Hisano, Hiroshi; Meints, Brigid; Moscou, Matthew J; Cistue, Luis; Echávarri, Begoña; Sato, Kazuhiro; Hayes, Patrick M
2017-04-01
The genetic substitution of transformation amenability alleles from 'Golden Promise' can facilitate the development of transformation-efficient lines from recalcitrant barley cultivars. Barley (Hordeum vulgare) cv. 'Golden Promise' is one of the most useful and well-studied cultivars for genetic manipulation. In a previous report, we identified several transformation amenability (TFA) loci responsible for Agrobacterium-mediated transformation using the F 2 generation of immature embryos, derived from 'Haruna Nijo' × 'Golden Promise,' as explants. In this report, we describe higher density mapping of these TFA regions with additional SNP markers using the same transgenic plants. To demonstrate the robustness of transformability alleles at the TFA loci, we genotyped 202 doubled haploid progeny from the cross 'Golden Promise' × 'Full Pint.' Based on SNP genotype, we selected lines having 'Golden Promise' alleles at TFA loci and used them for transformation. Of the successfully transformed lines, DH120366 came the closest to achieving a level of transformation efficiency comparable to 'Golden Promise.' The results validate that the genetic substitution of TFA alleles from 'Golden Promise' can facilitate the development of transformation-efficient lines from recalcitrant barley cultivars.
Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guss, Adam M; Olson, Daniel G.; Caiazza, Nicky
2012-01-01
BACKGROUND: Industrial production of biofuels and other products by cellulolytic microorganisms is of interest but hindered by the nascent state of genetic tools. Although a genetic system for Clostridium thermocellum DSM1313 has recently been developed, available methods achieve relatively low efficiency and similar plasmids can transform C. thermocellum at dramatically different efficiencies. RESULTS: We report an increase in transformation efficiency of C. thermocellum for a variety of plasmids by using DNA that has been methylated by Escherichia coli Dam but not Dcm methylases. When isolated from a dam+ dcm+ E. coli strain, pAMG206 transforms C. thermocellum 100-fold better than themore » similar plasmid pAMG205, which contains an additional Dcm methylation site in the pyrF gene. Upon removal of Dcm methylation, transformation with pAMG206 showed a four- to seven-fold increase in efficiency; however, transformation efficiency of pAMG205 increased 500-fold. Removal of the Dcm methylation site from the pAM205 pyrF gene via silent mutation resulted in increased transformation efficiencies equivalent to that of pAMG206. Upon proper methylation, transformation efficiency of plasmids bearing the pMK3 and pB6A origins of replication increased ca. three orders of magnitude. CONCLUSION: E. coli Dcm methylation decreases transformation efficiency in C. thermocellum DSM1313. The use of properly methylated plasmid DNA should facilitate genetic manipulation of this industrially relevant bacterium.« less
Norzagaray-Valenzuela, Claudia D; Germán-Báez, Lourdes J; Valdez-Flores, Marco A; Hernández-Verdugo, Sergio; Shelton, Luke M; Valdez-Ortiz, Angel
2018-05-16
Microalgae are photosynthetic microorganisms widely used for the production of highly valued compounds, and recently they have been shown to be promising as a system for the heterologous expression of proteins. Several transformation methods have been successfully developed, from which the Agrobacterium tumefaciens-mediated method remains the most promising. However, microalgae transformation efficiency by A. tumefaciens is shown to vary depending on several transformation conditions. The present study aimed to establish an efficient genetic transformation system in the green microalgae Dunaliella tertiolecta using the A. tumefaciens method. The parameters assessed were the infection medium, the concentration of the A. tumefaciens and co-culture time. As a preliminary screening, the expression of the gusA gene and the viability of transformed cells were evaluated and used to calculate a novel parameter called Transformation Efficiency Index (TEI). The statistical analysis of TEI values showed five treatments with the highest gusA gene expression. To ensure stable transformation, transformed colonies were cultured on selective medium using hygromycin B and the DNA of resistant colonies were extracted after five subcultures and molecularly analyzed by PCR. Results revealed that treatments which use solid infection medium, A. tumefaciens OD 600 = 0.5 and co-culture times of 72 h exhibited the highest percentage of stable gusA expression. Overall, this study established an efficient, optimized A. tumefaciens-mediated genetic transformation of D. tertiolecta, which represents a relatively easy procedure with no expensive equipment required. This simple and efficient protocol opens the possibility for further genetic manipulation of this commercially-important microalgae for biotechnological applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Genetic engineering of Ganoderma lucidum for the efficient production of ganoderic acids.
Xu, Jun-Wei; Zhong, Jian-Jiang
2015-01-01
Ganoderma lucidum is a well-known traditional medicinal mushroom that produces ganoderic acids with numerous interesting bioactivities. Genetic engineering is an efficient approach to improve ganoderic acid biosynthesis. However, reliable genetic transformation methods and appropriate genetic manipulation strategies remain underdeveloped and thus should be enhanced. We previously established a homologous genetic transformation method for G. lucidum; we also applied the established method to perform the deregulated overexpression of a homologous 3-hydroxy-3-methyl-glutaryl coenzyme A reductase gene in G. lucidum. Engineered strains accumulated more ganoderic acids than wild-type strains. In this report, the genetic transformation systems of G. lucidum are described; current trends are also presented to improve ganoderic acid production through the genetic manipulation of G. lucidum.
Genetic transformation of carnation (Dianthus caryophylus L.).
Nontaswatsri, Chalermsri; Fukai, Seiichi
2010-01-01
This chapter describes a rapid and efficient protocol for explant preparation and genetic transformation of carnation. Node explants from greenhouse-grown plants and leaf explants from in vitro plants are infected with Agrobacterium tumefaciens AGL0 harboring pKT3 plasmid, consisting of GUS and NPTII genes. Explant preparation is an important factor to obtain the transformed plants. The GUS-staining area was located only on the cut end of explants and only explants with a cut end close to the connecting area between node and leaf, produced transformed shoots. The cocultivation medium is also an important factor for the successful genetic transformation of carnation node and leaf explants. High genetic transformation efficiency of node and leaf explants cocultured with Agrobacterium tumefaciens was achieved when the explants were cocultivated on a filter paper soaked with water or water and acetosyringone mixture (AS).
Beaudette, Kahlia; Hughes, Tia M; Marcus, Jeffrey M
2014-01-01
Germline transformation with transposon vectors is an important tool for insect genetics, but progress in developing transformation protocols for butterflies has been limited by high post-injection ova mortality. Here we present an improved glass injection needle design for injecting butterfly ova that increases survival in three Nymphalid butterfly species. Using the needles to genetically transform the common buckeye butterfly Junonia coenia, the hatch rate for injected Junonia ova was 21.7%, the transformation rate was 3%, and the overall experimental efficiency was 0.327%, a substantial improvement over previous results in other butterfly species. Improved needle design and a higher efficiency of transformation should permit the deployment of transposon-based genetic tools in a broad range of less fecund lepidopteran species.
Establishment of an efficient transformation system for Pleurotus ostreatus.
Lei, Min; Wu, Xiangli; Zhang, Jinxia; Wang, Hexiang; Huang, Chenyang
2017-11-21
Pleurotus ostreatus is widely cultivated worldwide, but the lack of an efficient transformation system regarding its use restricts its genetic research. The present study developed an improved and efficient Agrobacterium tumefaciens-mediated transformation method in P. ostreatus. Four parameters were optimized to obtain the most efficient transformation method. The strain LBA4404 was the most suitable for the transformation of P. ostreatus. A bacteria-to-protoplast ratio of 100:1, an acetosyringone (AS) concentration of 0.1 mM, and 18 h of co-culture showed the best transformation efficiency. The hygromycin B phosphotransferase gene (HPH) was used as the selective marker, and EGFP was used as the reporter gene in this study. Southern blot analysis combined with EGFP fluorescence assay showed positive results, and mitotic stability assay showed that more than 75% transformants were stable after five generations. These results showed that our transformation method is effective and stable and may facilitate future genetic studies in P. ostreatus.
Genetic engineering of Ganoderma lucidum for the efficient production of ganoderic acids
Xu, Jun-Wei; Zhong, Jian-Jiang
2015-01-01
Ganoderma lucidum is a well-known traditional medicinal mushroom that produces ganoderic acids with numerous interesting bioactivities. Genetic engineering is an efficient approach to improve ganoderic acid biosynthesis. However, reliable genetic transformation methods and appropriate genetic manipulation strategies remain underdeveloped and thus should be enhanced. We previously established a homologous genetic transformation method for G. lucidum; we also applied the established method to perform the deregulated overexpression of a homologous 3-hydroxy-3-methyl-glutaryl coenzyme A reductase gene in G. lucidum. Engineered strains accumulated more ganoderic acids than wild-type strains. In this report, the genetic transformation systems of G. lucidum are described; current trends are also presented to improve ganoderic acid production through the genetic manipulation of G. lucidum. PMID:26588475
Wang, Bo; Yu, Jianping
2015-01-01
Restriction digestion of foreign DNA is one of the key biological barriers against genetic transformation in microorganisms. To establish a high-efficiency transformation protocol in the model cyanobacterium, Synechocystis sp. strain PCC 6803 (Synechocystis 6803), we investigated the effects of premethylation of foreign DNA on the integrative transformation of this strain. In this study, two type II methyltransferase-encoding genes, i.e., sll0729 (gene M) and slr0214 (gene C), were cloned from the chromosome of Synechocystis 6803 and expressed in Escherichia coli harboring an integration plasmid. After premethylation treatment in E. coli, the integration plasmid was extracted and used for transformation of Synechocystis 6803. The results showed that although expression of methyltransferase M had little impact on the transformation of Synechocystis 6803, expression of methyltransferase C resulted in 11- to 161-fold-higher efficiency in the subsequent integrative transformation of Synechocystis 6803. Effective expression of methyltransferase C, which could be achieved by optimizing the 5′ untranslated region, was critical to efficient premethylation of the donor DNA and thus high transformation efficiency in Synechocystis 6803. Since premethylating foreign DNA prior to transforming Synechocystis avoids changing the host genetic background, the study thus provides an improved method for high-efficiency integrative transformation of Synechocystis 6803. PMID:26452551
Ye, Shanwen; Cai, Changyang; Ren, Huibo; Wang, Wenjia; Xiang, Mengqi; Tang, Xiaoshan; Zhu, Caiping; Yin, Tengfei; Zhang, Li; Zhu, Qiang
2017-01-01
Genetic engineering technology has been successfully used in many plant species, but is limited in woody plants, especially in bamboos. Ma bamboo (Dendrocalamus latiflorus Munro) is one of the most important bamboo species in Asia, and its genetic improvement was largely restricted by the lack of an efficient regeneration and transformation method. Here we reported a plantlet regeneration and Agrobacterium-mediated transformation protocol by using Ma bamboo young shoots as explants. Under our optimized conditions, embryogenic calluses were successfully induced from the excised young shoots on callus induction medium and rapidly grew on callus multiplication medium. Shoots and roots were regenerated on shoot induction medium and root induction medium, respectively, with high efficiency. An Agrobacterium-mediated genetic transformation protocol of Ma bamboo was established, verified by PCR and GUS staining. Furthermore, the maize Lc gene under the control of the ubiquitin promoter was successfully introduced into Ma bamboo genome and generated an anthocyanin over-accumulation phenotype. Our methods established here will facilitate the basic research as well as genetic breeding of this important bamboo species. Key achievements: A stable and high efficiency regeneration and Agrobacterium-mediated transformation protocol for Ma bamboo from vegetative organ is established. PMID:28798758
Sabbadini, Silvia; Pandolfini, Tiziana; Girolomini, Luca; Molesini, Barbara; Navacchi, Oriano
2015-01-01
Until now, the application of genetic transformation techniques in peach has been limited by the difficulties in developing efficient regeneration and transformation protocols. Here we describe an efficient regeneration protocol for the commercial micropropagation of GF677 rootstock (Prunus persica × Prunus amygdalus). The method is based on the production, via organogenesis, of meristematic bulk tissues characterized by a high competence for shoot regeneration. This protocol has also been used to obtain GF677 plants genetically engineered with an empty hairpin cassette (hereafter indicated as hp-pBin19), through Agrobacterium tumefaciens-mediated transformation. After 7-8 months of selection on media containing kanamycin, we obtained two genetically modified GF677 lines. PCR and Southern blot analyses were performed to confirm the genetic status.
Methods for genetic transformation of filamentous fungi.
Li, Dandan; Tang, Yu; Lin, Jun; Cai, Weiwen
2017-10-03
Filamentous fungi have been of great interest because of their excellent ability as cell factories to manufacture useful products for human beings. The development of genetic transformation techniques is a precondition that enables scientists to target and modify genes efficiently and may reveal the function of target genes. The method to deliver foreign nucleic acid into cells is the sticking point for fungal genome modification. Up to date, there are some general methods of genetic transformation for fungi, including protoplast-mediated transformation, Agrobacterium-mediated transformation, electroporation, biolistic method and shock-wave-mediated transformation. This article reviews basic protocols and principles of these transformation methods, as well as their advantages and disadvantages.
Physical methods for genetic transformation of fungi and yeast
NASA Astrophysics Data System (ADS)
Rivera, Ana Leonor; Magaña-Ortíz, Denis; Gómez-Lim, Miguel; Fernández, Francisco; Loske, Achim M.
2014-06-01
The production of transgenic fungi is a routine process. Currently, it is possible to insert genes from other fungi, viruses, bacteria and even animals, albeit with low efficiency, into the genomes of a number of fungal species. Genetic transformation requires the penetration of the transgene through the fungal cell wall, a process that can be facilitated by biological or physical methods. Novel methodologies for the efficient introduction of specific genes and stronger promoters are needed to increase production levels. A possible solution to this problem is the recently discovered shock-wave-mediated transformation. The objective of this article is to review the state of the art of the physical methods used for genetic fungi transformation and to describe some of the basic physics and molecular biology behind them.
Masani, Mat Yunus Abdul; Noll, Gundula A; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk
2014-01-01
Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants.
Efficient Transformation of Oil Palm Protoplasts by PEG-Mediated Transfection and DNA Microinjection
Masani, Mat Yunus Abdul; Noll, Gundula A.; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk
2014-01-01
Background Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. Methodology/Principal Findings We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. Conclusions/Significance We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants. PMID:24821306
Ravanfar, Seyed Ali; Orbovic, Vladimir; Moradpour, Mahdi; Abdul Aziz, Maheran; Karan, Ratna; Wallace, Simon; Parajuli, Saroj
2017-04-01
Development of in vitro plant regeneration method from Brassica explants via organogenesis and somatic embryogenesis is influenced by many factors such as culture environment, culture medium composition, explant sources, and genotypes which are reviewed in this study. An efficient in vitro regeneration system to allow genetic transformation of Brassica is a crucial tool for improving its economical value. Methods to optimize transformation protocols for the efficient introduction of desirable traits, and a comparative analysis of these methods are also reviewed. Hence, binary vectors, selectable marker genes, minimum inhibitory concentration of selection agents, reporter marker genes, preculture media, Agrobacterium concentration and regeneration ability of putative transformants for improvement of Agrobacterium-mediated transformation of Brassica are discussed.
Leong, Colleen G; Boyd, Caroline M; Roush, Kaleb S; Tenente, Ricardo; Lang, Kristine M; Lostroh, C Phoebe
2017-10-01
Natural transformation is the acquisition of new genetic material via the uptake of exogenous DNA by competent bacteria. Acinetobacter baylyi is model for natural transformation. Here we focus on the natural transformation of A. baylyi ATCC 33305 grown in complex media and seek environmental conditions that appreciably affect transformation efficiency. We find that the transformation efficiency for A. baylyi is a resilient characteristic that remains high under most conditions tested. We do find several distinct conditions that alter natural transformation efficiency including addition of succinate, Fe 2+ (ferrous) iron chelation, and substitution of sodium ions with potassium ones. These distinct conditions could be useful to fine tune transformation efficiency for researchers using A. baylyi as a model organism to study natural transformation.
Use of Natural Transformation To Establish an Easy Knockout Method in Riemerella anatipestifer.
Liu, MaFeng; Zhang, Li; Huang, Li; Biville, Francis; Zhu, DeKang; Wang, MingShu; Jia, RenYong; Chen, Shun; Sun, KunFeng; Yang, Qiao; Wu, Ying; Chen, XiaoYue; Cheng, AnChun
2017-05-01
Riemerella anatipestifer is a member of the family Flavobacteriaceae and a major causative agent of duck serositis. Little is known about its genetics and pathogenesis. Several bacteria are competent for natural transformation; however, whether R. anatipestifer is also competent for natural transformation has not been investigated. Here, we showed that R. anatipestifer strain ATCC 11845 can uptake the chromosomal DNA of R. anatipestifer strain RA-CH-1 in all growth phases. Subsequently, a natural transformation-based knockout method was established for R. anatipestifer ATCC 11845. Targeted mutagenesis gave transformation frequencies of ∼10 -5 transformants. Competition assay experiments showed that R. anatipestifer ATCC 11845 preferentially took up its own DNA rather than heterogeneous DNA, such as Escherichia coli DNA. Transformation was less efficient with the shuttle plasmid pLMF03 (transformation frequencies of ∼10 -9 transformants). However, the efficiency of transformation was increased approximately 100-fold using pLMF03 derivatives containing R. anatipestifer DNA fragments (transformation frequencies of ∼10 -7 transformants). Finally, we found that the R. anatipestifer RA-CH-1 strain was also naturally transformable, suggesting that natural competence is widely applicable for this species. The findings described here provide important tools for the genetic manipulation of R. anatipestifer IMPORTANCE Riemerella anatipestifer is an important duck pathogen that belongs to the family Flavobacteriaceae At least 21 different serotypes have been identified. Genetic diversity has been demonstrated among these serotypes. The genetic and pathogenic mechanisms of R. anatipestifer remain largely unknown because no genetic tools are available for this bacterium. At present, natural transformation has been found in some bacteria but not in R. anatipestifer For the first time, we showed that natural transformation occurred in R. anatipestifer ATCC 11845 and R. anatipestifer RA-CH-1. Then, we established an easy gene knockout method in R. anatipestifer based on natural transformation. This information is important for further studies of the genetic diversity and pathogenesis in R. anatipestifer . Copyright © 2017 American Society for Microbiology.
Jaganath, Balusamy; Subramanyam, Kondeti; Mayavan, Subramanian; Karthik, Sivabalan; Elayaraja, Dhandapani; Udayakumar, Rajangam; Manickavasagam, Markandan; Ganapathi, Andy
2014-05-01
An efficient and reproducible Agrobacterium-mediated in planta transformation was developed in Jatropha curcas. The various factors affecting J. curcas in planta transformation were optimized, including decapitation, Agrobacterium strain, pin-pricking, vacuum infiltration duration and vacuum pressure. Simple vegetative in vivo cleft grafting method was adopted in the multiplication of transformants without the aid of tissue culture. Among the various parameters evaluated, decapitated plants on pin-pricking and vacuum infiltrated at 250 mmHg for 3 min with the Agrobacterium strain EHA 105 harbouring the binary vector pGA 492 was proved to be efficient in all terms with a transformation efficiency of 62.66%. Transgene integration was evinced by the GUS histochemical analysis, and the GUS positive plants were subjected to grafting. Putatively transformed J. curcas served as "Scion" and the wild type J. curcas plant severed as "Stock". There was no occurrence of graft rejection and the plants were then confirmed by GUS histochemical analysis, polymerase chain reaction (PCR) and Southern hybridization. Genetic stability of the grafted plants was evaluated by using randomly amplified polymorphic DNA (RAPD), marker which showed 100% genetic stability between mother and grafted plants. Thus, an efficient in planta transformation and grafting based multiplication of J. curcas was established.
Novel and potential application of cryopreservation to plant genetic transformation.
Wang, Biao; Zhang, Zhibo; Yin, Zhenfang; Feng, Chaohong; Wang, Qiaochun
2012-01-01
The world population now is 6.7 billion and is predicted to reach 9 billion by 2050. Such a rapid growing population has tremendously increased the challenge for food security. Obviously, it is impossible for traditional agriculture to ensure the food security, while plant biotechnology offers considerable potential to realize this goal. Over the last 15 years, great benefits have been brought to sustainable agriculture by commercial cultivation of genetically modified (GM) crops. Further development of new GM crops will with no doubt contribute to meeting the requirements for food by the increasing population. The present article provides updated comprehensive information on novel and potential application of cryopreservation to genetic transformation. The major progresses that have been achieved in this subject include (1), long-term storage of a large number of valuable plant genes, which offers a good potential for further development of novel cultivars by genetic transformation; (2), retention of regenerative capacity of embryogenic tissues and protoplasts, which ensures efficient plant regeneration system for genetic transformation; (3), improvement of transformation efficiency and plant regeneration of transformed cells; (4), long-term preservation of transgenic materials with stable expression of transgenes and productive ability of recombinant proteins, which allows transgenic materials to be stored in a safe manner before being analyzed and evaluated, and allows establishment of stable seed stocks for commercial production of homologous proteins. Data provided in this article clearly demonstrate that cryo-technique has an important role to play in the whole chain of genetic transformation. Further studies coupling cryotechnique and genetic transformation are expected to significantly improve development of new GM crops. Copyright © 2011 Elsevier Inc. All rights reserved.
Basnayake, Shiromani W V; Moyle, Richard; Birch, Robert G
2011-03-01
Amenability to tissue culture stages required for gene transfer, selection and plant regeneration are the main determinants of genetic transformation efficiency via particle bombardment into sugarcane. The technique is moving from the experimental phase, where it is sufficient to work in a few amenable genotypes, to practical application in a diverse and changing set of elite cultivars. Therefore, we investigated the response to callus initiation, proliferation, regeneration and selection steps required for microprojectile-mediated transformation, in a diverse set of Australian sugarcane cultivars. 12 of 16 tested cultivars were sufficiently amenable to existing routine tissue-culture conditions for practical genetic transformation. Three cultivars required adjustments to 2,4-D levels during callus proliferation, geneticin concentration during selection, and/or light intensity during regeneration. One cultivar gave an extreme necrotic response in leaf spindle explants and produced no callus tissue under the tested culture conditions. It was helpful to obtain spindle explants for tissue culture from plants with good water supply for growth, especially for genotypes that were harder to culture. It was generally possible to obtain several independent transgenic plants per bombardment, with time in callus culture limited to 11-15 weeks. A caution with this efficient transformation system is that separate shoots arose from different primary transformed cells in more than half of tested calli after selection for geneticin resistance. The results across this diverse cultivar set are likely to be a useful guide to key variables for rapid optimisation of tissue culture conditions for efficient genetic transformation of other sugarcane cultivars.
Transformation of medicinal plants using Agrobacterium tumefaciens.
Bandurska, Katarzyna; Berdowska, Agnieszka; Król, Małgorzata
2016-12-20
For many years attempts are made to develop efficient methods for transformation of medicinal plants via Agrobacterium tumefaciens. It is a soil bacteria which possess a natural ability to infect plants in places of injures which results in arise of cancerous growths (crown gall). This is possible thanks a transfer of fragment of Ti plasmid into plant cells and stable integration with a plant genome. Efficiency of medicinal plant transformation depends on many factors for example: Agrobacterium strain, methods and procedures of transformation as well as on plant species, type and age of the explants and regeneration conditions. The main goal of plant transformation is to increase the amount of naturally occurring bioactive compounds and the production of biopharmaceuticals. Genetic plant transformation via bacteria of the genus Agrobacterium is a complex process which requires detailed analysis of incorporated transgene expression and occurs only in the case when the plant cell acquires the ability to regenerate. In many cases, the regeneration efficiency observed in medicinal plants are inefficient after applied transformation procedures. To date there have been attempts of genetic transformation by using A. tumefaciens of medicinal plants belonging to the families: Apocynaceae, Araceae, Araliaceae, Asphodelaceae, Asteraceae, Begoniaceae, Crassulaceae, Fabaceae, Lamiaceae, Linaceae, Papaveraceae, Plantaginaceae, Scrophulariaceae and Solanaceae.
Improved electroporation procedure for genetic transformation of Dekkera/Brettanomyces bruxellensis.
Miklenić, Marina; Žunar, Bojan; Štafa, Anamarija; Svetec, Ivan-Krešimir
2015-12-01
Yeast Dekkera/Brettanomyces bruxellensis is one of the most common contaminants in wine industry, but also one of the most promising candidates for large-scale bioethanol production. Brettanomyces bruxellensis not only produces and tolerates high ethanol concentrations, but can also ferment cellobiose and adapt to lignocellulose hydrolasate. Furthermore, genome sequences of several B. bruxellensis strains are available, and efforts have been made to develop tools for genetic transformation of this yeast. Previously, we reported a successful transformation using lithium acetate/PEG method and electroporation, however, with very low transformation efficiency (10-20 transformants μg(-1)). Here we describe an optimization of electroporation procedure which resulted in a significant increase of transformation efficiency (2.8 × 10(3) transformants μg(-1)). Several key transformation parameters were optimized including cell growth phase, density of cells in the transformation sample and electroporation settings. We determined that treating the cells with both lithium acetate (100 mM) and dithiothreitol (35 mM) synergistically improves transformation efficiency. Using the described procedure around 500 transformants can be obtained per transformation sample with 180 ng of non-homologous linear transforming fragment. Additionally, several transformants were obtained with less than 1 ng of DNA demonstrating that this procedure is adequate even when very limited amount of DNA is available. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Plant transformation via pollen tube-mediated gene transfer
USDA-ARS?s Scientific Manuscript database
Genetic transformation using foreign genes and the subsequent development of transgenic plants has been employed to develop enhanced elite germplasm. Although some skepticism exits regarding pollen tube-mediated gene transfer (PTT), reports demonstrating improved transformation efficiency with PTT ...
Zhang, Jin jing; Shi, Liang; Chen, Hui; Sun, Yun qi; Zhao, Ming wen; Ren, Ang; Chen, Ming jie; Wang, Hong; Feng, Zhi yong
2014-01-01
Hypsizygus marmoreus is one of the major edible mushrooms in East Asia. As no efficient transformation method, the molecular and genetics studies were hindered. The glyceraldehyde-3-phosphate dehydrogenase (GPD) gene of H. marmoreus was isolated and its promoter was used to drive the hygromycin B phosphotransferase (HPH) and enhanced green fluorescent protein (EGFP) in H. marmoreus. Agrobacterium tumefaciens-mediated transformation (ATMT) was successfully applied in H. marmoreus. The transformation parameters were optimized, and it was found that co-cultivation of bacteria with protoplast at a ratio of 1000:1 at a temperature of 26 °C in medium containing 0.3 mM acetosyringone resulted in the highest transformation efficiency for Agrobacterium strain. Besides, three plasmids, each carrying a different promoter (from H. marmoreus, Ganoderma lucidum and Lentinula edodes) driving the expression of an antibiotic resistance marker, were also tested. The construct carrying the H. marmoreus gpd promoter produced more transformants than other constructs. Our analysis showed that over 85% of the transformants tested remained mitotically stable even after five successive rounds of subculturing. Putative transformants were analyzed for the presence of hph gene by PCR and Southern blot. Meanwhile, the expression of EGFP in H. marmoreus transformants was detected by fluorescence imaging. This ATMT system increases the transformation efficiency of H. marmoreus and may represent a useful tool for molecular genetic studies in this mushroom species. Copyright © 2014 Elsevier GmbH. All rights reserved.
Muto, Masaki; Fukuda, Yorikane; Nemoto, Michiko; Yoshino, Tomoko; Matsunaga, Tadashi; Tanaka, Tsuyoshi
2013-02-01
A genetic transformation system for the marine pennate diatom, Fistulifera sp. JPCC DA0580, was established using microparticle bombardment methods. Strain JPCC DA0580 has been recently identified as the highest triglyceride (60 % w/w) producer from a culture collection of 1,393 strains of marine microalgae, and it is expected to be a feasible source of biodiesel fuel. The transformation conditions for strain JPCC DA0580 were optimised using the green fluorescent protein gene (gfp) and the gene encoding neomycin phosphotransferase II (nptII). The most efficient rate of transformation was attained when tungsten particles (0.6 μm in diameter) were used for microparticle bombardment. The effect of endogenous and exogenous promoters on the expression of nptII was examined. Endogenous promoters were more efficient for obtaining transformants compared with exogenous promoters. Southern hybridisation analysis suggested that nptII integrated into the nuclear genome. This genetic manipulation technique should allow us to understand the mechanisms of high triglyceride accumulation in this strain, thereby contributing to improving BDF production.
Nyaboga, Evans; Tripathi, Jaindra N.; Manoharan, Rajesh; Tripathi, Leena
2014-01-01
Although genetic transformation of clonally propagated crops has been widely studied as a tool for crop improvement and as a vital part of the development of functional genomics resources, there has been no report of any existing Agrobacterium-mediated transformation of yam (Dioscorea spp.) with evidence of stable integration of T-DNA. Yam is an important crop in the tropics and subtropics providing food security and income to over 300 million people. However, yam production remains constrained by increasing levels of field and storage pests and diseases. A major constraint to the development of biotechnological approaches for yam improvement has been the lack of an efficient and robust transformation and regeneration system. In this study, we developed an Agrobacterium-mediated transformation of Dioscorea rotundata using axillary buds as explants. Two cultivars of D. rotundata were transformed using Agrobacterium tumefaciens harboring the binary vectors containing selectable marker and reporter genes. After selection with appropriate concentrations of antibiotic, shoots were developed on shoot induction and elongation medium. The elongated antibiotic-resistant shoots were subsequently rooted on medium supplemented with selection agent. Successful transformation was confirmed by polymerase chain reaction, Southern blot analysis, and reporter genes assay. Expression of gusA gene in transgenic plants was also verified by reverse transcription polymerase chain reaction analysis. Transformation efficiency varied from 9.4 to 18.2% depending on the cultivars, selectable marker genes, and the Agrobacterium strain used for transformation. It took 3–4 months from Agro-infection to regeneration of complete transgenic plant. Here we report an efficient, fast and reproducible protocol for Agrobacterium-mediated transformation of D. rotundata using axillary buds as explants, which provides a useful platform for future genetic engineering studies in this economically important crop. PMID:25309562
Mano, Hiroaki; Fujii, Tomomi; Sumikawa, Naomi; Hiwatashi, Yuji; Hasebe, Mitsuyasu
2014-01-01
The sensitive plant Mimosa pudica has long attracted the interest of researchers due to its spectacular leaf movements in response to touch or other external stimuli. Although various aspects of this seismonastic movement have been elucidated by histological, physiological, biochemical, and behavioral approaches, the lack of reverse genetic tools has hampered the investigation of molecular mechanisms involved in these processes. To overcome this obstacle, we developed an efficient genetic transformation method for M. pudica mediated by Agrobacterium tumefaciens (Agrobacterium). We found that the cotyledonary node explant is suitable for Agrobacterium-mediated transformation because of its high frequency of shoot formation, which was most efficiently induced on medium containing 0.5 µg/ml of a synthetic cytokinin, 6-benzylaminopurine (BAP). Transformation efficiency of cotyledonary node cells was improved from almost 0 to 30.8 positive signals arising from the intron-sGFP reporter gene by using Agrobacterium carrying a super-binary vector pSB111 and stabilizing the pH of the co-cultivation medium with 2-(N-morpholino)ethanesulfonic acid (MES) buffer. Furthermore, treatment of the explants with the detergent Silwet L-77 prior to co-cultivation led to a two-fold increase in the number of transformed shoot buds. Rooting of the regenerated shoots was efficiently induced by cultivation on irrigated vermiculite. The entire procedure for generating transgenic plants achieved a transformation frequency of 18.8%, which is comparable to frequencies obtained for other recalcitrant legumes, such as soybean (Glycine max) and pea (Pisum sativum). The transgene was stably integrated into the host genome and was inherited across generations, without affecting the seismonastic or nyctinastic movements of the plants. This transformation method thus provides an effective genetic tool for studying genes involved in M. pudica movements. PMID:24533121
Mano, Hiroaki; Fujii, Tomomi; Sumikawa, Naomi; Hiwatashi, Yuji; Hasebe, Mitsuyasu
2014-01-01
The sensitive plant Mimosa pudica has long attracted the interest of researchers due to its spectacular leaf movements in response to touch or other external stimuli. Although various aspects of this seismonastic movement have been elucidated by histological, physiological, biochemical, and behavioral approaches, the lack of reverse genetic tools has hampered the investigation of molecular mechanisms involved in these processes. To overcome this obstacle, we developed an efficient genetic transformation method for M. pudica mediated by Agrobacterium tumefaciens (Agrobacterium). We found that the cotyledonary node explant is suitable for Agrobacterium-mediated transformation because of its high frequency of shoot formation, which was most efficiently induced on medium containing 0.5 µg/ml of a synthetic cytokinin, 6-benzylaminopurine (BAP). Transformation efficiency of cotyledonary node cells was improved from almost 0 to 30.8 positive signals arising from the intron-sGFP reporter gene by using Agrobacterium carrying a super-binary vector pSB111 and stabilizing the pH of the co-cultivation medium with 2-(N-morpholino)ethanesulfonic acid (MES) buffer. Furthermore, treatment of the explants with the detergent Silwet L-77 prior to co-cultivation led to a two-fold increase in the number of transformed shoot buds. Rooting of the regenerated shoots was efficiently induced by cultivation on irrigated vermiculite. The entire procedure for generating transgenic plants achieved a transformation frequency of 18.8%, which is comparable to frequencies obtained for other recalcitrant legumes, such as soybean (Glycine max) and pea (Pisum sativum). The transgene was stably integrated into the host genome and was inherited across generations, without affecting the seismonastic or nyctinastic movements of the plants. This transformation method thus provides an effective genetic tool for studying genes involved in M. pudica movements.
Adachi, Takumi; Sahara, Takehiko; Okuyama, Hidetoshi; Morita, Naoki
2017-07-01
Here, we describe a new method for genetic transformation of thraustochytrids, well-known producers of polyunsaturated fatty acids (PUFAs) like docosahexaenoic acid, by combining mild glass (zirconia) bead treatment and electroporation. Because the cell wall is a barrier against transfer of exogenous DNA into cells, gentle vortexing of cells with glass beads was performed prior to electroporation for partial cell wall disruption. G418-resistant transformants of thraustochytrid cells (Aurantiochytrium limacinum strain SR21 and thraustochytrid strain 12B) were successfully obtained with good reproducibility. The method reported here is simpler than methods using enzymes to generate spheroplasts and may provide advantages for PUFA production by using genetically modified thraustochytrids.
Han, Guomin; Shao, Qian; Li, Cuiping; Zhao, Kai; Jiang, Li; Fan, Jun; Jiang, Haiyang; Tao, Fang
2018-05-01
Aspergillus flavus often invade many important corps and produce harmful aflatoxins both in preharvest and during storage stages. The regulation mechanism of aflatoxin biosynthesis in this fungus has not been well explored mainly due to the lack of an efficient transformation method for constructing a genome-wide gene mutant library. This challenge was resolved in this study, where a reliable and efficient Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for A. flavus NRRL 3357 was established. The results showed that removal of multinucleate conidia, to collect a homogenous sample of uninucleate conidia for use as the transformation material, is the key step in this procedure. A. tumefaciens strain AGL-1 harboring the ble gene for zeocin resistance under the control of the gpdA promoter from A. nidulans is suitable for genetic transformation of this fungus. We successfully generated A. flavus transformants with an efficiency of ∼ 60 positive transformants per 10 6 conidia using our protocol. A small-scale insertional mutant library (∼ 1,000 mutants) was constructed using this method and the resulting several mutants lacked both production of conidia and aflatoxin biosynthesis capacity. Southern blotting analysis demonstrated that the majority of the transformants contained a single T-DNA insert on the genome. To the best of our knowledge, this is the first report of genetic transformation of A. flavus via ATMT and our protocol provides an effective tool for construction of genome-wide gene mutant libraries for functional analysis of important genes in A. flavus.
2011-01-01
Background Following genome sequencing of crop plants, one of the main challenges today is determining the function of all the predicted genes. When gene validation approaches are used for woody species, the main obstacle is the low recovery rate of transgenic plants from elite or commercial cultivars. Embryogenic calli have frequently been the target tissue for transformation, but the difficulty in producing or maintaining embryogenic tissues is one of the main problems encountered in genetic transformation of many woody plants, including Coffea arabica. Results We identified the conditions required for successful long-term proliferation of embryogenic cultures in C. arabica and designed a highly efficient and reliable Agrobacterium tumefaciens-mediated transformation method based on these conditions. The transformation protocol with LBA1119 harboring pBin 35S GFP was established by evaluating the effect of different parameters on transformation efficiency by GFP detection. Using embryogenic callus cultures, co-cultivation with LBA1119 OD600 = 0.6 for five days at 20 °C enabled reproducible transformation. The maintenance conditions for the embryogenic callus cultures, particularly a high auxin to cytokinin ratio, the age of the culture (optimum for 7-10 months of proliferation) and the use of a yellow callus phenotype, were the most important factors for achieving highly efficient transformation (> 90%). At the histological level, successful transformation was related to the number of proembryogenic masses present. All the selected plants were proved to be transformed by PCR and Southern blot hybridization. Conclusion Most progress in increasing transformation efficiency in coffee has been achieved by optimizing the production conditions of embryogenic cultures used as target tissues for transformation. This is the first time that a strong positive effect of the age of the culture on transformation efficiency was demonstrated. Our results make Agrobacterium-mediated transformation of embryogenic cultures a viable and useful tool both for coffee breeding and for the functional analysis of agronomically important genes. PMID:21595964
Genetic Transformation of Streptococcus mutans
Perry, Dennis; Kuramitsu, Howard K.
1981-01-01
Three strains of Streptococcus mutans belonging to serotypes a, c, and f were transformed to streptomycin resistance by deoxyribonucleic acids derived from homologous and heterologous streptomycin-resistant strains of S. mutans and Streptococcus sanguis strain Challis. Homologous transformation of S. mutans was less efficient than heterologous transformation by deoxyribonucleic acids from other strains of S. mutans. PMID:7251168
Evaluation of Genetic Algorithm Concepts Using Model Problems. Part 2; Multi-Objective Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2003-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of simple model problems. Several new features including a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all optimization problems attempted. The binning algorithm generally provides pareto front quality enhancements and moderate convergence efficiency improvements for most of the model problems. The gene-space transformation procedure provides a large convergence efficiency enhancement for problems with non-convoluted pareto fronts and a degradation in efficiency for problems with convoluted pareto fronts. The most difficult problems --multi-mode search spaces with a large number of genes and convoluted pareto fronts-- require a large number of function evaluations for GA convergence, but always converge.
Nguyen, Khuyen Thi; Ho, Quynh Ngoc; Do, Loc Thi Binh Xuan; Mai, Linh Thi Dam; Pham, Duc-Ngoc; Tran, Huyen Thi Thanh; Le, Diep Hong; Nguyen, Huy Quang; Tran, Van-Tuan
2017-06-01
Aspergillus oryzae is a filamentous fungus widely used in food industry and as a microbial cell factory for recombinant protein production. Due to the inherent resistance of A. oryzae to common antifungal compounds, genetic transformation of this mold usually requires auxotrophic mutants. In this study, we show that Agrobacterium tumefaciens-mediated transformation (ATMT) method is very efficient for deletion of the pyrG gene in different Aspergillus oryzae wild-type strains to generate uridine/uracil auxotrophic mutants. Our data indicated that all the obtained uridine/uracil auxotrophic transformants, which are 5- fluoroorotic acid (5-FOA) resistant, exist as the pyrG deletion mutants. Using these auxotrophic mutants and the pyrG selectable marker for genetic transformation via A. tumefaciens, we could get about 1060 transformants per 10 6 fungal spores. In addition, these A. oryzae mutants were also used successfully for expression of the DsRed fluorescent reporter gene under control of the A. oryzae amyB promoter by the ATMT method, which resulted in obvious red transformants on agar plates. Our work provides a new and effective approach for constructing the uridine/uracil auxotrophic mutants in the importantly industrial fungus A. oryzae. This strategy appears to be applicable to other filamentous fungi to develop similar genetic transformation systems based on auxotrophic/nutritional markers for food-grade recombinant applications.
Chen, Xi; Stone, Michelle; Schlagnhaufer, Carl; Romaine, C. Peter
2000-01-01
We describe a modified Agrobacterium-mediated method for the efficient transformation of Agaricus bisporus. Salient features of this procedure include cocultivation of Agrobacterium and fruiting body gill tissue and use of a vector with a homologous promoter. This method offers new prospects for the genetic manipulation of this commercially important mushroom species. PMID:11010906
Wu, Huixia; Doherty, Angela; Jones, Huw D
2008-06-01
Genetic transformation of wheat, using biolistics or Agrobacterium, underpins a range of specific research methods for identifying genes and studying their function in planta. Transgenic approaches to study and modify traits in durum wheat have lagged behind those for bread wheat. Here we report the use of Agrobacterium strain AGL1, with additional vir genes housed in a helper plasmid, to transform and regenerate the durum wheat variety Ofanto. The use of the basic pSoup helper plasmid with no additional vir genes failed to generate transformants, whereas the presence of either virG542 or the 15 kb Komari fragment containing virB, virC and virG542 produced transformation efficiencies of between 0.6 and 9.7%. Of the 42 transgenic plants made, all but one (which set very few seeds) appeared morphologically normal and produced between 100 and 300 viable seeds. The transgene copy number and the segregation ratios were found to be very similar to those previously reported for bread wheat. We believe that this is the first report describing successful genetic transformation of tetraploid durum wheat (Triticum turgidum L. var. durum) mediated by Agrobacterium tumefaciens using immature embryos as the explant.
USDA-ARS?s Scientific Manuscript database
The genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brac...
Karthik, Sivabalan; Pavan, Gadamchetty; Sathish, Selvam; Siva, Ramamoorthy; Kumar, Periyasamy Suresh; Manickavasagam, Markandan
2018-04-01
Agrobacterium infection and regeneration of the putatively transformed plant from the explant remains arduous for some crop species like peanut. Henceforth, a competent and reproducible in planta genetic transformation protocol is established for peanut cv. CO7 by standardizing various factors such as pre-culture duration, acetosyringone concentration, duration of co-cultivation, sonication and vacuum infiltration. In the present investigation, Agrobacterium tumefaciens strain EHA105 harboring the binary vector pCAMBIA1301- bar was used for transformation. The two-stage selection was carried out using 4 and 250 mg l -1 BASTA ® to completely eliminate the chimeric and non-transformed plants. The transgene integration into plant genome was evaluated by GUS histochemical assay, polymerase chain reaction (PCR), and Southern blot hybridization. Among the various combinations and concentrations analyzed, highest transformation efficiency was obtained when the 2-day pre-cultured explants were subjected to sonication for 6 min and vacuum infiltrated for 3 min in Agrobacterium suspension, and co-cultivated on MS medium supplemented with 150 µM acetosyringone for 3 days. The fidelity of the standardized in planta transformation method was assessed in five peanut cultivars and all the cultivars responded positively with a transformation efficiency ranging from minimum 31.3% (with cv. CO6) to maximum 38.6% (with cv. TMV7). The in planta transformation method optimized in this study could be beneficial to develop superior peanut cultivars with desirable genetic traits.
Overview of the Wheat Genetic Transformation and Breeding Status in China.
Han, Jiapeng; Yu, Xiaofen; Chang, Junli; Yang, Guangxiao; He, Guangyuan
2017-01-01
In the past two decades, Chinese scientists have achieved significant progress on three aspects of wheat genetic transformation. First, the wheat transformation platform has been established and optimized to improve the transformation efficiency, shorten the time required from starting of transformation procedure to the fertile transgenic wheat plants obtained as well as to overcome the problem of genotype-dependent for wheat genetic transformation in wide range of wheat elite varieties. Second, with the help of many emerging techniques such as CRISPR/cas9 function of over 100 wheat genes has been investigated. Finally, modern technology has been combined with the traditional breeding technique such as crossing to accelerate the application of wheat transformation. Overall, the wheat end-use quality and the characteristics of wheat stress tolerance have been improved by wheat genetic engineering technique. So far, wheat transgenic lines integrated with quality-improved genes and stress tolerant genes have been on the way of Production Test stage in the field. The debates and the future studies on wheat transformation have been discussed, and the brief summary of Chinese wheat breeding research history has also been provided in this review.
Enhancing DNA electro-transformation efficiency on a clinical Staphylococcus capitis isolate.
Cui, Bintao; Smooker, Peter M; Rouch, Duncan A; Deighton, Margaret A
2015-02-01
Clinical staphylococcus isolates possess a stronger restriction-modification (RM) barrier than laboratory strains. Clinical isolates are therefore more resistant to acceptance of foreign genetic material than laboratory strains, as their restriction systems more readily recognize and destroy foreign DNA. This stronger barrier consequently restricts genetic studies to a small number of domestic strains that are capable of accepting foreign DNA. In this study, an isolate of Staphylococcus capitis, obtained from the blood of a very low birth-weight baby, was transformed with a shuttle vector, pBT2. Optimal conditions for electro-transformation were as follows: cells were harvested at mid-log phase, electro-competent cells were prepared; cells were pre-treated at 55°C for 1min; 3μg of plasmid DNA was mixed with 70-80μL of competent cells (3-4×10(10)cells/mL) at 20°C in 0.5M sucrose, 10% glycerol; and electroporation was conducted using 2.1kV/cm field strength with a 0.1cm gap. Compared to the conventional method, which involves DNA electroporation of Staphylococcus aureus RN4220 as an intermediate strain to overcome the restriction barrier, our proposed approach exhibits a higher level (3 log10 units) of transformation efficiency. Heat treatment was used to temporarily inactivate the recipient RM barrier. Other important parameters contributing to improved electro-transformation efficiency were growth stage for cell harvesting, the quantity of DNA, the transformation temperature and field strength. The approach described here may facilitate genetic manipulations of this opportunistic pathogen. Copyright © 2014 Elsevier B.V. All rights reserved.
2012-01-01
Background Lactic acid bacteria (LAB) play an important role in agricultural as well as industrial biotechnology. Development of improved LAB strains using e.g. library approaches is often limited by low transformation efficiencies wherefore one reason could be differences in the DNA methylation patterns between the Escherichia coli intermediate host for plasmid amplification and the final LAB host. In the present study, we examined the influence of DNA methylation on transformation efficiency in LAB and developed a direct cloning approach for Lactobacillus plantarum CD033. Therefore, we propagated plasmid pCD256 in E. coli strains with different dam/dcm-methylation properties. The obtained plasmid DNA was purified and transformed into three different L. plantarum strains and a selection of other LAB species. Results Best transformation efficiencies were obtained using the strain L. plantarum CD033 and non-methylated plasmid DNA. Thereby we achieved transformation efficiencies of ~ 109 colony forming units/μg DNA in L. plantarum CD033 which is in the range of transformation efficiencies reached with E. coli. Based on these results, we directly transformed recombinant expression vectors received from PCR/ligation reactions into L. plantarum CD033, omitting plasmid amplification in E. coli. Also this approach was successful and yielded a sufficient number of recombinant clones. Conclusions Transformation efficiency of L. plantarum CD033 was drastically increased when non-methylated plasmid DNA was used, providing the possibility to generate expression libraries in this organism. A direct cloning approach, whereby ligated PCR-products where successfully transformed directly into L. plantarum CD033, obviates the construction of shuttle vectors containing E. coli-specific sequences, as e.g. a ColEI origin of replication, and makes amplification of these vectors in E. coli obsolete. Thus, plasmid constructs become much smaller and occasional structural instability or mutagenesis during E. coli propagation is excluded. The results of our study provide new genetic tools for L. plantarum which will allow fast, forward and systems based genetic engineering of this species. PMID:23098256
DNA Integrity and Shock Wave Transformation Efficiency of Bacteria and Fungi
NASA Astrophysics Data System (ADS)
Loske, Achim M.; Campos-Guillén, Juan; Fernández, Francisco; Pastrana, Xóchitl; Magaña-Ortíz, Denis; Coconi-Linares, Nancy; Ortíz-Vázquez, Elizabeth; Gómez-Lim, Miguel
Delivery of DNA into bacteria and fungi is essential in medicine and biotechnology to produce metabolites, enzymes, antibiotics and proteins. So far, protocols to genetically transform bacteria and fungi are inefficient and have low reproducibility.
Lutke, W Kevin
2006-01-01
Petunia hybrida genetic transformation continues to be a valuable tool for genetic research into biochemical pathways and gene expression, as well as generating commercial products with varying floral colors. In this chapter, we describe a simple and reproducible genetic transformation protocol for generating transgenic petunia plants harboring a gene of interest and selectable marker. The system utilizes Agrobacterium tumefaciens for transgene integration with plant recovery via shoot organogenesis from leaf explant material. Selection for transgenic plants is achieved using the bar gene conferring resistance to glufosinate or nptII gene for resistance to kanamycin. Transformation efficiencies of around 10% are achievable with shoots being recovered about 8 wk after transgene insertion and rooted plants transferred to the greenhouse about twelve weeks after inoculation.
Bacterial gene transfer by natural genetic transformation in the environment.
Lorenz, M G; Wackernagel, W
1994-01-01
Natural genetic transformation is the active uptake of free DNA by bacterial cells and the heritable incorporation of its genetic information. Since the famous discovery of transformation in Streptococcus pneumoniae by Griffith in 1928 and the demonstration of DNA as the transforming principle by Avery and coworkers in 1944, cellular processes involved in transformation have been studied extensively by in vitro experimentation with a few transformable species. Only more recently has it been considered that transformation may be a powerful mechanism of horizontal gene transfer in natural bacterial populations. In this review the current understanding of the biology of transformation is summarized to provide the platform on which aspects of bacterial transformation in water, soil, and sediments and the habitat of pathogens are discussed. Direct and indirect evidence for gene transfer routes by transformation within species and between different species will be presented, along with data suggesting that plasmids as well as chromosomal DNA are subject to genetic exchange via transformation. Experiments exploring the prerequisites for transformation in the environment, including the production and persistence of free DNA and factors important for the uptake of DNA by cells, will be compiled, as well as possible natural barriers to transformation. The efficiency of gene transfer by transformation in bacterial habitats is possibly genetically adjusted to submaximal levels. The fact that natural transformation has been detected among bacteria from all trophic and taxonomic groups including archaebacteria suggests that transformability evolved early in phylogeny. Probable functions of DNA uptake other than gene acquisition will be discussed. The body of information presently available suggests that transformation has a great impact on bacterial population dynamics as well as on bacterial evolution and speciation. PMID:7968924
Dan, Yinghui; Baxter, Aaron; Zhang, Song; Pantazis, Christopher J; Veilleux, Richard E
2010-08-09
Impatiens (Impatiens walleriana) is a top selling floriculture crop. The potential for genetic transformation of Impatiens to introduce novel flower colors or virus resistance has been limited by its general recalcitrance to tissue culture and transformation manipulations. We have established a regeneration and transformation system for Impatiens that provides new alternatives to genetic improvement of this crop. In a first step towards the development of transgenic INSV-resistant Impatiens, we developed an efficient plant regeneration system using hypocotyl segments containing cotyledonary nodes as explants. With this regeneration system, 80% of explants produced an average of 32.3 elongated shoots per initial explant plated, with up to 167 elongated shoots produced per explant. Rooting efficiency was high, and 100% of shoots produced roots within 12 days under optimal conditions, allowing plant regeneration within approximately 8 weeks. Using this regeneration system, we developed an efficient Agrobacterium-mediated Impatiens transformation method using in vitro multiple bud cultures as explants and a binary plasmid (pHB2892) bearing gfp and nptII genes. Transgenic Impatiens plants, with a frequency up to 58.9%, were obtained within 12 to 16 weeks from inoculation to transfer of transgenic plants to soil. Transgenic plants were confirmed by Southern blot, phenotypic assays and T1 segregation analysis. Transgene expression was observed in leaves, stems, roots, flowers, and fruit. The transgenic plants were fertile and phenotypically normal. We report the development of a simple and efficient Agrobacterium-mediated transformation system for Impatiens. To the best of our knowledge, there have been no reports of Agrobacterium-mediated transformation of Impatiens with experimental evidence of stable integration of T-DNA and of Agrobacterium-mediated transformation method for plants using in vitro maintained multiple bud cultures as explants. This transformation system has the advantages of 1) efficient, simple and rapid regeneration and transformation (with no need for sterilization or a greenhouse to grow stock plants), 2) flexibility (available all the time) for in vitro manipulation, 3) uniform and desirable green tissue explants for both nuclear and plastid transformation using Agrobacterium-mediated and biolistics methods, 4) no somaclonal variation and 5) resolution of necrosis of Agrobacterium-inoculated tissues.
Belide, Srinivas; Vanhercke, Thomas; Petrie, James Robertson; Singh, Surinder Pal
2017-01-01
Sorghum ( Sorghum bicolor L.) is one of the world's most important cereal crops grown for multiple applications and has been identified as a potential biofuel crop. Despite several decades of study, sorghum has been widely considered as a recalcitrant major crop for transformation due to accumulation of phenolic compounds, lack of model genotypes, low regeneration frequency and loss of regeneration potential through sub-cultures. Among different explants used for genetic transformation of sorghum, immature embryos are ideal over other explants. However, the continuous supply of quality immature embryos for transformation is labour intensive and expensive. In addition, transformation efficiencies are also influenced by environmental conditions (light and temperature). Despite these challenges, immature embryos remain the predominant choice because of their success rate and also due to non-availability of other dependable explants without compromising the transformation efficiency. We report here a robust genetic transformation method for sorghum (Tx430) using differentiating embryogenic calli (DEC) with nodular structures induced from immature embryos and maintained for more than a year without losing regeneration potential on modified MS media. The addition of lipoic acid (LA) to callus induction media along with optimized growth regulators increased callus induction frequency from 61.3 ± 3.2 to 79 ± 6.5% from immature embryos (1.5-2.0 mm in length) isolated 12-15 days after pollination. Similarly, the regeneration efficiency and the number of shoots from DEC tissue was enhanced by LA. The optimized regeneration system in combination with particle bombardment resulted in an average transformation efficiency (TE) of 27.2 or 46.6% based on the selection strategy, 25% to twofold higher TE than published reports in Tx430. Up to 100% putative transgenic shoots were positive for npt - II by PCR and 48% of events had < 3 copies of transgenes as determined by digital droplet PCR. Reproducibility of this method was demonstrated by generating ~ 800 transgenic plants using 10 different gene constructs. This protocol demonstrates significant improvements in both efficiency and ease of use over existing sorghum transformation methods using PDS, also enables quick hypothesis testing in the production of various high value products in sorghum.
Herman, Nicolaus A; Li, Jeffrey; Bedi, Ripika; Turchi, Barbara; Liu, Xiaoji; Miller, Michael J; Zhang, Wenjun
2017-01-15
While a majority of academic studies concerning acetone, butanol, and ethanol (ABE) production by Clostridium have focused on Clostridium acetobutylicum, other members of this genus have proven to be effective industrial workhorses despite the inability to perform genetic manipulations on many of these strains. To further improve the industrial performance of these strains in areas such as substrate usage, solvent production, and end product versatility, transformation methods and genetic tools are needed to overcome the genetic intractability displayed by these species. In this study, we present the development of a high-efficiency transformation method for the industrial butanol hyperproducer Clostridium saccharoperbutylacetonicum strain N1-4 (HMT) ATCC 27021. Following initial failures, we found that the key to creating a successful transformation method was the identification of three distinct colony morphologies (types S, R, and I), which displayed significant differences in transformability. Working with the readily transformable type I cells (transformation efficiency, 1.1 × 10 6 CFU/μg DNA), we performed targeted gene deletions in C. saccharoperbutylacetonicum N1-4 using a homologous recombination-mediated allelic exchange method. Using plasmid-based gene overexpression and targeted knockouts of key genes in the native acetone-butanol-ethanol (ABE) metabolic pathway, we successfully implemented rational metabolic engineering strategies, yielding in the best case an engineered strain (Clostridium saccharoperbutylacetonicum strain N1-4/pWIS13) displaying an 18% increase in butanol titers and 30% increase in total ABE titer (0.35 g ABE/g sucrose) in batch fermentations. Additionally, two engineered strains overexpressing aldehyde/alcohol dehydrogenases (encoded by adh11 and adh5) displayed 8.5- and 11.8-fold increases (respectively) in batch ethanol production. This paper presents the first steps toward advanced genetic engineering of the industrial butanol producer Clostridium saccharoperbutylacetonicum strain N1-4 (HMT). In addition to providing an efficient method for introducing foreign DNA into this species, we demonstrate successful rational engineering for increasing solvent production. Examples of future applications of this work include metabolic engineering for improving desirable industrial traits of this species and heterologous gene expression for expanding the end product profile to include high-value fuels and chemicals. Copyright © 2016 American Society for Microbiology.
Herman, Nicolaus A.; Li, Jeffrey; Bedi, Ripika; Turchi, Barbara; Liu, Xiaoji
2016-01-01
ABSTRACT While a majority of academic studies concerning acetone, butanol, and ethanol (ABE) production by Clostridium have focused on Clostridium acetobutylicum, other members of this genus have proven to be effective industrial workhorses despite the inability to perform genetic manipulations on many of these strains. To further improve the industrial performance of these strains in areas such as substrate usage, solvent production, and end product versatility, transformation methods and genetic tools are needed to overcome the genetic intractability displayed by these species. In this study, we present the development of a high-efficiency transformation method for the industrial butanol hyperproducer Clostridium saccharoperbutylacetonicum strain N1-4 (HMT) ATCC 27021. Following initial failures, we found that the key to creating a successful transformation method was the identification of three distinct colony morphologies (types S, R, and I), which displayed significant differences in transformability. Working with the readily transformable type I cells (transformation efficiency, 1.1 × 106 CFU/μg DNA), we performed targeted gene deletions in C. saccharoperbutylacetonicum N1-4 using a homologous recombination-mediated allelic exchange method. Using plasmid-based gene overexpression and targeted knockouts of key genes in the native acetone-butanol-ethanol (ABE) metabolic pathway, we successfully implemented rational metabolic engineering strategies, yielding in the best case an engineered strain (Clostridium saccharoperbutylacetonicum strain N1-4/pWIS13) displaying an 18% increase in butanol titers and 30% increase in total ABE titer (0.35 g ABE/g sucrose) in batch fermentations. Additionally, two engineered strains overexpressing aldehyde/alcohol dehydrogenases (encoded by adh11 and adh5) displayed 8.5- and 11.8-fold increases (respectively) in batch ethanol production. IMPORTANCE This paper presents the first steps toward advanced genetic engineering of the industrial butanol producer Clostridium saccharoperbutylacetonicum strain N1-4 (HMT). In addition to providing an efficient method for introducing foreign DNA into this species, we demonstrate successful rational engineering for increasing solvent production. Examples of future applications of this work include metabolic engineering for improving desirable industrial traits of this species and heterologous gene expression for expanding the end product profile to include high-value fuels and chemicals. PMID:27836845
Ibrahim, Evra Raunie
2014-01-01
Sago palm (Metroxylon sagu) is a perennial plant native to Southeast Asia and exploited mainly for the starch content in its trunk. Genetic improvement of sago palm is extremely slow when compared to other annual starch crops. Urgent attention is needed to improve the sago palm planting material and can be achieved through nonconventional methods. We have previously developed a tissue culture method for sago palm, which is used to provide the planting materials and to develop a genetic transformation procedure. Here, we report the genetic transformation of sago embryonic callus derived from suspension culture using Agrobacterium tumefaciens and gene gun systems. The transformed embryoids cells were selected against Basta (concentration 10 to 30 mg/L). Evidence of foreign genes integration and function of the bar and gus genes were verified via gene specific PCR amplification, gus staining, and dot blot analysis. This study showed that the embryogenic callus was the most suitable material for transformation as compared to the fine callus, embryoid stage, and initiated shoots. The gene gun transformation showed higher transformation efficiency than the ones transformed using Agrobacterium when targets were bombarded once or twice using 280 psi of helium pressure at 6 to 8 cm distance. PMID:25295258
Heuermann, D; Haas, R
1998-03-01
A versatile plasmid shuttle vector system was constructed, which is useful for genetic complementation of Helicobacter pylori strains or mutants with cloned genes of homologous or heterologous origin. The individual plasmid vectors consist of the minimal essential genetic elements, including an origin of replication for Escherichia coli, a H. pylori-specific replicon originally identified on a small cryptic H. pylori plasmid, an oriT sequence and a multiple cloning site. Shuttle plasmid pHel2 carries a chloramphenicol resistance cassette (catGC) and pHel3 contains a kanamycin resistance gene (aphA-3) as the selectable marker; both are functional in E. coli and H. pylori. The shuttle plasmids were introduced into the H. pylori strain P1 by natural transformation. A efficiency of 7.0 x 10(-7) and 4.7 x 10(-7) transformants per viable recipient was achieved with pHel2 and pHel3, respectively, and both vectors showed stable, autonomous replication in H. pylori. An approximately 100-fold higher H. pylori transformation rate was obtained when the shuttle vectors for transformation were isolated from the homologous H. pylori strain, rather than E. coli, indicating that DNA restriction and modification mechanisms play a crucial role in plasmid transformation. Interestingly, both shuttle vectors could also be mobilized efficiently from E. coli into different H. pylori recipients, with pHel2 showing an efficiency of 2.0 x 10(-5) transconjugants per viable H. pylori P1 recipient. Thus, DNA restriction seems to be strongly reduced or absent during conjugal transfer. The functional complementation of a recA-deficient H. pylori mutant by the cloned H. pylori recA+ gene, and the expression of the heterologous green fluorescent protein (GFP) in H. pylori demonstrate the general usefulness of this system, which will significantly facilitate the molecular analysis of H. pylori virulence factors in the future.
NASA Astrophysics Data System (ADS)
Jude Hemanth, Duraisamy; Umamaheswari, Subramaniyan; Popescu, Daniela Elena; Naaji, Antoanela
2016-01-01
Image steganography is one of the ever growing computational approaches which has found its application in many fields. The frequency domain techniques are highly preferred for image steganography applications. However, there are significant drawbacks associated with these techniques. In transform based approaches, the secret data is embedded in random manner in the transform coefficients of the cover image. These transform coefficients may not be optimal in terms of the stego image quality and embedding capacity. In this work, the application of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have been explored in the context of determining the optimal coefficients in these transforms. Frequency domain transforms such as Bandelet Transform (BT) and Finite Ridgelet Transform (FRIT) are used in combination with GA and PSO to improve the efficiency of the image steganography system.
Kubota, Akane; Ishizaki, Kimitsune; Hosaka, Masashi; Kohchi, Takayuki
2013-01-01
The thallus, the gametophyte body of the liverwort Marchantia polymorpha, develops clonal progenies called gemmae that are useful in the isolation and propagation of isogenic plants. Developmental timing is critical to Agrobacterium-mediated transformation, and high transformation efficiency has been achieved only with sporelings. Here we report an Agrobacterium-mediated transformation system for M. polymorpha using regenerating thalli. Thallus regeneration was induced by cutting the mature thallus across the apical-basal axis and incubating the basal portion of the thallus for 3 d. Regenerating thalli were infected with Agrobacterium carrying binary vector that contained a selection marker, the hygromycin phosphotransferase gene, and hygromycin-resistant transformants were obtained with an efficiency of over 60%. Southern blot analysis verified random integration of 1 to 4 copies of the T-DNA into the M. polymorpha genome. This Agrobacterium-mediated transformation system for M. polymorpha should provide opportunities to perform genetic transformation without preparing spores and to generate a sufficient number of transformants with isogenic background.
Blueberry (Vaccinium corymbosum L.).
Song, Guo-Qing; Sink, Kenneth C
2006-01-01
Recent advances in plant biotechnology have led to a reliable and reproductive method for genetic transformation of blueberry. These efforts built on previous attempts at transient and stable transformation of blueberry that demonstrated the potential of Agrobacterium tumefaciens-mediated transformation, and as well, the difficulties of selecting and regenerating transgenic plants. As a prerequisite for successful stable transformation, efficient regeneration systems were required despite many reports on factors controlling shoot regeneration from leaf explants. The A. tumefaciens-mediated transformation protocol described in this chapter is based on combining efficient regeneration methods and the results of A. tumefaciens-mediated transient transformation studies to optimize selected parameters for gene transfer. The protocol has led to successful regeneration of transgenic plants of four commercially important highbush blueberry cultivars.
Genetic transformation of the yeast Dekkera/Brettanomyces bruxellensis with non-homologous DNA.
Miklenić, Marina; Štafa, Anamarija; Bajić, Ana; Žunar, Bojan; Lisnić, Berislav; Svetec, Ivan-Krešimir
2013-05-01
Yeast Dekkera/Brettanomyces bruxellensis is probably the most common contaminant in wineries and ethanol production processes. The considerable economic losses caused by this yeast, but also its ability to produce and tolerate high ethanol concentrations, make it an attractive subject for research with potential for industrial applications. Unfortunately, efforts to understand the biology of D. bruxellensis and facilitate its broader use in industry are hampered by the lack of adequate procedures for delivery of exogenous DNA into this organism. Here we describe the development of transformation protocols (spheroplast transformation, LiAc/PEG method, and electroporation) and report the first genetic transformation of yeast D. bruxellensis. A linear heterologous DNA fragment carrying the kanMX4 sequence was used for transformation, which allowed transformants to be selected on plates containing geneticin. We found the spheroplast transformation method using 1M sorbitol as osmotic stabilizer to be inappropriate because sorbitol strikingly decreases the plating efficiency of both D. bruxellensis spheroplast and intact cells. However, we managed to modify the LiAc/ PEG transformation method and electroporation to accommodate D. bruxellensis transformation, achieving efficiencies of 0.6-16 and 10-20 transformants/microg DNA, respectively. The stability of the transformants ranged from 93.6% to 100%. All putative transformants were analyzed by Southern blot using the kanMX4 sequence as a hybridization probe, which confirmed that the transforming DNA fragment had integrated into the genome. The results of the molecular analysis were consistent with the expected illegitimate integration of a heterologous transforming fragment.
Wang, Binbin; Zhang, Huawei; Liang, Dongmei; Hao, Panlong; Li, Yanni; Qiao, Jianjun
2017-12-01
Lactococcus lactis is a gram-positive bacterium used extensively in the dairy industry and food fermentation, and its biological characteristics are usually improved through genetic manipulation. However, poor transformation efficiency was the main restriction factor for the construction of engineered strains. In this study, the transformation efficiency of L. lactis F44 showed a 56.1-fold increase in acid condition (pH 5.0); meanwhile, erythromycin stress (0.04 μg/mL) promoted the transformation efficiency more significantly (76.9-fold). Notably, the transformation efficiency of F44e (L. lactis F44 harboring empty pLEB124) increased up to 149.1-fold under the synergistic stresses of acid and erythromycin. In addition, the gene expression of some DNA binding proteins (DprA, RadA, RadC, RecA, RecQ, and SsbA) changed correspondingly. Especially for radA, 25.1-fold improvement was detected when F44e was exposed to pH 5.0. Overexpression of some DNA binding proteins could improve the transformation efficiency. The results suggested that acid or erythromycin stress could improve the transformation efficiency of L. lactis through regulating gene expression of DNA binding proteins. We have proposed a simple but promising strategy for improving the transformation efficiency of L. lactis and other hard-transformed microorganisms. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Genetic transformation of the fungal pathogen responsible for rice blast disease
Parsons, Kenneth A.; Chumley, Forrest G.; Valent, Barbara
1987-01-01
The analysis of complex genetic determinants that control the ability of a fungus to colonize its host has been impaired by the lack of sophisticated genetic tools for characterizing important pathogens. We have developed a system for the genetic transformation of Magnaporthe grisea, the causal agent of rice blast disease, to overcome this limitation. A M. grisea arginine auxotroph was shown to contain a mutation (arg3-12) that abolishes ornithine carbamoyltransferase activity. M. grisea strains that contain arg3-12 were used as recipients in transformation experiments with plasmid pMA2, which carries the ArgB+ gene from Aspergillus nidulans. Stable prototrophic transformants arose at a frequency of about 35 per microgram of plasmid DNA. Integration of single or multiple plasmid copies occurred at a single site in the genome of each transformant; rearrangements were often created during integration. When M. grisea genomic segments were incorporated into pMA2, the presence of any one of five different M. grisea segments did not greatly affect the efficiency of transformation. Integration via homologous recombination occurred when the donor plasmid was linearized by cleaving at a unique restriction site within the M. grisea segment. Images PMID:16593854
Liu, Ying; Liu, Guoxuan; Yang, Yali; Niu, Sufang; Yang, Fuguang; Yang, Shaoxia; Tang, Jianian; Chen, Jianping
2017-12-01
An efficient and reproducible protocol is described for shoot-bud regeneration and Agrobacterium tumefaciens-mediated genetic transformation of J. curcas. Treating the explants with high concentrations (5-120 mg/L) of TDZ for short durations (5-80 min) before inoculation culture increased significantly the regeneration frequency and improved the quality of the regenerated buds. The highest shoot-buds induction rate (87.35%) was achieved when petiole explants were treated with 20 mg/L TDZ solution for 20 min and inoculated on hormone-free MS medium for 30 days. Regenerated shoots of 0.5 cm or a little longer were isolated and grafted to seedling stocks of the same species, and then the grafted plantlets were planted on half-strength MS medium containing 0.1 mg/L IBA and 2 mg/L sodium nitroprusside (SNP). This grafting strategy was found to be very effective, to obtain that healthy grafted plantlets ready for acclimatization within 20 days. By the above mentioned protocol and with general Agrobacterium - mediated genetic transformation methods only 65 days were needed to obtain intact transgenic plants.
Wang, Biao; Wang, Ren-Rui; Cui, Zhen-Hua; Bi, Wen-Lu; Li, Jing-Wei; Li, Bai-Quan; Ozudogru, Elif Aylin; Volk, Gayle M; Wang, Qiao-Chun
2014-01-01
Rapid increases in human populations provide a great challenge to ensure that adequate quantities of food are available. Sustainable development of agricultural production by breeding more productive cultivars and by increasing the productive potential of existing cultivars can help meet this demand. The present paper provides information on the potential uses of cryogenic techniques in ensuring food security, including: (1) long-term conservation of a diverse germplasm and successful establishment of cryo-banks; (2) maintenance of the regenerative ability of embryogenic tissues that are frequently the target for genetic transformation; (3) enhancement of genetic transformation and plant regeneration of transformed cells, and safe, long-term conservation for transgenic materials; (4) production and maintenance of viable protoplasts for transformation and somatic hybridization; and (5) efficient production of pathogen-free plants. These roles demonstrate that cryogenic technologies offer opportunities to ensure food security. Copyright © 2014 Elsevier Inc. All rights reserved.
Li, D D; Shi, W; Deng, X X
2003-12-01
Valencia sweet orange (Citrus sinensis (L.) Osbeck) calluses were used as explants to develop a new transformation system for citrus mediated by Agrobacterium tumefaciens. Factors affecting Agrobacterium-mediated transformation efficiency included mode of pre-cultivation, temperature of cocultivation and presence of acetosyringone (AS). The highest transformation efficiency was obtained with a 4-day pre-cultivation period in liquid medium. Transformation efficiency was higher when cocultivation was performed for 3 days at 19 degrees C than at 23 or 28 degrees C. Almost no resistant callus was obtained if the cocultivation medium lacked AS. The transformation procedure yielded transgenic Valencia plants containing the pTA29-barnase gene, as verified by PCR amplification and confirmed by Southern blotting. Because male sterility is a common factor leading to seedlessness in citrus cultivars with parthenocarpic characteristics, production of seedless citrus genotypes by Agrobacterium-mediated genetic transformation is a promising alternative to conventional breeding methods.
The development and phenotyping of diploid recombinant inbred lines of potato
USDA-ARS?s Scientific Manuscript database
Progress continues to be made in the effort to transform potato from a tetraploid outbreeding crop into a diploid inbreeding one. This transformation will ultimately lead to more efficient breeding and cultivar development. A variety of genetic resources will be required before a cultivated diploid ...
Zhao, Yujun; Zhang, Yifeng; Su, Ping; Yang, Jian; Huang, Luqi; Gao, Wei
2017-01-01
Tripterygium wilfordii is a perennial woody liana medicinal plant with several crucial biological activities. Although studies on tissue culture have previously been conducted, research on genetic transformation is much more challenging and therefore results in slower progress. In the present study, a highly efficient transformation system involving the particle bombardment of T. wilfordii with the reporter egfp gene using the PDS-1000/He system was established. A total of seven parameters affecting the genetic transformation were investigated using an L 18 (6 × 3 6 )-type orthogonal array. The result indicated that DNA delivery conditions of 3-cm target distance, 1100 psi helium pressure, 28 mmHg chamber vacuum pressure, three times number of bombardment, CaCl 2 as precipitation agent, 2 μg plasmid DNA concentration and 48 h post-bombardment incubation time were optimal for T. wilfordii cell suspensions transformation. The average transformation efficiency was 19.17%. Based on this transformation system, the overexpression of two T. wilfordii farnesyl pyrophosphate synthase genes ( TwFPSs ) was performed in cell suspensions. Integration of the TwFPSs in the genome was verified by PCR analysis and also by Southern blotting using hygromycin gene as a probe. Real-time quantitative PCR analysis showed that the expression of TwFPS1&2 was highly up regulated in transgenic cell suspensions compared with control cells. The detection of metabolites showed that TwFPS1 & 2 could highly increase the celastrol content (973.60 μg/g) in transgenic cells. These results indicated that this transformation system is an effective protocol for characterizing the function of genes in the terpenoid biosynthetic pathway.
Shi, Liang; Chen, Dongdong; Xu, Chao; Ren, Ang; Yu, Hanshou; Zhao, Mingwen
2017-07-11
Flammulina velutipes is a well-known edible mushroom cultivated all over the world. However, because of the low transformation frequency, the expensive instruments required, and the complicated, time-consuming procedures necessary, there is insufficient genetic research on F. velutipes. In this study, we report a liposome-mediated transformation (LMT) system for the genetic transformation of F. velutipes. Using the LMT system, we obtained 82 ± 4 stable F. velutipes transformants per 10 5 protoplasts, which is a clear increase in transformation frequency compared to the other methods used. We were able to detect the expression of an EGFP reporter gene in the F. velutipes transformants using fluorescence imaging assays. Furthermore, we used this method to transfer the laccase gene into F. velutipes and found that the transcriptional level and enzymatic activity increased in these transformants. Mitotic stability analysis showed that all of the selected transformants remained mitotically stable, even after five successive rounds of sub-culturing. These results demonstrate a new transgenic approach that will facilitate F. velutipes research.
Labbé, Geneviève M. C.; Nimmo, Derric D.; Alphey, Luke
2010-01-01
Background The Asian tiger mosquito, Aedes albopictus (Skuse), is a vector of several arboviruses including dengue and chikungunya. This highly invasive species originating from Southeast Asia has travelled the world in the last 30 years and is now established in Europe, North and South America, Africa, the Middle East and the Caribbean. In the absence of vaccine or antiviral drugs, efficient mosquito control strategies are crucial. Conventional control methods have so far failed to control Ae. albopictus adequately. Methodology/Principal Findings Germline transformation of Aedes albopictus was achieved by micro-injection of embryos with a piggyBac-based transgene carrying a 3xP3-ECFP marker and an attP site, combined with piggyBac transposase mRNA and piggyBac helper plasmid. Five independent transgenic lines were established, corresponding to an estimated transformation efficiency of 2–3%. Three lines were re-injected with a second-phase plasmid carrying an attB site and a 3xP3-DsRed2 marker, combined with PhiC31 integrase mRNA. Successful site-specific integration was observed in all three lines with an estimated transformation efficiency of 2–6%. Conclusions/Significance Both piggybac- and site-specific PhiC31-mediated germline transformation of Aedes albopictus were successfully achieved. This is the first report of Ae. albopictus germline transformation and engineering, a key step towards studying and controlling this species using novel molecular techniques and genetic control strategies. PMID:20808959
Weyda, István; Yang, Lei; Vang, Jesper; Ahring, Birgitte K; Lübeck, Mette; Lübeck, Peter S
2017-04-01
In recent years, versatile genetic tools have been developed and applied to a number of filamentous fungi of industrial importance. However, the existing techniques have limitations when it comes to achieve the desired genetic modifications, especially for efficient gene targeting. In this study, we used Aspergillus carbonarius as a host strain due to its potential as a cell factory, and compared three gene targeting techniques by disrupting the ayg1 gene involved in the biosynthesis of conidial pigment in A. carbonarius. The absence of the ayg1 gene leads to phenotypic change in conidia color, which facilitated the analysis on the gene targeting frequency. The examined transformation techniques included Agrobacterium-mediated transformation (AMT) and protoplast-mediated transformation (PMT). Furthermore, the PMT for the disruption of the ayg1 gene was carried out with bipartite gene targeting fragments and the recently adapted CRISPR-Cas9 system. All three techniques were successful in generating Δayg1 mutants, but showed different efficiencies. The most efficient method for gene targeting was AMT, but further it was shown to be dependent on the choice of Agrobacterium strain. However, there are different advantages and disadvantages of all three gene targeting methods which are discussed, in order to facilitate future approaches for fungal strain improvements. Copyright © 2017 Elsevier B.V. All rights reserved.
Lu, Zhenghui; Zhou, Yuling; Zhang, Xiaozhou; Zhang, Guimin
2015-11-01
Bacillus subtilis is a generally recognized as safe (GRAS) strain that has been widely used in industries including fodder, food, and biological control. In addition, B. subtilis expression system also plays a significant role in the production of industrial enzymes. However, its application is limited by its low sporulation frequency and transformation efficiency. Immense studies have been done on interpreting the molecular mechanisms of sporulation and competence development, whereas only few of them were focused on improving sporulation frequency and transformation efficiency of B. subtilis by genetic modification. The main challenge is that sporulation and competence development, as the two major developmental events in the stationary phase of B. subtilis, are regulated by the complicated intracellular genetic regulatory systems. In addition, mutual regulatory mechanisms also exist in these two developmental events. With the development of genetic and metabolic engineering, constructing genetic regulatory networks is currently one of the most attractive research fields, together with the genetic information of cell growth, metabolism, and development, to guide the industrial application. In this review, the mechanisms of sporulation and competence development of B. subtilis, their interactions, and the genetic regulation of cell growth were interpreted. In addition, the roles of these regulatory networks in guiding basic and applied research of B. subtilis and its related species were discussed.
Ahn, Yul-Kyun; Yoon, Moo-Kyoung; Jeon, Jong-Seong
2013-01-01
The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst non-transgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits. PMID:23832764
Ahn, Yul-Kyun; Yoon, Moo-Kyoung; Jeon, Jong-Seong
2013-08-01
The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst nontransgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits.
Research and Application of Lipoic Acid in Plants
NASA Astrophysics Data System (ADS)
Xiao, Renjie; Wang, Xiran; Jiang, Leiyu; Tang, Haoru
2018-01-01
Lipoic acid is a kind of small molecular compound with strong oxidizing properties. It has been widely used in medicine and has achieved good results since its discovery. However, it is less used in plants, and the biosynthetic pathway is not clear. The content in the plant is mainly measured by high-performance liquid chromatography(HPLC). At present, it is mainly used as an additive to the culture medium for plant tissue culture and Agrobacterium-mediated plant genetic transformation, in order to reduce the browning rate of explants, improve Agrobacterium-mediated genetic transformation efficiency.
Yang, Jingli; Zhao, Bo; Kim, Yeon Bok; Zhou, Chenguang; Li, Chunyan; Chen, Yunlin; Zhang, Haizhen; Li, Cheng Hao
2013-01-01
An efficient transformation protocol was developed for Agrobacterium-mediated transformation of Phellodendron amurense Rupr. for using explants from mature seeds. The binary vector pCAMBIA1303, which contained hygromycin phosphotransferase (hptII) as a selectable marker gene and β-glucuronidase (GUS) as a reporter gene, was used for transformation studies. Different factors that affect survival of transformed buds, namely Agrobacterium infection method, bacterial strain, pre-culture duration, acetosyringone concentration, co-culture duration, and co-culture temperature were examined and optimized for transformation efficiency on the basis of GUS staining of hygromycin-resistant buds. Polymerase chain reaction (PCR), Southern blot and reverse transcription PCR confirmed the presence of the GUS gene. A transformation frequency of 13.1 % was achieved under optimized conditions for transformation (A. tumefaciens strain EHA105, 4 days co-cultivation at 4 °C, and infection of the pre-cultured mature-seed explants for 2 days). This is the first report of a successful genetic transformation protocol for P. amurense.
USDA-ARS?s Scientific Manuscript database
Plant Transformation Technologies is a comprehensive, authoritative book focusing on cutting-edge plant biotechnologies, offering in-depth, forward-looking information on methods for controlled and accurate genetic engineering. In response to ever-increasing pressure for precise and efficient integr...
Sujatha, M; Reddy, T P; Mahasi, M J
2008-01-01
Castor and Jatropha belong to the Euphorbiaceae family. This review highlights the role of biotechnological tools in the genetic improvement of castor and jatropha. Castor is monotypic and breeding programmes have mostly relied on the variability available in the primary gene pool. The major constraints limiting profitable cultivation are: vulnerability to insect pests and diseases, and the press cake is toxic which restrict its use as cattle feed. Conventional breeding techniques have limited scope in improvement of resistance to biotic stresses and in quality improvement owing to low genetic variability for these traits. Genetic diversity was assessed using protein based markers while use of molecular markers is at infancy. In vitro studies in castor have been successful in shoot proliferation from meristematic explants, but not callus-mediated regeneration. Genetic transformation experiments have been initiated for development of insect resistant and ricin-free transgenics with very low transformation frequency. In tropical and subtropical countries jatropha is viewed as a potential biofuel crop. The limitations in available germplasm include; lack of knowledge of the genetic base, poor yields, low genetic diversity and vulnerability to a wide array of insects and diseases. Great scope exists for genetic improvement through conventional methods, induced mutations, interspecific hybridization and genetic transformation. Reliable and highly efficient tissue culture protocols for direct and callus-mediated shoot regeneration and somatic embryogenesis are established for jatropha which indicates potential for widening the genetic base through biotechnological tools. Assessment of genetic diversity using molecular markers disclosed low interaccessional variability in local Jatropha curcas germplasm. The current status and future prospects of in vitro regeneration, genetic transformation and the role of molecular tools in the genetic enhancement of the two-oilseed crops are discussed.
Advancing Crop Transformation in the Era of Genome Editing[OPEN
Blechl, Ann E.; Brutnell, Thomas P.; Conrad, Liza J.; Gelvin, Stanton B.; Jackson, David P.; Kausch, Albert P.; Lemaux, Peggy G.; Medford, June I.; Orozco-Cárdenas, Martha L.; Tricoli, David M.; Van Eck, Joyce; Voytas, Daniel F.
2016-01-01
Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized. PMID:27335450
Agrobacterium-mediated transformation of protocorm-like bodies in Cymbidium.
Chin, Dong Poh; Mishiba, Kei-ichiro; Mii, Masahiro
2007-06-01
Genetically transformed plants of Cymbidium were regenerated after cocultivating protocorm-like bodies (PLB) with Agrobacterium tumefaciens strain EHA101 (pIG121Hm) that harbored genes for beta-glucuronidase (gus), hygromycin phosphotransferase (hpt) and neomycin phosphotransferase II (nptII). PLB of three genotypes maintained in liquid new Dogashima medium (NDM), were subjected to transformation experiments. The PLB inoculated with Agrobacterium produced secondary PLB, 4 weeks after transfer onto 2.5 g L(-1) gellan gum-solidified NDM containing 10 g L(-1) sucrose, 20 mg L(-1) hygromycin and 40 mg L(-1) meropenem. Transformation efficiency was affected by genotype and the presence of acetosyringone during cocultivation. The highest transformation efficiency was obtained when PLB from the genotype L4 were infected and cocultivated with Agrobacterium on medium containing 100 muM acetosyringone. Transformation of the hygromycin-resistant plantlets regenerated from different sites of inoculated PLB was confirmed by histochemical GUS assay, PCR analysis and Southern blot hybridization.
Organogenesis from transformed tomato explants.
Frary, Anne; Van Eck, Joyce
2005-01-01
Tomato was one of the first crops for which a genetic transformation system was reported involving regeneration by organogenesis from Agrobacterium-transformed explants. Since the initial reports, various factors have been studied that affect the efficiency of tomato transformation and the technique has been useful for the isolation and identification of many genes involved in plant disease resistance, morphology and development. In this method, cotyledon explants from in vitro-grown seedlings are precultured overnight on a tobacco suspension feeder layer. The explants are then inoculated with Agrobacterium and returned to the feeder layer for a 2-d period of cocultivation. After cocultivation, the explants are transferred to an MS-based selective regeneration medium containing zeatin. Regenerated shoots are then rooted on a separate selective medium. This protocol has been used with several tomato cultivars and routinely yields transformation efficiencies of 10-15%.
Maize, tropical (Zea mays L.).
Assem, Shireen K
2015-01-01
Maize (Zea mays L.) is the third most important food crop globally after wheat and rice. In sub-Saharan Africa, tropical maize has traditionally been the main staple of the diet; 95 % of the maize grown is consumed directly as human food and as an important source of income for the resource-poor rural population. The biotechnological approach to engineer biotic and abiotic traits implies the availability of an efficient plant transformation method. The production of genetically transformed plants depends both on the ability to integrate foreign genes into target cells and the efficiency with which plants are regenerated. Maize transformation and regeneration through immature embryo culture is the most efficient system to regenerate normal transgenic plants. However, this system is highly genotype dependent. Genotypes adapted to tropic areas are difficult to regenerate. Therefore, transformation methods used with model genotypes adapted to temperate areas are not necessarily efficient with tropical lines. Agrobacterium-mediated transformation is the method of choice since it has been first achieved in 1996. In this report, we describe a transformation method used successfully with several tropical maize lines. All the steps of transformation and regeneration are described in details. This protocol can be used with a wide variety of tropical lines. However, some modifications may be needed with recalcitrant lines.
Li, Hedan; Zhang, Lirong; Guo, Wei; Xu, Daqing
2016-12-01
Gene disruption and replacement in Corynebacterium glutamicum is dependent upon a high transformation efficiency. The cglIR-cgIIR restriction system is a major barrier to introduction of foreign DNA into Corynebacterium glutamicum cells. To improve the transformation efficiency of C. glutamicum, the cglIM gene encoding methyltransferase in the cglIR-cglIIR-cglIM restriction-modification system of C. glutamicum ATCC 13032 was chromosomally integrated and expressed in Escherichia coli, resulting in an engineered strain E. coli AU1. The electro-transformation experiments of C. glutamicum ATCC 13032 with the E. coli-C. glutamicum shuttle plasmid pAU4 showed that the transformation efficiency of C. glutamicum with pAU4 DNA extracted from E. coli TG1/pAU4 was 1.80±0.21×10 2 cfu/μg plasmid DNA, while using pAU4 DNA extracted from E. coli AU1/pAU4, the transformation efficiency reached up to 5.22±0.33×10 6 cfu/μg plasmid DNA. The results demonstrated that E. coli AU1 is able to confer the cglIM-specific DNA methylation pattern to its resident plasmid, which makes the plasmid resistant to the cglIR-cglIIR restriction and efficiently transferred into C. glutamicum. E. coli AU1 is a useful intermediate host for efficient transformation of C. glutamicum. Copyright © 2016. Published by Elsevier B.V.
Alam, Pravej; Khan, Zainul Abdeen; Abdin, Malik Zainul; Khan, Jawaid A; Ahmad, Parvaiz; Elkholy, Shereen F; Sharaf-Eldin, Mahmoud A
2017-05-01
Catharanthus roseus is an important medicinal plant known for its pharmacological qualities such as antimicrobial, anticancerous, antifeedant, antisterility, antidiabetic activities. More than 130 bioactive compounds like vinblastine, vindoline and vincristine have been synthesized in this plant. Extensive studies have been carried out for optimization regeneration and transformation protocols. Most of the protocol described are laborious and time-consuming. Due to sophisticated protocol of regeneration and genetic transformation, the production of these bioactive molecules is less and not feasible to be commercialized worldwide. Here we have optimized the efficient protocol for regeneration and transformation to minimize the time scale and enhance the transformation frequency through Agrobacterium and sonication-assisted transformation (SAAT) method. In this study, hypocotyl explants responded best for maximal production of transformed shoots. The callus percentage were recorded 52% with 1.0 mg L -1 (BAP) and 0.5 mg L -1 (NAA) while 80% shoot percentage obtained with 4.0 mg L -1 (BAP) and 0.05 mg L -1 (NAA). The microscopic studies revealed that the expression of GFP was clearly localized in leaf tissue of the C. roseus after transformation of pRepGFP0029 construct. Consequently, transformation efficiency was revealed on the basis of GFP localization. The transformation efficiency of SAAT method was 6.0% comparable to 3.5% as conventional method. Further, PCR analysis confirmed the integration of the nptII gene in the transformed plantlets of C. roseus.
Schoberle, Taylor J; Nguyen-Coleman, C Kim; May, Gregory S
2013-01-01
Fungal species are continuously being studied to not only understand disease in humans and plants but also to identify novel antibiotics and other metabolites of industrial importance. Genetic manipulations, such as gene deletion, gene complementation, and gene over-expression, are common techniques to investigate fungal gene functions. Although advances in transformation efficiency and promoter usage have improved genetic studies, some basic steps in vector construction are still laborious and time-consuming. Gateway cloning technology solves this problem by increasing the efficiency of vector construction through the use of λ phage integrase proteins and att recombination sites. We developed a series of Gateway-compatible vectors for use in genetic studies in a range of fungal species. They contain nutritional and drug-resistance markers and can be utilized to manipulate different filamentous fungal genomes. Copyright © 2013 Elsevier Inc. All rights reserved.
Cotton transformation via pollen tube pathway.
Wang, Min; Zhang, Baohong; Wang, Qinglian
2013-01-01
Although many gene transfer methods have been employed for successfully obtaining transgenic cotton, the major constraint in cotton improvement is the limitation of genotype because the majority of transgenic methods require plant regeneration from a single transformed cell which is limited by cotton tissue culture. Comparing with other plant species, it is difficult to induce plant regeneration from cotton; currently, only a limited number of cotton cultivars can be cultured for obtaining regenerated plants. Thus, development of a simple and genotype-independent genetic transformation method is particularly important for cotton community. In this chapter, we present a simple, cost-efficient, and genotype-independent cotton transformation method-pollen tube pathway-mediated transformation. This method uses pollen tube pathway to deliver transgene into cotton embryo sacs and then insert foreign genes into cotton genome. There are three major steps for pollen tube pathway-mediated genetic transformation, which include injection of -foreign genes into pollen tube, integration of foreign genes into plant genome, and selection of transgenic plants.
Targeted Gene Deletion in Cordyceps militaris Using the Split-Marker Approach.
Lou, HaiWei; Ye, ZhiWei; Yun, Fan; Lin, JunFang; Guo, LiQiong; Chen, BaiXiong; Mu, ZhiXian
2018-05-01
The macrofungus Cordyceps militaris contains many kinds of bioactive ingredients that are regulated by functional genes, but the functions of many genes in C. militaris are still unknown. In this study, to improve the frequency of homologous integration, a genetic transformation system based on a split-marker approach was developed for the first time in C. militaris to knock out a gene encoding a terpenoid synthase (Tns). The linear and split-marker deletion cassettes were constructed and introduced into C. militaris protoplasts by PEG-mediated transformation. The transformation of split-marker fragments resulted in a higher efficiency of targeted gene disruption than the transformation of linear deletion cassettes did. The color phenotype of the Tns gene deletion mutants was different from that of wild-type C. militaris. Moreover, a PEG-mediated protoplast transformation system was established, and stable genetic transformants were obtained. This method of targeted gene deletion represents an important tool for investigating the role of C. militaris genes.
Celis, A M; Vos, A M; Triana, S; Medina, C A; Escobar, N; Restrepo, S; Wösten, H A B; de Cock, H
2017-03-01
Malassezia spp. are part of the normal human and animal mycobiota but are also associated with a variety of dermatological diseases. The absence of a transformation system hampered studies to reveal mechanisms underlying the switch from the non-pathogenic to pathogenic life style. Here we describe, a highly efficient Agrobacterium-mediated genetic transformation system for Malassezia furfur and M. pachydermatis. A binary T-DNA vector with the hygromycin B phosphotransferase (hpt) selection marker and the green fluorescent protein gene (gfp) was introduced in M. furfur and M. pachydermatis by combining the transformation protocols of Agaricus bisporus and Cryptococcus neoformans. Optimal temperature and co-cultivation time for transformation were 5 and 7days at 19°C and 24°C, respectively. Transformation efficiency was 0.75-1.5% for M. furfur and 0.6-7.5% for M. pachydermatis. Integration of the hpt resistance cassette and gfp was verified using PCR and fluorescence microscopy, respectively. The T-DNA was mitotically stable in approximately 80% of the transformants after 10 times sub-culturing in the absence of hygromycin. Improving transformation protocols contribute to study the biology and pathophysiology of Malassezia. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Pepper, sweet (Capsicum annuum).
Heidmann, Iris; Boutilier, Kim
2015-01-01
Capsicum (pepper) species are economically important crops that are recalcitrant to genetic transformation by Agrobacterium (Agrobacterium tumefaciens). A number of protocols for pepper transformation have been described but are not routinely applicable. The main bottleneck in pepper transformation is the low frequency of cells that are both susceptible for Agrobacterium infection and have the ability to regenerate. Here, we describe a protocol for the efficient regeneration of transgenic sweet pepper (C. annuum) through inducible activation of the BABY BOOM (BBM) AP2/ERF transcription factor. Using this approach, we can routinely achieve a transformation efficiency of at least 0.6 %. The main improvements in this protocol are the reproducibility in transforming different genotypes and the ability to produce fertile shoots. An added advantage of this protocol is that BBM activity can be induced subsequently in stable transgenic lines, providing a novel regeneration system for clonal propagation through somatic embryogenesis.
A Perspective on Hypericum perforatum Genetic Transformation
Hou, Weina; Shakya, Preeti; Franklin, Gregory
2016-01-01
Hypericum perforatum (St John's wort) is a reservoir of diverse classes of biologically active and high value secondary metabolites, which captured the interest of both researchers and the pharmaceutical industry alike. Several studies and clinical trials have shown that H. perforatum extracts possess an astounding array of pharmacological properties. These properties include antidepressant, anti-inflammatory, antiviral, anti-cancer, and antibacterial activities; and are largely attributed to the naphtodianthrones and xanthones found in the genus. Hence, improving their production via genetic manipulation is an important strategy. In spite of the presence of contemporary genome editing tools, genetic improvement of this genus remains challenging without robust transformation methods in place. In the recent past, we found that H. perforatum remains recalcitrant to Agrobacterium tumefaciens mediated transformation partly due to the induction of plant defense responses coming into play. However, H. perforatum transformation is possible via a non-biological method, biolistic bombardment. Some research groups have observed the induction of hairy roots in H. perforatum after Agrobacterium rhizogenes co-cultivation. In this review, we aim at updating the available methods for regeneration and transformation of H. perforatum. In addition, we also propose a brief perspective on certain novel strategies to improve transformation efficiency in order to meet the demands of the pharmaceutical industry via metabolic engineering. PMID:27446112
Andargie, Mebeaselassie; Yang, Chao; Li, Jianxiong
2016-12-01
An Agrobacterium-mediated genetic transformation system for the rice false smut fungus Ustilaginoidea virens was developed using conidia as recipients. A binary vector, pCAMBIA1301-P gpdA -GUS-T trpC , was constructed. The gpdA promoter (P gpdA ) from Aspergillus nidulans was used to drive the expression of the β-glucuronidase (GUS) gene which enabled GUS activity visualization. The conidia transformation efficiency reached approximately 110 to 250 transformants per 1×10 5 conidia. Based on the analysis made on five successive generations of subcultures and PCR, the pCAMBIA1301-GUS cassette had integrated into the genomes of all transformants and clearly showed mitotic stability. The novel reporter vector constructed will promote the functional characterization of genes and the construction of genetically engineered strains of this important fungus. Copyright © 2016 Elsevier B.V. All rights reserved.
Advancing Crop Transformation in the Era of Genome Editing.
Altpeter, Fredy; Springer, Nathan M; Bartley, Laura E; Blechl, Ann E; Brutnell, Thomas P; Citovsky, Vitaly; Conrad, Liza J; Gelvin, Stanton B; Jackson, David P; Kausch, Albert P; Lemaux, Peggy G; Medford, June I; Orozco-Cárdenas, Martha L; Tricoli, David M; Van Eck, Joyce; Voytas, Daniel F; Walbot, Virginia; Wang, Kan; Zhang, Zhanyuan J; Stewart, C Neal
2016-07-01
Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized. © 2016 American Society of Plant Biologists. All rights reserved.
Efficient transformation and artificial miRNA gene silencing in Lemna minor
Cantó-Pastor, Alex; Mollá-Morales, Almudena; Ernst, Evan; Dahl, William; Zhai, Jixian; Yan, Yiheng; Meyers, Blake; Shanklin, John; Martienssen, Robert
2015-01-01
Lack of genetic tools in the Lemnaceae (duckweed) has impeded full implementation of this organism as model for biological research, despite its rapid doubling time, simple architecture and unusual metabolic characteristics. Here we present technologies to facilitate high-throughput genetic studies in duckweed. We developed a fast and efficient method for producing Lemna minor stable transgenic fronds via agrobacterium-mediated transformation and regeneration from tissue culture. Additionally, we engineered an artificial microRNA (amiRNA) gene silencing system. We identified a Lemna gibba endogenous miR166 precursor and used it as a backbone to produce amiRNAs. As a proof of concept we induced the silencing of CH42, a Magnesium Chelatase subunit, using our amiRNA platform. Expression of CH42 in transgenic Lemna minor fronds was significantly reduced, which resulted in reduction of chlorophyll pigmentation. The techniques presented here will enable tackling future challenges in the biology and biotechnology of Lemnaceae. PMID:24989135
Ren, Jun; Lee, Haram; Yoo, Seung Min; Yu, Myeong-Sang; Park, Hansoo; Na, Dokyun
2017-04-01
DNA transformation that delivers plasmid DNAs into bacterial cells is fundamental in genetic manipulation to engineer and study bacteria. Developed transformation methods to date are optimized to specific bacterial species for high efficiency. Thus, there is always a demand for simple and species-independent transformation methods. We herein describe the development of a chemico-physical transformation method that combines a rubidium chloride (RbCl)-based chemical method and sepiolite-based physical method, and report its use for the simple and efficient delivery of DNA into various bacterial species. Using this method, the best transformation efficiency for Escherichia coli DH5α was 4.3×10 6 CFU/μg of pUC19 plasmid, which is higher than or comparable to the reported transformation efficiencies to date. This method also allowed the introduction of plasmid DNAs into Bacillus subtilis (5.7×10 3 CFU/μg of pSEVA3b67Rb), Bacillus megaterium (2.5×10 3 CFU/μg of pSPAsp-hp), Lactococcus lactis subsp. lactis (1.0×10 2 CFU/μg of pTRKH3-ermGFP), and Lactococcus lactis subsp. cremoris (2.2×10 2 CFU/μg of pMSP3535VA). Remarkably, even when the conventional chemical and physical methods failed to generate transformed cells in Bacillus sp. and Enterococcus faecalis, E. malodoratus and E. mundtii, our combined method showed a significant transformation efficiency (2.4×10 4 , 4.5×10 2 , 2×10 1 , and 0.5×10 1 CFU/μg of plasmid DNA). Based on our results, we anticipate that our simple and efficient transformation method should prove usefulness for introducing DNA into various bacterial species without complicated optimization of parameters affecting DNA entry into the cell. Copyright © 2017. Published by Elsevier B.V.
Kui, Ling; Chen, Haitao; Zhang, Weixiong; He, Simei; Xiong, Zijun; Zhang, Yesheng; Yan, Liang; Zhong, Chaofang; He, Fengmei; Chen, Junwen; Zeng, Peng; Zhang, Guanghui; Yang, Shengchao; Dong, Yang; Wang, Wen; Cai, Jing
2017-01-01
Orchidaceae is the second largest family of flowering plants, which is highly valued for its ornamental purposes and medicinal uses. Dendrobium officinale is a special orchid species that can grow without seed vernalization. Because the whole-genome sequence of D. officinale is publicly available, this species is poised to become a convenient research model for the evolutionary, developmental, and genetic studies of Orchidaceae. Despite these advantages, the methods of genetic manipulation are poorly developed in D. officinale. In this study, based on the previously developed Agrobacterium-mediated gene transformation system, we identified several highly efficient promoters for exogenous gene expression and successfully applied the CRISPR/Cas9 system for editing endogenous genes in the genome of D. officinale. These two basic techniques contribute to the genetic manipulation toolbox of Orchidaceae. The pCambia-1301-35SN vector containing the CaMV 35S promoter and the β-glucuronidase (GUS) and Superfolder green fluorescence protein (SG) as reporter genes were introduced into the plant tissues by the Agrobacterium-mediated transformation system. Fluorescence emission from the transformed plants confirmed the successful transcription and translation of SG genes into functional proteins. We compared the GUS activity under different promoters including four commonly used promoters (MtHP, CVMV, MMV and PCISV) with CaMV 35S promoter and found that MMV, CVMV, and PCISV were as effective as the 35S promoter. Furthermore, we applied the CRISPR/Cas9-mediated genome editing system successfully in D. officinale. By selecting five target genes (C3H, C4H, 4CL, CCR, and IRX) in the lignocellulose biosynthesis pathway, we showed that, for a given target, this system can generate edits (insertions, deletions, or substitutions) at a rate of 10 to 100%. These results showed that our two genetic manipulation tools can efficiently express exogenous genes and edit endogenous genes in D. officinale. These efficient research tools will not only help create novel D. officinale varieties, but will also facilitate the molecular genetic investigation of orchid biology. PMID:28127299
Kui, Ling; Chen, Haitao; Zhang, Weixiong; He, Simei; Xiong, Zijun; Zhang, Yesheng; Yan, Liang; Zhong, Chaofang; He, Fengmei; Chen, Junwen; Zeng, Peng; Zhang, Guanghui; Yang, Shengchao; Dong, Yang; Wang, Wen; Cai, Jing
2016-01-01
Orchidaceae is the second largest family of flowering plants, which is highly valued for its ornamental purposes and medicinal uses. Dendrobium officinale is a special orchid species that can grow without seed vernalization. Because the whole-genome sequence of D. officinale is publicly available, this species is poised to become a convenient research model for the evolutionary, developmental, and genetic studies of Orchidaceae. Despite these advantages, the methods of genetic manipulation are poorly developed in D. officinale . In this study, based on the previously developed Agrobacterium -mediated gene transformation system, we identified several highly efficient promoters for exogenous gene expression and successfully applied the CRISPR/Cas9 system for editing endogenous genes in the genome of D. officinale . These two basic techniques contribute to the genetic manipulation toolbox of Orchidaceae. The pCambia-1301-35SN vector containing the CaMV 35S promoter and the β-glucuronidase ( GUS ) and Superfolder green fluorescence protein (SG) as reporter genes were introduced into the plant tissues by the Agrobacterium -mediated transformation system. Fluorescence emission from the transformed plants confirmed the successful transcription and translation of SG genes into functional proteins. We compared the GUS activity under different promoters including four commonly used promoters (MtHP, CVMV, MMV and PCISV) with CaMV 35S promoter and found that MMV, CVMV, and PCISV were as effective as the 35S promoter. Furthermore, we applied the CRISPR/Cas9-mediated genome editing system successfully in D. officinale . By selecting five target genes ( C3H, C4H, 4CL, CCR, and IRX ) in the lignocellulose biosynthesis pathway, we showed that, for a given target, this system can generate edits (insertions, deletions, or substitutions) at a rate of 10 to 100%. These results showed that our two genetic manipulation tools can efficiently express exogenous genes and edit endogenous genes in D. officinale . These efficient research tools will not only help create novel D. officinale varieties, but will also facilitate the molecular genetic investigation of orchid biology.
Orchids (Cymbidium spp., Oncidium, and Phalaenopsis).
Chan, Ming-Tsair; Chan, Yuan-Li; Sanjaya
2006-01-01
Recent advances in genetic engineering have made the transformation and regeneration of plants into a powerful tool for orchid improvement. This chapter presents a simple and reproducible Agrobacterium tumefaciens-mediated transformation protocol and molecular screening technique of transgenics for two orchid species, Oncidium and Phalaenopsis. The target tissues for gene transfer were protocorm-like bodies (PLBs) derived from protocorms, into which constructed foreign genes were successfully introduced. To establish stable transformants, two stages of selection were applied on the PLBs co-cultivated with A. tumefaciens. About 10% transformation efficiency was achieved in Oncidium orchid, as 108 antibiotic resistant independent PLBs were proliferated from 1000 infected PLBs. In Phalaenopsis orchid about 11 to 12% of transformation efficiency was achieved by using the present protocol. Different molecular methods and GUS-staining used to screen putative transgenic plants to confirm the integration of foreign DNA into the orchid genome were also described in detail. The methods described would also be useful for transformation of desired genes into other orchid species.
Bosma, Elleke F.; van de Weijer, Antonius H. P.; Daas, Martinus J. A.; van der Oost, John; de Vos, Willem M.
2015-01-01
Thermophilic bacteria are regarded as attractive production organisms for cost-efficient conversion of renewable resources to green chemicals, but their genetic accessibility is a major bottleneck in developing them into versatile platform organisms. In this study, we aimed to isolate thermophilic, facultatively anaerobic bacilli that are genetically accessible and have potential as platform organisms. From compost, we isolated 267 strains that produced acids from C5 and C6 sugars at temperatures of 55°C or 65°C. Subsequently, 44 strains that showed the highest production of acids were screened for genetic accessibility by electroporation. Two Geobacillus thermodenitrificans isolates and one Bacillus smithii isolate were found to be transformable with plasmid pNW33n. Of these, B. smithii ET 138 was the best-performing strain in laboratory-scale fermentations and was capable of producing organic acids from glucose as well as from xylose. It is an acidotolerant strain able to produce organic acids until a lower limit of approximately pH 4.5. As genetic accessibility of B. smithii had not been described previously, six other B. smithii strains from the DSMZ culture collection were tested for electroporation efficiencies, and we found the type strain DSM 4216T and strain DSM 460 to be transformable. The transformation protocol for B. smithii isolate ET 138 was optimized to obtain approximately 5 × 103 colonies per μg plasmid pNW33n. Genetic accessibility combined with robust acid production capacities on C5 and C6 sugars at a relatively broad pH range make B. smithii ET 138 an attractive biocatalyst for the production of lactic acid and potentially other green chemicals. PMID:25556192
Godovikova, Valentina; Goetting-Minesky, M. Paula; Shin, Jae M.; Kapila, Yvonne L.; Rickard, Alexander H.
2015-01-01
Oral pathogens, including Treponema denticola, initiate the dysregulation of tissue homeostasis that characterizes periodontitis. However, progress of research on the roles of T. denticola in microbe-host interactions and signaling, microbial communities, microbial physiology, and molecular evolution has been hampered by limitations in genetic methodologies. This is typified by an extremely low transformation efficiency and inability to transform the most widely studied T. denticola strain with shuttle plasmids. Previous studies have suggested that robust restriction-modification (R-M) systems in T. denticola contributed to these problems. To facilitate further molecular genetic analysis of T. denticola behavior, we optimized existing protocols such that shuttle plasmid transformation efficiency was increased by >100-fold over prior reports. Here, we report routine transformation of T. denticola ATCC 35405 with shuttle plasmids, independently of both plasmid methylation status and activity of the type II restriction endonuclease encoded by TDE0911. To validate the utility of this methodological advance, we demonstrated expression and activity in T. denticola of a flavin mononucleotide-based fluorescent protein (FbFP) that is active under anoxic conditions. Addition of routine plasmid-based fluorescence labeling to the Treponema toolset will enable more-rigorous and -detailed studies of the behavior of this organism. PMID:26162875
Insect transformation with piggyBac: getting the number of injections just right
Morrison, N. I.; Shimeld, S. M.
2016-01-01
Abstract The insertion of exogenous genetic cargo into insects using transposable elements is a powerful research tool with potential applications in meeting food security and public health challenges facing humanity. piggyBac is the transposable element most commonly utilized for insect germline transformation. The described efficiency of this process is variable in the published literature, and a comprehensive review of transformation efficiency in insects is lacking. This study compared and contrasted all available published data with a comprehensive data set provided by a biotechnology group specializing in insect transformation. Based on analysis of these data, with particular focus on the more complete observational data from the biotechnology group, we designed a decision tool to aid researchers' decision‐making when using piggyBac to transform insects by microinjection. A combination of statistical techniques was used to define appropriate summary statistics of piggyBac transformation efficiency by species and insect order. Publication bias was assessed by comparing the data sets. The bias was assessed using strategies co‐opted from the medical literature. The work culminated in building the Goldilocks decision tool, a Markov‐Chain Monte‐Carlo simulation operated via a graphical interface and providing guidance on best practice for those seeking to transform insects using piggyBac. PMID:27027400
Chan, Kamfai; Alter, Laura; Barthold, Stephen W.; Parveen, Nikhat
2015-01-01
Lyme disease is the most prevalent tick-borne disease in North America and Europe. The causative agent, Borrelia burgdorferi persists in the white-footed mouse. Infection with B. burgdorferi can cause acute to persistent multisystemic Lyme disease in humans. Some disease manifestations are also exhibited in the mouse model of Lyme disease. Genetic manipulation of B. burgdorferi remains difficult. First, B. burgdorferi contains a large number of endogenous plasmids with unique sequences encoding unknown functions. The presence of these plasmids needs to be confirmed after each genetic manipulation. Second, the restriction modification defense systems, including that encoded by bbe02 gene lead to low transformation efficiency in B. burgdorferi. Therefore, studying the molecular basis of Lyme pathogenesis is a challenge. Furthermore, investigation of the role of a specific B. burgdorferi protein throughout infection requires a large number of mice, making it labor intensive and expensive. To overcome the problems associated with low transformation efficiency and to reduce the number of mice needed for experiments, we disrupted the bbe02 gene of a highly infectious and pathogenic B. burgdorferi strain, N40 D10/E9 through insertion of a firefly luciferase gene. The bbe02 mutant shows higher transformation efficiency and maintains luciferase activity throughout infection as detected by live imaging of mice. Infectivity and pathogenesis of this mutant were comparable to the wild-type N40 strain. This mutant will serve as an ideal parental strain to examine the roles of various B. burgdorferi proteins in Lyme pathogenesis in the mouse model in the future. PMID:26069970
Serror, Pascale; Sasaki, Takashi; Ehrlich, S. Dusko; Maguin, Emmanuelle
2002-01-01
We describe, for the first time, a detailed electroporation procedure for Lactobacillus delbrueckii. Three L. delbrueckii strains were successfully transformed. Under optimal conditions, the transformation efficiency was 104 transformants per μg of DNA. Using this procedure, we identified several plasmids able to replicate in L. delbrueckii and integrated an integrative vector based on phage integrative elements into the L. delbrueckii subsp. bulgaricus chromosome. These vectors provide a good basis for developing molecular tools for L. delbrueckii and open the field of genetic studies in L. delbrueckii. PMID:11772607
Tsai, Yung-Yu; Ohashi, Takao; Kanazawa, Takenori; Polburee, Pirapan; Misaki, Ryo; Limtong, Savitree; Fujiyama, Kazuhito
2017-05-01
Rhodosporidium toruloides DMKU3-TK16 (TK16), a basidiomycetous yeast isolated in Thailand, can produce a large amount of oil corresponding to approximately 70 % of its dry cell weight. However, lack of a sufficient and efficient transformation method makes further genetic manipulation of this organism difficult. We here developed a new transformation system for R. toruloides using a lithium acetate method with the Sh ble gene as a selective marker under the control of the R. toruloides ATCC 10657 GPD1 promoter. A linear DNA fragment containing the Sh ble gene expression cassette was integrated into the genome, and its integration was confirmed by colony PCR and Southern blot. Then, we further optimized the parameters affecting the transformation efficiency, such as the amount of linear DNA, the growth phase, the incubation time in the transformation mixture, the heat shock treatment temperature, the addition of DMSO and carrier DNA, and the recovery incubation time. With the developed method, the transformation efficiency of approximately 25 transformants/μg DNA was achieved. Compared with the initial trial, transformation efficiency was enhanced 417-fold. We further demonstrated the heterologous production of EGFP in TK16 by microscopic observation and immunoblot analysis, and use the technique to disrupt the endogenous URA3 gene. The newly developed method is thus simple and time saving, making it useful for efficient introduction of an exogenous gene into R. toruloides strains. Accordingly, this new practical approach should facilitate the molecular manipulation, such as target gene introduction and deletion, of TK16 and other R. toruloides strains as a major source of biodiesel.
Maize transformation technology development for commercial event generation.
Que, Qiudeng; Elumalai, Sivamani; Li, Xianggan; Zhong, Heng; Nalapalli, Samson; Schweiner, Michael; Fei, Xiaoyin; Nuccio, Michael; Kelliher, Timothy; Gu, Weining; Chen, Zhongying; Chilton, Mary-Dell M
2014-01-01
Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed.
Maize transformation technology development for commercial event generation
Que, Qiudeng; Elumalai, Sivamani; Li, Xianggan; Zhong, Heng; Nalapalli, Samson; Schweiner, Michael; Fei, Xiaoyin; Nuccio, Michael; Kelliher, Timothy; Gu, Weining; Chen, Zhongying; Chilton, Mary-Dell M.
2014-01-01
Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed. PMID:25140170
An Efficient PEG/CaCl₂-Mediated Transformation Approach for the Medicinal Fungus Wolfiporia cocos.
Sun, Qiao; Wei, Wei; Zhao, Juan; Song, Jia; Peng, Fang; Zhang, Shaopeng; Zheng, Yonglian; Chen, Ping; Zhu, Wenjun
2015-09-01
Sclerotia of Wolfiporia cocos are of medicinal and culinary value. The genes and molecular mechanisms involved in W. cocos sclerotial formation are poorly investigated because of the lack of a suitable and reproducible transformation system for W. cocos. In this study, a PEG/ CaCl₂-mediated genetic transformation system for W. cocos was developed. The promoter Pgpd from Ganoderma lucidum effectively drove expression of the hygromycin B phosphotransferase gene in W. cocos, and approximately 30 transformants were obtained per 10 μg DNA when the protoplast suspension density was 10(6) protoplasts/ml. However, no transformants were obtained under the regulation of the PtrpC promoter from Aspergillus nidulans.
Qian, Yuanchao; Zhong, Lixia; Hou, Yunhua; Qu, Yinbo; Zhong, Yaohua
2016-01-01
The filamentous fungus Trichoderma reesei is a widely used strain for cellulolytic enzyme production. A hypercellulolytic T. reesei variant SN1 was identified in this study and found to be different from the well-known cellulase producers QM9414 and RUT-C30. The cellulose-degrading enzymes of T. reesei SN1 show higher endoglucanase (EG) activity but lower β-glucosidase (BGL) activity than those of the others. A uracil auxotroph strain, SP4, was constructed by pyr4 deletion in SN1 to improve transformation efficiency. The BGL1-encoding gene bgl1 under the control of a modified cbh1 promoter was overexpressed in SP4. A transformant, SPB2, with four additional copies of bgl1 exhibited a 17.1-fold increase in BGL activity and a 30.0% increase in filter paper activity. Saccharification of corncob residues with crude enzyme showed that the glucose yield of SPB2 is 65.0% higher than that of SP4. These results reveal the feasibility of strain improvement through the development of an efficient genetic transformation platform to construct a balanced cellulase system for biomass conversion.
Zhang, Shan; Zou, Zhengzhong; Kreth, Jens; Merritt, Justin
2017-01-01
Studies of the dental caries pathogen Streptococcus mutans have benefitted tremendously from its sophisticated genetic system. As part of our own efforts to further improve upon the S. mutans genetic toolbox, we previously reported the development of the first cloning-independent markerless mutagenesis (CIMM) system for S. mutans and illustrated how this approach could be adapted for use in many other organisms. The CIMM approach only requires overlap extension PCR (OE-PCR) protocols to assemble counterselectable allelic replacement mutagenesis constructs, and thus greatly increased the speed and efficiency with which markerless mutations could be introduced into S. mutans . Despite its utility, the system is still subject to a couple limitations. Firstly, CIMM requires negative selection with the conditionally toxic phenylalanine analog p -chlorophenylalanine (4-CP), which is efficient, but never perfect. Typically, 4-CP negative selection results in a small percentage of naturally resistant background colonies. Secondly, CIMM requires two transformation steps to create markerless mutants. This can be inherently problematic if the transformability of the strain is negatively impacted after the first transformation step, which is used to insert the counterselection cassette at the mutation site on the chromosome. In the current study, we develop a next-generation counterselection cassette that eliminates 4-CP background resistance and combine this with a new direct repeat-mediated cloning-independent markerless mutagenesis (DR-CIMM) system to specifically address the limitations of the prior approach. DR-CIMM is even faster and more efficient than CIMM for the creation of all types of deletions, insertions, and point mutations and is similarly adaptable for use in a wide range of genetically tractable bacteria.
NASA Astrophysics Data System (ADS)
Sjahril, R.; Jamaluddin, I.; Nadir, M.; Asman; Dungga, N. E.
2018-05-01
Genetic transformation mediated by Agrobacterium tumefaciens requires an efficient selection method for successful progress of transformation. This study aims to determine the concentration and kind of antibiotics and selection agents used during transformation to formulate standard protocol of chrysanthemum in the process of propagating disease resistant Chrysanthemum mediated by Agrobacterium tumefaciens EHA105 (pEKB-WD). The experiments were performed by planting chrysanthemum explants leaf cutting (5 mm diameter on NAA medium 2 mg L-1 BAP 2 mg L-1) with addition of Kanamycin: 25, 50, 100, 150 and 200 (mg L-1); Hygromycin: 5, 10, 25, 50 and 75 (mg L-1); Paromomycin: 10, 25, 50, 75 and 100 (mg L-1). Experiment was arranged in a Completely Randomized Design (CRD). Each treatment was repeated five times thus 75 bottles of culture were used; each bottle consists of 5 pieces of leaf cuttings, resulted in total of 375 pieces. The results showed that selection agent had a critical value for Hygromycin 25 mg L-1 and Kanamycin 100 mg L-1 which can make explant experienced necrosis better than Paromomycin. Paromomycin at 100 mg L-1 was only able to kill explant’s periphery. Remained callus stayed fresh more than 50% so that when used as the selection agent could produce more escape cell. The optimum transformation with concentration of 10% Agrobacterium (vol/vol) with 30 minutes co-cultivation can produce more efficient transformed callus. Considering the high price of Hygromycin, it was best to use Kanamycin as selective agents.
Recent Developments on Genetic Engineering of Microalgae for Biofuels and Bio-Based Chemicals.
Ng, I-Son; Tan, Shih-I; Kao, Pei-Hsun; Chang, Yu-Kaung; Chang, Jo-Shu
2017-10-01
Microalgae serve as a promising source for the production of biofuels and bio-based chemicals. They are superior to terrestrial plants as feedstock in many aspects and their biomass is naturally rich in lipids, carbohydrates, proteins, pigments, and other valuable compounds. Due to the relatively slow growth rate and high cultivation cost of microalgae, to screen efficient and robust microalgal strains as well as genetic modifications of the available strains for further improvement are of urgent demand in the development of microalgae-based biorefinery. In genetic engineering of microalgae, transformation and selection methods are the key steps to accomplish the target gene modification. However, determination of the preferable type and dosage of antibiotics used for transformant selection is usually time-consuming and microalgal-strain-dependent. Therefore, more powerful and efficient techniques should be developed to meet this need. In this review, the conventional and emerging genome-editing tools (e.g., CRISPR-Cas9, TALEN, and ZFN) used in editing the genomes of nuclear, mitochondria, and chloroplast of microalgae are thoroughly surveyed. Although all the techniques mentioned above demonstrate their abilities to perform gene editing and desired phenotype screening, there still need to overcome higher production cost and lower biomass productivity, to achieve efficient production of the desired products in microalgal biorefineries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Efficient transformation and artificial miRNA gene silencing in Lemna minor.
Cantó-Pastor, A; Mollá-Morales, A; Ernst, E; Dahl, W; Zhai, J; Yan, Y; Meyers, B C; Shanklin, J; Martienssen, R
2015-01-01
Despite rapid doubling time, simple architecture and ease of metabolic labelling, a lack of genetic tools in the Lemnaceae (duckweed) has impeded the full implementation of this organism as a model for biological research. Here, we present technologies to facilitate high-throughput genetic studies in duckweed. We developed a fast and efficient method for producing Lemna minor stable transgenic fronds via Agrobacterium-mediated transformation and regeneration from tissue culture. Additionally, we engineered an artificial microRNA (amiRNA) gene silencing system. We identified a Lemna gibba endogenous miR166 precursor and used it as a backbone to produce amiRNAs. As a proof of concept we induced the silencing of CH42, a magnesium chelatase subunit, using our amiRNA platform. Expression of CH42 in transgenic L. minor fronds was significantly reduced, which resulted in reduction of chlorophyll pigmentation. The techniques presented here will enable tackling future challenges in the biology and biotechnology of Lemnaceae. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Natural Competence and Recombination in the Plant Pathogen Xylella fastidiosa ▿
Kung, Stephanie H.; Almeida, Rodrigo P. P.
2011-01-01
Homologous recombination is one of many forces contributing to the diversity, adaptation, and emergence of pathogens. For naturally competent bacteria, transformation is one possible route for the acquisition of novel genetic material. This study demonstrates that Xylella fastidiosa, a generalist bacterial plant pathogen responsible for many emerging plant diseases, is naturally competent and able to homologously recombine exogenous DNA into its genome. Several factors that affect transformation and recombination efficiencies, such as nutrient availability, growth stage, and methylation of transforming DNA, were identified. Recombination was observed in at least one out of every 106 cells when exogenous plasmid DNA was supplied and one out of every 107 cells when different strains were grown together in vitro. Based on previous genomic studies and experimental data presented here, there is mounting evidence that recombination can occur at relatively high rates and could play a large role in shaping the genetic diversity of X. fastidiosa. PMID:21666009
Woods, J P; Heinecke, E L; Goldman, W E
1998-04-01
We developed an efficient electrotransformation system for the pathogenic fungus Histoplasma capsulatum and used it to examine the effects of features of the transforming DNA on transformation efficiency and fate of the transforming DNA and to demonstrate fungal expression of two recombinant Escherichia coli genes, hph and lacZ. Linearized DNA and plasmids containing Histoplasma telomeric sequences showed the greatest transformation efficiencies, while the plasmid vector had no significant effect, nor did the derivation of the selectable URA5 marker (native Histoplasma gene or a heterologous Podospora anserina gene). Electrotransformation resulted in more frequent multimerization, other modification, or possibly chromosomal integration of transforming telomeric plasmids when saturating amounts of DNA were used, but this effect was not observed with smaller amounts of transforming DNA. We developed another selection system using a hygromycin B resistance marker from plasmid pAN7-1, consisting of the E. coli hph gene flanked by Aspergillus nidulans promoter and terminator sequences. Much of the heterologous fungal sequences could be removed without compromising function in H. capsulatum, allowing construction of a substantially smaller effective marker fragment. Transformation efficiency increased when nonselective conditions were maintained for a time after electrotransformation before selection with the protein synthesis inhibitor hygromycin B was imposed. Finally, we constructed a readily detectable and quantifiable reporter gene by fusing Histoplasma URA5 with E. coli lacZ, resulting in expression of functional beta-galactosidase in H. capsulatum. Demonstration of expression of bacterial genes as effective selectable markers and reporters, together with a highly efficient electrotransformation system, provide valuable approaches for molecular genetic analysis and manipulation of H. capsulatum, which have proven useful for examination of targeted gene disruption, regulated gene expression, and potential virulence determinants in this fungus.
Genetic tools for the investigation of Roseobacter clade bacteria
2009-01-01
Background The Roseobacter clade represents one of the most abundant, metabolically versatile and ecologically important bacterial groups found in marine habitats. A detailed molecular investigation of the regulatory and metabolic networks of these organisms is currently limited for many strains by missing suitable genetic tools. Results Conjugation and electroporation methods for the efficient and stable genetic transformation of selected Roseobacter clade bacteria including Dinoroseobacter shibae, Oceanibulbus indolifex, Phaeobacter gallaeciensis, Phaeobacter inhibens, Roseobacter denitrificans and Roseobacter litoralis were tested. For this purpose an antibiotic resistance screening was performed and suitable genetic markers were selected. Based on these transformation protocols stably maintained plasmids were identified. A plasmid encoded oxygen-independent fluorescent system was established using the flavin mononucleotide-based fluorescent protein FbFP. Finally, a chromosomal gene knockout strategy was successfully employed for the inactivation of the anaerobic metabolism regulatory gene dnr from D. shibae DFL12T. Conclusion A genetic toolbox for members of the Roseobacter clade was established. This provides a solid methodical basis for the detailed elucidation of gene regulatory and metabolic networks underlying the ecological success of this group of marine bacteria. PMID:20021642
Ma, Qiao; Qu, Yuanyuan; Zhang, Zhaojing; Li, Pengpeng; Tang, Hongzhi
2015-03-12
Cupriavidus sp. strain IDO has been shown to efficiently transform indole, and the genus of Cupriavidus has been described as a promising cell factory for polyhydroxyalkanoate synthesis from low-cost wastes. Here, we report the draft genome sequence of strain IDO, which may provide useful genetic information on indole metabolism and polyhydroxyalkanoate production. Copyright © 2015 Ma et al.
Zhang, Jing; Liu, Caixia; Xie, Yijia; Li, Ning; Ning, Zhanguo; Du, Na; Huang, Xirong; Zhong, Yaohua
2017-05-10
Aspergillus niger ATCC20611 is one of the most potent filamentous fungi used commercially for production of fructooligosaccharides (FOS), which are prospective components of functional food by stimulating probiotic bacteria in the human gut. However, current strategies for improving FOS yield still rely on production process development. The genetic engineering approach hasn't been applied in industrial strains to increase FOS production level. Here, an optimized polyethylene glycol (PEG)-mediated protoplast transformation system was established in A. niger ATCC 20611 and used for further strain improvement. The pyrithiamine resistance gene (ptrA) was selected as a dominant marker and protoplasts were prepared with high concentration (up to 10 8 g -1 wet weight mycelium) by using mixed cell wall-lysing enzymes. The transformation frequency with ptrA can reach 30-50 transformants per μg of DNA. In addition, the efficiency of co-transformation with the EGFP reporter gene (egfp) was high (approx. 82%). Furthermore, an activity-improved variant of β-fructofuranosidase, FopA(A178P), was successfully overexpressed in A. niger ATCC 20611 by using the transformation system. The transformant, CM6, exhibited a 58% increase in specific β-fructofuranosidase activity (up to 507U/g), compared to the parental strain (320U/g), and effectively reduced the time needed for completion of FOS synthesis. These results illustrate the feasibility of strain improvement through genetic engineering for further enhancement of FOS production level. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, X X; Lang, S R; Su, L Q; Liu, X; Wang, X F
2015-12-14
Rape seed (Brassica napus L.) is one of the most important oil seed crops in the world. Genetic manipulation of rapeseed requires a suitable tissue culture system and an efficient method for plant regeneration, as well as an efficient transformation procedure. However, development of transgenic B. napus has been problematic, and current studies are limited to cultivated varieties. In this study, we report a protocol for regeneration of transgenic rape after Agrobacterium-mediated transformation of hypocotyls from the spring B. napus 'Precocity' cultivar. We analyzed the effects of plant growth regulators in the medium on regeneration. Additionally, factors affecting the transformation efficiency, including seedling age, Agrobacterium concentration, infection time, and co-cultivation time, were assessed by monitoring GUS expression. Results from these experiments revealed that transformation was optimized when the meristematic parts of the hypocotyls were taken from 8 day-old seedlings, cultured on Murashinge and Skoog basal media containing 0.1 mg/L 1-naphthaleneacetic acid and 2.5 mg/L 6-benzylaminopurine, and incubated in Agrobacterium suspension (OD600 = 0.5) for 3 to 5 min, followed by 2 days of co-cultivation. Integration of T-DNA into the plant genome was confirmed by polymerase chain reaction (PCR), b-glucuronidase histochemical staining, and quantitative real-time PCR. The protocols developed for regeneration, transformation, and rooting described in this study could help to accelerate the development of transgenic spring rape varieties with novel features.
Shikata, Masahito; Ezura, Hiroshi
2016-01-01
Tomato is a model plant for fruit development, a unique feature that classical model plants such as Arabidopsis and rice do not have. The tomato genome was sequenced in 2012 and tomato is becoming very popular as an alternative system for plant research. Among many varieties of tomato, Micro-Tom has been recognized as a model cultivar for tomato research because it shares some key advantages with Arabidopsis including its small size, short life cycle, and capacity to grow under fluorescent lights at a high density. Mutants and transgenic plants are essential materials for functional genomics research, and therefore, the availability of mutant resources and methods for genetic transformation are key tools to facilitate tomato research. Here, we introduce the Micro-Tom mutant database "TOMATOMA" and an efficient transformation protocol for Micro-Tom.
Zhang, Yan; Li, Wenhua; Wang, Liming; Shen, Ping; Xie, Zhixiong
2013-11-01
Artificial plasmid DNA transformation of Escherichia coli induced by calcium chloride is a routine technique in molecular biology and genetic engineering processes, but its mechanism has remained elusive. Because adenosine monophosphate (AMP) has been found to regulate natural transformation in Haemophilus influenza, we aimed to investigate the effects of AMP and its derivatives on E. coli transformation by treating competence with different concentrations of them. Analysis of the transformation efficiencies revealed that AMP inhibited the artificial plasmid DNA transformation of E. coli in a concentration- and time-dependent manner. Furthermore, we found that AMP had no effect on the expression of the transformed gene but that the intracellular AMP level of the competent cells rose after a 6 h treatment. These results suggested that the intracellular AMP level had an important role in E. coli transformation. And these have useful implications for the further investigation of the mechanism of E. coli transformation.
Han, Xue; Ma, Shurong; Kong, Xianghui; Takano, Tetsuo; Liu, Shenkui
2013-01-01
Poplar is a model organism for high in vitro regeneration in woody plants. We have chosen a hybrid poplar Populus davidiana Dode × Populus bollena Lauche. By optimizing the Murashige and Skoog medium with (0.3 mg/L) 6-benzylaminopurine and (0.08 mg/L) naphthaleneacetic acid, we have achieved the highest frequency (90%) for shoot regeneration from poplar leaves. It was also important to improve the transformation efficiency of poplar for genetic breeding and other applications. In this study, we found a significant improvement of the transformation frequency by controlling the leaf age. Transformation efficiency was enhanced by optimizing the Agrobacterium concentration (OD600 = 0.8–1.0) and an infection time (20–30 min). According to transmission electron microscopy observations, there were more Agrobacterium invasions in the 30-day-old leaf explants than in 60-day-old and 90-day-old explants. Using the green fluorescent protein (GFP) marker, the expression of MD–GFP fusion proteins in the leaf, shoot, and root of hybrid poplar P. davidiana Dode × P. bollena Lauche was visualized for confirmation of transgene integration. Southern and Northern blot analysis also showed the integration of T-DNA into the genome and gene expression of transgenic plants. Our results suggest that younger leaves had higher transformation efficiency (~30%) than older leaves (10%). PMID:23354481
Accurate measurement of transgene copy number in crop plants using droplet digital PCR
USDA-ARS?s Scientific Manuscript database
Technical abstract: Genetic transformation is a powerful means for the improvement of crop plants, but requires labor and resource intensive methods. An efficient method for identifying single copy transgene insertion events from a population of independent transgenic lines is desirable. Currently ...
Accurate measure of transgene copy number in crop plants using droplet digital PCR
USDA-ARS?s Scientific Manuscript database
Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy numb...
Breakthrough in chloroplast genetic engineering of agronomically important crops
Daniell, Henry; Kumar, Shashi; Dufourmantel, Nathalie
2012-01-01
Chloroplast genetic engineering offers several unique advantages, including high-level transgene expression, multi-gene engineering in a single transformation event and transgene containment by maternal inheritance, as well as a lack of gene silencing, position and pleiotropic effects and undesirable foreign DNA. More than 40 transgenes have been stably integrated and expressed using the tobacco chloroplast genome to confer desired agronomic traits or express high levels of vaccine antigens and biopharmaceuticals. Despite such significant progress, this technology has not been extended to major crops. However, highly efficient soybean, carrot and cotton plastid transformation has recently been accomplished through somatic embryogenesis using species-specific chloroplast vectors. This review focuses on recent exciting developments in this field and offers directions for further research and development. PMID:15866001
Rice, Japonica (Oryza sativa L.).
Main, Marcy; Frame, Bronwyn; Wang, Kan
2015-01-01
The importance of rice, as a food crop, is reflected in the extensive global research being conducted in an effort to improve and better understand this particular agronomic plant. In regard to biotechnology, this has led to the development of numerous genetic transformation protocols. Over the years, many of these methods have become increasingly straightforward, rapid, and efficient, thereby making rice valuable as a model crop for scientific research and functional genomics. The focus of this chapter is on one such protocol that uses Agrobacterium-mediated transformation of Oryza sativa L. ssp. Japonica cv. Nipponbare with an emphasis on tissue desiccation. The explants consist of callus derived from mature seeds which are cocultivated on filter paper postinfection. Hygromycin selection is used for the recovery of subsequent genetically engineered events.
Wang, Yechun; Guo, Binhui; Miao, Zhiqi; Tang, Kexuan
2007-08-01
The REMI method was used to introduce the plasmid pV2 harboring the hygromycin B phosphotransferase (hph) gene controlled by the Aspergillus nidulans trpC promoter and the trpC terminator into a taxol-producing endophytic fungus BT2. REMI transformation yielded stable transformants capable of continuing to grow on PDA medium containing 125 mug mL(-1) hygromycin B. The transformation efficiency was about 5-6 transformants mug(-1) plasmid DNA. The presence of hph gene in transformants was confirmed by PCR and Southern blot analyses. To the authors' knowledge, this is the first report on the transformation of taxol-producing endophytic fungi by the REMI technique. This study provides an effective approach for improving taxol production of endophytic fungi by the genetic engineering of taxol biosynthetic pathway genes in the future.
Agrobacterium tumefaciens-mediated transformation of the entomopathogenic fungus Nomuraea rileyi.
Shao, Changwen; Yin, Youping; Qi, Zhaoran; Li, Ren; Song, Zhangyong; Li, Yan; Wang, Zhongkang
2015-10-01
An Agrobacterium-mediated genetic transformation system for the entomopathogenic fungus Nomuraea rileyi was established. Three binary T-DNA vectors, pPZP-Hph, pPZP-Hph-RNAi and pPZP-Hph-DsRed2, were constructed. The trpc promoter from Aspergillus nidulans was used as the cis-regulatory element to drive the expression of hygromycin phosphotransferase (hph) gene and DsRed2, which conferred the hygromycin B (Hyg B) resistance and red fluorescence visualization, respectively. The blastospores and conidia were used as the recipients. The blastospores' transformation efficiency reached ∼20-40 transformants per 10(6) blastospores, whereas the conidia were not transformed. Based on an analysis of five generations of subcultures, PCR and Southern blotting assays, the Ptrpc-hph cassette had integrated into the genomes of all transformants, which contained single copy of the hph gene and showed mitotic stability. Abundant altered morphologic phenotypes in colonies, blastospores and hyphae formations were observed in the arbitrary insertional mutants of N. rileyi, which made it possible to study the relationships between the functions and the interrupted genes over the whole genome. The transformation protocol will promote the functional characterization of genes, and the construction of genetically engineered strains of this important entomopathogenic fungus, and potentially of other similar fungal pathogens. Copyright © 2015 Elsevier Inc. All rights reserved.
Nanjareddy, Kalpana; Arthikala, Manoj-Kumar; Blanco, Lourdes; Arellano, Elizabeth S; Lara, Miguel
2016-06-24
Phaseolus vulgaris is one of the most extensively studied model legumes in the world. The P. vulgaris genome sequence is available; therefore, the need for an efficient and rapid transformation system is more imperative than ever. The functional characterization of P. vulgaris genes is impeded chiefly due to the non-amenable nature of Phaseolus sp. to stable genetic transformation. Transient transformation systems are convenient and versatile alternatives for rapid gene functional characterization studies. Hence, the present work focuses on standardizing methodologies for protoplast isolation from multiple tissues and transient transformation protocols for rapid gene expression analysis in the recalcitrant grain legume P. vulgaris. Herein, we provide methodologies for the high-throughput isolation of leaf mesophyll-, flower petal-, hypocotyl-, root- and nodule-derived protoplasts from P. vulgaris. The highly efficient polyethylene glycol-mannitol magnesium (PEG-MMG)-mediated transformation of leaf mesophyll protoplasts was optimized using a GUS reporter gene. We used the P. vulgaris SNF1-related protein kinase 1 (PvSnRK1) gene as proof of concept to demonstrate rapid gene functional analysis. An RT-qPCR analysis of protoplasts that had been transformed with PvSnRK1-RNAi and PvSnRK1-OE vectors showed the significant downregulation and ectopic constitutive expression (overexpression), respectively, of the PvSnRK1 transcript. We also demonstrated an improved transient transformation approach, sonication-assisted Agrobacterium-mediated transformation (SAAT), for the leaf disc infiltration of P. vulgaris. Interestingly, this method resulted in a 90 % transformation efficiency and transformed 60-85 % of the cells in a given area of the leaf surface. The constitutive expression of YFP further confirmed the amenability of the system to gene functional characterization studies. We present simple and efficient methodologies for protoplast isolation from multiple P. vulgaris tissues. We also provide a high-efficiency and amenable method for leaf mesophyll transformation for rapid gene functional characterization studies. Furthermore, a modified SAAT leaf disc infiltration approach aids in validating genes and their functions. Together, these methods help to rapidly unravel novel gene functions and are promising tools for P. vulgaris research.
Advances in biotechnology and genomics of switchgrass
2013-01-01
Switchgrass (Panicum virgatum L.) is a C4 perennial warm season grass indigenous to the North American tallgrass prairie. A number of its natural and agronomic traits, including adaptation to a wide geographical distribution, low nutrient requirements and production costs, high water use efficiency, high biomass potential, ease of harvesting, and potential for carbon storage, make it an attractive dedicated biomass crop for biofuel production. We believe that genetic improvements using biotechnology will be important to realize the potential of the biomass and biofuel-related uses of switchgrass. Tissue culture techniques aimed at rapid propagation of switchgrass and genetic transformation protocols have been developed. Rapid progress in genome sequencing and bioinformatics has provided efficient strategies to identify, tag, clone and manipulate many economically-important genes, including those related to higher biomass, saccharification efficiency, and lignin biosynthesis. Application of the best genetic tools should render improved switchgrass that will be more economically and environmentally sustainable as a lignocellulosic bioenergy feedstock. PMID:23663491
Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Highland Ranch, CO; Pentilla, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Ruohonen, Laura [Helsinki, FI; Koivuranta, Kari [Vantaa, FI; Roberg-Perez, Kevin [Minneapolis, MN
2012-01-17
Cells of the species Issatchenkia orientalis and closely related yeast species are transformed with a vector to introduce an exogenous lactate dehydrogenase gene. The cells produce lactic acid efficiently and are resistant at low pH, high lactate titer conditions.
Chen, Qiang; Fischer, Joshua R; Benoit, Vivian M; Dufour, Nicholas P; Youderian, Philip; Leong, John M
2008-12-01
Borrelia burgdorferi is the causative agent of Lyme disease, the most common vector-borne illness in the Northern hemisphere. Low-passage-number infectious strains of B. burgdorferi exhibit extremely low transformation efficiencies-so low, in fact, as to hinder the genetic study of putative virulence factors. Two putative restriction-modification (R-M) systems, BBE02 contained on linear plasmid 25 (lp25) and BBQ67 contained on lp56, have been postulated to contribute to this poor transformability. Restriction barriers posed by other bacteria have been overcome by the in vitro methylation of DNA prior to transformation. To test whether a methylation-sensitive restriction system contributes to poor B. burgdorferi transformability, shuttle plasmids were treated with the CpG methylase M.SssI prior to the electroporation of a variety of strains harboring different putative R-M systems. We found that for B. burgdorferi strains that harbor lp56, in vitro methylation increased transformation by at least 1 order of magnitude. These results suggest that in vitro CpG methylation protects exogenous DNA from degradation by an lp56-contained R-M system, presumably BBQ67. The utility of in vitro methylation for the genetic manipulation of B. burgdorferi was exemplified by the ease of plasmid complementation of a B. burgdorferi B31 A3 BBK32 kanamycin-resistant (B31 A3 BBK32::Kan(r)) mutant, deficient in the expression of the fibronectin- and glycosaminoglycan (GAG)-binding adhesin BBK32. Consistent with the observation that several surface proteins may promote GAG binding, the B. burgdorferi B31 A3 BBK32::Kan(r) mutant demonstrated no defect in the ability to bind purified GAGs or GAGs expressed on the surfaces of cultured cells.
Bioengineering a non-genotoxic vector for genetic modification of mesenchymal stem cells.
Chen, Xuguang; Nomani, Alireza; Patel, Niket; Nouri, Faranak S; Hatefi, Arash
2018-01-01
Vectors used for stem cell transfection must be non-genotoxic, in addition to possessing high efficiency, because they could potentially transform normal stem cells into cancer-initiating cells. The objective of this research was to bioengineer an efficient vector that can be used for genetic modification of stem cells without any negative somatic or genetic impact. Two types of multifunctional vectors, namely targeted and non-targeted were genetically engineered and purified from E. coli. The targeted vectors were designed to enter stem cells via overexpressed receptors. The non-targeted vectors were equipped with MPG and Pep1 cell penetrating peptides. A series of commercial synthetic non-viral vectors and an adenoviral vector were used as controls. All vectors were evaluated for their efficiency and impact on metabolic activity, cell membrane integrity, chromosomal aberrations (micronuclei formation), gene dysregulation, and differentiation ability of stem cells. The results of this study showed that the bioengineered vector utilizing VEGFR-1 receptors for cellular entry could transfect mesenchymal stem cells with high efficiency without inducing genotoxicity, negative impact on gene function, or ability to differentiate. Overall, the vectors that utilized receptors as ports for cellular entry (viral and non-viral) showed considerably better somato- and genosafety profiles in comparison to those that entered through electrostatic interaction with cellular membrane. The genetically engineered vector in this study demonstrated that it can be safely and efficiently used to genetically modify stem cells with potential applications in tissue engineering and cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kumar, Pankaj; Srivastava, Dinesh Kumar
2016-07-01
With the advent of molecular biotechnology, plant genetic engineering techniques have opened an avenue for the genetic improvement of important vegetable crops. Vegetable crop productivity and quality are seriously affected by various biotic and abiotic stresses which destabilize rural economies in many countries. Moreover, absence of proper post-harvest storage and processing facilities leads to qualitative and quantitative losses. In the past four decades, conventional breeding has significantly contributed to the improvement of vegetable yields, quality, post-harvest life, and resistance to biotic and abiotic stresses. However, there are many constraints in conventional breeding, which can only be overcome by advancements made in modern biology. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop, of the family Brassicaceae; however, various biotic and abiotic stresses cause enormous crop yield losses during the commercial cultivation of broccoli. Thus, genetic engineering can be used as a tool to add specific characteristics to existing cultivars. However, a pre-requisite for transferring genes into plants is the availability of efficient regeneration and transformation techniques. Recent advances in plant genetic engineering provide an opportunity to improve broccoli in many aspects. The goal of this review is to summarize genetic transformation studies on broccoli to draw the attention of researchers and scientists for its further genetic advancement.
Cui, Yulin; Zhao, Jialin; Hou, Shichang; Qin, Song
2016-05-01
On the basis of fundamental genetic transformation technologies, the goal of this study was to optimize Tetraselmis subcordiformis chloroplast transformation through the use of endogenous regulators. The genes rrn16S, rbcL, psbA, and psbC are commonly highly expressed in chloroplasts, and the regulators of these genes are often used in chloroplast transformation. For lack of a known chloroplast genome sequence, the genome-walking method was used here to obtain full sequences of T. subcordiformis endogenous regulators. The resulting regulators, including three promoters, two terminators, and a ribosome combination sequence, were inserted into the previously constructed plasmid pPSC-R, with the egfp gene included as a reporter gene, and five chloroplast expression vectors prepared. These vectors were successfully transformed into T. subcordiformis by particle bombardment and the efficiency of each vector tested by assessing EGFP fluorescence via microscopy. The results showed that these vectors exhibited higher efficiency than the former vector pPSC-G carrying exogenous regulators, and the vector pRFA with Prrn, psbA-5'RE, and TpsbA showed the highest efficiency. This research provides a set of effective endogenous regulators for T. subcordiformis and will facilitate future fundamental studies of this alga.
2013-01-01
Background Lepidium campestre is an undomesticated oilseed species with a great potential to become a new crop for both food and industrial feedstocks production. Genetic modification is needed for further improving the oil quantity and quality of Lepidium. Studies on in vitro shoot regeneration of Lepidium are very limited and there is no transformation protocol available. Results We have investigated the effects of different factors, especially the type, concentration and combination of plant growth regulators (PGRs) on in vitro shoot regeneration of Lepidium. The results showed that the 2,4-D treatment was crucial to shoot regeneration from different explants. The duration of 2,4-D exposure between 2-4 days did not show significant difference in shoot regeneration, while the effect of 2,4-D concentration varied greatly depending on the type of explants and cytokinins used, for example, the low concentration of 2,4-D combined with TDZ significantly increased the regeneration frequency of hypocotyls. Cotyledon and hypocotyl explants responded differently to cytokinin, for example, TDZ was more effective than zeatin in promoting shoot regeneration from hypocotyls, but did not affect the regeneration of cotyledons which was more affected by high concentration of zeatin. The results also showed that NAA was not effective for shoot regeneration. Germination in light increased the regeneration frequency compared to that in dark. After optimization of the different conditions, an efficient regeneration protocol was developed with the regeneration efficiency of 92.7%. Using this protocol, the transformation frequency of 6% in average was achieved. The presence of transgenes in the transgenic lines was confirmed by GUS staining, PCR and Southern blot analyses. Conclusion Through systematic investigation of important factors affecting in vitro shoot regeneration, we have developed an efficient regeneration and transformation protocol for the genetic modification of Lepidium campestre. The method may also be applied to the related species. PMID:23937221
Gene transfer and expression in plants.
Lorence, Argelia; Verpoorte, Robert
2004-01-01
Until recently, agriculture and plant breeding relied solely on the accumulated experience of generations of farmers and breeders that is, on sexual transfer of genes between plant species. However, recent developments in plant molecular biology and genomics now give us access to knowledge and understanding of plant genomes and the possibility of modifying them. This chapter presents an updated overview of the two most powerful technologies for transferring genetic material (DNA) into plants: Agrobacterium-mediated transformation and microparticle bombardment (biolistics). Some of the topics that are discussed in detail are the main variables controlling the transformation efficiency that can be achieved using each one of these approaches; the advantages and limitations of each methodology; transient versus stable transformation approaches; the potential of some in planta transformation systems; alternatives to developing transgenic plants without selection markers; the availability of diverse genetic tools generated as part of the genome sequencing of different plant species; transgene expression, gene silencing, and their association with regulatory elements; and prospects and ways to possibly overcome some transgene expression difficulties, in particular the use of matrix-attachment regions (MARs).
Kolek, Jan; Sedlar, Karel; Provaznik, Ivo; Patakova, Petra
2016-01-01
Butanol is currently one of the most discussed biofuels. Its use provides many benefits in comparison to bio-ethanol, but the price of its fermentative production is still high. Genetic improvements could help solve many problems associated with butanol production during ABE fermentation, such as its toxicity, low concentration achievable in the cultivation medium, the need for a relatively expensive substrate, and many more. Clostridium pasteurianum NRRL B-598 is non-type strain producing butanol, acetone, and a negligible amount of ethanol. Its main benefits are high oxygen tolerance, utilization of a wide range of carbon and nitrogen sources, and the availability of its whole genome sequence. However, there is no established method for the transfer of foreign DNA into this strain; this is the next step necessary for progress in its use for butanol production. We have described functional protocols for conjugation and transformation of the bio-butanol producer C. pasteurianum NRRL B-598 by foreign plasmid DNA. We show that the use of unmethylated plasmid DNA is necessary for efficient transformation or successful conjugation. Genes encoding DNA methylation and those for restriction-modification systems and antibiotic resistance were searched for in the whole genome sequence and their homologies with other clostridial bacteria were determined. Furthermore, activity of described novel type I restriction system was proved experimentally. The described electrotransformation protocol achieved an efficiency 1.2 × 10(2) cfu/μg DNA after step-by-step optimization and an efficiency of 1.6 × 10(2) cfu/μg DNA was achieved by the sonoporation technique using a standard laboratory ultrasound bath. The highest transformation efficiency was achieved using a combination of these approaches; sono/electroporation led to an increase in transformation efficiency, to 5.3 × 10(2) cfu/μg DNA. Both Dam and Dcm methylations are detrimental for transformation of C. pasteurianum NRRL B-598. Methods for conjugation, electroporation, sonoporation, and a combined method for sono/electroporation were established for this strain. The methods described could be used for genetic improvement of this strain, which is suitable for bio-butanol production.
Yang, Liyan; Cui, Guimei; Wang, Yixue; Hao, Yaoshan; Du, Jianzhong; Zhang, Hongmei; Wang, Changbiao; Zhang, Huanhuan; Wu, Shu-Biao; Sun, Yi
2017-01-01
Plant genetic transformation has arguably been the core of plant improvement in recent decades. Efforts have been made to develop in planta transformation systems due to the limitations present in the tissue-culture-based methods. Herein, we report an improved in planta transformation system, and provide the evidence of reporter gene expression in pollen tube, embryos and stable transgenicity of the plants following pollen-mediated plant transformation with optimized sonication treatment of pollen. The results showed that the aeration at 4°C treatment of pollen grains in sucrose prior to sonication significantly improved the pollen viability leading to improved kernel set and transformation efficiency. Scanning electron microscopy observation revealed that the removal of operculum covering pollen pore by ultrasonication might be one of the reasons for the pollen grains to become competent for transformation. Evidences have shown that the eGfp gene was expressed in the pollen tube and embryos, and the Cry1Ac gene was detected in the subsequent T 1 and T 2 progenies, suggesting the successful transfer of the foreign genes to the recipient plants. The Southern blot analysis of Cry1Ac gene in T 2 progenies and PCR-identified Apr gene segregation in T 2 seedlings confirmed the stable inheritance of the transgene. The outcome illustrated that the pollen-mediated genetic transformation system can be widely applied in the plant improvement programs with apparent advantages over tissue-culture-based transformation methods.
2014-01-01
Background The plant pathogenic and saprophytic fungus Fusarium avenaceum causes considerable in-field and post-field losses worldwide due to its infections of a wide range of different crops. Despite its significant impact on the profitability of agriculture production and a desire to characterize the infection process at the molecular biological level, no genetic transformation protocol has yet been established for F. avenaceum. In the current study, it is shown that F. avenaceum can be efficiently transformed by Agrobacterium tumefaciens mediated transformation. In addition, an efficient and versatile single step vector construction strategy relying on Uracil Specific Excision Reagent (USER) Fusion cloning, is developed. Results The new vector construction system, termed USER-Brick, is based on a limited number of PCR amplified vector fragments (core USER-Bricks) which are combined with PCR generated fragments from the gene of interest. The system was found to have an assembly efficiency of 97% with up to six DNA fragments, based on the construction of 55 vectors targeting different polyketide synthase (PKS) and PKS associated transcription factor encoding genes in F. avenaceum. Subsequently, the ΔFaPKS3 vector was used for optimizing A. tumefaciens mediated transformation (ATMT) of F. avenaceum with respect to six variables. Acetosyringone concentration, co-culturing time, co-culturing temperature and fungal inoculum were found to significantly impact the transformation frequency. Following optimization, an average of 140 transformants per 106 macroconidia was obtained in experiments aimed at introducing targeted genome modifications. Targeted deletion of FaPKS6 (FA08709.2) in F. avenaceum showed that this gene is essential for biosynthesis of the polyketide/nonribosomal compound fusaristatin A. Conclusion The new USER-Brick system is highly versatile by allowing for the reuse of a common set of building blocks to accommodate seven different types of genome modifications. New USER-Bricks with additional functionality can easily be added to the system by future users. The optimized protocol for ATMT of F. avenaceum represents the first reported targeted genome modification by double homologous recombination of this plant pathogen and will allow for future characterization of this fungus. Functional linkage of FaPKS6 to the production of the mycotoxin fusaristatin A serves as a first testimony to this. PMID:25048842
Agrobacterium tumefaciens-mediated transformation of Narcissus tazzeta var. chinensis.
Lu, Gang; Zou, Qingcheng; Guo, Deping; Zhuang, Xiaoying; Yu, Xiaolin; Xiang, Xun; Cao, Jiashu
2007-09-01
Phytoene synthase (PSY), as a key regulatory enzyme for carotene biosynthesis, plays an important role in regulating color formation in many species. In the present study, a protocol was developed for the transformation of Narcissus tazzeta var chinensis using Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pCAMBIA1301 plasmid which contained an antisense phytoene synthase gene, a reporter beta-glucuronidase gene and a selectable marker hygromycin phosphotransferase gene. Effects of some factors on efficiency of transformation and regeneration were examined. Preculture of the explants for 6 days before inoculation enhanced the transient GUS expression. The addition of acetosyringone (AS) at 100 micromol l(-1) for inoculation and a period of 3 days co-cultivation yielded efficient transient GUS expression. Transformants were obtained through selection on MS medium containing 5 mg l(-1) 6-benzylaminopurine (BA), 0.1 mg l(-1)alpha-naphthalene acetic acid (NAA) and 40 mg l(-1) hygromycin. The transformation frequency was 1.24% based on PCR analysis of gus gene. One or two copies of transgene were demonstrated in different transformations by Southern blotting analyses. Northern blotting results confirmed that the transcription of the endogenous psy gene in transgenic plants was inhibited or silenced. The method reported here provides new opportunities for improvement of quality traits of Narcissus tazzeta via genetic transformation.
Vogel, Anne Ilse Maria; Lale, Rahmi; Hohmann-Marriott, Martin Frank
2017-01-01
Synechococcus sp. PCC 7002 (henceforth Synechococcus ) is developing into a powerful synthetic biology chassis. In order to streamline the integration of genes into the Synechococcus chromosome, validation of neutral integration sites with optimization of the DNA transformation protocol parameters is necessary. Availability of BioBrick-compatible integration modules is desirable to further simplifying chromosomal integrations. We designed three BioBrick-compatible genetic modules, each targeting a separate neutral integration site, A2842, A0935, and A0159, with varying length of homologous region, spanning from 100 to 800 nt. The performance of the different modules for achieving DNA integration were tested. Our results demonstrate that 100 nt homologous regions are sufficient for inserting a 1 kb DNA fragment into the Synechococcus chromosome. By adapting a transformation protocol from a related cyanobacterium, we shortened the transformation procedure for Synechococcus significantly. The optimized transformation protocol reported in this study provides an efficient way to perform genetic engineering in Synechococcus . We demonstrated that homologous regions of 100 nt are sufficient for inserting a 1 kb DNA fragment into the three tested neutral integration sites. Integration at A2842, A0935 and A0159 results in only a minimal fitness cost for the chassis. This study contributes to developing Synechococcus as the prominent chassis for future synthetic biology applications.
Nocarova, Eva; Fischer, Lukas
2009-04-22
Phenotypic characterization of transgenic cell lines, frequently used in plant biology studies, is complicated because transgene expression in individual cells is often heterogeneous and unstable. To identify the sources and to reduce this heterogeneity, we transformed tobacco (Nicotiana tabacum L.) BY-2 cells with a gene encoding green fluorescent protein (GFP) using Agrobacterium tumefaciens, and then introduced a simple cloning procedure to generate cell lines derived from the individual transformed cells. Expression of the transgene was monitored by analysing GFP fluorescence in the cloned lines and also in lines obtained directly after transformation. The majority ( approximately 90%) of suspension culture lines derived from calli that were obtained directly from transformation consisted of cells with various levels of GFP fluorescence. In contrast, nearly 50% of lines generated by cloning cells from the primary heterogeneous suspensions consisted of cells with homogenous GFP fluorescence. The rest of the lines exhibited "permanent heterogeneity" that could not be resolved by cloning. The extent of fluorescence heterogeneity often varied, even among genetically identical clones derived from the primary transformed lines. In contrast, the offspring of subsequent cloning of the cloned lines was uniform, showing GFP fluorescence intensity and heterogeneity that corresponded to the original clone. The results demonstrate that, besides genetic heterogeneity detected in some lines, the primary lines often contained a mixture of epigenetically different cells that could be separated by cloning. This indicates that a single integration event frequently results in various heritable expression patterns, which are probably accidental and become stabilized in the offspring of the primary transformed cells early after the integration event. Because heterogeneity in transgene expression has proven to be a serious problem, it is highly advisable to use transgenes tagged with a visual marker for BY-2 transformation. The cloning procedure can be used not only for efficient reduction of expression heterogeneity of such transgenes, but also as a useful tool for studies of transgene expression and other purposes.
Genetic engineering of microorganisms for biodiesel production
Lin, Hui; Wang, Qun; Shen, Qi; Zhan, Jumei; Zhao, Yuhua
2013-01-01
Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples. PMID:23222170
Genetic engineering of microorganisms for biodiesel production.
Lin, Hui; Wang, Qun; Shen, Qi; Zhan, Jumei; Zhao, Yuhua
2013-01-01
Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples.
Htwe, Nwe Nwe; Ling, Ho Chai; Zaman, Faridah Qamaruz; Maziah, Mahmood
2014-04-01
Rice is one of the most important cereal crops with great potential for biotechnology progress. In transformation method, antibiotic resistance genes are routinely used as powerful markers for selecting transformed cells from surrounding non-transformed cells. In this study, the toxicity level of hygromycin was optimized for two selected mutant rice lines, MR219 line 4 and line 9. The mature embryos were isolated and cultured on an MS medium with different hygromycin concentrations (0, 20, 40, 60, 80 and 100 mg L(-1)). Evidently, above 60 mg L(-1) was effective for callus formation and observed completely dead. Further there were tested for specific concentration (0-60). Although, 21.28% calli survived on the medium containing 45 mg L(-1) hygromycin, it seemed suitable for the identification of putative transformants. These findings indicated that a system for rice transformation in a relatively high frequency and the transgenes are stably expressed in the transgenic plants. Green shoots were regenerated from the explant under hygromycin stress. RT-PCR using hptII and gus sequence specific primer and Southern blot analysis were used to confirm the presence of the transgene and to determine the transformation efficiency for their stable integration in regenerated plants. This study demonstrated that the hygromycin resistance can be used as an effective marker for rice transformation.
Natural Transformation of Campylobacter jejuni Occurs Beyond Limits of Growth
Vegge, Christina S.; Brøndsted, Lone; Ligowska-Marzęta, Małgorzata; Ingmer, Hanne
2012-01-01
Campylobacter jejuni is a human bacterial pathogen. While poultry is considered to be a major source of food borne campylobacteriosis, C. jejuni is frequently found in the external environment, and water is another well-known source of human infections. Natural transformation is considered to be one of the main mechanisms for mediating transfer of genetic material and evolution of the organism. Given the diverse habitats of C. jejuni we set out to examine how environmental conditions and physiological processes affect natural transformation of C. jejuni. We show that the efficiency of transformation is correlated to the growth conditions, but more importantly that transformation occurs at growth-restrictive conditions as well as in the late stationary phase; hence revealing that growth per se is not required for C. jejuni to be competent. Yet, natural transformation of C. jejuni is an energy dependent process, that occurs in the absence of transcription but requires an active translational machinery. Moreover, we show the ATP dependent ClpP protease to be important for transformation, which possibly could be associated with reduced protein glycosylation in the ClpP mutant. In contrast, competence of C. jejuni was neither found to be involved in DNA repair following DNA damage nor to provide a growth benefit. Kinetic studies revealed that several transformation events occur per cell cycle indicating that natural transformation of C. jejuni is a highly efficient process. Thus, our findings suggest that horizontal gene transfer by natural transformation takes place in various habitats occupied by C. jejuni. PMID:23049803
Wu, Dongliang; Navet, Natasha; Liu, Yingchao; Uchida, Janice; Tian, Miaoying
2016-09-06
As an agriculturally important oomycete genus, Phytophthora contains a large number of destructive plant pathogens that severely threaten agricultural production and natural ecosystems. Among them is the broad host range pathogen P. palmivora, which infects many economically important plant species. An essential way to dissect their pathogenesis mechanisms is genetic modification of candidate genes, which requires effective transformation systems. Four methods were developed for transformation of Phytophthora spp., including PEG(polyethylene glycol)/CaCl2 mediated protoplast transformation, electroporation of zoospores, microprojectile bombardment and Agrobacterium-mediated transformation (AMT). Among them, AMT has many advantages over the other methods such as easy handling and mainly generating single-copy integration in the genome. An AMT method previously reported for P. infestans and P. palmivora has barely been used in oomycete research due to low success and low reproducibility. In this study, we report a simple and efficient AMT system for P. palmivora. Using this system, we were able to reproducibly generate over 40 transformants using zoospores collected from culture grown in a single 100 mm-diameter petri dish. The generated GFP transformants constitutively expressed GFP readily detectable using a fluorescence microscope. All of the transformants tested using Southern blot analysis contained a single-copy T-DNA insertion. This system is highly effective and reproducible for transformation of P. palmivora and expected to be adaptable for transformation of additional Phytophthora spp. and other oomycetes. Its establishment will greatly accelerate their functional genomic studies.
Genetic Modification of Short Rotation Poplar Biomass Feedstock for Efficient Conversion to Ethanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinus, R.J.
2000-08-30
The Bioenergy Feedstock Development Program, Environmental Sciences Division, Oak Ridge National Laboratory is developing poplars (Populus species and hybrids) as sources of renewable energy, i.e., ethanol. Notable increases in adaptability, volume productivity, and pest/stress resistance have been achieved via classical selection and breeding and intensified cultural practices. Significant advances have also been made in the efficiencies of harvesting and handling systems. Given these and anticipated accomplishments, program leaders are considering shifting some attention to genetically modifying feedstock physical and chemical properties, so as to improve the efficiency with which feedstocks can be converted to ethanol. This report provides an in-depthmore » review and synthesis of opportunities for and feasibilities of genetically modifying feedstock qualities via classical selection and breeding, marker-aided selection and breeding, and genetic transformation. Information was collected by analysis of the literature, with emphasis on that published since 1995, and interviews with prominent scientists, breeders, and growers. Poplar research is well advanced, and literature is abundant. The report therefore primarily reflects advances in poplars, but data from other species, particularly other shortrotation hardwoods, are incorporated to fill gaps. An executive summary and recommendations for research, development, and technology transfer are provided immediately after the table of contents. The first major section of the report describes processes most likely to be used for conversion of poplar biomass to ethanol, the various physical and chemical properties of poplar feedstocks, and how such properties are expected to affect process efficiency. The need is stressed for improved understanding of the impact of change on both overall process and individual process step efficiencies. The second part documents advances in trait measurement instrumentation and methodology. The importance of these and future developments is emphasized, since trait measurement constitutes the largest cost associated with adding additional traits to improvement efforts, regardless of genetic approach. In subsequent sections, recent and projected advances in classical selection and breeding, marker-aided selection, and genetic transformation are documented and used to evaluate the feasibility of individual approaches. Interviews with specialists engaged in research and development on each approach were given particular emphasis in gauging feasibilities and defining future needs and directions. Summaries of important findings and major conclusions are presented at the end of individual sections. Closing portions describe the targeted workshop, conducted in December 1999 and list interviewees and literature cited in the text. Information obtained at the workshop was used to improve accuracy, refine conclusions, and recommend priorities for future research, development, and technology transfer.« less
Desomer, Jan; Dhaese, Patrick; Montagu, Marc Van
1990-01-01
The analysis of the virulence determinants of phytopathogenic Rhodococcus fascians has been hampered by the lack of a system for introducing exogenous DNA. We investigated the possibility of genetic transformation of R. fascians by high-voltage electroporation of intact bacterial cells in the presence of plasmid DNA. Electrotransformation in R. fascians D188 resulted in transformation frequencies ranging from 105/μg of DNA to 107/μg of DNA, depending on the DNA concentration. The effects of different electrical parameters and composition of electroporation medium on transformation efficiency are presented. By this transformation method, a cloning vector (pRF28) for R. fascians based on an indigenous 160-kilobase (chloramphenicol and cadmium resistance-encoding) plasmid pRF2 from strain NCPPB 1675 was developed. The origin of replication and the chloramphenicol resistance gene on pRF28 were used to construct cloning vectors that are capable of replication in R. fascians and Escherichia coli. The electroporation method presented was efficient enough to allow detection of the rare integration of replication-deficient pRF28 derivatives in the R. fascians D188 genome via either homologous or illegitimate recombination. Images PMID:16348290
Tripathi, Jaindra N; Oduor, Richard O; Tripathi, Leena
2015-01-01
Banana (Musa spp.) is an important staple food as well as cash crop in tropical and subtropical countries. Various bacterial, fungal, and viral diseases and pests such as nematodes are major constraints in its production and are currently destabilizing the banana production in sub-Saharan Africa. Genetic engineering is a complementary option used for incorporating useful traits in banana to bypass the long generation time, polyploidy, and sterility of most of the cultivated varieties. A robust transformation protocol for farmer preferred varieties is crucial for banana genomics and improvement. A robust and reproducible system for genetic transformation of banana using embryogenic cell suspensions (ECS) has been developed in this study. Two different types of explants (immature male flowers and multiple buds) were tested for their ability to develop ECS in several varieties of banana locally grown in Africa. ECS of banana varieties "Cavendish Williams" and "Gros Michel" were developed using multiple buds, whereas ECS of "Sukali Ndiizi" was developed using immature male flowers. Regeneration efficiency of ECS was about 20,000-50,000 plantlets per ml of settled cell volume (SCV) depending on variety. ECS of three different varieties were transformed through Agrobacterium-mediated transformation using gusA reporter gene and 20-70 independent transgenic events per ml SCV of ECS were regenerated on selective medium. The presence and integration of gusA gene in transgenic plants was confirmed by PCR, dot blot, and Southern blot analysis and expression by histochemical GUS assays. The robust transformation platform was successfully used to generate hundreds of transgenic lines with disease resistance. Such a platform will facilitate the transfer of technologies to national agricultural research systems (NARS) in Africa.
Tripathi, Jaindra N.; Oduor, Richard O.; Tripathi, Leena
2015-01-01
Banana (Musa spp.) is an important staple food as well as cash crop in tropical and subtropical countries. Various bacterial, fungal, and viral diseases and pests such as nematodes are major constraints in its production and are currently destabilizing the banana production in sub-Saharan Africa. Genetic engineering is a complementary option used for incorporating useful traits in banana to bypass the long generation time, polyploidy, and sterility of most of the cultivated varieties. A robust transformation protocol for farmer preferred varieties is crucial for banana genomics and improvement. A robust and reproducible system for genetic transformation of banana using embryogenic cell suspensions (ECS) has been developed in this study. Two different types of explants (immature male flowers and multiple buds) were tested for their ability to develop ECS in several varieties of banana locally grown in Africa. ECS of banana varieties “Cavendish Williams” and “Gros Michel” were developed using multiple buds, whereas ECS of “Sukali Ndiizi” was developed using immature male flowers. Regeneration efficiency of ECS was about 20,000–50,000 plantlets per ml of settled cell volume (SCV) depending on variety. ECS of three different varieties were transformed through Agrobacterium-mediated transformation using gusA reporter gene and 20–70 independent transgenic events per ml SCV of ECS were regenerated on selective medium. The presence and integration of gusA gene in transgenic plants was confirmed by PCR, dot blot, and Southern blot analysis and expression by histochemical GUS assays. The robust transformation platform was successfully used to generate hundreds of transgenic lines with disease resistance. Such a platform will facilitate the transfer of technologies to national agricultural research systems (NARS) in Africa. PMID:26635849
A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms
Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine
2010-01-01
Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise. PMID:22163672
A rigid image registration based on the nonsubsampled contourlet transform and genetic algorithms.
Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine
2010-01-01
Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.
Ultrasound-Mediated DNA Transformation in Thermophilic Gram-Positive Anaerobes
Ji, Yuetong; He, Zhili; Pu, Yunting; Zhou, Jizhong; Xu, Jian
2010-01-01
Background Thermophilic, Gram-positive, anaerobic bacteria (TGPAs) are generally recalcitrant to chemical and electrotransformation due to their special cell-wall structure and the low intrinsic permeability of plasma membranes. Methodology/Principal Findings Here we established for any Gram-positive or thermophiles an ultrasound-based sonoporation as a simple, rapid, and minimally invasive method to genetically transform TGPAs. We showed that by applying a 40 kHz ultrasound frequency over a 20-second exposure, Texas red-conjugated dextran was delivered with 27% efficiency into Thermoanaerobacter sp. X514, a TGPA that can utilize both pentose and hexose for ethanol production. Experiments that delivered plasmids showed that host-cell viability and plasmid DNA integrity were not compromised. Via sonoporation, shuttle vectors pHL015 harboring a jellyfish gfp gene and pIKM2 encoding a Clostridium thermocellum β-1,4-glucanase gene were delivered into X514 with an efficiency of 6×102 transformants/µg of methylated DNA. Delivery into X514 cells was confirmed via detecting the kanamycin-resistance gene for pIKM2, while confirmation of pHL015 was detected by visualization of fluorescence signals of secondary host-cells following a plasmid-rescue experiment. Furthermore, the foreign β-1,4-glucanase gene was functionally expressed in X514, converting the host into a prototypic thermophilic consolidated bioprocessing organism that is not only ethanologenic but cellulolytic. Conclusions/Significance In this study, we developed an ultrasound-based sonoporation method in TGPAs. This new DNA-delivery method could significantly improve the throughput in developing genetic systems for TGPAs, many of which are of industrial interest yet remain difficult to manipulate genetically. PMID:20838444
Liang, Liqin; Li, Jianqiang; Cheng, Lin; Ling, Jian; Luo, Zhongqin; Bai, Miao; Xie, Bingyan
2014-11-01
The Fusarium oxysporum species complex consists of fungal pathogens that cause serial vascular wilt disease on more than 100 cultivated species throughout the world. Gene function analysis is rapidly becoming more and more important as the whole-genome sequences of various F. oxysporum strains are being completed. Gene-disruption techniques are a common molecular tool for studying gene function, yet are often a limiting step in gene function identification. In this study we have developed a F. oxysporum high-efficiency gene-disruption strategy based on split-marker homologous recombination cassettes with dual selection and electroporation transformation. The method was efficiently used to delete three RNA-dependent RNA polymerase (RdRP) genes. The gene-disruption cassettes of three genes can be constructed simultaneously within a short time using this technique. The optimal condition for electroporation is 10μF capacitance, 300Ω resistance, 4kV/cm field strength, with 1μg of DNA (gene-disruption cassettes). Under these optimal conditions, we were able to obtain 95 transformants per μg DNA. And after positive-negative selection, the transformants were efficiently screened by PCR, screening efficiency averaged 85%: 90% (RdRP1), 85% (RdRP2) and 77% (RdRP3). This gene-disruption strategy should pave the way for high throughout genetic analysis in F. oxysporum. Copyright © 2014 Elsevier GmbH. All rights reserved.
Zhu, Weinan; Wang, Jin; Zhu, Yongzhang; Tang, Biao; Zhang, Yunyi; He, Ping; Zhang, Yan; Liu, Boyu; Guo, Xiaokui; Zhao, Guoping; Qin, Jinhong
2015-02-15
The genome of pathogenic Leptospira interrogans contains two chromosomes. Plasmids and prophages are known to play specific roles in gene transfer in bacteria and can potentially serve as efficient genetic tools in these organisms. Although plasmids and prophage remnants have recently been reported in Leptospira species, their characteristics and potential applications in leptospiral genetic transformation systems have not been fully evaluated. Three extrachromosomal replicons designated lcp1 (65,732 bp), lcp2 (56,757 bp), and lcp3 (54,986 bp) in the L. interrogans serovar Linhai strain 56609 were identified through whole genome sequencing. All three replicons were stable outside of the bacterial chromosomes. Phage particles were observed in the culture supernatant of 56609 after mitomycin C induction, and lcp3, which contained phage-related genes, was considered to be an inducible prophage. L. interrogans-Escherichia coli shuttle vectors, constructed with the predicted replication elements of single rep or rep combined with parAB loci from the three plasmids were shown to successfully transform into both saprophytic and pathogenic Leptospira species, suggesting an essential function for rep genes in supporting auto-replication of the plasmids. Additionally, a wide distribution of homologs of the three rep genes was identified in L. interrogans isolates, and correlation tests showed that the transformability of the shuttle vectors in L. interrogans isolates depended, to certain extent, on genetic compatibility between the rep sequences of both plasmid and host. Three extrachromosomal replicons co-exist in L. interrogans, one of which we consider to be an inducible prophage. The vectors constructed with the rep genes of the three replicons successfully transformed into saprophytic and pathogenic Leptospira species alike, but this was partly dependent on genetic compatibility between the rep sequences of both plasmid and host.
Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops.
Singh, Roshan Kumar; Prasad, Manoj
2016-05-01
Steady increase in global population poses several challenges to plant science research, including demand for increased crop productivity, grain yield, nutritional quality and improved tolerance to different environmental factors. Transgene-based approaches are promising to address these challenges by transferring potential candidate genes to host organisms through different strategies. Agrobacterium-mediated gene transfer is one such strategy which is well known for enabling efficient gene transfer in both monocot and dicots. Due to its versatility, this technique underwent several advancements including development of improved in vitro plant regeneration system, co-cultivation and selection methods, and use of hyper-virulent strains of Agrobacterium tumefaciens harbouring super-binary vectors. The efficiency of this method has also been enhanced by the use of acetosyringone to induce the activity of vir genes, silver nitrate to reduce the Agrobacterium-induced necrosis and cysteine to avoid callus browning during co-cultivation. In the last two decades, extensive efforts have been invested towards achieving efficient Agrobacterium-mediated transformation in cereals. Though high-efficiency transformation systems have been developed for rice and maize, comparatively lesser progress has been reported in other graminaceous crops. In this context, the present review discusses the progress made in Agrobacterium-mediated transformation system in rice, maize, wheat, barley, sorghum, sugarcane, Brachypodium, millets, bioenergy and forage and turf grasses. In addition, it also provides an overview of the genes that have been recently transferred to these graminaceous crops using Agrobacterium, bottlenecks in this technique and future possibilities for crop improvement.
pYEMF, a pUC18-derived XcmI T-vector for efficient cloning of PCR products.
Gu, Jingsong; Ye, Chunjiang
2011-03-01
A 1330-bp DNA sequence with two XcmI cassettes was inserted into pUC18 to construct an efficient XcmI T-vector parent plasmid, pYEMF. The large size of the inserted DNA fragment improved T-vector cleavage efficiency, and guaranteed good separation of the molecular components after restriction digestion. The pYEMF-T-vector generated from parent plasmid pYEMF permits blue/white colony screening; cloning efficiency analysis showed that most white colonies (>75%) were putative transformants which carried the cloning product. The sequence analysis and design approach presented here will facilitate applications in the fields of molecular biology and genetic engineering.
A novel hybrid algorithm for the design of the phase diffractive optical elements for beam shaping
NASA Astrophysics Data System (ADS)
Jiang, Wenbo; Wang, Jun; Dong, Xiucheng
2013-02-01
In this paper, a novel hybrid algorithm for the design of a phase diffractive optical elements (PDOE) is proposed. It combines the genetic algorithm (GA) with the transformable scale BFGS (Broyden, Fletcher, Goldfarb, Shanno) algorithm, the penalty function was used in the cost function definition. The novel hybrid algorithm has the global merits of the genetic algorithm as well as the local improvement capabilities of the transformable scale BFGS algorithm. We designed the PDOE using the conventional simulated annealing algorithm and the novel hybrid algorithm. To compare the performance of two algorithms, three indexes of the diffractive efficiency, uniformity error and the signal-to-noise ratio are considered in numerical simulation. The results show that the novel hybrid algorithm has good convergence property and good stability. As an application example, the PDOE was used for the Gaussian beam shaping; high diffractive efficiency, low uniformity error and high signal-to-noise were obtained. The PDOE can be used for high quality beam shaping such as inertial confinement fusion (ICF), excimer laser lithography, fiber coupling laser diode array, laser welding, etc. It shows wide application value.
Vinoth, S; Gurusaravanan, P; Jayabalan, N
2013-02-01
A simple and efficient protocol for Agrobacterium-mediated genetic transformation of tomato was developed using combination of non-tissue culture and micropropagation systems. Initially, ESAM region of 1-day-old germinated tomato seeds were microinjected for one to five times with Agrobacterium inoculums (OD(600) = 0.2-1.0). The germinated seeds were cocultivated in the MS medium fortified with (0-200 mM) acetosyringone and minimal concentrations of (0-20 mg L(-1)) kanamycin, and the antibiotic concentration was doubled during the second round of selection. Bacterial concentration of OD(600) = 0.6 served as an optimal concentration for infection and the transformation efficiency was significantly higher of about 46.28 %. In another set of experiment, an improved and stable regeneration system was adapted for the explants from the selection medium. Four-day-old double cotyledonary nodal explants were excised from the microinjected seedlings and cultured onto the MS medium supplemented with 1.5 mg L(-1) thidiazuron, 1.5 mg L(-1) indole-3-butyric acid, 30 mg L(-1) kanamycin, and 0-1.5 mg L(-1) adenine sulphate. Maximum of 9 out of 13 micropropagated shoots were shown positive to GUS assay. By this technique, the transformation efficiency was increased from 46.28 to 65.90 %. Thus, this paper reports the successful protocol for the mass production of transformants using microinjection and micropropagation techniques.
Daly, Paul; Slaghek, Gillian G; Casado López, Sara; Wiebenga, Ad; Hilden, Kristiina S; de Vries, Ronald P; Mäkelä, Miia R
2017-12-01
D. squalens, a white-rot fungus that efficiently degrades lignocellulose in nature, can be used in various biotechnological applications and has several strains with sequenced and annotated genomes. Here we present a method for the transformation of this basidiomycete fungus, using a recently introduced commercial ascomycete protoplasting enzyme cocktail, Protoplast F. In protoplasting of D. squalens mycelia, Protoplast F outperformed two other cocktails while releasing similar amounts of protoplasts to a third cocktail. The protoplasts released using Protoplast F had a regeneration rate of 12.5% (±6 SE). Using Protoplast F, the D. squalens monokaryon CBS464.89 was conferred with resistance to the antibiotics hygromycin and G418 via polyethylene glycol mediated protoplast transformation with resistance cassettes expressing the hygromycin phosphotransferase (hph) and neomycin phosphotransferase (nptII) genes, respectively. The hph gene was expressed in D. squalens using heterologous promoters from genes encoding β-tubulin or glyceraldehyde 3-phosphate dehydrogenase. A Southern blot confirmed integration of a resistance cassette into the D. squalens genome. An average of six transformants (±2 SE) were obtained when at least several million protoplasts were used (a transformation efficiency of 0.8 (±0.3 SE) transformants per μg DNA). Transformation of D. squalens demonstrates the suitability of the Protoplast F cocktail for basidiomycete transformation and furthermore can facilitate understanding of basidiomycete gene function and development of improved strains for biotechnological applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Burns, C; Leach, K M; Elliott, T J; Challen, M P; Foster, G D; Bailey, A
2006-02-01
There is interest in establishing genetic modification technologies for the cultivated mushroom Agaricus bisporus, both for improved crop characteristics and for molecular pharming. For these methods to be successful, it is necessary to establish a set of transformation systems that include robust and reliable vectors for gene manipulation. In this article, we report the evaluation of a series of promoters for driving expression of the Escherichia coli hph gene encoding hygromycin phosphotransferase. This was achieved using the Aspergillus nidulans gpdA and the A. bisporus gpdII and trp2 promoters. The Coprinus cinereus beta-tubulin promoter gave contrasting results depending on the size of promoter used, with a 393-bp region being effective, whereas the longer 453-bp fragment failed to yield any hygromycin-resistant transformants. The C. cinereus trp1 and the A. bisporus lcc1 promoters both failed to yield transformants. We also show that transformation efficiency may be improved by careful selection of both appropriate Agrobacterium strains, with AGL-1 yielding more than LBA1126 and by the choice of the binary vectors used to mobilize the DNA, with pCAMBIA vectors appearing to be more efficient than either pBIN19- or pGREEN-based systems.
Genetic manipulation of Bacillus methanolicus, a gram-positive, thermotolerant methylotroph.
Cue, D; Lam, H; Dillingham, R L; Hanson, R S; Flickinger, M C
1997-01-01
We report the fist genetic transformation system, shuttle vectors, and integrative vectors for the thermotolerant, methylotrophic bacterium Bacillus methanolicus. By using a polyethylene glycol-mediated transformation procedure, we have successfully transformed B. methanolicus with both integrative and multicopy plasmids. For plasmids with a single BmeTI recognition site, dam methylation of plasmid DNA (in vivo or in vitro) was found to enhance transformation efficiency from 7- to 11-fold. Two low-copy-number Escherichia coli-B, methanolicus shuttle plasmids, pDQ507 and pDQ508, are described. pDQ508 caries the replication origin cloned from a 17-kb endogenous B. methanolicus plasmid, pBM1. pDQ507 carries a cloned B. methanolicus DNA fragment, pmr-1, possibly of chromosomal origin, that supports maintenance of pDQ507 as a circular, extrachromosomal DNA molecule. Deletion analysis of pDQ507 indicated two regions required for replication, i.e., a 90-bp AT-rich segment containing a 46-bp imperfect, inverted repeat sequence and a second region 65% homologous to the B. subtilis dpp operon. We also evaluated two E. coli-B. subtilis vectors, pEN1 and pHP13, for use as E. coli-B. methanolicus shuttle vectors. The plasmids pHP13, pDQ507, and pDQ508 were segregationally and structurally stable in B. methanolicus for greater than 60 generations of growth under nonselective conditions; pEN1 was segregationally unstable. Single-stranded plasmid DNA was detected in B. methanolicus transformants carrying either pEN1, pHP13, or pDQ508, suggesting that pDQ508, like the B. subtilis plasmids, is replicated by a rolling-circle mechanism. These studies provide the basic tools for the genetic manipulation of B. methanolicus. PMID:9097439
Genetic manipulation of Bacillus methanolicus, a gram-positive, thermotolerant methylotroph.
Cue, D; Lam, H; Dillingham, R L; Hanson, R S; Flickinger, M C
1997-04-01
We report the fist genetic transformation system, shuttle vectors, and integrative vectors for the thermotolerant, methylotrophic bacterium Bacillus methanolicus. By using a polyethylene glycol-mediated transformation procedure, we have successfully transformed B. methanolicus with both integrative and multicopy plasmids. For plasmids with a single BmeTI recognition site, dam methylation of plasmid DNA (in vivo or in vitro) was found to enhance transformation efficiency from 7- to 11-fold. Two low-copy-number Escherichia coli-B, methanolicus shuttle plasmids, pDQ507 and pDQ508, are described. pDQ508 caries the replication origin cloned from a 17-kb endogenous B. methanolicus plasmid, pBM1. pDQ507 carries a cloned B. methanolicus DNA fragment, pmr-1, possibly of chromosomal origin, that supports maintenance of pDQ507 as a circular, extrachromosomal DNA molecule. Deletion analysis of pDQ507 indicated two regions required for replication, i.e., a 90-bp AT-rich segment containing a 46-bp imperfect, inverted repeat sequence and a second region 65% homologous to the B. subtilis dpp operon. We also evaluated two E. coli-B. subtilis vectors, pEN1 and pHP13, for use as E. coli-B. methanolicus shuttle vectors. The plasmids pHP13, pDQ507, and pDQ508 were segregationally and structurally stable in B. methanolicus for greater than 60 generations of growth under nonselective conditions; pEN1 was segregationally unstable. Single-stranded plasmid DNA was detected in B. methanolicus transformants carrying either pEN1, pHP13, or pDQ508, suggesting that pDQ508, like the B. subtilis plasmids, is replicated by a rolling-circle mechanism. These studies provide the basic tools for the genetic manipulation of B. methanolicus.
Widmann, Philipp; Reverter, Antonio; Weikard, Rosemarie; Suhre, Karsten; Hammon, Harald M.; Albrecht, Elke; Kuehn, Christa
2015-01-01
Feed efficiency is a paramount factor for livestock economy. Previous studies had indicated a substantial heritability of several feed efficiency traits. In our study, we investigated the genetic background of residual feed intake, a commonly used parameter of feed efficiency, in a cattle resource population generated from crossing dairy and beef cattle. Starting from a whole genome association analysis, we subsequently performed combined phenotype-metabolome-genome analysis taking a systems biology approach by inferring gene networks based on partial correlation and information theory approaches. Our data about biological processes enriched with genes from the feed efficiency network suggest that genetic variation in feed efficiency is driven by genetic modulation of basic processes relevant to general cellular functions. When looking at the predicted upstream regulators from the feed efficiency network, the Tumor Protein P53 (TP53) and Transforming Growth Factor beta 1 (TGFB1) genes stood out regarding significance of overlap and number of target molecules in the data set. These results further support the hypothesis that TP53 is a major upstream regulator for genetic variation of feed efficiency. Furthermore, our data revealed a significant effect of both, the Non-SMC Condensin I Complex, Subunit G (NCAPG) I442M (rs109570900) and the Growth /differentiation factor 8 (GDF8) Q204X (rs110344317) loci, on residual feed intake and feed conversion. For both loci, the growth promoting allele at the onset of puberty was associated with a negative, but favorable effect on residual feed intake. The elevated energy demand for increased growth triggered by the NCAPG 442M allele is obviously not fully compensated for by an increased efficiency in converting feed into body tissue. As a consequence, the individuals carrying the NCAPG 442M allele had an additional demand for energy uptake that is reflected by the association of the allele with increased daily energy intake as observed in our study. PMID:25875852
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collier, Ray; Bragg, Jennifer; Hernandez, Bryan T.
In this study, the genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brachypodium has relied mainly on Agrobacterium tumefaciens strain AGL1. Currently the antibiotic hygromycin B has been the selective agent of choice for robust identification of transgenic calli in Brachypodium distachyon and Brachypodium sylvaticum but few other chemicals have been shown to work as well for selection of transgenic Brachypodium cells in tissue culture. This studymore » demonstrates that Agrobacterium rhizogenes strain 18r12v and paromomycin selection can be successfully used for the efficient generation of transgenic B. distachyon and B. sylvaticurn. Additionally we observed that the transformation rates were similar to or higher than those obtained with A. turnefaciens strain AGL1 and hygromycin selection. The A. rhizogenes strain 18r12v harboring the pARS1 binary vector and paromomycin selection is an effective means of generating transgenic Brachypodium plants. This novel approach will facilitate the transgenic complementation of T-DNA knockout mutants of B. distachyon which were created using hygromycin selection, as well as aid the implementation of more complex genome manipulation strategies which require multiple rounds of transformation.« less
Collier, Ray; Bragg, Jennifer; Hernandez, Bryan T.; ...
2016-05-24
In this study, the genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brachypodium has relied mainly on Agrobacterium tumefaciens strain AGL1. Currently the antibiotic hygromycin B has been the selective agent of choice for robust identification of transgenic calli in Brachypodium distachyon and Brachypodium sylvaticum but few other chemicals have been shown to work as well for selection of transgenic Brachypodium cells in tissue culture. This studymore » demonstrates that Agrobacterium rhizogenes strain 18r12v and paromomycin selection can be successfully used for the efficient generation of transgenic B. distachyon and B. sylvaticurn. Additionally we observed that the transformation rates were similar to or higher than those obtained with A. turnefaciens strain AGL1 and hygromycin selection. The A. rhizogenes strain 18r12v harboring the pARS1 binary vector and paromomycin selection is an effective means of generating transgenic Brachypodium plants. This novel approach will facilitate the transgenic complementation of T-DNA knockout mutants of B. distachyon which were created using hygromycin selection, as well as aid the implementation of more complex genome manipulation strategies which require multiple rounds of transformation.« less
Evolutionary transgenomics: prospects and challenges.
Correa, Raul; Baum, David A
2015-01-01
Many advances in our understanding of the genetic basis of species differences have arisen from transformation experiments, which allow us to study the effect of genes from one species (the donor) when placed in the genetic background of another species (the recipient). Such interspecies transformation experiments are usually focused on candidate genes - genes that, based on work in model systems, are suspected to be responsible for certain phenotypic differences between the donor and recipient species. We suggest that the high efficiency of transformation in a few plant species, most notably Arabidopsis thaliana, combined with the small size of typical plant genes and their cis-regulatory regions allow implementation of a screening strategy that does not depend upon a priori candidate gene identification. This approach, transgenomics, entails moving many large genomic inserts of a donor species into the wild type background of a recipient species and then screening for dominant phenotypic effects. As a proof of concept, we recently conducted a transgenomic screen that analyzed more than 1100 random, large genomic inserts of the Alabama gladecress Leavenworthia alabamica for dominant phenotypic effects in the A. thaliana background. This screen identified one insert that shortens fruit and decreases A. thaliana fertility. In this paper we discuss the principles of transgenomic screens and suggest methods to help minimize the frequencies of false positive and false negative results. We argue that, because transgenomics avoids committing in advance to candidate genes it has the potential to help us identify truly novel genes or cryptic functions of known genes. Given the valuable knowledge that is likely to be gained, we believe the time is ripe for the plant evolutionary community to invest in transgenomic screens, at least in the mustard family Brassicaceae where many species are amenable to efficient transformation.
[A comparison study of hpt and bar as selection marker gene of transgenic rice].
Zhang, Chun-Yu; Li, Hong-Yu; Liu, Bin
2012-12-01
The decision of using selection marker is one of the key factors for success of plant genetic transformation and offspring screening. As two commonly used selection markers, hpt and bar genes are widely used in tissue culture-based rice transformation. To experimentally compare their performance, we investigated the efficiency of two transformation systems using Hygromycin and Bialaphos as the selection agents, respectively. The result indicated that the system using hpt gene as the selection marker saved 10 days and had double transformation efficiency and lower transgene copy number in comparison to the system using bar gene. Then, we assessed the feasibility of screening transgenic rice in the field by soaking the wild-type and transgenic seeds in a series of solutions containing step diluted hygromycin for two days. We targeted the suitable concentration for distinguishing the transgenic seeds from WT Kitaake seeds was 167 mg L(-1). However, the cost of screening by hygromycin is still much higher than that of Basta in field test. Therefore, this study experimentally demonstrated the advantages and disadvantages of the hpt and bar gene as the selection markers and thus provided a reference for choose of an appropriate selection marker according to the practical applications.
Brueggeman, Andrew J; Kuehler, Daniel; Weeks, Donald P
2014-09-01
Genes conferring resistance to the herbicides glyphosate, oxyfluorfen and norflurazon were developed and tested for use as dominant selectable markers in genetic transformation of Chlamydomonas reinhardtii and as potential tools for the protection of commercial-scale algal production facilities against contamination by organisms sensitive to these broad-spectrum herbicides. A synthetic glyphosate acetyltransferase (GAT) gene, when fitted with a strong Chlamydomonas promoter, conferred a 2.7×-fold increase in tolerance to the EPSPS inhibitor, glyphosate, in transgenic cells compared with progenitor WT cells. A mutant Chlamydomonas protoporphyrinogen oxidase (protox, PPO) gene previously shown to produce an enzyme insensitive to PPO-inhibiting herbicides, when genetically engineered, generated transgenic cells able to tolerate up to 136× higher levels of the PPO inhibitor, oxyfluorfen, than nontransformed cells. Genetic modification of the Chlamydomonas phytoene desaturase (PDS) gene-based gene sequences found in various norflurazon-resistant organisms allowed production of transgenic cells tolerant to 40× higher levels of norflurazon than nontransgenic cells. The high efficiency of all three herbicide resistance genes in producing transgenic cells demonstrated their suitability as dominant selectable markers for genetic transformation of Chlamydomonas and, potentially, other eukaryotic algae. However, the requirement for high concentrations of glyphosate and its associated negative effects on cell growth rates preclude its consideration for use in large-scale production facilities. In contrast, only low doses of norflurazon and oxyfluorfen (~1.5 μm and ~0.1 μm, respectively) are required for inhibition of cell growth, suggesting that these two herbicides may prove effective in large-scale algal production facilities in suppressing growth of organisms sensitive to these herbicides. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Manfroi, Ernandes; Yamazaki-Lau, Elene; Grando, Magali F; Roesler, Eduardo A
2015-12-01
Low transformation efficiency is one of the main limiting factors in the establishment of genetic transformation of wheat via Agrobacterium tumefaciens. To determine more favorable conditions for T-DNA delivery and explant regeneration after infection, this study investigated combinations of acetosyringone concentration and pH variation in the inoculation and co-cultivation media and co-culture temperatures using immature embryos from two Brazilian genotypes (BR 18 Terena and PF 020037). Based on transient expression of uidA, the most favorable conditions for T-DNA delivery were culture media with pH 5.0 and 5.4 combined with co-culture temperatures of 22 °C and 25 °C, and a 400 μM acetosyringone supplement. These conditions resulted in blue foci in 81% of the embryos. Media with more acidic pH also presented reduced A. tumefaciens overgrowth during co-culture, and improved regeneration frequency of the inoculated explants. BR 18 Terena was more susceptible to infection by A. tumefaciens than PF 020037. We found that it is possible to improve T-DNA delivery and explant regeneration by adjusting factors involved in the early stages of A. tumefaciens infection. This can contribute to establishing a stable transformation procedure in the future.
Delporte, Fabienne; Muhovski, Yordan; Pretova, Anna; Watillon, Bernard
2013-10-01
The physiological, biochemical and molecular mechanisms regulating the initiation of a regenerative pathway remain partially unknown. Efforts to identify the biological features that confer transformation ability, or the tendency of some cells to induce transgene silencing, would help to improve plant genetic engineering. The objective of our study was to monitor the evolution of plant cell competencies in relation to both in vitro tissue culture regeneration and the genetic transformation properties. We used a simple wheat regeneration procedure as an experimental model for studying the regenerative capacity of plant cells and their receptivity to direct gene transfer over the successive steps of the regenerative pathway. Target gene profiling studies and biochemical assays were conducted to follow some of the mechanisms triggered during the somatic-to-embryogenic transition (i.e. dedifferentiation, cell division activation, redifferentiation) and affecting the accessibility of plant cells to receive and stably express the exogenous DNA introduced by bombardment. Our results seem to indicate that the control of cell-cycle (S-phase) and host defense strategies can be crucial determinants of genetic transformation efficiency. The results from studies conducted at macro-, micro- and molecular scales are then integrated into a holistic approach that addresses the question of tissue culture and transgenesis competencies more broadly. Through this multilevel analysis we try to establish functional links between both regenerative capacity and transformation receptiveness, and thereby to provide a more global and integrated vision of both processes, at the core of defense/adaptive mechanisms and survival, between undifferentiated cell proliferation and organization.
Fadeev, V S; Shimshilashvili, Kh R; Gaponenko, A K
2008-09-01
The induction, regeneration, and biolistic sensitivities of different genotypes of common wheat (Triticum aestivum L.) have been determined in order to develop an efficient system for transformation of Russian cultivars of spring wheat. Short-term (two days) cold treatment (4 degrees C) has been demonstrated to distinctly increase the frequency of morphogenetic callus induction. The optimal phytohormonal composition of the nutrient medium ensuring an in vitro regeneration rate of the common wheat cultivar Lada as high as 90% has been determined. The optimal temporal parameters of genetic transformation of wheat plants (10-14 days of culturing after initiation of a morphogenetic callus) have been determined for two transformation methods: biolistic without precipitated DNA and transformation with the plasmid psGFP-BAR. Analysis of the transient expression of the gfp gene has confirmed that 14 days of culturing is the optimal duration.
2012-01-01
Background Striga species are noxious root hemi-parasitic weeds that debilitate cereal production in sub-Saharan Africa (SSA). Control options for Striga are limited and developing Striga resistant crop germplasm is regarded as the best and most sustainable control measure. Efforts to improve germplasm for Striga resistance by a non-Genetic Modification (GM) approach, for example by exploiting natural resistance, or by a GM approach are constrained by limited information on the biological processes underpinning host-parasite associations. Additionaly, a GM approach is stymied by lack of availability of candidate resistance genes for introduction into hosts and robust transformation methods to validate gene functions. Indeed, a majority of Striga hosts, the world’s most cultivated cereals, are recalcitrant to genetic transformation. In maize, the existing protocols for transformation and regeneration are tedious, lengthy, and highly genotype-specific with low efficiency of transformation. Results We used Agrobacterium rhizogenes strain K599 carrying a reporter gene construct, Green Fluorescent Protein (GFP), to generate transgenic composite maize plants that were challenged with the parasitic plant Striga hermonthica. Eighty five percent of maize plants produced transgenic hairy roots expressing GFP. Consistent with most hairy roots produced in other species, transformed maize roots exhibited a hairy root phenotype, the hallmark of A. rhizogenes mediated transformation. Transgenic hairy roots resulting from A. rhizogenes transformation were readily infected by S. hermonthica. There were no significant differences in the number and size of S. hermonthica individuals recovered from either transgenic or wild type roots. Conclusions This rapid, high throughput, transformation technique will advance our understanding of gene function in parasitic plant-host interactions. PMID:22720750
A CRISPR Cas9-based gene drive platform for genetic interaction analysis in Candida albicans
Shapiro, Rebecca S.; Chavez, Alejandro; Porter, Caroline B. M.; Hamblin, Meagan; Kaas, Christian S.; DiCarlo, James E.; Zeng, Guisheng; Xu, Xiaoli; Revtovich, Alexey V.; Kirienko, Natalia V.; Wang, Yue; Church, George M.; Collins, James J.
2018-01-01
Candida albicans is the leading cause of fungal infections; yet, complex genetic interaction analysis remains cumbersome in this diploid pathogen. Here, we developed a CRISPR-Cas9-based ‘gene drive array’ (GDA) platform to facilitate efficient genetic analysis in C. albicans. In our system, a modified DNA donor molecule acts as a selfish genetic element, replaces the targeted site, and propagates to replace additional wild-type loci. Using mating-competent C. albicans haploids, each carrying a different gene drive disabling a gene of interest, we are able to create diploid strains that are homozygous double-deletion mutants. We generate double-gene deletion libraries to demonstrate this technology, targeting antifungal efflux and biofilm adhesion factors. We screen these libraries to identify virulence regulators and determine how genetic networks shift under diverse conditions. This platform transforms our ability to perform genetic interaction analysis in C. albicans and is readily extended to other fungal pathogens. PMID:29062088
Efficient and stable transformation of hop (Humulus lupulus L.) var. Eroica by particle bombardment.
Batista, Dora; Fonseca, Sandra; Serrazina, Susana; Figueiredo, Andreia; Pais, Maria Salomé
2008-07-01
To the best of our knowledge, this is the first accurate and reliable protocol for hop (Humulus lupulus L.) genetic transformation using particle bombardment. Based on the highly productive regeneration system previously developed by us for hop var. Eroica, two efficient transformation protocols were established using petioles and green organogenic nodular clusters (GONCs) bombarded with gusA reporter and hpt selectable genes. A total of 36 hygromycin B-resistant (hyg(r)) plants obtained upon continuous selection were successfully transferred to the greenhouse, and a first generation group of transplanted plants was followed after spending a complete vegetative cycle. PCR analysis showed the presence of one of both transgenes in 25 plants, corresponding to an integration frequency of 69.4% and an overall transformation efficiency of 7.5%. Although all final transformants were GUS negative, the integration frequency of gusA gene was higher than that of hpt gene. Petiole-derived transgenic plants showed a higher co-integration rate of 76.9%. Real-time PCR analysis confirmed co-integration in 86% of the plants tested and its stability until the first generation, and identified positive plants amongst those previously assessed as hpt (+) only by conventional PCR. Our results suggest that the integration frequencies presented here, as well as those of others, may have been underestimated, and that PCR results should be taken with precaution not only for false positives, but also for false negatives. The protocols here described could be very useful for future introduction of metabolic or resistance traits in hop cultivars even if slight modifications for other genotypes are needed.
Sullivan, Thomas D.; Rooney, Peggy J.; Klein, Bruce S.
2002-01-01
The dimorphic fungi Blastomyces dermatitidis and Histoplasma capsulatum cause systemic mycoses in humans and other animals. Forward genetic approaches to generating and screening mutants for biologically important phenotypes have been underutilized for these pathogens. The plant-transforming bacterium Agrobacterium tumefaciens was tested to determine whether it could transform these fungi and if the fate of transforming DNA was suited for use as an insertional mutagen. Yeast cells from both fungi and germinating conidia from B. dermatitidis were transformed via A. tumefaciens by using hygromycin resistance for selection. Transformation frequencies up to 1 per 100 yeast cells were obtained at high effector-to-target ratios of 3,000:1. B. dermatitidis and H. capsulatum ura5 lines were complemented with transfer DNA vectors expressing URA5 at efficiencies 5 to 10 times greater than those obtained using hygromycin selection. Southern blot analyses indicated that in 80% of transformants the transferred DNA was integrated into chromosomal DNA at single, unique sites in the genome. Progeny of B. dermatitidis transformants unexpectedly showed that a single round of colony growth under hygromycin selection or visible selection of transformants by lacZ expression generated homokaryotic progeny from multinucleate yeast. Theoretical analysis of random organelle sorting suggests that the majority of B. dermatitidis cells would be homokaryons after the ca. 20 generations necessary for colony formation. Taken together, the results demonstrate that A. tumefaciens efficiently transfers DNA into B. dermatitidis and H. capsulatum and has the properties necessary for use as an insertional mutagen in these fungi. PMID:12477790
Boscariol, R L; Almeida, W A B; Derbyshire, M T V C; Mourão Filho, F A A; Mendes, B M J
2003-09-01
A new method for obtaining transgenic sweet orange plants was developed in which positive selection (Positech) based on the Escherichia coli phosphomannose-isomerase (PMI) gene as the selectable marker gene and mannose as the selective agent was used. Epicotyl segments from in vitro-germinated plants of Valencia, Hamlin, Natal and Pera sweet oranges were inoculated with Agrobacterium tumefaciens EHA101-pNOV2116 and subsequently selected on medium supplemented with different concentrations of mannose or with a combination of mannose and sucrose as a carbon source. Genetic transformation was confirmed by PCR and Southern blot. The transgene expression was evaluated using a chlorophenol red assay and isoenzymes. The transformation efficiency rate ranged from 3% to 23.8%, depending on cultivar. This system provides an efficient manner for selecting transgenic sweet orange plants without using antibiotics or herbicides.
USDA-ARS?s Scientific Manuscript database
In order to improve the potential of Lesquerella fendleri as a valuable industrial oilseed crop, a stable genetic transformation system was developed. Genetic transformation was performed by inoculating leaf segments with an Agrobacterium tumefaciens strain AGL1 carrying binary vector pCAMBIA 1301.1...
Subbarao, G V; Arango, J; Masahiro, K; Hooper, A M; Yoshihashi, T; Ando, Y; Nakahara, K; Deshpande, S; Ortiz-Monasterio, I; Ishitani, M; Peters, M; Chirinda, N; Wollenberg, L; Lata, J C; Gerard, B; Tobita, S; Rao, I M; Braun, H J; Kommerell, V; Tohme, J; Iwanaga, M
2017-09-01
Accelerated soil-nitrifier activity and rapid nitrification are the cause of declining nitrogen-use efficiency (NUE) and enhanced nitrous oxide (N 2 O) emissions from farming. Biological nitrification inhibition (BNI) is the ability of certain plant roots to suppress soil-nitrifier activity, through production and release of nitrification inhibitors. The power of phytochemicals with BNI-function needs to be harnessed to control soil-nitrifier activity and improve nitrogen-cycling in agricultural systems. Transformative biological technologies designed for genetic mitigation are needed, so that BNI-enabled crop-livestock and cropping systems can rein in soil-nitrifier activity, to help reduce greenhouse gas (GHG) emissions and globally make farming nitrogen efficient and less harmful to environment. This will reinforce the adaptation or mitigation impact of other climate-smart agriculture technologies. Copyright © 2017 Elsevier B.V. All rights reserved.
Heuristic approach to image registration
NASA Astrophysics Data System (ADS)
Gertner, Izidor; Maslov, Igor V.
2000-08-01
Image registration, i.e. correct mapping of images obtained from different sensor readings onto common reference frame, is a critical part of multi-sensor ATR/AOR systems based on readings from different types of sensors. In order to fuse two different sensor readings of the same object, the readings have to be put into a common coordinate system. This task can be formulated as optimization problem in a space of all possible affine transformations of an image. In this paper, a combination of heuristic methods is explored to register gray- scale images. The modification of Genetic Algorithm is used as the first step in global search for optimal transformation. It covers the entire search space with (randomly or heuristically) scattered probe points and helps significantly reduce the search space to a subspace of potentially most successful transformations. Due to its discrete character, however, Genetic Algorithm in general can not converge while coming close to the optimum. Its termination point can be specified either as some predefined number of generations or as achievement of a certain acceptable convergence level. To refine the search, potential optimal subspaces are searched using more delicate and efficient for local search Taboo and Simulated Annealing methods.
Carnation (Dianthus caryophylus L.).
Nontaswatsri, Chalermsri; Fukai, Seiichi
2006-01-01
Carnation is a valuable crop for the cut flower industry and demand for new and improved varieties is growing. However, genetic transformation of carnations is currently limited because of a lack of efficient routine technique. In this chapter, we present an easy and effective protocol for gene transfer to carnation node explants and subsequent adventitious shoot regeneration. For high-adventitious shoot regeneration, node explants from first to third node of 5- to 8-cm long shoots were cultured on Murashige and Skoog (MS) medium, containing 1.0 mg/Lthidiazuron (TDZ), 0.1 mg/L alpha-napthalenoacetic acid (NAA), 20 g/L sucrose, and 2 g/L Gellan gum for 10 d. Then the explants were cut into 8 radial segments and subcultured onto MS medium, containing 1.0 mg/L BA, 0.1 mg/L NAA, 20 g/L sucrose and 2 g/L Gellan Gum. For effective genetic transformation, 3- to 5-d precultured node explants were submerged in an Agrobacerium suspension for 10 min, then cocultivated on filter paper soaked with water and 50 microM acetosyringone (AS). After cocultivation, the explants were cut into eight radial segments and subcultured onto selection medium until transformed shoots regenerated from the explants.
Methods for genetic modification of megakaryocytes and platelets.
Pendaries, Caroline; Watson, Stephen P; Spalton, Jennifer C
2007-09-01
During recent decades there have been major advances in the fields of thrombosis and haemostasis, in part through development of powerful molecular and genetic technologies. Nevertheless, genetic modification of megakaryocytes and generation of mutant platelets in vitro remains a highly specialized area of research. Developments are hampered by the low frequency of megakaryocytes and their progenitors, a poor efficiency of transfection and a lack of understanding with regard to the mechanism by which megakaryocytes release platelets. Current methods used in the generation of genetically modified megakaryocytes and platelets include mutant mouse models, cell line studies and use of viruses to transform primary megakaryocytes or haematopoietic precursor cells. This review summarizes the advantages, limitations and technical challenges of such methods, with a particular focus on recent successes and advances in this rapidly progressing field including the potential for use in gene therapy for treatment of patients with platelet disorders.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2004-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2005-01-01
A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Hanhineva, Kati J; Kärenlampi, Sirpa O
2007-01-01
Background Strawberry (Fragaria × ananassa) is an economically important soft fruit crop with polyploid genome which complicates the breeding of new cultivars. For certain traits, genetic engineering offers a potential alternative to traditional breeding. However, many strawberry varieties are quite recalcitrant for Agrobacterium-mediated transformation, and a method allowing easy handling of large amounts of starting material is needed. Also the genotyping of putative transformants is challenging since the isolation of DNA for Southern analysis is difficult due to the high amount of phenolic compounds and polysaccharides that complicate efficient extraction of digestable DNA. There is thus a need to apply a screening method that is sensitive and unambiguous in identifying the different transformation events. Results Hygromycin-resistant strawberries were developed in temporary immersion bioreactors by Agrobacterium-mediated gene transfer. Putative transformants were screened by TAIL-PCR to verify T-DNA integration and to distinguish between the individual transformation events. Several different types of border sequence arrangements were detected. Conclusion This study demonstrates that temporary immersion bioreactor system suits well for the regeneration of transgenic strawberry plants as a labour-efficient technique. Small amount of DNA required by TAIL-PCR is easily recovered even from a small transformant, which allows rapid verification of T-DNA integration and detection of separate gene transfer events. These techniques combined clearly facilitate the generation of transgenic strawberries but should be applicable to other plants as well. PMID:17309794
Agrobacterium-mediated virus-induced gene silencing assay in cotton.
Gao, Xiquan; Britt, Robert C; Shan, Libo; He, Ping
2011-08-20
Cotton (Gossypium hirsutum) is one of the most important crops worldwide. Considerable efforts have been made on molecular breeding of new varieties. The large-scale gene functional analysis in cotton has been lagged behind most of the modern plant species, likely due to its large size of genome, gene duplication and polyploidy, long growth cycle and recalcitrance to genetic transformation(1). To facilitate high throughput functional genetic/genomic study in cotton, we attempt to develop rapid and efficient transient assays to assess cotton gene functions. Virus-Induced Gene Silencing (VIGS) is a powerful technique that was developed based on the host Post-Transcriptional Gene Silencing (PTGS) to repress viral proliferation(2,3). Agrobacterium-mediated VIGS has been successfully applied in a wide range of dicots species such as Solanaceae, Arabidopsis and legume species, and monocots species including barley, wheat and maize, for various functional genomic studies(3,4). As this rapid and efficient approach avoids plant transformation and overcomes functional redundancy, it is particularly attractive and suitable for functional genomic study in crop species like cotton not amenable for transformation. In this study, we report the detailed protocol of Agrobacterium-mediated VIGS system in cotton. Among the several viral VIGS vectors, the tobacco rattle virus (TRV) invades a wide range of hosts and is able to spread vigorously throughout the entire plant yet produce mild symptoms on the hosts5. To monitor the silencing efficiency, GrCLA1, a homolog gene of Arabidopsis Cloroplastos alterados 1 gene (AtCLA1) in cotton, has been cloned and inserted into the VIGS binary vector pYL156. CLA1 gene is involved in chloroplast development(6), and previous studies have shown that loss-of-function of AtCLA1 resulted in an albino phenotype on true leaves(7), providing an excellent visual marker for silencing efficiency. At approximately two weeks post Agrobacterium infiltration, the albino phenotype started to appear on the true leaves, with 100% silencing efficiency in all replicated experiments. The silencing of endogenous gene expression was also confirmed by RT-PCR analysis. Significantly, silencing could potently occur in all the cultivars we tested, including various commercially grown varieties in Texas. This rapid and efficient Agrobacterium-mediated VIGS assay provides a very powerful tool for rapid large-scale analysis of gene functions at genome-wide level in cotton.
Agrobacterium-Mediated Virus-Induced Gene Silencing Assay In Cotton
Gao, Xiquan; Britt Jr., Robert C.; Shan, Libo; He, Ping
2011-01-01
Cotton (Gossypium hirsutum) is one of the most important crops worldwide. Considerable efforts have been made on molecular breeding of new varieties. The large-scale gene functional analysis in cotton has been lagged behind most of the modern plant species, likely due to its large size of genome, gene duplication and polyploidy, long growth cycle and recalcitrance to genetic transformation1. To facilitate high throughput functional genetic/genomic study in cotton, we attempt to develop rapid and efficient transient assays to assess cotton gene functions. Virus-Induced Gene Silencing (VIGS) is a powerful technique that was developed based on the host Post-Transcriptional Gene Silencing (PTGS) to repress viral proliferation2,3. Agrobacterium-mediated VIGS has been successfully applied in a wide range of dicots species such as Solanaceae, Arabidopsis and legume species, and monocots species including barley, wheat and maize, for various functional genomic studies3,4. As this rapid and efficient approach avoids plant transformation and overcomes functional redundancy, it is particularly attractive and suitable for functional genomic study in crop species like cotton not amenable for transformation. In this study, we report the detailed protocol of Agrobacterium-mediated VIGS system in cotton. Among the several viral VIGS vectors, the tobacco rattle virus (TRV) invades a wide range of hosts and is able to spread vigorously throughout the entire plant yet produce mild symptoms on the hosts5. To monitor the silencing efficiency, GrCLA1, a homolog gene of Arabidopsis Cloroplastos alterados 1 gene (AtCLA1) in cotton, has been cloned and inserted into the VIGS binary vector pYL156. CLA1 gene is involved in chloroplast development6, and previous studies have shown that loss-of-function of AtCLA1 resulted in an albino phenotype on true leaves7, providing an excellent visual marker for silencing efficiency. At approximately two weeks post Agrobacterium infiltration, the albino phenotype started to appear on the true leaves, with 100% silencing efficiency in all replicated experiments. The silencing of endogenous gene expression was also confirmed by RT-PCR analysis. Significantly, silencing could potently occur in all the cultivars we tested, including various commercially grown varieties in Texas. This rapid and efficient Agrobacterium-mediated VIGS assay provides a very powerful tool for rapid large-scale analysis of gene functions at genome-wide level in cotton. PMID:21876527
Agrobacterium tumefaciens-mediated transformation of oleaginous yeast Lipomyces species.
Dai, Ziyu; Deng, Shuang; Culley, David E; Bruno, Kenneth S; Magnuson, Jon K
2017-08-01
Interest in using renewable sources of carbon, especially lignocellulosic biomass, for the production of hydrocarbon fuels and chemicals has fueled interest in exploring various organisms capable of producing hydrocarbon biofuels and chemicals or their precursors. The oleaginous (oil-producing) yeast Lipomyces starkeyi is the subject of active research regarding the production of triacylglycerides as hydrocarbon fuel precursors using a variety of carbohydrate and nutrient sources. The genome of L. starkeyi has been published, which opens the door to production strain improvements through the development and use of the tools of synthetic biology for this oleaginous species. The first step in establishment of synthetic biology tools for an organism is the development of effective and reliable transformation methods with suitable selectable marker genes and demonstration of the utility of the genetic elements needed for expression of introduced genes or deletion of endogenous genes. Chemical-based methods of transformation have been published but suffer from low efficiency. To address these problems, Agrobacterium-mediated transformation was investigated as an alternative method for L. starkeyi and other Lipomyces species. In this study, Agrobacterium-mediated transformation was demonstrated to be effective in the transformation of both L. starkeyi and other Lipomyces species. The deletion of the peroxisomal biogenesis factor 10 gene was also demonstrated in L. starkeyi. In addition to the bacterial antibiotic selection marker gene hygromycin B phosphotransferase, the bacterial β-glucuronidase reporter gene under the control of L. starkeyi translation elongation factor 1α promoter was also stably expressed in six different Lipomyces species. The results from this study demonstrate that Agrobacterium-mediated transformation is a reliable and effective genetic tool for homologous recombination and expression of heterologous genes in L. starkeyi and other Lipomyces species.
Delhaize, Emmanuel; Taylor, Phillip; Hocking, Peter J; Simpson, Richard J; Ryan, Peter R; Richardson, Alan E
2009-06-01
Barley (Hordeum vulgare L.), genetically modified with the Al(3+) resistance gene of wheat (TaALMT1), was compared with a non-transformed sibling line when grown on an acidic and highly phosphate-fixing ferrosol supplied with a range of phosphorus concentrations. In short-term pot trials (26 days), transgenic barley expressing TaALMT1 (GP-ALMT1) was more efficient than a non-transformed sibling line (GP) at taking up phosphorus on acid soil, but the genotypes did not differ when the soil was limed. Differences in phosphorus uptake efficiency on acid soil could be attributed not only to the differential effects of aluminium toxicity on root growth between the genotypes, but also to differences in phosphorus uptake per unit root length. Although GP-ALMT1 out-performed GP on acid soil, it was still not as efficient at taking up phosphorus as plants grown on limed soil. GP-ALMT1 plants grown in acid soil possessed substantially smaller rhizosheaths than those grown in limed soil, suggesting that root hairs were shorter. This is a probable reason for the lower phosphorus uptake efficiency. When grown to maturity in large pots, GP-ALMT1 plants produced more than twice the grain as GP plants grown on acid soil and 80% of the grain produced by limed controls. Expression of TaALMT1 in barley was not associated with a penalty in either total shoot or grain production in the absence of Al(3+), with both genotypes showing equivalent yields in limed soil. These findings demonstrate that an important crop species can be genetically engineered to successfully increase grain production on an acid soil.
Evolution and genetic diversity of Theileria.
Sivakumar, Thillaiampalam; Hayashida, Kyoko; Sugimoto, Chihiro; Yokoyama, Naoaki
2014-10-01
Theileria parasites infect a wide range of domestic and wild ruminants worldwide, causing diseases with varying degrees of severity. A broad classification, based on the parasite's ability to transform the leukocytes of host animals, divides Theileria into two groups, consisting of transforming and non-transforming species. The evolution of transforming Theileria has been accompanied by drastic changes in its genetic makeup, such as acquisition or expansion of gene families, which are thought to play critical roles in the transformation of host cells. Genetic variation among Theileria parasites is sometimes linked with host specificity and virulence in the parasites. Immunity against Theileria parasites primarily involves cell-mediated immune responses in the host. Immunodominance and major histocompatibility complex class I phenotype-specificity result in a host immunity that is tightly focused and strain-specific. Immune escape in Theileria is facilitated by genetic diversity in its antigenic determinants, which potentially results in a loss of T cell receptor recognition in its host. In the recent past, several reviews have focused on genetic diversity in the transforming species, Theileriaparva and Theileriaannulata. In contrast, genetic diversity in Theileriaorientalis, a benign non-transforming parasite, which occasionally causes disease outbreaks in cattle, has not been extensively examined. In this review, therefore, we provide an outline of the evolution of Theileria, which includes T. orientalis, and discuss the possible mechanisms generating genetic diversity among parasite populations. Additionally, we discuss the potential implications of a genetically diverse parasite population in the context of Theileria vaccine development. Copyright © 2014 Elsevier B.V. All rights reserved.
Yu, Miao; Ji, Lexiang; Neumann, Drexel A.; ...
2015-07-15
Restriction-modification (R-M) systems pose a major barrier to DNA transformation and genetic engineering of bacterial species. Systematic identification of DNA methylation in R-M systems, including N 6-methyladenine (6mA), 5-methylcytosine (5mC) and N 4-methylcytosine (4mC), will enable strategies to make these species genetically tractable. Although single-molecule, real time (SMRT) sequencing technology is capable of detecting 4mC directly for any bacterial species regardless of whether an assembled genome exists or not, it is not as scalable to profiling hundreds to thousands of samples compared with the commonly used next-generation sequencing technologies. Here, we present 4mC-Tet-assisted bisulfite-sequencing (4mC-TAB-seq), a next-generation sequencing method thatmore » rapidly and cost efficiently reveals the genome-wide locations of 4mC for bacterial species with an available assembled reference genome. In 4mC-TAB-seq, both cytosines and 5mCs are read out as thymines, whereas only 4mCs are read out as cytosines, revealing their specific positions throughout the genome. We applied 4mC-TAB-seq to study the methylation of a member of the hyperthermophilc genus, Caldicellulosiruptor, in which 4mC-related restriction is a major barrier to DNA transformation from other species. Lastly, in combination with MethylC-seq, both 4mC- and 5mC-containing motifs are identified which can assist in rapid and efficient genetic engineering of these bacteria in the future.« less
Vargas-Maya, Naurú Idalia; González-Hernández, Gloria Angélica; Padilla-Guerrero, Israel Enrique; Torres-Guzmán, Juan Carlos
2017-01-01
Fermentative processes are widely used to produce food, beverages and biofuels. Saccharomyces cerevisiae is an efficient ethanol-producing microorganism. However, a concentration of high ethanol and other metabolites can affect yeast viability and decrease the ethanol yield. Many studies have focused on improving the fermentative efficiency, mostly through the genetic engineering of genes that have a direct impact on specific metabolic pathways. In the present study, we characterized a small open reading frame encoding a protein with an unknown function and biological role termed YNR034W-A. We analyzed the expression profile of the YNR034W-A gene during growth and glucose treatment, finding that it is expressed during the diauxic shift and stationary phase and is negatively regulated by glucose. We overexpressed the YNR034W-A gene in the BY4741 laboratory strain and a wild-type yeast strain (AR5) isolated during the Tequila fermentation process. Transformant derivatives of the AR5 strain showed an improved fermentative efficiency during fermentation of Agave tequilana Weber juice. We suggest that the improved fermentative efficiency is the result of a higher stress tolerance response in the YNR034W-A overexpressing transformant.
Adapting rice anther culture to gene transformation and RNA interference.
Chen, Caiyan; Xiao, Han; Zhang, Wenli; Wang, Aiju; Xia, Zhihui; Li, Xiaobing; Zhai, Wenxue; Cheng, Zhukuan; Zhu, Lihuang
2006-10-01
Anther culture offers a rapid method of generating homozygous lines for breeding program and genetic analysis. To produce homozygous transgenic lines of rice (Oryza sativa L.) in one step, we developed an efficient protocol of anther-callus-based transformation mediated by Agrobacterium after optimizing several factors influencing efficient transformation, including callus induction and Agrobacterium density for co-cultivation. Using this protocol, we obtained 145 independent green transformants from five cultivars of japonica rice by transformation with a binary vector pCXK1301 bearing the rice gene, Xa21 for resistance to bacterial blight, of which 140 were further confirmed by PCR and Southern hybridization analysis, including haploids (32.1%), diploids (62.1%) and mixoploids (7.5%). Fifteen diploids were found to be doubled haploids, which accounted for 10.7% of the total positive lines. Finally, by including 28 from colchicine induced or spontaneous diploidization of haploids later after transformation, a total of 43 doubled haploids (30.7%) of Xa21 transgenic lines were obtained. We also generated two RNAi transgenic haploids of the rice OsMADS2 gene, a putative redundant gene of OsMADS4 based on their sequence similarity, to investigate its possible roles in rice flower development by this method. Flowers from the two OsMADS2 RNAi transgenic haploids displayed obvious homeotic alternations, in which lodicules were transformed into palea/lemma-like tissues, whereas identities of other floral organs were maintained. The phenotypic alternations were proved to result from specific transcriptional suppression of OsMADS2 gene by the introduced RNAi transgene. The results confirmed that OsMADS2 is involved in lodicule development of rice flower and functionally redundant with OsMADS4 gene. Our results demonstrated that rice anther culture could be adapted to gene transformation and RNAi analysis in rice.
A route for efficient non-resonance cloaking by using multilayer dielectric coating
NASA Astrophysics Data System (ADS)
Wang, Xiaohui; Semouchkina, Elena
2013-03-01
An approach for designing transmission cloaks by using ordinary dielectrics instead of meta- and plasmonic materials is proposed and demonstrated by the development of a multi-layer cloak for hiding cylindrical objects larger than the wavelengths of incident radiation. The parameters of the cloak layers were found by using the Genetic Algorithm-based optimization procedure, which employed the reciprocal of total scattering cross width of the cloaked target, derived from the solution of the Helmholtz equation, as the fitness function. The proposed cloak demonstrated better cloaking efficiency than did a similarly sized metamaterial cloak designed by using the transformation optics relations.
Artificial intelligence tools for pattern recognition
NASA Astrophysics Data System (ADS)
Acevedo, Elena; Acevedo, Antonio; Felipe, Federico; Avilés, Pedro
2017-06-01
In this work, we present a system for pattern recognition that combines the power of genetic algorithms for solving problems and the efficiency of the morphological associative memories. We use a set of 48 tire prints divided into 8 brands of tires. The images have dimensions of 200 x 200 pixels. We applied Hough transform to obtain lines as main features. The number of lines obtained is 449. The genetic algorithm reduces the number of features to ten suitable lines that give thus the 100% of recognition. Morphological associative memories were used as evaluation function. The selection algorithms were Tournament and Roulette wheel. For reproduction, we applied one-point, two-point and uniform crossover.
Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.
Shen, Lan; Hua, Yufeng; Fu, Yaping; Li, Jian; Liu, Qing; Jiao, Xiaozhen; Xin, Gaowei; Wang, Junjie; Wang, Xingchun; Yan, Changjie; Wang, Kejian
2017-05-01
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease 9 (CRISPR/Cas9) system has emerged as a promising technology for specific genome editing in many species. Here we constructed one vector targeting eight agronomic genes in rice using the CRISPR/Cas9 multiplex genome editing system. By subsequent genetic transformation and DNA sequencing, we found that the eight target genes have high mutation efficiencies in the T 0 generation. Both heterozygous and homozygous mutations of all editing genes were obtained in T 0 plants. In addition, homozygous sextuple, septuple, and octuple mutants were identified. As the abundant genotypes in T 0 transgenic plants, various phenotypes related to the editing genes were observed. The findings demonstrate the potential of the CRISPR/Cas9 system for rapid introduction of genetic diversity during crop breeding.
Winstel, Volker; Kühner, Petra; Krismer, Bernhard; Peschel, Andreas; Rohde, Holger
2015-04-01
Genetic manipulation of emerging bacterial pathogens, such as coagulase-negative staphylococci (CoNS), is a major hurdle in clinical and basic microbiological research. Strong genetic barriers, such as restriction modification systems or clustered regularly interspaced short palindromic repeats (CRISPR), usually interfere with available techniques for DNA transformation and therefore complicate manipulation of CoNS or render it impossible. Thus, current knowledge of pathogenicity and virulence determinants of CoNS is very limited. Here, a rapid, efficient, and highly reliable technique is presented to transfer plasmid DNA essential for genetic engineering to important CoNS pathogens from a unique Staphylococcus aureus strain via a specific S. aureus bacteriophage, Φ187. Even strains refractory to electroporation can be transduced by this technique once donor and recipient strains share similar Φ187 receptor properties. As a proof of principle, this technique was used to delete the alternative transcription factor sigma B (SigB) via allelic replacement in nasal and clinical Staphylococcus epidermidis isolates at high efficiencies. The described approach will allow the genetic manipulation of a wide range of CoNS pathogens and might inspire research activities to manipulate other important pathogens in a similar fashion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Agrobacterium tumefaciens-mediated transformation of oleaginous yeast Lipomyces species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Ziyu; Deng, Shuang; Culley, David E.
Background: Because of interest in the production of renewable bio-hydrocarbon fuels, various living organisms have been explored for their potential use in producing fuels and chemicals. The oil-producing (oleaginous) yeast Lipomyces starkeyi is the subject of active research regarding the production of lipids using a wide variety of carbon and nutrient sources. The genome of L. starkeyi has been published, which opens the door to production strain improvements using the tools of synthetic biology and metabolic engineering. However, using these tools for strain improvement requires the establishment of effective and reliable transformation methods with suitable selectable markers (antibiotic resistance ormore » auxotrophic marker genes) and the necessary genetic elements (promoters and terminators) for expression of introduced genes. Chemical-based methods have been published, but suffer from low efficiency or the requirement for targeting to rRNA loci. To address these problems, Agrobacterium-mediated transformation was investigated as an alternative method for L. starkeyi and other Lipomyces species. Results: In this study, Agrobacterium-mediated transformation was demonstrated to be effective in the transformation of both L. starkeyi and other Lipomyces species and that the introduced DNA can be reliably integrated into the chromosomes of these species. The gene deletion of Ku70 and Pex10 was also demonstrated in L. starkeyi. In addition to the bacterial antibiotic selection marker gene hygromycin B phosphotransferase, the bacterial -glucuronidase reporter gene under the control of L. starkeyi translation elongation factor 1 promoter was also stably expressed in seven different Lipomyces species. Conclusion: The results from this study clearly demonstrate that Agrobacterium-mediated transformation is a reliable genetic tool for gene deletion and integration and expression of heterologous genes in L. starkeyi and other Lipomyces species.« less
Bertier, Lien D; Ron, Mily; Huo, Heqiang; Bradford, Kent J; Britt, Anne B; Michelmore, Richard W
2018-05-04
CRISPR/Cas9 is a transformative tool for making targeted genetic alterations. In plants, high mutation efficiencies have been reported in primary transformants. However, many of the mutations analyzed were somatic and therefore not heritable. To provide more insights into the efficiency of creating stable homozygous mutants using CRISPR/Cas9, we targeted LsNCED4 ( 9-cis-EPOXYCAROTENOID DIOXYGENASE4) , a gene conditioning thermoinhibition of seed germination in lettuce. Three constructs, each capable of expressing Cas9 and a single gRNA targeting different sites in LsNCED4 , were stably transformed into lettuce (Lactuca sativa) cvs. Salinas and Cobham Green. Analysis of 47 primary transformants (T 1 ) and 368 T 2 plants by deep amplicon sequencing revealed that 57% of T 1 plants contained events at the target site: 28% of plants had germline mutations in one allele indicative of an early editing event (mono-allelic), 8% of plants had germline mutations in both alleles indicative of two early editing events (bi-allelic), and the remaining 21% of plants had multiple low frequency mutations indicative of late events (chimeric plants). Editing efficiency was similar in both genotypes, while the different gRNAs varied in efficiency. Amplicon sequencing of 20 T 1 and more than 100 T 2 plants for each of the three gRNAs showed that repair outcomes were not random, but reproducible and characteristic for each gRNA. Knockouts of NCED4 resulted in large increases in the maximum temperature for seed germination, with seeds of both cultivars capable of germinating >70% at 37°. Knockouts of NCED4 provide a whole-plant selectable phenotype that has minimal pleiotropic consequences. Targeting NCED4 in a co-editing strategy could therefore be used to enrich for germline-edited events simply by germinating seeds at high temperature. Copyright © 2018 Bertier et al.
Bertier, Lien D.; Ron, Mily; Huo, Heqiang; Bradford, Kent J.; Britt, Anne B.; Michelmore, Richard W.
2018-01-01
CRISPR/Cas9 is a transformative tool for making targeted genetic alterations. In plants, high mutation efficiencies have been reported in primary transformants. However, many of the mutations analyzed were somatic and therefore not heritable. To provide more insights into the efficiency of creating stable homozygous mutants using CRISPR/Cas9, we targeted LsNCED4 (9-cis-EPOXYCAROTENOID DIOXYGENASE4), a gene conditioning thermoinhibition of seed germination in lettuce. Three constructs, each capable of expressing Cas9 and a single gRNA targeting different sites in LsNCED4, were stably transformed into lettuce (Lactuca sativa) cvs. Salinas and Cobham Green. Analysis of 47 primary transformants (T1) and 368 T2 plants by deep amplicon sequencing revealed that 57% of T1 plants contained events at the target site: 28% of plants had germline mutations in one allele indicative of an early editing event (mono-allelic), 8% of plants had germline mutations in both alleles indicative of two early editing events (bi-allelic), and the remaining 21% of plants had multiple low frequency mutations indicative of late events (chimeric plants). Editing efficiency was similar in both genotypes, while the different gRNAs varied in efficiency. Amplicon sequencing of 20 T1 and more than 100 T2 plants for each of the three gRNAs showed that repair outcomes were not random, but reproducible and characteristic for each gRNA. Knockouts of NCED4 resulted in large increases in the maximum temperature for seed germination, with seeds of both cultivars capable of germinating >70% at 37°. Knockouts of NCED4 provide a whole-plant selectable phenotype that has minimal pleiotropic consequences. Targeting NCED4 in a co-editing strategy could therefore be used to enrich for germline-edited events simply by germinating seeds at high temperature. PMID:29511025
The Chemical and Biological Effects of cis-Dichlorodiammineplatinum (II), an Antitumor Agent, on DNA
Munchausen, Linda L.
1974-01-01
cis-Dichlorodiammineplatinum (II) binds irreversibly to the bases in DNA; the amount of platinum complex bound can be determined from changes in the ultraviolet absorption spectrum. As the ratio of platinum to phosphate is increased, an increasing inactivation of bacterial transforming DNA is observed. At a ratio that corresponds to spectrometric saturation, transforming activity is inactivated >105-fold. The trans isomer of the platinum complex, which is not effective against tumors, induces a similar inactivation of transforming DNA but with half the efficiency, indicating a different mode of binding. The sensitivity to inactivation by cis isomer varies slightly with the genetic marker assayed but is not dependent on the excision repair system. Uptake of DNA by competent cells is unaffected by bound platinum complex; however, integration of platinum-bound transforming DNA into the host genome decreases as the mole fraction of platinum increases. This loss of integration parallels the decreased transforming activity of the DNA. Although the drug induces interstrand crosslinks in DNA in vitro, these crosslinks are relatively rare events and cannot account for the observed inactivation. PMID:4548188
Su, Hang; Jiao, Yun-Tong; Wang, Fang-Fang; Liu, Yue-E; Niu, Wei-Li; Liu, Guo-Tian; Xu, Yan
2018-05-01
Putrescine and spermidine increase the transformation efficiency of Vitis vinifera L. cv. Thompson seedless. Accumulation of VpPR10.1 in transgenic V. vinifera Thompson seedless, likely increases its resistance to downy mildew. A more efficient method is described for facilitating Agrobacterium-mediated transformation of Vitis vinifera L. cv. Thompson Seedless somatic embryogenesis using polyamines (PAs). The efficacies of putrescine, spermidine and spermine are identified at a range of concentrations (10 µM, 100 µM and 1 mM) added to the culture medium during somatic embryo growth. Putrescine (PUT) and spermidine (SPD) promote the recovery of proembryonic masses (PEM) and the development of somatic embryos (SE) after co-cultivation. Judging from the importance of the time-frame in genetic transformation, PAs added at the co-cultivation stage have a stronger effect than delayed selection treatments, which are superior to antibiotic treatments in the selection stage. Best embryogenic responses are with 1 mM PUT and 100 µM SPD added to the co-culture medium. Using the above method, a pathogenesis-related gene (VpPR10.1) from Chinese wild Vitis pseudoreticulata was transferred into Thompson Seedless for functional evaluation. The transgenic line, confirmed by western blot analysis, was inoculated with Plasmopara viticola to test for downy mildew resistance. Based on observed restrictions of hyphal growth and increases in H 2 O 2 accumulation in the transgenic plants, the accumulation of VpPR10.1 likely enhanced the transgenic plants resistance to downy mildew.
Kulanbaewa, F F; Sekova, V Yu; Isakova, E P; Deryabina, Y I; Nikolaev, A V
2016-09-01
This article presents the characteristics of the highly inducible promoter of the gene encoding the mitochondrial porin, the voltage-dependent anion channel (VDAC). This promoter is recommended for use in new genetic constructs both in basic research for assessing the adaptive strategy of lower eukaryotes under adverse conditions and in designing new highly competitive transformants producing economically important compounds (proteins, lipids, and organic acids) on its basis.
Agha-Hosseini, Farzaneh; Sheykhbahaei, Nafiseh; SadrZadeh-Afshar, Maryam-Sadat
2016-08-01
Many studies have suggested that a lesion originally diagnosed as oral lichen planus (OLP) has different possibilities of undergoing malignant transformation in time, although these findings remain a controversial issue; for example, some studies reported different values of potential malignancy of OLP. World Health Organization (WHO) classifies OLP as a "potentially malignant disorder" with unspecified malignant transformation risk, and suggests that OLP patients should be closely monitored. Numerous studies have attempted to confirm the malignant transformation potential of OLP. The Cochrane Controlled Trials Register, Medline and EMBASE databases, PubMed, Google Scholar, Ovid, Up To Date, BMJ Clinical Evidence, MD Consult, and Science Direct were searched for papers published between 1997 and 2015. The medical subject heading search terms were "lichen planus," "oral lichen planus," "erosive oral lichen planus," "dysplasia," "oral precancerous condition," "oral premalignant condition," oral cancer, oral squamous cell carcinoma (OSCC), and atrophic lichen planus. A total of 120 English language abstracts were reviewed, and 50 relevant articles identified. Because of the extensive literature on the association between OLP and SCC, we have divided the data into genetic and non-genetic factors for more accurate assessment. In this evidence base, malignant transformation ranges from 0 to 37% with a mean of 4.59%. The highest rate of malignancy was noted in erythematosus and erosive lesions. In this way, follow-up of OLP patients could be carried out more efficiently and appropriately. Oral lichen planus is a premalignant lesion. All types of OLP in any site of oral mucosa must be monitored regularly.
Genetic transformation protocols using zygotic embryos as explants: an overview.
Tahir, Muhammad; Waraich, Ejaz A; Stasolla, Claudio
2011-01-01
Genetic transformation of plants is an innovative research tool which has practical significance for the development of new and improved genotypes or cultivars. However, stable introduction of genes of interest into nuclear genomes depends on several factors such as the choice of target tissue, the method of DNA delivery in the target tissue, and the appropriate method to select the transformed plants. Mature or immature zygotic embryos have been a popular choice as explant or target tissue for genetic transformation in both angiosperms and gymnosperms. As a result, considerable protocols have emerged in the literature which have been optimized for various plant species in terms of transformation methods and selection procedures for transformed plants. This article summarizes the recent advances in plant transformation using zygotic embryos as explants.
Discrimination of transgenic soybean seeds by terahertz spectroscopy
NASA Astrophysics Data System (ADS)
Liu, Wei; Liu, Changhong; Chen, Feng; Yang, Jianbo; Zheng, Lei
2016-10-01
Discrimination of genetically modified organisms is increasingly demanded by legislation and consumers worldwide. The feasibility of a non-destructive discrimination of glyphosate-resistant and conventional soybean seeds and their hybrid descendants was examined by terahertz time-domain spectroscopy system combined with chemometrics. Principal component analysis (PCA), least squares-support vector machines (LS-SVM) and PCA-back propagation neural network (PCA-BPNN) models with the first and second derivative and standard normal variate (SNV) transformation pre-treatments were applied to classify soybean seeds based on genotype. Results demonstrated clear differences among glyphosate-resistant, hybrid descendants and conventional non-transformed soybean seeds could easily be visualized with an excellent classification (accuracy was 88.33% in validation set) using the LS-SVM and the spectra with SNV pre-treatment. The results indicated that THz spectroscopy techniques together with chemometrics would be a promising technique to distinguish transgenic soybean seeds from non-transformed seeds with high efficiency and without any major sample preparation.
An efficient multi-resolution GA approach to dental image alignment
NASA Astrophysics Data System (ADS)
Nassar, Diaa Eldin; Ogirala, Mythili; Adjeroh, Donald; Ammar, Hany
2006-02-01
Automating the process of postmortem identification of individuals using dental records is receiving an increased attention in forensic science, especially with the large volume of victims encountered in mass disasters. Dental radiograph alignment is a key step required for automating the dental identification process. In this paper, we address the problem of dental radiograph alignment using a Multi-Resolution Genetic Algorithm (MR-GA) approach. We use location and orientation information of edge points as features; we assume that affine transformations suffice to restore geometric discrepancies between two images of a tooth, we efficiently search the 6D space of affine parameters using GA progressively across multi-resolution image versions, and we use a Hausdorff distance measure to compute the similarity between a reference tooth and a query tooth subject to a possible alignment transform. Testing results based on 52 teeth-pair images suggest that our algorithm converges to reasonable solutions in more than 85% of the test cases, with most of the error in the remaining cases due to excessive misalignments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czarnecki, Olaf; Bryan, Anthony C.; Jawdy, Sara S.
Genetic engineering of plants that results in successful establishment of new biochemical or regulatory pathways requires stable introduction of one or more genes into the plant genome. It might also be necessary to down-regulate or turn off expression of endogenous genes in order to reduce activity of competing pathways. An established way to knockdown gene expression in plants is expressing a hairpin-RNAi construct, eventually leading to degradation of a specifically targeted mRNA. Knockdown of multiple genes that do not share homologous sequences is still challenging and involves either sophisticated cloning strategies to create vectors with different serial expression constructs ormore » multiple transformation events that is often restricted by a lack of available transformation markers. Synthetic RNAi fragments were assembled in yeast carrying homologous sequences to six or seven non-family genes and introduced into pAGRIKOLA. Transformation of Arabidopsis thaliana and subsequent expression analysis of targeted genes proved efficient knockdown of all target genes. In conclusion, we present a simple and cost-effective method to create constructs to simultaneously knockdown multiple non-family genes or genes that do not share sequence homology. The presented method can be applied in plant and animal synthetic biology as well as traditional plant and animal genetic engineering.« less
Rana, Mohammad M; Han, Zhuo-Xiao; Song, Da-Peng; Liu, Guo-Feng; Li, Da-Xiang; Wan, Xiao-Chun; Karthikeyan, Alagarsamy; Wei, Shu
2016-07-15
Tea (Camellia sinensis L.) is recalcitrant to Agrobacterium-mediated genetic transformation largely due to the bactericidal effects of tea polyphenols and phenolics oxidation induced by necrosis of explant tissue over the process of transformation. In this study, different antioxidants/adsorbents were added as supplements to the co-cultivation and post co-cultivation media to overcome these problems for the transformation improvement. Tea-cotyledon-derived calli were used as explants and Agrobacterium rhizognes strain ATCC 15834 was used as a mediator. Results showed that Agrobacterium growth, virulence (vir) gene expression and browning of explant tissue were greatly influenced by different supplements. Murashige and Skoog (MS) basal salts medium supplemented with 30 g·L(-1) sucrose, 0.1 g·L(-1) l-glutamine and 5 g·L(-1) polyvinylpolypyrrolidone (PVPP) as co-cultivation and post co-cultivation media could maintain these parameters better that ultimately led to significant improvement of hairy root generation efficiency compared to that in the control (MS + 30 g·L(-1) sucrose). Additionally, the reporter genes β-glucuronidase (gusA) and cyan fluorescent protein (cfp) were also stably expressed in the transgenic hairy roots. Our study would be helpful in establishing a feasible approach for tea biological studies and genetic improvement of tea varieties.
A genetic replacement system for selection-based engineering of essential proteins
2012-01-01
Background Essential genes represent the core of biological functions required for viability. Molecular understanding of essentiality as well as design of synthetic cellular systems includes the engineering of essential proteins. An impediment to this effort is the lack of growth-based selection systems suitable for directed evolution approaches. Results We established a simple strategy for genetic replacement of an essential gene by a (library of) variant(s) during a transformation. The system was validated using three different essential genes and plasmid combinations and it reproducibly shows transformation efficiencies on the order of 107 transformants per microgram of DNA without any identifiable false positives. This allowed for reliable recovery of functional variants out of at least a 105-fold excess of non-functional variants. This outperformed selection in conventional bleach-out strains by at least two orders of magnitude, where recombination between functional and non-functional variants interfered with reliable recovery even in recA negative strains. Conclusions We propose that this selection system is extremely suitable for evaluating large libraries of engineered essential proteins resulting in the reliable isolation of functional variants in a clean strain background which can readily be used for in vivo applications as well as expression and purification for use in in vitro studies. PMID:22898007
Infection of non-host model plant species with the narrow-host-range Cacao swollen shoot virus.
Friscina, Arianna; Chiappetta, Laura; Jacquemond, Mireille; Tepfer, Mark
2017-02-01
Cacao swollen shoot virus (CSSV) is a major pathogen of cacao (Theobroma cacao) in Africa, and long-standing efforts to limit its spread by the culling of infected trees have had very limited success. CSSV is a particularly difficult virus to study, as it has a very narrow host range, limited to several tropical tree species. Furthermore, the virus is not mechanically transmissible, and its insect vector can only be used with difficulty. Thus, the only efficient means to infect cacao plants that have been experimentally described so far are by particle bombardment or the agroinoculation of cacao plants with an infectious clone. We have genetically transformed three non-host species with an infectious form of the CSSV genome: two experimental hosts widely used in plant virology (Nicotiana tabacum and N. benthamiana) and the model species Arabidopsis thaliana. In transformed plants of all three species, the CSSV genome was able to replicate, and, in tobacco, CSSV particles could be observed by immunosorbent electron microscopy, demonstrating that the complete virus cycle could be completed in a non-host plant. These results will greatly facilitate the preliminary testing of CSSV control strategies using plants that are easy to raise and to transform genetically. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Czarnecki, Olaf; Bryan, Anthony C.; Jawdy, Sara S.; ...
2016-02-17
Genetic engineering of plants that results in successful establishment of new biochemical or regulatory pathways requires stable introduction of one or more genes into the plant genome. It might also be necessary to down-regulate or turn off expression of endogenous genes in order to reduce activity of competing pathways. An established way to knockdown gene expression in plants is expressing a hairpin-RNAi construct, eventually leading to degradation of a specifically targeted mRNA. Knockdown of multiple genes that do not share homologous sequences is still challenging and involves either sophisticated cloning strategies to create vectors with different serial expression constructs ormore » multiple transformation events that is often restricted by a lack of available transformation markers. Synthetic RNAi fragments were assembled in yeast carrying homologous sequences to six or seven non-family genes and introduced into pAGRIKOLA. Transformation of Arabidopsis thaliana and subsequent expression analysis of targeted genes proved efficient knockdown of all target genes. In conclusion, we present a simple and cost-effective method to create constructs to simultaneously knockdown multiple non-family genes or genes that do not share sequence homology. The presented method can be applied in plant and animal synthetic biology as well as traditional plant and animal genetic engineering.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Kimberly L.; Bender, Kelly S.; Wall, Judy D.
2009-07-21
In recent years, the genetic manipulation of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough has seen enormous progress. In spite of this progress, the current marker exchange deletion method does not allow for easy selection of multiple sequential gene deletions in a single strain because of the limited number of selectable markers available in D. vulgaris. To broaden the repertoire of genetic tools for manipulation, an in-frame, markerless deletion system has been developed. The counterselectable marker that makes this deletion system possible is the pyrimidine salvage enzyme, uracil phosphoribosyltransferase, encoded by upp. In wild-type D. vulgaris, growth was shown to bemore » inhibited by the toxic pyrimidine analog 5-fluorouracil (5-FU); whereas, a mutant bearing a deletion of the upp gene was resistant to 5-FU. When a plasmid containing the wild-type upp gene expressed constitutively from the aph(3')-II promoter (promoter for the kanamycin resistance gene in Tn5) was introduced into the upp deletion strain, sensitivity to 5-FU was restored. This observation allowed us to develop a two-step integration and excision strategy for the deletion of genes of interest. Since this inframe deletion strategy does not retain an antibiotic cassette, multiple deletions can be generated in a single strain without the accumulation of genes conferring antibiotic resistances. We used this strategy to generate a deletion strain lacking the endonuclease (hsdR, DVU1703) of a type I restriction-modification system, that we designated JW7035. The transformation efficiency of the JW7035 strain was found to be 100 to 1000 times greater than that of the wild-type strain when stable plasmids were introduced via electroporation.« less
Setaria viridis: A Model for C4 Photosynthesis[C][W
Brutnell, Thomas P.; Wang, Lin; Swartwood, Kerry; Goldschmidt, Alexander; Jackson, David; Zhu, Xin-Guang; Kellogg, Elizabeth; Van Eck, Joyce
2010-01-01
C4 photosynthesis drives productivity in several major food crops and bioenergy grasses, including maize (Zea mays), sugarcane (Saccharum officinarum), sorghum (Sorghum bicolor), Miscanthus x giganteus, and switchgrass (Panicum virgatum). Gains in productivity associated with C4 photosynthesis include improved water and nitrogen use efficiencies. Thus, engineering C4 traits into C3 crops is an attractive target for crop improvement. However, the lack of a small, rapid cycling genetic model system to study C4 photosynthesis has limited progress in dissecting the regulatory networks underlying the C4 syndrome. Setaria viridis is a member of the Panicoideae clade and is a close relative of several major feed, fuel, and bioenergy grasses. It is a true diploid with a relatively small genome of ~510 Mb. Its short stature, simple growth requirements, and rapid life cycle will greatly facilitate genetic studies of the C4 grasses. Importantly, S. viridis uses an NADP-malic enzyme subtype C4 photosynthetic system to fix carbon and therefore is a potentially powerful model system for dissecting C4 photosynthesis. Here, we summarize some of the recent advances that promise greatly to accelerate the use of S. viridis as a genetic system. These include our recent successful efforts at regenerating plants from seed callus, establishing a transient transformation system, and developing stable transformation. PMID:20693355
Wei, Xiuyan; Song, Xinyue; Dong, Dong; Keyhani, Nemat O; Yao, Lindan; Zang, Xiangyun; Dong, Lili; Gu, Zijian; Fu, Delai; Liu, Xingzhong; Qiu, Junzhi; Guan, Xiong
2016-07-01
The insect pathogenic fungus Aschersonia placenta is a highly effective pathogen of whiteflies and scale insects. However, few genetic tools are currently available for studying this organism. Here we report on the conditions for the production of transformable A. placenta protoplasts using an optimized protocol based on the response surface method (RSM). Critical parameters for protoplast production were modelled by using a Box-Behnken design (BBD) involving 3 levels of 3 variables that was subsequently tested to verify its ability to predict protoplast production (R(2) = 0.9465). The optimized conditions resulted in the highest yield of protoplasts ((4.41 ± 0.02) × 10(7) cells/mL of culture, mean ± SE) when fungal cells were treated with 26.1 mg/mL of lywallzyme for 4 h of digestion, and subsequently allowed to recover for 64.6 h in 0.7 mol/L NaCl-Tris buffer. The latter was used as an osmotic stabilizer. The yield of protoplasts was approximately 10-fold higher than that of the nonoptimized conditions. Generated protoplasts were transformed with vector PbarGPE containing the bar gene as the selection marker. Transformation efficiency was 300 colonies/(μg DNA·10(7) protoplasts), and integration of the vector DNA was confirmed by PCR. The results show that rational design strategies (RSM and BBD methods) are useful to increase the production of fungal protoplasts for a variety of downstream applications.
Acevedo-Rocha, Carlos G; Agudo, Ruben; Reetz, Manfred T
2014-12-10
Directed evolution of stereoselective enzymes provides a means to generate useful biocatalysts for asymmetric transformations in organic chemistry and biotechnology. Almost all of the numerous examples reported in the literature utilize high-throughput screening systems based on suitable analytical techniques. Since the screening step is the bottleneck of the overall procedure, researchers have considered the use of genetic selection systems as an alternative to screening. In principle, selection would be the most elegant and efficient approach because it is based on growth advantage of host cells harboring stereoselective mutants, but devising such selection systems is very challenging. They must be designed so that the host organism profits from the presence of an enantioselective variant. Progress in this intriguing research area is summarized in this review, which also includes some examples of display systems designed for enantioselectivity as assayed by fluorescence-activated cell sorting (FACS). Although the combination of display systems and FACS is a powerful approach, we also envision innovative ideas combining metabolic engineering and genetic selection systems with protein directed evolution for the development of highly selective and efficient biocatalysts. Copyright © 2014 Elsevier B.V. All rights reserved.
Ethical issues raised by genetic testing with oligonucleotide microarrays.
Grody, Wayne W
2003-02-01
Because genes and alterations within them determine the identity, characteristics, and inheritance of every individual, the application of genetic science to humans has long been surrounded by apprehension, controversy, and real or perceived potential for abuse. Crude eugenics practices of the past now find a theoretical rebirth and transformation through the use of modern molecular genetic technologies for mutation detection, predictive and prenatal diagnosis, and, ultimately, gene replacement. The advent of oligonucleotide microarray analysis, in which hundreds or thousands of genes and mutations can be tested in parallel, offers tremendous promise for more accurate, sensitive, and efficient genetic testing. At the same time, however, this powerful technology dramatically increases the number and scope of ethical concerns accompanying each individual test request. This article considers the evolution and implications of these concerns, from the initial ordering of a microarray test by the physician to such issues as informed consent, privacy, confidentiality, clinical utility, discrimination, stigmatization, ethnic and population impact, and reimbursement.
Crawford, Forrest W.; Suchard, Marc A.
2011-01-01
A birth-death process is a continuous-time Markov chain that counts the number of particles in a system over time. In the general process with n current particles, a new particle is born with instantaneous rate λn and a particle dies with instantaneous rate μn. Currently no robust and efficient method exists to evaluate the finite-time transition probabilities in a general birth-death process with arbitrary birth and death rates. In this paper, we first revisit the theory of continued fractions to obtain expressions for the Laplace transforms of these transition probabilities and make explicit an important derivation connecting transition probabilities and continued fractions. We then develop an efficient algorithm for computing these probabilities that analyzes the error associated with approximations in the method. We demonstrate that this error-controlled method agrees with known solutions and outperforms previous approaches to computing these probabilities. Finally, we apply our novel method to several important problems in ecology, evolution, and genetics. PMID:21984359
Comparative transfection of DNA into primary and transformed mammalian cells from different lineages
2010-01-01
Background The delivery of DNA into human cells has been the basis of advances in the understanding of gene function and the development of genetic therapies. Numerous chemical and physical approaches have been used to deliver the DNA, but their efficacy has been variable and is highly dependent on the cell type to be transfected. Results Studies were undertaken to evaluate and compare the transfection efficacy of several chemical reagents to that of the electroporation/nucleofection system using both adherent cells (primary and transformed airway epithelial cells and primary fibroblasts as well as embryonic stem cells) and cells in suspension (primary hematopoietic stem/progenitor cells and lymphoblasts). With the exception of HEK 293 cell transfection, nucleofection proved to be less toxic and more efficient at effectively delivering DNA into the cells as determined by cell proliferation and GFP expression, respectively. Lipofectamine and nucleofection of HEK 293 were essentially equivalent in terms of toxicity and efficiency. Transient transfection efficiency in all the cell systems ranged from 40%-90%, with minimal toxicity and no apparent species specificity. Differences in efficiency and toxicity were cell type/system specific. Conclusions In general, the Amaxa electroporation/nucleofection system appears superior to other chemical systems. However, there are cell-type and species specific differences that need to be evaluated empirically to optimize the conditions for transfection efficiency and cell survival. PMID:20144189
Designer diatom episomes delivered by bacterial conjugation
Karas, Bogumil J.; Diner, Rachel E.; Lefebvre, Stephane C.; ...
2015-04-21
Eukaryotic microalgae hold great promise for the bioproduction of fuels and higher value chemicals. However, compared with model genetic organisms such as Escherichia coli and Saccharomyces cerevisiae, characterization of the complex biology and biochemistry of algae and strain improvement has been hampered by the inefficient genetic tools. To date, many algal species are transformable only via particle bombardment, and the introduced DNA is integrated randomly into the nuclear genome. Here we describe the first nuclear episomal vector for diatoms and a plasmid delivery method via conjugation from Escherichia coli to the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. We identify amore » yeast-derived sequence that enables stable episome replication in these diatoms even in the absence of antibiotic selection and show that episomes are maintained as closed circles at copy number equivalent to native chromosomes. This highly efficient genetic system facilitates high-throughput functional characterization of algal genes and accelerates molecular phytoplankton research.« less
Designer diatom episomes delivered by bacterial conjugation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karas, Bogumil J.; Diner, Rachel E.; Lefebvre, Stephane C.
Eukaryotic microalgae hold great promise for the bioproduction of fuels and higher value chemicals. However, compared with model genetic organisms such as Escherichia coli and Saccharomyces cerevisiae, characterization of the complex biology and biochemistry of algae and strain improvement has been hampered by the inefficient genetic tools. To date, many algal species are transformable only via particle bombardment, and the introduced DNA is integrated randomly into the nuclear genome. Here we describe the first nuclear episomal vector for diatoms and a plasmid delivery method via conjugation from Escherichia coli to the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. We identify amore » yeast-derived sequence that enables stable episome replication in these diatoms even in the absence of antibiotic selection and show that episomes are maintained as closed circles at copy number equivalent to native chromosomes. This highly efficient genetic system facilitates high-throughput functional characterization of algal genes and accelerates molecular phytoplankton research.« less
Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system
Zhang, Kang; Duan, Xuguo; Wu, Jing
2016-01-01
Bacillus subtilis ATCC 6051a is an undomesticated strain used in the industrial production of enzymes. Because it is poorly transformable, genetic manipulation in this strain requires a highly efficient genome editing method. In this study, a Streptococcus pyogenes CRISPR/Cas9 system consisting of an all-in-one knockout plasmid containing a target-specific guide RNA, cas9, and a homologous repair template was established for highly efficient gene disruption in B. subtilis ATCC 6051a. With an efficiency of 33% to 53%, this system was used to disrupt the srfC, spoIIAC, nprE, aprE and amyE genes of B. subtilis ATCC 6051a, which hamper its use in industrial fermentation. Compared with B. subtilis ATCC 6051a, the final mutant, BS5 (ΔsrfC, ΔspoIIAC, ΔnprE, ΔaprE, ΔamyE), produces much less foam during fermentation, displays greater resistant to spore formation, and secretes 2.5-fold more β-cyclodextrin glycosyltransferase into the fermentation medium. Thus, the CRISPR/Cas9 system proved to be a powerful tool for targeted genome editing in an industrially relevant, poorly transformable strain. PMID:27305971
NASA Astrophysics Data System (ADS)
Tanaka, Kiyoshi; Takano, Shuichi; Sugimura, Tatsuo
2000-10-01
In this work we focus on the indexed triangle strips that is an extended representation of triangle strips to improve the efficiency for geometrical transformation of vertices, and present a method to construct optimum indexed triangle strips using Genetic Algorithm (GA) for real-time visualization. The main objective of this work is how to optimally construct indexed triangle strips by improving the ratio that reuses the data stored in the cash memory and simultaneously reducing the total index numbers with GA. Simulation results verify that the average index numbers and cache miss ratio per polygon cold be small, and consequently the total visualization time required for the optimum solution obtained by this scheme could be remarkably reduced.
MacAuley, A; Pawson, T
1988-01-01
Early-passage rat adrenocortical cells were infected with Kirsten murine sarcoma virus and MMCV mouse myc virus, two retroviruses carrying the v-Ki-ras and v-myc oncogenes, respectively. Efficient morphological transformation required coinfection with the two viruses, was dependent on the presence of high serum concentrations, and was not immediately accompanied by growth in soft agar. The doubly infected cells coordinately acquired the capacity for anchorage- and serum-independent growth during passage in culture. The appearance of such highly transformed cells was correlated with the emergence of a dominant clone, as suggested by an analysis of retrovirus integration sites. These results indicate that the concerted expression of v-Ki-ras and v-myc could induce rapid morphological transformation of nonestablished adrenocortical cells but that an additional genetic or epigenetic event was required to permit full transformation by these two oncogenes. In contrast, v-src, introduced by retrovirus infection in conjunction with v-myc, rapidly induced serum- and anchorage-independent growth. Therefore, the p60v-src protein-tyrosine kinase, unlike p21v-ras, is apparently not restricted in the induction of a highly transformed phenotype in adrenocortical cells. This system provides an in vitro model for the progressive transformation of epithelial cells by dominantly acting oncogenes. Images PMID:2846881
Micah E. Stevens; Paula M. Pijut
2014-01-01
Using mature hypocotyls as the initial explants, an Agrobacterium tumefaciens-mediated genetic transformation system was successfully developed for pumpkin ash (Fraxinus profunda). This transformation protocol is an invaluable tool to combat the highly aggressive, non-native emerald ash borer (EAB), which has the potential to...
Zhang, Xinjie; He, Peng; Tao, Yong; Yang, Yi
2013-11-04
High-level expression system of heterologous protein mediated by internal ribosome entry site (IRES) in Saccharomyces cerevisiae was constructed, which could be used for other applications of S. cerevisiae in metabolic engineering. We constructed co-expression cassette (promoter-mCherry-TIF4631 IRES-URA3) containing promoters Pilv5, Padh2 and Ptdh3 and recombined the co-expression cassette into the genome of W303-1B-A. The URA3+ transformants were selected. By comparing the difference in the mean florescence value of mCherry in transformants, the effect of three promoters was detected in the co-expression cassette. The copy numbers of the interested genes in the genome were determined by Real-Time PCR. We analyzed genetic stability by continuous subculturing transformants in the absence of selection pressure. To verify the application of co-expression cassette, the ORF of mCherry was replaced by beta-galactosidase (LACZ) and xylose reductase (XYL1). The enzyme activities and production of beta-galactosidase and xylose reductase were detected. mCherry has been expressed in the highest-level in transformants with co-expression cassette containing Pilv5 promoter. The highest copy number of DNA fragment integrating in the genome was 47 in transformants containing Pilv5. The engineering strains showed good genetic stability. Xylose reductase was successfully expressed in the co-expression cassette containing Pilv5 promoter and TIF4631 IRES. The highest enzyme activity was 0. 209 U/mg crude protein in the transformants WIX-10. Beta-galactosidase was also expressed successfully. The transformants that had the highest enzyme activity was WIL-1 and the enzyme activity was 12.58 U/mg crude protein. The system mediated by Pilv5 promoter and TIF4631 IRES could express heterologous protein efficiently in S. cerevisiae. This study offered a new strategy for expression of heterologous protein in S. cerevisiae and provided sufficient experimental evidence for metabolic engineering application of this system in yeast.
Lao, Oscar; Liu, Fan; Wollstein, Andreas; Kayser, Manfred
2014-02-01
Attempts to detect genetic population substructure in humans are troubled by the fact that the vast majority of the total amount of observed genetic variation is present within populations rather than between populations. Here we introduce a new algorithm for transforming a genetic distance matrix that reduces the within-population variation considerably. Extensive computer simulations revealed that the transformed matrix captured the genetic population differentiation better than the original one which was based on the T1 statistic. In an empirical genomic data set comprising 2,457 individuals from 23 different European subpopulations, the proportion of individuals that were determined as a genetic neighbour to another individual from the same sampling location increased from 25% with the original matrix to 52% with the transformed matrix. Similarly, the percentage of genetic variation explained between populations by means of Analysis of Molecular Variance (AMOVA) increased from 1.62% to 7.98%. Furthermore, the first two dimensions of a classical multidimensional scaling (MDS) using the transformed matrix explained 15% of the variance, compared to 0.7% obtained with the original matrix. Application of MDS with Mclust, SPA with Mclust, and GemTools algorithms to the same dataset also showed that the transformed matrix gave a better association of the genetic clusters with the sampling locations, and particularly so when it was used in the AMOVA framework with a genetic algorithm. Overall, the new matrix transformation introduced here substantially reduces the within population genetic differentiation, and can be broadly applied to methods such as AMOVA to enhance their sensitivity to reveal population substructure. We herewith provide a publically available (http://www.erasmusmc.nl/fmb/resources/GAGA) model-free method for improved genetic population substructure detection that can be applied to human as well as any other species data in future studies relevant to evolutionary biology, behavioural ecology, medicine, and forensics.
Wang, Gen-Ping; Yu, Xiu-Dao; Sun, Yong-Wei; Jones, Huw D; Xia, Lan-Qin
2016-01-01
Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM) crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154, and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants, and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154) were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium -mediated transformation will be useful to facilitate the creation of "clean" GM wheat containing only the foreign genes of agronomic importance.
Natural Genetic Transformation Generates a Population of Merodiploids in Streptococcus pneumoniae
Zomer, Aldert; Bootsma, Hester J.; Prudhomme, Marc; Granadel, Chantal; Hermans, Peter W. M.; Polard, Patrice; Martin, Bernard; Claverys, Jean-Pierre
2013-01-01
Partial duplication of genetic material is prevalent in eukaryotes and provides potential for evolution of new traits. Prokaryotes, which are generally haploid in nature, can evolve new genes by partial chromosome duplication, known as merodiploidy. Little is known about merodiploid formation during genetic exchange processes, although merodiploids have been serendipitously observed in early studies of bacterial transformation. Natural bacterial transformation involves internalization of exogenous donor DNA and its subsequent integration into the recipient genome by homology. It contributes to the remarkable plasticity of the human pathogen Streptococcus pneumoniae through intra and interspecies genetic exchange. We report that lethal cassette transformation produced merodiploids possessing both intact and cassette-inactivated copies of the essential target gene, bordered by repeats (R) corresponding to incomplete copies of IS861. We show that merodiploidy is transiently stimulated by transformation, and only requires uptake of a ∼3-kb DNA fragment partly repeated in the chromosome. We propose and validate a model for merodiploid formation, providing evidence that tandem-duplication (TD) formation involves unequal crossing-over resulting from alternative pairing and interchromatid integration of R. This unequal crossing-over produces a chromosome dimer, resolution of which generates a chromosome with the TD and an abortive chromosome lacking the duplicated region. We document occurrence of TDs ranging from ∼100 to ∼900 kb in size at various chromosomal locations, including by self-transformation (transformation with recipient chromosomal DNA). We show that self-transformation produces a population containing many different merodiploid cells. Merodiploidy provides opportunities for evolution of new genetic traits via alteration of duplicated genes, unrestricted by functional selective pressure. Transient stimulation of a varied population of merodiploids by transformation, which can be triggered by stresses such as antibiotic treatment in S. pneumoniae, reinforces the plasticity potential of this bacterium and transformable species generally. PMID:24086154
Natural genetic transformation generates a population of merodiploids in Streptococcus pneumoniae.
Johnston, Calum; Caymaris, Stéphanie; Zomer, Aldert; Bootsma, Hester J; Prudhomme, Marc; Granadel, Chantal; Hermans, Peter W M; Polard, Patrice; Martin, Bernard; Claverys, Jean-Pierre
2013-01-01
Partial duplication of genetic material is prevalent in eukaryotes and provides potential for evolution of new traits. Prokaryotes, which are generally haploid in nature, can evolve new genes by partial chromosome duplication, known as merodiploidy. Little is known about merodiploid formation during genetic exchange processes, although merodiploids have been serendipitously observed in early studies of bacterial transformation. Natural bacterial transformation involves internalization of exogenous donor DNA and its subsequent integration into the recipient genome by homology. It contributes to the remarkable plasticity of the human pathogen Streptococcus pneumoniae through intra and interspecies genetic exchange. We report that lethal cassette transformation produced merodiploids possessing both intact and cassette-inactivated copies of the essential target gene, bordered by repeats (R) corresponding to incomplete copies of IS861. We show that merodiploidy is transiently stimulated by transformation, and only requires uptake of a ~3-kb DNA fragment partly repeated in the chromosome. We propose and validate a model for merodiploid formation, providing evidence that tandem-duplication (TD) formation involves unequal crossing-over resulting from alternative pairing and interchromatid integration of R. This unequal crossing-over produces a chromosome dimer, resolution of which generates a chromosome with the TD and an abortive chromosome lacking the duplicated region. We document occurrence of TDs ranging from ~100 to ~900 kb in size at various chromosomal locations, including by self-transformation (transformation with recipient chromosomal DNA). We show that self-transformation produces a population containing many different merodiploid cells. Merodiploidy provides opportunities for evolution of new genetic traits via alteration of duplicated genes, unrestricted by functional selective pressure. Transient stimulation of a varied population of merodiploids by transformation, which can be triggered by stresses such as antibiotic treatment in S. pneumoniae, reinforces the plasticity potential of this bacterium and transformable species generally.
Hsiao, Paoyuan; Sanjaya; Su, Ruey-Chih; Teixeira da Silva, Jaime A; Chan, Ming-Tsair
2007-03-01
Gene transformation is an integral tool for plant genetic engineering. All antibiotic resistant genes currently employed are of bacterial origin and their presence in the field is undesirable. Therefore, we developed a novel and efficient plant native non-antibiotic selection system for the selection of transgenic plants in the model system Arabidopsis. This new system is based on the enhanced expression of Arabidopsis tryptophan synthase beta 1 (AtTSB1) and the use of 5-methyl-tryptophan (5MT, a tryptophan [Trp] analog) and/or CdCl2 as selection agent(s). We successfully integrated an expression cassette containing an AtT-SB1 cDNA driven by a cauliflower mosaic virus 35S promoter into Arabidopsis by floral dip transformation. Transgenic plants were efficiently selected on MS medium supplemented with 75 microM 5MT or 300 microM CdCl2 devoid of antibiotics. TSB1 selection was as efficient as the conventional hygromycin selection system. Northern blot analysis of transgenic plants selected by 5MT and CdCl2 revealed increased TSB1 mRNA transcript whereas uneven transcript levels of hygromycin phosphotransferase II (hpt) (control) was observed. Gas chromatography-mass spectrometry revealed 10-15 fold greater free Trp content in AtT-SB1 transgenic plants than in wild-type plants grown with or without 5MT or CdCl2. Taken together, the TSB1 system provides a novel selection system distinct from conventional antibiotic selection systems.
Dey, Prabuddha; Mall, Nikunj; Chattopadhyay, Atrayee; Chakraborty, Monami; Maiti, Mrinal K.
2014-01-01
Oleaginous fungi are of special interest among microorganisms for the production of lipid feedstocks as they can be cultured on a variety of substrates, particularly waste lingocellulosic materials, and few fungal strains are reported to accumulate inherently higher neutral lipid than bacteria or microalgae. Previously, we have characterized an endophytic filamentous fungus Colletotrichum sp. DM06 that can produce total lipid ranging from 34% to 49% of its dry cell weight (DCW) upon growing with various carbon sources and nutrient-stress conditions. In the present study, we report on the genetic transformation of this fungal strain with the CtDGAT2b gene, which encodes for a catalytically efficient isozyme of type-2 diacylglycerol acyltransferase (DGAT) from oleaginous yeast Candida troplicalis SY005. Besides the increase in size of lipid bodies, total lipid titer by the transformed Colletotrichum (lipid content ∼73% DCW) was found to be ∼1.7-fold more than the wild type (lipid content ∼38% DCW) due to functional activity of the CtDGAT2b transgene when grown under standard condition of growth without imposition of any nutrient-stress. Analysis of lipid fractionation revealed that the neutral lipid titer in transformants increased up to 1.8-, 1.6- and 1.5-fold compared to the wild type when grown under standard, nitrogen stress and phosphorus stress conditions, respectively. Lipid titer of transformed cells was further increased to 1.7-fold following model-based optimization of culture conditions. Taken together, ∼2.9-fold higher lipid titer was achieved in Colletotrichum fungus due to overexpression of a rate-limiting crucial enzyme of lipid biosynthesis coupled with prediction-based bioprocess optimization. PMID:25375973
DNA in soil: adsorption, genetic transformation, molecular evolution and genetic microchip.
Trevors, J T
1996-07-01
This review examines interactions between DNA and soil with an emphasis on the persistence and stability of DNA in soil. The role of DNA in genetic transformation in soil microorganisms will also be discussed. In addition, a postulated mechanism for stabilization and elongation/assembly of primitive genetic material and the role of soil particles, salt concentrations, temperature cycling and crystal formation is examined.
Anderson, Justin E; Michno, Jean-Michel; Kono, Thomas J Y; Stec, Adrian O; Campbell, Benjamin W; Curtin, Shaun J; Stupar, Robert M
2016-05-12
The safety of mutagenized and genetically transformed plants remains a subject of scrutiny. Data gathered and communicated on the phenotypic and molecular variation induced by gene transfer technologies will provide a scientific-based means to rationally address such concerns. In this study, genomic structural variation (e.g. large deletions and duplications) and single nucleotide polymorphism rates were assessed among a sample of soybean cultivars, fast neutron-derived mutants, and five genetically transformed plants developed through Agrobacterium based transformation methods. On average, the number of genes affected by structural variations in transgenic plants was one order of magnitude less than that of fast neutron mutants and two orders of magnitude less than the rates observed between cultivars. Structural variants in transgenic plants, while rare, occurred adjacent to the transgenes, and at unlinked loci on different chromosomes. DNA repair junctions at both transgenic and unlinked sites were consistent with sequence microhomology across breakpoints. The single nucleotide substitution rates were modest in both fast neutron and transformed plants, exhibiting fewer than 100 substitutions genome-wide, while inter-cultivar comparisons identified over one-million single nucleotide polymorphisms. Overall, these patterns provide a fresh perspective on the genomic variation associated with high-energy induced mutagenesis and genetically transformed plants. The genetic transformation process infrequently results in novel genetic variation and these rare events are analogous to genetic variants occurring spontaneously, already present in the existing germplasm, or induced through other types of mutagenesis. It remains unclear how broadly these results can be applied to other crops or transformation methods.
Pepper, chili (Capsicum annuum).
Min, Jung; Shin, Sun Hee; Jeon, En Mi; Park, Jung Mi; Hyun, Ji Young; Harn, Chee Hark
2015-01-01
Pepper is a recalcitrant plant for Agrobacterium-mediated genetic transformation. Several obstacles to genetic transformation remain such as extremely low transformation rates; the choice of correct genotype is critical; and there is a high frequency of false positives due to direct shoot formation. Here, we report a useful protocol with a suitable selection method. The most important aspect of the pepper transformation protocol is selecting shoots growing from the callus, which is referred to as callus-mediated shoot formation. This protocol is a reproducible and reliable system for pepper transformation.
Konishi, Tatsunori; Harata, Masahiko
2014-01-01
We show here that the transformation efficiency of Saccharomyces cerevisiae is improved by altering carbon sources in media for pre-culturing cells prior to the transformation reactions. The transformation efficiency was increased up to sixfold by combination with existing transformation protocols. This method is widely applicable for yeast research since efficient transformation can be performed easily without changing any of the other procedures in the transformation.
Petri, Cesar; Alburquerque, Nuria; Faize, Mohamed; Scorza, Ralph; Dardick, Chris
2018-06-01
In most woody fruit species, transformation and regeneration are difficult. However, European plum (Prunus domestica) has been shown to be amenable to genetic improvement technologies from classical hybridization, to genetic engineering, to rapid cycle crop breeding ('FasTrack' breeding). Since the first report on European plum transformation with marker genes in the early 90 s, numerous manuscripts have been published reporting the generation of new clones with agronomically interesting traits, such as pests, diseases and/or abiotic stress resistance, shorter juvenile period, dwarfing, continuous flowering, etc. This review focuses on the main advances in genetic transformation of European plum achieved to date, and the lines of work that are converting genetic engineering into a contemporary breeding tool for this species.
Majumdar, Sukanya; Garai, Saraswati; Jha, Sumita
2011-05-01
We have developed an efficient transformation system for Bacopa monnieri, an important Indian medicinal plant, using Agrobacterium rhizogenes strains LBA 9402 and A4. Transformed roots induced by strain LBA 9402 spontaneously dedifferentiated to callus while excised roots induced by strain A4 spontaneously showed induction of shoot buds within 10 days. PCR and RT-PCR analysis revealed the presence and expression of the rolAB and rolC genes at the transcription level in pRi A4 transformed cultures indicating that the TL-DNA was integrated retained and expressed in the A4-Ri transformed shoots. Transformed calli showed the presence of rolAB or rol A, TR and ags genes. Transformed plants showed morphological features typically seen in transgenic plants produced by A. rhizogenes. Growth and biomass accumulation was significantly higher in the transformed shoots (twofold) and roots (fourfold) than in the non-transformed (WT) plants. In pRi A4-transformed plants, the content of bacopasaponin D, bacopasaponin F, bacopaside II and bacopaside V was enhanced significantly as compared to WT plants of similar age while bacoside A3 and bacopasaponin C content was comparable with that of WT plants. Significant increase in content of five bacopa saponins could be detected in pRi 9402-transformed callus cultures. There is an overall stimulatory effect on accumulation of bacopa saponins in transformed plants and cells of B. monnieri establishing the role of endogenous elicitation by Ri T-DNA of A. rhizogenes.
Cardi, Teodoro; D’Agostino, Nunzio; Tripodi, Pasquale
2017-01-01
In the frame of modern agriculture facing the predicted increase of population and general environmental changes, the securement of high quality food remains a major challenge to deal with. Vegetable crops include a large number of species, characterized by multiple geographical origins, large genetic variability and diverse reproductive features. Due to their nutritional value, they have an important place in human diet. In recent years, many crop genomes have been sequenced permitting the identification of genes and superior alleles associated with desirable traits. Furthermore, innovative biotechnological approaches allow to take a step forward towards the development of new improved cultivars harboring precise genome modifications. Sequence-based knowledge coupled with advanced biotechnologies is supporting the widespread application of new plant breeding techniques to enhance the success in modification and transfer of useful alleles into target varieties. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 system, zinc-finger nucleases, and transcription activator-like effector nucleases represent the main methods available for plant genome engineering through targeted modifications. Such technologies, however, require efficient transformation protocols as well as extensive genomic resources and accurate knowledge before they can be efficiently exploited in practical breeding programs. In this review, we revise the state of the art in relation to availability of such scientific and technological resources in various groups of vegetables, describe genome editing results obtained so far and discuss the implications for future applications. PMID:28275380
Nero, Thomas M; Dalia, Triana N; Wang, Joseph Che-Yen; Kysela, David T; Bochman, Matthew L; Dalia, Ankur B
2018-05-02
Acquisition of foreign DNA by natural transformation is an important mechanism of adaptation and evolution in diverse microbial species. Here, we characterize the mechanism of ComM, a broadly conserved AAA+ protein previously implicated in homologous recombination of transforming DNA (tDNA) in naturally competent Gram-negative bacterial species. In vivo, we found that ComM was required for efficient comigration of linked genetic markers in Vibrio cholerae and Acinetobacter baylyi, which is consistent with a role in branch migration. Also, ComM was particularly important for integration of tDNA with increased sequence heterology, suggesting that its activity promotes the acquisition of novel DNA sequences. In vitro, we showed that purified ComM binds ssDNA, oligomerizes into a hexameric ring, and has bidirectional helicase and branch migration activity. Based on these data, we propose a model for tDNA integration during natural transformation. This study provides mechanistic insight into the enigmatic steps involved in tDNA integration and uncovers the function of a protein required for this conserved mechanism of horizontal gene transfer.
Honda, Takuya; Morii, Mariko; Nakayama, Yuji; Suzuki, Ko; Yamaguchi, Noritaka; Yamaguchi, Naoto
2018-01-18
v-Src is the first identified oncogene product and has a strong tyrosine kinase activity. Much of the literature indicates that v-Src expression induces anchorage-independent and infinite cell proliferation through continuous stimulation of growth signaling by v-Src activity. Although all of v-Src-expressing cells are supposed to form transformed colonies, low frequencies of v-Src-induced colony formation have been observed so far. Using cells that exhibit high expression efficiencies of inducible v-Src, we show that v-Src expression causes cell-cycle arrest through p21 up-regulation despite ERK activation. v-Src expression also induces chromosome abnormalities and unexpected suppression of v-Src expression, leading to p21 down-regulation and ERK inactivation. Importantly, among v-Src-suppressed cells, only a limited number of cells gain the ability to re-proliferate and form transformed colonies. Our findings provide the first evidence that v-Src-driven transformation is attributed to chromosome abnormalities, but not continuous stimulation of growth signaling, possibly through stochastic genetic alterations.
Genetically modified yeast species, and fermentation processes using genetically modified yeast
Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI
2014-01-07
Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.
Chilton, Scott S; Falbel, Tanya G; Hromada, Susan; Burton, Briana M
2017-08-01
Genetic competence is a process in which cells are able to take up DNA from their environment, resulting in horizontal gene transfer, a major mechanism for generating diversity in bacteria. Many bacteria carry homologs of the central DNA uptake machinery that has been well characterized in Bacillus subtilis It has been postulated that the B. subtilis competence helicase ComFA belongs to the DEAD box family of helicases/translocases. Here, we made a series of mutants to analyze conserved amino acid motifs in several regions of B. subtilis ComFA. First, we confirmed that ComFA activity requires amino acid residues conserved among the DEAD box helicases, and second, we show that a zinc finger-like motif consisting of four cysteines is required for efficient transformation. Each cysteine in the motif is important, and mutation of at least two of the cysteines dramatically reduces transformation efficiency. Further, combining multiple cysteine mutations with the helicase mutations shows an additive phenotype. Our results suggest that the helicase and metal binding functions are two distinct activities important for ComFA function during transformation. IMPORTANCE ComFA is a highly conserved protein that has a role in DNA uptake during natural competence, a mechanism for horizontal gene transfer observed in many bacteria. Investigation of the details of the DNA uptake mechanism is important for understanding the ways in which bacteria gain new traits from their environment, such as drug resistance. To dissect the role of ComFA in the DNA uptake machinery, we introduced point mutations into several motifs in the protein sequence. We demonstrate that several amino acid motifs conserved among ComFA proteins are important for efficient transformation. This report is the first to demonstrate the functional requirement of an amino-terminal cysteine motif in ComFA. Copyright © 2017 American Society for Microbiology.
Pigna, Gaia; Dhillon, Taniya; Dlugosz, Elizabeth M; Yuan, Joshua S; Gorman, Connor; Morandini, Piero; Lenaghan, Scott C; Stewart, C Neal
2016-12-01
Arundo donax L. is a promising biofuel feedstock in the Mediterranean region. Despite considerable interest in its genetic improvement, Arundo tissue culture and transformation remains arduous. The authors developed methodologies for cell- and tissue culture and genetic engineering in Arundo. A media screen was conducted, and a suspension culture was established using callus induced from stem axillary bud explants. DBAP medium, containing 9 µM 2,4-D and 4.4 µM BAP, was found to be the most effective medium among those tested for inducing cell suspension cultures, which resulted in a five-fold increase in tissue mass over 14 days. In contrast, CIM medium containing 13 µM 2,4-D, resulted in just a 1.4-fold increase in mass over the same period. Optimized suspension cultures were superior to previously-described solidified medium-based callus culture methods for tissue mass increase. Suspension cultures proved to be very effective for subsequent protoplast isolation. Protoplast electroporation resulted in a 3.3 ± 1.5% transformation efficiency. A dual fluorescent reporter gene vector enabled the direct comparison of the CAMV 35S promoter with the switchgrass ubi2 promoter in single cells of Arundo. The switchgrass ubi2 promoter resulted in noticeably higher reporter gene expression compared with that conferred by the 35S promoter in Arundo. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rana, Mohammad M.; Han, Zhuo-Xiao; Song, Da-Peng; Liu, Guo-Feng; Li, Da-Xiang; Wan, Xiao-Chun; Karthikeyan, Alagarsamy; Wei, Shu
2016-01-01
Tea (Camellia sinensis L.) is recalcitrant to Agrobacterium-mediated genetic transformation largely due to the bactericidal effects of tea polyphenols and phenolics oxidation induced by necrosis of explant tissue over the process of transformation. In this study, different antioxidants/adsorbents were added as supplements to the co-cultivation and post co-cultivation media to overcome these problems for the transformation improvement. Tea-cotyledon-derived calli were used as explants and Agrobacterium rhizognes strain ATCC 15834 was used as a mediator. Results showed that Agrobacterium growth, virulence (vir) gene expression and browning of explant tissue were greatly influenced by different supplements. Murashige and Skoog (MS) basal salts medium supplemented with 30 g·L−1 sucrose, 0.1 g·L−1 l-glutamine and 5 g·L−1 polyvinylpolypyrrolidone (PVPP) as co-cultivation and post co-cultivation media could maintain these parameters better that ultimately led to significant improvement of hairy root generation efficiency compared to that in the control (MS + 30 g·L−1 sucrose). Additionally, the reporter genes β-glucuronidase (gusA) and cyan fluorescent protein (cfp) were also stably expressed in the transgenic hairy roots. Our study would be helpful in establishing a feasible approach for tea biological studies and genetic improvement of tea varieties. PMID:27428960
Manimaran, P; Ramkumar, G; Sakthivel, K; Sundaram, R M; Madhav, M S; Balachandran, S M
2011-01-01
Genetically modified crops are one of the prudent options for enhancing the production and productivity of crop plants by safeguarding from the losses due to biotic and abiotic stresses. Agrobacterium-mediated and biolistic transformation methods are used to develop transgenic crop plants in which selectable marker genes (SMG) are generally deployed to identify 'true' transformants. The commonly used SMG obtained from prokaryotic sources when employed in transgenic plants pose risks due to their lethal nature during selection process. In the recent past, some non-lethal SMGs have been identified and used for selection of transformants with increased precision and high selection efficiency. Considering the concerns related to bio-safety of the environment, it is desirable to remove the SMG in order to maximize the commercial success through wide adoption and public acceptance of genetically modified (GM) food crops. In this review, we examine the availability, and the suitability of wide range of non-lethal selection markers and elimination of SMG methods to develop marker-free transgenics for achieving global food security. As the strategies for marker-free plants are still in proof-of-concept stage, adaptation of new genomics tools for identification of novel non-lethal marker systems and its application for developing marker-free transgenics would further strengthen the crop improvement program. Copyright © 2011 Elsevier Inc. All rights reserved.
Moore, J A; Nemat-Gorgani, M; Madison, A C; Sandahl, M A; Punnamaraju, S; Eckhardt, A E; Pollack, M G; Vigneault, F; Church, G M; Fair, R B; Horowitz, M A; Griffin, P B
2017-01-01
This paper reports on the use of a digital microfluidic platform to perform multiplex automated genetic engineering (MAGE) cycles on droplets containing Escherichia coli cells. Bioactivated magnetic beads were employed for cell binding, washing, and media exchange in the preparation of electrocompetent cells in the electrowetting-on-dieletric (EWoD) platform. On-cartridge electroporation was used to deliver oligonucleotides into the cells. In addition to the optimization of a magnetic bead-based benchtop protocol for generating and transforming electrocompetent E. coli cells, we report on the implementation of this protocol in a fully automated digital microfluidic platform. Bead-based media exchange and electroporation pulse conditions were optimized on benchtop for transformation frequency to provide initial parameters for microfluidic device trials. Benchtop experiments comparing electrotransformation of free and bead-bound cells are presented. Our results suggest that dielectric shielding intrinsic to bead-bound cells significantly reduces electroporation field exposure efficiency. However, high transformation frequency can be maintained in the presence of magnetic beads through the application of more intense electroporation pulses. As a proof of concept, MAGE cycles were successfully performed on a commercial EWoD cartridge using variations of the optimal magnetic bead-based preparation procedure and pulse conditions determined by the benchtop results. Transformation frequencies up to 22% were achieved on benchtop; this frequency was matched within 1% (21%) by MAGE cycles on the microfluidic device. However, typical frequencies on the device remain lower, averaging 9% with a standard deviation of 9%. The presented results demonstrate the potential of digital microfluidics to perform complex and automated genetic engineering protocols.
Moore, J. A.; Nemat-Gorgani, M.; Madison, A. C.; Punnamaraju, S.; Eckhardt, A. E.; Pollack, M. G.; Church, G. M.; Fair, R. B.; Horowitz, M. A.; Griffin, P. B.
2017-01-01
This paper reports on the use of a digital microfluidic platform to perform multiplex automated genetic engineering (MAGE) cycles on droplets containing Escherichia coli cells. Bioactivated magnetic beads were employed for cell binding, washing, and media exchange in the preparation of electrocompetent cells in the electrowetting-on-dieletric (EWoD) platform. On-cartridge electroporation was used to deliver oligonucleotides into the cells. In addition to the optimization of a magnetic bead-based benchtop protocol for generating and transforming electrocompetent E. coli cells, we report on the implementation of this protocol in a fully automated digital microfluidic platform. Bead-based media exchange and electroporation pulse conditions were optimized on benchtop for transformation frequency to provide initial parameters for microfluidic device trials. Benchtop experiments comparing electrotransformation of free and bead-bound cells are presented. Our results suggest that dielectric shielding intrinsic to bead-bound cells significantly reduces electroporation field exposure efficiency. However, high transformation frequency can be maintained in the presence of magnetic beads through the application of more intense electroporation pulses. As a proof of concept, MAGE cycles were successfully performed on a commercial EWoD cartridge using variations of the optimal magnetic bead-based preparation procedure and pulse conditions determined by the benchtop results. Transformation frequencies up to 22% were achieved on benchtop; this frequency was matched within 1% (21%) by MAGE cycles on the microfluidic device. However, typical frequencies on the device remain lower, averaging 9% with a standard deviation of 9%. The presented results demonstrate the potential of digital microfluidics to perform complex and automated genetic engineering protocols. PMID:28191268
Translational research impacting on crop productivity in drought-prone environments.
Reynolds, Matthew; Tuberosa, Roberto
2008-04-01
Conventional breeding for drought-prone environments (DPE) has been complemented by using exotic germplasm to extend crop gene pools and physiological approaches that consider water uptake (WU), water-use efficiency (WUE), and harvest index (HI) as drivers of yield. Drivers are associated with proxy genetic markers, such as carbon-isotope discrimination for WUE, canopy temperature for WU, and anthesis-silking interval for HI in maize. Molecular markers associated with relevant quantitative trait loci are being developed. WUE has also been increased through combining understanding of root-to-shoot signaling with deficit irrigation. Impacts in DPE will be accelerated by combining proven technologies with promising new strategies such as marker-assisted selection, and genetic transformation, as well as conservation agriculture that can increase WU while averting soil degradation.
Genetically modified yeast species, and fermentation processes using genetically modified yeast
Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura
2013-05-14
Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.
Genetically modified yeast species, and fermentation processes using genetically modified yeast
Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura
2017-09-12
Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.
Genetically modified yeast species and fermentation processes using genetically modified yeast
Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI
2011-05-17
Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications', include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.
Genetically modified yeast species, and fermentation processes using genetically modified yeast
Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura
2016-08-09
Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.
Overproduction of α-Lipoic Acid by Gene Manipulated Escherichia coli
Sun, Yirong; Zhang, Wenbin; Ma, Jincheng; Pang, Hongshen; Wang, Haihong
2017-01-01
Alpha-lipoic acid (LA) is an important enzyme cofactor widely used by organisms and is also a natural antioxidant for the treatment of pathologies driven by low levels of endogenous antioxidants. In order to establish a safer and more efficient process for LA production, we developed a new biological method for LA synthesis based on the emerging knowledge of lipoic acid biosynthesis. We first cloned the lipD gene, which encodes the lipoyl domain of the E2 subunit of pyruvate dehydrogenase, allowing high levels of LipD production. Plasmids containing genes for the biosynthesis of LA were subsequently constructed utilizing various vectors and promotors to produce high levels of LA. These plasmids were transformed into the Escherichia coli strain BL21. Octanoic acid (OA) was used as the substrate for LA synthesis. One transformant, YS61, which carried lipD, lplA, and lipA, produced LA at levels over 200-fold greater than the wild-type strain, showing that LA could be produced efficiently in E. coli using genetic engineering methods. PMID:28068366
Intelligent design optimization of a shape-memory-alloy-actuated reconfigurable wing
NASA Astrophysics Data System (ADS)
Lagoudas, Dimitris C.; Strelec, Justin K.; Yen, John; Khan, Mohammad A.
2000-06-01
The unique thermal and mechanical properties offered by shape memory alloys (SMAs) present exciting possibilities in the field of aerospace engineering. When properly trained, SMA wires act as linear actuators by contracting when heated and returning to their original shape when cooled. It has been shown experimentally that the overall shape of an airfoil can be altered by activating several attached SMA wire actuators. This shape-change can effectively increase the efficiency of a wing in flight at several different flow regimes. To determine the necessary placement of these wire actuators within the wing, an optimization method that incorporates a fully-coupled structural, thermal, and aerodynamic analysis has been utilized. Due to the complexity of the fully-coupled analysis, intelligent optimization methods such as genetic algorithms have been used to efficiently converge to an optimal solution. The genetic algorithm used in this case is a hybrid version with global search and optimization capabilities augmented by the simplex method as a local search technique. For the reconfigurable wing, each chromosome represents a realizable airfoil configuration and its genes are the SMA actuators, described by their location and maximum transformation strain. The genetic algorithm has been used to optimize this design problem to maximize the lift-to-drag ratio for a reconfigured airfoil shape.
Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit.
Ruf, S; Hermann, M; Berger, I J; Carrer, H; Bock, R
2001-09-01
Transgenic chloroplasts offer unique advantages in plant biotechnology, including high-level foreign protein expression, absence of epigenetic effects, and gene containment due to the lack of transgene transmission through pollen. However, broad application of plastid genome engineering in biotechnology has been largely hampered by both the lack of chloroplast transformation systems for major crop plants and the usually low plastid gene expression levels in nongreen tissues such as fruits, tubers, and other storage organs. Here we describe the development of a plastid transformation system for tomato, Lycopersicon esculentum. This is the first report on the generation of fertile transplastomic plants in a food crop with an edible fruit. We show that chromoplasts in the tomato fruit express the transgene to approximately 50% of the expression levels in leaf chloroplasts. Given the generally very high foreign protein accumulation rates that can be achieved in transgenic chloroplasts (>40% of the total soluble protein), this system paves the way to efficient production of edible vaccines, pharmaceuticals, and antibodies in tomato.
Alatar, Abdulrahman A; Faisal, Mohammad; Abdel-Salam, Eslam M; Canto, Tomas; Saquib, Quaiser; Javed, Saad B; El-Sheikh, Mohamed A; Al-Khedhairy, Abdulaziz A
2017-09-01
In the present study, we develop an efficient and reproducible in vitro regeneration system for two cultivars viz. , Jamila and Tomaland of Solanum lycopersicum L., an economically important vegetable crop throughout the world. Sterilization of seeds with 2.5% (v/v) NaOCl was found to be most effective, about 97% of seeds germinated on cotton in magenta box moistened with sterile half strength (½)Murashige and Skoog (MS) medium. Regeneration efficiency of cotyledonary leaf (CL) and cotyledonary node (CN) explants derived from 08 days old aseptic seedling were assessed on MS medium supplemented with different concentrations of auxins and cytokinin. CL explants were found more responsive in comparison to CN in both the cultivars. Types of basal media were also assessed and found to have a significant effect on shoot regeneration. Highest regeneration frequency and maximum number of shoots were standardized from CL explants on MS medium supplied with 6-benzyl adenine (BA; 5.0 µM), indole-3-butyric acid (IBA; 2.5 µM) and Kinetin (Kin; 10.0 µM). In vitro regenerated microshoots were rooted on ½MS medium containing 0.5 µM indole-3-butyric acid (IBA). Regenerated plantlets with well-developed roots and shoot system were successfully acclimated to ex vitro condition. Genetic uniformity of tissue culture raised plantlets was first time evaluated using flow cytometry and single primer amplification reaction (SPAR) methods viz ., DAMD and ISSR. No significant changes in ploidy level and nuclear DNA content profile were observed between in vitro propagated plants and normal plants of both the cultivars. Similarly, the SPAR analysis also revealed monomorphic banding patterns in regenerated plantlets of S. lycopersicum verifying their genetic uniformity and clonal fidelity. This efficient regeneration system can be used as a fast and reproducible method for genetic transformation of this important vegetable crop.
Stable Nuclear Transformation System for the Coccolithophorid Alga Pleurochrysis carterae
Endo, Hirotoshi; Yoshida, Megumi; Uji, Toshiki; Saga, Naotsune; Inoue, Koji; Nagasawa, Hiromichi
2016-01-01
Of the three dominant marine microalgal groups, dinoflagellates and diatoms can undergo genetic transformation; however, no transformation method has been established for haptophytes to date. Here, we report the first stable genetic transformation of a coccolithophore, Pleurochrysis carterae, by means of polyethylene glycol (PEG)-mediated transfer of a bacterial hygromycin B-resistance gene. Together with the novel transient green fluorescent protein (GFP) expression system, this approach should facilitate further molecular-based research in this phylum. PMID:26947136
2013-01-01
Background Reducing the production cost of, and increasing revenues from, industrial biofuels will greatly facilitate their proliferation and co-integration with fossil fuels. The cost of feedstock is the largest cost in most fermentation bioprocesses and therefore represents an important target for cost reduction. Meanwhile, the biorefinery concept advocates revenue growth through complete utilization of by-products generated during biofuel production. Taken together, the production of biofuels from low-cost crude glycerol, available in oversupply as a by-product of bioethanol production, in the form of thin stillage, and biodiesel production, embodies a remarkable opportunity to advance affordable biofuel development. However, few bacterial species possess the natural capacity to convert glycerol as a sole source of carbon and energy into value-added bioproducts. Of particular interest is the anaerobe Clostridium pasteurianum, the only microorganism known to convert glycerol alone directly into butanol, which currently holds immense promise as a high-energy biofuel and bulk chemical. Unfortunately, genetic and metabolic engineering of C. pasteurianum has been fundamentally impeded due to lack of an efficient method for deoxyribonucleic acid (DNA) transfer. Results This work reports the development of an electrotransformation protocol permitting high-level DNA transfer to C. pasteurianum ATCC 6013 together with accompanying selection markers and vector components. The CpaAI restriction-modification system was found to be a major barrier to DNA delivery into C. pasteurianum which we overcame by in vivo methylation of the recognition site (5’-CGCG-3’) using the M.FnuDII methyltransferase. With proper selection of the replication origin and antibiotic-resistance marker, we initially electroporated methylated DNA into C. pasteurianum at a low efficiency of 2.4 × 101 transformants μg-1 DNA by utilizing conditions common to other clostridial electroporations. Systematic investigation of various parameters involved in the cell growth, washing and pulse delivery, and outgrowth phases of the electrotransformation procedure significantly elevated the electrotransformation efficiency, up to 7.5 × 104 transformants μg-1 DNA, an increase of approximately three order of magnitude. Key factors affecting the electrotransformation efficiency include cell-wall-weakening using glycine, ethanol-mediated membrane solubilization, field strength of the electric pulse, and sucrose osmoprotection. Conclusions C. pasteurianum ATCC 6013 can be electrotransformed at a high efficiency using appropriately methylated plasmid DNA. The electrotransformation method and tools reported here should promote extensive genetic manipulation and metabolic engineering of this biotechnologically important bacterium. PMID:23570573
DOE Office of Scientific and Technical Information (OSTI.GOV)
LACKS,S.A.
2003-10-09
Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants wasmore » revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).« less
Domestication, Genomics and the Future for Banana
Heslop-Harrison, J. S.; Schwarzacher, Trude
2007-01-01
Background Cultivated bananas and plantains are giant herbaceous plants within the genus Musa. They are both sterile and parthenocarpic so the fruit develops without seed. The cultivated hybrids and species are mostly triploid (2n = 3x = 33; a few are diploid or tetraploid), and most have been propagated from mutants found in the wild. With a production of 100 million tons annually, banana is a staple food across the Asian, African and American tropics, with the 15 % that is exported being important to many economies. Scope There are well over a thousand domesticated Musa cultivars and their genetic diversity is high, indicating multiple origins from different wild hybrids between two principle ancestral species. However, the difficulty of genetics and sterility of the crop has meant that the development of new varieties through hybridization, mutation or transformation was not very successful in the 20th century. Knowledge of structural and functional genomics and genes, reproductive physiology, cytogenetics, and comparative genomics with rice, Arabidopsis and other model species has increased our understanding of Musa and its diversity enormously. Conclusions There are major challenges to banana production from virulent diseases, abiotic stresses and new demands for sustainability, quality, transport and yield. Within the genepool of cultivars and wild species there are genetic resistances to many stresses. Genomic approaches are now rapidly advancing in Musa and have the prospect of helping enable banana to maintain and increase its importance as a staple food and cash crop through integration of genetical, evolutionary and structural data, allowing targeted breeding, transformation and efficient use of Musa biodiversity in the future. PMID:17766312
Factors affecting the efficient transformation of Colletotrichum species
Redman, Regina S.; Rodriguez, Rusty J.
1994-01-01
Factors affecting the efficient transformation of Colletotrichum species. Experimental Mycology, 18, 230-246. Twelve isolates representing four species of Colletotrichum were transformed either by enhanced protoplast, restriction enzyme-mediated integration (REMI), or electroporation-mediated protocols. The enhanced protoplast transformation protocol resulted in 100- and 50-fold increases in the transformation efficiencies of Colletotrichum lindemuthianum and C. magna , respectively. REMI transformation involved the use of Hin dIII and vector DNA linearized with HindIII to increase the number of integration events and potential gene disruptions in the fungal genome. Combining the enhanced protoplast and the REMI protocols resulted in a 22-fold increase in the number of hygromycin/nystatin-resistant mutants in C. lindemuthianum . Electroporation-mediated transformation was performed on mycelial fragments and spores of four Colletotrichum species, resulting in efficiencies of up to 1000 transformants/μg DNA. The pHA1.3 vector which confers hygromycin resistance contains telomeric sequences from Fusarium oxysporum , transforms by autonomous replication and genomic integration, and was essential for elevated transformation efficiencies of 100 to 10,000 transformants/μg DNA. Modifications of pHA1.3 occurred during bacterial amplification and post fungal transformation resulting in plasmids capable of significantly elevated transformation efficiencies in C. lindemuthianum.
Methods for genetic transformation in Dendrobium.
da Silva, Jaime A Teixeira; Dobránszki, Judit; Cardoso, Jean Carlos; Chandler, Stephen F; Zeng, Songjun
2016-03-01
The genetic transformation of Dendrobium orchids will allow for the introduction of novel colours, altered architecture and valuable traits such as abiotic and biotic stress tolerance. The orchid genus Dendrobium contains species that have both ornamental value and medicinal importance. There is thus interest in producing cultivars that have increased resistance to pests, novel horticultural characteristics such as novel flower colours, improved productivity, longer flower spikes, or longer post-harvest shelf-life. Tissue culture is used to establish clonal plants while in vitro flowering allows for the production of flowers or floral parts within a sterile environment, expanding the selection of explants that can be used for tissue culture or genetic transformation. The latter is potentially the most effective, rapid and practical way to introduce new agronomic traits into Dendrobium. Most (69.4 %) Dendrobium genetic transformation studies have used particle bombardment (biolistics) while 64 % have employed some form of Agrobacterium-mediated transformation. A singe study has explored ovary injection, but no studies exist on floral dip transformation. While most of these studies have involved the use of selector or reporter genes, there are now a handful of studies that have introduced genes for horticulturally important traits.
Mobilome and genetic modification of bifidobacteria.
Guglielmetti, S; Mayo, B; Álvarez-Martín, P
2013-06-01
Until recently, proper development of molecular studies in Bifidobacterium species has been hampered by growth difficulties, because of their exigent nutritive requirements, oxygen sensitivity and lack of efficient genetic tools. These studies, however, are critical to uncover the cross-talk between bifidobacteria and their hosts' cells and to prove unequivocally the supposed beneficial effects provided through the endogenous bifidobacterial populations or after ingestion as probiotics. The genome sequencing projects of different bifidobacterial strains have provided a wealth of genetic data that will be of much help in deciphering the molecular basis of the physiological properties of bifidobacteria. To this end, the purposeful development of stable cloning and expression vectors based on robust replicons - either from temperate phages or resident plasmids - is still needed. This review addresses the current knowledge on the mobile genetic elements of bifidobacteria (prophages, plasmids and transposons) and summarises the different types of vectors already available, together with the transformation procedures for introducing DNA into the cells. It also covers recent molecular studies performed with such vectors and incipient results on the genetic modification of these organisms, establishing the basis that would allow the use of bifidobacteria for future biotechnological applications.
NASA Astrophysics Data System (ADS)
Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong
2017-01-01
A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model.
Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong
2017-01-01
A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model. PMID:28120889
Yu, Xuya; Ji, Sen-Lin; He, Yi-Long; Ren, Meng-Fei; Xu, Jun-Wei
2014-01-01
We report the construction of a plasmid, pJW-EXP, designed for the expression of homologous and heterologous genes in Ganoderma lucidum. pJW-EXP was generated from the plasmid pMD19-T by inserting the G. lucidum glyceraldehyde-3-phosphate dehydrogenase gene promoter, the G. lucidum iron-sulfur protein subunit of succinate dehydrogenase gene terminator and the homologous carboxin-resistance gene as selection marker. This expression plasmid can be efficiently transformed into Ganoderma through polyethylene glycol-mediated protoplast transformation. Southern blot analysis showed that most of the integrated DNA appeared as multiple copies in the genome. The applicability of the constructed plasmid was tested by expression of the truncated G. lucidum 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene that encodes the catalytic domain of HMGR. Overexpression of the truncated HMGR gene, which is a key gene in the biosynthetic pathway of the antitumor compounds, ganoderic acids, increased the transcription of the HMGR gene and enhanced ganoderic acid accumulation. pJW-EXP can serve as a useful tool in the genetic improvement and metabolic engineering of Ganoderma.
Identification of Moraxella bovis by qualitative genetic transformation and nutritional assays.
Juni, E; Heym, G A; Newcomb, R D
1988-01-01
Strains of Moraxella bovis were identified definitively through the combined use of a qualitative genetic transformation assay and determination of the ability of the organism under examination to grow in a defined medium (medium MB). Except for weak transformation by DNA from strains of M. lacunata, M. nonliquefaciens, and M. (Branhamella) ovis, DNA samples from all other members of the genus Moraxella failed to transform either of the two M. bovis auxotrophs used in this study. Images PMID:3389822
Electrosprayed chitosan nanoparticles: facile and efficient approach for bacterial transformation
NASA Astrophysics Data System (ADS)
Abyadeh, Morteza; Sadroddiny, Esmaeil; Ebrahimi, Ammar; Esmaeili, Fariba; Landi, Farzaneh Saeedi; Amani, Amir
2017-12-01
A rapid and efficient procedure for DNA transformation is a key prerequisite for successful cloning and genomic studies. While there are efforts to develop a facile method, so far obtained efficiencies for alternative methods have been unsatisfactory (i.e. 105-106 CFU/μg plasmid) compared with conventional method (up to 108 CFU/μg plasmid). In this work, for the first time, we prepared chitosan/pDNA nanoparticles by electrospraying methods to improve transformation process. Electrospray method was used for chitosan/pDNA nanoparticles production to investigate the non-competent bacterial transformation efficiency; besides, the effect of chitosan molecular weight, N/P ratio and nanoparticle size on non-competent bacterial transformation efficiency was evaluated too. The results showed that transformation efficiency increased with decreasing the molecular weight, N/P ratio and nanoparticles size. In addition, transformation efficiency of 1.7 × 108 CFU/μg plasmid was obtained with chitosan molecular weight, N/P ratio and nanoparticles size values of 30 kDa, 1 and 125 nm. Chitosan/pDNA electrosprayed nanoparticles were produced and the effect of molecular weight, N/P and size of nanoparticles on transformation efficiency was evaluated. In total, we present a facile and rapid method for bacterial transformation, which has comparable efficiency with the common method.
Xu, Kedong; Huang, Xiaohui; Wu, Manman; Wang, Yan; Chang, Yunxia; Liu, Kun; Zhang, Ju; Zhang, Yi; Zhang, Fuli; Yi, Liming; Li, Tingting; Wang, Ruiyue; Tan, Guangxuan; Li, Chengwei
2014-01-01
Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale.
Adenomas - Genetic factors in colorectal cancer prevention.
Witold, Kycler; Anna, Kubiak; Maciej, Trojanowski; Jakub, Janowski
2018-01-01
Colorectal cancer is the second most common type of cancer both in Europe and Poland. During the last 30 years more than a 3-fold increase has been observed in Poland due to environmental and genetic factors. Almost all colorectal malignancies are related to the formation and malignant transformation of colorectal dysplasia and adenoma. Efforts aiming to decrease the number of colorectal cancer deaths are focused on the disease early detection. Genetic diagnosis for hereditary syndromes predisposing to colorectal cancer has been developed and is a part of the routine treatment. Most cancers are sporadic. They often develop from polyps in the colon. In addition to the genetic events described in the 1990s, showing the adenoma transformation into carcinoma that has been a prime example of malignant transformation for a long time, there are also other possibilities of neoplastic transformation. The recognition of colorectal cancer risk factors make sense as their nature is lifestyle- and diet-related. In this review paper those risk factors are presented and the prevention of colorectal cancer is discussed taking into account genetic factors.
Genetically enhanced cellulase production in Pseudomonas cellulosa using recombinant DNA technology
Dees, H. Craig
1999-01-01
An enhanced strain of Pseudomonas celllulosa was obtained by introducing a recombinant genetic construct comprising a heterologous cellulase gene operably connected to a promoter into ATCC 55702, mutagenizing the transformants by treatment with MNNG, and selecting a high cellulase producing transformant. The transformant, designated Pseudomonas cellulosa ATCC XXXX, exhibits enhanced levels of cellulase production relative to the untransformed Pseudomonas cellulosa strain #142 ATCC 55702.
Therapeutic genome engineering via CRISPR-Cas systems.
Moreno, Ana M; Mali, Prashant
2017-07-01
Differences in genomes underlie most organismal diversity, and aberrations in genomes underlie many disease states. With the growing knowledge of the genetic and pathogenic basis of human disease, development of safe and efficient platforms for genome and epigenome engineering will transform our ability to therapeutically target human diseases and also potentially engineer disease resistance. In this regard, the recent advent of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) RNA-guided nuclease systems have transformed our ability to target nucleic acids. Here we review therapeutic genome engineering applications with a specific focus on the CRISPR-Cas toolsets. We summarize past and current work, and also outline key challenges and future directions. WIREs Syst Biol Med 2017, 9:e1380. doi: 10.1002/wsbm.1380 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.
Genetic transformation of black walnut (Juglans nigra)
Michael J. Bosela; Gurpreet S. Smagh; Charles H. Michler
2004-01-01
Disarmed Agrobacterium tumefaciens strains with binary vectors carrying transgenes for kanamycin resistance (npt II) and β-glucuronidase (GUS, uidA) were used for the genetic transformation of Eastern black walnut (Juglans nigra) somatic embryos. In total, explants from 16 embryo lines...
Rao, Kiranmayee; Chodisetti, Bhuvaneswari; Mangamoori, Lakshmi Narasu; Giri, Archana
2012-09-01
Agrobacterium-mediated transformations ensure elevated amounts of secondary metabolite accumulation with genetic and biosynthetic stability. In the present study, Alpinia galanga rich in bioactive compounds was genetically transformed using different strains of Agrobacterium rhizogenes viz. LBA 9402, A(4), 532, 2364 and PRTGus. Even though a higher growth rate was obtained with the LBA 9402 strain, maximum acetoxychavicol acetate accumulation (ACA) was seen in the PRTGus transformant. PRTGus root line has shown 10.1 fold higher ACA content in comparison to the control roots. The lowest ACA production was shown by the A(4) transformant (4.9 fold). The quantification of ACA in the transformed roots was carried out by using HPLC, which was found to be in the order of PRTGus > LBA 9402 > 2364 > 532 > A(4). The fast growth rate of hairy roots, genetic stability and their ability to synthesize more than one metabolite offer a promising system for the production of valuable secondary metabolites.
Le Pihive, E; Blaha, D; Chenavas, S; Thibault, F; Vidal, D; Valade, E
2009-11-01
Francisella tularensis is the causative agent of tularemia, a zoonotic disease often transmitted to humans by infected animals. The lack of useful specific genetic tools has long hampered the study of F. tularensis subspecies. We identified and characterized two new plasmids, pF242 and pF243, isolated from Francisella philomiragia strains ATCC 25016 and ATCC 25017, respectively. Sequence analysis revealed that pF242 and pF243 are closely related to pC194 and pFNL10 plasmids, respectively. Two generations of pF242- and pF243-based shuttle vectors, harboring several antibiotic resistance markers, were developed. We used the first generation to compare transformation efficiencies in two virulent F. tularensis subspecies. We found that electroporation was more efficient than cryotransformation: almost all vectors tested were successfully introduced by electroporation into Francisella strains with a high level of efficiency. The second generation of shuttle vectors, containing a multiple cloning site and/or gfp gene downstream of Francisella groES promotor, was used for GFP production in F. tularensis. The development of new shuttle vectors offers new perspectives in the genetic manipulation of F. tularensis, helping to elucidate the mechanisms underlying its virulence.
Update: Biochemistry of Genetic Manipulation.
ERIC Educational Resources Information Center
Barker, G. R.
1983-01-01
Various topics on the biochemistry of genetic manipulation are discussed. These include genetic transformation and DNA; genetic expression; DNA replication, repair, and mutation; technology of genetic manipulation; and applications of genetic manipulation. Other techniques employed are also considered. (JN)
Box–Cox Transformation and Random Regression Models for Fecal egg Count Data
da Silva, Marcos Vinícius Gualberto Barbosa; Van Tassell, Curtis P.; Sonstegard, Tad S.; Cobuci, Jaime Araujo; Gasbarre, Louis C.
2012-01-01
Accurate genetic evaluation of livestock is based on appropriate modeling of phenotypic measurements. In ruminants, fecal egg count (FEC) is commonly used to measure resistance to nematodes. FEC values are not normally distributed and logarithmic transformations have been used in an effort to achieve normality before analysis. However, the transformed data are often still not normally distributed, especially when data are extremely skewed. A series of repeated FEC measurements may provide information about the population dynamics of a group or individual. A total of 6375 FEC measures were obtained for 410 animals between 1992 and 2003 from the Beltsville Agricultural Research Center Angus herd. Original data were transformed using an extension of the Box–Cox transformation to approach normality and to estimate (co)variance components. We also proposed using random regression models (RRM) for genetic and non-genetic studies of FEC. Phenotypes were analyzed using RRM and restricted maximum likelihood. Within the different orders of Legendre polynomials used, those with more parameters (order 4) adjusted FEC data best. Results indicated that the transformation of FEC data utilizing the Box–Cox transformation family was effective in reducing the skewness and kurtosis, and dramatically increased estimates of heritability, and measurements of FEC obtained in the period between 12 and 26 weeks in a 26-week experimental challenge period are genetically correlated. PMID:22303406
Box-Cox Transformation and Random Regression Models for Fecal egg Count Data.
da Silva, Marcos Vinícius Gualberto Barbosa; Van Tassell, Curtis P; Sonstegard, Tad S; Cobuci, Jaime Araujo; Gasbarre, Louis C
2011-01-01
Accurate genetic evaluation of livestock is based on appropriate modeling of phenotypic measurements. In ruminants, fecal egg count (FEC) is commonly used to measure resistance to nematodes. FEC values are not normally distributed and logarithmic transformations have been used in an effort to achieve normality before analysis. However, the transformed data are often still not normally distributed, especially when data are extremely skewed. A series of repeated FEC measurements may provide information about the population dynamics of a group or individual. A total of 6375 FEC measures were obtained for 410 animals between 1992 and 2003 from the Beltsville Agricultural Research Center Angus herd. Original data were transformed using an extension of the Box-Cox transformation to approach normality and to estimate (co)variance components. We also proposed using random regression models (RRM) for genetic and non-genetic studies of FEC. Phenotypes were analyzed using RRM and restricted maximum likelihood. Within the different orders of Legendre polynomials used, those with more parameters (order 4) adjusted FEC data best. Results indicated that the transformation of FEC data utilizing the Box-Cox transformation family was effective in reducing the skewness and kurtosis, and dramatically increased estimates of heritability, and measurements of FEC obtained in the period between 12 and 26 weeks in a 26-week experimental challenge period are genetically correlated.
10 CFR 431.197 - Manufacturer's determination of efficiency for distribution transformers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... distribution transformers. 431.197 Section 431.197 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Compliance and Enforcement § 431.197 Manufacturer's determination of efficiency for distribution transformers. When a...
Xu, Kedong; Huang, Xiaohui; Wu, Manman; Wang, Yan; Chang, Yunxia; Liu, Kun; Zhang, Ju; Zhang, Yi; Zhang, Fuli; Yi, Liming; Li, Tingting; Wang, Ruiyue; Tan, Guangxuan; Li, Chengwei
2014-01-01
Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale. PMID:24416168
Genetic and phenotypic characteristics of baker's yeast: relevance to baking.
Randez-Gil, Francisca; Córcoles-Sáez, Isaac; Prieto, José A
2013-01-01
Yeasts rarely encounter ideal physiological conditions during their industrial life span; therefore, their ability to adapt to changing conditions determines their usefulness and applicability. This is especially true for baking strains of Saccharomyces cerevisiae. The success of this yeast in the ancient art of bread making is based on its capacity to rapidly transform carbohydrates into CO2 rather than its unusual resistance to environmental stresses. Moreover, baker's yeast must exhibit efficient respiratory metabolism during yeast manufacturing, which determines biomass yield. However, optimal growth conditions often have negative consequences in other commercially important aspects, such as fermentative power or stress tolerance. This article reviews the genetic and physiological characteristics of baking yeast strains, emphasizing the activation of regulatory mechanisms in response to carbon source and stress signaling and their importance in defining targets for strain selection and improvement.
Ramsden, Richard; Arms, Luther; Davis, Trisha N; Muller, Eric G D
2011-06-27
Inteins are proteins that catalyze their own removal from within larger precursor proteins. In the process they splice the flanking protein sequences, termed the N-and C-terminal exteins. Large inteins frequently have a homing endonuclease that is involved in maintaining the intein in the host. Splicing and nuclease activity are independent and distinct domains in the folded structure. We show here that other biochemical activities can be incorporated into an intein in place of the endonuclease without affecting splicing and that these activities can provide genetic selection for the intein. We have coupled such a genetically marked intein with GFP as the N-terminal extein to create a cassette to introduce GFP within the interior of a targeted protein. The Pch PRP8 mini-intein of Penicillium chrysogenum was modified to include: 1) aminoglycoside phosphotransferase; 2) imidazoleglycerol-phosphate dehydratase, His5 from S. pombe ; 3) hygromycin B phosphotransferase; and 4) the transcriptional activator LexA-VP16. The proteins were inserted at the site of the lost endonuclease. When expressed in E. coli, all of the modified inteins spliced at high efficiency. Splicing efficiency was also greater than 96% when expressed from a plasmid in S. cerevisiae. In addition the inteins conferred either G418 or hygromycin resistance, or histidine or leucine prototropy, depending on the inserted marker and the yeast genetic background. DNA encoding the marked inteins coupled to GFP as the N-terminal extein was PCR amplified with ends homologous to an internal site in the yeast calmodulin gene CMD1. The DNA was transformed into yeast and integrants obtained by direct selection for the intein's marker. The His5-marked intein yielded a fully functional calmodulin that was tagged with GFP within its central linker. Inteins continue to show their flexibility as tools in molecular biology. The Pch PRP8 intein can successfully tolerate a variety of genetic markers and still retain high splicing efficiency. We have shown that a genetically marked intein can be used to insert GFP in one-step within a target protein in vivo.
Mature Luffa Leaves (Luffa cylindrica L.) as a Tool for Gene Expression Analysis by Agroinfiltration
Błażejewska, Kamila; Kapusta, Małgorzata; Zielińska, Elżbieta; Tukaj, Zbigniew; Chincinska, Izabela A.
2017-01-01
We exploited the potential of cucurbits for ectopic gene expression. Agroinfiltration is a simple and commonly used method to obtain transient expression of foreign genes in plants. In contrast to in vitro transformation techniques, agroinfiltration can be used for genetic modification of mature plant tissues. Although the cucurbits are commonly used as model plants for molecular biology and biotechnology studies, to date there are no literature sources on the possibility of transient gene expression in mature cucurbit tissues. Our research has shown that mature leaves of Luffa cylindrica L. (luffa), in contrast to other cucurbit species, can be successfully transiently transformed with Agrobacterium tumefaciens. We efficiently transformed luffa leaves with a reporter gene encoding β-glucuronidase (GUS). The GUS activity in transiently transformed leaf tissues was detected within 24 h after the infiltration with bacteria. Additionally, we have shown that the activity of a transiently expressed the GUS gene can be monitored directly in the EDTA-exudates collected from the cut petioles of the agroinfiltrated leaves. The results suggest that luffa leaves can be useful as a plant expression system for studies of physiological and biochemical processes in cucurbits. PMID:28270826
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xinlu; Zale, Janice; Chen, Feng
2013-01-22
Foxtail millet (Setaria italica L.) is a warm-season, C4 annual crop commonly grown for grain and forage worldwide. It has a relatively short generation time, yet produces hundreds of seeds per inflorescence. The crop is inbred and it has a small-size genome (~500 Mb). These features make foxtail millet an attractive grass model, especially for bioenergy crops. While a number of genomic tools have been established for foxtail millet, including a fully sequenced genome and molecular markers, the objectives of this project were to develop a tissue culture system, determine the best explant(s) for tissue culture, optimize transient gene expression,more » and establish a stable transformation system for foxtail millet cultivar Yugu1. In optimizing a tissue culture medium for the induction of calli and somatic embryos from immature inflorescences and mature seed explants, Murashige and Skoog medium containing 2.5 mg l-1 2,4-dichlorophenoxyacetic acid and 0.6 mg l-1 6- benzylaminopurine was determined to be optimal for callus induction of foxtail millet. The efficiency of callus induction from explants of immature inflorescences was significantly higher at 76% compared to that of callus induction from mature seed explants at 68%. The calli induced from this medium were regenerated into plants at high frequency (~100%) using 0.2 mg l-1 kinetin in the regeneration media. For performing transient gene expression, immature embryos were first isolated from inflorescences. Transient expression of the GUS reporter gene in immature embryos was significantly increased after sonication, a vacuum treatment, centrifugation and the addition of L-cysteine and dithiothreitol, which led to the efficiency of transient expression at levels greater than 70% after Agrobacterium inoculation. Inoculation with Agrobacterium was also tested with germinated seeds. The radicals of germinated seeds were pierced with needles and dipped into Agrobacterium solution. This method achieved a 10% transient expression efficiency. Throughout these analyses, using plasmids with the hygromycin selectable marker, it was determined that 1.5 mg l-1 hygromycin was the optimal dose for genetic transformation of foxtail millet. In contrast, the nptII selectable marker appeared to yield many escapes. Three methods of transformation were employed in an attempt to produce stable transformants. An in planta transformation experiment, similar to the floral dip method used in Arabidopsis, which utilized a red fluorescent protein pporRFP from coral Porites porites and the hygromycin selectable marker, was tested using immature inflorescences. Although several plants were PCR positive using endpoint and Real-Time PCR and there was transient expression using pporRFP and GUS reporters, no plants were positive on Southern blot. Dipping in Agrobacterium may damage the anther or the pistil because seed production was significantly reduced. Agrobacterium transformation using embryogenic calli was also tested. Although hundreds of plants were regenerated from selection, none were positive using PCR. The third method was to wound germinated seeds with an Agrobacterium coated needle, but none of the plants were PCR positive. Although the Yugu1 genotype was recalcitrant to genetic transformation, several avenues of future research should be considered for foxtail millet. Calli from different foxtail millet genotypes should be screened and selected for regeneration potential, and some genotypes may be more amenable to transformation. Additional selectable markers should also be tested as hygromycin appears to be too stringent and there are too many escapes with nptII. This project has provided training for the following personnel: Dr. Xinlu Chen (postdoc), Xiaomei Liu (postdoc), Jayashree Desai (postdoc) and Kyle Berk (Undergraduate researcher). Conference presentations and peer-reviewed journal articles partly supported by this grant includes the following: 1. Baxter H., Equi R., Chen X, Berk K. and Zale J. Establishing Efficient in vitro Protocols For Foxtail Millet (Setaria italica L. cv. Yugi 1). Plant & Animal Genomes XVIII Conference XVIII, San Diego, California, January 2010 2. Chen X, Zale J and Chen F. The Regeneration and Transformation of Foxtail Millet (Setaria italica), A Model Biofuel Crop. Genomic Science Awardee Meeting IX and USDA-DOE Plant Feedstock Genomics for Bioenergy Awardee Meeting, Crystal City, Virginia, April 2011 3. Chen, F., Tholl, D., Bohlmann, J., and Pichersky, E. (2011) The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 66: 212-229.« less
In planta transformation method for T-DNA transfer in orchids
NASA Astrophysics Data System (ADS)
Semiarti, Endang; Purwantoro, Aziz; Mercuriani, Ixora S.; Anggriasari, Anida M.; Jang, Seonghoe; Suhandono, Sony; Machida, Yasunori; Machida, Chiyoko
2014-03-01
Transgenic plant technology is an efficient tool to study the function of gene(s) in plant. The most popular and widely used technique is Agrobacterium-mediated transformation in which cocultivation was done by immersing the plant tissues/organ in overnight bacterial cultured for about 30 minutes to one hour under in vitro condition. In this experiment, we developed more easier technique that omitted the in vitro step during cocultivation with Agrobacterium, namely in planta transformation method. Pollinaria (compact pollen mass of orchid) of Phalaenopsis amabilis and Spathoglottis plicata orchids were used as target explants that were immersed into bacterial culture for 30 minutes, then dried up the pollinaria, the transformed pollinaria was used to pollinate orchid flowers. The T-DNA used for this experiments were Ubipro∷PaFT/A. tumefaciens GV3101 for P. amabilis and MeEF1α2 pro∷GUS/ A. tumefaciens LBA 4404 for S.plicata. Seeds that were produced from pollinated flowers were grown onto 10 mg/l hygromicin containing NP (New Phalaenopsis) medium. The existance of transgene in putative transformant protocorm (developing orchid embryo) genome was confirmed using PCR with specific primers of either PaFT or GUS genes. Histochemical GUS assay was also performed to the putative transformants. The result showed that transformation frequencies were 2.1 % in P. amabilis, and 0,53% in S. plicata. These results indicates that in planta transformation method could be used for Agrobacterium-mediated genetic transformation, with advantage easier and more secure work from contaminants than that of the in vitro method.
Genetic Transformation of an argB Mutant of Aspergillus oryzae
Hahm, Young Tae; Batt, Carl A.
1988-01-01
An argB mutant of Aspergillus oryzae NRRL 492 has been genetically transformed with the Aspergillus nidulans argB gene. Protoplasts were generated with a combination of Novozyme 234 and β-glucuronidase and regenerated on sucrose-stabilized minimal medium without arginine as described for A. nidulans. A frequency of 5 to 10 transformants per μg of DNA was obtained; however, most transformants appeared abortive. The A. nidulans argB gene and vector sequences appeared to be integrated into the A. oryzae chromosome. Images PMID:16347669
Recent Advances in the Genetic Transformation of Coffee
Mishra, M. K.; Slater, A.
2012-01-01
Coffee is one of the most important plantation crops, grown in about 80 countries across the world. The genus Coffea comprises approximately 100 species of which only two species, that is, Coffea arabica (commonly known as arabica coffee) and Coffea canephora (known as robusta coffee), are commercially cultivated. Genetic improvement of coffee through traditional breeding is slow due to the perennial nature of the plant. Genetic transformation has tremendous potential in developing improved coffee varieties with desired agronomic traits, which are otherwise difficult to achieve through traditional breeding. During the last twenty years, significant progress has been made in coffee biotechnology, particularly in the area of transgenic technology. This paper provides a detailed account of the advances made in the genetic transformation of coffee and their potential applications. PMID:22970380
Lloyd-Jones, Luke R; Robinson, Matthew R; Yang, Jian; Visscher, Peter M
2018-04-01
Genome-wide association studies (GWAS) have identified thousands of loci that are robustly associated with complex diseases. The use of linear mixed model (LMM) methodology for GWAS is becoming more prevalent due to its ability to control for population structure and cryptic relatedness and to increase power. The odds ratio (OR) is a common measure of the association of a disease with an exposure ( e.g. , a genetic variant) and is readably available from logistic regression. However, when the LMM is applied to all-or-none traits it provides estimates of genetic effects on the observed 0-1 scale, a different scale to that in logistic regression. This limits the comparability of results across studies, for example in a meta-analysis, and makes the interpretation of the magnitude of an effect from an LMM GWAS difficult. In this study, we derived transformations from the genetic effects estimated under the LMM to the OR that only rely on summary statistics. To test the proposed transformations, we used real genotypes from two large, publicly available data sets to simulate all-or-none phenotypes for a set of scenarios that differ in underlying model, disease prevalence, and heritability. Furthermore, we applied these transformations to GWAS summary statistics for type 2 diabetes generated from 108,042 individuals in the UK Biobank. In both simulation and real-data application, we observed very high concordance between the transformed OR from the LMM and either the simulated truth or estimates from logistic regression. The transformations derived and validated in this study improve the comparability of results from prospective and already performed LMM GWAS on complex diseases by providing a reliable transformation to a common comparative scale for the genetic effects. Copyright © 2018 by the Genetics Society of America.
Hurley, A M; Lopez-Villalobos, N; McParland, S; Lewis, E; Kennedy, E; O'Donovan, M; Burke, J L; Berry, D P
2018-02-01
The objective of the present study was to investigate the phenotypic inter- and intra-relationships within and among alternative feed efficiency metrics across different stages of lactation and parities; the expected effect of genetic selection for feed efficiency on the resulting phenotypic lactation profiles was also quantified. A total of 8,199 net energy intake (NE I ) test-day records from 2,505 lactations on 1,290 cows were used. Derived efficiency traits were either ratio based or residual based; the latter were derived from least squares regression models. Residual energy intake (REI) was defined as NE I minus predicted energy requirements based on lactation performance; residual energy production (REP) was defined as net energy for lactation minus predicted energy requirements based on lactation performance. Energy conversion efficiency was defined as net energy for lactation divided by NE I . Pearson phenotypic correlations among traits were computed across lactation stages and parities, and the significance of the differences was determined using the Fisher r-to-z transformation. Sources of variation in the feed efficiency metrics were investigated using linear mixed models, which included the fixed effects of contemporary group, breed, parity, stage of lactation, and the 2-way interaction of parity by stage of lactation. With the exception of REI, parity was associated with all efficiency and production traits. Stage of lactation, as well as the 2-way interaction of parity by stage of lactation, were associated with all efficiency and production traits. Phenotypic correlations among the efficiency and production traits differed not only by stage of lactation but also by parity. For example, the strong phenotypic correlation between REI and energy balance (EB; 0.89) for cows in parity 3 or greater and early lactation was weaker for parity 1 cows at the same lactation stage (0.81), suggesting primiparous cows use the ingested energy for both milk production and growth. Nonetheless, these strong phenotypic correlations between REI and EB suggested negative REI animals (i.e., more efficient) are also in more negative EB. These correlations were further supported when assessing the effect on phenotypic performance of animals genetically divergent for feed intake and efficiency based on parental average. Animals genetically selected to have lower REI resulted in cows who consumed less NE I but were also in negative EB throughout the entire lactation. Nonetheless, such repercussions of negative EB do not imply that selection for negative REI (as defined here) should not be practiced, but instead should be undertaken within the framework of a balanced breeding objective, which includes traits such as reproduction and health. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Automatic Registration of TLS-TLS and TLS-MLS Point Clouds Using a Genetic Algorithm
Yan, Li; Xie, Hong; Chen, Changjun
2017-01-01
Registration of point clouds is a fundamental issue in Light Detection and Ranging (LiDAR) remote sensing because point clouds scanned from multiple scan stations or by different platforms need to be transformed to a uniform coordinate reference frame. This paper proposes an efficient registration method based on genetic algorithm (GA) for automatic alignment of two terrestrial LiDAR scanning (TLS) point clouds (TLS-TLS point clouds) and alignment between TLS and mobile LiDAR scanning (MLS) point clouds (TLS-MLS point clouds). The scanning station position acquired by the TLS built-in GPS and the quasi-horizontal orientation of the LiDAR sensor in data acquisition are used as constraints to narrow the search space in GA. A new fitness function to evaluate the solutions for GA, named as Normalized Sum of Matching Scores, is proposed for accurate registration. Our method is divided into five steps: selection of matching points, initialization of population, transformation of matching points, calculation of fitness values, and genetic operation. The method is verified using a TLS-TLS data set and a TLS-MLS data set. The experimental results indicate that the RMSE of registration of TLS-TLS point clouds is 3~5 mm, and that of TLS-MLS point clouds is 2~4 cm. The registration integrating the existing well-known ICP with GA is further proposed to accelerate the optimization and its optimizing time decreases by about 50%. PMID:28850100
Automatic Registration of TLS-TLS and TLS-MLS Point Clouds Using a Genetic Algorithm.
Yan, Li; Tan, Junxiang; Liu, Hua; Xie, Hong; Chen, Changjun
2017-08-29
Registration of point clouds is a fundamental issue in Light Detection and Ranging (LiDAR) remote sensing because point clouds scanned from multiple scan stations or by different platforms need to be transformed to a uniform coordinate reference frame. This paper proposes an efficient registration method based on genetic algorithm (GA) for automatic alignment of two terrestrial LiDAR scanning (TLS) point clouds (TLS-TLS point clouds) and alignment between TLS and mobile LiDAR scanning (MLS) point clouds (TLS-MLS point clouds). The scanning station position acquired by the TLS built-in GPS and the quasi-horizontal orientation of the LiDAR sensor in data acquisition are used as constraints to narrow the search space in GA. A new fitness function to evaluate the solutions for GA, named as Normalized Sum of Matching Scores, is proposed for accurate registration. Our method is divided into five steps: selection of matching points, initialization of population, transformation of matching points, calculation of fitness values, and genetic operation. The method is verified using a TLS-TLS data set and a TLS-MLS data set. The experimental results indicate that the RMSE of registration of TLS-TLS point clouds is 3~5 mm, and that of TLS-MLS point clouds is 2~4 cm. The registration integrating the existing well-known ICP with GA is further proposed to accelerate the optimization and its optimizing time decreases by about 50%.
Genetic Algorithm-Based Model Order Reduction of Aeroservoelastic Systems with Consistant States
NASA Technical Reports Server (NTRS)
Zhu, Jin; Wang, Yi; Pant, Kapil; Suh, Peter M.; Brenner, Martin J.
2017-01-01
This paper presents a model order reduction framework to construct linear parameter-varying reduced-order models of flexible aircraft for aeroservoelasticity analysis and control synthesis in broad two-dimensional flight parameter space. Genetic algorithms are used to automatically determine physical states for reduction and to generate reduced-order models at grid points within parameter space while minimizing the trial-and-error process. In addition, balanced truncation for unstable systems is used in conjunction with the congruence transformation technique to achieve locally optimal realization and weak fulfillment of state consistency across the entire parameter space. Therefore, aeroservoelasticity reduced-order models at any flight condition can be obtained simply through model interpolation. The methodology is applied to the pitch-plant model of the X-56A Multi-Use Technology Testbed currently being tested at NASA Armstrong Flight Research Center for flutter suppression and gust load alleviation. The present studies indicate that the reduced-order model with more than 12× reduction in the number of states relative to the original model is able to accurately predict system response among all input-output channels. The genetic-algorithm-guided approach exceeds manual and empirical state selection in terms of efficiency and accuracy. The interpolated aeroservoelasticity reduced order models exhibit smooth pole transition and continuously varying gains along a set of prescribed flight conditions, which verifies consistent state representation obtained by congruence transformation. The present model order reduction framework can be used by control engineers for robust aeroservoelasticity controller synthesis and novel vehicle design.
Physical methods for genetic plant transformation
NASA Astrophysics Data System (ADS)
Rivera, Ana Leonor; Gómez-Lim, Miguel; Fernández, Francisco; Loske, Achim M.
2012-09-01
Production of transgenic plants is a routine process for many crop species. Transgenes are introduced into plants to confer novel traits such as improved nutritional qualities, tolerance to pollutants, resistance to pathogens and for studies of plant metabolism. Nowadays, it is possible to insert genes from plants evolutionary distant from the host plant, as well as from fungi, viruses, bacteria and even animals. Genetic transformation requires penetration of the transgene through the plant cell wall, facilitated by biological or physical methods. The objective of this article is to review the state of the art of the physical methods used for genetic plant transformation and to describe the basic physics behind them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chien-Yuan; Donohoe, Bryon S.; Ahuja, Neha
Switchgrass (Panicum virgatum), a robust perennial C4-type grass, has been evaluated and designated as a model bioenergy crop by the U.S. DOE and USDA. Conventional breeding of switchgrass biomass is difficult because it displays self-incompatible hindrance. Therefore, direct genetic modifications of switchgrass have been considered the more effective approach to tailor switchgrass with traits of interest. Successful transformations have demonstrated increased biomass yields, reduction in the recalcitrance of cell walls and enhanced saccharification efficiency. Several tissue culture protocols have been previously described to produce transgenic switchgrass lines using different nutrient-based media, co-cultivation approaches, and antibiotic strengths for selection. After evaluatingmore » the published protocols, we consolidated these approaches and optimized the process to develop a more efficient protocol for producing transgenic switchgrass. First, seed sterilization was optimized, which led to a 20% increase in yield of induced calluses. Second, we have selected a N 6 macronutrient/B 5 micronutrient (NB)-based medium for callus induction from mature seeds of the Alamo cultivar, and chose a Murashige and Skoog-based medium to regenerate both Type I and Type II calluses. Third, Agrobacterium-mediated transformation was adopted that resulted in 50-100% positive regenerated transformants after three rounds (2 weeks/round) of selection with antibiotic. Genomic DNA PCR, RT-PCR, Southern blot, visualization of the red fluorescent protein and histochemical β-glucuronidase (GUS) staining were conducted to confirm the positive switchgrass transformants. The optimized methods developed here provide an improved strategy to promote the production and selection of callus and generation of transgenic switchgrass lines. The process for switchgrass transformation has been evaluated and consolidated to devise an improved approach for transgenic switchgrass production. With the optimization of seed sterilization, callus induction, and regeneration steps, a reliable and effective protocol is established to facilitate switchgrass engineering.« less
Lin, Chien-Yuan; Donohoe, Bryon S.; Ahuja, Neha; ...
2017-12-19
Switchgrass (Panicum virgatum), a robust perennial C4-type grass, has been evaluated and designated as a model bioenergy crop by the U.S. DOE and USDA. Conventional breeding of switchgrass biomass is difficult because it displays self-incompatible hindrance. Therefore, direct genetic modifications of switchgrass have been considered the more effective approach to tailor switchgrass with traits of interest. Successful transformations have demonstrated increased biomass yields, reduction in the recalcitrance of cell walls and enhanced saccharification efficiency. Several tissue culture protocols have been previously described to produce transgenic switchgrass lines using different nutrient-based media, co-cultivation approaches, and antibiotic strengths for selection. After evaluatingmore » the published protocols, we consolidated these approaches and optimized the process to develop a more efficient protocol for producing transgenic switchgrass. First, seed sterilization was optimized, which led to a 20% increase in yield of induced calluses. Second, we have selected a N 6 macronutrient/B 5 micronutrient (NB)-based medium for callus induction from mature seeds of the Alamo cultivar, and chose a Murashige and Skoog-based medium to regenerate both Type I and Type II calluses. Third, Agrobacterium-mediated transformation was adopted that resulted in 50-100% positive regenerated transformants after three rounds (2 weeks/round) of selection with antibiotic. Genomic DNA PCR, RT-PCR, Southern blot, visualization of the red fluorescent protein and histochemical β-glucuronidase (GUS) staining were conducted to confirm the positive switchgrass transformants. The optimized methods developed here provide an improved strategy to promote the production and selection of callus and generation of transgenic switchgrass lines. The process for switchgrass transformation has been evaluated and consolidated to devise an improved approach for transgenic switchgrass production. With the optimization of seed sterilization, callus induction, and regeneration steps, a reliable and effective protocol is established to facilitate switchgrass engineering.« less
Yang, Jun; Bi, Hui-Ping; Fan, Wei-Juan; Zhang, Min; Wang, Hong-Xia; Zhang, Peng
2011-12-01
Efficient Agrobacterium tumefaciens-mediated transformation was developed using embryogenic suspension cell cultures of elite sweet potato (Ipomoea batatas [L.] Lam.) cultivars, including Ayamurasaki, Sushu2, Sushu9, Sushu11, Wanshu1, Xushu18 and Xushu22. Embryogenic suspension cultures were established in LCP medium using embryogenic calli induced from apical or axillary buds on an induction medium containing 2 mg l(-1) 2,4-D. Suspension cultures were co-cultivated with A. tumefaciens strain LBA4404 harboring the binary plasmid pCAMBIA1301 with the hpt gene as a selectable marker and an intron-interrupted uidA gene as a visible marker. Several key steps of the sweet potato transformation system have been investigated and optimized, including the appropriate antibiotics and their concentrations for suppressing Agrobacterium growth and the optimal doses of hygromycin for transformant selection. A total of 485 putative transgenic plant lines were produced from the transformed calli via somatic embryogenesis and germination to plants under 10 mg l(-1) hygromycin and 200 mg l(-1) cefotaxime. PCR, GUS and Southern blot analyses of the regenerated plants showed that 92.35% of them were transgenic. The number of T-DNA insertions varied from one to three in most transgenic plant lines. Plants showed 100% survival when 308 transgenics were transferred to soil in the greenhouse and then to the field. Most of them were morphologically normal, with the production of storage roots after 3 months of cultivation in the greenhouse or fields. The development of such a robust transformation method suitable to a range of sweet potato genotypes not only provides a routine tool for genetic improvement via transgenesis but also allows us to conduct a functional verification of endogenous genes in sweet potato. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
MacClintic, Scott D.; Nelson, Genevieve M.
Bacterial transformation is a commonly used technique in genetic engineering that involves transferring a gene of interest into a bacterial host so that the bacteria can be used to produce large quantities of the gene product. Although several kits are available for performing bacterial transformation in the classroom, students do not always…
Agrobacterium-mediated genetic transformation of Fraxinus americana hypocotyls
Kaitlin J. Palla; Paula M. Pijut
2015-01-01
An Agrobacterium tumefaciens-mediated genetic transformation system was successfully developed for white ash (Fraxinus americana) using hypocotyls as the initial explants. Hypocotyls isolated from mature embryos germinated on Murashige and Skoog (MS) medium supplemented with 22.2 µM 6-benzyladenine (BA) and 0.5 µM...
Koehorst-van Putten, H J J; Sudarmonowati, E; Herman, M; Pereira-Bertram, I J; Wolters, A M A; Meima, H; de Vetten, N; Raemakers, C J J M; Visser, R G F
2012-02-01
The development and testing in the field of genetically modified -so called- orphan crops like cassava in tropical countries is still in its infancy, despite the fact that cassava is not only used for food and feed but is also an important industrial crop. As traditional breeding of cassava is difficult (allodiploid, vegetatively propagated, outbreeding species) it is an ideal crop for improvement through genetic modification. We here report on the results of production and field testing of genetically modified low-amylose transformants of commercial cassava variety Adira4 in Indonesia. Twenty four transformants were produced and selected in the Netherlands based on phenotypic and molecular analyses. Nodal cuttings of these plants were sent to Indonesia where they were grown under biosafety conditions. After two screenhouse tests 15 transformants remained for a field trial. The tuberous root yield of 10 transformants was not significantly different from the control. Starch from transformants in which amylose was very low or absent showed all physical and rheological properties as expected from amylose-free cassava starch. The improved functionality of the starch was shown for an adipate acetate starch which was made into a tomato sauce. This is the first account of a field trial with transgenic cassava which shows that by using genetic modification it is possible to obtain low-amylose cassava plants with commercial potential with good root yield and starch quality.
Oltean, Gabriel; Ivanciu, Laura-Nicoleta
2016-01-01
The design and verification of complex electronic systems, especially the analog and mixed-signal ones, prove to be extremely time consuming tasks, if only circuit-level simulations are involved. A significant amount of time can be saved if a cost effective solution is used for the extensive analysis of the system, under all conceivable conditions. This paper proposes a data-driven method to build fast to evaluate, but also accurate metamodels capable of generating not-yet simulated waveforms as a function of different combinations of the parameters of the system. The necessary data are obtained by early-stage simulation of an electronic control system from the automotive industry. The metamodel development is based on three key elements: a wavelet transform for waveform characterization, a genetic algorithm optimization to detect the optimal wavelet transform and to identify the most relevant decomposition coefficients, and an artificial neuronal network to derive the relevant coefficients of the wavelet transform for any new parameters combination. The resulted metamodels for three different waveform families are fully reliable. They satisfy the required key points: high accuracy (a maximum mean squared error of 7.1x10-5 for the unity-based normalized waveforms), efficiency (fully affordable computational effort for metamodel build-up: maximum 18 minutes on a general purpose computer), and simplicity (less than 1 second for running the metamodel, the user only provides the parameters combination). The metamodels can be used for very efficient generation of new waveforms, for any possible combination of dependent parameters, offering the possibility to explore the entire design space. A wide range of possibilities becomes achievable for the user, such as: all design corners can be analyzed, possible worst-case situations can be investigated, extreme values of waveforms can be discovered, sensitivity analyses can be performed (the influence of each parameter on the output waveform).
Oltean, Gabriel; Ivanciu, Laura-Nicoleta
2016-01-01
The design and verification of complex electronic systems, especially the analog and mixed-signal ones, prove to be extremely time consuming tasks, if only circuit-level simulations are involved. A significant amount of time can be saved if a cost effective solution is used for the extensive analysis of the system, under all conceivable conditions. This paper proposes a data-driven method to build fast to evaluate, but also accurate metamodels capable of generating not-yet simulated waveforms as a function of different combinations of the parameters of the system. The necessary data are obtained by early-stage simulation of an electronic control system from the automotive industry. The metamodel development is based on three key elements: a wavelet transform for waveform characterization, a genetic algorithm optimization to detect the optimal wavelet transform and to identify the most relevant decomposition coefficients, and an artificial neuronal network to derive the relevant coefficients of the wavelet transform for any new parameters combination. The resulted metamodels for three different waveform families are fully reliable. They satisfy the required key points: high accuracy (a maximum mean squared error of 7.1x10-5 for the unity-based normalized waveforms), efficiency (fully affordable computational effort for metamodel build-up: maximum 18 minutes on a general purpose computer), and simplicity (less than 1 second for running the metamodel, the user only provides the parameters combination). The metamodels can be used for very efficient generation of new waveforms, for any possible combination of dependent parameters, offering the possibility to explore the entire design space. A wide range of possibilities becomes achievable for the user, such as: all design corners can be analyzed, possible worst-case situations can be investigated, extreme values of waveforms can be discovered, sensitivity analyses can be performed (the influence of each parameter on the output waveform). PMID:26745370
Rosinger, Silke; Nutland, Sarah; Mickelson, Eric; Varney, Michael D; Boehm, Bernard O; Olsem, Gary J; Hansen, John A; Nicholson, Ian; Hilner, Joan E; Perdue, Letitia H; Pierce, June J; Akolkar, Beena; Nierras, Concepcion; Steffes, Michael W
2010-01-01
Background and Purpose To yield large amounts of DNA for many genotype analyses and to provide a renewable source of DNA, the Type 1 Diabetes Genetics Consortium (T1DGC) harvested DNA and peripheral blood mononuclear cells (PBMCs) from individuals with type 1 diabetes and their family members in several regions of the world. Methods DNA repositories were established in Asia-Pacific, Europe, North America, and the United Kingdom. To address region-specific needs, different methods and sample processing techniques were used among the laboratories to extract and to quantify DNA and to establish Epstein-Barr virus transformed cell lines. Results More than 98% of the samples of PBMCs were successfully transformed. Approximately 20–25 µg of DNA were extracted per mL of whole blood. Extraction of DNA from the cell pack ranged from 92 to 165 µg per cell pack. In addition, the extracted DNA from whole blood or transformed cells was successfully utilized in each regional human leukocyte antigen genotyping laboratory and by several additional laboratories performing consortium-wide genotyping projects. Limitations Although the isolation of PBMCs was consistent among sites, the measurement of DNA was difficult to harmonize. Conclusions DNA repositories can be established in different regions of the world and produce similar amounts of high-quality DNA for a variety of high-throughput genotyping techniques. Furthermore, even with the distances and time necessary for transportation, highly efficient transformation of PBMCs is possible. For future studies/trials involving several laboratories in different locations, the T1DGC experience includes examples of protocols that may be applicable. In summary, T1DGC has developed protocols that would be of interest to any scientific organization attempting to overcome the logistical problems associated with studies/trials spanning multiple research facilities, located in different regions of the world. PMID:20595244
Protocol for in vitro somatic embryogenesis and regeneration of rice (Oryza sativa L.).
Verma, Dipti; Joshi, Rohit; Shukla, Alok; Kumar, Pramod
2011-12-01
Development of highly efficient and reproducible plant regeneration system has tremendous potential to provide improved technology to assist in genetic transformation of indica rice cultivars for their further exploitation in selection. For the development of a highly reproducible regeneration system through somatic embryogenesis, mature embryos of highly popular rice cultivars i.e., Govind (for rainfed areas), Pusa Basmati-1 (aromatic basmati) and Jaya (for irrigated areas) were used. Optimum callus formation (%) to MS medium supplemented with 2, 4-D was obtained at 12.0 microM in Govind, 14.0 microM in Jaya and 15.0 microM in Pusa Basmati-1. All the cultivars showed good proliferation on MS medium without hormone. In Govind, highest embryogenic response was observed in MS medium supplemented with 2, 4-D (0.4 microM) + kinetin (0.4 microM), while in Pusa Basmati-1 with 2, 4-D (0.4 microM) + kinetin (2.0 microM) and in Jaya on hormone-free MS medium. Excellent embryo regeneration in Govind was observed on MS medium supplemented with low concentrations (1.1 microM) of BAP or hormone-free MS medium, while in Pusa Basmati-1 and Jaya embryogenesis was observed on MS medium supplemented with higher concentration of BAP (2.2 microM). Similarly, maximum plantlets with proliferated roots were observed in Govind on hormone-free MS medium, while in Pusa Basmati-1 and Jaya on MS medium supplemented with high concentration of NAA (4.0 microM). Developed plantlets were further successfully acclimatized and grown under pot culture up to maturity. Further the yield potential of in vitro developed plants was accessed at par to the direct seeded one under pot culture. Present, protocol standardizes somatic embryogenesis and efficient regeneration of agronomically important, high yielding and diverse indica rice cultivars which can be utilized as an efficient tool for molecular studies and genetic transformation in future.
Martínez-Cruz, Jesús; Romero, Diego; de Vicente, Antonio; Pérez-García, Alejandro
2017-03-01
The obligate biotrophic fungal pathogen Podosphaera xanthii is the main causal agent of powdery mildew in cucurbit crops all over the world. A major limitation of molecular studies of powdery mildew fungi (Erysiphales) is their genetic intractability. In this work, we describe a robust method based on the promiscuous transformation ability of Agrobacterium tumefaciens for reliable transformation of P. xanthii. The A. tumefaciens-mediated transformation (ATMT) system yielded transformants of P. xanthii with diverse transferred DNA (T-DNA) constructs. Analysis of the resultant transformants showed the random integration of T-DNA into the P. xanthii genome. The integrations were maintained in successive generations in the presence of selection pressure. Transformation was found to be transient, because in the absence of selection agent, the introduced genetic markers were lost due to excision of T-DNA from the genome. The ATMT system represents a potent tool for genetic manipulation of P. xanthii and will likely be useful for studying other biotrophic fungi. We hope that this method will contribute to the development of detailed molecular studies of the intimate interaction established between powdery mildew fungi and their host plants. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-29
... EERE-2010-BT-STD-0048] RIN 1904-AC04 Energy Efficiency Standards for Distribution Transformers; Notice...-type distribution transformers. The purpose of the subcommittee will be to discuss and, if possible, reach consensus on a proposed rule for the energy efficiency of distribution transformers, as authorized...
DNA as Genetic Material: Revisiting Classic Experiments through a Simple, Practical Class
ERIC Educational Resources Information Center
Malago, Wilson, Jr.; Soares-Costa, Andrea; Henrique-Silva, Flavio
2009-01-01
In 1928, Frederick Griffith demonstrated a transmission process of genetic information by transforming "Pneumococcus". In 1944, Avery et al. demonstrated that Griffith's transforming principle was DNA. We revisited these classic experiments in a practical class for undergraduate students. Both experiments were reproduced in simple, adapted forms.…
van Pijkeren, Jan-Peter; Neoh, Kar Mun; Sirias, Denise; Findley, Anthony S.; Britton, Robert A.
2012-01-01
Single-stranded DNA (ssDNA) recombineering is a technology which is used to make subtle changes in the chromosome of several bacterial genera. Cells which express a single-stranded DNA binding protein (RecT or Bet) are transformed with an oligonucleotide which is incorporated via an annealing and replication-dependent mechanism. By in silico analysis we identified ssDNA binding protein homologs in the genus Lactobacillus and Lactococcus lactis. To assess whether we could further improve the recombineering efficiency in Lactobacillus reuteri ATCC PTA 6475 we expressed several RecT homologs in this strain. RecT derived from Enterococcus faecalis CRMEN 19 yielded comparable efficiencies compared with a native RecT protein, but none of the other proteins further increased the recombineering efficiency. We successfully improved recombineering efficiency 10-fold in L. lactis by increasing oligonucleotide concentration combined with the use of oligonucleotides containing phosphorothioate-linkages (PTOs). Surprisingly, neither increased oligonucleotide concentration nor PTO linkages enhanced recombineering in L. reuteri 6475. To emphasize the utility of this technology in improving probiotic features we modified six bases in a transcriptional regulatory element region of the pdu-operon of L. reuteri 6475, yielding a 3-fold increase in the production of the antimicrobial compound reuterin. Directed genetic modification of lactic acid bacteria through ssDNA recombineering will simplify strain improvement in a way that, when mutating a single base, is genetically indistinguishable from strains obtained through directed evolution. PMID:22750793
Jatropha (Jatropha curcas L.).
Maravi, Devendra Kumar; Mazumdar, Purabi; Alam, Shamsher; Goud, Vaibhav V; Sahoo, Lingaraj
2015-01-01
The seed oil of Jatropha (Jatropha curcas L.) as a source of biodiesel fuel is gaining worldwide importance. Commercial-scale exploration of Jatropha has not succeeded due to low and unstable seed yield in semiarid lands unsuitable for the food production and infestation to diseases. Genetic engineering is promising to improve various agronomic traits in Jatropha and to understand the molecular functions of key Jatropha genes for molecular breeding. We describe a protocol routinely followed in our laboratory for stable and efficient Agrobacterium tumefaciens-mediated transformation of Jatropha using cotyledonary leaf as explants. The 4-day-old explants are infected with Agrobacterium tumefaciens strain EHA105 harboring pBI121 plant binary vector, which contains nptII as plant selectable marker and gus as reporter. The putative transformed plants are selected on kanamycin, and stable integration of transgene(s) is confirmed by histochemical GUS assay, polymerase chain reaction, and Southern hybridization.
Effects of normalization on quantitative traits in association test
2009-01-01
Background Quantitative trait loci analysis assumes that the trait is normally distributed. In reality, this is often not observed and one strategy is to transform the trait. However, it is not clear how much normality is required and which transformation works best in association studies. Results We performed simulations on four types of common quantitative traits to evaluate the effects of normalization using the logarithm, Box-Cox, and rank-based transformations. The impact of sample size and genetic effects on normalization is also investigated. Our results show that rank-based transformation gives generally the best and consistent performance in identifying the causal polymorphism and ranking it highly in association tests, with a slight increase in false positive rate. Conclusion For small sample size or genetic effects, the improvement in sensitivity for rank transformation outweighs the slight increase in false positive rate. However, for large sample size and genetic effects, normalization may not be necessary since the increase in sensitivity is relatively modest. PMID:20003414
Nutrient supplements boost yeast transformation efficiency
Yu, Sheng-Chun; Dawson, Alexander; Henderson, Alyssa C.; Lockyer, Eloise J.; Read, Emily; Sritharan, Gayathri; Ryan, Marjah; Sgroi, Mara; Ngou, Pok M.; Woodruff, Rosie; Zhang, Ruifeng; Ren Teen Chia, Travis; Liu, Yu; Xiang, Yiyu; Spanu, Pietro D.
2016-01-01
Efficiency of yeast transformation is determined by the rate of yeast endocytosis. The aim of this study was to investigate the effect of introducing amino acids and other nutrients (inositol, adenine, or p-aminobenzoic acid) in the transformation medium to develop a highly efficient yeast transformation protocol. The target of rapamycin complex 1 (TORC1) kinase signalling complex influences the rate of yeast endocytosis. TORC signaling is induced by amino acids in the media. Here, we found that increasing the concentration of amino acids and other nutrients in the growth media lead to an increase yeast transformation efficiency up to 107 CFU per μg plasmid DNA and per 108 cells with a 13.8 kb plasmid DNA. This is over 130 times that of current published methods. This improvement may facilitate more efficient experimentation in which transformation efficiency is critical, such as yeast two-hybrid screening. PMID:27760994
Cen, Yuke; Timmermans, Bea; Souffriau, Ben; Thevelein, Johan M; Van Dijck, Patrick
2017-10-01
Candida glabrata is reported as the second most prevalent human opportunistic fungal pathogen in North America and is threatening patients all over the world. Its incidence is rising, while it has developed resistance to the most widely used antifungal drugs, necessitating new approaches based on better insight into the biology of the organism. Despite its close phylogenetic relationship with Saccharomyces cerevisiae, generating precise genomic alterations in this species is problematic. Previously we have shown that deletion of LIG4, which encodes an enzyme involved in Non-Homologous End Joining (NHEJ), strongly enhances the probability of obtaining correctly modified transformants. In this work we used the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated protein 9 (Cas9) system to genetically engineer the C. glabrata genome, targeting the genes ADE2, MET15 and SOK2, located on different chromosomes. We used the CRISPR-Cas9 technology to replace the open reading frame (ORF) by the SAT1 selective marker or introduced a premature stop codon in ADE2 and MET15, as they are easily scored by their adenine or methionine auxotrophy, respectively. The SOK2 gene was modified by insertion of a triple HA-tag sequence and the transformants were verified in a western blot. The CRISPR-Cas9 mediated targeting efficiency varies depending on the gene targeted and the genetic modification performed. We show that CRISPR-Cas9 mediated genome editing is more efficient than the conventional method in the wild-type strain, moreover it has the big advantage being marker-free. In previous work, we showed that the targeting efficiency is highly increased in the lig4Δ strain using the conventional way to delete genes in C. glabrata. Using the CRISPR-Cas9 system in this strain, the percentage of correct transformants is consistently higher compared to the wild-type strain. This indicates that using the lig4 mutant as such is already a strong improvement, while the CRISPR-Cas9 gives the additional advantage of not leaving a scar or marker and that it therefore can be used to generate multiple modifications. Copyright © 2017 Elsevier Inc. All rights reserved.
How genetics came to the unborn: 1960-2000.
Löwy, Ilana
2014-09-01
Prenatal diagnosis (PND) is frequently identified with genetic testing. The termination of pregnancy for foetal malformation was called 'genetic abortion', in spite of the fact that in many cases the malformation does not result from changes in the genetic material of the cell. This study argues that the 'geneticization' of PND reflected the transformation of the meaning of the term 'genetics' in the 1960s and 70s. Such transformation was linked with the definition of Down syndrome as a genetic condition, and to the key role of search for this condition in the transformation of PND into a routine approach. The identification of PND with the polysemic term 'genetics' was also favoured by hopes that cytogenetic studies will lead to cures or prevention of common birth defects, the association of genetic counsellors with prenatal diagnosis, and the raising prestige of clinical genetics. In spite of the impressive achievements of the latter specialty, more than fifty years after the first prenatal diagnoses, the main 'cure' of a severe foetal malformation remains the same as it was in the 1960s: the termination of a pregnancy. The identification of PND with genetics deflects attention from the gap between scientists' capacity to elucidate the causes of numerous birth defects and their ability (as for now) to prevent or treat these defects, and favours the maintenance of a powerful regimen of hope. Copyright © 2014 Elsevier Ltd. All rights reserved.
Assembling networks of microbial genomes using linear programming.
Holloway, Catherine; Beiko, Robert G
2010-11-20
Microbial genomes exhibit complex sets of genetic affinities due to lateral genetic transfer. Assessing the relative contributions of parent-to-offspring inheritance and gene sharing is a vital step in understanding the evolutionary origins and modern-day function of an organism, but recovering and showing these relationships is a challenging problem. We have developed a new approach that uses linear programming to find between-genome relationships, by treating tables of genetic affinities (here, represented by transformed BLAST e-values) as an optimization problem. Validation trials on simulated data demonstrate the effectiveness of the approach in recovering and representing vertical and lateral relationships among genomes. Application of the technique to a set comprising Aquifex aeolicus and 75 other thermophiles showed an important role for large genomes as 'hubs' in the gene sharing network, and suggested that genes are preferentially shared between organisms with similar optimal growth temperatures. We were also able to discover distinct and common genetic contributors to each sequenced representative of genus Pseudomonas. The linear programming approach we have developed can serve as an effective inference tool in its own right, and can be an efficient first step in a more-intensive phylogenomic analysis.
Wang, Ke; Liu, Huiyun; Du, Lipu; Ye, Xingguo
2017-05-01
Genotype specificity is a big problem lagging the development of efficient hexaploid wheat transformation system. Increasingly, the biosecurity of genetically modified organisms is garnering public attention, so the generation of marker-free transgenic plants is very important to the eventual potential commercial release of transgenic wheat. In this study, 15 commercial Chinese hexaploid wheat varieties were successfully transformed via an Agrobacterium-mediated method, with efficiency of up to 37.7%, as confirmed by the use of Quickstix strips, histochemical staining, PCR analysis and Southern blotting. Of particular interest, marker-free transgenic wheat plants from various commercial Chinese varieties and their F 1 hybrids were successfully obtained for the first time, with a frequency of 4.3%, using a plasmid harbouring two independent T-DNA regions. The average co-integration frequency of the gus and the bar genes located on the two independent T-DNA regions was 49.0% in T 0 plants. We further found that the efficiency of generating marker-free plants was related to the number of bar gene copies integrated in the genome. Marker-free transgenic wheat plants were identified in the progeny of three transgenic lines that had only one or two bar gene copies. Moreover, silencing of the bar gene was detected in 30.7% of T 1 positive plants, but the gus gene was never found to be silenced in T 1 plants. Bisulphite genomic sequencing suggested that DNA methylation in the 35S promoter of the bar gene regulatory region might be the main reason for bar gene silencing in the transgenic plants. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Disc piezoelectric ceramic transformers.
Erhart, Jirií; Půlpán, Petr; Doleček, Roman; Psota, Pavel; Lédl, Vít
2013-08-01
In this contribution, we present our study on disc-shaped and homogeneously poled piezoelectric ceramic transformers working in planar-extensional vibration modes. Transformers are designed with electrodes divided into wedge, axisymmetrical ring-dot, moonie, smile, or yin-yang segments. Transformation ratio, efficiency, and input and output impedances were measured for low-power signals. Transformer efficiency and transformation ratio were measured as a function of frequency and impedance load in the secondary circuit. Optimum impedance for the maximum efficiency has been found. Maximum efficiency and no-load transformation ratio can reach almost 100% and 52 for the fundamental resonance of ring-dot transformers and 98% and 67 for the second resonance of 2-segment wedge transformers. Maximum efficiency was reached at optimum impedance, which is in the range from 500 Ω to 10 kΩ, depending on the electrode pattern and size. Fundamental vibration mode and its overtones were further studied using frequency-modulated digital holographic interferometry and by the finite element method. Complementary information has been obtained by the infrared camera visualization of surface temperature profiles at higher driving power.
Genetic Algorithms Evolve Optimized Transforms for Signal Processing Applications
2005-04-01
coefficient sets describing inverse transforms and matched forward/ inverse transform pairs that consistently outperform wavelets for image compression and reconstruction applications under conditions subject to quantization error.
Modeling Human Cancers in Drosophila.
Sonoshita, M; Cagan, R L
2017-01-01
Cancer is a complex disease that affects multiple organs. Whole-body animal models provide important insights into oncology that can lead to clinical impact. Here, we review novel concepts that Drosophila studies have established for cancer biology, drug discovery, and patient therapy. Genetic studies using Drosophila have explored the roles of oncogenes and tumor-suppressor genes that when dysregulated promote cancer formation, making Drosophila a useful model to study multiple aspects of transformation. Not limited to mechanism analyses, Drosophila has recently been showing its value in facilitating drug development. Flies offer rapid, efficient platforms by which novel classes of drugs can be identified as candidate anticancer leads. Further, we discuss the use of Drosophila as a platform to develop therapies for individual patients by modeling the tumor's genetic complexity. Drosophila provides both a classical and a novel tool to identify new therapeutics, complementing other more traditional cancer tools. © 2017 Elsevier Inc. All rights reserved.
Systems-Level Synthetic Biology for Advanced Biofuel Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruffing, Anne; Jensen, Travis J.; Strickland, Lucas Marshall
2015-03-01
Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcusmore » sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.« less
Gemini surfactants mediate efficient mitochondrial gene delivery and expression.
Cardoso, Ana M; Morais, Catarina M; Cruz, A Rita; Cardoso, Ana L; Silva, Sandra G; do Vale, M Luísa; Marques, Eduardo F; Pedroso de Lima, Maria C; Jurado, Amália S
2015-03-02
Gene delivery targeting mitochondria has the potential to transform the therapeutic landscape of mitochondrial genetic diseases. Taking advantage of the nonuniversal genetic code used by mitochondria, a plasmid DNA construct able to be specifically expressed in these organelles was designed by including a codon, which codes for an amino acid only if read by the mitochondrial ribosomes. In the present work, gemini surfactants were shown to successfully deliver plasmid DNA to mitochondria. Gemini surfactant-based DNA complexes were taken up by cells through a variety of routes, including endocytic pathways, and showed propensity for inducing membrane destabilization under acidic conditions, thus facilitating cytoplasmic release of DNA. Furthermore, the complexes interacted extensively with lipid membrane models mimicking the composition of the mitochondrial membrane, which predicts a favored interaction of the complexes with mitochondria in the intracellular environment. This work unravels new possibilities for gene therapy toward mitochondrial diseases.
In Vitro Plant Regeneration from Commercial Cultivars of Soybean
Raza, Ghulam; Singh, Mohan B.
2017-01-01
Soybean, a major legume crop, is the source of vegetable oil and protein. There is a need for transgenic approaches to breeding superior soybean varieties to meet future climate challenges. Efficient plant regeneration is a prerequisite for successful application of genetic transformation technology. Soybean cultivars are classified into different maturity groups based on photoperiod requirements. In this study, nine soybean varieties belonging to different maturity group were regenerated successfully from three different explants: half split hypocotyl, complete hypocotyl, and cotyledonary node. All the genotypes and explant types responded by producing adventitious shoots. Shoot induction potential ranged within 60–87%, 50–100%, and 75–100%, and regeneration rate ranged within 4.2–10, 2.7–4.2, and 2.6–10.5 shoots per explant using half split hypocotyl, complete hypocotyl, and cotyledonary explants, respectively, among all the tested genotypes. Bunya variety showed the best regeneration response using half split and complete hypocotyl explants and the PNR791 with cotyledonary node. The regenerated shoots were successfully rooted and acclimatized to glasshouse conditions. This study shows that commercial varieties of soybean are amenable to shoot regeneration with high regeneration frequencies and could be exploited for genetic transformation. Further, our results show no correlation between shoots regeneration capacity with the maturity grouping of the soybean cultivars tested. PMID:28691031
In Vitro Plant Regeneration from Commercial Cultivars of Soybean.
Raza, Ghulam; Singh, Mohan B; Bhalla, Prem L
2017-01-01
Soybean, a major legume crop, is the source of vegetable oil and protein. There is a need for transgenic approaches to breeding superior soybean varieties to meet future climate challenges. Efficient plant regeneration is a prerequisite for successful application of genetic transformation technology. Soybean cultivars are classified into different maturity groups based on photoperiod requirements. In this study, nine soybean varieties belonging to different maturity group were regenerated successfully from three different explants: half split hypocotyl, complete hypocotyl, and cotyledonary node. All the genotypes and explant types responded by producing adventitious shoots. Shoot induction potential ranged within 60-87%, 50-100%, and 75-100%, and regeneration rate ranged within 4.2-10, 2.7-4.2, and 2.6-10.5 shoots per explant using half split hypocotyl, complete hypocotyl, and cotyledonary explants, respectively, among all the tested genotypes. Bunya variety showed the best regeneration response using half split and complete hypocotyl explants and the PNR791 with cotyledonary node. The regenerated shoots were successfully rooted and acclimatized to glasshouse conditions. This study shows that commercial varieties of soybean are amenable to shoot regeneration with high regeneration frequencies and could be exploited for genetic transformation. Further, our results show no correlation between shoots regeneration capacity with the maturity grouping of the soybean cultivars tested.
A ripple-spreading genetic algorithm for the aircraft sequencing problem.
Hu, Xiao-Bing; Di Paolo, Ezequiel A
2011-01-01
When genetic algorithms (GAs) are applied to combinatorial problems, permutation representations are usually adopted. As a result, such GAs are often confronted with feasibility and memory-efficiency problems. With the aircraft sequencing problem (ASP) as a study case, this paper reports on a novel binary-representation-based GA scheme for combinatorial problems. Unlike existing GAs for the ASP, which typically use permutation representations based on aircraft landing order, the new GA introduces a novel ripple-spreading model which transforms the original landing-order-based ASP solutions into value-based ones. In the new scheme, arriving aircraft are projected as points into an artificial space. A deterministic method inspired by the natural phenomenon of ripple-spreading on liquid surfaces is developed, which uses a few parameters as input to connect points on this space to form a landing sequence. A traditional GA, free of feasibility and memory-efficiency problems, can then be used to evolve the ripple-spreading related parameters in order to find an optimal sequence. Since the ripple-spreading model is the centerpiece of the new algorithm, it is called the ripple-spreading GA (RSGA). The advantages of the proposed RSGA are illustrated by extensive comparative studies for the case of the ASP.
78 FR 1570 - Semiannual Regulatory Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-08
... Transformers (energy efficiency standards) Residential clothes washers (energy efficiency standards... Distribution Transformers (Reg Plan Seq No. 32). 263 Test Procedures for 1904-AC76 Residential Refrigerators... Efficiency Standards for Distribution Transformers Regulatory Plan: This entry is Seq. No. 32 in part II of...
DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins.
Malnoy, Mickael; Viola, Roberto; Jung, Min-Hee; Koo, Ok-Jae; Kim, Seokjoong; Kim, Jin-Soo; Velasco, Riccardo; Nagamangala Kanchiswamy, Chidananda
2016-01-01
The combined availability of whole genome sequences and genome editing tools is set to revolutionize the field of fruit biotechnology by enabling the introduction of targeted genetic changes with unprecedented control and accuracy, both to explore emergent phenotypes and to introduce new functionalities. Although plasmid-mediated delivery of genome editing components to plant cells is very efficient, it also presents some drawbacks, such as possible random integration of plasmid sequences in the host genome. Additionally, it may well be intercepted by current process-based GMO regulations, complicating the path to commercialization of improved varieties. Here, we explore direct delivery of purified CRISPR/Cas9 ribonucleoproteins (RNPs) to the protoplast of grape cultivar Chardonnay and apple cultivar such as Golden delicious fruit crop plants for efficient targeted mutagenesis. We targeted MLO-7 , a susceptible gene in order to increase resistance to powdery mildew in grape cultivar and DIPM-1, DIPM-2 , and DIPM-4 in the apple to increase resistance to fire blight disease. Furthermore, efficient protoplast transformation, the molar ratio of Cas9 and sgRNAs were optimized for each grape and apple cultivar. The targeted mutagenesis insertion and deletion rate was analyzed using targeted deep sequencing. Our results demonstrate that direct delivery of CRISPR/Cas9 RNPs to the protoplast system enables targeted gene editing and paves the way to the generation of DNA-free genome edited grapevine and apple plants.
Cui, Hongguang; Wang, Aiming
2017-03-01
RNA silencing is a powerful technology for molecular characterization of gene functions in plants. A commonly used approach to the induction of RNA silencing is through genetic transformation. A potent alternative is to use a modified viral vector for virus-induced gene silencing (VIGS) to degrade RNA molecules sharing similar nucleotide sequence. Unfortunately, genomic studies in many allogamous woody perennials such as peach are severely hindered because they have a long juvenile period and are recalcitrant to genetic transformation. Here, we report the development of a viral vector derived from Prunus necrotic ringspot virus (PNRSV), a widespread fruit tree virus that is endemic in all Prunus fruit production countries and regions in the world. We show that the modified PNRSV vector, harbouring the sense-orientated target gene sequence of 100-200 bp in length in genomic RNA3, could efficiently trigger the silencing of a transgene or an endogenous gene in the model plant Nicotiana benthamiana. We further demonstrate that the PNRSV-based vector could be manipulated to silence endogenous genes in peach such as eukaryotic translation initiation factor 4E isoform (eIF(iso)4E), a host factor of many potyviruses including Plum pox virus (PPV). Moreover, the eIF(iso)4E-knocked down peach plants were resistant to PPV. This work opens a potential avenue for the control of virus diseases in perennial trees via viral vector-mediated silencing of host factors, and the PNRSV vector may serve as a powerful molecular tool for functional genomic studies of Prunus fruit trees. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Zhao, Huimin; Tan, Zilong; Wen, Xuejing; Wang, Yucheng
2017-02-14
Syringe infiltration is an important transient transformation method that is widely used in many molecular studies. Owing to the wide use of syringe agroinfiltration, it is important and necessary to improve its transformation efficiency. Here, we studied the factors influencing the transformation efficiency of syringe agroinfiltration. The pCAMBIA1301 was transformed into Nicotiana benthamiana leaves for investigation. The effects of 5-azacytidine (AzaC), Ascorbate acid (ASC) and Tween-20 on transformation were studied. The β-glucuronidase ( GUS ) expression and GUS activity were respectively measured to determine the transformation efficiency. AzaC, ASC and Tween-20 all significantly affected the transformation efficiency of agroinfiltration, and the optimal concentrations of AzaC, ASC and Tween-20 for the transgene expression were identified. Our results showed that 20 μM AzaC, 0.56 mM ASC and 0.03% ( v / v ) Tween-20 is the optimal concentration that could significantly improve the transformation efficiency of agroinfiltration. Furthermore, a combined supplement of 20 μM AzaC, 0.56 mM ASC and 0.03% Tween-20 improves the expression of transgene better than any one factor alone, increasing the transgene expression by more than 6-fold. Thus, an optimized syringe agroinfiltration was developed here, which might be a powerful method in transient transformation analysis.
78 FR 44247 - Semiannual Regulatory Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-23
... (energy efficiency standards) Distribution Transformers (energy efficiency standards) Residential... Sequence No. Title Identifier No. 130 Energy Efficiency 1904-AC04 Standards for Distribution Transformers... Transformers Legal Authority: 42 U.S.C. 6317(a); 42 U.S.C. 6313(a)(6)(C) Abstract: The current distribution...
Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana
Radakovits, Randor; Jinkerson, Robert E.; Fuerstenberg, Susan I.; Tae, Hongseok; Settlage, Robert E.; Boore, Jeffrey L.; Posewitz, Matthew C.
2012-01-01
The potential use of algae in biofuels applications is receiving significant attention. However, none of the current algal model species are competitive production strains. Here we present a draft genome sequence and a genetic transformation method for the marine microalga Nannochloropsis gaditana CCMP526. We show that N. gaditana has highly favourable lipid yields, and is a promising production organism. The genome assembly includes nuclear (~29 Mb) and organellar genomes, and contains 9,052 gene models. We define the genes required for glycerolipid biogenesis and detail the differential regulation of genes during nitrogen-limited lipid biosynthesis. Phylogenomic analysis identifies genetic attributes of this organism, including unique stramenopile photosynthesis genes and gene expansions that may explain the distinguishing photoautotrophic phenotypes observed. The availability of a genome sequence and transformation methods will facilitate investigations into N. gaditana lipid biosynthesis and permit genetic engineering strategies to further improve this naturally productive alga. PMID:22353717
Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana.
Radakovits, Randor; Jinkerson, Robert E; Fuerstenberg, Susan I; Tae, Hongseok; Settlage, Robert E; Boore, Jeffrey L; Posewitz, Matthew C
2012-02-21
The potential use of algae in biofuels applications is receiving significant attention. However, none of the current algal model species are competitive production strains. Here we present a draft genome sequence and a genetic transformation method for the marine microalga Nannochloropsis gaditana CCMP526. We show that N. gaditana has highly favourable lipid yields, and is a promising production organism. The genome assembly includes nuclear (~29 Mb) and organellar genomes, and contains 9,052 gene models. We define the genes required for glycerolipid biogenesis and detail the differential regulation of genes during nitrogen-limited lipid biosynthesis. Phylogenomic analysis identifies genetic attributes of this organism, including unique stramenopile photosynthesis genes and gene expansions that may explain the distinguishing photoautotrophic phenotypes observed. The availability of a genome sequence and transformation methods will facilitate investigations into N. gaditana lipid biosynthesis and permit genetic engineering strategies to further improve this naturally productive alga.
Costa, Ana F; Altemani, Albina; García-Inclán, Cristina; Fresno, Florentino; Suárez, Carlos; Llorente, José L; Hermsen, Mario
2014-06-01
Adenoid cystic carcinomas can occasionally undergo dedifferentiation, a phenomenon also referred to as high-grade transformation. However, cases of adenoid cystic carcinomas have been described showing transformation to adenocarcinomas that are not poorly differentiated, indicating that high-grade transformation may not necessarily reflect a more advanced stage of tumor progression, but rather a transformation to another histological form, which may encompass a wide spectrum of carcinomas in terms of aggressiveness. The aim of this study was to gain more insight in the biology of this pathological phenomenon by means of genetic profiling of both histological components. Using microarray comparative genomic hybridization, we compared the genome-wide DNA copy-number changes of the conventional and transformed area of eight adenoid cystic carcinomas with high-grade transformation, comprising four with transformation into moderately differentiated adenocarcinomas and four into poorly differentiated carcinomas. In general, the poorly differentiated carcinoma cases showed a higher total number of copy-number changes than the moderately differentiated adenocarcinoma cases, and this correlated with a worse clinical course. Special attention was given to chromosomal translocation and protein expression of MYB, recently being considered to be an early and major oncogenic event in adenoid cystic carcinomas. Our data showed that the process of high-grade transformation is not always accompanied by an accumulation of genetic alterations; both conventional and transformed components harbored unique genetic alterations, which indicate a parallel progression. Our data further demonstrated that the MYB/NFIB translocation is not necessarily an early event or fundamental for the progression to adenoid cystic carcinoma with high-grade transformation.
Sethi, Gaurav; Saini, B S
2015-12-01
This paper presents an abdomen disease diagnostic system based on the flexi-scale curvelet transform, which uses different optimal scales for extracting features from computed tomography (CT) images. To optimize the scale of the flexi-scale curvelet transform, we propose an improved genetic algorithm. The conventional genetic algorithm assumes that fit parents will likely produce the healthiest offspring that leads to the least fit parents accumulating at the bottom of the population, reducing the fitness of subsequent populations and delaying the optimal solution search. In our improved genetic algorithm, combining the chromosomes of a low-fitness and a high-fitness individual increases the probability of producing high-fitness offspring. Thereby, all of the least fit parent chromosomes are combined with high fit parent to produce offspring for the next population. In this way, the leftover weak chromosomes cannot damage the fitness of subsequent populations. To further facilitate the search for the optimal solution, our improved genetic algorithm adopts modified elitism. The proposed method was applied to 120 CT abdominal images; 30 images each of normal subjects, cysts, tumors and stones. The features extracted by the flexi-scale curvelet transform were more discriminative than conventional methods, demonstrating the potential of our method as a diagnostic tool for abdomen diseases.
Chetty, C C; Rossin, C B; Gruissem, W; Vanderschuren, H; Rey, M E C
2013-01-25
Knowledge and technology transfer to African laboratories and farmers is an important objective for achieving food security and sustainable crop production on the sub-Saharan African continent. Cassava (Manihot esculenta Crantz) is a vital source of calories for more than a billion people in developing countries, and its potential industrial use for starch and bioethanol in the tropics is increasingly being recognized. However, cassava production remains constrained by the susceptibility of the crop to several biotic and abiotic stresses. For more than a decade, biotechnology has been considered an attractive tool to improve cassava as it substantially circumvents the limitations of traditional breeding, which is particularly time-consuming and tedious because of the high heterozygosity of the crop. A major constraint to the development of biotechnological approaches for cassava improvement has been the lack of an efficient and robust transformation and regeneration system. Despite some success achieved in genetic modification of the model cassava cultivar Tropical Manihot Series (TMS), TMS 60444, in some European and U.S. laboratories, the lack of a reproducible and robust protocol has not allowed the establishment of a routine transformation system in sub-Saharan Africa. In this study, we optimized a robust and efficient protocol developed at ETH Zurich to successfully establish transformation of a commercially cultivated South African landrace, T200, and compared this with the benchmark model cultivar TMS 60444. Results from our study demonstrated high transformation rates for both T200 (23 transgenic lines from 100 friable embryogenic callus (FEC) clusters) compared with TMS 60444 (32 transgenic lines from 100 FEC clusters). The success in transforming landraces or farmer-preferred cultivars has been limited, and the high transformation rate of an industry-preferred landrace in this study is encouraging for a feasible transformation program for cassava improvement in South Africa (SA), which can potentially be extended to other countries in southern Africa. The successful establishment of a robust cassava transformation and regeneration system in SA demonstrates the relevance of technology transfer to sub-Saharan Africa and highlights the importance of developing suitable and reliable techniques before their transfer to laboratories offering less optimal conditions. Copyright © 2012 Elsevier B.V. All rights reserved.
Neuroimaging, Genetics, and Clinical Data Sharing in Python Using the CubicWeb Framework
Grigis, Antoine; Goyard, David; Cherbonnier, Robin; Gareau, Thomas; Papadopoulos Orfanos, Dimitri; Chauvat, Nicolas; Di Mascio, Adrien; Schumann, Gunter; Spooren, Will; Murphy, Declan; Frouin, Vincent
2017-01-01
In neurosciences or psychiatry, the emergence of large multi-center population imaging studies raises numerous technological challenges. From distributed data collection, across different institutions and countries, to final data publication service, one must handle the massive, heterogeneous, and complex data from genetics, imaging, demographics, or clinical scores. These data must be both efficiently obtained and downloadable. We present a Python solution, based on the CubicWeb open-source semantic framework, aimed at building population imaging study repositories. In addition, we focus on the tools developed around this framework to overcome the challenges associated with data sharing and collaborative requirements. We describe a set of three highly adaptive web services that transform the CubicWeb framework into a (1) multi-center upload platform, (2) collaborative quality assessment platform, and (3) publication platform endowed with massive-download capabilities. Two major European projects, IMAGEN and EU-AIMS, are currently supported by the described framework. We also present a Python package that enables end users to remotely query neuroimaging, genetics, and clinical data from scripts. PMID:28360851
Neuroimaging, Genetics, and Clinical Data Sharing in Python Using the CubicWeb Framework.
Grigis, Antoine; Goyard, David; Cherbonnier, Robin; Gareau, Thomas; Papadopoulos Orfanos, Dimitri; Chauvat, Nicolas; Di Mascio, Adrien; Schumann, Gunter; Spooren, Will; Murphy, Declan; Frouin, Vincent
2017-01-01
In neurosciences or psychiatry, the emergence of large multi-center population imaging studies raises numerous technological challenges. From distributed data collection, across different institutions and countries, to final data publication service, one must handle the massive, heterogeneous, and complex data from genetics, imaging, demographics, or clinical scores. These data must be both efficiently obtained and downloadable. We present a Python solution, based on the CubicWeb open-source semantic framework, aimed at building population imaging study repositories. In addition, we focus on the tools developed around this framework to overcome the challenges associated with data sharing and collaborative requirements. We describe a set of three highly adaptive web services that transform the CubicWeb framework into a (1) multi-center upload platform, (2) collaborative quality assessment platform, and (3) publication platform endowed with massive-download capabilities. Two major European projects, IMAGEN and EU-AIMS, are currently supported by the described framework. We also present a Python package that enables end users to remotely query neuroimaging, genetics, and clinical data from scripts.
Introduction of transformed chloroplasts from tobacco into petunia by asymmetric cell fusion.
Sigeno, Asako; Hayashi, Sugane; Terachi, Toru; Yamagishi, Hiroshi
2009-11-01
Plastid engineering technique has been established only in Nicotiana tabacum, and the widespread application is severely limited so far. In order to exploit a method to transfer the genetically transformed plastomes already obtained in tobacco into other plant species, somatic cell fusion was conducted between a plastome transformant of tobacco and a cultivar of petunia (Petunia hybrida). A tobacco strain whose plastids had been transformed with aadA (a streptomycin/spectinomycin adenylyltransferase gene) and mdar [a gene for monodehydroascorbate reductase (MDAR)] and a petunia variety, 'Telstar', were used as cell fusion partners. An efficient regeneration system from the protoplasts of both the parents, and effectiveness of selection for the aadA gene with spectinomycin were established before the cell fusion. In addition, the influence of UV irradiation on the callus development from the protoplasts and shoot regeneration of tobacco was investigated. Protoplasts were cultured after cell fusion treatment with polyethylene glycol, and asymmetric somatic cybrids were selected using the aadA gene as a marker. Although many shoots of tobacco that had escaped the UV irradiation regenerated, several shoots possessing the morphology of petunia and the resistance to spectinomycin were obtained. Molecular analyses of the petunia type regenerants demonstrated that they had the nuclear and mitochondrial genomes derived from petunia besides the chloroplasts of tobacco transformed with aadA and mdar. Furthermore, it was ascertained that mdar was transcribed in the somatic cybrids. The results indicate the success in intergeneric transfer of transformed plastids of tobacco into petunia.
Genetic transformation assays for identification of strains of Moraxella urethralis.
Juni, E
1977-01-01
Studies of 31 strains of Moraxella urethralis have shown that 20 of them are competent for genetic transformation. This finding has led to the development of transformation assays for identification of newly isolated strains of this organism. Crude deoxyribonucleic acid (DNA) samples from all strains of M. urethralis readily transform auxotrophic mutants of competent strains to prototrophy, whereas DNA samples from unrelated bacteria such as Acinetobacter, Moraxella, and Neisseria species uniformly fail to elicit positive transformation of mutant tester strains. One of the competent strains of M. urethralis investigated is a naturally occurring mutant defective in its ability to utilize citrate as a carbon and energy source. DNA samples from 29 of the 30 remaining strains of utilization; the one nonreacting strain is citrate negative and probably possesses the same genetic lesion as the citrate-negative mutant. Three organisms originally identified as strains of M. urethralis, because of their phenotypic properties, are probably incorrectly designated, since DNA samples from these strains failed to transform any of the tester mutant strains used in the present study. The transformation assay for M. urethralis is very simple and can be performed readily in a clinical laboratory. The entire procedure can be carried out in less than 24 h. Images PMID:845247
Genetic transformation of mature citrus plants.
Cervera, Magdalena; Juárez, José; Navarro, Luis; Peña, Leandro
2005-01-01
Most woody fruit species have long juvenile periods that drastically prolong the time required to analyze mature traits. Evaluation of characteristics related to fruits is a requisite to release any new variety into the market. Because of a decline in regenerative and transformation potential, genetic transformation procedures usually employ juvenile material as the source of plant tissue, therefore resulting in the production of juvenile plants. Direct transformation of mature material could ensure the production of adult transgenic plants, bypassing in this way the juvenile phase. Invigoration of the source adult material, establishment of adequate transformation and regeneration conditions, and acceleration of plant development through grafting allowed us to produce transgenic mature sweet orange trees flowering and bearing fruits in a short time period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeLaski, A.; Gauthier, J.; Shugars, J.
Distribution transformers offer a largely untapped opportunity for efficiency improvements in buildings. Application of energy-efficient equipment can reduce transformer losses by about 20%, substantially cutting a facility's total electricity bill and offering typical paybacks less than three years. Since nearly all of the electricity powering the commercial and industrial sectors is stepped down in voltage by facility-owned distribution transformers, broad application of energy-efficient equipment will lead to huge economy-wide energy and dollar savings as well as associated environmental benefits. This opportunity has led to a multi-party coordinated effort that offers a new model for national partnerships to pursue market transformation.more » The model, called the Informal Collaborative Model for the purposes of this paper, is characterized by voluntary commitments of multiple stakeholders to carry out key market interventions in a coordinated fashion, but without pooling resources or control. Collaborative participants are joined by a common interest in establishing and expanding the market for a new product, service, or practice that will yield substantial energy savings. This paper summarizes the technical efficiency opportunity available in distribution transformers; discusses the market barriers to widespread adoption of energy-efficient transformers; and details an overall market transformation strategy to address the identified market barriers. The respective roles of each of the diverse players--manufacturers, government agencies, and utility and regional energy efficiency programs--are given particular attention. Each of the organizations involved brings a particular set of tools and capabilities for addressing the market barriers to more efficient transformers.« less
Efficient mouse genome engineering by CRISPR-EZ technology.
Modzelewski, Andrew J; Chen, Sean; Willis, Brandon J; Lloyd, K C Kent; Wood, Joshua A; He, Lin
2018-06-01
CRISPR/Cas9 technology has transformed mouse genome editing with unprecedented precision, efficiency, and ease; however, the current practice of microinjecting CRISPR reagents into pronuclear-stage embryos remains rate-limiting. We thus developed CRISPR ribonucleoprotein (RNP) electroporation of zygotes (CRISPR-EZ), an electroporation-based technology that outperforms pronuclear and cytoplasmic microinjection in efficiency, simplicity, cost, and throughput. In C57BL/6J and C57BL/6N mouse strains, CRISPR-EZ achieves 100% delivery of Cas9/single-guide RNA (sgRNA) RNPs, facilitating indel mutations (insertions or deletions), exon deletions, point mutations, and small insertions. In a side-by-side comparison in the high-throughput KnockOut Mouse Project (KOMP) pipeline, CRISPR-EZ consistently outperformed microinjection. Here, we provide an optimized protocol covering sgRNA synthesis, embryo collection, RNP electroporation, mouse generation, and genotyping strategies. Using CRISPR-EZ, a graduate-level researcher with basic embryo-manipulation skills can obtain genetically modified mice in 6 weeks. Altogether, CRISPR-EZ is a simple, economic, efficient, and high-throughput technology that is potentially applicable to other mammalian species.
Transformer Efficiency Assessment - Okinawa, Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas L. Baldwin; Robert J. Turk; Kurt S. Myers
The US Army Engineering & Support Center, Huntsville (USAESCH), and the US Marine Corps Base (MCB), Okinawa, Japan retained Idaho National Laboratory (INL) to conduct a Transformer Efficiency Assessment of “key” transformers located at multiple military bases in Okinawa, Japan. The purpose of this assessment is to support the Marine Corps Base, Okinawa in evaluating medium voltage distribution transformers for potential efficiency upgrades. The original scope of work included the MCB providing actual transformer nameplate data, manufacturer’s factory test sheets, electrical system data (kWh), demand data (kWd), power factor data, and electricity cost data. Unfortunately, the MCB’s actual data ismore » not available and therefore making it necessary to de-scope the original assessment. Note: Any similar nameplate data, photos of similar transformer nameplates, and basic electrical details from one-line drawings (provided by MCB) are not a replacement for actual load loss test data. It is recommended that load measurements are performed on the high and low sides of transformers to better quantify actual load losses, demand data, and power factor data. We also recommend that actual data, when available, be inserted by MCB Okinawa where assumptions have been made and then the LCC analysis updated. This report covers a generalized assessment of modern U.S. transformers in a three level efficiency category, Low-Level efficiency, Medium-Level efficiency, and High-Level efficiency.« less
Transformer Efficiency Assessment - Okinawa, Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas L. Baldwin; Robert J. Turk; Kurt S. Myers
2012-05-01
The US Army Engineering & Support Center, Huntsville (USAESCH), and the US Marine Corps Base (MCB), Okinawa, Japan retained Idaho National Laboratory (INL) to conduct a Transformer Efficiency Assessment of “key” transformers located at multiple military bases in Okinawa, Japan. The purpose of this assessment is to support the Marine Corps Base, Okinawa in evaluating medium voltage distribution transformers for potential efficiency upgrades. The original scope of work included the MCB providing actual transformer nameplate data, manufacturer’s factory test sheets, electrical system data (kWh), demand data (kWd), power factor data, and electricity cost data. Unfortunately, the MCB’s actual data ismore » not available and therefore making it necessary to de-scope the original assessment. Note: Any similar nameplate data, photos of similar transformer nameplates, and basic electrical details from one-line drawings (provided by MCB) are not a replacement for actual load loss test data. It is recommended that load measurements are performed on the high and low sides of transformers to better quantify actual load losses, demand data, and power factor data. We also recommend that actual data, when available, be inserted by MCB Okinawa where assumptions have been made and then the LCC analysis updated. This report covers a generalized assessment of modern U.S. transformers in a three level efficiency category, Low-Level efficiency, Medium-Level efficiency, and High-Level efficiency.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-15
... Distribution Transformers AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy... Rulemaking Working Group for Low-Voltage Dry-Type Distribution Transformers (hereafter ``LV Group''). The LV... proposed rule for regulating the energy efficiency of distribution transformers, as authorized by the...
Nonadverse effects on allergenicity of isopentenyltransferase-transformed broccoli.
Liao, E C; Chen, J T; Chao, M L; Yu, S C; Chang, C Y; Chu, W S; Tsai, J J
2013-01-01
Genetically modified organisms (GMOs) provide modern agriculture with improvements in efficiency and the benefits of enhanced food production; however, the potential impact of GMOs on human health has not yet been clarified. To investigate the allergenicity of isopentenyltransferase (ipt)-transformed broccoli compared with non-GM broccoli. Sera from allergic individuals were used to identify the allergenicity of GM and non-GM broccoli. Immunoglobulin (Ig) binding of different lines of GM and non-GM broccoli was identified using immunoblotting, enzyme-linked immunosorbent assay, and the histamin release assay. Positive reactions to broccoli (Brassica Oleracea) were observed in 7.02% of individuals. Specific IgE to broccoli and total IgE fro allergic individuals were well correlated. The different tests performed showed no significant differences in the allergenicity of conventionally raised and GM broccoli, indicating the absence of unexpected effects on allergenicity in ipt-transformed plants. Using Western blot analysis we detected heterogeneous IgE-reactive allergenic components in broccoli-allergic sera, but no significant differences between GM an non-GM broccoli were observed in serum from the same patients. Our study demonstrates that there are no differences between GM (ipt-transformed) broccoli and non-GM broccoli, as determined by specific IgE in sera from broccoli-allergic patients. This indicates that there were no unexpected effects on allergenicity in this GM broccoli.
Cell type of origin as well as genetic alterations contribute to breast cancer phenotypes
West, William W.; Qiu, Fang; Band, Hamid; Band, Vimla
2015-01-01
Breast cancer is classified into different subtypes that are associated with different patient survival outcomes, underscoring the importance of understanding the role of precursor cell and genetic alterations in determining tumor subtypes. In this study, we evaluated the oncogenic phenotype of two distinct mammary stem/progenitor cell types designated as K5+/K19− or K5+/K19+ upon introduction of identical combinations of oncogenes-mutant H-Ras (mRas) and mutant p53 (mp53), together with either wild-type ErbB2(wtErbB2) or wild-type EGFR (wtEGFR). We examined their tumor forming and metastasis potential, using both in-vitro and in-vivo assays. Both the combinations efficiently transformed K5+/K19− or K5+/K19+ cells. Xenograft tumors formed by these cells were histologically heterogeneous, with variable proportions of luminal, basal-like and claudin-low type components depending on the cell types and oncogene combinations. Notably, K5+/K19− cells transformed with mRas/mp53/wtEGFR combination had a significantly longer latency for primary tumor development than other cell lines but more lung metastasis incidence than same cells expressing mRas/mp53/wtErbB2. K5+/K19+ cells exhibit shorter overall tumor latency, and high metastatic potential than K5+/K19− cells, suggesting that these K19+ progenitors are more susceptible to oncogenesis and metastasis. Our results suggest that both genetic alterations and cell type of origin contribute to oncogenic phenotype of breast tumors. PMID:25940703
CRISPR-Cas9D10A Nickase-Assisted Genome Editing in Lactobacillus casei
Song, Xin; Huang, He; Xiong, Zhiqiang
2017-01-01
ABSTRACT Lactobacillus casei has drawn increasing attention as a health-promoting probiotic, while effective genetic manipulation tools are often not available, e.g., the single-gene knockout in L. casei still depends on the classic homologous recombination-dependent double-crossover strategy, which is quite labor-intensive and time-consuming. In the present study, a rapid and precise genome editing plasmid, pLCNICK, was established for L. casei genome engineering based on CRISPR-Cas9D10A. In addition to the P23-Cas9D10A and Pldh-sgRNA (single guide RNA) expression cassettes, pLCNICK includes the homologous arms of the target gene as repair templates. The ability and efficiency of chromosomal engineering using pLCNICK were evaluated by in-frame deletions of four independent genes and chromosomal insertion of an enhanced green fluorescent protein (eGFP) expression cassette at the LC2W_1628 locus. The efficiencies associated with in-frame deletions and chromosomal insertion is 25 to 62%. pLCNICK has been proved to be an effective, rapid, and precise tool for genome editing in L. casei, and its potential application in other lactic acid bacteria (LAB) is also discussed in this study. IMPORTANCE The lack of efficient genetic tools has limited the investigation and biotechnological application of many LAB. The CRISPR-Cas9D10A nickase-based genome editing in Lactobacillus casei, an important food industrial microorganism, was demonstrated in this study. This genetic tool allows efficient single-gene deletion and insertion to be accomplished by one-step transformation, and the cycle time is reduced to 9 days. It facilitates a rapid and precise chromosomal manipulation in L. casei and overcomes some limitations of previous methods. This editing system can serve as a basic technological platform and offers the possibility to start a comprehensive investigation on L. casei. As a broad-host-range plasmid, pLCNICK has the potential to be adapted to other Lactobacillus species for genome editing. PMID:28864652
Chapter 6: Floral Transformation of Wheat
USDA-ARS?s Scientific Manuscript database
Hexaploid wheat is one of the world’s most important staple crops but genetic transformation is still challenging. We are developing a floral transformation protocol for wheat that does not require tissue culture. Several T-DNA transformants have been produced in the high quality, hard red germpla...
Juni, E; Heym, G A; Maurer, M J; Miller, M L
1987-01-01
A combined genetic transformation and nutritional assay is described that permits definitive identification of clinically isolated strains of Moraxella nonliquefaciens. Crude DNA preparations of strains of various Moraxella species were used to transform nutritional mutants of a stably competent strain of M. nonliquefaciens for ability to grow on a defined medium (Mn-B). DNA samples from 24 independently isolated strains of M. nonliquefaciens all resulted in massive (4+) transformation of each of two mutant assay strains. DNA samples from strains of M. bovis and M. lacunata frequently gave weak (1+) transformation of one of the mutant assay strains (Mn64) but almost always failed to transform another assay strain (Mn136). DNA samples from eight other Moraxella species failed completely to transform either of the mutant assay strains. When streaked on the defined medium used for the transformation assay (Mn-B), 23 of the 24 strains of M. nonliquefaciens grew well, but all strains of M. bovis and M. lacunata failed to grow on this medium. Images PMID:3654942
Genetic transformation of fruit trees: current status and remaining challenges.
Gambino, Giorgio; Gribaudo, Ivana
2012-12-01
Genetic transformation has emerged as a powerful tool for genetic improvement of fruit trees hindered by their reproductive biology and their high levels of heterozygosity. For years, genetic engineering of fruit trees has focussed principally on enhancing disease resistance (against viruses, fungi, and bacteria), although there are few examples of field cultivation and commercial application of these transgenic plants. In addition, over the years much work has been performed to enhance abiotic stress tolerance, to induce modifications of plant growth and habit, to produce marker-free transgenic plants and to improve fruit quality by modification of genes that are crucially important in the production of specific plant components. Recently, with the release of several genome sequences, studies of functional genomics are becoming increasingly important: by modification (overexpression or silencing) of genes involved in the production of specific plant components is possible to uncover regulatory mechanisms associated with the biosynthesis and catabolism of metabolites in plants. This review focuses on the main advances, in recent years, in genetic transformation of the most important species of fruit trees, devoting particular attention to functional genomics approaches and possible future challenges of genetic engineering for these species in the post-genomic era.
Advancing ecological understandings through technological transformations in noninvasive genetics
Albano Beja-Pereira; Rita Oliveira; Paulo C. Alves; Michael K. Schwartz; Gordon Luikart
2009-01-01
Noninvasive genetic approaches continue to improve studies in molecular ecology, conservation genetics and related disciplines such as forensics and epidemiology. Noninvasive sampling allows genetic studies without disturbing or even seeing the target individuals. Although noninvasive genetic sampling has been used for wildlife studies since the 1990s, technological...
Development of human cell models for assessing the carcinogenic potential of chemicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pang Yaqin; Li Wenxue; Ma Rulin
2008-11-01
To develop human cell models for assessing the carcinogenic potential of chemicals, we established transgenic human cell lines and tested the sensitivity of known carcinogens using a cell transformation assay. A retroviral vector encoding an oncogenic allele of H-Ras (HBER) or c-Myc (HBEM) was introduced into human bronchial epithelial cells (HBE) immortalized by SV40 large T (LT) antigen, leading to increased cell proliferation but failing to confer a transformed phenotype characterized by anchorage-independent cell growth and tumor formation of immunodeficient mice. When these pre-transformed cells were treated with nickel sulfate (NiSO{sub 4}), we found that it shortened the latency ofmore » malignant transformation at least by 19 wk in HBER cells or 16 wk in HBEM cells compared to vector control cells. Similarly, the latency of cell transformation was shorter by 15 wk in HBER cells or 9 wk in HBEM cells when cells were treated with benzo(a)pyrenediol epoxide (BPDE). HBER cells appeared to be more sensitive to TPA, NiSO{sub 4} or BPDE-induced cell transformation compared to human embryonic kidney cells expressing H-Ras (HEKR), implying that cell-type specificity is one of important factors determining the effectiveness of the assay. Using AFB{sub 1} and BaP as the representative pro-carcinogens, we also compared the efficiency of three different metabolic conditions in mediating cell transformation. Low dose chemical induction seems to be a prospective system used for metabolic activation of pro-carcinogens. Our findings provided direct evidence that a genetically modified human cell transformation model can be applied to the assessment of potent carcinogens.« less
The evaluation of basin water resources utilization efficiency based on Chaos projection mode
NASA Astrophysics Data System (ADS)
Guan, X.; Liang, S.; Meng, Y.; Wang, H.
2017-12-01
To promote the coordinated development of a healthy economy, society, and environment, and the sustainable development of water resources comprehensive utilization efficiency (WRCUE), this study investigated appropriate indicators using the trapezoidal fuzzy number method, and constructed an evaluation index system for WRCUE. A WRCUE evaluation model is applied to the areas in the Yellow River Basin in China using a genetic projection pursuit method. The comprehensive evaluation index system of water use efficiency includes 6 indicators: Water consumption per unit industrial value added, water consumption per unit GDP, eliminate the climate effect on agricultural water use efficiency, irrigation water consumption per unit area, domestic water use per capita and industrial water ratio. Then, multiple indexes in the index system are transformed to a comprehensive index by the combined model, which is used to represent the total water resources utilization efficiency. Results show that the WRCUE in Yellow River basin and the provinces have a great distance. WRCUE is well developed in Shanxi, Shandong, and Henan provinces, moderately developed in Shaanxi, Inner Mongolia, and Sichuan provinces, and poorly developed in the Ningxia Autonomous Region, Gansu Province, and Qinghai Province. According to the capacities of provinces, related measures are proposed.
Barley callus: a model system for bioengineering of starch in cereals.
Carciofi, Massimiliano; Blennow, Andreas; Nielsen, Morten M; Holm, Preben B; Hebelstrup, Kim H
2012-09-07
Starch is the most important source of calories for human nutrition and the majority of it is produced by cereal farming. Starch is also used as a renewable raw material in a range of industrial sectors. It can be chemically modified to introduce new physicochemical properties. In this way starch is adapted to a variety of specific end-uses. Recombinant DNA technologies offers an alternative to starch industrial processing. The plant biosynthetic pathway can be manipulated to design starches with novel structure and improved technological properties. In the future this may reduce or eliminate the economical and environmental costs of industrial modification. Recently, many advances have been achieved to clarify the genetic mechanism that controls starch biosynthesis. Several genes involved in the synthesis and modification of complex carbohydrates in many organisms have been identified and cloned. This knowledge suggests a number of strategies and a series of candidate genes for genetic transformation of crops to generate new types of starch-based polymers. However transformation of cereals is a slow process and there is no easy model system available to test the efficiency of candidate genes in planta. We explored the possibility to use transgenic barley callus generated from immature embryo for a fast test of transgenic modification strategies of starch biosynthesis. We found that this callus contains 4% (w/w dw) starch granules, which we could modify by generating fully transgenic calli by Agrobacterium-transformation. A Green Fluorescent Protein reporter protein tag was used to identify and propagate only fully transgenic callus explants. Around 1 - 1.5 g dry weight of fully transgenic callus could be produced in 9 weeks. Callus starch granules were smaller than endosperm starch granules and contained less amylose. Similarly the expression profile of starch biosynthesis genes were slightly different in callus compared with developing endosperm. In this study we have developed an easy and rapid in planta model system for starch bioengineering in cereals. We suggest that this method can be used as a time-efficient model system for fast screening of candidate genes for the generation of modified starch or new types of carbohydrate polymers.
Barley callus: a model system for bioengineering of starch in cereals
2012-01-01
Background Starch is the most important source of calories for human nutrition and the majority of it is produced by cereal farming. Starch is also used as a renewable raw material in a range of industrial sectors. It can be chemically modified to introduce new physicochemical properties. In this way starch is adapted to a variety of specific end-uses. Recombinant DNA technologies offers an alternative to starch industrial processing. The plant biosynthetic pathway can be manipulated to design starches with novel structure and improved technological properties. In the future this may reduce or eliminate the economical and environmental costs of industrial modification. Recently, many advances have been achieved to clarify the genetic mechanism that controls starch biosynthesis. Several genes involved in the synthesis and modification of complex carbohydrates in many organisms have been identified and cloned. This knowledge suggests a number of strategies and a series of candidate genes for genetic transformation of crops to generate new types of starch-based polymers. However transformation of cereals is a slow process and there is no easy model system available to test the efficiency of candidate genes in planta. Results We explored the possibility to use transgenic barley callus generated from immature embryo for a fast test of transgenic modification strategies of starch biosynthesis. We found that this callus contains 4% (w/w dw) starch granules, which we could modify by generating fully transgenic calli by Agrobacterium-transformation. A Green Fluorescent Protein reporter protein tag was used to identify and propagate only fully transgenic callus explants. Around 1 – 1.5 g dry weight of fully transgenic callus could be produced in 9 weeks. Callus starch granules were smaller than endosperm starch granules and contained less amylose. Similarly the expression profile of starch biosynthesis genes were slightly different in callus compared with developing endosperm. Conclusions In this study we have developed an easy and rapid in planta model system for starch bioengineering in cereals. We suggest that this method can be used as a time-efficient model system for fast screening of candidate genes for the generation of modified starch or new types of carbohydrate polymers. PMID:22958600
Application of Carbon Nanotubes for Plant Genetic Transformation
NASA Astrophysics Data System (ADS)
Burlaka, Olga M.; Pirko, Yaroslav V.; Yemets, Alla I.; Blume, Yaroslav B.
In this chapter, the current state of using carbon nanotubes (CNTs; single- and multi-walled) that have attracted great interdisciplinary interest in recent decades due to their peculiar properties for genetic transformation of prokaryotic and eukaryotic cells will be enlightened. The covalent and non-covalent surface chemistry for the CNT functionalization with focus on the potential applications of surface modifications in design of biocompatible CNTs will be discussed. The properties of CNTs that are favorable for biotechnological use and current status of technical approaches that allow the increase in biocompatibility and lower nanotoxicity of engineered CNTs will be described. Decisions proposed by non-covalent surface modification of CNTs will be discussed. Existing data concerning mechanisms of CNT cell entry and factors governing toxicity, cellular uptake, intracellular traffic, and biodegradation of CNTs along with bioavailability of molecular cargoes of loaded CNTs will be discussed. Eco-friendly production of water dispersions of biologically functionalized multi-walled and single-walled CNTs for use as nano-vehicles for the DNA delivery in plant genetic transformation of plants will be described. The background, advantages, and problems of using CNTs in developing of novel methods of genetic transformation, including plant genetic transformation, will be highlighted. Special attention will be paid to the limitations of conventional gene transfer techniques and promising features of CNT-based strategies having improved efficacy, reproducibility, and accuracy along with less time consumption. Issues impeding manipulation of CNTs such as entangled bundle formation, low water solubility, inert properties of pristine CNTs, etc., and ways to solve arising tasks will be overviewed.
Militello, Kevin T; Chang, Ming-Mei; Simon, Robert D; Lazatin, Justine C
2016-01-01
The ability of students to understand the relationship between genotype and phenotype, and the mechanisms by which genotypes and phenotypes can change is essential for students studying genetics. To this end, we have developed a four-week laboratory called Blue Genes, which is designed to help novice students discriminate between two mechanisms by which the genetic material can be altered: genetic transformation and gene mutation. In the first week of the laboratory, students incubate a plasmid DNA with calcium chloride-treated Escherichia coli JM109 cells and observe a phenotype change from ampicillin sensitive to ampicillin resistant and from white color to blue color on plates containing 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) and isopropyl β-D-thiogalactopyranoside (IPTG). Over the course of the next three weeks, students use a battery of approaches including plasmid DNA isolation experiments, restriction maps, and PCR to differentiate between mutation and transformation. The students ultimately come to the conclusion that the changes in phenotypes are due to genetic transformation and not mutation based on the evidence generated over the four-week period. Pre-laboratory tests and post-laboratory tests indicate that this set of exercises is successful in helping students differentiate between transformation and mutation. The laboratory is designed for underclassmen and is a good prerequisite for an apprentice-based research opportunity, although it is not designed as a class based research experience. Potential modifications and future directions of the laboratory based upon student experiences and assessment are presented. © 2015 The International Union of Biochemistry and Molecular Biology.
Highly Efficient Agrobacterium-Mediated Transformation of Wheat Via In Planta Inoculation
NASA Astrophysics Data System (ADS)
Risacher, Thierry; Craze, Melanie; Bowden, Sarah; Paul, Wyatt; Barsby, Tina
This chapter details a reproducible method for the transformation of spring wheat using Agrobacterium tumefaciens via the direct inoculation of bacteria into immature seeds in planta as described in patent WO 00/63398(1. Transformation efficiencies from 1 to 30% have been obtained and average efficiencies of at least 5% are routinely achieved. Regenerated plants are phenotypically normal with 30-50% of transformation events carrying introduced genes at single insertion sites, a higher rate than is typically reported for transgenic plants produced using biolistic transformation methods.
Samuel A. Cushman
2014-01-01
This is a time of explosive growth in the fields of evolutionary and population genetics, with whole genome sequencing and bioinformatics driving a transformative paradigm shift (Morozova and Marra, 2008). At the same time, advances in epigenetics are thoroughly transforming our understanding of evolutionary processes and their implications for populations, species and...
Bashi, Zafer Dallal; Khachatourians, George; Hegedus, Dwayne Daniel
2010-01-01
Fungal hyphae--and in some cases, spores--are multi-nucleate. During genetic transformation of these spores or mycelia, only one nucleus generally receives the transferred T-DNA generating heterokaryotic colonies. Characterization of genetic changes, such as the effects of gene disruption in the transformants, requires purified homokaryotic lines. Hyphal tip transfer has conventionally been used to isolate homokaryons. We developed an alternative method for purification of fungal homokaryons from transformed heterokaryotic lines of Sclerotinia sclerotiorum. Ultrasound pulses were used to generate bi-septate, unicellular hyphal fragments that regenerate under selection to produce homokaryotic lines that can be easily identified using colony PCR. This technique facilitates the purification of transformed lines, which allows for routine genome manipulation, and should be adaptable for other filamentous fungi.
Carretta, Marco; de Boer, Bauke; Jaques, Jenny; Antonelli, Antonella; Horton, Sarah J; Yuan, Huipin; de Bruijn, Joost D; Groen, Richard W J; Vellenga, Edo; Schuringa, Jan Jacob
2017-07-01
Recently, NOD-SCID IL2Rγ -/- (NSG) mice were implanted with human mesenchymal stromal cells (MSCs) in the presence of ceramic scaffolds or Matrigel to mimic the human bone marrow (BM) microenvironment. This approach allowed the engraftment of leukemic samples that failed to engraft in NSG mice without humanized niches and resulted in a better preservation of leukemic stem cell self-renewal properties. To further improve our humanized niche scaffold model, we genetically engineered human MSCs to secrete human interleukin-3 (IL-3) and thrombopoietin (TPO). In vitro, these IL-3- and TPO-producing MSCs were superior in expanding human cord blood (CB) CD34 + hematopoietic stem/progenitor cells. MLL-AF9-transduced CB CD34 + cells could be transformed efficiently along myeloid or lymphoid lineages on IL-3- and TPO-producing MSCs. In vivo, these genetically engineered MSCs maintained their ability to differentiate into bone, adipocytes, and other stromal components. Upon transplantation of MLL-AF9-transduced CB CD34 + cells, acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) developed in engineered scaffolds, in which a significantly higher percentage of myeloid clones was observed in the mouse compartments compared with previous models. Engraftment of primary AML, B-cell ALL, and biphenotypic acute leukemia (BAL) patient samples was also evaluated, and all patient samples could engraft efficiently; the myeloid compartment of the BAL samples was better preserved in the human cytokine scaffold model. In conclusion, we show that we can genetically engineer the ectopic human BM microenvironment in a humanized scaffold xenograft model. This approach will be useful for functional study of the importance of niche factors in normal and malignant human hematopoiesis. Copyright © 2017 ISEH - International Society for Experimental Hematology. All rights reserved.
Goyal, Pooja; Kachhwaha, Sumita; Kothari, S L
2012-04-01
An efficient and reproducible protocol has been developed for in vitro propagation of Pithecellobium dulce (Roxb.) Benth (a multipurpose leguminous tree) from field grown nodal segments (axillary bud). Shoot bud induction occurred from nodal explants of 15-years-old tree on Murashige and Skoog (MS) basal medium supplemented with 4.4 μM 6-benzyladenine (BA) and multiplication was achieved on MS medium supplemented with 4.4 μM BA + 0.73 μM phenylacetic acid (PAA) i.e. up to 7 shoot buds in the period of 5-6 weeks. Addition of adenine sulphate (AdS) to this medium further enhanced the number of shoot buds up to 10. Proliferating shoot cultures were established by repeatedly subculturing primary culture on fresh medium (MS + 4.4 μM BA + 0.73 μM PAA) after every 25 days. In vitro rooting was achieved on MS medium supplemented with 2.46 μM Indole-3-butyric acid (IBA) + 41.63 μM activated charcoal (AC). The micropropagated shoots with well developed roots were acclimatized in green house in pots containing sand, soil and manure (1:1:1). Genetic stability of micropropagated clones was evaluated using Random amplified polymorphic DNA (RAPD) and Inter simple sequence repeat (ISSR) markers. The amplification products were monomorphic in micropropagated plants and similar to those of mother plant. No polymorphism was detected revealing the genetic uniformity of micropropagated plants. This is the first report of an efficient protocol for regeneration of P. dulce through organogenesis, which can be used for further genetic transformation and pharmaceutical purposes.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
... Intent to Negotiate Proposed Rule on Energy Efficiency Standards for Distribution Transformers AGENCY... transformers. The purpose of the subcommittee will be to discuss and, if possible, reach consensus on a proposed rule for the energy efficiency of distribution transformers, as authorized by the Energy Policy...
Novel insights in genetic transformation of the probiotic yeast Saccharomyces boulardii.
Douradinha, Bruno; Reis, Viviane C B; Rogers, Matthew B; Torres, Fernando A G; Evans, Jared D; Marques, Ernesto T A
2014-01-01
Saccharomyces boulardii (S. boulardii) is a probiotic yeast related to Saccharomyces cerevisiae (S. cerevisiae) but with distinct genetic, taxonomic and metabolic properties. S. cerevisiae has been used extensively in biotechnological applications. Currently, many strains are available, and multiple genetic tools have been developed, which allow the expression of several exogenous proteins of interest with applications in the fields of medicine, biofuels, the food industry, and scientific research, among others. Although S. boulardii has been widely studied due to its probiotic properties against several gastrointestinal tract disorders, very few studies addressed the use of this yeast as a vector for expression of foreign genes of interest with biotechnological applications. Here we show that, despite the similarity of the two yeasts, not all genetic tools used in S. cerevisiae can be applied in S. boulardii. While transformation of the latter could be obtained using a commercial kit developed for the former, consequent screening of successful transformants had to be optimized. We also show that several genes frequently used in genetic manipulation of S. cerevisiae (e.g., promoters and resistance markers) are present in S. boulardii. Sequencing revealed a high rate of homology (> 96%) between the orthologs of the two yeasts. However, we also observed some of them are not eligible to be targeted for transformation of S. boulardii. This work has important applications toward the potential of this probiotic yeast as an expression system for genes of interest.
Rogalski, Marcelo; do Nascimento Vieira, Leila; Fraga, Hugo P.; Guerra, Miguel P.
2015-01-01
During the evolution of the eukaryotic cell, plastids, and mitochondria arose from an endosymbiotic process, which determined the presence of three genetic compartments into the incipient plant cell. After that, these three genetic materials from host and symbiont suffered several rearrangements, bringing on a complex interaction between nuclear and organellar gene products. Nowadays, plastids harbor a small genome with ∼130 genes in a 100–220 kb sequence in higher plants. Plastid genes are mostly highly conserved between plant species, being useful for phylogenetic analysis in higher taxa. However, intergenic spacers have a relatively higher mutation rate and are important markers to phylogeographical and plant population genetics analyses. The predominant uniparental inheritance of plastids is like a highly desirable feature for phylogeny studies. Moreover, the gene content and genome rearrangements are efficient tools to capture and understand evolutionary events between different plant species. Currently, genetic engineering of the plastid genome (plastome) offers a number of attractive advantages as high-level of foreign protein expression, marker gene excision, gene expression in operon and transgene containment because of maternal inheritance of plastid genome in most crops. Therefore, plastid genome can be used for adding new characteristics related to synthesis of metabolic compounds, biopharmaceutical, and tolerance to biotic and abiotic stresses. Here, we describe the importance and applications of plastid genome as tools for genetic and evolutionary studies, and plastid transformation focusing on increasing the performance of horticultural species in the field. PMID:26284102
Rogalski, Marcelo; do Nascimento Vieira, Leila; Fraga, Hugo P; Guerra, Miguel P
2015-01-01
During the evolution of the eukaryotic cell, plastids, and mitochondria arose from an endosymbiotic process, which determined the presence of three genetic compartments into the incipient plant cell. After that, these three genetic materials from host and symbiont suffered several rearrangements, bringing on a complex interaction between nuclear and organellar gene products. Nowadays, plastids harbor a small genome with ∼130 genes in a 100-220 kb sequence in higher plants. Plastid genes are mostly highly conserved between plant species, being useful for phylogenetic analysis in higher taxa. However, intergenic spacers have a relatively higher mutation rate and are important markers to phylogeographical and plant population genetics analyses. The predominant uniparental inheritance of plastids is like a highly desirable feature for phylogeny studies. Moreover, the gene content and genome rearrangements are efficient tools to capture and understand evolutionary events between different plant species. Currently, genetic engineering of the plastid genome (plastome) offers a number of attractive advantages as high-level of foreign protein expression, marker gene excision, gene expression in operon and transgene containment because of maternal inheritance of plastid genome in most crops. Therefore, plastid genome can be used for adding new characteristics related to synthesis of metabolic compounds, biopharmaceutical, and tolerance to biotic and abiotic stresses. Here, we describe the importance and applications of plastid genome as tools for genetic and evolutionary studies, and plastid transformation focusing on increasing the performance of horticultural species in the field.
Moghaieb, Reda E A; Sharaf, Ahmed N; Soliman, Mohamed H; El-Arabi, Nagwa I; Momtaz, Osama A
2014-01-01
We present an efficient method for the production of transgenic salt tolerant hexaploid wheat plants expressing the Arabidopsis AtNHX1 gene. Wheat mature zygotic embryos were isolated from two hexaploid bread wheat (Triticum aestivum) cultivars (namely: Gemmeiza 9 and Gemmeiza 10) and were transformed with the A. tumefaciens LBA4404 harboring the pBI-121 vector containing the AtNHX1 gene. Transgenic wheat lines that express the gus intron was obtained and used as control. The results confirmed that npt-II gene could be transmitted and expressed in the T2 following 3:1 Mendelian segregation while the control plant couldn't. The data indicate that, the AtNHX1 gene was integrated in a stable manner into the wheat genome and the corresponding transcripts were expressed. The transformation efficiency was 5.7 and 7.5% for cultivars Gemmeiza 10 and Gemmeiza 9, respectively. A greenhouse experiment was conducted to investigate the effect of AtNHX1 gene in wheat salt tolerance. The transgenic wheat lines could maintain high growth rate under salt stress condition (350 mM NaCl) while the control plant couldn't. The results confirmed that Na(+)/H(+) antiporter gene AtNHX1 increased salt tolerance by increasing Na(+) accumulation and keeping K+/Na(+) balance. Thus, transgenic plants showed high tolerance to salt stress and can be considered as a new genetic resource in breeding programs.
Empty tracks optimization based on Z-Map model
NASA Astrophysics Data System (ADS)
Liu, Le; Yan, Guangrong; Wang, Zaijun; Zang, Genao
2017-12-01
For parts with many features, there are more empty tracks during machining. If these tracks are not optimized, the machining efficiency will be seriously affected. In this paper, the characteristics of the empty tracks are studied in detail. Combining with the existing optimization algorithm, a new tracks optimization method based on Z-Map model is proposed. In this method, the tool tracks are divided into the unit processing section, and then the Z-Map model simulation technique is used to analyze the order constraint between the unit segments. The empty stroke optimization problem is transformed into the TSP with sequential constraints, and then through the genetic algorithm solves the established TSP problem. This kind of optimization method can not only optimize the simple structural parts, but also optimize the complex structural parts, so as to effectively plan the empty tracks and greatly improve the processing efficiency.
Studies of genetic transformation of higher plants using irradiated pollen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chyi, Y.S.
Pandey has reported extensively on an unusual genetic phenomenon he called egg transformation. When compatible pollen was treated wth genetically lethal dosage of ..gamma..-radiation (100,000 rad), and used as mentor pollen to overcome selfincompatibility of several Nicotiana species, some genetic characters were found to be transferred from the radiation killed pollen to nonhybrid progeny. Observed transformants were fertile, cytogenetically normal, and had maternal phenotypes except for those specific traits transferred from the donors. Heavily irradiated pollen was believed to discharge its radiation-fragmented DNA (chromatin) into the embryo sac and bring about the transformation of the egg. The frequency of genemore » transfer was reported to be over 50%, and happened for all three characters Pandey studied - self incompatible specificities, flower color, and pollen color. Plant species studied were tomato, pea, apple, rapeseed, and Nicotiana species, including various stocks from Dr. Pandey. Treatments included pollinations with soley irradiated donor pollen, with a mixture of irradiated donor and normal self pollen, with a mixture of normal donor and self pollen, and double pollinations with irradiated donor pollen and normal self pollen, using different time intervals to separate the two pollinations. A total of 6210 pollinations were made, and 17,522 seedlings representing 87,750 potential transformational events were screened. In no case was an unambiguous transformant recovered. This research was unable to confirm or expand upon the findings of Dr. Pandey, or elucidate the mechanisms underlying such phenomena. Alternative explanations for Pandey's data were postulated. This approach to gene transfer by using irradiated pollen appears to be of little practical use to plant breeders.« less
Lipscomb, Gina L.; Conway, Jonathan M.; Blumer-Schuette, Sara E.; Kelly, Robert M.
2016-01-01
ABSTRACT Caldicellulosiruptor bescii, an anaerobic Gram-positive bacterium with an optimal growth temperature of 78°C, is the most thermophilic cellulose degrader known. It is of great biotechnological interest, as it efficiently deconstructs nonpretreated lignocellulosic plant biomass. Currently, its genetic manipulation relies on a mutant uracil auxotrophic background strain that contains a random deletion in the pyrF genome region. The pyrF gene serves as a genetic marker to select for uracil prototrophy, and it can also be counterselected for loss via resistance to the compound 5-fluoroorotic acid (5-FOA). To expand the C. bescii genetic tool kit, kanamycin resistance was developed as a selection for genetic manipulation. A codon-optimized version of the highly thermostable kanamycin resistance gene (named Cbhtk) allowed the use of kanamycin selection to obtain transformants of either replicating or integrating vector constructs in C. bescii. These strains showed resistance to kanamycin at concentrations >50 μg · ml−1, whereas wild-type C. bescii was sensitive to kanamycin at 10 μg · ml−1. In addition, placement of the Cbhtk marker between homologous recombination regions in an integrating vector allowed direct selection of a chromosomal mutation using both kanamycin and 5-FOA. Furthermore, the use of kanamycin selection enabled the targeted deletion of the pyrE gene in wild-type C. bescii, generating a uracil auxotrophic genetic background strain resistant to 5-FOA. The pyrE gene functioned as a counterselectable marker, like pyrF, and was used together with Cbhtk in the ΔpyrE background strain to delete genes encoding lactate dehydrogenase and the CbeI restriction enzyme. IMPORTANCE Caldicellulosiruptor bescii is a thermophilic anaerobic bacterium with an optimal growth temperature of 78°C, and it has the ability to efficiently deconstruct nonpretreated lignocellulosic plant biomass. It is, therefore, of biotechnological interest for genetic engineering applications geared toward biofuel production. The current genetic system used with C. bescii is based upon only a single selection strategy, and this uses the gene involved in a primary biosynthetic pathway. There are many advantages with an additional genetic selection using an antibiotic. This presents a challenge for thermophilic microorganisms, as only a limited number of antibiotics are stable above 50°C, and a thermostable version of the enzyme conferring antibiotic resistance must be obtained. In this work, we have developed a selection system for C. bescii using the antibiotic kanamycin and have shown that, in combination with the biosynthetic gene marker, it can be used to efficiently delete genes in this organism. PMID:27208106
Bustamante, Paula; Covarrubias, Paulo C; Levicán, Gloria; Katz, Assaf; Tapia, Pablo; Holmes, David; Quatrini, Raquel; Orellana, Omar
2012-01-01
Integrative conjugative elements (ICEs) are self-transferred mobile genetic elements that contribute to horizontal gene transfer. An ICE (ICEAfe1) was identified in the genome of Acidithiobacillus ferrooxidans ATCC 23270. Excision of the element and expression of relevant genes under normal and DNA-damaging growth conditions was analyzed. Bioinformatic tools and DNA amplification methods were used to identify and to assess the excision and expression of genes related to the mobility of the element. Both basal and mitomycin C-inducible excision as well as expression and induction of the genes for integration/excision are demonstrated, suggesting that ICEAfe1 is an actively excising SOS-regulated mobile genetic element. The presence of a complete set of genes encoding self-transfer functions that are induced in response to DNA damage caused by mitomycin C additionally suggests that this element is capable of conjugative transfer to suitable recipient strains. Transfer of ICEAfe1 may provide selective advantages to other acidophiles in this ecological niche through dissemination of gene clusters expressing transfer RNAs, CRISPRs, and exopolysaccharide biosynthesis enzymes, probably by modification of translation efficiency, resistance to bacteriophage infection and biofilm formation, respectively. These data open novel avenues of research on conjugative transformation of biotechnologically relevant microorganisms recalcitrant to genetic manipulation. Copyright © 2013 S. Karger AG, Basel.
Simple genetic transformation assay for rapid diagnosis of Moraxella osloensis.
Juni, E
1974-01-01
A genetic transformation assay for unequivocal identification of strains of Moraxella osloensis is described. In this assay a stable tryptophan auxotroph is transformed to prototrophy by deoxyribonucleic acid (DNA) samples from other strains of M. osloensis but not by DNA samples from unrelated bacteria. The test is simple to perform and definitive results can be obtained in less than 24 h. The procedure, which is suitable for routine diagnosis in a clinical laboratory, involves a rapid method for preparation of crude transforming DNA from small quantities of bacterial cells and permits simultaneous examination of large numbers of isolated cultures. The assay was shown to correctly identify 27 strains previously classified as M. osloensis. Forty-five other gram-negative, oxidase-positive, nonmotile coccobacilli, which might be confused with M. osloensis unless subject to more extensive testing, were shown to be unrelated genetically to M. osloensis. The transformation assay clearly distinguishes M. osloensis from Acinetobacter. Although most strains of M. osloensis are nonfastidious, being able to grow in a mineral medium supplemented with a single organic carbon source, one of the strains tested was only able to grow on fairly complex media and could not be transformed to grow on simple media. Inability to alkalize Simmons citrate agar was shown not to be characteristic of all strains of M. osloensis.
Simple Genetic Transformation Assay for Rapid Diagnosis of Moraxella osloensis
Juni, Elliot
1974-01-01
A genetic transformation assay for unequivocal identification of strains of Moraxella osloensis is described. In this assay a stable tryptophan auxotroph is transformed to prototrophy by deoxyribonucleic acid (DNA) samples from other strains of M. osloensis but not by DNA samples from unrelated bacteria. The test is simple to perform and definitive results can be obtained in less than 24 h. The procedure, which is suitable for routine diagnosis in a clinical laboratory, involves a rapid method for preparation of crude transforming DNA from small quantities of bacterial cells and permits simultaneous examination of large numbers of isolated cultures. The assay was shown to correctly identify 27 strains previously classified as M. osloensis. Forty-five other gram-negative, oxidase-positive, nonmotile coccobacilli, which might be confused with M. osloensis unless subject to more extensive testing, were shown to be unrelated genetically to M. osloensis. The transformation assay clearly distinguishes M. osloensis from Acinetobacter. Although most strains of M. osloensis are nonfastidious, being able to grow in a mineral medium supplemented with a single organic carbon source, one of the strains tested was only able to grow on fairly complex media and could not be transformed to grow on simple media. Inability to alkalize Simmons citrate agar was shown not to be characteristic of all strains of M. osloensis. Images PMID:4589126
Genetic Profile of Adenoid Cystic Carcinomas (ACC) with High-Grade Transformation versus Solid Type
Costa, Ana Flávia; Altemani, Albina; Vékony, Hedy; Bloemena, Elisabeth; Fresno, Florentino; Suárez, Carlos; Llorente, José Luis; Hermsen, Mario
2010-01-01
Background: ACC can occasionally undergo dedifferentiation also referred to as high-grade transformation (ACC-HGT). However, ACC-HGT can also undergo transformation to adenocarcinomas which are not poorly differentiated. ACC-HGT is generally considered to be an aggressive variant of ACC, even more than solid ACC. This study was aimed to describe the genetic changes of ACC-HGT in relation to clinico-pathological features and to compare results to solid ACC. Methods: Genome-wide DNA copy number changes were analyzed by microarray CGH in ACC-HGT, 4 with transformation into moderately differentiated adenocarcinoma (MDA) and two into poorly differentiated carcinoma (PDC), 5 solid ACC. In addition, Ki-67 index and p53 immunopositivity was assessed. Results: ACC-HGT carried fewer copy number changes compared to solid ACC. Two ACC-HGT cases harboured a breakpoint at 6q23, near the cMYB oncogene. The complexity of the genomic profile concurred with the clinical course of the patient. Among the ACC-HGT, p53 positivity significantly increased from the conventional to the transformed (both MDA and PDC) component. Conclusion: ACC-HGT may not necessarily reflect a more advanced stage of tumor progression, but rather a transformation to another histological form in which the poorly differentiated forms (PDC) presents a genetic complexity similar to the solid ACC. PMID:20978318
Genetic profile of adenoid cystic carcinomas (ACC) with high-grade transformation versus solid type.
Costa, Ana Flávia; Altemani, Albina; Vékony, Hedy; Bloemena, Elisabeth; Fresno, Florentino; Suárez, Carlos; Llorente, José Luis; Hermsen, Mario
2010-01-01
ACC can occasionally undergo dedifferentiation also referred to as high-grade transformation (ACC-HGT). However, ACC-HGT can also undergo transformation to adenocarcinomas which are not poorly differentiated. ACC-HGT is generally considered to be an aggressive variant of ACC, even more than solid ACC. This study was aimed to describe the genetic changes of ACC-HGT in relation to clinico-pathological features and to compare results to solid ACC. genome-wide DNA copy number changes were analyzed by microarray CGH in ACC-HGT, 4 with transformation into moderately differentiated adenocarcinoma (MDA) and two into poorly differentiated carcinoma (PDC), 5 solid ACC. In addition, Ki-67 index and p53 immunopositivity was assessed. ACC-HGT carried fewer copy number changes compared to solid ACC. Two ACC-HGT cases harboured a breakpoint at 6q23, near the cMYB oncogene. The complexity of the genomic profile concurred with the clinical course of the patient. Among the ACC-HGT, p53 positivity significantly increased from the conventional to the transformed (both MDA and PDC) component. ACC-HGT may not necessarily reflect a more advanced stage of tumor progression, but rather a transformation to another histological form in which the poorly differentiated forms (PDC) presents a genetic complexity similar to the solid ACC.
Genetic profile of adenoid cystic carcinomas (ACC) with high-grade transformation versus solid type.
Costa, Ana Flávia; Altemani, Albina; Vékony, Hedy; Bloemena, Elisabeth; Fresno, Florentino; Suárez, Carlos; Llorente, José Luis; Hermsen, Mario
2011-08-01
ACC can occasionally undergo dedifferentiation also referred to as high-grade transformation (ACC-HGT). However, ACC-HGT can also undergo transformation to adenocarcinomas which are not poorly differentiated. ACC-HGT is generally considered to be an aggressive variant of ACC, even more than solid ACC. This study was aimed to describe the genetic changes of ACC-HGT in relation to clinico-pathological features, and to compare results to solid ACC. Genome wide DNA copy number changes were analyzed by microarray CGH in ACC-HGT, four with transformation into moderately differentiated adenocarcinoma (MDA) and two into poorly differentiated carcinoma (PDC), and five solid ACC. In addition, Ki67 index and p53 immunopositivity was assessed. ACC-HGT carried fewer copy number changes compared to solid ACC. Two ACC-HGT cases harboured a breakpoint at 6q23, near the cMYB oncogene. The complexity of the genomic profile concurred with the clinical course of the patient. Among the ACC-HGT, p53 positivity significantly increased from the conventional to the transformed (both MDA and PDC) component. ACC-HGT may not necessarily reflect a more advanced stage of tumor progression, but rather a transformation to another histological form in which the poorly differentiated forms (PDC) presents a genetic complexity similar to the solid ACC.
Chhapekar, Sushil; Raghavendrarao, Sanagala; Pavan, Gadamchetty; Ramakrishna, Chopperla; Singh, Vivek Kumar; Phanindra, Mullapudi Lakshmi Venkata; Dhandapani, Gurusamy; Sreevathsa, Rohini; Ananda Kumar, Polumetla
2015-05-01
Highly tolerant herbicide-resistant transgenic rice was developed by expressing codon-modified synthetic CP4--EPSPS. The transformants could tolerate up to 1% commercial glyphosate and has the potential to be used for DSR (direct-seeded rice). Weed infestation is one of the major biotic stress factors that is responsible for yield loss in direct-seeded rice (DSR). Herbicide-resistant rice has potential to improve the efficiency of weed management under DSR. Hence, the popular indica rice cultivar IR64, was genetically modified using Agrobacterium-mediated transformation with a codon-optimized CP4-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene, with N-terminal chloroplast targeting peptide from Petunia hybrida. Integration of the transgenes in the selected rice plants was confirmed by Southern hybridization and expression by Northern and herbicide tolerance assays. Transgenic plants showed EPSPS enzyme activity even at high concentrations of glyphosate, compared to untransformed control plants. T0, T1 and T2 lines were tested by herbicide bioassay and it was confirmed that the transgenic rice could tolerate up to 1% of commercial Roundup, which is five times more in dose used to kill weeds under field condition. All together, the transgenic rice plants developed in the present study could be used efficiently to overcome weed menace.
Genetic Transformation of Bacteria.
ERIC Educational Resources Information Center
Moss, Robert.
1991-01-01
An activity in which students transform an ampicillin-sensitive strain of E. coli with a plasmid containing a gene for ampicillin resistance is described. The procedure for the preparation of competent cells and the transformation of competent E. coli is provided. (KR)
USDA-ARS?s Scientific Manuscript database
The biolistic method is reliable for delivering genes of interest into various species. Low transformation efficiency has been a limiting factor for its application. The DNA coating agent protamine was shown to improve transformation efficiency in rice, while a reduction of plasmid DNA in the bomb...
Developing a reversible rapid coordinate transformation model for the cylindrical projection
NASA Astrophysics Data System (ADS)
Ye, Si-jing; Yan, Tai-lai; Yue, Yan-li; Lin, Wei-yan; Li, Lin; Yao, Xiao-chuang; Mu, Qin-yun; Li, Yong-qin; Zhu, De-hai
2016-04-01
Numerical models are widely used for coordinate transformations. However, in most numerical models, polynomials are generated to approximate "true" geographic coordinates or plane coordinates, and one polynomial is hard to make simultaneously appropriate for both forward and inverse transformations. As there is a transformation rule between geographic coordinates and plane coordinates, how accurate and efficient is the calculation of the coordinate transformation if we construct polynomials to approximate the transformation rule instead of "true" coordinates? In addition, is it preferable to compare models using such polynomials with traditional numerical models with even higher exponents? Focusing on cylindrical projection, this paper reports on a grid-based rapid numerical transformation model - a linear rule approximation model (LRA-model) that constructs linear polynomials to approximate the transformation rule and uses a graticule to alleviate error propagation. Our experiments on cylindrical projection transformation between the WGS 84 Geographic Coordinate System (EPSG 4326) and the WGS 84 UTM ZONE 50N Plane Coordinate System (EPSG 32650) with simulated data demonstrate that the LRA-model exhibits high efficiency, high accuracy, and high stability; is simple and easy to use for both forward and inverse transformations; and can be applied to the transformation of a large amount of data with a requirement of high calculation efficiency. Furthermore, the LRA-model exhibits advantages in terms of calculation efficiency, accuracy and stability for coordinate transformations, compared to the widely used hyperbolic transformation model.
Shen, Qi; Ma, Junwei; Fu, Jianrong; Zhao, Yuhua
2014-01-01
A genetic modification scheme was designed for Aspergillus oryzae A-4, a natural cellulosic lipids producer, to enhance its lipid production from biomass by putting the spotlight on improving cellulase secretion. Four cellulase genes were separately expressed in A-4 under the control of hlyA promoter, with the help of the successful development of a chromosomal genetic manipulation system. Comparison of cellulase activities of PCR-positive transformants showed that these transformants integrated with celA gene and with celC gene had significantly (p<0.05) higher average FPAase activities than those strains integrated with celB gene and with celD gene. Through the assessment of cellulosic lipids accumulating abilities, celA transformant A2-2 and celC transformant D1-B1 were isolated as promising candidates, which could yield 101%–133% and 35.22%–59.57% higher amount of lipids than the reference strain A-4 (WT) under submerged (SmF) conditions and solid-state (SSF) conditions, respectively. Variability in metabolism associated to the introduction of cellulase gene in A2-2 and D1-B1 was subsequently investigated. It was noted that cellulase expression repressed biomass formation but enhanced lipid accumulation; whereas the inhibitory effect on cell growth would be shielded during cellulosic lipids production owing to the essential role of cellulase in substrate utilization. Different metabolic profiles also existed between A2-2 and D1-B1, which could be attributed to not only different transgene but also biological impacts of different integration. Overall, both simultaneous saccharification and lipid accumulation were enhanced in A2-2 and D1-B1, resulting in efficient conversion of cellulose into lipids. A regulation of cellulase secretion in natural cellulosic lipids producers could be a possible strategy to enhance its lipid production from lignocellulosic biomass. PMID:25251435
Lin, Hui; Wang, Qun; Shen, Qi; Ma, Junwei; Fu, Jianrong; Zhao, Yuhua
2014-01-01
A genetic modification scheme was designed for Aspergillus oryzae A-4, a natural cellulosic lipids producer, to enhance its lipid production from biomass by putting the spotlight on improving cellulase secretion. Four cellulase genes were separately expressed in A-4 under the control of hlyA promoter, with the help of the successful development of a chromosomal genetic manipulation system. Comparison of cellulase activities of PCR-positive transformants showed that these transformants integrated with celA gene and with celC gene had significantly (p<0.05) higher average FPAase activities than those strains integrated with celB gene and with celD gene. Through the assessment of cellulosic lipids accumulating abilities, celA transformant A2-2 and celC transformant D1-B1 were isolated as promising candidates, which could yield 101%-133% and 35.22%-59.57% higher amount of lipids than the reference strain A-4 (WT) under submerged (SmF) conditions and solid-state (SSF) conditions, respectively. Variability in metabolism associated to the introduction of cellulase gene in A2-2 and D1-B1 was subsequently investigated. It was noted that cellulase expression repressed biomass formation but enhanced lipid accumulation; whereas the inhibitory effect on cell growth would be shielded during cellulosic lipids production owing to the essential role of cellulase in substrate utilization. Different metabolic profiles also existed between A2-2 and D1-B1, which could be attributed to not only different transgene but also biological impacts of different integration. Overall, both simultaneous saccharification and lipid accumulation were enhanced in A2-2 and D1-B1, resulting in efficient conversion of cellulose into lipids. A regulation of cellulase secretion in natural cellulosic lipids producers could be a possible strategy to enhance its lipid production from lignocellulosic biomass.
Utsumi, Yoshinori; Utsumi, Chikako; Tanaka, Maho; Ha, Vu The; Matsui, Akihiro; Takahashi, Satoshi; Seki, Motoaki
2017-01-01
Agrobacterium-mediated transformation is an important research tool for the genetic improvement of cassava. The induction of friable embryogenic callus (FEC) is considered as a key step in cassava transformation. In the present study, the media composition was optimized for enhancing the FEC induction, and the effect of the optimized medium on gene expression was evaluated. In relative comparison to MS medium, results demonstrated that using a medium with reducing nutrition (a 10-fold less concentration of nitrogen, potassium, and phosphate), the increased amount of vitamin B1 (10 mg/L) and the use of picrolam led to reprogram non-FEC to FEC. Gene expression analyses revealed that FEC on modified media increased the expression of genes related to the regulation of polysaccharide biosynthesis and breakdown of cell wall components in comparison to FEC on normal CIM media, whereas the gene expression associated with energy flux was not dramatically altered. It is hypothesized that we reprogram non-FEC to FEC under low nitrogen, potassium and phosphate and high vitamin B1. These findings were more effective in inducing FEC formation than the previous protocol. It might contribute to development of an efficient transformation strategy in cassava. PMID:28806727
Efficient transformer study: Analysis of manufacture and utility data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkes, Klaehn; Cordaro, Joe; McIntosh, John
Distribution transformers convert power from the distribution system voltage to the end-customer voltage, which consists of residences, businesses, distributed generation, campus systems, and manufacturing facilities. Amorphous metal distribution transformers (AMDT) are also more expensive and heavier than conventional silicon steel distribution transformers. This and the difficulty to measure the benefit from energy efficiency and low awareness of the technology have hindered the adoption of AMDT. This report presents the cost savings for installing AMDT and the amount of energy saved based on the improved efficiency.
A Droplet Microfluidic Platform for Automating Genetic Engineering.
Gach, Philip C; Shih, Steve C C; Sustarich, Jess; Keasling, Jay D; Hillson, Nathan J; Adams, Paul D; Singh, Anup K
2016-05-20
We present a water-in-oil droplet microfluidic platform for transformation, culture and expression of recombinant proteins in multiple host organisms including bacteria, yeast and fungi. The platform consists of a hybrid digital microfluidic/channel-based droplet chip with integrated temperature control to allow complete automation and integration of plasmid addition, heat-shock transformation, addition of selection medium, culture, and protein expression. The microfluidic format permitted significant reduction in consumption (100-fold) of expensive reagents such as DNA and enzymes compared to the benchtop method. The chip contains a channel to continuously replenish oil to the culture chamber to provide a fresh supply of oxygen to the cells for long-term (∼5 days) cell culture. The flow channel also replenished oil lost to evaporation and increased the number of droplets that could be processed and cultured. The platform was validated by transforming several plasmids into Escherichia coli including plasmids containing genes for fluorescent proteins GFP, BFP and RFP; plasmids with selectable markers for ampicillin or kanamycin resistance; and a Golden Gate DNA assembly reaction. We also demonstrate the applicability of this platform for transformation in widely used eukaryotic organisms such as Saccharomyces cerevisiae and Aspergillus niger. Duration and temperatures of the microfluidic heat-shock procedures were optimized to yield transformation efficiencies comparable to those obtained by benchtop methods with a throughput up to 6 droplets/min. The proposed platform offers potential for automation of molecular biology experiments significantly reducing cost, time and variability while improving throughput.
NASA Astrophysics Data System (ADS)
Florea, Michael; Reeve, Benjamin; Abbott, James; Freemont, Paul S.; Ellis, Tom
2016-03-01
Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-15
... for Corn Genetically Engineered To Produce an Enzyme That Facilitates Ethanol Production AGENCY... event 3272, which has been genetically engineered to produce a microbial enzyme that facilitates ethanol... transformation event 3272, which has been genetically engineered to produce a microbial enzyme that facilitates...
Seamless Insert-Plasmid Assembly at High Efficiency and Low Cost
Benoit, Roger M.; Ostermeier, Christian; Geiser, Martin; Li, Julia Su Zhou; Widmer, Hans; Auer, Manfred
2016-01-01
Seamless cloning methods, such as co-transformation cloning, sequence- and ligation-independent cloning (SLIC) or the Gibson assembly, are essential tools for the precise construction of plasmids. The efficiency of co-transformation cloning is however low and the Gibson assembly reagents are expensive. With the aim to improve the robustness of seamless cloning experiments while keeping costs low, we examined the importance of complementary single-stranded DNA ends for co-transformation cloning and the influence of single-stranded gaps in circular plasmids on SLIC cloning efficiency. Most importantly, our data show that single-stranded gaps in double-stranded plasmids, which occur in typical SLIC protocols, can drastically decrease the efficiency at which the DNA transforms competent E. coli bacteria. Accordingly, filling-in of single-stranded gaps using DNA polymerase resulted in increased transformation efficiency. Ligation of the remaining nicks did not lead to a further increase in transformation efficiency. These findings demonstrate that highly efficient insert-plasmid assembly can be achieved by using only T5 exonuclease and Phusion DNA polymerase, without Taq DNA ligase from the original Gibson protocol, which significantly reduces the cost of the reactions. We successfully used this modified Gibson assembly protocol with two short insert-plasmid overlap regions, each counting only 15 nucleotides. PMID:27073895
Haque, Emdadul; Abe, Fumitaka; Mori, Masahiko; Nanjo, Yohei; Komatsu, Setsuko; Oyanagi, Atsushi; Kawaguchi, Kentaro
2014-11-04
Once candidate genes are available, the application of genetic transformation plays a major part to study their function in plants for adaptation to respective environmental stresses, including waterlogging (WL). The introduction of stress-inducible genes into wheat remains difficult because of low transformation and plant regeneration efficiencies and expression variability and instability. Earlier, we found two cDNAs encoding WL stress-responsive wheat pathogenesis-related proteins 1.2 ( TaBWPR-1.2 ), TaBWPR-1.2#2 and TaBWPR-1.2# 13. Using microprojectile bombardment, both cDNAs were introduced into "Bobwhite". Despite low transformation efficiency, four independent T₂ homozygous lines for each gene were isolated, where transgenes were ubiquitously and variously expressed. The highest transgene expression was obtained in Ubi: TaBWPR-1.2#2 L#11a and Ubi:TaBWPR-1.2#13 L#4a. Using quantitative proteomics, the root proteins of L#11a were analyzed to explore possible physiological pathways regulated by TaBWPR-1.2 under normal and waterlogged conditions. In L#11a, the abundance of proteasome subunit alpha type-3 decreased under normal conditions, whereas that of ferredoxin precursor and elongation factor-2 increased under waterlogged conditions in comparison with normal plants. Proteomic results suggest that L#11a is one of the engineered wheat plants where TaBWPR-1.2#2 is most probably involved in proteolysis, protein synthesis and alteration in the energy pathway in root tissues via the above proteins in order to gain metabolic adjustment to WL.
Vugrinec, Sascha; Kroth, Peter G.
2012-01-01
Diatoms are a major group of primary producers ubiquitous in all aquatic ecosystems. To protect themselves from photooxidative damage in a fluctuating light climate potentially punctuated with regular excess light exposures, diatoms have developed several photoprotective mechanisms. The xanthophyll cycle (XC) dependent non-photochemical chlorophyll fluorescence quenching (NPQ) is one of the most important photoprotective processes that rapidly regulate photosynthesis in diatoms. NPQ depends on the conversion of diadinoxanthin (DD) into diatoxanthin (DT) by the violaxanthin de-epoxidase (VDE), also called DD de-epoxidase (DDE). To study the role of DDE in controlling NPQ, we generated transformants of P. tricornutum in which the gene (Vde/Dde) encoding for DDE was silenced. RNA interference was induced by genetic transformation of the cells with plasmids containing either short (198 bp) or long (523 bp) antisense (AS) fragments or, alternatively, with a plasmid mediating the expression of a self-complementary hairpin-like construct (inverted repeat, IR). The silencing approaches generated diatom transformants with a phenotype clearly distinguishable from wildtype (WT) cells, i.e. a lower degree as well as slower kinetics of both DD de-epoxidation and NPQ induction. Real-time PCR based quantification of Dde transcripts revealed differences in transcript levels between AS transformants and WT cells but also between AS and IR transformants, suggesting the possible presence of two different gene silencing mediating mechanisms. This was confirmed by the differential effect of the light intensity on the respective silencing efficiency of both types of transformants. The characterization of the transformants strengthened some of the specific features of the XC and NPQ and confirmed the most recent mechanistic model of the DT/NPQ relationship in diatoms. PMID:22629333
Pandey, Vibha; Ansari, Waquar Akhter; Misra, Pratibha; Atri, Neelam
2017-01-01
Withania somnifera, commonly known as Ashwagandha an important medicinal plant largely used in Ayurvedic and indigenous medicine for over 3,000 years. Being a medicinal plant, dried powder, crude extract as well as purified metabolies of the plant has shown promising therapeutic properties. Withanolides are the principal metabolites, responsible for the medicinal properties of the plant. Availability and amount of particular withanolides differ with tissue type and chemotype and its importance leads to identification characterization of several genes/ enzymes related to withanolide biosynthetic pathway. The modulation in withanolides can be achieved by controlling the environmental conditions like, different tissue culture techniques, altered media compositions, use of elicitors, etc. Among all the in vitro techniques, hairy root culture proved its importance at industrial scale, which also gets benefits due to more accumulation (amount and number) of withanolides in roots tissues of W. somnifera. Use of media compostion and elicitors further enhances the amount of withanolides in hairy roots. Another important modern day technique used for accumulation of desired secondary metabolites is modulating the gene expression by altering environmental conditions (use of different media composition, elicitors, etc.) or through genetic enginnering. Knowing the significance of the gene and the key enzymatic step of the pathway, modulation in withanolide contents can be achieved upto required amount in therapeutic industry. To accomplish maximum productivity through genetic enginnering different means of Withania transformation methods have been developed to obtain maximum transformation efficiency. These standardized transformation procedues have been used to overexpress/silence desired gene in W. somnifera to understand the outcome and succeed with enhanced metabolic production for the ultimate benefit of human race. PMID:28848589
Rhee, Mun Su; Kim, Jin-Woo; Qian, Yilei; Ingram, L O; Shanmugam, K T
2007-07-01
Bacillus coagulans is a sporogenic lactic acid bacterium that ferments glucose and xylose, major components of plant biomass, a potential feedstock for cellulosic ethanol. The temperature and pH for optimum rate of growth of B. coagulans (50 to 55 degrees C, pH 5.0) are very similar to that of commercially developed fungal cellulases (50 degrees C; pH 4.8). Due to this match, simultaneous saccharification and fermentation (SSF) of cellulose to products by B. coagulans is expected to require less cellulase than needed if the SSF is conducted at a sub-optimal temperature, such as 30 degrees C, the optimum for yeast, the main biocatalyst used by the ethanol industry. To fully exploit B. coagulans as a platform organism, we have developed an electroporation method to transfer plasmid DNA into this genetically recalcitrant bacterium. We also constructed a B. coagulans/E. coli shuttle vector, plasmid pMSR10 that contains the rep region from a native plasmid (pMSR0) present in B. coagulans strain P4-102B. The native plasmid, pMSR0 (6823bp), has 9 ORFs, and replicates by rolling-circle mode of replication. Plasmid pNW33N, developed for Geobacillus stearothermophilus, was also transformed into this host and stably maintained while several other Bacillus/Escherichia coli shuttle vector plasmids were not transformed into B. coagulans. The transformation efficiency of B. coagulans strain P4-102B using the plasmids pNW33N or pMSR10 was about 1.5x10(16) per mole of DNA. The availability of shuttle vectors and an electroporation method is expected to aid in genetic and metabolic engineering of B. coagulans.
Quasi-conformal mapping with genetic algorithms applied to coordinate transformations
NASA Astrophysics Data System (ADS)
González-Matesanz, F. J.; Malpica, J. A.
2006-11-01
In this paper, piecewise conformal mapping for the transformation of geodetic coordinates is studied. An algorithm, which is an improved version of a previous algorithm published by Lippus [2004a. On some properties of piecewise conformal mappings. Eesti NSV Teaduste Akademmia Toimetised Füüsika-Matemaakika 53, 92-98; 2004b. Transformation of coordinates using piecewise conformal mapping. Journal of Geodesy 78 (1-2), 40] is presented; the improvement comes from using a genetic algorithm to partition the complex plane into convex polygons, whereas the original one did so manually. As a case study, the method is applied to the transformation of the Spanish datum ED50 and ETRS89, and both its advantages and disadvantages are discussed herein.
qnrA6 genetic environment and quinolone resistance conferred on Proteus mirabilis.
Jayol, Aurélie; Janvier, Frédéric; Guillard, Thomas; Chau, Françoise; Mérens, Audrey; Robert, Jérôme; Fantin, Bruno; Berçot, Béatrice; Cambau, Emmanuelle
2016-04-01
To determine the genetic location and environment of the qnrA6 gene in Proteus mirabilis PS16 where it was first described and to characterize the quinolone resistance qnrA6 confers. Transformation experiments and Southern blotting were performed for plasmid and genomic DNA of P. mirabilis PS16 to determine the qnrA6 location. Combinatorial PCRs with primers in qnrA6 and genes usually surrounding qnrA genes were used to determine the genetic environment. The qnrA6 coding region, including or not the promoter region, was cloned into vectors pTOPO and pBR322 and the MICs of six quinolones were measured for transformants of Escherichia coli TOP10 and P. mirabilis ATCC 29906 Rif(R). qnrA6 was shown to be chromosomally encoded in P. mirabilis PS16 and its genetic environment was 81%-87% similar to that of qnrA2 in the Shewanella algae chromosome. The 5138 bp region up- and downstream of qnrA6 contained an IS10 sequence surrounded by two ISCR1. This resulted in qnrA6 being displaced 1.9 kb from its native promoter but supplied a promoter present in ISCR1. qnrA6 cloned into pTOPO and pBR322 conferred a 4-32-fold increase in fluoroquinolone MICs when expressed in E. coli but only 2-3-fold in P. mirabilis. When including the promoter region, a further increase in resistance was observed in both species, reaching MIC values above clinical breakpoints for only P. mirabilis. qnrA6 is the first chromosomally located qnrA gene described in Enterobacteriaceae. The quinolone resistance conferred by qnrA6 depends on the proximity of an efficient promoter and the host strain where it is expressed. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Expanding and reprogramming the genetic code.
Chin, Jason W
2017-10-04
Nature uses a limited, conservative set of amino acids to synthesize proteins. The ability to genetically encode an expanded set of building blocks with new chemical and physical properties is transforming the study, manipulation and evolution of proteins, and is enabling diverse applications, including approaches to probe, image and control protein function, and to precisely engineer therapeutics. Underpinning this transformation are strategies to engineer and rewire translation. Emerging strategies aim to reprogram the genetic code so that noncanonical biopolymers can be synthesized and evolved, and to test the limits of our ability to engineer the translational machinery and systematically recode genomes.
Micropropagation and genetic transformation of Tylophora indica (Burm. f.) Merr.: a review.
Teixeira da Silva, Jaime A; Jha, Sumita
2016-11-01
This review provides an in-depth and comprehensive overview of the in vitro culture of Tylophora species, which have medicinal properties. Tylophora indica (Burm. f.) Merr. is a climbing perennial vine with medicinal properties. The tissue culture and genetic transformation of T. indica, which has been extensively studied, is reviewed. Micropropagation using nodal explants has been reported in 25 % of all publications. Leaf explants from field-grown plants has been the explant of choice of independent research groups, which reported direct and callus-mediated organogenesis as well as callus-mediated somatic embryogenesis. Protoplast-mediated regeneration and callus-mediated shoot organogenesis has also been reported from stem explants, and to a lesser degree from root explants of micropropagated plants in vitro. Recent studies that used HPLC confirmed the potential of micropropagated plants to synthesize the major T. indica alkaloid tylophorine prior to and after transfer to field conditions. The genetic integrity of callus-regenerated plants was confirmed by RAPD in a few reports. Tissue culture is an essential base for genetic transformation studies. Hairy roots and transgenic T. indica plants have been shown to accumulate tylophorine suggesting that in vitro biology and transgenic methods are viable ways of clonally producing valuable germplasm and mass producing compounds of commercial value. Further studies that investigate the factors affecting the biosynthesis of Tylophora alkaloids and other secondary metabolites need to be conducted using non-transformed as well as transformed cell and organ cultures.
Yarimizu, Tohru; Nonklang, Sanom; Nakamura, Junpei; Tokuda, Shuya; Nakagawa, Takaaki; Lorreungsil, Sasithorn; Sutthikhumpha, Surasit; Pukahuta, Charida; Kitagawa, Takao; Nakamura, Mikiko; Cha-Aim, Kamonchai; Limtong, Savitree; Hoshida, Hisashi; Akada, Rinji
2013-12-01
The isolation and application of auxotrophic mutants for gene manipulations, such as genetic transformation, mating selection and tetrad analysis, form the basis of yeast genetics. For the development of these genetic methods in the thermotolerant fermentative yeast Kluyveromyces marxianus, we isolated a series of auxotrophic mutants with defects in amino acid or nucleic acid metabolism. To identify the mutated genes, linear DNA fragments of nutrient biosynthetic pathway genes were amplified from Saccharomyces cerevisiae chromosomal DNA and used to directly transform the K. marxianus auxotrophic mutants by random integration into chromosomes through non-homologous end joining (NHEJ). The appearance of transformant colonies indicated that the specific S. cerevisiae gene complemented the K. marxianus mutant. Using this interspecific complementation approach with linear PCR-amplified DNA, we identified auxotrophic mutations of ADE2, ADE5,7, ADE6, HIS2, HIS3, HIS4, HIS5, HIS6, HIS7, LYS1, LYS2, LYS4, LYS9, LEU1, LEU2, MET2, MET6, MET17, TRP3, TRP4 and TRP5 without the labour-intensive requirement of plasmid construction. Mating, sporulation and tetrad analysis techniques for K. marxianus were also established. With the identified auxotrophic mutant strains and S. cerevisiae genes as selective markers, NHEJ-mediated integrative transformation with PCR-amplified DNA is an attractive system for facilitating genetic analyses in the yeast K. marxianus. Copyright © 2013 John Wiley & Sons, Ltd.
Transgenic oil palm: production and projection.
Parveez, G K; Masri, M M; Zainal, A; Majid, N A; Yunus, A M; Fadilah, H H; Rasid, O; Cheah, S C
2000-12-01
Oil palm is an important economic crop for Malaysia. Genetic engineering could be applied to produce transgenic oil palms with high value-added fatty acids and novel products to ensure the sustainability of the palm oil industry. Establishment of a reliable transformation and regeneration system is essential for genetic engineering. Biolistic was initially chosen as the method for oil palm transformation as it has been the most successful method for monocotyledons to date. Optimization of physical and biological parameters, including testing of promoters and selective agents, was carried out as a prerequisite for stable transformation. This has resulted in the successful transfer of reporter genes into oil palm and the regeneration of transgenic oil palm, thus making it possible to improve the oil palm through genetic engineering. Besides application of the Biolistics method, studies on transformation mediated by Agrobacterium and utilization of the green fluorescent protein gene as a selectable marker gene have been initiated. Upon the development of a reliable transformation system, a number of useful targets are being projected for oil palm improvement. Among these targets are high-oleate and high-stearate oils, and the production of industrial feedstock such as biodegradable plastics. The efforts in oil palm genetic engineering are thus not targeted as commodity palm oil. Due to the long life cycle of the palm and the time taken to regenerate plants in tissue culture, it is envisaged that commercial planting of transgenic palms will not occur any earlier than the year 2020.
Incorporation of economic values into the component traits of a ratio: feed efficiency.
Lin, C Y; Aggrey, S E
2013-04-01
Direct selection on a ratio (R) of 2 traits (x1/x2) does not have a mechanism to accommodate the relative economic values (a1 and a2) between x1 and x2 because selection criteria x1/x2 and a1x1/a2x2 rank animals in the same order. This study presented a procedure to incorporate the economic weights into ratio traits through linear transformation. The partial derivatives of a nonlinear profit function evaluated at the means were widely taken as economic weights in the literature. This study showed that the economic weights derived in this manner were erroneous because they actually contain a mixture of actual economic weights and transformation effects. The ratios 1/2 and 2/4 are considered equal by selection on R, but are treated differently by the linear index. In addition, this study presented a unified approach to compare 4 different selection strategies for genetic improvement of ratio traits: linear index (I), selection on the ratio (R), selection on difference between x1 and x2 (D), and selection on x1 alone. This study considered 3 levels of heritability each for variables x1 and x2 and 2 levels of genetic correlations (γG), 2 ratios of means (µ1/µ2), and 4 ratios of phenotypic variances giving a total of 96 scenarios. Linear index I was the most efficient of the 4 criteria compared in all 96 scenarios studied. The superiority of index I over R, D, and selection on x1 alone are particularly remarkable when x1 and x2 have a large difference in heritability and are highly correlated. Selection on x1 alone is an economically viable alternative to criterion I or R for the improvement of ratio traits particularly when x1 is more heritable than x2 and when x2 is costly to measure. Selection on D is more efficient than direct selection on R or selection on x1 alone when x1 is less heritable than x2 and the difference between µ1 and µ2 is small.
Efficient privacy-preserving string search and an application in genomics.
Shimizu, Kana; Nuida, Koji; Rätsch, Gunnar
2016-06-01
Personal genomes carry inherent privacy risks and protecting privacy poses major social and technological challenges. We consider the case where a user searches for genetic information (e.g. an allele) on a server that stores a large genomic database and aims to receive allele-associated information. The user would like to keep the query and result private and the server the database. We propose a novel approach that combines efficient string data structures such as the Burrows-Wheeler transform with cryptographic techniques based on additive homomorphic encryption. We assume that the sequence data is searchable in efficient iterative query operations over a large indexed dictionary, for instance, from large genome collections and employing the (positional) Burrows-Wheeler transform. We use a technique called oblivious transfer that is based on additive homomorphic encryption to conceal the sequence query and the genomic region of interest in positional queries. We designed and implemented an efficient algorithm for searching sequences of SNPs in large genome databases. During search, the user can only identify the longest match while the server does not learn which sequence of SNPs the user queried. In an experiment based on 2184 aligned haploid genomes from the 1000 Genomes Project, our algorithm was able to perform typical queries within [Formula: see text] 4.6 s and [Formula: see text] 10.8 s for client and server side, respectively, on laptop computers. The presented algorithm is at least one order of magnitude faster than an exhaustive baseline algorithm. https://github.com/iskana/PBWT-sec and https://github.com/ratschlab/PBWT-sec shimizu-kana@aist.go.jp or Gunnar.Ratsch@ratschlab.org Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Efficient privacy-preserving string search and an application in genomics
Shimizu, Kana; Nuida, Koji; Rätsch, Gunnar
2016-01-01
Motivation: Personal genomes carry inherent privacy risks and protecting privacy poses major social and technological challenges. We consider the case where a user searches for genetic information (e.g. an allele) on a server that stores a large genomic database and aims to receive allele-associated information. The user would like to keep the query and result private and the server the database. Approach: We propose a novel approach that combines efficient string data structures such as the Burrows–Wheeler transform with cryptographic techniques based on additive homomorphic encryption. We assume that the sequence data is searchable in efficient iterative query operations over a large indexed dictionary, for instance, from large genome collections and employing the (positional) Burrows–Wheeler transform. We use a technique called oblivious transfer that is based on additive homomorphic encryption to conceal the sequence query and the genomic region of interest in positional queries. Results: We designed and implemented an efficient algorithm for searching sequences of SNPs in large genome databases. During search, the user can only identify the longest match while the server does not learn which sequence of SNPs the user queried. In an experiment based on 2184 aligned haploid genomes from the 1000 Genomes Project, our algorithm was able to perform typical queries within ≈ 4.6 s and ≈ 10.8 s for client and server side, respectively, on laptop computers. The presented algorithm is at least one order of magnitude faster than an exhaustive baseline algorithm. Availability and implementation: https://github.com/iskana/PBWT-sec and https://github.com/ratschlab/PBWT-sec. Contacts: shimizu-kana@aist.go.jp or Gunnar.Ratsch@ratschlab.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153731
Toelle, V D; Havenstein, G B; Nestor, K E; Bacon, W L
1990-10-01
Live, carcass, and skeletal data taken at 16 wk of age on 504 female and 584 male turkeys from 34 sires and 168 dams were utilized to evaluate sex differences in genetic parameter estimates. Data were transformed to common mean and variance to evaluate possible scaling effects. Genetic parameters were estimated from transformed and untransformed data. Further analyses were conducted with a model that included sire by sex and dams within sire by sex interactions, and the variance estimates were used to calculate genetic correlations between the sexes and genetic regression parameters. Heritability estimates from transformed and untransformed data were similar, indicating that sex differences were present in the genetic parameters, but scaling effects were not an important factor. Genetic correlation estimates from paternal (PHS) and maternal (MHS) half-sib estimates were close to unity for BW (1.14, PHS; 1.09, MHS), shank width (.99, PHS; .93, MHS), breast muscle weight (1.23, PHS; 1.04, MHS), and shank length (1.09, PHS; .97, MHS). However, abdominal fat (.79, PHS; .59 MHS), total drumstick muscle weight (.75, PHS; 1.14, MHS), rough cleaned shank weight (.78, PHS; not estimatable, MHS), and shank bone density (1.00, PHS; .53, MHS) estimates were somewhat lower. The estimates suggest that the measurement of these latter "traits" at the same age in the two sexes may, in fact, be measuring different genetic effects and that selection procedures in turkeys need to take these correlations into account in order to make optimum progress. The genetic regression parameters indicated that more intense selection in the sex that has the smaller genetic variation could be practiced to make greater gains in the opposite sex.
Application of cisgenesis for development of disease-resistant potatoes
USDA-ARS?s Scientific Manuscript database
Intragenics, also known as cisgenesis, is a plant transformation technology that consists of employing genes, regulatory, and transfer DNA sequences from the respective plant to be transformed. Based on the above definition, transformed intragenic plants are not the conventional genetically modifie...
Agrobacterium-mediated transformation of Fraxinus pennsylvanica hypocotyls and plant regeneration
Ningxia Du; Paula M. Pijut
2009-01-01
A genetic transformation protocol for green ash (Fraxinus pennsylvanica) hypocotyl explants was developed. Green ash hypocotyls were transformed using Agrobacterium tumefaciens strain EHA105 harboring binary vector pq35GR containing the neomycin phosphotransferase (nptII) and β-glucuronidase (GUS) fusion...
Cast Coil Transformer Fire Susceptibility and Reliability Study
1991-04-01
transformers reduce risk to the user compared to liquid-filled units, eliminate environmental impacts, are more efficient than most transformer designs, and...filled units, eliminate environmental impacts, arc more efficient than most transformer designs, and add minimal risk to the facility in a fire situation...add minimal risk to the facility in a fire situation. Cast coil transformers have a long record of operation and have proven to be reliable and
Adaptive Filtering in the Wavelet Transform Domain via Genetic Algorithms
2004-08-06
wavelet transforms. Whereas the term “evolved” pertains only to the altered wavelet coefficients used during the inverse transform process. 2...words, the inverse transform produces the original signal x(t) from the wavelet and scaling coefficients. )()( ,, tdtx nk n nk k ψ...reconstruct the original signal as accurately as possible. The inverse transform reconstructs an approximation of the original signal (Burrus
Novel insights in genetic transformation of the probiotic yeast Saccharomyces boulardii
Douradinha, Bruno; Reis, Viviane CB; Rogers, Matthew B; Torres, Fernando AG; Evans, Jared D; Marques Jr, Ernesto TA
2014-01-01
Saccharomyces boulardii (S. boulardii) is a probiotic yeast related to Saccharomyces cerevisiae (S. cerevisiae) but with distinct genetic, taxonomic and metabolic properties. S. cerevisiae has been used extensively in biotechnological applications. Currently, many strains are available, and multiple genetic tools have been developed, which allow the expression of several exogenous proteins of interest with applications in the fields of medicine, biofuels, the food industry, and scientific research, among others. Although S. boulardii has been widely studied due to its probiotic properties against several gastrointestinal tract disorders, very few studies addressed the use of this yeast as a vector for expression of foreign genes of interest with biotechnological applications. Here we show that, despite the similarity of the two yeasts, not all genetic tools used in S. cerevisiae can be applied in S. boulardii. While transformation of the latter could be obtained using a commercial kit developed for the former, consequent screening of successful transformants had to be optimized. We also show that several genes frequently used in genetic manipulation of S. cerevisiae (e.g., promoters and resistance markers) are present in S. boulardii. Sequencing revealed a high rate of homology (>96%) between the orthologs of the two yeasts. However, we also observed some of them are not eligible to be targeted for transformation of S. boulardii. This work has important applications toward the potential of this probiotic yeast as an expression system for genes of interest. PMID:24013355
Elimination of the cryptic plasmid in Leuconostoc citreum by CRISPR/Cas9 system.
Jang, Ye-Ji; Seo, Seung-Oh; Kim, Seul-Ah; Li, Ling; Kim, Tae-Jip; Kim, Sun Chang; Jin, Yong-Su; Han, Nam Soo
2017-06-10
Leuconostoc spp. are important lactic acid bacteria for the fermentation of foods. In particular, L. citreum strains isolated from various foods have been used as host strains for genetic and metabolic engineering studies. In order to develop a food-grade genetic engineering system, L. citreum CB2567 was isolated from Kimchi. However, the isolated bacterium contained a cryptic plasmid which was difficult to eliminate. As the existence of the plasmid might hinder strain engineering, we eliminated the plasmid using an RNA-guided DNA endonuclease CRISPR/Cas9 system. We demonstrated that a plasmid-free L. citreum CB2567 host strain could be efficiently constructed through a two-step procedure: 1) transformation of the "killer" plasmid expressing Cas9 endonuclease and a guide RNA (gRNA) targeting for a specific sequence in the cryptic plasmid, and 2) serial subculture without antibiotics for curing the killer plasmid. When the crude extract of L. citreum expressing Cas9 and the guide RNA was incubated with a PCR fragment containing the specific sequence recognized by the guide RNA, the PCR fragment was cleaved. Also, the cryptic plasmid pCB42 was successfully eliminated from the host strain after transforming the plasmid harboring Cas9 and the guide RNA. The Cas9 and gRNA expression plasmid used in this study can be applied for genome engineering purposes by additionally introducing an editing DNA template to repair the double strand DNA breakage caused by Cas9 in the genome of L. citreum. This study demonstrates the feasibility of developing CRISPR/Cas9-based genetic engineering tools to develop a safe host strain and construct food-grade lactic acid bacteria without residual antibiotic markers. Copyright © 2017 Elsevier B.V. All rights reserved.
Bodies of science and law: forensic DNA profiling, biological bodies, and biopower.
Toom, Victor
2012-01-01
How is jurisdiction transferred from an individual's biological body to agents of power such as the police, public prosecutors, and the judiciary, and what happens to these biological bodies when transformed from private into public objects? These questions are examined by analysing bodies situated at the intersection of science and law. More specifically, the transformation of ‘private bodies’ into ‘public bodies’ is analysed by going into the details of forensic DNA profiling in the Dutch jurisdiction. It will be argued that various ‘forensic genetic practices’ enact different forensic genetic bodies'. These enacted forensic genetic bodies are connected with various infringements of civil rights, which become articulated in exploring these forensic genetic bodies’‘normative registers’.
Chitosan nanoparticle based delivery systems for sustainable agriculture.
Kashyap, Prem Lal; Xiang, Xu; Heiden, Patricia
2015-01-01
Development of technologies that improve food productivity without any adverse impact on the ecosystem is the need of hour. In this context, development of controlled delivery systems for slow and sustained release of agrochemicals or genetic materials is crucial. Chitosan has emerged as a valuable carrier for controlled delivery of agrochemicals and genetic materials because of its proven biocompatibility, biodegradability, non-toxicity, and adsorption abilities. The major advantages of encapsulating agrochemicals and genetic material in a chitosan matrix include its ability to function as a protective reservoir for the active ingredients, protecting the ingredients from the surrounding environment while they are in the chitosan domain, and then controlling their release, allowing them to serve as efficient gene delivery systems for plant transformation or controlled release of pesticides. Despite the great progress in the use of chitosan in the area of medical and pharmaceutical sciences, there is still a wide knowledge gap regarding the potential application of chitosan for encapsulation of active ingredients in agriculture. Hence, the present article describes the current status of chitosan nanoparticle-based delivery systems in agriculture, and to highlight challenges that need to be overcome. Copyright © 2015 Elsevier B.V. All rights reserved.
Månsson, Viktor; Gilsdorf, Janet R; Kahlmeter, Gunnar; Kilian, Mogens; Kroll, J Simon; Riesbeck, Kristian; Resman, Fredrik
2018-03-01
Encapsulated Haemophilus influenzae strains belong to type-specific genetic lineages. Reliable capsule typing requires PCR, but a more efficient method would be useful. We evaluated capsule typing by using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Isolates of all capsule types (a-f and nontypeable; n = 258) and isogenic capsule transformants (types a-d) were investigated. Principal component and biomarker analyses of mass spectra showed clustering, and mass peaks correlated with capsule type-specific genetic lineages. We used 31 selected isolates to construct a capsule typing database. Validation with the remaining isolates (n = 227) showed 100% sensitivity and 92.2% specificity for encapsulated strains (a-f; n = 61). Blinded validation of a supplemented database (n = 50) using clinical isolates (n = 126) showed 100% sensitivity and 100% specificity for encapsulated strains (b, e, and f; n = 28). MALDI-TOF mass spectrometry is an accurate method for capsule typing of H. influenzae.
Characterization of noncoding regulatory DNA in the human genome.
Elkon, Ran; Agami, Reuven
2017-08-08
Genetic variants associated with common diseases are usually located in noncoding parts of the human genome. Delineation of the full repertoire of functional noncoding elements, together with efficient methods for probing their biological roles, is therefore of crucial importance. Over the past decade, DNA accessibility and various epigenetic modifications have been associated with regulatory functions. Mapping these features across the genome has enabled researchers to begin to document the full complement of putative regulatory elements. High-throughput reporter assays to probe the functions of regulatory regions have also been developed but these methods separate putative regulatory elements from the chromosome so that any effects of chromatin context and long-range regulatory interactions are lost. Definitive assignment of function(s) to putative cis-regulatory elements requires perturbation of these elements. Genome-editing technologies are now transforming our ability to perturb regulatory elements across entire genomes. Interpretation of high-throughput genetic screens that incorporate genome editors might enable the construction of an unbiased map of functional noncoding elements in the human genome.
Iwata, Masaki; Hiyama, Atsuki; Otaki, Joji M.
2013-01-01
Developmental studies on wing colour patterns have been performed in nymphalid butterflies, but efficient genetic manipulations, including mutagenesis, have not been well established. Here, we have performed mutagenesis experiments in a lycaenid butterfly, the pale grass blue Zizeeria maha, to produce colour-pattern mutants. We fed the P-generation larvae an artificial diet containing the mutagen ethyl methane sulfonate (EMS), and the F1- and F2-generation adults showed various aberrant colour patterns: dorsoventral transformation, anterioposterior background colouration gap, weak contrast, disarrangement of spots, reduction of the size of spots, loss of spots, fusion of spots, and ectopic spots. Among them, the disarrangement, reduction, and loss of spots were likely produced by the coordinated changes of many spots of a single wing around the discal spot in a system-dependent manner, demonstrating the existence of the central symmetry system. The present study revealed multiple genetic regulations for system-dependent and wing-wide colour-pattern determination in lycaenid butterflies. PMID:23917124
Popa, Radu; Cimpoiasu, Vily M
2013-05-01
Properties of avenues of transformation and their mutualism with forms of organization in dynamic systems are essential for understanding the evolution of prebiotic order. We have analyzed competition between two avenues of transformation in an A↔B system, using the simulation approach called BiADA (Biotic Abstract Dual Automata). We discuss means of avoiding common pitfalls of abstract system modeling and benefits of BiADA-based simulations. We describe the effect of the availability of free energy, energy sink magnitude, and autocatalysis on the evolution of energy flux and order in the system. Results indicate that prebiotic competition between avenues of transformation was more stringent in energy-limited environments. We predict that in such conditions the efficiency of autocatalysis during competition between alternative system states will increase for systems with forms of organization having short half-lives and thus information that is time-sensitive to energy starvation. Our results also offer a potential solution to Manfred Eigen's error catastrophe dilemma. In the conditions discussed above, the exponential growth of quasi species is curbed through the removal of less competitive "genetic" variants via energy starvation. We propose that one of the most important achievements (and selective edges) of a dynamic network during competition in energy-limited or energy-variable environments was the capacity to correlate the internal energy flux and the need for free energy with the availability of free energy in the environment.
Johnston, Calum; Mortier-Barrière, Isabelle; Granadel, Chantal; Polard, Patrice; Martin, Bernard; Claverys, Jean-Pierre
2015-01-01
Homologous recombination (HR) is required for both genome maintenance and generation of diversity in eukaryotes and prokaryotes. This process initiates from single-stranded (ss) DNA and is driven by a universal recombinase, which promotes strand exchange between homologous sequences. The bacterial recombinase, RecA, is loaded onto ssDNA by recombinase loaders, RecBCD and RecFOR for genome maintenance. DprA was recently proposed as a third loader dedicated to genetic transformation. Here we assessed the role of RecFOR in transformation of the human pathogen Streptococcus pneumoniae. We firstly established that RecFOR proteins are not required for plasmid transformation, strongly suggesting that DprA ensures annealing of plasmid single-strands internalized in the process. We then observed no reduction in chromosomal transformation using a PCR fragment as donor, contrasting with the 10,000-fold drop in dprA - cells and demonstrating that RecFOR play no role in transformation. However, a ∼1.45-fold drop in transformation was observed with total chromosomal DNA in recFOR mutants. To account for this limited deficit, we hypothesized that transformation with chromosomal DNA stimulated unexpectedly high frequency (>30% of cells) formation of chromosome dimers as an intermediate in the generation of tandem duplications, and that RecFOR were crucial for dimer resolution. We validated this hypothesis, showing that the site-specific recombinase XerS was also crucial for dimer resolution. An even higher frequency of dimer formation (>80% of cells) was promoted by interspecies transformation with Streptococcus mitis chromosomal DNA, which contains numerous inversions compared to pneumococcal chromosome, each potentially promoting dimerization. In the absence of RecFOR and XerS, dimers persist, as confirmed by DAPI staining, and can limit the efficiency of transformation, since resulting in loss of transformant chromosome. These findings strengthen the view that different HR machineries exist for genome maintenance and transformation in pneumococci. These observations presumably apply to most naturally transformable species. PMID:25569614
Molecular transformation, gene cloning, and gene expression systems for filamentous fungi
Gold, Scott E.; Duick, John W.; Redman, Regina S.; Rodriguez, Rusty J.
2001-01-01
This chapter discusses the molecular transformation, gene cloning, and gene expression systems for filamentous fungi. Molecular transformation involves the movement of discrete amounts of DNA into cells, the expression of genes on the transported DNA, and the sustainable replication of the transforming DNA. The ability to transform fungi is dependent on the stable replication and expression of genes located on the transforming DNA. Three phenomena observed in bacteria, that is, competence, plasmids, and restriction enzymes to facilitate cloning, were responsible for the development of molecular transformation in fungi. Initial transformation success with filamentous fungi, involving the complementation of auxotrophic mutants by exposure to sheared genomic DNA or RNA from wt isolates, occurred with low transformation efficiencies. In addition, it was difficult to retrieve complementing DNA fragments and isolate genes of interest. This prompted the development of transformation vectors and methods to increase efficiencies. The physiological studies performed with fungi indicated that the cell wall could be removed to generate protoplasts. It was evident that protoplasts could be transformed with significantly greater efficiencies than walled cells.
Rotem, Asaf; Janzer, Andreas; Izar, Benjamin; Ji, Zhe; Doench, John G.; Garraway, Levi A.; Struhl, Kevin
2015-01-01
Colony formation in soft agar is the gold-standard assay for cellular transformation in vitro, but it is unsuited for high-throughput screening. Here, we describe an assay for cellular transformation that involves growth in low attachment (GILA) conditions and is strongly correlated with the soft-agar assay. Using GILA, we describe high-throughput screens for drugs and genes that selectively inhibit or increase transformation, but not proliferation. Such molecules are unlikely to be found through conventional drug screening, and they include kinase inhibitors and drugs for noncancer diseases. In addition to known oncogenes, the genetic screen identifies genes that contribute to cellular transformation. Lastly, we demonstrate the ability of Food and Drug Administration-approved noncancer drugs to selectively kill ovarian cancer cells derived from patients with chemotherapy-resistant disease, suggesting this approach may provide useful information for personalized cancer treatment. PMID:25902495
Rotem, Asaf; Janzer, Andreas; Izar, Benjamin; Ji, Zhe; Doench, John G; Garraway, Levi A; Struhl, Kevin
2015-05-05
Colony formation in soft agar is the gold-standard assay for cellular transformation in vitro, but it is unsuited for high-throughput screening. Here, we describe an assay for cellular transformation that involves growth in low attachment (GILA) conditions and is strongly correlated with the soft-agar assay. Using GILA, we describe high-throughput screens for drugs and genes that selectively inhibit or increase transformation, but not proliferation. Such molecules are unlikely to be found through conventional drug screening, and they include kinase inhibitors and drugs for noncancer diseases. In addition to known oncogenes, the genetic screen identifies genes that contribute to cellular transformation. Lastly, we demonstrate the ability of Food and Drug Administration-approved noncancer drugs to selectively kill ovarian cancer cells derived from patients with chemotherapy-resistant disease, suggesting this approach may provide useful information for personalized cancer treatment.
Recent Achievement in Gene Cloning and Functional Genomics in Soybean
Zhai, Hong; Lü, Shixiang; Wu, Hongyan; Zhang, Yupeng
2013-01-01
Soybean is a model plant for photoperiodism as well as for symbiotic nitrogen fixation. However, a rather low efficiency in soybean transformation hampers functional analysis of genes isolated from soybean. In comparison, rapid development and progress in flowering time and photoperiodic response have been achieved in Arabidopsis and rice. As the soybean genomic information has been released since 2008, gene cloning and functional genomic studies have been revived as indicated by successfully characterizing genes involved in maturity and nematode resistance. Here, we review some major achievements in the cloning of some important genes and some specific features at genetic or genomic levels revealed by the analysis of functional genomics of soybean. PMID:24311973
Rasala, Beth A; Mayfield, Stephen P
2015-03-01
Recombinant proteins are widely used for industrial, nutritional, and medical applications. Green microalgae have attracted considerable attention recently as a biomanufacturing platform for the production of recombinant proteins for a number of reasons. These photosynthetic eukaryotic microorganisms are safe, scalable, easy to genetically modify through transformation, mutagenesis, or breeding, and inexpensive to grow. Many microalgae species are genetically transformable, but the green alga Chlamydomonas reinhardtii is the most widely used host for recombinant protein expression. An extensive suite of molecular genetic tools has been developed for C. reinhardtii over the last 25 years, including a fully sequenced genome, well-established methods for transformation, mutagenesis and breeding, and transformation vectors for high levels of recombinant protein accumulation and secretion. Here, we review recent successes in the development of C. reinhardtii as a biomanufacturing host for recombinant proteins, including antibodies and immunotoxins, hormones, industrial enzymes, an orally-active colostral protein for gastrointestinal health, and subunit vaccines. In addition, we review the biomanufacturing potential of other green algae from the genera Dunaliella and Chlorella.
Liu, Huan; Zhao, Haixia; Wu, Longhua; Xu, Wenzhong
2017-01-01
The present study demonstrates the development of an Agrobacterium-mediated genetic transformation method for species of the Sedum genus, which includes the Cd/Zn hyperaccumulator Sedum plumbizincicola and the non-hyperaccumulating ecotype of S. alfredii. Multiple shoots were induced from stem nodes of two Sedum plants using Murashige and Skoog (MS) medium containing 0.1 mg/L cytokinin 6-benzyladenine (6-BA) and 1.0 mg/L auxin 1-naphthaleneacetic acid (NAA). The shoot primordia were used as direct targets for Agrobacterium infection. Selection on hygromycin was highly effective in generating Agrobacterium-transformed explants. This callus-free procedure allowed us to obtain transgenic plantlets after rooting hygromycin-resistant shoots on phytohormone-free MS medium containing the antibiotic. The presence and expression of the reporter genes gusA and GFP in transgenic plants were confirmed by a real-time polymerase chain reaction, histochemical GUS assays, and confocal microscopy. This reliable method for genetic transformation of Sedum plants will help us to understand gene functions and the molecular mechanisms underlying Cd hypertolerance and hyperaccumulation in these species. PMID:28670322
Transformation of fruit trees. Useful breeding tool or continued future prospect?
Petri, César; Burgos, Lorenzo
2005-02-01
Regeneration and transformation systems using mature plant material of woody fruit species have to be achieved as a necessary requirement for the introduction of useful genes into specific cultivars and the rapid evaluation of resulting horticultural traits. Although the commercial production of transgenic annual crops is a reality, commercial genetically-engineered fruit trees are still far from common. In most woody fruit species, transformation and regeneration of commercial cultivars are not routine, generally being limited to a few genotypes or to seedlings. The future of genetic transformation as a tool for the breeding of fruit trees requires the development of genotype-independent procedures, based on the transformation of meristematic cells with high regeneration potential and/or the use of regeneration-promoting genes. The public concern with the introduction of antibiotic resistance into food and the restrictions due to new European laws that do not allow deliberate release of plants transformed with antibiotic-resistance genes highlight the development of methods that avoid the use of antibiotic-dependent selection or allow elimination of marker genesfrom the transformed plant as a research priority in coming years.
Adaptive Filtering in the Wavelet Transform Domain Via Genetic Algorithms
2004-08-01
inverse transform process. 2. BACKGROUND The image processing research conducted at the AFRL/IFTA Reconfigurable Computing Laboratory has been...coefficients from the wavelet domain back into the original signal domain. In other words, the inverse transform produces the original signal x(t) from the...coefficients for an inverse wavelet transform, such that the MSE of images reconstructed by this inverse transform is significantly less than the mean squared
ERIC Educational Resources Information Center
Baxby, Derrick
1989-01-01
Presented is a brief review of the historical importance and knowledge of pneumonia which emphasizes the importance of type transformation. The results of a survey of textbook coverage of this topic are given. The significance of type transformations are discussed. (CW)
Ghosal, Debajyoti; Ghosh, Shreya; Dutta, Tapan K.; Ahn, Youngho
2016-01-01
Polycyclic aromatic hydrocarbons (PAHs) include a group of organic priority pollutants of critical environmental and public health concern due to their toxic, genotoxic, mutagenic and/or carcinogenic properties and their ubiquitous occurrence as well as recalcitrance. The increased awareness of their various adverse effects on ecosystem and human health has led to a dramatic increase in research aimed toward removing PAHs from the environment. PAHs may undergo adsorption, volatilization, photolysis, and chemical oxidation, although transformation by microorganisms is the major neutralization process of PAH-contaminated sites in an ecologically accepted manner. Microbial degradation of PAHs depends on various environmental conditions, such as nutrients, number and kind of the microorganisms, nature as well as chemical property of the PAH being degraded. A wide variety of bacterial, fungal and algal species have the potential to degrade/transform PAHs, among which bacteria and fungi mediated degradation has been studied most extensively. In last few decades microbial community analysis, biochemical pathway for PAHs degradation, gene organization, enzyme system, genetic regulation for PAH degradation have been explored in great detail. Although, xenobiotic-degrading microorganisms have incredible potential to restore contaminated environments inexpensively yet effectively, but new advancements are required to make such microbes effective and more powerful in removing those compounds, which were once thought to be recalcitrant. Recent analytical chemistry and genetic engineering tools might help to improve the efficiency of degradation of PAHs by microorganisms, and minimize uncertainties of successful bioremediation. However, appropriate implementation of the potential of naturally occurring microorganisms for field bioremediation could be considerably enhanced by optimizing certain factors such as bioavailability, adsorption and mass transfer of PAHs. The main purpose of this review is to provide an overview of current knowledge of bacteria, halophilic archaea, fungi and algae mediated degradation/transformation of PAHs. In addition, factors affecting PAHs degradation in the environment, recent advancement in genetic, genomic, proteomic and metabolomic techniques are also highlighted with an aim to facilitate the development of a new insight into the bioremediation of PAH in the environment. PMID:27630626
76 FR 70376 - Efficiency and Renewables Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-14
...-Voltage Dry-Type Distribution Transformers. The Liquid Immersed and Medium-Voltage Dry- Type Group (MV... of distribution transformers, as authorized by the Energy Policy Conservation Act (EPCA) of 1975, as... negotiated rulemaking process to develop proposed energy efficiency standards for distribution transformers...
Sweet Potato [Ipomoea batatas (L.) Lam].
Song, Guo-qing; Yamaguchi, Ken-ichi
2006-01-01
Among the available transformation methods reported on sweet potato, Agrobacterium tumefaciens-mediated transformation is more successful and desirable. Stem explants have shown to be ideal for the transformation of sweet potato because of their ready availability as explants, the simple transformation process, and high-frequency-regeneration via somatic embryogenesis. Under the two-step kanamycin-hygromycin selection method and using the appropriate explants type (stem explants), the efficiency of transformation can be considerably improved in cv. Beniazuma. The high efficiency in the transformation of stem explants suggests that the transformation protocol described in this chapter warrants testing for routine stable transformation of diverse varieties of sweet potato.
Hill, A A; Crotta, M; Wall, B; Good, L; O'Brien, S J; Guitian, J
2017-03-01
Foodborne infection is a result of exposure to complex, dynamic food systems. The efficiency of foodborne infection is driven by ongoing shifts in genetic machinery. Next-generation sequencing technologies can provide high-fidelity data about the genetics of a pathogen. However, food safety surveillance systems do not currently provide similar high-fidelity epidemiological metadata to associate with genetic data. As a consequence, it is rarely possible to transform genetic data into actionable knowledge that can be used to genuinely inform risk assessment or prevent outbreaks. Big data approaches are touted as a revolution in decision support, and pose a potentially attractive method for closing the gap between the fidelity of genetic and epidemiological metadata for food safety surveillance. We therefore developed a simple food chain model to investigate the potential benefits of combining 'big' data sources, including both genetic and high-fidelity epidemiological metadata. Our results suggest that, as for any surveillance system, the collected data must be relevant and characterize the important dynamics of a system if we are to properly understand risk: this suggests the need to carefully consider data curation, rather than the more ambitious claims of big data proponents that unstructured and unrelated data sources can be combined to generate consistent insight. Of interest is that the biggest influencers of foodborne infection risk were contamination load and processing temperature, not genotype. This suggests that understanding food chain dynamics would probably more effectively generate insight into foodborne risk than prescribing the hazard in ever more detail in terms of genotype.
Crotta, M.; Wall, B.; Good, L.; O'Brien, S. J.; Guitian, J.
2017-01-01
Foodborne infection is a result of exposure to complex, dynamic food systems. The efficiency of foodborne infection is driven by ongoing shifts in genetic machinery. Next-generation sequencing technologies can provide high-fidelity data about the genetics of a pathogen. However, food safety surveillance systems do not currently provide similar high-fidelity epidemiological metadata to associate with genetic data. As a consequence, it is rarely possible to transform genetic data into actionable knowledge that can be used to genuinely inform risk assessment or prevent outbreaks. Big data approaches are touted as a revolution in decision support, and pose a potentially attractive method for closing the gap between the fidelity of genetic and epidemiological metadata for food safety surveillance. We therefore developed a simple food chain model to investigate the potential benefits of combining ‘big’ data sources, including both genetic and high-fidelity epidemiological metadata. Our results suggest that, as for any surveillance system, the collected data must be relevant and characterize the important dynamics of a system if we are to properly understand risk: this suggests the need to carefully consider data curation, rather than the more ambitious claims of big data proponents that unstructured and unrelated data sources can be combined to generate consistent insight. Of interest is that the biggest influencers of foodborne infection risk were contamination load and processing temperature, not genotype. This suggests that understanding food chain dynamics would probably more effectively generate insight into foodborne risk than prescribing the hazard in ever more detail in terms of genotype. PMID:28405360
Jian, Bo; Hou, Wensheng; Wu, Cunxiang; Liu, Bin; Liu, Wei; Song, Shikui; Bi, Yurong; Han, Tianfu
2009-06-25
Transgenic approaches provide a powerful tool for gene function investigations in plants. However, some legumes are still recalcitrant to current transformation technologies, limiting the extent to which functional genomic studies can be performed on. Superroot of Lotus corniculatus is a continuous root cloning system allowing direct somatic embryogenesis and mass regeneration of plants. Recently, a technique to obtain transgenic L. corniculatus plants from Superroot-derived leaves through A. tumefaciens-mediated transformation was described. However, transformation efficiency was low and it took about six months from gene transfer to PCR identification. In the present study, we developed an A. rhizogenes-mediated transformation of Superroot-derived L. corniculatus for gene function investigation, combining the efficient A. rhizogenes-mediated transformation and the rapid regeneration system of Superroot. The transformation system using A. rhizogenes K599 harbouring pGFPGUSPlus was improved by validating some parameters which may influence the transformation frequency. Using stem sections with one node as explants, a 2-day pre-culture of explants, infection with K599 at OD(600) = 0.6, and co-cultivation on medium (pH 5.4) at 22 degrees C for 2 days enhanced the transformation frequency significantly. As proof of concept, Superroot-derived L. corniculatus was transformed with a gene from wheat encoding an Na+/H+ antiporter (TaNHX2) using the described system. Transgenic Superroot plants were obtained and had increased salt tolerance, as expected from the expression of TaNHX2. A rapid and efficient tool for gene function investigation in L. corniculatus was developed, combining the simplicity and high efficiency of the Superroot regeneration system and the availability of A. rhizogenes-mediated transformation. This system was improved by validating some parameters influencing the transformation frequency, which could reach 92% based on GUS detection. The combination of the highly efficient transformation and the regeneration system of Superroot provides a valuable tool for functional genomics studies in L. corniculatus.
Cardinal, Marie-Josée; Kaur, Rajvinder; Singh, Jaswinder
2016-10-01
Domestication and intensive selective breeding of plants has triggered erosion of genetic diversity of important stress-related alleles. Researchers highlight the potential of using wild accessions as a gene source for improvement of cereals such as barley, which has major economic and social importance worldwide. Previously, we have successfully introduced the maize Ac/Ds transposon system for gene identification in cultivated barley. The objective of current research was to investigate the response of Hordeum vulgare ssp. spontaneum wild barley accessions in tissue culture to standardize parameters for introduction of Ac/Ds transposons through genetic transformation. We investigated the response of ten wild barley genotypes for callus induction, regenerative green callus induction and regeneration of fertile plants. The activity of exogenous Ac/Ds elements was observed through a transient assay on immature wild barley embryos/callus whereby transformed embryos/calli were identified by the expression of GUS. Transient Ds expression bombardment experiments were performed on 352 pieces of callus (3-5 mm each) or immature embryos in 4 genotypes of wild barley. The transformation frequency of putative transgenic callus lines based on transient GUS expression ranged between 72 and100 % in wild barley genotypes. This is the first report of a transformation system in H. vulgare ssp. spontaneum.
High-throughput transformation of Saccharomyces cerevisiae using liquid handling robots.
Liu, Guangbo; Lanham, Clayton; Buchan, J Ross; Kaplan, Matthew E
2017-01-01
Saccharomyces cerevisiae (budding yeast) is a powerful eukaryotic model organism ideally suited to high-throughput genetic analyses, which time and again has yielded insights that further our understanding of cell biology processes conserved in humans. Lithium Acetate (LiAc) transformation of yeast with DNA for the purposes of exogenous protein expression (e.g., plasmids) or genome mutation (e.g., gene mutation, deletion, epitope tagging) is a useful and long established method. However, a reliable and optimized high throughput transformation protocol that runs almost no risk of human error has not been described in the literature. Here, we describe such a method that is broadly transferable to most liquid handling high-throughput robotic platforms, which are now commonplace in academic and industry settings. Using our optimized method, we are able to comfortably transform approximately 1200 individual strains per day, allowing complete transformation of typical genomic yeast libraries within 6 days. In addition, use of our protocol for gene knockout purposes also provides a potentially quicker, easier and more cost-effective approach to generating collections of double mutants than the popular and elegant synthetic genetic array methodology. In summary, our methodology will be of significant use to anyone interested in high throughput molecular and/or genetic analysis of yeast.
USDA-ARS?s Scientific Manuscript database
The species Campylobacter jejuni displays huge genetic diversity, and is naturally competent for DNA uptake. Nevertheless, not every strain is able to acquire foreign DNA since nonnaturally transformable strains do exist. Previously we showed that many nonnaturally transformable C. jejuni strains ex...
Guo, Xiaoge; Jinks-Robertson, Sue
2013-12-01
Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the collateral introduction of UV damage can potentially compromise genetic interpretations. Copyright © 2013 Elsevier B.V. All rights reserved.
Guo, Xiaoge; Jinks-Robertson, Sue
2013-01-01
Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the cillateral introduction of UV damage can potentially compromise genetic interpretations. PMID:24120148
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-13
... Medium- and Low-Voltage Dry-Type Distribution Transformers AGENCY: Department of Energy, Office of Energy... Dry-Type and the second addressing Low-Voltage Dry-Type Distribution Transformers. The Liquid Immersed... proposed rule for regulating the energy efficiency of distribution transformers, as authorized by the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-09
... Subcommittee/Working Group for Liquid-Immersed and Medium-Voltage Dry Type Transformers AGENCY: Department of... Medium-Voltage Dry Type Transformers (hereafter ``MV Group''). The MV Group is a working group within the... energy efficiency of distribution transformers, as authorized by the Energy Policy Conservation Act (EPCA...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-05
... Transformers AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice and... Transformers, OMB Control Number 1910-5130. The information collection is used by manufacturers or private labelers to report on and certify compliance with energy efficiency standards for distribution transformers...
Bioluminescence-based system for rapid detection of natural transformation.
Santala, Ville; Karp, Matti; Santala, Suvi
2016-07-01
Horizontal gene transfer plays a significant role in bacterial evolution and has major clinical importance. Thus, it is vital to understand the mechanisms and kinetics of genetic transformations. Natural transformation is the driving mechanism for horizontal gene transfer in diverse genera of bacteria. Our study introduces a simple and rapid method for the investigation of natural transformation. This highly sensitive system allows the detection of a transformation event directly from a bacterial population without any separation step or selection of cells. The system is based on the bacterial luciferase operon from Photorhabdus luminescens The studied molecular tools consist of the functional modules luxCDE and luxAB, which involve a replicative plasmid and an integrative gene cassette. A well-established host for bacterial genetic investigations, Acinetobacter baylyi ADP1, is used as the model bacterium. We show that natural transformation followed by homologous recombination or plasmid recircularization can be readily detected in both actively growing and static biofilm-like cultures, including very rare transformation events. The system allows the detection of natural transformation within 1 h of introducing sample DNA into the culture. The introduced method provides a convenient means to study the kinetics of natural transformation under variable conditions and perturbations. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Optimization of Agrobacterium-Mediated Transformation in Soybean.
Li, Shuxuan; Cong, Yahui; Liu, Yaping; Wang, Tingting; Shuai, Qin; Chen, Nana; Gai, Junyi; Li, Yan
2017-01-01
High transformation efficiency is a prerequisite for study of gene function and molecular breeding. Agrobacterium tumefaciens -mediated transformation is a preferred method in many plants. However, the transformation efficiency in soybean is still low. The objective of this study is to optimize Agrobacterium -mediated transformation in soybean by improving the infection efficiency of Agrobacterium and regeneration efficiency of explants. Firstly, four factors affecting Agrobacterium infection efficiency were investigated by estimation of the rate of GUS transient expression in soybean cotyledonary explants, including Agrobacterium concentrations, soybean explants, Agrobacterium suspension medium, and co-cultivation time. The results showed that an infection efficiency of over 96% was achieved by collecting the Agrobacterium at a concentration of OD 650 = 0.6, then using an Agrobacterium suspension medium containing 154.2 mg/L dithiothreitol to infect the half-seed cotyledonary explants (from mature seeds imbibed for 1 day), and co-cultured them for 5 days. The Agrobacterium infection efficiencies for soybean varieties Jack Purple and Tianlong 1 were higher than the other six varieties. Secondly, the rates of shoot elongation were compared among six different concentration combinations of gibberellic acid (GA 3 ) and indole-3-acetic acid (IAA). The shoot elongation rate of 34 and 26% was achieved when using the combination of 1.0 mg/L GA 3 and 0.1 mg/L IAA for Jack Purple and Tianlong 1, respectively. This rate was higher than the other five concentration combinations of GA 3 and IAA, with an 18 and 11% increase over the original laboratory protocol (a combination of 0.5 mg/L GA 3 and 0.1 mg/L IAA), respectively. The transformation efficiency was 7 and 10% for Jack Purple and Tianlong 1 at this optimized hormone concentration combination, respectively, which was 2 and 6% higher than the original protocol, respectively. Finally, GUS histochemical staining, PCR, herbicide (glufosinate) painting, and QuickStix Kit for Liberty Link ( bar ) were used to verify the positive transgenic plants, and absolute quantification PCR confirmed the exogenous gene existed as one to three copies in the soybean genome. This study provides an improved protocol for Agrobacterium -mediated transformation in soybean and a useful reference to improve the transformation efficiency in other plant species.
NASA Technical Reports Server (NTRS)
Rothschild, Lynn J.; Greenberg, Daniel T.; Takahashi, Jack R.; Thompson, Kirsten A.; Maheshwari, Akshay J.; Kent, Ryan E.; McCutcheon, Griffin; Shih, Joseph D.; Calvet, Charles; Devlin, Tyler D.;
2015-01-01
The CRISPR (Clustered, Regularly Interspaced, Short Palindromic Repeats)/Cas9 system has revolutionized genome editing by providing unprecedented DNA-targeting specificity. Here we demonstrate that this system can be also applied in vitro to fundamental cloning steps to facilitate efficient plasmid selection for transformation and selective gene insertion into plasmid vectors by cleaving unwanted plasmid byproducts with a single-guide RNA (sgRNA)-Cas9 nuclease complex. Using fluorescent and chromogenic proteins as reporters, we demonstrate that CRISPR/Cas9 cleavage excludes multiple plasmids as well as unwanted ligation byproducts resulting in an unprecedented increase in the transformation success rate from approximately 20% to nearly 100%. Thus, this CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) protocol is a novel, inexpensive, and convenient application to conventional molecular cloning to achieve near-perfect selective transformation.
Unified transform architecture for AVC, AVS, VC-1 and HEVC high-performance codecs
NASA Astrophysics Data System (ADS)
Dias, Tiago; Roma, Nuno; Sousa, Leonel
2014-12-01
A unified architecture for fast and efficient computation of the set of two-dimensional (2-D) transforms adopted by the most recent state-of-the-art digital video standards is presented in this paper. Contrasting to other designs with similar functionality, the presented architecture is supported on a scalable, modular and completely configurable processing structure. This flexible structure not only allows to easily reconfigure the architecture to support different transform kernels, but it also permits its resizing to efficiently support transforms of different orders (e.g. order-4, order-8, order-16 and order-32). Consequently, not only is it highly suitable to realize high-performance multi-standard transform cores, but it also offers highly efficient implementations of specialized processing structures addressing only a reduced subset of transforms that are used by a specific video standard. The experimental results that were obtained by prototyping several configurations of this processing structure in a Xilinx Virtex-7 FPGA show the superior performance and hardware efficiency levels provided by the proposed unified architecture for the implementation of transform cores for the Advanced Video Coding (AVC), Audio Video coding Standard (AVS), VC-1 and High Efficiency Video Coding (HEVC) standards. In addition, such results also demonstrate the ability of this processing structure to realize multi-standard transform cores supporting all the standards mentioned above and that are capable of processing the 8k Ultra High Definition Television (UHDTV) video format (7,680 × 4,320 at 30 fps) in real time.
Ye, Xing-Guo; Qin, Hua
2007-01-01
Obtaining marker-free plants with high efficiency will benefit the environmental release of transgenic crops. To achieve this point, a binary vector pNB35SVIP1 with three T-DNAs was constructed by using several mediate plasmids, in which one copy of bar gene expression cassette and two copies of VIP1 gene expression cassette were included. EHA101 Agrobacterium strain harboring the final construct was applied to transform soybean (Glycine max) cotyledon nodes. Through 2 - 3 months regeneration and selection on 3 - 5mg/L glufosinate containing medium, transgenic soybean plants were confirmed to be obtained at 0.83% - 3.16%, and co-transformation efficiency of both gene in the same individual reached up to 86.4%, based on southern blot test. By the analysis of PCR, southern blot and northern blot combining with leaf painting of herbicide in T1 progenies, 41 plants were confirmed to be eliminated of bar gene with the frequency of 7.6% . Among the T1 populations tested, the loss of the alien genes happened in 22.7% lines, the silence of bar gene took place in 27.3% lines, and VIP1 gene silence existed in 37.1% marker-free plants. The result also suggested that the plasmid with three T-DNAs might be an ideal vector to generate maker-free genetic modified organism.
Inhibition of Fas (CD95) expression and Fas-mediated apoptosis by oncogenic Ras.
Fenton, R G; Hixon, J A; Wright, P W; Brooks, A D; Sayers, T J
1998-08-01
The ras oncogene plays an important role in the multistep progression to cancer by activation of signal transduction pathways that contribute to aberrant growth regulation. Although many of these effects are cell autonomous, the ras oncogene also regulates the expression of genes that alter host/tumor interactions. We now extend the mechanisms through which ras promotes tumor survival by demonstrating that oncogenic Ras inhibits expression of the fas gene and renders Ras-transformed cells resistant to Fas-induced apoptosis. A panel of Ras-transformed clones exhibited a marked inhibition in fas mRNA and Fas cell surface expression as compared with untransformed parental cell lines. Fas expression was induced by culture in the presence of IFN-gamma + tumor necrosis factor alpha; however, the maximal level attained in Ras transformants was approximately 10-fold below the level of untransformed cells. Whereas untransformed cells were sensitive to apoptotic death induced by cross-linking surface Fas (especially after cytokine treatment), Ras-transformed cells were very resistant to Fas-induced death even under the most stringent assay conditions. To demonstrate that this resistance was mediated by oncogenic Ras and not secondary genetic events, pools of Ras-transformed cells were generated using a highly efficient retroviral transduction technique. Transformed pools were assayed 6 days after infection and demonstrated a marked decrease in fas gene expression and Fas-mediated apoptosis. Oncogenic Ras did not promote general resistance to apoptosis, because ectopic expression of a fas cDNA in Ras-transformed cells restored sensitivity to Fas-induced apoptosis. These data indicate that oncogenic Ras inhibits basal levels of expression of the fas gene, and although cytokine signal transduction pathways are functional in these cells, the level of surface Fas expression remains below the threshold required for induction of apoptosis. These data identify a mechanism by which Ras-transformed cells may escape from host-mediated immune destruction.
Institute for Atom-Efficient Chemical Transformations Energy Frontier
Synthesis Search Argonne ... Search Argonne Home > Institute for Atom-Efficient Chemical Transformations Synthesis Characterization Computational Studies Evaluation and Mechanisms/Catalytic Experimentation Using
Bio science: genetic genealogy testing and the pursuit of African ancestry.
Nelson, Alondra
2008-10-01
This paper considers the extent to which the geneticization of 'race' and ethnicity is the prevailing outcome of genetic testing for genealogical purposes. The decoding of the human genome precipitated a change of paradigms in genetics research, from an emphasis on genetic similarity to a focus on molecular-level differences among individuals and groups. This shift from lumping to splitting spurred ongoing disagreements among scholars about the significance of 'race' and ethnicity in the genetics era. I characterize these divergent perspectives as 'pragmatism' and 'naturalism'. Drawing upon ethnographic fieldwork and interviews, I argue that neither position fully accounts for how understandings of 'race' and ethnicity are being transformed with genetic genealogy testing. While there is some acquiescence to genetic thinking about ancestry, and by implication, 'race', among African-American and black British consumers of genetic genealogy testing, test-takers also adjudicate between sources of genealogical information and from these construct meaningful biographical narratives. Consumers engage in highly situated 'objective' and 'affiliative' self-fashioning, interpreting genetic test results in the context of their 'genealogical aspirations'. I conclude that issues of site, scale, and subjectification must be attended to if scholars are to understand whether and to what extent social identities are being transformed by recent developments in genetic science.
Andrianov, Alexey; Szabo, Aron; Sergeev, Alexander; Kim, Arkady; Chvykov, Vladimir; Kalashnikov, Mikhail
2016-11-14
We developed an improved approach to calculate the Fourier transform of signals with arbitrary large quadratic phase which can be efficiently implemented in numerical simulations utilizing Fast Fourier transform. The proposed algorithm significantly reduces the computational cost of Fourier transform of a highly chirped and stretched pulse by splitting it into two separate transforms of almost transform limited pulses, thereby reducing the required grid size roughly by a factor of the pulse stretching. The application of our improved Fourier transform algorithm in the split-step method for numerical modeling of CPA and OPCPA shows excellent agreement with standard algorithms.
Efficient transformation and expression of gfp gene in Valsa mali var. mali.
Chen, Liang; Sun, Gengwu; Wu, Shujing; Liu, Huixiang; Wang, Hongkai
2015-01-01
Valsa mali var. mali, the causal agent of valsa canker of apple, causes great loss of apple production in apple producing regions. The pathogenic mechanism of the pathogen has not been studied extensively, thus a suitable gene marker for pathogenic invasion analysis and a random insertion of T-DNA for mutants are desirable. In this paper, we reported the construction of a binary vector pKO1-HPH containing a positive selective gene hygromycin phosphotransferase (hph), a reporter gene gfp conferring green fluorescent protein, and an efficient protocol for V. mali var. mali transformation mediated by Agrobacterium tumefaciens. A transformation efficiency up to about 75 transformants per 10(5) conidia was achieved when co-cultivation of V. mali var. mali and A. tumefaciens for 48 h in A. tumefaciens inductive medium agar plates. The insertions of hph gene and gfp gene into V. mali var. mali genome verified by polymerase chain reaction and southern blot analysis showed that 10 randomly-selected transformants exhibited a single, unique hybridization pattern. This is the first report of A. tumefaciens-mediated transformation of V. mali var mali carrying a 'reporter' gfp gene that stably and efficiently expressed in the transformed V. mali var. mali species.
Transformation of personal computers and mobile phones into genetic diagnostic systems.
Walker, Faye M; Ahmad, Kareem M; Eisenstein, Michael; Soh, H Tom
2014-09-16
Molecular diagnostics based on the polymerase chain reaction (PCR) offer rapid and sensitive means for detecting infectious disease, but prohibitive costs have impeded their use in resource-limited settings where such diseases are endemic. In this work, we report an innovative method for transforming a desktop computer and a mobile camera phone--devices that have become readily accessible in developing countries--into a highly sensitive DNA detection system. This transformation was achieved by converting a desktop computer into a de facto thermal cycler with software that controls the temperature of the central processing unit (CPU), allowing for highly efficient PCR. Next, we reconfigured the mobile phone into a fluorescence imager by adding a low-cost filter, which enabled us to quantitatively measure the resulting PCR amplicons. Our system is highly sensitive, achieving quantitative detection of as little as 9.6 attograms of target DNA, and we show that its performance is comparable to advanced laboratory instruments at approximately 1/500th of the cost. Finally, in order to demonstrate clinical utility, we have used our platform for the successful detection of genomic DNA from the parasite that causes Chagas disease, Trypanosoma cruzi, directly in whole, unprocessed human blood at concentrations 4-fold below the clinical titer of the parasite.
Transformation of Personal Computers and Mobile Phones into Genetic Diagnostic Systems
2014-01-01
Molecular diagnostics based on the polymerase chain reaction (PCR) offer rapid and sensitive means for detecting infectious disease, but prohibitive costs have impeded their use in resource-limited settings where such diseases are endemic. In this work, we report an innovative method for transforming a desktop computer and a mobile camera phone—devices that have become readily accessible in developing countries—into a highly sensitive DNA detection system. This transformation was achieved by converting a desktop computer into a de facto thermal cycler with software that controls the temperature of the central processing unit (CPU), allowing for highly efficient PCR. Next, we reconfigured the mobile phone into a fluorescence imager by adding a low-cost filter, which enabled us to quantitatively measure the resulting PCR amplicons. Our system is highly sensitive, achieving quantitative detection of as little as 9.6 attograms of target DNA, and we show that its performance is comparable to advanced laboratory instruments at approximately 1/500th of the cost. Finally, in order to demonstrate clinical utility, we have used our platform for the successful detection of genomic DNA from the parasite that causes Chagas disease, Trypanosoma cruzi, directly in whole, unprocessed human blood at concentrations 4-fold below the clinical titer of the parasite. PMID:25223929
A hardware implementation of the discrete Pascal transform for image processing
NASA Astrophysics Data System (ADS)
Goodman, Thomas J.; Aburdene, Maurice F.
2006-02-01
The discrete Pascal transform is a polynomial transform with applications in pattern recognition, digital filtering, and digital image processing. It already has been shown that the Pascal transform matrix can be decomposed into a product of binary matrices. Such a factorization leads to a fast and efficient hardware implementation without the use of multipliers, which consume large amounts of hardware. We recently developed a field-programmable gate array (FPGA) implementation to compute the Pascal transform. Our goal was to demonstrate the computational efficiency of the transform while keeping hardware requirements at a minimum. Images are uploaded into memory from a remote computer prior to processing, and the transform coefficients can be offloaded from the FPGA board for analysis. Design techniques like as-soon-as-possible scheduling and adder sharing allowed us to develop a fast and efficient system. An eight-point, one-dimensional transform completes in 13 clock cycles and requires only four adders. An 8x8 two-dimensional transform completes in 240 cycles and requires only a top-level controller in addition to the one-dimensional transform hardware. Finally, through minor modifications to the controller, the transform operations can be pipelined to achieve 100% utilization of the four adders, allowing one eight-point transform to complete every seven clock cycles.
Genetics of alternative definitions of feed efficiency in grazing lactating dairy cows.
Hurley, A M; López-Villalobos, N; McParland, S; Lewis, E; Kennedy, E; O'Donovan, M; Burke, J L; Berry, D P
2017-07-01
The objective of the present study was to estimate genetic parameters across lactation for measures of energy balance (EB) and a range of feed efficiency variables as well as to quantify the genetic inter-relationships between them. Net energy intake (NEI) from pasture and concentrate intake was estimated up to 8 times per lactation for 2,481 lactations from 1,274 Holstein-Friesian cows. A total of 8,134 individual feed intake measurements were used. Efficiency traits were either ratio based or residual based; the latter were derived from least squares regression models. Residual energy intake (REI) was defined as NEI minus predicted energy requirements [e.g., net energy of lactation (NE L ), maintenance, and body tissue anabolism] or supplied from body tissue mobilization; residual energy production was defined as the difference between actual NE L and predicted NE L based on NEI, maintenance, and body tissue anabolism/catabolism. Energy conversion efficiency was defined as NE L divided by NEI. Random regression animal models were used to estimate residual, additive genetic, and permanent environmental (co)variances across lactation. Heritability across lactation stages varied from 0.03 to 0.36 for all efficiency traits. Within-trait genetic correlations tended to weaken as the interval between lactation stages compared lengthened for EB, REI, residual energy production, and NEI. Analysis of eigenvalues and associated eigenfunctions for EB and the efficiency traits indicate the ability to genetically alter the profile of these lactation curves to potentially improve dairy cow efficiency differently at different stages of lactation. Residual energy intake and EB were moderately to strongly genetically correlated with each other across lactation (genetic correlations ranged from 0.45 to 0.90), indicating that selection for lower REI alone (i.e., deemed efficient cows) would favor cows with a compromised energy status; nevertheless, selection for REI within a holistic breeding goal could be used to overcome such antagonisms. The smallest (8.90% of genetic variance) and middle (11.22% of genetic variance) eigenfunctions for REI changed sign during lactation, indicating the potential to alter the shape of the REI lactation profile. Results from the present study suggest exploitable genetic variation exists for a range of efficiency traits, and the magnitude of this variation is sufficiently large to justify consideration of the feed efficiency complex in future dairy breeding goals. Moreover, it is possible to alter the trajectories of the efficiency traits to suit a particular breeding objective, although this relies on very precise across-parity genetic parameter estimates, including genetic correlations with health and fertility traits (as well as other traits). Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Robust Transgene Expression from Bicistronic mRNA in the Green Alga Chlamydomonas reinhardtii
Onishi, Masayuki; Pringle, John R.
2016-01-01
The unicellular green alga Chlamydomonas reinhardtii is a model organism that provides an opportunity to understand the evolution and functional biology of the lineage that includes the land plants, as well as aspects of the fundamental core biology conserved throughout the eukaryotic phylogeny. Although many tools are available to facilitate genetic, molecular biological, biochemical, and cell biological studies in Chlamydomonas, expression of unselected transgenes of interest (GOIs) has been challenging. In most methods used previously, the GOI and a selectable marker are expressed from two separate mRNAs, so that their concomitant expression is not guaranteed. In this study, we developed constructs that allow expression of an upstream GOI and downstream selectable marker from a single bicistronic mRNA. Although this approach in other systems has typically required a translation-enhancing element such as an internal ribosome entry site for the downstream marker, we found that a short stretch of unstructured junction sequence was sufficient to obtain adequate expression of the downstream gene, presumably through post-termination reinitiation. With this system, we obtained robust expression of both endogenous and heterologous GOIs, including fluorescent proteins and tagged fusion proteins, in the vast majority of transformants, thus eliminating the need for tedious secondary screening for GOI-expressing transformants. This improved efficiency should greatly facilitate a variety of genetic and cell-biological studies in Chlamydomonas and also enable new applications such as expression-based screens and large-scale production of foreign proteins. PMID:27770025
Pattern cladistics and the 'realism-antirealism debate' in the philosophy of biology.
Vergara-Silva, Francisco
2009-06-01
Despite the amount of work that has been produced on the subject over the years, the 'transformation of cladistics' is still a misunderstood episode in the history of comparative biology. Here, I analyze two outstanding, highly contrasting historiographic accounts on the matter, under the perspective of an influential dichotomy in the philosophy of science: the opposition between Scientific Realism and Empiricism. Placing special emphasis on the notion of 'causal grounding' of morphological characters (sensu Olivier Rieppel) in modern developmental biology's (mechanistic) theories, I arrive at the conclusion that a 'new transformation of cladistics' is philosophically plausible. This 'reformed' understanding of 'pattern cladistics' entails retaining the interpretation of cladograms as 'schemes of synapomorphies', but in association to construing cladogram nodes as 'developmental-genetic taxic homologies', instead of 'standard Darwinian ancestors'. The reinterpretation of pattern cladistics presented here additionally proposes to take Bas Van Fraassen's 'constructive empiricism' as a philosophical stance that could properly support such analysis of developmental-genetic data for systematic purposes. The latter suggestion is justified through a reappraisal of previous ideas developed by prominent pattern cladists (mainly, Colin Patterson), which concerned a scientifically efficient 'observable/non-observable distinction' linked to the conceptual pair 'ontogeny and phylogeny'. Finally, I argue that a robust articulation of Antirealist alternatives in systematics may provide a rational basis for its disciplinary separation from evolutionary biology, as well as for a critical reconsideration of the proper role of certain Scientific Realist positions, currently popular in comparative biology.
USDA-ARS?s Scientific Manuscript database
In most woody fruit species, transformation and regeneration are difficult. However, European plum (Prunus domestica) has been shown to be amenable to genetic improvement technologies from classical hybridization, to genetic engineering, to rapid cycle crop breeding (‘FasTrack’ breeding). Since th...
USDA-ARS?s Scientific Manuscript database
Genetic engineering offers an opportunity to develop flower bulb crops with resistance to fungal, viral, and bacterial pathogens. Several of the flower bulb crops, Lilium spp., Gladiolus, Zantedeschia, Muscari, Hyacinthus, Narcissus, Ornithogalum, Iris, and Alstroemeria, have been transformed with t...
Medical Genetics Is Not Eugenics
ERIC Educational Resources Information Center
Cowan, Ruth Schwartz
2008-01-01
The connection that critics make between medical genetics and eugenics is historically fallacious. Activists on the political right are as mistaken as activists on the political left: Genetic screening was not eugenics in the past, is not eugenics in the present, and, unless its technological systems become radically transformed, will not be…
Genetic variation in efficiency to deposit fat and lean meat in Norwegian Landrace and Duroc pigs.
Martinsen, K H; Ødegård, J; Olsen, D; Meuwissen, T H E
2015-08-01
Feed costs amount to approximately 70% of the total costs in pork production, and feed efficiency is, therefore, an important trait for improving pork production efficiency. Production efficiency is generally improved by selection for high lean growth rate, reduced backfat, and low feed intake. These traits have given an effective slaughter pig but may cause problems in piglet production due to sows with limited body reserves. The aim of the present study was to develop a measure for feed efficiency that expressed the feed requirements per 1 kg deposited lean meat and fat, which is not improved by depositing less fat. Norwegian Landrace ( = 8,161) and Duroc ( = 7,202) boars from Topigs Norsvin's testing station were computed tomography scanned to determine their deposition of lean meat and fat. The trait was analyzed in a univariate animal model, where total feed intake in the test period was the dependent variable and fat and lean meat were included as random regression cofactors. These cofactors were measures for fat and lean meat efficiencies of individual boars. Estimation of fraction of total genetic variance due to lean meat or fat efficiency was calculated by the ratio between the genetic variance of the random regression cofactor and the total genetic variance in total feed intake during the test period. Genetic variance components suggested there was significant genetic variance among Norwegian Landrace and Duroc boars in efficiency for deposition of lean meat (0.23 ± 0.04 and 0.38 ± 0.06) and fat (0.26 ± 0.03 and 0.17 ± 0.03) during the test period. The fraction of the total genetic variance in feed intake explained by lean meat deposition was 12% for Norwegian Landrace and 15% for Duroc. Genetic fractions explained by fat deposition were 20% for Norwegian Landrace and 10% for Duroc. The results suggested a significant part of the total genetic variance in feed intake in the test period was explained by fat and lean meat efficiency. These new efficiency measures may give the breeders opportunities to select for animals with a genetic potential to deposit lean meat efficiently and at low feed costs in slaughter pigs rather than selecting for reduced the feed intake and backfat.
Chowdhury, Supriyo; Basu, Arpita; Kundu, Surekha
2014-09-01
In spite of the economic importance of sesame (Sesamum indicum L.) and the recent availability of its genome sequence, a high-frequency transformation protocol is still not available. The only two existing Agrobacterium-mediated transformation protocols that are available have poor transformation efficiencies of less than 2%. In the present study, we report a high-frequency, simple, and reproducible transformation protocol for sesame. Transformation was done using de-embryonated cotyledons via somatic embryogenic stages. All the critical parameters of transformation, like incubation period of explants in pre-regeneration medium prior to infection by Agrobacterium tumefaciens, cocultivation period, concentrations of acetosyringone in cocultivation medium, kanamycin concentration, and concentration of plant hormones, including 6-benzylaminopurine, have been optimized. This protocol is superior to the two existing protocols in its high regeneration and transformation efficiencies. The transformed sesame lines have been tested by PCR, RT-PCR for neomycin phosphotransferase II gene expression, and β-glucuronidase (GUS) assay. The regeneration frequency and transformation efficiency are 57.33 and 42.66%, respectively. T0 and T1 generation transgenic plants were analyzed, and several T1 plants homozygous for the transgenes were obtained.
10 CFR 429.70 - Alternative methods for determining energy efficiency or energy use.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of commercial HVAC and WH equipment, distribution transformers, and central air conditioners and heat... overrate the efficiency of a basic model. For each basic model of distribution transformer that has a... voltage at which the transformer is rated to operate. (b) Testing. Testing for each covered product or...
USDA-ARS?s Scientific Manuscript database
This comment analyses the paper “Physical methods for genetic transformation of fungi and yeast” by Ana L. Rivera, Denis Magaña-Ortíz , Miguel Gómez-Lim , Francisco Fernández and Achim M. Loske. I examine the methods described and their advantages and disadvantages. I further discuss the other more ...
Genetic Programming Transforms in Linear Regression Situations
NASA Astrophysics Data System (ADS)
Castillo, Flor; Kordon, Arthur; Villa, Carlos
The chapter summarizes the use of Genetic Programming (GP) inMultiple Linear Regression (MLR) to address multicollinearity and Lack of Fit (LOF). The basis of the proposed method is applying appropriate input transforms (model respecification) that deal with these issues while preserving the information content of the original variables. The transforms are selected from symbolic regression models with optimal trade-off between accuracy of prediction and expressional complexity, generated by multiobjective Pareto-front GP. The chapter includes a comparative study of the GP-generated transforms with Ridge Regression, a variant of ordinary Multiple Linear Regression, which has been a useful and commonly employed approach for reducing multicollinearity. The advantages of GP-generated model respecification are clearly defined and demonstrated. Some recommendations for transforms selection are given as well. The application benefits of the proposed approach are illustrated with a real industrial application in one of the broadest empirical modeling areas in manufacturing - robust inferential sensors. The chapter contributes to increasing the awareness of the potential of GP in statistical model building by MLR.
Efficient transformer for electromagnetic waves
Miller, R.B.
A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.
Genetic diversity of water use efficiency in Jerusalem artichoke (Helianthus tuberosus L.) germplasm
USDA-ARS?s Scientific Manuscript database
Genetic diversity in crop germplasm is an important resource for crop improvement, but information on genetic diversity is rare for Jerusalem artichoke, especially for traits related to water use efficiency. The objectives of this study were to investigate genetic variations for water use and water...
The biotechnology (genetic transformation and molecular biology) of Bixa orellana L. (achiote).
Teixeira da Silva, Jaime A; Dobránszki, Judit; Rivera-Madrid, Renata
2018-05-10
Genetic transformation allows for greater bixin or norbixin production in achiote. Knowledge of genes that control the biosynthesis of these important secondary metabolites will allow for targeted amplification in transgenic plants. Annatto is a natural dye or coloring agent derived from the seeds, or their arils, of achiote (Bixa orellana L.), and is commercially known as E160b. The main active component of annatto dye is water-insoluble bixin, although water-soluble norbixin also has commercial applications. Relative to other antioxidants, bixin is light- and temperature stable and is thus safe for human consumption. Bixin is, therefore, widely applied as a dye and as an antioxidant in the medico-pharmaceutical, food, cosmetic, and dye industries. Even though bixin has also been isolated from leaves and bark, yield is lower than from seeds. More biotechnology-based research of this industrial and medicinal plant is needed. Building on provisional genetic transformation studies, it would be advantageous to transform genes that could result in greater bixin or norbixin production. Reliable protocols for the extraction of bixin and norbixin, as well as deeper knowledge of the genes that control the biosynthesis of these important secondary metabolites will allow for targeted amplification in transgenic plants.
Highly Efficient Electroporation-mediated Transformation into Edible Mushroom Flammulina velutipes
Kim, Jong Kun; Park, Young Jin; Kong, Won Sik
2010-01-01
In this study, we developed an efficient electroporation-mediated transformation system featuring Flammulina velutipes. The flammutoxin (ftx) gene of F. velutipes was isolated by reverse transcription-PCR. pFTXHg plasmid was constructed using the partial ftx gene (410 bp) along with the hygromycin B phosphotransferase gene (hygB) downstream of the glyceraldehydes-3-phosphate dehydrogenase (gpd) promoter. The plasmid was transformed into protoplasts of monokaryotic strain 4019-20 of F. velutipes by electroporation. High transformation efficiency was obtained with an electric-pulse of 1.25 kV/cm by using 177 transformants/µg of DNA in 1 × 107 protoplasts. PCR and Southern blot hybridization indicated that a single copy of the plasmid DNA was inserted at different locations in the F. velutipes genome by non-homologous recombination. Therefore, this transformation system could be used as a useful tool for gene function analysis of F. velutipes. PMID:23956676
Highly Efficient Electroporation-mediated Transformation into Edible Mushroom Flammulina velutipes.
Kim, Jong Kun; Park, Young Jin; Kong, Won Sik; Kang, Hee Wan
2010-12-01
In this study, we developed an efficient electroporation-mediated transformation system featuring Flammulina velutipes. The flammutoxin (ftx) gene of F. velutipes was isolated by reverse transcription-PCR. pFTXHg plasmid was constructed using the partial ftx gene (410 bp) along with the hygromycin B phosphotransferase gene (hygB) downstream of the glyceraldehydes-3-phosphate dehydrogenase (gpd) promoter. The plasmid was transformed into protoplasts of monokaryotic strain 4019-20 of F. velutipes by electroporation. High transformation efficiency was obtained with an electric-pulse of 1.25 kV/cm by using 177 transformants/µg of DNA in 1 × 10(7) protoplasts. PCR and Southern blot hybridization indicated that a single copy of the plasmid DNA was inserted at different locations in the F. velutipes genome by non-homologous recombination. Therefore, this transformation system could be used as a useful tool for gene function analysis of F. velutipes.
International Review of Standards and Labeling Programs for Distribution Transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Letschert, Virginie; Scholand, Michael; Carreño, Ana MarÃa
Transmission and distribution (T&D) losses in electricity networks represent 8.5% of final energy consumption in the world. In Latin America, T&D losses range between 6% and 20% of final energy consumption, and represent 7% in Chile. Because approximately one-third of T&D losses take place in distribution transformers alone, there is significant potential to save energy and reduce costs and carbon emissions through policy intervention to increase distribution transformer efficiency. A large number of economies around the world have recognized the significant impact of addressing distribution losses and have implemented policies to support market transformation towards more efficient distribution transformers. Asmore » a result, there is considerable international experience to be shared and leveraged to inform countries interested in reducing distribution losses through policy intervention. The report builds upon past international studies of standards and labeling (S&L) programs for distribution transformers to present the current energy efficiency programs for distribution transformers around the world.« less
An improved yeast transformation method for the generation of very large human antibody libraries.
Benatuil, Lorenzo; Perez, Jennifer M; Belk, Jonathan; Hsieh, Chung-Ming
2010-04-01
Antibody library selection by yeast display technology is an efficient and highly sensitive method to identify binders to target antigens. This powerful selection tool, however, is often hampered by the typically modest size of yeast libraries (approximately 10(7)) due to the limited yeast transformation efficiency, and the full potential of the yeast display technology for antibody discovery and engineering can only be realized if it can be coupled with a mean to generate very large yeast libraries. We describe here a yeast transformation method by electroporation that allows for the efficient generation of large antibody libraries up to 10(10) in size. Multiple components and conditions including CaCl(2), MgCl(2), sucrose, sorbitol, lithium acetate, dithiothreitol, electroporation voltage, DNA input and cell volume have been tested to identify the best combination. By applying this developed protocol, we have constructed a 1.4 x 10(10) human spleen antibody library essentially in 1 day with a transformation efficiency of 1-1.5 x 10(8) transformants/microg vector DNA. Taken together, we have developed a highly efficient yeast transformation method that enables the generation of very large and productive human antibody libraries for antibody discovery, and we are now routinely making 10(9) libraries in a day for antibody engineering purposes.
Carrada-Bravo, Teodoro
2016-02-01
The virulence of pneumococci for mice depends on the production of a polysaccharide-capsule, which encloses the bacteria and protects it against phagocytosis. Capsulated pneumococci yield smooth, brilliant colonies designated S, but mutant strains arise frequently which have lost the capacity to sinthetise the capsule, are avirulent and rough designated R. F. Griffith discovery of bacterial "transformation" in 1928, is a landmark in the history of genetics, because hereditary determinants could be transferred from one bacteria to another, and laid the foundation for the subsequent recognition of deoxyribonucleic acid (DNA) as the hereditary material. A systematic analysis of the chemical nature of the "transforming principle", by O. T. Avery and his colleagues during next 10 years, culminated in a formidable weight of evidence that it possessed all properties of DNA. In 1953, J. D. Watson and F. H. C Crick by a brilliant synthesis, fitted the chemical X-ray diffraction data together into a symmetrical double-helix structure, which possessed the inherent properties of genetic material, and carries the information necessary to direct all biochemical-cellular activities and self-replications. This paper describes de early rise and development of bacterial genetics and molecular biology.
Poppenberger, B; Berthiller, F; Lucyshyn, D; Schuhmacher, R; Krska, R; Adam, G
2005-06-01
First results of the GEN-AU pilot project "Fusarium virulence and plant resistance mechanisms" are reported. Employing genetically engineered yeast strains we have been able to clone genes from the model plantArabidopsis thaliana encoding UDP-glucosyltransferases which can inactivate deoxynivalenol (DON) and zearalenone (ZON). The structure of the metabolites produced by the transformed yeast strains were determined by LC-MS/MS as DON-3O-glucoside and ZON-4O-glucoside, respectively. ZON and derivatives added to glucosyltransferase expressing yeast cultures are converted into the corresponding glucosides in very high yield, opening an efficient way to produce reference materials for these masked mycotoxins.
Mitochondrial DNA heteroplasmy in Candida glabrata after mitochondrial transformation.
Zhou, Jingwen; Liu, Liming; Chen, Jian
2010-05-01
Genetic manipulation of mitochondrial DNA (mtDNA) is the most direct method for investigating mtDNA, but until now, this has been achieved only in the diploid yeast Saccharomyces cerevisiae. In this study, the ATP6 gene on mtDNA of the haploid yeast Candida glabrata (Torulopsis glabrata) was deleted by biolistic transformation of DNA fragments with a recoded ARG8(m) mitochondrial genetic marker, flanked by homologous arms to the ATP6 gene. Transformants were identified by arginine prototrophy. However, in the transformants, the original mtDNA was not lost spontaneously, even under arginine selective pressure. Moreover, the mtDNA transformants selectively lost the transformed mtDNA under aerobic conditions. The mtDNA heteroplasmy in the transformants was characterized by PCR, quantitative PCR, and Southern blotting, showing that the heteroplasmy was relatively stable in the absence of arginine. Aerobic conditions facilitated the loss of the original mtDNA, and anaerobic conditions favored loss of the transformed mtDNA. Moreover, detailed investigations showed that increases in reactive oxygen species in mitochondria lacking ATP6, along with their equal cell division, played important roles in determining the dynamics of heteroplasmy. Based on our analysis of mtDNA heteroplasmy in C. glabrata, we were able to generate homoplasmic Deltaatp6 mtDNA strains.
Holistic Nursing in the Genetic/Genomic Era.
Sharoff, Leighsa
2016-06-01
Holistic nursing practice is an ever-evolving transformative process with core values that require continued growth, professional leadership, and advocacy. Holistic nurses are required to stay current with all new required competencies, such as the Core Competencies in Genetics for Health Professional, and, as such, be adept at translating scientific evidence relating to genetics/genomics in the clinical setting. Knowledge of genetics/genomics in relation to nursing practice, policy, utilization, and research influence nurses' responsibilities. In addition to holistic nursing competencies, the holistic nurse must have basic knowledge and skills to integrate genetics/genomics aspects. It is important for holistic nurses to enhance their overall knowledge foundation, skills, and attitudes about genetics to prepare for the transformation in health care that is already underway. Holistic nurses can provide an important perspective to the application of genetics and genomics, focusing on health promotion, caring, and understanding the relationship between caring and families, community, and society. Yet there may be a lack of genetic and genomic knowledge to fully participate in the current genomic era. This article will explore the required core competencies for all health care professionals, share linkage of holistic nurses in practice with genetic/genomic conditions, and provide resources to further one's knowledge base. © The Author(s) 2015.
Agrobacterium-mediated genetic transformation of pineapple (Ananas comosus L., Merr.).
Mhatre, Minal
2013-01-01
Pineapple (Ananas comosus L., Merr.) is a commercially important crop, grown in the tropical and subtropical regions. However, the crop is faced with postharvest damage and poor varietal and nutritional improvement. Being a vegetatively propagated crop, conventional breeding programs take longer time for genetic improvement, which may not necessarily successfully develop an improved cultivar. Hence, the genetic modification of pineapple is an alternative handy approach to improve pineapple. We have established an Agrobacterium-mediated transformation system using leaf bases from in vitro-grown pineapple plants. Being a monocot, acetosyringone is added to the culture medium for overnight growth of Agrobacterium and transformation to transfer a gene of interest MSI99 soybean ferritin. Leaf bases isolated from in vitro shoot cultures are treated with Agrobacterium suspension at two dilutions, 10× and 20×, for 30 min. Explants are subsequently blot dried and cultured on gelrite solidified hormone-free Pin1 medium for 2 days (cocultivation). Periodic transfer is first done to the regeneration medium (Pin1) containing cefotaxime for the suppression of Agrobacterium growth. The transformants are selected by culturing on Pin1 medium containing cefotaxime and kanamycin. Multiple shoots, regenerated in leaf bases, are further multiplied and individually rooted in the liquid RM medium amended with antibiotics to recover plants. Putative transformants are analyzed for transgene integration and expression using standard molecular biological methods of PCR, RT-PCR, and genomic Southern.
Zhou, Xiaohong; Wang, Ke; Lv, Dongwen; Wu, Chengjun; Li, Jiarui; Zhao, Pei; Lin, Zhishan; Du, Lipu; Yan, Yueming; Ye, Xingguo
2013-01-01
Agrobacterium-mediated plant transformation is an extremely complex and evolved process involving genetic determinants of both the bacteria and the host plant cells. However, the mechanism of the determinants remains obscure, especially in some cereal crops such as wheat, which is recalcitrant for Agrobacterium-mediated transformation. In this study, differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were analyzed in wheat callus cells co-cultured with Agrobacterium by using RNA sequencing (RNA-seq) and two-dimensional electrophoresis (2-DE) in conjunction with mass spectrometry (MS). A set of 4,889 DEGs and 90 DEPs were identified, respectively. Most of them are related to metabolism, chromatin assembly or disassembly and immune defense. After comparative analysis, 24 of the 90 DEPs were detected in RNA-seq and proteomics datasets simultaneously. In addition, real-time RT-PCR experiments were performed to check the differential expression of the 24 genes, and the results were consistent with the RNA-seq data. According to gene ontology (GO) analysis, we found that a big part of these differentially expressed genes were related to the process of stress or immunity response. Several putative determinants and candidate effectors responsive to Agrobacterium mediated transformation of wheat cells were discussed. We speculate that some of these genes are possibly related to Agrobacterium infection. Our results will help to understand the interaction between Agrobacterium and host cells, and may facilitate developing efficient transformation strategies in cereal crops. PMID:24278131
Genomics of gene banks: A case study in rice.
McCouch, Susan R; McNally, Kenneth L; Wang, Wen; Sackville Hamilton, Ruaraidh
2012-02-01
Only a small fraction of the naturally occurring genetic diversity available in the world's germplasm repositories has been explored to date, but this is expected to change with the advent of affordable, high-throughput genotyping and sequencing technology. It is now possible to examine genome-wide patterns of natural variation and link sequence polymorphisms with downstream phenotypic consequences. In this paper, we discuss how dramatic changes in the cost and efficiency of sequencing and genotyping are revolutionizing the way gene bank scientists approach the responsibilities of their job. Sequencing technology provides a set of tools that can be used to enhance the quality, efficiency, and cost-effectiveness of gene bank operations, the depth of scientific knowledge of gene bank holdings, and the level of public interest in natural variation. As a result, gene banks have the chance to take on new life. Previously seen as "warehouses" where seeds were diligently maintained, but evolutionarily frozen in time, gene banks could transform into vibrant research centers that actively investigate the genetic potential of their holdings. In this paper, we will discuss how genotyping and sequencing can be integrated into the activities of a modern gene bank to revolutionize the way scientists document the genetic identity of their accessions; track seed lots, varieties, and alleles; identify duplicates; and rationalize active collections, and how the availability of genomics data are likely to motivate innovative collaborations with the larger research and breeding communities to engage in systematic and rigorous phenotyping and multilocation evaluation of the genetic resources in gene banks around the world. The objective is to understand and eventually predict how variation at the DNA level helps determine the phenotypic potential of an individual or population. Leadership and vision are needed to coordinate the characterization of collections and to integrate genotypic and phenotypic information in ways that will illuminate the value of these resources. Genotyping of collections represents a powerful starting point that will enable gene banks to become more effective as stewards of crop biodiversity.
Genetic control of residual variance of yearling weight in Nellore beef cattle.
Iung, L H S; Neves, H H R; Mulder, H A; Carvalheiro, R
2017-04-01
There is evidence for genetic variability in residual variance of livestock traits, which offers the potential for selection for increased uniformity of production. Different statistical approaches have been employed to study this topic; however, little is known about the concordance between them. The aim of our study was to investigate the genetic heterogeneity of residual variance on yearling weight (YW; 291.15 ± 46.67) in a Nellore beef cattle population; to compare the results of the statistical approaches, the two-step approach and the double hierarchical generalized linear model (DHGLM); and to evaluate the effectiveness of power transformation to accommodate scale differences. The comparison was based on genetic parameters, accuracy of EBV for residual variance, and cross-validation to assess predictive performance of both approaches. A total of 194,628 yearling weight records from 625 sires were used in the analysis. The results supported the hypothesis of genetic heterogeneity of residual variance on YW in Nellore beef cattle and the opportunity of selection, measured through the genetic coefficient of variation of residual variance (0.10 to 0.12 for the two-step approach and 0.17 for DHGLM, using an untransformed data set). However, low estimates of genetic variance associated with positive genetic correlations between mean and residual variance (about 0.20 for two-step and 0.76 for DHGLM for an untransformed data set) limit the genetic response to selection for uniformity of production while simultaneously increasing YW itself. Moreover, large sire families are needed to obtain accurate estimates of genetic merit for residual variance, as indicated by the low heritability estimates (<0.007). Box-Cox transformation was able to decrease the dependence of the variance on the mean and decreased the estimates of genetic parameters for residual variance. The transformation reduced but did not eliminate all the genetic heterogeneity of residual variance, highlighting its presence beyond the scale effect. The DHGLM showed higher predictive ability of EBV for residual variance and therefore should be preferred over the two-step approach.
Chi, Ming; Bhagwat, Basdeo; Tang, Guiliang; Xiang, Yu
2016-01-01
It is of great importance and interest to develop crop varieties with low polyphenol oxidase (PPO) activity for the food industry because PPO-mediated oxidative browning is a main cause of post-harvest deterioration and quality loss of fresh produce and processed foods. We recently demonstrated that potato tubers with reduced browning phenotypes can be produced by inhibition of the expression of several PPO gene isoforms using artificial microRNA (amiRNA) technology. The approach introduces a single type of 21-nucleotide RNA population to guide silencing of the PPO gene transcripts in potato tissues. Some advantages of the technology are: small RNA molecules are genetically transformed, off-target gene silencing can be avoided or minimized at the stage of amiRNA designs, and accuracy and efficiency of the processes can be detected at every step using molecular biological techniques. Here we describe the methods for transformation and regeneration of potatoes with amiRNA vectors, detection of the expression of amiRNAs, identification of the cleaved product of the target gene transcripts, and assay of the expression level of PPO gene isoforms in potatoes.
Chemical engineering challenges and investment opportunities in sustainable energy.
Heller, Adam
2008-01-01
The chemical and energy industries are transforming as they adjust to the new era of high-priced petroleum and severe global warming. As a result of the transformation, engineering challenges and investment opportunities abound. Rapid evolution and fast growth are expected in cathode and anode materials as well as polymeric electrolytes for vehicular batteries and in high-performance polymer-ceramic composites for wind turbines, fuel-efficient aircraft, and lighter and safer cars. Unique process-engineering opportunities exist in sand-oil, coal, and possibly also shale liquefaction to produce transportation fuel; and also in genetic engineering of photosynthesizing plants and other organisms for their processing into high-performance biodegradable polymers and high-value-added environmentally friendly chemicals. Also, research on the feasibility of mitigation of global warming through enhancement of CO(2) uptake by the southern oceans by fertilization with trace amounts of iron is progressing. Because chemical engineers are uniquely well trained in mathematical modeling of mass transport, flow, and mixing, and also in cost analysis, they are likely to join the oceanographers and marine biologists in this important endeavor.
Pérez-González, J A; González, R; Querol, A; Sendra, J; Ramón, D
1993-01-01
A genetic transformation system for an industrial wine yeast strain is presented here. The system is based on the acquisition of cycloheximide resistance and is a direct adaptation of a previously published procedure for brewing yeasts (L. Del Pozo, D. Abarca, M. G. Claros, and A. Jiménez, Curr. Genet. 19:353-358, 1991). Transformants arose at an optimal frequency of 0.5 transformant per microgram of DNA, are stable in the absence of selective pressure, and produce wine in the same way as the untransformed industrial strain. By using this transformation protocol, a filamentous fungal beta-(1,4)-endoglucanase gene has been expressed in an industrial wine yeast under the control of the yeast actin gene promoter. Endoglucanolytic wine yeast secretes the fungal enzyme to the must, producing a wine with an increased fruity aroma. Images PMID:8215355
Hrahsel, Lalremsiami; Basu, Adreeja; Sahoo, Lingaraj; Thangjam, Robert
2014-02-01
An efficient in vitro propagation method has been developed for the first time for Musa acuminata (AAA) cv. Vaibalhla, an economically important banana cultivar of Mizoram, India. Immature male flowers were used as explants. Murashige and Skoog's (MS) medium supplemented with plant growth regulators (PGRs) were used for the regeneration process. Out of different PGR combinations, MS medium supplemented with 2 mg L(-1) 6-benzylaminopurine (BAP) + 0.5 mg L(-1) α-naphthalene acetic acid (NAA) was optimal for production of white bud-like structures (WBLS). On this medium, explants produced the highest number of buds per explant (4.30). The highest percentage (77.77) and number (3.51) of shoot formation from each explants was observed in MS medium supplemented with 2 mg L(-1) kinetin + 0.5 mg L(-1) NAA. While MS medium supplemented with a combination of 2 mg L(-1) BAP + 0.5 mg L(-1) NAA showed the maximum shoot length (14.44 cm). Rooting efficiency of the shoots was highest in the MS basal medium without any PGRs. The plantlets were hardened successfully in the greenhouse with 96% survival rate. Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers were employed to assess the genetic stability of in vitro regenerated plantlets of M. acuminata (AAA) cv. Vaibalhla. Eight RAPD and 8 ISSR primers were successfully used for the analysis from the 40 RAPD and 30 ISSR primers screened initially. The amplified products were monomorphic across all the regenerated plants and were similar to the mother plant. The present standardised protocol will find application in mass production, conservation and genetic transformation studies of this commercially important banana.
Construction of a self-cloning system in the unicellular green alga Pseudochoricystis ellipsoidea.
Kasai, Yuki; Oshima, Kohei; Ikeda, Fukiko; Abe, Jun; Yoshimitsu, Yuya; Harayama, Shigeaki
2015-01-01
Microalgae have received considerable interest as a source of biofuel production. The unicellular green alga Pseudochoricystis ellipsoidea (non-validated scientific name) strain Obi appears to be suitable for large-scale cultivation in outdoor open ponds for biodiesel production because it accumulates lipids to more than 30 % of dry cell weight under nitrogen-depleted conditions. It also grows rapidly under acidic conditions at which most protozoan grazers of microalgae may not be tolerant. The lipid productivity of this alga could be improved using genetic engineering techniques; however, genetically modified organisms are the subject of regulation by specific laws. Therefore, the aim of this study was to develop a self-cloning-based positive selection system for the breeding of P. ellipsoidea. In this study, uracil auxotrophic mutants were isolated after the mutagenesis of P. ellipsoidea using either ultraviolet light or a transcription activator-like effector nuclease (TALEN) system. The cDNA of the uridine monophosphate synthase gene (PeUMPS) of P. ellipsoidea was cloned downstream of the promoter of either a beta-tubulin gene (PeTUBULIN1) or the gene for the small subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (PeRBCS) to construct the pUT1 or pUT2 plasmid, respectively. These constructs were introduced into uracil auxotroph strains, and genetically complementary transformants were isolated successfully on minimal agar plates. Use of Noble agar as the solidifying agent was essential to avoid the development of false-positive colonies. It took more than 6 weeks for the formation of colonies of pUT1 transformants, whereas pUT2 transformants formed colonies in 2 weeks. Real-time PCR revealed that there were more PeUMPS transcripts in pUT2 transformants than in pUT1 transformants. Uracil synthesis (Ura(+)) transformants were also obtained using a gene cassette consisting solely of PeUMPS flanked by the PeRBCS promoter and terminator. A self-cloning-based positive selection system for the genetic transformation of P. ellipsoidea was developed. Self-cloned P. ellipsoidea strains will require less-stringent containment measures for large-scale outdoor cultivation.
Singh, Pritika; Guleri, Rupam; Angurala, Amrita; Kaur, Kuldeep; Kaur, Kulwinder; Kaul, Sunil C.; Wadhwa, Renu
2017-01-01
Withania somnifera is a highly valued medicinal plant in traditional home medicine and is known for a wide range of bioactivities. Its commercial cultivation is adversely affected by poor seed viability and germination. Infestation by various pests and pathogens, survival under unfavourable environmental conditions, narrow genetic base, and meager information regarding biosynthesis of secondary metabolites are some of the other existing challenges in the crop. Biotechnological interventions through organ, tissue, and cell culture provide promising options for addressing some of these issues. In vitro propagation facilitates conservation and sustainable utilization of the existing germplasms and broadening the genetic base. It would also provide means for efficient and rapid mass propagation of elite chemotypes and generating uniform plant material round the year for experimentation and industrial applications. The potential of in vitro cell/organ cultures for the production of therapeutically valuable compounds and their large-scale production in bioreactors has received significant attention in recent years. In vitro culture system further provides distinct advantage for studying various cellular and molecular processes leading to secondary metabolite accumulation and their regulation. Engineering plants through genetic transformation and development of hairy root culture system are powerful strategies for modulation of secondary metabolites. The present review highlights the developments and sketches current scenario in this field. PMID:28299323
NASA Astrophysics Data System (ADS)
Sibirny, Andriy A.; Boretsky, Yuriy R.
Pichia guilliermondii (asporogenous strains of this species are designated as Candida guilliermondii ) is the model organism of a group so named “ flavinogenic yeasts ” capable of riboflavin oversynthesis during starvation for iron. Besides, some strains of this species efficiently convert xylose to xylitol, an anti-caries sweetener. However, there are also pathogenic C. guilliermondii strains. This species has been used for studying enzymology of riboflavin synthesis due to overproduction of participating enzymes and intermediates under iron-limiting conditions as well as for identification of genes of negative and positive action involved in such a regulation. Besides, P. guilliermondii was used for identification and studying the properties of the systems for active transport of riboflavin in the cell (riboflavin permease) and out of the cell (riboflavin “ excretase ” ). The genetic line of P. guilliermondii with high fertility has been selected and the methods of classic genetics (hybridization and analysis of meiotic segregation) have been developed. More recently, tools for molecular genetic studies of P. guilliermondii have been developed which include collection of host strains, vectors with recessive and dominant markers, several transformation protocols including that for gene knock out. Recently, the genome of this yeast species was sequenced and become publicly available (
Meng, Lai-Sheng
2018-04-11
Water is crucial to plant growth and development because it serves as a medium for all cellular functions. Thus, the improvement of plant drought tolerance or water use efficiency/water uptake efficiency is important in modern agriculture. In this review, we mainly focus on new genetic factors for ameliorating drought tolerance or water use efficiency/water uptake efficiency of plants and explore the involvement of these genetic factors in the regulation of improving plant drought tolerance or water use efficiency/water uptake efficiency, which is a result of altered stomata density and improving root systems (primary root length, hair root growth, and lateral root number) and enhanced production of osmotic protectants, which is caused by transcription factors, proteinases, and phosphatases and protein kinases. These results will help guide the synthesis of a model for predicting how the signals of genetic and environmental stress are integrated at a few genetic determinants to control the establishment of either water use efficiency or water uptake efficiency. Collectively, these insights into the molecular mechanism underpinning the control of plant drought tolerance or water use efficiency/water uptake efficiency may aid future breeding or design strategies to increase crop yield.
Transformation of Escherichia coli with large DNA molecules by electroporation.
Sheng, Y; Mancino, V; Birren, B
1995-01-01
We have examined bacterial electroporation with a specific interest in the transformation of large DNA, i.e. molecules > 100 kb. We have used DNA from bacterial artificial chromosomes (BACs) ranging from 7 to 240 kb, as well as BAC ligation mixes containing a range o different sized molecules. The efficiency of electroporation with large DNA is strongly dependent on the strain of Escherichia coli used; strains which offer comparable efficiencies for 7 kb molecules differ in their uptake of 240 kb DNA by as much as 30-fold. Even with a host strain that transforms relatively well with large DNA, transformation efficiency drops dramatically with increasing size of the DNA. Molecules of 240 kb transform approximately 30-fold less well, on a molar basis, than molecules of 80 kb. Maximum transformation of large DNA occurs with different voltage gradients and with different time constants than are optimal for smaller DNA. This provides the opportunity to increase the yield of transformants which have taken up large DNA relative to the number incorporating smaller molecules. We have demonstrated that conditions may be selected which increase the average size of BAC clones generated by electroporation and compare the overall efficiency of each of the conditions tested. Images PMID:7596828
Optimization of Agrobacterium-Mediated Transformation in Soybean
Li, Shuxuan; Cong, Yahui; Liu, Yaping; Wang, Tingting; Shuai, Qin; Chen, Nana; Gai, Junyi; Li, Yan
2017-01-01
High transformation efficiency is a prerequisite for study of gene function and molecular breeding. Agrobacterium tumefaciens-mediated transformation is a preferred method in many plants. However, the transformation efficiency in soybean is still low. The objective of this study is to optimize Agrobacterium-mediated transformation in soybean by improving the infection efficiency of Agrobacterium and regeneration efficiency of explants. Firstly, four factors affecting Agrobacterium infection efficiency were investigated by estimation of the rate of GUS transient expression in soybean cotyledonary explants, including Agrobacterium concentrations, soybean explants, Agrobacterium suspension medium, and co-cultivation time. The results showed that an infection efficiency of over 96% was achieved by collecting the Agrobacterium at a concentration of OD650 = 0.6, then using an Agrobacterium suspension medium containing 154.2 mg/L dithiothreitol to infect the half-seed cotyledonary explants (from mature seeds imbibed for 1 day), and co-cultured them for 5 days. The Agrobacterium infection efficiencies for soybean varieties Jack Purple and Tianlong 1 were higher than the other six varieties. Secondly, the rates of shoot elongation were compared among six different concentration combinations of gibberellic acid (GA3) and indole-3-acetic acid (IAA). The shoot elongation rate of 34 and 26% was achieved when using the combination of 1.0 mg/L GA3 and 0.1 mg/L IAA for Jack Purple and Tianlong 1, respectively. This rate was higher than the other five concentration combinations of GA3 and IAA, with an 18 and 11% increase over the original laboratory protocol (a combination of 0.5 mg/L GA3 and 0.1 mg/L IAA), respectively. The transformation efficiency was 7 and 10% for Jack Purple and Tianlong 1 at this optimized hormone concentration combination, respectively, which was 2 and 6% higher than the original protocol, respectively. Finally, GUS histochemical staining, PCR, herbicide (glufosinate) painting, and QuickStix Kit for Liberty Link (bar) were used to verify the positive transgenic plants, and absolute quantification PCR confirmed the exogenous gene existed as one to three copies in the soybean genome. This study provides an improved protocol for Agrobacterium-mediated transformation in soybean and a useful reference to improve the transformation efficiency in other plant species. PMID:28286512
ERIC Educational Resources Information Center
Burgess, Robert L.; Molenaar, Peter C. M.
1995-01-01
Supports Gottlieb's conclusion that developmental behavior genetics is unsuitable for analyzing developmental coactional processes because it does not concern itself with mechanisms through which genotypes are transformed into phenotypes. But maintains that modern behavior genetics provides an indispensable tool to analyze nonlinear epigenetic…
Caspase 3 promotes genetic instability and carcinogenesis
Liu, Xinjian; He, Yujun; Li, Fang; Huang, Qian; Kato, Takamitsu A.; Hall, Russell P; Li, Chuan-Yuan
2015-01-01
Summary Apoptosis is typically considered an anti-oncogenic process since caspase activation can promote the elimination of genetically unstable or damaged cells. We report that a central effector of apoptosis, caspase 3, facilitates, rather than suppresses, chemical and radiation-induced genetic instability and carcinogenesis. We found that a significant fraction of mammalian cells treated with ionizing radiation can survive, despite caspase 3 activation. Moreover, this sublethal activation of caspase 3 promoted persistent DNA damage and oncogenic transformation. In addition, chemically-induced skin carcinogenesis was significantly reduced in mice genetically deficient in caspase 3. Furthermore, attenuation of Endo G activity significantly reduced radiation-induced DNA damage and oncogenic transformation, identifying Endo G as a downstream effector of caspase 3 in this pathway. Our findings suggest that rather than acting as a broad inhibitor of carcinogenesis, caspase 3 activation may contribute to genome instability and play a pivotal role in tumor formation following damage. PMID:25866249
Ruan, Jujun; Zhang, Chao; Li, Ya; Li, Peiyi; Yang, Zaizhi; Chen, Xiaohong; Huang, Mingzhi; Zhang, Tao
2017-02-01
This work proposes an on-line hybrid intelligent control system based on a genetic algorithm (GA) evolving fuzzy wavelet neural network software sensor to control dissolved oxygen (DO) in an anaerobic/anoxic/oxic process for treating papermaking wastewater. With the self-learning and memory abilities of neural network, handling the uncertainty capacity of fuzzy logic, analyzing local detail superiority of wavelet transform and global search of GA, this proposed control system can extract the dynamic behavior and complex interrelationships between various operation variables. The results indicate that the reasonable forecasting and control performances were achieved with optimal DO, and the effluent quality was stable at and below the desired values in real time. Our proposed hybrid approach proved to be a robust and effective DO control tool, attaining not only adequate effluent quality but also minimizing the demand for energy, and is easily integrated into a global monitoring system for purposes of cost management. Copyright © 2016 Elsevier Ltd. All rights reserved.
Genome editing in plants: Advancing crop transformation and overview of tools.
Shah, Tariq; Andleeb, Tayyaba; Lateef, Sadia; Noor, Mehmood Ali
2018-05-07
Genome manipulation technology is one of emerging field which brings real revolution in genetic engineering and biotechnology. Targeted editing of genomes pave path to address a wide range of goals not only to improve quality and productivity of crops but also permit to investigate the fundamental roots of biological systems. These goals includes creation of plants with valued compositional properties and with characters that confer resistance to numerous biotic and abiotic stresses. Numerous novel genome editing systems have been introduced during the past few years; these comprise zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9). Genome editing technique is consistent for improving average yield to achieve the growing demands of the world's existing food famine and to launch a feasible and environmentally safe agriculture scheme, to more specific, productive, cost-effective and eco-friendly. These exciting novel methods, concisely reviewed herein, have verified themselves as efficient and reliable tools for the genetic improvement of plants. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Weninger, Astrid; Fischer, Jasmin E; Raschmanová, Hana; Kniely, Claudia; Vogl, Thomas; Glieder, Anton
2018-04-01
Komagataella phaffii (syn. Pichia pastoris) is one of the most commonly used host systems for recombinant protein expression. Achieving targeted genetic modifications had been hindered by low frequencies of homologous recombination (HR). Recently, a CRISPR/Cas9 genome editing system has been implemented for P. pastoris enabling gene knockouts based on indels (insertion, deletions) via non-homologous end joining (NHEJ) at near 100% efficiency. However, specifically integrating homologous donor cassettes via HR for replacement studies had proven difficult resulting at most in ∼20% correct integration using CRISPR/Cas9. Here, we demonstrate the CRISPR/Cas9 mediated integration of markerless donor cassettes at efficiencies approaching 100% using a ku70 deletion strain. The Ku70p is involved in NHEJ repair and lack of the protein appears to favor repair via HR near exclusively. While the absolute number of transformants in the Δku70 strain is reduced, virtually all surviving transformants showed correct integration. In the wildtype strain, markerless donor cassette integration was also improved up to 25-fold by placing an autonomously replicating sequence (ARS) on the donor cassette. Alternative strategies for improving donor cassette integration using a Cas9 nickase variant or reducing off targeting associated toxicity using a high fidelity Cas9 variant were so far not successful in our hands in P. pastoris. Furthermore we provide Cas9/gRNA expression plasmids with a Geneticin resistance marker which proved to be versatile tools for marker recycling. The reported CRSIPR-Cas9 tools can be applied for modifying existing production strains and also pave the way for markerless whole genome modification studies in P. pastoris. © 2017 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Weninger, Astrid; Fischer, Jasmin E.; Raschmanová, Hana; Kniely, Claudia; Glieder, Anton
2017-01-01
Abstract Komagataella phaffii (syn. Pichia pastoris) is one of the most commonly used host systems for recombinant protein expression. Achieving targeted genetic modifications had been hindered by low frequencies of homologous recombination (HR). Recently, a CRISPR/Cas9 genome editing system has been implemented for P. pastoris enabling gene knockouts based on indels (insertion, deletions) via non‐homologous end joining (NHEJ) at near 100% efficiency. However, specifically integrating homologous donor cassettes via HR for replacement studies had proven difficult resulting at most in ∼20% correct integration using CRISPR/Cas9. Here, we demonstrate the CRISPR/Cas9 mediated integration of markerless donor cassettes at efficiencies approaching 100% using a ku70 deletion strain. The Ku70p is involved in NHEJ repair and lack of the protein appears to favor repair via HR near exclusively. While the absolute number of transformants in the Δku70 strain is reduced, virtually all surviving transformants showed correct integration. In the wildtype strain, markerless donor cassette integration was also improved up to 25‐fold by placing an autonomously replicating sequence (ARS) on the donor cassette. Alternative strategies for improving donor cassette integration using a Cas9 nickase variant or reducing off targeting associated toxicity using a high fidelity Cas9 variant were so far not successful in our hands in P. pastoris. Furthermore we provide Cas9/gRNA expression plasmids with a Geneticin resistance marker which proved to be versatile tools for marker recycling. The reported CRSIPR‐Cas9 tools can be applied for modifying existing production strains and also pave the way for markerless whole genome modification studies in P. pastoris. PMID:29091307
High Efficiency Transformation of Cultured Tobacco Cells 1
An, Gynheung
1985-01-01
Tobacco calli were transformed at levels up to 50% by cocultivation of tobacco cultured cells with Agrobacterium tumefaciens harboring the binary transfer-DNA vector, pGA472, containing a kanamycin resistance marker. Transformation frequency was dependent on the physiological state of the tobacco cells, the nature of Agrobacterium strain and, less so, on the expression of the vir genes of the tumor-inducing plasmid. Maximum transformation frequency was obtained with exponentially growing plant cells, suggesting that rapid growth of plant cells is an essental factor for efficient transformation of higher plants. Images Fig. 1 PMID:16664453
Snyman, S J; Meyer, G M; Richards, J M; Haricharan, N; Ramgareeb, S; Huckett, B I
2006-10-01
A rapid in vitro protocol using direct somatic embryogenesis and microprojectile bombardment was investigated to establish the developmental phases most suitable for efficient sugarcane transformation. Immature leaf roll disc explants with and without pre-emergent inflorescence tissue were compared. It was shown that for effective transformation to occur, explants should be cultured for several days to allow initiation of embryo development prior to bombardment. Leaf roll discs with pre-emergent inflorescences showed a higher degree of embryogenic competence than non-flowering explants, and transformation efficiency was higher when explants containing floral initials were bombarded. Despite the occurrence of high numbers of phenotypically negative plants, combining the use of inflorescent leaf roll discs with direct embryogenic regeneration has the potential to improve the speed and efficiency of transgenesis in sugarcane.
USDA-ARS?s Scientific Manuscript database
We report the stable genetic transformation of the Queensland fruit fly Bactrocera tryoni using a piggyBac vector marked with either the fluorescent protein DsRed or EGFP.A transformation frequency of 5–10% was obtained.Inheritance of the transgenes has remained stable over eight generations despite...
Chiyoda, Shota; Ishizaki, Kimitsune; Kataoka, Hideo; Yamato, Katsuyuki T; Kohchi, Takayuki
2008-09-01
The liverwort, Marchantia polymorpha L., belongs to a group of basal land plants and is an emerging model for plant biology. We established a procedure to prepare sporangia of M. polymorpha under laboratory conditions by promoting its transition to reproductive development by far-red light irradiation. Here we report an improved direct transformation system of M. polymorpha using immature thalli developing from spores. Hygromycin-resistant transformants were obtained on selective media by transformation with a plasmid carrying the hygromycin-phosphotransferase gene (hpt) conferring hygromycin resistance in 4 weeks. The aminoglycoside-3''-adenyltransferase gene (aadA) conferring spectinomycin resistance was also successfully used as an additional selectable marker for nuclear transformation of M. polymorpha. The availability of the aadA gene in addition to the hpt gene should make M. polymorpha a versatile host for genetic manipulation. DNA gel-blot analyses indicated that transformed thalli carried a variable number of copies of the transgene integrated into the genome. Although the previous system using thalli grown from gemmae required a two-step selection in liquid and solid media for 8 weeks, the system reported here using thalli developing from spores allows generation of transformants in half the time by direct selection on solid media, facilitating genetic analyses in this model plant.
Soybean (Glycine max) transformation using mature cotyledonary node explants.
Olhoft, Paula M; Donovan, Christopher M; Somers, David A
2006-01-01
Agrobacterium tumefaciens-mediated transformation of soybeans has been steadily improved since its development in 1988. Soybean transformation is now possible in a range of genotypes from different maturity groups using different explants as sources of regenerable cells, various selectable marker genes and selective agents, and different A. tumefaciens strains. The cotyledonary-node method has been extensively investigated and across a number of laboratories yields on average greater than 1% transformation efficiency (one Southern-positive, independent event per 100 cotyledonary-node explants). Continued improvements in the cotyledonary-node method concomitant with further increases in transformation efficiency will enhance broader adoption of this already productive transformation method for use in crop improvement and functional genomics research efforts.
Biolistic transformation of cotton embryogenic cell suspension cultures
USDA-ARS?s Scientific Manuscript database
Genetic transformation of cotton is highly dependent on the ability to regenerate fertile plants from transgenic cells through somatic embryogenesis. Induction of embryogenic cell cultures is genotype-dependant. However, once embryogenic cell cultures are available, they can be effectively used fo...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Young-Cheol; Kim, Hyun-Jun; Lee, Hyo-Chang
In a plasma discharge system, the power loss at powered line, matching network, and other transmission line can affect the discharge characteristics such as the power transfer efficiency, voltage and current at powered electrode, and plasma density. In this paper, we propose a method to reduce power loss by using a step down transformer mounted between the matching network and the powered electrode in a capacitively coupled argon plasma. This step down transformer decreases the power loss by reducing the current flowing through the matching network and transmission line. As a result, the power transfer efficiency was increased about 5%–10%more » by using a step down transformer. However, the plasma density was dramatically increased compared to no transformer. This can be understood by the increase in ohmic heating and the decrease in dc-self bias. By simply mounting a transformer, improvement of discharge efficiency can be achieved in capacitively coupled plasmas.« less
Engineer Novel Anticancer Bioagents
2010-10-01
selection (hence to create marker-free genetically modified organism – GMO as required by FDA regulations) have failed. The overall transformation...free genetically modified organism – GMO , as required by FDA regulations). Key Research Status 1. Reconstitution of a complete FK228 biosynthetic
ERIC Educational Resources Information Center
Durant, Rita A.; Carlon, Donna M.; Downs, Alexis
2017-01-01
This article describes the results of the "Efficiency Challenge," a 10-week, Principles of Management course activity that uses reflection and goal setting to help students understand the concept of operational efficiency. With transformative learning theory as a lens, we base our report on 4 years' worth of student reflections regarding…
Biolistic Transformation of Wheat.
Tassy, Caroline; Barret, Pierre
2017-01-01
The wheat genome encodes some 100,000 genes. To understand how the expression of these genes is regulated it will be necessary to carry out many genetic transformation experiments. Robust protocols that allow scientists to transform a wide range of wheat genotypes are therefore required. In this chapter, we describe a protocol for biolistic transformation of wheat that uses immature embryos and small quantities of DNA cassettes. An original method for DNA cassette purification is also described. This protocol can be used to transform a wide range of wheat genotypes and other related species.
Tabatabaei, Iman; Ruf, Stephanie; Bock, Ralph
2017-02-01
A new selectable marker gene for stable transformation of the plastid genome was developed that is similarly efficient as the aadA, and produces no background of spontaneous resistance mutants. More than 25 years after its development for Chlamydomonas and tobacco, the transformation of the chloroplast genome still represents a challenging technology that is available only in a handful of species. The vast majority of chloroplast transformation experiments conducted thus far have relied on a single selectable marker gene, the spectinomycin resistance gene aadA. Although a few alternative markers have been reported, the aadA has remained unrivalled in efficiency and is, therefore, nearly exclusively used. The development of new marker genes for plastid transformation is of crucial importance to all efforts towards extending the species range of the technology as well as to those applications in basic research, biotechnology and synthetic biology that involve the multistep engineering of plastid genomes. Here, we have tested a bifunctional resistance gene for its suitability as a selectable marker for chloroplast transformation. The bacterial enzyme aminoglycoside acetyltransferase(6')-Ie/aminoglycoside phosphotransferase(2″)-Ia possesses an N-terminal acetyltransferase domain and a C-terminal phosphotransferase domain that can act synergistically and detoxify aminoglycoside antibiotics highly efficiently. We report that, in combination with selection for resistance to the aminoglycoside tobramycin, the aac(6')-Ie/aph(2″)-Ia gene represents an efficient marker for plastid transformation in that it produces similar numbers of transplastomic lines as the spectinomycin resistance gene aadA. Importantly, no spontaneous antibiotic resistance mutants appear under tobramycin selection.
Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes.
Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan
2018-05-11
Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.
Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes
NASA Astrophysics Data System (ADS)
Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan
2018-05-01
Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.
Embryo-specific expression of a visual reporter gene as a selection system for citrus transformation
Zambon, Flavia T.; Erpen, Lígia; Soriano, Leonardo; Grosser, Jude
2018-01-01
The embryo-specific Dc3 gene promoter driving the VvMybA1 anthocyanin regulatory gene was used to develop a visual selection system for the genetic transformation of citrus. Agrobacterium-mediated transformation of cell suspension cultures resulted in the production of purple transgenic somatic embryos that could be easily separated from the green non-transgenic embryos. The somatic embryos produced phenotypically normal plants devoid of any visual purple coloration. These results were also confirmed using protoplast transformation. There was minimal gene expression in unstressed one-year-old transgenic lines. Cold and drought stress did not have any effect on gene expression, while exogenous ABA and NaCl application resulted in a minor change in gene expression in several transgenic lines. When gas exchange was measured in intact leaves, the transgenic lines were similar to controls under the same environment. Our results provide conclusive evidence for the utilization of a plant-derived, embryo-specific visual reporter system for the genetic transformation of citrus. Such a system could aid in the development of an all-plant, consumer-friendly GM citrus tree. PMID:29293649