DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2013-03-01
This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasismore » on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.« less
Reducing greenhouse gas emissions for climate stabilization: framing regional options.
Olabisi, Laura Schmitt; Reich, Peter B; Johnson, Kris A; Kapuscinski, Anne R; Su, Sangwon H; Wilson, Elizabeth J
2009-03-15
The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO2 concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term.
Introduction of Energy and Climate Mitigation Policy Issues in Energy - Environment Model of Latvia
NASA Astrophysics Data System (ADS)
Klavs, G.; Rekis, J.
2016-12-01
The present research is aimed at contributing to the Latvian national climate policy development by projecting total GHG emissions up to 2030, by evaluating the GHG emission reduction path in the non-ETS sector at different targets set for emissions reduction and by evaluating the obtained results within the context of the obligations defined by the EU 2030 policy framework for climate and energy. The method used in the research was bottom-up, linear programming optimisation model MARKAL code adapted as the MARKAL-Latvia model with improvements for perfecting the integrated assessment of climate policy. The modelling results in the baseline scenario, reflecting national economic development forecasts and comprising the existing GHG emissions reduction policies and measures, show that in 2030 emissions will increase by 19.1 % compared to 2005. GHG emissions stabilisation and reduction in 2030, compared to 2005, were researched in respective alternative scenarios. Detailed modelling and analysis of the Latvian situation according to the scenario of non-ETS sector GHG emissions stabilisation and reduction in 2030 compared to 2005 have revealed that to implement a cost effective strategy of GHG emissions reduction first of all a policy should be developed that ensures effective absorption of the available energy efficiency potential in all consumer sectors. The next group of emissions reduction measures includes all non-ETS sectors (industry, services, agriculture, transport, and waste management).
NASA Astrophysics Data System (ADS)
Hammac, W. A.; Pan, W.; Koenig, R. T.; McCracken, V.
2012-12-01
The Environmental Protection Agency (EPA) has mandated through the second renewable fuel standard (RFS2) that biodiesel meet a minimum threshold requirement (50% reduction) for greenhouse gas (GHG) emission reduction compared to fossil diesel. This designation is determined by life cycle assessment (LCA) and carries with it potential for monetary incentives for biodiesel feedstock growers (Biomass Crop Assistance Program) and biodiesel processors (Renewable Identification Numbers). A national LCA was carried out for canola (Brassica napus) biodiesel feedstock by the EPA and it did meet the minimum threshold requirement. However, EPA's national LCA does not provide insight into regional variation in GHG mitigation. The authors propose for full GHG reduction potential of biofuels to be realized, LCA results must have regional specificity and should inform incentives for growers and processors on a regional basis. The objectives of this work were to determine (1) variation in biofuel feedstock production related GHG emissions between three agroecological zones (AEZs) in eastern Washington State (2) the impact of nitrogen use efficiency (NUE) on GHG mitigation potential for each AEZ and (3) the impact of incentives on adoption of oilseed production. Results from objective (1) revealed there is wide variability in range for GHG estimates both across and within AEZs based on variation in farming practices and environment. It is expected that results for objective (2) will show further GHG mitigation potential due to minimizing N use and therefore fertilizer transport and soil related GHG emission while potentially increasing biodiesel production per hectare. Regional based incentives may allow more timely achievement of goals for bio-based fuels production. Additionally, incentives may further increase GHG offsetting by promoting nitrogen conserving best management practices implementation. This research highlights the need for regional assessment/incentive based strategies for maximizing GHG mitigation potential of biofuel feedstocks.
Schivley, Greg; Ingwersen, Wesley W; Marriott, Joe; Hawkins, Troy R; Skone, Timothy J
2015-07-07
Improvements to coal power plant technology and the cofired combustion of biomass promise direct greenhouse gas (GHG) reductions for existing coal-fired power plants. Questions remain as to what the reduction potentials are from a life cycle perspective and if it will result in unintended increases in impacts to air and water quality and human health. This study provides a unique analysis of the potential environmental impact reductions from upgrading existing subcritical pulverized coal power plants to increase their efficiency, improving environmental controls, cofiring biomass, and exporting steam for industrial use. The climate impacts are examined in both a traditional-100 year GWP-method and a time series analysis that accounts for emission and uptake timing over the life of the power plant. Compared to fleet average pulverized bed boilers (33% efficiency), we find that circulating fluidized bed boilers (39% efficiency) may provide GHG reductions of about 13% when using 100% coal and reductions of about 20-37% when cofiring with 30% biomass. Additional greenhouse gas reductions from combined heat and power are minimal if the steam coproduct displaces steam from an efficient natural gas boiler. These upgrades and cofiring biomass can also reduce other life cycle impacts, although there may be increased impacts to water quality (eutrophication) when using biomass from an intensely cultivated source. Climate change impacts are sensitive to the timing of emissions and carbon sequestration as well as the time horizon over which impacts are considered, particularly for long growth woody biomass.
Reducing GHG emissions in the United States' transportation sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Sujit; Andress, David A; Nguyen, Tien
Reducing GHG emissions in the U.S. transportation sector requires both the use of highly efficient propulsion systems and low carbon fuels. This study compares reduction potentials that might be achieved in 2060 for several advanced options including biofuels, hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), assuming that technical and cost reduction targets are met and necessary fueling infrastructures are built. The study quantifies the extent of the reductions that can be achieved through increasing engine efficiency and transitioning to low-carbon fuels separately. Decarbonizing the fuels is essential for achieving large reductions inmore » GHG emissions, and the study quantifies the reductions that can be achieved over a range of fuel carbon intensities. Although renewables will play a vital role, some combination of coal gasification with carbon capture and sequestration, and/or nuclear energy will likely be needed to enable very large reductions in carbon intensities for hydrogen and electricity. Biomass supply constraints do not allow major carbon emission reductions from biofuels alone; the value of biomass is that it can be combined with other solutions to help achieve significant results. Compared with gasoline, natural gas provides 20% reduction in GHG emissions in internal combustion engines and up to 50% reduction when used as a feedstock for producing hydrogen or electricity, making it a good transition fuel for electric propulsion drive trains. The material in this paper can be useful information to many other countries, including developing countries because of a common factor: the difficulty of finding sustainable, low-carbon, cost-competitive substitutes for petroleum fuels.« less
Jiang, Dong; Hao, Mengmeng; Wang, Qiao; Huang, Yaohuan; Fu, Xinyu
2014-01-01
The main purpose for developing biofuel is to reduce GHG (greenhouse gas) emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA), as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG) emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops) soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed. PMID:25045736
Bolanča, Tomislav; Strahovnik, Tomislav; Ukić, Šime; Stankov, Mirjana Novak; Rogošić, Marko
2017-07-01
This study describes the development of tool for testing different policies for reduction of greenhouse gas (GHG) emissions in energy sector using artificial neural networks (ANNs). The case study of Croatia was elaborated. Two different energy consumption scenarios were used as a base for calculations and predictions of GHG emissions: the business as usual (BAU) scenario and sustainable scenario. Both of them are based on predicted energy consumption using different growth rates; the growth rates within the second scenario resulted from the implementation of corresponding energy efficiency measures in final energy consumption and increasing share of renewable energy sources. Both ANN architecture and training methodology were optimized to produce network that was able to successfully describe the existing data and to achieve reliable prediction of emissions in a forward time sense. The BAU scenario was found to produce continuously increasing emissions of all GHGs. The sustainable scenario was found to decrease the GHG emission levels of all gases with respect to BAU. The observed decrease was attributed to the group of measures termed the reduction of final energy consumption through energy efficiency measures.
Deep carbon reductions in California require electrification and integration across economic sectors
NASA Astrophysics Data System (ADS)
Wei, Max; Nelson, James H.; Greenblatt, Jeffery B.; Mileva, Ana; Johnston, Josiah; Ting, Michael; Yang, Christopher; Jones, Chris; McMahon, James E.; Kammen, Daniel M.
2013-03-01
Meeting a greenhouse gas (GHG) reduction target of 80% below 1990 levels in the year 2050 requires detailed long-term planning due to complexity, inertia, and path dependency in the energy system. A detailed investigation of supply and demand alternatives is conducted to assess requirements for future California energy systems that can meet the 2050 GHG target. Two components are developed here that build novel analytic capacity and extend previous studies: (1) detailed bottom-up projections of energy demand across the building, industry and transportation sectors; and (2) a high-resolution variable renewable resource capacity planning model (SWITCH) that minimizes the cost of electricity while meeting GHG policy goals in the 2050 timeframe. Multiple pathways exist to a low-GHG future, all involving increased efficiency, electrification, and a dramatic shift from fossil fuels to low-GHG energy. The electricity system is found to have a diverse, cost-effective set of options that meet aggressive GHG reduction targets. This conclusion holds even with increased demand from transportation and heating, but the optimal levels of wind and solar deployment depend on the temporal characteristics of the resulting load profile. Long-term policy support is found to be a key missing element for the successful attainment of the 2050 GHG target in California.
EPA identified the best, or most efficient, engines, transmissions and vehicle technologies, and then used ALPHA to predict the GHG emissions would be from a midsized car incorporating the best combination of these technologies.
Rebolledo-Leiva, Ricardo; Angulo-Meza, Lidia; Iriarte, Alfredo; González-Araya, Marcela C
2017-09-01
Operations management tools are critical in the process of evaluating and implementing action towards a low carbon production. Currently, a sustainable production implies both an efficient resource use and the obligation to meet targets for reducing greenhouse gas (GHG) emissions. The carbon footprint (CF) tool allows estimating the overall amount of GHG emissions associated with a product or activity throughout its life cycle. In this paper, we propose a four-step method for a joint use of CF assessment and Data Envelopment Analysis (DEA). Following the eco-efficiency definition, which is the delivery of goods using fewer resources and with decreasing environmental impact, we use an output oriented DEA model to maximize production and reduce CF, taking into account simultaneously the economic and ecological perspectives. In another step, we stablish targets for the contributing CF factors in order to achieve CF reduction. The proposed method was applied to assess the eco-efficiency of five organic blueberry orchards throughout three growing seasons. The results show that this method is a practical tool for determining eco-efficiency and reducing GHG emissions. Copyright © 2017 Elsevier B.V. All rights reserved.
Comparing the greenhouse gas emissions from three alternative waste combustion concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi; Tsupari, Eemeli; Sipilae, Kai
2012-03-15
Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system.more » The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Jarod C.; Sullivan, John L.; Burnham, Andrew
This study examines the vehicle-cycle impacts associated with substituting lightweight materials for those currently found in light-duty passenger vehicles. We determine part-based energy use and greenhouse gas (GHG) emission ratios by collecting material substitution data from both the literature and automotive experts and evaluating that alongside known mass-based energy use and GHG emission ratios associated with material pair substitutions. Several vehicle parts, along with full vehicle systems, are examined for lightweighting via material substitution to observe the associated impact on GHG emissions. Results are contextualized by additionally examining fuel-cycle GHG reductions associated with mass reductions relative to the baseline vehiclemore » during the use phase and also determining material pair breakeven driving distances for GHG emissions. The findings show that, while material substitution is useful in reducing vehicle weight, it often increases vehicle-cycle GHGs depending upon the material substitution pair. However, for a vehicle’s total life cycle, fuel economy benefits are greater than the increased burdens associated with the vehicle manufacturing cycle, resulting in a net total life-cycle GHG benefit. The vehicle cycle will become increasingly important in total vehicle life-cycle GHGs, since fuel-cycle GHGs will be gradually reduced as automakers ramp up vehicle efficiency to meet fuel economy standards.« less
Yang, Na; Zhang, Hua; Chen, Miao; Shao, Li-Ming; He, Pin-Jing
2012-12-01
Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO(2)-eq t(-1) rw. Within all process stages, the emission of fossil CO(2) from the combustion of MSW was the main contributor (111-254 kg CO(2)-eq t(-1) rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO(2)-eq t(-1) rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Estimating Greenhouse Gas (GHG) Emissions in 2050 from New Buildings in California
NASA Astrophysics Data System (ADS)
Beardsley, K.; Thorne, J. H.; Quinn, J. F.
2009-12-01
A major contributor to global warming is Greenhouse Gas (GHG) emissions, with carbon dioxide (CO2) as the lead constituent. While the United States has failed to take a leadership role in worldwide efforts to reduce global warming, California has implemented some of the strictest reduction goals in the country. Recent legislation in California requires significant GHG emission reductions in the coming decades to meet state-mandated targets. To better understand the relative contribution of urban growth to these emissions, we applied an Energy and GHG Impacts Calculator (referred to as “GHG Calculator”) to estimate GHG contributions for two statewide population growth scenarios for the year 2050. Implemented as part of the UPlan urban growth model, the GHG Calculator allows users to predict and compare GHG output from new development. In this paper, two scenarios, differing only in the spatial allocation of housing among zoning categories, are developed and tested for the year 2050 in California. The difference in total GHG emissions between these scenarios was less than 1%. Thus, while “smart growth” may be desirable for a variety of other reasons, the policy impact of the sprawl footprint per se on fixed-source GHG emissions is likely to be far less than effects from other factors, such as insulation and household energy efficiency. The GHG Calculator allows alternative emission-reducing measures to be tested, including modified energy mixes (e.g. a greater percent of renewable sources and lower carbon-based fuels) and conservation measures. The goal is to approximate 2050 emissions and determine what measures are needed to achieve the 2050 goal set by the Governor of California to help decrease the State’s overall contribution to global warming.
Keshavarzmohammadian, Azadeh; Henze, Daven K; Milford, Jana B
2017-06-20
This study investigates emission impacts of introducing inexpensive and efficient electric vehicles into the US light duty vehicle (LDV) sector. Scenarios are explored using the ANSWER-MARKAL model with a modified version of the Environmental Protection Agency's (EPA) 9-region database. Modified cost and performance projections for LDV technologies are adapted from the National Research Council (2013) optimistic case. Under our optimistic scenario (OPT) we find 15% and 47% adoption of battery electric vehicles (BEVs) in 2030 and 2050, respectively. In contrast, gasoline vehicles (ICEVs) remain dominant through 2050 in the EPA reference case (BAU). Compared to BAU, OPT gives 16% and 36% reductions in LDV greenhouse gas (GHG) emissions for 2030 and 2050, respectively, corresponding to 5% and 9% reductions in economy-wide emissions. Total nitrogen oxides, volatile organic compounds, and SO 2 emissions are similar in the two scenarios due to intersectoral shifts. Moderate, economy-wide GHG fees have little effect on GHG emissions from the LDV sector but are more effective in the electricity sector. In the OPT scenario, estimated well-to-wheels GHG emissions from full-size BEVs with 100-mile range are 62 gCO 2 -e mi -1 in 2050, while those from full-size ICEVs are 121 gCO 2 -e mi -1 .
76 FR 82027 - Shipping Coordinating Committee; Notice of Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
...; --Development of guidelines for use of fiber reinforced plastic (FRP) within ship structures; --Revision of... ships; --Air pollution and energy efficiency; --Reduction of GHG emissions from ships; --Consideration...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veysey, Jason; Octaviano, Claudia; Calvin, Katherine
Mexico’s climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets—30% versus a business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent energy and emission trends in the country. Both energy use and GHG emissions in Mexico have grown substantially over the last two decades. Here, we investigate how Mexico might reverse current trends and reach its mitigation targets by exploring results from energy system and economic models involved in the CLIMACAP-LAMP project. To meet Mexico’s emission reduction targets, all modeling groups agree that decarbonization of electricity is needed, along withmore » changes in the transport sector, either to more efficient vehicles or a combination of more efficient vehicles and lower carbon fuels. These measures reduce GHG emissions as well as emissions of other air pollutants. The models find different energy supply pathways, with some solutions based on renewable energy and others relying on biomass or fossil fuels with carbon capture and storage. The economy-wide costs of deep mitigation could range from 2% to 4% of GDP in 2030, and from 7% to 15% of GDP in 2050. Our results suggest that Mexico has some flexibility in designing deep mitigation strategies, and that technological options could allow Mexico to achieve its emission reduction targets, albeit at a cost to the country.« less
Transit Greenhouse Gas Management Compendium
DOT National Transportation Integrated Search
2011-01-12
This Compendium provides a framework for identifying greenhouse gas (GHG) reduction opportunities while highlighting specific examples of effective GHG reduction practices. The GHG savings benefits of public transit are first described. GHG saving op...
Energy demand for materials in an international context.
Worrell, Ernst; Carreon, Jesus Rosales
2017-06-13
Materials are everywhere and have determined society. The rapid increase in consumption of materials has led to an increase in the use of energy and release of greenhouse gas (GHG) emissions. Reducing emissions in material-producing industries is a key challenge. If all of industry switched to current best practices, the energy-efficiency improvement potential would be between 20% and 35% for most sectors. While these are considerable potentials, especially for sectors that have historically paid a lot of attention to energy-efficiency improvement, realization of these potentials under current 'business as usual' conditions is slow due to a large variety of barriers and limited efforts by industry and governments around the world. Importantly, the potentials are not sufficient to achieve the deep reductions in carbon emissions that will be necessary to stay within the climate boundaries as agreed in the 2015 Paris Conference of Parties. Other opportunities need to be included in the menu of options to mitigate GHG emissions. It is essential to develop integrated policies combining energy efficiency, renewable energy and material efficiency and material demand reduction, offering the most economically attractive way to realize deep reductions in carbon emissions.This article is part of the themed issue 'Material demand reduction'. © 2017 The Author(s).
Dynamic Geospatial Modeling of the Building Stock to Project Urban Energy Demand.
Breunig, Hanna Marie; Huntington, Tyler; Jin, Ling; Robinson, Alastair; Scown, Corinne Donahue
2018-06-26
In the United States, buildings account for more than 40 percent of total energy consumption, and the evolution of the urban form will impact the effectiveness of strategies to reduce energy use and mitigate emissions. This paper presents a broadly applicable approach for modeling future commercial, residential, and industrial floorspace, thermal consumption (heating and cooling), and associated GHG emissions at the tax assessor land parcel level. The approach accounts for changing building standards and retrofitting, climate change, and trends in housing and industry. We demonstrate the automated workflow for California, and project building stock, thermal energy consumption, and associated GHG emissions out to 2050. Our results suggest that if buildings in California have long lifespans, and minimal energy efficiency improvements compared to building codes reflective of 2008, then the state will face a 20% or higher increase in thermal energy consumption by 2050. Baseline annual GHG emissions associated with thermal energy consumption in the modeled building stock in 2016 is 34% below 1990 levels (110 Mt CO2eq/y).While the 2020 targets for the reduction of GHG emissions set by the California Senate Bill 350 have already been met, none of our scenarios achieve >80% reduction from 1990 levels by 2050, despite assuming an 86% reduction in electricity carbon intensity in our "Low Carbon" scenario. The results highlight the challenge California faces in meeting its new energy efficiency targets unless the State's building stock undergoes timely and strategic turnover, paired with deep retrofitting of existing buildings and natural gas equipment.
Transportation and Greenhouse Gas Emissions Trading. Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steve Winkelman; Tim Hargrave; Christine Vanderlan
1999-10-01
The authors conclude in this report that an upstream system would ensure complete regulatory coverage of transportation sector emissions in an efficient and feasible manner, and as such represents a key component of a national least-cost GHG emissions abatement strategy. The broad coverage provided by an upstream system recommends this approach over vehicle-maker based approaches, which would not cover emissions from heavy-duty vehicles and the aviation, marine and off-road sub-sectors. The on-road fleet approach unfairly and inefficiently burdens vehicle manufacturers with responsibility for emissions that they cannot control. A new vehicles approach would exclude emissions from vehicles on the roadmore » prior to program inception. The hybrid approach faces significant technical and political complications, and it is not clear that the approach would actually change behavior among vehicle makers and users, which is its main purpose. They also note that a trading system would fail to encourage many land use and infrastructure measures that affect VMT growth and GHG emissions. They recommend that this market failure be addressed by complementing the trading system with a program specifically targeting land use- and infrastructure-related activities. A key issue that must be addressed in designing a national GHG control strategy is whether or not it is necessary to guarantee GHG reductions from the transport sector. Neither an upstream system nor a downstream approach would do so, since both would direct capital to the least-cost abatement opportunities wherever they were found. They review two reasons why it may be desirable to force transportation sector reductions: first, that the long-term response to climate change will require reductions in all sectors; and second, the many ancillary benefits associated with transportation-related, and especially VMT-related, emissions reduction activities. If policy makers find it desirable to establish transportation-specific policies, they recommend (in addition to the land use policies mentioned above), that they combine an upstream trading system with a carbon efficiency standard similar to the current CAFE standard. Under this approach a fuel price signal would be complemented by incentives for manufacturers to produce more carbon efficient vehicles. To prevent vehicle manufacturers from being forced to pay more than other sectors for reducing GHG emissions, they recommend that the vehicle makers be allowed to pay a cash penalty equal to the market price of allowances in lieu of meeting carbon efficiency requirements.« less
77 FR 52105 - Shipping Coordinating Committee; Notice of Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-28
... Building, 2100 Second Street SW., Washington, DC, 20593. The primary purpose of the meeting is to prepare... organisms in ballast water; --Recycling of ships; --Air pollution and energy efficiency; --Reduction of GHG...
77 FR 54648 - Shipping Coordinating Committee; Notice of Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-05
... Building, 2100 Second Street SW., Washington, DC 20593. The primary purpose of the meeting is to prepare... organisms in ballast water; --Recycling of ships; --Air pollution and energy efficiency; --Reduction of GHG...
78 FR 14400 - Shipping Coordinating Committee; Notice of Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-05
..., 2100 Second Street SW., Washington, DC, 20593. The primary purpose of the meeting is to prepare for the... ballast water; --Recycling of ships; --Air pollution and energy efficiency; --Reduction of GHG emissions...
Ma, Ding; Chen, Wenying; Xu, Tengfang
2015-08-21
As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits andmore » environmental benefits (i.e., CO 2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO 2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ding; Chen, Wenying; Xu, Tengfang
As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits andmore » environmental benefits (i.e., CO 2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO 2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.« less
Mitigating Greenhouse Gas and Ammonia Emissions from Swine Manure Management: A System Analysis.
Wang, Yue; Dong, Hongmin; Zhu, Zhiping; Gerber, Pierre J; Xin, Hongwei; Smith, Pete; Opio, Carolyn; Steinfeld, Henning; Chadwick, Dave
2017-04-18
Gaseous emissions from animal manure are considerable contributor to global ammonia (NH 3 ) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH 3 , methane (CH 4 ), and nitrous oxide (N 2 O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH 3 emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid-liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH 3 emissions by 78%. The resultant potential reduction in GHG emissions from China's pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH 3 emissions is equivalent to 40% of the total NH 3 emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues.
White, R R; Brady, M; Capper, J L; McNamara, J P; Johnson, K A
2015-06-01
Optimizing efficiency in the cow-calf sector is an important step toward improving beef sustainability. The objective of the study was to use a model to identify the relative roles of reproductive, genetic, and nutritional management in minimizing beef production systems' environmental impact in an economically viable, socially acceptable manner. An economic and environmental diet optimizer was used to identify ideal nutritional management of beef production systems varying in genetic and reproductive technology use. Eight management scenarios were compared to a least cost baseline: average U.S. production practices (CON), CON with variable nutritional management (NUT), twinning cattle (TWN), early weaning (EW), sire selection by EPD using either on-farm bulls (EPD-B) or AI (EPD-AI), decreasing the calving window (CW), or selecting bulls by EPD and reducing the calving window (EPD-CW). Diets to minimize land use, water use, and/or greenhouse gas (GHG) emissions were optimized under each scenario. Increases in diet cost attributable to reducing environmental impact were constrained to less than stakeholder willingness to pay for improved efficiency and reduced environmental impact. Baseline land use, water use, and GHG emissions were 188 m, 712 L, and 21.9 kg/kg HCW beef. The NUT scenario, which assessed opportunities to improve sustainability by altering nutritional management alone, resulted in a simultaneous 1.5% reduction in land use, water use, and GHG emissions. The CW scenario improved calf uniformity and simultaneously decreased land use, water use, and GHG emissions by 3.2%. Twinning resulted in a 9.2% reduction in the 3 environmental impact metrics. The EW scenario allowed for an 8.5% reduction in the 3 metrics. The EPD-AI scenario resulted in an 11.1% reduction, which was comparable to the 11.3% reduction achieved by EPD-B in the 3 metrics. Improving genetic selection by using AI or by purchasing on-farm bulls based on their superior EPD demonstrated clear opportunity to improve sustainability. When genetic and reproductive technologies were adopted, up to a 12.4% reduction in environmental impact was achievable. Given the modeling assumptions used in this study, optimizing nutritional management while concurrently improving genetic and reproductive efficiency may be promising avenues to improve productivity and sustainability of U.S. beef systems.
Research and Development Opportunities for Joining Technologies in HVAC&R
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Guernsey, Matt; Young, Jim
The Building Technologies Office (BTO) works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. This opportunity assessment aims to advance BTO’s energy savings, GHG reduction, and other program goals by identifying research and development (R&D) initiatives for joining technologies in heating, ventilation, air-conditioning, and refrigeration (HVAC&R) systems. Improving joining technologies for HVAC&R equipment has the potential to increase lifetime equipment operating efficiency, decrease equipment and project cost, and most importantly reduce hydroflourocarbon (HFC) refrigerant leakage to support HFC phasedown and GHG reductionmore » goals.« less
Potential Greenhouse Gas Emissions Reductions from Optimizing Urban Transit Networks
DOT National Transportation Integrated Search
2016-05-01
Public transit systems with efficient designs and operating plans can reduce greenhouse gas (GHG) emissions relative to low-occupancy transportation modes, but many current transit systems have not been designed to reduce environmental impacts. This ...
Pathways to Mexico’s climate change mitigation targets: A multi-model analysis
Veysey, Jason; Octaviano, Claudia; Calvin, Katherine; ...
2015-04-25
Mexico’s climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets—30% versus a business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent energy and emission trends in the country. Both energy use and GHG emissions in Mexico have grown substantially over the last two decades. Here, we investigate how Mexico might reverse current trends and reach its mitigation targets by exploring results from energy system and economic models involved in the CLIMACAP-LAMP project. To meet Mexico’s emission reduction targets, all modeling groups agree that decarbonization of electricity is needed, along withmore » changes in the transport sector, either to more efficient vehicles or a combination of more efficient vehicles and lower carbon fuels. These measures reduce GHG emissions as well as emissions of other air pollutants. The models find different energy supply pathways, with some solutions based on renewable energy and others relying on biomass or fossil fuels with carbon capture and storage. The economy-wide costs of deep mitigation could range from 2% to 4% of GDP in 2030, and from 7% to 15% of GDP in 2050. Our results suggest that Mexico has some flexibility in designing deep mitigation strategies, and that technological options could allow Mexico to achieve its emission reduction targets, albeit at a cost to the country.« less
The Role of Industrial Parks in Mitigating Greenhouse Gas Emissions from China.
Guo, Yang; Tian, Jinping; Zang, Na; Gao, Yang; Chen, Lujun
2018-06-14
This study uncovered the direct and indirect energy-related GHG emissions of 213 Chinese national-level industrial parks, providing 11% of China's GDP, from a life-cycle perspective. Direct emissions are sourced from fuel combustion, and indirect emissions are embodied in energy production. The results indicated that in 2015, the direct and indirect GHG emissions of the parks were 1042 and 181 million tonne CO2 eq., respectively, totally accounting for 11% of national GHG emissions. The total energy consumption of the parks accounted for 10% of national energy consumption. Coal constituted 74% of total energy consumption in these parks. Baseline and low-carbon scenarios are established for 2030, and five GHG mitigation measures targeting energy consumption are modeled. The GHG mitigation potential for these parks in 2030 is quantified as 116 million tonne, equivalent to 9.5% of the parks' total emission in 2015. The measures that increase the share of natural gas consumption, reduce the GHG emission factor of electricity grid, and improve the average efficiency of industrial coal-fired boilers, will totally contribute 94% and 98% in direct and indirect GHG emissions reductions, respectively. These findings will provide a solid foundation for the low-carbon development of Chinese industrial parks.
Effectiveness of state climate and energy policies in reducing power-sector CO2 emissions
NASA Astrophysics Data System (ADS)
Martin, Geoff; Saikawa, Eri
2017-12-01
States have historically been the primary drivers of climate change policy in the US, particularly with regard to emissions from power plants. States have implemented policies designed either to directly curb greenhouse gas (GHG) emissions from power plants, or to encourage energy efficiency and renewable energy growth. With the federal government withdrawing from the global climate agreement, understanding which state-level policies have successfully mitigated power-plant emissions is urgent. Past research has assessed policy effectiveness using data for periods before the adoption of many policies. We assess 17 policies using the latest data on state-level power-sector CO2 emissions. We find that policies with mandatory compliance are reducing power-plant emissions, while voluntary policies are not. Electric decoupling, mandatory GHG registry/reporting and public benefit funds are associated with the largest reduction in emissions. Mandatory GHG registry/reporting and public benefit funds are also associated with a large reduction in emissions intensity.
Climate balance of biogas upgrading systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pertl, A., E-mail: andreas.pertl@boku.ac.a; Mostbauer, P.; Obersteiner, G.
2010-01-15
One of the numerous applications of renewable energy is represented by the use of upgraded biogas where needed by feeding into the gas grid. The aim of the present study was to identify an upgrading scenario featuring minimum overall GHG emissions. The study was based on a life-cycle approach taking into account also GHG emissions resulting from plant cultivation to the process of energy conversion. For anaerobic digestion two substrates have been taken into account: (1) agricultural resources and (2) municipal organic waste. The study provides results for four different upgrading technologies including the BABIU (Bottom Ash for Biogas Upgrading)more » method. As the transport of bottom ash is a critical factor implicated in the BABIU-method, different transport distances and means of conveyance (lorry, train) have been considered. Furthermore, aspects including biogas compression and energy conversion in a combined heat and power plant were assessed. GHG emissions from a conventional energy supply system (natural gas) have been estimated as reference scenario. The main findings obtained underlined how the overall reduction of GHG emissions may be rather limited, for example for an agricultural context in which PSA-scenarios emit only 10% less greenhouse gases than the reference scenario. The BABIU-method constitutes an efficient upgrading method capable of attaining a high reduction of GHG emission by sequestration of CO{sub 2}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Max; Greenblatt, Jeffrey; Donovan, Sally
2014-06-01
This study provides an updated analysis of long-term energy system scenarios for California consistent with the State meeting its 2050 climate goal, including detailed analysis and assessment of electricity system build-out, operation, and costs across the Western Electricity Coordinating Council (WECC) region. Four key elements are found to be critical for the State to achieve its 2050 goal of 80 percent greenhouse (GHG) reductions from the 1990 level: aggressive energy efficiency; clean electricity; widespread electrification of passenger vehicles, building heating, and industry heating; and large-scale production of low-carbon footprint biofuels to largely replace petroleum-based liquid fuels. The approach taken heremore » is that technically achievable energy efficiency measures are assumed to be achieved by 2050 and aggregated with the other key elements mentioned above to estimate resultant emissions in 2050. The energy and non-energy sectors are each assumed to have the objective of meeting an 80 percent reduction from their respective 1990 GHG levels for the purposes of analysis. A different partitioning of energy and non-energy sector GHG greenhouse reductions is allowed if emission reductions in one sector are more economic or technically achievable than in the other. Similarly, within the energy or non-energy sectors, greater or less than 80 percent reduction from 1990 is allowed for sub-sectors within the energy or non-energy sectors as long as the overall target is achieved. Overall emissions for the key economy-wide scenarios are considered in this report. All scenarios are compliant or nearly compliant with the 2050 goal. This finding suggests that multiple technical pathways exist to achieve the target with aggressive policy support and continued technology development of largely existing technologies.« less
Levis, James W; Barlaz, Morton A; Decarolis, Joseph F; Ranjithan, S Ranji
2014-04-01
Solid waste management (SWM) systems must proactively adapt to changing policy requirements, waste composition, and an evolving energy system to sustainably manage future solid waste. This study represents the first application of an optimizable dynamic life-cycle assessment framework capable of considering these future changes. The framework was used to draw insights by analyzing the SWM system of a hypothetical suburban U.S. city of 100 000 people over 30 years while considering changes to population, waste generation, and energy mix and costs. The SWM system included 3 waste generation sectors, 30 types of waste materials, and 9 processes for waste separation, treatment, and disposal. A business-as-usual scenario (BAU) was compared to three optimization scenarios that (1) minimized cost (Min Cost), (2) maximized diversion (Max Diversion), and (3) minimized greenhouse gas (GHG) emissions (Min GHG) from the system. The Min Cost scenario saved $7.2 million (12%) and reduced GHG emissions (3%) relative to the BAU scenario. Compared to the Max Diversion scenario, the Min GHG scenario cost approximately 27% less and more than doubled the net reduction in GHG emissions. The results illustrate how the timed-deployment of technologies in response to changes in waste composition and the energy system results in more efficient SWM system performance compared to what is possible from static analyses.
Autonomous taxis could greatly reduce greenhouse-gas emissions of US light-duty vehicles
NASA Astrophysics Data System (ADS)
Greenblatt, Jeffery B.; Saxena, Samveg
2015-09-01
Autonomous vehicles (AVs) are conveyances to move passengers or freight without human intervention. AVs are potentially disruptive both technologically and socially, with claimed benefits including increased safety, road utilization, driver productivity and energy savings. Here we estimate 2014 and 2030 greenhouse-gas (GHG) emissions and costs of autonomous taxis (ATs), a class of fully autonomous shared AVs likely to gain rapid early market share, through three synergistic effects: (1) future decreases in electricity GHG emissions intensity, (2) smaller vehicle sizes resulting from trip-specific AT deployment, and (3) higher annual vehicle-miles travelled (VMT), increasing high-efficiency (especially battery-electric) vehicle cost-effectiveness. Combined, these factors could result in decreased US per-mile GHG emissions in 2030 per AT deployed of 87-94% below current conventionally driven vehicles (CDVs), and 63-82% below projected 2030 hybrid vehicles, without including other energy-saving benefits of AVs. With these substantial GHG savings, ATs could enable GHG reductions even if total VMT, average speed and vehicle size increased substantially. Oil consumption would also be reduced by nearly 100%.
Kaewmai, Roihatai; H-Kittikun, Aran; Suksaroj, Chaisri; Musikavong, Charongpun
2013-01-01
Alternative methodologies for the reduction of greenhouse gas (GHG) emissions from crude palm oil (CPO) production by a wet extraction mill in Thailand were developed. The production of 1 t of CPO from mills with biogas capture (four mills) and without biogas capture (two mills) in 2010 produced GHG emissions of 935 kg carbon dioxide equivalent (CO2eq), on average. Wastewater treatment plants with and without biogas capture produced GHG emissions of 64 and 47% of total GHG emission, respectively. The rest of the emissions mostly originated from the acquisition of fresh fruit bunches. The establishment of a biogas recovery system must be the first step in the reduction of GHG emissions. It could reduce GHG emissions by 373 kgCO2eq/t of CPO. The main source of GHG emission of 163 kgCO2eq/t of CPO from the mills with biogas capture was the open pond used for cooling of wastewater before it enters the biogas recovery system. The reduction of GHG emissions could be accomplished by (i) using a wastewater-dispersed unit for cooling, (ii) using a covered pond, (iii) enhancing the performance of the biogas recovery system, and (iv) changing the stabilization pond to an aerated lagoon. By using options i-iv, reductions of GHG emissions of 216, 208, 92.2, and 87.6 kgCO2eq/t of CPO, respectively, can be achieved.
Performance of biofuel processes utilising separate lignin and carbohydrate processing.
Melin, Kristian; Kohl, Thomas; Koskinen, Jukka; Hurme, Markku
2015-09-01
Novel biofuel pathways with increased product yields are evaluated against conventional lignocellulosic biofuel production processes: methanol or methane production via gasification and ethanol production via steam-explosion pre-treatment. The novel processes studied are ethanol production combined with methanol production by gasification, hydrocarbon fuel production with additional hydrogen produced from lignin residue gasification, methanol or methane synthesis using synthesis gas from lignin residue gasification and additional hydrogen obtained by aqueous phase reforming in synthesis gas production. The material and energy balances of the processes were calculated by Aspen flow sheet models and add on excel calculations applicable at the conceptual design stage to evaluate the pre-feasibility of the alternatives. The processes were compared using the following criteria: energy efficiency from biomass to products, primary energy efficiency, GHG reduction potential and economy (expressed as net present value: NPV). Several novel biorefinery concepts gave higher energy yields, GHG reduction potential and NPV. Copyright © 2015 Elsevier Ltd. All rights reserved.
Potentials for sustainable transportation in cities to alleviate climate change impacts.
Mashayekh, Yeganeh; Jaramillo, Paulina; Samaras, Constantine; Hendrickson, Chris T; Blackhurst, Michael; MacLean, Heather L; Matthews, H Scott
2012-03-06
Reducing greenhouse gas emissions (GHG) is an important social goal to mitigate climate change. A common mitigation paradigm is to consider strategy "wedges" that can be applied to different activities to achieve desired GHG reductions. In this policy analysis piece, we consider a wide range of possible strategies to reduce light-duty vehicle GHG emissions, including fuel and vehicle options, low carbon and renewable power, travel demand management and land use changes. We conclude that no one strategy will be sufficient to meet GHG emissions reduction goals to avoid climate change. However, many of these changes have positive combinatorial effects, so the best strategy is to pursue combinations of transportation GHG reduction strategies to meet reduction goals. Agencies need to broaden their agendas to incorporate such combination in their planning.
NASA Astrophysics Data System (ADS)
Spang, Edward S.; Holguin, Andrew J.; Loge, Frank J.
2018-01-01
In April 2015, the Governor of California mandated a 25% statewide reduction in water consumption (relative to 2013 levels) by urban water suppliers. The more than 400 public water agencies affected by the regulation were also required to report monthly progress towards the conservation goal to the State Water Resources Control Board. This paper uses the reported data to assess how the water utilities have responded to this mandate and to estimate the electricity savings and greenhouse gas (GHG) emissions reductions associated with reduced operation of urban water infrastructure systems. The results show that California succeeded in saving 524 000 million gallons (MG) of water (a 24.5% decrease relative to the 2013 baseline) over the mandate period, which translates into 1830 GWh total electricity savings, and a GHG emissions reduction of 521 000 metric tonnes of carbon dioxide equivalents (MT CO2e). For comparison, the total electricity savings linked to water conservation are approximately 11% greater than the savings achieved by the investor-owned electricity utilities’ efficiency programs for roughly the same time period, and the GHG savings represent the equivalent of taking about 111 000 cars off the road for a year. These indirect, large-scale electricity and GHG savings were achieved at costs that were competitive with existing programs that target electricity and GHG savings directly and independently. Finally, given the breadth of the results produced, we built a companion website, called ‘H2Open’ (https://cwee.shinyapps.io/greengov/), to this research effort that allows users to view and explore the data and results across scales, from individual water utilities to the statewide summary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Christopher; Hasanbeigi, Ali; Price, Lynn
Improving the efficiency of energy production and consumption and switching to lower carbon energy sources can significantly decrease carbon dioxide (CO2) emissions and reduce climate change impacts. A growing body of research has found that these measures can also directly mitigate many non-climate change related human health hazards and environmental damage. Positive impacts of policies and programs that occur in addition to the intended primary policy goal are called co-benefits. Policy analysis relies on forecasting and comparing the costs of policy and program implementation and the benefits that accrue to society from implementation. GHG reduction and energy efficiency policies andmore » programs face political resistance in part because of the difficulty of quantifying their benefits. On the one hand, climate change mitigation policy benefits are often global, long-term, and subject to large uncertainties, and subsidized energy pricing can reduce the direct monetary benefits of energy efficiency policies to below their cost. On the other hand, the co-benefits that accrue from these efforts’ resultant reductions in conventional air pollution (such as improved health, agricultural productivity, reduced damage to infrastructure, and local ecosystem improvements) are generally near term, local, and more certain than climate change mitigation benefits and larger than the monetary value of energy savings. The incorporation of co-benefits into energy efficiency and climate mitigation policy and program analysis therefore might significantly increase the uptake of these policies. Faster policy uptake is especially important in developing countries because ongoing development efforts that do not consider co-benefits may lock in suboptimal technologies and infrastructure and result in high costs in future years. Over the past two decades, studies have repeatedly documented that non-climate change related benefits of energy efficiency and fuel conversion efforts, as a part of GHG mitigation strategies, can be from between 30% to over 100% of the costs of such policies and programs strategies. Policy makers around the world are increasingly interested in including both GHG and non-GHG impacts in analyses of energy efficiency and fuel switching policies and programs and a set of methodologies has matured from the efforts of early moving jurisdictions such as the European Union, the United States, and Japan.« less
Potential Avenues for Significant Biofuels Penetration in the U.S. Aviation Market
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newes, Emily; Han, Jeongwoo; Peterson, Steve
Industry associations have set goals to reduce greenhouse gas (GHG) emissions and increase fuel efficiency. One focal area for reducing GHG emissions is in the use of aviation biofuel. This study examines assumptions under which the United States could see large production in aviation biofuel. Our results suggest that a high penetration (6 billion gallons) of aviation biofuels by 2030 could be possible, but factors around policy design (in the absence of high oil prices) contribute to the timing and magnitude of aviation biofuels production: 1) Incentives targeted towards jet fuel production such as financial incentives (e.g., producer tax credit,more » carbon tax) can be sufficient; 2) Investment in pre-commercial cellulosic technologies is needed to reduce the cost of production through learning-by-doing; 3) Reduction of investment risk through loan guarantees may allow production to ramp up more quickly through accelerating industry learning. In cases with high levels of incentives and investment in aviation biofuels, there could be a 25 percent reduction in overall GHG emissions from the aviation sector.« less
Mitigating greenhouse gas emissions in China's agriculture: from farm production to food consumption
NASA Astrophysics Data System (ADS)
Yue, Qian; Cheng, Kun; Pan, Genxing
2016-04-01
Greenhouse gas (GHG) emissions from agriculture could be mitigated from both supple side and demand side. Assessing carbon footprint (CF) of agricultural production and food consumption could provide insights into the contribution of agriculture to climate change and help to identify possible GHG mitigation options. In the present study, CF of China's agricultural production was firstly assessed from site scale to national scale, and from crop production to livestock production. Data for the crop and livestock production were collected from field survey and national statistical archive, and both life cycle assessment and input-output method were employed in the estimations. In general, CF of crop production was lower than that of livestock production on average. Rice production ranked the highest CF in crop production, and the highest CFs of livestock production were observed in mutton and beef production. Methane emissions from rice paddy, emissions from fertilizer application and water irrigation exerted the largest contribution of more than 50% for CF of crop production; however, emissions from forage feeding, enteric fermentation and manure treatment made the most proportion of more than 90 % for CF of livestock production. In China, carbon efficiency was shown in a decreasing trend in recent years. According to the present study, overuse of nitrogen fertilizer caused no yield effect but significant emissions in some sites and regions of China, and aggregated farms lowered the CFs of crop production and livestock production by 3% to 25% and 6% to 60% respectively compared to household farms. Given these, improving farming management efficiency and farm intensive development is the key strategy to mitigate climate change from supply side. However, changes in food consumption may reduce GHG emissions in the production chain through a switch to the consumption of food with higher GHG emissions in the production process to food with lower GHG emissions. Thus, CFs of different food consumption were also assessed. As indicated in this study, as large as one half of GHG emissions reduction could be gained if the current dietary habit is turned into suggested reasonable dietary. The current work highlights opportunities to gain GHG emission reduction from both supply side and demand side with good management and reasonable consumption in China.
Nguyen, Lan Huong; Mohan, Geetha; Jian, Pu; Takemoto, Kazuhiko; Fukushi, Kensuke
2016-01-01
Currently in many cities and rural areas of Vietnam, wastewater is discharged to the environment without any treatment, which emits considerable amount of greenhouse gas (GHG), particularly methane. In this study, four GHG emission scenarios were examined, as well as the baseline scenario, in order to verify the potential of GHG reduction from domestic wastewater with adequate treatment facilities. The ArcGIS and ArcHydro tools were employed to visualize and analyze GHG emissions resulting from discharge of untreated wastewater, in rural areas of Vu Gia Thu Bon river basin, Vietnam. By applying the current IPCC guidelines for GHG emissions, we found that a reduction of GHG emissions can be achieved through treatment of domestic wastewater in the studied area. Compared with baseline scenario, a maximum 16% of total GHG emissions can be reduced, in which 30% of households existing latrines are substituted by Japanese Johkasou technology and other 20% of domestic wastewater is treated by conventional activated sludge.
Mohan, Geetha; Jian, Pu; Takemoto, Kazuhiko; Fukushi, Kensuke
2016-01-01
Currently in many cities and rural areas of Vietnam, wastewater is discharged to the environment without any treatment, which emits considerable amount of greenhouse gas (GHG), particularly methane. In this study, four GHG emission scenarios were examined, as well as the baseline scenario, in order to verify the potential of GHG reduction from domestic wastewater with adequate treatment facilities. The ArcGIS and ArcHydro tools were employed to visualize and analyze GHG emissions resulting from discharge of untreated wastewater, in rural areas of Vu Gia Thu Bon river basin, Vietnam. By applying the current IPCC guidelines for GHG emissions, we found that a reduction of GHG emissions can be achieved through treatment of domestic wastewater in the studied area. Compared with baseline scenario, a maximum 16% of total GHG emissions can be reduced, in which 30% of households existing latrines are substituted by Japanese Johkasou technology and other 20% of domestic wastewater is treated by conventional activated sludge. PMID:27699202
NASA Astrophysics Data System (ADS)
Lau, W. K. M.; Kim, K. M.
2016-12-01
In this study, we investigate the relative roles of greenhouse gas (GHG) warming and aerosol forcing on the Asian monsoon. A baseline for global warming response is established from analysis of the multi-model mean (MMM) of 33 CMIP5 models based on a 140-year integration of 1% per year CO2 experiment. The relative roles of GHG warming and aerosol forcing on Asian monsoon precipitation changes are then assessed based on the 20th century historical runs, under a) all-forcing including GHG and aerosols, and b) GHG only. Results show that under CO2 warming, the Asian monsoon atmosphere can get wetter, no change, or drier regionally, depending on changes in moisture availability, atmospheric moist static stability, and topography. Rainfall is generally increased over the Asian monsoon tropical land and adjacent oceanic regions. However, in subtropical and extratropical land region over East Asia, monsoon rainfall increase is minimal, unchanged, or even suppressed. This is due to increased subsidence, and reduction of mid-tropopsheric relative humidity from an enhanced Hadley circulation, which weakens the monsoon meridional overturning circulation. These create the apparent paradox of a monsoon with increased rainfall, but weakened monsoon circulation under GHG warming. The monsoon response to GHG-only forcing in the historical run is similar to the baseline. On the other hand, as inferred from the difference of the all-forcing and the GHG-only runs, aerosols through solar dimming (SDM) and semi-direct effects suppress monsoon precipitation, causing a further weakening of the Asian monsoon. A scale analysis of precipitation shows that under a hypothetical GHG-only forcing in the past century, the "effective precipitation efficiency" (EPE) would have to be strongly reduced in order to achieve water balance between dynamics and thermodynamics. Under all-forcing (including aerosol), the reduction in EPE is much smaller. Here, the weaker monsoon circulation needed for water balance can be achieved via the aerosol semi-direct effect in increased atmospheric stability, and aerosol solar dimming effect in lessening the GHG induced land-sea thermal contrast between Eurasia and the surrounding oceans.
Liu, Yong-Hong; Liao, Wen-Yuan; Lin, Xiao-Fang; Li, Li; Zeng, Xue-Lan
2017-04-01
Vehicle emissions have become one of the key factors affecting the urban air quality and climate change in the Pearl River Delta (PRD) region, so it is important to design policies of emission reduction based on quantitative Co-benefits for air pollutants and greenhouse gas (GHG). Emissions of air pollutants and GHG by 2020 was predicted firstly based on the no-control scenario, and five vehicle emissions reduction scenarios were designed in view of the economy, technology and policy, whose emissions reduction were calculated. Then Co-benefits between air pollutants and GHG were quantitatively analyzed by the methods of coordinate system and cross-elasticity. Results show that the emissions reduction effects and the Co-benefits of different measures vary greatly in 2015-2020. If no control scheme was applied, most air pollutants and GHG would increase substantially by 20-64% by 2020, with the exception of CO, VOC and PM 2.5 . Different control measures had different reduction effects for single air pollutant and GHG. The worst reduction measure was Eliminating Motorcycles with average reducing rate 0.09% for air pollutants and GHG, while the rate from Updated Emission Standard was 41.74%. Eliminating Yellow-label Vehicle scenario had an obvious reduction effect for every single pollutant in the earlier years, but Co-benefits would descent to zero in later by 2020. From the perspective of emission reductions and co-control effect, Updated Emission Standard scenario was best for reducing air pollutants and GHG substantially (tanα=1.43 and Els=1.77). Copyright © 2016 Elsevier Ltd. All rights reserved.
Energy-efficient drinking water disinfection for greenhouse gas mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadgil, A.J.; Greene, D.M.; Rosenfeld, A.
Anecdotal evidence suggests that approximately one billion people worldwide use cookstoves to boil their drinking water. About half of this population is in China. Some populations (e.g. Jakarta) spend 1% of their GDP on boiling drinking water. Impoverished and/or ignorant populations not yet boiling their drinking water will do so when they can both afford it and understand the risks of unsafe drinking water. A recently developed water disinfection technology (UV Waterworks) can produce safe drinking water while earning tradable carbon credits (or credit as a clean development mechanism) when implemented as part of national energy, health, and carbon emissionsmore » trading policy, UV Waterworks uses approximately 6,000 times less energy than boiling over a biomass cookstove. Each unit that replaces boiling may save up to 175 or 300 tons/year of carbon-equivalent GHG emissions, depending on if it replaces sustainably harvested biomass (SHB) or non-SHB. For the approximately 500M Chinese boiling their drinking water over biomass (assumed SHB), this suggests a technical potential (that is, potential under the limiting case of 100% market adoption) of saving 87M tons/year of carbon-equivalent non-CO{sub 2} GHG emissions. The energy savings and corresponding emissions reductions will vary with cookstove fuels and stove efficiency: non-SHB and kerosene represent the most and least GHG-producing cookstove fuels, respectively, among those readily available to the populations of interest. The authors bracket the global technical potential for carbon emission reductions resulting from implementation of UV Waterworks, and estimate the value of tradable carbon credits earned from these reductions.« less
Electrification of the transportation sector offers limited country-wide greenhouse gas reductions
NASA Astrophysics Data System (ADS)
Meinrenken, Christoph J.; Lackner, Klaus S.
2014-03-01
Compared with conventional propulsion, plugin and hybrid vehicles may offer reductions in greenhouse gas (GHG) emissions, regional air/noise pollution, petroleum dependence, and ownership cost. Comparing only plugins and hybrids amongst themselves, and focusing on GHG, relative merits of different options have been shown to be more nuanced, depending on grid-carbon-intensity, range and thus battery manufacturing and weight, and trip patterns. We present a life-cycle framework to compare GHG emissions for three drivetrains (plugin-electricity-only, gasoline-only-hybrid, and plugin-hybrid) across driving ranges and grid-carbon-intensities, for passenger cars, vans, buses, or trucks (well-to-wheel plus storage manufacturing). Parameter and model uncertainties are quantified via sensitivity analyses. We find that owing to the interplay of range, GHG/km, and portions of country-wide kms accessible to electrification, GHG reductions achievable from plugins (whether electricity-only or hybrids) are limited even when assuming low-carbon future grids. Furthermore, for policy makers considering GHG from electricity and transportation sectors combined, plugin technology may in fact increase GHG compared to gasoline-only-hybrids, regardless of grid-carbon-intensity.
Role of waste management with regard to climate protection: a case study.
Hackl, Albert; Mauschitz, Gerd
2008-02-01
According to the Kyoto Protocol and the burden-sharing agreement of the European Union, Austria is required to cut greenhouse gas (GHG) emissions during the years 2008 to 2012 in order to achieve an average reduction of 13%, based on the level of emissions for the year 1990. The present contribution gives an overview of the history of GHG emission regulation in Austria and identifies the progress made towards the realization of the national climate strategy to attain the GHG emission targets. The contribution uses Austria as an example of the way in which proper waste management can help to reduce GHG emissions. The GHG inventories show that everything must be done to minimize the carbon input due to waste deposition at landfill sites. The incineration of waste is particularly helpful in reducing GHG emissions. The waste-to-energy by incineration plants and recovery of energy yield an ecologically proper treatment of waste using state-of-the-art techniques of a very high standard. The potential for GHG reduction of conventional waste treatment technologies has been estimated by the authors. A growing number of waste incinerators and intensified co-incineration of waste in Austrian industry will both help to reduce national GHG emissions substantially. By increasing the number and capacity of plants for thermal treatment of waste the contribution of proper waste management to the national target for reduction of GHG emissions will be in the range of 8 to 14%. The GHG inventories also indicate that a potential CO2 reduction of about 500 000 t year(-1) is achievable by co-incineration of waste in Austrian industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuqiang; Smith, Steven J.; Bowden, Jared H.
Policies to reduce greenhouse gas (GHG) emissions can bring ancillary benefits of improved air quality and reduced premature mortality, in addition to slowing climate change. Here we study the co-benefits of global and domestic GHG mitigation on US air quality and human health in 2050 at fine resolution using dynamical downscaling, and quantify for the first time the co-benefits from foreign GHG mitigation. Relative to a reference scenario, global GHG reductions in RCP4.5 avoid 16000 PM2.5-related all-cause deaths yr-1 (90% confidence interval, 11700-20300), and 8000 (3600-12400) O3-related respiratory deaths yr-1 in the US in 2050. Foreign GHG mitigation avoids 15%more » and 62% of PM2.5- and O3-related total avoided deaths, highlighting the importance of foreign GHG mitigation on US human health benefits. GHG mitigation in the US residential sector brings the largest co-benefits for PM2.5-related deaths (21% of total domestic co-benefits), and industry for O3 (17%). Monetized benefits, for avoided deaths from ozone, PM2.5, and heat stress from a related study, are $148 ($96-201) per ton CO2 at high valuation and $49 ($32-67) at low valuation, of which 36% are from foreign GHG reductions. These benefits likely exceed the marginal cost of GHG reductions in 2050. The US gains significantly greater co-benefits when coordinating GHG reductions with foreign countries. Similarly, previous studies estimating co-benefits locally or regionally may greatly underestimate the full co-benefits of coordinated global actions.« less
Comparing the greenhouse gas emissions from three alternative waste combustion concepts.
Vainikka, Pasi; Tsupari, Eemeli; Sipilä, Kai; Hupa, Mikko
2012-03-01
Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO(2)-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.
One of the major contributions of Greenhouse Gas (GHG) emissions from water resource recovery facilities results from the energy used by the pumping regime of the lift stations. This project demonstrated an energy-efficient control method of lift station system operation that uti...
NASA Astrophysics Data System (ADS)
Valin, H.; Havlík, P.; Mosnier, A.; Herrero, M.; Schmid, E.; Obersteiner, M.
2013-09-01
In this letter, we investigate the effects of crop yield and livestock feed efficiency scenarios on greenhouse gas (GHG) emissions from agriculture and land use change in developing countries. We analyze mitigation associated with different productivity pathways using the global partial equilibrium model GLOBIOM. Our results confirm that yield increase could mitigate some agriculture-related emissions growth over the next decades. Closing yield gaps by 50% for crops and 25% for livestock by 2050 would decrease agriculture and land use change emissions by 8% overall, and by 12% per calorie produced. However, the outcome is sensitive to the technological path and which factor benefits from productivity gains: sustainable land intensification would increase GHG savings by one-third when compared with a fertilizer intensive pathway. Reaching higher yield through total factor productivity gains would be more efficient on the food supply side but halve emissions savings due to a strong rebound effect on the demand side. Improvement in the crop or livestock sector would have different implications: crop yield increase would bring the largest food provision benefits, whereas livestock productivity gains would allow the greatest reductions in GHG emission. Combining productivity increases in the two sectors appears to be the most efficient way to exploit mitigation and food security co-benefits.
Transportation Energy Pathways LDRD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barter, Garrett.; Reichmuth, David.; Westbrook, Jessica
2012-09-01
This report presents a system dynamics based model of the supply-demand interactions between the US light-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through the year 2050. An important capability of our model is the ability to conduct parametric analyses. Others have relied upon scenario-based analysis, where one discrete set of values is assigned to the input variables and used to generate one possible realization of the future. While these scenarios can be illustrative of dominant trends and tradeoffs under certain circumstances, changes in input values or assumptions can have a significant impact on results, especiallymore » when output metrics are associated with projections far into the future. This type of uncertainty can be addressed by using a parametric study to examine a range of values for the input variables, offering a richer source of data to an analyst.The parametric analysis featured here focuses on a trade space exploration, with emphasis on factors that influence the adoption rates of electric vehicles (EVs), the reduction of GHG emissions, and the reduction of petroleum consumption within the US LDV fleet. The underlying model emphasizes competition between 13 different types of powertrains, including conventional internal combustion engine (ICE) vehicles, flex-fuel vehicles (FFVs), conventional hybrids(HEVs), plug-in hybrids (PHEVs), and battery electric vehicles(BEVs).We find that many factors contribute to the adoption rates of EVs. These include the pace of technological development for the electric powertrain, battery performance, as well as the efficiency improvements in conventional vehicles. Policy initiatives can also have a dramatic impact on the degree of EV adoption. The consumer effective payback period, in particular, can significantly increase the market penetration rates if extended towards the vehicle lifetime.Widespread EV adoption can have noticeable impact on petroleum consumption and greenhouse gas(GHG) emission by the LDV fleet. However, EVs alone cannot drive compliance with the most aggressive GHG emission reduction targets, even as the current electricity source mix shifts away from coal and towards natural gas. Since ICEs will comprise the majority of the LDV fleet for up to forty years, conventional vehicle efficiency improvements have the greatest potential for reductions in LDV GHG emissions over this time.These findings seem robust even if global oil prices rise to two to three times current projections. Thus,investment in improving the internal combustion engine might be the cheapest, lowest risk avenue towards meeting ambitious GHG emission and petroleum consumption reduction targets out to 2050.3 Acknowledgment The authors would like to thank Dr. Andrew Lutz, Dr. Benjamin Wu, Prof. Joan Ogden and Dr. Christopher Yang for their suggestions over the course of this project. This work was funded by the Laboratory Directed Research and Development program at Sandia National Laboratories.« less
NASA Astrophysics Data System (ADS)
Cui, Z. L.; Ye, Y. L.; Ma, W. Q.; Chen, X. P.; Zhang, F. S.
2013-10-01
Although the concept of producing higher yields with reduced greenhouse gas (GHG) emissions is a goal that attracts increasing public and scientific attention, the tradeoff between crop productivity and GHG emissions in intensive agricultural production is not well understood. In this study, we investigated 33 sites of on-farm experiments to evaluate the tradeoff between grain yield and GHG emissions using two systems (conventional practice, CP; high-yielding systems, HY) of intensive irrigation wheat (Triticum aestivum L.) in China. Furthermore, we discussed the potential to produce higher yields with lower GHG emissions based on a survey of 2938 farmers. However, in both the HY and CP systems, wheat grain yield response to GHG emissions fit a linear-plateau model, whereas the curve for grain yield from the HY system was always higher than that from the CP system. Compared to the CP system, grain yield was 44% (2.6 Mg ha-1) higher in the HY system, while GHG emissions increased by only 2.5%, and GHG emission intensity was reduced by 29%. The current intensive irrigation wheat system with farmers' practice had a median yield and maximum GHG emission rate of 6.05 Mg ha-1 and 4783 kg CO2 eq ha-1, respectively; however, this system can be transformed to maintain yields while reducing GHG emissions by 40% (5.96 Mg ha-1, and 2890 kg CO2 eq ha-1). Further, the HY system was found to increase grain yield by 41% with a simultaneous reduction in GHG emissions by 38% (8.55 Mg ha-1, and 2961 kg CO2 eq ha-1, respectively). In the future, we suggest moving the tradeoff relationships and calculations from grain yield and GHG emissions, to new measures of productivity and environmental protection using innovative management technologies. This shift in focus is critical to achieve food and environmental security.
Jensen, Henning Tarp; Keogh-Brown, Marcus R; Smith, Richard D; Chalabi, Zaid; Dangour, Alan D; Davies, Mike; Edwards, Phil; Garnett, Tara; Givoni, Moshe; Griffiths, Ulla; Hamilton, Ian; Jarrett, James; Roberts, Ian; Wilkinson, Paul; Woodcock, James; Haines, Andy
We employ a single-country dynamically-recursive Computable General Equilibrium model to make health-focussed macroeconomic assessments of three contingent UK Greenhouse Gas (GHG) mitigation strategies, designed to achieve 2030 emission targets as suggested by the UK Committee on Climate Change. In contrast to previous assessment studies, our main focus is on health co-benefits additional to those from reduced local air pollution. We employ a conservative cost-effectiveness methodology with a zero net cost threshold. Our urban transport strategy (with cleaner vehicles and increased active travel) brings important health co-benefits and is likely to be strongly cost-effective; our food and agriculture strategy (based on abatement technologies and reduction in livestock production) brings worthwhile health co-benefits, but is unlikely to eliminate net costs unless new technological measures are included; our household energy efficiency strategy is likely to breakeven only over the long term after the investment programme has ceased (beyond our 20 year time horizon). We conclude that UK policy makers will, most likely, have to adopt elements which involve initial net societal costs in order to achieve future emission targets and longer-term benefits from GHG reduction. Cost-effectiveness of GHG strategies is likely to require technological mitigation interventions and/or demand-constraining interventions with important health co-benefits and other efficiency-enhancing policies that promote internalization of externalities. Health co-benefits can play a crucial role in bringing down net costs, but our results also suggest the need for adopting holistic assessment methodologies which give proper consideration to welfare-improving health co-benefits with potentially negative economic repercussions (such as increased longevity).
To help solid waste planners and organizations track/report GHG emissions reductions from various waste management practices. To assist in calculating GHG emissions of baseline and alternative waste management practices and provide the history of WARM.
Long-term shifts in life-cycle energy efficiency and carbon intensity.
Yeh, Sonia; Mishra, Gouri Shankar; Morrison, Geoff; Teter, Jacob; Quiceno, Raul; Gillingham, Kenneth; Riera-Palou, Xavier
2013-03-19
The quantity of primary energy needed to support global human activity is in large part determined by how efficiently that energy is converted to a useful form. We estimate the system-level life-cycle energy efficiency (EF) and carbon intensity (CI) across primary resources for 2005-2100. Our results underscore that although technological improvements at each energy conversion process will improve technology efficiency and lead to important reductions in primary energy use, market mediated effects and structural shifts toward less efficient pathways and pathways with multiple stages of conversion will dampen these efficiency gains. System-level life-cycle efficiency may decrease as mitigation efforts intensify, since low-efficiency renewable systems with high output have much lower GHG emissions than some high-efficiency fossil fuel systems. Climate policies accelerate both improvements in EF and the adoption of renewable technologies, resulting in considerably lower primary energy demand and GHG emissions. Life-cycle EF and CI of useful energy provide a useful metric for understanding dynamics of implementing climate policies. The approaches developed here reiterate the necessity of a combination of policies that target efficiency and decarbonized energy technologies. We also examine life-cycle exergy efficiency (ExF) and find that nearly all of the qualitative results hold regardless of whether we use ExF or EF.
Greenhouse gas reduction through state and local transportation
DOT National Transportation Integrated Search
2003-09-01
This report will improve understanding of how states and localities might contribute to greenhouse gas (GHG) emissions : reduction through transportation planning. Transportation is a major contributor to GHG emissions. State and local transportation...
Fruergaard, Thilde; Astrup, Tomas; Ekvall, Thomas
2009-11-01
The energy system plays an essential role in accounting of greenhouse gas (GHG) emissions from waste management systems and waste technologies. This paper focuses on energy use and energy recovery in waste management and outlines how these aspects should be addressed consistently in a GHG perspective. Essential GHG emission data for the most common fuels, electricity and heat are provided. Average data on electricity provision show large variations from country to country due to different fuels being used and different efficiencies for electricity production in the individual countries (0.007-1.13 kg CO(2)-eq. kWh(-1)). Marginal data on electricity provision show even larger variations (0.004-3 kg CO(2)-eq. kWh( -1)). Somewhat less variation in GHG emissions is being found for heat production (0.01-0.69 kg CO(2)-eq. kWh( -1)). The paper further addresses allocation principles and the importance of applying either average or marginal energy data, and it discusses the consequences of introducing reduction targets on CO( 2) emissions. All discussed aspects were found to significantly affect the outcome of GHG accounts suggesting transparent reporting to be critical. Recommendations for use of average/marginal energy data are provided.
Tian, Wang; Liao, Cuiping; Li, Li; Zhao, Daiqing
2011-03-01
Life Cycle Assessment (LCA) is the only standardized tool currently used to assess environmental loads of products and processes. The life cycle analysis, as a part of LCA, is a useful and powerful methodology for studying life cycle energy efficiency and life cycle GHG emission. To quantitatively explain the potential of energy saving and greenhouse gas (GHG) emissions reduction of corn stover-based ethanol, we analyzed life cycle energy consumption and GHG emissions of corn stover-based ethanol by the method of life cycle analysis. The processes are dilute acid prehydrolysis and enzymatic hydrolysis. The functional unit was defined as 1 km distance driven by the vehicle. Results indicated: compared with gasoline, the corn stover-based E100 (100% ethanol) and E10 (a blend of 10% ethanol and 90% gasoline by volume) could reduce life cycle fossil energy consumption by 79.63% and 6.25% respectively, as well as GHG emissions by 53.98% and 6.69%; the fossil energy consumed by biomass stage was 68.3% of total fossil energy input, N-fertilizer and diesel were the main factors which contributed 45.78% and 33.26% to biomass stage; electricity production process contributed 42.06% to the net GHG emissions, the improvement of technology might reduce emissions markedly.
Luk, Jason M; Kim, Hyung Chul; De Kleine, Robert; Wallington, Timothy J; MacLean, Heather L
2017-08-01
The literature analyzing the fuel saving, life cycle greenhouse gas (GHG) emission, and ownership cost impacts of lightweighting vehicles with different powertrains is reviewed. Vehicles with lower powertrain efficiencies have higher fuel consumption. Thus, fuel savings from lightweighting internal combustion engine vehicles can be higher than those of hybrid electric and battery electric vehicles. However, the impact of fuel savings on life cycle costs and GHG emissions depends on fuel prices, fuel carbon intensities and fuel storage requirements. Battery electric vehicle fuel savings enable reduction of battery size without sacrificing driving range. This reduces the battery production cost and mass, the latter results in further fuel savings. The carbon intensity of electricity varies widely and is a major source of uncertainty when evaluating the benefits of fuel savings. Hybrid electric vehicles use gasoline more efficiently than internal combustion engine vehicles and do not require large plug-in batteries. Therefore, the benefits of lightweighting depend on the vehicle powertrain. We discuss the value proposition of the use of lightweight materials and alternative powertrains. Future assessments of the benefits of vehicle lightweighting should capture the unique characteristics of emerging vehicle powertrains.
Kiefer, Lukas; Menzel, Friederike; Bahrs, Enno
2014-12-01
The reduction of product-related greenhouse gas (GHG) emissions in milk production appears to be necessary. The reduction of emissions on an individual farm might be highly accepted by farm owners if it were accompanied by an increase in profitability. Using life cycle assessments to determine the product carbon footprints (PCF) and farm-level evaluations to record profitability, we explored opportunities for optimization based on analysis of 81 organic and conventional pasture-based dairy farms in southern Germany. The objective of the present study was to detect common determining factors for low PCF and high management incomes (MI) to achieve GHG reductions at the lowest possible operational cost. In our sample, organic farms, which performed economically better than conventional farms, produced PCF that were significantly higher than those produced by conventional farms [1.61 ± 0.29 vs. 1.45 ± 0.28 kg of CO₂ equivalents (CO₂eq) per kg of milk; means ± SD)]. A multiple linear regression analysis of the sample demonstrated that low feed demand per kilogram of milk, high grassland yield, and low forage area requirements per cow are the main factors that decrease PCF. These factors are also useful for improving a farm's profitability in principle. For organic farms, a reduction of feed demand of 100 g/kg of milk resulted in a PCF reduction of 105 g of CO₂eq/kg of milk and an increase in MI of approximately 2.1 euro cents (c)/kg of milk. For conventional farms, a decrease of feed demand of 100 g/kg of milk corresponded to a reduction in PCF of 117 g of CO₂eq/kg of milk and an increase in MI of approximately 3.1 c/kg of milk. Accordingly, farmers could achieve higher profits while reducing GHG emissions. Improved education and training of farmers and consultants regarding GHG mitigation and farm profitability appear to be the best methods of improving efficiency under traditional and organic farming practices.
Using biochar in animal farming to recycle nutrients and reduce greenhouse gas emissions
NASA Astrophysics Data System (ADS)
Schmidt, Hans-Peter; Wilson, Kelpie; Kammann, Claudia
2017-04-01
Charcoal has been used to treat digestive disorder in animals since several thousand years. But only since about 2010 biochar has increasingly been used as regular feed additive in animal farming usually mixed with standard feed at approximately 1% of the daily feed intake. The use of biochar as feed additive has the potential to improve animal health, feed efficiency and the animal-stable environment; to reduce nutrient losses and GHG emissions; and to increase soil organic mater and thus soil fertility. The evaluation of more than 150 scientific papers on feeding (activated) biochar showed in most of the studies and for all investigated livestock species positive effects on parameters like toxin adsorption, digestion, blood values, feed use efficiency and livestock weight gain, meat quality and GHG emissions. The facilitation of direct electron transfers between different species of bacteria or microbial consortia via the biochar mediator in the animal digestion tract is hypothesized to be the main reason for a more energy efficient digestion and thus higher feed efficiency, for its selective probiotic effect, for reduced N-losses and eventually for less GHG emissions. While chicken, pigs, fish and other omnivore animals provoke GHG-emissions (mainly NH3, CH4, N2O) when their liquid and solid excretions decompose anaerobically, ruminants cause direct methane emissions through flatulence and burps (eructation). Preliminary studies demonstrated that feeding high temperature biochars might reduce ruminant CH4 emissions though more systematic research is needed. It is likely that microbial decomposition of manure containing digested biochar produces less ammonia, less methane and thus retain more nitrogen, as seen when manure was composted with and without biochar or when biochar is used as bedding or manure treatment additive. Laboratory adsorption trials estimated that using biochar for liquid manure treatment could safe 57,000 t NH4 and 4,600 t P2O5 fertilizer per year in California alone. It was further shown that feeding 0.3 to 1% biochar could replace antibiotic treatment in chicken and ducks, respectively. Feeding biochar could thus have an indirect effect on GHG emissions when it is able to replace regular antibiotic "feeding" that produces high indirect GHG emissions after soil application of antibiotic contaminated manure. Moreover, it was demonstrated that feeding biochar to grazing cows had positive secondary effects on soil fertility and fertilizer efficiency reducing mineral N-fertilizing requirements which could be another indirect biochar GHG mitigation effect. Considering an average C-content of fed biochar of 80% and produced at recommended temperatures above 500°C resulting in H/Corg ratios below 0.4, at least 56% of the dry weight of the fed and manure-applied biochar would persist as stable carbon in soil for at least 100 years. If the global livestock would receive 1% of their feed in form of such a biochar, a total of about 400 Mt of CO2eq or 1.2 % of the global CO2 emissions could be compensated. The apparent potential for improving animal health and nutrient efficiency, for reducing enteric methane emissions as well as GHG emissions from manure management and for sequestering carbon with soil fertility improvements makes it compelling to increase the scientific effort to investigate, measure and optimize the GHG reduction potential of biochar use in animal farming systems. The main results from literature and own experiments will be presented to illustrate and calculate this potential.
Influences on Adoption of Greenhouse Gas Reduction Targets among US States, 1998-2008
Cale, Tabitha M.; Reams, Margaret A.
2016-01-01
While the United States has not established federal regulations for greenhouse gas (GHG) reduction targets, many US states have adopted their own standards and guidelines. In this study we examine state adoption of targets for GHG reductions during the ten-year period of 1998–2008, and identify factors that explain variation in target adoption. Potential influences are drawn from research from the public policy formulation and diffusion literature, and from studies specific to climate policy adoption. Potential influences on GHG reduction efforts among US states include socioeconomic attributes of residents, political and ideological orientations of citizens and state government, interest group activities, environmental pressures, and proximity to other states that have adopted GHG reduction targets. The findings of the multinomial logistic regression analysis indicate that states are more likely to adopt GHG reduction targets if they share a border with another state with a similar climate program and if their citizens are more ideologically liberal. Other factors including socioeconomic resources and interest group activities were not found to be associated with policy adoption. The findings yield insights into the conditions under which states are more likely to take action to reduce GHG’s, and are relevant both to state policy makers and residents with an interest in climate planning, and for researchers attempting to estimate future greenhouse gas reduction scenarios. PMID:27471657
The Future of Air Conditioning for Buildings - Executive Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Guernsey, Matt; Young, J.
2016-07-01
The Building Technologies Office (BTO), within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy, works with researchers and industry to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. Air conditioning (A/C) systems in buildings contribute to GHG emissions both directly through refrigerant emissions, as well as indirectly through fossil fuel combustion for power generation. BTO promotes pre-competitive research and development (R&D) on next-generation HVAC technologies that support the phase down of hydrofluorocarbon (HFC) production and consumption, as well as cost-effective energy efficiency improvements.more » Over the past several decades, product costs and lifecycle cooling costs have declined substantially in many global markets due to improved, higher-volume manufacturing and higher energy efficiency driven by R&D investments and efficiency policies including minimum efficiency standards and labeling programs.1 This report characterizes the current landscape and trends in the global A/C market, including discussion of both direct and indirect climate impacts, and potential global warming impacts from growing global A/C usage. The report also documents solutions that can help achieve international goals for energy efficiency and GHG emissions reductions. The solutions include pathways related to low-global warming potential2 (GWP) refrigerants, energy efficiency innovations, long-term R&D initiatives, and regulatory actions. DOE provides, with this report, a fact-based vision for the future of A/C use around the world. DOE intends for this vision to reflect a broad and balanced aggregation of perspectives. DOE brings together this content in an effort to support dialogue within the international community and help keep key facts and objectives at the forefront among the many important discussions.« less
Van Middelaar, C E; Berentsen, P B M; Dijkstra, J; Van Arendonk, J A M; De Boer, I J M
2015-07-01
Breeding has the potential to reduce greenhouse gas (GHG) emissions from dairy farming. Evaluating the effect of a 1-unit change (i.e., 1 genetic standard deviation improvement) in genetic traits on GHG emissions along the chain provides insight into the relative importance of genetic traits to reduce GHG emissions. Relative GHG values of genetic traits, however, might depend on feed-related farm characteristics. The objective of this study was to evaluate the effect of feed-related farm characteristics on GHG values by comparing the values of milk yield and longevity for an efficient farm and a less efficient farm. The less efficient farm did not apply precision feeding and had lower feed production per hectare than the efficient farm. Greenhouse gas values of milk yield and longevity were calculated by using a whole-farm model and 2 different optimization methods. Method 1 optimized farm management before and after a change in genetic trait by maximizing labor income; the effect on GHG emissions (i.e., from production of farm inputs up to the farm gate) was considered a side effect. Method 2 optimized farm management after a change in genetic trait by minimizing GHG emissions per kilogram of milk while maintaining labor income and milk production at least at the level before the change in trait; the effect on labor income was considered a side effect. Based on maximizing labor income (method 1), GHG values of milk yield and longevity were, respectively, 279 and 143kg of CO2 equivalents (CO2e)/unit change per cow per year on the less efficient farm, and 247 and 210kg of CO2e/unit change per cow per year on the efficient farm. Based on minimizing GHG emissions (method 2), GHG values of milk yield and longevity were, respectively, 538 and 563kg of CO2e/unit change per cow per year on the less efficient farm, and 453 and 441kg of CO2e/unit change per cow per year on the efficient farm. Sensitivity analysis showed that, for both methods, the absolute effect of a change in genetic trait depends on model inputs, including prices and emission factors. Substantial changes in relative importance between traits due to a change in model inputs occurred only in case of maximizing labor income. We concluded that assumptions regarding feed-related farm characteristics affect the absolute level of GHG values, as well as the relative importance of traits to reduce emissions when using a method based on maximizing labor income. This is because optimizing farm management based on maximizing labor income does not give any incentive for lowering GHG emissions. When using a method based on minimizing GHG emissions, feed-related farm characteristics affected the absolute level of the GHG values, but the relative importance of the traits scarcely changed: at each level of efficiency, milk yield and longevity were equally important. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Improvements to coal power plant technology and the co-fired combustion of biomass promise direct greenhouse gas (GHG) reductions for existing coal-fired power plants. Questions remain as to what the reduction potentials are from a life cycle perspective and if it will result in ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, William K. M.; Kim, Kyu-Myong; Ruby Leung, L.
Using model outputs from CMIP5 historical integrations, we have investigated the relative roles of anthropogenic emissions of greenhouse gases (GHG) and aerosols in changing the characteristics of the large-scale circulation and rainfall in Asian summer monsoon (ASM) regions. Under GHG warming, a strong positive trend in low-level moist static energy (MSE) is found over ASM regions, associated with increasing large-scale land–sea thermal contrast from 1870s to present. During the same period, a mid-tropospheric convective barrier (MCB) due to widespread reduction in relative humidity in the mid- and lower troposphere is strengthening over the ASM regions, in conjunction with expanding areasmore » of anomalous subsidence associated with the Deep Tropical Squeeze (Lau and Kim in Proc Natl Acad Sci 12:3630–3635, 2015). The opposing effects of MSE and MCB lead to enhanced total ASM rainfall, but only a partial strengthening of the southern portion of the monsoon meridional circulation, coupled to anomalous multi-cellular overturning motions over ASM land. Including anthropogenic aerosol emissions strongly masks MSE but enhances MCB via increased stability in the lower troposphere, resulting in an overall weakened ASM circulation with suppressed rainfall. Analyses of rainfall characteristics indicate that under GHG, overall precipitation efficiency over the ASM region is reduced, manifesting in less moderate but more extreme heavy rain events. Under combined effects of GHG and aerosols, precipitation efficiency is unchanged, with more moderate, but less extreme rainfall.« less
NASA Astrophysics Data System (ADS)
Lau, William K. M.; Kim, Kyu-Myong; Ruby Leung, L.
2017-12-01
Using model outputs from CMIP5 historical integrations, we have investigated the relative roles of anthropogenic emissions of greenhouse gases (GHG) and aerosols in changing the characteristics of the large-scale circulation and rainfall in Asian summer monsoon (ASM) regions. Under GHG warming, a strong positive trend in low-level moist static energy (MSE) is found over ASM regions, associated with increasing large-scale land-sea thermal contrast from 1870s to present. During the same period, a mid-tropospheric convective barrier (MCB) due to widespread reduction in relative humidity in the mid- and lower troposphere is strengthening over the ASM regions, in conjunction with expanding areas of anomalous subsidence associated with the Deep Tropical Squeeze (Lau and Kim in Proc Natl Acad Sci 12:3630-3635, 2015). The opposing effects of MSE and MCB lead to enhanced total ASM rainfall, but only a partial strengthening of the southern portion of the monsoon meridional circulation, coupled to anomalous multi-cellular overturning motions over ASM land. Including anthropogenic aerosol emissions strongly masks MSE but enhances MCB via increased stability in the lower troposphere, resulting in an overall weakened ASM circulation with suppressed rainfall. Analyses of rainfall characteristics indicate that under GHG, overall precipitation efficiency over the ASM region is reduced, manifesting in less moderate but more extreme heavy rain events. Under combined effects of GHG and aerosols, precipitation efficiency is unchanged, with more moderate, but less extreme rainfall.
Samaras, Constantine; Meisterling, Kyle
2008-05-01
Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a role in reducing greenhouse gas (GHG) emissions from the transport sector. However, meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. We assess life cycle GHG emissions from PHEVs and find that they reduce GHG emissions by 32% compared to conventional vehicles, but have small reductions compared to traditional hybrids. Batteries are an important component of PHEVs, and GHGs associated with lithium-ion battery materials and production account for 2-5% of life cycle emissions from PHEVs. We consider cellulosic ethanol use and various carbon intensities of electricity. The reduced liquid fuel requirements of PHEVs could leverage limited cellulosic ethanol resources. Electricity generation infrastructure is long-lived, and technology decisions within the next decade about electricity supplies in the power sector will affectthe potential for large GHG emissions reductions with PHEVs for several decades.
Center for Corporate Climate Leadership GHG Inventory Guidance for Low Emitters
Tools and guidance for low emitters and small businesses to develop an organization-wide GHG inventory and establish a plan to ensure GHG emissions data consistency for tracking progress towards reaching an emissions reduction goal.
Yuksel, Tugce; Michalek, Jeremy J
2015-03-17
We characterize the effect of regional temperature differences on battery electric vehicle (BEV) efficiency, range, and use-phase power plant CO2 emissions in the U.S. The efficiency of a BEV varies with ambient temperature due to battery efficiency and cabin climate control. We find that annual energy consumption of BEVs can increase by an average of 15% in the Upper Midwest or in the Southwest compared to the Pacific Coast due to temperature differences. Greenhouse gas (GHG) emissions from BEVs vary primarily with marginal regional grid mix, which has three times the GHG intensity in the Upper Midwest as on the Pacific Coast. However, even within a grid region, BEV emissions vary by up to 22% due to spatial and temporal ambient temperature variation and its implications for vehicle efficiency and charging duration and timing. Cold climate regions also encounter days with substantial reduction in EV range: the average range of a Nissan Leaf on the coldest day of the year drops from 70 miles on the Pacific Coast to less than 45 miles in the Upper Midwest. These regional differences are large enough to affect adoption patterns and energy and environmental implications of BEVs relative to alternatives.
Life-cycle analysis of bio-based aviation fuels.
Han, Jeongwoo; Elgowainy, Amgad; Cai, Hao; Wang, Michael Q
2013-12-01
Well-to-wake (WTWa) analysis of bio-based aviation fuels, including hydroprocessed renewable jet (HRJ) from various oil seeds, Fischer-Tropsch jet (FTJ) from corn-stover and co-feeding of coal and corn-stover, and pyrolysis jet from corn stover, is conducted and compared with petroleum jet. WTWa GHG emission reductions relative to petroleum jet can be 41-63% for HRJ, 68-76% for pyrolysis jet and 89% for FTJ from corn stover. The HRJ production stage dominates WTWa GHG emissions from HRJ pathways. The differences in GHG emissions from HRJ production stage among considered feedstocks are much smaller than those from fertilizer use and N2O emissions related to feedstock collection stage. Sensitivity analyses on FTJ production from coal and corn-stover are also conducted, showing the importance of biomass share in the feedstock, carbon capture and sequestration options, and overall efficiency. For both HRJ and FTJ, co-product handling methods have significant impacts on WTWa results. Copyright © 2013 Elsevier Ltd. All rights reserved.
Energy transition in transport sector from energy substitution perspective
NASA Astrophysics Data System (ADS)
Sun, Wangmin; Yang, Xiaoguang; Han, Song; Sun, Xiaoyang
2017-10-01
Power and heating generation sector and transport sector contribute a highest GHG emissions and even air pollutions. This paper seeks to investigate life cycle costs and emissions in both the power sector and transport sector, and evaluate the cost-emission efficient (costs for one unit GHG emissions) of the substitution between new energy vehicles and conventional gasoline based vehicles under two electricity mix scenarios. In power sector, wind power and PV power will be cost comparative in 2030 forecasted with learning curve method. With high subsidies, new energy cars could be comparative now, but it still has high costs to lower GHG emissions. When the government subsidy policy is reversible, the emission reduction cost for new energy vehicle consumer will be 900/ton. According to the sensitive analysis, the paper suggests that the government implement policies that allocate the cost to the whole life cycle of energy production and consumption related to transport sector energy transition and policies that are in favor of new energy vehicle consumers but not the new energy car producers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Department of Energy (DOE) and U.S. General Services Administration (GSA) are issuing comprehensive guidance on the federal fleet requirements of Executive Order (E.O.) 13693, Planning for Federal Sustainability in the Next Decade (E.O. 13693), to help federal agencies subject to the executive order develop an overall approach for reducing total fleet greenhouse gas (GHG) emissions and fleet-wide per-mile GHG emissions, and ensure the approach helps these agencies meet their requirements. Three key GHG emissions reduction strategies - right-sizing fleets to mission, increasing fleet fuel efficiency, and displacing petroleum with alternative fuel use - are essential to meeting themore » requirements and are discussed further in this document. This guidance document is intended to help agency Chief Sustainability Officers (CSOs) and headquarters fleet managers craft tailored executable plans that achieve the purpose of E.O. 13693. The guidance will assist agencies in completing the first phase of a comprehensive fleet management framework by identifying the strategies each agency will then implement to meet or exceed its requirements.« less
Pathways to Deep Decarbonization in the United States
NASA Astrophysics Data System (ADS)
Torn, M. S.; Williams, J.
2015-12-01
Limiting anthropogenic warming to less than 2°C will require a reduction in global net greenhouse gas (GHG) emissions on the order of 80% below 1990 levels by 2050. Thus, there is a growing need to understand what would be required to achieve deep decarbonization (DD) in different economies. We examined the technical and economic feasibility of such a transition in the United States, evaluating the infrastructure and technology changes required to reduce U.S. GHG emissions in 2050 by 80% below 1990 levels. Using the PATHWAYS and GCAM models, we found that this level of decarbonization in the U.S. can be accomplished with existing commercial or near-commercial technologies, while providing the same level of energy services and economic growth as a reference case based on the U.S. DOE Annual Energy Outlook. Reductions are achieved through high levels of energy efficiency, decarbonization of electric generation, electrification of most end uses, and switching the remaining end uses to lower carbon fuels. Incremental energy system cost would be equivalent to roughly 1% of gross domestic product, not including potential non-energy benefits such as avoided human and infrastructure costs of climate change. Starting now on the deep decarbonization path would allow infrastructure stock turnover to follow natural replacement rates, which reduces costs, eases demand on manufacturing, and allows gradual consumer adoption. Energy system changes must be accompanied by reductions in non-energy and non-CO2 GHG emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Eric C; Zhang, Yi Min; Cai, Hao
Biomass-derived hydrocarbon fuel technologies are being developed and pursued for better economy, environment, and society benefits underpinning the sustainability of transportation energy. Increasing availability and affordability of natural gas (NG) in the US can play an important role in assisting renewable fuel technology development, primarily in terms of economic feasibility. When a biorefinery is co-processing NG with biomass, the current low cost of NG coupled with the higher NG carbon conversion efficiency potentially allow for cost competitiveness of the fuel while achieving a minimum GHG emission reduction of 50 percent or higher compared to petroleum fuel. This study evaluates themore » relative sustainability of the production of high-octane gasoline blendstock via indirect liquefaction (IDL) of biomass (and with NG co-feed) through methanol/dimethyl ether intermediates. The sustainability metrics considered in this study include minimum fuel selling price (MFSP), carbon conversion efficiency, life cycle GHG emissions, life cycle water consumption, fossil energy return on investment (EROI), GHG emission avoidance cost, and job creation. Co-processing NG can evidently improve the MFSP. Evaluation of the relative sustainability can shed light on the biomass-NG synergistic impacts and sustainability trade-offs associated with the IDL as high-octane gasoline blendstock production.« less
Waste-to-energy sector and the mitigation of greenhouse gas emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fotis, S.C.; Sussman, D.
The waste-to-energy sector provides one important avenue for the United States to reduce greenhouse gas (GHG) emissions. The purpose of this paper is to highlight the significant GHG reductions capable of being achieved by the waste-to-energy (WTE) sector through avoided fossil generation and reduced municipal landfills. The paper begins with a review of the current voluntary reporting mechanism for {open_quotes}registering{close_quotes} GHG reduction credits under section 1605(b) of the Energy Policy Act of 1992. The paper then provides an overview of possible emerging international and domestic trends that could ultimately lead to mandatory targets and timetables for GHG mitigation in themore » United States and other countries. The paper ends with an analysis of the GHG benefits achievable by the WTE sector, based on the section 1605(b) report filed by the Integrated Waste Services Association IWSA on the GHG emissions avoided for year 1995.« less
Liu, Yili; Sun, Weixin; Liu, Jianguo
2017-10-01
Waste management is a major source of global greenhouse gas (GHG) emissions and many opportunities exist to reduce these emissions. To identify the GHG emissions from waste management in China, the characteristics of MSW and the current and future treatment management strategies, five typical management scenarios were modeled by EaseTech software following the principles of life cycle inventory and analyzed based on the carbon and energy flows. Due to the high organic fraction (50-70%) and moisture content (>50%) of Chinese municipal solid waste (MSW), the net GHG emissions in waste management had a significant difference from the developed countries. It was found that the poor landfill gas (LFG) collection efficiency and low carbon storage resulted landfilling with flaring and landfilling with biogas recovery scenarios were the largest GHG emissions (192 and 117 kgCO 2 -Eq/t, respectively). In contrast, incineration had the best energy recovery rate (19%), and, by grid emissions substitution, led to a substantial decrease in net GHG emissions (-124 kgCO 2 -Eq/t). Due to the high energy consumption in operation, the unavoidable leakage of CH 4 and N 2 O in treatment, and the further release of CH 4 in disposing of the digested residue or composted product, the scenarios with biological treatment of the organic fractions after sorting, such as composting or anaerobic digestion (AD), did not lead to the outstanding GHG reductions (emissions of 32 and -36 kgCO 2 -Eq/t, respectively) as expected. Copyright © 2017. Published by Elsevier Ltd.
Aerosol reductions could dominate regional climate responses in low GHG emission scenarios
NASA Astrophysics Data System (ADS)
Samset, B. H.; Sand, M.; Smith, C. J.; Bauer, S.; Forster, P.; Fuglestvedt, J. S.; Osprey, S. M.; Schleussner, C. F.
2017-12-01
Limiting global warming to current political goals requires strong, rapid mitigation of anthropogenic greenhouse gas (GHG) emissions. Concurrently, emissions of anthropogenic aerosols will decline sharply, due to co-emission with greenhouse gases, and future measures to improve air quality. As the net climate effect of GHG and aerosol emissions over the industrial era is poorly constrained, predicting the impact of strong aerosol emission reductions remains challenging. Here we investigate the isolated and compound climate impacts from removing present day anthropogenic emissions of black carbon (BC), organic carbon (OC) and SO2, and moderate, near term GHG dominated global warming, using four coupled climate models. As the dominating effect of aerosol emission reduction is a removal of cooling from sulphur, the resulting climate impacts amplify those of GHG induced warming. BC emissions contribute little to reducing surface warming, but have stronger regional impacts. For the major aerosol emission regions, extreme weather indices are more sensitive to aerosol removal than to GHG increases, per degree of surface warming. East Asia in particular stands out, mainly due to the high present regional aerosol emissions. We show how present climate models indicate that future regional climate change will depend strongly on changes in loading and distribution of aerosols in the atmosphere, in addition to surface temperature change.
Kelly, Jarod C; Sullivan, John L; Burnham, Andrew; Elgowainy, Amgad
2015-10-20
This study examines the vehicle-cycle and vehicle total life-cycle impacts of substituting lightweight materials into vehicles. We determine part-based greenhouse gas (GHG) emission ratios by collecting material substitution data and evaluating that alongside known mass-based GHG ratios (using and updating Argonne National Laboratory's GREET model) associated with material pair substitutions. Several vehicle parts are lightweighted via material substitution, using substitution ratios from a U.S. Department of Energy report, to determine GHG emissions. We then examine fuel-cycle GHG reductions from lightweighting. The fuel reduction value methodology is applied using FRV estimates of 0.15-0.25, and 0.25-0.5 L/(100km·100 kg), with and without powertrain adjustments, respectively. GHG breakeven values are derived for both driving distance and material substitution ratio. While material substitution can reduce vehicle weight, it often increases vehicle-cycle GHGs. It is likely that replacing steel (the dominant vehicle material) with wrought aluminum, carbon fiber reinforced plastic (CRFP), or magnesium will increase vehicle-cycle GHGs. However, lifetime fuel economy benefits often outweigh the vehicle-cycle, resulting in a net total life-cycle GHG benefit. This is the case for steel replaced by wrought aluminum in all assumed cases, and for CFRP and magnesium except for high substitution ratio and low FRV.
Previous studies have shown that mitigating climate change through curbing greenhouse gas (GHG) emissions can bring about substantial environmental co-benefits, such as for air quality and reductions in energy-related water demand. A variety of pathways are available for reducing...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob
This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025-2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ~450 gCO2e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H2 FCEVs, andmore » BEVs range from 300-350 gCO2e/mi. Future vehicle efficiency gains are expected to reduce emissions to ~350 gCO2/mi for ICEVs and ~250 gCO2e/mi for HEVs, PHEVs, FCEVs, and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25-$1.00/mi depending on time frame and vehicle-fuel technology. In all cases, vehicle cost represents the major (60-90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions. The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob
This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025–2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ~450 gCO2e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H2 FCEVs, andmore » BEVs range from 300–350 gCO2e/mi. Future vehicle efficiency gains are expected to reduce emissions to ~350 gCO2/mi for ICEVs and ~250 gCO2e/mi for HEVs, PHEVs, FCEVs and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25–$1.00/mi depending on timeframe and vehicle-fuel technology. In all cases, vehicle cost represents the major (60–90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.« less
Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob; Joseck, Fred; Gohlke, David; Lindauer, Alicia; Ramsden, Todd; Biddy, Mary; Alexander, Mark; Barnhart, Steven; Sutherland, Ian; Verduzco, Laura; Wallington, Timothy J
2018-02-20
This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025-2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ∼450 gCO 2 e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H 2 FCEVs, and BEVs range from 300-350 gCO 2 e/mi. Future vehicle efficiency gains are expected to reduce emissions to ∼350 gCO 2 /mi for ICEVs and ∼250 gCO 2e /mi for HEVs, PHEVs, FCEVs, and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25-$1.00/mi depending on time frame and vehicle-fuel technology. In all cases, vehicle cost represents the major (60-90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions. The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaygusuz, K.; Bilgen, S.
There is increasing consensus in both the scientific and political communities that significant reductions in greenhouse gas (GHG) emissions are necessary to limit the magnitude and extent of climate change. Renewable energy systems already reduce GHG emissions from the energy sector, although on a modest scale. Turkey is heavily dependent on expensive imported energy resources (oil, gas, and coal) that place a big burden on the economy, and air pollution is becoming a great environmental concern in the country. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions for clean and sustainablemore » energy development in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. This article presents a review of the energy related environmental policies in Turkey.« less
Life cycle greenhouse gas emissions and freshwater consumption of Marcellus shale gas.
Laurenzi, Ian J; Jersey, Gilbert R
2013-05-07
We present results of a life cycle assessment (LCA) of Marcellus shale gas used for power generation. The analysis employs the most extensive data set of any LCA of shale gas to date, encompassing data from actual gas production and power generation operations. Results indicate that a typical Marcellus gas life cycle yields 466 kg CO2eq/MWh (80% confidence interval: 450-567 kg CO2eq/MWh) of greenhouse gas (GHG) emissions and 224 gal/MWh (80% CI: 185-305 gal/MWh) of freshwater consumption. Operations associated with hydraulic fracturing constitute only 1.2% of the life cycle GHG emissions, and 6.2% of the life cycle freshwater consumption. These results are influenced most strongly by the estimated ultimate recovery (EUR) of the well and the power plant efficiency: increase in either quantity will reduce both life cycle freshwater consumption and GHG emissions relative to power generated at the plant. We conclude by comparing the life cycle impacts of Marcellus gas and U.S. coal: The carbon footprint of Marcellus gas is 53% (80% CI: 44-61%) lower than coal, and its freshwater consumption is about 50% of coal. We conclude that substantial GHG reductions and freshwater savings may result from the replacement of coal-fired power generation with gas-fired power generation.
Voluntary GHG reduction of industrial sectors in Taiwan.
Chen, Liang-Tung; Hu, Allen H
2012-08-01
The present paper describes the voluntary greenhouse gas (GHG) reduction agreements of six different industrial sectors in Taiwan, as well as the fluorinated gases (F-gas) reduction agreement of the semiconductor and Liquid Crystal Display (LCD) industries. The operating mechanisms, GHG reduction methods, capital investment, and investment effectiveness are also discussed. A total of 182 plants participated in the voluntary energy saving and GHG reduction in six industrial sectors (iron and steel, petrochemical, cement, paper, synthetic fiber, and textile printing and dyeing), with 5.35 Mt reduction from 2004 to 2008, or 33% higher than the target goal (4.02 Mt). The reduction accounts for 1.6% annual emission or 7.8% during the 5-yr span. The petrochemical industry accounts for 49% of the reduction, followed by the cement sector (21%) and the iron and steel industry (13%). The total investment amounted to approximately USD 716 million, in which, the majority of the investment went to the modification of the manufacturing process (89%). The benefit was valued at around USD 472 million with an average payback period of 1.5 yr. Moreover, related energy saving was achieved through different approaches, e.g., via electricity (iron and steel), steam and oil consumption (petrochemical) and coal usage (cement). The cost for unit CO(2) reduction varies per industry, with the steel and iron industrial sector having the highest cost (USD 346 t(-1) CO(2)) compared with the average cost of the six industrial sectors (USD 134 t(-1) CO(2)). For the semiconductor and Thin-Film Transistor LCD industries, F-gas emissions were reduced from approximately 4.1 to about 1.7 Mt CO(2)-eq, and from 2.2 to about 1.1 Mt CO(2)-eq, respectively. Incentive mechanisms for participation in GHG reduction are also further discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chapter 8: Uncertainty assessment for quantifying greenhouse gas sources and sinks
Jay Breidt; Stephen M. Ogle; Wendy Powers; Coeli Hoover
2014-01-01
Quantifying the uncertainty of greenhouse gas (GHG) emissions and reductions from agriculture and forestry practices is an important aspect of decision�]making for farmers, ranchers and forest landowners as the uncertainty range for each GHG estimate communicates our level of confidence that the estimate reflects the actual balance of GHG exchange between...
specified volumes of renewable fuels according to the categories below. EISA established life cycle GHG demonstrate a 20% reduction in life cycle GHG emissions. Advanced Biofuel: Any fuel derived from cellulosic or categories may be used to meet this category. Fuels in this category must demonstrate a life cycle GHG
Liu, Hong-Tao; Wang, Yan-Wen; Liu, Xiao-Jie; Gao, Ding; Zheng, Guo-di; Lei, Mei; Guo, Guang-Hui; Zheng, Hai-Xia; Kong, Xiang-Juan
2017-02-01
Sludge is an important source of greenhouse gas (GHG) emissions, both in the form of direct process emissions and as a result of indirect carbon-derived energy consumption during processing. In this study, the carbon budgets of two sludge disposal processes at two well-known sludge disposal sites in China (for biodrying and heat-drying pretreatments, both followed by mono-incineration) were quantified and compared. Total GHG emissions from heat drying combined with mono-incineration was 0.1731 tCO 2 e t -1 , while 0.0882 tCO 2 e t -1 was emitted from biodrying combined with mono-incineration. Based on these findings, a significant reduction (approximately 50%) in total GHG emissions was obtained by biodrying instead of heat drying prior to sludge incineration. Sludge treatment results in direct and indirect greenhouse gas (GHG) emissions. Moisture reduction followed by incineration is commonly used to dispose of sludge in China; however, few studies have compared the effects of different drying pretreatment options on GHG emissions during such processes. Therefore, in this study, the carbon budgets of sludge incineration were analyzed and compared following different pretreatment drying technologies (biodrying and heat drying). The results indicate that biodrying combined with incineration generated approximately half of the GHG emissions compared to heat drying followed by incineration. Accordingly, biodrying may represent a more environment-friendly sludge pretreatment prior to incineration.
Modeling urban building energy use: A review of modeling approaches and procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wenliang; Zhou, Yuyu; Cetin, Kristen
With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. This paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. This is followed by a discussion of challenging issues associated with model preparation and calibration.« less
Modeling urban building energy use: A review of modeling approaches and procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wenliang; Zhou, Yuyu; Cetin, Kristen
With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. Our paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. We then follow this with a discussion of challenging issues associated with model preparation and calibration.« less
Modeling urban building energy use: A review of modeling approaches and procedures
Li, Wenliang; Zhou, Yuyu; Cetin, Kristen; ...
2017-11-13
With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. Our paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. We then follow this with a discussion of challenging issues associated with model preparation and calibration.« less
NASA Astrophysics Data System (ADS)
Ramaswami, A.; Tong, K.; Fang, A.; Lal, R.; Nagpure, A.; Li, Y.; Yu, H.; Jiang, D.; Russell, A. G.; Shi, L.; Chertow, M.; Wang, Y.; Wang, S.
2016-12-01
Urban activities in China contribute significantly to global greenhouse gas (GHG) emissions and to local air pollution-related health risks. Co-location analysis can help inform the potential for energy- and material-exchanges across homes, businesses, infrastructure and industries co-located in cities. Such co-location dependent urban-industrial symbiosis strategies offer a new pathway toward urban energy efficiency and health that have not previously been quantified. Key examples includes the use of waste industrial heat in other co-located industries, and in residential-commercial district heating-cooling systems of cities. To quantify the impact of these strategies: (1) We develop a new data-set of 637 Chinese cities to assess the potential for efficiency and symbiosis across co-located homes, businesses, industries and the energy and construction sectors in the different cities. (2) A multi-scalar urban systems model quantifies trans-boundary CO2 impacts as well as local health benefits of these uniquely urban, co-location-dependent strategies. (3) CO2 impacts are aggregated across the 637 Chinese cities (home to 701 million people) to quantify national CO2 mitigation potential. (4) The local health benefits are modeled specific to each city and mapped geospatially to identify areas where co-benefits between GHG mitigation and health are maximized. Results: A first order conservative analysis of co-location dependent urban symbiosis indicates potential for reducing 6% of China's national total CO2 emissions in a relatively short time period, yielding a new pathway not previously considered in China's energy futures models. The magnitude of these reductions (6%) was similar in magnitude to sector specific industrial, power sector and buildings efficiency strategeies that together contributed 9% CO2 reduction aggregated across the nation. CO2 reductions mapped to the 637 cities ranged from <1% to 40%, depending upon co-location patterns, climate and other features of the cities. The modeled reductions in fossil-fuel use yield reductions in PM-2.5 emissions from <1% to 73%, depending on the city, and avoided annual mortality >40,000 premature deaths (avoided) across all cities. These results demonstrate the contribution urban symbiosis on decarbonization and health co-benefits.
Summary of Fast Pyrolysis and Upgrading GHG Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snowden-Swan, Lesley J.; Male, Jonathan L.
2012-12-07
The Energy Independence and Security Act (EISA) of 2007 established new renewable fuel categories and eligibility requirements (EPA 2010). A significant aspect of the National Renewable Fuel Standard 2 (RFS2) program is the requirement that the life cycle greenhouse gas (GHG) emissions of a qualifying renewable fuel be less than the life cycle GHG emissions of the 2005 baseline average gasoline or diesel fuel that it replaces. Four levels of reduction are required for the four renewable fuel standards. Table 1 lists these life cycle performance improvement thresholds. Table 1. Life Cycle GHG Thresholds Specified in EISA Fuel Type Percentmore » Reduction from 2005 Baseline Renewable fuel 20% Advanced biofuel 50% Biomass-based diesel 50% Cellulosic biofuel 60% Notably, there is a specialized subset of advanced biofuels that are the cellulosic biofuels. The cellulosic biofuels are incentivized by the Cellulosic Biofuel Producer Tax Credit (26 USC 40) to stimulate market adoption of these fuels. EISA defines a cellulosic biofuel as follows (42 USC 7545(o)(1)(E)): The term “cellulosic biofuel” means renewable fuel derived from any cellulose, hemicellulose, or lignin that is derived from renewable biomass and that has lifecycle greenhouse gas emissions, as determined by the Administrator, that are at least 60 percent less than the baseline lifecycle greenhouse gas emissions. As indicated, the Environmental Protection Agency (EPA) has sole responsibility for conducting the life cycle analysis (LCA) and making the final determination of whether a given fuel qualifies under these biofuel definitions. However, there appears to be a need within the LCA community to discuss and eventually reach consensus on discerning a 50–59 % GHG reduction from a ≥ 60% GHG reduction for policy, market, and technology development. The level of specificity and agreement will require additional development of capabilities and time for the sustainability and analysis community, as illustrated by the rich dialogue and convergence around the energy content and GHG reduction of cellulosic ethanol (an example of these discussions can be found in Wang 2011). GHG analyses of fast pyrolysis technology routes are being developed and will require significant work to reach the levels of development and maturity of cellulosic ethanol models. This summary provides some of the first fast pyrolysis analyses and clarifies some of the reasons for differing results in an effort to begin the convergence on assumptions, discussion of quality of models, and harmonization.« less
Ku, Hyun-Hwoi; Hayashi, Keiichi; Agbisit, Ruth; Villegas-Pangga, Gina
2017-12-01
Intensively double cropping rice increases greenhouse gas (GHG) emission in tropical countries, and hence, finding better management practices is imperative for reducing global warming potential (GWP), while sustaining rice yield. This study demonstrated an efficient fertilizer and water management practice targeting seasonal weather conditions effects on rice productivity, nitrogen use efficiency (NUE), GWP, and GHG intensity (GHGI). Two-season experiments were conducted with two pot-scale experiments using urea and urea+cattle manure (CM) under continuous flooding (CF) during the wet season (2013WS), and urea with/without CaSiO 3 application under alternate wetting and drying (AWD) during the dry season (2014DS). In 2013WS, 120kgNha -1 of urea fertilizer resulted in lower CH 4 emission and similar rice production compared to urea+CM. In 2014DS, CaSiO 3 application showed no difference in yields and led to significant reduction of N 2 O emission, but increased CH 4 emission and GWP. Due to significant increases in GHG emissions in urea+CM and CaSiO 3 application, we compared a seasonal difference in a local rice cultivation to test two water management practices. CF was adopted during 2013WS while AWD was adopted during 2014DS. Greater grain yields and yield components and NUE were obtained in 2014DS than in 2013WS. Furthermore, higher grain yields contributed to similar values of GHGI although GWP of cumulative GHG emissions was increased in 2014DS. Thus, utilizing urea only application under AWD is a preferred practice to minimize GWP without yield decline for double cropping rice in tropical countries. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, C. D.; Brown, A.; DeFlorio, J.
2013-03-01
Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategiesmore » are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, C. D.; Brown, A.; DeFlorio, J.
2013-03-01
Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategiesmore » are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less
NASA Astrophysics Data System (ADS)
Xing, Rui; Hanaoka, Tatsuya; Kanamori, Yuko; Dai, Hancheng; Masui, Toshihiko
2015-06-01
Recently, energy use in the urban residential sector of China has drastically increased due to higher incomes and urbanization. The fossil fuels dominant energy supply has since worsened the air quality, especially in urban areas. In this study we estimate the future energy service demands in Chinese urban residential areas, and then use an AIM/Enduse model to evaluate the emission reduction potential of CO2, SO2, NOx and PM. Considering the climate diversity and its impact on household energy service demands, our analysis is down-scaled to the provincial-level. The results show that in most of the regions, penetration of efficient technologies will bring CO2 emission reductions of over 20% compared to the baseline by the year 2030. Deployment of energy efficient technologies also co-benefits GHG emission reduction. However, efficient technology selection appears to differ across provinces due to climatic variation and economic disparity. For instance, geothermal heating technology is effective for the cold Northern areas while biomass technology contributes to emission reduction the most in the warm Southern areas.
Co-control of urban air pollutants and greenhouse gases in Mexico City.
West, J Jason; Osnaya, Patricia; Laguna, Israel; Martínez, Julia; Fernández, Adrián
2004-07-01
This study addresses the synergies of mitigation measures to control urban air pollutant and greenhouse gas (GHG) emissions, in developing integrated "co-control" strategies for Mexico City. First, existing studies of emissions reduction measures--PROAIRE (the air quality plan for Mexico City) and separate GHG studies--are used to construct a harmonized database of options. Second, linear programming (LP) is developed and applied as a decision-support tool to analyze least-cost strategies for meeting co-control targets for multiple pollutants. We estimate that implementing PROAIRE measures as planned will reduce 3.1% of the 2010 metropolitan CO2 emissions, in addition to substantial local air pollutant reductions. Applying the LP, PROAIRE emissions reductions can be met at a 20% lower cost, using only the PROAIRE measures, by adjusting investments toward the more cost-effective measures; lower net costs are possible by including cost-saving GHG mitigation measures, but with increased investment. When CO2 emission reduction targets are added to PROAIRE targets, the most cost-effective solutions use PROAIRE measures for the majority of local pollutant reductions, and GHG measures for additional CO2 control. Because of synergies, the integrated planning of urban-global co-control can be beneficial, but we estimate that for Mexico City these benefits are often small.
Climate Leadership Award for Excellence in GHG Management (Goal Setting Certificate)
Apply to the Climate Leadership Award for Excellence in GHG Management (Goal Achievement Award), which publicly recognizes organizations that achieve publicly-set aggressive greenhouse gas emissions reduction goals.
Climate Leadership Award for Excellence in GHG Management (Goal Achievement Award)
Apply to the Climate Leadership Award for Excellence in GHG Management (Goal Achievement Award), which publicly recognizes organizations that achieve publicly-set aggressive greenhouse gas emissions reduction goals.
About the Center for Corporate Climate Leadership
EPA's Center for Corporate Climate Leadership encourages organizations with emerging climate objectives to identify and achieve cost-effective GHG emission reductions, while helping more advanced organizations drive innovations in reducing GHG impacts.
Gao, Jinghong; Hou, Hongli; Zhai, Yunkai; Woodward, Alistair; Vardoulakis, Sotiris; Kovats, Sari; Wilkinson, Paul; Li, Liping; Song, Xiaoqin; Xu, Lei; Meng, Bohan; Liu, Xiaobo; Wang, Jun; Zhao, Jie; Liu, Qiyong
2018-09-01
To date, greenhouse gas (GHG) emissions, mitigation strategies and the accompanying health co-benefits in different economic sectors have not been fully investigated. The purpose of this paper is to review comprehensively the evidence on GHG mitigation measures and the related health co-benefits, identify knowledge gaps, and provide recommendations to promote further development and implementation of climate change response policies. Evidence on GHG emissions, abatement measures and related health co-benefits has been observed at regional, national and global levels, involving both low- and high-income societies. GHG mitigation actions have mainly been taken in five sectors: energy generation, transport, food and agriculture, household and industry, consistent with the main sources of GHG emissions. GHGs and air pollutants to a large extent stem from the same sources and are inseparable in terms of their atmospheric evolution and effects on ecosystem; thus, GHG reductions are usually, although not always, estimated to have cost effective co-benefits for public health. Some integrated mitigation strategies involving multiple sectors, which tend to create greater health benefits. The pros and cons of different mitigation measures, issues with existing knowledge, priorities for research, and potential policy implications were also discussed. Findings from this study can play a role not only in motivating large GHG emitters to make decisive changes in GHG emissions, but also in facilitating cooperation at international, national and regional levels, to promote GHG mitigation policies that protect public health from climate change and air pollution simultaneously. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cai, Hao; Dunn, Jennifer B; Wang, Zhichao; Han, Jeongwoo; Wang, Michael Q
2013-10-02
The availability of feedstock options is a key to meeting the volumetric requirement of 136.3 billion liters of renewable fuels per year beginning in 2022, as required in the US 2007 Energy Independence and Security Act. Life-cycle greenhouse gas (GHG) emissions of sorghum-based ethanol need to be assessed for sorghum to play a role in meeting that requirement. Multiple sorghum-based ethanol production pathways show diverse well-to-wheels (WTW) energy use and GHG emissions due to differences in energy use and fertilizer use intensity associated with sorghum growth and differences in the ethanol conversion processes. All sorghum-based ethanol pathways can achieve significant fossil energy savings. Relative to GHG emissions from conventional gasoline, grain sorghum-based ethanol can reduce WTW GHG emissions by 35% or 23%, respectively, when wet or dried distillers grains with solubles (DGS) is the co-product and fossil natural gas (FNG) is consumed as the process fuel. The reduction increased to 56% or 55%, respectively, for wet or dried DGS co-production when renewable natural gas (RNG) from anaerobic digestion of animal waste is used as the process fuel. These results do not include land-use change (LUC) GHG emissions, which we take as negligible. If LUC GHG emissions for grain sorghum ethanol as estimated by the US Environmental Protection Agency (EPA) are included (26 g CO2e/MJ), these reductions when wet DGS is co-produced decrease to 7% or 29% when FNG or RNG is used as the process fuel. Sweet sorghum-based ethanol can reduce GHG emissions by 71% or 72% without or with use of co-produced vinasse as farm fertilizer, respectively, in ethanol plants using only sugar juice to produce ethanol. If both sugar and cellulosic bagasse were used in the future for ethanol production, an ethanol plant with a combined heat and power (CHP) system that supplies all process energy can achieve a GHG emission reduction of 70% or 72%, respectively, without or with vinasse fertigation. Forage sorghum-based ethanol can achieve a 49% WTW GHG emission reduction when ethanol plants meet process energy demands with CHP. In the case of forage sorghum and an integrated sweet sorghum pathway, the use of a portion of feedstock to fuel CHP systems significantly reduces fossil fuel consumption and GHG emissions. This study provides new insight into life-cycle energy use and GHG emissions of multiple sorghum-based ethanol production pathways in the US. Our results show that adding sorghum feedstocks to the existing options for ethanol production could help in meeting the requirements for volumes of renewable, advanced and cellulosic bioethanol production in the US required by the EPA's Renewable Fuel Standard program.
2013-01-01
Background The availability of feedstock options is a key to meeting the volumetric requirement of 136.3 billion liters of renewable fuels per year beginning in 2022, as required in the US 2007 Energy Independence and Security Act. Life-cycle greenhouse gas (GHG) emissions of sorghum-based ethanol need to be assessed for sorghum to play a role in meeting that requirement. Results Multiple sorghum-based ethanol production pathways show diverse well-to-wheels (WTW) energy use and GHG emissions due to differences in energy use and fertilizer use intensity associated with sorghum growth and differences in the ethanol conversion processes. All sorghum-based ethanol pathways can achieve significant fossil energy savings. Relative to GHG emissions from conventional gasoline, grain sorghum-based ethanol can reduce WTW GHG emissions by 35% or 23%, respectively, when wet or dried distillers grains with solubles (DGS) is the co-product and fossil natural gas (FNG) is consumed as the process fuel. The reduction increased to 56% or 55%, respectively, for wet or dried DGS co-production when renewable natural gas (RNG) from anaerobic digestion of animal waste is used as the process fuel. These results do not include land-use change (LUC) GHG emissions, which we take as negligible. If LUC GHG emissions for grain sorghum ethanol as estimated by the US Environmental Protection Agency (EPA) are included (26 g CO2e/MJ), these reductions when wet DGS is co-produced decrease to 7% or 29% when FNG or RNG is used as the process fuel. Sweet sorghum-based ethanol can reduce GHG emissions by 71% or 72% without or with use of co-produced vinasse as farm fertilizer, respectively, in ethanol plants using only sugar juice to produce ethanol. If both sugar and cellulosic bagasse were used in the future for ethanol production, an ethanol plant with a combined heat and power (CHP) system that supplies all process energy can achieve a GHG emission reduction of 70% or 72%, respectively, without or with vinasse fertigation. Forage sorghum-based ethanol can achieve a 49% WTW GHG emission reduction when ethanol plants meet process energy demands with CHP. In the case of forage sorghum and an integrated sweet sorghum pathway, the use of a portion of feedstock to fuel CHP systems significantly reduces fossil fuel consumption and GHG emissions. Conclusions This study provides new insight into life-cycle energy use and GHG emissions of multiple sorghum-based ethanol production pathways in the US. Our results show that adding sorghum feedstocks to the existing options for ethanol production could help in meeting the requirements for volumes of renewable, advanced and cellulosic bioethanol production in the US required by the EPA’s Renewable Fuel Standard program. PMID:24088388
Health effects of adopting low greenhouse gas emission diets in the UK
Milner, James; Green, Rosemary; Dangour, Alan D; Haines, Andy; Chalabi, Zaid; Spadaro, Joseph; Markandya, Anil; Wilkinson, Paul
2015-01-01
Objective Dietary changes which improve health are also likely to be beneficial for the environment by reducing emissions of greenhouse gases (GHG). However, previous analyses have not accounted for the potential acceptability of low GHG diets to the general public. This study attempted to quantify the health effects associated with adopting low GHG emission diets in the UK. Design Epidemiological modelling study. Setting UK. Participants UK population. Intervention Adoption of diets optimised to achieve the WHO nutritional recommendations and reduce GHG emissions while remaining as close as possible to existing dietary patterns. Main outcome Changes in years of life lost due to coronary heart disease, stroke, several cancers and type II diabetes, quantified using life tables. Results If the average UK dietary intake were optimised to comply with the WHO recommendations, we estimate an incidental reduction of 17% in GHG emissions. Such a dietary pattern would be broadly similar to the current UK average. Our model suggests that it would save almost 7 million years of life lost prematurely in the UK over the next 30 years and increase average life expectancy by over 8 months. Diets that result in additional GHG emission reductions could achieve further net health benefits. For emission reductions greater than 40%, improvements in some health outcomes may decrease and acceptability will diminish. Conclusions There are large potential benefits to health from adopting diets with lower associated GHG emissions in the UK. Most of these benefits can be achieved without drastic changes to existing dietary patterns. However, to reduce emissions by more than 40%, major dietary changes that limit both acceptability and the benefits to health are required. PMID:25929258
Health effects of adopting low greenhouse gas emission diets in the UK.
Milner, James; Green, Rosemary; Dangour, Alan D; Haines, Andy; Chalabi, Zaid; Spadaro, Joseph; Markandya, Anil; Wilkinson, Paul
2015-04-30
Dietary changes which improve health are also likely to be beneficial for the environment by reducing emissions of greenhouse gases (GHG). However, previous analyses have not accounted for the potential acceptability of low GHG diets to the general public. This study attempted to quantify the health effects associated with adopting low GHG emission diets in the UK. Epidemiological modelling study. UK. UK population. Adoption of diets optimised to achieve the WHO nutritional recommendations and reduce GHG emissions while remaining as close as possible to existing dietary patterns. Changes in years of life lost due to coronary heart disease, stroke, several cancers and type II diabetes, quantified using life tables. If the average UK dietary intake were optimised to comply with the WHO recommendations, we estimate an incidental reduction of 17% in GHG emissions. Such a dietary pattern would be broadly similar to the current UK average. Our model suggests that it would save almost 7 million years of life lost prematurely in the UK over the next 30 years and increase average life expectancy by over 8 months. Diets that result in additional GHG emission reductions could achieve further net health benefits. For emission reductions greater than 40%, improvements in some health outcomes may decrease and acceptability will diminish. There are large potential benefits to health from adopting diets with lower associated GHG emissions in the UK. Most of these benefits can be achieved without drastic changes to existing dietary patterns. However, to reduce emissions by more than 40%, major dietary changes that limit both acceptability and the benefits to health are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Tabata, Tomohiro
2013-11-01
Municipal solid waste (MSW) incineration is a greenhouse gas (GHG) emitter; however, if GHG reductions, achieved by accounting for waste-to-energy, exceed GHG emissions, incineration can be considered as a net GHG reducer. In Japan, only 24.5% of MSW incineration plants perform energy recovery despite 80% of MSW being incinerated; therefore, there is great potential to extract more energy from MSW. In this study, the factors that should be considered to achieve net GHG reductions from incineration were analysed from a life cycle perspective. These considerations were then applied to the energy supply requirements in seven Japanese metropolises. Firstly, the carbon footprints of approximately 1500 incineration plants in Japan were calculated. Then, the incineration plants with negative carbon footprint values were classified as net GHG reducers. Next, the processes that contribute to the carbon footprint were evaluated, and two processes-plastic burning and electricity savings-were found to have the greatest influence. Based on the results, the energy supply requirements were analysed and discussed for seven metropolises (Sapporo, Tokyo, Nagoya, Osaka, Kobe, Takamatsu and Fukuoka) taking into account the energy demands of households. In Kobe, 16.2% of the electricity demand and 25.0% of the hot water demand could be satisfied by incineration to realise a net GHG reducer, although urban design for energy utilisation would be required.
Environmental implications of carbon limits on market ...
Combined heat and power (CHP) is promoted as an economical, energy-efficient option for combating climate change. To fully examine the viability of CHP as a clean-technology solution, its market potential and impacts need to be analyzed as part of scenarios of the future energy system, particularly those with policies limiting greenhouse gas (GHG) emissions. This paper develops and analyzes scenarios using a bottom-up, technology rich optimization model of the U.S. energy system. Two distinct carbon reduction goals were set up for analysis. In Target 1, carbon emission reduction goals were only included for the electric sector. In Target 2, carbon emission reduction goals were set across the entire energy system with the target patterned after the U.S.’s commitment to reducing GHG emissions as part of the Paris Agreement reached at the COP21 summit. From a system-wide carbon reduction standpoint, Target 2 is significantly more stringent. In addition, these scenarios examine the implications of various CHP capacity expansion and contraction assumptions and energy prices. The largest CHP capacity expansion are observed in scenarios that included Target 1, but investments were scaled back in scenarios that incorporated Target 2. The latter scenario spurred rapid development of zero-emissions technologies within the electric sector, and purchased electricity increased dramatically in many end-use sectors. The results suggest that CHP may play a role in a carbon-c
Assessment of technologies to meet a low carbon fuel standard.
Yeh, Sonia; Lutsey, Nicholas P; Parker, Nathan C
2009-09-15
California's low carbon fuel standard (LCFS) was designed to incentivize a diverse array of available strategies for reducing transportation greenhouse gas (GHG) emissions. It provides strong incentives for fuels with lower GHG emissions, while explicitly requiring a 10% reduction in California's transportation fuel GHG intensity by 2020. This paper investigates the potential for cost-effective GHG reductions from electrification and expanded use of biofuels. The analysis indicates that fuel providers could meetthe standard using a portfolio approach that employs both biofuels and electricity, which would reduce the risks and uncertainties associated with the progress of cellulosic and battery technologies, feedstock prices, land availability, and the sustainability of the various compliance approaches. Our analysis is based on the details of California's development of an LCFS; however, this research approach could be generalizable to a national U.S. standard and to similar programs in Europe and Canada.
Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK.
Scarborough, Peter; Appleby, Paul N; Mizdrak, Anja; Briggs, Adam D M; Travis, Ruth C; Bradbury, Kathryn E; Key, Timothy J
The production of animal-based foods is associated with higher greenhouse gas (GHG) emissions than plant-based foods. The objective of this study was to estimate the difference in dietary GHG emissions between self-selected meat-eaters, fish-eaters, vegetarians and vegans in the UK. Subjects were participants in the EPIC-Oxford cohort study. The diets of 2,041 vegans, 15,751 vegetarians, 8,123 fish-eaters and 29,589 meat-eaters aged 20-79 were assessed using a validated food frequency questionnaire. Comparable GHG emissions parameters were developed for the underlying food codes using a dataset of GHG emissions for 94 food commodities in the UK, with a weighting for the global warming potential of each component gas. The average GHG emissions associated with a standard 2,000 kcal diet were estimated for all subjects. ANOVA was used to estimate average dietary GHG emissions by diet group adjusted for sex and age. The age-and-sex-adjusted mean (95 % confidence interval) GHG emissions in kilograms of carbon dioxide equivalents per day (kgCO 2 e/day) were 7.19 (7.16, 7.22) for high meat-eaters ( > = 100 g/d), 5.63 (5.61, 5.65) for medium meat-eaters (50-99 g/d), 4.67 (4.65, 4.70) for low meat-eaters ( < 50 g/d), 3.91 (3.88, 3.94) for fish-eaters, 3.81 (3.79, 3.83) for vegetarians and 2.89 (2.83, 2.94) for vegans. In conclusion, dietary GHG emissions in self-selected meat-eaters are approximately twice as high as those in vegans. It is likely that reductions in meat consumption would lead to reductions in dietary GHG emissions.
NASA Astrophysics Data System (ADS)
Marvin, D.; Cameron, D. R.; Passero, M. C.; Remucal, J. M.
2017-12-01
California has been a global leader in climate change policy through its early adoption of ambitious GHG reduction goals, committing to steep reductions through 2030 and beyond. Modeling efforts focused on future greenhouse gas (GHG) emissions from energy and other sectors in California have shown varying capacity to meet the emissions reductions targets established by the state. These efforts have not included potential reductions from changes in ecosystem management, restoration, and conservation. This study simulates the future GHG reduction potential of these land-based activities (e.g., changes to forest management, avoided conversion of grasslands to agriculture) when applied to California lands at three plausible rates of policy implementation relative to current efforts. We then compare the reduction potential of the activities against "business-as-usual" (BAU) emissions projections for the California to highlight the contribution of the biosphere toward reaching the state's GHG 2030 and 2050 reduction targets. By 2030, an Ambitious land-based activity implementation scenario could contribute as much as 146.7 MMTCO2e or 17.4% of the cumulative reductions needed to meet the state's 2030 goal, greater than the individual contributions of four other economic sectors, including those from the Industrial and Agriculture sectors. On an annual basis, the Ambitious scenario could result in reductions as high as 17.93 MMTCO2e yr-1 or 13.4% of the state's 2030 reduction goal. Most reductions come from changes in forest management, such as extending rotation times for harvest and reducing stocking density, thereby promoting accelerated growth. Such changes comprise 59.8% to 67.4% of annual projected emissions reductions in 2050 for the Ambitious and Limited scenarios, respectively. Implementation of a range of land-based emissions reduction activities can materially contribute to one of the most ambitious mitigation targets globally. This study provides a flexible, dynamic framework for estimating the reductions achievable through land conservation, ecological restoration, and changes in management regimes that can account for new data and scientific understanding.
Co-benefits of global and regional greenhouse gas mitigation for US air quality in 2050
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuqiang; Bowden, Jared H.; Adelman, Zachariah
Policies to mitigate greenhouse gas (GHG) emissions will not only slow climate change but can also have ancillary benefits of improved air quality. Here we examine the co-benefits of both global and regional GHG mitigation for US air quality in 2050 at fine resolution, using dynamical downscaling methods, building on a previous global co-benefits study (West et al., 2013). The co-benefits for US air quality are quantified via two mechanisms: through reductions in co-emitted air pollutants from the same sources and by slowing climate change and its influence on air quality, following West et al. (2013). Additionally, we separate the totalmore » co-benefits into contributions from domestic GHG mitigation vs. mitigation in foreign countries. We use the Weather Research and Forecasting (WRF) model to dynamically downscale future global climate to the regional scale and the Sparse Matrix Operator Kernel Emissions (SMOKE) program to directly process global anthropogenic emissions to the regional domain, and we provide dynamical boundary conditions from global simulations to the regional Community Multi-scale Air Quality (CMAQ) model. The total co-benefits of global GHG mitigation from the RCP4.5 scenario compared with its reference are estimated to be higher in the eastern US (ranging from 0.6 to 1.0 µg m -3) than the west (0–0.4 µg m -3) for fine particulate matter (PM 2.5), with an average of 0.47 µg m -3 over the US; for O 3, the total co-benefits are more uniform at 2–5 ppb, with a US average of 3.55 ppb. Comparing the two mechanisms of co-benefits, we find that reductions in co-emitted air pollutants have a much greater influence on both PM 2.5 (96 % of the total co-benefits) and O 3 (89 % of the total) than the second co-benefits mechanism via slowing climate change, consistent with West et al. (2013). GHG mitigation from foreign countries contributes more to the US O 3 reduction (76 % of the total) than that from domestic GHG mitigation only (24 %), highlighting the importance of global methane reductions and the intercontinental transport of air pollutants. For PM 2.5, the benefits of domestic GHG control are greater (74 % of total). Since foreign contributions to co-benefits can be substantial, with foreign O 3 benefits much larger than those from domestic reductions, previous studies that focus on local or regional co-benefits may greatly underestimate the total co-benefits of global GHG reductions. We conclude that the US can gain significantly greater domestic air quality co-benefits by engaging with other nations to control GHGs.« less
Achieving Realistic Energy and Greenhouse Gas Emission Reductions in U.S. Cities
NASA Astrophysics Data System (ADS)
Blackhurst, Michael F.
2011-12-01
In recognizing that energy markets and greenhouse gas emissions are significantly influences by local factors, this research examines opportunities for achieving realistic energy greenhouse gas emissions from U.S. cities through provisions of more sustainable infrastructure. Greenhouse gas reduction opportunities are examined through the lens of a public program administrator charged with reducing emissions given realistic financial constraints and authority over emissions reductions and energy use. Opportunities are evaluated with respect to traditional public policy metrics, such as benefit-cost analysis, net benefit analysis, and cost-effectiveness. Section 2 summarizes current practices used to estimate greenhouse gas emissions from communities. I identify improved and alternative emissions inventory techniques such as disaggregating the sectors reported, reporting inventory uncertainty, and aligning inventories with local organizations that could facilitate emissions mitigation. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. Finally, I highlight the need to integrate growth (population and economic) and business as usual implications (such as changes to electricity supply grids) into climate action planning. I demonstrate how these techniques could improve decision making when planning reductions, help communities set meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring. Section 3 evaluates the costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach explicitly evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings, and GHG reductions. Results suggest uncertainty in local stocks, demands, and efficiency significantly impacts anticipated outcomes. Annual greenhouse gas reductions of 1 ton CO2 eq/capita/yr in Pittsburgh could cost near nothing or over $20 per capita annually. Capital-constrained policies generate slightly less social savings (a present value of a few hundred dollars per capita) than policies that maximize social savings. However, sectors, technologies, and end uses targeted for intervention vary depending on policy objectives and constraints. The optimal efficiency investment strategy for some end uses varies significantly (in excess of 100%) between Pittsburgh and Austin, suggesting that resources and guidance conducted at the national scale may mislead state and local decision-makers. Section 3 then evaluates the impact of rebound effects on modeled efficiency program outcomes. Differential rebound effects across end-uses can change the optimal program design strategy, i.e., the end-uses and technologies targeted for intervention. The rebound effect results suggest that rebound should be integral to effective efficiency program design. Section 4 evaluates the life cycle assessment costs and benefits of the widespread retrofit of green roofs in a typical urban mixed-use neighborhood. Shadow-cost analysis was used to evaluate the cost-effectiveness of green roofs' many benefits. Results suggest green roofs are currently not cost effective on a private cost basis, but multi-family and commercial building green roofs are competitive when social benefits are included. Multifamily and commercial green roofs are also competitive alternatives for reducing greenhouse gases and storm water run-off. However, green roofs are not competitive energy conservation techniques. GHG impacts are dominated by the material production and use phases. Energy impacts are dominated by the use phase, with urban heat island (UHI) impacts being an order of magnitude higher than direct building impacts. Results highlight the importance of clarifying sustainable infrastructure costs and benefits across many public and private organizations (e.g., private building owners, storm water agencies, efficiency stakeholders, and roofing contractors) to identify appropriate incentives and effective program design strategies. Section 5 synthesizes the work and provides guidance for local and state sustainability program administrators. Section 5 highlights the unrealized social benefits associated with sustainability and reflects upon the role of local and state governments in overcoming barriers to achieving more sustainable infrastructure. Section 5 encourages program administrators to consider their local markets for sustainability as influences by resource pricing, weather, infrastructure condition, jurisdiction, and other factors. The differences between sustainability programming and traditional municipal programming are highlighted, namely that sustainability programming often requires self-selection for participation and is subject to new sources of uncertain regarding user behavior, technology breadth and change, and the scope of costs and benefits. These characteristic issues of sustainable infrastructure opportunities provide new challenges to program administrators, requiring new paradigms and support resources. (Abstract shortened by UMI.)
Laramee, Jeannette; Tilmans, Sebastien; Davis, Jennifer
2018-03-15
Communal anaerobic digesters (ADs) have been promoted as a waste-to-energy strategy that can provide sanitation and clean energy co-benefits. However, little empirical evidence is available regarding the performance of such systems in field conditions. This study assesses the wastewater treatment efficiency, energy production, greenhouse gas (GHG) emissions, and financial costs and benefits of communal ADs used for domestic wastewater treatment in Zambia. Primary data on the technical performance of 15 ADs were collected over a 6-month period and in-person interviews were conducted with heads of 120 households. Findings from this study suggest that ADs offer comparable wastewater treatment efficiencies and greater GHG emission reduction benefits relative to conventional septic tanks (STs), with the greatest benefits in settings with reliable access to water, use of low efficiency solid fuels and with sufficient demand for biogas in proximity to supply. However, absent a mechanism to monetize additional benefits from biogas recovery, ADs in this context will not be a financially attractive investment relative to STs. Our financial analysis suggests that, under the conditions in this study, a carbon price of US$9 to $28 per tCO 2 e is necessary for positive investment in ADs relative to STs. Findings from this study contribute empirical evidence on ADs as a sanitation and clean energy strategy, identify conditions under which the greatest benefits are likely to accrue and inform international climate efforts on the carbon price required to attract investment in emissions reduction projects such as ADs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gao, Jinghong; Xu, Guozhang; Ma, Wenjun; Zhang, Yong; Woodward, Alistair; Vardoulakis, Sotiris; Kovats, Sari; Wilkinson, Paul; He, Tianfeng; Lin, Hualiang; Liu, Tao; Gu, Shaohua; Wang, Jun; Li, Jing; Yang, Jun; Liu, Xiaobo; Li, Jing; Wu, Haixia; Liu, Qiyong
2017-01-01
Limited information is available on the perceptions of stakeholders concerning the health co-benefits of greenhouse gas (GHG) emission reductions. The purpose of this study was to investigate the perceptions of urban residents on the health co-benefits involving GHG abatement and related influencing factors in three cities in China. Beijing, Ningbo and Guangzhou were selected for this survey. Participants were recruited from randomly chosen committees, following quotas for gender and age in proportion to the respective population shares. Chi-square or Fisher’s exact tests were employed to examine the associations between socio-demographic variables and individuals’ perceptions of the health co-benefits related to GHG mitigation. Unconditional logistic regression analysis was performed to investigate the influencing factors of respondents’ awareness about the health co-benefits. A total of 1159 participants were included in the final analysis, of which 15.9% reported that they were familiar with the health co-benefits of GHG emission reductions. Those who were younger, more educated, with higher family income, and with registered urban residence, were more likely to be aware of health co-benefits. Age, attitudes toward air pollution and governmental efforts to improve air quality, suffering from respiratory diseases, and following low carbon lifestyles are significant predictors of respondents’ perceptions on the health co-benefits. These findings may not only provide information to policy-makers to develop and implement public welcome policies of GHG mitigation, but also help to bridge the gap between GHG mitigation measures and public engagement as well as willingness to change health-related behaviors. PMID:28335404
Gao, Jinghong; Xu, Guozhang; Ma, Wenjun; Zhang, Yong; Woodward, Alistair; Vardoulakis, Sotiris; Kovats, Sari; Wilkinson, Paul; He, Tianfeng; Lin, Hualiang; Liu, Tao; Gu, Shaohua; Wang, Jun; Li, Jing; Yang, Jun; Liu, Xiaobo; Li, Jing; Wu, Haixia; Liu, Qiyong
2017-03-13
Limited information is available on the perceptions of stakeholders concerning the health co-benefits of greenhouse gas (GHG) emission reductions. The purpose of this study was to investigate the perceptions of urban residents on the health co-benefits involving GHG abatement and related influencing factors in three cities in China. Beijing, Ningbo and Guangzhou were selected for this survey. Participants were recruited from randomly chosen committees, following quotas for gender and age in proportion to the respective population shares. Chi-square or Fisher's exact tests were employed to examine the associations between socio-demographic variables and individuals' perceptions of the health co-benefits related to GHG mitigation. Unconditional logistic regression analysis was performed to investigate the influencing factors of respondents' awareness about the health co-benefits. A total of 1159 participants were included in the final analysis, of which 15.9% reported that they were familiar with the health co-benefits of GHG emission reductions. Those who were younger, more educated, with higher family income, and with registered urban residence, were more likely to be aware of health co-benefits. Age, attitudes toward air pollution and governmental efforts to improve air quality, suffering from respiratory diseases, and following low carbon lifestyles are significant predictors of respondents' perceptions on the health co-benefits. These findings may not only provide information to policy-makers to develop and implement public welcome policies of GHG mitigation, but also help to bridge the gap between GHG mitigation measures and public engagement as well as willingness to change health-related behaviors.
NASA Astrophysics Data System (ADS)
Kroeger, K. D.; Crooks, S.; Moseman-Valtierra, S.; Tang, J.
2016-12-01
To date, activity related to carbon (C) management in coastal marine ecosystems (sometimes referred to as "Blue Carbon") has been concerned primarily with preserving existing C stocks or creating new wetlands to increase CO2 uptake and sequestration. Here we show that the globally-widespread occurrence of hydrologically-altered, degraded wetlands, and associated enhanced GHG emissions, presents an opportunity to reduce an anthropogenic GHG emission through restoration. We model the climatic forcing associated with carbon sinks in natural wetlands and with GHG emissions in altered and degraded wetlands, as well as compile geographic data on tidal restrictions to show that substantial methane (CH4) and CO2 emission reductions can be achieved through restoration of saline tidal flows in diked, impounded and tidally-restricted coastal wetlands. Despite high rates of carbon storage in coastal ecosystems, tidal restoration has dramatically greater potential per unit area as a climate intervention than most other ecosystem management actions. We argue that such emissions reductions represent avoided anthropogenic emissions, equivalent in concept to reduced fossil fuel emissions. Once the emissions have been avoided, the benefit of that action cannot be eliminated, even if emissions resume in the future due to degradation of the ecosystem. The avoided emissions therefore have inherent "permanence", obviating concerns associated with vulnerability of C stocks in land-use based interventions that enhance C sequestration in wood or soil. Further, emissions reductions are likely to be rapid, and given the high radiative efficiency of avoided CH4, wetland tidal restorations can provide near-term climate benefit. The U.S. has recently initiated an effort to include coastal wetlands in the Inventory of U.S. Greenhouse Gas Emissions and Sinks, and the analysis presented here indicates that tidally restricted wetlands meet the primary criteria for inventoried ecosystems in that they are managed landscapes, with substantial emissions and sinks. If other countries ultimately follow suit, then inclusion of these emissions in the U.S. Inventory will promote widespread recognition and management of the issue, and justify development of CH4 EF for tidal restrictions in IPCC guidance for GHG inventories.
Yang, Na; Zhang, Hua; Shao, Li-Ming; Lü, Fan; He, Pin-Jing
2013-11-15
Reducing greenhouse gas (GHG) emissions from municipal solid waste (MSW) treatment can be highly cost-effective in terms of GHG mitigation. This study investigated GHG emissions during MSW landfilling in China under four existing scenarios and in terms of seven different categories: waste collection and transportation, landfill management, leachate treatment, fugitive CH4 (FM) emissions, substitution of electricity production, carbon sequestration and N2O and CO emissions. GHG emissions from simple sanitary landfilling technology where no landfill gas (LFG) extraction took place (Scenario 1) were higher (641-998 kg CO2-eq·t(-1)ww) than those from open dump (Scenario 0, 480-734 kg CO2-eq·t(-1)ww). This was due to the strictly anaerobic conditions in Scenario 1. LFG collection and treatment reduced GHG emissions to 448-684 kg CO2-eq·t(-1)ww in Scenario 2 (with LFG flare) and 214-277 kg CO2-eq·t(-1)ww in Scenario 3 (using LFG for electricity production). Amongst the seven categories, FM was the predominant contributor to GHG emissions. Global sensitivity analysis demonstrated that the parameters associated with waste characteristics (i.e. CH4 potential and carbon sequestered faction) and LFG management (i.e. LFG collection efficiency and CH4 oxidation efficiency) were of great importance. A further learning on the MSW in China indicated that water content and dry matter content of food waste were the basic factors affecting GHG emissions. Source separation of food waste, as well as increasing the incineration ratio of mixed collected MSW, could effectively mitigate the overall GHG emissions from landfilling in a specific city. To increase the LFG collection and CH4 oxidation efficiencies could considerably reduce GHG emissions on the landfill site level. While, the improvement in the LFG utilization measures had an insignificant impact as long as the LFG is recovered for energy generation. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Begum, Shahida; P, Kumaran; M, Jayakumar
2013-06-01
One of the most efficient and effective solutions for sustainable energy supply to supplement the increasing energy demand and reducing environment pollution is renewable energy resources. Malaysia is currently the world's second largest producer and exporter of palm oil and 47% of the world's supply of palm oil is produced by this country. Nearly 80 million tonnes of Fresh Fruit Bunches (FFB) are processed annually in 406 palm oil mills and are generating approximately 54 million tonnes of palm oil mill effluent (POME), known to generate biogas consisting of methane - a Green House Gas (GHG) identifiable to cause global warming. This is 21 times more potent GHG than CO2. These two major oil palm wastes are a viable renewable energy (RE) source for production of electricity. If the two sources are used in harnessing the renewable energy potential the pollution intensity from usage of non-renewable sources can also be reduced significantly. This study focused on the pollution mitigation potential of biogas as biogas is a renewable energy. Utilization of this renewable source for the production of electricity is believed to reduce GHG emissions to the atmosphere.
NASA Astrophysics Data System (ADS)
Yeo, M. J.; Kim, Y. P.
2015-12-01
The direction of the energy policies of the country is important in the projection of environmental impacts of the country. The greenhouse gases (GHGs) emission of the energy sector in South Korea is very huge, about 600 MtCO2e in 2011. Also the carbon footprint due to the energy consumption contributes to the ecological footprint is also large, more than 60%. Based on the official plans (the national greenhouse gases emission reduction target for 2030 (GHG target for 2030) and the 2nd Energy Master Plan (2nd EMP)), several scenarios were proposed and the sensitivity of the GHG emission amount and 'overshoot ratio' which is the ratio of ecological footprint to biocapacity were estimated. It was found that to meet the GHG target for 2030 the ratio of non-emission energy for power generation should be over 71% which would be very difficult. We also found that the overshoot ratio would increase from 5.9 in 2009 to 7.6 in 2035. Thus, additional efforts are required to reduce the environmental burdens in addition to optimize the power mix configuration. One example is the conversion efficiency in power generation. If the conversion efficiency in power generation rises up 50% from the current level, 40%, the energy demand and resultant carbon dioxide emissions would decrease about 10%. Also the influence on the environment through changes in consumption behavior, for example, the diet choice is expected to be meaningful.
Center for Corporate Climate Leadership Why Engage Suppliers on GHG Emissions?
Organizations engage with suppliers on GHG emissions reductions to align supplier efforts with sustainability goals, insulate against spikes in energy and fuel prices, and respond to customer demand about the carbon footprint of products and services.
NASA Astrophysics Data System (ADS)
Lee, M.; Park, C.; Park, J. H.; Jung, T. Y.; Lee, D. K.
2015-12-01
The impacts of climate change, particularly that of rising temperatures, are being observed across the globe and are expected to further increase. To counter this phenomenon, numerous nations are focusing on the reduction of greenhouse gas (GHG) emissions. Because energy demand management is considered as a key factor in emissions reduction, it is necessary to estimate energy consumption and GHG emissions in relation to climate change. Further, because South Korea is the world's fastest nation to become aged, demographics have also become instrumental in the accurate estimation of energy demands and emissions. Therefore, the purpose of this study is to estimate energy consumption and GHG emissions in the residential sectors of South Korea with regard to climate change and aging to build more accurate strategies for energy demand management and emissions reduction goals. This study, which was stablished with 2010 and 2050 as the base and target years, respectively, was divided into a two-step process. The first step evaluated the effects of aging and climate change on energy demand, and the second estimated future energy use and GHG emissions through projected scenarios. First, aging characteristics and climate change factors were analyzed by using the logarithmic mean divisia index (LMDI) decomposition analysis and the application of historical data. In the analysis of changes in energy use, the effects of activity, structure, and intensity were considered; the degrees of contribution were derived from each effect in addition to their relations to energy demand. Second, two types of scenarios were stablished based on this analysis. The aging scenarios are business as usual and future characteristics scenarios, and were used in combination with Representative Concentration Pathway (RCP) 2.6 and 8.5. Finally, energy consumption and GHG emissions were estimated by using a combination of scenarios. The results of these scenarios show an increase in energy consumption and GHG emissions from 2010 to 2050. This growth is caused by increases in heating energy because the elderly generally spend more time at home, and cooling energy owing to rising temperatures. This study will be useful in the preparation of energy demand management policies and the establishment and attainability of GHG emissions reduction goals.
Energy Consumption and Greenhouse Gas Emission of Korean Offshore Fisheries
NASA Astrophysics Data System (ADS)
Lee, Jihoon; Kim, Taeho; Ellingsen, Harald; Hognes, Erik Skontorp; Hwang, Bokyu
2018-06-01
This paper presents the energy and greenhouse gas (GHG) emission assessments of Korean offshore fisheries. The consumption of energy by fisheries is a significant concern because of its attendant environmental effect, as well as the cost of the fuel consumed in fishing industry. With the global attention of reducing GHG emission and increasing energy efficiency of fuel, the seafood industry needs to further understand its energy use and reduce its GHG emission. In the present study, the amount of energy consumed and the GHG emission of Korean offshore fisheries in a period from 2009 to 2013 were examined. Offshore fisheries accounted for 24% of Korean production in 2013 and 60% of fuel consumption related GHG emission. Whereas the total GHG emission intensity of this sector improved slightly between 2009 and 2012; as such emission decreased by approximately 1.9%, which increased again in 2013. The average amount of total GHG emission in this five years period was 1.78 × 106 tons of carbon dioxide equivalent/year (t CO2 eq. y-1). Active fishing gear was found to consume 20% more fuel than passive gear. However, the production from passive gear was 28%, lower than 72% from active gear. The reason for this is that less abundant stationary resources are harvested using passive gear. Furthermore, the consumption of fuel was significantly influenced by the fishing method. Implementation and development of new fishing technologies and methods are important for improving energy efficiency and reducing the climate impact on fisheries. To realize these purposes, the fishery management system needs to be established by centralizing on energy efficiency and climate effect.
A project-based system for including farmers in the EU ETS.
Brandt, Urs Steiner; Svendsen, Gert Tinggaard
2011-04-01
Farmers in the EU do not trade greenhouse gases under the Kyoto agreement. This is an empirical puzzle because agriculture is a significant contributor of greenhouse gases (GHG) in the EU and may harvest private net gains from trade. Furthermore, the US has strongly advocated land-use practices as 'the missing link' in past climate negotiations. We argue that farmers have relatively low marginal reduction costs and that consequences in terms of the effect on permit price and technology are overall positive in the EU Emission Trading System (ETS). Thus, we propose a project-based system for including the farming practices in the EU ETS that reduces the uncertainty from measuring emission reduction in this sector. The system encourages GHG reduction either by introducing a new and less polluting practice or by reducing the polluting activity. When doing so, farmers will receive GHG permits corresponding to the amount of reduction which can be stored for later use or sold in the EU ETS. Copyright © 2010 Elsevier Ltd. All rights reserved.
Aligning California's Transportation Funding with Its Climate Policies
DOT National Transportation Integrated Search
2018-01-01
California has established itself as a leader in efforts to reduce greenhouse gas (GHG) emissions from transportation. At the same time, the state has not reflected its ambitious policies for GHG reduction and climate action in its practices for allo...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couth, R.; Trois, C., E-mail: troisc@ukzn.ac.za
Highlights: Black-Right-Pointing-Pointer The financial/social/institutional sustainability of waste management in Africa is analysed. Black-Right-Pointing-Pointer This note is a compendium of a study on the potential for GHG control via improved zero waste in Africa. Black-Right-Pointing-Pointer This study provides the framework for Local Authorities for realizing sustained GHG reductions. - Abstract: Greenhouse gas (GHG) emissions per person from urban waste management activities are greater in sub-Saharan African countries than in other developing countries, and are increasing as the population becomes more urbanised. Waste from urban areas across Africa is essentially dumped on the ground and there is little control over the resultingmore » gas emissions. The clean development mechanism (CDM), from the 1997 Kyoto Protocol has been the vehicle to initiate projects to control GHG emissions in Africa. However, very few of these projects have been implemented and properly registered. A much more efficient and cost effective way to control GHG emissions from waste is to stabilise the waste via composting and to use the composted material as a soil improver/organic fertiliser or as a component of growing media. Compost can be produced by open windrow or in-vessel composting plants. This paper shows that passively aerated open windrows constitute an appropriate low-cost option for African countries. However, to provide an usable compost material it is recommended that waste is processed through a materials recovery facility (MRF) before being composted. The paper demonstrates that material and biological treatment (MBT) are viable in Africa where they are funded, e.g. CDM. However, they are unlikely to be instigated unless there is a replacement to the Kyoto Protocol, which ceases for Registration in December 2012.« less
Jiang, Tao; Li, Guoxue; Tang, Qiong; Ma, Xuguang; Wang, Gang; Schuchardt, Frank
2015-05-01
The aim of this study was to uncover ways to mitigate greenhouse gas (GHG) emissions and reduce energy consumption during the composting process. We assessed the effects of different aeration rates (0, 0.18, 0.36, and 0.54 L/(kg dry matter (dm)·min)) and methods (continuous and intermittent) on GHG emissions. Pig feces and corn stalks were mixed at a ratio of 7:1. The composting process lasted for 10 weeks, and the compost was turned approximately every 2 weeks. Results showed that both aeration rate and method significantly affected GHG emissions. Higher aeration rates increased NH3 and N2O losses, but reduced CH4 emissions. The exception is that the CH4 emission of the passive aeration treatment was lower than that of the low aeration rate treatment. Without forced aeration, the CH4 diffusion rates in the center of the piles were very low and part of the CH4 was oxidized in the surface layer. Intermittent aeration reduced NH3 and CH4 losses, but significantly increased N2O production during the maturing periods. Intermittent aeration increased the nitrification/denitrification alternation and thus enhanced the N2O production. Forced aeration treatments had higher GHG emission rates than the passive aeration treatment. Forced aeration accelerated the maturing process, but could not improve the quality of the end product. Compared with continuous aeration, intermittent aeration could increase the O2 supply efficiency and reduced the total GHG emission by 17.8%, and this reduction increased to 47.4% when composting was ended after 36 days. Copyright © 2015. Published by Elsevier B.V.
Drivers of potential GHG fluxes under bioenergy land use change in the UK
NASA Astrophysics Data System (ADS)
Parmar, Kim; Keith, Aidan M.; Perks, Mike; Rowe, Rebecca; Sohi, Saran; McNamara, Niall
2013-04-01
The greatest contributors to global greenhouse gases (GHG's) are CO2 emissions from fossil fuel use and following land use change (LUC). Globally, soils contain three times more carbon than the atmosphere and have the potential to act as GHG sources or sinks. A significant amount of land may be converted to bioenergy production to help meet UK 2050 renewable energy and GHG emissions reduction targets. This raises considerable sustainability concerns with respect to the effects of LUC on soil carbon (C) conservation and GHG emissions. Forests are a key component in the global C cycle and when managed effectively can reduce atmospheric GHG concentrations. Together with other dedicated bioenergy crops, Short Rotation Forestry (SRF) could be used to meet biomass requirements. SRF is defined as high density plantations of fastgrowing tree species grown on short rotational lengths (8-20 years) for biomass (McKay 2011). As SRF is likely to be an important domestic source of biomass for energy it is imperative that we gain an understanding of the implications for large-scale commercial application on soil C and the GHG balance. We utilized a paired-site approach to investigate how LUC to SRF could potentially alter the underlying processes of soil GHG production and consumption. This work was linked to a wider soil C stock inventory for bioenergy LUC, so our major focus was on changes to soil respiration. Specifically, we examined the relative importance of litter, soil, and microbial properties in determining potential soil respiration, and whether these relationships were consistent at different soil temperatures (10 ° C and 20 ° C). Soils were sampled to a depth of 30 cm from 30 LUC transitions across the UK and incubated under controlled laboratory conditions, with gas samples taken over a seven day enclosure period. CO2, N2O and CH4 gas fluxes were measured by gas chromatography and were examined together with other soil properties measured in the field and laboratory. LUC to SRF resulted in a significant reduction in CO2 fluxes overall at 0-15 cm (on both a soil mass and carbon mass basis). Furthermore, this response of CO2 flux to LUC was similar at both 10 ° C and 20 ° C. Reductions in CO2 flux at 0-15 cm are significantly related to decreased bacterial biomass, as measured by Phospholipid Fatty Acids (PLFA), soil pH and bulk density. These patterns suggest that changes in the quality and quantity of organic inputs under SRF may drive a reduction in soil respiration. While changes in soil C were limited, reduced respiration was supported by the increase in litter C stock under SRF. These findings indicate that LUC to SRF can strengthen the soils potential as a C sink whilst contributing successfully towards meeting GHG emissions reduction targets. This work is based on the Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project, which was commissioned and funded by the Energy Technologies Institute (ETI)
Exergetic life cycle assessment of hydrogen production from renewables
NASA Astrophysics Data System (ADS)
Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.
Life cycle assessment is extended to exergetic life cycle assessment and used to evaluate the exergy efficiency, economic effectiveness and environmental impact of producing hydrogen using wind and solar energy in place of fossil fuels. The product hydrogen is considered a fuel for fuel cell vehicles and a substitute for gasoline. Fossil fuel technologies for producing hydrogen from natural gas and gasoline from crude oil are contrasted with options using renewable energy. Exergy efficiencies and greenhouse gas and air pollution emissions are evaluated for all process steps, including crude oil and natural gas pipeline transportation, crude oil distillation and natural gas reforming, wind and solar electricity generation, hydrogen production through water electrolysis, and gasoline and hydrogen distribution and utilization. The use of wind power to produce hydrogen via electrolysis, and its application in a fuel cell vehicle, exhibits the lowest fossil and mineral resource consumption rate. However, the economic attractiveness, as measured by a "capital investment effectiveness factor," of renewable technologies depends significantly on the ratio of costs for hydrogen and natural gas. At the present cost ratio of about 2 (per unit of lower heating value or exergy), capital investments are about five times lower to produce hydrogen via natural gas rather than wind energy. As a consequence, the cost of wind- and solar-based electricity and hydrogen is substantially higher than that of natural gas. The implementation of a hydrogen fuel cell instead of an internal combustion engine permits, theoretically, an increase in a vehicle's engine efficiency of about of two times. Depending on the ratio in engine efficiencies, the substitution of gasoline with "renewable" hydrogen leads to (a) greenhouse gas (GHG) emissions reductions of 12-23 times for hydrogen from wind and 5-8 times for hydrogen from solar energy, and (b) air pollution (AP) emissions reductions of 38-76 times for hydrogen from wind and 16-32 times for hydrogen from solar energy. By comparison, substitution of gasoline with hydrogen from natural gas allows reductions in GHG emissions only as a result of the increased efficiency of a fuel cell engine, and a reduction of AP emissions of 2.5-5 times. These data suggest that "renewable" hydrogen represents a potential long-term solution to many environmental problems.
F‐GHG Emissions Reduction Efforts: FY2015 Supplier Profiles
The Supplier Profiles outlined in this document detail the efforts of large‐area flat panel suppliers to reduce their F‐GHG emissions in manufacturing facilities that make today’s large‐area panels used for products such as TVs and computer monitors.
F‐GHG Emissions Reduction Efforts: FY2016 Supplier Profiles
The Supplier Profiles outlined in this document detail the efforts of large‐area flat panel suppliers to reduce their F‐GHG emissions in manufacturing facilities that make today’s large‐area panels used for products such as TVs and computer monitors.
NASA Astrophysics Data System (ADS)
Safaei Mohamadabadi, Hossein
Increasing electrification of the economy while decarbonizing the electricity supply is among the most effective strategies for cutting greenhouse gas (GHG) emissions in order to abate climate change. This thesis offers insights into the role of bulk energy storage (BES) systems to cut GHG emissions from the electricity sector. Wind and solar energies can supply large volumes of low-carbon electricity. Nevertheless, large penetration of these resources poses serious reliability concerns to the grid, mainly because of their intermittency. This thesis evaluates the performance of BES systems - especially compressed air energy storage (CAES) technology - for integration of wind energy from engineering and economic aspects. Analytical thermodynamic analysis of Distributed CAES (D-CAES) and Adiabatic CAES (A-CAES) suggest high roundtrip storage efficiencies ( 80% and 70%) compared to conventional CAES ( 50%). Using hydrogen to fuel CAES plants - instead of natural gas - yields a low overall efficiency ( 35%), despite its negligible GHG emissions. The techno-economic study of D-CAES shows that exporting compression heat to low-temperature loads (e.g. space heating) can enhance both the economic and emissions performance of compressed air storage plants. A case study for Alberta, Canada reveals that the abatement cost of replacing a conventional CAES with D-CAES plant practicing electricity arbitrage can be negative (-$40 per tCO2e, when the heat load is 50 km away from the air storage site). A green-field simulation finds that reducing the capital cost of BES - even drastically below current levels - does not substantially impact the cost of low-carbon electricity. At a 70% reduction in the GHG emissions intensity of the grid, gas turbines remain three times more cost-efficient in managing the wind variability compared to BES (in the best case and with a 15-minute resolution). Wind and solar thus, do not need to wait for availability of cheap BES systems to cost-effectively decarbonize the grid. The prospects of A-CAES seem to be stronger compared to other BES systems due to its low energy-specific capital cost.
Options to reduce greenhouse gas emissions during wastewater treatment for agricultural use.
Fine, Pinchas; Hadas, Efrat
2012-02-01
Treatment of primarily-domestic sewage wastewater involves on-site greenhouse gas (GHG) emissions due to energy inputs, organic matter degradation and biological nutrient removal (BNR). BNR causes both direct emissions and loss of fertilizer value, thus eliminating possible reduction of emissions caused by fertilizer manufacture. In this study, we estimated on-site GHG emissions under different treatment scenarios, and present options for emission reduction by changing treatment methods, avoiding BNR and by recovering energy from biogas. Given a typical Israeli wastewater strength (1050mg CODl(-1)), the direct on-site GHG emissions due to energy use were estimated at 1618 and 2102g CO(2)-eq m(-3), respectively, at intermediate and tertiary treatment levels. A potential reduction of approximately 23-55% in GHG emissions could be achieved by fertilizer preservation and VS conversion to biogas. Wastewater fertilizers constituted a GHG abatement potential of 342g CO(2)-eq m(-3). The residual component that remained in the wastewater effluent following intermediate (oxidation ponds) and enhanced (mechanical-biological) treatments was 304-254g CO(2)-eq m(-3) and 65-34g CO(2)-eq m(-3), respectively. Raw sludge constituted approximately 47% of the overall wastewater fertilizers load with an abatement potential of 150g CO(2)-eq m(-3) (385kg CO(2)-eq dry tonne(-1)). Inasmuch as anaerobic digestion reduced it to 63g CO(2)-eq m(-3) (261kg CO(2)-eq dry tonne(-1)), the GHG abatement gained through renewable biogas energy (approx. 428g CO(2)-eq m(-3)) favored digestion. However, sludge composting reduced the fertilizer value to 17g CO(2)-eq m(-3) (121kg CO(2)-eq dry tonne(-1)) or less (if emissions, off-site inputs and actual phytoavailability were considered). Taking Israel as an example, fully exploiting the wastewater derived GHG abatement potential could reduce the State overall GHG emissions by almost 1%. This demonstrates the possibility of optional carbon credits which might be exploited in the construction of new wastewater treatment facilities, especially in developing countries. Copyright © 2011 Elsevier B.V. All rights reserved.
van de Kamp, Mirjam E; van Dooren, Corné; Hollander, Anne; Geurts, Marjolein; Brink, Elizabeth J; van Rossum, Caroline; Biesbroek, Sander; de Valk, Elias; Toxopeus, Ido B; Temme, Elisabeth H M
2018-02-01
To determine the differences in environmental impact and nutrient content of the current Dutch diet and four healthy diets aimed at lowering greenhouse gas (GHG) emissions. GHG emissions (as proxy for environmental impact) and nutrient content of the current Dutch diet and four diets adhering to the Dutch food based dietary guidelines (Wheel of Five), were compared in a scenario study. Scenarios included a healthy diet with or without meat, and the same diets in which only foods with relatively low GHG emissions are chosen. For the current diet, data from the Dutch National Food Consumption Survey 2007-2010 were used. GHG emissions (in kg CO 2 -equivalents) were based on life cycle assessments. Results are reported for men and women aged 19-30years and 31-50years. The effect on GHG emissions of changing the current Dutch diet to a diet according to the Wheel of Five (corresponding with the current diet as close as possible), ranged from -13% for men aged 31-50years to +5% for women aged 19-30years. Replacing meat in this diet and/or consuming only foods with relatively low GHG emissions resulted in average GHG emission reductions varying from 28-46%. In the scenarios in which only foods with relatively low GHG emissions are consumed, fewer dietary reference intakes (DRIs) were met than in the other healthy diet scenarios. However, in all healthy diet scenarios the number of DRIs being met was equal to or higher than that in the current diet. Diets adhering to food based dietary guidelines did not substantially reduce GHG emissions compared to the current Dutch diet, when these diets stayed as close to the current diet as possible. Omitting meat from these healthy diets or consuming only foods with relatively low associated GHG emissions both resulted in GHG emission reductions of around a third. These findings may be used to expand food based dietary guidelines with information on how to reduce the environmental impact of healthy diets. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Roed-Larsen, Trygve; Flach, Todd
The purpose of this chapter is to provide a review of existing national and international requirements for verification of greenhouse gas reductions and associated accreditation of independent verifiers. The credibility of results claimed to reduce or remove anthropogenic emissions of greenhouse gases (GHG) is of utmost importance for the success of emerging schemes to reduce such emissions. Requirements include transparency, accuracy, consistency, and completeness of the GHG data. The many independent verification processes that have developed recently now make up a quite elaborate tool kit for best practices. The UN Framework Convention for Climate Change and the Kyoto Protocol specifications for project mechanisms initiated this work, but other national and international actors also work intensely with these issues. One initiative gaining wide application is that taken by the World Business Council for Sustainable Development with the World Resources Institute to develop a "GHG Protocol" to assist companies in arranging for auditable monitoring and reporting processes of their GHG activities. A set of new international standards developed by the International Organization for Standardization (ISO) provides specifications for the quantification, monitoring, and reporting of company entity and project-based activities. The ISO is also developing specifications for recognizing independent GHG verifiers. This chapter covers this background with intent of providing a common understanding of all efforts undertaken in different parts of the world to secure the reliability of GHG emission reduction and removal activities. These verification schemes may provide valuable input to current efforts of securing a comprehensive, trustworthy, and robust framework for verification activities of CO2 capture, transport, and storage.
NASA Astrophysics Data System (ADS)
Heinonen, Jukka; Jalas, Mikko; Juntunen, Jouni K.; Ala-Mantila, Sanna; Junnila, Seppo
2013-06-01
An extensive body of literature demonstrates how higher density leads to more efficient energy use and lower greenhouse gas (GHG) emissions from transport and housing. However, our current understanding seems to be limited on the relationships between the urban form and the GHG emissions, namely how the urban form affects the lifestyles and thus the GHGs on a much wider scale than traditionally assumed. The urban form affects housing types, commuting distances, availability of different goods and services, social contacts and emulation, and the alternatives for pastimes, meaning that lifestyles are actually situated instead of personal projects. As almost all consumption, be it services or products, involves GHG emissions, looking at the emissions from transport and housing may not be sufficient to define whether one form would be more desirable than another. In the paper we analyze the urban form-lifestyle relationships in Finland together with the resulting GHG implications, employing both monetary expenditure and time use data to portray lifestyles in different basic urban forms: metropolitan, urban, semi-urban and rural. The GHG implications are assessed with a life cycle assessment (LCA) method that takes into account the GHG emissions embedded in different goods and services. The paper depicts that, while the direct emissions from transportation and housing energy slightly decrease with higher density, the reductions can be easily overridden by sources of indirect emissions. We also highlight that the indirect emissions actually seem to have strong structural determinants, often undermined in studies concerning sustainable urban forms. Further, we introduce a concept of ‘parallel consumption’ to explain how the lifestyles especially in more urbanized areas lead to multiplication of consumption outside of the limits of time budget and the living environment. This is also part I of a two-stage study. In part II we will depict how various other contextual and socioeconomic variables are actually also very important to take into account, and how diverse GHG mitigation strategies would be needed for different types of area in different locations towards a low-carbon future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Lynn; Murtishaw, Scott; Worrell, Ernst
2003-06-01
Executive Summary: The California Climate Action Registry, which was initially established in 2000 and began operation in Fall 2002, is a voluntary registry for recording annual greenhouse gas (GHG) emissions. The purpose of the Registry is to assist California businesses and organizations in their efforts to inventory and document emissions in order to establish a baseline and to document early actions to increase energy efficiency and decrease GHG emissions. The State of California has committed to use its ''best efforts'' to ensure that entities that establish GHG emissions baselines and register their emissions will receive ''appropriate consideration under any futuremore » international, federal, or state regulatory scheme relating to greenhouse gas emissions.'' Reporting of GHG emissions involves documentation of both ''direct'' emissions from sources that are under the entity's control and indirect emissions controlled by others. Electricity generated by an off-site power source is consider ed to be an indirect GHG emission and is required to be included in the entity's report. Registry participants include businesses, non-profit organizations, municipalities, state agencies, and other entities. Participants are required to register the GHG emissions of all operations in California, and are encouraged to report nationwide. For the first three years of participation, the Registry only requires the reporting of carbon dioxide (CO2) emissions, although participants are encouraged to report the remaining five Kyoto Protocol GHGs (CH4, N2O, HFCs, PFCs, and SF6). After three years, reporting of all six Kyoto GHG emissions is required. The enabling legislation for the Registry (SB 527) requires total GHG emissions to be registered and requires reporting of ''industry-specific metrics'' once such metrics have been adopted by the Registry. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) was asked to provide technical assistance to the California Energy Commission (Energy Commission) related to the Registry in three areas: (1) assessing the availability and usefulness of industry-specific metrics, (2) evaluating various methods for establishing baselines for calculating GHG emissions reductions related to specific actions taken by Registry participants, and (3) establishing methods for calculating electricity CO2 emission factors. The third area of research was completed in 2002 and is documented in Estimating Carbon Dioxide Emissions Factors for the California Electric Power Sector (Marnay et al., 2002). This report documents our findings related to the first areas of research. For the first area of research, the overall objective was to evaluate the metrics, such as emissions per economic unit or emissions per unit of production that can be used to report GHG emissions trends for potential Registry participants. This research began with an effort to identify methodologies, benchmarking programs, inventories, protocols, and registries that u se industry-specific metrics to track trends in energy use or GHG emissions in order to determine what types of metrics have already been developed. The next step in developing industry-specific metrics was to assess the availability of data needed to determine metric development priorities. Berkeley Lab also determined the relative importance of different potential Registry participant categories in order to asses s the availability of sectoral or industry-specific metrics and then identified industry-specific metrics in use around the world. While a plethora of metrics was identified, no one metric that adequately tracks trends in GHG emissions while maintaining confidentiality of data was identified. As a result of this review, Berkeley Lab recommends the development of a GHG intensity index as a new metric for reporting and tracking GHG emissions trends.Such an index could provide an industry-specific metric for reporting and tracking GHG emissions trends to accurately reflect year to year changes while protecting proprietary data. This GHG intensity index changes while protecting proprietary data. This GHG intensity index would provide Registry participants with a means for demonstrating improvements in their energy and GHG emissions per unit of production without divulging specific values. For the second research area, Berkeley Lab evaluated various methods used to calculate baselines for documentation of energy consumption or GHG emissions reductions, noting those that use industry-specific metrics. Accounting for actions to reduce GHGs can be done on a project-by-project basis or on an entity basis. Establishing project-related baselines for mitigation efforts has been widely discussed in the context of two of the so-called ''flexible mechanisms'' of the Kyoto Protocol to the United Nations Framework Convention on Climate Change (Kyoto Protocol) Joint Implementation (JI) and the Clean Development Mechanism (CDM).« less
Venkatesh, Aranya; Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott
2011-10-01
Increasing concerns about greenhouse gas (GHG) emissions in the United States have spurred interest in alternate low carbon fuel sources, such as natural gas. Life cycle assessment (LCA) methods can be used to estimate potential emissions reductions through the use of such fuels. Some recent policies have used the results of LCAs to encourage the use of low carbon fuels to meet future energy demands in the U.S., without, however, acknowledging and addressing the uncertainty and variability prevalent in LCA. Natural gas is a particularly interesting fuel since it can be used to meet various energy demands, for example, as a transportation fuel or in power generation. Estimating the magnitudes and likelihoods of achieving emissions reductions from competing end-uses of natural gas using LCA offers one way to examine optimal strategies of natural gas resource allocation, given that its availability is likely to be limited in the future. In this study, the uncertainty in life cycle GHG emissions of natural gas (domestic and imported) consumed in the U.S. was estimated using probabilistic modeling methods. Monte Carlo simulations are performed to obtain sample distributions representing life cycle GHG emissions from the use of 1 MJ of domestic natural gas and imported LNG. Life cycle GHG emissions per energy unit of average natural gas consumed in the U.S were found to range between -8 and 9% of the mean value of 66 g CO(2)e/MJ. The probabilities of achieving emissions reductions by using natural gas for transportation and power generation, as a substitute for incumbent fuels such as gasoline, diesel, and coal were estimated. The use of natural gas for power generation instead of coal was found to have the highest and most likely emissions reductions (almost a 100% probability of achieving reductions of 60 g CO(2)e/MJ of natural gas used), while there is a 10-35% probability of the emissions from natural gas being higher than the incumbent if it were used as a transportation fuel. This likelihood of an increase in GHG emissions is indicative of the potential failure of a climate policy targeting reductions in GHG emissions.
Vilaysouk, Xaysackda; Babel, Sandhya
2017-07-01
Climate change is a consequence of greenhouse gas emissions. Greenhouse gas (GHG) emissions from the waste sector contribute to 3% of total anthropogenic emissions. In this study, applicable solutions for municipal solid waste (MSW) management in Luangprabang (LPB) and Laos were examined. Material flow analysis of MSW was performed to estimate the amount of MSW generated in 2015. Approximately 29,419 tonnes of MSW is estimated for 2015. Unmanaged landfilling was the main disposal method, while MSW open burning was also practiced to some extent. The International Panel on Climate Change 2006 model and the Atmospheric Brown Clouds Emission Inventory Manual were used to estimate GHG emissions from existing MSW management, and total emissions are 33,889 tonnes/year carbon dioxide-equivalents (CO 2 -eq). Three scenarios were developed in order to reduce GHG emissions and environmental problems. Improvement of the MSW management by expanding MSW collection services, introducing composting and recycling, and avoiding open burning, can be considered as solutions to overcome the problems for LPB. The lowest GHG emissions are achieved in the scenario where composting and recycling are proposed, with the total GHG emissions reduction by 18,264 tonnes/year CO 2 -eq.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erhart, Steven C.; Spencer, Charles G.
The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) vision for a commitment to energy effi ciency and sustainability and to achievement of the Guiding Principles. Specifi cally, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan (SSPP), while promoting overall sustainability and reduction of greenhouse gas (GHG) emissions. The mission of the Y-12 Energy Management program is to incorporate energy-efficient technologies site-wide and to position Y-12more » to meet NNSA energy requirement needs through 2025 and beyond. This plan addresses: Greenhouse Gas Reduction and Comprehensive Greenhouse Gas Inventory; Buildings, ESPC Initiative Schedule, and Regional and Local Planning; Fleet Management; Water Use Efficiency and Management; Pollution Prevention and Waste Reduction; Sustainable Acquisition; Electronic Stewardship and Data Centers; Renewable Energy; Climate Change; and Budget and Funding.« less
Research to Support California Greenhouse Gas Reduction Programs
NASA Astrophysics Data System (ADS)
Croes, B. E.; Charrier-Klobas, J. G.; Chen, Y.; Duren, R. M.; Falk, M.; Franco, G.; Gallagher, G.; Huang, A.; Kuwayama, T.; Motallebi, N.; Vijayan, A.; Whetstone, J. R.
2016-12-01
Since the passage of the California Global Warming Solutions Act in 2006, California state agencies have developed comprehensive programs to reduce both long-lived and short-lived climate pollutants. California is already close to achieving its goal of reducing greenhouse (GHG) emissions to 1990 levels by 2020, about a 30% reduction from business as usual. In addition, California has developed strategies to reduce GHG emissions another 40% by 2030, which will put the State on a path to meeting its 2050 goal of an 80% reduction. To support these emission reduction goals, the California Air Resources Board (CARB) and the California Energy Commission have partnered with NASA's Carbon Monitoring System (CMS) program on a comprehensive research program to identify and quantify the various GHG emission source sectors in the state. These include California-specific emission studies and inventories for carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emission sources; a Statewide GHG Monitoring Network for these pollutants integrated with the Los Angeles Megacities Carbon Project funded by several federal agencies; efforts to verify emission inventories using inversion modeling and other techniques; mobile measurement platforms and flux chambers to measure local and source-specific emissions; and a large-scale statewide methane survey using a tiered monitoring and measurement program, which will include satellite, airborne, and ground-level measurements of the various regions and source sectors in the State. In addition, there are parallel activities focused on black carbon (BC) and fluorinated gases (F-gases) by CARB. This presentation will provide an overview of results from inventory, monitoring, data analysis, and other research efforts on Statewide, regional, and local sources of GHG emissions in California.
Boyer, Dana; Ramaswami, Anu
2017-10-17
This paper develops a methodology for individual cities to use to analyze the in- and trans-boundary water, greenhouse gas (GHG), and land impacts of city-scale food system actions. Applied to Delhi, India, the analysis demonstrates that city-scale action can rival typical food policy interventions that occur at larger scales, although no single city-scale action can rival in all three environmental impacts. In particular, improved food-waste management within the city (7% system-wide GHG reduction) matches the GHG impact of preconsumer trans-boundary food waste reduction. The systems approach is particularly useful in illustrating key trade-offs and co-benefits. For instance, multiple diet shifts that can reduce GHG emissions have trade-offs that increase water and land impacts. Vertical farming technology (VFT) with current applications for fruits and vegetables can provide modest system-wide water (4%) and land reductions (3%), although implementation within the city itself may raise questions of constraints in water-stressed cities, with such a shift in Delhi increasing community-wide direct water use by 16%. Improving the nutrition status for the bottom 50% of the population to the median diet is accompanied by proportionally smaller increases of water, GHG, and land impacts (4%, 9%, and 8%, systemwide): increases that can be offset through simultaneous city-scale actions, e.g., improved food-waste management and VFT.
NASA Astrophysics Data System (ADS)
Hendrickson, Thomas P.; Horvath, Arpad
2014-01-01
Water distribution systems (WDSs) face great challenges as aging infrastructures require significant investments in rehabilitation, replacement, and expansion. Reducing environmental impacts as WDSs develop is essential for utility managers and policy makers. This study quantifies the existing greenhouse gas (GHG) footprint of common WDS elements using life-cycle assessment (LCA) while identifying the greatest opportunities for emission reduction. This study addresses oversights of the related literature, which fails to capture several WDS elements and to provide detailed life-cycle inventories. The life-cycle inventory results for a US case study utility reveal that 81% of GHGs are from pumping energy, where a large portion of these emissions are a result of distribution leaks, which account for 270 billion l of water losses daily in the United States. Pipe replacement scheduling is analyzed from an environmental perspective where, through incorporating leak impacts, a tool reveals that optimal replacement is no more than 20 years, which is in contrast to the US average of 200 years. Carbon abatement costs (CACs) are calculated for different leak reduction scenarios for the case utility that range from -130 to 35 t-1 CO2(eq). Including life-cycle modeling in evaluating pipe materials identified polyvinyl chloride (PVC) and cement-lined ductile iron (DICL) as the Pareto efficient options, however; utilizing PVC presents human health risks. The model developed for the case utility is applied to California and Texas to determine the CACs of reducing leaks to 5% of distributed water. For California, annual GHG savings from reducing leaks alone (3.4 million tons of CO2(eq)) are found to exceed California Air Resources Board’s estimate for energy efficiency improvements in the state’s water infrastructure.
Changing the renewable fuel standard to a renewable material standard: bioethylene case study.
Posen, I Daniel; Griffin, W Michael; Matthews, H Scott; Azevedo, Inês L
2015-01-06
The narrow scope of the U.S. renewable fuel standard (RFS2) is a missed opportunity to spur a wider range of biomass use. This is especially relevant as RFS2 targets are being missed due to demand-side limitations for ethanol consumption. This paper examines the greenhouse gas (GHG) implications of a more flexible policy based on RFS2, which includes credits for chemical use of bioethanol (to produce bioethylene). A Monte Carlo simulation is employed to estimate the life-cycle GHG emissions of conventional low-density polyethylene (LDPE), made from natural gas derived ethane (mean: 1.8 kg CO2e/kg LDPE). The life-cycle GHG emissions from bioethanol and bio-LDPE are examined for three biomass feedstocks: U.S. corn (mean: 97g CO2e/MJ and 2.6 kg CO2e/kg LDPE), U.S. switchgrass (mean: -18g CO2e/MJ and -2.9 kg CO2e/kg LDPE), and Brazilian sugar cane (mean: 33g CO2e/MJ and -1.3 kg CO2e/kg LDPE); bioproduct and fossil-product emissions are compared. Results suggest that neither corn product (bioethanol or bio-LDPE) can meet regulatory GHG targets, while switchgrass and sugar cane ethanol and bio-LDPE likely do. For U.S. production, bioethanol achieves slightly greater GHG reductions than bio-LDPE. For imported Brazilian products, bio-LDPE achieves greater GHG reductions than bioethanol. An expanded policy that includes bio-LDPE provides added flexibility without compromising GHG targets.
DOT National Transportation Integrated Search
2011-04-01
In the last several years, Washington State has adopted a series of policy goals intended to : reduce greenhouse gases (GHGs). Because transportation is one of the states largest sources of : GHG emissions, the Washington State Department of Trans...
Xie, Yuan-bo; Li, Wei
2013-05-01
It is one of the common targets and important tasks for energy management and environmental control of Beijing to improve urban air quality while reducing the emissions of greenhouse gases (GHG). Here, based on the interim and long term developmental planning and energy structure of the city, three energy consumption scenarios in low, moderate and high restrictions were designed by taking the potential energy saving policies and environmental targets into account. The long-range energy alternatives planning (LEAP) model was employed to predict and evaluate reduction effects of the chief air pollutants and GHG during 2010 to 2020 under the three given scenarios. The results showed that if urban energy consumption system was optimized or adjusted by exercising energy saving and emission reduction and pollution control measures, the predicted energy uses will be reduced by 10 to 30 million tons of coal equivalents by 2020. Under the two energy scenarios with moderate and high restrictions, the anticipated emissions of SO2, NOx, PM10, PM2.5, VOC and GHG will be respectively reduced to 71 to 100.2, 159.2 to 218.7, 89.8 to 133.8, 51.4 to 96.0, 56.4 to 74.8 and 148 200 to 164 700 thousand tons. Correspondingly, when compared with the low-restriction scenario, the reducing rate will be 53% to 67% , 50% to 64% , 33% to 55% , 25% to 60% , 41% to 55% and 26% to 34% respectively. Furthermore, based on a study of synergistic emission reduction of the air pollutants and GHG, it was proposed that the adjustment and control of energy consumptions shall be intensively developed in the three sectors of industry, transportation and services. In this way the synergistic reduction of the emissions of chief air pollutants and GHG will be achieved; meanwhile the pressures of energy demands may be deliberately relieved.
NASA Astrophysics Data System (ADS)
Sweeney, J. F.; Davis, S. J.
2007-12-01
Established protocols allow entity-level accounting of greenhouse gas (GHG) emissions. The information contained within GHG inventories is used by entities to manage their carbon footprint and to anticipate future exposure to compulsory GHG markets or taxes. The efficacy of such inventories, as experienced by the consumer, can be improved upon by product-level GHG inventories applying the methods of traditional life cycle analysis (LCA). A voluntary product-level assessment of this type, coupled with an eco-label, would 1) empower consumers with information about the total embodied GHG content of a product, 2) allow companies to understand and manage GHG emissions outside the narrow scope of their entities, and 3) drive reduction of GHG emissions throughout product value chains. The Climate Conservancy (TCC) is a non-profit organization founded to help companies calculate their GHG emissions at the level of individual product units, and to inform consumers about the GHG intensity of the products they choose to purchase. With the assistance of economists, policy experts and scientists, TCC has developed a useful metric for reporting product-level GHG emissions that allows for a normalized comparison of a product's GHG intensity irrespective of industry sector or competitors, where GHG data are often unavailable or incomplete. Using this metric, we envision our Climate Conscious label becoming an important arbiter of choice for consumers seeking ways to mitigate their climate impacts without the need for governmental regulation.
Climate change air toxic co-reduction in the context of macroeconomic modelling.
Crawford-Brown, Douglas; Chen, Pi-Cheng; Shi, Hsiu-Ching; Chao, Chia-Wei
2013-08-15
This paper examines the health implications of global PM reduction accompanying greenhouse gas emissions reductions in the 180 national economies of the global macroeconomy. A human health effects module based on empirical data on GHG emissions, PM emissions, background PM concentrations, source apportionment and human health risk coefficients is used to estimate reductions in morbidity and mortality from PM exposures globally as co-reduction of GHG reductions. These results are compared against the "fuzzy bright line" that often underlies regulatory decisions for environmental toxics, and demonstrate that the risk reduction through PM reduction would usually be considered justified in traditional risk-based decisions for environmental toxics. It is shown that this risk reduction can be on the order of more than 4 × 10(-3) excess lifetime mortality risk, with global annual cost savings of slightly more than $10B, when uniform GHG reduction measures across all sectors of the economy form the basis for climate policy ($2.2B if only Annex I nations reduce). Consideration of co-reduction of PM-10 within a climate policy framework harmonized with other environmental policies can therefore be an effective driver of climate policy. An error analysis comparing results of the current model against those of significantly more spatially resolved models at city and national scales indicates errors caused by the low spatial resolution of the global model used here may be on the order of a factor of 2. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ebner, Jacqueline H; Labatut, Rodrigo A; Rankin, Matthew J; Pronto, Jennifer L; Gooch, Curt A; Williamson, Anahita A; Trabold, Thomas A
2015-09-15
Anaerobic codigestion (AcoD) can address food waste disposal and manure management issues while delivering clean, renewable energy. Quantifying greenhouse gas (GHG) emissions due to implementation of AcoD is important to achieve this goal. A lifecycle analysis was performed on the basis of data from an on-farm AcoD in New York, resulting in a 71% reduction in GHG, or net reduction of 37.5 kg CO2e/t influent relative to conventional treatment of manure and food waste. Displacement of grid electricity provided the largest reduction, followed by avoidance of alternative food waste disposal options and reduced impacts associated with storage of digestate vs undigested manure. These reductions offset digester emissions and the net increase in emissions associated with land application in the AcoD case relative to the reference case. Sensitivity analysis showed that using feedstock diverted from high impact disposal pathways, control of digester emissions, and managing digestate storage emissions were opportunities to improve the AcoD GHG benefits. Regional and parametrized emissions factors for the storage emissions and land application phases would reduce uncertainty.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Nihar; Wei, Max; Letschert, Virginie
2015-10-01
Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere, mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energymore » efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel. We find that implementing HFC refrigerant transition and energy efficiency improvement policies in parallel for room air conditioning, roughly doubles the benefit of either policy implemented separately. We estimate that shifting the 2030 world stock of room air conditioners from the low efficiency technology using high-GWP refrigerants to higher efficiency technology and low-GWP refrigerants in parallel would save between 340-790 gigawatts (GW) of peak load globally, which is roughly equivalent to avoiding 680-1550 peak power plants of 500MW each. This would save 0.85 GT/year annually in China equivalent to over 8 Three Gorges dams and over 0.32 GT/year annually in India equivalent to roughly twice India’s 100GW solar mission target. While there is some uncertainty associated with emissions and growth projections, moving to efficient room air conditioning (~30% more efficient than current technology) in parallel with low-GWP refrigerants in room air conditioning could avoid up to ~25 billion tonnes of CO2 in 2030, ~33 billion in 2040, and ~40 billion in 2050, i.e. cumulative savings up to 98 billion tonnes of CO2 by 2050. Therefore, superefficient room ACs using low-GWP refrigerants merit serious consideration to maximize peak load reduction and GHG savings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, T.; Slaa, J.W.; Sathaye, J.
2010-12-15
Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing CO2 emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing themore » costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world. Successful implementation of emerging technologies not only can help advance productivities and competitiveness but also can play a significant role in mitigation efforts by saving energy. Providing evaluation and estimation of the costs and energy savings potential of emerging technologies is the focus of our work in this project. The overall goal of the project is to identify and select emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. This report contains the results from performing Task 2"Technology evaluation" for the project titled"Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies," which was sponsored by California Energy Commission and managed by CIEE. The project purpose is to analyze market status, market potential, and economic viability of selected technologies applicable to the U.S. In this report, LBNL first performed re-assessments of all of the 33 emerging energy-efficient industrial technologies, including re-evaluation of the 26 technologies that were previously identified by Martin et al. (2000) and their potential significance to energy use in the industries, and new evaluation of additional seven technologies. The re-assessments were essentially updated with recent information that we searched and collected from literature to the extent possible. The progress of selected technologies as they diffused into the marketplace from 2000 to 2010 was then discussed in this report. The report also includes updated detailed characterizations of 15 technologies studied in 2000, with comparisons noted.« less
Center for Corporate Climate Leadership Goal Setting
EPA provides tools and recognition for companies setting aggressive GHG reduction goals, which can galvanize reduction efforts at a company and often leads to the identification of many additional reduction opportunities.
Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles.
Raykin, Leon; MacLean, Heather L; Roorda, Matthew J
2012-06-05
This study examines how driving patterns (distance and conditions) and the electricity generation supply interact to impact well-to-wheel (WTW) energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW performance of a PHEV is compared with that of a similar (nonplug-in) gasoline hybrid electric vehicle and internal combustion engine vehicle (ICEV). Driving PHEVs for short distances between recharging generally results in lower WTW total and fossil energy use and GHG emissions per kilometer compared to driving long distances, but the extent of the reductions depends on the electricity supply. For example, the shortest driving pattern in this study with hydroelectricity uses 81% less fossil energy than the longest driving pattern. However, the shortest driving pattern with coal-based electricity uses only 28% less fossil energy. Similar trends are observed in reductions relative to the nonplug-in vehicles. Irrespective of the electricity supply, PHEVs result in greater reductions in WTW energy use and GHG emissions relative to ICEVs for city than highway driving conditions. PHEVs charging from coal facilities only reduce WTW energy use and GHG emissions relative to ICEVs for certain favorable driving conditions. The study results have implications for environmentally beneficial PHEV adoption and usage patterns.
Measuring Greenhouse Gas Emissions and Sinks Across California Land Cover
NASA Astrophysics Data System (ADS)
Fischer, M. L.
2017-12-01
Significant reductions in greenhouse gas (GHG) emissions are needed to limit rising planetary temperatures that will otherwise limit Earth's capacity to support life, introducing geopolitical instability. To help mitigate this threat, California has legislated landmark reductions in state-level greenhouse gas (GHG) emissions that set an example for broader action. Beginning with relatively assured reduction of current emissions to 1990 levels by 2020, future goals are much more challenging with 40% and 80% reductions below 1990 emissions by 2030 and 2050, respectively. While the majority of the reductions must focus on fossil fuels, inventory estimates of non-CO2 GHG emissions (i.e., CH4, N2O, and industrial compounds) constitute 15% of the total, suggesting reductions are required across multiple land use sectors. However, recent atmospheric inversion studies show methane and nitrous oxide (CH4 & N2O) emissions exceed current inventory estimates by factors of 1.2-1.8 and 1.6-2.6 (at 95% confidence), respectively, perhaps constituting up to 30% of State total emissions. The discrepancy is likely because current bottom-up models used for inventories do not accurately capture important management or biophysical factors. In the near term, process level experiments and sector-specific inversions are being planned to quantify the factors controlling non-CO2 GHG emissions for several of the dominant emission sectors. For biosphere carbon, California forests lands, which also depend on the combination of management, climate, and weather, lost above ground carbon from 2001-2010, and may be expected to lose soil and root carbon as a longer-term result. Here, it is important to identify and apply the best principles in forestry and agriculture to increase carbon stocks in depleted forest and agricultural areas, focusing on approaches that provide resilience to future climate and weather variations. Taken together, improved atmospheric, plant, and soil observations, together with empirical and/or process-level models should be developed to quantify current trajectories of both biological CO2 exchange and non-CO2 GHG emissions, identify knowledge gaps, and guide mitigation policies.
Hansen, Sune Balle; Olsen, Stig Irving; Ujang, Zaini
2012-01-01
This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments on methane potentials from empty fruit bunches. Methane capture from the anaerobic digestion of palm oil mill effluent was found to result in the highest GHG reductions. Among the solid residues, energy extraction from shells was found to constitute the biggest GHG savings per ton of residue, whereas energy extraction from empty fruit bunches was found to be the most significant in the biodiesel production life cycle. All the studied waste treatment technologies performed significantly better than the conventional practices and with dedicated efforts of optimized use in the palm oil industry, the production of palm oil derived biodiesel can be almost carbon neutral. Copyright © 2011 Elsevier Ltd. All rights reserved.
Global environmental costs of China's thirst for milk.
Bai, Zhaohai; Lee, Michael R F; Ma, Lin; Ledgard, Stewart; Oenema, Oene; Velthof, Gerard L; Ma, Wenqi; Guo, Mengchu; Zhao, Zhanqing; Wei, Sha; Li, Shengli; Liu, Xia; Havlík, Petr; Luo, Jiafa; Hu, Chunsheng; Zhang, Fusuo
2018-05-01
China has an ever-increasing thirst for milk, with a predicted 3.2-fold increase in demand by 2050 compared to the production level in 2010. What are the environmental implications of meeting this demand, and what is the preferred pathway? We addressed these questions by using a nexus approach, to examine the interdependencies of increasing milk consumption in China by 2050 and its global impacts, under different scenarios of domestic milk production and importation. Meeting China's milk demand in a business as usual scenario will increase global dairy-related (China and the leading milk exporting regions) greenhouse gas (GHG) emissions by 35% (from 565 to 764 Tg CO 2eq ) and land use for dairy feed production by 32% (from 84 to 111 million ha) compared to 2010, while reactive nitrogen losses from the dairy sector will increase by 48% (from 3.6 to 5.4 Tg nitrogen). Producing all additional milk in China with current technology will greatly increase animal feed import; from 1.9 to 8.5 Tg for concentrates and from 1.0 to 6.2 Tg for forage (alfalfa). In addition, it will increase domestic dairy related GHG emissions by 2.2 times compared to 2010 levels. Importing the extra milk will transfer the environmental burden from China to milk exporting countries; current dairy exporting countries may be unable to produce all additional milk due to physical limitations or environmental preferences/legislation. For example, the farmland area for cattle-feed production in New Zealand would have to increase by more than 57% (1.3 million ha) and that in Europe by more than 39% (15 million ha), while GHG emissions and nitrogen losses would increase roughly proportionally with the increase of farmland in both regions. We propose that a more sustainable dairy future will rely on high milk demanding regions (such as China) improving their domestic milk and feed production efficiencies up to the level of leading milk producing countries. This will decrease the global dairy related GHG emissions and land use by 12% (90 Tg CO 2eq reduction) and 30% (34 million ha land reduction) compared to the business as usual scenario, respectively. However, this still represents an increase in total GHG emissions of 19% whereas land use will decrease by 8% when compared with 2010 levels, respectively. © 2018 John Wiley & Sons Ltd.
Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, Majid, E-mail: majid_qau86@yahoo.com; Department of Forestry and Wildlife Management, University of Haripur, Hattar Road, Khyber Pakhtunkhwa, Haripur 22620; Zaidi, Syed Mujtaba Hasnian
This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO{sub 2}e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, andmore » 3264 tCO{sub 2}e, fertilizer application accounted for 754, 3251, and 4761 tCO{sub 2}e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO{sub 2}e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO{sub 2}e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO{sub 2}e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO{sub 2}e per million cigarettes produced in 2009, 0.675 tCO{sub 2}e per million cigarettes in 2010 and 0.59 tCO{sub 2}e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy, energy from crop residues, and promotion of organic fertilizers. - Highlights: • We quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC). • PTC production chain comprises of two phases: agricultural and industrial activities. • GHG emissions accounts to 44,965, 42,875 and 43,839 tCO{sub 2}e in 2009, 2010, and 2011, respectively. • GHG emissions from energy use in the industrial activities constituted the largest emissions i.e. 80%. • Implications for GHG emissions mitigation strategies for PTC are also discussed in detail.« less
Wastewater treatment process impact on energy savings and greenhouse gas emissions.
Mamais, D; Noutsopoulos, C; Dimopoulou, A; Stasinakis, A; Lekkas, T D
2015-01-01
The objective of this research was to assess the energy consumption of wastewater treatment plants (WWTPs), to apply a mathematical model to evaluate their carbon footprint, and to propose energy saving strategies that can be implemented to reduce both energy consumption and greenhouse gas (GHG) emissions in Greece. The survey was focused on 10 WWTPs in Greece with a treatment capacity ranging from 10,000 to 4,000,000 population equivalents (PE). Based on the results, annual specific energy consumption ranged from 15 to 86 kWh/PE. The highest energy consumer in all the WWTPs was aeration, accounting for 40-75% of total energy requirements. The annual GHG emissions varied significantly according to the treatment schemes employed and ranged between 61 and 161 kgCO₂e/PE. The highest values of CO₂emissions were obtained in extended aeration systems and the lowest in conventional activated sludge systems. Key strategies that the wastewater industry could adopt to mitigate GHG emissions are identified and discussed. A case study is presented to demonstrate potential strategies for energy savings and GHG emission reduction. Given the results, it is postulated that the reduction of dissolved oxygen (DO) set points and sludge retention time can provide significant energy savings and decrease GHG emissions.
Jeong, Seung Tak; Kim, Gil Won; Hwang, Hyun Young; Kim, Pil Joo; Kim, Sang Yoon
2018-02-01
Livestock manure application can stimulate greenhouse gas (GHG) emissions, especially methane (CH 4 ) in rice paddy. The stabilized organic matter (OM) is recommended to suppress CH 4 emission without counting the additional GHG emission during the composting process. To evaluate the effect of compost utilization on the net global warming potential (GWP) of a rice cropping system, the fluxes of GHGs from composting to land application were calculated by a life cycle assessment (LCA) method. The model framework was composed of GHG fluxes from industrial activities and biogenic GHG fluxes from the composting and rice cultivation processes. Fresh manure emitted 30MgCO 2 -eq.ha -1 , 90% and 10% of which were contributed by CH 4 and nitrous oxide (N 2 O) fluxes, respectively, during rice cultivation. Compost utilization decreased net GWP by 25% over that of the fresh manure during the whole process. The composting process increased the GWP of the industrial processes by 35%, but the 60% reduction in CH 4 emissions from the rice paddy mainly influenced the reduction of GWP during the overall process. Therefore, compost application could be a good management strategy to reduce GHG emissions from rice paddy systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Cities’ Role in Mitigating United States Food System Greenhouse Gas Emissions
2018-01-01
Current trends of urbanization, population growth, and economic development have made cities a focal point for mitigating global greenhouse gas (GHG) emissions. The substantial contribution of food consumption to climate change necessitates urban action to reduce the carbon intensity of the food system. While food system GHG mitigation strategies often focus on production, we argue that urban influence dominates this sector’s emissions and that consumers in cities must be the primary drivers of mitigation. We quantify life cycle GHG emissions of the United States food system through data collected from literature and government sources producing an estimated total of 3800 kg CO2e/capita in 2010, with cities directly influencing approximately two-thirds of food sector GHG emissions. We then assess the potential for cities to reduce emissions through selected measures; examples include up-scaling urban agriculture and home delivery of grocery options, which each may achieve emissions reductions on the order of 0.4 and ∼1% of this total, respectively. Meanwhile, changes in waste management practices and reduction of postdistribution food waste by 50% reduce total food sector emissions by 5 and 11%, respectively. Consideration of the scale of benefits achievable through policy goals can enable cities to formulate strategies that will assist in achieving deep long-term GHG emissions targets. PMID:29717606
Cities' Role in Mitigating United States Food System Greenhouse Gas Emissions.
Mohareb, Eugene A; Heller, Martin C; Guthrie, Peter M
2018-05-15
Current trends of urbanization, population growth, and economic development have made cities a focal point for mitigating global greenhouse gas (GHG) emissions. The substantial contribution of food consumption to climate change necessitates urban action to reduce the carbon intensity of the food system. While food system GHG mitigation strategies often focus on production, we argue that urban influence dominates this sector's emissions and that consumers in cities must be the primary drivers of mitigation. We quantify life cycle GHG emissions of the United States food system through data collected from literature and government sources producing an estimated total of 3800 kg CO 2 e/capita in 2010, with cities directly influencing approximately two-thirds of food sector GHG emissions. We then assess the potential for cities to reduce emissions through selected measures; examples include up-scaling urban agriculture and home delivery of grocery options, which each may achieve emissions reductions on the order of 0.4 and ∼1% of this total, respectively. Meanwhile, changes in waste management practices and reduction of postdistribution food waste by 50% reduce total food sector emissions by 5 and 11%, respectively. Consideration of the scale of benefits achievable through policy goals can enable cities to formulate strategies that will assist in achieving deep long-term GHG emissions targets.
Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production.
de Jong, Sierk; Antonissen, Kay; Hoefnagels, Ric; Lonza, Laura; Wang, Michael; Faaij, André; Junginger, Martin
2017-01-01
The introduction of renewable jet fuel (RJF) is considered an important emission mitigation measure for the aviation industry. This study compares the well-to-wake (WtWa) greenhouse gas (GHG) emission performance of multiple RJF conversion pathways and explores the impact of different co-product allocation methods. The insights obtained in this study are of particular importance if RJF is included as an emission mitigation instrument in the global Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). Fischer-Tropsch pathways yield the highest GHG emission reduction compared to fossil jet fuel (86-104%) of the pathways in scope, followed by Hydrothermal Liquefaction (77-80%) and sugarcane- (71-75%) and corn stover-based Alcohol-to-Jet (60-75%). Feedstock cultivation, hydrogen and conversion inputs were shown to be major contributors to the overall WtWa GHG emission performance. The choice of allocation method mainly affects pathways yielding high shares of co-products or producing co-products which effectively displace carbon intensive products (e.g., electricity). Renewable jet fuel can contribute to significant reduction of aviation-related GHG emissions, provided the right feedstock and conversion technology are used. The GHG emission performance of RJF may be further improved by using sustainable hydrogen sources or applying carbon capture and storage. Based on the character and impact of different co-product allocation methods, we recommend using energy and economic allocation (for non-energy co-products) at a global level, as it leverages the universal character of energy allocation while adequately valuing non-energy co-products.
Liobikienė, Genovaitė; Butkus, Mindaugas
2018-06-18
Climate change policy confronts with many challenges and opportunities. Thus the aim of this study was to analyse the impact of gross domestic product (hereinafter GDP), trade, foreign direct investment (hereinafter FDI), energy efficiency (hereinafter EF) and renewable energy (hereinafter RE) consumption on greenhouse gas (hereinafter GHG) emissions in 1990-2013 and reveal the main challenges and opportunities of climate policy for which policy makers should take the most attention under different stages of economic development. The results showed that the economic growth significantly contributed to the increase of GHG emissions and remains the main challenge in all groups of countries. Analysing the trade impact on pollution, the results revealed that the growth of export (hereinafter EX) significantly reduced GHG emissions only in high income countries. However, the export remains a challenge in low income countries. FDI insignificantly determined the changes in GHG emissions in all groups of countries. Meanwhile, energy efficiency and share of renewable energy consumption are the main opportunities of climate change policy because they reduce the GHG emissions in all groups of countries. Thus, technological processes, the increase of energy efficiency and the shift from carbon to renewable energy sources are the main tools implementing the climate change policy in all countries despite the different stage of economic development. Copyright © 2018 Elsevier B.V. All rights reserved.
Life cycle greenhouse gas impacts of ethanol, biomethane and limonene production from citrus waste
NASA Astrophysics Data System (ADS)
Pourbafrani, Mohammad; McKechnie, Jon; MacLean, Heather L.; Saville, Bradley A.
2013-03-01
The production of biofuel from cellulosic residues can have both environmental and financial benefits. A particular benefit is that it can alleviate competition for land conventionally used for food and feed production. In this research, we investigate greenhouse gas (GHG) emissions associated with the production of ethanol, biomethane, limonene and digestate from citrus waste, a byproduct of the citrus processing industry. The study represents the first life cycle-based evaluations of citrus waste biorefineries. Two biorefinery configurations are studied—a large biorefinery that converts citrus waste into ethanol, biomethane, limonene and digestate, and a small biorefinery that converts citrus waste into biomethane, limonene and digestate. Ethanol is assumed to be used as E85, displacing gasoline as a light-duty vehicle fuel; biomethane displaces natural gas for electricity generation, limonene displaces acetone in solvents, and digestate from the anaerobic digestion process displaces synthetic fertilizer. System expansion and two allocation methods (energy, market value) are considered to determine emissions of co-products. Considerable GHG reductions would be achieved by producing and utilizing the citrus waste-based products in place of the petroleum-based or other non-renewable products. For the large biorefinery, ethanol used as E85 in light-duty vehicles results in a 134% reduction in GHG emissions compared to gasoline-fueled vehicles when applying a system expansion approach. For the small biorefinery, when electricity is generated from biomethane rather than natural gas, GHG emissions are reduced by 77% when applying system expansion. The life cycle GHG emissions vary substantially depending upon biomethane leakage rate, feedstock GHG emissions and the method to determine emissions assigned to co-products. Among the process design parameters, the biomethane leakage rate is critical, and the ethanol produced in the large biorefinery would not meet EISA’s requirements for cellulosic biofuel if the leakage rate is higher than 9.7%. For the small biorefinery, there are no GHG emission benefits in the production of biomethane if the leakage rate is higher than 11.5%. Compared to system expansion, the use of energy and market value allocation methods generally results in higher estimates of GHG emissions for the primary biorefinery products (i.e., smaller reductions in emissions compared to reference systems).
Quantifying and managing regional greenhouse gas emissions: waste sector of Daejeon, Korea.
Yi, Sora; Yang, Heewon; Lee, Seung Hoon; An, Kyoung-Jin
2014-06-01
A credible accounting of national and regional inventories for the greenhouse gas (GHG) reduction has emerged as one of the most significant current discussions. This article assessed the regional GHG emissions by three categories of the waste sector in Daejeon Metropolitan City (DMC), Korea, examined the potential for DMC to reduce GHG emission, and discussed the methodology modified from Intergovernmental Panel on Climate Change and Korea national guidelines. During the last five years, DMC's overall GHG emissions were 239 thousand tons CO2 eq./year from eleven public environmental infrastructure facilities, with a population of 1.52 million. Of the three categories, solid waste treatment/disposal contributes 68%, whilst wastewater treatment and others contribute 22% and 10% respectively. Among GHG unit emissions per ton of waste treatment, the biggest contributor was waste incineration of 694 kg CO2 eq./ton, followed by waste disposal of 483 kg CO2 eq./ton, biological treatment of solid waste of 209 kg CO2 eq./ton, wastewater treatment of 0.241 kg CO2 eq./m(3), and public water supplies of 0.067 kg CO2 eq./m(3). Furthermore, it is suggested that the potential in reducing GHG emissions from landfill process can be as high as 47.5% by increasing landfill gas recovery up to 50%. Therefore, it is apparent that reduction strategies for the main contributors of GHG emissions should take precedence over minor contributors and lead to the best practice for managing GHGs abatement. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Center for Corporate Climate Leadership Leveraging Third-party Programs for Supplier Outreach
Third-party programs maximize efficient use of resources by helping companies request and analyze emissions information from suppliers and then provide suppliers with additional tools to develop their own GHG inventories and manage their GHG emissions.
75 FR 49913 - Draft Guidance, “Federal Greenhouse Gas Accounting and Reporting”
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-16
... an integrated strategy toward sustainability in the Federal Government and to make reduction of... agencies to measure, report, and reduce their GHG emissions. Section 9(a) of E.O. 13514 directed the... accurately account for and report GHG emissions. In particular, while a detailed approach to accepted and...
A variety of technological pathways lead to reduced greenhouse gas (GHG) emissions. However, different pathways can have substantially different impacts on other environmental endpoints, such as air quality and energy-related water demand. In this study we use the Global Change ...
Parametric assessment of climate change impacts of automotive material substitution.
Geyer, Roland
2008-09-15
Quantifying the net climate change impact of automotive material substitution is not a trivial task. It requires the assessment of the mass reduction potential of automotive materials, the greenhouse gas (GHG) emissions from their production and recycling, and their impact on GHG emissions from vehicle use. The model presented in this paper is based on life cycle assessment (LCA) and completely parameterized, i.e., its computational structure is separated from the required input data, which is not traditionally done in LCAs. The parameterization increases scientific rigor and transparency of the assessment methodology, facilitates sensitivity and uncertainty analysis of the results, and also makes it possible to compare different studies and explain their disparities. The state of the art of the modeling methodology is reviewed and advanced. Assessment of the GHG emission impacts of material recycling through consequential system expansion shows that our understanding of this issue is still incomplete. This is a critical knowledge gap since a case study shows thatfor materials such as aluminum, the GHG emission impacts of material production and recycling are both of the same size as the use phase savings from vehicle mass reduction.
Operationalizing clean development mechanism baselines: A case study of China's electrical sector
NASA Astrophysics Data System (ADS)
Steenhof, Paul A.
The global carbon market is rapidly developing as the first commitment period of the Kyoto Protocol draws closer and Parties to the Protocol with greenhouse gas (GHG) emission reduction targets seek alternative ways to reduce their emissions. The Protocol includes the Clean Development Mechanism (CDM), a tool that encourages project-based investments to be made in developing nations that will lead to an additional reduction in emissions. Due to China's economic size and rate of growth, technological characteristics, and its reliance on coal, it contains a large proportion of the global CDM potential. As China's economy modernizes, more technologies and processes are requiring electricity and demand for this energy source is accelerating rapidly. Relatively inefficient technology to generate electricity in China thereby results in the electrical sector having substantial GHG emission reduction opportunities as related to the CDM. In order to ensure the credibility of the CDM in leading to a reduction in GHG emissions, it is important that the baseline method used in the CDM approval process is scientifically sound and accessible for both others to use and for evaluation purposes. Three different methods for assessing CDM baselines and environmental additionality are investigated in the context of China's electrical sector: a method based on a historical perspective of the electrical sector (factor decomposition), a method structured upon a current perspective (operating and build margins), and a simulation of the future (dispatch analysis). Assessing future emission levels for China's electrical sector is a very challenging task given the complexity of the system, its dynamics, and that it is heavily influenced by internal and external forces, but of the different baseline methods investigated, dispatch modelling is best suited for the Chinese context as it is able to consider the important regional and temporal dimensions of its economy and its future development. For China, the most promising options for promoting sustainable development, one of the goals of the Kyoto Protocol, appear to be tied to increasing electrical end-use and generation efficiency, particularly clean coal technology for electricity generation since coal will likely continue to be a dominant primary fuel.
Vergé, Xavier P.C.; Dyer, James A.; Worth, Devon E.; Smith, Ward N.; Desjardins, Raymond L.; McConkey, Brian G.
2012-01-01
Simple Summary We developed a model to estimate the carbon footprint of Canadian livestock production. To include long term soil carbon storage and loss potential we introduced a payback period concept. The model was tested by reallocating 10% only of the protein production from a ruminant to a non ruminant source to minimize the risk of including rangeland or marginal lands. This displacement generated residual land which was found to play a major role in the potential mitigation of GHG emissions. The model will allow land use policies aimed at reducing the agricultural GHG emissions to be assessed. Abstract To assess tradeoffs between environmental sustainability and changes in food production on agricultural land in Canada the Unified Livestock Industry and Crop Emissions Estimation System (ULICEES) was developed. It incorporates four livestock specific GHG assessments in a single model. To demonstrate the application of ULICEES, 10% of beef cattle protein production was assumed to be displaced with an equivalent amount of pork protein. Without accounting for the loss of soil carbon, this 10% shift reduced GHG emissions by 2.5 TgCO2e y−1. The payback period was defined as the number of years required for a GHG reduction to equal soil carbon lost from the associated land use shift. A payback period that is shorter than 40 years represents a net long term decrease in GHG emissions. Displacing beef cattle with hogs resulted in a surplus area of forage. When this residual land was left in ungrazed perennial forage, the payback periods were less than 4 years and when it was reseeded to annual crops, they were equal to or less than 40 years. They were generally greater than 40 years when this land was used to raise cattle. Agricultural GHG mitigation policies will inevitably involve a trade-off between production, land use and GHG emission reduction. ULICEES is a model that can objectively assess these trade-offs for Canadian agriculture. PMID:26487032
New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China
Dou, Zheng-xia; He, Pan; Ju, Xiao-Tang; Powlson, David; Chadwick, Dave; Norse, David; Lu, Yue-Lai; Zhang, Ying; Wu, Liang; Chen, Xin-Ping; Cassman, Kenneth G.; Zhang, Fu-Suo
2013-01-01
Synthetic nitrogen (N) fertilizer has played a key role in enhancing food production and keeping half of the world’s population adequately fed. However, decades of N fertilizer overuse in many parts of the world have contributed to soil, water, and air pollution; reducing excessive N losses and emissions is a central environmental challenge in the 21st century. China’s participation is essential to global efforts in reducing N-related greenhouse gas (GHG) emissions because China is the largest producer and consumer of fertilizer N. To evaluate the impact of China’s use of N fertilizer, we quantify the carbon footprint of China’s N fertilizer production and consumption chain using life cycle analysis. For every ton of N fertilizer manufactured and used, 13.5 tons of CO2-equivalent (eq) (t CO2-eq) is emitted, compared with 9.7 t CO2-eq in Europe. Emissions in China tripled from 1980 [131 terrogram (Tg) of CO2-eq (Tg CO2-eq)] to 2010 (452 Tg CO2-eq). N fertilizer-related emissions constitute about 7% of GHG emissions from the entire Chinese economy and exceed soil carbon gain resulting from N fertilizer use by several-fold. We identified potential emission reductions by comparing prevailing technologies and management practices in China with more advanced options worldwide. Mitigation opportunities include improving methane recovery during coal mining, enhancing energy efficiency in fertilizer manufacture, and minimizing N overuse in field-level crop production. We find that use of advanced technologies could cut N fertilizer-related emissions by 20–63%, amounting to 102–357 Tg CO2-eq annually. Such reduction would decrease China’s total GHG emissions by 2–6%, which is significant on a global scale. PMID:23671096
New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China.
Zhang, Wei-Feng; Dou, Zheng-Xia; He, Pan; Ju, Xiao-Tang; Powlson, David; Chadwick, Dave; Norse, David; Lu, Yue-Lai; Zhang, Ying; Wu, Liang; Chen, Xin-Ping; Cassman, Kenneth G; Zhang, Fu-Suo
2013-05-21
Synthetic nitrogen (N) fertilizer has played a key role in enhancing food production and keeping half of the world's population adequately fed. However, decades of N fertilizer overuse in many parts of the world have contributed to soil, water, and air pollution; reducing excessive N losses and emissions is a central environmental challenge in the 21st century. China's participation is essential to global efforts in reducing N-related greenhouse gas (GHG) emissions because China is the largest producer and consumer of fertilizer N. To evaluate the impact of China's use of N fertilizer, we quantify the carbon footprint of China's N fertilizer production and consumption chain using life cycle analysis. For every ton of N fertilizer manufactured and used, 13.5 tons of CO2-equivalent (eq) (t CO2-eq) is emitted, compared with 9.7 t CO2-eq in Europe. Emissions in China tripled from 1980 [131 terrogram (Tg) of CO2-eq (Tg CO2-eq)] to 2010 (452 Tg CO2-eq). N fertilizer-related emissions constitute about 7% of GHG emissions from the entire Chinese economy and exceed soil carbon gain resulting from N fertilizer use by several-fold. We identified potential emission reductions by comparing prevailing technologies and management practices in China with more advanced options worldwide. Mitigation opportunities include improving methane recovery during coal mining, enhancing energy efficiency in fertilizer manufacture, and minimizing N overuse in field-level crop production. We find that use of advanced technologies could cut N fertilizer-related emissions by 20-63%, amounting to 102-357 Tg CO2-eq annually. Such reduction would decrease China's total GHG emissions by 2-6%, which is significant on a global scale.
Nie, Yuhao; Bi, Xiaotao
2018-01-01
Biofuels from hydrothermal liquefaction (HTL) of abundantly available forest residues in British Columbia (BC) can potentially make great contributions to reduce the greenhouse gas (GHG) emissions from the transportation sector. A life-cycle assessment was conducted to quantify the GHG emissions of a hypothetic 100 million liters per year HTL biofuel system in the Coast Region of BC. Three scenarios were defined and investigated, namely, supply of bulky forest residues for conversion in a central integrated refinery (Fr-CIR), HTL of forest residues to bio-oil in distributed biorefineries and subsequent upgrading in a central oil refinery (Bo-DBR), and densification of forest residues in distributed pellet plants and conversion in a central integrated refinery (Wp-CIR). The life-cycle GHG emissions of HTL biofuels is 20.5, 17.0, and 19.5 g CO 2 -eq/MJ for Fr-CIR, Bo-DBR, and Wp-CIR scenarios, respectively, corresponding to 78-82% reduction compared with petroleum fuels. The conversion stage dominates the total GHG emissions, making up more than 50%. The process emitting most GHGs over the life cycle of HTL biofuels is HTL buffer production. Transportation emission, accounting for 25% of Fr-CIR, can be lowered by 83% if forest residues are converted to bio-oil before transportation. When the credit from biochar applied for soil amendment is considered, a further reduction of 6.8 g CO 2 -eq/MJ can be achieved. Converting forest residues to bio-oil and wood pellets before transportation can significantly lower the transportation emission and contribute to a considerable reduction of the life-cycle GHG emissions. Process performance parameters (e.g., HTL energy requirement and biofuel yield) and the location specific parameter (e.g., electricity mix) have significant influence on the GHG emissions of HTL biofuels. Besides, the recycling of the HTL buffer needs to be investigated to further improve the environmental performance of HTL biofuels.
Fuel Use and Greenhouse Gas Emissions from Offshore Fisheries of the Republic of Korea.
Park, Jeong-A; Gardner, Caleb; Chang, Myo-In; Kim, Do-Hoon; Jang, Young-Soo
2015-01-01
Greenhouse Gas (GHG) emissions from the offshore fisheries industry in the Republic of Korea (Korea) were examined in response to growing concerns about global warming and the contribution of emissions from different industrial sectors. Fuel usage and GHG emissions (CO2, CH4, N2O) were analysed using the 'Tier 1' method provided by the Intergovernmental Panel on Climate Change (IPCC) from the offshore fishery, which is the primary domestic seafood production sector in Korea. In 2013, fuel usage in the offshore fishery accounted for 59.7% (557,463 KL) of total fuel consumption of fishing vessels in Korea. Fuel consumption and thus GHG emissions were not stable through time in this industry, increasing by 2.4% p.a. for three consecutive years, from 2011 to 2013, despite a decrease in the number of vessels operating. GHG emissions generated in offshore fisheries also changed through time and increased from 1,442,975 tCO2e/year in 2011 to 1,477,279 tCO2e/year in 2013. Changes in both fuel use and GHG emissions per kg offshore fish production appeared to be associated with decreasing catch rates by the fleet, which in turn were a reflection of decrease in fish biomass. Another important feature of GHG emissions in this industry was the high variation in GHG emission per kg fish product among different fishing methods. The long line fishery had approximately three times the emissions of the average production while the jigging fishery was more than two times higher than the average. Lowest emissions were from the trawl sector, which is regarded as having greatest environmental impact using traditional biodiversity metrics although had lowest environmental impact in terms of fuel and GHG emission metrics used in this study. The observed deterioration in fuel efficiency of the offshore fishery each year is of concern but also demonstrates that fuel efficiency can change, which shows there is opportunity to improve efficiency with changes to fishery management and harvesting operations.
Fuel Use and Greenhouse Gas Emissions from Offshore Fisheries of the Republic of Korea
Park, Jeong-A; Gardner, Caleb; Chang, Myo-In; Kim, Do-Hoon; Jang, Young-Soo
2015-01-01
Greenhouse Gas (GHG) emissions from the offshore fisheries industry in the Republic of Korea (Korea) were examined in response to growing concerns about global warming and the contribution of emissions from different industrial sectors. Fuel usage and GHG emissions (CO2, CH4, N2O) were analysed using the ‘Tier 1’ method provided by the Intergovernmental Panel on Climate Change (IPCC) from the offshore fishery, which is the primary domestic seafood production sector in Korea. In 2013, fuel usage in the offshore fishery accounted for 59.7% (557,463 KL) of total fuel consumption of fishing vessels in Korea. Fuel consumption and thus GHG emissions were not stable through time in this industry, increasing by 2.4% p.a. for three consecutive years, from 2011 to 2013, despite a decrease in the number of vessels operating. GHG emissions generated in offshore fisheries also changed through time and increased from 1,442,975 tCO2e/year in 2011 to 1,477,279 tCO2e/year in 2013. Changes in both fuel use and GHG emissions per kg offshore fish production appeared to be associated with decreasing catch rates by the fleet, which in turn were a reflection of decrease in fish biomass. Another important feature of GHG emissions in this industry was the high variation in GHG emission per kg fish product among different fishing methods. The long line fishery had approximately three times the emissions of the average production while the jigging fishery was more than two times higher than the average. Lowest emissions were from the trawl sector, which is regarded as having greatest environmental impact using traditional biodiversity metrics although had lowest environmental impact in terms of fuel and GHG emission metrics used in this study. The observed deterioration in fuel efficiency of the offshore fishery each year is of concern but also demonstrates that fuel efficiency can change, which shows there is opportunity to improve efficiency with changes to fishery management and harvesting operations. PMID:26317341
Three essays in transportation energy and environmental policy
NASA Astrophysics Data System (ADS)
Hajiamiri, Sara
Concerns about climate change, dependence on oil, and unstable gasoline prices have led to significant efforts by policymakers to cut greenhouse gas (GHG) emissions and oil consumption. The transportation sector is one of the principle emitters of CO2 in the US. It accounts for two-thirds of total U.S. oil consumption and is almost entirely dependent on oil. Within the transportation sector, the light-duty vehicle (LDV) fleet is the main culprit. It is responsible for more than 65 percent of the oil used and for more than 60 percent of total GHG emissions. If a significant fraction of the LDV fleet is gradually replaced by more fuel-efficient technologies, meaningful reductions in GHG emissions and oil consumption will be achieved. This dissertation investigates the potential benefits and impacts of deploying more fuel-efficient vehicles in the LDV fleet. Findings can inform decisions surrounding the development and deployment of the next generation of LDVs. The first essay uses data on 2003 and 2006 model gasoline-powered passenger cars, light trucks and sport utility vehicles to investigate the implicit private cost of improving vehicle fuel efficiencies through reducing other desired attributes such as weight (that is valued for its perceived effect on personal safety) and horsepower. Breakeven gasoline prices that would justify the estimated implicit costs were also calculated. It is found that to justify higher fuel efficiency standards from a consumer perspective, either the external benefits need to be very large or technological advances will need to greatly reduce fuel efficiency costs. The second essay estimates the private benefits and societal impacts of electric vehicles. The findings from the analysis contribute to policy deliberations on how to incentivize the purchase and production of these vehicles. A spreadsheet model was developed to estimate the private benefits and societal impacts of purchasing and utilizing three electric vehicle technologies instead of a similar-sized conventional gasoline-powered vehicle (CV). The electric vehicle technologies considered are gasoline-powered hybrid and plug-in hybrid electric vehicles and battery electric vehicles. It is found that the private benefits are positive, but smaller than the expected short-term cost premiums on these technologies, which suggest the need for government support if a large-scale adoption of electric vehicles is desired. Also, it is found that the net present values of the societal benefits that are not internalized by the vehicle purchaser are not likely to exceed $1,700. This estimate accounts for changes in GHG emissions, criteria air pollutants, gasoline consumption and the driver's contribution to congestion. The third essay explores the implications of a large-scale adoption of electric vehicles on transportation finance. While fuel efficiency improvements are desirable with respect to goals for achieving energy security and environmental improvement, it has adverse implications for the current system of transportation finance. Reductions in gasoline consumption relative to the amount of driving that takes place would result in a decline in fuel tax revenues that are needed to fund planning, construction, maintenance, and operation of highways and public transit systems. In this paper the forgone fuel tax revenue that results when an electric vehicle replaces a similar-sized CV is estimated. It is found that under several vehicle electrification scenarios, the combined federal and state trust funds could decline by as much as 5 percent by 2020 and as much as 12.5 percent by 2030. Alternative fee systems that tie more directly to transportation system use rather then to fuel consumption could reconcile energy security, environmental, and transportation finance goals.
Stokes, Jennifer R; Hendrickson, Thomas P; Horvath, Arpad
2014-12-02
The water-energy nexus is of growing interest for researchers and policy makers because the two critical resources are interdependent. Their provision and consumption contribute to climate change through the release of greenhouse gases (GHGs). This research considers the potential for conserving both energy and water resources by measuring the life-cycle economic efficiency of greenhouse gas reductions through the water loss control technologies of pressure management and leak management. These costs are compared to other GHG abatement technologies: lighting, building insulation, electricity generation, and passenger transportation. Each cost is calculated using a bottom-up approach where regional and temporal variations for three different California water utilities are applied to all alternatives. The costs and abatement potential for each technology are displayed on an environmental abatement cost curve. The results reveal that water loss control can reduce GHGs at lower cost than other technologies and well below California's expected carbon trading price floor. One utility with an energy-intensive water supply could abate 135,000 Mg of GHGs between 2014 and 2035 and save--rather than spend--more than $130/Mg using the water loss control strategies evaluated. Water loss control technologies therefore should be considered in GHG abatement portfolios for utilities and policy makers.
Climate Impacts From a Removal of Anthropogenic Aerosol Emissions
NASA Astrophysics Data System (ADS)
Samset, B. H.; Sand, M.; Smith, C. J.; Bauer, S. E.; Forster, P. M.; Fuglestvedt, J. S.; Osprey, S.; Schleussner, C.-F.
2018-01-01
Limiting global warming to 1.5 or 2.0°C requires strong mitigation of anthropogenic greenhouse gas (GHG) emissions. Concurrently, emissions of anthropogenic aerosols will decline, due to coemission with GHG, and measures to improve air quality. However, the combined climate effect of GHG and aerosol emissions over the industrial era is poorly constrained. Here we show the climate impacts from removing present-day anthropogenic aerosol emissions and compare them to the impacts from moderate GHG-dominated global warming. Removing aerosols induces a global mean surface heating of 0.5-1.1°C, and precipitation increase of 2.0-4.6%. Extreme weather indices also increase. We find a higher sensitivity of extreme events to aerosol reductions, per degree of surface warming, in particular over the major aerosol emission regions. Under near-term warming, we find that regional climate change will depend strongly on the balance between aerosol and GHG forcing.
Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production.
Cerri, Carlos Eduardo Pellegrino; You, Xin; Cherubin, Maurício Roberto; Moreira, Cindy Silva; Raucci, Guilherme Silva; Castigioni, Bruno de Almeida; Alves, Priscila Aparecida; Cerri, Domingos Guilherme Pellegrino; Mello, Francisco Fujita de Castro; Cerri, Carlos Clemente
2017-01-01
Soybean biodiesel (B100) has been playing an important role in Brazilian energy matrix towards the national bio-based economy. Greenhouse gas (GHG) emissions is the most widely used indicator for assessing the environmental sustainability of biodiesels and received particular attention among decision makers in business and politics, as well as consumers. Former studies have been mainly focused on the GHG emissions from the soybean cultivation, excluding other stages of the biodiesel production. Here, we present a holistic view of the total GHG emissions in four life cycle stages for soybean biodiesel. The aim of this study was to assess the GHG emissions of Brazilian soybean biodiesel production system with an integrated life cycle approach of four stages: agriculture, extraction, production and distribution. Allocation of mass and energy was applied and special attention was paid to the integrated and non-integrated industrial production chain. The results indicated that the largest source of GHG emissions, among four life cycle stages, is the agricultural stage (42-51%) for B100 produced in integrated systems and the production stage (46-52%) for B100 produced in non-integrated systems. Integration of industrial units resulted in significant reduction in life cycle GHG emissions. Without the consideration of LUC and assuming biogenic CO2 emissions is carbon neutral in our study, the calculated life cycle GHG emissions for domestic soybean biodiesel varied from 23.1 to 25.8 gCO2eq. MJ-1 B100 and those for soybean biodiesel exported to EU ranged from 26.5 to 29.2 gCO2eq. MJ-1 B100, which represent reductions by 65% up to 72% (depending on the delivery route) of GHG emissions compared with the EU benchmark for diesel fuel. Our findings from a life cycle perspective contributed to identify the major GHG sources in Brazilian soybean biodiesel production system and they can be used to guide mitigation priority for policy and decision-making. Projected scenarios in this study would be taken as references for accounting the environmental sustainability of soybean biodiesel within a domestic and global level.
Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production
You, Xin; Cherubin, Maurício Roberto; Moreira, Cindy Silva; Raucci, Guilherme Silva; Castigioni, Bruno de Almeida; Alves, Priscila Aparecida; Cerri, Domingos Guilherme Pellegrino; Mello, Francisco Fujita de Castro; Cerri, Carlos Clemente
2017-01-01
Soybean biodiesel (B100) has been playing an important role in Brazilian energy matrix towards the national bio-based economy. Greenhouse gas (GHG) emissions is the most widely used indicator for assessing the environmental sustainability of biodiesels and received particular attention among decision makers in business and politics, as well as consumers. Former studies have been mainly focused on the GHG emissions from the soybean cultivation, excluding other stages of the biodiesel production. Here, we present a holistic view of the total GHG emissions in four life cycle stages for soybean biodiesel. The aim of this study was to assess the GHG emissions of Brazilian soybean biodiesel production system with an integrated life cycle approach of four stages: agriculture, extraction, production and distribution. Allocation of mass and energy was applied and special attention was paid to the integrated and non-integrated industrial production chain. The results indicated that the largest source of GHG emissions, among four life cycle stages, is the agricultural stage (42–51%) for B100 produced in integrated systems and the production stage (46–52%) for B100 produced in non-integrated systems. Integration of industrial units resulted in significant reduction in life cycle GHG emissions. Without the consideration of LUC and assuming biogenic CO2 emissions is carbon neutral in our study, the calculated life cycle GHG emissions for domestic soybean biodiesel varied from 23.1 to 25.8 gCO2eq. MJ-1 B100 and those for soybean biodiesel exported to EU ranged from 26.5 to 29.2 gCO2eq. MJ-1 B100, which represent reductions by 65% up to 72% (depending on the delivery route) of GHG emissions compared with the EU benchmark for diesel fuel. Our findings from a life cycle perspective contributed to identify the major GHG sources in Brazilian soybean biodiesel production system and they can be used to guide mitigation priority for policy and decision-making. Projected scenarios in this study would be taken as references for accounting the environmental sustainability of soybean biodiesel within a domestic and global level. PMID:28493965
Meier, Paul J; Cronin, Keith R; Frost, Ethan A; Runge, Troy M; Dale, Bruce E; Reinemann, Douglas J; Detlor, Jennifer
2015-07-21
To examine the national fuel and emissions impacts from increasingly electrified light-duty transportation, we reconstructed the vehicle technology portfolios from two national vehicle studies. Using these vehicle portfolios, we normalized assumptions and examined sensitivity around the rates of electrified vehicle penetration, travel demand growth, and electricity decarbonization. We further examined the impact of substituting low-carbon advanced cellulosic biofuels in place of petroleum. Twenty-seven scenarios were benchmarked against a 50% petroleum-reduction target and an 80% GHG-reduction target. We found that with high rates of electrification (40% of miles traveled) the petroleum-reduction benchmark could be satisfied, even with high travel demand growth. The same highly electrified scenarios, however, could not satisfy 80% GHG-reduction targets, even assuming 80% decarbonized electricity and no growth in travel demand. Regardless of precise consumer vehicle preferences, emissions are a function of the total reliance on electricity versus liquid fuels and the corresponding greenhouse gas intensities of both. We found that at a relatively high rate of electrification (40% of miles and 26% by fuel), an 80% GHG reduction could only be achieved with significant quantities of low-carbon liquid fuel in cases with low or moderate travel demand growth.
Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan.
Hussain, Majid; Zaidi, Syed Mujtaba Hasnian; Malik, Riffat Naseem; Sharma, Benktesh Dash
2014-10-01
This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO2e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, and 3264 tCO2e, fertilizer application accounted for 754, 3251, and 4761 tCO2e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO2e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO2e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO2e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO2e per million cigarettes produced in 2009, 0.675 tCO2e per million cigarettes in 2010 and 0.59 tCO2e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy, energy from crop residues, and promotion of organic fertilizers. Copyright © 2014 Elsevier Inc. All rights reserved.
Use of wastewater treatment plant biogas for the operation of Solid Oxide Fuel Cells (SOFCs).
Lackey, Jillian; Champagne, Pascale; Peppley, Brant
2017-12-01
Solid Oxide Fuel Cells (SOFCs) perform well on light hydrocarbon fuels, and the use of biogas derived from the anaerobic digestion (AD) of municipal wastewater sludges could provide an opportunity for the CH 4 produced to be used as a renewable fuel. Greenhouse gas (GHG), NO x , SO x , and hydrocarbon pollutant emissions would also be reduced. In this study, SOFCs were operated on AD derived biogas. Initially, different H 2 dilutions were tested (N 2 , Ar, CO 2 ) to examine the performance of tubular SOFCs. With inert gases as diluents, a decrease in cell performance was observed, however, the use of CO 2 led to a higher decrease in performance as it promoted the reverse water-gas shift (WGS) reaction, reducing the H 2 partial pressure in the gas mixture. A model was developed to predict system efficiency and GHG emissions. A higher electrical system efficiency was noted for a steam:carbon ratio of 2 compared to 1 due to the increased H 2 partial pressure in the reformate resulting from higher H 2 O concentration. Reductions in GHG emissions were estimated at 2400 tonnes CO 2 , 60 kg CH 4 and 18 kg N 2 O. SOFCs were also tested using a simulated biogas reformate mixture (66.7% H 2 , 16.1% CO, 16.5% CO 2 , 0.7% N 2 , humidified to 2.3 or 20 mol% H 2 O). Higher humidification yielded better performance as the WGS reaction produced more H 2 with additional H 2 O. It was concluded that AD-derived biogas, when cleaned to remove H 2 S, Si compounds, halides and other contaminants, could be reformed to provide a clean, renewable fuel for SOFCs. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Samaras, Constantine
In order to mitigate the most severe effects of climate change, large global reductions in the current levels of anthropogenic greenhouse gas (GHG) emissions are required in this century to stabilize atmospheric carbon dioxide (CO2) concentrations at less than double pre-industrial levels. The Intergovernmental Panel on Climate Change (IPCC) fourth assessment report states that GHG emissions should be reduced to 50-80% of 2000 levels by 2050 to increase the likelihood of stabilizing atmospheric CO2 concentrations. In order to achieve the large GHG reductions by 2050 recommended by the IPCC, a fundamental shift and evolution will be required in the energy system. Because the electric power and transportation sectors represent the largest GHG emissions sources in the United States, a unique opportunity for coupling these systems via electrified transportation could achieve synergistic environmental (GHG emissions reductions) and energy security (petroleum displacement) benefits. Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a major role in reducing greenhouse gas emissions from the transport sector. However, this thesis finds that life cycle GHG emissions from PHEVs depend on the electricity source that is used to charge the battery, so meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. Power plants and their associated GHGs are long-lived, and this work argues that decisions made regarding new electricity supplies within the next ten years will affect the potential of PHEVs to play a role in a low-carbon future in the coming decades. This thesis investigates the life cycle engineering, economic, and policy decisions involved in transitioning to PHEVs and low-carbon electricity. The government has a vast array of policy options to promote low-carbon technologies, some of which have proven to be more successful than others. This thesis uses life cycle assessment to evaluate options and opportunities for large GHG reductions from plug-in hybrids. After the options and uncertainties are framed, engineering economic analysis is used to evaluate the policy actions required for adoption of PHEVs at scale and the implications for low-carbon electricity investments. A logistic PHEV adoption model is constructed to parameterize implications for low-carbon electricity infrastructure investments and climate policy. This thesis concludes with an examination of what lessons can be learned for climate, innovation, and low-carbon energy policies from the evolution of wind power from an emerging alternative energy technology to a utility-scale power source. Policies to promote PHEVs and other emerging energy technologies can take lessons learned from the successes and challenges of wind power's development to optimize low-carbon energy policy and R&D programs going forward. The need for integrated climate policy, energy policy, sustainability, and urban mobility solutions will accelerate in the next two decades as concerns regarding GHG emissions and petroleum resources continue to be environmental and economic priorities. To assist in informing the discussions on climate policy and low-carbon energy R&D, this research and its methods will provide stakeholders in government and industry with plug-in hybrid and energy policy choices based on life cycle assessment, engineering economics, and systems analysis.
Air quality co-benefits of subnational carbon policies
Thompson, Tammy M.; Rausch, Sebastian; Saari, Rebecca K.; ...
2016-05-18
To mitigate climate change, governments ranging from city to multi-national have adopted greenhouse gas (GHG) emissions reduction targets. While the location of GHG reductions does not affect their climate benefits, it can impact human health benefits associated with co-emitted pollutants. Here, an advanced modeling framework is used to explore how subnational level GHG targets influence air pollutant co-benefits from ground level ozone and fine particulate matter. Two carbon policy scenarios are analyzed, each reducing the same total amount of GHG emissions in the Northeast US: an economy-wide Cap and Trade (CAT) program reducing emissions from all sectors of the economy,more » and a Clean Energy Standard (CES) reducing emissions from the electricity sector only. Results suggest that a regional CES policy will cost about 10 times more than a CAT policy. Despite having the same regional targets in the Northeast, carbon leakage to non-capped regions varies between policies. Consequently, a regional CAT policy will result in national carbon reductions that are over six times greater than the carbon reduced by the CES in 2030. Monetized regional human health benefits of the CAT and CES policies are 844% and 185% of the costs of each policy, respectively. Benefits for both policies are thus estimated to exceed their costs in the Northeast US. The estimated value of human health co-benefits associated with air pollution reductions for the CES scenario is two times that of the CAT scenario. Implications: In this research, an advanced modeling framework is used to determine the potential impacts of regional carbon policies on air pollution co-benefits associated with ground level ozone and fine particulate matter. Study results show that spatially heterogeneous GHG policies have the potential to create areas of air pollution dis-benefit. It is also shown that monetized human health benefits within the area covered by policy may be larger than the model estimated cost of the policy. These findings are of particular interest both as U.S. states work to develop plans to meet state-level carbon emissions reduction targets set by the EPA through the Clean Power Plan, and in the absence of comprehensive national carbon policy.« less
NASA Astrophysics Data System (ADS)
Zhang, Y.; Bowden, J. H.; Adelman, Z.; Naik, V.; Horowitz, L. W.; Smith, S.; West, J. J.
2014-12-01
Reducing greenhouse gases (GHGs) not only slows climate change, but can also have co-benefits for improved air quality. In this study, we examine the co-benefits of global and regional GHG mitigation on US air quality at fine resolution through dynamical downscaling, using the latest Community Multi-scale Air Quality (CMAQ) model. We will investigate the co-benefits on US air quality due to domestic GHG mitigation alone, and due to mitigation outside of the US. We also quantity the co-benefits resulting from reductions in co-emitted air pollutants versus slowing climate change and its effects on air quality. Projected climate in the 2050s from the IPCC RCP4.5 and RCP8.5 scenarios is dynamically downscaled with the Weather Research and Forecasting model (WRF). Anthropogenic emissions projections from the RCP4.5 scenario and its reference (REF), are directly processed in SMOKE to provide temporally- and spatially-resolved CMAQ emission input files. Chemical boundary conditions (BCs) are obtained from West et al. (2013), who studied the co-benefits of global GHG reductions on global air quality and human health. Our preliminary results show that the global GHG reduction (RCP4.5 relative to REF) reduces the 1hr daily maximum ozone by 3.3 ppbv annually over entire US, as high as 6 ppbv in September. The west coast of California and the Northeast US are the regions that benefit most. By comparing different scenarios, we find that foreign countries' GHGs mitigation has a larger influence on the US ozone decreases (accounting for 77% of the total decrease), compared with 23% from domestic GHG mitigation only, highlighting the importance of methane reductions and the intercontinental transport of air pollutants. The reduction of global co-emitted air pollutants has a more pronounced effect on ozone decreasing, relative to the effect from slowing climate and its effects on air quality. We also plan to report co-benefits for PM2.5 in the US.
Air quality co-benefits of subnational carbon policies.
Thompson, Tammy M; Rausch, Sebastian; Saari, Rebecca K; Selin, Noelle E
2016-10-01
To mitigate climate change, governments ranging from city to multi-national have adopted greenhouse gas (GHG) emissions reduction targets. While the location of GHG reductions does not affect their climate benefits, it can impact human health benefits associated with co-emitted pollutants. Here, an advanced modeling framework is used to explore how subnational level GHG targets influence air pollutant co-benefits from ground level ozone and fine particulate matter. Two carbon policy scenarios are analyzed, each reducing the same total amount of GHG emissions in the Northeast US: an economy-wide Cap and Trade (CAT) program reducing emissions from all sectors of the economy, and a Clean Energy Standard (CES) reducing emissions from the electricity sector only. Results suggest that a regional CES policy will cost about 10 times more than a CAT policy. Despite having the same regional targets in the Northeast, carbon leakage to non-capped regions varies between policies. Consequently, a regional CAT policy will result in national carbon reductions that are over six times greater than the carbon reduced by the CES in 2030. Monetized regional human health benefits of the CAT and CES policies are 844% and 185% of the costs of each policy, respectively. Benefits for both policies are thus estimated to exceed their costs in the Northeast US. The estimated value of human health co-benefits associated with air pollution reductions for the CES scenario is two times that of the CAT scenario. In this research, an advanced modeling framework is used to determine the potential impacts of regional carbon policies on air pollution co-benefits associated with ground level ozone and fine particulate matter. Study results show that spatially heterogeneous GHG policies have the potential to create areas of air pollution dis-benefit. It is also shown that monetized human health benefits within the area covered by policy may be larger than the model estimated cost of the policy. These findings are of particular interest both as U.S. states work to develop plans to meet state-level carbon emissions reduction targets set by the EPA through the Clean Power Plan, and in the absence of comprehensive national carbon policy.
Pérez-Camacho, María Natividad; Curry, Robin; Cromie, Thomas
2018-03-01
In this study, life cycle assessment has been used to evaluate life cycle environmental impacts of substituting traditional anaerobic digestion (AD) feedstocks with food wastes. The results have demonstrated the avoided GHG emissions from substituting traditional AD feedstocks with food waste (avoided GHG-eq emissions of 163.33 CO 2 -eq). Additionally, the analysis has included environmental benefits of avoided landfilling of food wastes and digestate use as a substitute for synthetic fertilisers. The analysis of the GHG mitigation benefits of resource management/circular economy policies, namely, the mandating of a ban on the landfilling of food wastes, has demonstrated the very substantial GHG emission reduction that can be achieved by these policy options - 2151.04 kg CO 2 eq per MWh relative to UK Grid. In addition to the reduction in GHG emission, the utilization of food waste for AD instead of landfilling can manage the leakage of nutrients to water resources and eliminate eutrophication impacts which occur, typically as the result of field application. The results emphasise the benefits of using life-cycle thinking to underpin policy development and the implications for this are discussed with a particular focus on the analysis of policy development across the climate, renewable energy, resource management and bioeconomy nexus and recommendations made for future research priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.
The role of dung beetles in reducing greenhouse gas emissions from cattle farming
Slade, Eleanor M.; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L.
2016-01-01
Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05–0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results perspective, and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research. PMID:26728164
The role of dung beetles in reducing greenhouse gas emissions from cattle farming
NASA Astrophysics Data System (ADS)
Slade, Eleanor M.; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L.
2016-01-01
Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05-0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results perspective, and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research.
The role of dung beetles in reducing greenhouse gas emissions from cattle farming.
Slade, Eleanor M; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L
2016-01-05
Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05-0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results, [corrected] and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research.
Does consideration of GHG reductions change local decision making? A Case Study in Chile
NASA Astrophysics Data System (ADS)
Cifuentes, L. A.; Blumel, G.
2003-12-01
While local air pollution has been a public concern in developing countries for some time, climate change is looked upon as a non-urgent, developed world problem. In this work we present a case study of the interaction of measures to abate air pollution and measures to mitigate GHG emissions in Santiago, Chile, with the purpose of determining if the consideration of reductions in GHG affects the decisions taken to mitigate local air pollution. The emissions reductions of both GHG and local air pollutants were estimated from emission factors (some derived locally) and changes in activity levels. Health benefits due to air pollution abatement were computed using figures derived previously for the cost benefit analysis of Santiago's Decontamination Plan, transferred to the different cities taking into consideration local demographic and income data. The Santiago estimates were obtained using the damage function approach, based on some local epidemiological studies, and on local health and demographic data. Unit social values for the effects were estimated locally (for cost of treatment and lost productivity values) or extrapolated from US values (mainly for WTP values) using the ratio of per-capita income and an income elasticity of 1. The average benefits of emission abatement (in 1997 US\\ per ton) are 1,800 (1,200-2300) for NOx, 3,000 (2,100-3900) for SO2, 31,900 (21,900 - 41,900) for PM, and 630 (430 - 830) for resuspended dust. Economic benefits due to carbon reduction were considered at 3.5, 10 and 20 UStCO2. Marginal abatement cost curves were constructed considering private and net costs (private less the potential sales of carbon credits) Due to the bottom-up approach to constructing the marginal cost curve, many abatement measures (like congestion tolls and CNG instead of diesel buses) amounting to 8% reduction of PM2.5 concentration, exhibit a negative private cost. If the health benefits are considered for the decision, a maximum reduction of 22% in PM2.5 levels is obtained. Although many measures have associated reductions in GHG, due to the relatively low price considered for carbon reductions, when the potential benefits of CO2 sales are considered, this number does not increases. Therefore, consideration of the CO2 benefits did not change the decision for any of the 36 measures analyzed. This confirms that the main driver for air pollution policy is likely to continue to be local concerns, like public health issues.
Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation
Morton, Lois Wright; Hobbs, Jon
2015-01-01
Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers’ trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management). PMID:25983336
Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi
2014-01-01
There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG) systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI) approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG) emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China. PMID:25383383
Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi
2014-01-01
There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG) systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI) approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG) emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China.
Biodiversity Conservation in the REDD
2010-01-01
Deforestation and forest degradation in the tropics is a major source of global greenhouse gas (GHG) emissions. The tropics also harbour more than half the world's threatened species, raising the possibility that reducing GHG emissions by curtailing tropical deforestation could provide substantial co-benefits for biodiversity conservation. Here we explore the potential for such co-benefits in Indonesia, a leading source of GHG emissions from land cover and land use change, and among the most species-rich countries in the world. We show that focal ecosystems for interventions to reduce emissions from deforestation and forest degradation in Indonesia do not coincide with areas supporting the most species-rich communities or highest concentration of threatened species. We argue that inherent trade-offs among ecosystems in emission reduction potential, opportunity cost of foregone development and biodiversity values will require a regulatory framework to balance emission reduction interventions with biodiversity co-benefit targets. We discuss how such a regulatory framework might function, and caution that pursuing emission reduction strategies without such a framework may undermine, not enhance, long-term prospects for biodiversity conservation in the tropics. PMID:21092321
Environmental management system for transportation maintenance operations.
DOT National Transportation Integrated Search
2014-05-01
The New Jersey's Global Warming Response Act, enacted in 2007, mandates reductions in greenhouse gas (GHG) : emissions to 1990 levels by 2020, approximately a 20 percent reduction, followed by a further reduction of emissions to : 80% below 2006 leve...
Trade-offs between high yields and greenhouse gas emissions in irrigation wheat cropland in China
NASA Astrophysics Data System (ADS)
Cui, Z. L.; Wu, L.; Ye, Y. L.; Ma, W. Q.; Chen, X. P.; Zhang, F. S.
2014-04-01
Although the concept of producing higher yields with reduced greenhouse gas (GHG) emissions is a goal that attracts increasing public and scientific attention, the trade-off between high yields and GHG emissions in intensive agricultural production is not well understood. Here, we hypothesize that there exists a mechanistic relationship between wheat grain yield and GHG emission, and that could be transformed into better agronomic management. A total 33 sites of on-farm experiments were investigated to evaluate the relationship between grain yield and GHG emissions using two systems (conventional practice, CP; high-yielding systems, HY) of intensive winter wheat (Triticum aestivum L.) in China. Furthermore, we discussed the potential to produce higher yields with lower GHG emissions based on a survey of 2938 farmers. Compared to the CP system, grain yield was 39% (2352 kg ha-1) higher in the HY system, while GHG emissions increased by only 10%, and GHG emission intensity was reduced by 21%. The current intensive winter wheat system with farmers' practice had a median yield and maximum GHG emission rate of 6050 kg ha-1 and 4783 kg CO2 eq ha-1, respectively; however, this system can be transformed to maintain yields while reducing GHG emissions by 26% (6077 kg ha-1, and 3555 kg CO2 eq ha-1). Further, the HY system was found to increase grain yield by 39% with a simultaneous reduction in GHG emissions by 18% (8429 kg ha-1, and 3905 kg CO2 eq ha-1, respectively). In the future, we suggest moving the trade-off relationships and calculations from grain yield and GHG emissions to new measures of productivity and environmental protection using innovative management technologies.
Khan, Muhammad Tariq Iqbal; Yaseen, Muhammad Rizwan; Ali, Qamar
2018-06-08
This study explored the long-run association among greenhouse gases (GHGs), financial development, forest area, improved sanitation, renewable energy, urbanization, and trade in 24 lower middle-income countries from Asia, Europe, Africa, and America (South and North) by using panel data from 1990 to 2015. Granger causality was tested by Toda and Yamamoto approach. The bi-directional causality was established among urbanization and GHGs (Asia), financial development and forest (Asia), energy use and renewable energy (Asia), renewable energy and forest (Asia), improved sanitation and forest (Asia, Africa, America), urbanization and forest (Asia), and improved sanitation and financial development (Europe). The GHG emission also shows one-way causality is running from financial development to GHG (America), energy to GHG (Asia), renewable energy to GHG (America), forest area to GHG (America), trade openness to GHG (Africa), urbanization to GHG (Europe), GHG to financial development (Europe), GHG to energy use (Europe, Africa, and America), and GHG to trade openness (Asia). On the basis of fully modified ordinary least square and generalized method of moment, the reciprocal relationship of GHGs was observed due to financial development in Asia and Africa; renewable energy in all panels; forest area in Asia, Europe, and America; improved sanitation in Asia, Africa, and America; trade openness in Africa; and urbanization in Europe and America. Policymakers should concentrate on these variables for the reduction in GHGs. The annual convergence towards long-run equilibrium was 50.5, 31.9, and 20.9% for America, Asia, and Africa, respectively.
Downsized Boosted Engine Benchmarking Method and Results (SAE Paper 2015-01-1266)
Light-duty vehicle greenhouse gas (GHG) and fuel economy (FE) standards for MYs 2012 -2025 are requiring vehicle powertrain to become much more efficient. One key technology strategy that vehicle manufacturers are using to help comply with GHG and FE standards is to replace natu...
2010 Commitment Letters for MY2017-2025 Light-Duty and MY 2014-2018 Heavy-Duty Programs
The State of California and major automobile and truck manufacturers showed their support for a national heavy-duty GHG and fuel efficiency program as well as further light-duty GHG and CAFE standards by sending letters to the agencies in May 2010.
Stratton, Russell W; Wolfe, Philip J; Hileman, James I
2011-12-15
Alternative fuels represent a potential option for reducing the climate impacts of the aviation sector. The climate impacts of alternatives fuel are traditionally considered as a ratio of life cycle greenhouse gas (GHG) emissions to those of the displaced petroleum product; however, this ignores the climate impacts of the non-CO(2) combustion effects from aircraft in the upper atmosphere. The results of this study show that including non-CO(2) combustion emissions and effects in the life cycle of a Synthetic Paraffinic Kerosene (SPK) fuel can lead to a decrease in the relative merit of the SPK fuel relative to conventional jet fuel. For example, an SPK fuel option with zero life cycle GHG emissions would offer a 100% reduction in GHG emissions but only a 48% reduction in actual climate impact using a 100-year time window and the nominal climate modeling assumption set outlined herein. Therefore, climate change mitigation policies for aviation that rely exclusively on relative well-to-wake life cycle GHG emissions as a proxy for aviation climate impact may overestimate the benefit of alternative fuel use on the global climate system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, Colin; Boardman, Richard; McKellar, Michael
This report quantifies greenhouse gas (GHG) emissions from the industrial sector and identifies opportunities for non-GHG-emitting thermal energy sources to replace the most significant GHG-emitting U.S. industries based on targeted, process-level analysis of industrial heat requirements. The intent is to provide a basis for projecting opportunities for clean energy use. This provides a prospectus for small modular nuclear reactors (including nuclear-renewable hybrid energy systems), solar industrial process heat, and geothermal energy. This report provides a complement to analysis of process-efficiency improvement by considering how clean energy delivery and use by industry could reduce GHG emissions.
Effects of California's Climate Policy in Facilitating CCUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, Elizabeth
California is at the forefront of addressing the challenges involved in redesigning its energy infrastructure to meet 2050 GHG reduction goals, but CCUS commercialization lags in California as it does elsewhere. It is unclear why this is the case given the state’s forefront position in aggressive climate change policy. The intent of this paper is to examine the factors that may explain why CCUS has not advanced as rapidly as other GHG emissions mitigation technologies in California and identify ways by which CCUS commercialization may be advanced in the context of California’s future energy infrastructure. CCUS has application to reducemore » GHG emissions from the power, industrial and transportation sectors in the state. Efficiency, use of renewable energy or nuclear generation to replace fossil fuels, use of lower or no-net-carbon feedstocks (such as biomass), and use of CCUS on fossil fuel generation are the main options, but California has fewer options for making the deep cuts in CO 2 emissions within the electricity sector to meet 2050 goals. California is already the most efficient of all 50 states as measured by electricity use per capita, and, while further efficiency measures can reduce per capita consumption, increasing population is still driving electricity demand upwards. A 1976 law prevents building any new nuclear plants until a federal high-level nuclear waste repository is approved. Most all in-state electricity generation already comes from natural gas; although California does plan to eliminate electricity imports from out-of-state coal-fired generation. Thus, the two options with greatest potential to reduce in-state power sector CO 2 emissions are replacing fossil with renewable generation or employing CCUS on natural gas power plants. Although some scenarios call on California to transition its electricity sector to 100 percent renewables, it is unclear how practical this approach is given the intermittency of renewable generation, mismatches between peak generation times and demand times, and the rate of progress in developing technologies for large-scale power storage. Vehicles must be electrified or move to biofuels or zero-carbon fuels in order to decarbonize the transportation sector. These options transfer the carbon footprint of transportation to other sectors: the power sector in the case of electric vehicles and the industrial and agricultural sectors in the case of biofuels or zero-carbon fuels. Thus, the underlying presumption to achieve overall carbon reductions is that the electricity used by vehicles does not raise the carbon emissions of the power sector: biofuel feedstock growth, harvest, and processing uses low carbon energy or production of fuels from fossil feedstocks employs CCUS. This results in future transportation sector energy derived solely from renewables, biomass, or fossil fuel point sources utilizing CCUS. In the industrial sector, the largest contributors to GHG emissions are transportation fuel refineries and cement plants. Emissions from refineries come from on-site power generation and hydrogen plants; while fuel mixes can be changed to reduce the GHG emissions from processing and renewable sources can be used to generate power, total decarbonization requires use of CCUS. Similarly, for cement plants, power generation may use carbon-free feedstocks instead of fossil fuels, but CO 2 emissions associated with the manufacture of cement products must be dealt with through CCUS. Of course, another option for these facilities is the purchase of offsets to create a zero-emissions plant.« less
Effects of California's Climate Policy in Facilitating CCUS
Burton, Elizabeth
2014-12-31
California is at the forefront of addressing the challenges involved in redesigning its energy infrastructure to meet 2050 GHG reduction goals, but CCUS commercialization lags in California as it does elsewhere. It is unclear why this is the case given the state’s forefront position in aggressive climate change policy. The intent of this paper is to examine the factors that may explain why CCUS has not advanced as rapidly as other GHG emissions mitigation technologies in California and identify ways by which CCUS commercialization may be advanced in the context of California’s future energy infrastructure. CCUS has application to reducemore » GHG emissions from the power, industrial and transportation sectors in the state. Efficiency, use of renewable energy or nuclear generation to replace fossil fuels, use of lower or no-net-carbon feedstocks (such as biomass), and use of CCUS on fossil fuel generation are the main options, but California has fewer options for making the deep cuts in CO 2 emissions within the electricity sector to meet 2050 goals. California is already the most efficient of all 50 states as measured by electricity use per capita, and, while further efficiency measures can reduce per capita consumption, increasing population is still driving electricity demand upwards. A 1976 law prevents building any new nuclear plants until a federal high-level nuclear waste repository is approved. Most all in-state electricity generation already comes from natural gas; although California does plan to eliminate electricity imports from out-of-state coal-fired generation. Thus, the two options with greatest potential to reduce in-state power sector CO 2 emissions are replacing fossil with renewable generation or employing CCUS on natural gas power plants. Although some scenarios call on California to transition its electricity sector to 100 percent renewables, it is unclear how practical this approach is given the intermittency of renewable generation, mismatches between peak generation times and demand times, and the rate of progress in developing technologies for large-scale power storage. Vehicles must be electrified or move to biofuels or zero-carbon fuels in order to decarbonize the transportation sector. These options transfer the carbon footprint of transportation to other sectors: the power sector in the case of electric vehicles and the industrial and agricultural sectors in the case of biofuels or zero-carbon fuels. Thus, the underlying presumption to achieve overall carbon reductions is that the electricity used by vehicles does not raise the carbon emissions of the power sector: biofuel feedstock growth, harvest, and processing uses low carbon energy or production of fuels from fossil feedstocks employs CCUS. This results in future transportation sector energy derived solely from renewables, biomass, or fossil fuel point sources utilizing CCUS. In the industrial sector, the largest contributors to GHG emissions are transportation fuel refineries and cement plants. Emissions from refineries come from on-site power generation and hydrogen plants; while fuel mixes can be changed to reduce the GHG emissions from processing and renewable sources can be used to generate power, total decarbonization requires use of CCUS. Similarly, for cement plants, power generation may use carbon-free feedstocks instead of fossil fuels, but CO 2 emissions associated with the manufacture of cement products must be dealt with through CCUS. Of course, another option for these facilities is the purchase of offsets to create a zero-emissions plant.« less
CO2 - The Canary in the Energy Efficiency Coal Mine
NASA Astrophysics Data System (ADS)
Somssich, Peter
2011-04-01
While much of the discussion surrounding CO2 is focused on its role as a GHG (green house gas) and its affect on Climate Change, CO2 can also be viewed as an indicator for reductions in fossil fuel use and increased energy efficiency. Much as the canary in a mine was used to warn miners of unsafe health conditions in a mine, CO2 can be seen as allowing us to effectively track progress towards energy efficiency and sustainability. Such an effort can best be achieved by either a Carbon Tax or a Cap and Trade system which was highly effective as part of the 1992 Clean Air Act, contributing to a significant reduction of SO2 and acid rain. A similar attempt has been made using the 1997 Kyoto Protocol to reduce carbon emissions. The mechanisms of how this treaty was intended to work will be explained, and examples will be given, both in the USA and Europe, of how the protocol was used to reduce energy consumption and energy dependence, while also reducing CO2 emissions. Regardless of how strong an impact CO2 reduction may have for Climate Change issues, a reduction of CO2 is guaranteed to produce energy benefits, monetary benefits and can even enhance national security. For all of these reasons, we need the CO2 canary.
Briggs, Adam D M; Kehlbacher, Ariane; Tiffin, Richard; Garnett, Tara; Rayner, Mike; Scarborough, Peter
2013-01-01
Objectives To model the impact on chronic disease of a tax on UK food and drink that internalises the wider costs to society of greenhouse gas (GHG) emissions and to estimate the potential revenue. Design An econometric and comparative risk assessment modelling study. Setting The UK. Participants The UK adult population. Interventions Two tax scenarios are modelled: (A) a tax of £2.72/tonne carbon dioxide equivalents (tCO2e)/100 g product applied to all food and drink groups with above average GHG emissions. (B) As with scenario (A) but food groups with emissions below average are subsidised to create a tax neutral scenario. Outcome measures Primary outcomes are change in UK population mortality from chronic diseases following the implementation of each taxation strategy, the change in the UK GHG emissions and the predicted revenue. Secondary outcomes are the changes to the micronutrient composition of the UK diet. Results Scenario (A) results in 7770 (95% credible intervals 7150 to 8390) deaths averted and a reduction in GHG emissions of 18 683 (14 665to 22 889) ktCO2e/year. Estimated annual revenue is £2.02 (£1.98 to £2.06) billion. Scenario (B) results in 2685 (1966 to 3402) extra deaths and a reduction in GHG emissions of 15 228 (11 245to 19 492) ktCO2e/year. Conclusions Incorporating the societal cost of GHG into the price of foods could save 7770 lives in the UK each year, reduce food-related GHG emissions and generate substantial tax revenue. The revenue neutral scenario (B) demonstrates that sustainability and health goals are not always aligned. Future work should focus on investigating the health impact by population subgroup and on designing fiscal strategies to promote both sustainable and healthy diets. PMID:24154517
NASA Astrophysics Data System (ADS)
Kritee, K.; Tiwari, R.; Nair, D.; Loecke, T. D.; Adhya, T. K.; Rudek, J.; Ahuja, R.; Hamburg, S.
2013-12-01
At Environmental Defense Fund (EDF), we recognize that any intervention to mitigate greenhouse gas (GHG) emissions should meet the interests of small scale farmers and low-carbon farming (LCF) is an integral component of our work on international climate. As a part of our Emissions Measurement and Methodology Development (EMD) Project, a joint undertaking with Indian NGO partners of the Fair Climate Network (FCN), five GHG measurement laboratories were set up across three states in peninsular (south) India. These labs represent different agro-ecological zones within the dryland agriculture belt in South India for which no reliable datasets on GHG emission have been available. Our approach for collecting gas samples was based on the Gracenet protocol. Sampling for nitrous oxide and methane emissions were made on approximately 50% of the total number of days in a growing season and once a week during fallow periods. In order to capture the peak emissions of nitrous oxide, samples were collected for 3-4 consecutive days after critical events like tillage, weeding, fertilization, and rainfall/irrigation. The research team collected field data at the time of sampling (temperature of the soil, water and air; and water levels). We also recorded parameters (e.g. water, fertilizer, labor and energy use; and yields) which were necessary for calculating farm profitability. Our data from 2012-2013 suggest that, for peninsular India, low-carbon rice cultivation techniques offer very large emission reduction potential (2-5 metric tons CO2e per acre per year), with smaller reductions from peanut and millet (0.15-0.5 metric ton CO2e per acre per season). The Tier 1 IPCC emissions factors 1) grossly underestimate both the amount of nitrous oxide emission from conventional rice cultivation practices, and the extent to which it can be reduced through better fertilizer management and 2) overestimate the methane emission reduction possible due to water management for rice paddies by a small but significant amount. It is crucial to customize fertilizer and water management to each agro-ecological zone such that net GHG emission reduction is maximized. Further comprehensive measurements over next 2-3 growing seasons will make Indian GHG emissions calculations from peninsular region more accurate. Even more importantly, these measurements will enable the region to more effectively reduce emissions from rice cultivation. Our preliminary assessments also show that LCF practices also have the potential to decrease water use by 10-30%, reduce total nitrogen loading in local water bodies by 20-40%, and improve long term soil health by optimizing organic matter and increasing water-holding capacity. Thus, we demonstrate immediate benefits of LCF practices in reducing input costs as well as lay the path for methodology development for better quantification of GHG emission reductions. Monetization of these reductions can provide an additional income stream to small scale farms, thereby helping incentivize adoption of LCF practices. The central payoff is a 'triple win' for society: increased long-term food security (including through enhanced yields), rural economic development (through improved farm profitability and adaptation to climate change), and lower environmental impacts (including lower GHG emissions).
NASA Astrophysics Data System (ADS)
Avilova, I. P.; Krutilova, M. O.
2018-01-01
Economic growth is the main determinant of the trend to increased greenhouse gas (GHG) emission. Therefore, the reduction of emission and stabilization of GHG levels in the atmosphere become an urgent task to avoid the worst predicted consequences of climate change. GHG emissions in construction industry take a significant part of industrial GHG emission and are expected to consistently increase. The problem could be successfully solved with a help of both economical and organizational restrictions, based on enhanced algorithms of calculation and amercement of environmental harm in building industry. This study aims to quantify of GHG emission caused by different constructive schemes of RC framework in concrete casting. The result shows that proposed methodology allows to make a comparative analysis of alternative projects in residential housing, taking into account an environmental damage, caused by construction process. The study was carried out in the framework of the Program of flagship university development on the base of Belgorod State Technological University named after V.G. Shoukhov
NASA Astrophysics Data System (ADS)
Sung, K.; Park, S.
2007-12-01
Increased atmospheric concentrations of greenhouse gases (GHG) caused by anthropogenic activities has been related to global climate change. Methane, the second most important GHG after CO2, is 21 times more effective at trapping heat than CO2. Therefore, methane emission control is of utmost importance for global warming reduction. To minimize leachate production and protect groundwater resources, modern sanitary landfills are equipped with composite covers and gas collection systems. Methane from modern sanitary landfills is vented directly to the atmosphere, except for some of the largest landfills where it is recovered as energy and burned at the site. However, the efficiency of energy recovery systems in larger landfills is reduced as the amount of CH4 generated from landfill begins to decrease. In this study, the performance of a lab-scale model biofilter system was investigated to treat CH4 gas emitted from modern sanitary landfills by conducting batch and column experiments using landfill cover soil amended with earthworm cast as the filter bed medium. From the batch experiments to measure the influence of moisture content and temperature of the filter medium on CH4 removal capacity of a biofilter system, the optimum moisture content and temperature were found to be 10-15% by weight and 25-35°C, respectively. The column experiment was conducted to measure the influence of inlet CH4 concentration and CH4 loading rate on CH4 removal capacity of a biofilter system. As the inlet CH4 concentration decreased, the percentage of CH4 oxidized increased. Up to a CH4 loading rate of 2785 g CH4 m3 h- 1 (EBRT = 7.7 min), the CH4 removal efficiency of the biofilter was able to reach 100%. Based on the results of the study, the installation of a properly managed biofilter system should be capable of achieving a reduction in atmospheric CH4 emissions from modern sanitary landfills at low CH4 generation stage.
Sandulescu, Elena
2004-12-01
Waste management is a key process to protect the environment and conserve resources. The contribution of appropriate waste management measures to the reduction of greenhouse gas (GHG) emissions from the city of Bucharest was studied. An analysis of the distribution of waste flows into various treatment options was conducted using the material flows and stocks analysis (MFSA). An optimum scenario (i.e. municipal solid waste stream managed as: recycling of recoverable materials, 8%; incineration of combustibles, 60%; landfilling of non-combustibles, 32%) was modelled to represent the future waste management in Bucharest with regard to its relevance towards the potential for GHG reduction. The results indicate that it can contribute by 5.5% to the reduction of the total amount of GHGs emitted from Bucharest.
Life cycle assessment of biofuels: energy and greenhouse gas balances.
Gnansounou, E; Dauriat, A; Villegas, J; Panichelli, L
2009-11-01
The promotion of biofuels as energy for transportation in the industrialized countries is mainly driven by the perspective of oil depletion, the concerns about energy security and global warming. However due to sustainability constraints, biofuels will replace only 10 to 15% of fossil liquid fuels in the transport sector. Several governments have defined a minimum target of GHG emissions reduction for those biofuels that will be eligible to public incentives, for example a 35% emissions reduction in case of biofuels in Members States of the European Union. This article points out the significant biases in estimating GHG balances of biofuels stemming from modelling choices about system definition and boundaries, functional unit, reference systems and allocation methods. The extent to which these choices influence the results is investigated. After performing a comparison and constructive criticism of various modelling choices, the LCA of wheat-to-bioethanol is used as an illustrative case where bioethanol is blended with gasoline at various percentages (E5, E10 and E85). The performance of these substitution options is evaluated as well. The results show a large difference in the reduction of the GHG emissions with a high sensitivity to the following factors: the method used to allocate the impacts between the co-products, the type of reference systems, the choice of the functional unit and the type of blend. The authors come out with some recommendations for basing the estimation of energy and GHG balances of biofuels on principles such as transparency, consistency and accuracy.
Coordinated EV adoption: double-digit reductions in emissions and fuel use for $40/vehicle-year.
Choi, Dong Gu; Kreikebaum, Frank; Thomas, Valerie M; Divan, Deepak
2013-09-17
Adoption of electric vehicles (EVs) would affect the costs and sources of electricity and the United States efficiency requirements for conventional vehicles (CVs). We model EV adoption scenarios in each of six regions of the Eastern Interconnection, containing 70% of the United States population. We develop electricity system optimization models at the multidecade, day-ahead, and hour-ahead time scales, incorporating spatial wind energy modeling, endogenous modeling of CV efficiencies, projections for EV efficiencies, and projected CV and EV costs. We find two means to reduce total consumer expenditure (TCE): (i) controlling charge timing and (ii) unlinking the fuel economy regulations for CVs from EVs. Although EVs provide minimal direct GHG reductions, controlled charging provides load flexibility, lowering the cost of renewable electricity. Without EVs, a 33% renewable electricity standard (RES) would cost $193/vehicle-year more than the reference case (10% RES). Combining a 33% RES, EVs with controlled charging and unlinking would reduce combined electric- and vehicle-sector CO2 emissions by 27% and reduce gasoline consumption by 59% for $40/vehicle-year more than the reference case. Coordinating EV adoption with adoption of controlled charging, unlinked fuel economy regulations, and renewable electricity standards would provide low-cost reductions in emissions and fuel usage.
NASA Astrophysics Data System (ADS)
Chen, H.; Yu, C.; Li, C.
2015-12-01
Sustainable agricultural intensification demand optimum resource managements of agro-ecosystems. Detailed information on the impacts of water use and nutrient application on agro-ecosystem services including crop yields, greenhouse gas (GHG) emissions and nitrogen (N) loss is the key to guide field managements. In this study, we use the DeNitrification-DeComposition (DNDC) model to simulate the biogeochemical processes for rice rotated cropping systems in China. We set varied scenarios of water use in more than 1600 counties, and derived optimal rates of N application for each county in accordance to water use scenarios. Our results suggest that 0.88 ± 0.33 Tg per year (mean ± standard deviation) of synthetic N could be reduced without reducing rice yields, which accounts for 15.7 ± 5.9% of current N application in China. Field managements with shallow flooding and optimal N applications could enhance ecosystem services on a national scale, leading to 34.3% reduction of GHG emissions (CH4, N2O, and CO2), 2.8% reduction of overall N loss (NH3 volatilization, denitrification and N leaching) and 1.7% increase of rice yields, as compared to current management conditions. Among provinces with major rice production, Jiangsu, Yunnan, Guizhou, and Hubei could achieve more than 40% reduction of GHG emissions under appropriate water managements, while Zhejiang, Guangdong, and Fujian could reduce more than 30% N loss with optimal N applications. Our modeling efforts suggest that China is likely to benefit from reforming water and fertilization managements for rice rotated cropping system in terms of sustainable crop yields, GHG emission mitigation and N loss reduction, and the reformation should be prioritized in the above-mentioned provinces. Keywords: water regime, nitrogen fertilization, sustainable management, ecological modeling, DNDC
Aston, Louise M; Smith, James N; Powles, John W
2012-01-01
Consumption of red and processed meat (RPM) is a leading contributor to greenhouse gas (GHG) emissions, and high intakes of these foods increase the risks of several leading chronic diseases. The aim of this study was to use newly derived estimates of habitual meat intakes in UK adults to assess potential co-benefits to health and the environment from reduced RPM consumption. Modelling study using dietary intake data from the National Diet and Nutrition Survey of British Adults. British general population. Respondents were divided into fifths by energy-adjusted RPM intakes, with vegetarians constituting a sixth stratum. GHG emitted in supplying the diets of each stratum was estimated using data from life-cycle analyses. A feasible counterfactual UK population was specified, in which the proportion of vegetarians measured in the survey population doubled, and the remainder adopted the dietary pattern of the lowest fifth of RPM consumers. Reductions in risks of coronary heart disease, diabetes and colorectal cancer, and GHG emissions, under the counterfactual. Habitual RPM intakes were 2.5 times higher in the top compared with the bottom fifth of consumers. Under the counterfactual, statistically significant reductions in population aggregate risks ranged from 3.2% (95% CI 1.9 to 4.7) for diabetes in women to 12.2% (6.4 to 18.0) for colorectal cancer in men, with those moving from the highest to lowest consumption levels gaining about twice these averages. The expected reduction in GHG emissions was 0.45 tonnes CO(2) equivalent/person/year, about 3% of the current total, giving a reduction across the UK population of 27.8 million tonnes/year. Reduced consumption of RPM would bring multiple benefits to health and environment.
Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott
2009-12-01
Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario).
NASA Astrophysics Data System (ADS)
Benveniste, Hélène; Boucher, Olivier; Guivarch, Céline; Le Treut, Hervé; Criqui, Patrick
2018-01-01
Nationally Determined Contributions (NDCs), submitted by Parties to the United Nations Framework Convention on Climate Change before and after the 21st Conference of Parties, summarize domestic objectives for greenhouse gas (GHG) emissions reductions for the 2025-2030 time horizon. In the absence, for now, of detailed guidelines for the format of NDCs, ancillary data are needed to interpret some NDCs and project GHG emissions in 2030. Here, we provide an analysis of uncertainty sources and their impacts on 2030 global GHG emissions based on the sole and full achievement of the NDCs. We estimate that NDCs project into 56.8-66.5 Gt CO2eq yr-1 emissions in 2030 (90% confidence interval), which is higher than previous estimates, and with a larger uncertainty range. Despite these uncertainties, NDCs robustly shift GHG emissions towards emerging and developing countries and reduce international inequalities in per capita GHG emissions. Finally, we stress that current NDCs imply larger emissions reduction rates after 2030 than during the 2010-2030 period if long-term temperature goals are to be fulfilled. Our results highlight four requirements for the forthcoming ‘climate regime’: a clearer framework regarding future NDCs’ design, an increasing participation of emerging and developing countries in the global mitigation effort, an ambitious update mechanism in order to avoid hardly feasible decarbonization rates after 2030 and an anticipation of steep decreases in global emissions after 2030.
Dong, Jun; Ni, Mingjiang; Chi, Yong; Zou, Daoan; Fu, Chao
2013-08-01
In China, the continuously increasing amount of municipal solid waste (MSW) has resulted in an urgent need for changing the current municipal solid waste management (MSWM) system based on mixed collection. A pilot program focusing on source-separated MSW collection was thus launched (2010) in Hangzhou, China, to lessen the related environmental loads. And greenhouse gas (GHG) emissions (Kyoto Protocol) are singled out in particular. This paper uses life cycle assessment modeling to evaluate the potential environmental improvement with regard to GHG emissions. The pre-existing MSWM system is assessed as baseline, while the source separation scenario is compared internally. Results show that 23 % GHG emissions can be decreased by source-separated collection compared with the base scenario. In addition, the use of composting and anaerobic digestion (AD) is suggested for further optimizing the management of food waste. 260.79, 82.21, and -86.21 thousand tonnes of GHG emissions are emitted from food waste landfill, composting, and AD, respectively, proving the emission reduction potential brought by advanced food waste treatment technologies. Realizing the fact, a modified MSWM system is proposed by taking AD as food waste substitution option, with additional 44 % GHG emissions saved than current source separation scenario. Moreover, a preliminary economic assessment is implemented. It is demonstrated that both source separation scenarios have a good cost reduction potential than mixed collection, with the proposed new system the most cost-effective one.
Jamie Lydersen; Brandon M. Collins; Carol Ewell; Alicia Reiner; Jo Ann Fites; Christopher Dow; Patrick Gonzalez; David Saah; John Battles
2014-01-01
Inventories of greenhouse gas (GHG) emissions from wildfire provide essential information to the state of California, USA, and other governments that have enacted emission reductions. Wildfires can release a substantial amount of GHGs and other compounds to the atmosphere, so recent increases in fire activity may be increasing GHG emissions. Quantifying wildfire...
Ashrafi, Omid; Yerushalmi, Laleh; Haghighat, Fariborz
2015-08-01
Pulp-and-paper mills produce various types of contaminants and a significant amount of wastewater depending on the type of processes used in the plant. Since the generated wastewaters can be potentially polluting and very dangerous, they should be treated in wastewater treatment plants before being released to the environment. This paper reviews different wastewater treatment processes used in the pulp-and-paper industry and compares them with respect to their contaminant removal efficiencies and the extent of greenhouse gas (GHG) emission. It also evaluates the impact of operating parameters on the performance of different treatment processes. Two mathematical models were used to estimate GHG emission in common biological treatment processes used in the pulp-and-paper industry. Nutrient removal processes and sludge treatment are discussed and their associated GHG emissions are calculated. Although both aerobic and anaerobic biological processes are appropriate for wastewater treatment, their combination known as hybrid processes showed a better contaminant removal capacity at higher efficiencies under optimized operating conditions with reduced GHG emission and energy costs. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zapata, Christina B.; Yang, Chris; Yeh, Sonia; Ogden, Joan; Kleeman, Michael J.
2018-04-01
The California Regional Multisector Air Quality Emissions (CA-REMARQUE) model is developed to predict changes to criteria pollutant emissions inventories in California in response to sophisticated emissions control programs implemented to achieve deep greenhouse gas (GHG) emissions reductions. Two scenarios for the year 2050 act as the starting point for calculations: a business-as-usual (BAU) scenario and an 80 % GHG reduction (GHG-Step) scenario. Each of these scenarios was developed with an energy economic model to optimize costs across the entire California economy and so they include changes in activity, fuels, and technology across economic sectors. Separate algorithms are developed to estimate emissions of criteria pollutants (or their precursors) that are consistent with the future GHG scenarios for the following economic sectors: (i) on-road, (ii) rail and off-road, (iii) marine and aviation, (iv) residential and commercial, (v) electricity generation, and (vi) biorefineries. Properly accounting for new technologies involving electrification, biofuels, and hydrogen plays a central role in these calculations. Critically, criteria pollutant emissions do not decrease uniformly across all sectors of the economy. Emissions of certain criteria pollutants (or their precursors) increase in some sectors as part of the overall optimization within each of the scenarios. This produces nonuniform changes to criteria pollutant emissions in close proximity to heavily populated regions when viewed at 4 km spatial resolution with implications for exposure to air pollution for those populations. As a further complication, changing fuels and technology also modify the composition of reactive organic gas emissions and the size and composition of particulate matter emissions. This is most notably apparent through a comparison of emissions reductions for different size fractions of primary particulate matter. Primary PM2.5 emissions decrease by 4 % in the GHG-Step scenario vs. the BAU scenario while corresponding primary PM0.1 emissions decrease by 36 %. Ultrafine particles (PM0.1) are an emerging pollutant of concern expected to impact public health in future scenarios. The complexity of this situation illustrates the need for realistic treatment of criteria pollutant emissions inventories linked to GHG emissions policies designed for fully developed countries and states with strict existing environmental regulations.
NASA Astrophysics Data System (ADS)
Di Vittorio, A. V.; Simmonds, M.; Nico, P. S.
2017-12-01
Land-based carbon sequestration and GreenHouse Gas (GHG) reduction strategies are often implemented in small patches and evaluated independently from each other, which poses several challenges to determining their potential benefits at the regional scales at which carbon/GHG targets are defined. These challenges include inconsistent methods, uncertain scalability to larger areas, and lack of constraints such as land ownership and competition among multiple strategies. To address such challenges we have developed an integrated carbon and GHG budget model of California's entire landscape, delineated by geographic region, land type, and ownership. This empirical model has annual time steps and includes net ecosystem carbon exchange, wildfire, multiple forest management practices including wood and bioenergy production, cropland and rangeland soil management, various land type restoration activities, and land cover change. While the absolute estimates vary considerably due to uncertainties in initial carbon densities and ecosystem carbon exchange rates, the estimated effects of particular management activities with respect to baseline are robust across these uncertainties. Uncertainty in land use/cover change data is also critical, as different rates of shrubland to grassland conversion can switch the system from a carbon source to a sink. The results indicate that reducing urban area expansion has substantial and consistent benefits, while the effects of direct land management practices vary and depend largely on the available management area. Increasing forest fuel reduction extent over the baseline contributes to annual GHG costs during increased management, and annual benefits after increased management ceases. Cumulatively, it could take decades to recover the cost of 14 years of increased fuel reduction. However, forest carbon losses can be completely offset within 20 years through increases in urban forest fraction and marsh restoration. Additionally, highly uncertain black carbon estimates dominate the overall GHG budget due to wildfire, forest management, and bioenergy production. Overall, this tool is well suited for exploring suites of management options and extents throughout California in order to quantify potential regional carbon sequestration and GHG emission benefits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, T. S.; Taylor, C. H.; Moore, J. S.
Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies offices of DOE’s Office of Energy Efficiency and Renewable Energy invest in research, development, demonstration, and deployment of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies. This report estimates the benefits of successfully developing and deploying these technologies (a “Program Success” case) relative to a base case (the “No Program” case). The Program Success case represents the future with completely successful deployment of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies. The No Program case represents a future in which theremore » is no contribution after FY 2016 by the VTO or FCTO to these technologies. The benefits of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies were estimated on the basis of differences in fuel use, primary energy use, and greenhouse gas (GHG) emissions from light-, medium- and heavy-duty vehicles, including energy and emissions from fuel production, between the base case and the Program Success case. Improvements in fuel economy of various vehicle types, growth in the stock of fuel cell vehicles and other advanced technology vehicles, and decreased GHG intensity of hydrogen production and delivery in the Program Success case over the No Program case were projected to result in savings in petroleum use and GHG emissions. Benefits were disaggregated by individual program technology areas, which included the FCTO program and the VTO subprograms of batteries and electric drives; advanced combustion engines; fuels and lubricants; materials (for reduction in vehicle mass, or “lightweighting”); and, for medium- and heavy-duty vehicles, reduction in rolling and aerodynamic resistance. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 47% to 76% higher than in the No Program case. On-road medium- and heavy-duty vehicle stock could be as much as 39% higher. The resulting petroleum savings in 2035 were estimated to be as high as 3.1 million barrels per day, and reductions in GHG emissions were estimated to be as high as 500 million metric tons of CO2 equivalent per year. The benefits of continuing to invest government resources in advanced vehicle and fuel cell technologies would have significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.« less
The Benefits of Internalizing Air Quality and Greenhouse Gas Externalities in the US Energy System
NASA Astrophysics Data System (ADS)
Brown, Kristen E.
The emission of pollutants from energy use has effects on both local air quality and the global climate, but the price of energy does not reflect these externalities. This study aims to analyze the effect that internalizing these externalities in the cost of energy would have on the US energy system, emissions, and human health. In this study, we model different policy scenarios in which fees are added to emissions related to generation and use of energy. The fees are based on values of damages estimated in the literature and are applied to upstream and combustion emissions related to electricity generation, industrial energy use, transportation energy use, residential energy use, and commercial energy use. The energy sources and emissions are modeled through 2055 in five-year time steps. The emissions in 2045 are incorporated into a continental-scale atmospheric chemistry and transport model, CMAQ, to determine the change in air quality due to different emissions reduction scenarios. A benefit analysis tool, BenMAP, is used with the air quality results to determine the monetary benefit of emissions reductions related to the improved air quality. We apply fees to emissions associated with health impacts, climate change, and a combination of both. We find that the fees we consider lead to reductions in targeted emissions as well as co-reducing non-targeted emissions. For fees on the electric sector alone, health impacting pollutant (HIP) emissions reductions are achieved mainly through control devices while Greenhouse Gas (GHG) fees are addressed through changes in generation technologies. When sector specific fees are added, reductions come mainly from the industrial and electricity generation sectors, and are achieved through a mix of energy efficiency, increased use of renewables, and control devices. Air quality is improved in almost all areas of the country with fees, including when only GHG fees are applied. Air quality tends to improve more in regions with larger emissions reductions, especially for PM2.5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yan; Vyas, Anant D.; Guo, Zhaomiao
This report summarizes our evaluation of the potential energy-use and GHG-emissions reduction achieved by shifting freight from truck to rail under a most-likely scenario. A sensitivity analysis is also included. The sensitivity analysis shows changes in energy use and GHG emissions when key parameters are varied. The major contribution and distinction from previous studies is that this study considers the rail level of service (LOS) and commodity movements at the origin-destination (O-D) level. In addition, this study considers the fragility and time sensitivity of each commodity type.
Pishgar-Komleh, Seyyed Hassan; Akram, Asadollah; Keyhani, Alireza; van Zelm, Rosalie
2017-07-01
In order to achieve sustainable development in agriculture, it is necessary to quantify and compare the energy, economic, and environmental aspects of products. This paper studied the energy, economic, and greenhouse gas (GHG) emission patterns in broiler chicken farms in the Alborz province of Iran. We studied the effect of the broiler farm size as different production systems on the energy, economic, and environmental indices. Energy use efficiency (EUE) and benefit-cost ratio (BCR) were 0.16 and 1.11, respectively. Diesel fuel and feed contributed the most in total energy inputs, while feed and chicks were the most important inputs in economic analysis. GHG emission calculations showed that production of 1000 birds produces 19.13 t CO 2-eq and feed had the highest share in total GHG emission. Total GHG emissions based on different functional units were 8.5 t CO 2-eq per t of carcass and 6.83 kg CO 2-eq per kg live weight. Results of farm size effect on EUE revealed that large farms had better energy management. For BCR, there was no significant difference between farms. Lower total GHG emissions were reported for large farms, caused by better management of inputs and fewer bird losses. Large farms with more investment had more efficient equipment, resulting in a decrease of the input consumption. In view of our study, it is recommended to support the small-scale broiler industry by providing subsidies to promote the use of high-efficiency equipment. To decrease the amount of energy usage and GHG emissions, replacing heaters (which use diesel fuel) with natural gas heaters can be considered. In addition to the above recommendations, the use of energy saving light bulbs may reduce broiler farm electricity consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, H.; Wang, M.; Elgowainy, A.
Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors inmore » the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.« less
Frutos, Osvaldo D; Cortes, Irene; Cantera, Sara; Arnaiz, Esther; Lebrero, Raquel; Muñoz, Raúl
2017-06-06
N 2 O represents ∼6% of the global greenhouse gas emission inventory and the most important O 3 -depleting substance emitted in this 21st century. Despite its environmental relevance, little attention has been given to cost-effective and environmentally friendly N 2 O abatement methods. Here we examined, the potential of a bubble column (BCR) and an internal loop airlift (ALR) bioreactors of 2.3 L for the abatement of N 2 O from a nitric acid plant emission. The process was based on the biological reduction of N 2 O by Paracoccus denitrificans using methanol as a carbon/electron source. Two nitrogen limiting strategies were also tested for the coproduction of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) coupled with N 2 O reduction. High N 2 O removal efficiencies (REs) (≈87%) together with a low PHBV cell accumulation were observed in both bioreactors in excess of nitrogen. However, PHBV contents of 38-64% were recorded under N limiting conditions along with N 2 O-REs of ≈57% and ≈84% in the ALR and BCR, respectively. Fluorescence in situ hybridization analyses showed that P. denitrificans was dominant (>50%) after 6 months of experimentation. The successful abatement of N 2 O concomitant with PHBV accumulation confirmed the potential of integrating biorefinery concepts into biological gas treatment for a cost-effective GHG mitigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Runze; Riddle, Matthew; Graziano, Diane
Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM), and AM has been increasingly adopted by aircraft component manufacturers for lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integrates engineering criteria, life-cycle environmental data, aircraft fleet stockmore » and fuel use models under different AM adoption scenarios. Estimated fleet-wide life-cycle primary energy savings at most reach 70-173 million GJ/year in 2050, with cumulative savings of 1.2–2.8 billion GJ. Associated cumulative GHG emission reductions were estimated at 92.1–215.0 million metric tons. In addition, thousands of tons of aluminum, titanium and nickel alloys could be potentially saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less
Greenhouse Gas Emissions from Reservoir Water Surfaces: A ...
Collectively, reservoirs are an important anthropogenic source of greenhouse gases (GHGs) to the atmosphere. Attempts to model reservoir GHG fluxes, however, have been limited by inconsistencies in methodological approaches and data availability. An increase in the number of published reservoir GHG flux estimates during the last 15 years warrants a comprehensive analysis of the magnitude and potential controls on these fluxes. Here we synthesize worldwide reservoir CH4, CO2, and N2O emission data and estimate that GHG emissions from reservoirs account for 80.2 Tmol CO2 equivalents yr-1, thus constituting approximately 5% of anthropogenic radiative forcing. The majority (93%) of these emissions are from CH4, and mainly in the form of bubbles. While age and latitude have historically been linked to reservoir GHG emissions, we found that factors related to reservoir nutrient status and rainfall were better predictors. In particular, nutrient-rich eutrophic reservoirs were found to have an order of magnitude higher per-area CH4 fluxes, on average, than their nutrient-poor oligotrophic counterparts. Therefore, management measures to reduce reservoir eutrophication may result in an important co-benefit, the reduction of GHG emissions to the atmosphere. Greenhouse gas emissions (GHG)
NASA Astrophysics Data System (ADS)
Oikawa, P. Y.; Jenerette, D.; Knox, S. H.; Sturtevant, C. S.; Verfaillie, J. G.; Baldocchi, D. D.
2014-12-01
Under California's Cap-and-Trade program, companies are looking to invest in land-use practices that will reduce greenhouse gas (GHG) emissions. The Sacramento-San Joaquin River Delta is a drained cultivated peatland system and a large source of CO2. To slow soil subsidence and reduce CO2 emissions, there is growing interest in converting drained peatlands to wetlands. However, wetlands are large sources of CH4 that could offset CO2-based GHG reductions. The goal of our research is to provide accurate measurements and model predictions of the changes in GHG budgets that occur when drained peatlands are restored to wetland conditions. We have installed a network of eddy covariance towers across multiple land use types in the Delta and have been measuring CO2 and CH4 ecosystem exchange for multiple years. In order to upscale these measurements through space and time we are using these data to parameterize and validate a process-based biogeochemical model. To predict gross primary productivity (GPP), we are using a simple light use efficiency (LUE) model which requires estimates of light, leaf area index and air temperature and can explain 90% of the observed variation in GPP in a mature wetland. To predict ecosystem respiration we have adapted the Dual Arrhenius Michaelis-Menten (DAMM) model. The LUE-DAMM model allows accurate simulation of half-hourly net ecosystem exchange (NEE) in a mature wetland (r2=0.85). We are working to expand the model to pasture, rice and alfalfa systems in the Delta. To predict methanogenesis, we again apply a modified DAMM model, using simple enzyme kinetics. However CH4 exchange is complex and we have thus expanded the model to predict not only microbial CH4 production, but also CH4 oxidation, CH4 storage and the physical processes regulating the release of CH4 to the atmosphere. The CH4-DAMM model allows accurate simulation of daily CH4 ecosystem exchange in a mature wetland (r2=0.55) and robust estimates of annual CH4 budgets. The LUE- and CH4-DAMM models will advance understanding of biogeochemisty and microbial processes in managed peatland systems as well as aid the development of a GHG protocol in the Delta that can provide financial incentive to farmers to reduce GHG emissions under California's Cap and Trade program.
Will Transition of Staple Food Strategy in China Really Mitigate Global Climate Change?
NASA Astrophysics Data System (ADS)
Liu, B.; Zhao, D.
2017-12-01
With the increase in agricultural demand, reducing greenhouse gas (GHG) emissions is a vital challenge in mitigating climate change. Potato staple food strategy in China introduced by Ministry of Agriculture in 2015 is to gradually adjust staple food structure, which provides an opportunity to meet with the challenge. Apart from staple food structure, difference on energy, material input, geography, and crop management are essential to determine agriculture's contribution to climate change. In this study, we conduct a life cycle analysis of four staple foods in China, namely rice, wheat, maize, and potato, to develop crop-specific estimates of GHG emissions and GHG intensity by using `Production intensity' (carbon dioxide equivalent emissions per kilocalorie produced), to help us understand potential synergies and frictions between food producing and climate mitigation. Data used in this study is on city / province levels if city level is unavailable in 2015. First, we evaluate GHG reductions due to transition of staple food structure in China. Staple food GHG emissions in China are 546.90 Tg CO2e yr-1 in 2015, with 47.6%, 21.9%, 27.3% and 3.2% from rice, wheat, maize and potato. Mean production intensity of staple food is 0.45 Mg CO2e M kcal-1 in 2015. Maize leads the intensity with 0.77 Mg CO2e M kcal-1, followed by rice (0.49 Mg CO2e M kcal-1), wheat (0.28 Mg CO2e M kcal-1) and potato (0.24 Mg CO2e M kcal-1). After staple food structure adjustment, 25 Tg CO2e yr-1 (4.2%) reduction will be accomplished in 2020 without any crop management improvement. Further reduction (33.3% - 40.4%) could be achieved with crop management improvement. In addition, because of staple food structure switching, native rice production will decline, which might lead to more export from countries with higher production intensity. Estimated emission leakage from rice import is 30.10 Tg CO2e yr-1, exceeds emission reduction in native China. Therefore, potato staple food strategy could meet the demand for food in China, but it increases risk of global climate change.
Improving the environmental profile of wood panels via co-production of ethanol and acetic acid.
Earles, J Mason; Halog, Anthony; Shaler, Stephen
2011-11-15
The oriented strand board (OSB) biorefinery is an emerging technology that could improve the building, transportation, and chemical sectors' environmental profiles. By adding a hot water extraction stage to conventional OSB panel manufacturing, hemicellulose polysaccharides can be extracted from wood strands and converted to renewably sourced ethanol and acetic acid. Replacing fossil-based gasoline and acetic acid has the potential to reduce greenhouse gas (GHG) emissions, among other possible impacts. At the same time, hemicellulose extraction could improve the environmental profile of OSB panels by reducing the level of volatile organic compounds (VOCs) emitted during manufacturing. In this study, the life cycle significance of such GHG, VOC, and other emission reductions was investigated. A process model was developed based on a mix of laboratory and industrial-level mass and energy flow data. Using these data a life cycle assessment (LCA) model was built. Sensitive process parameters were identified and used to develop a target production scenario for the OSB biorefinery. The findings suggest that the OSB biorefinery's deployment could substantially improve human and ecosystem health via reduction of select VOCs compared to conventionally produced OSB, gasoline, and acetic acid. Technological advancements are needed, however, to achieve desirable GHG reductions.
Reducing transit bus emissions: Alternative fuels or traffic operations?
NASA Astrophysics Data System (ADS)
Alam, Ahsan; Hatzopoulou, Marianne
2014-06-01
In this study, we simulated the operations and greenhouse gas (GHG) emissions of transit buses along a busy corridor and quantified the effects of two different fuels (conventional diesel and compressed natural gas) as well as a set of driving conditions on emissions. Results indicate that compressed natural gas (CNG) reduces GHG emissions by 8-12% compared to conventional diesel, this reduction could increase to 16% with high levels of traffic congestion. However, the benefits of switching from conventional diesel to CNG are less apparent when the road network is uncongested. We also investigated the effects of bus operations on emissions by applying several strategies such as transit signal priority (TSP), queue jumper lanes, and relocation of bus stops. Results show that in congested conditions, TSP alone can reduce GHG emissions by 14% and when combined with improved technology; a reduction of 23% is achieved. The reduction benefits are even more apparent when other transit operational improvements are combined with TSP. Finally a sensitivity analysis was performed to investigate the effect of operational improvements on emissions under varying levels of network congestion. We observe that under “extreme congestion”, the benefits of TSP decrease.
Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms.
Torres, M J; Simon, J; Rowley, G; Bedmar, E J; Richardson, D J; Gates, A J; Delgado, M J
2016-01-01
Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation. © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Rui; Qin, Zhangcai; Han, Jeongwoo
This study conducted the updated simulations to depict a life cycle analysis (LCA) of the biodiesel production from soybeans and other feedstocks in the U.S. It addressed in details the interaction between LCA and induced land use change (ILUC) for biodiesel. Relative to the conventional petroleum diesel, soy biodiesel could achieve 76% reduction in GHG emissions without considering ILUC, or 66-72% reduction in overall GHG emissions when various ILUC cases were considered. Soy biodiesel’s fossil fuel consumption rate was also 80% lower than its petroleum counterpart. Furthermore, this study examined the cause and the implication of each key parameter affectingmore » biodiesel LCA results using a sensitivity analysis, which identified the hot spots for fossil fuel consumption and GHG emissions of biodiesel so that future efforts can be made accordingly. Finally, biodiesel produced from other feedstocks (canola oil and tallow) were also investigated to contrast with soy biodiesel and petroleum diesel« less
Alternative energy balances for Bulgaria to mitigate climate change
NASA Astrophysics Data System (ADS)
Christov, Christo
1996-01-01
Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987 1992 period. The energy sector is the main contributor to the total CO2 emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; wasteheat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed.
Dalgaard, T; Olesen, J E; Petersen, S O; Petersen, B M; Jørgensen, U; Kristensen, T; Hutchings, N J; Gyldenkærne, S; Hermansen, J E
2011-11-01
Greenhouse gas (GHG) emissions from agriculture are a significant contributor to total Danish emissions. Consequently, much effort is currently given to the exploration of potential strategies to reduce agricultural emissions. This paper presents results from a study estimating agricultural GHG emissions in the form of methane, nitrous oxide and carbon dioxide (including carbon sources and sinks, and the impact of energy consumption/bioenergy production) from Danish agriculture in the years 1990-2010. An analysis of possible measures to reduce the GHG emissions indicated that a 50-70% reduction of agricultural emissions by 2050 relative to 1990 is achievable, including mitigation measures in relation to the handling of manure and fertilisers, optimization of animal feeding, cropping practices, and land use changes with more organic farming, afforestation and energy crops. In addition, the bioenergy production may be increased significantly without reducing the food production, whereby Danish agriculture could achieve a positive energy balance. Copyright © 2011 Elsevier Ltd. All rights reserved.
Life cycle analysis of fuel production from fast pyrolysis of biomass.
Han, Jeongwoo; Elgowainy, Amgad; Dunn, Jennifer B; Wang, Michael Q
2013-04-01
A well-to-wheels (WTW) analysis of pyrolysis-based gasoline was conducted and compared with petroleum gasoline. To address the variation and uncertainty in the pyrolysis pathways, probability distributions for key parameters were developed with data from literature. The impacts of two different hydrogen sources for pyrolysis oil upgrading and of two bio-char co-product applications were investigated. Reforming fuel gas/natural gas for H2 reduces WTW GHG emissions by 60% (range of 55-64%) compared to the mean of petroleum fuels. Reforming pyrolysis oil for H2 increases the WTW GHG emissions reduction up to 112% (range of 97-126%), but reduces petroleum savings per unit of biomass used due to the dramatic decline in the liquid fuel yield. Thus, the hydrogen source causes a trade-off between GHG reduction per unit fuel output and petroleum displacement per unit biomass used. Soil application of biochar could provide significant carbon sequestration with large uncertainty. Copyright © 2013 Elsevier Ltd. All rights reserved.
Arbuckle, J Gordon; Morton, Lois Wright; Hobbs, Jon
2015-02-01
Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers' trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management).
Fuel switching in the electricity sector under the EU ETS: Review and prospective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delarue, E.; Voorspools, K.; D'haeseleer, W.
2008-06-15
The European Union has implemented the European Union emission trading scheme (EU ETS) as an instrument to facilitate greenhouse gas (GHG) emission abatement stipulated in the Kyoto protocol. Empirical data show that in the early stages of the EU ETS, the value of a ton of CO{sub 2} has already led to emission abatement through switching from coal to gas in the European electric power sector. In the second part of this paper, an electricity generation simulation model is used to perform simulations on the switching behavior in both the first and the second trading periods of the EU ETS.more » In 2005, the reduction in GHG emissions in the electric power sector due to EU ETS is estimated close to 88 Mton. For the second trading period, a European Union allowance (EUA) price dependent GHG reduction curve has been determined. The obtained switching potential turns out to be significant, up to 300 Mton/year, at sufficiently high EUA prices.« less
INTRODUCTION OF BIOMASS AS RENEWABLE ENERGY COMPONENT OF FUTURE TRANSPORTATION FUELS
The long-term objectives of new vehicle/fuel systems require the reduction of petroleum use, reduction of air pollution emissions, and reduction of greenhouse gas (GHG) emissions. In the near term, a major advancement toward these objectives will be made possible by the improved ...
DHINGRA, RADHIKA; CHRISTENSEN, ERICK R.; LIU, YANG; ZHONG, BO; WU, CHANG-FU; YOST, MICHAEL G.; REMAIS, JUSTIN V.
2013-01-01
Anaerobic digesters provide clean, renewable energy (biogas) by converting organic waste to methane, and are a key part of China's comprehensive rural energy plan. Here, experimental and modeling results are used to quantify the net greenhouse gas (GHG) reduction from substituting a household anaerobic digester for traditional energy sources in Sichuan, China. Tunable diode laser absorption spectroscopy and radial plume mapping were used to estimate the mass flux of fugitive methane emissions from active digesters. Using household energy budgets, the net improvement in GHG emissions associated with biogas installation was estimated using global warming commitment (GWC) as a consolidated measure of the warming effects of GHG emissions from cooking. In all scenarios biogas households had lower GWC than non-biogas households, by as much as 54%. Even biogas households with methane leakage exhibited lower GWC than non-biogas households, by as much as 48%. Based only on the averted GHG emissions over 10 years, the monetary value of a biogas installation was conservatively estimated at US$28.30 ($16.07 ton−1 CO2-eq.), which is available to partly offset construction costs. The interaction of biogas installation programs with policies supporting improved stoves, renewable harvesting of biomass, and energy interventions with substantial health co-benefits, are discussed. PMID:21348471
Greenhouse gas implications of a 32 billion gallon bioenergy landscape in the US
NASA Astrophysics Data System (ADS)
DeLucia, E. H.; Hudiburg, T. W.; Wang, W.; Khanna, M.; Long, S.; Dwivedi, P.; Parton, W. J.; Hartman, M. D.
2015-12-01
Sustainable bioenergy for transportation fuel and greenhouse gas (GHGs) reductions may require considerable changes in land use. Perennial grasses have been proposed because of their potential to yield substantial biomass on marginal lands without displacing food and reduce GHG emissions by storing soil carbon. Here, we implemented an integrated approach to planning bioenergy landscapes by combining spatially-explicit ecosystem and economic models to predict a least-cost land allocation for a 32 billion gallon (121 billion liter) renewable fuel mandate in the US. We find that 2022 GHG transportation emissions are decreased by 7% when 3.9 million hectares of eastern US land are converted to perennial grasses supplemented with corn residue to meet cellulosic ethanol requirements, largely because of gasoline displacement and soil carbon storage. If renewable fuel production is accompanied by a cellulosic biofuel tax credit, CO2 equivalent emissions could be reduced by 12%, because it induces more cellulosic biofuel and land under perennial grasses (10 million hectares) than under the mandate alone. While GHG reducing bioenergy landscapes that meet RFS requirements and do not displace food are possible, the reductions in GHG emissions are 50% less compared to previous estimates that did not account for economically feasible land allocation.
Dhingra, Radhika; Christensen, Erick R; Liu, Yang; Zhong, Bo; Wu, Chang-Fu; Yost, Michael G; Remais, Justin V
2011-03-15
Anaerobic digesters provide clean, renewable energy (biogas) by converting organic waste to methane, and are a key part of China's comprehensive rural energy plan. Here, experimental and modeling results are used to quantify the net greenhouse gas (GHG) reduction from substituting a household anaerobic digester for traditional energy sources in Sichuan, China. Tunable diode laser absorption spectroscopy and radial plume mapping were used to estimate the mass flux of fugitive methane emissions from active digesters. Using household energy budgets, the net improvement in GHG emissions associated with biogas installation was estimated using global warming commitment (GWC) as a consolidated measure of the warming effects of GHG emissions from cooking. In all scenarios biogas households had lower GWC than nonbiogas households, by as much as 54%. Even biogas households with methane leakage exhibited lower GWC than nonbiogas households, by as much as 48%. Based only on the averted GHG emissions over 10 years, the monetary value of a biogas installation was conservatively estimated at US$28.30 ($16.07 ton(-1) CO(2)-eq), which is available to partly offset construction costs. The interaction of biogas installation programs with policies supporting improved stoves, renewable harvesting of biomass, and energy interventions with substantial health cobenefits are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Hao; Burnham, Andrew; Chen, Rui
Expanded use of natural gas (NG) as a transportation fuel in the United States requires understanding its environmental, technological, and economic performance. We analyzed water consumption for NG production in major U.S. shale gas plays from recent reports and studies. Also, we assessed the water consumption, greenhouse gas (GHG) emissions, and air emissions of using compressed and liquefied NG as transportation fuels by three heavyduty NG vehicles (NGV) types from a wells-to-wheels (WTW) perspective, using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model developed at Argonne National Laboratory. We reviewed recent work on quantifying methane leakagemore » in the NG supply chain and vehicle use to improve the estimates of this important factor to GHG emissions of NGVs. These results show that the NGVs could reduce water consumption significantly and offer air emissions reduction benefits compared to their diesel counterparts. WTW GHG emissions of NGVs are largely driven by the vehicle fuel efficiency, and methane leakage rates of the NG supply chain and vehicle end use, and are slightly higher than those of the diesel counterparts with the estimated WTW methane leakage. We also analyzed costs of operating NGVs relative to diesel vehicles and found that the cost-effectiveness of NGVs is impacted by incremental cost of NG storage tanks and price difference between NG and diesel fuels. Our findings for NG as a transportation fuel for different vehicle technologies shed light on their environmental impacts and the economics from the WTW holistic point of view.« less
Jenn, Alan; Azevedo, Inês M L; Michalek, Jeremy J
2016-03-01
The United States Corporate Average Fuel Economy (CAFE) standards and Greenhouse Gas (GHG) Emission standards are designed to reduce petroleum consumption and GHG emissions from light-duty passenger vehicles. They do so by requiring automakers to meet aggregate criteria for fleet fuel efficiency and carbon dioxide (CO2) emission rates. Several incentives for manufacturers to sell alternative fuel vehicles (AFVs) have been introduced in recent updates of CAFE/GHG policy for vehicles sold from 2012 through 2025 to help encourage a fleet technology transition. These incentives allow automakers that sell AFVs to meet less-stringent fleet efficiency targets, resulting in increased fleet-wide gasoline consumption and emissions. We derive a closed-form expression to quantify these effects. We find that each time an AFV is sold in place of a conventional vehicle, fleet emissions increase by 0 to 60 t of CO2 and gasoline consumption increases by 0 to 7000 gallons (26,000 L), depending on the AFV and year of sale. Using projections for vehicles sold from 2012 to 2025 from the Energy Information Administration, we estimate that the CAFE/GHG AFV incentives lead to a cumulative increase of 30 to 70 million metric tons of CO2 and 3 to 8 billion gallons (11 to 30 billion liters) of gasoline consumed over the vehicles' lifetimes - the largest share of which is due to legacy GHG flex-fuel vehicle credits that expire in 2016. These effects may be 30-40% larger in practice than we estimate here due to optimistic laboratory vehicle efficiency tests used in policy compliance calculations.
Agriculture, forestry, and other land-use emissions in Latin America
Calvin, Katherine V.; Beach, Robert; Gurgel, Angelo; ...
2016-04-07
Nearly 40% of greenhouse gas (GHG) emissions in Latin America were from agriculture, forestry, and other land use (AFOLU) in 2008, more than double the global fraction of AFOLU emissions. In this paper, we investigate the future trajectory of AFOLU GHG emissions in Latin America, with and without efforts to mitigate, using a multi-model comparison approach. We find significant uncertainty in future emissions with and without climate policy. This uncertainty is due to differences in a variety of assumptions including (1) the role of bioenergy, (2) where and how bioenergy is produced, (3) the availability of afforestation options in climatemore » mitigation policy, and (4) N 2O and CH 4 emissions intensity. With climate policy, these differences in assumptions can lead to significant variance in mitigation potential, with three models indicating reductions in AFOLU GHG emissions and one model indicating modest increases in AFOLU GHG emissions.« less
Agriculture, forestry, and other land-use emissions in Latin America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvin, Katherine V.; Beach, Robert; Gurgel, Angelo
Nearly 40% of greenhouse gas (GHG) emissions in Latin America were from agriculture, forestry, and other land use (AFOLU) in 2008, more than double the global fraction of AFOLU emissions. In this paper, we investigate the future trajectory of AFOLU GHG emissions in Latin America, with and without efforts to mitigate, using a multi-model comparison approach. We find significant uncertainty in future emissions with and without climate policy. This uncertainty is due to differences in a variety of assumptions including (1) the role of bioenergy, (2) where and how bioenergy is produced, (3) the availability of afforestation options in climatemore » mitigation policy, and (4) N 2O and CH 4 emissions intensity. With climate policy, these differences in assumptions can lead to significant variance in mitigation potential, with three models indicating reductions in AFOLU GHG emissions and one model indicating modest increases in AFOLU GHG emissions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
James W. Evans
2012-04-11
The work addressed the greenhouse gas emission and electrical energy consumption of the aluminum industry. The objective was to provide a means for reducing both through the application of wireless instrumentation, coupled to mathematical modeling. Worldwide the aluminum industry consumes more electrical energy than all activities in many major countries (e.g. the UK) and emits more greenhouse gasses (e.g. than France). Most of these excesses are in the 'primary production' of aluminum; that is the conversion of aluminum oxide to metal in large electrolytic cells operating at hundreds of thousands of amps. An industry-specific GHG emission has been the focusmore » of the work. The electrolytic cells periodically, but at irregular intervals, experience an upset condition known as an 'anode effect'. During such anode effects the cells emit fluorinated hydrocarbons (PFCs, which have a high global warming potential) at a rate far greater than in normal operation. Therefore curbing anode effects will reduce GHG emissions. Prior work had indicated that the distribution of electrical current within the cell experiences significant shifts in the minutes before an anode effect. The thrust of the present work was to develop technology that could detect and report this early warning of an anode effect so that the control computer could minimize GHG emissions. A system was developed to achieve this goal and, in collaboration with Alcoa, was tested on two cells at an Alcoa plant in Malaga, Washington. The project has also pointed to the possibility of additional improvements that could result from the work. Notable among these is an improvement in efficiency that could result in an increase in cell output at little extra operating cost. Prospects for commercialization have emerged in the form of purchase orders for further installations. The work has demonstrated that a system for monitoring the current of individual anodes in an aluminum cell is practical. Furthermore the system has been installed twice on a smelter in the US without exposing workers to hazards usually associated with running signal wires in aluminum plants. The results display the early warning of an anode effect that potentially can be used to minimize such anode effects with their excessive GHG emissions. They also point to a possible, but substantial, economic benefit that could result in improved current efficiency by anode adjustment based on individual anode current measurements.« less
Feliciano, Diana; Hunter, Colin; Slee, Bill; Smith, Pete
2013-05-15
The Climate Change (Scotland) Act 2009 commits Scotland to reduce GHG emissions by at least 42% by 2020 and 80% by 2050, from 1990 levels. According to the Climate Change Delivery Plan, the desired emission reduction for the rural land use sector (agriculture and other land uses) is 21% compared to 1990, or 10% compared to 2006 levels. In 2006, in North East Scotland, gross greenhouse gas (GHG) emissions from rural land uses were about 1599 ktCO2e. Thus, to achieve a 10% reduction in 2020 relative to 2006, emissions would have to decrease to about 1440 ktCO2e. This study developed a methodology to help selecting land-based practices to mitigate GHG emissions at the regional level. The main criterion used was the "full" mitigation potential of each practice. A mix of methods was used to undertake this study, namely a literature review and quantitative estimates. The mitigation practice that offered greatest "full" mitigation potential (≈66% reduction by 2020 relative to 2006) was woodland planting with Sitka spruce. Several barriers, such as economic, social, political and institutional, affect the uptake of mitigation practices in the region. Consequently the achieved mitigation potential of a practice may be lower than its "full" mitigation potential. Surveys and focus groups, with relevant stakeholders, need to be undertaken to assess the real area where mitigation practices can be implemented and the best way to overcome the barriers for their implementation. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, Qingshi; Zhu, Chao; McAvoy, Drew C., E-mail: mcavoydm@ucmail.uc.edu
Highlights: • A case study to show the benefits of waste-to-energy projects at a university. • Evaluated the technical and economic feasibilities as well as GHG reduction. • A tool for other universities/communities to evaluate waste-to-energy projects. - Abstract: This paper evaluates the implementation of three waste-to-energy projects at the University of Cincinnati: waste cooking oil-to-biodiesel, waste paper-to-fuel pellets and food waste-to-biogas, respectively. The implementation of these waste-to-energy (WTE) projects would lead to the improvement of campus sustainability by minimizing waste management efforts and reducing GHG emissions via the displacement of fossil fuel usage. Technical and economic aspects of theirmore » implementation were assessed and the corresponding GHG reduction was estimated. Results showed that on-site implementation of these projects would: (1) divert 3682 L (974 gallons) of waste cooking oil to 3712 L (982 gallons) of biodiesel; (2) produce 138 tonnes of fuel pellets from 133 tonnes of waste paper (with the addition of 20.75 tonnes of plastics) to replace121 tonnes of coal; and (3) produce biogas that would be enough to replace 12,767 m{sup 3} natural gas every year from 146 tonnes of food waste. The economic analysis determined that the payback periods for the three projects would be 16 months for the biodiesel, 155 months for the fuel pellet, and 74 months for the biogas projects. The reduction of GHG emission from the implementation of the three WTE projects was determined to be 9.37 (biodiesel), 260.49 (fuel pellets), and 11.36 (biogas) tonnes of CO{sub 2}-eq per year, respectively.« less
Review of Mitigation Costs for Stabilizing Greenhouse Gas Concentrations
NASA Astrophysics Data System (ADS)
van Ruijven, B. J.; O'Neill, B. C.
2014-12-01
Mitigation of greenhouse gas emissions to avoid future climate change comes at a cost, because low-emission technologies are more expensive than GHG-emitting technology options. The increase in mitigation cost is not linearly related to the stabilization level, though: the first emission reductions are relatively cheap, but deeper emission reductions become more expensive. Therefore, emission reduction to medium levels of GHG concentrations , such as 4.5 or 6 W/m2, is considerably cheaper than emission reduction to low levels of GHG concentrations, such as 2.6 or 3.7 W/m2. Moreover, mitigation costs are influenced by many other aspects than the targeted mitigation level alone, such as whether or not certain technologies are available or societally acceptable (Kriegler et al., 2014); the rate of technological progress and cost reduction of low-emission technologies; the level of final energy demand (Riahi et al., 2011), and the level of global cooperation and trade in emission allowances (den Elzen and Höhne, 2010). This paper reviews the existing literature on greenhouse gas mitigation costs. We analyze the available data on mitigation costs and draw conclusions on how these change for different stabilization levels of GHG concentrations. We will take into account the aspects of technology, energy demand, and cooperation in distinguishing differences between scenarios and stabilization levels. References: den Elzen, M., Höhne, N., 2010. Sharing the reduction effort to limit global warming to 2C. Climate Policy 10, 247-260. Kriegler, E., Weyant, J., Blanford, G., Krey, V., Clarke, L., Edmonds, J., Fawcett, A., Luderer, G., Riahi, K., Richels, R., Rose, S., Tavoni, M., Vuuren, D., 2014. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change, 1-15. Riahi, K., Dentener, F., Gielen, D., Grubler, A., Jewell, J., Klimont, Z., Krey, V., McCollum, D., Pachauri, S., Rao, S., van Ruijven, B., van Vuuren, D.P., Wilson, C., 2011. Energy Pathways for Sustainable Development, The Global Energy Assessment: Toward a More Sustainable Future. IIASA, Laxenburg, Austria and Cambridge University Press, Cambridge, UK.
Effect of aeration interval on oxygen consumption and GHG emission during pig manure composting.
Zeng, Jianfei; Yin, Hongjie; Shen, Xiuli; Liu, Ning; Ge, Jinyi; Han, Lujia; Huang, Guangqun
2018-02-01
To verify the optimal aeration interval for oxygen supply and consumption and investigate the effect of aeration interval on GHG emission, reactor-scale composting was conducted with different aeration intervals (0, 10, 30 and 50 min). Although O 2 was sufficiently supplied during aeration period, it could be consumed to <10 vol% only when the aeration interval was 50 min, indicating that an aeration interval more than 50 min would be inadvisable. Compared to continuous aeration, reductions of the total CH 4 and N 2 O emissions as well as the total GHG emission equivalent by 22.26-61.36%, 8.24-49.80% and 12.36-53.20%, respectively, was achieved through intermittent aeration. Specifically, both the total CH 4 and N 2 O emissions as well as the total GHG emission equivalent were inversely proportional to the duration of aeration interval (R 2 > 0.902), suggesting that lengthening the duration of aeration interval to some extent could effectively reduce GHG emission. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hou, Yong; Velthof, Gerard L; Oenema, Oene
2015-03-01
Livestock manure contributes considerably to global emissions of ammonia (NH3 ) and greenhouse gases (GHG), especially methane (CH4 ) and nitrous oxide (N2 O). Various measures have been developed to mitigate these emissions, but most of these focus on one specific gas and/or emission source. Here, we present a meta-analysis and integrated assessment of the effects of mitigation measures on NH3 , CH4 and (direct and indirect) N2 O emissions from the whole manure management chain. We analysed the effects of mitigation technologies on NH3 , CH4 and N2 O emissions from individual sources statistically using results of 126 published studies. Whole-chain effects on NH3 and GHG emissions were assessed through scenario analysis. Significant NH3 reduction efficiencies were observed for (i) housing via lowering the dietary crude protein (CP) content (24-65%, compared to the reference situation), for (ii) external slurry storages via acidification (83%) and covers of straw (78%) or artificial films (98%), for (iii) solid manure storages via compaction and covering (61%, compared to composting), and for (iv) manure application through band spreading (55%, compared to surface application), incorporation (70%) and injection (80%). Acidification decreased CH4 emissions from stored slurry by 87%. Significant increases in N2 O emissions were found for straw-covered slurry storages (by two orders of magnitude) and manure injection (by 26-199%). These side-effects of straw covers and slurry injection on N2 O emission were relatively small when considering the total GHG emissions from the manure chain. Lowering the CP content of feed and acidifying slurry are strategies that consistently reduce NH3 and GHG emissions in the whole chain. Other strategies may reduce emissions of a specific gas or emissions source, by which there is a risk of unwanted trade-offs in the manure management chain. Proper farm-scale combinations of mitigation measures are important to minimize impacts of livestock production on global emissions of NH3 and GHG. © 2014 John Wiley & Sons Ltd.
A comparative assessment of resource efficiency in petroleum refining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jeongwoo; Forman, Grant S.; Elgowainy, Amgad
Because of increasing environmental and energy security concerns, a detailed understanding of energy efficiency and greenhouse gas (GHG) emissions in the petroleum refining industry is critical for fair and equitable energy and environmental policies. To date, this has proved challenging due in part to the complex nature and variability within refineries. In an effort to simplify energy and emissions refinery analysis, we delineated LP modeling results from 60 large refineries from the US and EU into broad categories based on crude density (API gravity) and heavy product (HP) yields. Product-specific efficiencies and process fuel shares derived from this study weremore » incorporated in Argonne National Laboratory’s GREET life-cycle model, along with regional upstream GHG intensities of crude, natural gas and electricity specific to the US and EU regions. The modeling results suggest that refineries that process relatively heavier crude inputs and have lower yields of HPs generally have lower energy efficiencies and higher GHG emissions than refineries that run lighter crudes with lower yields of HPs. The former types of refineries tend to utilize energy-intensive units which are significant consumers of utilities (heat and electricity) and hydrogen. Among the three groups of refineries studied, the major difference in the energy intensities is due to the amount of purchased natural gas for utilities and hydrogen, while the sum of refinery feed inputs are generally constant. These results highlight the GHG emissions cost a refiner pays to process deep into the barrel to produce more of the desirable fuels with low carbon to hydrogen ratio.« less
A Comparative Assessment of Resource Efficiency in Petroleum Refining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jeongwoo; Forman, G; Elgowainy, Amgad
2015-10-01
Because of increasing environmental and energy security concerns, a detailed understanding of energy efficiency and greenhouse gas (GHG) emissions in the petroleum refining industry is critical for fair and equitable energy and environmental policies. To date, this has proved challenging due in part to the complex nature and variability within refineries. In an effort to simplify energy and emissions refinery analysis, we delineated LP modeling results from 60 large refineries from the US and EU into broad categories based on crude density (API gravity) and heavy product (HP) yields. Product-specific efficiencies and process fuel shares derived from this study weremore » incorporated in Argonne National Laboratory's GREET life-cycle model, along with regional upstream GHG intensities of crude, natural gas and electricity specific to the US and EU regions. The modeling results suggest that refineries that process relatively heavier crude inputs and have lower yields of HPs generally have lower energy efficiencies and higher GHG emissions than refineries that run lighter crudes with lower yields of HPs. The former types of refineries tend to utilize energy-intensive units which are significant consumers of utilities (heat and electricity) and hydrogen. Among the three groups of refineries studied, the major difference in the energy intensities is due to the amount of purchased natural gas for utilities and hydrogen, while the sum of refinery feed inputs are generally constant. These results highlight the GHG emissions cost a refiner pays to process deep into the barrel to produce more of the desirable fuels with low carbon to hydrogen ratio. (c) 2015 Argonne National Laboratory. Published by Elsevier Ltd.« less
A comparative assessment of resource efficiency in petroleum refining
Han, Jeongwoo; Forman, Grant S.; Elgowainy, Amgad; ...
2015-03-25
Because of increasing environmental and energy security concerns, a detailed understanding of energy efficiency and greenhouse gas (GHG) emissions in the petroleum refining industry is critical for fair and equitable energy and environmental policies. To date, this has proved challenging due in part to the complex nature and variability within refineries. In an effort to simplify energy and emissions refinery analysis, we delineated LP modeling results from 60 large refineries from the US and EU into broad categories based on crude density (API gravity) and heavy product (HP) yields. Product-specific efficiencies and process fuel shares derived from this study weremore » incorporated in Argonne National Laboratory’s GREET life-cycle model, along with regional upstream GHG intensities of crude, natural gas and electricity specific to the US and EU regions. The modeling results suggest that refineries that process relatively heavier crude inputs and have lower yields of HPs generally have lower energy efficiencies and higher GHG emissions than refineries that run lighter crudes with lower yields of HPs. The former types of refineries tend to utilize energy-intensive units which are significant consumers of utilities (heat and electricity) and hydrogen. Among the three groups of refineries studied, the major difference in the energy intensities is due to the amount of purchased natural gas for utilities and hydrogen, while the sum of refinery feed inputs are generally constant. These results highlight the GHG emissions cost a refiner pays to process deep into the barrel to produce more of the desirable fuels with low carbon to hydrogen ratio.« less
Assessment of GHG mitigation and CDM technology in urban transport sector of Chandigarh, India.
Bhargava, Nitin; Gurjar, Bhola Ram; Mor, Suman; Ravindra, Khaiwal
2018-01-01
The increase in number of vehicles in metropolitan cities has resulted in increase of greenhouse gas (GHG) emissions in urban environment. In this study, emission load of GHGs (CO, N 2 O, CO 2 ) from Chandigarh road transport sector has been estimated using Vehicular Air Pollution Inventory (VAPI) model, which uses emission factors prevalent in Indian cities. Contribution of 2-wheelers (2-w), 3-wheelers (3-w), cars, buses, and heavy commercial vehicles (HCVs) to CO, N 2 O, CO 2 , and total GHG emissions was calculated. Potential for GHG mitigation through clean development mechanism (CDM) in transport sector of Chandigarh under two scenarios, i.e., business as usual (BAU) and best estimate scenario (BES) using VAPI model, has been explored. A major contribution of GHG load (~ 50%) in Chandigarh was from four-wheelers until 2011; however, it shows a declining trend after 2011 until 2020. The estimated GHG emission from motor vehicles in Chandigarh has increased more than two times from 1065 Gg in 2005 to 2486 Gg by 2011 and is expected to increase to 4014 Gg by 2020 under BAU scenario. Under BES scenario, 30% of private transport has been transformed to public transport; GHG load was possibly reduced by 520 Gg. An increase of 173 Gg in GHGs load is projected from additional scenario (ADS) in Chandigarh city if all the diesel buses are transformed to CNG buses by 2020. Current study also offers potential for other cities to plan better GHG reduction strategies in transport sector to reduce their climate change impacts.
Lifecycle greenhouse gas implications of US national scenarios for cellulosic ethanol production
NASA Astrophysics Data System (ADS)
Scown, Corinne D.; Nazaroff, William W.; Mishra, Umakant; Strogen, Bret; Lobscheid, Agnes B.; Masanet, Eric; Santero, Nicholas J.; Horvath, Arpad; McKone, Thomas E.
2012-03-01
The Energy Independence and Security Act of 2007 set an annual US national production goal of 39.7 billion l of cellulosic ethanol by 2020. This paper explores the possibility of meeting that target by growing and processing Miscanthus × giganteus. We define and assess six production scenarios in which active cropland and/or Conservation Reserve Program land are used to grow to Miscanthus. The crop and biorefinery locations are chosen with consideration of economic, land-use, water management and greenhouse gas (GHG) emissions reduction objectives. Using lifecycle assessment, the net GHG footprint of each scenario is evaluated, providing insight into the climate costs and benefits associated with each scenario’s objectives. Assuming that indirect land-use change is successfully minimized or mitigated, the results suggest two major drivers for overall GHG impact of cellulosic ethanol from Miscanthus: (a) net soil carbon sequestration or emissions during Miscanthus cultivation and (b) GHG offset credits for electricity exported by biorefineries to the grid. Without these factors, the GHG intensity of bioethanol from Miscanthus is calculated to be 11-13 g CO2-equivalent per MJ of fuel, which is 80-90% lower than gasoline. Including soil carbon sequestration and the power-offset credit results in net GHG sequestration up to 26 g CO2-equivalent per MJ of fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izursa, Jose-Luis; Hanlon, Edward; Amponsah, Nana
2013-02-15
The agriculture sector is in a growing need to develop greenhouse gas (GHG) mitigation techniques to reduce the enhanced greenhouse effect. The challenge to the sector is not only to reduce net emissions but also increase production to meet growing demands for food, fiber, and biofuel. This study focuses on the changes in the GHG balance of three biofuel feedstock (biofuel sugarcane, energy-cane and sweet sorghum) considering changes caused by the adoption of conservationist practices such as reduced tillage, use of controlled-release fertilizers or when cultivation areas are converted from burned harvest to green harvest. Based on the Intergovernmental Panelmore » on Climate Change (IPCC) (2006) balance and the Tools for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) characterization factors published by the EPA, the annual emission balance includes use energy (diesel and electricity), equipment, and ancillary materials, according to the mean annual consumption of supplies per hectare. The total amounts of GWP were 2740, 1791, and 1910 kg CO2e ha-1 y-1 for biofuel sugarcane, energy-cane and sweet sorghum, respectively, when produced with conventional tillage and sugarcane was burned prior to harvesting. Applying reduced tillage practices, the GHG emissions reduced to 13% for biofuel sugarcane, 23% for energy-cane and 8% for sweet sorghum. A similar decrease occurs when a controlled-release fertilizer practice is adopted, which helps reduce the total emission balance in 5%, 12% and 19% for biofuel sugarcane, energy-cane and sweet sorghum, respectively and a 31% average reduction in eutrophication potential. Moreover, the GHG emissions for biofuel sugarcane, with the adoption of green harvest, would result in a smaller GHG balance of 1924 kg CO2e ha-1 y-1, providing an effect strategy for GHG mitigation while still providing a profitable yield in Florida.« less
Yan, Xiaoyu; Inderwildi, Oliver R; King, David A; Boies, Adam M
2013-06-04
Bioethanol is the world's largest-produced alternative to petroleum-derived transportation fuels due to its compatibility within existing spark-ignition engines and its relatively mature production technology. Despite its success, questions remain over the greenhouse gas (GHG) implications of fuel ethanol use with many studies showing significant impacts of differences in land use, feedstock, and refinery operation. While most efforts to quantify life-cycle GHG impacts have focused on the production stage, a few recent studies have acknowledged the effect of ethanol on engine performance and incorporated these effects into the fuel life cycle. These studies have broadly asserted that vehicle efficiency increases with ethanol use to justify reducing the GHG impact of ethanol. These results seem to conflict with the general notion that ethanol decreases the fuel efficiency (or increases the fuel consumption) of vehicles due to the lower volumetric energy content of ethanol when compared to gasoline. Here we argue that due to the increased emphasis on alternative fuels with drastically differing energy densities, vehicle efficiency should be evaluated based on energy rather than volume. When done so, we show that efficiency of existing vehicles can be affected by ethanol content, but these impacts can serve to have both positive and negative effects and are highly uncertain (ranging from -15% to +24%). As a result, uncertainties in the net GHG effect of ethanol, particularly when used in a low-level blend with gasoline, are considerably larger than previously estimated (standard deviations increase by >10% and >200% when used in high and low blends, respectively). Technical options exist to improve vehicle efficiency through smarter use of ethanol though changes to the vehicle fleets and fuel infrastructure would be required. Future biofuel policies should promote synergies between the vehicle and fuel industries in order to maximize the society-wise benefits or minimize the risks of adverse impacts of ethanol.
Understanding Variability To Reduce the Energy and GHG Footprints of U.S. Ethylene Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Yuan; Graziano, Diane J.; Riddle, Matthew
2015-11-18
Recent growth in U.S. ethylene production due to the shale gas boom is affecting the U.S. chemical industry's energy and greenhouse gas (GHG) emissions footprints. To evaluate these effects, a systematic, first-principles model of the cradle-to-gate ethylene production system was developed and applied. The variances associated with estimating the energy consumption and GHG emission intensities of U.S. ethylene production, both from conventional natural gas,and from shale gas, are explicitly analyzed. A sensitivity analysis illustrates that the large variances in energy intensity are due to process parameters (e.g., compressor efficiency), and that large variances in GHG emissions intensity are due tomore » fugitive emissions from upstream natural gas production. On the basis of these results, the opportunities with the greatest leverage for reducing the energy and GHG footprints are presented. The model and analysis provide energy analysts and policy makers with a better understanding of the drivers of energy use and GHG emissions associated with U.S. ethylene production. They also constitute a rich data resource that can be used to evaluate options for managing the industry's footprints moving forward.« less
McLeod, Jeffrey D; Brinkman, Gregory L; Milford, Jana B
2014-11-18
Enhanced prospects for natural gas production raise questions about the balance of impacts on air quality, as increased emissions from production activities are considered alongside the reductions expected when natural gas is burned in place of other fossil fuels. This study explores how trends in natural gas production over the coming decades might affect emissions of greenhouse gases (GHG), volatile organic compounds (VOCs) and nitrogen oxides (NOx) for the United States and its Rocky Mountain region. The MARKAL (MARKet ALlocation) energy system optimization model is used with the U.S. Environmental Protection Agency's nine-region database to compare scenarios for natural gas supply and demand, constraints on the electricity generation mix, and GHG emissions fees. Through 2050, total energy system GHG emissions show little response to natural gas supply assumptions, due to offsetting changes across sectors. Policy-driven constraints or emissions fees are needed to achieve net reductions. In most scenarios, wind is a less expensive source of new electricity supplies in the Rocky Mountain region than natural gas. U.S. NOx emissions decline in all the scenarios considered. Increased VOC emissions from natural gas production offset part of the anticipated reductions from the transportation sector, especially in the Rocky Mountain region.
NASA Astrophysics Data System (ADS)
Kritee, K.; Tiwari, R.; Nair, D.; Adhya, T. K.; Rudek, J.
2014-12-01
As a part of a joint undertaking by Environmental Defense Fund and the Fair Climate Network, we have measured reduction in methane and nitrous oxide emissions due to alternate "low carbon" rice cultivation practices for three ago-ecological zones in India for the past two years. Sampling for nitrous oxide and methane emissions was done on approximately 60-80% of the total number of days in a growing season and was based on modified GRACEnet protocol. In recognition of farmer's economic interest and global food security demands, we also measured the effect of rice cultivation practices on farm economics and yields. Our data from three agro-ecological zones for 2012-2014 suggest that, for semi-arid peninsular India, low-carbon rice cultivation practices offer large range of emission reduction potential (0.5-5 metric tons CO2e/acre/year). The regions with sandy soils (Alfisols) had high rates of nitrous oxide emissions even under baseline "flooded" rice cultivation regimes and, thus, the Tier 1 IPCC emissions factors grossly underestimate both the amount of nitrous oxide emission from conventional rice cultivation practices, and the extent to which it can be reduced through better fertilizer management. Also, the IPCC factors overestimate the methane emission reduction possible due to water management for rice paddies. Therefore, it is crucial to customize N and water management to each region such that yields and net GHG emission reduction are maximized. These practices also have the potential to decrease water use by 10-30% and improve long term soil health by optimizing organic matter and increasing water-holding capacity. In addition, through GPS based demarcation of farmer plots, recording baseline practices through extensive surveys, documenting the parameters required to aggregate and prove implementation of low carbon rice farming practices, and to model the GHG emission reduction over large scales, we have put forward a path for better monetization of GHG emission reductions which will incentivize adoption of such practices. The payoff is a "triple win" including increased long-term food security (through enhanced yields), rural economic development (through improved farm profitability and adaptation), and lower environmental impacts (including lower GHG emissions).
Greenhouse gas accounting and waste management.
Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle
2009-11-01
Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities.
Greenhouse gas emission reduction: A case study of Sri Lanka
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, P.; Munasinghe, M.
1995-12-31
In this paper we describe a case study for Sri Lanka that explores a wide range of options for reducing greenhouse gas (GHG) emissions. Options range from renewable technologies to carbon taxes and transportation sector initiatives. We find that setting electricity prices to reflect long-run marginal cost has a significant beneficial impact on the environment, and the expected benefits predicted on theoretical grounds are confirmed by the empirical results. Pricing reform also has a much broader impact than physical approaches to demand side management, although several options such as compact fluorescent lighting appear to have great potential. Options to reducemore » GHG emissions are limited as Sri Lanka lacks natural gas, and nuclear power is not practical until the system reaches a much larger size. Building the few remaining large hydro facilities would significantly reduce GHG emissions, but these would require costly resettlement programs. Given the inevitability for fossil-fuel base load generation, both clean coal technologies such as pressurized fluidized bed combustion, as well as steam-cycle residual oil fueled plants merit consideration as alternatives to the conventional pulverized coal-fired plants currently being considered. Transportation sector measures necessary to ameliorate local urban air pollution problems, such as vehicle inspection and maintenance programs, also bring about significant reductions of GHG emissions. 51 refs., 10 figs., 3 tabs.« less
Impact of policy on greenhouse gas emissions and economics of biodiesel production.
Olivetti, Elsa; Gülşen, Ece; Malça, João; Castanheira, Erica; Freire, Fausto; Dias, Luis; Kirchain, Randolph
2014-07-01
As an alternative transportation fuel to petrodiesel, biodiesel has been promoted within national energy portfolio targets across the world. Early estimations of low lifecycle greenhouse gas (GHG) emissions of biodiesel were a driver behind extensive government support in the form of financial incentives for the industry. However, studies consistently report a high degree of uncertainty in these emissions estimates, raising questions concerning the carbon benefits of biodiesel. Furthermore, the implications of feedstock blending on GHG emissions uncertainty have not been explicitly addressed despite broad practice by the industry to meet fuel quality standards and to control costs. This work investigated the impact of feedstock blending on the characteristics of biodiesel by using a chance-constrained (CC) blend optimization method. The objective of the optimization is minimization of feedstock costs subject to fuel standards and emissions constraints. Results indicate that blending can be used to manage GHG emissions uncertainty characteristics of biodiesel, and to achieve cost reductions through feedstock diversification. Simulations suggest that emissions control policies that restrict the use of certain feedstocks based on their GHG estimates overlook blending practices and benefits, increasing the cost of biodiesel. In contrast, emissions control policies which recognize the multifeedstock nature of biodiesel provide producers with feedstock selection flexibility, enabling them to manage their blend portfolios cost effectively, potentially without compromising fuel quality or emissions reductions.
David Nicholls; Frank Barnes; Felicia Acrea; Chinling Chen; Lara Y. Buluç; Michele M. Parker
2015-01-01
Federal agencies are mandated to measure, manage, and reduce greenhouse gas (GHG) emissions. The General Services Administration (GSA) Carbon Footprint Tool (CFT) is an online tool built to utilize measured GHG inventories to help Forest Service units streamline reporting and make informed decisions about operational efficiency. In fiscal year 2013, the Forest Service...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, Colin A.; Boardman, Richard; McKellar, Michael
The industrial sector was the third-largest source of direct U.S. greenhouse gas (GHG) emissions in 2014 behind electricity generation and transportation and accounted for roughly 20% of total emissions (EPA 2016). The Energy Information Administration (EIA) projects that total U.S. energy consumption will grow to about 108 exajoules (1 EJ = 10 18 J) or 102 quads (1 quad = 10 15 British thermal units) in 2025, with nearly all of the growth coming from the industrial sector (DOE 2015b). Energy consumption in the industrial sector is forecast to increase to 39.5 EJ (37.4 quads)—a 22% increase, exceeding 36% ofmore » total energy consumption in the United States. Therefore, it is imperative that industrial GHG emissions be considered in any strategy intent on achieving deep decarbonization of the energy sector as a whole. It is important to note that unlike the transportation sector and electrical grid, energy use by industry often involves direct conversion of primary energy sources to thermal and electrical energy at the point of consumption. About 52% of U.S. industrial direct GHG emissions are the result of fuel combustion (EPA 2016) to produce hot gases and steam for process heating, process reactions, and process evaporation, concentration, and drying. The heterogeneity and variations in scale of U.S. industry and the complexity of modern industrial firms’ global supply chains are among the sector’s unique challenges to minimizing its GHG emissions. A combination of varied strategies—such as energy efficiency, material efficiency, and switching to low-carbon fuels—can help reduce absolute industrial GHG emissions. This report provides a complement to process-efficiency improvement to consider how clean energy delivery and use by industry could reduce GHG emissions. Specifically, it considers the possibility of replacing fossil-fuel combustion in industry with nuclear (specifically small modular reactors [SMRs]), solar thermal (referred to herein as solar industrial process heat [SIPH]), and geothermal energy sources. The possibility of applying electrical heating and greater use of hydrogen is also considered, although these opportunities are not discussed in as much detail.« less
NASA Astrophysics Data System (ADS)
Jaramillo, P.; Venkatesh, A.; Griffin, M.; Matthews, S.
2012-12-01
Increased production of unconventional natural gas resources in the U.S. has drastically reduced the price of natural gas. While in 2005 prices went above 10/MMBtu, since 2011 they have been below 3/MMBtu. These low prices have encouraged the increase of natural gas utilization in the United States electricity sector. Natural gas can offset coal for power generation, reducing emissions such as greenhouse gases, sulfur and nitrogen oxides. In quantifying the benefit of offsetting coal by using natural gas, life cycle assessment (LCA) studies have shown up to 50% reductions in life cycle greenhouse gas (GHG) emissions can be expected. However, these studies predominantly use limited system boundaries that contain single individual coal and natural gas power plants. They do not consider (regional) fleets of power plants that are dispatched on the basis of their short-run marginal costs. In this study, simplified economic dispatch models (representing existing power plants in a given region) are developed for three U.S. regions - ERCOT, MISO and PJM. These models, along with historical load data are used to determine how natural gas utilization will increase in the short-term due to changes in natural gas price. The associated changes in fuel mix and life cycle GHG emissions are estimated. Results indicate that life cycle GHG emissions may, at best, decrease by 5-15% as a result of low natural gas prices, compared to almost 50% reductions estimated by previous LCAs. This study thus provides more reasonable estimates of potential reductions in GHG emissions from using natural gas instead of coal in the electricity sector in the short-term.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Xudong, E-mail: chen.xudong@nies.go.jp; National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506; Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601
Research highlights: {yields} Urban symbiosis creates compatibility of industrial development and waste management. {yields} Mechanical technology leads to more CO{sub 2} emission reduction. {yields} Energy recovery technology leads to more fossil fuel saving. {yields} Clean energy makes recycling technologies cleaner. {yields} Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developingmore » countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO{sub 2}e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.« less
A modeling comparison of deep greenhouse gas emissions reduction scenarios by 2030 in California
Yeh, Sonia; Yang, Christopher; Gibbs, Michael; ...
2016-10-21
California aims to reduce greenhouse gas (GHG) emissions to 40% below 1990 levels by 2030. We compare six energy models that have played various roles in informing the state policymakers in setting climate policy goals and targets. These models adopt a range of modeling structures, including stock-turnover back-casting models, a least-cost optimization model, macroeconomic/macro-econometric models, and an electricity dispatch model. Results from these models provide useful insights in terms of the transformations in the energy system required, including efficiency improvements in cars, trucks, and buildings, electrification of end-uses, low- or zero-carbon electricity and fuels, aggressive adoptions of zero-emission vehicles (ZEVs),more » demand reduction, and large reductions of non-energy GHG emissions. Some of these studies also suggest that the direct economic costs can be fairly modest or even generate net savings, while the indirect macroeconomic benefits are large, as shifts in employment and capital investments could have higher economic returns than conventional energy expenditures. These models, however, often assume perfect markets, perfect competition, and zero transaction costs. They also do not provide specific policy guidance on how these transformative changes can be achieved. Greater emphasis on modeling uncertainty, consumer behaviors, heterogeneity of impacts, and spatial modeling would further enhance policymakers' ability to design more effective and targeted policies. Here, this paper presents an example of how policymakers, energy system modelers and stakeholders interact and work together to develop and evaluate long-term state climate policy targets. Lastly, even though this paper focuses on California, the process of dialogue and interactions, modeling results, and lessons learned can be generally adopted across different regions and scales.« less
Chen, Rui; Qin, Zhangcai; Han, Jeongwoo; Wang, Michael; Taheripour, Farzad; Tyner, Wallace; O'Connor, Don; Duffield, James
2018-03-01
This study conducted the updated simulations to depict a life cycle analysis (LCA) of the biodiesel production from soybeans and other feedstocks in the U.S. It addressed in details the interaction between LCA and induced land use change (ILUC) for biodiesel. Relative to the conventional petroleum diesel, soy biodiesel could achieve 76% reduction in GHG emissions without considering ILUC, or 66-72% reduction in overall GHG emissions when various ILUC cases were considered. Soy biodiesel's fossil fuel consumption rate was also 80% lower than its petroleum counterpart. Furthermore, this study examined the cause and the implication of each key parameter affecting biodiesel LCA results using a sensitivity analysis, which identified the hot spots for fossil fuel consumption and GHG emissions of biodiesel so that future efforts can be made accordingly. Finally, biodiesel produced from other feedstocks (canola oil and tallow) were also investigated to contrast with soy biodiesel and petroleum diesel. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Timilsina, Govinda R; Shrestha, Ram M
2006-09-01
The Clean Development Mechanism (CDM) under the Kyoto Protocol to the United Nations Framework Convention on Climate Change is considered a key instrument to encourage developing countries' participation in the mitigation of global climate change. Reduction of greenhouse gas (GHG) emissions through the energy supply and demand side activities are the main options to be implemented under the CDM. This paper analyses the general equilibrium effects of a supply side GHG mitigation option-the substitution of thermal power with hydropower--in Thailand under the CDM. A static multi-sector general equilibrium model has been developed for the purpose of this study. The key finding of the study is that the substitution of electricity generation from thermal power plants with that from hydropower plants would increase economic welfare in Thailand. The supply side option would, however, adversely affect the gross domestic product (GDP) and the trade balance. The percentage changes in economic welfare, GDP and trade balance increase with the level of substitution and the price of certified emission reduction (CER) units.
Greater transportation energy and GHG offsets from bioelectricity than ethanol.
Campbell, J E; Lobell, D B; Field, C B
2009-05-22
The quantity of land available to grow biofuel crops without affecting food prices or greenhouse gas (GHG) emissions from land conversion is limited. Therefore, bioenergy should maximize land-use efficiency when addressing transportation and climate change goals. Biomass could power either internal combustion or electric vehicles, but the relative land-use efficiency of these two energy pathways is not well quantified. Here, we show that bioelectricity outperforms ethanol across a range of feedstocks, conversion technologies, and vehicle classes. Bioelectricity produces an average of 81% more transportation kilometers and 108% more emissions offsets per unit area of cropland than does cellulosic ethanol. These results suggest that alternative bioenergy pathways have large differences in how efficiently they use the available land to achieve transportation and climate goals.
Reductions in greenhouse gas (GHG) generation and energy consumption in wastewater treatment plants.
Yerushalmi, L; Ashrafi, O; Haghighat, F
2013-01-01
Greenhouse gas (GHG) emission and energy consumption by on-site and off-site sources were estimated in two different wastewater treatment plants that used physical-chemical or biological processes for the removal of contaminants, and an anaerobic digester for sludge treatment. Physical-chemical treatment processes were used in the treatment plant of a locomotive repair factory that processed wastewater at 842 kg chemical oxygen demand per day. Approximately 80% of the total GHG emission was related to fossil fuel consumption for energy production. The emission of GHG was reduced by 14.5% with the recovery of biogas that was generated in the anaerobic digester and its further use as an energy source, replacing fossil fuels. The examined biological treatment system used three alternative process designs for the treatment of effluents from pulp and paper mills that processed wastewater at 2,000 kg biochemical oxygen demand per day. The three designs used aerobic, anaerobic, or hybrid aerobic/anaerobic biological processes for the removal of carbonaceous contaminants, and nitrification/denitrification processes for nitrogen removal. Without the recovery and use of biogas, the aerobic, anaerobic, and hybrid treatment systems generated 3,346, 6,554 and 7,056 kg CO(2)-equivalent/day, respectively, while the generated GHG was reduced to 3,152, 6,051, and 6,541 kg CO(2)-equivalent/day with biogas recovery. The recovery and use of biogas was shown to satisfy and exceed the energy needs of the three examined treatment plants. The reduction of operating temperature of the anaerobic digester and anaerobic reactor by 10°C reduced energy demands of the treatment plants by 35.1, 70.6 and 62.9% in the three examined treatment systems, respectively.
Greenhouse gas emissions from dairy manure management in a Mediterranean environment.
Owen, Justine J; Silver, Whendee L
2017-03-01
Livestock agriculture is a major source of anthropogenic greenhouse gas (GHG) emissions, with a substantial proportion of emissions derived from manure management. Accurate estimates of emissions related to management practices and climate are needed for identifying the best approaches to minimize, and potentially mitigate, GHG emissions. Current emissions models such as those of the IPCC, however, are based on emissions factors that have not been broadly tested against field-scale measurements, due to a lack of data. We used a diverse set of measurements over 22 months across a range of substrate conditions on a working dairy to determine patterns and controls on soil-based GHG fluxes. Although dairy soils and substrates differed by management unit, GHG fluxes were poorly predicted by these or climate variables. The manure pile had the greatest GHG emissions, and though temperature increased and O 2 concentration decreased following mixing, we detected almost no change in GHG fluxes due to mixing. Corral fluxes were characterized by hotspots and hot moments driven by patterns in deposition. Annual scraping kept the soil and accumulated manure pack thin, producing drier conditions, particularly in the warm dry season. Summed over area, corral fluxes had the greatest non-CO 2 global warming potential. The field had net CH 4 consumption, but CH 4 uptake was insufficient to offset N 2 O emissions on an area basis. All sites emitted N 2 O with a similar or greater climate impact than CH 4 . Our results highlight the importance of N 2 O emissions, a less commonly measured GHG, from manure management and present potential opportunities for GHG emissions reductions. © 2016 by the Ecological Society of America.
Global climate change: the quantifiable sustainability challenge.
Princiotta, Frank T; Loughlin, Daniel H
2014-09-01
Population growth and the pressures spawned by increasing demands for energy and resource-intensive goods, foods, and services are driving unsustainable growth in greenhouse gas (GHG) emissions. Recent GHG emission trends are consistent with worst-case scenarios of the previous decade. Dramatic and near-term emission reductions likely will be needed to ameliorate the potential deleterious impacts of climate change. To achieve such reductions, fundamental changes are required in the way that energy is generated and used. New technologies must be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear and transportation technologies are particularly important; however, global research and development efforts related to these technologies currently appear to fall short relative to needs. Even with a proactive and international mitigation effort, humanity will need to adapt to climate change, but the adaptation needs and damages will be far greater if mitigation activities are not pursued in earnest. In this review, research is highlighted that indicates increasing global and regional temperatures and ties climate changes to increasing GHG emissions. GHG mitigation targets necessary for limiting future global temperature increases are discussed, including how factors such as population growth and the growing energy intensity of the developing world will make these reduction targets more challenging. Potential technological pathways for meeting emission reduction targets are examined, barriers are discussed, and global and US. modeling results are presented that suggest that the necessary pathways will require radically transformed electric and mobile sectors. While geoengineering options have been proposed to allow more time for serious emission reductions, these measures are at the conceptual stage with many unanswered cost, environmental, and political issues. Implications: This paper lays out the case that mitigating the potential for catastrophic climate change will be a monumental challenge, requiring the global community to transform its energy system in an aggressive, coordinated, and timely manner. If this challenge is to be met, new technologies will have to be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear, and transportation technologies are particularly important. Even with an aggressive international mitigation effort, humanity will still need to adapt to significant climate change.
Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870-2000.
Parton, William J; Gutmann, Myron P; Merchant, Emily R; Hartman, Melannie D; Adler, Paul R; McNeal, Frederick M; Lutz, Susan M
2015-08-25
The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices.
Anaerobic digestion of agricultural and other substrates--implications for greenhouse gas emissions.
Pucker, J; Jungmeier, G; Siegl, S; Pötsch, E M
2013-06-01
The greenhouse gas (GHG) emissions, expressed in carbon dioxide equivalents (CO2-eq), of different Austrian biogas systems were analyzed and evaluated using life-cycle assessment (LCA) as part of a national project. Six commercial biogas plants were investigated and the analysis included the complete process chain: viz., the production and collection of substrates, the fermentation of the substrates in the biogas plant, the upgrading of biogas to biomethane (if applicable) and the use of the biogas or biomethane for heat and electricity or as transportation fuel. Furthermore, the LCA included the GHG emissions of construction, operation and dismantling of the major components involved in the process chain, as well as the use of by-products (e.g. fermentation residues used as fertilizers). All of the biogas systems reduced GHG emissions (in CO2-eq) compared with fossil reference systems. The potential for GHG reduction of the individual biogas systems varied between 60% and 100%. Type of feedstock and its reference use, agricultural practices, coverage of storage tanks for fermentation residues, methane leakage at the combined heat and power plant unit and the proportion of energy used as heat were identified as key factors influencing the GHG emissions of anaerobic digestion processes.
Kim, Hyung Chul; Wallington, Timothy J
2013-06-18
Replacing conventional materials (steel and iron) with lighter alternatives (e.g., aluminum, magnesium, and composites) decreases energy consumption and greenhouse gas (GHG) emissions during vehicle use but may increase energy consumption and GHG emissions during vehicle production. There have been many life cycle assessment (LCA) studies on the benefits of vehicle lightweighting, but the wide variety of assumptions used makes it difficult to compare results from the studies. To clarify the benefits of vehicle lightweighting we have reviewed the available literature (43 studies). The GHG emissions and primary energy results from 33 studies that passed a screening process were harmonized using a common set of assumptions (lifetime distance traveled, fuel-mass coefficient, secondary weight reduction factor, fuel consumption allocation, recycling rate, and energy intensity of materials). After harmonization, all studies indicate that using aluminum, glass-fiber reinforced plastic, and high strength steel to replace conventional steel decreases the vehicle life cycle energy use and GHG emissions. Given the flexibility in options implied by the variety of materials available and consensus that these materials have substantial energy and emissions benefits, it seems likely that lightweighting will be used increasingly to improve fuel economy and reduce life cycle GHG emissions from vehicles.
Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870–2000
Parton, William J.; Gutmann, Myron P.; Merchant, Emily R.; Hartman, Melannie D.; Adler, Paul R.; McNeal, Frederick M.; Lutz, Susan M.
2015-01-01
The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices. PMID:26240366
Relevance of emissions timing in biofuel greenhouse gases and climate impacts.
Schwietzke, Stefan; Griffin, W Michael; Matthews, H Scott
2011-10-01
Employing life cycle greenhouse gas (GHG) emissions as a key performance metric in energy and environmental policy may underestimate actual climate change impacts. Emissions released early in the life cycle cause greater cumulative radiative forcing (CRF) over the next decades than later emissions. Some indicate that ignoring emissions timing in traditional biofuel GHG accounting overestimates the effectiveness of policies supporting corn ethanol by 10-90% due to early land use change (LUC) induced GHGs. We use an IPCC climate model to (1) estimate absolute CRF from U.S. corn ethanol and (2) quantify an emissions timing factor (ETF), which is masked in the traditional GHG accounting. In contrast to earlier analyses, ETF is only 2% (5%) over 100 (50) years of impacts. Emissions uncertainty itself (LUC, fuel production period) is 1-2 orders of magnitude higher, which dwarfs the timing effect. From a GHG accounting perspective, emissions timing adds little to our understanding of the climate impacts of biofuels. However, policy makers should recognize that ETF could significantly decrease corn ethanol's probability of meeting the 20% GHG reduction target in the 2007 Energy Independence and Security Act. The added uncertainty of potentially employing more complex emissions metrics is yet to be quantified.
Cifuentes, L; Borja-Aburto, V H; Gouveia, N; Thurston, G; Davis, D L
2001-06-01
To investigate the potential local health benefits of adopting greenhouse gas (GHG) mitigation policies, we develop scenarios of GHG mitigation for México City, México; Santiago, Chile; São Paulo, Brazil; and New York, New York, USA using air pollution health impact factors appropriate to each city. We estimate that the adoption of readily available technologies to lessen fossil fuel emissions over the next two decades in these four cities alone will reduce particulate matter and ozone and avoid approximately 64,000 (95% confidence interval [CI] 18,000-116,000) premature deaths (including infant deaths), 65,000 (95% CI 22,000-108,000) chronic bronchitis cases, and 46 million (95% CI 35-58 million) person-days of work loss or other restricted activity. These findings illustrate that GHG mitigation can provide considerable local air pollution-related public health benefits to countries that choose to abate GHG emissions by reducing fossil fuel combustion.
Cifuentes, L; Borja-Aburto, V H; Gouveia, N; Thurston, G; Davis, D L
2001-01-01
To investigate the potential local health benefits of adopting greenhouse gas (GHG) mitigation policies, we develop scenarios of GHG mitigation for México City, México; Santiago, Chile; São Paulo, Brazil; and New York, New York, USA using air pollution health impact factors appropriate to each city. We estimate that the adoption of readily available technologies to lessen fossil fuel emissions over the next two decades in these four cities alone will reduce particulate matter and ozone and avoid approximately 64,000 (95% confidence interval [CI] 18,000-116,000) premature deaths (including infant deaths), 65,000 (95% CI 22,000-108,000) chronic bronchitis cases, and 46 million (95% CI 35-58 million) person-days of work loss or other restricted activity. These findings illustrate that GHG mitigation can provide considerable local air pollution-related public health benefits to countries that choose to abate GHG emissions by reducing fossil fuel combustion. PMID:11427391
Olander, Lydia P; Cooley, David M; Galik, Christopher S
2012-03-01
Management of forests, rangelands, and wetlands on public lands, including the restoration of degraded lands, has the potential to increase carbon sequestration or reduce greenhouse gas (GHG) emissions beyond what is occurring today. In this paper we discuss several policy options for increasing GHG mitigation on public lands. These range from an extension of current policy by generating supplemental mitigation on public lands in an effort to meet national emissions reduction goals, to full participation in an offsets market by allowing GHG mitigation on public lands to be sold as offsets either by the overseeing agency or by private contractors. To help place these policy options in context, we briefly review the literature on GHG mitigation and public lands to examine the potential for enhanced mitigation on federal and state public lands in the United States. This potential will be tempered by consideration of the tradeoffs with other uses of public lands, the needs for climate change adaptation, and the effects on other ecosystem services.
Wells to wheels: Environmental implications of natural gas as a transportation fuel
Cai, Hao; Burnham, Andrew; Chen, Rui; ...
2017-07-25
Expanded use of natural gas (NG) as a transportation fuel in the United States requires understanding its environmental, technological, and economic performance. We analyzed water consumption for NG production in major U.S. shale gas plays from recent reports and studies. Also, we assessed the water consumption, greenhouse gas (GHG) emissions, and air emissions of using compressed and liquefied NG as transportation fuels by three heavyduty NG vehicles (NGV) types from a wells-to-wheels (WTW) perspective, using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model developed at Argonne National Laboratory. We reviewed recent work on quantifying methane leakagemore » in the NG supply chain and vehicle use to improve the estimates of this important factor to GHG emissions of NGVs. These results show that the NGVs could reduce water consumption significantly and offer air emissions reduction benefits compared to their diesel counterparts. WTW GHG emissions of NGVs are largely driven by the vehicle fuel efficiency, and methane leakage rates of the NG supply chain and vehicle end use, and are slightly higher than those of the diesel counterparts with the estimated WTW methane leakage. We also analyzed costs of operating NGVs relative to diesel vehicles and found that the cost-effectiveness of NGVs is impacted by incremental cost of NG storage tanks and price difference between NG and diesel fuels. Our findings for NG as a transportation fuel for different vehicle technologies shed light on their environmental impacts and the economics from the WTW holistic point of view.« less
A holistic approach to the environmental evaluation of food waste prevention.
Salemdeeb, Ramy; Font Vivanco, David; Al-Tabbaa, Abir; Zu Ermgassen, Erasmus K H J
2017-01-01
The environmental evaluation of food waste prevention is considered a challenging task due to the globalised nature of the food supply chain and the limitations of existing evaluation tools. The most significant of these is the rebound effect: the associated environmental burdens of substitutive consumption that arises as a result of economic savings made from food waste prevention. This study introduces a holistic approach to addressing these challenges, with a focus on greenhouse gas (GHG) emissions from household food waste in the UK. It uses a hybrid life-cycle assessment model coupled with a highly detailed multi-regional environmentally extended input output analysis to capture environmental impacts across the global food supply chain. The study also takes into consideration the rebound effect, which was modelled using a linear specification of an almost ideal demand system. The study finds that food waste prevention could lead to substantial reductions in GHG emissions in the order of 706-896kg CO 2 -eq. per tonne of food waste, with most of these savings (78%) occurring as a result of avoided food production overseas. The rebound effect may however reduce such GHG savings by up to 60%. These findings provide a deeper insight into our understanding of the environmental impacts of food waste prevention: the study demonstrates the need to adopt a holistic approach when developing food waste prevention policies in order to mitigate the rebound effect and highlight the importance of increasing efficiency across the global food supply chain, particularly in developing countries. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rhodes, James S., III
2007-12-01
Industrial bio-energy systems provide diverse opportunities for abating anthropogenic greenhouse gas ("GHG") emissions and for advancing other important policy objectives. The confluence of potential contributions to important social, economic, and environmental policy objectives with very real challenges to deployment creates rich opportunities for study. In particular, the analyses developed in this thesis aim to increase understanding of how industrial bio-energy may be applied to abate GHG emissions in prospective energy markets, the relative merits of alternate bio-energy systems, the extent to which public support for developing such systems is justified, and the public policy instruments that may be capable of providing such support. This objective is advanced through analysis of specific industrial bio-energy technologies, in the form of bottom-up engineering-economic analyses, to determine their economic performance relative to other mitigation options. These bottom-up analyses are used to inform parameter definitions in two higher-level stochastic models that explicitly account for uncertainty in key model parameters, including capital costs, operating and maintenance costs, and fuel costs. One of these models is used to develop supply curves for electricity generation and carbon mitigation from biomass-coal cofire in the U.S. The other is used to characterize the performance of multiple bio-energy systems in the context of a competitive market for low-carbon energy products. The results indicate that industrial bio-energy systems are capable of making a variety of potentially important contributions under scenarios that value anthropogenic GHG emissions. In the near term, cofire of available biomass in existing coal fired power plants has the potential to provide substantial emissions reductions at reasonable costs. Carbon prices between 30 and 70 per ton carbon could induce reductions in U.S. carbon emissions by 100 to 225 megatons carbon ("MtC"), equivalent to roughly 3% of U.S. GHG emissions. In the medium or longer term, integration of carbon capture and storage technologies with advanced bio-energy conversion technologies ("biomass-CCS"), in both liquid fuels production and electric sector applications, will likely be feasible. These systems are capable of generating useful energy products with negative net atmospheric carbon emissions at carbon prices between 100 and 200 per tC. Negative emissions from biomass-CCS could be applied to offset emissions sources that are difficult or expensive to abate directly. Such indirect mitigation may prove cost competitive and provide important flexibility in achieving stabilization of atmospheric GHG concentrations at desirable levels. With increasing deployments, alternate bio-energy systems will eventually compete for limited biomass resources and inputs to agricultural production--particularly land. In this context, resource allocation decisions will likely turn on the relative economic performance of alternate bio-energy systems in their respective energy markets. The relatively large uncertainty in forecasts of energy futures confounds reliable prediction of economically efficient uses for available biomass resources. High oil prices or large valuation of energy security benefits will likely enable bio-fuels production to dominate electric-sector options. In contrast, low oil prices and low valuation of energy security benefits will likely enable electric-sector applications to dominate. In the latter scenario, indirect mitigation of transportation-sector emissions via emissions offsets from electric-sector biomass-CCS could prove more efficient than direct fuel substitution with biofuels, both economically and in terms of the transportation-sector mitigation of available biomass resources [tC tbiomass-1]. The policy environment surrounding industrial bio-energy development is systematically examined. Specifically, the policy objectives that may be advanced with bio-energy and the challenges constraining deployment are examined to understand the extent to which public policy support is justified to accelerate development. Policy frameworks and specific policy instruments that have been proposed or enacted to support industrial bio-energy are evaluated to understand their current and potential future roles in shaping bio-energy development. This analysis indicates that deployment of industrial bio-energy systems to advance specified policy objectives has been compromised by inefficient and inconsistent public policies. Amending existing policies could substantially accelerate bio-energy deployment. More generally, public policies that set even prices across the economy for advancing targeted policy objectives should be developed. Industrial bio-energy systems can be expected to compete favorably in the context of such policies, including those valuing deep reductions in anthropogenic GHG emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Uisung; Han, Jeongwoo; Wang, Michael
Various waste-to-energy (WTE) conversion technologies can generate energy products from municipal solid waste (MSW). Accurately evaluating landfill gas (LFG, mainly methane) emissions from base case landfills is critical to conducting a WTE life-cycle analysis (LCA) of their greenhouse gas (GHG) emissions. To reduce uncertainties in estimating LFG, this study investigated key parameters for its generation, based on updated experimental results. These results showed that the updated parameters changed the calculated GHG emissions from landfills significantly depending on waste stream; they resulted in a 65% reduction for wood (from 2412 to 848 t CO 2e/dry t) to a 4% increase formore » food waste (from 2603 to 2708 t CO 2e/dry t). Landfill GHG emissions also vary significantly based on LFG management practices and climate. In LCAs of WTE conversion, generating electricity from LFG helps reduce GHG emissions indirectly by displacing regional electricity. When both active LFG collection and power generation are considered, GHG emissions are 44% less for food waste (from 2708 to 1524 t CO 2e/dry t), relative to conventional MSW landfilling. The method developed and data collected in this study can help improve the assessment of GHG impacts from landfills, which supports transparent decision-making regarding the sustainable treatment, management, and utilization of MSW.« less
Lee, Uisung; Han, Jeongwoo; Wang, Michael
2017-08-05
Various waste-to-energy (WTE) conversion technologies can generate energy products from municipal solid waste (MSW). Accurately evaluating landfill gas (LFG, mainly methane) emissions from base case landfills is critical to conducting a WTE life-cycle analysis (LCA) of their greenhouse gas (GHG) emissions. To reduce uncertainties in estimating LFG, this study investigated key parameters for its generation, based on updated experimental results. These results showed that the updated parameters changed the calculated GHG emissions from landfills significantly depending on waste stream; they resulted in a 65% reduction for wood (from 2412 to 848 t CO 2e/dry t) to a 4% increase formore » food waste (from 2603 to 2708 t CO 2e/dry t). Landfill GHG emissions also vary significantly based on LFG management practices and climate. In LCAs of WTE conversion, generating electricity from LFG helps reduce GHG emissions indirectly by displacing regional electricity. When both active LFG collection and power generation are considered, GHG emissions are 44% less for food waste (from 2708 to 1524 t CO 2e/dry t), relative to conventional MSW landfilling. The method developed and data collected in this study can help improve the assessment of GHG impacts from landfills, which supports transparent decision-making regarding the sustainable treatment, management, and utilization of MSW.« less
Global climate targets and future consumption level: an evaluation of the required GHG intensity
NASA Astrophysics Data System (ADS)
Girod, Bastien; van Vuuren, Detlef Peter; Hertwich, Edgar G.
2013-03-01
Discussion and analysis on international climate policy often focuses on the rather abstract level of total national and regional greenhouse gas (GHG) emissions. At some point, however, emission reductions need to be translated to consumption level. In this article, we evaluate the implications of the strictest IPCC representative concentration pathway for key consumption categories (food, travel, shelter, goods, services). We use IPAT style identities to account for possible growth in global consumption levels and indicate the required change in GHG emission intensity for each category (i.e. GHG emission per calorie, person kilometer, square meter, kilogram, US dollar). The proposed concept provides guidance for product developers, consumers and policymakers. To reach the 2 °C climate target (2.1 tCO2-eq. per capita in 2050), the GHG emission intensity of consumption has to be reduced by a factor of 5 in 2050. The climate targets on consumption level allow discussion of the feasibility of this climate target at product and consumption level. In most consumption categories products in line with this climate target are available. For animal food and air travel, reaching the GHG intensity targets with product modifications alone will be challenging and therefore structural changes in consumption patterns might be needed. The concept opens up possibilities for further research on potential solutions on the consumption and product level to global climate mitigation.
Reduction of PCDDs/PCDFs in MSWI fly ash using microwave peroxide oxidation in H2SO4/HNO3 solution.
Chang, Yu-Min; Dai, Wen-Chien; Tsai, Kao-Shen; Chen, Shiao-Shing; Chen, Jyh-Herng; Kao, Jimmy C M
2013-05-01
Microwave peroxide oxidation (MPO) is an energy-efficient and low GHG emission technology to destroy the hazardous organic compounds in solid waste. The objective of this paper is to explore the reduction feasibility of PCDDs/Fs in MSWI fly ash using the MPO in H2SO4/HNO3 solution. Nearly all PCDDs/Fs, 99% in the original fly ash, can be reduced in 120min at the temperature of 150°C using the MPO treatment. It was also found that a change occurred in the content distribution profiles of 17 major PCDD/F congeners before and after MPO treatment. This provides the potential to reduce the actual PCDDs/Fs content more than I-TEQ contents of PCDDs/Fs. The percentile distribution profile has a tendency of higher chlorinated PCDDs/Fs moving to the lower ones. It concludes that a significant reduction efficiency of I-TEQ toxicity was achieved and showed sufficient reduction of toxic level to lower than 1.0ngI-TEQ(gdw)(-1). The treatment temperature would be a critical factor facilitating the dissolution because higher temperature leads more inorganic salt (parts of fly ash) dissolution. Some problems caused by the MPO method are also delineated in this paper. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, David L
Highway finance in the United States is perceived by many to be in a state of crisis, primarily due to the erosion of motor fuel tax revenues due to inflation, fuel economy improvement, increased use of alternative sources of energy and diversion of revenues to other purposes. Monitoring vehicle miles of travel (VMT) and charging highway users per mile has been proposed as a replacement for the motor fuel tax. A VMT user fee, however, does not encourage energy efficiency in vehicle design, purchase and operation, as would a user fee levied on all forms of commercial energy used formore » transportation and indexed to the average efficiency of vehicles on the road and to inflation. An indexed roadway user toll on energy (IRoUTE) would induce two to four times as much reduction in greenhouse gas (GHG) emissions and petroleum use as a pure VMT user fee. However, it is not a substitute for pricing GHG emissions and would make only a small but useful contribution to reducing petroleum dependence. An indexed energy user fee cannot adequately address the problems of traffic congestion and heavy vehicle cost responsibility. It could, however, be a key component of a comprehensive system of financing surface transportation that would eventually also include time and place specific monitoring of VMT for congestion pricing, externality charges and heavy vehicle user fees.« less
Transportation futures : policy scenarios for achieving greenhouse gas reduction targets.
DOT National Transportation Integrated Search
2014-03-01
It is well established that GHG emissions must be reduced by 50% to 80% by 2050 in order to limit global temperature increase : to 2C. Achieving reductions of this magnitude in the transportation sector is a challenge and requires a multitude of po...
NASA Astrophysics Data System (ADS)
Kudrenickis, I.; Klavs, G.
2013-12-01
Utilisation of biomass is an important factor in reducing emission of greenhouse gases (GHG); at the same time, high efficiency of biomass combustion technologies is to be ensured to minimise the methane (CH4) emission thus achieving the most efficient reduction in the total GHG emission. The authors analyse the GHG emission breakdown in Latvia among the sectors not included in the EU Emissions Trading Scheme (ETS), and, in the context of emission reduction, evaluate the energy supply in the Latvian household sector, the types of combustion technologies and the used fuels. The trend is considered for the CH4 emission factor during 1990-2010 in the household sector of EU countries, and the numerical index is calculated which illustrates decoupling the consumption of biomass fuel from CH4 emission. To evaluate the perspective of CH4 emission reduction in the Latvian household sector, two scenarios are investigated for efficiency improvement as related to the central heating equipment based on wood fuel. Biomasas izmantošana ir viens no principiālajiem virzieniem siltumnīcefekta gāzu (SEG) emisiju samazināšanā. Maksimāla SEG emisiju samazinājuma panākšanai ir nepieciešams nodrošināt biomasas sadedzināšanas iekārtu augstu efektivitāti, lai minimizētu ar biomasas kurināmā patēriņu saistīto metāna (CH4) emisiju pieaugumu. Autori raksturo Eiropas Savienības (ES) Emisiju kvotu tirdzniecības sistēmas (ETS) un tajā neietilpstošo sektoru (ne-ETS) nozīmi Latvijas SEG emisiju veidošanā, SEG emisiju relatīvo sadalījumu atbilstoši dažādiem ne- ETS sektoriem un SEG emisiju samazināšanas kontekstā analizē Latvijas mājsaimniecību sektora energoapgādi, patērēto kurināmo un izmantotās kurināmā sadedzināšanas tehnoloģijas. Rakstā ir demonstrēta SEG emisiju inventarizācijā pielietotā CH4 emisiju specifiskā faktora mājsaimniecību sektora koksnes kurināmajam skaitlisko vērtību dinamika 1990-2010 gados dažādās ES valstīs. Salīdzinot kurināmā patēriņa un CH4 emisiju apjoma izmaiņas, ir aprēķināts skaitliskais rādītājs, kas raksturo biomasas kurināmā patēriņa un CH4 emisiju "atsaisti" ES valstīs analizējamā laika posmā. Lai kvantitatīvi novērtētu CH4 emisiju samazināšanas perspektīvu Latvijas mājsaimniecību sektorā, autori analizē divus attīstības scenārijus, kas paredz dažādus mājsaimniecību centrālajā apkurē izmantoto koksnes sadedzināšanas iekārtu efektivitātes pieaugumus.
Wang, Quan; Awasthi, Mukesh Kumar; Ren, Xiuna; Zhao, Junchao; Li, Ronghua; Wang, Zhen; Wang, Meijing; Chen, Hongyu; Zhang, Zengqiang
2018-04-01
The effect of enhancing wood vinegar (WV) with a mixture of biochar (B) and zeolite (Z) to compost pig manure (PM) in a 130 L reactor was evaluated to determine the levels of greenhouse gas (GHG) and ammonia emissions. Six treatments were prepared in a 2:1 ratio of PM mixed with wheat straw (WS; dry weight basis): PM + WS (control), PM + WS + 10%B, PM + WS + 10%B + 10%Z, and PM + WS with 0.5%, 1.0% and 2.0%WV combined with 10%B + 10%Z. These were composted for 50 days, and the results indicated that the combined use of B, Z, and WV could shorten the thermophilic phase and improve the maturity of compost compared to the control treatment. In addition, WV mixed with B and Z could reduce ammonia loss by 64.45-74.32% and decrease CO 2 , CH 4 , and N 2 O emissions by 33.90-46.98%, 50.39-61.15%, and 79.51-81.10%, respectively. Furthermore, compared to treatments in which B and B + Z were added, adding WV was more efficient to reduce the nitrogen and carbon loss, and the 10%B + 10%Z + 2%WV treatment presented the lowest loss of carbon (9.16%) and nitrogen (0.75%). Based on the maturity indexes used, nitrogen conservation, and efficiency of GHG emissions reduction, the treatment 10%B + 10%Z + 2%WV is suggested for efficient PM composting. Copyright © 2018 Elsevier Ltd. All rights reserved.
Crowd-Sourcing Management Activity Data to Drive GHG Emission Inventories in the Land Use Sector
NASA Astrophysics Data System (ADS)
Paustian, K.; Herrick, J.
2015-12-01
Greenhouse gas (GHG) emissions from the land use sector constitute the largest source category for many countries in Africa. Enhancing C sequestration and reducing GHG emissions on managed lands in Africa has to potential to attract C financing to support adoption of more sustainable land management practices that, in addition to GHG mitigation, can provide co-benefits of more productive and climate-resilient agroecosystems. However, robust systems to measure and monitor C sequestration/GHG reductions are currently a significant barrier to attracting more C financing to land use-related mitigation efforts.Anthropogenic GHG emissions are driven by a variety of environmental factors, including climate and soil attributes, as well as human-activities in the form of land use and management practices. GHG emission inventories typically use empirical or process-based models of emission rates that are driven by environmental and management variables. While a lack of field-based flux and C stock measurements are a limiting factor for GHG estimation, we argue that an even greater limitation may be availabiity of data on the management activities that influence flux rates, particularly in developing countries in Africa. In most developed countries there is a well-developed infrastructure of agricultural statistics and practice surveys that can be used to drive model-based GHG emission estimations. However, this infrastructure is largely lacking in developing countries in Africa. While some activity data (e.g. land cover change) can be derived from remote sensing, many key data (e.g., N fertilizer practices, residue management, manuring) require input from the farmers themselves. The explosive growth in cellular technology, even in many of the poorest parts of Africa, suggests the potential for a new crowd-sourcing approach and direct engagement with farmers to 'leap-frog' the land resource information model of developed countries. Among the many benefits of this approach would be high resolution management data to support GHG inventories at multiple scales. We present an overall conceptual model for this approach and examples from on-going projects in Africa employing direct farmer engagement, cellular technology and apps to develop this information resource.
Chen, Xudong; Xi, Fengming; Geng, Yong; Fujita, Tsuyoshi
2011-01-01
With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO(2)e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kg ce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption. Copyright © 2010 Elsevier Ltd. All rights reserved.
Farchi, Sara; Lapucci, Enrica; Michelozzi, Paola
2015-01-01
the reduction in red meat consumption has been proposed as one of the climate change mitigation policies associated to health benefits. In the developed world, red meat consumption is above the recommended intake level. the aim is to evaluate health benefits, in term of mortality decline, associated to different bovine meat consumption reduction scenarios and the potential reduction in greenhouse gas (GHG) emissions. meat consumption in Italy has been estimated using the Italian National Food Consumption Survey INRAN-SCAI (2005-2006) and the Multipurpose survey on household (2012) of the Italian National Institute for Statistics. Colorectal cancer and stoke mortality data are derived from the national survey on causes of death in 2012. Bovine meat consumption risk function has been retrieved from systematic literature reviews. Mean meat consumption in Italy is equal to 770 grams/week; gender and geographical variations exist: 69 per cent of the adult population are habitual bovine meat consumers; males have an average intake of over 400 grams/week in all areas of Italy (with the exception of the South), while females have lower intakes (360 grams per week), with higher consumption in the North-West (427 gr) and lower in the South of Italy. Four scenarios of reduction of bovine meat consumption (20%, 40%, 50% e 70%, respectively) have been evaluated and the number of avoidable deaths by gender and area of residence have been estimated. GHG emissions attributed to bovine meat adult consumption have been estimated to be to 10 gigagrams CO2-eq. from low to high reduction scenario, the percentage of avoidable deaths ranged from 2.1% to 6.5% for colorectal cancer and from 1.6% to 5.6% for stroke. Health benefits were greatest for males and for people living in the North-Western regions of Italy. in Italy, in order to adhere to bovine meat consumption recommendations and to respect EU GHG emission reduction targets, scenarios between 50% and 70% need to be adopted.
Cederberg, C; Hedenus, F; Wirsenius, S; Sonesson, U
2013-02-01
To analyse trends in greenhouse gas (GHG) emissions from production and consumption of animal products in Sweden, life cycle emissions were calculated for the average production of pork, chicken meat, beef, dairy and eggs in 1990 and 2005. The calculated average emissions were used together with food consumption statistics and literature data on imported products to estimate trends in per capita emissions from animal food consumption. Total life cycle emissions from the Swedish livestock production were around 8.5 Mt carbon dioxide equivalents (CO2e) in 1990 and emissions decreased to 7.3 Mt CO2e in 2005 (14% reduction). Around two-thirds of the emission cut was explained by more efficient production (less GHG emission per product unit) and one-third was due to a reduced animal production. The average GHG emissions per product unit until the farm-gate were reduced by 20% for dairy, 15% for pork and 23% for chicken meat, unchanged for eggs and increased by 10% for beef. A larger share of the average beef was produced from suckler cows in cow-calf systems in 2005 due to the decreasing dairy cow herd, which explains the increased emissions for the average beef in 2005. The overall emission cuts from the livestock sector were a result of several measures taken in farm production, for example increased milk yield per cow, lowered use of synthetic nitrogen fertilisers in grasslands, reduced losses of ammonia from manure and a switch to biofuels for heating in chicken houses. In contrast to production, total GHG emissions from the Swedish consumption of animal products increased by around 22% between 1990 and 2005. This was explained by strong growth in meat consumption based mainly on imports, where growth in beef consumption especially was responsible for most emission increase over the 15-year period. Swedish GHG emissions caused by consumption of animal products reached around 1.1 t CO2e per capita in 2005. The emission cuts necessary for meeting a global temperature-increase target of 2° might imply a severe constraint on the long-term global consumption of animal food. Due to the relatively limited potential for reducing food-related emissions by higher productivity and technological means, structural changes in food consumption towards less emission-intensive food might be required for meeting the 2° target.
Low-carbon energy generates public health savings in California
NASA Astrophysics Data System (ADS)
Zapata, Christina B.; Yang, Chris; Yeh, Sonia; Ogden, Joan; Kleeman, Michael J.
2018-04-01
California's goal to reduce greenhouse gas (GHG) emissions to a level that is 80 % below 1990 levels by the year 2050 will require adoption of low-carbon energy sources across all economic sectors. In addition to reducing GHG emissions, shifting to fuels with lower carbon intensity will change concentrations of short-lived conventional air pollutants, including airborne particles with a diameter of less than 2.5 µm (PM2.5) and ozone (O3). Here we evaluate how business-as-usual (BAU) air pollution and public health in California will be transformed in the year 2050 through the adoption of low-carbon technologies, expanded electrification, and modified activity patterns within a low-carbon energy scenario (GHG-Step). Both the BAU and GHG-Step statewide emission scenarios were constructed using the energy-economic optimization model, CA-TIMES, that calculates the multi-sector energy portfolio that meets projected energy supply and demand at the lowest cost, while also satisfying scenario-specific GHG emissions constraints. Corresponding criteria pollutant emissions for each scenario were then spatially allocated at 4 km resolution to support air quality analysis in different regions of the state. Meteorological inputs for the year 2054 were generated under a Representative Concentration Pathway (RCP) 8.5 future climate. Annual-average PM2.5 and O3 concentrations were predicted using the modified emissions and meteorology inputs with a regional chemical transport model. In the final phase of the analysis, mortality (total deaths) and mortality rate (deaths per 100 000) were calculated using established exposure-response relationships from air pollution epidemiology combined with simulated annual-average PM2.5 and O3 exposure. Net emissions reductions across all sectors are -36 % for PM0.1 mass, -3.6 % for PM2.5 mass, -10.6 % for PM2.5 elemental carbon, -13.3 % for PM2.5 organic carbon, -13.7 % for NOx, and -27.5 % for NH3. Predicted deaths associated with air pollution in 2050 dropped by 24-26 % in California (1537-2758 avoided deaths yr-1) in the climate-friendly
2050 GHG-Step scenario, which is equivalent to a 54-56 % reduction in the air pollution mortality rate (deaths per 100 000) relative to 2010 levels. These avoided deaths have an estimated value of USD 11.4-20.4 billion yr-1 based on the present-day value of a statistical life (VSL) equal to USD 7.6 million. The costs for reducing California GHG emissions 80 % below 1990 levels by the year 2050 depend strongly on numerous external factors such as the global price of oil. Best estimates suggest that meeting an intermediate target (40 % reduction in GHG emissions by the year 2030) using a non-optimized scenario would reduce personal income by USD 4.95 billion yr-1 (-0.15 %) and lower overall state gross domestic product by USD 16.1 billion yr-1 (-0.45 %). The public health benefits described here are comparable to these cost estimates, making a compelling argument for the adoption of low-carbon energy in California, with implications for other regions in the United States and across the world.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Uisung; Han, Jeongwoo; Urgun Demirtas, Meltem
Wastewater treatment plants (WWTPs) produce sludge as a byproduct when they treat wastewater. In the United States, over 8 million dry tons of sludge are produced annually just from publicly owned WWTPs. Sludge is commonly treated in anaerobic digesters, which generate biogas; the biogas is then largely flared to reduce emissions of methane, a potent greenhouse gas. Because sludge is quite homogeneous and has a high energy content, it is a good potential feedstock for other conversion processes that make biofuels, bioproducts, and power. For example, biogas from anaerobic digesters can be used to generate renewable natural gas (RNG), whichmore » can be further processed to produce compressed natural gas (CNG) and liquefied natural gas (LNG). Sludge can be directly converted into hydrocarbon liquid fuels via thermochemical processes such as hydrothermal liquefaction (HTL). Currently, the environmental impacts of converting sludge into energy are largely unknown, and only a few studies have focused on the environmental impacts of RNG produced from existing anaerobic digesters. As biofuels from sludge generate high interest, however, existing anaerobic digesters could be upgraded to technology with more economic potential and more environmental benefits. The environmental impacts of using a different anaerobic digestion (AD) technology to convert sludge into energy have yet to be analyzed. In addition, no studies are available about the direct conversion of sludge into liquid fuels. In order to estimate the energy consumption and greenhouse gas (GHG) emissions impacts of these alternative pathways (sludge-to-RNG and sludge-to-liquid), this study performed a lifecycle analysis (LCA) using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. The energy uses and GHG emissions associated with the RNG and hydrocarbon liquid are analyzed relative to the current typical sludge management case, which consists of a single-stage mesophilic digester with biogas flaring. Along with the alternative HTL process, four types of AD technologies with fuel production—single-stage mesophilic, mesophilic 2-stage, single-stage mesophilic with thermohydrolysis treatment, and mesophilicmesophilic acid/gas phase—are studied. Results show that the sludge-to-CNG pathway via AD and the sludge-to-liquid pathway via HTL reduce GHG emissions consumptions significantly. When we compare the GHG emissions of the alternative fuel production pathways to that of the counterfactual case in terms of the amount of sludge treated, reductions in GHG emissions are 39%–80% and 87% for alternative AD and HTL, respectively. Compared to petroleum gasoline and diesel GHG emission results in terms of MJ, the renewable CNG production pathway via AD and the renewable diesel production pathway via HTL reduce GHG emissions by 193% and 46%, respectively. These large reductions are mainly due to GHG credits from avoiding GHGs under the counterfactual scenario, and/or fertilizer displacement credits. Similarly, reductions in fossil fuel use for sludge-based fuels are huge. However, well-defined counterfactual scenarios are needed because the results of the study depend on the counterfactual scenario, which might vary over time.« less
Green, Rosemary; Joy, Edward J. M.; Smith, Pete; Haines, Andy
2016-01-01
Food production is a major driver of greenhouse gas (GHG) emissions, water and land use, and dietary risk factors are contributors to non-communicable diseases. Shifts in dietary patterns can therefore potentially provide benefits for both the environment and health. However, there is uncertainty about the magnitude of these impacts, and the dietary changes necessary to achieve them. We systematically review the evidence on changes in GHG emissions, land use, and water use, from shifting current dietary intakes to environmentally sustainable dietary patterns. We find 14 common sustainable dietary patterns across reviewed studies, with reductions as high as 70–80% of GHG emissions and land use, and 50% of water use (with medians of about 20–30% for these indicators across all studies) possible by adopting sustainable dietary patterns. Reductions in environmental footprints were generally proportional to the magnitude of animal-based food restriction. Dietary shifts also yielded modest benefits in all-cause mortality risk. Our review reveals that environmental and health benefits are possible by shifting current Western diets to a variety of more sustainable dietary patterns. PMID:27812156
Accounting for climate and air quality damages in future U.S. electricity generation scenarios.
Brown, Kristen E; Henze, Daven K; Milford, Jana B
2013-04-02
The EPA-MARKAL model of the U.S. electricity sector is used to examine how imposing emissions fees based on estimated health and environmental damages might change electricity generation. Fees are imposed on life-cycle emissions of SO(2), nitrogen oxides (NO(x)), particulate matter, and greenhouse gases (GHG) from 2015 through 2055. Changes in electricity production, fuel type, emissions controls, and emissions produced under various fees are examined. A shift in fuels used for electricity production results from $30/ton CO(2)-equivalent GHG fees or from criteria pollutant fees set at the higher-end of the range of published damage estimates, but not from criteria pollutant fees based on low or midrange damage estimates. With midrange criteria pollutant fees assessed, SO(2) and NOx emissions are lower than the business as usual case (by 52% and 10%, respectively), with larger differences in the western U.S. than in the eastern U.S. GHG emissions are not significantly impacted by midrange criteria pollutant fees alone; conversely, with only GHG fees, NO(x) emissions are reduced by up to 11%, yet SO(2) emissions are slightly higher than in the business as usual case. Therefore, fees on both GHG and criteria pollutants may be needed to achieve significant reductions in both sets of pollutants.
Greenhouse gas emissions and carbon sequestration by agroforestry systems in southeastern Brazil.
Torres, Carlos Moreira Miquelino Eleto; Jacovine, Laércio Antônio Gonçalves; Nolasco de Olivera Neto, Sílvio; Fraisse, Clyde William; Soares, Carlos Pedro Boechat; de Castro Neto, Fernando; Ferreira, Lino Roberto; Zanuncio, José Cola; Lemes, Pedro Guilherme
2017-12-01
Agrosilvopastoral and silvopastoral systems can increase carbon sequestration, offset greenhouse gas (GHG) emissions and reduce the carbon footprint generated by animal production. The objective of this study was to estimate GHG emissions, the tree and grass aboveground biomass production and carbon storage in different agrosilvopastoral and silvopastoral systems in southeastern Brazil. The number of trees required to offset these emissions were also estimated. The GHG emissions were calculated based on pre-farm (e.g. agrochemical production, storage, and transportation), and on-farm activities (e.g. fertilization and machinery operation). Aboveground tree grass biomass and carbon storage in all systems was estimated with allometric equations. GHG emissions from the agroforestry systems ranged from 2.81 to 7.98 t CO 2 e ha -1 . Carbon storage in the aboveground trees and grass biomass were 54.6, 11.4, 25.7 and 5.9 t C ha -1 , and 3.3, 3.6, 3.8 and 3.3 t C ha -1 for systems 1, 2, 3 and 4, respectively. The number of trees necessary to offset the emissions ranged from 17 to 44 trees ha -1 , which was lower than the total planted in the systems. Agroforestry systems sequester CO 2 from the atmosphere and can help the GHG emission-reduction policy of the Brazilian government.
Reducing greenhouse gas emissions in agriculture without compromising food security?
NASA Astrophysics Data System (ADS)
Frank, Stefan; Havlík, Petr; Soussana, Jean-François; Levesque, Antoine; Valin, Hugo; Wollenberg, Eva; Kleinwechter, Ulrich; Fricko, Oliver; Gusti, Mykola; Herrero, Mario; Smith, Pete; Hasegawa, Tomoko; Kraxner, Florian; Obersteiner, Michael
2017-10-01
To keep global warming possibly below 1.5 °C and mitigate adverse effects of climate change, agriculture, like all other sectors, will have to contribute to efforts in achieving net negative emissions by the end of the century. Cost-efficient distribution of mitigation across regions and economic sectors is typically calculated using a global uniform carbon price in climate stabilization scenarios. However, in reality such a carbon price would substantially affect food availability. Here, we assess the implications of climate change mitigation in the land use sector for agricultural production and food security using an integrated partial equilibrium modelling framework and explore ways of relaxing the competition between mitigation in agriculture and food availability. Using a scenario that limits global warming cost-efficiently across sectors to 1.5 °C, results indicate global food calorie losses ranging from 110-285 kcal per capita per day in 2050 depending on the applied demand elasticities. This could translate into a rise in undernourishment of 80-300 million people in 2050. Less ambitious greenhouse gas (GHG) mitigation in the land use sector reduces the associated food security impact significantly, however the 1.5 °C target would not be achieved without additional reductions outside the land use sector. Efficiency of GHG mitigation will also depend on the level of participation globally. Our results show that if non-Annex-I countries decide not to contribute to mitigation action while other parties pursue their mitigation efforts to reach the global climate target, food security impacts in these non-Annex-I countries will be higher than if they participate in a global agreement, as inefficient mitigation increases agricultural production costs and therefore food prices. Land-rich countries with a high proportion of emissions from land use change, such as Brazil, could reduce emissions with only a marginal effect on food availability. In contrast, agricultural mitigation in high population (density) countries, such as China and India, would lead to substantial food calorie loss without a major contribution to global GHG mitigation. Increasing soil carbon sequestration on agricultural land would allow reducing the implied calorie loss by 65% when sticking to the initially estimated land use mitigation requirements, thereby limiting the impact on undernourishment to 20-75 million people, and storing significant amounts of carbon in soils.
Tilche, Andrea; Galatola, Michele
2008-01-01
Anaerobic digestion is a well known process that (while still capable of showing new features) has experienced several waves of technological development. It was "born" as a wastewater treatment system, in the 1970s showed promise as an alternative energy source (in particular from animal waste), in the 1980s and later it became a standard for treating organic-matter-rich industrial wastewater, and more recently returned to the market for its energy recovery potential, making use of different biomasses, including energy crops. With the growing concern around global warming, this paper looks at the potential of anaerobic digestion in terms of reduction of greenhouse gas (GHG) emissions. The potential contribution of anaerobic digestion to GHG reduction has been computed for the 27 EU countries on the basis of their 2005 Kyoto declarations and using life cycle data. The theoretical potential contribution of anaerobic digestion to Kyoto and EU post-Kyoto targets has been calculated. Two different possible biogas applications have been considered: electricity production from manure waste, and upgraded methane production for light goods vehicles (from landfill biogas and municipal and industrial wastewater treatment sludges). The useful heat that can be produced as by-product from biogas conversion into electricity has not been taken into consideration, as its real exploitation depends on local conditions. Moreover the amount of biogas already produced via dedicated anaerobic digestion processes has also not been included in the calculations. Therefore the overall gains achievable would be even higher than those reported here. This exercise shows that biogas may considerably contribute to GHG emission reductions in particular if used as a biofuel. Results also show that its use as a biofuel may allow for true negative GHG emissions, showing a net advantage with respect to other biofuels. Considering also energy crops that will become available in the next few years as a result of Common Agricultural Policy (CAP) reform, this study shows that biogas has the potential of covering almost 50% of the 2020 biofuel target of 10% of all automotive transport fuels, without implying a change in land use. Moreover, considering the achievable GHG reductions, a very large carbon emission trading "value" could support the investment needs.However, those results were obtained through a "qualitative" assessment. In order to produce robust data for decision makers, a quantitative sustainability assessment should be carried out, integrating different methodologies within a life cycle framework. The identification of the most appropriate policy for promoting the best set of options is then discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, Sonia; Yang, Christopher; Gibbs, Michael
California aims to reduce greenhouse gas (GHG) emissions to 40% below 1990 levels by 2030. We compare six energy models that have played various roles in informing the state policymakers in setting climate policy goals and targets. These models adopt a range of modeling structures, including stock-turnover back-casting models, a least-cost optimization model, macroeconomic/macro-econometric models, and an electricity dispatch model. Results from these models provide useful insights in terms of the transformations in the energy system required, including efficiency improvements in cars, trucks, and buildings, electrification of end-uses, low- or zero-carbon electricity and fuels, aggressive adoptions of zero-emission vehicles (ZEVs),more » demand reduction, and large reductions of non-energy GHG emissions. Some of these studies also suggest that the direct economic costs can be fairly modest or even generate net savings, while the indirect macroeconomic benefits are large, as shifts in employment and capital investments could have higher economic returns than conventional energy expenditures. These models, however, often assume perfect markets, perfect competition, and zero transaction costs. They also do not provide specific policy guidance on how these transformative changes can be achieved. Greater emphasis on modeling uncertainty, consumer behaviors, heterogeneity of impacts, and spatial modeling would further enhance policymakers' ability to design more effective and targeted policies. Here, this paper presents an example of how policymakers, energy system modelers and stakeholders interact and work together to develop and evaluate long-term state climate policy targets. Lastly, even though this paper focuses on California, the process of dialogue and interactions, modeling results, and lessons learned can be generally adopted across different regions and scales.« less
Guo, Yang; Tian, Jinping; Chertow, Marian; Chen, Lujun
2016-10-03
Mitigating greenhouse gas (GHG) emissions in China's industrial sector is crucial for addressing climate change. We developed a vintage stock model to quantify the GHG mitigation potential and cost effectiveness in Chinese eco-industrial parks by targeting energy infrastructure with five key measures. The model, integrating energy efficiency assessments, GHG emission accounting, cost-effectiveness analyses, and scenario analyses, was applied to 548 units of energy infrastructure in 106 parks. The results indicate that two measures (shifting coal-fired boilers to natural gas-fired boilers and replacing coal-fired units with natural gas combined cycle units) present a substantial potential to mitigate GHGs (42%-46%) compared with the baseline scenario. The other three measures (installation of municipal solid waste-to-energy units, replacement of small-capacity coal-fired units with large units, and implementation of turbine retrofitting) present potential mitigation values of 6.7%, 0.3%, and 2.1%, respectively. In most cases, substantial economic benefits also can be achieved by GHG emission mitigation. An uncertainty analysis showed that enhancing the annual working time or serviceable lifetime levels could strengthen the GHG mitigation potential at a lower cost for all of the measures.
Contribution of plastic waste recovery to greenhouse gas (GHG) savings in Spain.
Sevigné-Itoiz, Eva; Gasol, Carles M; Rieradevall, Joan; Gabarrell, Xavier
2015-12-01
This paper concentrates on the quantification of greenhouse gas (GHG) emissions of post-consumer plastic waste recovery (material or energy) by considering the influence of the plastic waste quality (high or low), the recycled plastic applications (virgin plastic substitution or non-plastic substitution) and the markets of recovered plastic (regional or global). The aim is to quantify the environmental consequences of different alternatives in order to evaluate opportunities and limitations to select the best and most feasible plastic waste recovery option to decrease the GHG emissions. The methodologies of material flow analysis (MFA) for a time period of thirteen years and consequential life cycle assessment (CLCA) have been integrated. The study focuses on Spain as a representative country for Europe. The results show that to improve resource efficiency and avoid more GHG emissions, the options for plastic waste management are dependent on the quality of the recovered plastic. The results also show that there is an increasing trend of exporting plastic waste for recycling, mainly to China, that reduces the GHG benefits from recycling, suggesting that a new focus should be introduced to take into account the split between local recycling and exporting. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
In the carbon market, greenhouse gas (GHG) offset protocols need to ensure that emission reductions are of high quality, quantifiable and real. However, lack of consistency across protocols for quantifying emission reductions compromise the credibility of offsets generated. Thus, protocol quantifica...
VEHICLE MASS REDUCTION STUDY | Science Inventory ...
Analysis of the potential to reduce light-duty vehicle mass through the application of low density or high strength materials, component consolidation, and changes to vehicle architecture. Find a holistic vehicle design approach that establishes a potential path for future feasible vehicle mass reduction in light-duty vehicles to meet more stringent GHG and Fuel Economy Standards.
Internal combustion engine run on biogas is a potential solution to meet Indonesia emission target
NASA Astrophysics Data System (ADS)
Ambarita, Himsar
2017-09-01
Indonesia has released two different Greenhouse Gas (GHG) emissions reduction targets. The first target, released in 2009, is reduction GHG emissions 26% from Business-as-Usual (BAU) level using own budget and up 41% if supported international aids by 2020. The second target is reduction 29% and 41% from BAU by 2030 using own budget and with international support, respectively. In this paper, the BAU emissions and emissions reduction target of these two targets are elaborated. In addition, the characteristics of emissions from transportation sector are discussed. One of the potential mitigation actions is switching fuel in transportation sector. The results the most promising mitigation action in the transportation is switching oil fuel with biofuel. The Government of Indonesia (GoI) focuses on using biodiesel and bioethanol to run internal combustion engine in transportation sector and biogas is aimed to fuel power plant unit. However, there is very limited of success stories on using biogas in the power plant. The barriers and challenges will be discussed here. It is suggested to run internal combustion engine with biogas.
An assessment of individual foodprints attributed to diets and food waste in the United States
NASA Astrophysics Data System (ADS)
Birney, Catherine I.; Franklin, Katy F.; Davidson, F. Todd; Webber, Michael E.
2017-10-01
This paper assesses the environmental impacts of the average American’s diet and food loss and waste (FLW) habits through an analysis of energy, water, land, and fertilizer requirements (inputs) and greenhouse gas (GHG) emissions (outputs). We synthesized existing datasets to determine the ramifications of the typical American adult’s food habits, as well as the environmental impact associated with shifting diets to meet the US Department of Agriculture (USDA) dietary guideline recommendations. In 2010, FLW accounted for 35% of energy use, 34% of blue water use, 34% of GHG emissions, 31% of land use, and 35% of fertilizer use related to an individual’s food-related resource consumption, i.e. their foodprint. A shift in consumption towards a healthier diet, combined with meeting the USDA and Environmental Protection Agency’s 2030 food loss and waste reduction goal could increase per capita food related energy use 12%, decrease blue water consumption 4%, decrease green water use 23%, decrease GHG emissions from food production 11%, decrease GHG emissions from landfills 20%, decrease land use 32%, and increase fertilizer use 12%.
Maranduba, Henrique Leonardo; Robra, Sabine; Nascimento, Iracema Andrade; da Cruz, Rosenira Serpa; Rodrigues, Luciano Brito; de Almeida Neto, José Adolfo
2015-10-01
Despite environmental benefits of algal-biofuels, the energy-intensive systems for producing microalgae-feedstock may result in high GHG emissions. Trying to overcome energy-costs, this research analyzed the biodiesel production system via dry-route, based on Chlorella vulgaris cultivated in raceways, by comparing the GHG-footprints of diverse microalgae-biodiesel scenarios. These involved: the single system of biomass production (C0); the application of pyrolysis on the residual microalgal biomass (cake) from the oil extraction process (C1); the same as C0, with anaerobic cake co-digested with cattle manure (C2); the same conditions as in C1 and C2, by integrating in both cases (respectively C3 and C4), the microalgae cultivation with an autonomous ethanol distillery. The reduction of GHG emissions in scenarios with no such integration (C1 and C2), compared to CO, was insignificant (0.53% and 4.67%, respectively), whereas in the scenarios with integration with ethanol production system, the improvements were 53.57% for C3 and 63.84% for C4. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhu, Zhi-Liang; Stackpoole, Sarah
2011-01-01
The Energy Independence and Security Act of 2007 (EISA) requires the U.S. Department of the Interior (DOI) to develop a methodology and conduct an assessment of carbon storage, carbon sequestration, and greenhouse-gas (GHG) fluxes in the Nation's ecosystems. The U.S. Geological Survey (USGS) has developed and published the methodology (U.S. Geological Survey Scientific Investigations Report 2010-5233) and has assembled an interdisciplinary team of scientists to conduct the assessment over the next three to four years, commencing in October 2010. The assessment will fulfill specific requirements of the EISA by (1) quantifying, measuring, and monitoring carbon sequestration and GHG fluxes using national datasets and science tools such as remote sensing, and biogeochemical and hydrological models, (2) evaluating a range of management and restoration activities for their effects on carbon-sequestration capacity and the reduction of GHG fluxes, and (3) assessing effects of climate change and other controlling processes (including wildland fires) on carbon uptake and GHG emissions from ecosystems.
Impact of office productivity cloud computing on energy consumption and greenhouse gas emissions.
Williams, Daniel R; Tang, Yinshan
2013-05-07
Cloud computing is usually regarded as being energy efficient and thus emitting less greenhouse gases (GHG) than traditional forms of computing. When the energy consumption of Microsoft's cloud computing Office 365 (O365) and traditional Office 2010 (O2010) software suites were tested and modeled, some cloud services were found to consume more energy than the traditional form. The developed model in this research took into consideration the energy consumption at the three main stages of data transmission; data center, network, and end user device. Comparable products from each suite were selected and activities were defined for each product to represent a different computing type. Microsoft provided highly confidential data for the data center stage, while the networking and user device stages were measured directly. A new measurement and software apportionment approach was defined and utilized allowing the power consumption of cloud services to be directly measured for the user device stage. Results indicated that cloud computing is more energy efficient for Excel and Outlook which consumed less energy and emitted less GHG than the standalone counterpart. The power consumption of the cloud based Outlook (8%) and Excel (17%) was lower than their traditional counterparts. However, the power consumption of the cloud version of Word was 17% higher than its traditional equivalent. A third mixed access method was also measured for Word which emitted 5% more GHG than the traditional version. It is evident that cloud computing may not provide a unified way forward to reduce energy consumption and GHG. Direct conversion from the standalone package into the cloud provision platform can now consider energy and GHG emissions at the software development and cloud service design stage using the methods described in this research.
Impact of non-petroleum vehicle fuel economy on GHG mitigation potential
NASA Astrophysics Data System (ADS)
Luk, Jason M.; Saville, Bradley A.; MacLean, Heather L.
2016-04-01
The fuel economy of gasoline vehicles will increase to meet 2025 corporate average fuel economy standards (CAFE). However, dedicated compressed natural gas (CNG) and battery electric vehicles (BEV) already exceed future CAFE fuel economy targets because only 15% of non-petroleum energy use is accounted for when determining compliance. This study aims to inform stakeholders about the potential impact of CAFE on life cycle greenhouse gas (GHG) emissions, should non-petroleum fuel vehicles displace increasingly fuel efficient petroleum vehicles. The well-to-wheel GHG emissions of a set of hypothetical model year 2025 light-duty vehicles are estimated. A reference gasoline vehicle is designed to meet the 2025 fuel economy target within CAFE, and is compared to a set of dedicated CNG vehicles and BEVs with different fuel economy ratings, but all vehicles meet or exceed the fuel economy target due to the policy’s dedicated non-petroleum fuel vehicle incentives. Ownership costs and BEV driving ranges are estimated to provide context, as these can influence automaker and consumer decisions. The results show that CNG vehicles that have lower ownership costs than gasoline vehicles and BEVs with long distance driving ranges can exceed the 2025 CAFE fuel economy target. However, this could lead to lower efficiency CNG vehicles and heavier BEVs that have higher well-to-wheel GHG emissions than gasoline vehicles on a per km basis, even if the non-petroleum energy source is less carbon intensive on an energy equivalent basis. These changes could influence the effectiveness of low carbon fuel standards and are not precluded by the light-duty vehicle GHG emissions standards, which regulate tailpipe but not fuel production emissions.
High-yield maize with large net energy yield and small global warming intensity
Grassini, Patricio; Cassman, Kenneth G.
2012-01-01
Addressing concerns about future food supply and climate change requires management practices that maximize productivity per unit of arable land while reducing negative environmental impact. On-farm data were evaluated to assess energy balance and greenhouse gas (GHG) emissions of irrigated maize in Nebraska that received large nitrogen (N) fertilizer (183 kg of N⋅ha−1) and irrigation water inputs (272 mm or 2,720 m3 ha−1). Although energy inputs (30 GJ⋅ha−1) were larger than those reported for US maize systems in previous studies, irrigated maize in central Nebraska achieved higher grain and net energy yields (13.2 Mg⋅ha−1 and 159 GJ⋅ha−1, respectively) and lower GHG-emission intensity (231 kg of CO2e⋅Mg−1 of grain). Greater input-use efficiencies, especially for N fertilizer, were responsible for better performance of these irrigated systems, compared with much lower-yielding, mostly rainfed maize systems in previous studies. Large variation in energy inputs and GHG emissions across irrigated fields in the present study resulted from differences in applied irrigation water amount and imbalances between applied N inputs and crop N demand, indicating potential to further improve environmental performance through better management of these inputs. Observed variation in N-use efficiency, at any level of applied N inputs, suggests that an N-balance approach may be more appropriate for estimating soil N2O emissions than the Intergovernmental Panel on Climate Change approach based on a fixed proportion of applied N. Negative correlation between GHG-emission intensity and net energy yield supports the proposition that achieving high yields, large positive energy balance, and low GHG emissions in intensive cropping systems are not conflicting goals. PMID:22232684
Well-to-wheels analysis of fast pyrolysis pathways with the GREET model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, J.; Elgowainy, A.; Palou-Rivera, I.
The pyrolysis of biomass can help produce liquid transportation fuels with properties similar to those of petroleum gasoline and diesel fuel. Argonne National Laboratory conducted a life-cycle (i.e., well-to-wheels [WTW]) analysis of various pyrolysis pathways by expanding and employing the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The WTW energy use and greenhouse gas (GHG) emissions from the pyrolysis pathways were compared with those from the baseline petroleum gasoline and diesel pathways. Various pyrolysis pathway scenarios with a wide variety of possible hydrogen sources, liquid fuel yields, and co-product application and treatment methods were considered. Atmore » one extreme, when hydrogen is produced from natural gas and when bio-char is used for process energy needs, the pyrolysis-based liquid fuel yield is high (32% of the dry mass of biomass input). The reductions in WTW fossil energy use and GHG emissions relative to those that occur when baseline petroleum fuels are used, however, is modest, at 50% and 51%, respectively, on a per unit of fuel energy basis. At the other extreme, when hydrogen is produced internally via reforming of pyrolysis oil and when bio-char is sequestered in soil applications, the pyrolysis-based liquid fuel yield is low (15% of the dry mass of biomass input), but the reductions in WTW fossil energy use and GHG emissions are large, at 79% and 96%, respectively, relative to those that occur when baseline petroleum fuels are used. The petroleum energy use in all scenarios was restricted to biomass collection and transportation activities, which resulted in a reduction in WTW petroleum energy use of 92-95% relative to that found when baseline petroleum fuels are used. Internal hydrogen production (i.e., via reforming of pyrolysis oil) significantly reduces fossil fuel use and GHG emissions because the hydrogen from fuel gas or pyrolysis oil (renewable sources) displaces that from fossil fuel natural gas and the amount of fossil natural gas used for hydrogen production is reduced; however, internal hydrogen production also reduces the potential petroleum energy savings (per unit of biomass input basis) because the fuel yield declines dramatically. Typically, a process that has a greater liquid fuel yield results in larger petroleum savings per unit of biomass input but a smaller reduction in life-cycle GHG emissions. Sequestration of the large amount of bio-char co-product (e.g., in soil applications) provides a significant carbon dioxide credit, while electricity generation from bio-char combustion provides a large energy credit. The WTW energy and GHG emissions benefits observed when a pyrolysis oil refinery was integrated with a pyrolysis reactor were small when compared with those that occur when pyrolysis oil is distributed to a distant refinery, since the activities associated with transporting the oil between the pyrolysis reactors and refineries have a smaller energy and emissions footprint than do other activities in the pyrolysis pathway.« less
NASA Astrophysics Data System (ADS)
Tonitto, C.; Gurwick, N. P.
2012-12-01
Policy initiatives to reduce greenhouse gas emissions (GHG) have promoted the development of agricultural management protocols to increase SOC storage and reduce GHG emissions. We review approaches for quantifying N2O flux from agricultural landscapes. We summarize the temporal and spatial extent of observations across representative soil classes, climate zones, cropping systems, and management scenarios. We review applications of simulation and empirical modeling approaches and compare validation outcomes across modeling tools. Subsequently, we review current model application in agricultural management protocols. In particular, we compare approaches adapted for compliance with the California Global Warming Solutions Act, the Alberta Climate Change and Emissions Management Act, and by the American Carbon Registry. In the absence of regional data to drive model development, policies that require GHG quantification often use simple empirical models based on highly aggregated data of N2O flux as a function of applied N - Tier 1 models according to IPCC categorization. As participants in development of protocols that could be used in carbon offset markets, we observed that stakeholders outside of the biogeochemistry community favored outcomes from simulation modeling (Tier 3) rather than empirical modeling (Tier 2). In contrast, scientific advisors were more accepting of outcomes based on statistical approaches that rely on local observations, and their views sometimes swayed policy practitioners over the course of policy development. Both Tier 2 and Tier 3 approaches have been implemented in current policy development, and it is important that the strengths and limitations of both approaches, in the face of available data, be well-understood by those drafting and adopting policies and protocols. The reliability of all models is contingent on sufficient observations for model development and validation. Simulation models applied without site-calibration generally result in poor validation results, and this point particularly needs to be emphasized during policy development. For cases where sufficient calibration data are available, simulation models have demonstrated the ability to capture seasonal patterns of N2O flux. The reliability of statistical models likewise depends on data availability. Because soil moisture is a significant driver of N2O flux, the best outcomes occur when empirical models are applied to systems with relevant soil classification and climate. The structure of current carbon offset protocols is not well-aligned with a budgetary approach to GHG accounting. Current protocols credit field-scale reduction in N2O flux as a result of reduced fertilizer use. Protocols do not award farmers credit for reductions in CO2 emissions resulting from reduced production of synthetic N fertilizer. To achieve the greatest GHG emission reductions through reduced synthetic N production and reduced landscape N saturation requires a re-envisioning of the agricultural landscape to include cropping systems with legume and manure N sources. The current focus on on-farm GHG sources focuses credits on simple reductions of N applied in conventional systems rather than on developing cropping systems which promote higher recycling and retention of N.
Environmental and natural resource implications of sustainable urban infrastructure systems
NASA Astrophysics Data System (ADS)
Bergesen, Joseph D.; Suh, Sangwon; Baynes, Timothy M.; Kaviti Musango, Josephine
2017-12-01
As cities grow, their environmental and natural resource footprints also tend to grow to keep up with the increasing demand on essential urban services such as passenger transportation, commercial space, and thermal comfort. The urban infrastructure systems, or socio-technical systems providing these services are the major conduits through which natural resources are consumed and environmental impacts are generated. This paper aims to gauge the potential reductions in environmental and resources footprints through urban transformation, including the deployment of resource-efficient socio-technical systems and strategic densification. Using hybrid life cycle assessment approach combined with scenarios, we analyzed the greenhouse gas (GHG) emissions, water use, metal consumption and land use of selected socio-technical systems in 84 cities from the present to 2050. The socio-technical systems analyzed are: (1) bus rapid transit with electric buses, (2) green commercial buildings, and (3) district energy. We developed a baseline model for each city considering gross domestic product, population density, and climate conditions. Then, we overlaid three scenarios on top of the baseline model: (1) decarbonization of electricity, (2) aggressive deployment of resource-efficient socio-technical systems, and (3) strategic urban densification scenarios to each city and quantified their potentials in reducing the environmental and resource impacts of cities by 2050. The results show that, under the baseline scenario, the environmental and natural resource footprints of all 84 cities combined would increase 58%-116% by 2050. The resource-efficient scenario along with strategic densification, however, has the potential to curve down GHG emissions to 17% below the 2010 level in 2050. Such transformation can also limit the increase in all resource footprints to less than 23% relative to 2010. This analysis suggests that resource-efficient urban infrastructure and decarbonization of electricity coupled with strategic densification have a potential to mitigate resources and environmental footprints of growing cities.
Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production.
Falter, Christoph; Batteiger, Valentin; Sizmann, Andreas
2016-01-05
Solar thermochemistry presents a promising option for the efficient conversion of H2O and CO2 into liquid hydrocarbon fuels using concentrated solar energy. To explore the potential of this fuel production pathway, the climate impact and economic performance are analyzed. Key drivers for the economic and ecological performance are thermochemical energy conversion efficiency, the level of solar irradiation, operation and maintenance, and the initial investment in the fuel production plant. For the baseline case of a solar tower concentrator with CO2 capture from air, jet fuel production costs of 2.23 €/L and life cycle greenhouse gas (LC GHG) emissions of 0.49 kgCO2-equiv/L are estimated. Capturing CO2 from a natural gas combined cycle power plant instead of the air reduces the production costs by 15% but leads to LC GHG emissions higher than that of conventional jet fuel. Favorable assumptions for all involved process steps (30% thermochemical energy conversion efficiency, 3000 kWh/(m(2) a) solar irradiation, low CO2 and heliostat costs) result in jet fuel production costs of 1.28 €/L at LC GHG emissions close to zero. Even lower production costs may be achieved if the commercial value of oxygen as a byproduct is considered.
Socioeconomic drivers of FFCO2 emissions in the LA Basin: Analysis of the Hestia version 2.0 results
NASA Astrophysics Data System (ADS)
O'Keeffe, D.; Gurney, K. R.; Liang, J.; Patarasuk, R.; Huang, J.; Hutchins, M.
2016-12-01
Urban landscapes are currently home to over 50% of the world's population, a number that is projected to continue to rise for the rest of this century. Many cities are now actively developing their own climate change policies that are independent of the nation state. The Los Angeles metropolitan area is the most populous region in California with 12,872,808 residents (census 2010). In addition to California's Assembly Bill 32 (2006) which mandates a statewide reduction of GHG emissions to 1990 levels by 2020, the city of Los Angeles released its sustainability pLAn (2015) which sets out to achieve a cleaner environment, a stronger economy, and a commitment to equity through 14 specific target areas. These include reducing Greenhouse gas (GHG) emissions by at least 55% by 2035 from a 2008 baseline, and improving air quality. Through sectoral regression analysis of the bottom-up Hestia FFCO2 emissions data product version 2.0, this study provides novel, spatially explicit and policy relevant results that will enable the targeted use of resources to reduce GHG and improve air quality at strategic intervention points. The study incorporates socio-economic census data along with the emissions characteristics of Hestia to analyze the dominant drivers of FFCO2 emissions in the residential, commercial and transportation sectors. In particular, building and road types and densities, population, race, income, education characteristics and hotspot analysis. In addition to scope 1 emission dynamics, we also analyze electricity consumption emissions at the demand-side (scope 2). This study will provide stakeholders and policy makers with clear and easily digestible results that will enable efficient, targeted policy options for the city of Los Angeles in achieving its ambitious sustainability goals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jeongwoo; Elgowainy, Amgad; Wang, Michael
2015-07-14
In this study, we evaluated the impacts of producing HOF with a RON of 100, using a range of ethanol blending levels (E10, E25, and E40), vehicle efficiency gains, and HOF market penetration scenarios (3.4% to 70%), on WTW petroleum use and GHG emissions. In particular, we conducted LP modeling of petroleum refineries to examine the impacts of different HOF production scenarios on petroleum refining energy use and GHG emissions. We compared two cases of HOF vehicle fuel economy gains of 5% and 10% in terms of MPGGE to baseline regular gasoline vehicles. We incorporated three key factors in GREETmore » — (1) refining energy intensities of gasoline components for the various ethanol blending options and market shares, (2) vehicle efficiency gains, and (3) upstream energy use and emissions associated with the production of different crude types and ethanol — to compare the WTW GHG emissions of various HOF/vehicle scenarios with the business-as-usual baseline regular gasoline (87 AKI E10) pathway.« less
Energy Saving and GHG Emission Reduction in a Micro-CCHP System by Use of Solar Energy
NASA Astrophysics Data System (ADS)
Ion, Ion V.; Ciocea, Gheorghe; Popescu, Florin
2012-12-01
In this work, the reduction of greenhouse gas emission, and the energy saving by integrating solar collectors and photovoltaic panels in a Stirling engine based microcombined cooling, heating and power (mCCHP) system are studied. The mCCHP system consists of a natural gas Stirling CHP and an adsorber chiller. When the thermal outputs of the Stirling CHP and solar collectors are not sufficient to cover the heat demand for domestic hot water (DHW), heating/cooling, an auxiliary heating boiler starts to operate. The energy saving by using solar energy varies from 13.35% in December to 59.62% in April, in the case of solar collectors usage and from 7.47% in December to 28.27% in July, in the case of photovoltaic panels usage. By using solar energy the annual GHG emission decreases by 31.98% and the fuel cost reduction varies from 12.73% in December to 49.78% in June.
Energy efficiency and greenhouse gas emission intensity of petroleum products at U.S. refineries.
Elgowainy, Amgad; Han, Jeongwoo; Cai, Hao; Wang, Michael; Forman, Grant S; DiVita, Vincent B
2014-07-01
This paper describes the development of (1) a formula correlating the variation in overall refinery energy efficiency with crude quality, refinery complexity, and product slate; and (2) a methodology for calculating energy and greenhouse gas (GHG) emission intensities and processing fuel shares of major U.S. refinery products. Overall refinery energy efficiency is the ratio of the energy present in all product streams divided by the energy in all input streams. Using linear programming (LP) modeling of the various refinery processing units, we analyzed 43 refineries that process 70% of total crude input to U.S. refineries and cover the largest four Petroleum Administration for Defense District (PADD) regions (I, II, III, V). Based on the allocation of process energy among products at the process unit level, the weighted-average product-specific energy efficiencies (and ranges) are estimated to be 88.6% (86.2%-91.2%) for gasoline, 90.9% (84.8%-94.5%) for diesel, 95.3% (93.0%-97.5%) for jet fuel, 94.5% (91.6%-96.2%) for residual fuel oil (RFO), and 90.8% (88.0%-94.3%) for liquefied petroleum gas (LPG). The corresponding weighted-average, production GHG emission intensities (and ranges) (in grams of carbon dioxide-equivalent (CO2e) per megajoule (MJ)) are estimated to be 7.8 (6.2-9.8) for gasoline, 4.9 (2.7-9.9) for diesel, 2.3 (0.9-4.4) for jet fuel, 3.4 (1.5-6.9) for RFO, and 6.6 (4.3-9.2) for LPG. The findings of this study are key components of the life-cycle assessment of GHG emissions associated with various petroleum fuels; such assessment is the centerpiece of legislation developed and promulgated by government agencies in the United States and abroad to reduce GHG emissions and abate global warming.
Assessment of the potential REDD+ as a new international support measure for GHG reduction
NASA Astrophysics Data System (ADS)
Kim, Y.; Ahn, J.; Kim, H.
2016-12-01
As part of the Paris Agreement, the mechanism for reducing emissions from deforestation and forest degradation in developing countries (REDD+) has high potential to simultaneously contribute to greenhouse gas (GHG) mitigation through forest conservation and poverty alleviation. Some of 162 Intended Nationally Determined Contributions (INDCs) submitted by 189 countries representing approximately 98.8% of global GHG emissions include not only unconditional mitigation goals but also conditional goals based on the condition of the provision of international support such as finance, technology transfer and capacity building. Considering REDD+ as one of the main mechanisms to support such work, this study selected ten countries from among Korea's 24 ODA priority partners, taking into consideration their conditional INDC targets alongside sectoral quantified targets such as land use, land-use change and forestry (LULUCF). The ten selected countries are Indonesia, Cambodia, Vietnam, Bangladesh, Sri Lanka, Ghana, Senegal, Colombia, Peru and Paraguay. Of these countries, most REDD+ projects have been conducted in Indonesia mainly due to the fact that 85% of the country's total GHG emissions are caused by forest conversion and peatland degradation. Therefore, GHG reduction rates and associated projected costs of the Indonesia's REDD+ projects were analyzed in order to offer guidance on the potential of REDD+ to contribute to other INDCs' conditional goals. The result showed that about 0.9 t CO2 ha-1 could be reduced at a cost of USD 23 per year. Applying this estimation to the Cambodian case, which has submitted a conditional INDC target of increasing its forest coverage by 60% (currently 57%) by 2030, suggests that financial support of USD 12.8 million would reduce CO2 emissions by about 5.1 million tones by increasing forest coverage. As there is currently no consideration of LULUCF in Cambodia's INDC, this result represents the opportunity for an additional contribution to achieving the country's conditional mitigation goals.
NASA Astrophysics Data System (ADS)
Saah, D. S.; Moritz, M.; Ganz, D. J.; Stine, P. A.; Moody, T.
2010-12-01
Years of successful fire suppression activities have left forests unnaturally dense, overstocked, and with high hazardous fuel loads. Wildfires, particularly those of high severity, may dramatically reduce carbon stocks and convert forested lands from carbon sinks to decades-long carbon sources . Forest resource managers are currently pursuing fuels reduction and mitigation strategies to reduce wildfire risk and maintain carbon stocks. These projects include selective thinning and removal of trees and brush to return forest ecosystems to more natural stocking levels, resulting in a more fire-resilient forest that in theory would retain higher carry capacity for standing above ground carbon. Resource managers are exploring the possibility of supporting these local forest management projects by offering greenhouse gas (GHG) offsets to project developers that require GHG emissions mitigation. Using robust field data, this research project modeled three types of carbon benefits that could be realized from forest management: 1. Fuels treatments in the study area were shown to reduce the GHG and Criteria Air Pollutant emissions from wildfires by decreasing the probability, extent, and severity of fires and the corresponding loss in forest carbon stocks; 2. Biomass utilization from fuel treatment was shown to reduce GHG and Criteria Air Pollutant emissions over the duration of the fuels treatment project compared to fossil fuel energy. 3. Management and thinning of forests in order to stimulate growth, resulting in more rapid uptake of atmospheric carbon and approaching a carbon carrying capacity stored in a forest ecosystem under prevailing environmental conditions and natural disturbance regimes.
Carbon accounting in the United Kingdom water sector: a review.
Prescott, C
2009-01-01
The UK is committed to greenhouse gas (GHG) emission reduction targets and has introduced a number of initiatives to achieve these. Until recently, these targeted energy-intensive industries and, thus, the water sector was not significantly affected. However, from 2010, UK water companies will need to report their emissions under the Carbon Reduction Commitment (CRC). Both Ofwat (the economic regulator for water companies in England and Wales) and the Northern Ireland Authority for Utility Regulation (NIAUR) now require annual reporting of GHG emissions in accordance with both Defra Guidelines and the CRC. Also, carbon impacts must now be factored into all water industry investment planning in England and Wales. Building on existing approaches, the industry has developed standardised carbon accounting methodologies to meet both of these requirements. This process has highlighted gaps in knowledge where further research is needed.
van Middelaar, C E; Berentsen, P B M; Dijkstra, J; van Arendonk, J A M; de Boer, I J M
2014-01-01
Current decisions on breeding in dairy farming are mainly based on economic values of heritable traits, as earning an income is a primary objective of farmers. Recent literature, however, shows that breeding also has potential to reduce greenhouse gas (GHG) emissions. The objective of this paper was to compare 2 methods to determine GHG values of genetic traits. Method 1 calculates GHG values using the current strategy (i.e., maximizing labor income), whereas method 2 is based on minimizing GHG per kilogram of milk and shows what can be achieved if the breeding results are fully directed at minimizing GHG emissions. A whole-farm optimization model was used to determine results before and after 1 genetic standard deviation improvement (i.e., unit change) of milk yield and longevity. The objective function of the model differed between method 1 and 2. Method 1 maximizes labor income; method 2 minimizes GHG emissions per kilogram of milk while maintaining labor income and total milk production at least at the level before the change in trait. Results show that the full potential of the traits to reduce GHG emissions given the boundaries that were set for income and milk production (453 and 441kg of CO2 equivalents/unit change per cow per year for milk yield and longevity, respectively) is about twice as high as the reduction based on maximizing labor income (247 and 210kg of CO2 equivalents/unit change per cow per year for milk yield and longevity, respectively). The GHG value of milk yield is higher than that of longevity, especially when the focus is on maximizing labor income. Based on a sensitivity analysis, it was shown that including emissions from land use change and using different methods for handling the interaction between milk and meat production can change results, generally in favor of milk yield. Results can be used by breeding organizations that want to include GHG values in their breeding goal. To verify GHG values, the effect of prices and emissions factors should be considered, as well as the potential effect of variation between farm types. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Mitigating climate change: the role of domestic livestock.
Gill, M; Smith, P; Wilkinson, J M
2010-03-01
Livestock contribute directly (i.e. as methane and nitrous oxide (N2O)) to about 9% of global anthropogenic greenhouse gas (GHG) emissions and around 3% of UK emissions. If all parts of the livestock production lifecycle are included (fossil fuels used to produce mineral fertilizers used in feed production and N2O emissions from fertilizer use; methane release from the breakdown of fertilizers and from animal manure; land-use changes for feed production and for grazing; land degradation; fossil fuel use during feed and animal production; fossil fuel use in production and transport of processed and refrigerated animal products), livestock are estimated to account for 18% of global anthropogenic emissions, but less than 8% in the UK. In terms of GHG emissions per unit of livestock product, monogastric livestock are more efficient than ruminants; thus in the UK, while sheep and cattle accounted for 32% of meat production in 2006, they accounted for 48% of GHG emissions associated with meat production. More efficient management of grazing lands and of manure can have a direct impact in decreasing emissions. Improving efficiency of livestock production through better breeding, health interventions or improving fertility can also decrease GHG emissions through decreasing the number of livestock required per unit product. Increasing the energy density of the diet has a dual effect, decreasing both direct emissions and the numbers of livestock per unit product, but, as the demands for food increase in response to increasing human population and a better diet in some developing countries, there is increasing competition for land for food v. energy-dense feed crops. Recalculating efficiencies of energy and protein production on the basis of human-edible food produced per unit of human-edible feed consumed gave higher efficiencies for ruminants than for monogastric animals. The policy community thus have difficult decisions to make in balancing the negative contribution of livestock to the environment against the positive benefit in terms of food security. The animal science community have a responsibility to provide an evidence base which is objective and holistic with respect to these two competing challenges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Lingbo; Hasanbeigi, Ali; Price, Lynn
2012-11-01
The pulp and paper industry ranks fourth in terms of energy consumption among industries worldwide. Globally, the pulp and paper industry accounted for approximately 5 percent of total world industrial final energy consumption in 2007, and contributed 2 percent of direct carbon dioxide (CO2) emissions from industry. Worldwide pulp and paper demand and production are projected to increase significantly by 2050, leading to an increase in this industry’s absolute energy use and greenhouse gas (GHG) emissions. Development of new energy-efficiency and GHG mitigation technologies and their deployment in the market will be crucial for the pulp and paper industry’s mid-more » and long-term climate change mitigation strategies. This report describes the industry’s processes and compiles available information on the energy savings, environmental and other benefits, costs, commercialization status, and references for 36 emerging technologies to reduce the industry’s energy use and GHG emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies that have already been commercialized for the pulp and paper industry, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. The purpose of this report is to provide engineers, researchers, investors, paper companies, policy makers, and other interested parties with easy access to a well-structured resource of information on these technologies.« less
NASA Astrophysics Data System (ADS)
Ginting, N.
2017-05-01
Indonesia committed to reduce its greenhouse gas (GHG) by 26% in 2020. At the UNFCCC (Conference of the United Nation Framework Convention on Climate Change) held in Paris in December 2015 Indonesia committed to reduce GHG; one way by promoting clean energy use for example biogas. Agricultural industry produces organic waste which contributes to global warming and climate change. In Karo District, mostly the people were farmers, either horticulture or fruit and produces massive organic waste. Biogas research was conducted in Karo District in May until July 2016 used 5 biodigesters. The purpose was to determine benefits of using biogas technology in order to reduct GHG emissions. The used design was Completely Randomized Design (CRD) with treatments: T1 (100% cow feces), T2 (75% cow feces + 25% horticultural waste), T3 (50% cow feces + 50% horticultural waste), T4 (25% cow feces + 75% horticultural waste) and T5 (100% horticultural waste). Parameter research were gas production, pH and temperature. The research result showed that T1 produced the highest methane ( P<0.05) compared to other treatments while T2 produced methane higher (P<0.05) compared to T4 or T5. There was no difference on methane production between T4 and T5. As conclusion application of biogas on agricultural waste supported local action plan for greenhouse gas emission reduction of North Sumatera Province 2010-2020. From horticultural waste, there were 2.1 × 106 ton CO2 eq in 2014 which were not calculated in RAD GRK (Regional Action Plan for Greenhouse Gas Emissions Reduction).
Whole farm quantification of GHG emissions within smallholder farms in developing countries
NASA Astrophysics Data System (ADS)
Seebauer, Matthias
2014-03-01
The IPCC has compiled the best available scientific methods into published guidelines for estimating greenhouse gas emissions and emission removals from the land-use sector. In order to evaluate existing GHG quantification tools to comprehensively quantify GHG emissions and removals in smallholder conditions, farm scale quantification was tested with farm data from Western Kenya. After conducting a cluster analysis to identify different farm typologies GHG quantification was exercised using the VCS SALM methodology complemented with IPCC livestock emission factors and the cool farm tool. The emission profiles of four farm clusters representing the baseline conditions in the year 2009 are compared with 2011 where farmers adopted sustainable land management practices (SALM). The results demonstrate the variation in both the magnitude of the estimated GHG emissions per ha between different smallholder farm typologies and the emissions estimated by applying two different accounting tools. The farm scale quantification further shows that the adoption of SALM has a significant impact on emission reduction and removals and the mitigation benefits range between 4 and 6.5 tCO2 ha-1 yr-1 with significantly different mitigation benefits depending on typologies of the crop-livestock systems, their different agricultural practices, as well as adoption rates of improved practices. However, the inherent uncertainty related to the emission factors applied by accounting tools has substantial implications for reported agricultural emissions. With regard to uncertainty related to activity data, the assessment confirms the high variability within different farm types as well as between different parameters surveyed to comprehensively quantify GHG emissions within smallholder farms.
An, Ning; Fan, Mingsheng; Zhang, Fusuo; Christie, Peter; Yang, Jianchang; Huang, Jianliang; Guo, Shiwei; Shi, Xiaojun; Tang, Qiyuan; Peng, Jianwei; Zhong, Xuhua; Sun, Yixiang; Lv, Shihua; Jiang, Rongfeng; Dobermann, Achim
2015-01-01
Meeting the future food security challenge without further sacrificing environmental integrity requires transformative changes in managing the key biophysical determinants of increasing agronomic productivity and reducing the environmental footprint. Here, we focus on Chinese rice production and quantitatively address this concern by conducting 403 on-farm trials across diverse rice farming systems. Inherent soil productivity, management practices and rice farming type resulted in confounded and interactive effects on yield, yield gaps and greenhouse gas (GHG) emissions (N2O, CH4 and CO2-equivalent) with both trade-offs and compensating effects. Advances in nitrogen, water and crop management (Best Management Practices-BMPs) helped closing existing yield gaps and resulted in a substantial reduction in CO2-equivalent emission of rice farming despite a tradeoff of increase N2O emission. However, inherent soil properties limited rice yields to a larger extent than previously known. Cultivating inherently better soil also led to lower GHG intensity (GHG emissions per unit yield). Neither adopting BMPs only nor improving soils with low or moderate productivity alone can adequately address the challenge of substantially increasing rice production while reducing the environmental footprint. A combination of both represents the most efficient strategy to harness the combined-benefits of enhanced production and mitigating climate change. Extrapolating from our farm data, this strategy could increase rice production in China by 18%, which would meet the demand for direct human consumption of rice by 2030. It would also reduce fertilizer nitrogen consumption by 22% and decrease CO2-equivalent emissions during the rice growing period by 7% compared with current farming practice continues. Benefits vary by rice-based cropping systems. Single rice systems have the largest food provision benefits due to its wider yield gap and total cultivated area, whereas double-rice system (especially late rice) contributes primarily to reducing GHG emissions. The study therefore provides farm-based evidence for feasible, practical approaches towards achieving realistic food security and environmental quality targets at a national scale.
An, Ning; Fan, Mingsheng; Zhang, Fusuo; Christie, Peter; Yang, Jianchang; Huang, Jianliang; Guo, Shiwei; Shi, Xiaojun; Tang, Qiyuan; Peng, Jianwei; Zhong, Xuhua; Sun, Yixiang; Lv, Shihua; Jiang, Rongfeng; Dobermann, Achim
2015-01-01
Meeting the future food security challenge without further sacrificing environmental integrity requires transformative changes in managing the key biophysical determinants of increasing agronomic productivity and reducing the environmental footprint. Here, we focus on Chinese rice production and quantitatively address this concern by conducting 403 on-farm trials across diverse rice farming systems. Inherent soil productivity, management practices and rice farming type resulted in confounded and interactive effects on yield, yield gaps and greenhouse gas (GHG) emissions (N2O, CH4 and CO2-equivalent) with both trade-offs and compensating effects. Advances in nitrogen, water and crop management (Best Management Practices—BMPs) helped closing existing yield gaps and resulted in a substantial reduction in CO2-equivalent emission of rice farming despite a tradeoff of increase N2O emission. However, inherent soil properties limited rice yields to a larger extent than previously known. Cultivating inherently better soil also led to lower GHG intensity (GHG emissions per unit yield). Neither adopting BMPs only nor improving soils with low or moderate productivity alone can adequately address the challenge of substantially increasing rice production while reducing the environmental footprint. A combination of both represents the most efficient strategy to harness the combined-benefits of enhanced production and mitigating climate change. Extrapolating from our farm data, this strategy could increase rice production in China by 18%, which would meet the demand for direct human consumption of rice by 2030. It would also reduce fertilizer nitrogen consumption by 22% and decrease CO2-equivalent emissions during the rice growing period by 7% compared with current farming practice continues. Benefits vary by rice-based cropping systems. Single rice systems have the largest food provision benefits due to its wider yield gap and total cultivated area, whereas double-rice system (especially late rice) contributes primarily to reducing GHG emissions. The study therefore provides farm-based evidence for feasible, practical approaches towards achieving realistic food security and environmental quality targets at a national scale. PMID:26452155
GRACEnet: addressing policy needs through coordinated cross-location research
Jawson, Michael D.; Walthall, Charles W.; Shafer, Steven R.; Liebig, Mark; Franzluebbers, Alan J.; Follett, Ronald F.
2012-01-01
GRACEnet (Greenhouse gas Reduction through Agricultural Carbon Enhancement network) was conceived to build upon ongoing USDA Agricultural Research Service (ARS) research to improve soil productivity, while addressing the challenges and opportunities of interest in C sequestration from a climate change perspective. The vision for GRACEnet was and remains: Knowledge and information used to implement scientifically based agricultural management practices from the field to national policy scales on C sequestration, greenhouse gas (GHG) emissions, and environmental benefits. The national focus of GRACEnet uses a standardized approach by ARS laboratories and university and land manager (e.g. farmer and rancher) cooperators to assess C sequestration and GHG emission from different crop and grassland systems. Since 2002, GRACEnet has significantly expanded GHG mitigation science and delivered usable information to agricultural research and policy organizations. Recent developments suggest GRACEnet will have international impact by contributing leadership and technical guidance for the Global Research Alliance on Agricultural Greenhouse Gases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penev, Michael; Melaina, Marc; Bush, Brian
This report improves on the understanding of the long-term technology potential of low-carbon natural gas (LCNG) supply pathways by exploring transportation market adoption potential through 2035 in California. Techno-economic assessments of each pathway are developed to compare the capacity, cost, and greenhouse gas (GHG) emissions of select LCNG production pathways. The study analyzes the use of fuel from these pathways in light-, medium-, and heavy-duty vehicle applications. Economic and life-cycle GHG emissions analysis suggest that landfill gas resources are an attractive and relatively abundant resource in terms of cost and GHG reduction potential, followed by waste water treatment plants andmore » biomass with gasification and methanation. Total LCNG production potential is on the order of total natural gas demand anticipated in a success scenario for future natural gas vehicle adoption by 2035 across light-, medium-, and heavy-duty vehicle markets (110 trillion Btu/year).« less
Gawron, James H; Keoleian, Gregory A; De Kleine, Robert D; Wallington, Timothy J; Kim, Hyung Chul
2018-03-06
Although recent studies of connected and automated vehicles (CAVs) have begun to explore the potential energy and greenhouse gas (GHG) emission impacts from an operational perspective, little is known about how the full life cycle of the vehicle will be impacted. We report the results of a life cycle assessment (LCA) of Level 4 CAV sensing and computing subsystems integrated into internal combustion engine vehicle (ICEV) and battery electric vehicle (BEV) platforms. The results indicate that CAV subsystems could increase vehicle primary energy use and GHG emissions by 3-20% due to increases in power consumption, weight, drag, and data transmission. However, when potential operational effects of CAVs are included (e.g., eco-driving, platooning, and intersection connectivity), the net result is up to a 9% reduction in energy and GHG emissions in the base case. Overall, this study highlights opportunities where CAVs can improve net energy and environmental performance.
Climate Leadership webinar on Greenhouse Gas Management Resources for Small Businesses
Small businesses can calculate their carbon footprint and construct a greenhouse gas inventory to help track progress towards reaching emissions reduction goals. One strategy for this is EPA's Simplified GHG Emissions Calculator.
Greenhouse gas emission footprints and energy use benchmarks for eight U.S. cities.
Hillman, Tim; Ramaswami, Anu
2010-03-15
A hybrid life cycle-based trans-boundary greenhouse gas (GHG) emissions footprint is elucidated at the city-scale and evaluated for 8 US cities. The method incorporates end-uses of energy within city boundaries, plus cross-boundary demand for airline/freight transport and embodied energy of four key urban materials [food, water, energy (fuels), and shelter (cement)], essential for life in all cities. These cross-boundary activities contributed 47% on average more than the in-boundary GHG contributions traditionally reported for cities, indicating significant truncation at city boundaries of GHG emissions associated with urban activities. Incorporating cross-boundary contributions created convergence in per capita GHG emissions from the city-scale (average 23.7 mt-CO(2)e/capita) to the national-scale (24.5 mt-CO(2)e/capita), suggesting that six key cross-boundary activities may suffice to yield a holistic GHG emission footprint for cities, with important policy ramifications. Average GHG contributions from various human activity sectors include buildings/facilities energy use (47.1%), regional surface transport (20.8%), food production (14.7%), transport fuel production (6.4%), airline transport (4.8%), long-distance freight trucking (2.8%), cement production (2.2%), and water/wastewater/waste processing (1.3%). Energy-, travel-, and key materials-consumption efficiency metrics are elucidated in these sectors; these consumption metrics are observed to be largely similar across the eight U.S. cities and consistent with national/regional averages.
Kavvada, Olga; Horvath, Arpad; Stokes-Draut, Jennifer R; Hendrickson, Thomas P; Eisenstein, William A; Nelson, Kara L
2016-12-20
Nonpotable water reuse (NPR) is one option for conserving valuable freshwater resources. Decentralization can improve distribution system efficiency by locating treatment closer to the consumer; however, small treatment systems may have higher unit energy and greenhouse-gas (GHG) emissions. This research explored the trade-off between residential NPR systems using a life-cycle approach to analyze the energy use and GHG emissions. Decentralized and centralized NPR options are compared to identify where decentralized systems achieve environmental advantages over centralized reuse alternatives, and vice versa, over a range of scales and spatial and demographic conditions. For high-elevation areas far from the centralized treatment plant, decentralized NPR could lower energy use by 29% and GHG emissions by 28%, but in low-elevation areas close to the centralized treatment plant, decentralized reuse could be higher by up to 85% (energy) and 49% (GHG emissions) for the scales assessed (20-2000 m 3 /day). Direct GHG emissions from the treatment processes were found to be highly uncertain and variable and were not included in the analysis. The framework presented can be used as a planning support tool to reveal the environmental impacts of integrating decentralized NPR with existing centralized wastewater infrastructure and can be adapted to evaluate different treatment technology scales for reuse.
Can Switching from Coal to Shale Gas Bring Net Carbon Reductions to China?
Qin, Yue; Edwards, Ryan; Tong, Fan; Mauzerall, Denise L
2017-03-07
To increase energy security and reduce emissions of air pollutants and CO 2 from coal use, China is attempting to duplicate the rapid development of shale gas that has taken place in the United States. This work builds a framework to estimate the lifecycle greenhouse gas (GHG) emissions from China's shale gas system and compares them with GHG emissions from coal used in the power, residential, and industrial sectors. We find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal in all sectors under both 20 year and 100 year global warming potentials (GWP 20 and GWP 100 ). However, primarily due to large uncertainties in methane leakage, the upper bound estimate of the lifecycle carbon footprint of shale gas in China could be approximately 15-60% higher than that of coal across sectors under GWP 20 . To ensure net GHG emission reductions when switching from coal to shale gas, we estimate the breakeven methane leakage rates to be approximately 6.0%, 7.7%, and 4.2% in the power, residential, and industrial sectors, respectively, under GWP 20 . We find shale gas in China has a good chance of delivering air quality and climate cobenefits, particularly when used in the residential sector, with proper methane leakage control.
Life cycle assessment of potential biojet fuel production in the United States.
Agusdinata, Datu B; Zhao, Fu; Ileleji, Klein; DeLaurentis, Dan
2011-11-01
The objective of this paper is to reveal to what degree biobased jet fuels (biojet) can reduce greenhouse gas (GHG) emissions from the U.S. aviation sector. A model of the supply and demand chain of biojet involving farmers, biorefineries, airlines, and policymakers is developed by considering factors that drive the decisions of actors (i.e., decision-makers and stakeholders) in the life cycle stages. Two kinds of feedstock are considered: oil-producing feedstock (i.e., camelina and algae) and lignocellulosic biomass (i.e., corn stover, switchgrass, and short rotation woody crops). By factoring in farmer/feedstock producer and biorefinery profitability requirements and risk attitudes, land availability and suitability, as well as a time delay and technological learning factor, a more realistic estimate of the level of biojet supply and emissions reduction can be developed under different oil price assumptions. Factors that drive biojet GHG emissions and unit production costs from each feedstock are identified and quantified. Overall, this study finds that at likely adoption rates biojet alone would not be sufficient to achieve the aviation emissions reduction target. In 2050, under high oil price scenario assumption, GHG emissions can be reduced to a level ranging from 55 to 92%, with a median value of 74%, compared to the 2005 baseline level.
Shen, Wei; Han, Weijian; Wallington, Timothy J
2014-06-17
China's oil imports and greenhouse gas (GHG) emissions have grown rapidly over the past decade. Addressing energy security and GHG emissions is a national priority. Replacing conventional vehicles with electric vehicles (EVs) offers a potential solution to both issues. While the reduction in petroleum use and hence the energy security benefits of switching to EVs are obvious, the GHG benefits are less obvious. We examine the current Chinese electric grid and its evolution and discuss the implications for EVs. China's electric grid will be dominated by coal for the next few decades. In 2015 in Beijing, Shanghai, and Guangzhou, EVs will need to use less than 14, 19, and 23 kWh/100 km, respectively, to match the 183 gCO2/km WTW emissions for energy saving vehicles. In 2020, in Beijing, Shanghai, and Guangzhou EVs will need to use less than 13, 18, and 20 kWh/100 km, respectively, to match the 137 gCO2/km WTW emissions for energy saving vehicles. EVs currently demonstrated in China use 24-32 kWh/100 km. Electrification will reduce petroleum imports; however, it will be very challenging for EVs to contribute to government targets for GHGs emissions reduction.
Zaimes, George G; Soratana, Kullapa; Harden, Cheyenne L; Landis, Amy E; Khanna, Vikas
2015-08-18
A well-to-wheel (WTW) life cycle assessment (LCA) model is developed to evaluate the environmental profile of producing liquid transportation fuels via fast pyrolysis of perennial grasses: switchgrass and miscanthus. The framework established in this study consists of (1) an agricultural model used to determine biomass growth rates, agrochemical application rates, and other key parameters in the production of miscanthus and switchgrass biofeedstock; (2) an ASPEN model utilized to simulate thermochemical conversion via fast pyrolysis and catalytic upgrading of bio-oil to renewable transportation fuel. Monte Carlo analysis is performed to determine statistical bounds for key sustainability and performance measures including life cycle greenhouse gas (GHG) emissions and Energy Return on Investment (EROI). The results of this work reveal that the EROI and GHG emissions (gCO2e/MJ-fuel) for fast pyrolysis derived fuels range from 1.52 to 2.56 and 22.5 to 61.0 respectively, over the host of scenarios evaluated. Further analysis reveals that the energetic performance and GHG reduction potential of fast pyrolysis-derived fuels are highly sensitive to the choice of coproduct scenario and LCA allocation scheme, and in select cases can change the life cycle carbon balance from meeting to exceeding the renewable fuel standard emissions reduction threshold for cellulosic biofuels.
Del Prado, A; Mas, K; Pardo, G; Gallejones, P
2013-11-01
There is world-wide concern for the contribution of dairy farming to global warming. However, there is still a need to improve the quantification of the C-footprint of dairy farming systems under different production systems and locations since most of the studies (e.g. at farm-scale or using LCA) have been carried out using too simplistic and generalised approaches. A modelling approach integrating existing and new sub-models has been developed and used to simulate the C and N flows and to predict the GHG burden of milk production (from the cradle to the farm gate) from 17 commercial confinement dairy farms in the Basque Country (northern Spain). We studied the relationship between their GHG emissions, and their management and economic performance. Additionally, we explored some of the effects on the GHG results of the modelling methodology choice. The GHG burden values resulting from this study (0.84-2.07 kg CO2-eq kg(-l) milk ECM), although variable, were within the range of values of existing studies. It was evidenced, however, that the methodology choice used for prediction had a large effect on the results. Methane from the rumen and manures, and N2O emissions from soils comprised most of the GHG emissions for milk production. Diet was the strongest factor explaining differences in GHG emissions from milk production. Moreover, the proportion of feed from the total cattle diet that could have directly been used to feed humans (e.g. cereals) was a good indicator to predict the C-footprint of milk. Not only were some other indicators, such as those in relation with farm N use efficiency, good proxies to estimate GHG emissions per ha or per kg milk ECM (C-footprint of milk) but they were also positively linked with farm economic performance. Copyright © 2013 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Conservation agriculture can mitigate greenhouse gas (GHG) emissions from agriculture by enhancing soil carbon sequestration, improving soil quality, N-use efficiency and water use efficiencies, and reducing fuel consumption. Management practices that increase carbon inputs and while reducing carbo...
Assessing the environmental sustainability of ethanol from integrated biorefineries
Falano, Temitope; Jeswani, Harish K; Azapagic, Adisa
2014-01-01
This paper considers the life cycle environmental sustainability of ethanol produced in integrated biorefineries together with chemicals and energy. Four types of second-generation feedstocks are considered: wheat straw, forest residue, poplar, and miscanthus. Seven out of 11 environmental impacts from ethanol are negative, including greenhouse gas (GHG) emissions, when the system is credited for the co-products, indicating environmental savings. Ethanol from poplar is the best and straw the worst option for most impacts. Land use change from forest to miscanthus increases the GHG emissions several-fold. For poplar, the effect is opposite: converting grassland to forest reduces the emissions by three-fold. Compared to fossil and first-generation ethanol, ethanol from integrated biorefineries is more sustainable for most impacts, with the exception of wheat straw. Pure ethanol saves up to 87% of GHG emissions compared to petrol per MJ of fuel. However, for the current 5% ethanol–petrol blends, the savings are much smaller (<3%). Therefore, unless much higher blends become widespread, the contribution of ethanol from integrated biorefineries to the reduction of GHG emissions will be insignificant. Yet, higher ethanol blends would lead to an increase in some impacts, notably terrestrial and freshwater toxicity as well as eutrophication for some feedstocks. PMID:24478110
What is Climate Leadership: Examples and Lessons Learned in Organizational Leadership Webinar
Organizations discuss creating comprehensive GHG inventories and aggressive emissions reduction goals, as well as leadership in their internal response to climate change, through engaging partners and addressing climate risk in their enterprise strategies.
Transportation impacts of smart growth development in Maine.
DOT National Transportation Integrated Search
2009-08-01
This study evaluates the reductions in average trip lengths, daily vehicle miles traveled : (VMT), and daily greenhouse gas (GHG) emissions from on-road automobiles due to smart : growth development strategies in two Maine towns, Lisbon in Androscogg...
Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilello, D.; Katz, J.; Esterly, S.
2014-09-01
Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers asmore » they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.« less
U.S. Forest Greenhouse Gas Impacts of a continued Expansion of E.U. Wood Pellet Demand
NASA Astrophysics Data System (ADS)
Latta, G.; Baker, J.; Ohrel, S. B.
2016-12-01
The United States has ambitious goals of greenhouse gas (GHG) reductions. A portion of these reductions are based on expected contributions from land use, land use change, and forestry (LULUCF). The European Union has similar goals which have resulted in a doubling of wood pellets exported from US ports destined for EU power plants over the last few years. There are potential conflicts between the GHG consequences of this pellet supply and the LULUCF contribution to US GHG goals. This study seeks to inform the discussion by modeling US forest GHG accounts using data measured on a grid of over 150,000 USDA Forest Service, Forest Inventory and Analysis (FIA) forestland plots across the conterminous United States. Empirical yield functions are estimate from plot log volume, biomass and carbon and provide the basis for changes in forest characteristics over time. Demand data based on a spatial database of over 2,000 forest product manufacturing facilities representing 11 intermediate and 13 final solid and pulpwood products. Manufacturing and logging costs are specific to slope, log size, and volume removed along with transportation costs based on fuel prices, FIA plot, and milling locations. The resulting partial spatial equilibrium model of the US forest sector is solved annually for the period 2010 - 2030 with demand shifted by energy prices and macroeconomic indicators from the US EIA's Annual Energy Outlook for a series of potential wood pellet export targets. For each wood pellet export level simulated, figures showing historic and scenario-specific forest products production are generated. Maps of the spatial allocation of both forest harvesting and carbon fluxes are presented at the National level and detail is given in both the US North and Southeast.
Climate change affects winter chill for temperate fruit and nut trees.
Luedeling, Eike; Girvetz, Evan H; Semenov, Mikhail A; Brown, Patrick H
2011-01-01
Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the "Dynamic Model" and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops.
Helftewes, Markus; Flamme, Sabine; Nelles, Michael
2012-04-01
This article investigates greenhouse gas (GHG) emissions from commercial and industrial (C&I) waste treatment considering five sector-specific waste compositions and four different treatment scenarios in Germany. Results show that the highest share of CO₂-equivalent emissions can be avoided in each of the analysed industrial sectors if solid recovered fuel (SRF) is produced for co-incineration in cement kilns. Across all industries, emissions of approximately 680 kg CO₂-eq. Mg⁻¹ C&I waste can be avoided on average under this scenario. The combustion of C&I waste in waste incineration plants without any previous mechanical treatment generates the lowest potential to avoid GHG emissions with a value of approximately 50 kg CO₂-eq. Mg⁻¹ C&I waste on average in all industries. If recyclables are sorted, this can save emissions of approximately 280 kg CO₂-eq. Mg⁻¹ C&I waste while the treatment in SRF power plants amounts to savings of approximately 210 kg CO₂-eq. Mg⁻¹ C&I waste. A comparison of the treatment scenarios of the waste from these five sectors shows that waste treatment of the craft sector leads to the lowest CO₂-equivalent reduction rates of all scenarios. In contrast, the treatment of waste from catering sector leads to the highest CO₂-equivalent reduction rates except for direct incineration in waste incineration plants. The sensitivity analysis of the different scenarios for this paper shows that the efficiency and the substitution factor of energy have a relevant influence on the result. Changes in the substitution factor of 10% can result in changes in emissions of approximately 55 to 75 kg CO₂-eq. Mg⁻¹ in waste incineration plants and approximately 90 kg CO₂-eq. Mg⁻¹ in the case of cement kilns.
Strategies to improve industrial energy efficiency
NASA Astrophysics Data System (ADS)
O'Rielly, Kristine M.
A lack of technical expertise, fueled by a lack of positive examples, can lead to companies opting not to implement energy reduction projects unless mandated by legislation. As a result, companies are missing out on exceptional opportunities to improve not only their environmental record but also save considerably on fuel costs. This study investigates the broad topic of energy efficiency within the context of the industrial sector by means of a thorough review of existing energy reduction strategies and a demonstration of their successful implementation. The study begins by discussing current industrial energy consumption trends around the globe and within the Canadian manufacturing sector. This is followed by a literature review which outlines 3 prominent energy efficiency improvement strategies currently available to companies: 1) Waste heat recovery, 2) Idle power loss reduction and production rate optimization, and lastly 3) Auxiliary equipment operational performance. Next, a broad overview of the resources and tools available to organizations looking to improve their industrial energy efficiency is provided. Following this, several case studies are presented which demonstrate the potential benefits that are available to Canadian organizations looking to improve their energy efficiency. Lastly, a discussion of a number of issues and barriers pertaining to the wide-scale implementation of industrial efficiency strategies is presented. It discusses a number of potential roadblocks, including a lack of energy consumption monitoring and data transparency. While this topic has been well researched in the past in terms of the losses encountered during various general manufacturing process streams, practically no literature exists which attempts to provide real data from companies who have implemented energy efficiency strategies. By obtaining original data directly from companies, this thesis demonstrates the potential for companies to save money and reduce GHG (greenhouse gas) emissions through the implementation of energy efficiency projects and publishes numbers which are almost impossible to find directly. By publishing success stories, it is hoped that other companies, especially SMEs (small and medium enterprises) will be able to learn from these case studies and be inspired to embark on energy efficiency projects of their own.
NASA Astrophysics Data System (ADS)
Mahalakshmi; Murugesan, R.
2018-04-01
This paper regards with the minimization of total cost of Greenhouse Gas (GHG) efficiency in Automated Storage and Retrieval System (AS/RS). A mathematical model is constructed based on tax cost, penalty cost and discount cost of GHG emission of AS/RS. A two stage algorithm namely positive selection based clonal selection principle (PSBCSP) is used to find the optimal solution of the constructed model. In the first stage positive selection principle is used to reduce the search space of the optimal solution by fixing a threshold value. In the later stage clonal selection principle is used to generate best solutions. The obtained results are compared with other existing algorithms in the literature, which shows that the proposed algorithm yields a better result compared to others.
EPA has received petitions for reconsideration or reconsideration of the October 25, 2016 final rulemaking entitled Greenhouse Gas Emissions and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles—Phase 2 Final Rule (81 FR 73,478)
Reducing Greenhouse Gas Emissions from Agricultural Wetlands in Borneo
NASA Astrophysics Data System (ADS)
Abdul, H.; Fatah, L.; Nursyamsi, D.; Kazuyuki, I.
2011-12-01
At the forum G20 meeting in 2009, Indonesian President delivered Indonesia's commitment to reduce national greenhouse gas (GHG) emissions by 26% in 2020 by unilateral action and by 41% with support of other countries. To achieve the target, Indonesian government has put forestry, agriculture (including peatlands), energy, industry and transportation as main responsible sectors. Development of crop with low GHG emissions, increasing C sequestration and the use of organic fertilizers are among the activities to be carried out in 2010-2020 period to minimize GHG emissions from agricultural sectors. Three experiments have been carried out to elucidate the reflectivity of crop selection, soil ameliorants and organic fertilizers on GHG emissions from agricultural wetlands in Borneo. Firstly, gas samples were collected in weekly basis from oil palm, paddy, and vegetables fields and analyzed for methane (CH4) and nitrous oxide (N2O) concentrations by a gas chromatography. Secondly, coal fly ash, dolomite and ZnSO4 were incorporated into a pot containing peat and/or alluvial soils taken from wetlands in South Kalimantan. The air samples were taken and analyzed for CH4 by a gas chromatography. Finally, microbial consortium are isolated from soil, sediment and cow dung. The microbes were then propagated and used in a rice straw composting processes. The CO2, CH4 and N2O emissions from composting vessel were measured at one, two and four weeks of composting processes. The results showed that shifting the use of peatlands for oil palm to vegetable field reduced the GHG emissions by about 74% and that to paddy field reduce the GHG emissions by about 82%. The CH4 emissions from paddy field can be further reduced by applying dolomite. However, the use of coal fly ash and ZnSO4 increased CH4 emissions from peat soil cultivated to rice. The use of microbe isolated from saline soil could reduce GHG emissions during the composting of rice straw. The social aspect of GHG reduction in Borneo will also be discussed.
Methane and CO2 emissions from China's hydroelectric reservoirs: a new quantitative synthesis.
Li, Siyue; Zhang, Quanfa; Bush, Richard T; Sullivan, Leigh A
2015-04-01
Controversy surrounds the green credentials of hydroelectricity because of the potentially large emission of greenhouse gases (GHG) from associated reservoirs. However, limited and patchy data particularly for China is constraining the current global assessment of GHG releases from hydroelectric reservoirs. This study provides the first evaluation of the CO2 and CH4 emissions from China's hydroelectric reservoirs by considering the reservoir water surface and drawdown areas, and downstream sources (including spillways and turbines, as well as river downstream). The total emission of 29.6 Tg CO2/year and 0.47 Tg CH4/year from hydroelectric reservoirs in China, expressed as CO2 equivalents (eq), corresponds to 45.6 Tg CO2eq/year, which is 2-fold higher than the current GHG emission (ca. 23 Tg CO2eq/year) from global temperate hydropower reservoirs. China's average emission of 70 g CO2eq/kWh from hydropower amounts to 7% of the emissions from coal-fired plant alternatives. China's hydroelectric reservoirs thus currently mitigate GHG emission when compared to the main alternative source of electricity with potentially far great reductions in GHG emissions and benefits possible through relatively minor changes to reservoir management and design. On average, the sum of drawdown and downstream emission including river reaches below dams and turbines, which is overlooked by most studies, represents the equivalent of 42% of the CO2 and 92% of CH4 that emit from hydroelectric reservoirs in China. Main drivers on GHG emission rates are summarized and highlight that water depth and stratification control CH4 flux, and CO2 flux shows significant negative relationships with pH, DO, and Chl-a. Based on our finding, a substantial revision of the global carbon emissions from hydroelectric reservoirs is warranted.
Greenhouse gas emissions from municipal solid waste management in Vientiane, Lao PDR.
Babel, Sandhya; Vilaysouk, Xaysackda
2016-01-01
Municipal solid waste (MSW) is one of the major environmental problems throughout the world including in Lao PDR. In Vientiane, due to the lack of a collection service, open burning and illegal dumping are commonly practised. This study aims to estimate the greenhouse gas (GHG) emission from the current situation of MSW management (MSWM) in Vientiane and proposes an alternative solution to reduce the GHG emission and environmental impacts. The 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories (IPCC 2006 model) are used for the estimation of GHG emission from landfill and composting. For the estimation of GHG emission from open burning, the Atmospheric Brown Clouds Emission Inventory Manual (ABC EIM) is used. In Vientiane, a total of 232, 505 tonnes year(-1) of MSW was generated in 2011. Waste generation in Vientiane is 0.69 kg per capita per day, and about 31% of the total MSW generated was directly sent to landfill (71,162 tonnes year(-1)). The total potential GHG emission from the baseline scenario in 2011 was 110,182 tonnes year(-1) CO2-eq, which is 0.15 tonne year(-1) CO2-eq per capita. From the three MSWM scenarios proposed, scenario S3, which includes recycling, composting and landfilling, seems to be an effective solution for dealing with MSW in Vientiane with less air pollution, and is environmentally friendly. The total GHG emission in scenario S3 is reduced to 91,920 tonnes year(-1) CO2-eq (47% reduction), compared with the S1 scenario where all uncollected waste is diverted to landfill. © The Author(s) 2015.
Implications of Sustainability for the United States Light-Duty Transportation Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gearhart, Chris
Climate change is a problem that must be solved. The primary cause of this problem is burning of fossil fuels to generate energy. A dramatic reduction in carbon emissions must happen soon, and a significant fraction of this reduction must come from the transportation sector. This paper reviews existing literature to assess the consensus of the scientific and engineering communities concerning the potential for the United States' light-duty transportation sector to meet a goal of 80 percent reduction in vehicle emissions and examine what it will take to meet this target. It is unlikely that reducing energy consumption in justmore » vehicles with gasoline-based internal combustion drivetrains will be sufficient to meet GHG emission-reduction targets. This paper explores what additional benefits are possible through the adoption of alternative energy sources, looking at three possible on-vehicle energy carriers: carbon-based fuels, hydrogen, and batteries. potential for the United States' light-duty transportation sector to meet a goal of 80 percent reduction in vehicle emissions and examine what it will take to meet this target. It is unlikely that reducing energy consumption in just vehicles with gasoline-based internal combustion drivetrains will be sufficient to meet GHG emission-reduction targets. This paper explores what additional benefits are possible through the adoption of alternative energy sources, looking at three possible on-vehicle energy carriers: carbon-based fuels, hydrogen, and batteries.« less
Agricultural peat lands; towards a greenhouse gas sink - a synthesis of a Dutch landscape study
NASA Astrophysics Data System (ADS)
Schrier-Uijl, A. P.; Kroon, P. S.; Hendriks, D. M. D.; Hensen, A.; Van Huissteden, J. C.; Leffelaar, P. A.; Berendse, F.; Veenendaal, E. M.
2013-06-01
It is generally known that managed, drained peatlands act as carbon sources. In this study we examined how mitigation through the reduction of management and through rewetting may affect the greenhouse gas (GHG) emission and the carbon balance of intensively managed, drained, agricultural peatlands. Carbon and GHG balances were determined for three peatlands in the western part of the Netherlands from 2005 to 2008 by considering spatial and temporal variability of emissions (CO2, CH4 and N2O). One area (Oukoop) is an intensively managed grass-on-peatland, including a dairy farm, with the ground water level at an average annual depth of 0.55 m below the soil surface. The second area (Stein) is an extensively managed grass-on-peatland, formerly intensively managed, with a dynamic ground water level at an average annual depth of 0.45 m below the soil surface. The third area is an (since 1998) rewetted former agricultural peatland (Horstermeer), close to Oukoop and Stein, with the average annual ground water level at a depth of 0.2 m below the soil surface. During the measurement campaigns we found that both agriculturally managed sites acted as carbon and GHG sources but the rewetted agricultural peatland acted as a carbon and GHG sink. The terrestrial GHG source strength was 1.4 kg CO2-eq m-2 yr-1 for the intensively managed area and 1.0 kg CO2-eq m-2 yr-1 for the extensively managed area; the unmanaged area acted as a GHG sink of 0.7 kg CO2-eq m-2 yr-1. Water bodies contributed significantly to the terrestrial GHG balance because of a high release of CH4 and the loss of DOC only played a minor role. Adding the farm-based CO2 and CH4 emissions increased the source strength for the managed sites to 2.7 kg CO2-eq m-2 yr-1 for Oukoop and 2.1 kg CO2-eq m-2 yr-1 for Stein. Shifting from intensively managed to extensively managed grass-on-peat reduced GHG emissions mainly because N2O emission and farm-based CH4 emissions decreased. Overall, this study suggests that managed peatlands are large sources of GHG and carbon, but, if appropriate measures are taken they can be turned back into GHG and carbon sinks within 15 yr of abandonment and rewetting.
NASA Astrophysics Data System (ADS)
Lau, William Ka-Ming; Kim, Kyu-Myong
2017-05-01
In this paper, we have compared and contrasted competing influences of greenhouse gases (GHG) warming and aerosol forcing on Asian summer monsoon circulation and rainfall based on CMIP5 historical simulations. Under GHG-only forcing, the land warms much faster than the ocean, magnifying the pre-industrial climatological land-ocean thermal contrast and hemispheric asymmetry, i.e., warmer northern than southern hemisphere. A steady increasing warm-ocean-warmer-land (WOWL) trend has been in effect since the 1950's substantially increasing moisture transport from adjacent oceans, and enhancing rainfall over the Asian monsoon regions. However, under GHG warming, increased atmospheric stability due to strong reduction in mid-tropospheric and near surface relative humidity coupled to an expanding subsidence areas, associated with the Deep Tropical Squeeze (DTS, Lau and Kim, 2015b) strongly suppress monsoon convection and rainfall over subtropical and extratropical land, leading to a weakening of the Asian monsoon meridional circulation. Increased anthropogenic aerosol emission strongly masks WOWL, by over 60% over the northern hemisphere, negating to a large extent the rainfall increase due to GHG warming, and leading to a further weakening of the monsoon circulation, through increasing atmospheric stability, most likely associated with aerosol solar dimming and semi-direct effects. Overall, we find that GHG exerts stronger positive rainfall sensitivity, but less negative circulation sensitivity in SASM compared to EASM. In contrast, aerosols exert stronger negative impacts on rainfall, but less negative impacts on circulation in EASM compared to SASM.
Yao, Zhiyuan; Zhang, Dabin; Yao, Pengwei; Zhao, Na; Liu, Na; Zhai, Bingnian; Zhang, Suiqi; Li, Yangyang; Huang, Donglin; Cao, Weidong; Gao, Yajun
2017-12-31
Reducing the carbon footprint (CF) of crop production is an efficient way to mitigate climate change. Growing legume green manure (LGM) instead of summer fallow may achieve this goal by lowering synthetic nitrogen (N) fertilizer needs and replenishing the depleted soil carbon (C) pool. The Rothamsted Carbon (RothC) model was incorporated into the Life-Cycle Assessment (LCA) to evaluate the present and projected CFs of green manure-based wheat production systems in dryland agriculture on the Loess Plateau of China. The field study included four main treatments (Huai bean, soybean and mung bean grown as green manure in summer and fallow as control) and four synthetic N rates (0, 108, 135 and 162kgNha -1 ) applied at wheat sowing. Soybean as LGM increased averaged wheat yield over 4 synthetic N rates by 8% compared with fallow (P<0.05), and synthetic N requirement was reduced by 33% without compromising the wheat yield for all the main treatments. Although LGM treatments had higher greenhouse gas (GHG) emissions from agricultural inputs, the greater amount of C inputs elevated the corresponding SOC stocks (SOCS) by 14-24% after 8years, thus significantly reducing the CF by 25-51% compared with fallow. The modelled SOCS equilibrium indicates that the CF for cropping systems with LGM will be 53-62% lower than fallow and 23-37% lower compared with their current level. In conclusion, introducing legume green manure instead of summer fallow is a highly efficient measure for persistent CF reduction, and coupling the RothC model and LCA is an alternative method to predict the long-term impact of different cropping systems on GHG emissions. Copyright © 2017 Elsevier B.V. All rights reserved.
Co-benefits and trade-offs in the water-energy nexus of irrigation modernization in China
NASA Astrophysics Data System (ADS)
Cremades, Roger; Rothausen, Sabrina G. S. A.; Conway, Declan; Zou, Xiaoxia; Wang, Jinxia; Li, Yu'e.
2016-05-01
There are strong interdependencies between water use in agriculture and energy consumption as water saving technologies can require increased pumping and pressurizing. The Chinese Government includes water efficiency improvement and carbon intensity reduction targets in the 12th Five-Year Plan (5YP. 2011-2015), yet the links between energy use and irrigation modernization are not always addressed in policy targets. Here we build an original model of the energy embedded in water pumping for irrigated agriculture and its related processes. The model is based on the physical processes of irrigation schemes and the implication of technological developments, comprising all processes from extraction and conveyance of water to its application in the field. The model uses data from government sources to assess policy targets for deployment of irrigation technologies, which aim to reduce water application and contribute to adaptation of Chinese agriculture to climate change. The consequences of policy targets involve co-beneficial outcomes that achieve water and energy savings, or trade-offs in which reduced water application leads to increasing greenhouse gas (GHG) emissions. We analyze irrigation efficiency and energy use in four significant provinces and nationally, using scenarios based on the targets of the 12th 5YP. At the national scale, we find that expansion of sprinklers and micro-irrigation as outlined in the 5YP would increase GHG emissions from agricultural water use, however, emissions decrease in those provinces with predominant groundwater use and planned expansion of low-pressure pipes. We show that the most costly technologies relate to trade-offs, while co-benefits are generally achieved with less expensive technologies. The investment cost per area of irrigation technology expansion does not greatly affect the outcome in terms of water, but in terms of energy the most expensive technologies are more energy-intensive and produce more emissions. The results show that water supply configuration (proportion of surface to groundwater) largely determines the potential energy savings from reductions in water application. The paper examines the importance of fertigation and highlights briefly some policy implications.
Development and testing of a European Union-wide farm-level carbon calculator
Tuomisto, Hanna L; De Camillis, Camillo; Leip, Adrian; Nisini, Luigi; Pelletier, Nathan; Haastrup, Palle
2015-01-01
Direct greenhouse gas (GHG) emissions from agriculture accounted for approximately 10% of total European Union (EU) emissions in 2010. To reduce farming-related GHG emissions, appropriate policy measures and supporting tools for promoting low-C farming practices may be efficacious. This article presents the methodology and testing results of a new EU-wide, farm-level C footprint calculator. The Carbon Calculator quantifies GHG emissions based on international standards and technical specifications on Life Cycle Assessment (LCA) and C footprinting. The tool delivers its results both at the farm level and as allocated to up to 5 main products of the farm. In addition to the quantification of GHG emissions, the calculator proposes mitigation options and sequestration actions that may be suitable for individual farms. The results obtained during a survey made on 54 farms from 8 EU Member States are presented. These farms were selected in view of representing the diversity of farm types across different environmental zones in the EU. The results of the C footprint of products in the data set show wide range of variation between minimum and maximum values. The results of the mitigation actions showed that the tool can help identify practices that can lead to substantial emission reductions. To avoid burden-shifting from climate change to other environmental issues, the future improvements of the tool should include incorporation of other environmental impact categories in place of solely focusing on GHG emissions. Integr Environ Assess Manag 2015;11:404–416. © 2015 The Authors. Published by Wiley Periodicals, Inc. on behalf of SETAC. Key Points The methodology and testing results of a new European Union-wide, farm-level carbon calculator are presented. The Carbon Calculator reports life cycle assessment-based greenhouse gas emissions at farm and product levels and recommends farm- specific mitigation actions. Based on the results obtained from testing the tool in 54 farms in 8 European countries, it was found that the product-level carbon footprint results are comparable with those of other studies focusing on similar products. The results of the mitigation actions showed that the tool can help identify practices that can lead to substantial emission reductions. PMID:25655187
Aguirre-Villegas, H A; Passos-Fonseca, T H; Reinemann, D J; Armentano, L E; Wattiaux, M A; Cabrera, V E; Norman, J M; Larson, R
2015-03-01
The objective of this study was to evaluate the effect of integrating dairy and bioenergy systems on land use, net energy intensity (NEI), and greenhouse gas (GHG) emissions. A reference dairy farm system representative of Wisconsin was compared with a system that produces dairy and bioenergy products. This integrated system investigates the effects at the farm level when the cow diet and manure management practices are varied. The diets evaluated were supplemented with varying amounts of dry distillers grains with solubles and soybean meal and were balanced with different types of forages. The manure-management scenarios included manure land application, which is the most common manure disposal method in Wisconsin, and manure anaerobic digestion (AD) to produce biogas. A partial life cycle assessment from cradle to farm gate was conducted, where the system boundaries were expanded to include the production of biofuels in the analysis and the environmental burdens between milk and bioenergy products were partitioned by system expansion. Milk was considered the primary product and the functional unit, with ethanol, biodiesel, and biogas considered co-products. The production of the co-products was scaled according to milk production to meet the dietary requirements of each selected dairy ration. Results indicated that land use was 1.6 m2, NEI was 3.86 MJ, and GHG emissions were 1.02 kg of CO2-equivalents per kilogram of fat- and protein-corrected milk (FPCM) for the reference system. Within the integrated dairy and bioenergy system, diet scenarios that maximize dry distillers grains with solubles and implement AD had the largest reduction of GHG emissions and NEI, but the greatest increase in land use compared with the reference system. Average land use ranged from 1.68 to 2.01 m2/kg of FPCM; NEI ranged from -5.62 to -0.73 MJ/kg of FPCM; and GHG emissions ranged from 0.63 to 0.77 kg of CO2-equivalents/kg of FPCM. The AD contributed 65% of the NEI and 77% of the GHG emission reductions. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
The Moving Target of Climate Mitigation: Examples from the Energy Sector in California
NASA Astrophysics Data System (ADS)
Tarroja, B.; AghaKouchak, A.; Forrest, K.; Chiang, F.; Samuelsen, S.
2016-12-01
In response to the concerns of climate change-induced impacts on human health, environmental integrity, and the secure operation of resource supply infrastructures, strategies to reduce greenhouse gas (GHG) emissions of major societal sectors have been in development. In the energy sector, these strategies are based in low carbon primary energy deployment, increased energy efficiency, and implementing complementary technologies for operational resilience. While these strategies are aimed at climate mitigation, a degree of climate change-induced impacts will occur by the time of their deployment, and many of these impacts can compromise the effectiveness of these climate mitigation strategies. In order to develop climate mitigation strategies that will achieve their GHG reduction and other goals, the impact that climate change-induced conditions can have on different components of climate mitigation strategies must be understood. This presentation will highlight three examples of how climate change-induced conditions affect components of climate mitigation strategies in California: through impacts on 1) hydropower generation, 2) renewable potential for geothermal and solar thermal resources to form part of the renewable resource portfolio, and 3) the magnitudes and shapes of the electric load demand that must be met sustainably. These studies are part of a larger, overarching project to understand how climate change impacts the energy system and how to develop a sustainable energy infrastructure that is resilient against these impacts.
Greenhouse gas (GHG) emissions are projected for various scenarios and the most appropriate approaches and technologies for mitigation are identified by NRMRL's Air Pollution Prevention and Control Division's Atmospheric Protection Branch (APB). These methods contribute to reduct...
Modeling travel choices to assess potential greenhouse gas emissions reductions.
DOT National Transportation Integrated Search
2015-06-01
The transportation sector is the source of approximately 27% of total U.S. greenhouse gas : (GHG) emissions (EPA, 2015), and these emissions are projected to increase in the future : (NHTSA, 2011). Given the potentially severe impacts of climate chan...
This rule finalizes the determination that canola oil biodiesel meets the lifecycle greenhouse gas (GHG) emission reduction threshold of 50 required by the Energy Independence and Security Act of 2007 (EISA).
Energy Feedback at the City-Wide Scale A comparison to building scale studies
NASA Astrophysics Data System (ADS)
Carter, Richard Allan
Climate change is a growing concern throughout the world. In the United States, leadership has so far failed to establish targeted reductions and agreement on mitigation strategies. Despite this, many large cities are taking on the challenge of measuring their emissions, establishing targeted reductions, and defining strategies for mitigation in the form of Climate Action Plans. Reporting of greenhouse gas (GHG) emissions by these cities is usually based on a one-time, annual calculation. Many studies have been conducted on the impact of providing energy use data or feedback to households, and in some cases, institutional or commercial businesses. In most of those studies, the act of providing feedback has resulted in a reduction of energy use, ranging from 2% to 15%, depending upon the features of the feedback. Many of these studies included only electric use. Studies where all energy use was reported are more accurate representations of GHG emissions. GHG emissions and energy use are not the same, depending on the fuel source and in the case of this paper, the focus is on reducing energy use. This research documents the characteristics of the feedback provided in those studies in order to determine which are most effective and should be considered for application to the community-wide scale. Eleven studies, including five primary and six secondary research papers, were reviewed and analyzed for the features of the feedback. Trends were established and evaluated with respect to their effectiveness and potential for use at the community-wide scale. This paper concludes that additional research is required to determine if the use of energy feedback at the city scale could result in savings similar to those observed at the household scale. This additional research could take advantage of the features assessed here in order to be more effective and to implement the features that are best able to scale up. Further research is needed to determine whether combining city-wide feedback with feedback for individual energy users within the city, both residential and commercial, has an even greater impact on reducing energy use and lowering GHG emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, Ryan; Millstein, Dev; Mai, Trieu
We estimate the environmental and public health benefits that may be realized if solar energy cost reductions continue until solar power is competitive across the U.S. without subsidies. Specifically, we model, from 2015 to 2050, solar power-induced reductions to greenhouse gas (GHG) emissions, air pollutant emissions, and water usage. To find the incremental benefits of new solar deployment, we compare the difference between two scenarios, one where solar costs have fallen such that solar supplies 14% of the nation's electricity by 2030 and 27% by 2050, and a baseline scenario in which no solar is added after 2014. We monetizemore » benefits, where credible methods exist to do so. We find that under these scenarios, solar power reduces GHG and air pollutants by ~10%, from 2015 to 2050, providing a discounted present value of $56-$789 billion (central value of ~$250 billion, equivalent to ~2 cents/kWh-solar) in climate benefits and $77-$298 billion (central value of $167 billion, or ~1.4 cents/kWh-solar) in air quality and public health benefits. The ranges reflect uncertainty within the literature about the marginal impact of emissions of GHG and air pollutants. Solar power is also found to reduce water withdrawals and consumption by 4% and 9%, respectively, including in many drought-prone states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huo, Hong; Cai, Hao; Zhang, Qiang
We evaluated the fuel-cycle emissions of greenhouse gases (GHGs) and air pollutants (NOx, SO2, PM10, and PM2.5) of electric vehicles (EVs) in China and the United States (U.S.), two of the largest potential markets for EVs in the world. Six of the most economically developed and populated regions in China and the U.S. were selected. The results showed that EV fuel-cycle emissions depend substantially on the carbon intensity and cleanness of the electricity mix, and vary significantly across the regions studied. In those regions with a low share of coal-based electricity (e.g., California), EVs can reduce GHG and air pollutantmore » emissions (except for PM) significantly compared with conventional vehicles. However, in the Chinese regions and selected U.S. Midwestern states where coal dominates in the generation mix, EVs can reduce GHG emissions but increase the total and urban emissions of air pollutants. In 2025, EVs will offer greater reductions in GHG and air pollutant emissions because emissions from power plants will be better controlled; EVs in the Chinese regions examined, however, may still increase SO2 and PM emissions. Reductions of 60–85% in GHGs and air pollutants could be achieved were EVs charged with 80% renewable electricity or the electricity generated from the best available technologies of coal-fired power plants, which are futuristic power generation scenarios.« less
Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Jason; Smith, Steven J.; Silva, Raquel
2013-10-01
Reducing greenhouse gas (GHG) emissions also influences air quality. We simulate the co-benefits of global GHG reductions on air quality and human health via two mechanisms: a) reducing co-emitted air pollutants, and b) slowing climate change and its effect on air quality. Relative to a reference scenario, global GHG mitigation in the RCP4.5 scenario avoids 0.5±0.2, 1.3±0.6, and 2.2±1.6 million premature deaths in 2030, 2050, and 2100, from changes in fine particulate matter and ozone. Global average marginal co-benefits of avoided mortality are $40-400 (ton CO2)-1, exceeding marginal abatement costs in 2030 and 2050, and within the low range ofmore » costs in 2100. East Asian co-benefits are 10-80 times the marginal cost in 2030. These results indicate that transitioning to a low-carbon future might be justified by air quality and health co-benefits.« less
Impact of public electric vehicle charging infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levinson, Rebecca S.; West, Todd H.
Our work uses market analysis and simulation to explore the potential of public charging infrastructure to spur US battery electric vehicle (BEV) sales, increase national electrified mileage, and lower greenhouse gas (GHG) emissions. By employing both scenario and parametric analysis for policy driven injection of public charging stations we find the following: (1) For large deployments of public chargers, DC fast chargers are more effective than level 2 chargers at increasing BEV sales, increasing electrified mileage, and lowering GHG emissions, even if only one DC fast charging station can be built for every ten level 2 charging stations. (2) Amore » national initiative to build DC fast charging infrastructure will see diminishing returns on investment at approximately 30,000 stations. (3) Some infrastructure deployment costs can be defrayed by passing them back to electric vehicle consumers, but once those costs to the consumer reach the equivalent of approximately 12¢/kWh for all miles driven, almost all gains to BEV sales and GHG emissions reductions from infrastructure construction are lost.« less
Impact of public electric vehicle charging infrastructure
Levinson, Rebecca S.; West, Todd H.
2017-10-16
Our work uses market analysis and simulation to explore the potential of public charging infrastructure to spur US battery electric vehicle (BEV) sales, increase national electrified mileage, and lower greenhouse gas (GHG) emissions. By employing both scenario and parametric analysis for policy driven injection of public charging stations we find the following: (1) For large deployments of public chargers, DC fast chargers are more effective than level 2 chargers at increasing BEV sales, increasing electrified mileage, and lowering GHG emissions, even if only one DC fast charging station can be built for every ten level 2 charging stations. (2) Amore » national initiative to build DC fast charging infrastructure will see diminishing returns on investment at approximately 30,000 stations. (3) Some infrastructure deployment costs can be defrayed by passing them back to electric vehicle consumers, but once those costs to the consumer reach the equivalent of approximately 12¢/kWh for all miles driven, almost all gains to BEV sales and GHG emissions reductions from infrastructure construction are lost.« less
Arrieta, E M; Cuchietti, A; Cabrol, D; González, A D
2018-06-01
Of all human activities, agriculture has one of the highest environmental impacts, particularly related to Greenhouse Gas (GHG) emissions, energy use and land use change. Soybean and maize are two of the most commercialized agricultural commodities worldwide. Argentina contributes significantly to this trade, being the third major producer of soybeans, the first exporter of soymeal and soybean oil, and the third exporter of maize. Despite the economic importance of these crops and the products derived, there are very few studies regarding GHG emissions, energy use and efficiencies associated to Argentinean soybean and maize production. Therefore, the aim of this work is to determine the carbon and energy footprint, as well as the carbon and energy efficiencies, of soybeans and maize produced in Argentina, by analyzing 18 agronomic zones covering an agricultural area of 1.53millionkm 2 . Our results show that, for both crops, the GHG and energy efficiencies at the Pampean region were significantly higher than those at the extra-Pampean region. The national average for production of soybeans in Argentina results in 6.06ton/ton CO 2 -eq emitted to the atmosphere, while 0.887ton of soybean were produced per GJ of energy used; and for maize 5.01ton/ton CO 2 -eq emitted to the atmosphere and 0.740ton of maize were produced per each GJ of energy used. We found that the large differences on yields, GHGs and energy efficiencies between agronomic regions for soybean and maize crop production are mainly driven by climate, particularly mean annual precipitation. This study contributes for the first time to understand the carbon and energy footprint of soybean and maize production throughout several agronomic zones in Argentina. The significant differences found in the productive efficiencies questions on the environmental viability of expanding the agricultural frontier to less suitable lands for crop production. Copyright © 2017 Elsevier B.V. All rights reserved.
Yano, Junya; Hirai, Yasuhiro; Sakai, Shin-ichi; Tsubota, Jun
2014-04-01
The purpose of this study was to quantify the life-cycle greenhouse gas (GHG) emissions reduction that could be achieved by replacement of fossil-derived materials with biodegradable, biomass-based materials for household plastic containers and packaging, considering a variety of their treatment options. The biomass-based materials were 100% polylactide or a combination of polybutylene succinate adipate and polylactide. A scenario analysis was conducted considering alternative recycling methods. Five scenarios were considered: two for existing fossil-derived materials (the current approach in Japan) and the three for biomass-based materials. Production and waste disposal of 1 m(3) of plastic containers and packaging from households was defined as the functional unit. The results showed that replacement of fossil-derived materials with biomass-based materials could reduce life-cycle GHG emissions by 14-20%. Source separation and recycling should be promoted. When the separate collection ratio reached 100%, replacement with biomass-based materials could potentially reduce GHG emissions by 31.9%. Food containers are a priority for replacement, because they alone could reduce GHG emissions by 10%. A recycling system for biomass-based plastics must be carefully designed, considering aspects such as the transition period from fossil-derived plastics to biomass-based plastics.
Implications of shale gas development for climate change.
Newell, Richard G; Raimi, Daniel
2014-01-01
Advances in technologies for extracting oil and gas from shale formations have dramatically increased U.S. production of natural gas. As production expands domestically and abroad, natural gas prices will be lower than without shale gas. Lower prices have two main effects: increasing overall energy consumption, and encouraging substitution away from sources such as coal, nuclear, renewables, and electricity. We examine the evidence and analyze modeling projections to understand how these two dynamics affect greenhouse gas emissions. Most evidence indicates that natural gas as a substitute for coal in electricity production, gasoline in transport, and electricity in buildings decreases greenhouse gases, although as an electricity substitute this depends on the electricity mix displaced. Modeling suggests that absent substantial policy changes, increased natural gas production slightly increases overall energy use, more substantially encourages fuel-switching, and that the combined effect slightly alters economy wide GHG emissions; whether the net effect is a slight decrease or increase depends on modeling assumptions including upstream methane emissions. Our main conclusions are that natural gas can help reduce GHG emissions, but in the absence of targeted climate policy measures, it will not substantially change the course of global GHG concentrations. Abundant natural gas can, however, help reduce the costs of achieving GHG reduction goals.
Toward accurate and valid estimates of greenhouse gas reductions from bikeway projects.
DOT National Transportation Integrated Search
2016-07-31
We sought to accurately and validly model emissions generating and activities, including changes in traveler behavior and thus GHG : emissions in the wake of bikeway projects. We wanted the results to be applicable to practice and policy in Californi...
DOT National Transportation Integrated Search
2010-09-01
Tools are proposed for carbon footprint estimation of transportation construction projects and decision support : for construction firms that must make equipment choice and usage decisions that affect profits, project duration : and greenhouse gas em...
Greenhouse gas emissions from aviation and marine transportation : mitigation potential and policies
DOT National Transportation Integrated Search
2009-12-01
This paper provides an overview of greenhouse gas (GHG) emissions : from aviation and marine transportation and the various mitigation options to reduce these emissions. Reducing global emissions by 50 to 80 percent below 1990 levels by 2050reduct...
DOT National Transportation Integrated Search
2012-01-01
Floridas remarkable transportation infrastructure is a key to its economic vitality, but transportation is also the single largest contributor to air pollution. Pollutants such as greenhouse gases (GHG) degrade air quality and contribute to climat...
Zhang, Nannan; Bai, Zhaohai; Luo, Jiafa; Ledgard, Stewart; Wu, Zhiguo; Ma, Lin
2017-11-15
The dairy industry in China was rapidly expanded and intensified from 1980 to 2010, engendering potential long-term impacts on the environment and natural resources. However, impacts of dairy intensification on nitrogen (N) and phosphorus (P) losses and greenhouse gas (GHG) emissions were unknown. This study was undertaken to examine these relations using the NUtrient flows in Food chains, Environment and Resources use (NUFER)-dairy model. Results showed that milk yield increased by 64% from 1980 to 2010 on average, and the use of concentrate feeds increased by 57% associated with a shift of production from traditional and grassland systems to collective and industrialized systems. At herd level, the N use efficiency (NUE; conversion of N inputs to products) doubled from 7 to 15%, and the P use efficiency (PUE) increased from 10 to 17%, primarily resulting from increased milk yield per cow. In contrast, at the system level, NUE showed a small increase (from 10 to 15%, associated with reduced gaseous losses) while PUE decreased from 46 to 30% due to a large increase in manure discharges. This is attributed to decoupling of feed and dairy production, as the proportion of manure N and P recycled to cropland decreased by 52% and 54%, respectively. Despite this, the average total N loss decreased from 63 to 48gkg -1 milk, and the average GHG emissions from 1.7 to 1.1kgCO 2 equivalentkg -1 milk associated with increased per-cow productivity. However, average P loss increased from 1.4 to 2.8gPkg -1 milk due to higher discharge rate to wastewater and landfill in collective and industrialized systems. Anyhow, average N and P losses exceeded levels in developed countries. There were large regional variations in nutrient use efficiency, nutrient losses and GHG emissions in China, largely determined by the dairy production structure. Average N losses and GHG emissions per unit of milk showed a negative correlation with production intensification based on the proportion of farms in collective or industrialized systems, while average P losses per unit of milk in different regions showed a positive relationship with intensification. In conclusion, dairy intensification was associated with increased milk yield per cow and reduced average N losses and GHG emissions per unit of milk, but reduced system level PUE and manure recycling contributed to high levels of total N and P losses. Dairy production in China is likely to continue to be intensified as a result of rising milk demand, and significant improvements must be made in manure management to control N and P losses and GHG emissions. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, M.; Daley, R.
This report focuses on the National Renewable Energy Laboratory's (NREL) fiscal year (FY) 2012 effort that used the NREL Optimal Vehicle Acquisition (NOVA) analysis to identify optimal vehicle acquisition recommendations for eleven diverse federal agencies. Results of the study show that by following a vehicle acquisition plan that maximizes the reduction in greenhouse gas (GHG) emissions, significant progress is also made toward the mandated complementary goals of acquiring alternative fuel vehicles, petroleum use reduction, and alternative fuel use increase.
NASA Astrophysics Data System (ADS)
Tang, Guoping; Zheng, Jianqiu; Yang, Ziming; Graham, David; Gu, Baohua; Mayes, Melanie; Painter, Scott; Thornton, Peter
2016-04-01
Among the coupled thermal, hydrological, geochemical, and biological processes, redox processes play major roles in carbon and nutrient cycling and greenhouse gas (GHG) emission. Increasingly, mechanistic representation of redox processes is acknowledged as necessary for accurate prediction of GHG emission in the assessment of land-atmosphere interactions. Simple organic substrates, Fe reduction, microbial reactions, and the Windermere Humic Aqueous Model (WHAM) were added to a reaction network used in the land component of an Earth system model. In conjunction with this amended reaction network, various temperature response functions used in ecosystem models were assessed for their ability to describe experimental observations from incubation tests with arctic soils. Incorporation of Fe reduction reactions improves the prediction of the lag time between CO2 and CH4 accumulation. The inclusion of the WHAM model enables us to approximately simulate the initial pH drop due to organic acid accumulation and then a pH increase due to Fe reduction without parameter adjustment. The CLM4.0, CENTURY, and Ratkowsky temperature response functions better described the observations than the Q10 method, Arrhenius equation, and ROTH-C. As electron acceptors between O2 and CO2 (e.g., Fe(III), SO42-) are often involved, our results support inclusion of these redox reactions for accurate prediction of CH4 production and consumption. Ongoing work includes improving the parameterization of organic matter decomposition to produce simple organic substrates, examining the influence of redox potential on methanogenesis under thermodynamically favorable conditions, and refining temperature response representation near the freezing point by additional model-experiment iterations. We will use the model to describe observed GHG emission at arctic and tropical sites.
Özkan Gülzari, Şeyda; Vosough Ahmadi, Bouda; Stott, Alistair W
2018-02-01
Impaired animal health causes both productivity and profitability losses on dairy farms, resulting in inefficient use of inputs and increase in greenhouse gas (GHG) emissions produced per unit of product (i.e. emissions intensity). Here, we used subclinical mastitis as an exemplar to benchmark alternative scenarios against an economic optimum and adjusted herd structure to estimate the GHG emissions intensity associated with varying levels of disease. Five levels of somatic cell count (SCC) classes were considered namely 50,000 (i.e. SCC50), 200,000, 400,000, 600,000 and 800,000cells/mL (milliliter) of milk. The effects of varying levels of SCC on milk yield reduction and consequential milk price penalties were used in a dynamic programming (DP) model that maximizes the profit per cow, represented as expected net present value, by choosing optimal animal replacement rates. The GHG emissions intensities associated with different levels of SCC were then computed using a farm-scale model (HolosNor). The total culling rates of both primiparous (PP) and multiparous (MP) cows for the five levels of SCC scenarios estimated by the model varied from a minimum of 30.9% to a maximum of 43.7%. The expected profit was the highest for cows with SCC200 due to declining margin over feed, which influenced the DP model to cull and replace more animals and generate higher profit under this scenario compared to SCC50. The GHG emission intensities for the PP and MP cows with SCC50 were 1.01kg (kilogram) and 0.95kg carbon dioxide equivalents (CO 2 e) per kg fat and protein corrected milk (FPCM), respectively, with the lowest emissions being achieved in SCC50. Our results show that there is a potential to reduce the farm GHG emissions intensity by 3.7% if the milk production was improved through reducing the level of SCC to 50,000cells/mL in relation to SCC level 800,000cells/mL. It was concluded that preventing and/or controlling subclinical mastitis consequently reduces the GHG emissions per unit of product on farm that results in improved profits for the farmers through reductions in milk losses, optimum culling rate and reduced feed and other variable costs. We suggest that further studies exploring the impact of a combination of diseases on emissions intensity are warranted. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Arnieri, Fabrizio; Caprio, Enrico; Nervo, Beatrice; Pelissetti, Simone; Palestrini, Claudia; Roslin, Tomas; Rolando, Antonio
2017-01-01
Cattle farming is a major source of greenhouse gases (GHGs). Recent research suggests that GHG fluxes from dung pats could be affected by biotic interactions involving dung beetles. Whether and how these effects vary among beetle species and with assemblage composition is yet to be established. To examine the link between GHGs and different dung beetle species assemblages, we used a closed chamber system to measure fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from cattle dung pats. Targeting a total of four dung beetle species (a pat-dwelling species, a roller of dung balls, a large and a small tunnelling species), we ran six experimental treatments (four monospecific and two mixed) and two controls (one with dung but without beetles, and one with neither dung nor beetles). In this setting, the overall presence of beetles significantly affected the gas fluxes, but different species contributed unequally to GHG emissions. When compared to the control with dung, we detected an overall reduction in the total cumulative CO2 flux from all treatments with beetles and a reduction in N2O flux from the treatments with the three most abundant dung beetle species. These reductions can be seen as beneficial ecosystem services. Nonetheless, we also observed a disservice provided by the large tunneler, Copris lunaris, which significantly increased the CH4 flux–an effect potentially traceable to the species’ nesting strategy involving the construction of large brood balls. When fluxes were summed into CO2-equivalents across individual GHG compounds, dung with beetles proved to emit less GHGs than did beetle-free dung, with the mix of the three most abundant species providing the highest reduction (-32%). As the mix of multiple species proved the most effective in reducing CO2-equivalents, the conservation of diverse assemblages of dung beetles emerges as a priority in agro-pastoral ecosystems. PMID:28700590
Spatially-explicit life cycle assessment of sun-to-wheels transportation pathways in the U.S.
Geyer, Roland; Stoms, David; Kallaos, James
2013-01-15
Growth in biofuel production, which is meant to reduce greenhouse gas (GHG) emissions and fossil energy demand, is increasingly seen as a threat to food supply and natural habitats. Using photovoltaics (PV) to directly convert solar radiation into electricity for battery electric vehicles (BEVs) is an alternative to photosynthesis, which suffers from a very low energy conversion efficiency. Assessments need to be spatially explicit, since solar insolation and crop yields vary widely between locations. This paper therefore compares direct land use, life cycle GHG emissions and fossil fuel requirements of five different sun-to-wheels conversion pathways for every county in the contiguous U.S.: Ethanol from corn or switchgrass for internal combustion vehicles (ICVs), electricity from corn or switchgrass for BEVs, and PV electricity for BEVs. Even the most land-use efficient biomass-based pathway (i.e., switchgrass bioelectricity in U.S. counties with hypothetical crop yields of over 24 tonnes/ha) requires 29 times more land than the PV-based alternative in the same locations. PV BEV systems also have the lowest life cycle GHG emissions throughout the U.S. and the lowest fossil fuel inputs, except for locations with hypothetical switchgrass yields of 16 or more tonnes/ha. Including indirect land use effects further strengthens the case for PV.
Global land-use and market interactions between climate and bioenergy policies
NASA Astrophysics Data System (ADS)
Golub, A.; Hertel, T. W.; Rose, S. K.
2011-12-01
Over the past few years, interest in bioenergy has boomed with higher oil prices and concerns about energy security, farm incomes, and mitigation of climate change. Large-scale commercial bioenergy production could have far reaching implications for regional and global land use and output markets associated with food, forestry, chemical, and energy sectors, as well as household welfare. Similarly, there is significant interest in international agricultural and forestry based carbon sequestration and greenhouse gas (GHG) mitigation policies, which could also provide revenue to developing countries and farmers in exchange for modifying land management practices. However, bioenergy and climate policies are being formulated largely independent of one another. Understanding the interaction between these potentially competing policy objectives is important for identifying possible constraints that one policy might place on the other, potential complementarities that could be exploited in policy design, and net land-use change and management implications over time. This study develops a new dynamic global computable general equilibrium (CGE) model GDyn-E-AEZ to assess the interaction between biofuels production and climate mitigation policies. The model is built on several existing CGE platforms, including 1) GTAP-AEZ-GHG model (Golub et al., 2009), 2) GTAP-BIO (Birur et al., 2008; Taheripour and Tyner, 2011), and 3) GDyn framework (Ianchovichina and McDougall, 2001) extended to investigate the role of population and per capita income growth, changing consumption patterns, and global economic integration in determining long-run patterns of land-use change. The new model is used to assess the effects of domestic and global bioenergy expansion on future land use, as well as sectoral, regional and global GHG emissions mitigation potential. Do bioenergy programs facilitate or constrain GHG mitigation opportunities? For instance, Golub et al. (2009) estimate substantial GHG mitigation potential in non-US forests (8.9 GtCO2yr-1 at $27/tCO2eq). Furthermore, a carbon tax could lead to input substitution in agricultural production away from land and fertilizer (e.g., in China, an approximate 20% reduction in paddy rice acreage and 10% reduction in crop production fertilizer use at the same GHG price). Both results run counter to the changes in land-use induced by biofuels. However, given the energy security benefits for bioenergy, this study also evaluate whether a land GHG policy could manage international indirect land-use leakage concerns for bioenergy. In addition to a global perspective, a US perspective is taken to evaluate the implications of joint and separate bioenergy and climate policies on domestic offset and bioenergy supplies. Preliminary results indicate that US biofuels mandate reduces the global abatement potential for agriculture and forestry and thereby imposes an additional cost on society. There are regional comparative advantages in biofuels production (as well as non-biofuels crops and timber production). There are also regional comparative advantages in land-based GHG mitigation. By modeling bioenergy and climate policies separately and simultaneously, this study assess the net comparative advantage regions have in meeting these two sets of goals.
Greenhouse Gas Emissions Model (GEM) for Medium- and Heavy-Duty Vehicle Compliance
EPA’s Greenhouse Gas Emissions Model (GEM) is a free, desktop computer application that estimates the greenhouse gas (GHG) emissions and fuel efficiency performance of specific aspects of heavy-duty vehicles.
The carbon footprint of integrated milk production and renewable energy systems - A case study.
Vida, Elisabetta; Tedesco, Doriana Eurosia Angela
2017-12-31
Dairy farms have been widely acknowledged as a source of greenhouse gas (GHG) emissions. The need for a more environmentally friendly milk production system will likely be important going forward. Whereas methane (CH 4 ) enteric emissions can only be reduced to a limited extent, CH 4 manure emissions can be reduced by implementing mitigation strategies, such as the use of an anaerobic digestion (AD). Furthermore, implementing a photovoltaic (PV) electricity generation system could mitigate the fossil fuels used to cover the electrical needs of farms. In the present study to detect the main environmental hotspots of milk production, a Life Cycle Assessment was adopted to build the Life Cycle Inventory according to ISO 14040 and 14044 in a conventional dairy farm (1368 animals) provided by AD and PV systems. The Intergovernmental Panel on Climate Change tiered approach was adopted to associate the level of emission with each item in the life cycle inventory. The functional unit refers to 1kg of fat-and-protein-corrected-milk (FPCM). In addition to milk products, other important co-products need to be considered: meat and renewable energy production from AD and PV systems. A physical allocation was applied to attribute GHG emissions among milk and meat products. Renewable energy production from AD and PV systems was considered, discounting carbon credits due to lower CH 4 manure emissions and to the minor exploitation of fossil energy. The CF of this farm scenario was 1.11kg CO 2 eq/kg FPCM. The inclusion of AD allowed for the reduction of GHG emissions from milk production by 0.26kg CO 2 eq/kg FPCM. The PV system contribution was negligible due to the small dimensions of the technology. The results obtained in this study confirm that integrating milk production with other co-products, originated from more efficient manure management, is a successful strategy to mitigate the environmental impact of dairy production. Copyright © 2017 Elsevier B.V. All rights reserved.
Bélanger, Diane; Gosselin, Pierre; Valois, Pierre; Germain, Stéphane; Abdous, Belkacem
2009-01-01
Remote car starters encourage motorists to warm up their vehicles by idling the motor – thus increasing atmospheric pollutants, including several greenhouse gas (GHG) with impacts on public health. This study about climate change (CC) adaptation and mitigation actions examined perceptions on air pollution and climate change and individual characteristics associated with the use of a remote car starter. A telephone survey (n = 2,570; response rate: 70%) of adults living in Québec (Canada) measured the respondents’ beliefs and current behaviours regarding CC. Approximately 32.9% (daily car users) and 27.4% (occasional users) reported using a remote car starter during winter. The odds of the use of a remote car starter was higher in the less densely populated central (OR: 1.5) and peripheral regions (OR: 2.7) compared to the urban centers (ex. Montreal). The odds was also higher in population with a mother tongue other than English or French (OR: 2.6) and francophones than anglophones (OR: 2.1), women than men (OR: 1.5), daily drivers than occasional ones (OR: 1.2), and respondents who at least sometimes consulted temperature/humidity reports than those who consulted them less often (OR: 1.5). In multivariate analysis, the perception of living in a region susceptible to winter smog, being aware of smog warnings, or the belief in the human contribution to CC did not significantly influence the use of a remote car starter. The use of remote car starters encourages idling which produces increased atmospheric pollution and GHG production and it should be more efficiently and vigorously managed by various activities. A five-minute daily reduction in idling is equivalent to reducing the total car emissions by 1.8%. This would constitute a “no-regrets” approach to CC as it can simultaneously reduce GHG, air pollution and their health impacts. PMID:19440410
Bélanger, Diane; Gosselin, Pierre; Valois, Pierre; Germain, Stéphane; Abdous, Belkacem
2009-02-01
Remote car starters encourage motorists to warm up their vehicles by idling the motor--thus increasing atmospheric pollutants, including several greenhouse gas (GHG) with impacts on public health. This study about climate change (CC) adaptation and mitigation actions examined perceptions on air pollution and climate change and individual characteristics associated with the use of a remote car starter. A telephone survey (n = 2,570; response rate: 70%) of adults living in Québec (Canada) measured the respondents' beliefs and current behaviours regarding CC. Approximately 32.9% (daily car users) and 27.4% (occasional users) reported using a remote car starter during winter. The odds of the use of a remote car starter was higher in the less densely populated central (OR: 1.5) and peripheral regions (OR: 2.7) compared to the urban centers (ex. Montreal). The odds was also higher in population with a mother tongue other than English or French (OR: 2.6) and francophones than anglophones (OR: 2.1), women than men (OR: 1.5), daily drivers than occasional ones (OR: 1.2), and respondents who at least sometimes consulted temperature/humidity reports than those who consulted them less often (OR: 1.5). In multivariate analysis, the perception of living in a region susceptible to winter smog, being aware of smog warnings, or the belief in the human contribution to CC did not significantly influence the use of a remote car starter. The use of remote car starters encourages idling which produces increased atmospheric pollution and GHG production and it should be more efficiently and vigorously managed by various activities. A five-minute daily reduction in idling is equivalent to reducing the total car emissions by 1.8%. This would constitute a "no-regrets" approach to CC as it can simultaneously reduce GHG, air pollution and their health impacts.
Development and testing of a European Union-wide farm-level carbon calculator.
Tuomisto, Hanna L; De Camillis, Camillo; Leip, Adrian; Nisini, Luigi; Pelletier, Nathan; Haastrup, Palle
2015-07-01
Direct greenhouse gas (GHG) emissions from agriculture accounted for approximately 10% of total European Union (EU) emissions in 2010. To reduce farming-related GHG emissions, appropriate policy measures and supporting tools for promoting low-C farming practices may be efficacious. This article presents the methodology and testing results of a new EU-wide, farm-level C footprint calculator. The Carbon Calculator quantifies GHG emissions based on international standards and technical specifications on Life Cycle Assessment (LCA) and C footprinting. The tool delivers its results both at the farm level and as allocated to up to 5 main products of the farm. In addition to the quantification of GHG emissions, the calculator proposes mitigation options and sequestration actions that may be suitable for individual farms. The results obtained during a survey made on 54 farms from 8 EU Member States are presented. These farms were selected in view of representing the diversity of farm types across different environmental zones in the EU. The results of the C footprint of products in the data set show wide range of variation between minimum and maximum values. The results of the mitigation actions showed that the tool can help identify practices that can lead to substantial emission reductions. To avoid burden-shifting from climate change to other environmental issues, the future improvements of the tool should include incorporation of other environmental impact categories in place of solely focusing on GHG emissions. © 2015 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of SETAC.
Progress toward an Integrated Global GHG Information System (IG3IS)
NASA Astrophysics Data System (ADS)
DeCola, Philip
2016-04-01
Accurate and precise atmospheric measurements of greenhouse gas (GHG) concentrations have shown the inexorable rise of global GHG concentrations due to human socioeconomic activity. Scientific observations also show a resulting rise in global temperatures and evidence of negative impacts on society. In response to this amassing evidence, nations, states, cities and private enterprises are accelerating efforts to reduce emissions of GHGs, and the UNFCCC process recently forged the Paris Agreement. Emission reduction strategies will vary by nation, region, and economic sector (e.g., INDCs), but regardless of the strategies and mechanisms applied, the ability to implement policies and manage them effectively over time will require consistent, reliable and timely information. A number of studies [e.g., Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements (2010); GEO Carbon Strategy (2010); IPCC Task Force on National GHG Inventories: Expert Meeting Report on Uncertainty and Validation of Emission Inventories (2010)] have reported on the state of carbon cycle research, observations and models and the ability of these atmospheric observations and models to independently validate and improve the accuracy of self-reported emission inventories based on fossil fuel usage and land use activities. These studies concluded that by enhancing our in situ and remote-sensing observations and atmospheric data assimilation modeling capabilities, a GHG information system could be achieved in the coming decade to serve the needs of policies and actions to reduce GHG emissions. Atmospheric measurements and models are already being used to provide emissions information on a global and continental scale through existing networks, but these efforts currently provide insufficient information at the human-dimensions where nations, states, cities, and private enterprises can take valuable, and additional action that can reduce emissions for a specific GHG from a specific human activity. Based upon the recent advances in GHG observation technologies, new data-mining tools for acquiring socioeconomic activity data, and enhancements to the computational models used to merge this data, WMO and its partners are developing a plan for an Integrated Global GHG Information System (IG3IS) able to evaluate the efficacy of policy, reduce emission inventory uncertainty, and inform additional mitigation actions. The presentation will cover the principles and objectives of IG3IS, as well as progress toward answering the questions: What research capabilities are ready and able to deliver useful information for whom? What decisions will be informed? What valuable and additional outcomes will result?
Improved heavy-duty vehicle fuel efficiency in India, benefits, costs and environmental impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopal, Anand R.; Karali, Nihan; Sharpe, Ben
The main objectives of this analysis are to examine the benefits and costs of fuel-saving technologies for new heavy-duty vehicles (HDVs) in India over the next 10 years and, to explore how various scenarios for the deployment of vehicles with these technologies will impact petroleum consumption and carbon dioxide (CO 2) emissions over the next three decades. The study team developed simulation models for three representative HDV types—a 40-tonne tractor-trailer, 25-tonne rigid truck, and 16-tonne transit bus—based on top-selling vehicle models in the Indian market. The baseline technology profiles for all three vehicles were developed using India-specific engine data andmore » vehicle specification information from manufacturer literature and input from industry experts. For each of the three vehicles we developed a comprehensive set of seven efficiency technology packages drawing from five major areas: engine, transmission and driveline, tires, aerodynamics, and weight reduction. Our analysis finds that India has substantial opportunity to improve HDV fuel efficiency levels using cost-effective technologies. Results from our simulation modeling of three representative HDV types—a tractor-trailer, rigid truck, and transit bus—reveal that per-vehicle fuel consumption reductions between roughly 20% and 35% are possible with technologies that provide a return on the initial capital investment within 1 to 2 years. Though most of these technologies are currently unavailable in India, experiences in other more advanced markets such as the US and EU suggest that with sufficient incentives and robust regulatory design, significant progress can be made in developing and deploying efficiency technologies that can provide real-world fuel savings for new commercial vehicles in India over the next 10 years. Bringing HDVs in India up to world-class technology levels will yield substantial petroleum and GHG reductions. By 2030, the fuel and CO2 reductions of the scenarios range from 10% to 34%, and at the end of 2050, these reductions grow to 13% and 41%. If we constrain the analysis to select the most efficient technology package that provides the fleets with payback times of 3 years or less, there are annual fleet-wide savings of roughly 11 MTOE of diesel and 34 MMT of CO 2 in 2030, and this grows to 31 MTOE and 97 MMT by 2050.« less
Larrea-Gallegos, Gustavo; Villanueva-Rey, Pedro; Gilardino, Alessandro
2017-01-01
Food consumption accounts for an important proportion of the world GHG emissions per capita. Previous studies have delved into the nature of dietary patterns, showing that GHG reductions can be achieved in diets if certain foods are consumed rather than other, more GHG intensive products. For instance, vegetarian and low-meat diets have proved to be less carbon intensive than diets that are based on ruminant meat. These environmental patterns, increasingly analyzed in developed nations, are yet to be assessed in countries liked Peru where food purchase represents a relatively high percentage of the average household expenditure, ranging from 38% to 51% of the same. Therefore, food consumption can be identified as a potential way to reduce GHG emissions in Peru. However, the Peruvian government lacks a specific strategy to mitigate emissions in this sector, despite the recent ratification of the Paris Accord. In view of this, the main objective of this study is to analyze the environmental impacts of a set of 47 Peruvian food diet profiles, including geographical and socioeconomic scenarios. In order to do this, Life Cycle Assessment was used as the methodological framework to obtain the overall impacts of the components in the dietary patterns observed and primary data linked to the composition of diets were collected from the Peruvian National Institute for Statistics (INEI). Life cycle inventories for the different products that are part of the Peruvian diet were obtained from a set of previous scientific articles and reports regarding food production. Results were computed using the IPCC 2013 assessment method to estimate GHG emissions. Despite variations in GHG emissions from a geographical perspective, no significant differences were observed between cities located in the three Peruvian natural regions (i.e., coast, Andes and Amazon basin). In contrast, there appears to be a strong, positive correlation between GHG emissions and social expenditure or academic status. When compared to GHG emissions computed in the literature for developed nations, where the average caloric intake is substantially higher, diet-related emissions in Peru were in the low range. Our results could be used as a baseline for policy support to align nutritional and health policies in Peru with the need to reduce the environmental impacts linked to food production. PMID:29145461
Vázquez-Rowe, Ian; Larrea-Gallegos, Gustavo; Villanueva-Rey, Pedro; Gilardino, Alessandro
2017-01-01
Food consumption accounts for an important proportion of the world GHG emissions per capita. Previous studies have delved into the nature of dietary patterns, showing that GHG reductions can be achieved in diets if certain foods are consumed rather than other, more GHG intensive products. For instance, vegetarian and low-meat diets have proved to be less carbon intensive than diets that are based on ruminant meat. These environmental patterns, increasingly analyzed in developed nations, are yet to be assessed in countries liked Peru where food purchase represents a relatively high percentage of the average household expenditure, ranging from 38% to 51% of the same. Therefore, food consumption can be identified as a potential way to reduce GHG emissions in Peru. However, the Peruvian government lacks a specific strategy to mitigate emissions in this sector, despite the recent ratification of the Paris Accord. In view of this, the main objective of this study is to analyze the environmental impacts of a set of 47 Peruvian food diet profiles, including geographical and socioeconomic scenarios. In order to do this, Life Cycle Assessment was used as the methodological framework to obtain the overall impacts of the components in the dietary patterns observed and primary data linked to the composition of diets were collected from the Peruvian National Institute for Statistics (INEI). Life cycle inventories for the different products that are part of the Peruvian diet were obtained from a set of previous scientific articles and reports regarding food production. Results were computed using the IPCC 2013 assessment method to estimate GHG emissions. Despite variations in GHG emissions from a geographical perspective, no significant differences were observed between cities located in the three Peruvian natural regions (i.e., coast, Andes and Amazon basin). In contrast, there appears to be a strong, positive correlation between GHG emissions and social expenditure or academic status. When compared to GHG emissions computed in the literature for developed nations, where the average caloric intake is substantially higher, diet-related emissions in Peru were in the low range. Our results could be used as a baseline for policy support to align nutritional and health policies in Peru with the need to reduce the environmental impacts linked to food production.
Optimizing Resource and Energy Recovery for Municipal Solid Waste Management
Significant reductions of carbon emissions and air quality impacts can be achieved by optimizing municipal solid waste (MSW) as a resource. Materials and discards management were found to contribute ~40% of overall U.S. GHG emissions as a result of materials extraction, transpo...
Carbon offsets from improved swine manure management using aerobic treatment technology
USDA-ARS?s Scientific Manuscript database
Aerobic treatment of manure is an accepted manure management system under protocols adopted through the United Nations Framework Convention on Climate Change (UNFCCC). Our objectives were to determine greenhouse gas (GHG) emission reductions from replacement of anaerobic lagoons with aerobic treatme...
Analysis and Design of International Emission Trading Markets Applying System Dynamics Techniques
NASA Astrophysics Data System (ADS)
Hu, Bo; Pickl, Stefan
2010-11-01
The design and analysis of international emission trading markets is an important actual challenge. Time-discrete models are needed to understand and optimize these procedures. We give an introduction into this scientific area and present actual modeling approaches. Furthermore, we develop a model which is embedded in a holistic problem solution. Measures for energy efficiency are characterized. The economic time-discrete "cap-and-trade" mechanism is influenced by various underlying anticipatory effects. With a systematic dynamic approach the effects can be examined. First numerical results show that fair international emissions trading can only be conducted with the use of protective export duties. Furthermore a comparatively high price which evokes emission reduction inevitably has an inhibiting effect on economic growth according to our model. As it always has been expected it is not without difficulty to find a balance between economic growth and emission reduction. It can be anticipated using our System Dynamics model simulation that substantial changes must be taken place before international emissions trading markets can contribute to global GHG emissions mitigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balbus, John M.; Greenblatt, Jeffery B.; Chari, Ramya
While it has been recognized that actions reducing greenhouse gas (GHG) emissions can have significant positive and negative impacts on human health through reductions in ambient fine particulate matter (PM2.5) concentrations, these impacts are rarely taken into account when analyzing specific policies. This study presents a new framework for estimating the change in health outcomes resulting from implementation of specific carbon dioxide (CO 2) reduction activities, allowing comparison of different sectors and options for climate mitigation activities. Our estimates suggest that in the year 2020, the reductions in adverse health outcomes from lessened exposure to PM2.5 would yield economic benefitsmore » in the range of $6 to $14 billion (in 2008 USD), depending on the specific activity. This equates to between $40 and $93 per metric ton of CO 2 in health benefits. Specific climate interventions will vary in the health co-benefits they provide as well as in potential harms that may result from their implementation. Rigorous assessment of these health impacts is essential for guiding policy decisions as efforts to reduce GHG emissions increase in scope and intensity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couth, R.; Trois, C., E-mail: troisc@ukzn.ac.za
Highlights: Black-Right-Pointing-Pointer This is a compendium on GHG reductions via improved waste strategies in Africa. Black-Right-Pointing-Pointer This note provides a strategic framework for Local Authorities in Africa. Black-Right-Pointing-Pointer Assists LAs to select Zero Waste scenarios and achieve sustained GHG reduction. - Abstract: Only few Clean Development Mechanism (CDM) projects (traditionally focussed on landfill gas combustion) have been registered in Africa if compared to similar developing countries. The waste hierarchy adopted by many African countries clearly shows that waste recycling and composting projects are generally the most sustainable. This paper undertakes a sustainability assessment for practical waste treatment and disposal scenariosmore » for Africa and makes recommendations for consideration. The appraisal in this paper demonstrates that mechanical biological treatment of waste becomes more financially attractive if established through the CDM process. Waste will continue to be dumped in Africa with increasing greenhouse gas emissions produced, unless industrialised countries (Annex 1) fund carbon emission reduction schemes through a replacement to the Kyoto Protocol. Such a replacement should calculate all of the direct and indirect carbon emission savings and seek to promote public-private partnerships through a concerted support of the informal sector.« less
Monitoring environmental burden reduction from household waste prevention.
Matsuda, Takeshi; Hirai, Yasuhiro; Asari, Misuzu; Yano, Junya; Miura, Takahiro; Ii, Ryota; Sakai, Shin-Ichi
2018-01-01
In this study, the amount of prevented household waste in Kyoto city was quantified using three methods. Subsequently, the greenhouse gas (GHG) emission reduction by waste prevention was calculated in order to monitor the impact of waste prevention. The methods of quantification were "relative change from baseline year (a)," "absolute change from potential waste generation (b)," and "absolute amount of activities (c)." Method (a) was popular for measuring waste prevention, but method (b) was the original approach to determine the absolute amount of waste prevention by estimating the potential waste generation. Method (c) also provided the absolute value utilizing the information of activities. Methods (b) and (c) enable the evaluation of the waste prevention activities with a similar baseline for recycling. Methods (b) and (c) gave significantly higher GHG reductions than method (a) because of the difference in baseline between them. Therefore, setting a baseline is very important for evaluating waste prevention. In practice, when focusing on the monitoring of a specific policy or campaign, method (a) is an appropriate option. On the other hand, when comparing the total impact of waste prevention to that of recycling, methods (b) and (c) should be applied. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mitigation options for the industrial sector in Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelil, I.A.; El-Touny, S.; Korkor, H.
1996-12-31
Though its contribution to the global Greenhouse gases emission is relatively small, Egypt has signed and ratified the United Nations Framework Convention on Climate Change (UN FCCC) and has been playing an active role in the international efforts to deal with such environmental challenges. Energy efficiency has been one of the main strategies that Egypt has adopted to improve environmental quality and enhance economic competitiveness. This paper highlights three initiatives currently underway to improve energy efficiency of the Egyptian industry. The first is a project that has been recently completed by OECP to assess potential GHG mitigation options available inmore » Egypt`s oil refineries. The second initiative is an assessment of GHG mitigation potential in the Small and Medium size Enterprises (SME) in the Mediterranean city of Alexandria. The third one focuses on identifying demand side management options in some industrial electricity consumers in the same city.« less
Subbarao, G V; Arango, J; Masahiro, K; Hooper, A M; Yoshihashi, T; Ando, Y; Nakahara, K; Deshpande, S; Ortiz-Monasterio, I; Ishitani, M; Peters, M; Chirinda, N; Wollenberg, L; Lata, J C; Gerard, B; Tobita, S; Rao, I M; Braun, H J; Kommerell, V; Tohme, J; Iwanaga, M
2017-09-01
Accelerated soil-nitrifier activity and rapid nitrification are the cause of declining nitrogen-use efficiency (NUE) and enhanced nitrous oxide (N 2 O) emissions from farming. Biological nitrification inhibition (BNI) is the ability of certain plant roots to suppress soil-nitrifier activity, through production and release of nitrification inhibitors. The power of phytochemicals with BNI-function needs to be harnessed to control soil-nitrifier activity and improve nitrogen-cycling in agricultural systems. Transformative biological technologies designed for genetic mitigation are needed, so that BNI-enabled crop-livestock and cropping systems can rein in soil-nitrifier activity, to help reduce greenhouse gas (GHG) emissions and globally make farming nitrogen efficient and less harmful to environment. This will reinforce the adaptation or mitigation impact of other climate-smart agriculture technologies. Copyright © 2017 Elsevier B.V. All rights reserved.
Solar Air Heating Metal Roofing for Reroofing, New Construction, and Retrofit
2013-06-01
Fahrenheit ft2 square foot FY fiscal year GHG greenhouse gas HGL HydroGeoLogic, Inc. HVAC heating, ventilation and air-conditioning LPG Liquefied...the greenhouse gas emission reductions; and 6. Document the performance of the solar roof as it compares to a reflective “Cool Roof.” Among the...Orders, and Agency implementing directives and instructions require the reduction of energy use and greenhouse gas emissions, increased use of renewable
NASA Astrophysics Data System (ADS)
Olguin-Alvarez, M. I.; Kurz, W. A.; Wayson, C.; Birdsey, R.; Richardson, K.; Angeles, G.; Vargas, B.; Corral, J.; Magnan, M.; Fellows, M.; Morken, S.; Maldonado, V.; Mascorro, V.; Meneses, C.; Galicia, G.; Serrano, E.
2016-12-01
The Government of Mexico has recently designed a system of measurement, reporting and verification (MRV) to account for the emissions and removals of greenhouse gases (GHG) associated with the country's forest sector. This system reports national-scale GHG emissions based on the "stock-difference" approach combining information from two sets of measurements from the national forest inventory and remote sensing data. However, consistent with the commitments made by the country to the United Nations Framework Convention on Climate Change (UNFCCC), the MRV system must strive to reduce, as far as practicable, the uncertainties associated with national estimates on GHG fluxes. Since 2012, the Mexican government through its National Forestry Commission, with support from the North America Commission of Environmental Cooperation, the Forest Services of Canada and USA, the SilvaCarbon Program and research institutes in Mexico, has made progress towards the use of carbon dynamics models ("gain-loss" approach) to reduce uncertainty of the GHG estimates in strategic landscapes. In Mexico, most of the forests are under social tenure where management includes a wide array of activities (e.g. selective harvesting, firewood collection). Altering these diverse management activities (REDD+ strategies as well as harvested wood products), can augment their mitigation potential. Here we present the main steps conducted to compile and integrate information from forest inventories, remote sensing, disturbance data and ecosystem carbon transfers to generate inputs required to calibrate these models and validate their outputs. The analyses are supported by the use of the CBM-CFS3 model with the appropriate modification of the model parameters and input data according to the 2006 guidelines of the Intergovernmental Panel on Climate Change (IPCC) for preparing Tier 3-GHG inventories. The ultimate goal of this tri-national effort is to show how the data and tools developed for carbon assessment in strategic landscapes in North America can help estimate the impact of several mitigation options consistent with national goals of GHG emission reductions.
Roibás, Laura; Loiseau, Eléonore; Hospido, Almudena
2017-08-01
Galicia is an Autonomous Community located in the north-west of Spain. As a starting point to implement mitigation and adaptation measures to climate change, a regional greenhouse gas (GHG) inventory is needed. So far, the only regional GHG inventories available are limited to the territorial emissions of those production activities which are expected to cause major environmental degradation. An alternative approach has been followed here to quantify all the on-site (direct) and embodied (indirect) GHG emissions related to all Galician production and consumption activities. The carbon footprint (CF) was calculated following the territorial life cycle assessment (LCA) methodology for data collection, that combines bottom-up and top-down approaches. The most up-to-date statistical data and life cycle inventories available were used to compute all GHG emissions. This case study represents a leap of scale when compared to existing studies, thus addressing the issue of double counting, which arises when considering all the production activities of a large region. The CF of the consumption activities in Galicia is 17.8 ktCO 2 e/year, with 88% allocated to Galician inhabitants and 12% to tourist consumption. The proposed methodology also identifies the main important contributors to GHG emissions and shows where regional reduction efforts should be made. The major contributor to the CF of inhabitants is housing (32%), followed by food consumption (29%). Within the CF of tourist consumption, the share of transport is highest (59%), followed by housing (26%). The CF of Galician production reaches 34.9 MtCO 2 e/y, and its major contributor is electricity production (21%), followed by food manufacturing (19%). Our results have been compared to those reported for other regions, actions aimed at reducing GHG emissions have been proposed, and data gaps and limitations identified. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kaspersen, Bjarke Stoltze; Christensen, Thomas Budde; Fredenslund, Anders Michael; Møller, Henrik Bjarne; Butts, Michael Brian; Jensen, Niels H; Kjaer, Tyge
2016-01-15
The interest in sustainable bioenergy solutions has gained great importance in Europe due to the need to reduce GHG emissions and to meet environmental policy targets, not least for the protection of groundwater and surface water quality. In the Municipality of Solrød in Denmark, a novel bioenergy concept for anaerobic co-digestion of food industry residues, manure and beach-cast seaweed has been developed and tested in order to quantify the potential for synergies between climate change mitigation and coastal eutrophication management in the Køge Bay catchment. The biogas plant, currently under construction, was designed to handle an annual input of up to 200,000 t of biomass based on four main fractions: pectin wastes, carrageenan wastes, manure and beach-cast seaweed. This paper describes how this bioenergy concept can contribute to strengthening the linkages between climate change mitigation strategies and Water Framework Directive (WFD) action planning. Our assessments of the projected biogas plant indicate an annual reduction of GHG emissions of approx. 40,000 t CO2 equivalents, corresponding to approx. 1/3 of current total GHG emissions in the Municipality of Solrød. In addition, nitrogen and phosphorous loads to Køge Bay are estimated to be reduced by approx. 63 t yr.(-1) and 9 tyr.(-1), respectively, contributing to the achievement of more than 70% of the nutrient reduction target set for Køge Bay in the first WFD river basin management plan. This study shows that anaerobic co-digestion of the specific food industry residues, pig manure and beach-cast seaweed is feasible and that there is a very significant, cost-effective GHG and nutrient loading mitigation potential for this bioenergy concept. Our research demonstrates how an integrated planning process where considerations about the total environment are integrated into the design and decision processes can support the development of this kind of holistic bioenergy solutions. Copyright © 2015 Elsevier B.V. All rights reserved.
Environmental and economic evaluation of bioenergy in Ontario, Canada.
Zhang, Yimin; Habibi, Shiva; MacLean, Heather L
2007-08-01
We examined life cycle environmental and economic implications of two near-term scenarios for converting cellulosic biomass to energy, generating electricity from cofiring biomass in existing coal power plants, and producing ethanol from biomass in stand-alone facilities in Ontario, Canada. The study inventories near-term biomass supply in the province, quantifies environmental metrics associated with the use of agricultural residues for producing electricity and ethanol, determines the incremental costs of switching from fossil fuels to biomass, and compares the cost-effectiveness of greenhouse gas (GHG) and air pollutant emissions abatement achieved through the use of the bioenergy. Implementing a biomass cofiring rate of 10% in existing coal-fired power plants would reduce annual GHG emissions by 2.3 million metric tons (t) of CO2 equivalent (7% of the province's coal power plant emissions). The substitution of gasoline with ethanol/gasoline blends would reduce annual provincial lightduty vehicle fleet emissions between 1.3 and 2.5 million t of CO2 equivalent (3.5-7% of fleet emissions). If biomass sources other than agricultural residues were used, additional emissions reductions could be realized. At current crude oil prices ($70/barrel) and levels of technology development of the bioenergy alternatives, the biomass electricity cofiring scenario analyzed is more cost-effective for mitigating GHG emissions ($22/t of CO2 equivalent for a 10% cofiring rate) than the stand-alone ethanol production scenario ($92/t of CO2 equivalent). The economics of biomass cofiring benefits from existing capital, whereas the cellulosic ethanol scenario does not. Notwithstanding this result, there are several factors that increase the attractiveness of ethanol. These include uncertainty in crude oil prices, potential for marked improvements in cellulosic ethanol technology and economics, the province's commitment to 5% ethanol content in gasoline, the possibility of ethanol production benefiting from existing capital, and there being few alternatives for moderate-to-large-scale GHG emissions reductions in the transportation sector.
Progress toward an Integrated Global Greenhouse Gas Information System (IG3IS)
NASA Astrophysics Data System (ADS)
DeCola, P.; Butler, J. H.; Stanitski, D.; Tarasova, O. A.; Terblanche, D. E.; Duren, R. M.; Gurney, K. R.; Manning, A.; Reimann, S.; Ciais, P.; Arnold, T.; Burston, J.; Rayner, P. J.; Wofsy, S. C.; Hamburg, S.; Zavala-Araiza, D.; Miller, J. B.; Gerbig, C.; Vogel, F. R.; Canadell, J.
2016-12-01
Accurate and precise atmospheric long-term measurements of greenhouse gas (GHG) concentrations have revealed the rapid and unceasing rise of global GHG concentrations due to human socioeconomic activity. Long-term observations also show a resulting rise in global temperatures and evidence of negative impacts on society. In response to this mounting evidence, nations, sub-national governments, private enterprises and individuals are establishing and accelerating efforts to reduce GHG emissions while meeting the needs for global development and increasing energy access. With this motivation, WMO and its partners have called for an Integrated Global Greenhouse Information System (IG3IS). The IG3IS will serve as an international coordinating mechanism to establish and propagate consistent methods and standards to help assess emission-reduction actions. For the IG3IS initiative to succeed the end users must understand, trust, and recognize the value of the information they receive, and act more effectively in response. Over time, the IG3IS framework will be capable of promoting and accepting advancing technical capabilities (e.g., new satellite observations), continually improving the quality of and confidence in such information. By combining accurate atmospheric measurements with enhanced socioeconomic activity data and model analyses we can meet the overarching goals of IG3IS to: Reduce uncertainty of emission inventory reporting, Locate, quantify and prioritize previously unknown emission reduction opportunities, and Provide national and sub-national governments with timely and quantified information to support their assessment of progress towards their mitigation goals. An effective IG3IS will provide on-going, observation-based information on the relative success of GHG management efforts on policy-relevant scales and the response of the global carbon cycle to a warming world. The presentation will cover the principles and objectives of IG3IS, as well as progress toward answering the questions: What research capabilities are ready and able to deliver useful information and for whom? What decisions will be informed? What valuable and additional outcomes will result?
Climate Change Affects Winter Chill for Temperate Fruit and Nut Trees
Luedeling, Eike; Girvetz, Evan H.; Semenov, Mikhail A.; Brown, Patrick H.
2011-01-01
Background Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. Methodology/Principal Findings We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the “Dynamic Model” and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. Conclusions/Significance The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops. PMID:21629649
NASA Astrophysics Data System (ADS)
Huo, Hong; Cai, Hao; Zhang, Qiang; Liu, Fei; He, Kebin
2015-05-01
We evaluated the fuel-cycle emissions of greenhouse gases (GHGs) and air pollutants (NOx, SO2, PM10, and PM2.5) of electric vehicles (EVs) in China and the United States (U.S.), two of the largest potential markets for EVs in the world. Six of the most economically developed and populated regions in China and the U.S. were selected. The results showed that EV fuel-cycle emissions depend substantially on the carbon intensity and cleanness of the electricity mix, and vary significantly across the regions studied. In those regions with a low share of coal-based electricity (e.g., California), EVs can reduce GHG and air pollutant emissions (except for PM) significantly compared with conventional vehicles. However, in the Chinese regions and selected U.S. Midwestern states where coal dominates in the generation mix, EVs can reduce GHG emissions but increase the total and urban emissions of air pollutants. In 2025, EVs will offer greater reductions in GHG and air pollutant emissions because emissions from power plants will be better controlled; EVs in the Chinese regions examined, however, may still increase SO2 and PM emissions. Reductions of 60-85% in GHGs and air pollutants could be achieved were EVs charged with 80% renewable electricity or the electricity generated from the best available technologies of coal-fired power plants, which are futuristic power generation scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loureiro, S.M., E-mail: saulo@lima.coppe.ufrj.br; Rovere, E.L.L., E-mail: emilio@ppe.ufrj.br; Mahler, C.F., E-mail: mahler0503@yahoo.com
2013-05-15
Highlights: ► We constructed future scenarios of emissions of greenhouse gases in waste. ► Was used the IPCC methodology for calculating emission inventories. ► We calculated the costs of abatement for emissions reduction in landfill waste. ► The results were compared to Brazil, state and city of Rio de Janeiro. ► The higher the environmental passive, the greater the possibility of use of biogas. - Abstract: This paper examines potential changes in solid waste policies for the reduction in GHG for the country of Brazil and one of its major states and cities, Rio de Janeiro, from 2005 to 2030.more » To examine these policy options, trends in solid waste quantities and associated GHG emissions are derived. Three alternative policy scenarios are evaluated in terms of effectiveness, technology, and economics and conclusions posited regarding optimal strategies for Brazil to implement. These scenarios are been building on the guidelines for national inventories of GHG emissions (IPCC, 2006) and adapted to Brazilian states and municipalities’ boundaries. Based on the results, it is possible to say that the potential revenue from products of solid waste management is more than sufficient to transform the current scenario in this country into one of financial and environmental gains, where the negative impacts of climate change have created a huge opportunity to expand infrastructure for waste management.« less
Converting campus waste into renewable energy - a case study for the University of Cincinnati.
Tu, Qingshi; Zhu, Chao; McAvoy, Drew C
2015-05-01
This paper evaluates the implementation of three waste-to-energy projects at the University of Cincinnati: waste cooking oil-to-biodiesel, waste paper-to-fuel pellets and food waste-to-biogas, respectively. The implementation of these waste-to-energy (WTE) projects would lead to the improvement of campus sustainability by minimizing waste management efforts and reducing GHG emissions via the displacement of fossil fuel usage. Technical and economic aspects of their implementation were assessed and the corresponding GHG reduction was estimated. Results showed that on-site implementation of these projects would: (1) divert 3682L (974 gallons) of waste cooking oil to 3712L (982 gallons) of biodiesel; (2) produce 138tonnes of fuel pellets from 133tonnes of waste paper (with the addition of 20.75tonnes of plastics) to replace121tonnes of coal; and (3) produce biogas that would be enough to replace 12,767m(3) natural gas every year from 146tonnes of food waste. The economic analysis determined that the payback periods for the three projects would be 16months for the biodiesel, 155months for the fuel pellet, and 74months for the biogas projects. The reduction of GHG emission from the implementation of the three WTE projects was determined to be 9.37 (biodiesel), 260.49 (fuel pellets), and 11.36 (biogas) tonnes of CO2-eq per year, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Energy minimization strategies and renewable energy utilization for desalination: a review.
Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G
2011-02-01
Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Daniel C.; Boyd, Erin
2015-08-28
In this report, we examine and compare how tradable mass-based polices and tradable rate-based policies create different incentives for energy efficiency investments. Through a generalized demonstration and set of examples, we show that as a result of the output subsidy they create, traditional rate-based policies, those that do not credit energy savings from efficiency measures, reduce the incentive for investment in energy efficiency measures relative to an optimally designed mass-based policy or equivalent carbon tax. We then show that this reduced incentive can be partially addressed by modifying the rate-based policy such that electricity savings from energy efficiency measures aremore » treated as a source of zero-carbon generation within the framework of the standard, or equivalently, by assigning avoided emissions credit to the electricity savings at the rate of the intensity target. These approaches result in an extension of the output subsidy to efficiency measures and eliminate the distortion between supply-side and demand-side options for GHG emissions reduction. However, these approaches do not address electricity price distortions resulting from the output subsidy that also impact the value of efficiency measures. Next, we assess alternative approaches for crediting energy efficiency savings within the framework of a rate-based policy. Finally, we identify a number of challenges that arise in implementing a rate-based policy with efficiency crediting, including the requirement to develop robust estimates of electricity savings in order to assess compliance, and the requirement to track the regionality of the generation impacts of efficiency measures to account for their interstate effects.« less
Assessment of GHG models for the surface transportation sector
DOT National Transportation Integrated Search
1993-09-01
The Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 calls for a study of U.S. international border crossings. The objective of the study is to identify existing and emerging trade corridors and transportation subsystems that facilita...
Domingos, Hélde Araujo; De Melo Faria, Alexandre Magno; Fuinhas, José Alberto; Marques, António Cardoso
2017-08-01
In the last two decades, there has been a rich debate about the environmental degradation that results from exposure to solid urban waste. Growing public concern with environmental issues has led to the implementation of various strategic plans for waste management in several developed countries, especially in the European Union. In this paper, the relationships were assessed between economic growth, renewable energy extraction and greenhouse gas (GHG) emissions in the waste sector. The Environmental Kuznets Curve hypothesis was analysed for the member states of the European Union, in the presence of electricity generation, landfill and GHG emissions for the period 1995 to 2012. The results revealed that there is no inverted-U-shaped relationship between income and GHG emissions in European Union countries. The renewable fuel extracted from waste contributes to a reduction in GHG, and although the electricity produced also increases emissions somewhat, they would be far greater if the waste-based generation of renewable energy did not take place. The waste sector needs to strengthen its political, economic, institutional and social communication instruments to meet its aims for mitigating the levels of pollutants generated by European economies. To achieve the objectives of the Horizon 2020 programme, currently in force in the countries of the European Union, it will be necessary to increase the share of renewable energy in the energy mix.
Protecting terrestrial ecosystems and the climate through a global carbon market.
Bonnie, Robert; Carey, Melissa; Petsonk, Annie
2002-08-15
Protecting terrestrial ecosystems through international environmental laws requires the development of economic mechanisms that value the Earth's natural systems. The major international treaties to address ecosystem protection lack meaningful binding obligations and the requisite financial instruments to affect large-scale conservation. The Kyoto Protocol's emissions-trading framework creates economic incentives for nations to reduce greenhouse-gas (GHG) emissions cost effectively. Incorporating GHG impacts from land-use activities into this system would create a market for an important ecosystem service provided by forests and agricultural lands: sequestration of atmospheric carbon. This would spur conservation efforts while reducing the 20% of anthropogenic CO(2) emissions produced by land-use change, particularly tropical deforestation. The Kyoto negotiations surrounding land-use activities have been hampered by a lack of robust carbon inventory data. Moreover, the Protocol's provisions agreed to in Kyoto made it difficult to incorporate carbon-sequestering land-use activities into the emissions-trading framework without undermining the atmospheric GHG reductions contemplated in the treaty. Subsequent negotiations since 1997 failed to produce a crediting system that provides meaningful incentives for enhanced carbon sequestration. Notably, credit for reducing rates of tropical deforestation was explicitly excluded from the Protocol. Ultimately, an effective GHG emissions-trading framework will require full carbon accounting for all emissions and sequestration from terrestrial ecosystems. Improved inventory systems and capacity building for developing nations will, therefore, be necessary.
Peer Review of March 2013 LDV Rebound Report By Small ...
The regulatory option of encouraging the adoption of advanced technologies for improving vehicle efficiency can result in significant fuel savings and GHG emissions benefits. At the same time, it is possible that some of these benefits might be offset by additional driving that is encouraged by the reduced costs of operating more efficient vehicles. This so called “rebound effect”, the increased driving that results from an improvement in the energy efficiency of a vehicle, must be determined in order to reliably estimate the overall benefits of GHG regulations for light-duty vehicles. Dr. Ken Small, an Economist at the Department of Economics, University of California at Irvine, with contributions by Dr. Kent Hymel, Department of Economics, California State University at Northridge, have developed a methodology to estimate the rebound effect for light-duty vehicles in the U.S. Specifically, rebound is estimated as the change in vehicle miles traveled (VMT) with respect to the change in per mile fuel costs that can occur, for example, when vehicle operating efficiency is improved. The model analyzes aggregate personal motor-vehicle travel within a simultaneous model of aggregate VMT, fleet size, fuel efficiency, and congestion formation. To use the peer review process to help assure that the methodologies considered by the U.S. EPA for estimating VMT rebound have been thoroughly examined.
Yoon, Seungju; Collins, John; Thiruvengadam, Arvind; Gautam, Mridul; Herner, Jorn; Ayala, Alberto
2013-08-01
Engine and exhaust control technologies applied to compressed natural gas (CNG) transit buses have advanced from lean-burn, to lean-burn with oxidation catalyst (OxC), to stoichiometric combustion with three-way catalyst (TWC). With this technology advancement, regulated gaseous and particulate matter emissions have been significantly reduced. Two CNG transit buses equipped with stoichiometric combustion engines and TWCs were tested on a chassis dynamometer, and their emissions were measured. Emissions from the stoichiometric engines with TWCs were then compared to the emissions from lean-burn CNG transit buses tested in previous studies. Stoichiometric combustion with TWC was effective in reducing emissions of oxides of nitrogen (NO(x)), particulate matter (PM), and nonmethane hydrocarbon (NMHC) by 87% to 98% depending on pollutants and test cycles, compared to lean combustion. The high removal efficiencies exceeded the emission reduction required from the certification standards, especially for NO(x) and PM. While the certification standards require 95% and 90% reductions for NO(x) and PM, respectively, from the engine model years 1998-2003 to the engine model year 2007, the measured NO(x) and PM emissions show 96% and 95% reductions, respectively, from the lean-burn engines to the stoichiometric engines with TWC over the transient Urban Dynamometer Driving Schedule (UDDS) cycle. One drawback of stoichiometric combustion with TWC is that this technology produces higher carbon monoxide (CO) emissions than lean combustion. In regard to controlling CO emissions, lean combustion with OxC is more effective than stoichiometric combustion. Stoichiometric combustion with TWC produced higher greenhouse gas (GHG) emissions including carbon dioxide (CO2) and methane (CH4) than lean combustion during the UDDS cycle, but lower GHG emissions during the steady-state cruise cycle. Stoichiometric combustion with three-way catalyst is currently the best emission control technology available for compressed natural gas (CNG) transit buses to meet the stringent U.S. Environmental Protection Agency (EPA) 2010 heavy-duty engine NO(x) emissions standard. For existing lean-burn CNG transit buses in the fleet, oxidation catalyst would be the most effective retrofit technology for the control of NMHC and CO emissions.
40 CFR 98.173 - Calculating GHG emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... associated requirements for Tier 4 in subpart C of this part (General Stationary Fuel Combustion Sources). (b..., dry basis (% CO2). Q = Hourly stack gas volumetric flow rate (scfh). %H2O = Hourly moisture percentage... reduction furnace are vented through the same stack as any combustion unit or process equipment that reports...
Trace gas flux from container production of woody landscape plants
USDA-ARS?s Scientific Manuscript database
The agriculture industry is a large source of greenhouse gas (GHG) emissions which are widely believed to be causing increased global temperatures. Reduction of these emissions has been heavily researched, with most of the work focusing on row crop and animal production sectors. Little attention has...
DOT National Transportation Integrated Search
2015-10-01
It is widely recognized that new vehicle and fuel technology is necessary, but not sufficient, to meet deep greenhouse gas (GHG) : reductions goals for both the U.S. and the state of California. Demand management strategies (such as land use, transit...
DOT National Transportation Integrated Search
2017-03-01
Traditional evaluation of the transportation system focuses on automobile traffic flow and : congestion reduction. However, this paradigm is shifting. In an effort to combat global warming : and reduce greenhouse gas (GHG) emissions, a number of citi...
DOT National Transportation Integrated Search
2011-06-01
To achieve the greenhouse gas (GHG) reduction targets that are required by Californias global warming legislation (AB32), the state of California has determined that recent growth trends in vehicle miles traveled (VMT) must be curtailed. In recogn...
Hendrickson, Thomas P; Nguyen, Mi T; Sukardi, Marsha; Miot, Alexandre; Horvath, Arpad; Nelson, Kara L
2015-09-01
Treatment and water reuse in decentralized systems is envisioned to play a greater role in our future urban water infrastructure due to growing populations and uncertainty in quality and quantity of traditional water resources. In this study, we utilized life-cycle assessment (LCA) to analyze the energy consumption and greenhouse gas (GHG) emissions of an operating Living Machine (LM) wetland treatment system that recycles wastewater in an office building. The study also assessed the performance of the local utility's centralized wastewater treatment plant, which was found to be significantly more efficient than the LM (79% less energy, 98% less GHG emissions per volume treated). To create a functionally equivalent comparison, the study developed a hypothetical scenario in which the same LM design flow is recycled via centralized infrastructure. This comparison revealed that the current LM has energy consumption advantages (8% less), and a theoretically improved LM design could have GHG advantages (24% less) over the centralized reuse system. The methodology in this study can be applied to other case studies and scenarios to identify conditions under which decentralized water reuse can lower GHG emissions and energy use compared to centralized water reuse when selecting alternative approaches to meet growing water demands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Nihar K.; Wei, Max; Letschert, Virginie
Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energymore » efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.« less
Tradeoffs and Synergies between biofuel production and large solar infrastructure in deserts.
Ravi, Sujith; Lobell, David B; Field, Christopher B
2014-01-01
Solar energy installations in deserts are on the rise, fueled by technological advances and policy changes. Deserts, with a combination of high solar radiation and availability of large areas unusable for crop production are ideal locations for large solar installations. However, for efficient power generation, solar infrastructures use large amounts of water for construction and operation. We investigated the water use and greenhouse gas (GHG) emissions associated with solar installations in North American deserts in comparison to agave-based biofuel production, another widely promoted potential energy source from arid systems. We determined the uncertainty in our analysis by a Monte Carlo approach that varied the most important parameters, as determined by sensitivity analysis. We considered the uncertainty in our estimates as a result of variations in the number of solar modules ha(-1), module efficiency, number of agave plants ha(-1), and overall sugar conversion efficiency for agave. Further, we considered the uncertainty in revenue and returns as a result of variations in the wholesale price of electricity and installation cost of solar photovoltaic (PV), wholesale price of agave ethanol, and cost of agave cultivation and ethanol processing. The life-cycle analyses show that energy outputs and GHG offsets from solar PV systems, mean energy output of 2405 GJ ha(-1) year(-1) (5 and 95% quantile values of 1940-2920) and mean GHG offsets of 464 Mg of CO2 equiv ha(-1) year(-1) (375-562), are much larger than agave, mean energy output from 206 (171-243) to 61 (50-71) GJ ha(-1) year(-1) and mean GHG offsets from 18 (14-22) to 4.6 (3.7-5.5) Mg of CO2 equiv ha(-1) year(-1), depending upon the yield scenario of agave. Importantly though, water inputs for cleaning solar panels and dust suppression are similar to amounts required for annual agave growth, suggesting the possibility of integrating the two systems to maximize the efficiency of land and water use to produce both electricity and liquid fuel. A life-cycle analysis of a hypothetical colocation indicated higher returns per m(3) of water used than either system alone. Water requirements for energy production were 0.22 L MJ(-1) (0.28-0.19) and 0.42 L MJ(-1) (0.52-0.35) for solar PV-agave (baseline yield) and solar PV-agave (high yield), respectively. Even though colocation may not be practical in all locations, in some water-limited areas, colocated solar PV-agave systems may provide attractive economic incentives in addition to efficient land and water use.
Water use at pulverized coal power plants with postcombustion carbon capture and storage.
Zhai, Haibo; Rubin, Edward S; Versteeg, Peter L
2011-03-15
Coal-fired power plants account for nearly 50% of U.S. electricity supply and about a third of U.S. emissions of CO(2), the major greenhouse gas (GHG) associated with global climate change. Thermal power plants also account for 39% of all freshwater withdrawals in the U.S. To reduce GHG emissions from coal-fired plants, postcombustion carbon capture and storage (CCS) systems are receiving considerable attention. Current commercial amine-based capture systems require water for cooling and other operations that add to power plant water requirements. This paper characterizes and quantifies water use at coal-burning power plants with and without CCS and investigates key parameters that influence water consumption. Analytical models are presented to quantify water use for major unit operations. Case study results show that, for power plants with conventional wet cooling towers, approximately 80% of total plant water withdrawals and 86% of plant water consumption is for cooling. The addition of an amine-based CCS system would approximately double the consumptive water use of the plant. Replacing wet towers with air-cooled condensers for dry cooling would reduce plant water use by about 80% (without CCS) to about 40% (with CCS). However, the cooling system capital cost would approximately triple, although costs are highly dependent on site-specific characteristics. The potential for water use reductions with CCS is explored via sensitivity analyses of plant efficiency and other key design parameters that affect water resource management for the electric power industry.
NASA Astrophysics Data System (ADS)
Yuksel, Tugce; Tamayao, Mili-Ann M.; Hendrickson, Chris; Azevedo, Inês M. L.; Michalek, Jeremy J.
2016-04-01
We compare life cycle greenhouse gas (GHG) emissions from several light-duty passenger gasoline and plug-in electric vehicles (PEVs) across US counties by accounting for regional differences due to marginal grid mix, ambient temperature, patterns of vehicle miles traveled (VMT), and driving conditions (city versus highway). We find that PEVs can have larger or smaller carbon footprints than gasoline vehicles, depending on these regional factors and the specific vehicle models being compared. The Nissan Leaf battery electric vehicle has a smaller carbon footprint than the most efficient gasoline vehicle (the Toyota Prius) in the urban counties of California, Texas and Florida, whereas the Prius has a smaller carbon footprint in the Midwest and the South. The Leaf is lower emitting than the Mazda 3 conventional gasoline vehicle in most urban counties, but the Mazda 3 is lower emitting in rural Midwest counties. The Chevrolet Volt plug-in hybrid electric vehicle has a larger carbon footprint than the Prius throughout the continental US, though the Volt has a smaller carbon footprint than the Mazda 3 in many urban counties. Regional grid mix, temperature, driving conditions, and vehicle model all have substantial implications for identifying which technology has the lowest carbon footprint, whereas regional patterns of VMT have a much smaller effect. Given the variation in relative GHG implications, it is unlikely that blunt policy instruments that favor specific technology categories can ensure emission reductions universally.
Land clearing and the biofuel carbon debt.
Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter
2008-02-29
Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop-based biofuels in Brazil, Southeast Asia, and the United States creates a "biofuel carbon debt" by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.
Land Clearing and the Biofuel Carbon Debt
NASA Astrophysics Data System (ADS)
Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter
2008-02-01
Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop based biofuels in Brazil, Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.
Agricultural peatlands: towards a greenhouse gas sink - a synthesis of a Dutch landscape study
NASA Astrophysics Data System (ADS)
Schrier-Uijl, A. P.; Kroon, P. S.; Hendriks, D. M. D.; Hensen, A.; Van Huissteden, J.; Berendse, F.; Veenendaal, E. M.
2014-08-01
It is generally known that managed, drained peatlands act as carbon (C) sources. In this study we examined how mitigation through the reduction of the intensity of land management and through rewetting may affect the greenhouse gas (GHG) emission and the C balance of intensively managed, drained, agricultural peatlands. Carbon and GHG balances were determined for three peatlands in the western part of the Netherlands from 2005 to 2008 by considering spatial and temporal variability of emissions (CO2, CH4 and N2O). One area (Oukoop) is an intensively managed grass-on-peatland area, including a dairy farm, with the ground water level at an average annual depth of 0.55 (±0.37) m below the soil surface. The second area (Stein) is an extensively managed grass-on-peatland area, formerly intensively managed, with a dynamic ground water level at an average annual depth of 0.45 (±0.35) m below the soil surface. The third area is a (since 1998) rewetted former agricultural peatland (Horstermeer), close to Oukoop and Stein, with the average annual ground water level at a depth of 0.2 (±0.20) m below the soil surface. During the measurement campaigns we found that both agriculturally managed sites acted as C and GHG sources and the rewetted former agricultural peatland acted as a C and GHG sink. The ecosystem (fields and ditches) total GHG balance, including CO2, CH4 and N2O, amounted to 3.9 (±0.4), 1.3 (±0.5) and -1.7 (±1.8) g CO2-eq m-2 d-1 for Oukoop, Stein and Horstermeer, respectively. Adding the farm-based emissions to Oukoop and Stein resulted in a total GHG emission of 8.3 (±1.0) and 6.6 (±1.3) g CO2-eq m-2 d-1, respectively. For Horstermeer the GHG balance remained the same since no farm-based emissions exist. Considering the C balance (uncertainty range 40-60%), the total C release in Oukoop and Stein is 5270 and 6258 kg C ha-1 yr-1, respectively (including ecosystem and management fluxes), and the total C uptake in Horstermeer is 3538 kg C ha-1 yr-1. Water bodies contributed significantly to the terrestrial GHG balance because of a high release of CH4. Overall, this study suggests that managed peatlands are large sources of GHGs and C, but, if appropriate measures are taken, they can be turned back into GHG and C sinks within 15 years of abandonment and rewetting. The shift from an intensively managed grass-on-peat area (Oukoop) to an extensively managed one (Stein) reduced the GHG emissions mainly because N2O emission and farm-based CH4 emissions decreased.
Replacement policy of residential lighting optimized for cost, energy, and greenhouse gas emissions
NASA Astrophysics Data System (ADS)
Liu, Lixi; Keoleian, Gregory A.; Saitou, Kazuhiro
2017-11-01
Accounting for 10% of the electricity consumption in the US, artificial lighting represents one of the easiest ways to cut household energy bills and greenhouse gas (GHG) emissions by upgrading to energy-efficient technologies such as compact fluorescent lamps (CFL) and light emitting diodes (LED). However, given the high initial cost and rapidly improving trajectory of solid-state lighting today, estimating the right time to switch over to LEDs from a cost, primary energy, and GHG emissions perspective is not a straightforward problem. This is an optimal replacement problem that depends on many determinants, including how often the lamp is used, the state of the initial lamp, and the trajectories of lighting technology and of electricity generation. In this paper, multiple replacement scenarios of a 60 watt-equivalent A19 lamp are analyzed and for each scenario, a few replacement policies are recommended. For example, at an average use of 3 hr day-1 (US average), it may be optimal both economically and energetically to delay the adoption of LEDs until 2020 with the use of CFLs, whereas purchasing LEDs today may be optimal in terms of GHG emissions. In contrast, incandescent and halogen lamps should be replaced immediately. Based on expected LED improvement, upgrading LED lamps before the end of their rated lifetime may provide cost and environmental savings over time by taking advantage of the higher energy efficiency of newer models.
NASA Astrophysics Data System (ADS)
Werner, C.; Kraus, D.; Mai, T. V.; Butterbach-Bahl, K.
2016-12-01
Agriculture is the economic backbone for over two thirds of Vietnam's population, providing food security, employment and income. However, agriculture in Vietnam is challenged by climate change and climate extremes and at the same time, agriculture remains a key source of greenhouse gas (GHG) emissions. The first bi-annual update report (BUR1), published in 2014 indicated that while the proportion of GHG emissions from agriculture had fallen from 43.1% to 33.2% from 2000 to 2010, the emission total increased from 65.1 mio to 88.4 mio t CO2e. Reducing GHG emissions from agriculture has thus become a key issue within the national strategy of GHG emission management. Here we present first data using IPCC Tier 3 modeling for quantifying the source strength of rice based crop systems for CH4 and N2O. We used LandscapeDNDC and linked it to a newly developed spatial landuse and land management database (climate, soil properties, and detailed field management data). Site application showed good agreement of simulated biomass, yield and GHG emissions with field observations, providing confidence for model use at national scale. Our results also show good agreement with national yield data and total annual emissions of the simulated period (2006-2015) ranged from 1060 - 1502 kt CH4 and 6.2 - 7.7 kt N2O, respectively. The dominating emission hotspot for CH4 is the Mekong Delta region with its double and triple rice cropping systems (819 kt CH4/yr, Fig. 1). With regard to N2O, emission hotspots have been identified to be closely related to regions with high fertilizer use and single to double rice cropping systems (Fig. 1). Though, our emission estimates are likely representing the best of current knowledge on national GHG emissions from rice based systems in Vietnam, the uncertainty is significant as information on rice system management remains vague. Sensitivity studies show that changes in field management affecting the soil organic carbon dynamics (duration of flooding, stubble amounts and fraction tilled or manure application) can lead to substantial differences in emission rates. In a next step we plan to explore mitigation options such as Alternative Wetting and Drying for reducing national GHG emissions from the agricultural sector and to identify regions which are most suitable and most promising in terms of GHG reduction.
NASA Astrophysics Data System (ADS)
Guha, A.; Bower, J. P.; Martien, P. T.; Randall, S.; Young, A.; Hilken, H.; Stevenson, E.
2015-12-01
The Bay Area Air Quality Management District (hence the Air District) is the greater San Francisco Bay metropolitan region's chief air quality regulatory agency. Aligning itself with Executive Order S-3-05, the Air District has set a goal to reduce the region's GHG emissions by 80% below 1990 levels by the year 2050. The Air District's 10-point Climate Action Work Program lays out the agency's priorities, actions and coordination with regional stakeholders. The Program has three core objectives: (1) to develop a technical and monitoring program to document the region's GHG sources and related emissions, (2) to implement a policy and rule-based approach to control and regulate GHG emissions, and finally, (3) to utilize local governance, incentives and partnerships to encourage GHG emissions reductions.As part of the technical program, the Air District has set up a long term, ambient GHG monitoring network at four sites. The first site is located north and upwind of the urban core at Bodega Bay by the Pacific Coast. It mostly receives clean marine inflow and serves as the regional background site. The other three sites are strategically located at regional exit points for Bay Area plumes that presumably contain GHG enhancements from local sources. These stations are at San Martin, located south of the San Jose metropolitan area; at Patterson Pass at the cross section with California's Central Valley; and at Bethel Island at the mouth of the Sacramento-San Joaquin Delta. At all sites, carbon dioxide (CO2) and methane (CH4) are being measured continuously, along with combustion tracer CO and other air pollutants. The GHG measurements are performed with high precision and fast laser instruments (Picarro Inc). In the longer term, the network will allow the Air District to monitor ambient concentrations of GHGs and thus evaluate the effectiveness of its policy, regulation and enforcement efforts. We present data from the sites in their first few months of operation and demonstrate the efficacy and utility of this monitoring network. We also present our progress on the design and fabrication of a dedicated mobile GHG measurement platform (a research van) equipped with state of the art analyzers capable of measuring isotopic methane (13C - CH4), CH4, CO2 and also nitrous oxide (N2O) in ambient air at fast temporal rates.
The impact of aerosol emissions on the 1.5 °C pathways
NASA Astrophysics Data System (ADS)
Hienola, Anca; Partanen, Antti-Ilari; Pietikäinen, Joni-Pekka; O’Donnell, Declan; Korhonen, Hannele; Damon Matthews, H.; Laaksonen, Ari
2018-04-01
To assess the impact of anthropogenic aerosol emission reduction on limiting global temperature increase to 1.5 °C or 2 °C above pre-industrial levels, two climate modeling approaches have been used (MAGICC6, and a combination of ECHAM-HAMMOZ and the UVic ESCM), with two aerosol control pathways under two greenhouse gas (GHG) reduction scenarios. We found that aerosol emission reductions associated with CO2 co-emissions had a significant warming effect during the first half of the century and that the near-term warming is dependent on the pace of aerosol emission reduction. The modeling results show that these aerosol emission reductions account for about 0.5 °C warming relative to 2015, on top of the 1 °C above pre-industrial levels that were already reached in 2015. We found also that the decreases in aerosol emissions lead to different decreases in the magnitude of the aerosol radiative forcing in the two models. By 2100, the aerosol forcing is projected by ECHAM–UVic to diminish in magnitude by 0.96 W m‑2 and by MAGICC6 by 0.76 W m‑2 relative to 2000. Despite this discrepancy, the climate responses in terms of temperature are similar. Aggressive aerosol control due to air quality legislation affects the peak temperature, which is 0.2 °C–0.3 °C above the 1.5 °C limit even within the most ambitious CO2/GHG reduction scenario. At the end of the century, the temperature differences between aerosol reduction scenarios in the context of ambitious CO2 mitigation are negligible.
Clean Cities 2015 Annual Metrics Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Caley; Singer, Mark
2016-12-01
The U.S. Department of Energy's (DOE's) Clean Cities program advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use and greenhouse gas (GHG) emissions in transportation. A national network of nearly 100 Clean Cities coalitions, whose territory covers 80% of the U.S. population, brings together stakeholders in the public and private sectors to deploy alternative and renewable fuels, idle-reduction (IR) measures, fuel economy improvements, and new transportation technologies as they emerge. Each year, DOE asks Clean Cities coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Progress reportsmore » and information are submitted online as a function of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators report a range of information that characterize the membership, funding, projects, and activities of their coalitions. They also document activities in their region related to the development of refueling/charging infrastructure, sales of alternative fuels; deployment of alternative fuel vehicles (AFVs), plug-in electric vehicles (PEVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); idle reduction initiatives; fuel economy improvement activities; and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use and GHG emission reduction impacts, which are summarized in this report.« less
NASA Astrophysics Data System (ADS)
Duggirala, Bhanu
This thesis explored the opportunities to reduce energy demand and renewable energy feasibility at an off-grid science "community" called the Experimental Lakes Area (ELA) in Ontario. Being off-grid, ELA is completely dependent on diesel and propane fuel supply for all its electrical and heating needs, which makes ELA vulnerable to fluctuating fuel prices. As a result ELA emits a large amount of greenhouse gases (GHG) for its size. Energy efficiency and renewable energy technologies can reduce energy consumption and consequently energy cost, as well as GHG. Energy efficiency was very important to ELA due to the elevated fuel costs at this remote location. Minor upgrades to lighting, equipment and building envelope were able to reduce energy costs and reduce load. Efficient energy saving measures were recommended that save on operating and maintenance costs, namely, changing to LED lights, replacing old equipment like refrigerators and downsizing of ice makers. This resulted in a 4.8% load reduction and subsequently reduced the initial capital cost for biomass by 27,000, by 49,500 for wind power and by 136,500 for solar power. Many alternative energies show promise as potential energy sources to reduce the diesel and propane consumption at ELA including wind energy, solar heating and biomass. A biomass based CHP system using the existing diesel generators as back-up has the shortest pay back period of the technologies modeled. The biomass based CHP system has a pay back period of 4.1 years at 0.80 per liter of diesel, as diesel price approaches $2.00 per liter the pay back period reduces to 0.9 years, 50% the generation cost compared to present generation costs. Biomass has been successfully tried and tested in many off-grid communities particularly in a small-scale off-grid setting in North America and internationally. Also, the site specific solar and wind data show that ELA has potential to harvest renewable resources and produce heat and power at competitive rates compared to diesel and propane.
University Leadership in Island Climate Change Mitigation
ERIC Educational Resources Information Center
Coffman, Makena
2009-01-01
Purpose: The purpose of this paper is to present the University of Hawaii at Manoa's (UHM's) initiatives in achieving greenhouse gas (GHG) emissions reductions on campus and at the state level. Design/methodology/approach: UHM has taken a "lead by example" approach to climate change mitigation in terms of working to meet the American…
For Frank Princiotta’s book, Global Climate Change—The Technology Challenge Carbon dioxide (CO2) accounts for more than 90% of worldwide CO2-eq green-house gas (GHG) emissions from industrial sectors other than power generation. Amongst these sectors, the cement industry is one ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-08
... all technologies. Nearly every OEM stressed that the agencies' costs estimates for lithium-ion batteries for HEVs/ PHEVs/EVs and mass reduction in particular were significantly too low compared to their... vehicles, hybrid-electric vehicles, plug-in hybrid electric vehicles, and battery-electric vehicles, during...
NASA Astrophysics Data System (ADS)
Matthiesen, Stephan; Palmer, Paul; Watson, Andrew; Williams, Mathew
2016-04-01
We give an overview over the structure, objectives, and methods of the UK-based Greenhouse Gases Emissions and Feedback Programme. The overarching objective of this research programme is to deliver improved GHG inventories and predictions for the UK, and for the globe at a regional scale. To address this objective, the Programme has developed a comprehensive, multi-year and interlinked measurement and data analysis programme, focussing on the major GHGs carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The Programme integrates three UK research consortia with complementary objectives, focussing on observation and modelling in the atmosphere, the oceans, and the terrestrial biosphere: GAUGE (Greenhouse gAs Uk and Global Emissions) will produce robust estimates of the UK GHG budget, using new and existing atmospheric measurement networks and modelling activities at a range of scales. It integrates inter-calibrated information from ground-based, airborne, ferry-borne, balloon-borne, and space-borne sensors, including new sensor technology. The GREENHOUSE (Generating Regional Emissions Estimates with a Novel Hierarchy of Observations and Upscaled Simulation Experiments) project aims to understand the spatio-temporal patterns of biogenic GHG emissions in the UK's landscape of managed and semi-managed ecosystems. It uses existing UK field data and several targeted new measurement campaigns to build regional GHG inventories and improve the capabilities of land surface models. RAGNARoCC (Radiatively active gases from the North Atlantic Region and Climate Change) is an oceanographic project to investigate the air-sea fluxes of GHGs in the North Atlantic region. Through dedicated research cruises as well as data collection from ships of opportunity, it develops a comprehensive budget of natural and anthropogenic components of the carbon cycle in the North Atlantic and a better understanding of why the air-sea fluxes of CO2 vary regionally, seasonally and multi-annually. Integration activities link these three projects to foster knowledge exchange across different scales, methods and sub-disciplines, both within the Programme and with the wider research community. The three projects are integrated to improve our understanding of greenhouse gases across domains and scales. The observational components lay the foundation of new measurement infrastructure that will deliver beyond the lifetime of this Programme. Through the development of robust methods to reduce uncertainties in GHG emissions estimates, the Programme supports regulatory efforts to monitor emissions trends and the efficacy of reduction strategies.
NASA Astrophysics Data System (ADS)
DeLonge, M. S.; Ryals, R.; Silver, W. L.
2011-12-01
Soil amendments, such as compost and manure, can be applied to grasslands to improve soil conditions and enhance aboveground net primary productivity. Applying such amendments can also lead to soil carbon (C) sequestration and, when materials are diverted from waste streams (e.g., landfills, manure lagoons), can offset greenhouse gas (GHG) emissions. However, amendment production and application is also associated with GHG emissions, and the net impact of these amendments remains unclear. To investigate the potential for soil amendments to reduce net GHG emissions, we developed a comprehensive, field-scale life cycle assessment (LCA) model. The LCA includes GHG (i.e., CO2, CH4, N2O) emissions of soil amendment production, application, and ecosystem response. Emissions avoided by diverting materials from landfills or manure management systems are also considered. We developed the model using field observations from grazed annual grassland in northern California (e.g., soil C; above- and belowground net primary productivity; C:N ratios; trace gas emissions from soils, manure piles, and composting), CENTURY model simulations (e.g., long-term soil C and trace gas emissions from soils under various land management strategies), and literature values (e.g., GHG emissions from transportation, inorganic fertilizer production, composting, and enteric fermentation). The LCA quantifies and contrasts the potential net GHG impacts of applying compost, manure, and commercial inorganic fertilizer to grazing lands. To estimate the LCA uncertainty, sensitivity tests were performed on the most widely ranging or highly uncertain parameters (e.g., compost materials, landfill emissions, manure management system emissions). Finally, our results are scaled-up to assess the feasibility and potential impacts of large-scale adoption of soil amendment application as a land-management strategy in California. Our base case results indicate that C sinks and emissions offsets associated with compost production and application can exceed life cycle emissions, potentially leading to a net reduction in GHG emissions of over 20 Mg CO2e per hectare of treated land. If similar results could be obtained in only 5% of California's 2,550,000 ha of rangeland, compost amendment application could offset the annual emissions of the California agriculture and forestry industries (> 28.25 million Mg CO2e, California Air Resources Board, 2008). Our findings indicate that application of compost amendments to grasslands may be an effective, beneficial, and relatively inexpensive strategy to contribute to climate change mitigation.
NASA Astrophysics Data System (ADS)
Bowen, E.; Martin, P. A.; Eshel, G.
2008-12-01
The adverse environmental effects, especially energy use and resultant GHG emissions, of food production and consumption are becoming more widely appreciated and increasingly well documented. Our insights into the thorny problem of how to mitigate some of those effects, however, are far less evolved. Two of the most commonly advocated strategies are "organic" and "local", referring, respectively, to growing food without major inputs of fossil fuel based synthetic fertilizers and pesticides and to food consumption near its agricultural origin. Indeed, both agrochemical manufacture and transportation of produce to market make up a significant percentage of energy use in agriculture. While there can be unique environmental benefits to each strategy, "organic" and "local" each may potentially result in energy and emissions savings relative to conventionally grown produce. Here, we quantify the potential energy and greenhouse gas emissions savings associated with "organic" and "local". We take note of energy use and actual GHG costs of the major synthetic fertilizers and transportation by various modes routinely employed in agricultural distribution chains, and compare them for ~35 frequently consumed nutritional mainstays. We present new, current, lower-bound energy and greenhouse gas efficiency estimates for these items and compare energy consumption and GHG emissions incurred during producing those food items to consumption and emissions resulting from transporting them, considering travel distances ranging from local to continental and transportation modes ranging from (most efficient) rail to (least efficient) air. In performing those calculations, we demonstrate the environmental superiority of either local or organic over conventional foods, and illuminate the complexities involved in entertaining the timely yet currently unanswered, and previously unanswerable, question of "Which is Environmentally Superior, Organic or Local?". More broadly, we put forth a database that amounts to a general blueprint for rigorous comparative evaluation of any competing diets.
Analysis of Carbon Policies for Electricity Networks with High Penetration of Green Generation
NASA Astrophysics Data System (ADS)
Feijoo, Felipe A.
In recent decades, climate change has become one of the most crucial challenges for humanity. Climate change has a direct correlation with global warming, caused mainly by the green house gas emissions (GHG). The Environmental Protection Agency in the U.S. (EPA) attributes carbon dioxide to account for approximately 82% of the GHG emissions. Unfortunately, the energy sector is the main producer of carbon dioxide, with China and the U.S. as the highest emitters. Therefore, there is a strong (positive) correlation between energy production, global warming, and climate change. Stringent carbon emissions reduction targets have been established in order to reduce the impacts of GHG. Achieving these emissions reduction goals will require implementation of policies like as cap-and-trade and carbon taxes, together with transformation of the electricity grid into a smarter system with high green energy penetration. However, the consideration of policies solely in view of carbon emissions reduction may adversely impact other market outcomes such as electricity prices and consumption. In this dissertation, a two-layer mathematical-statistical framework is presented, that serves to develop carbon policies to reduce emissions level while minimizing the negative impacts on other market outcomes. The bottom layer of the two layer model comprises a bi-level optimization problem. The top layer comprises a statistical model and a Pareto analysis. Two related but different problems are studied under this methodology. The first problem looks into the design of cap-and-trade policies for deregulated electricity markets that satisfy the interest of different market constituents. Via the second problem, it is demonstrated how the framework can be used to obtain levels of carbon emissions reduction while minimizing the negative impact on electricity demand and maximizing green penetration from microgrids. In the aforementioned studies, forecasts for electricity prices and production cost are considered. This, this dissertation also presents anew forecast model that can be easily integrated in the two-layer framework. It is demonstrated in this dissertation that the proposed framework can be utilized by policy-makers, power companies, consumers, and market regulators in developing emissions policy decisions, bidding strategies, market regulations, and electricity dispatch strategies.
Designing optimal greenhouse gas monitoring networks for Australia
NASA Astrophysics Data System (ADS)
Ziehn, T.; Law, R. M.; Rayner, P. J.; Roff, G.
2016-01-01
Atmospheric transport inversion is commonly used to infer greenhouse gas (GHG) flux estimates from concentration measurements. The optimal location of ground-based observing stations that supply these measurements can be determined by network design. Here, we use a Lagrangian particle dispersion model (LPDM) in reverse mode together with a Bayesian inverse modelling framework to derive optimal GHG observing networks for Australia. This extends the network design for carbon dioxide (CO2) performed by Ziehn et al. (2014) to also minimise the uncertainty on the flux estimates for methane (CH4) and nitrous oxide (N2O), both individually and in a combined network using multiple objectives. Optimal networks are generated by adding up to five new stations to the base network, which is defined as two existing stations, Cape Grim and Gunn Point, in southern and northern Australia respectively. The individual networks for CO2, CH4 and N2O and the combined observing network show large similarities because the flux uncertainties for each GHG are dominated by regions of biologically productive land. There is little penalty, in terms of flux uncertainty reduction, for the combined network compared to individually designed networks. The location of the stations in the combined network is sensitive to variations in the assumed data uncertainty across locations. A simple assessment of economic costs has been included in our network design approach, considering both establishment and maintenance costs. Our results suggest that, while site logistics change the optimal network, there is only a small impact on the flux uncertainty reductions achieved with increasing network size.
Climate, economic, and environmental impacts of producing wood for bioenergy
NASA Astrophysics Data System (ADS)
Birdsey, Richard; Duffy, Philip; Smyth, Carolyn; Kurz, Werner A.; Dugan, Alexa J.; Houghton, Richard
2018-05-01
Increasing combustion of woody biomass for electricity has raised concerns and produced conflicting statements about impacts on atmospheric greenhouse gas (GHG) concentrations, climate, and other forest values such as timber supply and biodiversity. The purposes of this concise review of current literature are to (1) examine impacts on net GHG emissions and climate from increasing bioenergy production from forests and exporting wood pellets to Europe from North America, (2) develop a set of science-based recommendations about the circumstances that would result in GHG reductions or increases in the atmosphere, and (3) identify economic and environmental impacts of increasing bioenergy use of forests. We find that increasing bioenergy production and pellet exports often increase net emissions of GHGs for decades or longer, depending on source of feedstock and its alternate fate, time horizon of analysis, energy emissions associated with the supply chain and fuel substitution, and impacts on carbon cycling of forest ecosystems. Alternative uses of roundwood often offer larger reductions in GHGs, in particular long-lived wood products that store carbon for longer periods of time and can achieve greater substitution benefits than bioenergy. Other effects of using wood for bioenergy may be considerable including induced land-use change, changes in supplies of wood and other materials for construction, albedo and non-radiative effects of land-cover change on climate, and long-term impacts on soil productivity. Changes in biodiversity and other ecosystem attributes may be strongly affected by increasing biofuel production, depending on source of material and the projected scale of biofuel production increases.
CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways.
Rehl, T; Müller, J
2013-01-15
Biogas will be of increasing importance in the future as a factor in reducing greenhouse gas emissions cost-efficiently by the optimal use of available resources and technologies. The goal of this study was to identify the most ecological and economical use of a given resource (organic waste from residential, commercial and industry sectors) using one specific treatment technology (anaerobic digestion) but applying different energy conversion technologies. Average and marginal abatement costs were calculated based on Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) methodologies. Eight new biogas systems producing electricity, heat, gas or automotive fuel were analyzed in order to identify the most cost-efficient way of reducing GHG emissions. A system using a combined heat and power station (which is connected to waste treatment and digestion operation facilities and located nearby potential residential, commercial or industrial heat users) was found to be the most cost-efficient biogas technology for reducing GHG emissions. Up to € 198 per tonne of CO(2) equivalents can be saved by replacing the "business as usual" systems based on fossil resources with ones based on biogas. Limited gas injection (desulfurized and dried biogas, without compression and upgrading) into the gas grid can also be a viable option with an abatement cost saving of € 72 per tonne of CO(2) equivalents, while a heating plant with a district heating grid or a system based on biogas results in higher abatement costs (€ 267 and € 270 per tonne CO(2) eq). Results from all systems are significantly influenced by whether average or marginal data are used as a reference. Beside that energy efficiency, the reference system that was replaced and the by-products as well as feedstock and investment costs were identified to be parameters with major impacts on abatement costs. The quantitative analysis was completed by a discussion of the role that abatement cost methodology can play in decision-making. Copyright © 2012 Elsevier Ltd. All rights reserved.
Assessing the environmental sustainability of ethanol from integrated biorefineries.
Falano, Temitope; Jeswani, Harish K; Azapagic, Adisa
2014-06-01
This paper considers the life cycle environmental sustainability of ethanol produced in integrated biorefineries together with chemicals and energy. Four types of second-generation feedstocks are considered: wheat straw, forest residue, poplar, and miscanthus. Seven out of 11 environmental impacts from ethanol are negative, including greenhouse gas (GHG) emissions, when the system is credited for the co-products, indicating environmental savings. Ethanol from poplar is the best and straw the worst option for most impacts. Land use change from forest to miscanthus increases the GHG emissions several-fold. For poplar, the effect is opposite: converting grassland to forest reduces the emissions by three-fold. Compared to fossil and first-generation ethanol, ethanol from integrated biorefineries is more sustainable for most impacts, with the exception of wheat straw. Pure ethanol saves up to 87% of GHG emissions compared to petrol per MJ of fuel. However, for the current 5% ethanol-petrol blends, the savings are much smaller (<3%). Therefore, unless much higher blends become widespread, the contribution of ethanol from integrated biorefineries to the reduction of GHG emissions will be insignificant. Yet, higher ethanol blends would lead to an increase in some impacts, notably terrestrial and freshwater toxicity as well as eutrophication for some feedstocks. © 2014 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
NASA Astrophysics Data System (ADS)
Cui, J. J.; Lai, D. Y. F.
2016-12-01
Forest soil has a great potential in affecting future climate change through biogeochemical cycling and exchanging greenhouse gases (GHGs) with the atmosphere. As a proxy of changing atmospheric CO2 concentration, enhanced litter production arising from CO2 fertilization can affect soil GHG fluxes and induce feedbacks to the climate system. However, these litter-soil- atmosphere interactions remain unclear, especially in subtropical forests. In this study, we carried out static chamber measurements and field manipulations in a subtropical secondary forest in Hong Kong over one year to investigate the temporal variations and controls, as well as the effects of changing litter amounts on soil-atmosphere GHG fluxes. Our results show distinct seasonal pattern of GHG fluxes and soil parameters over the study period. While CO2 flux did not respond significantly to litter manipulation, regression analysis indicates that CO2 flux was regulated by soil temperature and soil moisture. Litter reduction stimulated mean N2O emissions by 105%, and the positive effect was most pronounced during the hot-humid season from May to October. On the other hand, litter addition was found to reduce CH4 uptake by 32%. Our findings suggest that the presence of litter might serve a physical barrier for gas diffusion. It is suggested that the biogeochemical feedback arising from litterfall should be taken into account in simulating the response of forest GHG fluxes to future global change.
Bazán, José; Rieradevall, Joan; Gabarrell, Xavier; Vázquez-Rowe, Ian
2018-05-01
Urban environments in Latin America must begin decarbonizing their activities to avoid increasing greenhouse gases (GHGs) emissions rates due to their reliance on fossil fuel-based energy to support economic growth. In this context, cities in Latin America have high potential to convert sunlight into energy. Hence, the main objective of this study was to determine the potential of electricity self-sufficiency production and mitigation of GHG emissions in three medium-sized cities in Peru through the revalorization of underutilized rooftop areas in urban environments. Each city represented a distinct natural area of Peru: Pacific coast, Andean region and Amazon basin. More specifically, photovoltaic solar systems were the technology selected for implementation in these rooftop areas. Data on incident solar energy, temperature and energy consumption were collected. Thereafter, ArcGis10.3 was used to quantify the total usable area in the cities. A series of correction factors, including tilt, orientation or roof profiles were applied to attain an accurate value of usable area. Finally, Life Cycle Assessment was the methodology chosen to calculate the reduction of environmental impacts as compared to the current context of using electricity from the regional grids. Results showed that the cities assessed have the potential to obtain their entire current electricity demand for residential, commercial and public lighting purposes, augmenting energy security and resilience to intermittent natural disasters, with the support of decentralized storage systems. This approach would also translate into substantial reductions in terms of GHG emissions. Annual reductions in GHG emissions ranged from 112ton CO 2 eq in the city of Ayacucho to over 523kton CO 2 eq in Pucallpa, showing that cities in the Amazon basin would be the ones that benefit the most in terms of climate change mitigation. Copyright © 2017 Elsevier B.V. All rights reserved.
DOT National Transportation Integrated Search
2015-01-01
Policies that encourage reduced travel, such as traveling shorter distances, and increased use of : more efficient transportation modes, such as public transportation and high-occupancy private : automobiles, are often considered one of several possi...
Composting and compost utilization: accounting of greenhouse gases and global warming contributions.
Boldrin, Alessio; Andersen, Jacob K; Møller, Jacob; Christensen, Thomas H; Favoino, Enzo
2009-11-01
Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficiency of off-gas cleaning at enclosed composting systems, and the use of the compost. The latter is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting therefore varies between significant savings (-900 kg CO(2)-equivalents tonne(-1) wet waste (ww)) and a net load (300 kg CO(2)-equivalents tonne( -1) ww). The major savings are obtained by use of compost as a substitute for peat in the production of growth media. However, it may be difficult for a specific composting plant to document how the compost is used and what it actually substitutes for. Two cases representing various technologies were assessed showing how GHG accounting can be done when specific information and data are available.
National Greenhouse Gas Emission Inventory (EV-GHG)
The EV-GHG Mobile Source Data asset contains measured mobile source GHG emissions summary compliance information on light-duty vehicles, by model, for certification as required by the 1990 Amendments to the Clean Air Act, and as driven by the 2010 Presidential Memorandum Regarding Fuel Efficiency and the 2005 Supreme Court ruling in Massachusetts v. EPA that supported the regulation of CO2 as a pollutant. Manufacturers submit data on an annual basis, or as needed to document vehicle model changes. This asset will be expanded to include medium and heavy duty vehicles in the future.The EPA performs targeted GHG emissions tests on approximately 15% of vehicles submitted for certification. Confirmatory data on vehicles is associated with its corresponding submission data to verify the accuracy of manufacturer submissions beyond standard business rules.Submitted data comes in XML format or as documents, with the majority of submissions sent in XML, and includes descriptive information on the vehicle itself, emissions information, and the manufacturer's testing approach. This data may contain proprietary information (CBI) such as information on estimated sales or other data elements indicated by the submitter as confidential. CBI data is not publically available; however, CBI data can accessed within EPA under the restrictions of the Office of Transportation and Air Quality (OTAQ) CBI policy [RCS Link]. Pollutants data includes CO2, CH4, N2O. Datasets are divided by v
The EV-GHG Mobile Source Data asset contains measured mobile source GHG emissions summary compliance information on light-duty vehicles, by model, for certification as required by the 1990 Amendments to the Clean Air Act, and as driven by the 2010 Presidential Memorandum Regarding Fuel Efficiency and the 2005 Supreme Court ruling in Massachusetts v. EPA that supported the regulation of CO2 as a pollutant. Manufacturers submit data on an annual basis, or as needed to document vehicle model changes. This asset will be expanded to include medium and heavy duty vehicles in the future.The EPA performs targeted GHG emissions tests on approximately 15% of vehicles submitted for certification. Confirmatory data on vehicles is associated with its corresponding submission data to verify the accuracy of manufacturer submissions beyond standard business rules.Submitted data comes in XML format or as documents, with the majority of submissions sent in XML, and includes descriptive information on the vehicle itself, emissions information, and the manufacturer's testing approach. This data may contain proprietary information (CBI) such as information on estimated sales or other data elements indicated by the submitter as confidential. CBI data is not publically available; however, CBI data can accessed within EPA under the restrictions of the Office of Transportation and Air Quality (OTAQ) CBI policy [RCS Link]. Pollutants data includes CO2, CH4, N2O. Datasets are divided by v
NASA Astrophysics Data System (ADS)
Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Medellin-Azuara, J.
2015-12-01
Most individual processes relating water and energy interdependence have been assessed in many different ways over the last decade. It is time to step up and include the results of these studies in management by proportionating a tool for integrating these processes in decision-making to effectively understand the tradeoffs between water and energy from management options and scenarios. A simple but powerful decision support system (DSS) for water management is described that includes water-related energy use and GHG emissions not solely from the water operations, but also from final water end uses, including demands from cities, agriculture, environment and the energy sector. Because one of the main drivers of energy use and GHG emissions is water pumping from aquifers, the DSS combines a surface water management model with a simple groundwater model, accounting for their interrelationships. The model also explicitly includes economic data to optimize water use across sectors during shortages and calculate return flows from different uses. Capabilities of the DSS are demonstrated on a case study over California's intertied water system. Results show that urban end uses account for most GHG emissions of the entire water cycle, but large water conveyance produces significant peaks over the summer season. Also the development of more efficient water application on the agricultural sector has increased the total energy consumption and the net water use in the basins.
Luk, Jason M; Pourbafrani, Mohammad; Saville, Bradley A; MacLean, Heather L
2013-09-17
Our study evaluates life cycle energy use and GHG emissions of lignocellulosic ethanol and bioelectricity use in U.S. light-duty vehicles. The well-to-pump, pump-to-wheel, and vehicle cycle stages are modeled. All ethanol (E85) and bioelectricity pathways have similar life cycle fossil energy use (~ 100 MJ/100 vehicle kilometers traveled (VKT)) and net GHG emissions (~5 kg CO2eq./100 VKT), considerably lower (65-85%) than those of reference gasoline and U.S. grid-electricity pathways. E85 use in a hybrid vehicle and bioelectricity use in a fully electric vehicle also have similar life cycle biomass and total energy use (~ 350 and ~450 MJ/100 VKT, respectively); differences in well-to-pump and pump-to-wheel efficiencies can largely offset each other. Our energy use and net GHG emissions results contrast with findings in literature, which report better performance on these metrics for bioelectricity compared to ethanol. The primary source of differences in the studies is related to our development of pathways with comparable vehicle characteristics. Ethanol or vehicle electrification can reduce petroleum use, while bioelectricity may displace nonpetroleum energy sources. Regional characteristics may create conditions under which either ethanol or bioelectricity may be the superior option; however, neither has a clear advantage in terms of GHG emissions or energy use.
NASA Astrophysics Data System (ADS)
Xia, Longlong; Xia, Yongqiu; Ma, Shutan; Wang, Jinyang; Wang, Shuwei; Zhou, Wei; Yan, Xiaoyuan
2016-08-01
Impacts of simultaneous inputs of crop straw and nitrogen (N) fertilizer on greenhouse gas (GHG) emissions and N losses from rice production are not well understood. A 2-year field experiment was established in a rice-wheat cropping system in the Taihu Lake region (TLR) of China to evaluate the GHG intensity (GHGI) as well as reactive N intensity (NrI) of rice production with inputs of wheat straw and N fertilizer. The field experiment included five treatments of different N fertilization rates for rice production: 0 (RN0), 120 (RN120), 180 (RN180), 240 (RN240), and 300 kg N ha-1 (RN300, traditional N application rate in the TLR). Wheat straws were fully incorporated into soil before rice transplantation. The meta-analytic technique was employed to evaluate various Nr losses. Results showed that the response of rice yield to N rate successfully fitted a quadratic model, while N fertilization promoted Nr discharges exponentially (nitrous oxide emission, N leaching, and runoff) or linearly (ammonia volatilization). The GHGI of rice production ranged from 1.20 (RN240) to 1.61 kg CO2 equivalent (CO2 eq) kg-1 (RN0), while NrI varied from 2.14 (RN0) to 10.92 g N kg-1 (RN300). Methane (CH4) emission dominated the GHGI with a proportion of 70.2-88.6 % due to direct straw incorporation, while ammonia (NH3) volatilization dominated the NrI with proportion of 53.5-57.4 %. Damage costs to environment incurred by GHG and Nr releases from current rice production (RN300) accounted for 8.8 and 4.9 % of farmers' incomes, respectively. Cutting N application rate from 300 (traditional N rate) to 240 kg N ha-1 could improve rice yield and nitrogen use efficiency by 2.14 and 10.30 %, respectively, while simultaneously reducing GHGI by 13 %, NrI by 23 %, and total environmental costs by 16 %. Moreover, the reduction of 60 kg N ha-1 improved farmers' income by CNY 639 ha-1, which would provide them with an incentive to change the current N application rate. Our study suggests that GHG and Nr releases, especially for CH4 emission and NH3 volatilization, from rice production in the TLR could be further reduced, considering the current incorporation pattern of wheat straw and N fertilizer.
Life cycle GHG evaluation of organic rice production in northern Thailand.
Yodkhum, Sanwasan; Gheewala, Shabbir H; Sampattagul, Sate
2017-07-01
Greenhouse gas (GHG) emission is one of the serious international environmental issues that can lead to severe damages such as climate change, sea level rise, emerging disease and many other impacts. Rice cultivation is associated with emissions of potent GHGs such as methane and nitrous oxide. Thai rice has been massively exported worldwide however the markets are becoming more competitive than ever since the green market has been hugely promoted. In order to maintain the same level or enhance of competitiveness, Thai rice needs to be considered for environmentally conscious products to meet the international environmental standards. Therefore, it is necessary to evaluate the greenhouse gas emissions throughout the life cycle of rice production in order to identify the major emission sources and possible reduction strategies. In this research, the rice variety considered is Khao Dawk Mali 105 (KDML 105) cultivated by organic practices. The data sources were Don-Chiang Organic Agricultural Cooperative (DCOAC), Mae-teang district, Chiang Mai province, Thailand and the Office of Agricultural Economics (OAE) of Thailand with onsite records and interviews of farmers in 2013. The GHG emissions were calculated from cradle-to-farm by using the Life Cycle Assessment (LCA) approach and the 2006 IPCC Guideline for National Greenhouse Gas Inventories. The functional unit is defined as 1 kg of paddy rice at farm gate. Results showed that the total GHG emissions of organic rice production were 0.58 kg CO 2 -eq per kg of paddy rice. The major source of GHG emission was from the field emissions accounting for 0.48 kg CO 2 -eq per kg of paddy rice, about 83% of total, followed by land preparation, harvesting and other stages (planting, cultivation and transport of raw materials) were 9, 5 and 3% of total, respectively. The comparative results clearly showed that the GHG emissions of organic paddy rice were considerably lower than conventional rice production due to the advantages of using organic fertilisers. Copyright © 2017 Elsevier Ltd. All rights reserved.
High emissions of greenhouse gases from grasslands on peat and other organic soils.
Tiemeyer, Bärbel; Albiac Borraz, Elisa; Augustin, Jürgen; Bechtold, Michel; Beetz, Sascha; Beyer, Colja; Drösler, Matthias; Ebli, Martin; Eickenscheidt, Tim; Fiedler, Sabine; Förster, Christoph; Freibauer, Annette; Giebels, Michael; Glatzel, Stephan; Heinichen, Jan; Hoffmann, Mathias; Höper, Heinrich; Jurasinski, Gerald; Leiber-Sauheitl, Katharina; Peichl-Brak, Mandy; Roßkopf, Niko; Sommer, Michael; Zeitz, Jutta
2016-12-01
Drainage has turned peatlands from a carbon sink into one of the world's largest greenhouse gas (GHG) sources from cultivated soils. We analyzed a unique data set (12 peatlands, 48 sites and 122 annual budgets) of mainly unpublished GHG emissions from grasslands on bog and fen peat as well as other soils rich in soil organic carbon (SOC) in Germany. Emissions and environmental variables were measured with identical methods. Site-averaged GHG budgets were surprisingly variable (29.2 ± 17.4 t CO 2 -eq. ha -1 yr -1 ) and partially higher than all published data and the IPCC default emission factors for GHG inventories. Generally, CO 2 (27.7 ± 17.3 t CO 2 ha -1 yr -1 ) dominated the GHG budget. Nitrous oxide (2.3 ± 2.4 kg N 2 O-N ha -1 yr -1 ) and methane emissions (30.8 ± 69.8 kg CH 4 -C ha -1 yr -1 ) were lower than expected except for CH 4 emissions from nutrient-poor acidic sites. At single peatlands, CO 2 emissions clearly increased with deeper mean water table depth (WTD), but there was no general dependency of CO 2 on WTD for the complete data set. Thus, regionalization of CO 2 emissions by WTD only will remain uncertain. WTD dynamics explained some of the differences between peatlands as sites which became very dry during summer showed lower emissions. We introduced the aerated nitrogen stock (N air ) as a variable combining soil nitrogen stocks with WTD. CO 2 increased with N air across peatlands. Soils with comparatively low SOC concentrations showed as high CO 2 emissions as true peat soils because N air was similar. N 2 O emissions were controlled by the WTD dynamics and the nitrogen content of the topsoil. CH 4 emissions can be well described by WTD and ponding duration during summer. Our results can help both to improve GHG emission reporting and to prioritize and plan emission reduction measures for peat and similar soils at different scales. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Harris, Z. M.; Alberti, G.; Bottoms, E.; Rowe, R.; Parmar, K.; Marshall, R.; Elias, D.; Smith, P.; Dondini, M.; Pogson, M.; Richards, M.; Finch, J.; Ineson, P.; Keane, B.; Perks, M.; Wilkinson, M.; Yamulki, S.; Donnison, I.; Farrar, K.; Massey, A.; McCalmont, J.; Drewer, J.; Sohi, S.; McNamara, N.; Taylor, G.
2014-12-01
Rising anthropogenic greenhouse gas (GHG) emissions coupled with an increasing need to address energy security are resulting in the development of cleaner, more sustainable alternatives to traditional fossil fuel sources. Bioenergy crops have been proposed to be able to mitigate the effects of climate change as well as provide increased energy security. The aim of this project is to assess the impact of land conversion to second generation non-food bioenergy crops on GHG balance for several land use transitions, including from arable, grassland and forest. A network of 6 sites was established across the UK to assess the processes underpinning GHG balance and to provide input data to a model being used to assess the sustainability of different land use transitions. Monthly analysis of soil GHGs shows that carbon dioxide contributes most to the global warming potential of these bioenergy crops, irrespective of transition. Nitrous oxide emissions were low for all crops except arable cropping and methane emissions were very low for all sites. Nearly all sites have shown a significant decrease in CO2 flux from the control land use. Eddy flux approaches, coupled with soil assessments show that for the transition from grassland to SRC willow there is a significant reduction in GHG emissions from soil and a negative net ecosystem exchange due to increased GPP and ecosystem respiration. These results suggest for this land use transition to bioenergy in a UK specific context, there may be a net benefit for ecosystem GHG exchange of transition to bioenergy Finally we are developing a meta-modelling tool to allow land use managers to make location-specific, informed decisions about land use change to bioenergy. This work is based on the Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project, which was commissioned and funded by the Energy Technologies Institute (ETI). This project is co-ordinated by the Centre for Ecology & Hydrology (www.elum.ac.uk).
Corominas, Lluís; Flores-Alsina, Xavier; Snip, Laura; Vanrolleghem, Peter A
2012-11-01
New tools are being developed to estimate greenhouse gas (GHG) emissions from wastewater treatment plants (WWTPs). There is a trend to move from empirical factors to simple comprehensive and more complex process-based models. Thus, the main objective of this study is to demonstrate the importance of using process-based dynamic models to better evaluate GHG emissions. This is tackled by defining a virtual case study based on the whole plant Benchmark Simulation Model Platform No. 2 (BSM2) and estimating GHG emissions using two approaches: (1) a combination of simple comprehensive models based on empirical assumptions and (2) a more sophisticated approach, which describes the mechanistic production of nitrous oxide (N(2) O) in the biological reactor (ASMN) and the generation of carbon dioxide (CO(2) ) and methane (CH(4) ) from the Anaerobic Digestion Model 1 (ADM1). Models already presented in literature are used, but modifications compared to the previously published ASMN model have been made. Also model interfaces between the ASMN and the ADM1 models have been developed. The results show that the use of the different approaches leads to significant differences in the N(2) O emissions (a factor of 3) but not in the CH(4) emissions (about 4%). Estimations of GHG emissions are also compared for steady-state and dynamic simulations. Averaged values for GHG emissions obtained with steady-state and dynamic simulations are rather similar. However, when looking at the dynamics of N(2) O emissions, large variability (3-6 ton CO(2) e day(-1) ) is observed due to changes in the influent wastewater C/N ratio and temperature which would not be captured by a steady-state analysis (4.4 ton CO(2) e day(-1) ). Finally, this study also shows the effect of changing the anaerobic digestion volume on the total GHG emissions. Decreasing the anaerobic digester volume resulted in a slight reduction in CH(4) emissions (about 5%), but significantly decreased N(2) O emissions in the water line (by 14%). Copyright © 2012 Wiley Periodicals, Inc.
Pawlowski, Meghan N; Crow, Susan E; Meki, Manyowa N; Kiniry, James R; Taylor, Andrew D; Ogoshi, Richard; Youkhana, Adel; Nakahata, Mae
2017-01-01
Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHG emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO2), as methane was oxidized and nitrous oxide (N2O) emission was very low even following fertilization. High N2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO2 flux. Deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated belowground. In the first two years of cultivation napiergrass did not increase net greenhouse warming potential (GWP) compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield.
Oonincx, Dennis G. A. B.; van Itterbeeck, Joost; Heetkamp, Marcel J. W.; van den Brand, Henry; van Loon, Joop J. A.; van Huis, Arnold
2010-01-01
Background Greenhouse gas (GHG) production, as a cause of climate change, is considered as one of the biggest problems society is currently facing. The livestock sector is one of the large contributors of anthropogenic GHG emissions. Also, large amounts of ammonia (NH3), leading to soil nitrification and acidification, are produced by livestock. Therefore other sources of animal protein, like edible insects, are currently being considered. Methodology/Principal Findings An experiment was conducted to quantify production of carbon dioxide (CO2) and average daily gain (ADG) as a measure of feed conversion efficiency, and to quantify the production of the greenhouse gases methane (CH4) and nitrous oxide (N2O) as well as NH3 by five insect species of which the first three are considered edible: Tenebrio molitor, Acheta domesticus, Locusta migratoria, Pachnoda marginata, and Blaptica dubia. Large differences were found among the species regarding their production of CO2 and GHGs. The insects in this study had a higher relative growth rate and emitted comparable or lower amounts of GHG than described in literature for pigs and much lower amounts of GHG than cattle. The same was true for CO2 production per kg of metabolic weight and per kg of mass gain. Furthermore, also the production of NH3 by insects was lower than for conventional livestock. Conclusions/Significance This study therefore indicates that insects could serve as a more environmentally friendly alternative for the production of animal protein with respect to GHG and NH3 emissions. The results of this study can be used as basic information to compare the production of insects with conventional livestock by means of a life cycle analysis. PMID:21206900
Meki, Manyowa N.; Kiniry, James R.; Taylor, Andrew D.; Ogoshi, Richard; Youkhana, Adel; Nakahata, Mae
2017-01-01
Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHG emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO2), as methane was oxidized and nitrous oxide (N2O) emission was very low even following fertilization. High N2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO2 flux. Deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated belowground. In the first two years of cultivation napiergrass did not increase net greenhouse warming potential (GWP) compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield. PMID:28052075
Llonch, P; Haskell, M J; Dewhurst, R J; Turner, S P
2017-02-01
Livestock production is a major contributor to greenhouse gas (GHG) emissions, so will play a significant role in the mitigation effort. Recent literature highlights different strategies to mitigate GHG emissions in the livestock sector. Animal welfare is a criterion of sustainability and any strategy designed to reduce the carbon footprint of livestock production should consider animal welfare amongst other sustainability metrics. We discuss and tabulate the likely relationships and trade-offs between the GHG mitigation potential of mitigation strategies and their welfare consequences, focusing on ruminant species and on cattle in particular. The major livestock GHG mitigation strategies were classified according to their mitigation approach as reducing total emissions (inhibiting methane production in the rumen), or reducing emissions intensity (Ei; reducing CH4 per output unit without directly targeting methanogenesis). Strategies classified as antimethanogenic included chemical inhibitors, electron acceptors (i.e. nitrates), ionophores (i.e. Monensin) and dietary lipids. Increasing diet digestibility, intensive housing, improving health and welfare, increasing reproductive efficiency and breeding for higher productivity were categorized as strategies that reduce Ei. Strategies that increase productivity are very promising ways to reduce the livestock carbon footprint, though in intensive systems this is likely to be achieved at the cost of welfare. Other strategies can effectively reduce GHG emissions whilst simultaneously improving animal welfare (e.g. feed supplementation or improving health). These win-win strategies should be strongly supported as they address both environmental and ethical sustainability. In order to identify the most cost-effective measures for improving environmental sustainability of livestock production, the consequences of current and future strategies for animal welfare must be scrutinized and contrasted against their effectiveness in mitigating climate change.
Cui, Zhenling; Yue, Shanchao; Wang, Guiliang; Meng, Qingfeng; Wu, Liang; Yang, Zhiping; Zhang, Qiang; Li, Shiqing; Zhang, Fusuo; Chen, Xinping
2013-08-01
Although the goal of doubling food demand while simultaneously reducing agricultural environmental damage has become widely accepted, the dominant agricultural paradigm still considers high yields and reduced greenhouse gas (GHG) intensity to be in conflict with one another. Here, we achieved an increase in maize yield of 70% in on-farm experiments by closing the yield gap and evaluated the trade-off between grain yield, nitrogen (N) fertilizer use, and GHG emissions. Based on two groups of N application experiments in six locations for 16 on-farm site-years, an integrated soil-crop system (HY) approach achieved 93% of the yield potential and averaged 14.8 Mg ha(-1) maize grain yield at 15.5% moisture. This is 70% higher than current crop (CC) management. More importantly, the optimal N rate for the HY system was 250 kg N ha(-1) , which is only 38% more N fertilizer input than that applied in the CC system. Both the N2 O emission intensity and GHG intensity increased exponentially as the N application rate increased, and the response curve for the CC system was always higher than that for the HY system. Although the N application rate increased by 38%, N2 O emission intensity and the GHG intensity of the HY system were reduced by 12% and 19%, respectively. These on-farm observations indicate that closing the yield gap alongside efficient N management should therefore be prominent among a portfolio of strategies to meet food demand while reducing GHG intensity at the same time. © 2013 John Wiley & Sons Ltd.
Oonincx, Dennis G A B; van Itterbeeck, Joost; Heetkamp, Marcel J W; van den Brand, Henry; van Loon, Joop J A; van Huis, Arnold
2010-12-29
Greenhouse gas (GHG) production, as a cause of climate change, is considered as one of the biggest problems society is currently facing. The livestock sector is one of the large contributors of anthropogenic GHG emissions. Also, large amounts of ammonia (NH(3)), leading to soil nitrification and acidification, are produced by livestock. Therefore other sources of animal protein, like edible insects, are currently being considered. An experiment was conducted to quantify production of carbon dioxide (CO₂) and average daily gain (ADG) as a measure of feed conversion efficiency, and to quantify the production of the greenhouse gases methane (CH₄) and nitrous oxide (N₂O) as well as NH₃ by five insect species of which the first three are considered edible: Tenebrio molitor, Acheta domesticus, Locusta migratoria, Pachnoda marginata, and Blaptica dubia. Large differences were found among the species regarding their production of CO₂ and GHGs. The insects in this study had a higher relative growth rate and emitted comparable or lower amounts of GHG than described in literature for pigs and much lower amounts of GHG than cattle. The same was true for CO₂ production per kg of metabolic weight and per kg of mass gain. Furthermore, also the production of NH₃ by insects was lower than for conventional livestock. This study therefore indicates that insects could serve as a more environmentally friendly alternative for the production of animal protein with respect to GHG and NH₃ emissions. The results of this study can be used as basic information to compare the production of insects with conventional livestock by means of a life cycle analysis.
Understanding changes in the UK's CO2 emissions: a global perspective.
Baiocchi, Giovanni; Minx, Jan C
2010-02-15
The UK appears to be a leading country in curbing greenhouse gas (GHG) emissions. Unlike many other developed countries, it has already met its Kyoto obligations and defined ambitious, legally binding targets for the future. Recently this achievement has been called into question as it ignores rapidly changing patterns of production and international trade. We use structural decomposition analysis (SDA) to investigate the drivers behind annual changes in CO(2) emission from consumption in the UK between 1992 and 2004. In contrast with previous SDA-based studies, we apply the decomposition to a global, multiregional input-output model (MRIO), which accounts for UK imports from all regions and uses region-specific production structures and CO(2) intensities. We find that improvements from "domestic" changes in efficiency and production structure led to a 148 Mt reduction in CO(2) emissions, which only partially offsets emission increases of 217 Mt from changes in the global supply chain and from growing consumer demand. Recent emission reductions achieved in the UK are not merely a reflection of a greening of the domestic supply chain, but also of a change in the international division of labor in the global production of goods and services.
NASA Astrophysics Data System (ADS)
Bowen, E. E.; Martin, P. A.; Schuble, T. J.
2009-12-01
Nationwide, cities are increasingly developing policies aimed at greater sustainability, particularly focusing on reducing environmental impact. Such policies commonly emphasize more efficiently using energy to decrease the greenhouse gas (GHG) footprint of the city. However, most plans ignore the food system as a factor in regional energy use and GHG emissions. Yet, the food system in the United States accounts for ~20% of per capita greenhouse gas emissions. Local, sustainable food production is cited as one strategy for mitigating GHG emissions of large metropolitan areas. “Sustainable” for regional agriculture is often identified as small-scale, diversified food crop production using best practices management. Localized food production (termed “foodshed”) using sustainable agriculture could mitigate climate change in multiple ways: (1) energy and therefore CO2-intensive portions of the conventional food system might be replaced by local, lower-input food production resulting in carbon offsets; (2) increased regional carbon storage might result from well-managed food crop production vs. commodity crop production; and (3) averted N2O emissions might result from closing nutrient cycles on agricultural lands following changes in management practices. The broader implications for environmental impact of widespread conversion to sustainable food crop agriculture, however, remain largely unknown. We examine the Chicago metropolitan region to quantify the impact of increased local food production on regional energy efficiency and GHG emissions. Geospatial analysis is used to quantify the resource potential for establishing a Chicago metropolitan foodshed. A regional foodshed is defined by minimizing cost through transportation mode (road, rail, or water) and maximizing the production potential of different soil types. Simple biogeochemical modeling is used to predict changes in N2O emissions and nutrient flows following changes in land management practices. Ultimately, quantification of impacts from changes in regional land use can inform regional planning for climate change mitigation strategies.
A life-cycle comparison of alternative automobile fuels.
MacLean, H L; Lave, L B; Lankey, R; Joshi, S
2000-10-01
We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C2H5OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C2H5OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and reduce the demand for imported fuels. Fuels from food sources, such as biodiesel from soybeans and C2H5OH from corn, can be attractive only if the co-products are in high demand and if the fuel production does not diminish the food supply. C2H5OH from herbaceous or woody biomass could replace the gasoline burned in the light-duty fleet while supplying electricity as a co-product. While it costs more than gasoline, bioethanol would be attractive if the price of gasoline doubled, if significant reductions in GHG emissions were required, or if fuel economy regulations for gasoline vehicles were tightened.
A Life-Cycle Comparison of Alternative Automobile Fuels.
MacLean, Heather L; Lave, Lester B; Lankey, Rebecca; Joshi, Satish
2000-10-01
We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C 2 H 5 OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C 2 H 5 OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and reduce the demand for imported fuels. Fuels from food sources, such as biodiesel from soybeans and C 2 H 5 OH from corn, can be attractive only if the co-products are in high demand and if the fuel production does not diminish the food supply. C 2 H 5 OH from herbaceous or woody biomass could replace the gasoline burned in the light-duty fleet while supplying electricity as a co-product. While it costs more than gasoline, bioethanol would be attractive if the price of gasoline doubled, if significant reductions in GHG emissions were required, or if fuel economy regulations for gasoline vehicles were tightened.
NASA Astrophysics Data System (ADS)
Li, Mo
Ground Source Heat Pump (GSHP) technologies for residential heating and cooling are often suggested as an effective means to curb energy consumption, reduce greenhouse gas (GHG) emissions and lower homeowners' heating and cooling costs. As such, numerous federal, state and utility-based incentives, most often in the forms of financial incentives, installation rebates, and loan programs, have been made available for these technologies. While GSHP technology for space heating and cooling is well understood, with widespread implementation across the U.S., research specific to the environmental and economic performance of these systems in cold climates, such as Minnesota, is limited. In this study, a comparative environmental life cycle assessment (LCA) is conducted of typical residential HVAC (Heating, Ventilation, and Air Conditioning) systems in Minnesota to investigate greenhouse gas (GHG) emissions for delivering 20 years of residential heating and cooling—maintaining indoor temperatures of 68°F (20°C) and 75°F (24°C) in Minnesota-specific heating and cooling seasons, respectively. Eight residential GSHP design scenarios (i.e. horizontal loop field, vertical loop field, high coefficient of performance, low coefficient of performance, hybrid natural gas heat back-up) and one conventional natural gas furnace and air conditioner system are assessed for GHG and life cycle economic costs. Life cycle GHG emissions were found to range between 1.09 × 105 kg CO2 eq. and 1.86 × 10 5 kg CO2 eq. Six of the eight GSHP technology scenarios had fewer carbon impacts than the conventional system. Only in cases of horizontal low-efficiency GSHP and hybrid, do results suggest increased GHGs. Life cycle costs and present value analyses suggest GSHP technologies can be cost competitive over their 20-year life, but that policy incentives may be required to reduce the high up-front capital costs of GSHPs and relatively long payback periods of more than 20 years. In addition, results suggest that the regional electricity fuel mix and volatile energy prices significantly influence the benefits of employing GSHP technologies in Minnesota from both environmental and economic perspectives. It is worthy noting that with the historically low natural gas price in 2012, the conventional system's energy bill reduction would be large enough to bring its life-cycle cost below those of the GSHPs. As a result, the environmentally favorable GSHP technologies would become economically unfavorable, unless they are additionally subsidized. Improved understanding these effects, along with design and performance characteristics of GSGP technologies specific to Minnesota's cold climate, allows better decision making among homeowners considering these technologies and policy makers providing incentives for alternative energy solutions.
Changes in the carbon footprint of Japanese households in an aging society.
Shigetomi, Yosuke; Nansai, Keisuke; Kagawa, Shigemi; Tohno, Susumu
2014-06-03
As the aging and low birthrate trends continue in Japan, and as changes in the working population and consumption patterns occur, new factors are expected to have an impact on consumption-based greenhouse gas (GHG) emissions. We present the impacts of changes in the composition of Japanese households on GHG emission structures using current (2005) consumption-based accounting on the commodity sectors that are expected to require priority efforts for reducing emissions in 2035. This is done using the Global Link Input-Output model (GLIO) and domestic household consumption data and assuming that recent detailed consumption expenditures based on the Social Accounting Matrix (SAM) will continue into the future. The results show that consumption-based GHG emissions derived from Japanese household consumption in 2035 are estimated to be 1061 Mt-CO2eq (4.2% lower than in 2005). This study can be used to reveal more information and as a resource in developing policies to more meticulously and efficiently reduce emissions based on emission and import rates for each domestic and overseas commodity supply chain.
Thomas, Dean T.; Sanderman, Jonathan; Eady, Sandra J.; Masters, David G.; Sanford, Paul
2012-01-01
Simple Summary Greenhouse gas (GHG) emissions from ruminant livestock production (sheep, cattle and goats) have contributed to a common perception that a shift in the human diet from animal to plant-based products is environmentally responsible. In this study we found that the level of net emissions from livestock production systems is strongly influenced by the type of farming system that is used, and in fact GHG emission levels from some livestock production systems may be comparable with cropping systems. By introducing into farming systems ‘perennial’ pasture plants that are able to capture more atmospheric carbon, which is then stored in the soil, emission levels from livestock production can be substantially reduced. Abstract On-farm activities that reduce GHG emissions or sequester carbon from the atmosphere to compensate for anthropogenic emissions are currently being evaluated by the Australian Government as carbon offset opportunities. The aim of this study was to examine the implications of establishing and grazing Kikuyu pastures, integrated as part of a mixed Merino sheep and cropping system, as a carbon offset mechanism. For the assessment of changes in net greenhouse gas emissions, results from a combination of whole farm economic and livestock models were used (MIDAS and GrassGro). Net GHG emissions were determined by deducting increased emissions from introducing this practice change (increased methane and nitrous oxide emissions due to higher stocking rates) from the soil carbon sequestered from growing the Kikuyu pasture. Our results indicate that livestock systems using perennial pastures may have substantially lower net GHG emissions, and reduced GHG intensity of production, compared with annual plant-based production systems. Soil carbon accumulation by converting 45% of arable land within a farm enterprise to Kikuyu-based pasture was determined to be 0.80 t CO2-e farm ha−1 yr−1 and increased GHG emissions (leakage) was 0.19 t CO2-e farm ha−1 yr−1. The net benefit of this practice change was 0.61 t CO2-e farm ha−1 yr−1 while the rate of soil carbon accumulation remains constant. The use of perennial pastures improved the efficiency of animal production almost eight fold when expressed as carbon dioxide equivalent emissions per unit of animal product. The strategy of using perennial pasture to improve production levels and store additional carbon in the soil demonstrates how livestock should be considered in farming systems as both sources and sinks for GHG abatement. PMID:26487024
Perez, L; Trüeb, S; Cowie, H; Keuken, M P; Mudu, P; Ragettli, M S; Sarigiannis, D A; Tobollik, M; Tuomisto, J; Vienneau, D; Sabel, C; Künzli, N
2015-12-01
Local strategies to reduce green-house gases (GHG) imply changes of non-climatic exposure patterns. To assess the health impacts of locally relevant transport-related climate change policies in Basel, Switzerland. We modelled change in mortality and morbidity for the year 2020 based on several locally relevant transport scenarios including all decided transport policies up to 2020, additional realistic and hypothesized traffic reductions, as well as ambitious diffusion levels of electric cars. The scenarios were compared to the reference condition in 2010 assumed as status quo. The changes in non-climatic population exposure included ambient air pollution, physical activity, and noise. As secondary outcome, changes in Disability-Adjusted Life Years (DALYs) were put into perspective with predicted changes of CO2 emissions and fuel consumption. Under the scenario that assumed a strict particle emissions standard in diesel cars and all planned transport measures, 3% of premature deaths could be prevented from projected PM2.5 exposure reduction. A traffic reduction scenario assuming more active trips provided only minor added health benefits for any of the changes in exposure considered. A hypothetical strong support to electric vehicles diffusion would have the largest health effectiveness given that the energy production in Basel comes from renewable sources. The planned local transport related GHG emission reduction policies in Basel are sensible for mitigating climate change and improving public health. In this context, the most effective policy remains increasing zero-emission vehicles. Copyright © 2015 Elsevier Ltd. All rights reserved.
Investigation of CO2 emission reduction strategy from in-use gasoline vehicle
NASA Astrophysics Data System (ADS)
Choudhary, Arti; Gokhale, Sharad
2016-04-01
On road transport emissions is kicking off in Indian cities due to high levels of urbanization and economic growth during the last decade in Indian subcontinent. In 1951, about 17% of India's population were living in urban areas that increased to 32% in 2011. Currently, India is fourth largest Green House Gas (GHG) emitter in the world, with its transport sector being the second largest contributor of CO2 emissions. For achieving prospective carbon reduction targets, substantial opportunity among in-use vehicle is necessary to quantify. Since, urban traffic flow and operating condition has significant impact on exhaust emission (Choudhary and Gokhale, 2016). This study examined the influence of vehicular operating kinetics on CO2 emission from predominant private transportation vehicles of Indian metropolitan city, Guwahati. On-board instantaneous data were used to quantify the impact of CO2 emission on different mileage passenger cars and auto-rickshaws at different times of the day. Further study investigates CO2 emission reduction strategies by using International Vehicle Emission (IVE) model to improve co-benefit in private transportation by integrated effort such as gradual phase-out of inefficient vehicle and low carbon fuel. The analysis suggests that fuel type, vehicles maintenance and traffic flow management have potential for reduction of urban sector GHG emissions. Keywords: private transportation, CO2, instantaneous emission, IVE model Reference Choudhary, A., Gokhale, S. (2016). Urban real-world driving traffic emissions during interruption and congestion. Transportation Research Part D: Transport and Environment 43: 59-70.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iyer, Gokul C.; Clarke, Leon E.; Edmonds, James A.
The United States has articulated a deep decarbonization strategy for achieving a reduction in economy-wide greenhouse gas (GHG) emissions of 80% below 2005 levels by 2050. Achieving such deep emissions reductions will entail a major transformation of the energy system and of the electric power sector in particular. , This study uses a detailed state-level model of the U.S. energy system embedded within a global integrated assessment model (GCAM-USA) to demonstrate pathways for the evolution of the U.S. electric power sector that achieve 80% economy-wide reductions in GHG emissions by 2050. The pathways presented in this report are based onmore » feedback received during a workshop of experts organized by the U.S. Department of Energy’s Office of Energy Policy and Systems Analysis. Our analysis demonstrates that achieving deep decarbonization by 2050 will require substantial decarbonization of the electric power sector resulting in an increase in the deployment of zero-carbon and low-carbon technologies such as renewables and carbon capture utilization and storage. The present results also show that the degree to which the electric power sector will need to decarbonize and low-carbon technologies will need to deploy depends on the nature of technological advances in the energy sector, the ability of end-use sectors to electrify and level of electricity demand.« less
Yang, Fang; Lee, Xinqing; Theng, Benny K G; Wang, Bing; Cheng, Jianzhong; Wang, Qian
2017-06-01
Agricultural soils are an important source of greenhouse gases (GHG). Biochar application to such soils has the potential of mitigating global anthropogenic GHG emissions. Under irrigation, the topsoils in arid regions experience repeated drying and wetting during the crop growing season. Biochar incorporation into these soils would change the soil microbial environment and hence affect GHG emissions. Little information, however, is available regarding the effect of biochar addition on carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) emissions from agricultural soils undergoing repeated drying and wetting. Here, we report the results of a 49-day aerobic incubation experiment, incorporating biochar into an anthropogenic alluvial soil in an arid region of Xinjiang Province, China, and measuring CO 2 and N 2 O emissions. Under both drying-wetting and constantly moist conditions, biochar amendment significantly increased cumulative CO 2 emission. At the same time, there was a significant reduction (up to ~20 %) in cumulative N 2 O emission, indicating that the addition of biochar to irrigated agricultural soils may effectively slow down global warming in arid regions of China.
NASA Astrophysics Data System (ADS)
Field, John L.; Evans, Samuel G.; Marx, Ernie; Easter, Mark; Adler, Paul R.; Dinh, Thai; Willson, Bryan; Paustian, Keith
2018-03-01
Although dedicated energy crops will probably be an important feedstock for future cellulosic bioenergy production, it is unknown how they can best be integrated into existing agricultural systems. Here we use the DayCent ecosystem model to simulate various scenarios for growing switchgrass in the heterogeneous landscape that surrounds a commercial-scale cellulosic ethanol biorefinery in southwestern Kansas, and quantify the associated fuel production costs and lifecycle greenhouse gas (GHG) emissions. We show that the GHG footprint of ethanol production can be reduced by up to 22 g of CO2 equivalent per megajoule (CO2e MJ-1) through careful optimization of the soils cultivated and corresponding fertilizer application rates (the US Renewable Fuel Standard requires a 56 gCO2e MJ-1 lifecycle emissions reduction for `cellulosic' biofuels compared with conventional gasoline). This improved climate performance is realizable at modest additional costs, less than the current value of low-carbon fuel incentives. We also demonstrate that existing subsidized switchgrass plantings within this landscape probably achieve suboptimal GHG mitigation, as would landscape designs that strictly minimize the biomass collection radius or target certain marginal lands.
Global warming potential of manure amended soils under rice-wheat system in the Indo-Gangetic plains
NASA Astrophysics Data System (ADS)
Bhatia, A.; Pathak, H.; Jain, N.; Singh, P. K.; Singh, A. K.
Use of organic amendments such as farmyard manure (FYM), green manure (GM) and crop residues is important to improve soil health and reduce the dependence on synthetic chemical fertilizer. However, these organic amendments also effect the emissions of greenhouse gas (GHG) from soil. Influence of different organic amendments on emissions of GHG from soil and their global warming potential (GWP) was studied in a field experiment in rice-wheat cropping system of Indo-Gangetic plains (IGP). There was 28% increase in CH 4 emissions on addition of 25% N through Sesbania GM along with urea compared to urea alone. Substitution of 100% inorganic N by organic sources lead to a 60% increase in CH 4 emissions. The carbon equivalent emission from rice-wheat systems varied between 3816 and 4886 kg C equivalent ha -1 depending upon fertilizer and organic amendment. GWP of rice-wheat system increased by 28% on full substitution of organic N by chemical N. However, the C efficiency ratios of the GM and crop residue treatments were at par with the recommended inorganic fertilizer treatment. Thus use of organic amendments along with inorganic fertilizer increases the GWP of the rice-wheat system but may improve the soil fertility status without adversely affecting the C efficiency ratio. However, the trade-off between improved yield and soil health versus GHG emissions should be taken into account while promoting the practice of farming with organic residues substitution for mineral fertilizer.
Electric urban delivery trucks: energy use, greenhouse gas emissions, and cost-effectiveness.
Lee, Dong-Yeon; Thomas, Valerie M; Brown, Marilyn A
2013-07-16
We compare electric and diesel urban delivery trucks in terms of life-cycle energy consumption, greenhouse gas (GHG) emissions, and total cost of ownership (TCO). The relative benefits of electric trucks depend heavily on vehicle efficiency associated with drive cycle, diesel fuel price, travel demand, electric drive battery replacement and price, electricity generation and transmission efficiency, electric truck recharging infrastructure, and purchase price. For a drive cycle with frequent stops and low average speed such as the New York City Cycle (NYCC), electric trucks emit 42-61% less GHGs and consume 32-54% less energy than diesel trucks, depending upon vehicle efficiency cases. Over an array of possible conditions, the median TCO of electric trucks is 22% less than that of diesel trucks on the NYCC. For a drive cycle with less frequent stops and high average speed such as the City-Suburban Heavy Vehicle Cycle (CSHVC), electric trucks emit 19-43% less GHGs and consume 5-34% less energy, but cost 1% more than diesel counterparts. Considering current and projected U.S. regional electricity generation mixes, for the baseline case, the energy use and GHG emissions ratios of electric to diesel trucks range from 48 to 82% and 25 to 89%, respectively.