}){sub 3} was measured to be 0.37 {+-} 0.04 pm/V. We predict LaCOB to have a type I NCPM fundamental wavelength of 1042 {+-} 1.5 nm. Due to its low angular and thermal sensitivities for doubling near 1047 nm, LaCOB has potential for frequency doubling of high-average power Nd:LiYF{sub 4} and Yb:Sr{sub 5}(P0{sub 4}){sub 3}F lasers. LaCOB, GdCOB, and YCOB were also investigated for optical parametric oscillator applications and we determined that they may have potential in a Ti:sapphire pumped oscillator. The effective linear electro-optic coefficients (r{sub eff}) were measured along dielectric directions in YCOB and a maximum r{sub eff} of 10.8 pm/V was found. For a crystal with a 5:1 aspect ratio, the corresponding half-wave voltage at 1064 nm would be 19.6 kV. Therefore a Pockels cell composed of two YCOB crystals with 5:1 aspect ratios would have a required half-wave voltage <10 kV. Moderate coupling coefficients (3 x KH{sub 2}PO{sub 4}), low thermal sensitivities, ease of growth to large sizes, non-hygroscopicity, and favorable polishing and coating characteristics make LaCOB, GdCOB, and YCOB attractive for frequency conversion of high-average power near-infrared lasers. Absorption and emission cross-sections of {approx}10{sup -18} cm{sup 2} were measured for Fe{sup 2+}:ZnSe in the 4 {micro}m region at temperatures below 220 K. Luminescence lifetimes were found that ranged from 5-110 {micro}s below 220 K. Tunable lasing action was demonstrated for the first time in Fe{sup 2+}:ZnSe with a tuning range from 3.98 {micro}m (20 K) to 4.54 {micro}m (180 K). The Fe{sup 2+}:ZnSe laser had thresholds {le}50 {micro}J and slope efficiencies {le}10% with 0.6% output coupling.« less
Preferential inclusion of extrachromosomal genetic elements in yeast meiotic spores.
Brewer, B J; Fangman, W L
1980-09-01
During meiosis and sporulation in the yeast Saccharomyces cerevisiae, extrachromosomal traits are efficiently transmitted to haploid spores. Although the pattern of inheritance of chromosomal traits reflects the mechanism of regular chromosomal segregation in meiosis, it is not known what processes are reflected by the efficient inheritance of extrachromosomal traits. Because extrachromosomal genetic elements in yeast are present in multiple copies, perpetuation of an extrachromosomal trait could occur by the passive envelopment of a subset of copies or by an active sequestering of all or a subset of copies within the four spores. We show that only subsets of the four extrachromosomal nucleic acids commonly found in yeast are transmitted through meiosis--55% of mitochondrial DNA copies, 82% of the 2-micron DNA plasmids, and about 70% of the L and M double-stranded RNAs. However, electron micrographs of serial sections through yeast asci indicate that the four spore enclose only 30% of the total ascus material. Thus these extrachromosomal elements are preferentially included within the spores, indicating that their inheritance is not a random process. Transmission of mitochondrial DNA can be accounted for by the observed enclosure of 52% of the mitochondrial volume within the spores. The high transmission frequencies of the double-stranded RNAs (which exist as virus-like particles in the cytoplasm) and 2-micron DNA must indicate that either these nucleic acids are actively recruited from the cytoplasm by some mechanism or they are associated in some way with the nucleus during meiosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozkaya, Uğur, E-mail: ugur.bozkaya@hacettepe.edu.tr; Department of Chemistry, Atatürk University, Erzurum 25240; Sherrill, C. David
2016-05-07
An efficient implementation is presented for analytic gradients of the coupled-cluster singles and doubles (CCSD) method with the density-fitting approximation, denoted DF-CCSD. Frozen core terms are also included. When applied to a set of alkanes, the DF-CCSD analytic gradients are significantly accelerated compared to conventional CCSD for larger molecules. The efficiency of our DF-CCSD algorithm arises from the acceleration of several different terms, which are designated as the “gradient terms”: computation of particle density matrices (PDMs), generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the relaxed PDMs and GFM, back-transformation of PDMs and GFM to the atomic orbitalmore » (AO) basis, and evaluation of gradients in the AO basis. For the largest member of the alkane set (C{sub 10}H{sub 22}), the computational times for the gradient terms (with the cc-pVTZ basis set) are 2582.6 (CCSD) and 310.7 (DF-CCSD) min, respectively, a speed up of more than 8-folds. For gradient related terms, the DF approach avoids the usage of four-index electron repulsion integrals. Based on our previous study [U. Bozkaya, J. Chem. Phys. 141, 124108 (2014)], our formalism completely avoids construction or storage of the 4-index two-particle density matrix (TPDM), using instead 2- and 3-index TPDMs. The DF approach introduces negligible errors for equilibrium bond lengths and harmonic vibrational frequencies.« less
Local oscillator induced degradation of medium-term stability in passive atomic frequency standards
NASA Technical Reports Server (NTRS)
Dick, G. John; Prestage, John D.; Greenhall, Charles A.; Maleki, Lute
1990-01-01
As the performance of passive atomic frequency standards improves, a new limitation is encountered due to frequency fluctuations in an ancillary local oscillator (L.O.). The effect is due to time variation in the gain of the feedback which compensates L.O. frequency fluctuations. The high performance promised by new microwave and optical trapped ion standards may be severely compromised by this effect. Researchers present an analysis of this performance limitation for the case of sequentially interrogated standards. The time dependence of the sensitivity of the interrogation process to L.O. frequency fluctuations is evaluated for single-pulse and double-pulse Ramsey RF interrogation and for amplitude modulated pulses. The effect of these various time dependencies on performance of the standard is calculated for an L.O. with frequency fluctuations showing a typical 1/f spectral density. A limiting 1/sq. root gamma dependent deviation of frequency fluctuations is calculated as a function of pulse lengths, dead time, and pulse overlap. Researchers also present conceptual and hardware-oriented solutions to this problem which achieve a much more nearly constant sensitivity to L.O. fluctuations. Solutions involve use of double-pulse interrogation; alternate interrogation of multiple traps so that the dead time of one trap can be covered by operation of the other; and the use of double-pulse interrogation for two traps, so that during the time of the RF pulses, the increasing sensitivity of one trap tends to compensate for the decreasing sensitivity of the other. A solution making use of amplified-modulated pulses is also presented which shows nominally zero time variation.
Vlasov simulations of electron acceleration by radio frequency heating near the upper hybrid layer
NASA Astrophysics Data System (ADS)
Najmi, A.; Eliasson, B.; Shao, X.; Milikh, G.; Sharma, A. S.; Papadopoulos, K.
2017-10-01
It is shown by using a combination of Vlasov and test particles simulations that the electron distribution function resulting from energization due to Upper Hybrid (UH) plasma turbulence depends critically on the closeness of the pump wave to the double resonance, defined as ω ≈ ωUH ≈ nωce, where n is an integer. For pump frequencies, away from the double resonance, the electron distribution function is very close to Maxwellian, while as the pump frequency approaches the double resonance, it develops a high energy tail. The simulations show turbulence involving coupling between Lower Hybrid (LH) and UH waves, followed by excitation of Electron Bernstein (EB) modes. For the particular case of a pump with frequency between n = 3 and n = 4, the EB modes cover the range from the first to the 5th mode. The simulations show that when the injected wave frequency is between the 3rd and 4th harmonics of the electron cyclotron frequency, bulk electron heating occurs due to the interaction between the electrons and large amplitude EB waves, primarily on the first EB branch leading to an essentially thermal distribution. On the other hand, when the frequency is slightly above the 4th electron cyclotron harmonic, the resonant interaction is predominantly due to the UH branch and leads to a further acceleration of high-velocity electrons and a distribution function with a suprathermal tail of energetic electrons. The results are consistent with ionospheric experiments and relevant to the production of Artificial Ionospheric Plasma Layers.
Boore, David M.; Di Alessandro, Carola; Abrahamson, Norman A.
2014-01-01
The stochastic method of simulating ground motions requires the specification of the shape and scaling with magnitude of the source spectrum. The spectral models commonly used are either single-corner-frequency or double-corner-frequency models, but the latter have no flexibility to vary the high-frequency spectral levels for a specified seismic moment. Two generalized double-corner-frequency ω2 source spectral models are introduced, one in which two spectra are multiplied together, and another where they are added. Both models have a low-frequency dependence controlled by the seismic moment, and a high-frequency spectral level controlled by the seismic moment and a stress parameter. A wide range of spectral shapes can be obtained from these generalized spectral models, which makes them suitable for inversions of data to obtain spectral models that can be used in ground-motion simulations in situations where adequate data are not available for purely empirical determinations of ground motions, as in stable continental regions. As an example of the use of the generalized source spectral models, data from up to 40 stations from seven events, plus response spectra at two distances and two magnitudes from recent ground-motion prediction equations, were inverted to obtain the parameters controlling the spectral shapes, as well as a finite-fault factor that is used in point-source, stochastic-method simulations of ground motion. The fits to the data are comparable to or even better than those from finite-fault simulations, even for sites close to large earthquakes.
Augmenting Transport versus Increasing Cold Storage to Improve Vaccine Supply Chains
Haidari, Leila A.; Connor, Diana L.; Wateska, Angela R.; Brown, Shawn T.; Mueller, Leslie E.; Norman, Bryan A.; Schmitz, Michelle M.; Paul, Proma; Rajgopal, Jayant; Welling, Joel S.; Leonard, Jim; Chen, Sheng-I; Lee, Bruce Y.
2013-01-01
Background When addressing the urgent task of improving vaccine supply chains, especially to accommodate the introduction of new vaccines, there is often a heavy emphasis on stationary storage. Currently, donations to vaccine supply chains occur largely in the form of storage equipment. Methods This study utilized a HERMES-generated detailed, dynamic, discrete event simulation model of the Niger vaccine supply chain to compare the impacts on vaccine availability of adding stationary cold storage versus transport capacity at different levels and to determine whether adding stationary storage capacity alone would be enough to relieve potential bottlenecks when pneumococcal and rotavirus vaccines are introduced by 2015. Results Relieving regional level storage bottlenecks increased vaccine availability (by 4%) more than relieving storage bottlenecks at the district (1% increase), central (no change), and clinic (no change) levels alone. Increasing transport frequency (or capacity) yielded far greater gains (e.g., 15% increase in vaccine availability when doubling transport frequency to the district level and 18% when tripling). In fact, relieving all stationary storage constraints could only increase vaccine availability by 11%, whereas doubling the transport frequency throughout the system led to a 26% increase and tripling the frequency led to a 30% increase. Increasing transport frequency also reduced the amount of stationary storage space needed in the supply chain. The supply chain required an additional 61,269L of storage to relieve constraints with the current transport frequency, 55,255L with transport frequency doubled, and 51,791L with transport frequency tripled. Conclusions When evaluating vaccine supply chains, it is important to understand the interplay between stationary storage and transport. The HERMES-generated dynamic simulation model showed how augmenting transport can result in greater gains than only augmenting stationary storage and can reduce stationary storage needs. PMID:23717590
Augmenting transport versus increasing cold storage to improve vaccine supply chains.
Haidari, Leila A; Connor, Diana L; Wateska, Angela R; Brown, Shawn T; Mueller, Leslie E; Norman, Bryan A; Schmitz, Michelle M; Paul, Proma; Rajgopal, Jayant; Welling, Joel S; Leonard, Jim; Chen, Sheng-I; Lee, Bruce Y
2013-01-01
When addressing the urgent task of improving vaccine supply chains, especially to accommodate the introduction of new vaccines, there is often a heavy emphasis on stationary storage. Currently, donations to vaccine supply chains occur largely in the form of storage equipment. This study utilized a HERMES-generated detailed, dynamic, discrete event simulation model of the Niger vaccine supply chain to compare the impacts on vaccine availability of adding stationary cold storage versus transport capacity at different levels and to determine whether adding stationary storage capacity alone would be enough to relieve potential bottlenecks when pneumococcal and rotavirus vaccines are introduced by 2015. Relieving regional level storage bottlenecks increased vaccine availability (by 4%) more than relieving storage bottlenecks at the district (1% increase), central (no change), and clinic (no change) levels alone. Increasing transport frequency (or capacity) yielded far greater gains (e.g., 15% increase in vaccine availability when doubling transport frequency to the district level and 18% when tripling). In fact, relieving all stationary storage constraints could only increase vaccine availability by 11%, whereas doubling the transport frequency throughout the system led to a 26% increase and tripling the frequency led to a 30% increase. Increasing transport frequency also reduced the amount of stationary storage space needed in the supply chain. The supply chain required an additional 61,269L of storage to relieve constraints with the current transport frequency, 55,255L with transport frequency doubled, and 51,791L with transport frequency tripled. When evaluating vaccine supply chains, it is important to understand the interplay between stationary storage and transport. The HERMES-generated dynamic simulation model showed how augmenting transport can result in greater gains than only augmenting stationary storage and can reduce stationary storage needs.
NASA Astrophysics Data System (ADS)
Tabirian, Anna Murazian
This dissertation describes a series of experiments and theoretical studies, which led to the development of two new solid state laser systems: efficient, room temperature mid-infrared solid state laser at 3.9 μm in Ho 3+ doped BaY2F8 and visible Pr:LiYF4 laser at 640 mn for holography. The 3.9 μm laser wavelength matches the peak of mid-IR atmospheric transmission window, which makes it very important for multiple applications such as remote sensing, imaging, IR countermeasures, eye-safe lidars and environmental agent detection. We present the results of spectroscopic evaluations and numerical modeling of energy transfer processes between rare earth ions of Ho3+ doped in two host laser materials: BaY2F8 and LiYF 4. The 3.9 μm laser is based on transition with upper laser lifetime considerably shorter than lower level lifetime, which in general leads to self-terminating laser action in the cw mode or at high repetition rates. Therefore, three different pumping and lasing schemes, that could allow overcoming these limitations have been suggested and studied. First, cascade laser action at 1.4 μm and 3.9 μm was achieved with low thresholds and near-theoretical quantum efficiency in Ho3+ doped BaY2F8 pumped at 532 nm by a Q- switched frequency doubled Nd:YAG laser. Next, the feasibility of achieving 3.9 μm laser with cw resonant cascade pumping at 750 mn by a Ti:Sapphire laser was studied. New energy transfer process, such as upconversion from terminal level of the 3.9 μm laser was observed in high concentration Ho3+ doped BaY2F 8. Finally, we proposed to use high-energy flashlamp pumped tunable Cr:LiSAF laser operating in long pulse regime for the direct pumping of the upper level of the 3.9 μm laser. Pulsed laser oscillation at 3.9 μm is demonstrated in Ho3+ doped BaY2F8 with low threshold of 3 mJ and a slope efficiency of 14.5% with maximal energy of 30 mJ. The second part of the thesis describes the design and the development of the visible Pr:LiYF4 laser for holography at 640 nm resonantly pumped by the frequency-doubled flashlamp pumped tunable Cr:LiSAF laser at 444 nm.
Multiple quay cranes scheduling for double cycling in container terminals
Chu, Yanling; Zhang, Xiaoju; Yang, Zhongzhen
2017-01-01
Double cycling is an efficient tool to increase the efficiency of quay crane (QC) in container terminals. In this paper, an optimization model for double cycling is developed to optimize the operation sequence of multiple QCs. The objective is to minimize the makespan of the ship handling operation considering the ship balance constraint. To solve the model, an algorithm based on Lagrangian relaxation is designed. Finally, we compare the efficiency of the Lagrangian relaxation based heuristic with the branch-and-bound method and a genetic algorithm using instances of different sizes. The results of numerical experiments indicate that the proposed model can effectively reduce the unloading and loading times of QCs. The effects of the ship balance constraint are more notable when the number of QCs is high. PMID:28692699
Multiple quay cranes scheduling for double cycling in container terminals.
Chu, Yanling; Zhang, Xiaoju; Yang, Zhongzhen
2017-01-01
Double cycling is an efficient tool to increase the efficiency of quay crane (QC) in container terminals. In this paper, an optimization model for double cycling is developed to optimize the operation sequence of multiple QCs. The objective is to minimize the makespan of the ship handling operation considering the ship balance constraint. To solve the model, an algorithm based on Lagrangian relaxation is designed. Finally, we compare the efficiency of the Lagrangian relaxation based heuristic with the branch-and-bound method and a genetic algorithm using instances of different sizes. The results of numerical experiments indicate that the proposed model can effectively reduce the unloading and loading times of QCs. The effects of the ship balance constraint are more notable when the number of QCs is high.
Knock-in reporter mice demonstrate that DNA repair by non-homologous end joining declines with age.
Vaidya, Amita; Mao, Zhiyong; Tian, Xiao; Spencer, Brianna; Seluanov, Andrei; Gorbunova, Vera
2014-07-01
Accumulation of genome rearrangements is a characteristic of aged tissues. Since genome rearrangements result from faulty repair of DNA double strand breaks (DSBs), we hypothesized that DNA DSB repair becomes less efficient with age. The Non-Homologous End Joining (NHEJ) pathway repairs a majority of DSBs in vertebrates. To examine age-associated changes in NHEJ, we have generated an R26NHEJ mouse model in which a GFP-based NHEJ reporter cassette is knocked-in to the ROSA26 locus. In this model, NHEJ repair of DSBs generated by the site-specific endonuclease, I-SceI, reconstitutes a functional GFP gene. In this system NHEJ efficiency can be compared across tissues of the same mouse and in mice of different age. Using R26NHEJ mice, we found that NHEJ efficiency was higher in the skin, lung, and kidney fibroblasts, and lower in the heart fibroblasts and brain astrocytes. Furthermore, we observed that NHEJ efficiency declined with age. In the 24-month old animals compared to the 5-month old animals, NHEJ efficiency declined 1.8 to 3.8-fold, depending on the tissue, with the strongest decline observed in the skin fibroblasts. The sequence analysis of 300 independent NHEJ repair events showed that, regardless of age, mice utilize microhomology sequences at a significantly higher frequency than expected by chance. Furthermore, the frequency of microhomology-mediated end joining (MMEJ) events increased in the heart and lung fibroblasts of old mice, suggesting that NHEJ becomes more mutagenic with age. In summary, our study provides a versatile mouse model for the analysis of NHEJ in a wide range of tissues and demonstrates that DNA repair by NHEJ declines with age in mice, which could provide a mechanism for age-related genomic instability and increased cancer incidence with age.
Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana.
Kazama, Yusuke; Hirano, Tomonari; Saito, Hiroyuki; Liu, Yang; Ohbu, Sumie; Hayashi, Yoriko; Abe, Tomoko
2011-11-15
Heavy-ion mutagenesis is recognised as a powerful technology to generate new mutants, especially in higher plants. Heavy-ion beams show high linear energy transfer (LET) and thus more effectively induce DNA double-strand breaks than other mutagenic techniques. Previously, we determined the most effective heavy-ion LET (LETmax: 30.0 keV μm(-1)) for Arabidopsis mutagenesis by analysing the effect of LET on mutation induction. However, the molecular structure of mutated DNA induced by heavy ions with LETmax remains unclear. Knowledge of the structure of mutated DNA will contribute to the effective exploitation of heavy-ion beam mutagenesis. Dry Arabidopsis thaliana seeds were irradiated with carbon (C) ions with LETmax at a dose of 400 Gy and with LET of 22.5 keV μm(-1) at doses of 250 Gy or 450 Gy. The effects on mutation frequency and alteration of DNA structure were compared. To characterise the structure of mutated DNA, we screened the well-characterised mutants elongated hypocotyls (hy) and glabrous (gl) and identified mutated DNA among the resulting mutants by high-resolution melting curve, PCR and sequencing analyses. The mutation frequency induced by C ions with LETmax was two-fold higher than that with 22.5 keV μm(-1) and similar to the mutation frequency previously induced by ethyl methane sulfonate. We identified the structure of 22 mutated DNAs. Over 80% of the mutations caused by C ions with both LETs were base substitutions or deletions/insertions of less than 100 bp. The other mutations involved large rearrangements. The C ions with LETmax showed high mutation efficiency and predominantly induced base substitutions or small deletions/insertions, most of which were null mutations. These small alterations can be determined by single-nucleotide polymorphism (SNP) detection systems. Therefore, C ions with LETmax might be useful as a highly efficient reverse genetic system in conjunction with SNP detection systems, and will be beneficial for forward genetics and plant breeding.
[Design of flat field holographic concave grating for near-infrared spectrophotometer].
Xiang, Xian-Yi; Wen, Zhi-Yu
2008-07-01
Near-infrared spectrum analysis can be used to determine the nature or test quantitatively some chemical compositions by detecting molecular double frequency and multiple frequency absorption. It has been used in agriculture, biology, petrifaction, foodstuff, medicament, spinning and other fields. Near-infrared spectrophotometer is the main apparatus for near-infrared spectrum analysis, and the grating is the most important part of the apparatus. Based on holographic concave grating theory and optic design software CODE V, a flat field holographic concave grating for near-infrared spectrophotometer was designed from primary structure, which relied on global optimization of the software. The contradiction between wide spectrum bound and limited spectrum extension was resolved, aberrations were reduced successfully, spectrum information was utilized fully, and the optic structure of spectrometer was highly efficient. Using CODE V software, complex high-order aberration equations need not be solved, the result can be evaluated quickly, flat field and resolving power can be kept in balance, and the work efficiency is also enhanced. A paradigm of flat field holographic concave grating is given, it works between 900 nm to 1 700 nm, the diameter of the concave grating is 25 mm, and F/ # is 1. 5. The design result was analyzed and evaluated. It was showed that if the slit source, whose width is 50 microm, is used to reconstruction, the theoretic resolution capacity is better than 6.3 nm.
[The risk of surgical glove perforations].
Hagen, Gerd Ødegård; Arntzen, Halvard
2007-03-29
The increasing prevalence of blood-borne viral diseases has drawn attention to the barrier between the surgical personnel's hands and the patients body fluids during surgery. At present, the typical practice is to use double gloving in orthopaedic surgery, and single gloving in other types of surgery. The main purpose of our study was to estimate and compare the perforation risk in different categories of surgery. In a series of 655 surgical operations covering 5 main categories of surgery, all detected glove perforations were recorded and analysed. Perforations were found in 203 out of 655 operations (31%). The observed perforation frequency was 44.5% in gastrointestinal surgery, 34.7% in orthopaedic surgery, 31.1% in gynaecology, 18.6% in vascular surgery and 9.2% in general surgery. In some subcategories, the frequencies were even higher. In several categories of surgery, we found high perforation frequencies. Perforations in single gloves are often not detected during operations. This may increase the risk of transmission of blood-borne infections, particularly because the time of exposure may be long. Double indicator gloves make the intra-operative detection of perforations easier. Also double gloving is known to significantly reduce the perforation risk. The use of double indicator gloves is recommended in all categories of surgery.
Design and construction of a novel 1H/19F double-tuned coil system using PIN-diode switches at 9.4T.
Choi, Chang-Hoon; Hong, Suk-Min; Ha, YongHyun; Shah, N Jon
2017-06-01
A double-tuned 1 H/ 19 F coil using PIN-diode switches was developed and its performance evaluated. The is a key difference from the previous developments being that this design used a PIN-diode switch in series with an additionally inserted inductor in parallel to one of the capacitors on the loop. The probe was adjusted to 19 F when the reverse bias voltage was applied (PIN-diode OFF), whilst it was switched to 1 H when forward current was flowing (PIN-diode ON). S-parameters and Q-factors of single- and double-tuned coils were examined and compared with/without a phantom on the bench. Imaging experiments were carried out on a 9.4T preclinical scanner. All coils were tuned at resonance frequencies and matched well. It is shown that the Q-ratio and SNR of double-tuned coil at 19 F frequency are nearly as good as those of a single-tuned coil. Since the operating frequency was tuned to 19 F when the PIN-diodes were turned off, losses due to PIN-diodes were substantially lower resulting in the provision of excellent image quality of X-nuclei. Copyright © 2017 Elsevier Inc. All rights reserved.
Green frequency-doubled laser-beam propagation in high-temperature hohlraum plasmas.
Niemann, C; Berger, R L; Divol, L; Froula, D H; Jones, O; Kirkwood, R K; Meezan, N; Moody, J D; Ross, J; Sorce, C; Suter, L J; Glenzer, S H
2008-02-01
We demonstrate propagation and small backscatter losses of a frequency-doubled (2omega) laser beam interacting with inertial confinement fusion hohlraum plasmas. The electron temperature of 3.3 keV, approximately a factor of 2 higher than achieved in previous experiments with open geometry targets, approaches plasma conditions of high-fusion yield hohlraums. In this new temperature regime, we measure 2omega laser-beam transmission approaching 80% with simultaneous backscattering losses of less than 10%. These findings suggest that good laser coupling into fusion hohlraums using 2omega light is possible.
Beutler, Marcus; Ghotbi, Masood; Noack, Frank; Brida, Daniele; Manzoni, Cristian; Cerullo, Giulio
2009-03-15
We report on the generation of powerful sub-20 fs deep UV pulses with 10 microJ level energy and broadly tunable in the 250-310 nm range. These pulses are produced by frequency doubling a high-power noncollinear optical parametric amplifier and compressed by a pair of MgF2 prisms to an almost transform-limited duration. Our results provide a power scaling by an order of magnitude with respect to previous works.
Upstream ionization instability associated with a current-free double layer.
Aanesland, A; Charles, C; Lieberman, M A; Boswell, R W
2006-08-18
A low frequency instability has been observed using various electrostatic probes in a low-pressure expanding helicon plasma. The instability is associated with the presence of a current-free double layer (DL). The frequency of the instability increases linearly with the potential drop of the DL, and simultaneous measurements show their coexistence. A theory for an upstream ionization instability has been developed, which shows that electrons accelerated through the DL increase the ionization upstream and are responsible for the observed instability. The theory is in good agreement with the experimental results.
A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier
NASA Astrophysics Data System (ADS)
Trikshev, A. I.; Kurkov, A. S.; Tsvetkov, V. B.; Filatova, S. A.; Kertulla, J.; Filippov, V.; Chamorovskiy, Yu K.; Okhotnikov, O. G.
2013-06-01
We present a CW single-frequency laser at 1062 nm (linewidth <3 MHz) with 160 W of total output power based on a two stage fiber amplifier. A GTWave fiber is used for the first stage of the amplifier. A tapered double-clad fiber (T-DCF) is used for the second stage of the amplifier. The high output power is achieved due to the amplified spontaneous emission (ASE) filtering and increased stimulated Brillouin scattering (SBS) threshold inherent to the axially non-uniform geometry.
NASA Astrophysics Data System (ADS)
Shojaei Zoeram, Ali; Rahmani, Aida; Asghar Akbari Mousavi, Seyed Ali
2017-05-01
The precise controllability of heat input in pulsed Nd:YAG welding method provided by two additional parameters, frequency and pulse duration, has made this method very promising for welding of alloys sensitive to heat input. The poor weldability of Ti-rich nitinol as a result of the formation of Ti2Ni IMC has deprived us of the unique properties of this alloy. In this study, to intensify solidification rate during welding of Ti-rich nitinol, pulsed Nd:YAG laser beam in low frequency was employed in addition to the employment of a copper substrate. Specific microstructure produced in this condition was characterized and the effects of this microstructure on tensile and fracture behavior of samples welded by two different procedures, full penetration and double-sided method with halved penetration depth for each side were investigated. The investigations revealed although the combination of low frequencies, the use of a high thermal conductor substrate and double-sided method eliminated intergranular fracture and increased tensile strength, the particular microstructure, built in the pulsed welding method in low frequencies, results to the formation of the longitudinal cracks during the first stages of tensile test at weld centerline. This degrades tensile strength of welded samples compared to base metal. The results showed samples welded in double-sided method performed much better than samples welded in full penetration mode.
Next generation techniques in the high resolution spectroscopy of biologically relevant molecules.
Neill, Justin L; Douglass, Kevin O; Pate, Brooks H; Pratt, David W
2011-04-28
Recent advances in the technology of test and measurement equipment driven by the computer and telecommunications industries have made possible the development of a new broadband, Fourier-transform microwave spectrometer that operates on principles similar to FTNMR. This technique uses a high sample-rate arbitrary waveform generator to construct a phase-locked chirped microwave pulse that gives a linear frequency sweep over a wide frequency range in 1 μs. The chirped pulse efficiently polarizes the molecular sample at all frequencies lying within this band. The subsequent free induction decay of this polarization is measured with a high-speed digitizer and then fast Fourier-transformed to yield a broadband, frequency-resolved rotational spectrum, spanning up to 11.5 GHz and containing lines that are as narrow as 100 kHz. This new technique is called chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy. The technique offers the potential to determine the structural and dynamical properties of very large molecules solely from fully resolved pure rotational spectra. FTMW double resonance techniques employing a low-resolution UV laser facilitate an easy assignment of overlapping spectra produced by different conformers in the sample. Of particular interest are the energy landscapes of conformationally flexible molecules of biological importance, including studies of their interaction with solvent and/or other weakly bound molecules. An example is provided from the authors' work on p-methoxyphenethylamine, a neurotransmitter, and its complexes with water.
Low frequency noise elimination technique for 24-bit Σ-Δ data acquisition systems.
Qu, Shao-Bo; Robert, Olivier; Lognonné, Philippe; Zhou, Ze-Bing; Yang, Shan-Qing
2015-03-01
Low frequency 1/f noise is one of the key limiting factors of high precision measurement instruments. In this paper, digital correlated double sampling is implemented to reduce the offset and low frequency 1/f noise of a data acquisition system with 24-bit sigma delta (Σ-Δ) analog to digital converter (ADC). The input voltage is modulated by cross-coupled switches, which are synchronized to the sampling clock, and converted into digital signal by ADC. By using a proper switch frequency, the unwanted parasitic signal frequencies generated by the switches are avoided. The noise elimination processing is made through the principle of digital correlated double sampling, which is equivalent to a time shifted subtraction for the sampled voltage. The low frequency 1/f noise spectrum density of the data acquisition system is reduced to be flat down to the measurement frequency lower limit, which is about 0.0001 Hz in this paper. The noise spectrum density is eliminated by more than 60 dB at 0.0001 Hz, with a residual noise floor of (9 ± 2) nV/Hz(1/2) which is limited by the intrinsic white noise floor of the ADC above its corner frequency.
Li, Tuan; Zhang, Hongping; Niu, Xiaoji; Gao, Zhouzheng
2017-01-01
Dual-frequency Global Positioning System (GPS) Real-time Kinematics (RTK) has been proven in the past few years to be a reliable and efficient technique to obtain high accuracy positioning. However, there are still challenges for GPS single-frequency RTK, such as low reliability and ambiguity resolution (AR) success rate, especially in kinematic environments. Recently, multi-Global Navigation Satellite System (multi-GNSS) has been applied to enhance the RTK performance in terms of availability and reliability of AR. In order to further enhance the multi-GNSS single-frequency RTK performance in terms of reliability, continuity and accuracy, a low-cost micro-electro-mechanical system (MEMS) inertial measurement unit (IMU) is adopted in this contribution. We tightly integrate the single-frequency GPS/BeiDou/GLONASS and MEMS-IMU through the extended Kalman filter (EKF), which directly fuses the ambiguity-fixed double-differenced (DD) carrier phase observables and IMU data. A field vehicular test was carried out to evaluate the impacts of the multi-GNSS and IMU on the AR and positioning performance in different system configurations. Test results indicate that the empirical success rate of single-epoch AR for the tightly-coupled single-frequency multi-GNSS RTK/INS integration is over 99% even at an elevation cut-off angle of 40°, and the corresponding position time series is much more stable in comparison with the GPS solution. Besides, GNSS outage simulations show that continuous positioning with certain accuracy is possible due to the INS bridging capability when GNSS positioning is not available. PMID:29077070
Li, Tuan; Zhang, Hongping; Niu, Xiaoji; Gao, Zhouzheng
2017-10-27
Dual-frequency Global Positioning System (GPS) Real-time Kinematics (RTK) has been proven in the past few years to be a reliable and efficient technique to obtain high accuracy positioning. However, there are still challenges for GPS single-frequency RTK, such as low reliability and ambiguity resolution (AR) success rate, especially in kinematic environments. Recently, multi-Global Navigation Satellite System (multi-GNSS) has been applied to enhance the RTK performance in terms of availability and reliability of AR. In order to further enhance the multi-GNSS single-frequency RTK performance in terms of reliability, continuity and accuracy, a low-cost micro-electro-mechanical system (MEMS) inertial measurement unit (IMU) is adopted in this contribution. We tightly integrate the single-frequency GPS/BeiDou/GLONASS and MEMS-IMU through the extended Kalman filter (EKF), which directly fuses the ambiguity-fixed double-differenced (DD) carrier phase observables and IMU data. A field vehicular test was carried out to evaluate the impacts of the multi-GNSS and IMU on the AR and positioning performance in different system configurations. Test results indicate that the empirical success rate of single-epoch AR for the tightly-coupled single-frequency multi-GNSS RTK/INS integration is over 99% even at an elevation cut-off angle of 40°, and the corresponding position time series is much more stable in comparison with the GPS solution. Besides, GNSS outage simulations show that continuous positioning with certain accuracy is possible due to the INS bridging capability when GNSS positioning is not available.
Proton decoupling and recoupling under double-nutation irradiation in solid-state NMR
NASA Astrophysics Data System (ADS)
Takeda, Kazuyuki; Wakisaka, Asato; Takegoshi, K.
2014-12-01
The effect of 1H decoupling in magic-angle spinning solid-state NMR is studied under radiofrequency irradiation causing simultaneous nutations around a pair of orthogonal axes. Double-nutation with an arbitrary pair of nutation frequencies is implemented through modulation of the amplitude, phase, and frequency of the transmitting pulses. Similarity and difference of double-nutation decoupling and two-pulse phase-modulation decoupling schemes [A. E. Bennett, C. M. Rienstra, M. Auger, K. V. Lakshmi, and R. G. Griffin, J. Chem. Phys. 103, 6951-6958 (1995) and I. Scholz, P. Hodgkinson, B. H. Meier, and M. Ernst, J. Chem. Phys. 130, 114510 (2009)] are discussed. The structure of recoupling bands caused by interference of the 1H spin nutation with sample spinning is studied by both experiments and numerical simulations.
Robustness analysis of elastoplastic structure subjected to double impulse
NASA Astrophysics Data System (ADS)
Kanno, Yoshihiro; Takewaki, Izuru
2016-11-01
The double impulse has extensively been used to evaluate the critical response of an elastoplastic structure against a pulse-type input, including near-fault earthquake ground motions. In this paper, we propose a robustness assessment method for elastoplastic single-degree-of-freedom structures subjected to the double impulse input. Uncertainties in the initial velocity of the input, as well as the natural frequency and the strength of the structure, are considered. As fundamental properties of the structural robustness, we show monotonicity of the robustness measure with respect to the natural frequency. In contrast, we show that robustness is not necessarily improved even if the structural strength is increased. Moreover, the robustness preference between two structures with different values of structural strength can possibly reverse when the performance requirement is changed.
Solid-state switch increases switching speed
NASA Technical Reports Server (NTRS)
Mcgowan, G. F.
1966-01-01
Solid state switch for commutating capacitors in an RC commutated network increases switching speed and extends the filtering or commutating frequency spectrum well into the kilocycle region. The switch is equivalent to the standard double- pole double-throw /DPDT/ relay and is driven from digital micrologic circuits.
Doutres, Olivier; Atalla, Noureddine
2010-08-01
The objective of this paper is to propose a simple tool to estimate the absorption vs. transmission loss contributions of a multilayered blanket unbounded in a double panel structure and thus guide its optimization. The normal incidence airborne sound transmission loss of the double panel structure, without structure-borne connections, is written in terms of three main contributions; (i) sound transmission loss of the panels, (ii) sound transmission loss of the blanket and (iii) sound absorption due to multiple reflections inside the cavity. The method is applied to four different blankets frequently used in automotive and aeronautic applications: a non-symmetric multilayer made of a screen in sandwich between two porous layers and three symmetric porous layers having different pore geometries. It is shown that the absorption behavior of the blanket controls the acoustic behavior of the treatment at low and medium frequencies and its transmission loss at high frequencies. Acoustic treatment having poor sound absorption behavior can affect the performance of the double panel structure.
Data compression for satellite images
NASA Technical Reports Server (NTRS)
Chen, P. H.; Wintz, P. A.
1976-01-01
An efficient data compression system is presented for satellite pictures and two grey level pictures derived from satellite pictures. The compression techniques take advantages of the correlation between adjacent picture elements. Several source coding methods are investigated. Double delta coding is presented and shown to be the most efficient. Both predictive differential quantizing technique and double delta coding can be significantly improved by applying a background skipping technique. An extension code is constructed. This code requires very little storage space and operates efficiently. Simulation results are presented for various coding schemes and source codes.
Wallhead, Ian; Jiménez, Teresa Molina; Ortiz, Jose Vicente García; Toledo, Ignacio Gonzalez; Toledo, Cristóbal Gonzalez
2012-11-05
A novel of Fresnel-type lens for use as a solar collector has been designed which utilizes double total internal reflection (D-TIR) to optimize collection efficiency for high numerical aperture lenses (in the region of 0.3 to 0.6 NA). Results show that, depending on the numerical aperture and the size of the receiver, a collection efficiency theoretical improvement on the order of 20% can be expected with this new design compared with that of a conventional Fresnel lens.
Single-stage high frequency coaxial pulse tube cryocooler with base temperature below 30 K
NASA Astrophysics Data System (ADS)
Yang, L. W.; Xun, Y. Q.; Thummes, G.; Liang, J. T.
2010-05-01
This paper introduces two single-stage high frequency coaxial pulse tube cryocoolers (PTCs) with base temperature below 30 K. One has reached the lowest temperature of 26.1 K with an electric power of 250 W, which is the reported lowest temperature for single-stage high frequency PTC without multi-bypass. Using nozzle for double-inlet instead of need valves, the second PTC has achieved the temperature of 28.6 K with an electric power of 235 W. The analysis result is coinciding with experiments in general. The paper shows the advantage of the cooperated phase adjustment method of inertance tube and double-inlet, they might be the best choice when low temperature PTC is required.
Strain-induced three-photon effects
NASA Astrophysics Data System (ADS)
Jeong, Jae-Woo; Shin, Sung-Chul; Lyubchanskii, I. L.; Varyukhin, V. N.
2000-11-01
Strain-induced three-photon effects such as optical second-harmonic generation and hyper-Rayleigh light scattering, characterized by electromagnetic radiation at the double frequency of an incident light, are phenomenologically investigated by adopting a nonlinear photoelastic interaction. The relations between the strain and the nonlinear optical susceptibility for crystal surfaces with point symmetries of 4mm and 3m are described by a symmetry analysis of the nonlinear photoelastic tensor. We theoretically demonstrate a possibility of determining the strain components by measuring the rotational anisotropy of radiation at the second-harmonic frequency. Hyper-Rayleigh light scattering by dislocation strain is also described using a nonlinear photoelastic tensor. The angular dependencies of light scattered at the double frequency of an incident light for different scattering geometries are analyzed.
Li, Shutao; Zhang, Xingyu; Wang, Qingpu; Zhang, Xiaolei; Cong, Zhenhua; Zhang, Huaijin; Wang, Jiyang
2007-10-15
We report a linear-cavity high-power all-solid-state Q-switched yellow laser. The laser source comprises a diode-side-pumped Nd:YAG module that produces 1064 nm fundamental radiation, an intracavity BaWO(4) Raman crystal that generates a first-Stokes laser at 1180 nm, and a KTP crystal that frequency doubles the first-Stokes laser to 590 nm. A convex-plane cavity is employed in this configuration to counteract some of the thermal effect caused by high pump power. An average output power of 3.14 W at 590 nm is obtained at a pulse repetition frequency of 10 kHz.
The Dawn of Lead-Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film.
Wu, Cuncun; Zhang, Qiaohui; Liu, Yang; Luo, Wei; Guo, Xuan; Huang, Ziru; Ting, Hungkit; Sun, Weihai; Zhong, Xinrui; Wei, Shiyuan; Wang, Shufeng; Chen, Zhijian; Xiao, Lixin
2018-03-01
Recently, lead-free double perovskites have emerged as a promising environmentally friendly photovoltaic material for their intrinsic thermodynamic stability, appropriate bandgaps, small carrier effective masses, and low exciton binding energies. However, currently no solar cell based on these double perovskites has been reported, due to the challenge in film processing. Herein, a first lead-free double perovskite planar heterojunction solar cell with a high quality Cs 2 AgBiBr 6 film, fabricated by low-pressure assisted solution processing under ambient conditions, is reported. The device presents a best power conversion efficiency of 1.44%. The preliminary efficiency and the high stability under ambient condition without encapsulation, together with the high film quality with simple processing, demonstrate promise for lead-free perovskite solar cells.
Increased upstream ionization due to formation of a double layer.
Thakur, S Chakraborty; Harvey, Z; Biloiu, I A; Hansen, A; Hardin, R A; Przybysz, W S; Scime, E E
2009-01-23
We report observations that confirm a theoretical prediction that formation of a current-free double layer in a plasma expanding into a chamber of larger diameter is accompanied by an increase in ionization upstream of the double layer. The theoretical model argues that the increased ionization is needed to balance the difference in diffusive losses upstream and downstream of the expansion region. In our expanding helicon source experiments, we find that the upstream plasma density increases sharply at the same antenna frequency at which the double layer appears.
Standard atomic volumes in double-stranded DNA and packing in protein–DNA interfaces
Nadassy, Katalin; Tomás-Oliveira, Isabel; Alberts, Ian; Janin, Joël; Wodak, Shoshana J.
2001-01-01
Standard volumes for atoms in double-stranded B-DNA are derived using high resolution crystal structures from the Nucleic Acid Database (NDB) and compared with corresponding values derived from crystal structures of small organic compounds in the Cambridge Structural Database (CSD). Two different methods are used to compute these volumes: the classical Voronoi method, which does not depend on the size of atoms, and the related Radical Planes method which does. Results show that atomic groups buried in the interior of double-stranded DNA are, on average, more tightly packed than in related small molecules in the CSD. The packing efficiency of DNA atoms at the interfaces of 25 high resolution protein–DNA complexes is determined by computing the ratios between the volumes of interfacial DNA atoms and the corresponding standard volumes. These ratios are found to be close to unity, indicating that the DNA atoms at protein–DNA interfaces are as closely packed as in crystals of B-DNA. Analogous volume ratios, computed for buried protein atoms, are also near unity, confirming our earlier conclusions that the packing efficiency of these atoms is similar to that in the protein interior. In addition, we examine the number, volume and solvent occupation of cavities located at the protein–DNA interfaces and compared them with those in the protein interior. Cavities are found to be ubiquitous in the interfaces as well as inside the protein moieties. The frequency of solvent occupation of cavities is however higher in the interfaces, indicating that those are more hydrated than protein interiors. Lastly, we compare our results with those obtained using two different measures of shape complementarity of the analysed interfaces, and find that the correlation between our volume ratios and these measures, as well as between the measures themselves, is weak. Our results indicate that a tightly packed environment made up of DNA, protein and solvent atoms plays a significant role in protein–DNA recognition. PMID:11504874
Subwavelength and directional control of flexural waves in zone-folding induced topological plates
NASA Astrophysics Data System (ADS)
Chaunsali, Rajesh; Chen, Chun-Wei; Yang, Jinkyu
2018-02-01
Inspired by the quantum spin Hall effect shown by topological insulators, we propose a plate structure that can be used to demonstrate the pseudospin Hall effect for flexural waves. The system consists of a thin plate with periodically arranged resonators mounted on its top surface. We extend a technique based on the plane-wave expansion method to identify a double Dirac cone emerging due to the zone-folding in frequency band structures. This particular design allows us to move the double Dirac cone to a lower frequency than the resonating frequency of local resonators. We then manipulate the pattern of local resonators to open subwavelength Bragg band gaps that are topologically distinct. Building on this method, we verify numerically that a waveguide at an interface between two topologically distinct resonating plate structures can be used for guiding low-frequency, spin-dependent one-way flexural waves along a desired path with bends.
Phase locking of a semiconductor double-quantum-dot single-atom maser
NASA Astrophysics Data System (ADS)
Liu, Y.-Y.; Hartke, T. R.; Stehlik, J.; Petta, J. R.
2017-11-01
We experimentally study the phase stabilization of a semiconductor double-quantum-dot (DQD) single-atom maser by injection locking. A voltage-biased DQD serves as an electrically tunable microwave frequency gain medium. The statistics of the maser output field demonstrate that the maser can be phase locked to an external cavity drive, with a resulting phase noise L =-99 dBc/Hz at a frequency offset of 1.3 MHz. The injection locking range, and the phase of the maser output relative to the injection locking input tone are in good agreement with Adler's theory. Furthermore, the electrically tunable DQD energy level structure allows us to rapidly switch the gain medium on and off, resulting in an emission spectrum that resembles a frequency comb. The free running frequency comb linewidth is ≈8 kHz and can be improved to less than 1 Hz by operating the comb in the injection locked regime.
NASA Astrophysics Data System (ADS)
Liu, Yu; He, Chuanbo
2015-12-01
In this discussion, the corrections to the errors found in the derivations and the numerical code of a recent analytical study (Zhou et al. Journal of Sound and Vibration 333 (7) (2014) 1972-1990) on sound transmission through double-walled cylindrical shells lined with poroelastic material are presented and discussed, as well as the further effect of the external mean flow on the transmission loss. After applying the corrections, the locations of the characteristic frequencies of thin shells remain unchanged, as well as the TL results above the ring frequency where BU and UU remain the best configurations in sound insulation performance. In the low-frequency region below the ring frequency, however, the corrections attenuate the TL amplitude significantly for BU and UU, and hence the BB configuration exhibits the best performance which is consistent with previous observations for flat sandwich panels.
Double negative acoustic metastructure for attenuation of acoustic emissions
NASA Astrophysics Data System (ADS)
Kumar, Sanjay; Bhushan, Pulak; Prakash, Om; Bhattacharya, Shantanu
2018-03-01
Acoustic metamaterials hold great potential for attenuation of low frequency acoustic emissions. However, a fundamental challenge is achieving high transmission loss over a broad frequency range. In this work, we report a double negative acoustic metastructure for absorption of low frequency acoustic emissions in an aircraft. This is achieved by utilizing a periodic array of hexagonal cells interconnected with a neck and mounted with an elastic membrane on both ends. An average transmission loss of 56 dB under 500 Hz and an overall absorption of over 48% have been realized experimentally. The negative mass density is derived from the dipolar resonances created as a result of the in-phase movement of the membranes. Further, the negative bulk modulus is ascribed to the combined effect of out-of-phase acceleration of the membranes and the Helmholtz resonator. The proposed metastructure enables absorption of low frequency acoustic emissions with improved functionality that is highly desirable for varied applications.
Technical and scale efficiency in public and private Irish nursing homes - a bootstrap DEA approach.
Ni Luasa, Shiovan; Dineen, Declan; Zieba, Marta
2016-10-27
This article provides methodological and empirical insights into the estimation of technical efficiency in the nursing home sector. Focusing on long-stay care and using primary data, we examine technical and scale efficiency in 39 public and 73 private Irish nursing homes by applying an input-oriented data envelopment analysis (DEA). We employ robust bootstrap methods to validate our nonparametric DEA scores and to integrate the effects of potential determinants in estimating the efficiencies. Both the homogenous and two-stage double bootstrap procedures are used to obtain confidence intervals for the bias-corrected DEA scores. Importantly, the application of the double bootstrap approach affords true DEA technical efficiency scores after adjusting for the effects of ownership, size, case-mix, and other determinants such as location, and quality. Based on our DEA results for variable returns to scale technology, the average technical efficiency score is 62 %, and the mean scale efficiency is 88 %, with nearly all units operating on the increasing returns to scale part of the production frontier. Moreover, based on the double bootstrap results, Irish nursing homes are less technically efficient, and more scale efficient than the conventional DEA estimates suggest. Regarding the efficiency determinants, in terms of ownership, we find that private facilities are less efficient than the public units. Furthermore, the size of the nursing home has a positive effect, and this reinforces our finding that Irish homes produce at increasing returns to scale. Also, notably, we find that a tendency towards quality improvements can lead to poorer technical efficiency performance.
Transfer functions of double- and multiple-cavity Fabry-Perot filters driven by Lorentzian sources.
Marti, J; Capmany, J
1996-12-20
We derive expressions for the transfer functions of double- and multiple-cavity Fabry-Perot filters driven by laser sources with Lorentzian spectrum. These are of interest because of their applications in sensing and channel filtering in optical frequency-division multiplexing networks.
Transfer functions of double- and multiple-cavity Fabry Perot filters driven by Lorentzian sources
NASA Astrophysics Data System (ADS)
Marti, Javier; Capmany, Jose
1996-12-01
We derive expressions for the transfer functions of double- and multiple-cavity Fabry Perot filters driven by laser sources with Lorentzian spectrum. These are of interest because of their applications in sensing and channel filtering in optical frequency-division multiplexing networks.
Double resonator cantilever accelerometer
Koehler, Dale R.
1984-01-01
A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.
Study of working principle and thermal balance process of a double longitudinal-mode He-Ne laser
NASA Astrophysics Data System (ADS)
Wang, Li-qiang
2009-07-01
A double longitudinal mode He-Ne laser with frequency stabilization is proposed. Compared with general methods, such as Lamb dip, Zeeman splitting and molecule saturation absorption method, this design has some advantages, such as no piezocrystal or magnetic field, a short frequency-stabilized time, lower cost, and higher frequency stability and reproducibility. The metal wire is uniformly wrapped on the discharge tube of the laser. When the metal wire is heated up, the resonant cavity changes with the temperature field around the discharge tube to make the frequency of the laser to be tuned. The polarizations of the two longitudinal modes from the laser must be orthogonal. The parallelly polarized light and the vertically polarized light compete with each other, i. e., the parallelly polarized light generates a larger output power, while, the vertically polarized light correspondingly generates a smaller one, but an equal value is found at the reference frequencies by automatically adjusting the length of the resonant cavity, due to change of the temperature in the discharge tube. Consequently the frequencies of the laser are stabilized. In my experiment, an intracavity He-Ne laser whose length of the resonant cavity is larger than 50mm and smaller than 300mm is selected for the double longitudinal-mode laser. Influence factors of frequency stability of this laser is only change of the length of the resonant cavity. The laser includes three stages: mode hopping, transition stage, and modes stability from startup to laser stability. When this laser is in modes stability, the waveform of heating metal wire is observed to a pulse whose duty is almost 50%, and thermal balances of the resonant cavity mainly rely on discharge tube.
NASA Astrophysics Data System (ADS)
Csete, M.; Sipos, Á.; Kőházi-Kis, A.; Szalai, A.; Szekeres, G.; Mathesz, A.; Csákó, T.; Osvay, K.; Bor, Zs.; Penke, B.; Deli, M. A.; Veszelka, Sz.; Schmatulla, A.; Marti, O.
2007-12-01
Two-dimensional gratings are generated on poly-carbonate films spin-coated onto thin gold-silver bimetallic layers by two-beam interference method. Sub-micrometer periodic polymer dots and stripes are produced illuminating the poly-carbonate surface by p- and s-polarized beams of a frequency quadrupled Nd:YAG laser, and crossed gratings are generated by rotating the substrates between two sequential treatments. It is shown by pulsed force mode atomic force microscopy that the mean value of the adhesion is enhanced on the dot-arrays and on the crossed gratings. The grating-coupling on the two-dimensional structures results in double peaks on the angle dependent resonance curves of the surface plasmons excited by frequency doubled Nd:YAG laser. The comparison of the resonance curves proves that a surface profile ensuring minimal undirected scattering is required to optimize the grating-coupling, in addition to the minimal modulation amplitude, and to the optimal azimuthal orientation. The secondary minima are the narrowest in presence of linear gratings on multi-layers having optimized composition, and on crossed structures consisting of appropriately oriented polymer stripes. The large coupling efficiency and adhesion result in high detection sensitivity on the crossed gratings. Bio-sensing is realized by monitoring the rotated-crossed grating-coupled surface plasmon resonance curves, and detecting the chemical heterogeneity by tapping-mode atomic force microscopy. The interaction of Amyloid-β peptide, a pathogenetic factor in Alzheimer disease, with therapeutical molecules is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, J. K.; Roy, S.; Skinner, J. L.
2014-06-14
The spectroscopy of amide I vibrations has become a powerful tool for exploring protein structure and dynamics. To help with spectral interpretation, it is often useful to perform molecular dynamics (MD) simulations. To connect spectroscopic experiments to simulations in an efficient manner, several researchers have proposed “maps,” which relate observables in classical MD simulations to quantum spectroscopic variables. It can be difficult to discern whether errors in the theoretical results (compared to experiment) arise from inaccuracies in the MD trajectories or in the maps themselves. In this work, we evaluate spectroscopic maps independently from MD simulations by comparing experimental andmore » theoretical spectra for a single conformation of the α-helical model peptide Ac-Phe-(Ala){sub 5}-Lys-H{sup +} in the gas phase. Conformation-specific experimental spectra are obtained for the unlabeled peptide and for several singly and doubly {sup 13}C-labeled variants using infrared-ultraviolet double-resonance spectroscopy, and these spectra are found to be well-modeled by density functional theory (DFT) calculations at the B3LYP/6-31G** level. We then compare DFT results for the deuterated and {sup 13}C{sup 18}O-labeled peptide with those from spectroscopic maps developed and used previously by the Skinner group. We find that the maps are typically accurate to within a few cm{sup −1} for both frequencies and couplings, having larger errors only for the frequencies of terminal amides.« less
Discharge-pumped cw gas lasers utilizing 'dressed-atom' gain media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokin, P.P.; Glownia, J.H.; Hodgson, R.T.
The possibility of realizing an efficient gaseous laser-beam-generating medium that utilizes {lambda}-type coherently phased (i.e., 'dressed') atoms for the active laser species, but that does not inherently require the use of external laser beams for pumping, is explored. Specifically, it is investigated if multiphoton stimulated hyper-Raman scattering (SHRS) processes driven by fluorescence radiation generated in a continuous electrical discharge present within the vapor-containing cell could produce continuous-wave (cw) optical gain at the {lambda}-atom resonance frequencies {omega}{sub o} and {omega}{sub o}{sup '}. It is deduced that such gain could result from n-photon (n{>=}4) SHRS processes only if absorption of fluorescence pumpmore » light occurs in the first three transitions of the n-photon sequence representing the process unit step. Estimates of the amount of optical gain that could be produced in such a system indicate that it should be sufficient to allow multiwatt cw laser operation to occur on one set of {lambda} transitions connecting levels in a 'double-{lambda}' structure, with the pump light being discharge-produced fluorescence centered about the transitions of the other {lambda} pair. However, to initiate operation of such a device would require injection into the laser optical cavity of intense 'starter' laser pulses at both lasing frequencies. What should be an optimal experimental configuration for determining feasibility of the proposed laser device is described. In the suggested configuration, Cs-atom 6S{sub 1/2}-6P{sub 1/2} transitions form the double-{lambda} structure.« less
Analysis of multiple time scales in a transistor amplifier.
Armstead, Douglas N; Carroll, Thomas L
2005-03-01
It was shown previously in an experiment that when high frequency signals (on the order of 1 MHz) were injected into this low frequency amplifier, the nonlinearities of the pn junctions caused period doubling, chaos, and very low frequency oscillations (on the order of 1 Hz). In this paper we present theory and simulations to explain the existence of the low frequency oscillations.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... Nominal carrier frequencies shall be integral multiples of 5 kHz. (2) Audio-frequency band. The upper limit of the audio-frequency band (at—3 dB) of the transmitter shall not exceed 4.5 kHz and the lower... processing. If audio-frequency signal processing is used, the dynamic range of the modulating signal shall be...
Code of Federal Regulations, 2012 CFR
2012-10-01
.... Nominal carrier frequencies shall be integral multiples of 5 kHz. (2) Audio-frequency band. The upper limit of the audio-frequency band (at—3 dB) of the transmitter shall not exceed 4.5 kHz and the lower... processing. If audio-frequency signal processing is used, the dynamic range of the modulating signal shall be...
Code of Federal Regulations, 2011 CFR
2011-10-01
.... Nominal carrier frequencies shall be integral multiples of 5 kHz. (2) Audio-frequency band. The upper limit of the audio-frequency band (at—3 dB) of the transmitter shall not exceed 4.5 kHz and the lower... processing. If audio-frequency signal processing is used, the dynamic range of the modulating signal shall be...
Code of Federal Regulations, 2013 CFR
2013-10-01
.... Nominal carrier frequencies shall be integral multiples of 5 kHz. (2) Audio-frequency band. The upper limit of the audio-frequency band (at—3 dB) of the transmitter shall not exceed 4.5 kHz and the lower... processing. If audio-frequency signal processing is used, the dynamic range of the modulating signal shall be...
NASA Astrophysics Data System (ADS)
Pechousek, J.; Prochazka, R.; Cuda, J.; Frydrych, J.; Jancik, D.
2010-07-01
This paper is focused on a quality characterizing the Mössbauer spectra measured for various frequencies of the velocity signal. Standard electromechanical double-loudspeaker drive and digital PID velocity controller were used for calibration spectra measurement in the frequency interval from 4 up to 100 Hz. Several parameters were evaluated for recommendation of the suitable velocity signal frequency.
Design and analysis of a double superimposed chamber valveless MEMS micropump.
Zordan, E; Amirouche, F
2007-02-01
The newly designed micropump model proposed consists of a valveless double chamber pump completely simulated and optimized for drug delivery conditions. First, the inertia force and viscous loss in relation to actuation, pressure, and frequency is considered, and then a model of the nozzle/diffuser elements is introduced. The value of the flowrate obtained from the first model is then used to determine the loss coefficients starting from geometrical properties and flow velocity. From the developed model IT analysis is performed to predict the micropump performance based on the actuation parameters and no energy loss. A single-chamber pump with geometrical dimensions equal to each of the chambers of the double-chamber pump was also developed, and the results from both models are then compared for equally applied actuation pressure and frequency. Results show that the proposed design gives a maximum flow working frequency that is about 30 per cent lower than the single chamber design, with a maximum flowrate that is 140 per cent greater than that of the single chamber. Finally, the influences of geometrical properties on flowrate, maximum flow frequency, loss coefficients, and membrane strain are examined. The results show that the nozzle/ diffuser initial width and chamber side length are the most critical dimensions of the design.
NASA Astrophysics Data System (ADS)
Rechmann, Peter; Hennig, Thomas; Sadegh, Hamid M. M.; Goldin, Dan S.
1997-05-01
With respect to lasers emitting within the mid-IR spectral domain fiber applicators are being developed. Intended is the use of these lasers in periodontal therapy and their application inside the gingival pocket. Aim of the study presented here is to compare the effect of an Er:YAG laser on dental calculus with the results following irradiation with a frequency doubled Alexandrite laser. The surface of freshly extracted wisdom teeth and of extracted teeth suffering from severe periodontitis were irradiated with both laser wavelengths using a standardized application protocol. Calculus on the enamel surface, at the enamel cementum junction and on the root surface was irradiated. For light microscope investigations undecalcified histological sections were prepared after treatment. For the scanning electron microscope teeth were dried in alcohol and sputtered with gold. Investigations revealed that with both laser systems calculus can be removed. Using the frequency doubled Alexandrite laser selective removal of calculus is possible while engaging the Er:YAG laser even at lowest energies necessary for calculus removal healthy cementum is ablated without control.
Selective ablation of dental calculus with a frequency-doubled Alexandrite laser
NASA Astrophysics Data System (ADS)
Rechmann, Peter; Hennig, Thomas
1996-01-01
The aim of the study was the selective removal of dental calculus by means of pulsed lasers. In a first approach the optical characteristics of subgingival calculus were calculated using fluorescence emission spectroscopy (excitation laser: N2-laser, wavelength 337 nm, pulse duration 4 ns). Subgingival calculus seems to absorb highly in the ultraviolet spectral region up to 420 nm. According to these measurements a frequency doubled Alexandrite-laser (wavelength 377 nm, pulse duration 100 ns, repetition rate 110 Hz) was used to irradiate calculus located on enamel, at the cementum enamel junction and on the root surface (located on dentin or on cementum). Irradiation was performed perpendicular to the root surface with a laser fluence of 1 Jcm-2. During the irradiation procedure an effective water cooling-system was engaged. Histological investigations were done on undecalcified sections. As a result, engaging low fluences allows a fast and strictly selective removal of subgingival calculus. Even more the investigations revealed that supragingival calculus can be removed in a strictly selective manner engaging a frequency doubled Alexandrite-laser. No adverse side effects to the surrounding tissues could be found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hailong; Vibration Control Lab, School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042; Zhang, Ning
Magneto-rheological (MR) damper possesses inherent hysteretic characteristics. We investigate the resulting nonlinear behaviors of a two degree-of-freedom (2-DoF) MR vibration isolation system under harmonic external excitation. A MR damper is identified by employing the modified Bouc-wen hysteresis model. By numerical simulation, we characterize the nonlinear dynamic evolution of period-doubling, saddle node bifurcating and inverse period-doubling using bifurcation diagrams of variations in frequency with a fixed amplitude of the harmonic excitation. The strength of chaos is determined by the Lyapunov exponent (LE) spectrum. Semi-physical experiment on the 2-DoF MR vibration isolation system is proposed. We trace the time history and phasemore » trajectory under certain values of frequency of the harmonic excitation to verify the nonlinear dynamical evolution of period-doubling bifurcations to chaos. The largest LEs computed with the experimental data are also presented, confirming the chaotic motion in the experiment. We validate the chaotic motion caused by the hysteresis of the MR damper, and show the transitions between distinct regimes of stable motion and chaotic motion of the 2-DoF MR vibration isolation system for variations in frequency of external excitation.« less
Continuous-wave Nd:YVO4/KTiOPO4 green laser at 542 nm under diode pumping into the emitting level
NASA Astrophysics Data System (ADS)
Liu, J. H.
2012-10-01
We report a green laser at 542 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1086 nm Nd:YVO4 laser under 880 nm diode pumping into the emitting level 4 F 3/2. A KTiOPO4 (KTP) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 14.5 W, as high as 1.33 W of CW output power at 542 nm is achieved. The optical-to-optical conversion efficiency is up to 9.2%, and the fluctuation of the green output power was better than 3.8% in the given 30 min.
Laser Ablation of Dental Calculus Around 400 nm Using a Ti:Sapphire Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenly, J.; Seka, W.; Rechmann, P.
2009-10-19
A Nd:YAG laser-pumped, frequency-doubled Ti:sapphire laser is used for selective ablation of calculus. The laser provides ≤25 mJ at 400 nm (60-ns pulse width, 10-Hz repetition rate). The laser is coupled into an optical multimode fiber coiled around a 4-in.-diam drum to generate a top-hat output intensity profile. With coaxial water cooling, this is ideal for efficient, selective calculus removal. This is in stark contrast with tightly focused Gaussian beams that are energetically inefficient and lead to irreproducible results. Calculus is well ablated at high fluences ≥2 J/cm^2; stalling occurs below this fluence because of photobleaching. Healthy hard tissue ismore » not removed at fluences ≤3 J/cm^2.« less
A W-band integrated power module using MMIC MESFET power amplifiers and varactor doublers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, T.C.; Chen, Seng Woon; Pande, K.
1993-12-01
A high-performance integrated power module using U-band MMIC MESFET power amplifiers in conjunction with W-band MMIC high efficiency varactor doublers has been developed for millimeter-wave system applications. This paper presents the design, fabrication, and performance of this W-band integrated power module. Measured results of the complete integrated power module show an output power of 90 mW with an overall associated gain of 29.5 dB at 94 GHz. A saturated power of over 95 mW was also achieved. These results represent the highest reported power and gain at W-band using MESFET and varactor frequency doubling technologies. This integrated power module ismore » suitable for the future 94 GHz missile seeker applications.« less
11 W narrow linewidth laser source at 780nm for laser cooling and manipulation of Rubidium
NASA Astrophysics Data System (ADS)
Sané, S. S.; Bennetts, S.; Debs, J. E.; Kuhn, C. C. N.; McDonald, G. D.; Altin, P. A.; Close, J. D.; Robins, N. P.
2012-04-01
We present a narrow linewidth continuous laser source with over 11 Watts of output power at 780nm, based on single-pass frequency doubling of an amplified 1560nm fibre laser with 36% efficiency. This source offers a combination of high power, simplicity, mode quality and stability. Without any active stabilization, the linewidth is measured to be below 10kHz. The fibre seed is tunable over 60GHz, which allows access to the D2 transitions in 87Rb and 85Rb, providing a viable high-power source for laser cooling as well as for large-momentum-transfer beamsplitters in atom interferometry. Sources of this type will pave the way for a new generation of high flux, high duty-cycle degenerate quantum gas experiments.
Islam, Mohammad Shahidul; Al-Majid, Abdullah Mohammed; Barakat, Assem; Soliman, Saied M; Ghabbour, Hazem A; Quah, Ching Kheng; Fun, Hoong-Kun
2015-05-07
This paper describes an efficient and regioselective method for the synthesis of novel fluorinated spiro-heterocycles in excellent yield by cascade [5+1] double Michael addition reactions. The compounds 7,11-bis(4-fluorophenyl)-2,4-dimethyl- 2,4-diazaspiro[5.5] undecane-1,3,5,9-tetraone (3a) and 2,4-dimethyl-7,11-bis (4-(trifluoromethyl)phenyl)-2,4-diazaspiro[5.5]undecane-1,3,5,9-tetraone (3b) were characterized by single-crystal X-ray diffraction, FT-IR and NMR techniques. The optimized geometrical parameters, infrared vibrational frequencies and NMR chemical shifts of the studied compounds have also been calculated using the density functional theory (DFT) method, using Becke-3-Lee-Yang-Parr functional and the 6-311G(d,p) basis set. There is good agreement between the experimentally determined structural parameters, vibrational frequencies and NMR chemical shifts of the studied compounds and those predicted theoretically. The calculated natural atomic charges using NBO method showed higher polarity of 3a compared to 3b.The calculated electronic spectra are also discussed based on the TD-DFT calculations.
Strain induced parametric pumping of a domain wall and its depinning from a notch
NASA Astrophysics Data System (ADS)
Nepal, Rabindra; Gungordu, Utkan; Kovalev, Alexey
Using Thiele's method and detailed micromagnetic simulations, we study resonant oscillation of a domain wall in a notch of a ferromagnetic nanowire due to the modulation of magnetic anisotropy by external AC strain. Such resonant oscillation results from the parametric pumping of domain wall by AC strain at frequency about double the free domain wall oscillation frequency, which is mainly determined by the perpendicular anisotropy and notch geometry. This effect leads to a substantial reduction in depinning field or current required to depin a domain wall from the notch, and offers a mechanism for efficient domain wall motion in a notched nanowire. Our theoretical model accounts for the pinning potential due to a notch by explicitly calculating ferromagnetic energy as a function of notch geometry parameters. We also find similar resonant domain wall oscillations and reduction in the domain wall depinning field or current due to surface acoustic wave in soft ferromagnetic nanowire without uniaxial anisotropy that energetically favors an in-plane domain wall. DOE Early Career Award DE-SC0014189 and DMR- 1420645.
Precision Isotope Shift Measurements in Calcium Ions Using Quantum Logic Detection Schemes.
Gebert, Florian; Wan, Yong; Wolf, Fabian; Angstmann, Christopher N; Berengut, Julian C; Schmidt, Piet O
2015-07-31
We demonstrate an efficient high-precision optical spectroscopy technique for single trapped ions with nonclosed transitions. In a double-shelving technique, the absorption of a single photon is first amplified to several phonons of a normal motional mode shared with a cotrapped cooling ion of a different species, before being further amplified to thousands of fluorescence photons emitted by the cooling ion using the standard electron shelving technique. We employ this extension of the photon recoil spectroscopy technique to perform the first high precision absolute frequency measurement of the 2D(3/2)→2P(1/2) transition in calcium, resulting in a transition frequency of f=346 000 234 867(96) kHz. Furthermore, we determine the isotope shift of this transition and the 2S(1/2)→2P(1/2) transition for 42Ca+, 44Ca+, and 48Ca+ ions relative to 40Ca+ with an accuracy below 100 kHz. Improved field and mass shift constants of these transitions as well as changes in mean square nuclear charge radii are extracted from this high resolution data.
Double-duct liquid metal magnetohydrodynamic engine
Haaland, Carsten M.
1995-01-01
An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.
Double-duct liquid metal magnetohydrodynamic engine
Haaland, Carsten M.
1997-01-01
An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.
Lasers in clinical urology: state of the art and new horizons.
Marks, Andrew J; Teichman, Joel M H
2007-06-01
We present an overview of current and emerging lasers for Urology. We begin with an overview of the Holmium:YAG laser. The Ho:YAG laser is the gold standard lithotripsy modality for endoscopic lithotripsy, and compares favorably to standard electrocautery transurethral resection of the prostate for benign prostatic hyperplasia (BPH). Available laser technologies currently being studied include the frequency doubled double-pulse Nd:Yag (FREDDY) and high-powered potassium-titanyl-phosphate (KTP) lasers. The FREDDY laser presents an affordable and safe option for intracorporeal lithotripsy, but it does not fragment all stone compositions, and does not have soft tissue applications. The high power KTP laser shows promise in the ablative treatment of BPH. Initial experiments with the Erbium:YAG laser show it has improved efficiency of lithotripsy and more precise ablative and incisional properties compared to Ho:YAG, but the lack of adequate optical fibers limits its use in Urology. Thulium:YAG fiber lasers have also demonstrated tissue ablative and incision properties comparable to Ho:YAG. Lastly, compact size, portability, and low maintenance schedules of fiber lasers may allow them to shape the way lasers are used by urologists in the future.
NASA Astrophysics Data System (ADS)
Ansari, R.; Ajori, S.; Ameri, A.
2015-10-01
The properties and behavior of carbon nanotubes (CNTs) in aqueous environment due to their considerable potential applications in nanobiotechnology and designing nanobiosensors have attracted the attention of researchers. In this study, molecular dynamics simulations are carried out to investigate the vibrational characteristics of single- and double-walled CNTs containing ice nanotubes (a new phase of ice) in vacuum and aqueous environments. The results demonstrate that formation of ice nanotubes inside the CNTs reduces the natural frequency of pure CNTs. Moreover, it is demonstrated that increasing the number of walls considerably reduces the sensitivity of frequency to the presence of ice nanotube inside CNT. Additionally, it is shown that increasing the length decreases the effect of ice nanotube on reducing the frequency. The calculation of natural frequency of CNTs in aqueous media demonstrates that the interaction of CNTs with water molecules considerably reduces the natural frequency up to 50 %. Finally, it is demonstrated that in the case of CNTs with one free end in aqueous environment, the CNT does not vibrate in its first mode, and its frequency is between the frequencies of first and second modes of vibration.
NASA Astrophysics Data System (ADS)
Patel, Ajay M.; Joshi, Anand Y.
2016-10-01
This paper deals with the nonlinear vibration analysis of a double walled carbon nanotube based mass sensor with curvature factor or waviness, which is doubly clamped at a source and a drain. Nonlinear vibrational behaviour of a double-walled carbon nanotube excited harmonically near its primary resonance is considered. The double walled carbon nanotube is harmonically excited by the addition of an excitation force. The modelling involves stretching of the mid plane and damping as per phenomenon. The equation of motion involves four nonlinear terms for inner and outer tubes of DWCNT due to the curved geometry and the stretching of the central plane due to the boundary conditions. The vibrational behaviour of the double walled carbon nanotube with different surface deviations along its axis is analyzed in the context of the time response, Poincaré maps and Fast Fourier Transformation diagrams. The appearance of instability and chaos in the dynamic response is observed as the curvature factor on double walled carbon nanotube is changed. The phenomenon of Periodic doubling and intermittency are observed as the pathway to chaos. The regions of periodic, sub-harmonic and chaotic behaviour are clearly seen to be dependent on added mass and the curvature factors in the double walled carbon nanotube. Poincaré maps and frequency spectra are used to explicate and to demonstrate the miscellany of the system behaviour. With the increase in the curvature factor system excitations increases and results in an increase of the vibration amplitude with reduction in excitation frequency.
Estimating frame bulk and shear moduli of two double porosity layers by ultrasound transmission.
Bai, Ruonan; Tinel, Alain; Alem, Abdellah; Franklin, Hervé; Wang, Huaqing
2016-08-01
The acoustic plane wave transmission by water saturated double porosity media is investigated. Two samples of double porosity media assumed to obey Berryman and Wang (BW) extension (Berryman and Wang, 1995, 2000) of Biot's theory in the low frequency regime are under consideration: ROBU® (pure binder-free borosilicate glass 3.3 manufactured to form the individual grains) and Tobermorite 11Å (the individual porous cement grains show irregular shapes). The de facto gap existing between theoretical and experimental data can be minimized by modifying adequately two of the parameters estimated from triaxial tests: the frame bulk and shear moduli. The frequency dependent imaginary parts that follow necessary from the minimization are in relation with the energy losses due to contact relaxation and friction between grains. Copyright © 2016 Elsevier B.V. All rights reserved.
Proton decoupling and recoupling under double-nutation irradiation in solid-state NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeda, Kazuyuki, E-mail: takezo@kuchem.kyoto-u.ac.jp; Wakisaka, Asato; Takegoshi, K.
The effect of {sup 1}H decoupling in magic-angle spinning solid-state NMR is studied under radiofrequency irradiation causing simultaneous nutations around a pair of orthogonal axes. Double-nutation with an arbitrary pair of nutation frequencies is implemented through modulation of the amplitude, phase, and frequency of the transmitting pulses. Similarity and difference of double-nutation decoupling and two-pulse phase-modulation decoupling schemes [A. E. Bennett, C. M. Rienstra, M. Auger, K. V. Lakshmi, and R. G. Griffin, J. Chem. Phys. 103, 6951–6958 (1995) and I. Scholz, P. Hodgkinson, B. H. Meier, and M. Ernst, J. Chem. Phys. 130, 114510 (2009)] are discussed. The structuremore » of recoupling bands caused by interference of the {sup 1}H spin nutation with sample spinning is studied by both experiments and numerical simulations.« less
Tansu, Nelson; Zhao, Hongping; Zhang, Jing; Liu, Guangyu
2014-04-01
A double-metallic deposition process is used whereby adjacent layers of different metals are deposited on a substrate. The surface plasmon frequency of a base layer of a first metal is tuned by the surface plasmon frequency of a second layer of a second metal formed thereon. The amount of tuning is dependent upon the thickness of the metallic layers, and thus tuning can be achieved by varying the thicknesses of one or both of the metallic layers. In a preferred embodiment directed to enhanced LED technology in the green spectrum regime, a double-metallic Au/Ag layer comprising a base layer of gold (Au) followed by a second layer of silver (Ag) formed thereon is deposited on top of InGaN/GaN quantum wells (QWs) on a sapphire/GaN substrate.
NASA Technical Reports Server (NTRS)
Borovsky, J. E.
1986-01-01
After examining the properties of Coulomb-collision resistivity, anomalous (collective) resistivity, and double layers, a hybrid anomalous-resistivity/double-layer model is introduced. In this model, beam-driven waves on both sides of a double layer provide electrostatic plasma-wave turbulence that greatly reduces the mobility of charged particles. These regions then act to hold open a density cavity within which the double layer resides. In the double layer, electrical energy is dissipated with 100 percent efficiency into high-energy particles, creating conditions optimal for the collective emission of polarized radio waves.
Comparison of chain sampling plans with single and double sampling plans
NASA Technical Reports Server (NTRS)
Stephens, K. S.; Dodge, H. F.
1976-01-01
The efficiency of chain sampling is examined through matching of operating characteristics (OC) curves of chain sampling plans (ChSP) with single and double sampling plans. In particular, the operating characteristics of some ChSP-0, 3 and 1, 3 as well as ChSP-0, 4 and 1, 4 are presented, where the number pairs represent the first and the second cumulative acceptance numbers. The fact that the ChSP procedure uses cumulative results from two or more samples and that the parameters can be varied to produce a wide variety of operating characteristics raises the question whether it may be possible for such plans to provide a given protection with less inspection than with single or double sampling plans. The operating ratio values reported illustrate the possibilities of matching single and double sampling plans with ChSP. It is shown that chain sampling plans provide improved efficiency over single and double sampling plans having substantially the same operating characteristics.
The Dawn of Lead‐Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film
Wu, Cuncun; Zhang, Qiaohui; Liu, Yang; Luo, Wei; Guo, Xuan; Huang, Ziru; Ting, Hungkit; Sun, Weihai; Zhong, Xinrui; Wei, Shiyuan
2017-01-01
Abstract Recently, lead‐free double perovskites have emerged as a promising environmentally friendly photovoltaic material for their intrinsic thermodynamic stability, appropriate bandgaps, small carrier effective masses, and low exciton binding energies. However, currently no solar cell based on these double perovskites has been reported, due to the challenge in film processing. Herein, a first lead‐free double perovskite planar heterojunction solar cell with a high quality Cs2AgBiBr6 film, fabricated by low‐pressure assisted solution processing under ambient conditions, is reported. The device presents a best power conversion efficiency of 1.44%. The preliminary efficiency and the high stability under ambient condition without encapsulation, together with the high film quality with simple processing, demonstrate promise for lead‐free perovskite solar cells. PMID:29593974
Yellow light generation by frequency doubling of a fiber oscillator
NASA Astrophysics Data System (ADS)
Bacher, Christoph; Oliveira, Ricardo; Nogueira, Rogério N.; Romano, Valerio; Ryser, Manuel
2016-04-01
Laser sources with light-emission in the yellow spectral range around 577nm are very favorable for a variety of applications. These include applications in astronomy, in ophthalmology or in quantum optics. The generation and amplification of 1154 nm light is not straight forward when using Yb-doped optical fibers, since lasing occurs preferentially around the gain-maximum of 1030 nm. We generate the radiation within a fiber Bragg grating (FBG) based cavity and focused on reducing the amplified spontaneous emission (ASE). After the cavity, the output is frequency doubled to 577nm by using a second harmonic crystal.
Frequency-doubled passively Q-switched microchip laser producing 225 ps pulses at 671 nm.
Nikkinen, Jari; Korpijärvi, Ville-Markus; Leino, Iiro; Härkönen, Antti; Guina, Mircea
2016-11-15
We report a 671 nm laser source emitting 225 ps pulses with an average power of 55 mW and a repetition rate of 444 kHz. The system consists of a 1342 nm SESAM Q-switched Nd:YVO4 microchip master oscillator and a dual-stage Nd:YVO4 power amplifier. The 1342 nm signal was frequency-doubled to 671 nm using a periodically poled lithium niobate crystal. This laser source provides a practical alternative for applications requiring high energy picosecond pulses, such as time-gated Raman spectroscopy.
Synchronous optical pumping of quantum revival beats for atomic magnetometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seltzer, S. J.; Meares, P. J.; Romalis, M. V.
2007-05-15
We observe quantum beats with periodic revivals due to nonlinear spacing of Zeeman levels in the ground state of potassium atoms, and demonstrate their synchronous optical pumping by double modulation of the pumping light at the Larmor frequency and the revival frequency. We show that synchronous pumping increases the degree of spin polarization by a factor of 4. As a practical example, we explore the application of this double-modulation technique to atomic magnetometers operating in the geomagnetic field range, and find that it can increase the sensitivity and reduce magnetic-field-orientation-dependent measurement errors endemic to alkali-metal magnetometers.
NASA Astrophysics Data System (ADS)
Fu, H. X.; Qian, Y. H.
In this paper, a modification of homotopy analysis method (HAM) is applied to study the two-degree-of-freedom coupled Duffing system. Firstly, the process of calculating the two-degree-of-freedom coupled Duffing system is presented. Secondly, the single periodic solutions and double periodic solutions are obtained by solving the constructed nonlinear algebraic equations. Finally, comparing the periodic solutions obtained by the multi-frequency homotopy analysis method (MFHAM) and the fourth-order Runge-Kutta method, it is found that the approximate solution agrees well with the numerical solution.
NASA Astrophysics Data System (ADS)
Storch, Joel A.; Elishakoff, Isaac
2013-11-01
We calculate the natural frequencies and mode shapes of a cantilevered double-walled carbon nanotube carrying a rigid body—representative of a bacterium or virus—at the tip of the outer nanotube. By idealizing the nanotubes as Bernoulli-Euler beams, we are able to obtain exact expressions for both the mode shapes and characteristic frequency equation. Separate analyses are performed for the special case of a concentrated tip mass and the more complicated situation where the tip body also exhibits inertia and mass center offset from the beam tip.
NASA Technical Reports Server (NTRS)
Duffy, Kirsten P.
2016-01-01
NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. This effort aims to identify design parameters that affect power density and efficiency for a double-Halbach array permanent-magnet ironless axial flux motor configuration. These parameters include both geometrical and higher-order parameters, including pole count, rotor speed, current density, and geometries of the magnets, windings, and air gap.
Frequency Analysis of the RRc Variables of the MACHO Database for the LMC
NASA Astrophysics Data System (ADS)
Kovács, G.; Alcock, C.; Allsman, R.; Alves, D.; Axelrod, T.; Becker, A.; Bennett, D.; Clement, C.; Cook, K. H.; Drake, A.; Freeman, K.; Geha, M.; Griest, K.; Kurtz, D. W.; Lehner, M.; Marshall, S.; Minniti, D.; Nelson, C.; Peterson, B.; Popowski, P.; Pratt, M.; Quinn, P.; Rodgers, A.; Rowe, J.; Stubbs, C.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.; MACHO Collaboration
We present the first massive frequency analysis of the 1200 first overtone RR Lyrae stars in the Large Magellanic Cloud observed in the first 4.3 yr of the MACHO project. Besides the many new double-mode variables, we also discovered stars with closely spaced frequencies. These variables are most probably nonradial pulsators.
Modernization of gas-turbine engines with high-frequency induction motors
NASA Astrophysics Data System (ADS)
Abramovich, B. N.; Sychev, Yu A.; Kuznetsov, P. A.
2018-03-01
Main tendencies of growth of electric energy consumption in general and mining industries were analyzed in the paper. A key role of electric drive in this process was designated. A review about advantages and disadvantages of unregulated gearboxes with mechanical units that are commonly used in domestically produced gas-turbine engines was made. This review allows one to propose different gas-turbine engines modernization schemes with the help of PWM-driven high-frequency induction motors. Induction motors with the double rotor winding were examined. A simulation of high-frequency induction motors with double rotor windings in Matlab-Simulink software was carried out based on equivalent circuit parameters. Obtained characteristics of new motors were compared with serially produced analogues. After the simulation, results were implemented in the real prototype.
NASA Technical Reports Server (NTRS)
Brown, E. R.; Sollner, T. C. L. G.; Goodhue, W. D.; Parker, C. D.
1987-01-01
A double-barrier diode at room temperature has yielded oscillations with fundamental frequencies up to 56 GHz and second harmonics up to 87 GHz. The output powers at these frequencies were about 60 and 18 microW, respectively. These results are attributed to a recent improvement in the material parameters of the device and to the integration of the device into a waveguide resonator. The most successful diode to date has thin (about 1.5 nm) AlAs barriers, a 4.5-nm-wide GaAs quantum well, and 2 x 10 to the 17th/cu cm doping concentration in the n-GaAs outside the barriers. This particular diode is expected to oscillate at frequencies higher than those achieved by any reported p-n tunnel diode.
NASA Astrophysics Data System (ADS)
Mason, J. M.; Fahy, F. J.
1988-07-01
Double-leaf partitions are often utilized in situations requiring low weight structures with high transmission loss, an example of current interest being the fuselage walls of propeller-driven aircraft. In this case, acoustic excitation is periodic and, if one of the frequencies of excitation lies in the region of the fundamental mass-air-mass frequency of the partition, insulation performance is considerably less than desired. The potential effectiveness of tuned Helmholtz resonators connected to the partition cavity is investigated as a method of improving transmission loss. This is demonstrated by a simple theoretical model and then experimentally verified. Results show that substantial improvements may be obtained at and around the mass-air-mass frequency for a total resonator volume 15 percent of the cavity volume.
Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation
NASA Astrophysics Data System (ADS)
Sosnovtseva, O. V.; Pavlov, A. N.; Mosekilde, E.; Holstein-Rathlou, N.-H.; Marsh, D. J.
2004-09-01
Biological time series often display complex oscillations with several interacting rhythmic components. Renal autoregulation, for instance, involves at least two separate mechanisms both of which can produce oscillatory variations in the pressures and flows of the individual nephrons. Using double-wavelet analysis we propose a method to examine how the instantaneous frequency and amplitude of a fast mode is modulated by the presence of a slower mode. Our method is applied both to experimental data from normotensive and hypertensive rats showing different oscillatory patterns and to simulation results obtained from a physiologically based model of the nephron pressure and flow control. We reveal a nonlinear interaction between the two mechanisms that regulate the renal blood flow in the form of frequency and amplitude modulation of the myogenic oscillations.
Photonic microwave waveforms generation based on pulse carving and superposition in time-domain
NASA Astrophysics Data System (ADS)
Xia, Yi; Jiang, Yang; Zi, Yuejiao; He, Yutong; Tian, Jing; Zhang, Xiaoyu; Luo, Hao; Dong, Ruyang
2018-05-01
A novel photonic approach for various microwave waveforms generation based on time-domain synthesis is theoretically analyzed and experimentally investigated. In this scheme, two single-drive Mach-Zehnder modulators are used for pulses shaping. After shifting the phase and implementing envelopes superposition of the pulses, desired waveforms can be achieved in time-domain. The theoretic analysis and simulations are presented. In the experimental demonstrations, a triangular waveform, square waveform, and half duty cycle sawtooth (or reversed-sawtooth) waveform are generated successfully. By utilizing time multiplexing technique, a frequency-doubled sawtooth (or reversed-sawtooth) waveform with 100% duty cycle can be obtained. In addition, a fundamental frequency sawtooth (or reversed-sawtooth) waveform with 100% duty cycle can also be achieved by the superposition of square waveform and frequency-doubled sawtooth waveform.
NASA Astrophysics Data System (ADS)
Chen, Xilun; Wang, Xiangchuan; Pan, Shilong
2017-03-01
An implementation of a distance measurement system using double-sideband with suppressed carrier modulation (DSB-SC) frequency scanning interferometry is proposed to reduce the variations in the optical path and improve the measurement accuracy. In this proposed system, the electro-optic DSB-SC is used to create dual-swept signals with opposite scanning directions. For each swept signal, the relative distance between the reference arm and the measuring arm is determined by the beat frequency of signals from two arms. By multiplying both beat signals, measurement errors caused by variations in the optical path can be greatly reduced. As an experimental demonstration, a vibration was introduced in the optical path length. The experimental results show that the variations can be suppressed for over 19.9 dB.
Lock-in thermography approach for imaging the efficiency of light emitters and optical coolers
NASA Astrophysics Data System (ADS)
Radevici, Ivan; Tiira, Jonna; Oksanen, Jani
2017-02-01
Developing optical cooling technologies requires access to reliable efficiency measurement techniques and ability to detect spatial variations in the efficiency and light emission of the devices. We investigate the possibility to combine the calorimetric efficiency measurement principles with lock-in thermography (LIT) and conventional luminescence microscopy to enable spatially resolved measurement of the efficiency, current spreading and local device heating of double diode structures (DDS) serving as test vessels for developing thermophotonic cooling devices. Our approach enables spatially resolved characterization and localization of the losses of the double diode structures as well as other light emitting semiconductor devices. In particular, the approach may allow directly observing effects like current crowding and surface recombination on the light emission and heating of the DDS devices.
NASA Astrophysics Data System (ADS)
Brakensiek, Joshua; Ragozzine, D.
2012-10-01
The transit method for discovering extra-solar planets relies on detecting regular diminutions of light from stars due to the shadows of planets passing in between the star and the observer. NASA's Kepler Mission has successfully discovered thousands of exoplanet candidates using this technique, including hundreds of stars with multiple transiting planets. In order to estimate the frequency of these valuable systems, our research concerns the efficient calculation of geometric probabilities for detecting multiple transiting extrasolar planets around the same parent star. In order to improve on previous studies that used numerical methods (e.g., Ragozzine & Holman 2010, Tremaine & Dong 2011), we have constructed an efficient, analytical algorithm which, given a collection of conjectured exoplanets orbiting a star, computes the probability that any particular group of exoplanets are transiting. The algorithm applies theorems of elementary differential geometry to compute the areas bounded by circular curves on the surface of a sphere (see Ragozzine & Holman 2010). The implemented algorithm is more accurate and orders of magnitude faster than previous algorithms, based on comparison with Monte Carlo simulations. Expanding this work, we have also developed semi-analytical methods for determining the frequency of exoplanet mutual events, i.e., the geometric probability two planets will transit each other (Planet-Planet Occultation) and the probability that this transit occurs simultaneously as they transit their star (Overlapping Double Transits; see Ragozzine & Holman 2010). The latter algorithm can also be applied to calculating the probability of observing transiting circumbinary planets (Doyle et al. 2011, Welsh et al. 2012). All of these algorithms have been coded in C and will be made publicly available. We will present and advertise these codes and illustrate their value for studying exoplanetary systems.
Series production of next-generation guide-star lasers at TOPTICA and MPBC
NASA Astrophysics Data System (ADS)
Enderlein, Martin; Friedenauer, Axel; Schwerdt, Robin; Rehme, Paul; Wei, Daoping; Karpov, Vladimir; Ernstberger, Bernhard; Leisching, Patrick; Clements, Wallace R. L.; Kaenders, Wilhelm G.
2014-07-01
Large telescopes equipped with adaptive optics require high power 589-nm continuous-wave sources with emission linewidths of ~5 MHz. These guide-star lasers should be highly reliable and simple to operate and maintain for many years at the top of a mountain facility. After delivery of the first 20-W systems to our lead customer ESO, TOPTICA and MPBC have begun series production of next-generation sodium guide-star lasers. The chosen approach is based on ESO's patented narrow-band Raman fiber amplifier (RFA) technology [1]. A master oscillator signal from a TOPTICA 50-mW, 1178-nm diode laser, with stabilized emission frequency and linewidth of ~ 1 MHz, is amplified in an MPBC polarization-maintaining (PM) RFA pumped by a high-power 1120-nm PM fiber laser. With efficient stimulated Brillouin scattering suppression, an unprecedented 40 W of narrow-band RFA output has been obtained. This is spatially mode-matched into a patented resonant-cavity frequency doubler providing also the repumper light [2]. With a diffraction-limited output beam and doubling efficiencies < 80%, all ESO design goals have been easily fulfilled. Together with a wall-plug efficiency of < 3%, including all system controls, and a cooling liquid flow of only 5 l/min, the modular, turn-key, maintenance-free and compact system design allows a direct integration with a launch telescope. With these fiber-based guide star lasers, TOPTICA for the first time offers a fully engineered, off-the-shelf guide star laser system for ground-based optical telescopes. Here we present a comparison of test results of the first batch of laser systems, demonstrating the reproducibility of excellent optical characteristics.
A Bowtie Antenna Coupled Tunable Photon-Assisted Tunneling Double Quantum Well (DQW) THz Detector
2002-01-01
Proc. Vol. 692 © 2002 Materials Research Society H4.2 A Bowtie Antenna Coupled Tunable Photon-Assisted Tunneling Double Quantum Well (DQW) THz Detector ...on photon-assisted tunneling (PAT) between the two electron layers in a double quantum well (DQW) heterostructure, will be explained. The detector is...the frequency and strength of that radiation. The THz detector discussed in this paper makes use of photon- assisted tunnelling (PAT) between multiple
NASA Astrophysics Data System (ADS)
Ho, Jen-Hsuan; Berkhoff, Arthur
2014-03-01
This paper compares various decentralised control strategies, including structural and acoustic actuator-sensor configuration designs, to reduce noise transmission through a double panel structure. The comparison is based on identical control stability indexes. The double panel structure consists of two panels with air in between and offers the advantages of low sound transmission at high frequencies, low heat transmission, and low weight. The double panel structure is widely used, such as in the aerospace and automotive industries. Nevertheless, the resonance of the cavity and the poor sound transmission loss at low frequencies limit the double panel's noise control performance. Applying active structural acoustic control to the panels or active noise control to the cavity has been discussed in many papers. In this paper, the resonances of the panels and the cavity are considered simultaneously to further reduce the transmitted noise through an existing double panel structure. A structural-acoustic coupled model is developed to investigate and compare various structural control and cavity control methods. Numerical analysis and real-time control results show that structural control should be applied to both panels. Three types of cavity control sources are presented and compared. The results indicate that the largest noise reduction is obtained with cavity control by loudspeakers modified to operate as incident pressure sources.
Development of high repetition rate nitric oxide planar laser induced fluorescence imaging
NASA Astrophysics Data System (ADS)
Jiang, Naibo
This thesis has documented the development of a MHz repitition rate pulse burst laser system. Second harmonic and third harmonic efficiencies are improved by adding a Phase Conjugate Mirror to the system. Some high energy fundamental, second harmonic, and third harmonic burst sequences consisting of 1--12 pulses separated in time by between 4 and 12 microseconds are now routinely obtained. The reported burst envelopes are quite uniform. We have also demonstrated the ability to generate ultra-high frequency sequences of broadly wavelength tunable, high intensity laser pulses using a home built injection seeded Optical Parametric Oscillator (OPO), pumped by the second and third harmonic output of the pulse burst laser. Typical OPO output burst sequences consist of 6--10 pulses, separated in time by between 6 and 10 microseconds. With third harmonic pumping of the OPO system, we studied four conditions, two-crystal Singly Resonant OPO (SRO) cavity, three-crystal OPO cavity, single pass two-crystal Doubly Resonant OPO (DRO) cavity and double pass two-crystal OPO cavity. The double pass two-crystal OPO cavity gives the best operation in burst mode. For single pass OPO, the average total OPO conversion efficiency is approximately 25%. For double pass OPO, the average total OPO conversion efficiency is approximately 35%. As a preliminary work, we studied 532nm pumping of a single crystal OPO cavity. With single pulse pumping, the conversion efficiency can reach 30%. For both 355nm and 532nm pumping OPO, we have demonstrated injection seeding. The OPO output light linewidth is significantly narrowed. Some preliminary etalon traces are also reported. By mixing the OPO signal output at 622nm with residual third harmonic at 355nm, we obtained 226nm burst sequences with average pulse energy of ˜0.2 mJ. Injection seeding of the OPO increases the energy achieved by a factor of ˜2. 226nm burst sequences with reasonably uniform burst envelopes are reported. Using the system we have obtained, for the first time by any known optical method, Planar Laser Induced Fluorescence (PLIF) image sequences at ultrahigh (≥100kHz) frame rates, in particular NO PLIF image sequences, have been obtained in a Mach 2 jet. We also studied the possibility of utilizing a 250 kHz pulsed Nd:YVO 4 laser as the master oscillator. 10-pulse-10-mus spacing burst sequences with reasonably uniform burst envelope have been obtained. The total energy of the burst sequence is ˜2.5J.
Heat transfer and thermal management of electric vehicle batteries with phase change materials
NASA Astrophysics Data System (ADS)
Ramandi, M. Y.; Dincer, I.; Naterer, G. F.
2011-07-01
This paper examines a passive thermal management system for electric vehicle batteries, consisting of encapsulated phase change material (PCM) which melts during a process to absorb the heat generated by a battery. A new configuration for the thermal management system, using double series PCM shells, is analyzed with finite volume simulations. A combination of computational fluid dynamics (CFD) and second law analysis is used to evaluate and compare the new system against the single PCM shells. Using a finite volume method, heat transfer in the battery pack is examined and the results are used to analyse the exergy losses. The simulations provide design guidelines for the thermal management system to minimize the size and cost of the system. The thermal conductivity and melting temperature are studied as two important parameters in the configuration of the shells. Heat transfer from the surroundings to the PCM shell in a non-insulated case is found to be infeasible. For a single PCM system, the exergy efficiency is below 50%. For the second case for other combinations, the exergy efficiencies ranged from 30-40%. The second shell content did not have significant influence on the exergy efficiencies. The double PCM shell system showed higher exergy efficiencies than the single PCM shell system (except a case for type PCM-1). With respect to the reference environment, it is found that in all cases the exergy efficiencies decreased, when the dead-state temperatures rises, and the destroyed exergy content increases gradually. For the double shell systems for all dead-state temperatures, the efficiencies were very similar. Except for a dead-state temperature of 302 K, with the other temperatures, the exergy efficiencies for different combinations are well over 50%. The range of exergy efficiencies vary widely between 15 and 85% for a single shell system, and between 30-80% for double shell systems.
NASA Astrophysics Data System (ADS)
Campolina, Bruno L.
The prediction of aircraft interior noise involves the vibroacoustic modelling of the fuselage with noise control treatments. This structure is composed of a stiffened metallic or composite panel, lined with a thermal and acoustic insulation layer (glass wool), and structurally connected via vibration isolators to a commercial lining panel (trim). The goal of this work aims at tailoring the noise control treatments taking design constraints such as weight and space optimization into account. For this purpose, a representative aircraft double-wall is modelled using the Statistical Energy Analysis (SEA) method. Laboratory excitations such as diffuse acoustic field and point force are addressed and trends are derived for applications under in-flight conditions, considering turbulent boundary layer excitation. The effect of the porous layer compression is firstly addressed. In aeronautical applications, compression can result from the installation of equipment and cables. It is studied analytically and experimentally, using a single panel and a fibrous uniformly compressed over 100% of its surface. When compression increases, a degradation of the transmission loss up to 5 dB for a 50% compression of the porous thickness is observed mainly in the mid-frequency range (around 800 Hz). However, for realistic cases, the effect should be reduced since the compression rate is lower and compression occurs locally. Then the transmission through structural connections between panels is addressed using a four-pole approach that links the force-velocity pair at each side of the connection. The modelling integrates experimental dynamic stiffness of isolators, derived using an adapted test rig. The structural transmission is then experimentally validated and included in the double-wall SEA model as an equivalent coupling loss factor (CLF) between panels. The tested structures being flat, only axial transmission is addressed. Finally, the dominant sound transmission paths are identified in the 100 Hz to 10 kHz frequency range for double-walls under diffuse acoustic field and under point-force excitations. Non-resonant transmission is higher at low frequencies (frequencies lower than 1 kHz) while the structure-borne and the airborne paths dominate at mid- and high-frequencies, around 1 kHz and higher, respectively. An experimental validation on double-walls shows that the model is able to predict changes in the overall transmission caused by different structural couplings (rigid coupling, coupling via isolators and structurally uncoupled). Noise reduction means adapted to each transmission path, such as absorption, dissipation and structural decoupling, may be then derived. Keywords: Statistical energy analysis, Vibration isolator, Double-wall, Transfer path analysis, Transmission Loss.
[Echolocation calls of free-flying Himalayan swiftlets (Aerodramus brevirostris)].
Wang, Bin; Ma, Jian-Zhang; Chen, Yi; Tan, Liang-Jing; Liu, Qi; Shen, Qi-Qi; Liao, Qing-Yi; Zhang, Li-Biao
2013-02-01
Here, we present our findings of free-flying echolocation calls of Himalayan swiftlets (Aerodramus brevirostris), which were recorded in Shenjing Cave, Hupingshan National Reserve, Shimen County, Hunan Province in June 2012, using Avisoft-UltraSoundGate 116(e). We noted that after foraging at dusk, the Himalayan swiftlets flew fast into the cave without clicks, and then slowed down in dark area in the cave, but with sounds. The echolocation sounds of Himalayan swiftlets are broadband, double noise burst clicks, separated by a short pause. The inter-pulse intervals between double clicks (99.3±3.86 ms)were longer than those within double clicks (6.6±0.42 ms) (P<0.01). With the exception of peak frequency, between 6.2±0.08 kHz and 6.2±0.10 kHz, (P>0.05) and pulse duration 2.9±0.12 ms, 3.2±0.17 ms, (P>0.05) between the first and second, other factors-maximum frequency, minimum frequency, frequency bandwidth, and power-were significantly different between the clicks. The maximum frequency of the first pulse (20.1±1.10 kHz) was higher than that of second (15.4±0.98 kHz) (P<0.01), while the minimum frequency of the first pulse (3.7±0.12 kHz) was lower than that of second (4.0±0.09 kHz) (P<0.05); resulting in the frequency bandwidth of the first pulse (16.5±1.17 kHz) longer than that of second (11.4±1.01 kHz) (P<0.01). The power of the first pulse (-32.5±0.60 dB) was higher than that of second (-35.2±0.94 dB) (P<0.05). More importantly, we found that Himalayan swiftlets emitted echolocation pulses including ultrasonic sound, with a maximum frequency reaching 33.2 kHz.
High output power of differently cut Nd:MgO:LiTaO3 CW lasers
NASA Astrophysics Data System (ADS)
Sun, D. H.; Liu, S. D.; Wang, D. Z.; Sang, Y. H.; Kang, X. L.; Liu, H.; Bi, Y.; Yan, B. X.; He, J. L.; Wang, J. Y.
2013-04-01
A high-quality Nd3+ and Mg2+ co-doped LiTaO3 (Nd:MgO:LT) crystal was grown by the Czochralski method. The polarized absorption spectra and fluorescence spectra were studied, and the absorption cross section was calculated by Judd-Ofelt (J-O) theory. The laser performance with different sample cuts of the crystal was investigated for the first time, and it was found that Nd:MgO:LT crystal with different cutting directions (a and c) exhibits different laser properties. By optimizing a partial reflectivity mirror in the laser experimental setting, a high continuous wave output power of 3.58 W was obtained at 1092 and 1076 nm with an optical-to-optical conversion efficiency of 22.78% and slope efficiency of 26.06%. The results indicate that Nd:MgO:LT crystal is a promising candidate for the manufacture of Nd3+ doped periodically poled MgO:LiTaO3 crystal (Nd:PPMgOLT), which should have considerable applications in self-frequency doubling and optical parametric oscillation laser devices.
NASA Astrophysics Data System (ADS)
Shi, Jindan; Feng, Xian
2018-03-01
We report a diode pumped self-frequency-doubled nonlinear crystalline waveguide on glass fiber. A ribbon fiber has been drawn on the glass composition of 50GeO2-25B2O3-25(La,Yb)2O3. Surface channel waveguides have been written on the surface of the ribbon fiber, using space-selective laser heating method with the assistance of a 244 nm CW UV laser. The Raman spectrum of the written area indicates that the waveguide is composed of structure-deformed nonlinear (La,Yb)BGeO5 crystal. The laser-induced surface wavy cracks have also been observed and the forming mechanism of the wavy cracks has been discussed. Efficient second harmonic generation has been observed from the laser-induced crystalline waveguide, using a 976 nm diode pump. 13 μW of 488 nm output has been observed from a 17 mm long waveguide with 26.0 mW of launched diode pump power, corresponding to a normalized conversion efficiency of 4.4%W-1.
Tang, Shuo; Jung, Woonggyu; McCormick, Daniel; Xie, Tuqiang; Su, Jiangping; Ahn, Yeh-Chan; Tromberg, Bruce J.; Chen, Zhongping
2010-01-01
A multiphoton endoscopy system has been developed using a two-axis microelectromechanical systems (MEMS) mirror and double-cladding photonic crystal fiber (DCPCF). The MEMS mirror has a 2-mm-diam, 20-deg optical scanning angle, and 1.26-kHz and 780-Hz resonance frequencies on the x and y axes. The maximum number of resolvable focal spots of the MEMS scanner is 720×720 on the x and y axes, which indicates that the MEMS scanner can potentially support high-resolution multiphoton imaging. The DCPCF is compared with standard single-mode fiber and hollow-core photonic bandgap fiber on the basis of dispersion, attenuation, and coupling efficiency properties. The DCPCF has high collection efficiency, and its dispersion can be compensated by grating pairs. Three configurations of probe design are investigated, and their imaging quality and field of view are compared. A two-lens configuration with a collimation and a focusing lens provides the optimum imaging performance and packaging flexibility. The endoscope is applied to image fluorescent microspheres and bovine knee joint cartilage. PMID:19566298
High-efficiency targeted editing of large viral genomes by RNA-guided nucleases.
Bi, Yanwei; Sun, Le; Gao, Dandan; Ding, Chen; Li, Zhihua; Li, Yadong; Cun, Wei; Li, Qihan
2014-05-01
A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)) RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ) and homology-directed repair (HDR) pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses.
High-Efficiency Targeted Editing of Large Viral Genomes by RNA-Guided Nucleases
Gao, Dandan; Ding, Chen; Li, Zhihua; Li, Yadong; Cun, Wei; Li, Qihan
2014-01-01
A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)) RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ) and homology-directed repair (HDR) pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses. PMID:24788700
Double-flow focused liquid injector for efficient serial femtosecond crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oberthuer, Dominik; Knoška, Juraj; Wiedorn, Max O.
Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Furthermore, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improvedmore » operation and characteristics of these devices.« less
Double-flow focused liquid injector for efficient serial femtosecond crystallography
Oberthuer, Dominik; Knoška, Juraj; Wiedorn, Max O.; Beyerlein, Kenneth R.; Bushnell, David A.; Kovaleva, Elena G.; Heymann, Michael; Gumprecht, Lars; Kirian, Richard A.; Barty, Anton; Mariani, Valerio; Tolstikova, Aleksandra; Adriano, Luigi; Awel, Salah; Barthelmess, Miriam; Dörner, Katerina; Xavier, P. Lourdu; Yefanov, Oleksandr; James, Daniel R.; Nelson, Garrett; Wang, Dingjie; Calvey, George; Chen, Yujie; Schmidt, Andrea; Szczepek, Michael; Frielingsdorf, Stefan; Lenz, Oliver; Snell, Edward; Robinson, Philip J.; Šarler, Božidar; Belšak, Grega; Maček, Marjan; Wilde, Fabian; Aquila, Andrew; Boutet, Sébastien; Liang, Mengning; Hunter, Mark S.; Scheerer, Patrick; Lipscomb, John D.; Weierstall, Uwe; Kornberg, Roger D.; Spence, John C. H.; Pollack, Lois; Chapman, Henry N.; Bajt, Saša
2017-01-01
Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Moreover, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improved operation and characteristics of these devices. PMID:28300169
Double-flow focused liquid injector for efficient serial femtosecond crystallography
Oberthuer, Dominik; Knoška, Juraj; Wiedorn, Max O.; ...
2017-03-16
Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Furthermore, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improvedmore » operation and characteristics of these devices.« less
NASA Astrophysics Data System (ADS)
Wu, F. P.; Zhang, B.; Liu, Z. L.; Tang, Y.; Zhang, N.
2017-12-01
We calculate the trapping forces exerted by a highly focused Bessel-Gaussian beam on a double-layered sphere by means of vector diffraction integral, T-matrix method and Maxwell stress tensor integral. The Bessel-Gaussian beam is azimuthally polarized. Numerical results predicate that the double-layered sphere with air core can be stably trapped in three-dimensions. The trapping forces and efficiencies are dependent on the refraction index and size of the inner core. The trapping efficiency can be optimized by choosing the refraction indices of the inner core and outer layer. Our computational method can be easily modified for other laser beams and particles with arbitrary geometries and multilayers.
Research on the performance of low-lift diving tubular pumping system by CFD and Test
NASA Astrophysics Data System (ADS)
Xia, Chenzhi; Cheng, Li; Liu, Chao; Zhou, Jiren; Tang, Fangping; Jin, Yan
2016-11-01
Post-diving tubular pump is always used in large-discharge & low-head irrigation or storm drainage pumping station, its impeller and motor share the same shaft. Considering diving tubular pump system's excellent hydraulic performance, compact structure, good noise resistance and low operating cost, it is used in Chinese pump stations. To study the hydraulic performance and pressure fluctuation of inlet and outlet passage in diving tubular pump system, both of steady and unsteady full flow fields are numerically simulated at three flow rate conditions by using CFD commercial software. The asymmetry of the longitudinal structure of inlet passage affects the flow pattern on outlet. Especially at small flow rate condition, structural asymmetry will result in the uneven velocity distribution on the outlet of passage inlet. The axial velocity distribution uniformity increases as the flow rate increases on the inlet of passage inlet, and there is a positive correlation between hydraulic loss in the passage inlet and flow rate's quadratic. The axial velocity distribution uniformity on the outlet of passage inlet is 90% at design flow rate condition. The predicted result shows the same trend with test result, and the range of high efficiency area between predicted result and test result is almost identical. The dominant frequency of pressure pulsation is low frequency in inlet passage at design condition. The dominant frequency is high frequency in inlet passage at small and large flow rate condition. At large flow rate condition, the flow pattern is significantly affected by the rotation of impeller in inlet passage. At off-design condition, the pressure pulsation is strong at outlet passage. At design condition, the dominant frequency is 35.57Hz, which is double rotation frequency.
Holographic cinematography and its applications
NASA Astrophysics Data System (ADS)
Smigielski, P.; Fagot, H.; Albe, F.
1986-08-01
Recording of single-exposure cineholograms of living bodies on 126-mm films, at a repetition rate of 25 holograms per second with the help of a frequency-doubled pulse YAG-laser; and recording of double-exposure cineholograms of reflecting moving objects for medical and industrial applications are reported. Limitations of 3D movies are described.
2H{ 19F} REDOR for distance measurements in biological solids using a double resonance spectrometer
NASA Astrophysics Data System (ADS)
Grage, Stephan L.; Watts, Jude A.; Watts, Anthony
2004-01-01
A new approach for distance measurements in biological solids employing 2H{ 19F} rotational echo double resonance was developed and validated on 2H, 19F- D-alanine and an imidazopyridine based inhibitor of the gastric H +/K +-ATPase. The 2H- 19F double resonance experiments presented here were performed without 1H decoupling using a double resonance NMR spectrometer. In this way, it was possible to benefit from the relatively longer distance range of fluorine without the need of specialized fluorine equipment. A distance of 2.5 ± 0.3 Å was measured in the alanine derivative, indicating a gauche conformation of the two labels. In the case of the imidazopyridine compound a lower distance limit of 5.2 Å was determined and is in agreement with an extended conformation of the inhibitor. Several REDOR variants were compared, and their advantages and limitations discussed. Composite fluorine dephasing pulses were found to enhance the frequency bandwidth significantly, and to reduce the dependence of the performance of the experiment on the exact choice of the transmitter frequency.
Frequency-dependent learning achieved using semiconducting polymer/electrolyte composite cells
NASA Astrophysics Data System (ADS)
Dong, W. S.; Zeng, F.; Lu, S. H.; Liu, A.; Li, X. J.; Pan, F.
2015-10-01
Frequency-dependent learning has been achieved using semiconducting polymer/electrolyte composite cells. The cells composed of polymer/electrolyte double layers realized the conventional spike-rate-dependent plasticity (SRDP) learning model. These cells responded to depression upon low-frequency stimulation and to potentiation upon high-frequency stimulation and presented long-term memory. The transition threshold θm from depression to potentiation varied depending on the previous stimulations. A nanostructure resembling a bio-synapse in its transport passages was demonstrated and a random channel model was proposed to describe the ionic kinetics at the polymer/electrolyte interface during and after stimulations with various frequencies, accounting for the observed SRDP.Frequency-dependent learning has been achieved using semiconducting polymer/electrolyte composite cells. The cells composed of polymer/electrolyte double layers realized the conventional spike-rate-dependent plasticity (SRDP) learning model. These cells responded to depression upon low-frequency stimulation and to potentiation upon high-frequency stimulation and presented long-term memory. The transition threshold θm from depression to potentiation varied depending on the previous stimulations. A nanostructure resembling a bio-synapse in its transport passages was demonstrated and a random channel model was proposed to describe the ionic kinetics at the polymer/electrolyte interface during and after stimulations with various frequencies, accounting for the observed SRDP. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02891d
Analysis of different techniques to improve sound transmission loss in cylindrical shells
NASA Astrophysics Data System (ADS)
Oliazadeh, Pouria; Farshidianfar, Anooshiravan
2017-02-01
In this study, sound transmission through double- and triple-walled shells is investigated. The structure-acoustic equations based on Donnell's shell theory are presented and transmission losses calculated by this approach are compared with the transmission losses obtained according to Love's theory. An experimental set-up is also constructed to compare natural frequencies obtained from Donnell and Love's theories with experimental results in the high frequency region. Both comparisons show that Donnell's theory predicts the sound transmission characteristics and vibrational behavior better than Love's theory in the high frequency region. The transmission losses of the double- and triple-walled construction are then presented for various radii and thicknesses. Then the effects of air gap size as an important design parameter are studied. Sound transmission characteristics through a circular cylindrical shell are also computed along with consideration of the effects of material damping. Modest absorption is shown to greatly reduce the sound transmission at ring frequency and coincidence frequency. Also the effects of five common gases that are used for filling the gap are investigated.
Development of a Hydrogen Gas Sensor Using a Double Saw Resonator System at Room Temperature
Yunusa, Zainab; Hamidon, Mohd Nizar; Ismail, Alyani; Isa, Maryam Mohd; Yaacob, Mohd Hanif; Rahmanian, Saeed; Ibrahim, Siti Azlida; Shabaneh, Arafat A.A
2015-01-01
A double SAW resonator system was developed as a novel method for gas sensing applications. The proposed system was investigated for hydrogen sensing. Commercial Surface Acoustic Wave (SAW) resonators with resonance frequencies of 433.92 MHz and 433.42 MHz were employed in the double SAW resonator system configuration. The advantages of using this configuration include its ability for remote measurements, and insensitivity to vibrations and other external disturbances. The sensitive layer is composed of functionalized multiwalled carbon nanotubes and polyaniline nanofibers which were deposited on pre-patterned platinum metal electrodes fabricated on a piezoelectric substrate. This was mounted into the DSAWR circuit and connected in parallel. The sensor response was measured as the difference between the resonance frequencies of the SAW resonators, which is a measure of the gas concentration. The sensor showed good response towards hydrogen with a minimum detection limit of 1%. PMID:25730480