Science.gov

Sample records for efficient glycopolypeptide-based cholera

  1. Manipulation of electrostatic and saccharide linker interactions in the design of efficient glycopolypeptide-based cholera toxin inhibitors.

    PubMed

    Maheshwari, Ronak; Levenson, Eric A; Kiick, Kristi L

    2010-01-11

    Multivalent, glycopolymer inhibitors designed for the treatment of disease and pathogen infection have shown improvements in binding correlated with general changes in glycopolymer architecture and composition. We have previously demonstrated that control of glycopolypeptide backbone extension and ligand spacing significantly impacts the inhibition of the cholera toxin B subunit pentamer (CT B(5)) by these polymers. In the studies reported here, we elucidate the role of backbone charge and linker length in modulating the inhibition event. Peptides of the sequence AXPXG (where X is a positive, neutral or negative amino acid), equipped with the alkyne functionality of propargyl glycine, were designed and synthesized via solid-phase peptide synthetic methods and glycosylated via Cu(I)-catalyzed alkyne-azide cycloaddition reactions. The capacity of the glycopeptides to inhibit the binding of the B(5) subunit of cholera toxin was evaluated. These studies indicated that glycopeptides with a negatively charged backbone show improved inhibition of the binding event relative to the other glycopeptides. In addition, variations in the length of the linker between the peptide and the saccharide ligand also affected the inhibition of CT by the glycopeptides. Our findings suggest that, apart from appropriate saccharide spacing and polypeptide chain extension, saccharide linker conformation and the systematic placement of charges on the polypeptide backbone are also significant variables that can be tuned to improve the inhibitory potencies of glycopolypeptide-based multivalent inhibitors.

  2. Cholera

    MedlinePlus

    ... Cholera occurs in places with a lack of water treatment or sewage treatment, or crowding, war, and famine. Common locations for cholera include: Africa Some parts of Asia India Bangladesh Mexico South and Central America

  3. Cholera.

    PubMed

    Parsi, V K.

    2001-05-01

    Cholera, an infectious disease caused by Vibrio cholerae, is primarily transmitted by ingestion of contaminated food or water. In severe cases, cholera may lead to severe dehydration, metabolic acidosis, and ultimately, hypovolemic shock and death. The diagnosis is confirmed by identification of V. cholerae in a stool specimen. Treatment should be started immediately by rapid replacement of fluid and electrolytes. Antibiotics such as tetracycline and doxycycline shorten the duration of illness but do not significantly affect overall mortality. Cholera can be prevented by limiting spread, survival, and growth of the organism. The current parenteral cholera vaccine is not recommended by the Public Health Service or the World Health Organization because of its limited protection. A number of oral vaccines are currently being tested in clinical trials.

  4. Cholera.

    PubMed Central

    Kaper, J B; Morris, J G; Levine, M M

    1995-01-01

    Despite more than a century of study, cholera still presents challenges and surprises to us. Throughout most of the 20th century, cholera was caused by Vibrio cholerae of the O1 serogroup and the disease was largely confined to Asia and Africa. However, the last decade of the 20th century has witnessed two major developments in the history of this disease. In 1991, a massive outbreak of cholera started in South America, the one continent previously untouched by cholera in this century. In 1992, an apparently new pandemic caused by a previously unknown serogroup of V. cholerae (O139) began in India and Bangladesh. The O139 epidemic has been occurring in populations assumed to be largely immune to V. cholerae O1 and has rapidly spread to many countries including the United States. In this review, we discuss all aspects of cholera, including the clinical microbiology, epidemiology, pathogenesis, and clinical features of the disease. Special attention will be paid to the extraordinary advances that have been made in recent years in unravelling the molecular pathogenesis of this infection and in the development of new generations of vaccines to prevent it. PMID:7704895

  5. Cholera.

    PubMed

    Lippi, Donatella; Gotuzzo, Eduardo; Caini, Saverio

    2016-08-01

    Cholera is an acute disease of the gastrointestinal tract caused by Vibrio cholerae. Cholera was localized in Asia until 1817, when a first pandemic spread from India to several other regions of the world. After this appearance, six additional major pandemics occurred during the 19th and 20th centuries, the latest of which originated in Indonesia in the 1960s and is still ongoing. In 1854, a cholera outbreak in Soho, London, was investigated by the English physician John Snow (1813 to 1858). He described the time course of the outbreak, managed to understand its routes of transmission, and suggested effective measures to stop its spread, giving rise to modern infectious disease epidemiology. The germ responsible for cholera was discovered twice: first by the Italian physician Filippo Pacini during an outbreak in Florence, Italy, in 1854, and then independently by Robert Koch in India in 1883, thus favoring the germ theory over the miasma theory of disease. Unlike many other infectious diseases, such as plague, smallpox, and poliomyelitis, cholera persists as a huge public health problem worldwide, even though there are effective methods for its prevention and treatment. The main reasons for its persistence are socioeconomic rather than purely biological; cholera flourishes where there are unsatisfactory hygienic conditions and where a breakdown of already fragile sanitation and health infrastructure occurs because of natural disasters or humanitarian crises.

  6. Cholera

    MedlinePlus

    ... sometimes antibiotics. Anyone who thinks they may have cholera should seek medical attention immediately. Dehydration can be rapid so fluid replacement is essential. Centers for Disease Control and Prevention

  7. Construction and preclinical evaluation of mmCT, a novel mutant cholera toxin adjuvant that can be efficiently produced in genetically manipulated Vibrio cholerae.

    PubMed

    Lebens, Michael; Terrinoni, Manuela; Karlsson, Stefan L; Larena, Maximilian; Gustafsson-Hedberg, Tobias; Källgård, Susanne; Nygren, Erik; Holmgren, Jan

    2016-04-19

    There is an urgent need for new adjuvants that are effective with mucosally administered vaccines. Cholera toxin (CT) is the most powerful known mucosal adjuvant but is much too toxic for human use. In an effort to develop a useful mucosal adjuvant we have generated a novel non-toxic mutant CT molecule that retains much of the adjuvant activity of native CT. This was achieved by making the enzymatically active A subunit (CTA) recalcitrant to the site-specific proteolytic cleavage ("nicking") required for toxicity, which was found to require mutations not only in the two residues rendering the molecule resistant to trypsin but also in neighboring sites protecting against cleavage by Vibrio cholerae proteases. This multiple-mutated CT (mmCT) adjuvant protein could be efficiently produced in and purified from the extracellular medium of CT-deleted V. cholerae. The mmCT completely lacked detectable enterotoxicity in an infant mouse model and had >1000-fold reduced cAMP inducing activity compared to native CT in a sensitive mammalian target cell system. It nonetheless proved to have potent adjuvant activity on mucosal and systemic antibody as well as cellular immune responses to mucosally co-administered antigens including oral cholera and intranasal influenza vaccines. We conclude that mmCT is an attractive novel non-toxic mucosal adjuvant for enhancing immune responses to co-administered mucosal vaccines.

  8. Cholera Treatment

    MedlinePlus

    ... The CDC Cancel Submit Search The CDC Cholera - Vibrio cholerae infection Note: Javascript is disabled or is not ... Infection & Risk Factors Non-O1 and Non-O139 Vibrio cholerae Infections Diagnosis and Detection Laboratory Testing for Cholera ...

  9. Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches.

    PubMed

    Nezafat, Navid; Karimi, Zeinab; Eslami, Mahboobeh; Mohkam, Milad; Zandian, Sanam; Ghasemi, Younes

    2016-06-01

    Cholera continues to be a major global health concern. Among different Vibrio cholerae strains, only O1 and O139 cause acute diarrheal diseases that are related to epidemic and pandemic outbreaks. The currently available cholera vaccines are mainly lived and attenuated vaccines consisting of V. cholerae virulence factors such as toxin-coregulated pili (TCP), outer membrane proteins (Omps), and nontoxic cholera toxin B subunit (CTB). Nowadays, there is a great interest in designing an efficient epitope vaccine against cholera. Epitope vaccines consisting of immunodominant epitopes and adjuvant molecules enhance the possibility of inciting potent protective immunity. In this study, V. cholerae protective antigens (OmpW, OmpU, TcpA and TcpF) and the CTB, which is broadly used as an immunostimulatory adjuvant, were analyzed using different bioinformatics and immunoinformatics tools. The common regions between promiscuous epitopes, binding to various HLA-II supertype alleles, and B-cell epitopes were defined based upon the aforementioned protective antigens. The ultimately selected epitopes and CTB adjuvant were fused together using proper GPGPG linkers to enhance vaccine immunogenicity. A three-dimensional model of the thus constructed vaccine was generated using I-TASSER. The model was structurally validated using the ProSA-web error-detection software and the Ramachandran plot. The validation results indicated that the initial 3D model needed refinement. Subsequently, a high-quality model obtained after various refinement cycles was used for defining conformational B-cell epitopes. Several linear and conformational B-cell epitopes were determined within the epitope vaccine, suggesting likely antibody triggering features of our designed vaccine. Next, molecular docking was performed between the 3D vaccine model and the tertiary structure of the toll like receptor 2 (TLR2). To gain further insight into the interaction between vaccine and TLR2, molecular dynamics

  10. Selective and Efficient Elimination of Vibrio cholerae with a Chemical Modulator that Targets Glucose Metabolism

    PubMed Central

    Oh, Young Taek; Kim, Hwa Young; Kim, Eun Jin; Go, Junhyeok; Hwang, Wontae; Kim, Hyoung Rae; Kim, Dong Wook; Yoon, Sang Sun

    2016-01-01

    Vibrio cholerae, a Gram-negative bacterium, is the causative agent of pandemic cholera. Previous studies have shown that the survival of the seventh pandemic El Tor biotype V. cholerae strain N16961 requires production of acetoin in a glucose-rich environment. The production of acetoin, a neutral fermentation end-product, allows V. cholerae to metabolize glucose without a pH drop, which is mediated by the production of organic acid. This finding suggests that inhibition of acetoin fermentation can result in V. cholerae elimination by causing a pH imbalance under glucose-rich conditions. Here, we developed a simple high-throughput screening method and identified an inducer of medium acidification (iMAC). Of 8364 compounds screened, we identified one chemical, 5-(4-chloro-2-nitrobenzoyl)-6-hydroxy-1,3-dimethylpyrimidine-2,4(1H,3H)-dione, that successfully killed glucose-metabolizing N16961 by inducing acidic stress. When N16961 was grown with abundant glucose in the presence of iMAC, acetoin production was completely suppressed and concomitant accumulation of lactate and acetate was observed. Using a beta-galactosidase activity assay with a single-copy palsD::lacZ reporter fusion, we show that that iMAC likely inhibits acetoin production at the transcriptional level. Thin-layer chromatography revealed that iMAC causes a significantly reduced accumulation of intracellular (p)ppGpp, a bacterial stringent response alarmone known to positively regulate acetoin production. In vivo bacterial colonization and fluid accumulation were also markedly decreased after iMAC treatment. Finally, we demonstrate iMAC-induced bacterial killing for 22 different V. cholerae strains belonging to diverse serotypes. Together, our results suggest that iMAC, acting as a metabolic modulator, has strong potential as a novel antibacterial agent for treatment against cholera. PMID:27900286

  11. Implementation of a Symptomatic Approach Leads to Increased Efficiency of a Cholera Treatment Unit

    PubMed Central

    Ticona, Eduardo; Kirwan, Daniela E.; Soria, Jaime; Gilman, Robert H.

    2014-01-01

    Cholera is a disease of poverty that remains prevalent in resource-limited countries. The abrupt emergence of an epidemic frequently takes communities and health systems by surprise. Spread is rapid and initial mortality high: delays in organizing an appropriate response, lack of health worker training, and high patient numbers contribute to high rates of complications and deaths. PMID:25092822

  12. Cholera studies*

    PubMed Central

    Pollitzer, R.

    1957-01-01

    Discussing the symptomatology of cholera, the author deals first with the incubation period, the clinical types, choleraic diarrhoea, and cholerine; he then considers in detail the various stages of cholera gravis and the relapses and complications that may be met. This is followed by sections on diagnosis and differential diagnosis, and on prognosis and the various factors influencing it. The author's highly detailed review of the treatment of cholera which concludes this study is divided into three parts, dealing with attempts at specific therapy, with infusion treatment, and with adjuvant treatment. PMID:13426761

  13. Cholera outbreaks in Africa.

    PubMed

    Mengel, Martin A; Delrieu, Isabelle; Heyerdahl, Leonard; Gessner, Bradford D

    2014-01-01

    an infectious dose of Vibrio cholerae and on the virulence of the implicated strain. Cholera transmission can then be amplified by several factors including contamination of human water- or food sources; climate and extreme weather events; political and economic crises; high population density combined with poor quality informal housing and poor hygiene practices; spread beyond a local community through human travel and animals, e.g., water birds. At an individual level, cholera risk may increase with decreasing immunity and hypochlorhydria, such as that induced by Helicobacter pylori infection, which is endemic in much of Africa, and may increase individual susceptibility and cholera incidence. Since contaminated water is the main vehicle for the spread of cholera, the obvious long-term solution to eradicate the disease is the provision of safe water to all African populations. This requires considerable human and financial resources and time. In the short and medium term, vaccination may help to prevent and control the spread of cholera outbreaks. Regardless of the intervention, further understanding of cholera biology and epidemiology is essential to identify populations and areas at increased risk and thus ensure the most efficient use of scarce resources for the prevention and control of cholera.

  14. Cholera Illness and Symptoms

    MedlinePlus

    ... The CDC Cancel Submit Search The CDC Cholera - Vibrio cholerae infection Note: Javascript is disabled or is not ... Infection & Risk Factors Non-O1 and Non-O139 Vibrio cholerae Infections Diagnosis and Detection Laboratory Testing for Cholera ...

  15. Cholera Prevention and Control

    MedlinePlus

    ... The CDC Cancel Submit Search The CDC Cholera - Vibrio cholerae infection Note: Javascript is disabled or is not ... Infection & Risk Factors Non-O1 and Non-O139 Vibrio cholerae Infections Diagnosis and Detection Laboratory Testing for Cholera ...

  16. Cholera studies*

    PubMed Central

    Pollitzer, R.

    1957-01-01

    The first section of this study deals with areas where cholera is endemic and with the conditions normally favouring endemicity. Turning next to epidemics, the author discusses their origin and types, climatic influences on them, their periodicity and the possibility of forecasting them, the role played in them by different serological races of V. cholerae, and the causes of their decline. In a section on the factors governing the local spread of cholera, he considers contact and water-borne infection; the role of contaminated food and drink, of fomites, of flies, and of carriers; and the incidence according to sex, age, race, and occupation. The last part deals with factors governing the spread of cholera over longer distances, and includes discussion of the effect of movements of individuals and groups and of assemblies of the population on pilgrimages or at religious festivals. PMID:13472431

  17. Cholera studies*

    PubMed Central

    Swaroop, S.; Pollitzer, R.

    1955-01-01

    In this study, figures relating to cholera deaths occurring in individual countries, from 1900 to 1952, are recorded as well as the incidence of the disease from 1923 up to the present time. The mode of spread of cholera from its endemic home in India to outside countries is described in relation to favourable seasons, main routes followed by the infection, and the role played by large religious gatherings. The incidence of the disease in the various seaports infected within recent years is discussed. PMID:14364186

  18. Cholera studies*

    PubMed Central

    Pollitzer, R.

    1957-01-01

    After a general consideration of the loss of fluids and salts in evacuations from the gastro-intestinal tract, the author discusses in detail both the physical and the chemical changes in the blood of cholera patients. The author then deals exhaustively with the problems of circulatory and renal failure. PMID:13413649

  19. Cholera studies*

    PubMed Central

    Pollitzer, R.

    1956-01-01

    The first portion of this study describes in detail the different aspects of stool examinations, including the collection, preservation, and pooling of specimens, macroscopic and bacterioscopic examination, enrichment methods, and cultivation on a variety of solid media. The author also deals with the examination of vomits and of water. The performance and value of different identification tests (agglutination, haemolysis, and bacteriophage) and confirmatory tests are then considered. An annex is included on bacteriological procedures in the laboratory diagnosis of cholera. PMID:13356145

  20. [A promoter responsible for over-expression of cholera toxin B subunit in cholera toxin A subunit structure gene].

    PubMed

    Cao, C; Shi, C; Li, P; Ma, Q

    1997-01-01

    A promoter sequence, which promotes the transcription of cholera toxin B subunit gene, was found in cholera toxin A subunit structure gene. The transcription starts at the adenine Located at +833, that is 456bp upstream to the A of the initiation codon ATG of cholera toxin B gene. Under the control of the promoter, cholera toxin B subunit was over-expressed as high as 200 mg/L at an optimized culture condition. The chloramphenicol acetyl transferase gene and beta-galactosidase could also be efficiently expressed under the direction of the promoter. This promoter may be responsible for the 6 fold and 7 fold higher expression level of cholera toxin B subunit than cholera toxin A subunit in V. cholerae and Escheria coli respectively. The over-expression of CTB may be useful in preparing vaccine against cholera and facilitating the construction of peptide-bearing immunogenic hybrid proteins.

  1. Strong pH dependence of coupling efficiency of the Na+ - translocating NADH:quinone oxidoreductase (Na+-NQR) of Vibrio cholerae.

    PubMed

    Toulouse, Charlotte; Claussen, Björn; Muras, Valentin; Fritz, Günter; Steuber, Julia

    2017-02-01

    The Na+-translocating NADH:quinone oxidoreductase (NQR) is the entry site for electrons into the respiratory chain of Vibrio cholerae, the causative agent of cholera disease. NQR couples the electron transfer from NADH to ubiquinone to the translocation of sodium ions across the membrane. We investigated the pH dependence of electron transfer and generation of a transmembrane voltage (ΔΨ) by NQR reconstituted in liposomes with Na+ or Li+ as coupling cation. ΔΨ formation was followed with the voltage-sensitive dye oxonol. With Na+, ΔΨ was barely influenced by pH (6.5-8.5), while Q reduction activity exhibited a maximum at pH 7.5-8.0. With Li+, ΔΨ was generally lower, and the pH profile of electron transfer activity did not reveal a pronounced maximum. We conclude that the coupling efficiency of NQR is influenced by the nature of the transported cation, and by the concentration of protons. The 3D structure of NQR reveals a transmembrane channel in subunit NqrB. It is proposed that partial uncoupling of the NQR observed with the smaller Li+, or with Na+ at pH 7.5-8.0, is caused by the backflow of the coupling cation through the channel in NqrB.

  2. Cholera in Children

    MedlinePlus

    ... infection of the intestines caused by bacteria called Vibrio cholerae. It causes a watery diarrhea that can range ... as raw or undercooked shellfish contaminated with V cholerae. Cholera has ... are some species of Vibrio that do not cause cholera, although they can ...

  3. Cholera studies*

    PubMed Central

    Pollitzer, R.

    1957-01-01

    In discussing prevention, the author deals first with the provision of permanently safe water, supplied from waterworks or wells, and with other improvements in environmental sanitation. Control of food and drinks, public health propaganda and education, and vaccination are also considered under this heading. The greater part of this study is devoted to suppressive measures, affecting the individual, the environment, and persons in the mass. Discussion of the isolation, detection and management of cholera patients, the management of contacts, and the management and treatment of carriers is followed by sections on, inter alia, disinfection, temporary improvements in water supplies, fly control, and personal prophylaxis. In dealing with mass prophylaxis, the author pays particular attention to vaccination. In the concluding sections he goes into the control of pilgrimages and local and international quarantine measures. PMID:13479774

  4. Cholera Fact Sheet

    MedlinePlus

    ... works to: promote the design and implementation of global strategies to contribute to capacity development for cholera prevention ... countries for the implementation of effective cholera control strategies and monitoring ... global public health problem through the dissemination of information ...

  5. Cholera studies*†

    PubMed Central

    Pollitzer, R.; Burrows, W.

    1955-01-01

    Relevant information regarding the numerous problems encountered in cholera immunity is dealt with in great detail in this study. Toxin production, bacterial virulence, serological reactions, and the antigenic structure of V. cholerae are discussed. Natural, passive, and active cholera immunity receives special attention, the authors describing the various means of vaccination as well as the evaluation of the immunity induced. PMID:13240451

  6. Intradermal immunization in the ear with cholera toxin and its non-toxic β subunit promotes efficient Th1 and Th17 differentiation dependent on migrating DCs.

    PubMed

    Meza-Sánchez, David; Pérez-Montesinos, Gibrán; Sánchez-García, Javier; Moreno, José; Bonifaz, Laura C

    2011-10-01

    The nature of CD4(+) T-cell responses after skin immunization and the role of migrating DCs in the presence of adjuvants in the elicited response are interesting issues to be investigated. Here, we evaluated the priming of CD4(+) T cells following ear immunization with low doses of model antigens in combination with either cholera toxin (CT) or the non-toxic β CT subunit (CTB) as an adjuvant. Following immunization with CT, we found efficient antigen presentation that is reflected in the production of IFN-γ and IL-17 by CD4(+) T cells over IL-4 or IL-5 production. The CTB-induced activation of DCs in the ear occurred without visible inflammation, which reflects a similar type of CD4(+) T-cell differentiation. In both cases, the elicited response was dependent on the presence of migrating skin cells. Remarkably, immunization with CT or with CTB led to the induction of a delayed-type hypersensitivity (DTH) response in the ear. The DTH response that was induced by CT immunization was dependent on IL-17 and partially dependent on IFN-γ activity. These results indicate that both CT and CTB induce an efficient CD4(+) T-cell response to a co-administered antigen following ear immunization that is dependent on migrating DCs.

  7. Vibrio cholerae Biofilms and Cholera Pathogenesis

    PubMed Central

    Silva, Anisia J.; Benitez, Jorge A.

    2016-01-01

    Vibrio cholerae can switch between motile and biofilm lifestyles. The last decades have been marked by a remarkable increase in our knowledge of the structure, regulation, and function of biofilms formed under laboratory conditions. Evidence has grown suggesting that V. cholerae can form biofilm-like aggregates during infection that could play a critical role in pathogenesis and disease transmission. However, the structure and regulation of biofilms formed during infection, as well as their role in intestinal colonization and virulence, remains poorly understood. Here, we review (i) the evidence for biofilm formation during infection, (ii) the coordinate regulation of biofilm and virulence gene expression, and (iii) the host signals that favor V. cholerae transitions between alternative lifestyles during intestinal colonization, and (iv) we discuss a model for the role of V. cholerae biofilms in pathogenicity. PMID:26845681

  8. Cholera studies*†

    PubMed Central

    Pollitzer, R.

    1955-01-01

    In this study, the author describes in detail experimental cholera infection of mammals (infection by the oral route, intragastric inoculation, and intestinal, gall-bladder, and parenteral infection). The pathogenicity for lower animals is examined, and certain observations on insects are included. The second part of the study is devoted to the pathology of human cholera (morbid anatomy distribution of the causative organisms in the dead bodies of cholera victims, and pathogenesis). PMID:13284569

  9. Modeling cholera outbreaks

    PubMed Central

    Longini, Ira M.; Morris, J. Glenn

    2014-01-01

    Mathematical modeling can be a valuable tool for studying infectious disease outbreak dynamics and simulating the effects of possible interventions. Here, we describe approaches to modeling cholera outbreaks and how models have been applied to explore intervention strategies, particularly in Haiti. Mathematical models can play an important role in formulating and evaluating complex cholera outbreak response options. Major challenges to cholera modeling are insufficient data for calibrating models and the need to tailor models for different outbreak scenarios. PMID:23412687

  10. Cholera outbreaks in India.

    PubMed

    Ramamurthy, Thandavarayan; Sharma, Naresh C

    2014-01-01

    Cholera is a global health problem as several thousands of cases and deaths occur each year. The unique epidemiologic attribute of the disease is its propensity to occur as outbreaks that may flare-up into epidemics, if not controlled. The causative bacterial pathogen Vibrio cholerae prevails in the environment and infects humans whenever there is a breakdown in the public health component. The Indian subcontinent is vulnerable to this disease due its vast coastlines with areas of poor sanitation, unsafe drinking water, and overcrowding. Recently, it was shown that climatic conditions also play a major role in the persistence and spread of cholera. Constant change in the biotypes and serotypes of V. cholerae are also important aspects that changes virulence and survival of the pathogen. Such continuous changes increase the infection ability of the pathogen affecting the susceptible population including the children. The short-term carrier status of V. cholerae has been studied well at community level and this facet significantly contributes to the recurrence of cholera. Several molecular tools recognized altering clonality of V. cholerae in relation with the advent of a serogroup or serotype. Rapid identification systems were formulated for the timely detection of the pathogen so as to identify and control the outbreak and institute proper treatment of the patients. The antimicrobials used in the past are no longer useful in the treatment of cholera as V. cholerae has acquired several mechanisms for multiple antimicrobial resistance. This upsurge in antimicrobial resistance directly influences the management of the disease. This chapter provides an overview of cholera prevalence in India, possible sources of infection, and molecular epidemiology along with antimicrobial resistance of V. cholerae.

  11. Cholera studies*†

    PubMed Central

    Pollitzer, R.

    1955-01-01

    The morphological characteristics, biochemical properties, and cultural characteristics of V. cholerae are described in great detail in this study. The author also discusses the resistance of the organism to temperature, humidity, sunlight, and various chemicals, as well as the viability of V. cholerae outside the body (in faeces, contaminated material, food, beverages, water, etc.). PMID:14379012

  12. Catechol Siderophore Transport by Vibrio cholerae

    PubMed Central

    Allred, Benjamin E.; Raymond, Kenneth N.; Payne, Shelley M.

    2015-01-01

    ABSTRACT Siderophores, small iron-binding molecules secreted by many microbial species, capture environmental iron for transport back into the cell. Vibrio cholerae synthesizes and uses the catechol siderophore vibriobactin and also uses siderophores secreted by other species, including enterobactin produced by Escherichia coli. E. coli secretes both canonical cyclic enterobactin and linear enterobactin derivatives likely derived from its cleavage by the enterobactin esterase Fes. We show here that V. cholerae does not use cyclic enterobactin but instead uses its linear derivatives. V. cholerae lacked both a receptor for efficient transport of cyclic enterobactin and enterobactin esterase to promote removal of iron from the ferrisiderophore complex. To further characterize the transport of catechol siderophores, we show that the linear enterobactin derivatives were transported into V. cholerae by either of the catechol siderophore receptors IrgA and VctA, which also transported the synthetic siderophore MECAM [1,3,5-N,N′,N″-tris-(2,3-dihydroxybenzoyl)-triaminomethylbenzene]. Vibriobactin is transported via the additional catechol siderophore receptor ViuA, while the Vibrio fluvialis siderophore fluvibactin was transported by all three catechol receptors. ViuB, a putative V. cholerae siderophore-interacting protein (SIP), functionally substituted for the E. coli ferric reductase YqjH, which promotes the release of iron from the siderophore in the bacterial cytoplasm. In V. cholerae, ViuB was required for the use of vibriobactin but was not required for the use of MECAM, fluvibactin, ferrichrome, or the linear derivatives of enterobactin. This suggests the presence of another protein in V. cholerae capable of promoting the release of iron from these siderophores. IMPORTANCE Vibrio cholerae is a major human pathogen and also serves as a model for the Vibrionaceae, which include other serious human and fish pathogens. The ability of these species to persist and

  13. Vibrio cholerae in an Historically Cholera-Free Country.

    PubMed

    Haley, Bradd J; Chen, Arlene; Grim, Christopher J; Clark, Philip; Diaz, Celia Municio; Taviani, Elisa; Hasan, Nur A; Sancomb, Elizabeth; Elnemr, Wessam Mahmoud; Islam, Muhammad A; Huq, Anwar; Colwell, Rita R; Benediktsdóttir, Eva

    2012-08-01

    We report the autochthonous existence of Vibrio cholerae in coastal waters of Iceland, a geothermally active country where cholera is absent and has never been reported. Seawater, mussel, and macroalgae samples were collected close to and distant from sites where geothermal activity causes a significant increase in water temperature during low tides. V. cholerae was detected only at geothermal-influenced sites during low-tides. None of the V. cholerae isolates encoded cholera toxin (ctxAB) and all were non-O1/non-O139 serogroups. However, all isolates encoded other virulence factors that are associated with cholera as well as extra-intestinal V. cholerae infections. The virulence factors were functional at temperatures of coastal waters of Iceland, suggesting an ecological role. It is noteworthy that V. cholerae was isolated from samples collected at sites distant from anthropogenic influence, supporting the conclusion that V. cholerae is autochthonous to the aquatic environment of Iceland.

  14. [Cholera and war].

    PubMed

    Ganin, V S

    2009-09-01

    During last centures wars were the main account of spread of cholera. It is caused by movement of great mass of troops and peaceful populace, acute fall of living circumstances, decline of sanitarium conditions of population aggregates, difficultness or impossibility of effectuating of contra-epidemic measures. Cholera casualty was multifold bigger, the weapon casualty in fighting armies. The article presents data of cholera epidemics, were in fighting armies of different states. During the XXth century fight casualty began to overpass the disease casualty. It is caused by grand increasing of damage effects of measures of war, organized using of prophylaxis measures and success in treatment of infectious diseases. The article presents data about cholera falling ill during the Great Patriotic War and about system of contro-epidemic barrier on fronts and rear of state.

  15. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... cholera caused by the bacterium Vibrio cholerae and provides epidemiological information on cholera. Cholera is an acute infectious disease characterized by severe diarrhea with extreme fluid and...

  16. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... cholera caused by the bacterium Vibrio cholerae and provides epidemiological information on cholera. Cholera is an acute infectious disease characterized by severe diarrhea with extreme fluid and...

  17. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... cholera caused by the bacterium Vibrio cholerae and provides epidemiological information on cholera. Cholera is an acute infectious disease characterized by severe diarrhea with extreme fluid and...

  18. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... cholera caused by the bacterium Vibrio cholerae and provides epidemiological information on cholera. Cholera is an acute infectious disease characterized by severe diarrhea with extreme fluid and...

  19. Cholera in the Americas.

    PubMed

    1991-01-01

    The cholera epidemic 1st hit South America in January 1991 in the coastal town of Chancay, Peru. In 2 weeks, it spread over 2000 km of the Pacific coast. By the end of the 1st month, it had already reached the mountains and tropical forests. By August 1991, cholera cases were reported in order of appearances in Ecuador, Colombia, Chile, Brazil, the US, Mexico, Guatemala, Bolivia, and El Salvador. Health authorities still do not know how it was introduced into South America. The case fatality rate has remained at a low of 1%, probably due to the prompt actions of health authorities in informing the public of the epidemic and what preventive cautions should be taken. This epidemic is part of the 7th pandemic which originated in Celebes, Indonesia in 1961. Cholera can spread relatively unchecked in Latin America because sewage in urban areas is not treated even though they do have sewage collection systems. The untreated wastewater enters rivers and the ocean. Consumption of raw seafood is not unusual and has been responsible for cholera infection in some cases. In fact, many countries placed import restrictions on marine products from Peru following the outbreak at a loss of $US10-$US40 million. Municipal sewage treatment facilities, especially stabilization ponds, would prevent the spread of cholera and other pathogens. In rural areas, pit latrines located away from wells can effectively dispose of human wastes. Most water supplies in Latin America are not disinfected. Disinfection drinking water with adequate levels of chlorine would effectively destroy V. cholera. If this is not possible, boiling the water for 2-3 minutes would destroy the pathogen. Any cases of cholera must be reported to PAHO. PAHO has responded to the outbreak by forming a Cholera Task Force and arranged transport of oral rehydration salts, intravenous fluids, antibiotics, and other essential medical supplies.

  20. [Cholera in pediatrics].

    PubMed

    Lezama-Basulto, L A; Mota-Hernández, F

    1993-09-01

    Cholerae is a grave and acute bacterial intestine infection which is caused by a bacilo, V. cholerae 01, that produces toxic products. Its clinical symptoms range from abundant liquid diarrhoea combined with vomiting and rapid dehydration. It is highly lethal when right treatment is not applied. There are also cases of cholera where victims do not show any symptoms of it, that is asymptomatic carriers. Any clinical suspicion of cholerae has to be corroborated by epidemiological data and its diagnostic confirmation should be done by isolating the bacteria, V. cholerae. When beginning the treatment, it is not necessary to confirm the diagnostic and this is based on the restitution of the liquids lost through vomiting and facing using any methods that are recommended for any other type of diarrhoea. The antimicrobial treatment is used only for grave cases. This present revision includes recent knowledge about cholerae emphasising on the effective management of cases through an adequate use of right treatment methods and also using the principal prevention measures against dissemination of this disease.

  1. [Isolation of the R'his plasmids of Vibrio cholerae].

    PubMed

    Rusina, O Iu; Tiganova, I G; Aleshkin, G I; Andreeva, I V; Skavronskaia, A G

    1987-06-01

    V. cholerae strain VT5104 capable of donor activity in conjugation has been constructed by the genetic technique based on plasmid RP4::Mucts62 integration into V. cholerae chromosome due to plasmid homology with Mucts62 inserted into the chromosome. The gene for histidine synthesis has been mobilized and transferred into the recipient cells from VT5104 donor. The conjugants obtained are able to efficiently transfer his+ gene included into the plasmid structure in conjugation with eltor recipient. Thus, the constructed strain VT5104 generates R' plasmids carrying V. cholerae chromosomal genes.

  2. Cholera: a great global concern.

    PubMed

    Mandal, Shyamapada; Mandal, Manisha Deb; Pal, Nishith Kumar

    2011-07-01

    Cholera, caused by the infection of toxigenic Vibrio cholerae (V. cholerae) to humans, is a life threatening diarrheal disease with epidemic and pandemic potential. The V. cholerae, both O1 and O139 serogroups, produce a potent enterotoxin (cholera toxin) responsible for the lethal symptoms of the disease. The O1 serogroup has two biotypes (phenotypes), classical and El Tor; each of which has two major serotypes (based on antigenic responses), Ogawa and Inaba and the extremely rare Hikojima. V. cholerae O1 strains interconvert and switch between the Ogawa and Inaba serotypes. Fluid and electrolyte replacement is the mainstay of treatment of cholera patients; the severe cases require antibiotic treatment to reduce the duration of illness and replacement of fluid intake. The antibiotic therapy currently has faced difficulties due to the rapid emergence and spread of multidrug resistant V. cholerae causing several outbreaks in the globe. Currently, cholera has been becoming endemic in an increasing number of geographical areas, reflecting a failure in implementation of control measures. However, the current safe oral vaccines lower the number of resistant infections and could thus represent an effective intervention measure to control antibiotic resistance in cholera. Overall, the priorities for cholera control remain public health interventions through improved drinking water, sanitation, surveillance and access to health care facilities, and further development of safe, effective and appropriate vaccines. Thus, this review describes the facts and phenomena related to the disease cholera, which is still a great threat mainly to the developing countries, and hence a grave global concern too.

  3. The role of immunity and seasonality in cholera epidemics.

    PubMed

    Sanches, Rosângela P; Ferreira, Claudia P; Kraenkel, Roberto A

    2011-12-01

    This paper presents a mathematical model for cholera epidemics which comprises seasonality, loss of host immunity, and control mechanisms acting to reduce cholera transmission. A collection of data related to cholera disease allows us to show that outbreaks in endemic areas are subject to a resonant behavior, since the intrinsic oscillation period of the disease (∼1 year) is synchronized with the annual contact rate variation. Moreover, we argue that the short period of the host immunity may be associated to secondary peaks of incidence observed in some regions (a bimodal pattern). Finally, we explore some possible mechanisms of cholera control, and analyze their efficiency. We conclude that, besides mass vaccination--which may be impracticable--improvements in sanitation system and food/personal hygiene are the most effective ways to prevent an epidemic.

  4. An Electrochemical Strategy using Multifunctional Nanoconjugates for Efficient Simultaneous Detection of Escherichia coli O157: H7 and Vibrio cholerae O1

    PubMed Central

    Li, Yan; Xiong, Ya; Fang, Lichao; Jiang, Lili; Huang, Hui; Deng, Jun; Liang, Wenbin; Zheng, Junsong

    2017-01-01

    The rapid and accurate quantification of the pathogenic bacteria is extremely critical to decrease the bacterial infections in all areas related to health and safety. We have developed an electrochemical strategy for simultaneous ultrasensitive detection of E. coli O157:H7 and Vibrio cholerae O1. This approach was based on the specific immune recognition of different pathogenic bacteria by multifunctional nanoconjugates and subsequent signal amplification. By employing the proposed biosensor, the concentrations of these pathogenic bacteria could be established on a single interface in a single run with improved sensitivity and accuracy. The successful approach of the simultaneous detection and quantification of two bacteria by an electrochemical biosensor demonstrated here could be readily expanded for the estimation of a variety of other pathogenic bacteria, proteins, and nucleotides. Because of their high sensitivity, electrochemical biosensors may represent a new avenue for early diagnosis of diseases. PMID:28382165

  5. Cholera studies*†

    PubMed Central

    Pollitzer, R.

    1954-01-01

    In this, the first of a series of cholera studies, the history of the disease from its earliest recorded appearance up to 1923 is outlined, and its geographical distribution described. The origins and main routes of spread of the six great pandemics are indicated; possible causes of the variations in mortality which accompanied them are discussed. PMID:13160764

  6. Strategy, demand, management, and costs of an international cholera vaccine stockpile.

    PubMed

    Maskery, Brian; DeRoeck, Denise; Levin, Ann; Kim, Young Eun; Wierzba, Thomas F; Clemens, John D

    2013-11-01

    In this article, we review the feasibility of mass vaccination against cholera and estimate the global population at risk for epidemic cholera. We then examine the cost of establishing and managing a cholera vaccine stockpile and summarize published mathematical models of the estimated impact of reactive vaccination campaigns developed for the current Haitian outbreak and a recent outbreak in Zimbabwe. On the basis of these evaluations, we recommend a stockpile that starts at 2 million doses, with an estimated annual cost of $5.5-$13.9 million in 2013, and grows to 10 million doses per year by 2017, with an annual cost of $27-$51 million. We believe that the stockpile can enhance efforts to mitigate future cholera outbreaks by guaranteeing the availability of cholera vaccines and, through use of the stockpile, by revealing knowledge about the efficient use of cholera vaccines during and after crises.

  7. [Cholera update and vaccination problems].

    PubMed

    Fournier, J M; Villeneuve, S

    1998-01-01

    Cholera remains an important public health problem. The long-term control of cholera depends on good personal hygiene, uncontaminated water supply and appropriate sewage disposal. However, the improvement of hygiene is distant goal for many countries. Thus the availability of an effective cholera vaccine is important for the prevention of cholera in these countries. Research on new cholera vaccines has mainly focused on oral formulations that stimulate the mucosal secretory immune system. Two oral cholera vaccines were experimented on large scale in human. The first vaccine, containing inactivated bacterial cells and B-subunit of cholera toxin, has been tested in Bangladesh from 1985 to 1989. This vaccine, according to WHO, may prove useful in the stable phase of refugee/displaced person crises, especially when given preventively. The second vaccine is a live attenuated vaccine containing the genetically manipulated Vibrio cholerae O1 strain CVD 103-HgR. Despite its efficacy in adult volunteers, results of a large-scale field trial carried-out in Indonesia for 4 years have shown a surprisingly low protection. Moreover, one of the safety concerns associated with live cholera vaccine is a possible horizontal gene transfer and recombination event leading to reversion to virulence. A new vaccine development program for cholera is based upon the hypothesis that immunoglobulins G directed to the O-specific polysaccharide of Vibrio cholerae O1 could confer protective immunity to cholera by inactivating the inoculum on intestinal mucosal surface. This program may lead to the development of cholera conjugate vaccines to elicit protection in infants.

  8. Evaluation of a field appropriate membrane filtration method for the detection of Vibrio cholerae for the measurement of biosand filter performance in the Artibonite Valley, Haiti.

    PubMed

    Thomson, Ashley A; Gunsch, Claudia K

    2015-08-01

    Biosand filters in the Artibonite Valley of Haiti, the epicenter of the cholera epidemic that began in October 2010, were tested for total coliform and Vibrio cholerae removal efficiencies. While coliform are often used as an indicator organism for pathogenic bacteria, a correlation has never been established linking the concentration of coliform and V. cholerae, the causative agent for cholera. Hence, a method for field enumeration of V. cholerae was developed and tested. To this end, a plate count test utilizing membrane filtration technique was developed to measure viable V. cholerae cell concentration in the field. Method accuracy was confirmed by comparing plate count concentrations to microscopic counts. Additionally, biosand filters were sampled and removal efficiencies of V. cholerae and coliform bacteria compared. The correlation between removal efficiency and time in operation, biofilm ("schmutzdecke") composition, and idle time was also investigated. The plate count method for V. cholerae was found to accurately reflect microscope counts and was shown to be effective in the field. Overall, coliform concentration was not an appropriate indicator of V. cholerae concentration. In 90% of the influent samples from the study, coliform underestimated V. cholerae concentration (n = 26). Furthermore, coliform removal efficiency was higher than for V. cholerae hence providing a conservative measurement. Finally, time in operation and idle time were found to be important parameters controlling performance. Overall, this method shows promise for field applications and should be expanded to additional studies to confirm its efficacy to test for V. cholerae in various source waters.

  9. Genetic characterization of Vibrio cholerae isolates from Argentina by V. cholerae repeated sequences-polymerase chain reaction.

    PubMed

    Castañeda, Nancy Claudia; Pichel, Mariana; Orman, Betina; Binsztein, Norma; Roy, Paul H; Centrón, Daniela

    2005-11-01

    We have developed a novel typing method based on Vibrio cholerae repeat sequences (VCR) using primers directed out of the VCR sequences. To evaluate the VCR-polymerase chain reaction (PCR) as a typing system, 2 categories, efficacy and efficiency, were analyzed in 69 strains of human and environmental V. cholerae O1 toxigenic and nontoxigenic, and non-O1 strains isolated since 1992-2000 from Argentina. The discriminatory power (0.91), stability (0.95), reproducibility (1), typeability (1), rapidity, accessibility, as well ease of use, indicated that the VCR-PCR method provides an alternative useful tool for molecular epidemiology of V. cholerae. The VCR-PCR of V. cholerae isolates showed 29 patterns, of which pattern 1 represented 68% of the V. cholerae O1 isolates, supporting the hypothesis that a clone with epidemic behavior was responsible for the epidemic in Latin America. These results showed a good correlation and a better epidemiologic analysis when the results were compared in parallel with repetitive extragenic palindromic sequences-PCR. In conclusion, VCR-PCR showed excellent performance as a typing method for cholera surveillance programs.

  10. Physicochemical constraints of elevated pH affect efficient membrane interaction and arrest an abortive membrane-bound oligomeric intermediate of the beta-barrel pore-forming toxin Vibrio cholerae cytolysin.

    PubMed

    Rai, Anand Kumar; Kundu, Nidhi; Chattopadhyay, Kausik

    2015-10-01

    Vibrio cholerae cytolysin (VCC) is a potent membrane-damaging cytotoxic protein. VCC causes permeabilization of the target cell membranes by forming transmembrane oligomeric beta-barrel pores. Membrane pore formation by VCC involves following key steps: (i) membrane binding, (ii) formation of a pre-pore oligomeric intermediate, (iii) membrane insertion of the pore-forming motifs, and (iv) formation of the functional transmembrane pore. Membrane binding, oligomerization, and subsequent pore-formation process of VCC appear to be facilitated by multiple regulatory mechanisms that are only partly understood. Here, we have explored the role(s) of the physicochemical constraints, specifically imposed by the elevated pH conditions, on the membrane pore-formation mechanism of VCC. Elevated pH abrogates efficient interaction of VCC with the target membranes, and blocks its pore-forming activity. Under the elevated pH conditions, membrane-bound fractions of VCC remain trapped in the form of abortive oligomeric species that fail to generate the functional transmembrane pores. Such an abortive oligomeric assembly appears to represent a distinct, more advanced intermediate state than the pre-pore state. The present study offers critical insights regarding the implications of the physicochemical constraints for regulating the efficient membrane interaction and pore formation by VCC.

  11. Environmental Monitoring of Endemic Cholera

    NASA Astrophysics Data System (ADS)

    ElNemr, W.; Jutla, A. S.; Constantin de Magny, G.; Hasan, N. A.; Islam, M.; Sack, R.; Huq, A.; Hashem, F.; Colwell, R.

    2012-12-01

    Cholera remains a major public health threat. Since Vibrio cholerae, the causative agent of the disease, is autochthonous to riverine, estuarine, and coastal waters, it is unlikely the bacteria can be eradicated from its natural habitat. Prediction of disease, in conjunction with preventive vaccination can reduce the prevalence rate of a disease. Understanding the influence of environmental parameters on growth and proliferation of bacteria is an essential first step in developing prediction methods for outbreaks. Large scale geophysical variables, such as SST and coastal chlorophyll, are often associated with conditions favoring growth of V. cholerae. However, local environmental factors, meaning biological activity in ponds from where the bulk of populations in endemic regions derive water for daily usage, are either neglected or oversimplified. Using data collected from several sites in two geographically distinct locations in South Asia, we have identified critical local environmental factors associated with cholera outbreak. Of 18 environmental variables monitored for water sources in Mathbaria (a coastal site near the Bay of Bengal) and Bakergonj (an inland site) of Bangladesh, water depth and chlorophyll were found to be important factors associated with initiation of cholera outbreaks. Cholera in coastal regions appears to be related to intrusion. However, monsoonal flooding creates conditions for cholera epidemics in inland regions. This may be one of the first attempts to relate in-situ environmental observations with cholera. We anticipate that it will be useful for further development of prediction models in the resource constrained regions.

  12. Epidemic cholera spreads like wildfire.

    PubMed

    Roy, Manojit; Zinck, Richard D; Bouma, Menno J; Pascual, Mercedes

    2014-01-15

    Cholera is on the rise globally, especially epidemic cholera which is characterized by intermittent and unpredictable outbreaks that punctuate periods of regional disease fade-out. These epidemic dynamics remain however poorly understood. Here we examine records for epidemic cholera over both contemporary and historical timelines, from Africa (1990-2006) and former British India (1882-1939). We find that the frequency distribution of outbreak size is fat-tailed, scaling approximately as a power-law. This pattern which shows strong parallels with wildfires is incompatible with existing cholera models developed for endemic regions, as it implies a fundamental role for stochastic transmission and local depletion of susceptible hosts. Application of a recently developed forest-fire model indicates that epidemic cholera dynamics are located above a critical phase transition and propagate in similar ways to aggressive wildfires. These findings have implications for the effectiveness of control measures and the mechanisms that ultimately limit the size of outbreaks.

  13. Environmental Factors Influencing Epidemic Cholera

    PubMed Central

    Jutla, Antarpreet; Whitcombe, Elizabeth; Hasan, Nur; Haley, Bradd; Akanda, Ali; Huq, Anwar; Alam, Munir; Sack, R. Bradley; Colwell, Rita

    2013-01-01

    Cholera outbreak following the earthquake of 2010 in Haiti has reaffirmed that the disease is a major public health threat. Vibrio cholerae is autochthonous to aquatic environment, hence, it cannot be eradicated but hydroclimatology-based prediction and prevention is an achievable goal. Using data from the 1800s, we describe uniqueness in seasonality and mechanism of occurrence of cholera in the epidemic regions of Asia and Latin America. Epidemic regions are located near regional rivers and are characterized by sporadic outbreaks, which are likely to be initiated during episodes of prevailing warm air temperature with low river flows, creating favorable environmental conditions for growth of cholera bacteria. Heavy rainfall, through inundation or breakdown of sanitary infrastructure, accelerates interaction between contaminated water and human activities, resulting in an epidemic. This causal mechanism is markedly different from endemic cholera where tidal intrusion of seawater carrying bacteria from estuary to inland regions, results in outbreaks. PMID:23897993

  14. Environmental factors influencing epidemic cholera.

    PubMed

    Jutla, Antarpreet; Whitcombe, Elizabeth; Hasan, Nur; Haley, Bradd; Akanda, Ali; Huq, Anwar; Alam, Munir; Sack, R Bradley; Colwell, Rita

    2013-09-01

    Cholera outbreak following the earthquake of 2010 in Haiti has reaffirmed that the disease is a major public health threat. Vibrio cholerae is autochthonous to aquatic environment, hence, it cannot be eradicated but hydroclimatology-based prediction and prevention is an achievable goal. Using data from the 1800s, we describe uniqueness in seasonality and mechanism of occurrence of cholera in the epidemic regions of Asia and Latin America. Epidemic regions are located near regional rivers and are characterized by sporadic outbreaks, which are likely to be initiated during episodes of prevailing warm air temperature with low river flows, creating favorable environmental conditions for growth of cholera bacteria. Heavy rainfall, through inundation or breakdown of sanitary infrastructure, accelerates interaction between contaminated water and human activities, resulting in an epidemic. This causal mechanism is markedly different from endemic cholera where tidal intrusion of seawater carrying bacteria from estuary to inland regions, results in outbreaks.

  15. Epidemic cholera spreads like wildfire

    NASA Astrophysics Data System (ADS)

    Roy, Manojit; Zinck, Richard D.; Bouma, Menno J.; Pascual, Mercedes

    2014-01-01

    Cholera is on the rise globally, especially epidemic cholera which is characterized by intermittent and unpredictable outbreaks that punctuate periods of regional disease fade-out. These epidemic dynamics remain however poorly understood. Here we examine records for epidemic cholera over both contemporary and historical timelines, from Africa (1990-2006) and former British India (1882-1939). We find that the frequency distribution of outbreak size is fat-tailed, scaling approximately as a power-law. This pattern which shows strong parallels with wildfires is incompatible with existing cholera models developed for endemic regions, as it implies a fundamental role for stochastic transmission and local depletion of susceptible hosts. Application of a recently developed forest-fire model indicates that epidemic cholera dynamics are located above a critical phase transition and propagate in similar ways to aggressive wildfires. These findings have implications for the effectiveness of control measures and the mechanisms that ultimately limit the size of outbreaks.

  16. Spatially explicit modelling of cholera epidemics

    NASA Astrophysics Data System (ADS)

    Finger, F.; Bertuzzo, E.; Mari, L.; Knox, A. C.; Gatto, M.; Rinaldo, A.

    2013-12-01

    Epidemiological models can provide crucial understanding about the dynamics of infectious diseases. Possible applications range from real-time forecasting and allocation of health care resources to testing alternative intervention mechanisms such as vaccines, antibiotics or the improvement of sanitary conditions. We apply a spatially explicit model to the cholera epidemic that struck Haiti in October 2010 and is still ongoing. The dynamics of susceptibles as well as symptomatic and asymptomatic infectives are modelled at the scale of local human communities. Dissemination of Vibrio cholerae through hydrological transport and human mobility along the road network is explicitly taken into account, as well as the effect of rainfall as a driver of increasing disease incidence. The model is calibrated using a dataset of reported cholera cases. We further model the long term impact of several types of interventions on the disease dynamics by varying parameters appropriately. Key epidemiological mechanisms and parameters which affect the efficiency of treatments such as antibiotics are identified. Our results lead to conclusions about the influence of different intervention strategies on the overall epidemiological dynamics.

  17. Detection of virulence genes in environmental strains of Vibrio cholerae from estuaries in northeastern Brazil.

    PubMed

    Menezes, Francisca Gleire Rodrigues de; Neves, Soraya da Silva; Sousa, Oscarina Viana de; Vila-Nova, Candida Machado Vieira Maia; Maggioni, Rodrigo; Theophilo, Grace Nazareth Diogo; Hofer, Ernesto; Vieira, Regine Helena Silva dos Fernandes

    2014-01-01

    The objectives of this study were to detect the presence of Vibrio cholerae in tropical estuaries (Northeastern Brazil) and to search for virulence factors in the environmental isolates. Water and sediment samples were inoculated onto a vibrio-selective medium (TCBS), and colonies with morphological resemblance to V. cholerae were isolated. The cultures were identified phenotypically using a dichotomous key based on biochemical characteristics. The total DNA extracted was amplified by PCR to detect ompW and by multiplex PCR to detect the virulence genes ctx, tcp, zot and rfbO1. The results of the phenotypic and genotypic identification were compared. Nine strains of V. cholerae were identified phenotypically, five of which were confirmed by detection of the species-specific gene ompW. The dichotomous key was efficient at differentiating environmental strains of V. cholerae. Strains of V. cholerae were found in all four estuaries, but none possessed virulence genes.

  18. DETECTION OF VIRULENCE GENES IN ENVIRONMENTAL STRAINS OF Vibrio cholerae FROM ESTUARIES IN NORTHEASTERN BRAZIL

    PubMed Central

    de Menezes, Francisca Gleire Rodrigues; Neves, Soraya da Silva; de Sousa, Oscarina Viana; Vila-Nova, Candida Machado Vieira Maia; Maggioni, Rodrigo; Theophilo, Grace Nazareth Diogo; Hofer, Ernesto; Vieira, Regine Helena Silva dos Fernandes

    2014-01-01

    The objectives of this study were to detect the presence of Vibrio cholerae in tropical estuaries (Northeastern Brazil) and to search for virulence factors in the environmental isolates. Water and sediment samples were inoculated onto a vibrio-selective medium (TCBS), and colonies with morphological resemblance to V. cholerae were isolated. The cultures were identified phenotypically using a dichotomous key based on biochemical characteristics. The total DNA extracted was amplified by PCR to detect ompW and by multiplex PCR to detect the virulence genes ctx, tcp, zot and rfbO1. The results of the phenotypic and genotypic identification were compared. Nine strains of V. cholerae were identified phenotypically, five of which were confirmed by detection of the species-specific gene ompW. The dichotomous key was efficient at differentiating environmental strains of V. cholerae. Strains of V. cholerae were found in all four estuaries, but none possessed virulence genes. PMID:25229224

  19. Vibrio cholerae in the environment.

    PubMed

    Soomro, Abdul Lateef; Junejo, Nasreen

    2004-08-01

    The emergence of cholera has been a significant public health problem around the world and battle to completely control this deadly disease continues. Prevalence of Vibrio cholerae (V. cholerae) microorganisms in the environment was considered as the most important factor in this regard. Soil, fresh water, sea water, aquatic plants, animals and some birds have been made target for search if they were providing reserve shelter to the causative agent during inter epidemic periods. Multiple environmental factors have been considered to have the aetiological relationship as no single source is found to host the microorganisms in an inter-epidemic period. We have attempted to review the literature from different parts of the world; encompassing experimental and isolation studies of pathogenic and non-pathogenic strains of V. cholerae in the environment. The non-pathogenic strains were also included due to converting behavior of the agents in the changing environmental scenario to pathogenic forms.

  20. Cholera and the Scientific Method.

    ERIC Educational Resources Information Center

    Cronin, Jim

    1993-01-01

    Describes an approach to teaching the scientific method where an outbreak of cholera within the school is simulated. Students act like epidemiologists in an attempt to track down the source of the contamination. (PR)

  1. Human Mobility Patterns and Cholera Epidemics: a Spatially Explicit Modeling Approach

    NASA Astrophysics Data System (ADS)

    Mari, L.; Bertuzzo, E.; Righetto, L.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2010-12-01

    Cholera is an acute enteric disease caused by the ingestion of water or food contaminated by the bacterium Vibrio cholerae. Although most infected individuals do not develop severe symptoms, their stool may contain huge quantities of V.~cholerae cells. Therefore, while traveling or commuting, asymptomatic carriers can be responsible for the long-range dissemination of the disease. As a consequence, human mobility is an alternative and efficient driver for the spread of cholera, whose primary propagation pathway is hydrological transport through river networks. We present a multi-layer network model that accounts for the interplay between epidemiological dynamics, hydrological transport and long-distance dissemination of V.~cholerae due to human movement. In particular, building on top of state-of-the-art spatially explicit models for cholera spread through surface waters, we describe human movement and its effects on the propagation of the disease by means of a gravity-model approach borrowed from transportation theory. Gravity-like contact processes have been widely used in epidemiology, because they can satisfactorily depict human movement when data on actual mobility patterns are not available. We test our model against epidemiological data recorded during the cholera outbreak occurred in the KwaZulu-Natal province of South Africa during years 2000--2001. We show that human mobility does actually play an important role in the formation of the spatiotemporal patterns of cholera epidemics. In particular, long-range human movement may determine inter-catchment dissemination of V.~cholerae cells, thus in turn explaining the emergence of epidemic patterns that cannot be produced by hydrological transport alone. We also show that particular attention has to be devoted to study how heterogeneously distributed drinking water supplies and sanitation conditions may affect cholera transmission.

  2. Characterization of Vibrio cholerae Strains Isolated from the Nigerian Cholera Outbreak in 2010.

    PubMed

    Dupke, Susann; Akinsinde, Kehinde A; Grunow, Roland; Iwalokun, Bamidele A; Olukoya, Daniel K; Oluwadun, Afolabi; Velavan, Thirumalaisamy P; Jacob, Daniela

    2016-10-01

    We examined clinical samples from Nigerian patients with acute watery diarrhea for Vibrio cholerae during the 2010 cholera outbreak. A total of 109 suspected isolates were characterized, but only 57 V. cholerae strains could be confirmed using multiplex real-time PCR as well as rpoB sequencing and typed as V. cholerae O:1 Ogawa biotype El Tor. This finding highlighted the need for accurate diagnosis of cholera in epidemic countries to implement life-saving interventions.

  3. Characterization of Vibrio cholerae Strains Isolated from the Nigerian Cholera Outbreak in 2010

    PubMed Central

    Dupke, Susann; Akinsinde, Kehinde A.; Grunow, Roland; Iwalokun, Bamidele A.; Olukoya, Daniel K.; Oluwadun, Afolabi; Velavan, Thirumalaisamy P.

    2016-01-01

    We examined clinical samples from Nigerian patients with acute watery diarrhea for Vibrio cholerae during the 2010 cholera outbreak. A total of 109 suspected isolates were characterized, but only 57 V. cholerae strains could be confirmed using multiplex real-time PCR as well as rpoB sequencing and typed as V. cholerae O:1 Ogawa biotype El Tor. This finding highlighted the need for accurate diagnosis of cholera in epidemic countries to implement life-saving interventions. PMID:27487957

  4. Fish as Hosts of Vibrio cholerae

    PubMed Central

    Halpern, Malka; Izhaki, Ido

    2017-01-01

    Vibrio cholerae, the causative agent of pandemic cholera, is abundant in marine and freshwater environments. Copepods and chironomids are natural reservoirs of this species. However, the ways V. cholerae is globally disseminated are as yet unknown. Here we review the scientific literature that provides evidence for the possibility that some fish species may be reservoirs and vectors of V. cholerae. So far, V. cholerae has been isolated from 30 fish species (22 freshwater; 9 marine). V. cholerae O1 was reported in a few cases. In most cases V. cholerae was isolated from fish intestines, but it has also been detected in gills, skin, kidney, liver and brain tissue. In most cases the fish were healthy but in some, they were diseased. Nevertheless, Koch postulates were not applied to prove that V. cholerae and not another agent was the cause of the disease in the fish. Evidence from the literature correlates raw fish consumption or fish handling to a few cholera cases or cholera epidemics. Thus, we can conclude that V. cholerae inhabits some marine and freshwater fish species. It is possible that fish may protect the bacteria in unfavorable habitats while the bacteria may assist the fish to digest its food. Also, fish may disseminate the bacteria in the aquatic environment and may transfer it to waterbirds that consume them. Thus, fish are reservoirs of V. cholerae and may play a role in its global dissemination. PMID:28293221

  5. Impact of temperature variability on cholera incidence in southeastern Africa, 1971-2006.

    PubMed

    Paz, Shlomit

    2009-09-01

    Africa has a number of climate-sensitive diseases. One that remains a threat to public health is cholera. The aquatic environment temperature is the most important ecological parameter governing the survival and growth of Vibrio cholerae. Indeed, recent studies indicate that global warming might create a favorable environment for V. cholerae and increase its incidence in vulnerable areas. In light of this, a Poisson Regression Model has been used to analyze the possible association between the cholera rates in southeastern Africa and the annual variability of air temperature and sea surface temperature (SST) at regional and hemispheric scales, for the period 1971-2006. The results showed a significant exponential increase of cholera rates in humans during the study period. In addition, it was found that the annual mean air temperature and SST at the local scale, as well as anomalies at hemispheric scales, had significant impact on the cholera incidence during the study period. Despite future uncertainty, the climate variability has to be considered in predicting further cholera outbreaks in Africa. This may help to promote better, more efficient preparedness.

  6. Bactericidal activity of lemon juice and lemon derivatives against Vibrio cholerae.

    PubMed

    de Castillo, M C; de Allori, C G; de Gutierrez, R C; de Saab, O A; de Fernandez, N P; de Ruiz, C S; Holgado, A P; de Nader, O M

    2000-10-01

    Food products can be possible vectors of the agent responsible for cholera epidemics, because some of these products allow Vibrio cholerae O1 to develop to concentrations above the dangerous level. This study deals with the behaviour of essential oils, natural and concentrated lemon juice and fresh and dehydrated lemon peel against V. cholerae O1 biotype Eltor serotype Inaba tox+. Our aim was to evaluate whether these products, used at different dilutions, exhibit bactericidal or bacteriostatic activity against the microorganism, when present at concentrations of 10(2), 10(4), 10(6) and 10(8) colony forming units (CFU) ml(-1), and after different exposure times. 10(8) CFU ml(-1) was considered an infectious dose. Concentrated lemon juice and essential oils inhibited V. cholerae completely at all studied dilutions and exposure times. Fresh lemon peel and dehydrated lemon peel partially inhibited growth of V. cholerae. Freshly squeezed lemon juice, diluted to 10(-2), showed complete inhibition of V. cholerae at a concentration of 10(8) CFU ml(-1) after 5 min of exposure time; a dilution of 2 x 10(-3) produced inhibition after 15 min and a dilution of 10(-3) after 30 min. It can be concluded that lemon, a natural product which is easily obtained, acts as a biocide against V. cholerae, and is, therefore, an efficient decontaminant, harmless to humans.

  7. Widespread epidemic cholera caused by a restricted subset of Vibrio cholerae clones.

    PubMed

    Moore, S; Thomson, N; Mutreja, A; Piarroux, R

    2014-05-01

    Since 1817, seven cholera pandemics have plagued humankind. As the causative agent, Vibrio cholerae, is autochthonous in the aquatic ecosystem and some studies have revealed links between outbreaks and fluctuations in climatic and aquatic conditions, it has been widely assumed that cholera epidemics are triggered by environmental factors that promote the growth of local bacterial reservoirs. However, mounting epidemiological findings and genome sequence analysis of clinical isolates have indicated that epidemics are largely unassociated with most of the V. cholerae strains in aquatic ecosystems. Instead, only a specific subset of V. cholerae El Tor 'types' appears to be responsible for current epidemics. A recent report examining the evolution of a variety of V. cholerae strains indicates that the current pandemic is monophyletic and originated from a single ancestral clone that has spread globally in successive waves. In this review, we examine the clonal nature of the disease, with the example of the recent history of cholera in the Americas. Epidemiological data and genome sequence-based analysis of V. cholerae isolates demonstrate that the cholera epidemics of the 1990s in South America were triggered by the importation of a pathogenic V. cholerae strain that gradually spread throughout the region until local outbreaks ceased in 2001. Latin America remained almost unaffected by the disease until a new toxigenic V. cholerae clone was imported into Haiti in 2010. Overall, cholera appears to be largely caused by a subset of specific V. cholerae clones rather than by the vast diversity of V. cholerae strains in the environment.

  8. Cholera Vaccination in Urban Haiti

    PubMed Central

    Rouzier, Vanessa; Severe, Karine; Juste, Marc Antoine Jean; Peck, Mireille; Perodin, Christian; Severe, Patrice; Deschamps, Marie Marcelle; Verdier, Rose Irene; Prince, Sabine; Francois, Jeannot; Cadet, Jean Ronald; Guillaume, Florence D.; Wright, Peter F.; Pape, Jean W.

    2013-01-01

    Successful and sustained efforts have been made to curtail the major cholera epidemic that occurred in Haiti in 2010 with the promotion of hygiene and sanitation measures, training of health personnel and establishment of treatment centers nationwide. Oral cholera vaccine (OCV) was introduced by the Haitian Ministry of Health as a pilot project in urban and rural areas. This paper reports the successful OCV pilot project led by GHESKIO Centers in the urban slums of Port-au-Prince where 52,357 persons received dose 1 and 90.8% received dose 2; estimated coverage of the at-risk community was 75%. This pilot study demonstrated the effort, community mobilization, and organizational capacity necessary to achieve these results in a challenging setting. The OCV intervention paved the way for the recent launching of a national cholera vaccination program integrated in a long-term ambitious and comprehensive plan to address Haiti's critical need in water security and sanitation. PMID:24106194

  9. Chromosome Segregation in Vibrio cholerae

    PubMed Central

    Ramachandran, R.; Jha, J; Chattoraj, DK

    2014-01-01

    The study of chromosome segregation is currently one of the most exciting research frontiers in cell biology. In this review, we discuss our current knowledge of the chromosome segregation process in Vibrio cholerae, based primarily on findings from fluorescence microscopy experiments. This bacterium is of special interest because of its eukaryotic feature of having a divided genome, a feature shared with 10% of known bacteria. We also discuss how the segregation mechanisms of V. cholerae compare with those in other bacteria, and highlight some of the remaining questions regarding the process of bacterial chromosome segregation. PMID:25732338

  10. Diagnostic limitations to accurate diagnosis of cholera.

    PubMed

    Alam, Munirul; Hasan, Nur A; Sultana, Marzia; Nair, G Balakrish; Sadique, A; Faruque, A S G; Endtz, Hubert P; Sack, R B; Huq, A; Colwell, R R; Izumiya, Hidemasa; Morita, Masatomo; Watanabe, Haruo; Cravioto, Alejandro

    2010-11-01

    The treatment regimen for diarrhea depends greatly on correct diagnosis of its etiology. Recent diarrhea outbreaks in Bangladesh showed Vibrio cholerae to be the predominant cause, although more than 40% of the suspected cases failed to show cholera etiology by conventional culture methods (CMs). In the present study, suspected cholera stools collected from every 50th patient during an acute diarrheal outbreak were analyzed extensively using different microbiological and molecular tools to determine their etiology. Of 135 stools tested, 86 (64%) produced V. cholerae O1 by CMs, while 119 (88%) tested positive for V. cholerae O1 by rapid cholera dipstick (DS) assay; all but three samples positive for V. cholerae O1 by CMs were also positive for V. cholerae O1 by DS assay. Of 49 stools that lacked CM-based cholera etiology despite most being positive for V. cholerae O1 by DS assay, 25 (51%) had coccoid V. cholerae O1 cells as confirmed by direct fluorescent antibody (DFA) assay, 36 (73%) amplified primers for the genes wbe O1 and ctxA by multiplex-PCR (M-PCR), and 31 (63%) showed El Tor-specific lytic phage on plaque assay (PA). Each of these methods allowed the cholera etiology to be confirmed for 97% of the stool samples. The results suggest that suspected cholera stools that fail to show etiology by CMs during acute diarrhea outbreaks may be due to the inactivation of V. cholerae by in vivo vibriolytic action of the phage and/or nonculturability induced as a host response.

  11. Ecological study of Vibrio cholerae in Vellore.

    PubMed Central

    Jesudason, M. V.; Balaji, V.; Mukundan, U.; Thomson, C. J.

    2000-01-01

    Vellore is endemic for cholera due to Vibrio cholerae O1 and O139. In a previous study the prevalence of Vibrio cholerae in drinking water, lakes and sewage outfalls in a single 2-months period in Vellore, India was determined. In addition water samples from three sites were also tested for the presence of V. cholerae O1 and O139 by fluorescent antibody staining. This follow on study has examined how the environmental distribution of V. cholerae at the same sites alters over a 12-month period and the relationship to the clinical pattern of cholera in Vellore. Samples of water were collected from fixed sites at three water bodies each month between April 1997 and March 1998. Bacteria isolated from samples were identified by standard biochemical tests and isolated strains of V. cholerae tested for their ability to agglutinate O1 and O139 antisera. Samples were also tested for the presence of V. cholerae O1 and O139 by fluorescent antibody staining. The clinical isolation rate of V. cholerae in Vellore, maximum temperature and rainfall were also studied. The results demonstrate the presence in the environment of viable but non-cultivable (VNC) V. cholerae in 10 of 12 months of the study year as well as their viability. Their prevalence in the environment also correlated with the isolation of these pathogens from clinical samples over the same study period. PMID:10813143

  12. How Will Climate Change Impact Cholera Outbreaks?

    NASA Astrophysics Data System (ADS)

    Nasr Azadani, F.; Jutla, A.; Rahimikolu, J.; Akanda, A. S.; Huq, A.; Colwell, R. R.

    2014-12-01

    Environmental parameters associated with cholera are well documented. However, cholera continues to be a global public health threat. Uncertainty in defining environmental processes affecting growth and multiplication of the cholera bacteria can be affected significantly by changing climate at different temporal and spatial scales, either through amplification of the hydroclimatic cycle or by enhanced variability of large scale geophysical processes. Endemic cholera in the Bengal Delta region of South Asia has a unique pattern of two seasonal peaks and there are associated with asymmetric and episodic variability in river discharge. The first cholera outbreak in spring is related with intrusion of bacteria laden coastal seawater during low river discharge. Cholera occurring during the fall season is hypothesized to be associated with high river discharge related to a cross-contamination of water resources and, therefore, a second wave of disease, a phenomenon characteristic primarily in the inland regions. Because of difficulties in establishing linkage between coarse resolutions of the Global Climate Model (GCM) output and localized disease outbreaks, the impact of climate change on diarrheal disease has not been explored. Here using the downscaling method of Support Vector Machines from HADCM3 and ECHAM models, we show how cholera outbreak patterns are changing in the Bengal Delta. Our preliminary results indicate statistically significant changes in both seasonality and magnitude in the occurrence of cholera over the next century. Endemic cholera is likely to transform into epidemic forms and new geographical areas will be at risk for cholera outbreaks.

  13. Antimicrobial drugs for treating cholera

    PubMed Central

    Leibovici-Weissman, Ya'ara; Neuberger, Ami; Bitterman, Roni; Sinclair, David; Salam, Mohammed Abdus; Paul, Mical

    2014-01-01

    Background Cholera is an acute watery diarrhoea caused by infection with the bacterium Vibrio cholerae, which if severe can cause rapid dehydration and death. Effective management requires early diagnosis and rehydration using oral rehydration salts or intravenous fluids. In this review, we evaluate the additional benefits of treating cholera with antimicrobial drugs. Objectives To quantify the benefit of antimicrobial treatment for patients with cholera, and determine whether there are differences between classes of antimicrobials or dosing schedules. Search methods We searched the Cochrane Infectious Disease Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL); PubMed; EMBASE; African Index Medicus; LILACS; Science Citation Index; metaRegister of Controlled Trials; WHO International Clinical Trials Registry Platform; conference proceedings; and reference lists to March 2014. Selection criteria Randomized and quasi-randomized controlled clinical trials in adults and children with cholera that compared: 1) any antimicrobial treatment with placebo or no treatment; 2) different antimicrobials head-to-head; or 3) different dosing schedules or different durations of treatment with the same antimicrobial. Data collection and analysis Two reviewers independently applied inclusion and exclusion criteria, and extracted data from included trials. Diarrhoea duration and stool volume were defined as primary outcomes. We calculated mean difference (MD) or ratio of means (ROM) for continuous outcomes, with 95% confidence intervals (CI), and pooled data using a random-effects meta-analysis. The quality of evidence was assessed using the GRADE approach. Main results Thirty-nine trials were included in this review with 4623 participants. Antimicrobials versus placebo or no treatment Overall, antimicrobial therapy shortened the mean duration of diarrhoea by about a day and a half compared to placebo or no treatment (MD -36.77 hours, 95% CI -43

  14. Actions of cholera toxin and the prevention and treatment of cholera

    NASA Astrophysics Data System (ADS)

    Holmgren, Jan

    1981-07-01

    The drastic intestinal secretion of fluid and electrolytes that is characteristic of cholera is the result of reasonably well understood cellular and biochemical actions of the toxin secreted by Vibrio cholerae. Based on this understanding it is possible to devise new techniques for the treatment and prophylaxis of cholera to complement those based on fluid replacement therapy and sanitation.

  15. Survival of classic cholera in Bangladesh.

    PubMed

    Siddique, A K; Baqui, A H; Eusof, A; Haider, K; Hossain, M A; Bashir, I; Zaman, K

    1991-05-11

    During the present cholera pandemic the El Tor biotype of Vibrio cholerae has completely displaced the classic biotype, except in Bangladesh. We studied the distribution of these two biotypes in twenty-four rural districts during epidemics in 1988-89; there was clustering of the classic biotype in the southern region and of the El Tor biotype in all other regions. These findings suggest that the southern coastal region is now (and may always have been) the habitat of classic cholera. The selective distribution of V cholerae O1 biotypes in Bangladesh may have been affected by ecological changes occurring in the country.

  16. Cholera outbreak--southern Sudan, 2007.

    PubMed

    2009-04-10

    Vibrio cholerae causes cholera, an acute infectious diarrheal disease that can result in death without appropriate therapy, depending on the severity of the disease. War, poverty, inadequate sanitation, and large numbers of refugees and internally displaced persons (IDPs) are major precursors to cholera outbreaks. In 2005, Southern Sudan ended its 22-year civil war with North Sudan; as a result, IDPs and refugees are returning to the south. During April--June 2007, investigators from the Southern Sudan Field Epidemiology and Laboratory Training Program (SS-FELTP) and CDC investigated a cholera outbreak in the town of Juba, Southern Sudan. This report summarizes the results of that investigation, which found that 3,157 persons were diagnosed with suspected cholera during January--June 2007, with 74 deaths resulting from the disease. An environmental investigation revealed suboptimal hygiene practices and a lack of water and sanitation infrastructure in Juba. A case-control study indicated that persons less likely to have cholera were more likely to have consumed hot meals containing meat during the outbreak. Contaminated food or water were not identified as possible sources of the cholera outbreak in Juba. However, this might be attributed to limitations of the study, including small sample size. Cholera can reach epidemic proportions if adequate control measures are not implemented early. Mass media campaigns are important for current and new residents in Juba to understand the importance of proper food handling, clean water, and optimal hygiene practices to prevent the spread of cholera.

  17. Evaluation of enteric-coated tablets as a whole cell inactivated vaccine candidate against Vibrio cholerae.

    PubMed

    Fernández, Sonsire; Año, Gemma; Castaño, Jorge; Pino, Yadira; Uribarri, Evangelina; Riverón, Luis A; Cedré, Bárbara; Valmaseda, Tania; Falero, Gustavo; Pérez, José L; Infante, Juan F; García, Luis G; Solís, Rosa L; Sierra, Gustavo; Talavera, Arturo

    2013-01-01

    A vaccine candidate against cholera was developed in the form of oral tablets to avoid difficulties during application exhibited by current whole cell inactivated cholera vaccines. In this study, enteric-coated tablets were used to improve the protection of the active compound from gastric acidity. Tablets containing heat-killed whole cells of Vibrio cholerae strain C7258 as the active pharmaceutical compound was enteric-coated with the polymer Kollicoat(®) MAE-100P, which protected them efficiently from acidity when a disintegration test was carried out. Enzyme-linked immunosorbent assay (ELISA) anti-lipopolysaccharide (LPS) inhibition test and Western blot assay revealed the presence of V. cholerae antigens as LPS, mannose-sensitive haemagglutinin (MSHA) and outer membrane protein U (Omp U) in enteric-coated tablets. Immunogenicity studies (ELISA and vibriocidal test) carried out by intraduodenal administration in rabbits showed that the coating process of tablets did not affect the immunogenicity of V. cholerae-inactivated cells. In addition, no differences were observed in the immune response elicited by enteric-coated or uncoated tablets, particularly because the animal model and immunization route used did not allow discriminating between acid resistances of both tablets formulations in vivo. Clinical studies with volunteers will be required to elucidate this aspect, but the results suggest the possibility of using enteric-coated tablets as a final pharmaceutical product for a cholera vaccine.

  18. Vaccination strategies for epidemic cholera in Haiti with implications for the developing world.

    PubMed

    Chao, Dennis L; Halloran, M Elizabeth; Longini, Ira M

    2011-04-26

    In October 2010, a virulent South Asian strain of El Tor cholera began to spread in Haiti. Interventions have included treatment of cases and improved sanitation. Use of cholera vaccines would likely have further reduced morbidity and mortality, but such vaccines are in short supply and little is known about effective vaccination strategies for epidemic cholera. We use a mathematical cholera transmission model to assess different vaccination strategies. With limited vaccine quantities, concentrating vaccine in high-risk areas is always most efficient. We show that targeting one million doses of vaccine to areas with high exposure to Vibrio cholerae, enough for two doses for 5% of the population, would reduce the number of cases by 11%. The same strategy with enough vaccine for 30% of the population with modest hygienic improvement could reduce cases by 55% and save 3,320 lives. For epidemic cholera, we recommend a large mobile stockpile of enough vaccine to cover 30% of a country's population to be reactively targeted to populations at high risk of exposure.

  19. Comparative PCR-based fingerprinting of Vibrio cholerae isolated in Malaysia.

    PubMed

    Shuan Ju Teh, Cindy; Thong, Kwai Lin; Osawa, Ro; Heng Chua, Kek

    2011-01-01

    Vibrio cholerae, the causative agent of cholera, is endemic in many parts of the world, especially in countries poor in resources. Molecular subtyping of V. cholerae is useful to trace the regional spread of a clone or multidrug-resistant strains during outbreaks of cholera. Current available PCR-based fingerprinting methods such as Random Amplified Polymorphic DNA (RAPD)-PCR, Enterobacterial Repetitive Intergenic Consensus Sequence (ERIC)-PCR, and Repetitive Extragenic Palindromic (REP)-PCR were used to subtype V. cholerae. However, there are problems for inter-laboratory comparison as these PCR methods have their own limitations especially when different PCR methods have been used for molecular typing. In this study, a Vibrio cholerae Repeats-PCR (VCR-PCR) approach which targets the genetic polymorphism of the integron island of Vibrios was used and compared with other PCR-based fingerprinting methods in subtyping. Forty-three V. cholerae of different serogroups from various sources were tested. The PCR-fingerprinting approaches were evaluated on typeability, reproducibility, stability and discriminatory power. Overall, Malaysian non-O1/non-O139 V. cholerae were more diverse than O1 strains. Four non-O1/non-O139 strains were closely related with O1 strains. The O139 strain in this study shared similarity with strains of both O1 and non-O1/non-O139 serogroups. ERIC-PCR was the most discriminative approach (D value = 0.996). VCR-PCR was useful in discriminating non-O1/non-O139 strains. RAPD-PCR and REP-PCR were less suitable for efficient subtyping purposes as they were not reproducible and lacked stability. The combination of the ERIC-PCR and VCR-PCR may overcome the inadequacy of any one approach and hence provide more informative data.

  20. Development of lipopolysaccharide-mimicking peptides and their immunoprotectivity against Vibrio cholerae serogroup O1.

    PubMed

    Mohammad Pour Ghazi, Fatemeh; Gargari, Seyed Latif Mousavi

    2016-11-01

    Vibrio cholerae serogroup O1 is the main causative agent of cholera diseases defined by life threatening rice watery diarrhea. Cholera routine vaccination has failed in controlling epidemics in developing countries because of their hard and expensive production. In this study, our aim was to investigate phage displayed mimotopes that could mimic V. cholerae lipopolysaccharide (LPS). Although LPS of Vibrio, as an endotoxin, can stimulate the immune system, thereby making it a suitable candidate for cholera vaccine, its toxicity remains as a main problem. Phage particles displaying 12 amino acid peptides were selected from phage library mimicking the antigenic epitopes of LPS from vibrio. The screening was carried out using single-domain antibody fragment VHH against LPS as target through three rounds of selection. Three clones with highest affinity to VHH were selected. To find out a new and efficient vaccine against cholera, these three phage particles containing high-affinity peptides were administered to mice to investigate the active and passive immunity. Out of 20 particles, three showed the highest affinity toward VHH. ELISA was carried out with immunized mice sera using LPS and three selected phages particles individually. ETEC, Shigella sonnei, and clinical isolates were used as bacterial targets. These three selected phages (individually or in combination) could stimulate mice immune system producing active and passive immunity. The mice immunized with phage particles could protect about 14 LD50 of V. cholerae. In conclusion, these peptides are mimicking LPS and can potentially act as vaccine candidates against V. cholerae. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  1. Stochastic dynamics of cholera epidemics.

    PubMed

    Azaele, Sandro; Maritan, Amos; Bertuzzo, Enrico; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2010-05-01

    We describe the predictions of an analytically tractable stochastic model for cholera epidemics following a single initial outbreak. The exact model relies on a set of assumptions that may restrict the generality of the approach and yet provides a realm of powerful tools and results. Without resorting to the depletion of susceptible individuals, as usually assumed in deterministic susceptible-infected-recovered models, we show that a simple stochastic equation for the number of ill individuals provides a mechanism for the decay of the epidemics occurring on the typical time scale of seasonality. The model is shown to provide a reasonably accurate description of the empirical data of the 2000/2001 cholera epidemic which took place in the Kwa Zulu-Natal Province, South Africa, with possibly notable epidemiological implications.

  2. Understanding the cholera epidemic, Haiti.

    PubMed

    Piarroux, Renaud; Barrais, Robert; Faucher, Benoit; Haus, Rachel; Piarroux, Martine; Gaudart, Jean; Magloire, Roc; Raoult, Didier

    2011-07-01

    After onset of a cholera epidemic in Haiti in mid-October 2010, a team of researchers from France and Haiti implemented field investigations and built a database of daily cases to facilitate identification of communes most affected. Several models were used to identify spatiotemporal clusters, assess relative risk associated with the epidemic's spread, and investigate causes of its rapid expansion in Artibonite Department. Spatiotemporal analyses highlighted 5 significant clusters (p<0.001): 1 near Mirebalais (October 16-19) next to a United Nations camp with deficient sanitation, 1 along the Artibonite River (October 20-28), and 3 caused by the centrifugal epidemic spread during November. The regression model indicated that cholera more severely affected communes in the coastal plain (risk ratio 4.91) along the Artibonite River downstream of Mirebalais (risk ratio 4.60). Our findings strongly suggest that contamination of the Artibonite and 1 of its tributaries downstream from a military camp triggered the epidemic.

  3. Stochastic dynamics of cholera epidemics

    NASA Astrophysics Data System (ADS)

    Azaele, Sandro; Maritan, Amos; Bertuzzo, Enrico; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2010-05-01

    We describe the predictions of an analytically tractable stochastic model for cholera epidemics following a single initial outbreak. The exact model relies on a set of assumptions that may restrict the generality of the approach and yet provides a realm of powerful tools and results. Without resorting to the depletion of susceptible individuals, as usually assumed in deterministic susceptible-infected-recovered models, we show that a simple stochastic equation for the number of ill individuals provides a mechanism for the decay of the epidemics occurring on the typical time scale of seasonality. The model is shown to provide a reasonably accurate description of the empirical data of the 2000/2001 cholera epidemic which took place in the Kwa Zulu-Natal Province, South Africa, with possibly notable epidemiological implications.

  4. Blood Group O-Dependent Cellular Responses to Cholera Toxin: Parallel Clinical and Epidemiological Links to Severe Cholera.

    PubMed

    Kuhlmann, F Matthew; Santhanam, Srikanth; Kumar, Pardeep; Luo, Qingwei; Ciorba, Matthew A; Fleckenstein, James M

    2016-08-03

    Because O blood group has been associated with more severe cholera infections, it has been hypothesized that cholera toxin (CT) may bind non-O blood group antigens of the intestinal mucosae, thereby preventing efficient interaction with target GM1 gangliosides required for uptake of the toxin and activation of cyclic adenosine monophosphate (cAMP) signaling in target epithelia. Herein, we show that after exposure to CT, human enteroids expressing O blood group exhibited marked increase in cAMP relative to cells derived from blood group A individuals. Likewise, using CRISPR/Cas9 engineering, a functional group O line (HT-29-A(-/-)) was generated from a parent group A HT-29 line. CT stimulated robust cAMP responses in HT-29-A(-/-) cells relative to HT-29 cells. These findings provide a direct molecular link between blood group O expression and differential cellular responses to CT, recapitulating clinical and epidemiologic observations.

  5. Molecular mechanism of acquisition of the cholera toxin genes.

    PubMed

    Das, Bhabatosh; Bischerour, Julien; Barre, Francois-Xavier

    2011-02-01

    One of the major pathogenic determinants of Vibrio cholerae, the cholera toxin, is encoded in the genome of a filamentous phage, CTXφ. CTXφ makes use of the chromosome dimer resolution system of V. cholerae to integrate its single stranded genome into one, the other, or both V. cholerae chromosomes. Here, we review current knowledge about this smart integration process.

  6. Cholera in United States associated with epidemic in Hispaniola.

    PubMed

    Newton, Anna E; Heiman, Katherine E; Schmitz, Ann; Török, Tom; Apostolou, Andria; Hanson, Heather; Gounder, Prabhu; Bohm, Susan; Kurkjian, Katie; Parsons, Michele; Talkington, Deborah; Stroika, Steven; Madoff, Lawrence C; Elson, Franny; Sweat, David; Cantu, Venessa; Akwari, Okey; Mahon, Barbara E; Mintz, Eric D

    2011-11-01

    Cholera is rare in the United States (annual average 6 cases). Since epidemic cholera began in Hispaniola in 2010, a total of 23 cholera cases caused by toxigenic Vibrio cholerae O1 have been confirmed in the United States. Twenty-two case-patients reported travel to Hispaniola and 1 reported consumption of seafood from Haiti.

  7. The value of cholera vaccination in promoting travel health.

    PubMed

    Hainsworth, Terry

    Cholera is a diarrhoeal disease caused by intestinal infection with Vibrio cholerae bacterium (Health Protection Agency, 2004). Travellers are now able to obtain a cholera vaccine in the UK. Although cholera is rare in travellers from the UK, its potential severity is a cause for concern. Nurses will need to consider the availability of this new vaccine when providing health promotion to travellers.

  8. 9 CFR 311.3 - Hog cholera.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... kidneys and the lymph nodes which resemble lesions of hog cholera, they shall be regarded as those of hog... kidneys and lymph nodes of carcasses of hogs which appeared normal on ante-mortem inspection, further..., characteristic lesions of hog cholera are found in some organ or tissue in addition to those in the kidneys or...

  9. 9 CFR 311.3 - Hog cholera.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... kidneys and the lymph nodes which resemble lesions of hog cholera, they shall be regarded as those of hog... kidneys and lymph nodes of carcasses of hogs which appeared normal on ante-mortem inspection, further..., characteristic lesions of hog cholera are found in some organ or tissue in addition to those in the kidneys or...

  10. 9 CFR 311.3 - Hog cholera.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... kidneys and the lymph nodes which resemble lesions of hog cholera, they shall be regarded as those of hog... kidneys and lymph nodes of carcasses of hogs which appeared normal on ante-mortem inspection, further..., characteristic lesions of hog cholera are found in some organ or tissue in addition to those in the kidneys or...

  11. 9 CFR 311.3 - Hog cholera.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... kidneys and the lymph nodes which resemble lesions of hog cholera, they shall be regarded as those of hog... kidneys and lymph nodes of carcasses of hogs which appeared normal on ante-mortem inspection, further..., characteristic lesions of hog cholera are found in some organ or tissue in addition to those in the kidneys or...

  12. 9 CFR 311.3 - Hog cholera.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... kidneys and the lymph nodes which resemble lesions of hog cholera, they shall be regarded as those of hog... kidneys and lymph nodes of carcasses of hogs which appeared normal on ante-mortem inspection, further..., characteristic lesions of hog cholera are found in some organ or tissue in addition to those in the kidneys or...

  13. Nepalese origin of cholera epidemic in Haiti.

    PubMed

    Frerichs, R R; Keim, P S; Barrais, R; Piarroux, R

    2012-06-01

    Cholera appeared in Haiti in October 2010 for the first time in recorded history. The causative agent was quickly identified by the Haitian National Public Health Laboratory and the United States Centers for Disease Control and Prevention as Vibrio cholerae serogroup O1, serotype Ogawa, biotype El Tor. Since then, >500 000 government-acknowledged cholera cases and >7000 deaths have occurred, the largest cholera epidemic in the world, with the real death toll probably much higher. Questions of origin have been widely debated with some attributing the onset of the epidemic to climatic factors and others to human transmission. None of the evidence on origin supports climatic factors. Instead, recent epidemiological and molecular-genetic evidence point to the United Nations peacekeeping troops from Nepal as the source of cholera to Haiti, following their troop rotation in early October 2010. Such findings have important policy implications for shaping future international relief efforts.

  14. Crystallization of isoelectrically homogeneous cholera toxin

    SciTech Connect

    Spangler, B.D.; Westbrook, E.M. )

    1989-02-07

    Past difficulty in growing good crystals of cholera toxin has prevented the study of the crystal structure of this important protein. The authors have determined that failure of cholera toxin to crystallize well has been due to its heterogeneity. They have now succeeded in overcoming the problem by isolating a single isoelectric variant of this oligomeric protein (one A subunit and five B subunits). Cholera toxin purified by their procedure readily forms large single crystals. The crystal form has been described previously. They have recorded data from native crystals of cholera toxin to 3.0-{angstrom} resolution with our electronic area detectors. With these data, they have found the orientation of a 5-fold symmetry axis within these crystals, perpendicular to the screw dyad of the crystal. They are now determining the crystal structure of cholera toxin by a combination of multiple heavy-atom isomorphous replacement and density modification techniques, making use of rotational 5-fold averaging of the B subunits.

  15. Predictability of Vibrio cholerae in Chesapeake Bay

    PubMed Central

    Louis, Valérie R.; Russek-Cohen, Estelle; Choopun, Nipa; Rivera, Irma N. G.; Gangle, Brian; Jiang, Sunny C.; Rubin, Andrea; Patz, Jonathan A.; Huq, Anwar; Colwell, Rita R.

    2003-01-01

    Vibrio cholerae is autochthonous to natural waters and can pose a health risk when it is consumed via untreated water or contaminated shellfish. The correlation between the occurrence of V. cholerae in Chesapeake Bay and environmental factors was investigated over a 3-year period. Water and plankton samples were collected monthly from five shore sampling sites in northern Chesapeake Bay (January 1998 to February 2000) and from research cruise stations on a north-south transect (summers of 1999 and 2000). Enrichment was used to detect culturable V. cholerae, and 21.1% (n = 427) of the samples were positive. As determined by serology tests, the isolates, did not belong to serogroup O1 or O139 associated with cholera epidemics. A direct fluorescent-antibody assay was used to detect V. cholerae O1, and 23.8% (n = 412) of the samples were positive. V. cholerae was more frequently detected during the warmer months and in northern Chesapeake Bay, where the salinity is lower. Statistical models successfully predicted the presence of V. cholerae as a function of water temperature and salinity. Temperatures above 19°C and salinities between 2 and 14 ppt yielded at least a fourfold increase in the number of detectable V. cholerae. The results suggest that salinity variation in Chesapeake Bay or other parameters associated with Susquehanna River inflow contribute to the variability in the occurrence of V. cholerae and that salinity is a useful indicator. Under scenarios of global climate change, increased climate variability, accompanied by higher stream flow rates and warmer temperatures, could favor conditions that increase the occurrence of V. cholerae in Chesapeake Bay. PMID:12732548

  16. Biocompatible capped iron oxide nanoparticles for Vibrio cholerae detection

    NASA Astrophysics Data System (ADS)

    Sharma, Anshu; Baral, Dinesh; Rawat, Kamla; Solanki, Pratima R.; Bohidar, H. B.

    2015-05-01

    We report the studies relating to fabrication of an efficient immunosensor for Vibrio cholerae detection. Magnetite (iron oxide (Fe3O4)) nanoparticles (NPs) have been synthesized by the co-precipitation method and capped by citric acid (CA). These NPs were electrophoretically deposited onto indium-tin-oxide (ITO)-coated glass substrate and used for immobilization of monoclonal antibodies against Vibrio cholerae (Ab) and bovine serum albumin (BSA) for Vibrio cholerae detection using an electrochemical technique. The structural and morphological studies of Fe3O4 and CA-Fe3O4/ITO were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) techniques. The average crystalline size of Fe3O4, CA-Fe3O4 nanoparticles obtained were about 29 ± 1 nm and 37 ± 1 nm, respectively. The hydrodynamic radius of the nanoparticles was found to be 77.35 nm (Fe3O4) and 189.51 nm (CA-Fe3O4) by DLS measurement. The results of electrochemical response studies of the fabricated BSA/Ab/CA-Fe2O3/ITO immunosensor exhibits a good detection range of 12.5-500 ng mL-1 with a low detection limit of 0.32 ng mL-1, sensitivity 0.03 Ω/ng ml-1 cm-2, and reproducibility more than 11 times.

  17. Cholera outbreaks in the classical biotype era.

    PubMed

    Siddique, A K; Cash, Richard

    2014-01-01

    In the Indian subcontinent description of a disease resembling cholera has been mentioned in Sushruta Samita, estimated to have been written between ~400 and 500 BC. It is however not clear whether the disease known today as cholera caused by Vibrio cholerae Vibrio cholerae O1 is the evolutionary progression of the ancient disease. The modern history of cholera began in 1817 when an explosive epidemic broke out in the Ganges River Delta region of Bengal. This was the first of the seven recorded cholera pandemics cholera pandemics that affected nearly the entire world and caused hundreds of thousands of deaths. The bacterium responsible for this human disease was first recognised during the fifth pandemic and was named V. cholerae which was grouped as O1, and was further differentiated into Classical and El Tor biotypes. It is now known that the fifth and the sixth pandemics were caused by the V. cholerae O1 of the Classical biotype Classical biotype and the seventh by the El Tor biotype El Tor biotype . The El Tor biotype of V. cholerae, which originated in Indonesia Indonesia and shortly thereafter began to spread in the early 1960s. Within the span of 50 years the El Tor biotype had invaded nearly the entire world, completely displacing the Classical biotype from all the countries except Bangladesh. What prompted the earlier pandemics to begin is not clearly understood, nor do we know how and why they ended. The success of the seventh pandemic clone over the pre-existing sixth pandemic strain remains largely an unsolved mystery. Why classical biotype eventually disappeared from the world remains to be explained. For nearly three decades (1963-1991) during the Seventh cholera pandemic seventh pandemic, cholera in Bangladesh has recorded a unique history of co-existence of Classical and El Tor biotypes of V. cholerae O1 as epidemic and endemic strain. This long co-existence has provided us with great opportunity to improve our understanding of the disease itself

  18. Cholera Epidemiology in Nigeria: an overview

    PubMed Central

    Adagbada, Ajoke Olutola; Adesida, Solayide Abosede; Nwaokorie, Francisca Obiageri; Niemogha, Mary-Theresa; Coker, Akitoye Olusegun

    2012-01-01

    Cholera is an acute diarrhoeal infection caused by ingestion of food or water contaminated with the bacterium, Vibrio cholera. Choleragenic V. cholera O1 and O139 are the only causative agents of the disease. The two most distinguishing epidemiologic features of the disease are its tendency to appear in explosive outbreaks and its predisposition to causing pandemics that may progressively affect many countries and spread into continents. Despite efforts to control cholera, the disease continues to occur as a major public health problem in many developing countries. Numerous studies over more than a century have made advances in the understanding of the disease and ways of treating patients, but the mechanism of emergence of new epidemic strains, and the ecosystem supporting regular epidemics, remain challenging to epidemiologists. In Nigeria, since the first appearance of epidemic cholera in 1972, intermittent outbreaks have been occurring. The later part of 2010 was marked with severe outbreak which started from the northern part of Nigeria, spreading to the other parts and involving approximately 3,000 cases and 781 deaths. Sporadic cases have also been reported. Although epidemiologic surveillance constitutes an important component of the public health response, publicly available surveillance data from Nigeria have been relatively limited to date. Based on existing relevant scientific literature on features of cholera, this paper presents a synopsis of cholera epidemiology emphasising the situation in Nigeria. PMID:22937199

  19. [Isolation of Vibrio cholerae in imported frozen seafood and their cholera-enterotoxin production].

    PubMed

    Shiraishi, S; Takeda, K; Taga, K; Hirata, K; Hayashi, K; Honda, T

    1996-02-01

    A survey study for Vibrio cholerae in imported seafood was conducted during January 1991 to December 1994. A total of 7,439 specimens (approximately 20% of all imported food) were randomly picked up and examined for contamination of V. cholerae. Among these, V. cholerae O1 were isolated from 9 specimens, but they were all cholerae enterotoxin (CT)-negative. In terms of V. cholerae non-O1, a total of 2,803 specimens (37.4%) were contaminated with this vibrio. Shrimp, especially the ones still in their shells and imported from Asian countries such as India and Indonesia, were highly contaminated with V. cholerae. Although no strains of V. cholerae O1 isolated in this study produced CT, 2 strains of V. cholerae non-O1 were proved to be CT-producers. Taking together the high contamination of V. cholerae in imported seafood and a part of those strains producing CT, we believe that careful survey for the possible contamination of V. choleare in imported seafood is necessary.

  20. Mesenteric Panniculitis Associated With Vibrio cholerae Infection

    PubMed Central

    Roginsky, Grigory; Mazulis, Andrew; Ecanow, Jacob S.

    2015-01-01

    We report the first case of acute Vibrio cholerae infection with computed tomography (CT) changes consistent with mesenteric panniculitis (MP). A 78-year-old Indian man returned from overseas travel with progressively severe nausea, vomiting, abdominal pain, and watery diarrhea. His stool tested positive twice for Vibrio cholerae. CT revealed prominent lymph nodes and a hazy mesentery consistent with MP. Antibiotic treatment resulted in complete resolution of MP on follow-up CT 8 months later. In the setting of Vibrio cholerae infection, the CT finding of MP appears to be the result of a immunologically mediated reactive inflammatory disorder of the mesentery. PMID:26504876

  1. DNA Damage and Reactive Nitrogen Species are Barriers to Vibrio cholerae Colonization of the Infant Mouse Intestine

    PubMed Central

    Davies, Bryan W.; Bogard, Ryan W.; Dupes, Nicole M.; Gerstenfeld, Tyler A. I.; Simmons, Lyle A.; Mekalanos, John J.

    2011-01-01

    Ingested Vibrio cholerae pass through the stomach and colonize the small intestines of its host. Here, we show that V. cholerae requires at least two types of DNA repair systems to efficiently compete for colonization of the infant mouse intestine. These results show that V. cholerae experiences increased DNA damage in the murine gastrointestinal tract. Agreeing with this, we show that passage through the murine gut increases the mutation frequency of V. cholerae compared to liquid culture passage. Our genetic analysis identifies known and novel defense enzymes required for detoxifying reactive nitrogen species (but not reactive oxygen species) that are also required for V. cholerae to efficiently colonize the infant mouse intestine, pointing to reactive nitrogen species as the potential cause of DNA damage. We demonstrate that potential reactive nitrogen species deleterious for V. cholerae are not generated by host inducible nitric oxide synthase (iNOS) activity and instead may be derived from acidified nitrite in the stomach. Agreeing with this hypothesis, we show that strains deficient in DNA repair or reactive nitrogen species defense that are defective in intestinal colonization have decreased growth or increased mutation frequency in acidified nitrite containing media. Moreover, we demonstrate that neutralizing stomach acid rescues the colonization defect of the DNA repair and reactive nitrogen species defense defective mutants suggesting a common defense pathway for these mutants. PMID:21379340

  2. Transmission of Infectious Vibrio cholerae through Drinking Water among the Household Contacts of Cholera Patients (CHoBI7 Trial)

    PubMed Central

    Rafique, Raisa; Rashid, Mahamud-ur; Monira, Shirajum; Rahman, Zillur; Mahmud, Md. Toslim; Mustafiz, Munshi; Saif-Ur-Rahman, K. M.; Johura, Fatema-Tuz; Islam, Saiful; Parvin, Tahmina; Bhuyian, Md. Sazzadul I.; Sharif, Mohsena B.; Rahman, Sabita R.; Sack, David A.; Sack, R. Bradley; George, Christine M.; Alam, Munirul

    2016-01-01

    Recurrent cholera causes significant morbidity and mortality among the growing population of Dhaka, the capital city of Bangladesh. Previous studies have demonstrated that household contacts of cholera patients are at >100 times higher risk of cholera during the week after the presentation of the index patient. Our prospective study investigated the mode of transmission of Vibrio cholerae, the cause of cholera, in the households of cholera patients in Dhaka city. Out of the total 420 rectal swab samples analyzed from 84 household contacts and 330 water samples collected from 33 households, V. cholerae was isolated from 20%(17/84) of household contacts, 18%(6/33) of stored drinking water, and 27%(9/33) of source water samples. Phenotypic and molecular analyses results confirmed the V. cholerae isolates to be toxigenic and belonging to serogroup O1 biotype El Tor (ET) possessing cholera toxin of classical biotype (altered ET). Phylogenetic analysis by pulsed-field gel electrophoresis (PFGE) showed the V. cholerae isolates to be clonally linked, as >95% similarity was confirmed by sub-clustering patterns in the PFGE (NotI)-based dendrogram. Mapping results showed cholera patients to be widely distributed across 25 police stations. The data suggesting the transmission of infectious V. cholerae within the household contacts of cholera patients through drinking water underscores the need for safe water to prevent spread of cholera and related deaths in Dhaka city. PMID:27803695

  3. Transmission of Infectious Vibrio cholerae through Drinking Water among the Household Contacts of Cholera Patients (CHoBI7 Trial).

    PubMed

    Rafique, Raisa; Rashid, Mahamud-Ur; Monira, Shirajum; Rahman, Zillur; Mahmud, Md Toslim; Mustafiz, Munshi; Saif-Ur-Rahman, K M; Johura, Fatema-Tuz; Islam, Saiful; Parvin, Tahmina; Bhuyian, Md Sazzadul I; Sharif, Mohsena B; Rahman, Sabita R; Sack, David A; Sack, R Bradley; George, Christine M; Alam, Munirul

    2016-01-01

    Recurrent cholera causes significant morbidity and mortality among the growing population of Dhaka, the capital city of Bangladesh. Previous studies have demonstrated that household contacts of cholera patients are at >100 times higher risk of cholera during the week after the presentation of the index patient. Our prospective study investigated the mode of transmission of Vibrio cholerae, the cause of cholera, in the households of cholera patients in Dhaka city. Out of the total 420 rectal swab samples analyzed from 84 household contacts and 330 water samples collected from 33 households, V. cholerae was isolated from 20%(17/84) of household contacts, 18%(6/33) of stored drinking water, and 27%(9/33) of source water samples. Phenotypic and molecular analyses results confirmed the V. cholerae isolates to be toxigenic and belonging to serogroup O1 biotype El Tor (ET) possessing cholera toxin of classical biotype (altered ET). Phylogenetic analysis by pulsed-field gel electrophoresis (PFGE) showed the V. cholerae isolates to be clonally linked, as >95% similarity was confirmed by sub-clustering patterns in the PFGE (NotI)-based dendrogram. Mapping results showed cholera patients to be widely distributed across 25 police stations. The data suggesting the transmission of infectious V. cholerae within the household contacts of cholera patients through drinking water underscores the need for safe water to prevent spread of cholera and related deaths in Dhaka city.

  4. Application of duplex-PCR in rapid and reliable detection of toxigenic Vibrio cholerae in water samples in Thailand.

    PubMed

    Chomvarin, Chariya; Namwat, Wises; Wongwajana, Suwin; Alam, Munirul; Thaew-Nonngiew, Kesorn; Sinchaturus, Anuchit; Engchanil, Chulapan

    2007-08-01

    Toxigenic Vibrio cholerae, the cause of cholera, is a native flora of the aquatic environment which is transmitted through drinking water and still remains the leading cause of morbidity and mortality in many developing countries including Thailand. The culture method (CM), which is routinely used for assessing water quality, has not proven as efficient as molecular methods because the notorious pathogen survives in water mostly in a non-culturable state. We employed duplex-polymerase chain reaction (duplex-PCR) for detection of tcpA and ctxA genes in toxigenic V. cholerae, and compared PCR detection with CM in various waters of Khon Kaen Municipality, Thailand. We also evaluated the effect of different pre-PCR conditions on the results of ctxA and tcpA detection including: 1) water filtered and enriched in alkaline peptone water (APW) for 3 h before PCR, 2) water filtered without enrichment before PCR, and 3) use of only enrichment in APW for 6 h before PCR. Of the 96 water samples (taken from waste-water, potable and waste-water from patients' houses, and from rivers) tested, 48 (50%) were positive for ctxA and tcpA by duplex-PCR, whereas only 29 (30%) were positive for V. cholerae by CM. Of the 29 V. cholerae isolated by CM, 2 (7%) were toxigenic V. cholerae belonging to serovar O1, while the rests were non-O1/ non-O139. Results revealed, therefore, that ctxA and tcpA-targeted duplex PCR is more sensitive than CM for detection of toxigenic V. cholerae from water samples because CM detected much less toxigenic V. cholerae than the non-toxigenic V. cholerae. Template DNA as low as 100 fg or 23 cells of V. cholerae in the water sample was detected in duplex PCR. Pre-PCR filtration followed by enrichment for 3 h significantly increase in the efficiency of duplex-PCR detection of toxigenic V. cholerae.

  5. Vibrio cholerae: lessons for mucosal vaccine design

    PubMed Central

    Bishop, Anne L; Camilli, Andrew

    2011-01-01

    The ability of Vibrio cholerae to persist in bodies of water will continue to confound our ability to eradicate cholera through improvements to infrastructure, and thus cholera vaccines are needed. We aim for an inexpensive vaccine that can provide long-lasting protection from all epidemic cholera infections, currently caused by O1 or O139 serogroups. Recent insights into correlates of protection, epidemiology and pathogenesis may help us design improved vaccines. This notwithstanding, we have come to appreciate that even marginally protective vaccines, such as oral whole-cell killed vaccines, if widely distributed, can provide significant protection, owing to herd immunity. Further efforts are still required to provide more effective protection of young children. PMID:21162623

  6. Influence of human behavior on cholera dynamics.

    PubMed

    Wang, Xueying; Gao, Daozhou; Wang, Jin

    2015-09-01

    This paper is devoted to studying the impact of human behavior on cholera infection. We start with a cholera ordinary differential equation (ODE) model that incorporates human behavior via modeling disease prevalence dependent contact rates for direct and indirect transmissions and infectious host shedding. Local and global dynamics of the model are analyzed with respect to the basic reproduction number. We then extend the ODE model to a reaction-convection-diffusion partial differential equation (PDE) model that accounts for the movement of both human hosts and bacteria. Particularly, we investigate the cholera spreading speed by analyzing the traveling wave solutions of the PDE model, and disease threshold dynamics by numerically evaluating the basic reproduction number of the PDE model. Our results show that human behavior can reduce (a) the endemic and epidemic levels, (b) cholera spreading speeds and (c) the risk of infection (characterized by the basic reproduction number).

  7. Immunizing Canada geese against avian cholera

    USGS Publications Warehouse

    Price, J.I.

    1985-01-01

    A small flock of captive giant Canada geese were vaccinated with the experimental bac- terin in Nebraska to test its efficacy under field conditions. Only 2 of 157 vaccinates died from avian cholera during an annual spring die-off.

  8. Are wetlands the reservoir for avian cholera?

    USGS Publications Warehouse

    Samuel, M.D.; Shadduck, D.J.; Goldberg, D.R.

    2004-01-01

    Wetlands have long been suspected to be an important reservoir for Pasteurella multocida and therefore the likely source of avian cholera outbreaks. During the fall of 1995a??98 we collected sediment and water samples from 44 wetlands where avian cholera epizootics occurred the previous winter or spring. We attempted to isolate P. multocida in sediment and surface water samples from 10 locations distributed throughout each wetland. We were not able to isolate P. multocida from any of the 440 water and 440 sediment samples collected from these wetlands. In contrast, during other investigations of avian cholera we isolated P. multocida from 20 of 44 wetlands, including 7% of the water and 4.5% of the sediment samples collected during or shortly following epizootic events. Our results indicate that wetlands are an unlikely reservoir for the bacteria that causes avian cholera.

  9. Pursuing Justice in Haiti's Cholera Epidemic.

    PubMed

    Weinmeyer, Richard

    2016-07-01

    In 2010, the nation of Haiti was leveled by a shattering earthquake that killed thousands and devastated its already fragile infrastructure. During relief efforts to aid Haiti's suffering population, the United Nations sent troops to Haiti to assist the rebuilding of country's most basic services. But those troops unknowingly carried with them the bacteria that cause cholera, and through the UN's negligent actions, it triggered a horrifying cholera epidemic that continues to harm the Haitian people. Those injured by the cholera epidemic have sought relief in the US federal court system to obtain justice for those killed or sickened by the cholera outbreak. The UN has declared legal immunity for causing the epidemic, yet the litigation on this matter is ongoing.

  10. Invasive Vibrio cholerae Infection Following Burn Injury

    DTIC Science & Technology

    2008-06-01

    as asymptomatic col- onization, otitis , gastroenteritis, soft-tissue infection, sepsis, or even cerebritis. In contrast, epidemic V. cholerae (O-1 or...cholerae grows well on common blood agar, with decreased bacterial over- growth on selective media , such as TCBS agar. As noted in our case (Figure 1), it...is possible for both epidemic and nonepidemic strains to have a “rugose” phenotype on nonselective media , and usually a smooth phenotype on TCBS.11

  11. PREDICTIVE MODELING OF CHOLERA OUTBREAKS IN BANGLADESH

    PubMed Central

    Koepke, Amanda A.; Longini, Ira M.; Halloran, M. Elizabeth; Wakefield, Jon; Minin, Vladimir N.

    2016-01-01

    Despite seasonal cholera outbreaks in Bangladesh, little is known about the relationship between environmental conditions and cholera cases. We seek to develop a predictive model for cholera outbreaks in Bangladesh based on environmental predictors. To do this, we estimate the contribution of environmental variables, such as water depth and water temperature, to cholera outbreaks in the context of a disease transmission model. We implement a method which simultaneously accounts for disease dynamics and environmental variables in a Susceptible-Infected-Recovered-Susceptible (SIRS) model. The entire system is treated as a continuous-time hidden Markov model, where the hidden Markov states are the numbers of people who are susceptible, infected, or recovered at each time point, and the observed states are the numbers of cholera cases reported. We use a Bayesian framework to fit this hidden SIRS model, implementing particle Markov chain Monte Carlo methods to sample from the posterior distribution of the environmental and transmission parameters given the observed data. We test this method using both simulation and data from Mathbaria, Bangladesh. Parameter estimates are used to make short-term predictions that capture the formation and decline of epidemic peaks. We demonstrate that our model can successfully predict an increase in the number of infected individuals in the population weeks before the observed number of cholera cases increases, which could allow for early notification of an epidemic and timely allocation of resources. PMID:27746850

  12. The scenario approach for countries considering the addition of oral cholera vaccination in cholera preparedness and control plans.

    PubMed

    Deen, Jacqueline; von Seidlein, Lorenz; Luquero, Francisco J; Troeger, Christopher; Reyburn, Rita; Lopez, Anna Lena; Debes, Amanda; Sack, David A

    2016-01-01

    Oral cholera vaccination could be deployed in a diverse range of situations from cholera-endemic areas and locations of humanitarian crises, but no clear consensus exists. The supply of licensed, WHO-prequalified cholera vaccines is not sufficient to meet endemic and epidemic needs worldwide and so prioritisation is needed. We have developed a scenario approach to systematically classify situations in which oral cholera vaccination might be useful. Our scenario approach distinguishes between five types of cholera epidemiology based on experiences from around the world and provides evidence that we hope will spur the development of detailed guidelines on how and where oral cholera vaccines could, and should, be most rationally deployed.

  13. Spatial dependency of cholera prevalence on potential cholera reservoirs in an urban area, Kumasi, Ghana

    NASA Astrophysics Data System (ADS)

    Osei, Frank B.; Duker, Alfred A.; Augustijn, Ellen-Wien; Stein, Alfred

    2010-10-01

    Cholera has been a public health burden in Ghana since the early 1970s. Between 1999 and 2005, a total of 25,636 cases and 620 deaths were officially reported to the WHO. In one of the worst affected urban cities, fecal contamination of surface water is extremely high, and the disease is reported to be prevalent among inhabitants living in close proximity to surface water bodies. Surface runoff from dump sites is a major source of fecal and bacterial contamination of rivers and streams in the study area. This study aims to determine (a) the impacts of surface water contamination on cholera infection and (b) detect and map arbitrary shaped clusters of cholera. A Geographic Information System (GIS) based spatial analysis is used to delineate potential reservoirs of the cholera vibrios; possibly contaminated by surface runoff from open space refuse dumps. Statistical modeling using OLS model reveals a significant negative association between (a) cholera prevalence and proximity to all the potential cholera reservoirs ( R2 = 0.18, p < 0.001) and (b) cholera prevalence and proximity to upstream potential cholera reservoirs ( R2 = 0.25, p < 0.001). The inclusion of spatial autoregressive coefficients in the OLS model reveals the dependency of the spatial distribution of cholera prevalence on the spatial neighbors of the communities. A flexible scan statistic identifies a most likely cluster with a higher relative risk (RR = 2.04, p < 0.01) compared with the cluster detected by circular scan statistic (RR = 1.60, p < 0.01). We conclude that surface water pollution through runoff from waste dump sites play a significant role in cholera infection.

  14. Avian cholera in Nebraska's Rainwater Basin

    USGS Publications Warehouse

    Windingstad, R.M.; Hurt, J.J.; Trout, A.K.; Cary, J.

    1984-01-01

    The first report of avian cholera in North America occurred in northwestern Texas in winter 1944 (Quortrup et al. 1946). In 1975, mortality from avian cholera occurred for the first time in waterfowl in the Rainwater Basin of Nebraska when an estimated 25,000 birds died (Zinkl et al. 1977). Avian cholera has continued to cause mortality in wild birds in specific areas of the Basin each spring since. Losses of waterfowl from avian cholera continue to be much greater in some of the wetlands in the western part of the Basin than in the east. Several wetlands in the west have consistently higher mortality and are most often the wetlands where initial mortality is noticed each spring (Figure 1). The establishment of this disease in Nebraska is of considerable concern because of the importance of the Rainwater Basin as a spring staging area for waterfowl migrating to their breeding grounds. The wetlands in this area are on a major migration route used by an estimated 5 to 9 million ducks and several hundred thousand geese. A large portion of the western mid-continental greater white-fronted goose (Anser albifrons) population stage in the Basin each spring. Occasionally, whooping cranes (Grus americana) use these wetlands during migration, and lesser sandhill cranes (Grus canadensis) staging on the nearby Platte River sometimes use wetlands where avian cholera occurs (Anonymous 1981). Our objectives were to determine whether certain water quality variables in the Rainwater Basin differed between areas of high and low avian cholera incidence. These results would then be used for laboratory studies involving the survivability of Pasteurella multocida, the causative bacterium of avian cholera. Those studies will be reported elsewhere.

  15. Whole-Genome Sequences of 26 Vibrio cholerae Isolates

    PubMed Central

    Watve, Samit S.; Chande, Aroon T.; Rishishwar, Lavanya; Jordan, I. King

    2016-01-01

    The human pathogen Vibrio cholerae employs several adaptive mechanisms for environmental persistence, including natural transformation and type VI secretion, creating a reservoir for the spread of disease. Here, we report whole-genome sequences of 26 diverse V. cholerae isolates, significantly increasing the sequence diversity of publicly available V. cholerae genomes. PMID:28007852

  16. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Vibrio cholerae serological reagents. 866.3930... cholerae serological reagents. (a) Identification. Vibrio cholerae serological reagents are devices that are used in the agglutination (an antigen-antibody clumping reaction) test to identify Vibrio...

  17. Seasonal Cholera Caused by Vibrio cholerae Serogroups O1 and O139 in the Coastal Aquatic Environment of Bangladesh

    PubMed Central

    Alam, Munirul; Hasan, Nur A.; Sadique, Abdus; Bhuiyan, N. A.; Ahmed, Kabir U.; Nusrin, Suraia; Nair, G. Balakrish; Siddique, A. K.; Sack, R. Bradley; Sack, David A.; Huq, Anwar; Colwell, Rita R.

    2006-01-01

    Since Vibrio cholerae O139 first appeared in 1992, both O1 El Tor and O139 have been recognized as the epidemic serogroups, although their geographic distribution, endemicity, and reservoir are not fully understood. To address this lack of information, a study of the epidemiology and ecology of V. cholerae O1 and O139 was carried out in two coastal areas, Bakerganj and Mathbaria, Bangladesh, where cholera occurs seasonally. The results of a biweekly clinical study (January 2004 to May 2005), employing culture methods, and of an ecological study (monthly in Bakerganj and biweekly in Mathbaria from March 2004 to May 2005), employing direct and enrichment culture, colony blot hybridization, and direct fluorescent-antibody methods, showed that cholera is endemic in both Bakerganj and Mathbaria and that V. cholerae O1, O139, and non-O1/non-O139 are autochthonous to the aquatic environment. Although V. cholerae O1 and O139 were isolated from both areas, most noteworthy was the isolation of V. cholerae O139 in March, July, and September 2004 in Mathbaria, where seasonal cholera was clinically linked only to V. cholerae O1. In Mathbaria, V. cholerae O139 emerged as the sole cause of a significant outbreak of cholera in March 2005. V. cholerae O1 reemerged clinically in April 2005 and established dominance over V. cholerae O139, continuing to cause cholera in Mathbaria. In conclusion, the epidemic potential and coastal aquatic reservoir for V. cholerae O139 have been demonstrated. Based on the results of this study, the coastal ecosystem of the Bay of Bengal is concluded to be a significant reservoir for the epidemic serogroups of V. cholerae. PMID:16751520

  18. Seasonal dynamics of Vibrio cholerae and its phages in riverine ecosystem of Gangetic West Bengal: cholera paradigm.

    PubMed

    Mookerjee, Subham; Jaiswal, Abhishek; Batabyal, Prasenjit; Einsporn, Marc H; Lara, Ruben J; Sarkar, Banwarilal; Neogi, Sucharit Basu; Palit, Anup

    2014-10-01

    The Gangetic delta is a century-old cholera endemic belt where the role of riverine-estuarine ecosystem in cholera transmission has never been elucidated. Seasonality, distribution, and abundance of environmental Vibrio cholerae O1/O139 and vibriophage in Hooghly riverine-estuarine environment and their correlation with cholera incidence pattern in West Bengal, India, have been analyzed for the first time across summer, monsoon, and winter months. A total of 146 water samples collected from two sites of the Hooghly River (Howrah and Diamond Harbour) were analyzed physicochemically along with cultivable Vibrio count (CVC), V. cholerae O1/O139, and vibriophages. V. cholerae O1 was detected in 56 (38.3%) samples, while 66 (45.2%) were positive for V. cholerae O1 phages. Flood tide, water temperature (31 ± 1.6 °C), and turbidity (≥250 nephelometric turbidity unit (NTU)) significantly stimulated V. cholerae and vibriophage abundance in riverine ecosystem. Solitary existence of V. cholerae O1 and phages (p < 0.0001) in aquatic environment divulges the dominance of either of the entity (V. cholerae O1 or V. cholerae O1 Φ) on the other. Significant association (p < 0.05) between Kolkata cholera cases and V. cholerae O1 in aquatic environment implies the role of riverine-estuarine ecosystem in cholera transmission. A "biomonitoring tool" of physicochemical stimulants, tidal, and climatic variants has been proposed collating V. cholerae and phage dynamics that can forewarn any impending cholera outbreak.

  19. Role of Shrimp Chitin in the Ecology of Toxigenic Vibrio cholerae and Cholera Transmission

    PubMed Central

    Nahar, Shamsun; Sultana, Marzia; Naser, M. Niamul; Nair, Gopinath B.; Watanabe, Haruo; Ohnishi, Makoto; Yamamoto, Shouji; Endtz, Hubert; Cravioto, Alejandro; Sack, R. Bradley; Hasan, Nur A.; Sadique, Abdus; Huq, Anwar; Colwell, Rita R.; Alam, Munirul

    2011-01-01

    Seasonal plankton blooms correlate with occurrence of cholera in Bangladesh, although the mechanism of how dormant Vibrio cholerae, enduring interepidemic period in biofilms and plankton, initiates seasonal cholera is not fully understood. In this study, laboratory microcosms prepared with estuarine Mathbaria water (MW) samples supported active growth of toxigenic V. cholerae O1 up to 7 weeks as opposed to 6 months when microcosms were supplemented with dehydrated shrimp chitin chips (CC) as the single source of nutrient. Bacterial counting and detection of wbe and ctxA genes were done employing culture, direct fluorescent antibody (DFA) assay, and multiplex-polymerase chain reaction methods. In MW microcosm, the aqueous phase became clear as the non-culturable cells settled, whereas the aqueous phase of the MW–CC microcosm became turbid from bacterial growth stimulated by chitin. Bacterial chitin degradation and biofilm formation proceeded from an initial steady state to a gradually declining bacterial culturable count. V. cholerae within the microenvironments of chitin and chitin-associated biofilms remained metabolically active even in a high acidic environment without losing either viability or virulence. It is concluded that the abundance of chitin that occurs during blooms plays an important role in the aquatic life cycle of V. cholerae and, ultimately, in the seasonal transmission of cholera. PMID:22319512

  20. Role of Shrimp Chitin in the Ecology of Toxigenic Vibrio cholerae and Cholera Transmission.

    PubMed

    Nahar, Shamsun; Sultana, Marzia; Naser, M Niamul; Nair, Gopinath B; Watanabe, Haruo; Ohnishi, Makoto; Yamamoto, Shouji; Endtz, Hubert; Cravioto, Alejandro; Sack, R Bradley; Hasan, Nur A; Sadique, Abdus; Huq, Anwar; Colwell, Rita R; Alam, Munirul

    2011-01-01

    Seasonal plankton blooms correlate with occurrence of cholera in Bangladesh, although the mechanism of how dormant Vibrio cholerae, enduring interepidemic period in biofilms and plankton, initiates seasonal cholera is not fully understood. In this study, laboratory microcosms prepared with estuarine Mathbaria water (MW) samples supported active growth of toxigenic V. cholerae O1 up to 7 weeks as opposed to 6 months when microcosms were supplemented with dehydrated shrimp chitin chips (CC) as the single source of nutrient. Bacterial counting and detection of wbe and ctxA genes were done employing culture, direct fluorescent antibody (DFA) assay, and multiplex-polymerase chain reaction methods. In MW microcosm, the aqueous phase became clear as the non-culturable cells settled, whereas the aqueous phase of the MW-CC microcosm became turbid from bacterial growth stimulated by chitin. Bacterial chitin degradation and biofilm formation proceeded from an initial steady state to a gradually declining bacterial culturable count. V. cholerae within the microenvironments of chitin and chitin-associated biofilms remained metabolically active even in a high acidic environment without losing either viability or virulence. It is concluded that the abundance of chitin that occurs during blooms plays an important role in the aquatic life cycle of V. cholerae and, ultimately, in the seasonal transmission of cholera.

  1. Knowledge, Attitudes, and Practices regarding Diarrhea and Cholera following an Oral Cholera Vaccination Campaign in the Solomon Islands

    PubMed Central

    Burnett, Eleanor; Dalipanda, Tenneth; Ogaoga, Divi; Gaiofa, Jenny; Jilini, Gregory; Halpin, Alison; Dietz, Vance; Date, Kashmira; Mintz, Eric; Hyde, Terri; Wannemuehler, Kathleen; Yen, Catherine

    2016-01-01

    Background In response to a 2011 cholera outbreak in Papua New Guinea, the Government of the Solomon Islands initiated a cholera prevention program which included cholera disease prevention and treatment messaging, community meetings, and a pre-emptive cholera vaccination campaign targeting 11,000 children aged 1–15 years in selected communities in Choiseul and Western Provinces. Methodology and Principal Findings We conducted a post-vaccination campaign, household-level survey about knowledge, attitudes, and practices regarding diarrhea and cholera in areas targeted and not targeted for cholera vaccination. Respondents in vaccinated areas were more likely to have received cholera education in the previous 6 months (33% v. 9%; p = 0.04), to know signs and symptoms (64% vs. 22%; p = 0.02) and treatment (96% vs. 50%; p = 0.02) of cholera, and to be aware of cholera vaccine (48% vs. 14%; p = 0.02). There were no differences in water, sanitation, and hygiene practices. Conclusions This pre-emptive OCV campaign in a cholera-naïve community provided a unique opportunity to assess household-level knowledge, attitudes, and practices regarding diarrhea, cholera, and water, sanitation, and hygiene (WASH). Our findings suggest that education provided during the vaccination campaign may have reinforced earlier mass messaging about cholera and diarrheal disease in vaccinated communities. PMID:27548678

  2. Cholera toxin-B (ctxB) antigen expressing Salmonella Typhimurium polyvalent vaccine exerts protective immune response against Vibrio cholerae infection.

    PubMed

    Vishwakarma, Vikalp; Sahoo, Sushree Sangita; Das, Susmita; Ray, Shilpa; Hardt, Wolf-Dietrich; Suar, Mrutyunjay

    2015-04-08

    Live attenuated vaccines are cost effective approach for preventing a broad range of infectious diseases, and thus are of great interest. However, immune-defects can predispose the patient to infections by the vaccine candidate itself. So far, few live vaccine candidates have been designed specifically for immune compromised individuals. Recently, we reported a new Salmonella Typhimurium Z234-vaccine strain (Periaswamy et al., PLoS ONE 2012;7:e45433), which was specifically attenuated in the NADPH-oxidase deficient host. In the present study, the Z234-vaccine strain was further engineered to express heterologous antigen (Vibrio cholerae toxin antigen subunit-B, i.e. CtxB) with the intention of creating a vector for simultaneous protection against Cholera and Salmonellosis. The primary aim of this study was to ensure the expression of CtxB antigen by the recombinant vaccine strain Z234-pMS101. The antigen CtxB was expressed through Z234 as a fusion protein with N-terminal signal sequence of Salmonella outer protein (SopE), an effector protein from Salmonella under the control of SopE promoter. The CtxB-expressing plasmid construct pMS101 (pM968-pSopE-ctxB) was found to be stable both in vitro and in vivo. In an oral mouse infection model, the vaccine strain Z234-pMS101 efficiently colonized the host gut. The extent of protection was confirmed after challenging the immunized hosts with live V. cholerae. Vaccinated mice showed reduced gut colonization by V. cholerae. Further assessment of immunological parameters supported the possibility of conferring effective immune response by Z234-pMS101 vaccine strain. Overall, the Z234-pMS101 vaccine strain showed potential as a promising polyvalent vaccine candidate to protect against S. Typhimurium and V. cholerae infection simultaneously.

  3. Transferable quinolone resistance in Vibrio cholerae.

    PubMed

    Kim, Hong Bin; Wang, Minghua; Ahmed, Sabeena; Park, Chi Hye; LaRocque, Regina C; Faruque, Abu S G; Salam, Mohammed A; Khan, Wasif A; Qadri, Firdausi; Calderwood, Stephen B; Jacoby, George A; Hooper, David C

    2010-02-01

    Ciprofloxacin was introduced for treatment of patients with cholera in Bangladesh because of resistance to other agents, but its utility has been compromised by the decreasing ciprofloxacin susceptibility of Vibrio cholerae over time. We correlated levels of susceptibility and temporal patterns with the occurrence of mutation in gyrA, which encodes a subunit of DNA gyrase, followed by mutation in parC, which encodes a subunit of DNA topoisomerase IV. We found that ciprofloxacin activity was more recently further compromised in strains containing qnrVC3, which encodes a pentapeptide repeat protein of the Qnr subfamily, members of which protect topoisomerases from quinolone action. We show that qnrVC3 confers transferable low-level quinolone resistance and is present within a member of the SXT integrating conjugative element family found commonly on the chromosomes of multidrug-resistant strains of V. cholerae and on the chromosomes of Escherichia coli transconjugants constructed in the laboratory. Thus, progressive increases in quinolone resistance in V. cholerae are linked to cumulative mutations in quinolone targets and most recently to a qnr gene on a mobile multidrug resistance element, resulting in further challenges for the antimicrobial therapy of cholera.

  4. Resurgence of cholera in Hong Kong.

    PubMed Central

    Lee, S. H.; Lai, S. T.; Lai, J. Y.; Leung, N. K.

    1996-01-01

    Cholera is one of the three diseases subject to the International Health Regulations. After a period of over 30 years, the seventh pandemic of cholera, which started in South East Asia in 1961, still shows no sign of a decline. On the contrary, it has increased its severity and invaded many other countries in Africa and Latin America. In the last two years, there has been a recrudescence of the disease in South East Asia and Western Pacific Regions. The discovery of a new strain of Vibrio cholerae 0139 in these regions is causing concern in view of its potential to cause major epidemics and higher mortality. Hong Kong had two intensive outbreaks of cholera in the last two years. The cause of these outbreaks was not clear, but adverse environmental conditions and increasing pollution of coastal waters have been implicated. The spread of cholera knows no geographical boundaries. There is a need for intensified efforts among health authorities in the affected areas to prevent the international spread of the disease. PMID:8760949

  5. Seroepidemiology of cholera in Gulf coastal Texas.

    PubMed Central

    Hunt, M D; Woodward, W E; Keswick, B H; Dupont, H L

    1988-01-01

    Single serum samples from 559 volunteers from a Texas Gulf Coast area were examined for vibriocidal antibody to Vibrio cholerae O1 (biotype El Tor, serotype Inaba) by a microtiter method. Elevated levels of vibriocidal antibody were present in 14% of the subjects. Also, 6.8% of the subjects had elevated levels of antibody to the enterotoxin of V. cholerae O1 by the immunoglobulin G enzyme-linked immunosorbent assay. Recent infection, defined on the basis of elevations in both vibriocidal and antitoxin antibodies, had occurred in 1.3% of the subjects. When subjects who reported Brucella infection, travel to a cholera-endemic area, and/or cholera vaccination within a year of the study were removed from the analysis, a prevalence of recent infection of 0.89% was obtained. Significantly higher titers of vibriocidal antibody were found in those with exposure to seawater (fishermen, shrimpers, merchant marines, and dock workers) than in those without such exposure (P less than 0.005). Furthermore, titers of antitoxin antibody were significantly higher in those who consumed shellfish than in nonconsumers. Finally, titers of vibriocidal antibody were significantly higher in Vietnamese subjects than in non-Vietnamese subjects. The results of this study indicate that an endemic focus of infection with V. cholerae occurs in this area. PMID:3415232

  6. Phylogenetic Diversity of Vibrio cholerae Associated with Endemic Cholera in Mexico from 1991 to 2008

    PubMed Central

    Choi, Seon Young; Rashed, Shah M.; Hasan, Nur A.; Alam, Munirul; Islam, Tarequl; Sadique, Abdus; Johura, Fatema-Tuz; Eppinger, Mark; Huq, Anwar; Cravioto, Alejandro

    2016-01-01

    ABSTRACT An outbreak of cholera occurred in 1991 in Mexico, where it had not been reported for more than a century and is now endemic. Vibrio cholerae O1 prototype El Tor and classical strains coexist with altered El Tor strains (1991 to 1997). Nontoxigenic (CTX−) V. cholerae El Tor dominated toxigenic (CTX+) strains (2001 to 2003), but V. cholerae CTX+ variant El Tor was isolated during 2004 to 2008, outcompeting CTX− V. cholerae. Genomes of six Mexican V. cholerae O1 strains isolated during 1991 to 2008 were sequenced and compared with both contemporary and archived strains of V. cholerae. Three were CTX+ El Tor, two were CTX− El Tor, and the remaining strain was a CTX+ classical isolate. Whole-genome sequence analysis showed the six isolates belonged to five distinct phylogenetic clades. One CTX− isolate is ancestral to the 6th and 7th pandemic CTX+ V. cholerae isolates. The other CTX− isolate joined with CTX− non-O1/O139 isolates from Haiti and seroconverted O1 isolates from Brazil and Amazonia. One CTX+ isolate was phylogenetically placed with the sixth pandemic classical clade and the V. cholerae O395 classical reference strain. Two CTX+ El Tor isolates possessing intact Vibrio seventh pandemic island II (VSP-II) are related to hybrid El Tor isolates from Mozambique and Bangladesh. The third CTX+ El Tor isolate contained West African-South American (WASA) recombination in VSP-II and showed relatedness to isolates from Peru and Brazil. Except for one isolate, all Mexican isolates lack SXT/R391 integrative conjugative elements (ICEs) and sensitivity to selected antibiotics, with one isolate resistant to streptomycin. No isolates were related to contemporary isolates from Asia, Africa, or Haiti, indicating phylogenetic diversity. PMID:26980836

  7. Promotion of Cholera Awareness Among Households of Cholera Patients: A Randomized Controlled Trial of the Cholera-Hospital-Based-Intervention-for-7 Days (CHoBI7) Intervention.

    PubMed

    Saif-Ur-Rahman, K M; Parvin, Tahmina; Bhuyian, Sazzadul Islam; Zohura, Fatema; Begum, Farzana; Rashid, Mahamud-Ur; Biswas, Shwapon Kumar; Sack, David; Sack, R Bradley; Monira, Shirajum; Alam, Munirul; Shaly, Nusrat Jahan; George, Christine Marie

    2016-12-07

    Previous studies have demonstrated that household contacts of cholera patients are highly susceptible to cholera infections for a 7-day period after the presentation of the index patient in the hospital. However, there is no standard of care to prevent cholera transmission in this high-risk population. Furthermore, there is limited information available on awareness of cholera transmission and prevention among cholera patients and their household contacts. To initiate a standard of care for this high-risk population, we developed the Cholera-Hospital-Based-Intervention-for-7-Days (CHoBI7), which delivers a handwashing with soap and water treatment intervention to household contacts during the time they spend with the admitted cholera patient in the hospital and reinforces these messages through home visits. To test CHoBI7, we conducted a randomized controlled trial among 302 intervention cholera patient household members and 302 control cholera patient household members in Dhaka, Bangladesh. In this study, we evaluated the effectiveness of the CHoBI7 intervention in increasing awareness of cholera transmission and prevention, and the key times for handwashing with soap. We observed a significant increase in cholera knowledge score in the intervention arm compared with the control arm at both the 1-week follow-up {score coefficient = 2.34 (95% confidence interval [CI] = 1.96, 2.71)} and 6 to 12-month follow-up period (score coefficient = 1.59 [95% CI = 1.05, 2.13]). This 1-week hospital- and home-based intervention led to a significant increase in knowledge of cholera transmission and prevention which was sustained 6 to 12 months post-intervention. These findings suggest that the CHoBI7 intervention presents a promising approach to increase cholera awareness among this high-risk population.

  8. Phylogeny of Vibrio cholerae Based on recA Sequence

    PubMed Central

    Stine, O. Colin; Sozhamannan, Shanmuga; Gou, Qing; Zheng, Siqen; Morris, J. Glenn; Johnson, Judith A.

    2000-01-01

    We sequenced a 705-bp fragment of the recA gene from 113 Vibrio cholerae strains and closely related species. One hundred eighty-seven nucleotides were phylogenetically informative, 55 were phylogenetically uninformative, and 463 were invariant. Not unexpectedly, Vibrio parahaemolyticus and Vibrio vulnificus strains formed out-groups; we also identified isolates which resembled V. cholerae biochemically but which did not cluster with V. cholerae. In many instances, V. cholerae serogroup designations did not correlate with phylogeny, as reflected by recA sequence divergence. This observation is consistent with the idea that there is horizontal transfer of O-antigen biosynthesis genes among V. cholerae strains. PMID:11083852

  9. Hybrid Vibrio cholerae El Tor Lacking SXT Identified as the Cause of a Cholera Outbreak in the Philippines

    PubMed Central

    Klinzing, David C.; Choi, Seon Young; Hasan, Nur A.; Matias, Ronald R.; Tayag, Enrique; Geronimo, Josefina; Skowronski, Evan; Rashed, Shah M.; Kawashima, Kent; Rosenzweig, C. Nicole; Gibbons, Henry S.; Torres, Brian C.; Liles, Veni; Alfon, Alicia C.; Juan, Maria Luisa; Natividad, Filipinas F.; Cebula, Thomas A.

    2015-01-01

    ABSTRACT Cholera continues to be a global threat, with high rates of morbidity and mortality. In 2011, a cholera outbreak occurred in Palawan, Philippines, affecting more than 500 people, and 20 individuals died. Vibrio cholerae O1 was confirmed as the etiological agent. Source attribution is critical in cholera outbreaks for proper management of the disease, as well as to control spread. In this study, three V. cholerae O1 isolates from a Philippines cholera outbreak were sequenced and their genomes analyzed to determine phylogenetic relatedness to V. cholerae O1 isolates from recent outbreaks of cholera elsewhere. The Philippines V. cholerae O1 isolates were determined to be V. cholerae O1 hybrid El Tor belonging to the seventh-pandemic clade. They clustered tightly, forming a monophyletic clade closely related to V. cholerae O1 hybrid El Tor from Asia and Africa. The isolates possess a unique multilocus variable-number tandem repeat analysis (MLVA) genotype (12-7-9-18-25 and 12-7-10-14-21) and lack SXT. In addition, they possess a novel 15-kb genomic island (GI-119) containing a predicted type I restriction-modification system. The CTXΦ-RS1 array of the Philippines isolates was similar to that of V. cholerae O1 MG116926, a hybrid El Tor strain isolated in Bangladesh in 1991. Overall, the data indicate that the Philippines V. cholerae O1 isolates are unique, differing from recent V. cholerae O1 isolates from Asia, Africa, and Haiti. Furthermore, the results of this study support the hypothesis that the Philippines isolates of V. cholerae O1 are indigenous and exist locally in the aquatic ecosystem of the Philippines. PMID:25900650

  10. Cell Vacuolation Caused by Vibrio cholerae Hemolysin

    PubMed Central

    Figueroa-Arredondo, Paula; Heuser, John E.; Akopyants, Natalia S.; Morisaki, J. Hiroshi; Giono-Cerezo, Silvia; Enríquez-Rincón, Fernando; Berg, Douglas E.

    2001-01-01

    Non-O1 strains of Vibrio cholerae implicated in gastroenteritis and diarrhea generally lack virulence determinants such as cholera toxin that are characteristic of epidemic strains; the factors that contribute to their virulence are not understood. Here we report that at least one-third of diarrhea-associated nonepidemic V. cholerae strains from Mexico cause vacuolation of cultured Vero cells. Detailed analyses indicated that this vacuolation was related to that caused by aerolysin, a pore-forming toxin of Aeromonas; it involved primarily the endoplasmic reticulum at early times (∼1 to 4 h after exposure), and resulted in formation of large, acidic, endosome-like multivesicular vacuoles (probably autophagosomes) only at late times (∼16 h). In contrast to vacuolation caused by Helicobacter pylori VacA protein, that induced by V. cholerae was exacerbated by agents that block vacuolar proton pumping but not by endosome-targeted weak bases. It caused centripetal redistribution of endosomes, reflecting cytoplasmic alkalinization. The gene for V. cholerae vacuolating activity was cloned and was found to correspond to hlyA, the structural gene for hemolysin. HlyA protein is a pore-forming toxin that causes ion leakage and, ultimately, eukaryotic cell lysis. Thus, a distinct form of cell vacuolation precedes cytolysis at low doses of hemolysin. We propose that this vacuolation, in itself, contributes to the virulence of V. cholerae strains, perhaps by perturbing intracellular membrane trafficking or ion exchange in target cells and thereby affecting local intestinal inflammatory or other defense responses. PMID:11179335

  11. Cholera in a developing megacity; Karachi, Pakistan.

    PubMed Central

    Sheikh, A.; Khan, A.; Malik, T.; Fisher-Hoch, S. P.

    1997-01-01

    Despite rapid urbanization and increasing affluence in Karachi, cases of cholera are frequent. We analysed computerized isolation data from the AKUH Clinical Microbiology Laboratory, Karachi, from 1990-6 to examine microbiological, temporal and demographic trends in Vibrio cholerae infections. During this period 888 strains of V. cholerae (566 V. cholerae serogroup O1, and 204 V. cholerae serogroup O139) were isolated from specimens from 886 patients; 214/464 were adult inpatients, and 250/464 paediatric inpatients, the remaining 422 outpatients. Isolations peaked between June and August. Overlapping epidemics occurred in 1993 and 1994 of serogroup O1 (May to August), and serogroup O139 (August to October). All ages and social and economic strata were affected. Forty-four percent of all isolates were from children under the age of 5 years. The mean age of all patients with serogroup O1 infections was 19.6 years (+/-0.9) compared with 367 (+/-1.7) for serogroup O139 infections (P < 0.0001, t test). More than a quarter (27%) of all serogroup O1 isolates were from babies under 2 years of age. One patient had a serogroup O1 infection followed by a serogroup O139 infection 1 year later. Another patient was infected with serogroup O1 strains 5 years apart. Emergence of resistant strains was observed, but by 1996 serogroup O139 had disappeared. An aquatic organism, cholera nevertheless continues to take its toll in this city of 11 million situated in a desert. PMID:9440430

  12. Local environmental predictors of cholera in Bangladesh and Vietnam.

    PubMed

    Emch, Michael; Feldacker, Caryl; Yunus, Mohammad; Streatfield, Peter Kim; DinhThiem, Vu; Canh, Do Gia; Ali, Mohammad

    2008-05-01

    Environmental factors have been shown to be related to cholera and thus might prove useful for prediction. In Bangladesh and Vietnam, temporal cholera distributions are related to satellite-derived and in-situ environmental time series data in order to examine the relationships between cholera and the local environment. Ordered probit models examine associations in Bangladesh; probit models examine associations at 2 sites in Vietnam. Increases in ocean chlorophyll concentration are related to an increased magnitude of cholera in Bangladesh. Increases in sea surface temperature are most influential in Hue, Vietnam, whereas increases in river height have a significant role in Nha Trang, Vietnam. Cholera appearance and epidemic magnitude are related to the local environment. Local environmental parameters have consistent effects when cholera is regular and more prevalent in endemic settings, but in situations where cholera epidemics are rare there are differential environmental effects.

  13. Does water hyacinth on East African lakes promote cholera outbreaks?

    PubMed

    Feikin, Daniel R; Tabu, Collins W; Gichuki, John

    2010-08-01

    Cholera outbreaks continue to occur regularly in Africa. Cholera has been associated with proximity to lakes in East Africa, and Vibrio cholerae has been found experimentally to concentrate on the floating aquatic plant, water hyacinth, which is periodically widespread in East African lakes since the late 1980s. From 1994 to 2008, Nyanza Province, which is the Kenyan province bordering Lake Victoria, accounted for a larger proportion of cholera cases than expected by its population size (38.7% of cholera cases versus 15.3% of national population). Yearly water-hyacinth coverage on the Kenyan section of Lake Victoria was positively associated with the number of cholera cases reported in Nyanza Province (r = 0.83; P = 0.0010). Water hyacinth on freshwater lakes might play a role in initiating cholera outbreaks and causing sporadic disease in East Africa.

  14. Population-Level Effect of Cholera Vaccine on Displaced Populations, South Sudan, 2014

    PubMed Central

    Rumunu, John; Abubakar, Abdinasir; West, Haley; Ciglenecki, Iza; Helderman, Trina; Wamala, Joseph Francis; Vázquez, Olimpia de la Rosa; Perea, William; Sack, David A.; Legros, Dominique; Martin, Stephen; Lessler, Justin; Luquero, Francisco J.

    2016-01-01

    Following mass population displacements in South Sudan, preventive cholera vaccination campaigns were conducted in displaced persons camps before a 2014 cholera outbreak. We compare cholera transmission in vaccinated and unvaccinated areas and show vaccination likely halted transmission within vaccinated areas, illustrating the potential for oral cholera vaccine to stop cholera transmission in vulnerable populations. PMID:27192187

  15. Spreading of Cholera through Surface Water

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2009-12-01

    Cholera epidemics are still a major public health concern to date in many areas of the world. In order to understand and forecast cholera outbreaks, one of the most important factors is the role played by the environmental matrix in which the disease spreads. We study how river networks, acting as environmental corridors for pathogens, affect the spreading of cholera epidemics. The environmental matrix in which the disease spreads is constituted by different human communities and their hydrologic interconnections. Each community is characterized by its spatial position, population size, water resources availability and hygiene conditions. By implementing a spatially explicit cholera model we seek the effects on epidemic dynamics of: i) the topology and metrics of the pathogens pathways that connect different communities; ii) the spatial distribution of the population size; and iii) the spatial distributions and quality of surface water resources and public health conditions, and how they vary with population size. The model has been applied to study the space-time evolution of a well documented cholera epidemic occurred in the KwaZulu-Natal province of South Africa. The epidemic lasted for two years and involved about 140,000 confirmed cholera cases. The model does well in reproducing the distribution of the cholera cases during the two outbreaks as well as their spatial spreading. We further extend the model by deriving the speed of propagation of traveling fronts in the case of uniformly distributed systems for different topologies: one and two dimensional lattices and river networks. The derivation of the spreading celerity proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. The conditions are sought by comparison between spreading and disease timescales. Consider a cholera epidemic that starts from a point and spreads throughout a finite size system, it is possible to identify two different timescales: i

  16. The role of climate and socioeconomic factors on the spatiotemporal variability of cholera in Nigeria

    NASA Astrophysics Data System (ADS)

    Abdussalam, Auwal; Thornes, John; Leckebusch, Gregor

    2015-04-01

    Nigeria has a number of climate-sensitive infectious diseases; one of the most important of these diseases that remains a threat to public health is cholera. This study investigates the influences of both meteorological and socioeconomic factors on the spatiotemporal variability of cholera in Nigeria. A stepwise multiple regression models are used to estimate the influence of the year-to-year variations of cholera cases and deaths for individual states in the country and as well for three groups of states that are classified based on annual rainfall amount. Specifically, seasonal mean maximum and minimum temperatures and annual rainfall totals were analysed with annual aggregate count of cholera cases and deaths, taking into account of the socioeconomic factors that are potentially enhancing vulnerability such as: absolute poverty, adult literacy, access to pipe borne water and population density. Result reveals that the most important explanatory meteorological and socioeconomic variables in explaining the spatiotemporal variability of the disease are rainfall totals, seasonal mean maximum temperature, absolute poverty, and accessibility to pipe borne water. The influences of socioeconomic factors appeared to be more pronounced in the northern part of the country, and vice-versa in the case of meteorological factors. Also, cross validated models output suggests a strong possibility of disease prediction, which will help authorities to put effective control measures in place which depend on prevention, and or efficient response.

  17. Vibrio cholerae Serogroup O139: Isolation from Cholera Patients and Asymptomatic Household Family Members in Bangladesh between 2013 and 2014

    PubMed Central

    Chowdhury, Fahima; Mather, Alison E.; Begum, Yasmin Ara; Asaduzzaman, Muhammad; Baby, Nabilah; Sharmin, Salma; Biswas, Rajib; Ikhtear Uddin, Muhammad; LaRocque, Regina C.; Harris, Jason B.; Calderwood, Stephen B.; Ryan, Edward T.; Clemens, John D.; Thomson, Nicholas R.; Qadri, Firdausi

    2015-01-01

    Background Cholera is endemic in Bangladesh, with outbreaks reported annually. Currently, the majority of epidemic cholera reported globally is El Tor biotype Vibrio cholerae isolates of the serogroup O1. However, in Bangladesh, outbreaks attributed to V. cholerae serogroup O139 isolates, which fall within the same phylogenetic lineage as the O1 serogroup isolates, were seen between 1992 and 1993 and in 2002 to 2005. Since then, V. cholerae serogroup O139 has only been sporadically isolated in Bangladesh and is now rarely isolated elsewhere. Methods Here, we present case histories of four cholera patients infected with V. cholerae serogroup O139 in 2013 and 2014 in Bangladesh. We comprehensively typed these isolates using conventional approaches, as well as by whole genome sequencing. Phenotypic typing and PCR confirmed all four isolates belonging to the O139 serogroup. Findings Whole genome sequencing revealed that three of the isolates were phylogenetically closely related to previously sequenced El Tor biotype, pandemic 7, toxigenic V. cholerae O139 isolates originating from Bangladesh and elsewhere. The fourth isolate was a non-toxigenic V. cholerae that, by conventional approaches, typed as O139 serogroup but was genetically divergent from previously sequenced pandemic 7 V. cholerae lineages belonging to the O139 or O1 serogroups. Conclusion These results suggest that previously observed lineages of V. cholerae O139 persist in Bangladesh and can cause clinical disease and that a novel disease-causing non-toxigenic O139 isolate also occurs. PMID:26562418

  18. Non-toxigenic environmental Vibrio cholerae O1 strain from Haiti provides evidence of pre-pandemic cholera in Hispaniola

    PubMed Central

    Azarian, Taj; Ali, Afsar; Johnson, Judith A.; Jubair, Mohammad; Cella, Eleonora; Ciccozzi, Massimo; Nolan, David J.; Farmerie, William; Rashid, Mohammad H.; Sinha-Ray, Shrestha; Alam, Meer T.; Morris, J. Glenn; Salemi, Marco

    2016-01-01

    Vibrio cholerae is ubiquitous in aquatic environments, with environmental toxigenic V. cholerae O1 strains serving as a source for recurrent cholera epidemics and pandemic disease. However, a number of questions remain about long-term survival and evolution of V. cholerae strains within these aquatic environmental reservoirs. Through monitoring of the Haitian aquatic environment following the 2010 cholera epidemic, we isolated two novel non-toxigenic (ctxA/B-negative) Vibrio cholerae O1. These two isolates underwent whole-genome sequencing and were investigated through comparative genomics and Bayesian coalescent analysis. These isolates cluster in the evolutionary tree with strains responsible for clinical cholera, possessing genomic components of 6th and 7th pandemic lineages, and diverge from “modern” cholera strains around 1548 C.E. [95% HPD: 1532–1555]. Vibrio Pathogenicity Island (VPI)-1 was present; however, SXT/R391-family ICE and VPI-2 were absent. Rugose phenotype conversion and vibriophage resistance evidenced adaption for persistence in aquatic environments. The identification of V. cholerae O1 strains in the Haitian environment, which predate the first reported cholera pandemic in 1817, broadens our understanding of the history of pandemics. It also raises the possibility that these and similar environmental strains could acquire virulence genes from the 2010 Haitian epidemic clone, including the cholera toxin producing CTXϕ. PMID:27786291

  19. Non-toxigenic environmental Vibrio cholerae O1 strain from Haiti provides evidence of pre-pandemic cholera in Hispaniola.

    PubMed

    Azarian, Taj; Ali, Afsar; Johnson, Judith A; Jubair, Mohammad; Cella, Eleonora; Ciccozzi, Massimo; Nolan, David J; Farmerie, William; Rashid, Mohammad H; Sinha-Ray, Shrestha; Alam, Meer T; Morris, J Glenn; Salemi, Marco

    2016-10-27

    Vibrio cholerae is ubiquitous in aquatic environments, with environmental toxigenic V. cholerae O1 strains serving as a source for recurrent cholera epidemics and pandemic disease. However, a number of questions remain about long-term survival and evolution of V. cholerae strains within these aquatic environmental reservoirs. Through monitoring of the Haitian aquatic environment following the 2010 cholera epidemic, we isolated two novel non-toxigenic (ctxA/B-negative) Vibrio cholerae O1. These two isolates underwent whole-genome sequencing and were investigated through comparative genomics and Bayesian coalescent analysis. These isolates cluster in the evolutionary tree with strains responsible for clinical cholera, possessing genomic components of 6(th) and 7(th) pandemic lineages, and diverge from "modern" cholera strains around 1548 C.E. [95% HPD: 1532-1555]. Vibrio Pathogenicity Island (VPI)-1 was present; however, SXT/R391-family ICE and VPI-2 were absent. Rugose phenotype conversion and vibriophage resistance evidenced adaption for persistence in aquatic environments. The identification of V. cholerae O1 strains in the Haitian environment, which predate the first reported cholera pandemic in 1817, broadens our understanding of the history of pandemics. It also raises the possibility that these and similar environmental strains could acquire virulence genes from the 2010 Haitian epidemic clone, including the cholera toxin producing CTXϕ.

  20. Relationship between Distinct African Cholera Epidemics Revealed via MLVA Haplotyping of 337 Vibrio cholerae Isolates

    PubMed Central

    Moore, Sandra; Miwanda, Berthe; Sadji, Adodo Yao; Thefenne, Hélène; Jeddi, Fakhri; Rebaudet, Stanislas; de Boeck, Hilde; Bidjada, Bawimodom; Depina, Jean-Jacques; Bompangue, Didier; Abedi, Aaron Aruna; Koivogui, Lamine; Keita, Sakoba; Garnotel, Eric; Plisnier, Pierre-Denis; Ruimy, Raymond; Thomson, Nicholas; Muyembe, Jean-Jacques; Piarroux, Renaud

    2015-01-01

    Background Since cholera appeared in Africa during the 1970s, cases have been reported on the continent every year. In Sub-Saharan Africa, cholera outbreaks primarily cluster at certain hotspots including the African Great Lakes Region and West Africa. Methodology/Principal Findings In this study, we applied MLVA (Multi-Locus Variable Number Tandem Repeat Analysis) typing of 337 Vibrio cholerae isolates from recent cholera epidemics in the Democratic Republic of the Congo (DRC), Zambia, Guinea and Togo. We aimed to assess the relationship between outbreaks. Applying this method, we identified 89 unique MLVA haplotypes across our isolate collection. MLVA typing revealed the short-term divergence and microevolution of these Vibrio cholerae populations to provide insight into the dynamics of cholera outbreaks in each country. Our analyses also revealed strong geographical clustering. Isolates from the African Great Lakes Region (DRC and Zambia) formed a closely related group, while West African isolates (Togo and Guinea) constituted a separate cluster. At a country-level scale our analyses revealed several distinct MLVA groups, most notably DRC 2011/2012, DRC 2009, Zambia 2012 and Guinea 2012. We also found that certain MLVA types collected in the DRC persisted in the country for several years, occasionally giving rise to expansive epidemics. Finally, we found that the six environmental isolates in our panel were unrelated to the epidemic isolates. Conclusions/Significance To effectively combat the disease, it is critical to understand the mechanisms of cholera emergence and diffusion in a region-specific manner. Overall, these findings demonstrate the relationship between distinct epidemics in West Africa and the African Great Lakes Region. This study also highlights the importance of monitoring and analyzing Vibrio cholerae isolates. PMID:26110870

  1. Cost-effectiveness of oral cholera vaccine in a stable refugee population at risk for epidemic cholera and in a population with endemic cholera.

    PubMed Central

    Murray, J.; McFarland, D. A.; Waldman, R. J.

    1998-01-01

    Recent large epidemics of cholera with high incidence and associated mortality among refugees have raised the question of whether oral cholera vaccines should be considered as an additional preventive measure in high-risk populations. The potential impact of oral cholera vaccines on populations prone to seasonal endemic cholera has also been questioned. This article reviews the potential cost-effectiveness of B-subunit, killed whole-cell (BS-WC) oral cholera vaccine in a stable refugee population and in a population with endemic cholera. In the population at risk for endemic cholera, mass vaccination with BS-WC vaccine is the least cost-effective intervention compared with the provision of safe drinking-water and sanitation or with treatment of the disease. In a refugee population at risk for epidemic disease, the cost-effectiveness of vaccination is similar to that of providing safe drinking-water and sanitation alone, though less cost-effective than treatment alone or treatment combined with the provision of water and sanitation. The implications of these data for public health decision-makers and programme managers are discussed. There is a need for better information on the feasibility and costs of administering oral cholera vaccine in refugee populations and populations with endemic cholera. PMID:9803585

  2. Molecular characterization of the circulating strains of Vibrio cholerae during 2010 cholera outbreak in Nigeria.

    PubMed

    Oyedeji, Kolawole S; Niemogha, Mary-Theresa; Nwaokorie, Francisca O; Bamidele, Tajudeen A; Ochoga, Michael; Akinsinde, Kehinde A; Brai, Bartholomew I; Oladele, David; Omonigbehin, Emmanuel A; Bamidele, Moses; Fesobi, Toun W; Musa, Adesola Z; Adeneye, Adeniyi K; Smith, Stella I; Ujah, Innocent A

    2013-06-01

    This study aimed at characterizing the phenotypic and toxigenic status of circulating strains of cholera during outbreaks in Nigeria, employing molecular typing techniques. Two hundred and one samples of rectal swabs, stool, vomitus, water (from the well, borehole, sachet, stream, and tap) and disinfectants (sodium hypochlorite) were collected from three states in the country. The samples were inoculated on thiosulphate-citrate bile salt-sucrose (TCBS), Cary-Blair transport medium and smeared on glass slides for direct examination. The Vibrio cholerae isolates were serotyped, biotyped, and characterized using PCR of the cytotoxin gene A (ctxA), wbeO1, and wbfO139 gene primer. Of the 201 samples screened, 96 were positive for V cholerae O1 (48%), with 69 (72%) positive for ctxA gene. The results from this study showed that the circulating strains of cholera in Nigeria were of Ogawa serotype, also observed in other outbreaks in Nigeria (1991, 1992, and 1996). However, the strains were of the Classical biotype and were mainly (72%) ctxA gene-positive. This current investigation has confirmed the production of cholera toxin by the circulating strains, and this could be harnessed for possible cholera vaccine production in Nigeria.

  3. Cholera Toxin Production Induced upon Anaerobic Respiration is Suppressed by Glucose Fermentation in Vibrio cholerae.

    PubMed

    Oh, Young Taek; Lee, Kang-Mu; Bari, Wasimul; Kim, Hwa Young; Kim, Hye Jin; Yoon, Sang Sun

    2016-03-01

    The causative agent of pandemic cholera, Vibrio cholerae, infects the anaerobic environment of the human intestine. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly induced during anaerobic respiration with trimethylamine N-oxide (TMAO) as an alternative electron acceptor. However, the molecular mechanism of TMAO-stimulated CT production is not fully understood. Herein, we reveal that CT production during anaerobic TMAO respiration is affected by glucose fermentation. When the seventh pandemic V. cholerae O1 strain N16961 was grown with TMAO and additional glucose, CT production was markedly reduced. Furthermore, an N16961 Δcrp mutant, devoid of cyclic AMP receptor protein (CRP), was defective in CT production during growth by anaerobic TMAO respiration, further suggesting a role of glucose metabolism in regulating TMAO-mediated CT production. TMAO reductase activity was noticeably decreased when grown together with glucose or by mutation of the crp gene. A CRP binding region was identified in the promoter region of the torD gene, which encodes a structural subunit of the TMAO reductase. Gel shift assays further confirmed the binding of purified CRP to the torD promoter sequence. Together, our results suggest that the bacterial ability to respire using TMAO is controlled by CRP, whose activity is dependent on glucose availability. Our results reveal a novel mechanism for the regulation of major virulence factor production by V. cholerae under anaerobic growth conditions.

  4. Outbreak of cholera caused by Vibrio cholerae O1 El Tor variant strain in Bihar, India.

    PubMed

    Koley, Hemanta; Ray, Nivedita; Chowdhury, Goutam; Barman, Soumik; Mitra, Soma; Ramamurthy, T; Mukhopadhyay, Asish K; Sarkar, B L; Katyal, Rakesh; Das, Pradeep; Panda, Samiran; Ghosh, Subrata

    2014-01-01

    An outbreak of cholera struck Bihar, an Indian state, in August 2008 following a massive flood. Here we report the phenotypic and genotypic characteristics of Vibrio cholerae strains isolated from patients with diarrhea. Rectal swabs were obtained from patients with diarrhea who were admitted to medical camps or the hospital, and the strains were biochemically and serologically characterized. V. cholerae was isolated from 21 (65.6%) of 32 rectal swabs. Serological studies revealed that all the 21 isolates belonged to V. cholerae O1 Ogawa. Mismatch amplification mutation assay (MAMA)-PCR showed that the isolates belonged to El Tor variant group, and pulsed-field gel electrophoresis (PFGE) proved that these isolates were of a different lineage than the conventional El Tor variant strains. These isolates were resistant to several drugs, including ampicillin, streptomycin, tetracycline, nalidixic acid, and furazolidone. The uniqueness of the current report arises from the fact that records of cholera in Bihar are availiable for the early 1960s but not for the next 4 decades. Moreover, the present study is the first to report a cholera outbreak in Bihar that was caused by an El Tor variant strain.

  5. Protective role of autophagy against Vibrio cholerae cytolysin, a pore-forming toxin from V. cholerae

    PubMed Central

    Gutierrez, Maximiliano Gabriel; Saka, Hector Alex; Chinen, Isabel; Zoppino, Felipe C. M.; Yoshimori, Tamotsu; Bocco, Jose Luis; Colombo, María Isabel

    2007-01-01

    Autophagy is the unique, regulated mechanism for the degradation of organelles. This intracellular process acts as a prosurvival pathway during cell starvation or stress and is also involved in cellular response against specific bacterial infections. Vibrio cholerae is a noninvasive intestinal pathogen that has been studied extensively as the causative agent of the human disease cholera. V. cholerae illness is produced primarily through the expression of a potent toxin (cholera toxin) within the human intestine. Besides cholera toxin, this bacterium secretes a hemolytic exotoxin termed V. cholerae cytolysin (VCC) that causes extensive vacuolation in epithelial cells. In this work, we explored the relationship between the vacuolation caused by VCC and the autophagic pathway. Treatment of cells with VCC increased the punctate distribution of LC3, a feature indicative of autophagosome formation. Moreover, VCC-induced vacuoles colocalized with LC3 in several cell lines, including human intestinal Caco-2 cells, indicating the interaction of the large vacuoles with autophagic vesicles. Electron microscopy analysis confirmed that the vacuoles caused by VCC presented hallmarks of autophagosomes. Additionally, biochemical evidence demonstrated the degradative nature of the VCC-generated vacuoles. Interestingly, autophagy inhibition resulted in decreased survival of Caco-2 cells upon VCC intoxication. Also, VCC failed to induce vacuolization in Atg5−/− cells, and the survival response of these cells against the toxin was dramatically impaired. These results demonstrate that autophagy acts as a cellular defense pathway against secreted bacterial toxins. PMID:17267617

  6. Swedish isolates of Vibrio cholerae enhance their survival when interacted intracellularly with Acanthamoeba castellanii

    PubMed Central

    Shanan, Salah; Bayoumi, Magdi; Saeed, Amir; Sandström, Gunnar; Abd, Hadi

    2016-01-01

    Vibrio cholerae is a Gram-negative bacterium that occurs naturally in aquatic environment. Only V. cholerae O1 and V. cholerae O139 produce cholera toxin and cause cholera, other serogroups can cause gastroenteritis, open wounds infection, and septicaemia. V. cholerae O1 and V. cholerae O139 grow and survive inside Acanthamoeba castellanii. The aim of this study is to investigate the interactions of the Swedish clinical isolates V. cholerae O3, V. cholerae O4, V. cholerae O5, V. cholerae O11, and V. cholerae O160 with A. castellanii. The interaction between A. castellanii and V. cholerae strains was studied by means of amoeba cell counts, viable counts of the bacteria in the absence or presence of amoebae, and of the intracellularly growing bacteria, visualised by electron microscopy. These results show that all V. cholerae can grow and survive outside and inside the amoebae, disclosing that V. cholerae O3, V. cholerae O4, V. cholerae O5, V. cholerae O11, and V. cholerae O160 all can be considered as facultative intracellular bacteria. PMID:27118300

  7. A natural vaccine candidate strain against cholera.

    PubMed

    Liu, Y Q; Qi, G M; Wang, S X; Yu, Y M; Duan, G C; Zhang, L J; Gao, S Y

    1995-12-01

    E1 Tor Vibrio cholerae (EVC) strains may be classified into two kinds-epidemigenic (EEVC) strains and non-epidemigenic (NEEVC) strains-based on a phage-biotyping system. A large number of EEVC strains have been screened for toxigenic and putative colonization attributes. One such naturally occurring strains (designated IEM101) has been found which is devoid of genes encoding cholera toxin (CT), accessory cholera enterotoxin (ACE), zonula occludens toxin (ZOT), but possesses RS1 sequences and toxin-coregulated pilus A gene (icpA) although icpA is poorly expressed. It expresses type B pili but does not possess type C pili. It is an E1 Tor Ogawa strain and does not cause fluid accumulation in rabbit ilcal loop tests. Active immunization of rabbits with strain IEM101 elicited good protection against challenge with virulent strains of V. cholerae O1. Oral administration caused no side effects in 15 human volunteers, colonized the gut for four to ten days and elicited good immune responses.

  8. Cholera vaccine field trials in East Pakistan

    PubMed Central

    Benenson, A. S.; Joseph, P. R.; Oseasohn, R. O.

    1968-01-01

    Double-blind controlled cholera-vaccine trials were carried out in rural East Pakistan in 1963 and 1964. Pretrial studies indicated that a whole-cell cholera vaccine of high mouse protective potency, at a dose of 0.5 ml, produced an antibody response and reaction pattern consistent with use in such trials. A purified Ogawa antigen, given at a dose of 100 μg, elicited no adverse reactions and evoked both agglutinating and vibriocidal antibodies against both Inaba and Ogawa test suspensions. In the field, adverse reactions to the cholera vaccines occurred primarily among adults and were observed with both the whole-cell preparation and the purified Ogawa antigen. At the dose used in the field trials (0.4 ml), the reactions elicited by the whole-cell vaccine were acceptable to the population and no more marked than those following the locally prepared typhoid-paratyphoid vaccine. Delayed reactions to the whole-cell cholera vaccine were observed beginning 4 to 7 days after the vaccine was administered; the bulk of them (60%) did not interfere with work at any time; all resolved promptly; and none developed fluctuation or was associated with abscess formation. PMID:5302328

  9. EFFECT OF AGGREGATION ON VIBRIO CHOLERAE INACTIVATION

    EPA Science Inventory

    Extensive research has shown that microorganisms exhibit increased resistance due to clumping, aggregation, particle association, or modification of antecedent growth conditions. During the course of investigating a major water-borne Vibrio cholerae outbreak in Peru, U.S. EPA inv...

  10. Surface-attachment sequence in Vibrio Cholerae

    NASA Astrophysics Data System (ADS)

    Utada, Andrew; Gibiansky, Maxsim; Wong, Gerard

    2013-03-01

    Vibrio cholerae is a gram-negative bacterium that causes the human disease cholera. It is found natively in brackish costal waters in temperate climates, where it attaches to the surfaces of a variety of different aquatic life. V. cholerae has a single polar flagellum making it highly motile, as well as a number of different pili types, enabling it to attach to both biotic and abiotic surfaces. Using in-house built tracking software we track all surface-attaching bacteria from high-speed movies to examine the early-time attachment profile of v. cholerae onto a smooth glass surface. Similar to previous work, we observe right-handed circular swimming trajectories near surfaces; however, in addition we see a host of distinct motility mechanisms that enable rapid exploration of the surface before forming a more permanent attachment. Using isogenic mutants we show that the motility mechanisms observed are due to a complex combination of hydrodynamics and pili-surface interactions. Lauga, E., DiLuzio, W. R., Whitesides, G. M., Stone, H. A. Biophys. J. 90, 400 (2006).

  11. Cholera: Environmental Reservoirs and Impact on Disease Transmission

    PubMed Central

    ALMAGRO-MORENO, SALVADOR; TAYLOR, RONALD K.

    2015-01-01

    Vibrio cholerae is widely known to be the etiological agent of the life-threatening diarrheal disease cholera. Cholera remains a major scourge in many developing countries, infecting hundreds of thousands every year. Remarkably, V. cholerae is a natural inhabitant of brackish riverine, estuarine, and coastal waters, and only a subset of strains are known to be pathogenic to humans. Recent studies have begun to uncover a very complex network of relationships between V. cholerae and other sea dwellers, and the mechanisms associated with the occurrence of seasonal epidemics in regions where cholera is endemic are beginning to be elucidated. Many of the factors required for the organism’s survival and persistence in its natural environment have been revealed, as well as the ubiquitous presence of horizontal gene transfer in the emergence of pathogenic strains of V. cholerae. In this article, we will focus on the environmental stage of pathogenic V. cholerae and the interactions of the microorganism with other inhabitants of aquatic environments. We will discuss the impact that its environmental reservoirs have on disease transmission and the distinction between reservoirs of V. cholerae and the vectors that establish cholera as a zoonosis. PMID:25674360

  12. Plasma Leptin Levels in Children Hospitalized with Cholera in Bangladesh.

    PubMed

    Falkard, Brie; Uddin, Taher; Rahman, M Arifur; Franke, Molly F; Aktar, Amena; Uddin, Muhammad Ikhtear; Bhuiyan, Taufiqur Rahman; Leung, Daniel T; Charles, Richelle C; Larocque, Regina C; Harris, Jason B; Calderwood, Stephen B; Qadri, Firdausi; Ryan, Edward T

    2015-08-01

    Vibrio cholerae, the cause of cholera, induces both innate and adaptive immune responses in infected humans. Leptin is a hormone that plays a role in both metabolism and mediating immune responses. We characterized leptin levels in 11 children with cholera in Bangladesh, assessing leptin levels on days 2, 7, 30, and 180 following cholera. We found that patients at the acute stage of cholera had significantly lower plasma leptin levels than matched controls, and compared with levels in late convalescence. We then assessed immune responses to V. cholerae antigens in 74 children with cholera, correlating these responses to plasma leptin levels on day 2 of illness. In multivariate analysis, we found an association between day 2 leptin levels and development of later anti-cholera toxin B subunit (CtxB) responses. This finding appeared to be limited to children with better nutritional status. Interestingly, we found no association between leptin levels and antibody responses to V. cholerae lipopolysaccharide, a T cell-independent antigen. Our results suggest that leptin levels may be associated with cholera, including the development of immune responses to T cell-dependent antigens.

  13. Genome assortment, not serogroup, defines Vibrio cholerae pandemic strains

    SciTech Connect

    Brettin, Thomas S; Bruce, David C; Challacombe, Jean F; Detter, John C; Han, Cliff S; Munik, A C; Chertkov, Olga; Meincke, Linda; Saunders, Elizabeth; Choi, Seon Y; Haley, Bradd J; Taviani, Elisa; Jeon, Yoon - Seong; Kim, Dong Wook; Lee, Jae - Hak; Walters, Ronald A; Hug, Anwar; Colwell, Rita R

    2009-01-01

    Vibrio cholerae, the causative agent of cholera, is a bacterium autochthonous to the aquatic environment, and a serious public health threat. V. cholerae serogroup O1 is responsible for the previous two cholera pandemics, in which classical and El Tor biotypes were dominant in the 6th and the current 7th pandemics, respectively. Cholera researchers continually face newly emerging and re-emerging pathogenic clones carrying combinations of new serogroups as well as of phenotypic and genotypic properties. These genotype and phenotype changes have hampered control of the disease. Here we compare the complete genome sequences of 23 strains of V. cholerae isolated from a variety of sources and geographical locations over the past 98 years in an effort to elucidate the evolutionary mechanisms governing genetic diversity and genesis of new pathogenic clones. The genome-based phylogeny revealed 12 distinct V. cholerae phyletic lineages, of which one, designated the V. cholerae core genome (CG), comprises both O1 classical and EI Tor biotypes. All 7th pandemic clones share nearly identical gene content, i.e., the same genome backbone. The transition from 6th to 7th pandemic strains is defined here as a 'shift' between pathogenic clones belonging to the same O1 serogroup, but from significantly different phyletic lineages within the CG clade. In contrast, transition among clones during the present 7th pandemic period can be characterized as a 'drift' between clones, differentiated mainly by varying composition of laterally transferred genomic islands, resulting in emergence of variants, exemplified by V.cholerae serogroup O139 and V.cholerae O1 El Tor hybrid clones that produce cholera toxin of classical biotype. Based on the comprehensive comparative genomics presented in this study it is concluded that V. cholerae undergoes extensive genetic recombination via lateral gene transfer, and, therefore, genome assortment, not serogroup, should be used to define pathogenic V

  14. Sanitation in the time of cholera.

    PubMed

    Misch, A

    1991-01-01

    Cholera, identified by violent diarrhea, cramps, vomiting, and dehydration, is spreading through Peru into Colombia, Ecuador, Child, and Brazil. Water contaminated with Vibrio cholerae is used for washing food and/or drinking thereby transmitting the disease. PAHO estimates 6 million people in South America may get cholera within the next 3 years. This cholera epidemic is the result of unsanitary conditions in which the urban poor in South America live. In fact, in Lima, Peru, 40% of the people do not have potable, piped water available. These individuals fetch their water from far away taps and private vendors both of which are not necessarily safe. In addition, 40% do not have access to a sewage system. Further, 80% of sick people in developing countries have a water related illness, be it transmitted by contaminated water or by insects and snails that reproduce in the water. Diarrhea is the most deadly of these conditions. Indeed every year 10-20 million children die from the effects of diarrhea which include malnutrition, dehydration, and shock. Yet 940 million people in developing countries have no access to safe water and 1.7 billion do not have a sanitary means of disposing of human wastes, despite the fact that the UN decreed the 1980s the International Drinking Water Supply and Sanitation Decade. Nevertheless UNICEF efforts did bring communal taps, odorless latrines, and/or pour flush toilets to 1.2 billion people. These types of sanitation costs $20-25/person whereas conventional sewers cost $350/person. Low technology supplied water averages $30/person compared to $200/person for piped water. Peru has spent $43 million on emergency medical care for cholera victims which could have provided low cost clean water and sanitation for almost 800,000 poor.

  15. [Five years of cholera surveillance in Ivory Coast during social and political crisis, 2001 to 2005].

    PubMed

    Ekra, K D; Attoh-Touré, H; Bénié, B V J; Coulibaly, D; Koutouan, M G; Aka, L N; Dagnan, S N; Coulibaly, A; Douba, A; Tiembré, I; Odéhouri-Koudou, P; Tagliante-Saracino, J

    2009-05-01

    For an efficient struggle against infectious diseases with epidemic potential, the Cdte d'Ivoire set up a precocious alert system in 2001 with a main objective: to detect epidemics of cholera, measles, yellow fever and meningitis and to provide necessary information for their control and their prevention. During the 2001 to 2005 period, the country was marked by military and political crisis which occurred in 2002; the country had to face up to a reappearance of cholera. How did it evolve in such a context? The question was to describe the performances of the system and the evolution of cholera from weekly data collected by the centers of epidemiological monitoring in health districts. The cases and declared deaths were compiled and the indicators of morbidity and mortality were then studied according to time site and individual features on the period of 2001 to 2005. From 2001 to 2005, 11,874 cases were notified with 564 deaths and a lethal rate of 4.7%. In 2001, from the initial source of infection, the civil jail, the epidemic of cholera disseminated itself through visitors in the whole city of Abidjan where 3250 cases were notified. Out of city, 20 outbreaks have been declared with a total of 3010 cases. The yearly highest impact, 37 living cases/100,000 inhabitants recorded in 2001, decreased regularly until 2005 with 0.2 living cases/100,000. After 2002, outbreaks were located mainly in the half south of the country which welcomed displaced populations from the north, preferably in transition or settling zones near the front line. The lethal rate in Abidjan (2.3%) was less important than that of other health districts (8.6%). The lethal rate globally increased as the impact decreased. Vibrio cholerae was responsible for the epidemics. The group of 15 years old and over was the most affected (12.69 living cases/100,000) whereas the highest lethal rate appeared in the group under 5 years old (6.6%). The reappearance and constant cholera epidemics in Côte d

  16. The extracellular nuclease Dns and its role in natural transformation of Vibrio cholerae.

    PubMed

    Blokesch, Melanie; Schoolnik, Gary K

    2008-11-01

    Free extracellular DNA is abundant in many aquatic environments. While much of this DNA will be degraded by nucleases secreted by the surrounding microbial community, some is available as transforming material that can be taken up by naturally competent bacteria. One such species is Vibrio cholerae, an autochthonous member of estuarine, riverine, and marine habitats and the causative agent of cholera, whose competence program is induced after colonization of chitin surfaces. In this study, we investigate how Vibrio cholerae's two extracellular nucleases, Xds and Dns, influence its natural transformability. We show that in the absence of Dns, transformation frequencies are significantly higher than in its presence. During growth on a chitin surface, an increase in transformation efficiency was found to correspond in time with increasing cell density and the repression of dns expression by the quorum-sensing regulator HapR. In contrast, at low cell density, the absence of HapR relieves dns repression, leading to the degradation of free DNA and to the abrogation of the transformation phenotype. Thus, as cell density increases, Vibrio cholerae undergoes a switch from nuclease-mediated degradation of extracellular DNA to the uptake of DNA by bacteria induced to a state of competence by chitin. Taken together, these results suggest the following model: nuclease production by low-density populations of V. cholerae might foster rapid growth by providing a source of nucleotides for the repletion of nucleotide pools. In contrast, the termination of nuclease production by static, high-density populations allows the uptake of intact DNA and coincides with a phase of potential genome diversification.

  17. An Adult Mouse Model of Vibrio cholerae-induced Diarrhea for Studying Pathogenesis and Potential Therapy of Cholera

    PubMed Central

    Sawasvirojwong, Sutthipong; Srimanote, Potjanee; Chatsudthipong, Varanuj; Muanprasat, Chatchai

    2013-01-01

    Cholera is a diarrheal disease causing significant morbidity and mortality worldwide. This study aimed to establish an adult mouse model of Vibrio cholerae-induced diarrhea and to characterize its pathophysiology. Ligated ileal loops of adult mice were inoculated for 6, 9, 12 and 18 h with a classical O1 hypertoxigenic 569B strain of V. cholerae (107 CFU/loop). Time-course studies demonstrated that the optimal period for inducing diarrhea was 12 h post-inoculation, when peak intestinal fluid accumulation (loop/weight ratio of ∼0.2 g/cm) occurred with the highest diarrhea success rate (90%). In addition, pathogenic numbers of V. cholerae (∼109 CFU/g tissue) were recovered from ileal loops at all time points between 6–18 h post-inoculation with the diarrheagenic amount of cholera toxin being detected in the secreted intestinal fluid at 12 h post-inoculation. Interestingly, repeated intraperitoneal administration of CFTRinh-172 (20 µg every 6 h), an inhibitor of cystic fibrosis transmembrane conductance regulator (CFTR), completely abolished the V. cholerae-induced intestinal fluid secretion without affecting V. cholerae growth in vivo. As analyzed by ex vivo measurement of intestinal electrical resistance and in vivo assay of fluorescein thiocyanate (FITC)-dextran trans-intestinal flux, V. cholerae infection had no effect on intestinal paracellular permeability. Measurements of albumin in the diarrheal fluid suggested that vascular leakage did not contribute to the pathogenesis of diarrhea in this model. Furthermore, histological examination of V. cholerae-infected intestinal tissues illustrated edematous submucosa, congestion of small vessels and enhanced mucus secretion from goblet cells. This study established a new adult mouse model of V. cholerae-induced diarrhea, which could be useful for studying the pathogenesis of cholera diarrhea and for evaluating future therapeutics/cholera vaccines. In addition, our study confirmed the major role of CFTR in V

  18. An Adult Mouse Model of Vibrio cholerae-induced Diarrhea for Studying Pathogenesis and Potential Therapy of Cholera.

    PubMed

    Sawasvirojwong, Sutthipong; Srimanote, Potjanee; Chatsudthipong, Varanuj; Muanprasat, Chatchai

    2013-06-01

    Cholera is a diarrheal disease causing significant morbidity and mortality worldwide. This study aimed to establish an adult mouse model of Vibrio cholerae-induced diarrhea and to characterize its pathophysiology. Ligated ileal loops of adult mice were inoculated for 6, 9, 12 and 18 h with a classical O1 hypertoxigenic 569B strain of V. cholerae (10(7) CFU/loop). Time-course studies demonstrated that the optimal period for inducing diarrhea was 12 h post-inoculation, when peak intestinal fluid accumulation (loop/weight ratio of ∼0.2 g/cm) occurred with the highest diarrhea success rate (90%). In addition, pathogenic numbers of V. cholerae (∼10(9) CFU/g tissue) were recovered from ileal loops at all time points between 6-18 h post-inoculation with the diarrheagenic amount of cholera toxin being detected in the secreted intestinal fluid at 12 h post-inoculation. Interestingly, repeated intraperitoneal administration of CFTRinh-172 (20 µg every 6 h), an inhibitor of cystic fibrosis transmembrane conductance regulator (CFTR), completely abolished the V. cholerae-induced intestinal fluid secretion without affecting V. cholerae growth in vivo. As analyzed by ex vivo measurement of intestinal electrical resistance and in vivo assay of fluorescein thiocyanate (FITC)-dextran trans-intestinal flux, V. cholerae infection had no effect on intestinal paracellular permeability. Measurements of albumin in the diarrheal fluid suggested that vascular leakage did not contribute to the pathogenesis of diarrhea in this model. Furthermore, histological examination of V. cholerae-infected intestinal tissues illustrated edematous submucosa, congestion of small vessels and enhanced mucus secretion from goblet cells. This study established a new adult mouse model of V. cholerae-induced diarrhea, which could be useful for studying the pathogenesis of cholera diarrhea and for evaluating future therapeutics/cholera vaccines. In addition, our study confirmed the major role of CFTR in V

  19. Accessory cholera enterotoxin, Ace, from Vibrio cholerae: structure, unfolding, and virstatin binding.

    PubMed

    Chatterjee, Tanaya; Mukherjee, Debadrita; Dey, Sucharita; Pal, Aritrika; Hoque, Kazi Mirajul; Chakrabarti, Pinak

    2011-04-12

    Vibrio cholerae accessory cholera enterotoxin (Ace) is the third toxin, along with cholera toxin (CT) and zonula occludens toxin (Zot), that causes the endemic disease cholera. Structural characterization of Ace has been restricted because of the limited production of this toxic protein by V. cholerae. We have cloned, overexpressed, and purified Ace from V. cholerae strain O395 in Escherichia coli to homogeneity and determined its biological activity. The unfolding of the purified protein was investigated using circular dichroism and intrinsic tryptophan fluorescence. Because Ace is predominantly a hydrophobic protein, the degree of exposure of hydrophobic regions was identified from the spectral changes of the environment-sensitive fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) that quenches the fluorescence of tryptophan residues of Ace in a concentration-dependent manner. Results showed that bis-ANS binds one monomeric unit of Ace with a 1:1 stoichiometry and a K' of 0.72 μM. Ace exists as a dimer, with higher oligomeric forms appearing upon glutaraldehyde cross-linking. This study also reports the binding of virstatin, a small molecule that inhibits virulence regulation in V. cholerae, to Ace. The binding constant (K=9×10(4) M(-1)) and the standard free energy change (ΔG°=-12 kcal mol(-1)) of Ace-virstatin interaction have been evaluated by the fluorescence quenching method. The binding does not affect the oligomeric status of Ace. A cell viability assay of the antibacterial activity of Ace has been performed using various microbial strains. A homology model of Ace, consistent with the experimental results, has been constructed.

  20. Rugose atypical Vibrio cholerae O1 El Tor responsible for 2009 cholera outbreak in India.

    PubMed

    Chowdhury, Goutam; Bhadra, Rupak K; Bag, Satyabrata; Pazhani, Gururaja P; Das, Bhabatosh; Basu, Pallabi; Nagamani, K; Nandy, Ranjan K; Mukhopadhyay, Asish K; Ramamurthy, Thandavarayan

    2016-10-01

    Vibrio cholerae causes cholera outbreaks in endemic regions where the water quality and sanitation facilities remain poor. Apart from biotype and serotype changes, V. cholerae undergoes phase variation, which results in the generation of two morphologically different variants termed smooth and rugose. In this study, 12 rugose (R-VC) and 6 smooth (S-VC) V. cholerae O1 Ogawa isolates were identified in a cholera outbreak that occurred in Hyderabad, India. Antimicrobial susceptibility results showed that all the isolates were resistant to ampicillin, furazolidone and nalidixic acid. In addition, R-VC isolates were resistant to ciprofloxacin (92 %), streptomycin (92 %), erythromycin (83 %), trimethoprim-sulfamethoxazole (75 %) and tetracycline (75 %). Based on the ctxB gene analysis, all the isolates were identified as El Tor variant with mutation in two positions of ctxB, similar to the classical biotype. The R-VC isolates specifically showed excessive biofilm formation and were comparatively less motile. In addition, the majority of these isolates (~83 %) displayed random mutations in the hapR gene, which encodes haemagglutinin protease regulatory protein. In the PFGE analysis, R-VC and S-VC were placed in distinct clusters but remained clonally related. In the ribotyping analysis, all the R-VC isolates exhibited R-III pattern, which is a prevailing type among the current El Tor isolates. A hapR deletion mutant generated using an S-VC isolate expressed rugose phenotype. To our knowledge, this is the first report on the association of rugose V. cholerae O1 in a large cholera outbreak with extended antimicrobial resistance and random mutations in the haemagglutinin protease regulatory protein encoding gene (hapR).

  1. Chemoproteomic profiling of host and pathogen enzymes active in cholera

    PubMed Central

    Hatzios, Stavroula K.; Hubbard, Troy; Sasabe, Jumpei; Munera, Diana; Clark, Lars; Bachovchin, Daniel A.; Qadri, Firdausi; Ryan, Edward T.; Davis, Brigid M.; Weerapana, Eranthie; Waldor, Matthew K.

    2016-01-01

    Activity-based protein profiling (ABPP) is a chemoproteomic tool for detecting active enzymes in complex biological systems. We used ABPP to identify secreted bacterial and host serine hydrolases that are active in animals infected with the cholera pathogen Vibrio cholerae. Four V. cholerae proteases were consistently active in infected rabbits, and one, VC0157 (renamed IvaP), was also active in human cholera stool. Inactivation of IvaP influenced the activity of other secreted V. cholerae and rabbit enzymes in vivo, while genetic disruption of all four proteases increased the abundance and binding of an intestinal lectin—intelectin—to V. cholerae in infected rabbits. Intelectin also bound to other enteric bacterial pathogens, suggesting it may constitute a previously unrecognized mechanism of bacterial surveillance in the intestine that is inhibited by pathogen-secreted proteases. Our work demonstrates the power of activity-based proteomics to reveal host-pathogen enzymatic dialogue in an animal model of infection. PMID:26900865

  2. Expression and secretion of cholera toxin B subunit in lactobacilli.

    PubMed

    Okuno, Takahiro; Kashige, Nobuhiro; Satho, Tomomitsu; Irie, Keiichi; Hiramatsu, Yukihiro; Sharmin, Tanjina; Fukumitsu, Yuki; Uyeda, Saori; Yamada, Seitaro; Harakuni, Tetsuya; Miyata, Takeshi; Arakawa, Takeshi; Imoto, Masumi; Toda, Akihisa; Nakashima, Yukihiko; Miake, Fumio

    2013-01-01

    Lactic acid bacteria (LAB) are used in various fields, including in food and medical supplies. There has been a great deal of research into vaccine development using LAB as carriers due to their "generally recognized as safe" status. Cholera is an infectious disease that causes diarrhea due to cholera toxin (CT) produced by Vibrio cholerae. The pentameric cholera toxin B (CTB) subunit has no toxicity, and is used as an antigen in cholera vaccines and as a delivery molecule in vaccines to various diseases. In this study, we generated recombinant LAB expressing and secreting CTB. Here, we first report that CTB expressed and secreted from LAB bound to GM1 ganglioside. The secreted CTB was purified, and its immunogenicity was determined by intranasal administration into mice. The results of the present study suggested that it may be useful as the basis of a new oral cholera vaccine combining LAB and CTB.

  3. Cholera toxin structure, gene regulation and pathophysiological and immunological aspects.

    PubMed

    Sánchez, J; Holmgren, J

    2008-05-01

    Many notions regarding the function, structure and regulation of cholera toxin expression have remained essentially unaltered in the last 15 years. At the same time, recent findings have generated additional perspectives. For example, the cholera toxin genes are now known to be carried by a non-lytic bacteriophage, a previously unsuspected condition. Understanding of how the expression of cholera toxin genes is controlled by the bacterium at the molecular level has advanced significantly and relationships with cell-density-associated (quorum-sensing) responses have recently been discovered. Regarding the cell intoxication process, the mode of entry and intracellular transport of cholera toxin are becoming clearer. In the immunological field, the strong oral immunogenicity of the non-toxic B subunit of cholera toxin (CTB) has been exploited in the development of a now widely licensed oral cholera vaccine. Additionally, CTB has been shown to induce tolerance against co-administered (linked) foreign antigens in some autoimmune and allergic diseases.

  4. Cholera outbreaks caused by an altered Vibrio cholerae O1 El Tor biotype strain producing classical cholera toxin B in Vietnam in 2007 to 2008.

    PubMed

    Nguyen, Binh Minh; Lee, Je Hee; Cuong, Ngo Tuan; Choi, Seon Young; Hien, Nguyen Tran; Anh, Dang Duc; Lee, Hye Ri; Ansaruzzaman, M; Endtz, Hubert P; Chun, Jongsik; Lopez, Anna Lena; Czerkinsky, Cecil; Clemens, John D; Kim, Dong Wook

    2009-05-01

    Vibrio cholerae O1 isolates collected during cholera outbreaks occurring from late 2007 to early 2008 in northern Vietnam were revealed to represent an altered strain containing the RS1 element followed by a CTX prophage harboring El Tor type rstR and classical ctxB on the large chromosome.

  5. Fish as reservoirs and vectors of Vibrio cholerae.

    PubMed

    Senderovich, Yigal; Izhaki, Ido; Halpern, Malka

    2010-01-06

    Vibrio cholerae, the etiologic agent of cholera, is autochthonous to various aquatic environments, but despite intensive efforts its ecology remains an enigma. Recently, it was suggested that copepods and chironomids, both considered as natural reservoirs of V. cholerae, are dispersed by migratory waterbirds, thus possibly distributing the bacteria between water bodies within and between continents. Although fish have been implicated in the scientific literature with cholera cases, as far as we know, no study actually surveyed the presence of the bacteria in the fish. Here we show for the first time that fish of various species and habitats contain V. cholerae in their digestive tract. Fish (n = 110) were randomly sampled from freshwater and marine habitats in Israel. Ten different fish species sampled from freshwater habitats (lake, rivers and fish ponds), and one marine species, were found to carry V. cholerae. The fish intestine of Sarotherodon galilaeus harboured ca. 5 x 10(3)V. cholerae cfu per 1 gr intestine content-high rates compared with known V. cholerae cfu numbers in the bacteria's natural reservoirs. Our results, combined with evidence from the literature, suggest that fish are reservoirs of V. cholerae. As fish carrying the bacteria swim from one location to another (some fish species move from rivers to lakes or sea and vice versa), they serve as vectors on a small scale. Nevertheless, fish are consumed by waterbirds, which disseminate the bacteria on a global scale. Moreover, V. cholerae isolates had the ability to degrade chitin, indicating a commensal relationship between V. cholerae and fish. Better understanding of V. cholerae ecology can help reduce the times that human beings come into contact with this pathogen and thus minimize the health risk this poses.

  6. Molecular characterization of Vibrio cholerae O1 strains isolated during cholera outbreaks in Guinea-Bissau.

    PubMed Central

    Dalsgaard, A; Mortensen, H F; Mølbak, K; Dias, F; Serichantalergs, O; Echeverria, P

    1996-01-01

    In the present study, 19 strains of Vibrio cholerae O1 biotype El Tor isolated during outbreaks of cholera in Guinea-Bissau in 1987, 1994, and 1995 were characterized to investigate a possible epidemiological relationship among the isolates. On the basis of ribotyping with the restriction enzyme BglI, 5 strains isolated in 1987 showed two closely related ribotypes, while 14 strains isolated in 1994 and 1995 showed the same ribotype that was distinct from the ribotypes of strains isolated in 1987. Southern blot hybridization of BglI-digested genomic DNA with a cholera toxin probe demonstrated that the strains isolated in 1987 showed an identical cholera toxin genotype, whereas O1 strains isolated in 1994 and 1995 showed the same genotype that was distinct from the genotype of strains isolated in 1987. These results were supported by the results of antibiotic susceptibility testing, in which strains isolated in 1987 showed resistance to polymyxin B only, while each of the strains from 1994 and 1995 showed resistance to polymyxin B, trimethoprim-sulfamethoxazole, and the vibriostatic agent O/129. Although our results are based on a limited number of V. cholerae O1 strains, they suggest that the epidemic in Guinea-Bissau in 1994 and 1995 was due to the introduction of a new strain to the country. PMID:8727901

  7. When, how, and where can oral cholera vaccines be used to interrupt cholera outbreaks?

    PubMed

    Clemens, John; Holmgren, Jan

    2014-01-01

    Cholera continues to be a major global health problem, at times causing major and prolonged outbreaks in both endemic and nonendemic settings in developing countries. While improved water quality, sanitation, and hygiene (WASH) will provide the ultimate solution to prevention of this disease burden, this is a far-off goal for most developing countries. Oral cholera vaccines cholera vaccines (OCVs) have been demonstrated to be effective in the control of cholera outbreaks, and constitute useful tools to be used in conjunction with efforts to improve WASH. Two killed OCVs are prequalified by WHO for purchase by UN agencies for international use. Recently, WHO has launched a global stockpile stockpile of killed OCVs for use to control outbreaks. Rational deployment of OCV from this stockpile will require consideration of costs, feasibility, disease epidemiology epidemiology , and the protective characteristics of the vaccine deployed, as well as effective and rapid coordination of processes and logistics logistics used to make decisions on deployment and delivery of the vaccine to the population in need. Despite not having data on all the questions of relevance as to how to use OCVs to control cholera outbreaks in different settings, there is clearly more than enough evidence to initiate their use, as answers to remaining questions and refinement of policies will mainly come with experience.

  8. National surveillance data on the epidemiology of cholera in Cameroon.

    PubMed

    Djomassi, L Dempouo; Gessner, Bradford D; Andze, G Ondobo; Mballa, G A Etoundi

    2013-11-01

    Background. The cholera burden in Cameroon has increased during the past 2 decades. During 2010 and 2011, the largest number of cholera cases in Cameroon since February 1971 were reported. This article describes cholera outbreaks during 2010-2011. Methods. Data received from the national surveillance system from 2010 and 2011 were compiled and analyzed. Results. The first suspected cholera cases were reported in the Far North region on 6 May 2010. In 2010, 10 759 cholera cases were reported by 8 of the 10 regions in the country, with 657 deaths (case-fatality ratio [CFR], 6.1%). In 2011, through September 22, 17 121 suspected cholera cases, including 636 deaths (CFR, 3.7%), were reported all over the country. During 2010, the Far North region accounted for 87.6% of cases (9421/10 759) and 91.6% of deaths (602/657) recorded. By contrast, during 2011, 5 regions (Far North, North, Center, Southwest, and Littoral) accounted for 90.6% of cases (15 511/17 121) and 84.0% of deaths recorded. Vibrio cholerae was identified in 525 stool specimens, and all organisms were serogroup O1. Conclusions. The ongoing cholera outbreak in Cameroon increased in intensity and geographic spread from 2010 to 2011. Nevertheless, the overall CFR decreased during this period. Strengthening the early warning system and enhancing water, sanitation, and hygiene interventions and sensitization should be considered in addressing cholera outbreaks.

  9. Modern Cholera in the Americas: An Opportunistic Societal Infection

    PubMed Central

    Lee, Patrick T.

    2013-01-01

    In the Americas, the only two cholera epidemics of the past century have occurred in the past 25 years. Lessons from the 1991 Peruvian cholera epidemic can help to focus and refine the response to the current Haitian epidemic. After three years of acute epidemic response, we have an opportunity to refocus on the chronic conditions that make societies vulnerable to cholera. More importantly, even as international attention wanes in the aftermath of the earthquake and acute epidemic, we are faced with a need for continued and coordinated investment in improving Haiti’s structural defenses against cholera, in particular access to improved water and sanitation. PMID:24028256

  10. Modern cholera in the Americas: an opportunistic societal infection.

    PubMed

    Cerda, Rodrigo; Lee, Patrick T

    2013-11-01

    In the Americas, the only two cholera epidemics of the past century have occurred in the past 25 years. Lessons from the 1991 Peruvian cholera epidemic can help to focus and refine the response to the current Haitian epidemic. After three years of acute epidemic response, we have an opportunity to refocus on the chronic conditions that make societies vulnerable to cholera. More importantly, even as international attention wanes in the aftermath of the earthquake and acute epidemic, we are faced with a need for continued and coordinated investment in improving Haiti's structural defenses against cholera, in particular access to improved water and sanitation.

  11. Transmission dynamics of cholera: Mathematical modeling and control strategies

    NASA Astrophysics Data System (ADS)

    Sun, Gui-Quan; Xie, Jun-Hui; Huang, Sheng-He; Jin, Zhen; Li, Ming-Tao; Liu, Liqun

    2017-04-01

    Cholera, as an endemic disease around the world, has generated great threat to human society and caused enormous morbidity and mortality with weak surveillance system. In this paper, we propose a mathematical model to describe the transmission of Cholera. Moreover, basic reproduction number and the global dynamics of the dynamical model are obtained. Then we apply our model to characterize the transmission process of Cholera in China. It was found that, in order to avoid its outbreak in China, it may be better to increase immunization coverage rate and make effort to improve environmental management especially for drinking water. Our results may provide some new insights for elimination of Cholera.

  12. Cholera: a continuous epidemic in Africa.

    PubMed

    Naidoo, A; Patric, K

    2002-06-01

    Cholera continues to plague many parts of the world, but has largely been concentrated in Africa, which contributes more than 80% of the total cases worldwide. Natural disasters, like the 2000 floods in Mozambique and the volcanic eruption in the Democratic Republic of the Congo in 2002, generally lead to new outbreaks of the disease. The refugee problem in many countries throughout the world also causes potential threats for disease outbreaks. Case fatality rates are high, and we are not anywhere near curbing new cholera epidemics, especially in Africa. It is thus imperative to renew discussions about the nature of this deadly disease, its treatment, measures for prevention and control, modes of transmission, its physical, social and economic impact, and potential solutions.

  13. Impact of Air Temperature and SST Variability on Cholera Incidence in Southeastern Africa, 1971-2006

    NASA Astrophysics Data System (ADS)

    Paz, Shlomit

    2010-05-01

    Poisson regression model is suggested: log{E(CHOLt)} = b0+b1×Xt+b2×Xt-1 where: CHOLt = the number of new cases of cholera in year t Xt / Xt-1 = the climate covariate measured in year t/t-1. (b0,b1) = the coefficients. A first order autocorrelation, AR1 = cor(Yt, Yt-1) is taken into account in the estimation using Generalized Estimating Equations. b1 and b2 quantify the association of CHOL and X, i.e. if Xt or Xt-1 increase by one unit, the mean of Yt is expected to increase in exp{b1} or exp{b2} times, respectively (multiplicative model). The results showed a significant exponential increase of cholera rates in humans during the study period, with an estimate of exp(b1)=1.08 (p-value = 0.02). Associations have been found between the annual increase of the air temperature in southeastern Africa and the cholera incidence in the same area. Linkages were found also for a wider scale, with the air temperature anomaly of the Southern Hemisphere, with an estimate of exp(b1)=1.18 (p-value = 0.04) and exp(b1)=1.26 (p-value = 0.006) for the previous year. Significant linkages were detected between the annual cholera rate and the annual western Indian Ocean' SST , with exp(b1) = 1.31 (p-value = 0.01) for the current year and exp(b1) = 1.23 (p-value = 0.05) for the previous year. Linkages were found also for the hemispheric scale, with the SST anomaly. The increase of global temperature may influence the temporal fluctuations of cholera, as well as potentially increasing the frequency and duration of its outbreaks. Despite future uncertainty, the climate variability has to be considered in predicting further cholera outbreaks in Africa. This may help to promote better, more efficient preparedness. For more details: Paz, S. 2010. Impact of Temperature Variability on Cholera Incidence in Southeastern Africa, 1971-2006. EcoHealth, in press.

  14. Origins of the current seventh cholera pandemic.

    PubMed

    Hu, Dalong; Liu, Bin; Feng, Lu; Ding, Peng; Guo, Xi; Wang, Min; Cao, Boyang; Reeves, Peter R; Wang, Lei

    2016-11-29

    Vibrio cholerae has caused seven cholera pandemics since 1817, imposing terror on much of the world, but bacterial strains are currently only available for the sixth and seventh pandemics. The El Tor biotype seventh pandemic began in 1961 in Indonesia, but did not originate directly from the classical biotype sixth-pandemic strain. Previous studies focused mainly on the spread of the seventh pandemic after 1970. Here, we analyze in unprecedented detail the origin, evolution, and transition to pandemicity of the seventh-pandemic strain. We used high-resolution comparative genomic analysis of strains collected from 1930 to 1964, covering the evolution from the first available El Tor biotype strain to the start of the seventh pandemic. We define six stages leading to the pandemic strain and reveal all key events. The seventh pandemic originated from a nonpathogenic strain in the Middle East, first observed in 1897. It subsequently underwent explosive diversification, including the spawning of the pandemic lineage. This rapid diversification suggests that, when first observed, the strain had only recently arrived in the Middle East, possibly from the Asian homeland of cholera. The lineage migrated to Makassar, Indonesia, where it gained the important virulence-associated elements Vibrio seventh pandemic island I (VSP-I), VSP-II, and El Tor type cholera toxin prophage by 1954, and it then became pandemic in 1961 after only 12 additional mutations. Our data indicate that specific niches in the Middle East and Makassar were important in generating the pandemic strain by providing gene sources and the driving forces for genetic events.

  15. [Isolation and significance of Vibrio cholera NAG].

    PubMed

    Piantieri, G; Pedersoli, G; Cafarelli, A; Bossi, G; Bignamini, M L

    1982-01-01

    After the isolation of two Vibrio cholerae NAG from the stools of two tourists, the authors researched Vibrio in people coming home from particular countries and in resident people. The research was extended to the water of Varese lake after another isolation from a fisher who had fished, cooked and eaten the lake fish. Problems concerning the classification of Vibrio and their presence in the environment are examined.

  16. Activation of cholera toxin production by anaerobic respiration of trimethylamine N-oxide in Vibrio cholerae.

    PubMed

    Lee, Kang-Mu; Park, Yongjin; Bari, Wasimul; Yoon, Mi Young; Go, Junhyeok; Kim, Sang Cheol; Lee, Hyung-Il; Yoon, Sang Sun

    2012-11-16

    Vibrio cholerae is a gram-negative bacterium that causes cholera. Although the pathogenesis caused by this deadly pathogen takes place in the intestine, commonly thought to be anaerobic, anaerobiosis-induced virulence regulations are not fully elucidated. Anerobic growth of the V. cholerae strain, N16961, was promoted when trimethylamine N-oxide (TMAO) was used as an alternative electron acceptor. Strikingly, cholera toxin (CT) production was markedly induced during anaerobic TMAO respiration. N16961 mutants unable to metabolize TMAO were incapable of producing CT, suggesting a mechanistic link between anaerobic TMAO respiration and CT production. TMAO reductase is transported to the periplasm via the twin arginine transport (TAT) system. A similar defect in both anaerobic TMAO respiration and CT production was also observed in a N16961 TAT mutant. In contrast, the abilities to grow on TMAO and to produce CT were not affected in a mutant of the general secretion pathway. This suggests that V. cholerae may utilize the TAT system to secrete CT during TMAO respiration. During anaerobic growth with TMAO, N16961 cells exhibit green fluorescence when stained with 2',7'-dichlorofluorescein diacetate, a specific dye for reactive oxygen species (ROS). Furthermore, CT production was decreased in the presence of an ROS scavenger suggesting a positive role of ROS in regulating CT production. When TMAO was co-administered to infant mice infected with N16961, the mice exhibited more severe pathogenic symptoms. Together, our results reveal a novel anaerobic growth condition that stimulates V. cholerae to produce its major virulence factor.

  17. A simple filtration method to remove plankton-associated Vibrio cholerae in raw water supplies in developing countries.

    PubMed

    Huq, A; Xu, B; Chowdhury, M A; Islam, M S; Montilla, R; Colwell, R R

    1996-07-01

    Plankton to which cells of Vibrio cholerae O1 and/or O139 were attached was introduced into 0.5% Instant Ocean microcosms maintained at 25 degrees C. The bulk of the plankton and associated particulates was removed with a filter constructed from either nylon net and one of several different types of sari material, the latter being very inexpensive and readily available in villages in Bangladesh, where V. cholerae is endemic. V. cholerae was enumerated before and after filtration to evaluate the efficiency of the filtration procedure. The results obtained indicate that 99% of V. cholerae, i.e., those cells attached to plankton, were removed from the water samples. Epidemic strains of V. cholerae O1 and O139 from various geographical sources, including Bangladesh, Brazil, India, and Mexico, were included in the experiments. Removal of vibrios from water by this simple filtration method was found to yield consistent results with all strains examined in this study. Thus, it is concluded that a simple filtration procedure involving the use of domestic sari material can reduce the number of cholera vibrios attached to plankton in raw water from ponds and rivers commonly used for drinking. Since untreated water from such sources serves as drinking water for millions of people living in developing countries (e.g., Bangladesh), filtration should prove effective at reducing the incidence and severity of outbreaks, especially in places that lack fuel wood for boiling water and/or municipal water treatment plants. The results of this study provide the basis for determining such reductions, which are to be carried out in the near future.

  18. The role of food in the epidemiology of cholera.

    PubMed

    Albert, M J; Neira, M; Motarjemi, Y

    1997-01-01

    Cholera is an acute dehydrating diarrhoeal disease, traditionally caused by vibrio cholerae O1, and also more recently by V. cholerae O139 (Bengal). Traditionally, water was recognized as the primary vehicle for transmission of cholera, but in the past 30 years, outbreaks of cholera associated with eating contaminated food have demonstrated that food also plays an important role, although in many instances water is the source of contamination of foods. Most commonly associated with cholera is seafood, both molluscan shellfish and crustaceans. Seafood may be contaminated in its natural environment or during preparation. Other food items associated with outbreaks are fruit and vegetables, meat, cooked grains, etc. Vegetables are usually contaminated by contact with sewage in soil and fruits when injected with contaminated water to increase weight and turgor. Food items initially free from V. cholerae organism may become contaminated when mixed with water, or other contaminated food, or through handling by infected persons who have not observed proper hygiene. Refrigeration, freezing, alkaline pH, high concentration of carbohydrate, humidity and absence of competing flora enhance the survival of V. cholerae in food. Survival of V. cholerae is shorter in food with acidic pH. Foodborne cholera can be averted by the hygienic preparation of food and its consumption. However, since the vehicles of transmission vary markedly from place to place, being affected by local customs and practices, selected control and preventive measures that are most important locally must be implemented. To this end, application of the Hazard Analysis and Critical Control Point system to food preparation is essential in order to identify the practices which may present a risk. Restrictions on importation of foods which do not present a risk of being contaminated from areas where cholera is endemic is not warranted.

  19. Synthetic multivalent ligands for cholera & cholera-like toxins: Protected cyclic neoglycopeptides.

    PubMed

    Kumar, Vajinder; Yadav, Narender; Kartha, K P Ravindranathan

    2016-08-05

    Synthesis of a set of novel glycopeptide analogues as potential cholera/cholera-like toxin inhibitors in their protected form is described. They include di-, tri-, tetra- and pentavalent scaffolds. The synthetic steps were achieved using a combination of solvent-free mechanochemical as well as the conventional solution-phase reactions. During the conventional DIC-HOBt-mediated peptide coupling followed for the preparation of certain glycopeptide analogues an interesting in situ Fmoc deprotection was observed which has been demonstrated to hold potential for synthesiszing glycopeptides/neoglycopeptides with extended polyamide chains.

  20. The Vaccine Candidate Vibrio cholerae 638 Is Protective against Cholera in Healthy Volunteers

    PubMed Central

    García, Luis; Jidy, Manuel Díaz; García, Hilda; Rodríguez, Boris L.; Fernández, Roberto; Año, Gemma; Cedré, Bárbara; Valmaseda, Tania; Suzarte, Edith; Ramírez, Margarita; Pino, Yadira; Campos, Javier; Menéndez, Jorge; Valera, Rodrigo; González, Daniel; González, Irma; Pérez, Oliver; Serrano, Teresita; Lastre, Miriam; Miralles, Fernando; del Campo, Judith; Maestre, Jorge Luis; Pérez, José Luis; Talavera, Arturo; Pérez, Antonio; Marrero, Karen; Ledón, Talena; Fando, Rafael

    2005-01-01

    Vibrio cholerae 638 is a living candidate cholera vaccine strain attenuated by deletion of the CTXΦ prophage from C7258 (O1, El Tor Ogawa) and by insertion of the Clostridium thermocellum endoglucanase A gene into the hemagglutinin/protease coding sequence. This vaccine candidate was previously found to be well tolerated and immunogenic in volunteers. This article reports a randomized, double-blind, placebo-controlled trial conducted to test short-term protection conferred by 638 against subsequent V. cholerae infection and disease in volunteers in Cuba. A total of 45 subjects were enrolled and assigned to receive vaccine or placebo. The vaccine contained 109 CFU of freshly harvested 638 buffered with 1.3% NaHCO3, while the placebo was buffer alone. After vaccine but not after placebo intake, 96% of volunteers had at least a fourfold increase in vibriocidal antibody titers, and 50% showed a doubling of at least the lipopolysaccharide-specific immunoglobulin A titers in serum. At 1 month after vaccination, five volunteers from the vaccine group and five from the placebo group underwent an exploratory challenge study with 109 CFU of ΔCTXΦ attenuated mutant strain V. cholerae 81. Only two volunteers from the vaccine group shed strain 81 in their feces, but none of them experienced diarrhea; in the placebo group, all volunteers excreted the challenge strain, and three had reactogenic diarrhea. An additional 12 vaccinees and 9 placebo recipients underwent challenge with 7 × 105 CFU of virulent strain V. cholerae 3008 freshly harvested from a brain heart infusion agar plate and buffered with 1.3% NaHCO3. Three volunteers (25%) from the vaccine group and all from the placebo group shed the challenge agent in their feces. None of the 12 vaccinees but 7 volunteers from the placebo group had diarrhea, and 2 of the latter exhibited severe cholera (>5,000 g of diarrheal stool). These results indicate that at 1 month after ingestion of a single oral dose (109 CFU) of strain

  1. A large cholera outbreak due to a new cholera toxin variant of the Vibrio cholerae O1 El Tor biotype in Orissa, Eastern India.

    PubMed

    Kumar, P; Jain, M; Goel, A K; Bhadauria, S; Sharma, S K; Kamboj, D V; Singh, L; Ramamurthy, T; Nair, G B

    2009-02-01

    A total of 32 Vibrio cholerae isolates were collected during a recent large cholera outbreak in Eastern India. Biochemical and serological studies revealed that all of the isolates belonged to serogroup O1, biotype El Tor, serotype Ogawa. Two multiplex PCR assays confirmed the presence of various toxigenic and pathogenic genes - ace, ctxAB, hlyA, ompU, ompW, rfbO1, rtx, tcp, toxR and zot - in all of the isolates. Sequencing of the ctxB gene from the isolates revealed a novel mutation in the gene. Sequencing also confirmed the presence of altered cholera toxin B of the classical biotype in all of the El Tor isolates, suggesting infection of isolates by classical CTXPhi. The molecular diversity of V. cholerae isolates studied by enterobacterial repetitive intergenic consensus sequence PCR, BOX-PCR and randomly amplified polymorphic DNA analysis uniformly showed the clonal relationship among the outbreak V. cholerae O1 isolates. The results of this study suggest that cholera-causing V. cholerae strains are constantly evolving in epidemic areas, highlighting the potential of the emergence of more virulent strains.

  2. Phenotypic and Genetic Heterogeneity in Vibrio cholerae O139 Isolated from Cholera Cases in Delhi, India during 2001-2006.

    PubMed

    Ghosh, Raikamal; Sharma, Naresh C; Halder, Kalpataru; Bhadra, Rupak K; Chowdhury, Goutam; Pazhani, Gururaja P; Shinoda, Sumio; Mukhopadhyay, Asish K; Nair, G Balakrish; Ramamurthy, Thadavarayan

    2016-01-01

    Incidence of epidemic Vibrio cholerae serogroup O139 has declined in cholera endemic countries. However, sporadic cholera caused by V. cholerae O139 with notable genetic changes is still reported from many regions. In the present study, 42 V. cholerae O139 strains isolated from 2001 to 2006 in Delhi, India, were retrospectively analyzed to understand their phenotype and molecular characteristics. The majority of isolates were resistant to ampicillin, furazolidone and nalidixic acid. Though the integrative conjugative element was detected in all the O139 isolates, the 2004-2006 isolates remained susceptible to co-trimoxazole, chloramphenicol, and streptomycin. Cholera toxin genotype 1 was present in the majority of the O139 isolates while few had type 3 or a novel type 4. In the cholera toxin encoding gene (ctx) restriction fragment length polymorphism, the majority of the isolates harbored three copies of CTX element, of which one was truncated. In this study, the ctx was detected for the first time in the small chromosome of V. cholerae O139 and one isolate harbored 5 copies of CTX element, of which 3 were truncated. The ribotype BII pattern was found in most of the O139 isolates. Three V. cholerae O139 isolated in 2001 had a new ribotype BVIII. Pulsed-field gel electrophoresis analysis revealed clonal variation in 2001 isolates compared to the 2004-2006 isolates. Molecular changes in V. cholerae O139 have to be closely monitored as this information may help in understanding the changing genetic features of this pathogen in relation to the epidemiology of cholera.

  3. Phenotypic and Genetic Heterogeneity in Vibrio cholerae O139 Isolated from Cholera Cases in Delhi, India during 2001–2006

    PubMed Central

    Ghosh, Raikamal; Sharma, Naresh C.; Halder, Kalpataru; Bhadra, Rupak K.; Chowdhury, Goutam; Pazhani, Gururaja P.; Shinoda, Sumio; Mukhopadhyay, Asish K.; Nair, G. Balakrish; Ramamurthy, Thadavarayan

    2016-01-01

    Incidence of epidemic Vibrio cholerae serogroup O139 has declined in cholera endemic countries. However, sporadic cholera caused by V. cholerae O139 with notable genetic changes is still reported from many regions. In the present study, 42 V. cholerae O139 strains isolated from 2001 to 2006 in Delhi, India, were retrospectively analyzed to understand their phenotype and molecular characteristics. The majority of isolates were resistant to ampicillin, furazolidone and nalidixic acid. Though the integrative conjugative element was detected in all the O139 isolates, the 2004–2006 isolates remained susceptible to co-trimoxazole, chloramphenicol, and streptomycin. Cholera toxin genotype 1 was present in the majority of the O139 isolates while few had type 3 or a novel type 4. In the cholera toxin encoding gene (ctx) restriction fragment length polymorphism, the majority of the isolates harbored three copies of CTX element, of which one was truncated. In this study, the ctx was detected for the first time in the small chromosome of V. cholerae O139 and one isolate harbored 5 copies of CTX element, of which 3 were truncated. The ribotype BII pattern was found in most of the O139 isolates. Three V. cholerae O139 isolated in 2001 had a new ribotype BVIII. Pulsed-field gel electrophoresis analysis revealed clonal variation in 2001 isolates compared to the 2004–2006 isolates. Molecular changes in V. cholerae O139 have to be closely monitored as this information may help in understanding the changing genetic features of this pathogen in relation to the epidemiology of cholera. PMID:27555841

  4. Multidrug-Resistant Vibrio cholerae O1 was Responsible for a Cholera Outbreak in 2013 in Bagalkot, North Karnataka.

    PubMed

    Bhattacharya, Debdutta; Dey, Shuchismita; Roy, Subarna; Parande, Mahantesh V; Telsang, M; Seema, M H; Parande, Aisha V; Mantur, Basappa G

    2015-01-01

    Cholera is a major cause of illness in the developing world. During the monsoon season, small sporadic clusters of cholera cases are reported on an annual basis in Karnataka, India. During the monsoons of 2013, there was a cholera outbreak in Badami, a remote area of Bagalkot district in Karnataka. The multi-drug-resistant Vibrio cholerae O1 serotype Ogawa was found to be responsible for this outbreak. On 5 August 2013, a 30-year-old woman presented with severe dehydration and watery diarrhea at the Aganwadi Health Centre in Badami. A total of 49 suspected cholera cases were reported, with an attack rate of 3.5%. The V. cholerae isolates exhibited resistance to a wide range of drugs, including ampicillin, co-trimoxazole, nitrofurantoin, carbenicillin, and third generation cephalosporins, and showed reduced susceptibility to third generation fluoroquinolones. All of the cephalosporin-resistant V. cholerae strains produced extended-spectrum beta-lactamase. All V. cholerae O1 isolates harbored virulent genes (ctxA, ctxB, tcpA El Tor, Tox S, VPI, ToxT, ToxR, ToxRS, ace, zot, and tcpP) and were found to be genetically similar as determined by randomly amplified polymorphic DNA fingerprinting assay. To the best of our knowledge, this is the first report of a cholera outbreak in the district of Bagalkot. The resistance of V. cholerae to commonly used antimicrobial drugs is becoming a major public health concern in the region as clinicians are left with a limited choice of antibiotics for the treatment of cholera.

  5. Risk Factors for Sustained Cholera Transmission, Juba County, South Sudan, 2014.

    PubMed

    Ujjiga, Thomas T A; Wamala, Joseph F; Mogga, Juma J H; Othwonh, Thabo O; Mutonga, David; Kone-Coulibaly, Asta; Shaikh, Masood Ali; Mpairwe, Allan M; Abdinasir, Abubaker; Abdi, Mohamed A; Yoti, Zabulon; Olushayo, Olu; Nyimol, Pinyi; Lul, Riek; Lako, Richard L; Rumunu, John

    2015-10-01

    We conducted a case-control study to identify risk factors for the 2014 cholera outbreak in Juba County, South Sudan. Illness was associated with traveling or eating away from home; treating drinking water and receiving oral cholera vaccination were protective. Oral cholera vaccination should be used to complement cholera prevention efforts.

  6. Enterotoxigenic Escherichia coli and Vibrio cholerae diarrhea, Bangladesh, 2004.

    PubMed

    Qadri, Firdausi; Khan, Ashraful I; Faruque, Abu Syed G; Begum, Yasmin Ara; Chowdhury, Fahima; Nair, Gopinath B; Salam, Mohammed A; Sack, David A; Svennerholm, Ann-Mari

    2005-07-01

    Flooding in Dhaka in July 2004 caused epidemics of diarrhea. Enterotoxigenic Escherichia coli (ETEC) was almost as prevalent as Vibrio cholerae O1 in diarrheal stools. ETEC that produced heat-stable enterotoxin alone was most prevalent, and 78% of strains had colonization factors. Like V. cholerae O1, ETEC can cause epidemic diarrhea.

  7. Multinational Cholera Outbreak after Wedding in the Dominican Republic

    PubMed Central

    Apostolou, Andria; Suarez, Alba Jazmin Palmera; Meyer, Luis; Hiciano, Salvador; Newton, Anna; Morgan, Oliver; Then, Cecilia; Pimentel, Raquel

    2011-01-01

    We conducted a case–control study of a cholera outbreak after a wedding in the Dominican Republic, January 22, 2011. Ill persons were more likely to report having consumed shrimp on ice (odds ratio 8.50) and ice cubes in beverages (odds ratio 3.62). Travelers to cholera-affected areas should avoid consuming uncooked seafood and untreated water. PMID:22204039

  8. Quorum Regulated Resistance of Vibrio cholerae against Environmental Bacteriophages

    PubMed Central

    Hoque, M. Mozammel; Naser, Iftekhar Bin; Bari, S. M. Nayeemul; Zhu, Jun; Mekalanos, John J.; Faruque, Shah M.

    2016-01-01

    Predation by bacteriophages can significantly influence the population structure of bacterial communities. Vibrio cholerae the causative agent of cholera epidemics interacts with numerous phages in the aquatic ecosystem, and in the intestine of cholera patients. Seasonal epidemics of cholera reportedly collapse due to predation of the pathogen by phages. However, it is not clear how sufficient number of the bacteria survive to seed the environment in the subsequent epidemic season. We found that bacterial cell density-dependent gene expression termed “quorum sensing” which is regulated by signal molecules called autoinducers (AIs) can protect V. cholerae against predatory phages. V. cholerae mutant strains carrying inactivated AI synthase genes were significantly more susceptible to multiple phages compared to the parent bacteria. Likewise when mixed cultures of phage and bacteria were supplemented with exogenous autoinducers CAI-1 or AI-2 produced by recombinant strains carrying cloned AI synthase genes, increased survival of V. cholerae and a decrease in phage titer was observed. Mutational analyses suggested that the observed effects of autoinducers are mediated in part through the quorum sensing-dependent production of haemaglutinin protease, and partly through downregulation of phage receptors. These results have implication in developing strategies for phage mediated control of cholera. PMID:27892495

  9. Understanding the Hydrology of Cholera in South Asia

    NASA Astrophysics Data System (ADS)

    Akanda, A. S.; Jutla, A. S.; Islam, S.

    2007-12-01

    Cholera is an acute waterborne illness caused by the bacterium Vibrio cholerae. The disease remains a major public health issue in several regions of the developing world, mainly in coastal areas around the tropics. Cholera incidences have been historically linked to climate variables and more recently with El Nino-Southern Oscillation. The occurrence of cholera shows bi-annual seasonal peaks and strong inter-annual variability in the Ganges basin region of South Asia. However, the role of hydrologic variables in the seasonal patterns of cholera epidemics is less understood. Preliminary results suggest that a unique combination of increasing water temperature and higher salinity in the coastal zone during the low flow season provide the situation amenable to the first outbreak of cholera in the spring season. Other major factors contributing to the subsequent spread of the disease are sea surface height, monsoon precipitation, and coastal phytoplankton concentration. We will further examine the lag periods between the dominant environmental variables and cholera incidences to understand the seasonal dynamics of cholera in South Asia.

  10. Malonate inhibits virulence gene expression in Vibrio cholerae.

    PubMed

    Minato, Yusuke; Fassio, Sara R; Häse, Claudia C

    2013-01-01

    We previously found that inhibition of the TCA cycle, either through mutations or chemical inhibition, increased toxT transcription in Vibrio cholerae. In this study, we found that the addition of malonate, an inhibitor of succinate dehydrogenase (SDH), decreased toxT transcription in V. cholerae, an observation inconsistent with the previous pattern observed. Unlike another SDH inhibitor, 2-thenoyltrifluoroacetone (TTFA), which increased toxT transcription and slightly inhibited V. cholerae growth, malonate inhibited toxT transcription in both the wild-type strain and TCA cycle mutants, suggesting malonate-mediated inhibition of virulence gene expression is independent to TCA cycle activity. Addition of malonate also inhibited ctxB and tcpA expressions but did not affect aphA, aphB, tcpP and toxR expressions. Malonate inhibited cholera toxin (CT) production in both V. cholerae classical biotype strains O395N1 and CA401, and El Tor biotype strain, N16961. Consistent with previous reports, we confirmed that these strains of V. cholerae did not utilize malonate as a primary carbon source. However, we found that the addition of malonate to the growth medium stimulated V. cholerae growth. All together, these results suggest that metabolizing malonate as a nutrient source negatively affects virulence gene expression in V. cholerae.

  11. Satellite Water Impurity Marker (SWIM) for predicting seasonal cholera outbreaks

    NASA Astrophysics Data System (ADS)

    Jutla, A. S.; Akanda, A. S.; Islam, S.

    2011-12-01

    Prediction of outbreaks of cholera, a deadly water related disease, remains elusive. Since coastal brackish water provides a natural ecological niche for cholera bacteria and because a powerful evidence of new biotypes is emerging, it is highly unlikely that cholera will be fully eradicated. Therefore, it is necessary to develop cholera prediction model with several months' of lead time. Satellite based estimates of chlorophyll, a surrogate for phytoplankton abundance, has been associated with proliferation of cholera bacteria. However, survival of cholera bacteria in a variety of coastal ecological environment put constraints on predictive abilities of chlorophyll algorithm since it only measures greenness in coastal waters. Here, we propose a new remote sensing reflectance based statistical index: Satellite Water Impurity Marker, or SWIM. This statistical index estimates impurity levels in the coastal waters and is based on the variability observed in the difference between the blue (412nm) and green (555nm) wavelengths in coastal waters. The developed index is bounded between clear and impure water and shows the ability to predict cholera outbreaks in the Bengal Delta with a predicted r2 of 78% with two months lead time. We anticipate that a predictive system based on SWIM will provide essential lead time allowing effective intervention and mitigation strategies to be developed for other cholera endemic regions of the world.

  12. Avian cholera and organochlorine residues in an American oystercatcher

    USGS Publications Warehouse

    Blus, L.J.; Locke, L.N.; Cromartie, E.

    1978-01-01

    Pasteurella multocida, the causative bacterium of avian cholera, was isolated from cultures of the liver and heart blood of a female, adult American oystercatcher (Haematopus palliatus) found dead on the Cape Romain National Wildlife Refuge, South Carolina, in May 1973. This is apparently the first record of avian cholera in the oystercatcher. Low levels of DDE were identified in tissues of the oystercatcher.

  13. Cholera toxin stimulation of human mammary epithelial cells in culture

    SciTech Connect

    Stampfer, M.R.

    1982-06-01

    Addition of cholera toxin to human mammary epithelial cultures derived from reduction mammoplasties and primary carcinomas greatly stimulated cell growth and increased the number of times the cells could be successfully subcultured. Other agents known to increase intracellular cAMP levels were also growth stimulatory. The increased growth potential conferred by cholera toxin enhances the usefulness of this cell culture system.

  14. Synthesis of protein in intestinal cells exposed to cholera toxin

    SciTech Connect

    Peterson, J.W.; Berg, W.D. Jr.; Coppenhaver, D.H.

    1987-11-01

    The mechanism by which cyclic adenosine monophosphate (AMP), formed by intestinal epithelial cells in response to cholera toxin, ultimately results in alterations in water and electrolyte transport is poorly understood. Several studies have indicated that inhibitors of transcription or translation block much of the transport of ions and water in the intestine and edema formation in tissue elicited by cholera toxin. Data presented in this study confirmed the inhibitory effects of cycloheximide on cholera toxin-induced fluid accumulation in the rabbit intestinal loop model. Neither cycloheximide nor actinomycin D altered the amount of cyclic AMP that accumulated in intestinal cells and Chinese hamster ovary cells exposed to cholera toxin. An increase in (/sup 3/H) leucine incorporation was readily demonstrable in intestinal epithelial cells from rabbits challenged with Vibrio cholerae. Similarly, intestinal epithelial cells incubated with cholera toxin for 4 hr synthesized substantially more protein than controls as determined by relative incorporation of (/sup 35/S) methionine. Most of the new protein synthesized in response to cholera toxin was membrane associated and of high molecular weight. The possible significance of the toxin-induced protein relative to cholera pathogenesis was discussed.

  15. Estimating effects of improved drinking water and sanitation on cholera.

    PubMed

    Leidner, Andrew J; Adusumilli, Naveen C

    2013-12-01

    Demand for adequate provision of drinking-water and sanitation facilities to promote public health and economic growth is increasing in the rapidly urbanizing countries of the developing world. With a panel of data on Asia and Africa from 1990 to 2008, associations are estimated between the occurrence of cholera outbreaks, the case rates in given outbreaks, the mortality rates associated with cholera and two disease control mechanisms, drinking-water and sanitation services. A statistically significant and negative effect is found between drinking-water services and both cholera case rates as well as cholera-related mortality rates. A relatively weak statistical relationship is found between the occurrence of cholera outbreaks and sanitation services.

  16. Role of phages in the epidemiology of cholera.

    PubMed

    Faruque, Shah M

    2014-01-01

    Understanding the genetic and ecological factors which support the periodic emergence of toxigenic Vibrio cholerae causing outbreaks of cholera in regions where the disease is endemic, is vital to develop preventive measures. Besides environmental factors which are not precisely defined, bacteriophages, and horizontally transmissible genetic elements are known to have a significant role in the epidemiology and evolution of the pathogen. Cholera epidemics are also known to be self-limiting, and hence identifying natural factors which contribute to the collapse of epidemics may have important implications in controlling the disease. Phages have been shown to play a crucial role in modulating cholera epidemics, and enhance V. cholerae evolution through a bactericidal selection process which favors the emergence of new clones.

  17. Spread of Cholera with Newer Clones of Vibrio cholerae O1 El Tor, Serotype Inaba, in India

    PubMed Central

    Dutta, B.; Ghosh, R.; Sharma, N. C.; Pazhani, G. P.; Taneja, N.; Raychowdhuri, A.; Sarkar, B. L.; Mondal, S. K.; Mukhopadhyay, A. K.; Nandy, R. K.; Bhattacharya, M. K.; Bhattacharya, S. K.; Ramamurthy, T.

    2006-01-01

    During 2004 and 2005, cholera was recorded in 15 states of India, with 7 outbreaks. The newly emerged Vibrio cholerae O1 Inaba had a different antibiogram and ribotype, different pulsotypes, and different mutations in the wbeT gene. Due to the absence of serogroup O139, the Inaba serotype may have acquired the potential to affect the population at large. PMID:16954282

  18. Multi-locus variable number tandem repeat analysis of Vibrio cholerae isolates from 2012 to 2013 cholera outbreaks in Iran.

    PubMed

    Ranjbar, R; Sadeghy, J; Shokri Moghadam, M; Bakhshi, B

    2016-08-01

    Cholera remains to be an international threat, with high rates of illness and death. In 2012 and 2013, two cholera outbreak happened in Iran, affecting lots of people. Vibrio cholerae O1 was confirmed as the etiological agent. Source identification and controlling the spread of the cholera disease are two critical approaches in cholera outbreaks. In this study, thirty V. cholerae O1 isolates were selected and has been evaluated for antimicrobial resistant as well as molecular typing by multilocus variable-number tandem-repeat analysis (MLVA) method. Twenty-nine (97%) isolates were sero-grouped as El Tor (one isolate was classical) and 100% were related to Inaba serotype. All of the isolates were susceptible to ciprofloxacin, chloramphenicol, ampicillin and gentamicin. On the other hand, 60% of the isolates were MDR (resistant to 3 or more classes). There were three resistance patterns. The most prevalent pattern was resistance to streptomycin, erythromycin, trimethoprim-sulfamethoxazole, and tetracycline (ST-SXT-E-T) which was seen in 50% of isolates. Using MLVA method 14 MLVA types were identified. MLVA type 2 (5-7-7-16-15) accounted for 43% of isolates. Isolates with the same genotype often did not have the same antibiogram. Overall, the data indicate that the Iranian V. cholerae were MDR and clonaly related. Furthermore, the results of this study shows that MLVA can be used as useful method for V. cholerae genotyping in epidemiological investigations.

  19. Capsaicin, a potential inhibitor of cholera toxin production in Vibrio cholerae.

    PubMed

    Chatterjee, Shruti; Asakura, Masahiro; Chowdhury, Nityananda; Neogi, Sucharit Basu; Sugimoto, Norihiko; Haldar, Soumya; Awasthi, Sharda Prasad; Hinenoya, Atsushi; Aoki, Shunji; Yamasaki, Shinji

    2010-05-01

    The use of natural compounds as inhibitory agents for virulence factor production is a new approach to overcome increased antimicrobial resistance in pathogenic bacteria. In this study, we examined whether red chilli (Capsicum annuum) contains any such compound(s) that can repress the cholera toxin (CT) production in Vibrio cholerae. We found that the methanol extract of red chilli could inhibit CT production in recently emerged V. cholerae O1 El Tor variant strains without affecting their viability. Interestingly, capsaicin, a well-studied active component of red chilli, also drastically inhibited CT production in V. cholerae strains belonging to various serogroups including variants. Real-time quantitative reverse transcription-PCR assay revealed that capsaicin effectively repressed the transcription of ctxA, tcpA and toxT genes, but not of toxR and toxS genes. On the contrary, capsaicin significantly enhanced the transcription of the hns gene, the product of which is known to regulate negatively the transcription of ctxAB, tcpA and toxT genes. These results suggest that capsaicin might act as a potent repressor for CT production possibly by enhancing the transcription of hns.

  20. Killed oral cholera vaccines: history, development and implementation challenges

    PubMed Central

    Gonzales, Maria Liza Antoinette; Aldaba, Josephine G.; Nair, G. Balakrish

    2014-01-01

    Cholera is still a major global health problem, affecting mainly people living in unsanitary conditions and who are at risk for outbreaks of cholera. During the past decade, outbreaks are increasingly reported from more countries. From the early killed oral cholera vaccine, rapid improvements in vaccine development occurred as a result of a better understanding of the epidemiology of the disease, pathogenesis of cholera infection and immunity. The newer-generation oral killed cholera vaccines have been shown to be safe and effective in field trials conducted in cholera endemic areas. Likewise, they have been shown to be protective when used during outbreak settings. Aside from providing direct protection to vaccinated individuals, recent studies have demonstrated that these killed oral vaccines also confer indirect protection through herd immunity. Although new-generation oral cholera vaccines should not be considered in isolation from other preventive approaches in countries where they are most needed, especially improved water quality and sanitation, these vaccines serve as immediately available public health tools for preventing further morbidity and mortality from cholera. However, despite its availability for more than two decades, use of these vaccines has not been optimized. Although there are limitations of the currently available oral cholera vaccines, recent data show that the vaccines are safe, feasible to use even in difficult circumstances and able to provide protection in various settings. Clear identification of the areas and target population groups who will benefit from the use of the cholera vaccines will be required and strategies to facilitate accessibility and usage of these vaccines in these areas and population groups will need to be developed. PMID:25177492

  1. Delineation and comparison of ganglioside-binding epitopes for the toxins of Vibrio cholerae, Escherichia coli, and Clostridium tetani: evidence for overlapping epitopes.

    PubMed

    Angström, J; Teneberg, S; Karlsson, K A

    1994-12-06

    Binding studies of various glycolipids, mainly belonging to the ganglio series, to the toxins isolated from Vibrio cholerae, Escherichia coli, and Clostridium tetani have been performed, using the microtiter well assay. By using the found binding preferences in conjunction with minimum-energy conformations obtained from molecular modeling of the various ligands, binding epitopes on the natural receptor glycolipids for the toxins have been defined. The binding preferences for the cholera toxin and the heat-labile E. coli toxin are very similar, with the ganglioside GM1 being the most efficient ligand. The tetanus toxin binds strongly to gangliosides of the G1b series, with GT1b as the most efficient ligand. It is found that the binding epitope on GM1 for the cholera and heat-labile toxins to a large extent overlaps with the epitope on GQ1b for the tetanus toxin.

  2. A controlled field trial of the effectiveness of cholera and cholera El Tor vaccines in the Philippines*

    PubMed Central

    1965-01-01

    In a controlled field trial on some 584 000 people in an endemic cholera El Tor area in the Philippines, it was demonstrated that cholera vaccines gave moderate protection of short duration. Injection of a single dose of vaccine prepared from either Vibrio cholerae or Vibrio El Tor gave over 50% protection for the first two months. The immunity conferred by the V. cholerae vaccine rapidly declined after three to four months. The V. El Tor vaccine gave protection for six months, but its effectiveness declined. An oil-adjuvant vaccine prepared from V. cholerae conferred an increasing degree of protection of long duration, but, owing to severe vaccination reactions, its use could not be recommended. PMID:5294176

  3. A controlled field trial of the effectiveness of cholera and cholera El Tor vaccines in the Philippines*

    PubMed Central

    Azurin, J. C.; Cruz, A.; Pesigan, T. P.; Alvero, M.; Camena, T.; Suplido, R.; Ledesma, L.; Gomez, C. Z.

    1967-01-01

    A controlled field trial on some 584 000 people in an endemic cholera El Tor area in the Philippines demonstrated that cholera vaccines gave moderate protection of short duration. Injection of a single dose of vaccine prepared from either Vibrio cholerae or El Tor vibrios gave over 50% protection for the first 2 months. The immunity conferred by the V. cholerae vaccine declined rapidly after 3 to 4 months. The effectiveness of the El Tor vaccine continued for 6 months. An oil-adjuvant vaccine prepared from V. cholerae conferred an equally high degree of protection for a longer period of time, but, owing to severe vaccination reactions, its use could not be recommended. PMID:5300874

  4. Role of Vibrio cholerae exochitinase ChiA2 in horizontal gene transfer.

    PubMed

    Mondal, Moumita; Chatterjee, Nabendu Sekhar

    2016-03-01

    Vibrio cholerae exochitinase ChiA2 plays a key role in acquisition of nutrients by chitin hydrolysis in the natural environment as well as in pathogenesis in the intestinal milieu. In this study we demonstrate the importance of ChiA2 in horizontal gene transfer in the natural environment. We found that the expression of ChiA2 and TfoX, the central regulator of V. cholerae horizontal gene transfer, varied with changes in environmental conditions. The activity of ChiA2 was also dependent on these conditions. In 3 different environmental conditions tested here, we observed that the supporting environmental condition for maximum expression and activity of ChiA2 was 20 °C, pH 5.5, and 100 mmol/L salinity in the presence of chitin. The same condition also induced TfoX expression and was favorable for horizontal gene transfer in V. cholerae. High-performance liquid chromatography analysis showed that ChiA2 released a significant amount of (GlcNAc)2 from chitin hydrolysis under the favorable condition. We hypothesized that under the favorable environmental condition, ChiA2 was upregulated and maximally active to produce a significant amount of (GlcNAc)2 from chitin. The same environmental condition also induced tfoX expression, followed by its translational activation by the (GlcNAc)2 produced, leading to efficient horizontal gene transfer.

  5. Genetic characteristics of drug-resistant Vibrio cholerae O1 causing endemic cholera in Dhaka, 2006-2011.

    PubMed

    Rashed, Shah M; Mannan, Shahnewaj B; Johura, Fatema-Tuz; Islam, M Tarequl; Sadique, Abdus; Watanabe, Haruo; Sack, R Bradley; Huq, Anwar; Colwell, Rita R; Cravioto, Alejandro; Alam, Munirul

    2012-12-01

    Vibrio cholerae O1 biotype El Tor (ET), causing the seventh cholera pandemic, was recently replaced in Bangladesh by an altered ET possessing ctxB of the Classical (CL) biotype, which caused the first six cholera pandemics. In the present study, V. cholerae O1 strains associated with endemic cholera in Dhaka between 2006 and 2011 were analysed for major phenotypic and genetic characteristics. Of 54 representative V. cholerae isolates tested, all were phenotypically ET and showed uniform resistance to trimethoprim/sulfamethoxazole (SXT) and furazolidone (FR). Resistance to tetracycline (TE) and erythromycin (E) showed temporal fluctuation, varying from year to year, while all isolates were susceptible to gentamicin (CN) and ciprofloxacin (CIP). Year-wise data revealed erythromycin resistance to be 33.3 % in 2006 and 11 % in 2011, while tetracycline resistance accounted for 33, 78, 0, 100 and 27 % in 2006, 2007, 2008, 2009 and 2010, respectively; interestingly, all isolates tested were sensitive to TE in 2011, as observed in 2008. All V. cholerae isolates tested possessed genetic elements such as SXT, ctxAB, tcpA(ET), rstR(ET) and rtxC; none had IntlI (Integron I). Double mismatch amplification mutation assay (DMAMA)-PCR followed by DNA sequencing and analysis of the ctxB gene revealed a point mutation at position 58 (C→A), which has resulted in an amino acid substitution from histidine (H) to asparagine (N) at position 20 (genotype 7) since 2008. Although the multi-resistant strains having tetracycline resistance showed minor genetic divergence, V. cholerae strains were clonal, as determined by a PFGE (NotI)-based dendrogram. This study shows 2008-2010 to be the time of transition from ctxB genotype 1 to genotype 7 in V. cholerae ET causing endemic cholera in Dhaka, Bangladesh.

  6. Immunization with cholera toxin B subunit induces high-level protection in the suckling mouse model of cholera.

    PubMed

    Price, Gregory A; McFann, Kim; Holmes, Randall K

    2013-01-01

    Cholera toxin (CT) is the primary virulence factor responsible for severe cholera. Vibrio cholerae strains unable to produce CT show severe attenuation of virulence in animals and humans. The pentameric B subunit of CT (CTB) contains the immunodominant epitopes recognized by antibodies that neutralize CT. Although CTB is a potent immunogen and a promising protective vaccine antigen in animal models, immunization of humans with detoxified CT failed to protect against cholera. We recently demonstrated however that pups reared from mice immunized intraperitoneally (IP) with 3 doses of recombinant CTB were well protected against a highly lethal challenge dose of V. cholerae N16961. The present study investigated how the route and number of immunizations with CTB could influence protective efficacy in the suckling mouse model of cholera. To this end female mice were immunized with CTB intranasally (IN), IP, and subcutaneously (SC). Serum and fecal extracts were analyzed for anti-CTB antibodies by quantitative ELISA, and pups born to immunized mothers were challenged orogastrically with a lethal dose of V. cholerae. Pups from all immunized groups were highly protected from death by 48 hours (64-100% survival). Cox regression showed that percent body weight loss at 24 hours predicted death by 48 hours, but we were unable to validate a specific amount of weight loss as a surrogate marker for protection. Although CTB was highly protective in all regimens, three parenteral immunizations showed trends toward higher survival and less weight loss at 24 hours post infection. These results demonstrate that immunization with CTB by any of several routes and dosing regimens can provide protection against live V. cholerae challenge in the suckling mouse model of cholera. Our data extend the results of previous studies and provide additional support for the inclusion of CTB in the development of a subunit vaccine against V. cholerae.

  7. In vitro and in vivo cholera toxin production by classical and El Tor isolates of Vibrio cholerae.

    PubMed Central

    Turnbull, P C; Lee, J V; Miliotis, M D; Still, C S; Isaäcson, M; Ahmad, Q S

    1985-01-01

    A comparative study was carried out on the in vitro production of cholera toxin by 19 Vibrio cholerae El Tor isolates from patients with cholera in South Africa, one El Tor isolate from a patient in Malawi (a country approximately 1000 km north-northeast of South Africa), 6 El Tor and 12 classical type isolates from patients in Bangladesh, and 5 culture collection classical strains. Identical phage types and indistinguishable toxigenicities among the South African and Malawi V. cholerae, representing isolations obtained over a 10-year period, indicated that essentially a single strain was involved in the cholera of these regions. Similarly, phage typing and toxin profiles indicated that the 12 classical and 6 El Tor V. cholerae cultures in Bangladesh, all isolated in November 1983, represented just two strains. As assessed by titrations in Y-1 mouse adrenal and Chinese hamster ovary cell lines, the general order of toxigenicities was Bangladesh and culture collection classical greater than Bangladesh El Tor greater than southern African El Tor. The African isolates consistently gave rise to very low titers. Their relative reluctance to produce the toxin in vitro compared with the culture collection classical strains, particularly strain 569B, was confirmed by rocket electrophoresis. In somewhat of a contrast, maximum in vivo titers in rice water stools from cholera patients in South Africa and from both classical and El Tor type cholera patients in Bangladesh were essentially equal. It is postulated that under the continuous culture conditions that occur in vivo, cholera toxin concentrations can accumulate to a maximum level, depending on the rate of purging by the diarrheal fluid rather than the toxigenicity of the infecting stain. The relevance of these findings to the relative severities of classical and El Tor types of cholera is discussed. Images PMID:4008618

  8. Hydroclimatological And Anthropogenic Drivers For Cholera Spreading

    NASA Astrophysics Data System (ADS)

    Righetto, Lorenzo; Bertuzzo, Enrico; Mari, Lorenzo; Casagrandi, Renato; Gatto, Marino; Rinaldo, Andrea

    2010-05-01

    The nature of waterborne diseases, among which cholera has a prominent importance, calls for a better understanding of the link between epidemic spreading, water and climate. To this end, we have developed a framework which involves a network-based description of a river system, connected with local communities which act as nodes of the network. This has allowed us to produce consistent simulations of real case studies. More recent investigations comprise the evaluation of the spreading velocity of an epidemic wave by means of a reaction-diffusion modeling approach. In particular, we have found that both transport processes and epidemiological quantities, such as the basic reproduction number, have a crucial effect in controlling the spreading of the epidemics. We first developed a description of bacterial movement along the network driven by advection and diffusion; afterward, we have included the movement of human populations. This latter model allowed us to establish the conditions that can trigger epidemic waves that start from the coastal region, where bacteria are autochthonous, and travel inland. In particular, our findings suggest that even relatively low values of human diffusion can have the epidemic propagate upstream. The interaction between climate, hydrology and epidemic events is still much debated, since no clear correlation between climatologic and epidemiological phenomena has emerged so far. However, a spatial assessment of hydrological and epidemiological mechanisms could be crucial to understand the evolution of cholera outbreaks. In particular, a hotly debated topic is the understanding of the mechanisms that can generate patterns of cholera incidence that exhibit an intra-annual double peak, as frequently observed in endemic region such as Bangladesh. One of the possible explanations proposed in the literature is that spring droughts cause bacteria concentration in water to rise dramatically, triggering the first peak. On the other hand

  9. Molecular tools in understanding the evolution of Vibrio cholerae

    PubMed Central

    Rahaman, Md. Habibur; Islam, Tarequl; Colwell, Rita R.; Alam, Munirul

    2015-01-01

    Vibrio cholerae, the etiological agent of cholera, has been a scourge for centuries. Cholera remains a serious health threat for developing countries and has been responsible for millions of deaths globally over the past 200 years. Identification of V. cholerae has been accomplished using a variety of methods, ranging from phenotypic strategies to DNA based molecular typing and currently whole genomic approaches. This array of methods has been adopted in epidemiological investigations, either singly or in the aggregate, and more recently for evolutionary analyses of V. cholerae. Because the new technologies have been developed at an ever increasing pace, this review of the range of fingerprinting strategies, their relative advantages and limitations, and cholera case studies was undertaken. The task was challenging, considering the vast amount of the information available. To assist the study, key references representative of several areas of research are provided with the intent to provide readers with a comprehensive view of recent advances in the molecular epidemiology of V. cholerae. Suggestions for ways to obviate many of the current limitations of typing techniques are also provided. In summary, a comparative report has been prepared that includes the range from traditional typing to whole genomic strategies. PMID:26500613

  10. Vibrio cholerae Hemagglutinin/Protease Degrades Chironomid Egg Masses

    PubMed Central

    Halpern, Malka; Gancz, Hanan; Broza, Meir; Kashi, Yechezkel

    2003-01-01

    Cholera is a severe diarrheal disease caused by specific serogroups of Vibrio cholerae that are pathogenic to humans. The disease does not persist in a chronic state in humans or animals. The pathogen is naturally present as a free-living organism in the environment. Recently, it was suggested that egg masses of the nonbiting midge Chironomus sp. (Diptera) harbor and serve as a nutritive source for V. cholerae, thereby providing a natural reservoir for the organism. Here we report that V. cholerae O9, O1, and O139 supernatants lysed the gelatinous matrix of the chironomid egg mass and inhibited eggs from hatching. The extracellular factor responsible for the degradation of chironomid egg masses (egg mass degrading factor) was purified from V. cholerae O9 and O139 and was identified as the major secreted hemagglutinin/protease (HA/P) of V. cholerae. The substrate in the egg mass was characterized as a glycoprotein. These findings show that HA/P plays an important role in the interaction of V. cholerae and chironomid egg masses. PMID:12839800

  11. Studies of cholera El Tor in the Philippines*

    PubMed Central

    Mosley, W. H.; Alvero, M. G.; Joseph, P. R.; Tamayo, J. F.; Gomez, C. Z.; Montague, T.; Dizon, J. J.; Henderson, D. A.

    1965-01-01

    As part of a broad study on the epidemiology of cholera El Tor in the Philippines, the authors conducted bacteriological surveys among the community contacts of suspect cholera patients hospitalized in the Negros Occidental Provincial Hospital from August through October 1962. Fourteen (2%) of 698 community contacts of persons with confirmed cholera patients were found on initial culture to be infected. Intensive studies in two communities suggested that infection was spread primarily by close personal contact; in a third community, contamined well-water presumably served as a vehicle for the transmission of infection. Diagnosed and undiagnosed cases, undiagnosed cholera deaths and asymptomatic infections all played a role in cholera transmission. The studies tend to confirm that the second or recurrent epidemic in Negros Occidental was primarily caused by person-to-person spread. Although the seemingly isolated or sporadic cases were sometimes associated with a more general distribution of the cholera vibrio, the cholera infections invariably were highly localized among close contacts even within densely populated areas with poor sanitation. PMID:5295146

  12. How community ecology can improve our understanding of cholera dynamics

    PubMed Central

    Constantin de Magny, Guillaume; Hasan, Nur A.; Roche, Benjamin

    2013-01-01

    Understanding the seasonal emergence and reemergence of cholera is challenging due to the complex dynamics of different protagonists. The abundance of Vibrio cholerae, the causative agent of cholera and a natural inhabitant of aquatic environments, fluctuates according to abiotic, and biotic factors. Among the biotic factors, the zooplankton community dynamics has been suggested to play a pivotal role in the survival, persistence, and natural competence of V. cholerae. However, factors regulating V. cholerae population structure and seasonal dynamics are still not fully understood. Investigation of the temporal shifts and variability in aquatic community composition in relation to the occurrence or abundance of V. cholerae appears very promising yet remained underexplored. Recent advances in metagenomics, facilitated by high-throughput ultra deep sequencing, have greatly improved our ability for a broader and deeper exploration of microbial communities including an understanding of community structure, function, as well as inter- and intra-specific competitions. Here, we discuss possible areas of research focusing how combination of community ecology and metagenomic approaches could be applied to study the cholera system. PMID:24765090

  13. Molecular tools in understanding the evolution of Vibrio cholerae.

    PubMed

    Rahaman, Md Habibur; Islam, Tarequl; Colwell, Rita R; Alam, Munirul

    2015-01-01

    Vibrio cholerae, the etiological agent of cholera, has been a scourge for centuries. Cholera remains a serious health threat for developing countries and has been responsible for millions of deaths globally over the past 200 years. Identification of V. cholerae has been accomplished using a variety of methods, ranging from phenotypic strategies to DNA based molecular typing and currently whole genomic approaches. This array of methods has been adopted in epidemiological investigations, either singly or in the aggregate, and more recently for evolutionary analyses of V. cholerae. Because the new technologies have been developed at an ever increasing pace, this review of the range of fingerprinting strategies, their relative advantages and limitations, and cholera case studies was undertaken. The task was challenging, considering the vast amount of the information available. To assist the study, key references representative of several areas of research are provided with the intent to provide readers with a comprehensive view of recent advances in the molecular epidemiology of V. cholerae. Suggestions for ways to obviate many of the current limitations of typing techniques are also provided. In summary, a comparative report has been prepared that includes the range from traditional typing to whole genomic strategies.

  14. [Cholera epidemics on Reunion Island during the 19th century].

    PubMed

    Gaüzère, B-A; Aubry, P

    2012-01-01

    The first cholera outbreak on Bourbon Island (now Reunion Island) was recorded in January 1820. The disease was imported from Mauritius Island aboard the steamer Pivert. The epidemic began on Mauritius in November 1819 after the English frigate, La Topaze, called from Calcutta, India. Dr. François Vinson demonstrated the transmissibility of cholera during this epidemic. Drastic sanitary measures spared Reunion from the two epidemics on Mauritius Island, in 1854 and 1856. The second outbreak of cholera on Reunion Island was recorded on March 6, 1859. The disease was introduced from East Africa by the steamer Mascareignes, which carried indentured servants. The captain (d'Agnel) et the supercargo (Menon) of the steamer claimed to the doctor who boarded the ship before landing that no passengers or crew had had cholera, in flagrant contradiction to the autopsy report issued by Navy surgeon Alfred Vaillant, who had concluded that cholera was present when the vessel left the African coast. This report was withheld from the boarding physician. Cholera spread quickly on the island and affected the poorest people, especially freed slaves, most severely. Dr. Petit, the chief Navy Physician and Director of the Health Department, obtained a confession by Menon about the fraudulent statements. On January 24, 1860, a trial for public health endangerment began on Reunion Island; it ended on February 1 with a not-guilty verdict, based largely on the testimony of several island doctors that cholera was not contagious.

  15. Survival of Vibrio cholerae O1 on fomites.

    PubMed

    Farhana, Israt; Hossain, Zenat Zebin; Tulsiani, Suhella Mohan; Jensen, Peter Kjær Mackie; Begum, Anowara

    2016-09-01

    It is well established that the contamination sources of cholera causing bacteria, Vibrio cholerae, are water and food, but little is known about the transmission role of the fomites (surfaces that can carry pathogens) commonly used in households. In the absence of appropriate nutrients or growth conditions on fomites, bacteria have been known to assume a viable but non-culturable (VBNC) state after a given period of time. To investigate whether and when V. cholerae O1 assumes such a state, this study investigated the survival and viable quantification on a range of fomites such as paper, wood, glass, plastic, cloth and several types of metals under laboratory conditions. The fomites were inoculated with an outbreak strain of V. cholerae and its culturability was examined by drop plate count method at 30 min intervals for up to 6 h. For molecular detection, the viable/dead stain ethidium monoazide (EMA) which inhibits amplification of DNA from dead cells was used in combination with real-time polymerase chain reaction (EMA-qPCR) for direct quantitative analyses of viable V. cholerae at 2, 4, 6, 24 h and 7 day time intervals. Results showed that V. cholerae on glass and aluminum surfaces lost culturability within one hour after inoculation but remained culturable on cloth and wood for up to four hours. VBNC V. cholerae on dry fomite surfaces was detected and quantified by EMA-qPCR even 7 days after inoculation. In conclusion, the prolonged survival of V. cholerae on various household fomites may play vital role in cholera transmission and needs to be further investigated.

  16. Predictive modeling of cholera using GRACE and TRMM satellite data

    NASA Astrophysics Data System (ADS)

    Jutla, A.; Akanda, A. S. S.; Colwell, R. R.

    2015-12-01

    Cholera outbreaks can be classified in three forms- epidemic (sudden or seasonal outbreaks), endemic (recurrence and persistence of the disease for several consecutive years) and mixed-mode endemic (combination of certain epidemic and endemic conditions) with significant spatial and temporal heterogeneity. Endemic cholera is related to floods and droughts in regions where water and sanitation infrastructure are inadequate or insufficient. With more than a decade of terrestrial water storage (TWS) data obtained from Gravity Recovery and Climate Experiment (GRACE), understanding dynamics of river discharge is now feasible. We explored lead-lag relationships between TWS in the Ganges-Brahmaputra-Meghna (GBM) basin and endemic cholera in Bangladesh. Since bimodal seasonal peaks in cholera in Bangladesh occur during the spring and autumn season, two separate models, between TWS and disease time series (2002 to 2010) were developed. TWS, hence water availability, showed an asymmetrical, strong association with spring (τ=-0.53; p<0.001) and autumn (τ=0.45; p<0.001) cholera prevalence up to five to six months in advance. One unit (cm of water) decrease in water availability in the basin increased odds of above normal cholera by 24% [confidence interval (CI) 20-31%; p<0.05] in the spring season, while an increase in regional water by one unit, through floods, increased odds of above average cholera in the autumn by 29% [CI:22-33%; p<0.05]. Epidemic cholera is related with warm temperatures and heavy rainfall. Using TRMM data for several locations in Asia and Africa, probability of cholera increases 18% [CI:15-23%; p<0.05] after heavy precipitation resulted in a societal conditions where access to safe water and sanitation was disrupted. Results from mechanistic modeling framework using systems approach that include satellite based hydroclimatic information with tradition disease transmission models will also be presented.

  17. A generalized cholera model and epidemic-endemic analysis.

    PubMed

    Wang, Jin; Liao, Shu

    2012-01-01

    The transmission of cholera involves both human-to-human and environment-to-human pathways that complicate its dynamics. In this paper, we present a new and unified deterministic model that incorporates a general incidence rate and a general formulation of the pathogen concentration to analyse the dynamics of cholera. Particularly, this work unifies many existing cholera models proposed by different authors. We conduct equilibrium analysis to carefully study the complex epidemic and endemic behaviour of the disease. Our results show that despite the incorporation of the environmental component, there exists a forward transcritical bifurcation at R (0)=1 for the combined human-environment epidemiological model under biologically reasonable conditions.

  18. In Vitro Inhibition of Cholera Toxin Production in Vibrio cholerae by Methanol Extract of Sweet Fennel Seeds and Its Components.

    PubMed

    Chatterjee, Shruti; Zahid, M Shamim Hasan; Awasthi, Sharda Prasad; Chowdhury, Nityananda; Asakura, Masahiro; Hinenoya, Atsushi; Ramamurthy, T; Iwaoka, Emiko; Aoki, Shunji; Yamasaki, Shinji

    2016-09-21

    A newly emerged Vibrio cholerae O1 El Tor variant strain with multidrug resistance is considered a threat to public health. Recent strategies to suppress virulence factors production instead of bacterial growth may lead to less selective pressure for the emergence of resistant strains. The use of spices and their active constituents as the inhibitory agents against cholera toxin (CT) production in V. cholerae may be an alternative approach to treat cholera. In this study, we examined the potential of sweet fennel seed (Foeniculum vulgare Miller var. dulce) methanol extract to inhibit CT production in V. cholerae without affecting viability. The methanol extract of sweet fennel seeds significantly inhibited CT production in various V. cholerae strains, regardless of serogroup or biotype. Interestingly, trans-anethole and 4-allylanisole, essential oil components of sweet fennel seeds, also demonstrated similar effects. Here, we report that sub-bactericidal concentrations of sweet fennel seed methanol extract and its major components can drastically inhibit CT production in various V. cholerae strains.

  19. [The knowledge of the population about cholera].

    PubMed

    de la Cruz, A M; de Rojas, V; Delgado, J; Alonso, A; Finlay, C M

    1996-01-01

    In order to determine the impact of the educational campaign about cholera on the knowledge and believes of the population, a survey was made in 1993 among 1324 persons from 14 provinces and from Isla de la Juventud special municipality. 85% were 20-59 years old and 89% had an secondary basic or higher educational level. 69% had the minimum knowledge to face the disease, 90% would see a doctor if they had and suspicion, 72% knew that diarrhea is the main symptom of cholera, 54% new how it is transmitted 89% thought that they may be infected by drinking water, 54% understood the importance of giving liquids to the sick subject, and 78% realized the significance of washing their hands before eating anf cooking. It is concluded that even though our population has a general knowledge about the disease, due to the fact that our country is located in an endemic zone, health education must be reinforced, specifically those aspects connected with the communication and with the increase of liquids administration to the patients.

  20. Methods to Assess the Impact of Mass Oral Cholera Vaccination Campaigns under Real Field Conditions

    PubMed Central

    Deen, Jacqueline; Ali, Mohammad; Sack, David

    2014-01-01

    There is increasing interest to use oral cholera vaccination as an additional strategy to water and sanitation interventions against endemic and epidemic cholera. There are two internationally-available and WHO-prequalified oral cholera vaccines: an inactivated vaccine containing killed whole-cells of V. cholerae O1 with recombinant cholera toxin B-subunit (WC/rBS) and a bivalent inactivated vaccine containing killed whole cells of V. cholerae O1 and V. cholerae O139 (BivWC). The efficacy, effectiveness, direct and indirect (herd) protection conferred by WC/rBS and BivWC are well established. Yet governments may need local evidence of vaccine impact to justify and scale-up mass oral cholera vaccination campaigns. We discuss various approaches to assess oral cholera vaccine protection, which may be useful to policymakers and public health workers considering deployment and evaluation of the vaccine. PMID:24516595

  1. Cholera toxin production by the El Tor variant of Vibrio cholerae O1 compared to prototype El Tor and classical biotypes.

    PubMed

    Ghosh-Banerjee, J; Senoh, M; Takahashi, T; Hamabata, T; Barman, S; Koley, H; Mukhopadhyay, A K; Ramamurthy, T; Chatterjee, S; Asakura, M; Yamasaki, S; Nair, G B; Takeda, Y

    2010-11-01

    Vibrio cholerae O1 El Tor variant strains produced much more cholera toxin than did prototype El Tor strains. The amount of cholera toxin produced by El Tor variant strains both in vitro and in vivo was more or less equivalent to that produced by classical strains.

  2. Overexpression of the tcp Gene Cluster Using the T7 RNA Polymerase/Promoter System and Natural Transformation-Mediated Genetic Engineering of Vibrio cholerae

    PubMed Central

    Borgeaud, Sandrine; Blokesch, Melanie

    2013-01-01

    The human pathogen and aquatic bacterium Vibrio cholerae belongs to the group of naturally competent bacteria. This developmental program allows the bacterium to take up free DNA from its surrounding followed by a homologous recombination event, which allows integration of the transforming DNA into the chromosome. Taking advantage of this phenomenon we genetically engineered V. cholerae using natural transformation and FLP recombination. More precisely, we adapted the T7 RNA polymerase/promoter system in this organism allowing expression of genes in a T7 RNA polymerase-dependent manner. We naturally transformed V. cholerae by adding a T7-specific promoter sequence upstream the toxin-coregulated pilus (tcp) gene cluster. In a V. cholerae strain, which concomitantly produced the T7 RNA polymerase, this genetic manipulation resulted in the overexpression of downstream genes. The phenotypes of the strain were also in line with the successful production of TCP pili. This provides a proof-of-principle that the T7 RNA polymerase/promoter system is functional in V. cholerae and that genetic engineering of this organism by natural transformation is a straightforward and efficient approach. PMID:23308292

  3. The Vibrio cholerae extracellular chitinase ChiA2 is important for survival and pathogenesis in the host intestine.

    PubMed

    Mondal, Moumita; Nag, Dhrubajyoti; Koley, Hemanta; Saha, Dhira Rani; Chatterjee, Nabendu Sekhar

    2014-01-01

    In aquatic environments, Vibrio cholerae colonizes mainly on the chitinous surface of copepods and utilizes chitin as the sole carbon and nitrogen source. Of the two extracellular chitinases essential for chitin utilization, the expression of chiA2 is maximally up-regulated in host intestine. Recent studies indicate that several bacterial chitinases may be involved in host pathogenesis. However, the role of V. cholerae chitinases in host infection is not yet known. In this study, we provide evidence to show that ChiA2 is important for V. cholerae survival in intestine as well as in pathogenesis. We demonstrate that ChiA2 de-glycosylates mucin and releases reducing sugars like GlcNAc and its oligomers. Deglycosylation of mucin corroborated with reduced uptake of alcian blue stain by ChiA2 treated mucin. Next, we show that V. cholerae could utilize mucin as a nutrient source. In comparison to the wild type strain, ΔchiA2 mutant was 60-fold less efficient in growth in mucin supplemented minimal media and was also ∼6-fold less competent to survive when grown in the presence of mucin-secreting human intestinal HT29 epithelial cells. Similar results were also obtained when the strains were infected in mice intestine. Infection with the ΔchiA2 mutant caused ∼50-fold less fluid accumulation in infant mice as well as in rabbit ileal loop compared to the wild type strain. To see if the difference in survival of the ΔchiA2 mutant and wild type V. cholerae was due to reduced adhesion of the mutant, we monitored binding of the strains on HT29 cells. The initial binding of the wild type and mutant strain was similar. Collectively these data suggest that ChiA2 secreted by V. cholerae in the intestine hydrolyzed intestinal mucin to release GlcNAc, and the released sugar is successfully utilized by V. cholerae for growth and survival in the host intestine.

  4. Cholera toxin expression by El Tor Vibrio cholerae in shallow culture growth conditions.

    PubMed

    Cobaxin, Mayra; Martínez, Haydee; Ayala, Guadalupe; Holmgren, Jan; Sjöling, Asa; Sánchez, Joaquín

    2014-01-01

    Vibrio cholerae O1 classical, El Tor and O139 are the primary biotypes that cause epidemic cholera, and they also express cholera toxin (CT). Although classical V. cholerae produces CT in various settings, the El Tor and O139 strains require specific growth conditions for CT induction, such as the so-called AKI conditions, which consist of growth in static conditions followed by growth under aerobic shaking conditions. However, our group has demonstrated that CT production may also take place in shallow static cultures. How these type of cultures induce CT production has been unclear, but we now report that in shallow culture growth conditions, there is virtual depletion of dissolved oxygen after 2.5 h of growth. Concurrently, during the first three to 4 h, endogenous CO2 accumulates in the media and the pH decreases. These findings may explain CT expression at the molecular level because CT production relies on a regulatory cascade, in which the key regulator AphB may be activated by anaerobiosis and by low pH. AphB activation stimulates TcpP synthesis, which induces ToxT production, and ToxT directly stimulates ctxAB expression, which encodes CT. Importantly, ToxT activity is enhanced by bicarbonate. Therefore, we suggest that in shallow cultures, AphB is activated by initial decreases in oxygen and pH, and subsequently, ToxT is activated by intracellular bicarbonate that has been generated from endogenous CO2. This working model would explain CT production in shallow cultures and, possibly, also in other growth conditions.

  5. Cholera in Haiti: Reproductive numbers and vaccination coverage estimates

    PubMed Central

    Mukandavire, Zindoga; Smith, David L.; Morris Jr, J. Glenn

    2013-01-01

    Cholera reappeared in Haiti in October, 2010 after decades of absence. Cases were first detected in Artibonite region and in the ensuing months the disease spread to every department in the country. The rate of increase in the number of cases at the start of epidemics provides valuable information about the basic reproductive number (). Quantitative analysis of such data gives useful information for planning and evaluating disease control interventions, including vaccination. Using a mathematical model, we fitted data on the cumulative number of reported hospitalized cholera cases in Haiti. varied by department, ranging from 1.06 to 2.63. At a national level, 46% vaccination coverage would result in an () <1, which would suppress transmission. In the current debate on the use of cholera vaccines in endemic and non-endemic regions, our results suggest that moderate cholera vaccine coverage would be an important element of disease control in Haiti. PMID:23308338

  6. Chemiluminescent optical fiber immunosensor for detecting cholera antitoxin

    NASA Astrophysics Data System (ADS)

    Marks, Robert S.; Bassis, Effim; Bychenko, Alexei; Levine, Myron M.

    1997-12-01

    A chemiluminescent-based optical fiber immunosensor is developed to detect the presence of jejunal cholera antitoxin IgA immunoglobulins. This was accomplished using optical fiber tips, conjugated with the cholera toxin B subunit. The cholera antitoxin analyte is marked by a secondary antibody labeled with horseradish peroxidase. A photoelectronic setup is designed specifically to monitor the signal. This immunosensor system is shown to be specific, sensitive, and fast to run, without requiring a purification step. The lowest titer detected was 1:1,310,720. When the luminol-containing buffer solution was replaced by air, thus dramatically lowering the index of refraction of the surrounding medium, sensitivity increased and cholera antitoxin was detected at an additional titer dilution at 1:2,621,440.

  7. Cholera Toxin B: One Subunit with Many Pharmaceutical Applications

    PubMed Central

    Baldauf, Keegan J.; Royal, Joshua M.; Hamorsky, Krystal Teasley; Matoba, Nobuyuki

    2015-01-01

    Cholera, a waterborne acute diarrheal disease caused by Vibrio cholerae, remains prevalent in underdeveloped countries and is a serious health threat to those living in unsanitary conditions. The major virulence factor is cholera toxin (CT), which consists of two subunits: the A subunit (CTA) and the B subunit (CTB). CTB is a 55 kD homopentameric, non-toxic protein binding to the GM1 ganglioside on mammalian cells with high affinity. Currently, recombinantly produced CTB is used as a component of an internationally licensed oral cholera vaccine, as the protein induces potent humoral immunity that can neutralize CT in the gut. Additionally, recent studies have revealed that CTB administration leads to the induction of anti-inflammatory mechanisms in vivo. This review will cover the potential of CTB as an immunomodulatory and anti-inflammatory agent. We will also summarize various recombinant expression systems available for recombinant CTB bioproduction. PMID:25802972

  8. The impact of climate on the disease dynamics of cholera.

    PubMed

    Koelle, K

    2009-01-01

    The size of infectious disease outbreaks frequently depends on climate influences as well as on the level of immunity in the host population. This is particularly the case with vectorborne and waterborne diseases, for which pathogen transmissibility critically depends on ecological conditions. Here, a mathematical model that was applied to the bacterium Vibrio cholerae to understand its disease dynamics in Bangladesh is reviewed. When interfaced with empirical case data on cholera, the model shows that climate plays a pivotal role in modulating the size of outbreaks, with local, regional, and global indices of climate variability showing a link with pathogen transmissibility. Furthermore, the incidence of cholera may occasionally be surprisingly low at times when climate seems to favour cholera transmission.

  9. Cholera in Haiti and Other Caribbean Regions, 19th Century

    PubMed Central

    Szabo, Victoria

    2011-01-01

    Medical journals and other sources do not show evidence that cholera occurred in Haiti before 2010, despite the devastating effect of this disease in the Caribbean region in the 19th century. Cholera occurred in Cuba in 1833–1834; in Jamaica, Cuba, Puerto Rico, St. Thomas, St. Lucia, St. Kitts, Nevis, Trinidad, the Bahamas, St. Vincent, Granada, Anguilla, St. John, Tortola, the Turks and Caicos, the Grenadines (Carriacou and Petite Martinique), and possibly Antigua in 1850–1856; and in Guadeloupe, Cuba, St. Thomas, the Dominican Republic, Dominica, Martinique, and Marie Galante in 1865–1872. Conditions associated with slavery and colonial military control were absent in independent Haiti. Clustered populations, regular influx of new persons, and close quarters of barracks living contributed to spread of cholera in other Caribbean locations. We provide historical accounts of the presence and spread of cholera epidemics in Caribbean islands. PMID:22099117

  10. Cholera in Haiti: Reproductive numbers and vaccination coverage estimates

    NASA Astrophysics Data System (ADS)

    Mukandavire, Zindoga; Smith, David L.; Morris, J. Glenn, Jr.

    2013-01-01

    Cholera reappeared in Haiti in October, 2010 after decades of absence. Cases were first detected in Artibonite region and in the ensuing months the disease spread to every department in the country. The rate of increase in the number of cases at the start of epidemics provides valuable information about the basic reproductive number (). Quantitative analysis of such data gives useful information for planning and evaluating disease control interventions, including vaccination. Using a mathematical model, we fitted data on the cumulative number of reported hospitalized cholera cases in Haiti. varied by department, ranging from 1.06 to 2.63. At a national level, 46% vaccination coverage would result in an () <1, which would suppress transmission. In the current debate on the use of cholera vaccines in endemic and non-endemic regions, our results suggest that moderate cholera vaccine coverage would be an important element of disease control in Haiti.

  11. Cholera Outbreak in Grande Comore: 1998–1999

    PubMed Central

    Troeger, Christopher; Gaudart, Jean; Truillet, Romain; Sallah, Kankoe; Chao, Dennis L.; Piarroux, Renaud

    2016-01-01

    In 1998, a cholera epidemic in east Africa reached the Comoros Islands, an archipelago in the Mozambique Channel that had not reported a cholera case for more than 20 years. In just a little over 1 year (between January 1998 and March 1999), Grande Comore, the largest island in the Union of the Comoros, reported 7,851 cases of cholera, about 3% of the population. Using case reports and field observations during the medical response, we describe the epidemiology of the 1998–1999 cholera epidemic in Grande Comore. Outbreaks of infectious diseases on islands provide a unique opportunity to study transmission dynamics in a nearly closed population, and they may serve as stepping-stones for human pathogens to cross unpopulated expanses of ocean. PMID:26572869

  12. Cholera toxin B: one subunit with many pharmaceutical applications.

    PubMed

    Baldauf, Keegan J; Royal, Joshua M; Hamorsky, Krystal Teasley; Matoba, Nobuyuki

    2015-03-20

    Cholera, a waterborne acute diarrheal disease caused by Vibrio cholerae, remains prevalent in underdeveloped countries and is a serious health threat to those living in unsanitary conditions. The major virulence factor is cholera toxin (CT), which consists of two subunits: the A subunit (CTA) and the B subunit (CTB). CTB is a 55 kD homopentameric, non-toxic protein binding to the GM1 ganglioside on mammalian cells with high affinity. Currently, recombinantly produced CTB is used as a component of an internationally licensed oral cholera vaccine, as the protein induces potent humoral immunity that can neutralize CT in the gut. Additionally, recent studies have revealed that CTB administration leads to the induction of anti-inflammatory mechanisms in vivo. This review will cover the potential of CTB as an immunomodulatory and anti-inflammatory agent. We will also summarize various recombinant expression systems available for recombinant CTB bioproduction.

  13. Cholera in Haiti: reproductive numbers and vaccination coverage estimates.

    PubMed

    Mukandavire, Zindoga; Smith, David L; Morris, J Glenn

    2013-01-01

    Cholera reappeared in Haiti in October, 2010 after decades of absence. Cases were first detected in Artibonite region and in the ensuing months the disease spread to every department in the country. The rate of increase in the number of cases at the start of epidemics provides valuable information about the basic reproductive number (R(0)). Quantitative analysis of such data gives useful information for planning and evaluating disease control interventions, including vaccination. Using a mathematical model, we fitted data on the cumulative number of reported hospitalized cholera cases in Haiti. R(0) varied by department, ranging from 1.06 to 2.63. At a national level, 46% vaccination coverage would result in an (R(0)) <1, which would suppress transmission. In the current debate on the use of cholera vaccines in endemic and non-endemic regions, our results suggest that moderate cholera vaccine coverage would be an important element of disease control in Haiti.

  14. Chemical ions affect survival of avian cholera organisms in pondwater

    USGS Publications Warehouse

    Price, J.I.; Yandell, B.S.; Porter, W.P.

    1992-01-01

    Avian cholera (Pasteurella multocida) is a major disease of wild waterfowl, but its epizootiology remains little understood. Consequently, we examined whether chemical ions affected survival of avian cholera organisms in water collected from the Nebraska Rainwater Basin where avian cholera is enzootic. We tested the response of P. multocida to ammonium (NH4), calcium (Ca), magnesium (Mg), nitrate (NO3), and ortho-phosphate (PO4) ions individually and in combination using a fractional factorial design divided into 4 blocks. High concentrations of Ca and Mg, singly or in combination, increased survival of P. multocida organisms (P < 0.001). We developed a survival index to predict whether or not specific ponds could be "problem" or "nonproblem" avian cholera sites based on concentrations of these ions in the water.

  15. Environmental reservoirs and mechanisms of persistence of Vibrio cholerae

    PubMed Central

    Lutz, Carla; Erken, Martina; Noorian, Parisa; Sun, Shuyang; McDougald, Diane

    2013-01-01

    It is now well accepted that Vibrio cholerae, the causative agent of the water-borne disease cholera, is acquired from environmental sources where it persists between outbreaks of the disease. Recent advances in molecular technology have demonstrated that this bacterium can be detected in areas where it has not previously been isolated, indicating a much broader, global distribution of this bacterium outside of endemic regions. The environmental persistence of V. cholerae in the aquatic environment can be attributed to multiple intra- and interspecific strategies such as responsive gene regulation and biofilm formation on biotic and abiotic surfaces, as well as interactions with a multitude of other organisms. This review will discuss some of the mechanisms that enable the persistence of this bacterium in the environment. In particular, we will discuss how V. cholerae can survive stressors such as starvation, temperature, and salinity fluctuations as well as how the organism persists under constant predation by heterotrophic protists. PMID:24379807

  16. Cellulose acetate phthalate microparticles containing Vibrio cholerae: steps toward an oral cholera vaccine.

    PubMed

    Pastor, Marta; Esquisabel, Amaia; Marquínez, Iratxe; Talavera, Arturo; Pedraz, José Luis

    2014-07-01

    Oral cholera vaccine (OCV) has been recommended in some endemic areas and epidemic situations since 1999. Although safe and effective vaccines are currently on the market, the burden of transport and storage remains an issue. Herein, we report an approach to develop an alternative OCV in the form of a gastro-resistant powder. Heat-killed Vibrio cholerae (VC) was encapsulated with a spray-drying technique at different temperatures. Cellulose acetate phthalate (Aquacoat® CPD) was chosen as the core polymer and the addition of alginate was studied. The microparticles (MPs) produced were characterized by surface morphology, particle size, drug loading, antigenicity and gastro resistance. The MPs obtained were 6 µm in size and had appropriate drug content, ranging from 8.16 to 8.64%. Furthermore, antigenicity was maintained, never dropping below 85%, and enteric properties were achieved for all the formulations. Next, an in vivo study was carried out with Aquacoat® CPD MP prepared at 80 °C with and without alginate. Two different doses were assayed, 30 and 60 mg, and compared to the VC suspension. The evoked immune responses showed that alginate containing MPs, especially at the 30 mg dose, displayed values that were very similar to those of VC. In conclusion, spray-dried alginate VC MPs seem to be a promising step toward a powder-form cholera vaccination.

  17. Hydroclimatic Extremes and Cholera Dynamics in the 21st Century

    NASA Astrophysics Data System (ADS)

    Akanda, A. S.; Jutla, A. S.; Islam, S.

    2012-12-01

    Cholera, an acute water-borne diarrheal illness, has reemerged as a significant health threat across much of the developing world. Despite major advances in the ecological and the microbiological understanding of the causative agent, V. cholerae, the role of the underlying climatic and environmental processes in propagating transmission is not adequately understood. Recent findings suggest a more prominent role of hydroclimatic extremes - droughts and floods - on the unique dual cholera peaks in the Bengal Delta region of South Asia, the native homeland of cholera. Increasing water scarcity and abundance, and coastal sea-level rise, influenced by changing climate patterns and large-scale climatic phenomena, is likely to adversely impact cholera transmission in South Asia. We focus on understanding how associated changes in macro-scale conditions in this region will impact micro-scale processes related to cholera in coming decades. We use the PRECIS Regional Climate Model over the Ganges-Brahmaputra-Meghna (GBM) basin region to simulate detailed high resolution projections of climate patterns for the 21st century. Precipitation outputs are analyzed for the 1980-2040 period to identify the trends and changes in hydroclimatic extremes and potential impacts on cholera dynamics over the next three decades (2010-2040), in relation to the cholera surveillance operations over the past three decades (1980-2010). We find that an increased number of extreme precipitation events with prolonged dry periods in the Ganges basin region will likely adversely affect dry season cholera outbreaks. Increased monsoon precipitation volumes in the Brahmaputra basin catchments are likely to cause record floods and subsequently trigger large epidemics in downstream areas. Our results provide new insight by identifying the changes in the two distinctly different, pre and post monsoon, cholera transmission mechanisms related to large-scale climatic controls that prevail in the region. A

  18. MOLECULAR CHARACTERIZATION OF VIBRIO CHOLERAE GENES FLGO AND FLGP

    DTIC Science & Technology

    2006-12-01

    ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS... human pathogen and causative agent of the human diarrheal disease cholera, is a highly motile bacterium by virtue of a single, sheathed, polar flagellum...David Christopher Morris, MS The University of Texas at San Antonio, 2006 Supervising Professor: Karl E. Klose, PhD Vibrio cholerae, a human pathogen

  19. Community health facility preparedness for a cholera surge in Haiti.

    PubMed

    Mobula, Linda Meta; Jacquet, Gabrielle A; Weinhauer, Kristin; Alcidas, Gladys; Thomas, Hans-Muller; Burnham, Gilbert

    2013-01-01

    With increasing population displacement and worsening water insecurity after the 2010 earthquake, Haiti experienced a large cholera outbreak. Our goal was to evaluate the strengths and weaknesses of seven community health facilities' ability to respond to a surge in cholera cases. Since 2010, Catholic Relief Services (CRS) with a number of public and private donors has been working with seven health facilities in an effort to reduce morbidity and mortality from cholera infection. In November 2012, CRS through the Centers for Disease Control and Prevention (CDC)'s support, asked the Johns Hopkins Center for Refugee and Disaster Response to conduct a cholera surge simulation tabletop exercise at these health facilities to improve each facility's response in the event of a cholera surge. Using simulation development guidelines from the Pan American Health Organization and others, a simulation scenario script was produced that included situations of differing severity, supply chain, as well as a surge of patients. A total of 119 hospital staff from seven sites participated in the simulation exercise including community health workers, clinicians, managers, pharmacists, cleaners, and security guards. Clinics that had challenges during the simulated clinical care of patients were those that did not appropriately treat all cholera patients according to protocol, particularly those that were vulnerable, those that would need additional staff to properly treat patients during a surge of cholera, and those that required a better inventory of supplies. Simulation-based activities have the potential to identify healthcare delivery system vulnerabilities that are amenable to intervention prior to a cholera surge.

  20. Serogroup Conversion of Vibrio cholerae in Aquatic Reservoirs

    PubMed Central

    Blokesch, Melanie; Schoolnik, Gary K

    2007-01-01

    The environmental reservoirs for Vibrio cholerae are natural aquatic habitats, where it colonizes the chitinous exoskeletons of copepod molts. Growth of V. cholerae on a chitin surface induces competence for natural transformation, a mechanism for intra-species gene exchange. The antigenically diverse O-serogroup determinants of V. cholerae are encoded by a genetically variable biosynthetic cluster of genes that is flanked on either side by chromosomal regions that are conserved between different serogroups. To determine whether this genomic motif and chitin-induced natural transformation might enable the exchange of serogroup-specific gene clusters between different O serogroups of V. cholerae, a strain of V. cholerae O1 El Tor was co-cultured with a strain of V. cholerae O139 Bengal within a biofilm on the same chitin surface immersed in seawater, and O1-to-O139 transformants were obtained. Serogroup conversion of the O1 recipient by the O139 donor was demonstrated by comparative genomic hybridization, biochemical and serological characterization of the O-antigenic determinant, and resistance of O1-to-O139 transformants to bacteriolysis by a virulent O1-specific phage. Serogroup conversion was shown to have occurred as a single-step exchange of large fragments of DNA. Crossovers were localized to regions of homology common to other V. cholerae serogroups that flank serogroup-specific encoding sequences. This result and the successful serogroup conversion of an O1 strain by O37 genomic DNA indicate that chitin-induced natural transformation might be a common mechanism for serogroup conversion in aquatic habitats and for the emergence of V. cholerae variants that are better adapted for survival in environmental niches or more pathogenic for humans. PMID:17559304

  1. Haitian variant ctxB producing Vibrio cholerae O1 with reduced susceptibility to ciprofloxacin is persistent in Yavatmal, Maharashtra, India, after causing a cholera outbreak.

    PubMed

    Kumar, P; Mishra, D K; Deshmukh, D G; Jain, M; Zade, A M; Ingole, K V; Yadava, P K

    2014-05-01

    Vibrio cholerae O1 biotype El Tor producing Haitian variant Cholera Toxin (HCT) and showing reduced susceptibility to ciprofloxacin caused a cholera outbreak associated with a high case fatality rate (4.5) in India. HCT-secreting strains responsible for severe cholera epidemics in Orissa (India), Western Africa and Haiti were associated with increased mortality. There is a pressing need for an integrated multidisciplinary approach to combat further spread of newly emerging variant strains. The therapeutic effect of ciprofloxacin was diminished whereas use of doxycycline in moderate to severe cholera patients was found to be effective in outbreak management.

  2. [Cholera in Europe and Denmark in the 19th century].

    PubMed

    Bonderup, G

    1996-01-01

    There are several reasons for dealing with cholera in the 19th century: it acted as a spotlight throwing into sharp relief the darkest corners of society that are seldom mentioned in the sources. We learn about everyday life in large parts of the population, especially the poor. The fight against the disease also reveals how a society worked socially and politically. When cholera arrived in Europe -- the first time was in the 1830's and several times after that--the population reacted very violently, often by lynching doctors, while the authorities more or less let matters take their course. That is why international researchers have come to see cholera as a catalyst for the constantly latent social unrest following in the train of wars and revolutions. During my research on cholera in Denmark it became clear to me that matters were different here. There were no riots, nor any signs of social unrest--neither before nor after the outbreak of cholera. On the contrary, the authorities and the population joined forces against the epidemic. There was an atmosphere of mutual trust, and almost everybody turned out to be worthy of such trust. That points to a balanced society based on consensus, so cholera also functions as a detector of the fundamental structure of a society.

  3. Considerations around the introduction of a cholera vaccine in Bangladesh.

    PubMed

    Nelson, Christopher B; Mogasale, Vittal; Bari, Tajul Islam A; Clemens, John D

    2014-12-12

    Cholera is an endemic and epidemic disease in Bangladesh. On 3 March 2013, a meeting on cholera and cholera vaccination in Bangladesh was convened by the Foundation Mérieux jointly with the International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B). The purpose of the meeting was to discuss the investment case for cholera vaccination as a complimentary control and prevention strategy. The performance of a new low cost oral cholera vaccine, Shanchol™, used in recent trials in Bangladesh, was also reviewed in the context of a potential large-scale public-sector vaccination program. Findings showed the oral vaccine to be highly cost-effective when targeting ages 1-14 y, and cost-effective when targeting ages 1+y, in high-burden/high-risk districts. Other vaccination strategies targeting urban slums and rural areas without improved water were found to be cost-effective. Regardless of cost-effectiveness (value), the budget impact (affordability) will be an important determinant of which target population and vaccination strategy is selected. Most importantly, adequate vaccine supply for the proposed vaccination programs must be addressed in the context of global efforts to establish a cholera vaccine stockpile and supply other control and prevention efforts.

  4. Maximizing protection from use of oral cholera vaccines in developing country settings: an immunological review of oral cholera vaccines.

    PubMed

    Desai, Sachin N; Cravioto, Alejandro; Sur, Dipika; Kanungo, Suman

    2014-01-01

    When oral vaccines are administered to children in lower- and middle-income countries, they do not induce the same immune responses as they do in developed countries. Although not completely understood, reasons for this finding include maternal antibody interference, mucosal pathology secondary to infection, malnutrition, enteropathy, and previous exposure to the organism (or related organisms). Young children experience a high burden of cholera infection, which can lead to severe acute dehydrating diarrhea and substantial mortality and morbidity. Oral cholera vaccines show variations in their duration of protection and efficacy between children and adults. Evaluating innate and memory immune response is necessary to understand V. cholerae immunity and to improve current cholera vaccine candidates, especially in young children. Further research on the benefits of supplementary interventions and delivery schedules may also improve immunization strategies.

  5. Cholera at the crossroads: the association between endemic cholera and national access to improved water sources and sanitation.

    PubMed

    Nygren, Benjamin L; Blackstock, Anna J; Mintz, Eric D

    2014-11-01

    We evaluated World Health Organization (WHO) national water and sanitation coverage levels and the infant mortality rate as predictors of endemic cholera in the 5-year period following water and sanitation coverage estimates using logistic regression, receiver operator characteristic curves, and different definitions of endemicity. Each was a significant predictors of endemic cholera at P < 0.001. Using a value of 250 for annual cases reported in 3 of 5 years, a national water access level of 71% has 65% sensitivity and 65% specificity in predicting endemic cholera, a sanitation access level of 39% has 63% sensitivity and 62% specificity, and an infant mortality rate of 65/1,000 has 67% sensitivity and 69% specificity. Our findings reveal the tradeoff between sensitivity and specificity for these predictors of endemic cholera and highlight the substantial uncertainty in the data. More accurate global surveillance data will enable more precise characterization of the benefits of improved water and sanitation.

  6. Epidemiology, determinants and dynamics of cholera in Pakistan: gaps and prospects for future research.

    PubMed

    Naseer, Maliha; Jamali, Tanzil

    2014-11-01

    Cholera is one of the notifiable endemic diseases in Pakistan, but the reporting of cholera cases is still unsatisfactory. Most of the diagnosed cases are never reported to the relevant authorities. In the year 1993 - 2005, the country did not report any single case of cholera to the WHO. The objectives of this review were to understand the epidemiology and to identify the possible determinants of cholera infection in Pakistan. Medscape, Medline, PakMedinet and PubMed, was searched, using key words, epidemiology and determinants of cholera infection in Pakistan during 1995 - 2010. Morbidity and mortality due to cholera infection during 1995 - 2010, without any language restriction. Out of 27 articles published between 1995 - 2010, 17 articles were included in the review. Vibrio cholerae O139 identified as a major cause of infection in older age group, while O1 biotype of cholera as a predominant cause of cholera among young individuals. Mainly reported determinants of cholera in Pakistan include poor sanitation and hygiene practices, increased population density in urban areas, leading to rapid and unplanned urbanization of the major cities and climate change due to increased environmental pollution in Pakistan are plausible factors for endemicity of cholera in Pakistan. Cholera reporting as a notifiable disease to the relevant departments and timely action can prevent the risk of outbreaks. There is a need to identify specific behavioral and environmental determinants responsible for outbreaks and epidemics of cholera in Pakistan which can help to design appropriate preventive and control interventions.

  7. Hybrid microarray based on double biomolecular markers of DNA and carbohydrate for simultaneous genotypic and phenotypic detection of cholera toxin-producing Vibrio cholerae.

    PubMed

    Shin, Hwa Hui; Seo, Jeong Hyun; Kim, Chang Sup; Hwang, Byeong Hee; Cha, Hyung Joon

    2016-05-15

    Life-threatening diarrheal cholera is usually caused by water or food contaminated with cholera toxin-producing Vibrio cholerae. For the prevention and surveillance of cholera, it is crucial to rapidly and precisely detect and identify the etiological causes, such as V. cholerae and/or its toxin. In the present work, we propose the use of a hybrid double biomolecular marker (DBM) microarray containing 16S rRNA-based DNA capture probe to genotypically identify V. cholerae and GM1 pentasaccharide capture probe to phenotypically detect cholera toxin. We employed a simple sample preparation method to directly obtain genomic DNA and secreted cholera toxin as target materials from bacterial cells. By utilizing the constructed DBM microarray and prepared samples, V. cholerae and cholera toxin were detected successfully, selectively, and simultaneously; the DBM microarray was able to analyze the pathogenicity of the identified V. cholerae regardless of whether the bacteria produces toxin. Therefore, our proposed DBM microarray is a new effective platform for identifying bacteria and analyzing bacterial pathogenicity simultaneously.

  8. Origins of pandemic Vibrio cholerae from environmental gene pools.

    PubMed

    Shapiro, B Jesse; Levade, Inès; Kovacikova, Gabriela; Taylor, Ronald K; Almagro-Moreno, Salvador

    2016-12-19

    Some microorganisms can transition from an environmental lifestyle to a pathogenic one(1-3). This ecological switch typically occurs through the acquisition of horizontally acquired virulence genes(4,5). However, the genomic features that must be present in a population before the acquisition of virulence genes and emergence of pathogenic clones remain unknown. We hypothesized that virulence adaptive polymorphisms (VAPs) circulate in environmental populations and are required for this transition. We developed a comparative genomic framework for identifying VAPs, using Vibrio cholerae as a model. We then characterized several environmental VAP alleles to show that while some of them reduced the ability of clinical strains to colonize a mammalian host, other alleles conferred efficient host colonization. These results show that VAPs are present in environmental bacterial populations before the emergence of virulent clones. We propose a scenario in which VAPs circulate in the environment and become selected and enriched under certain ecological conditions, and finally a genomic background containing several VAPs acquires virulence factors that allow for its emergence as a pathogenic clone.

  9. Incidence and molecular analysis of Vibrio cholerae associated with cholera outbreak subsequent to the super cyclone in Orissa, India.

    PubMed

    Chhotray, G P; Pal, B B; Khuntia, H K; Chowdhury, N R; Chakraborty, S; Yamasaki, S; Ramamurthy, T; Takeda, Y; Bhattacharya, S K; Nair, G Balakrish

    2002-04-01

    An epidemiological study was carried out to find out the aetiological agent for diarrhoeal disorders in the cyclone and flood affected areas of Orissa, India. Rectal swabs collected from 107 hospitalized diarrhoea patients were bacteriologically analysed to isolate and identify the various enteropathogens. Detection of toxic genes among E. coli and V. cholerae was carried out by polymerase chain reaction (PCR) assay. Of the 107 rectal swabs analysed, 72.3% were positive for V. cholerae O1 Ogawa, 7.2% for V. cholerae O139, 1.2% for E. coli (EAggEC) and 1.2% for Shigella flexneri type 6. Using multiplex PCR assay it was found that all V. cholerae isolates were ctxA positive and El Tor biotype. Strains of V. cholerae O1 were observed to be resistant to nalidixic acid, furazolidone, streptomycin, co-trimoxazole and ampicillin. Except for nalidixic acid, the resistance pattern for O139 was identical to that of O1 strains. Representative strains of V. cholerae were further characterized by randomly amplified polymorphic DNA (RAPD) analysis and ribotyping. Both O1 and O139 V. cholerae strains exhibited the R3 pattern of ribotype and belonged to a similar pattern of RAPD compared with that of Calcutta strains. Early bacteriological and epidemiological investigations have revealed the dominance of V. cholerae O1 among the hospitalized patients in cyclone affected areas of Orissa. Drinking water scarcity and poor sanitation were thought to be responsible for these diarrhoeal outbreaks. Timely reporting and implementation of appropriate control measures could contain a vital epidemic in this area.

  10. Incidence and molecular analysis of Vibrio cholerae associated with cholera outbreak subsequent to the super cyclone in Orissa, India.

    PubMed Central

    Chhotray, G. P.; Pal, B. B.; Khuntia, H. K.; Chowdhury, N. R.; Chakraborty, S.; Yamasaki, S.; Ramamurthy, T.; Takeda, Y.; Bhattacharya, S. K.; Nair, G. Balakrish

    2002-01-01

    An epidemiological study was carried out to find out the aetiological agent for diarrhoeal disorders in the cyclone and flood affected areas of Orissa, India. Rectal swabs collected from 107 hospitalized diarrhoea patients were bacteriologically analysed to isolate and identify the various enteropathogens. Detection of toxic genes among E. coli and V. cholerae was carried out by polymerase chain reaction (PCR) assay. Of the 107 rectal swabs analysed, 72.3% were positive for V. cholerae O1 Ogawa, 7.2% for V. cholerae O139, 1.2% for E. coli (EAggEC) and 1.2% for Shigella flexneri type 6. Using multiplex PCR assay it was found that all V. cholerae isolates were ctxA positive and El Tor biotype. Strains of V. cholerae O1 were observed to be resistant to nalidixic acid, furazolidone, streptomycin, co-trimoxazole and ampicillin. Except for nalidixic acid, the resistance pattern for O139 was identical to that of O1 strains. Representative strains of V. cholerae were further characterized by randomly amplified polymorphic DNA (RAPD) analysis and ribotyping. Both O1 and O139 V. cholerae strains exhibited the R3 pattern of ribotype and belonged to a similar pattern of RAPD compared with that of Calcutta strains. Early bacteriological and epidemiological investigations have revealed the dominance of V. cholerae O1 among the hospitalized patients in cyclone affected areas of Orissa. Drinking water scarcity and poor sanitation were thought to be responsible for these diarrhoeal outbreaks. Timely reporting and implementation of appropriate control measures could contain a vital epidemic in this area. PMID:12002529

  11. Molecular Epidemiology and Antibiotic Susceptibility of Vibrio cholerae Associated with a Large Cholera Outbreak in Ghana in 2014

    PubMed Central

    Eibach, Daniel; Herrera-León, Silvia; Gil, Horacio; Hogan, Benedikt; Ehlkes, Lutz; Adjabeng, Michael; Kreuels, Benno; Nagel, Michael; Opare, David; Fobil, Julius N; May, Jürgen

    2016-01-01

    Background Ghana is affected by regular cholera epidemics and an annual average of 3,066 cases since 2000. In 2014, Ghana experienced one of its largest cholera outbreaks within a decade with more than 20,000 notified infections. In order to attribute this rise in cases to a newly emerging strain or to multiple simultaneous outbreaks involving multi-clonal strains, outbreak isolates were characterized, subtyped and compared to previous epidemics in 2011 and 2012. Methodology/Principal Findings Serotypes, biotypes, antibiotic susceptibilities were determined for 92 Vibrio cholerae isolates collected in 2011, 2012 and 2014 from Southern Ghana. For a subgroup of 45 isolates pulsed-field gel electrophoresis, multilocus sequence typing and multilocus-variable tandem repeat analysis (MLVA) were performed. Eighty-nine isolates (97%) were identified as ctxB (classical type) positive V. cholerae O1 biotype El Tor and three (3%) isolates were cholera toxin negative non-O1/non-O139 V. cholerae. Among the selected isolates only sulfamethoxazole/trimethoprim resistance was detectable in 2011, while 95% of all 2014 isolates showed resistance towards sulfamethoxazole/trimethoprim, ampicillin and reduced susceptibility to ciprofloxacin. MLVA achieved the highest subtype discrimination, revealing 22 genotypes with one major outbreak cluster in each of the three outbreak years. Apart from those clusters genetically distant genotypes circulate during each annual epidemic. Conclusions/Significance This analysis suggests different endemic reservoirs of V. cholerae in Ghana with distinct annual outbreak clusters accompanied by the occurrence of genetically distant genotypes. Preventive measures for cholera transmission should focus on aquatic reservoirs. Rapidly emerging multidrug resistance must be monitored closely. PMID:27232338

  12. Cholera Outbreaks in Urban Bangladesh In 2011

    PubMed Central

    Haque, Farhana; Hossain, M. Jahangir; Kundu, Subodh Kumar; Naser, Abu Mohd.; Rahman, Mahmudur; Luby, Stephen P.

    2015-01-01

    Background In 2011, a multidisciplinary team investigated two diarrhoea outbreaks affecting urban Bangladeshi communities from the districts of Bogra and Kishorganj to identify etiology, pathways of transmission, and factors contributing to these outbreaks. Methods We defined case-patients with severe diarrhoea as residents from affected communities admitted with ≥3 loose stools per day. We listed case-patients, interviewed and examined them, and collected rectal swabs. We visited the affected communities to explore the water and sanitation infrastructure. We tested the microbial load of water samples from selected case household taps, tube wells, and pump stations. We conducted anthropological investigations to understand community perceptions regarding the outbreaks. Results We identified 21 case-patients from Bogra and 84 from Kishorganj. The median age in Bogra was 23 years, and 21 years in Kishorganj. There were no reported deaths. We isolated Vibrio in 29% (5/17) of rectal swabs from Bogra and in 40% (8/20) from Kishorganj. We found Vibrio in 1/8 tap water samples from Bogra and in both of the samples from Kishorganj. We did not find Vibrio in water samples from pumps or tube wells in either outbreak. Ground water extracted through deep tube wells was supplied intermittently through interconnected pipes without treatment in both areas. We found leakages in the water pipes in Bogra, and in Kishorganj water pipes passed through open sewers. Conclusion The rapid onset of severe diarrhoea predominantly affecting adults and the isolation of cholera in rectal swabs confirmed that these outbreaks were caused by Vibrio cholerae. The detection of Vibrio in water samples organisms from taps but not from pumps or tube wells, suggested contamination within the pipes. Safe water provision is difficult in municipalities where supply is intermittent, and where pipes commonly leak. Research to develop and evaluate water purification strategies could identify appropriate

  13. Numerical taxonomy of Vibrio cholerae and related species isolated from areas that are endemic and nonendemic for cholera.

    PubMed Central

    McNicol, L A; De, S P; Kaper, J B; West, P A; Colwell, R R

    1983-01-01

    A total of 165 strains of vibrios isolated from clinical and environmental sources in the United States, India, and Bangladesh, 11 reference cultures, and 4 duplicated cultures were compared in a numerical taxonomic study using 83 unit characters. Similarity between strains was computed by using the simple matching coefficient and the Jaccard coefficient. Strains were clustered by unweighted average linkage and single linkage algorithms. All methods gave similar cluster compositions. The estimated probability of error in the study was obtained from a comparison of the results of duplicated strains and was within acceptable limits. A total of 174 of the 180 organisms studied were divided into eight major clusters. Two clusters were identified as Vibrio cholerae, one as Vibrio mimicus, one as Vibrio parahaemolyticus, three as Vibrio species, and one as Aeromonas hydrophila. The V. mimicus cluster could be further divided into two subclusters, and the major V. cholerae group could be split into seven minor subclusters. Phenotypic traits routinely used to identify clinical isolates of V. cholerae can be used to identify environmental V. cholerae isolates. No distinction was found between strains of V. cholerae isolated from regions endemic for cholera and strains from nonendemic regions. PMID:6874901

  14. Sustained Local Diversity of Vibrio cholerae O1 Biotypes in a Previously Cholera-Free Country

    PubMed Central

    2016-01-01

    ABSTRACT Although the current cholera pandemic can trace its origin to a specific time and place, many variants of Vibrio cholerae have caused this disease over the last 50 years. The relative clinical importance and geographical distribution of these variants have changed with time, but most remain in circulation. Some countries, such as Mexico and Haiti, had escaped the current pandemic, until large epidemics struck them in 1991 and 2010, respectively. Cholera has been endemic in these countries ever since. A recent retrospective study in mBio presents the results of more than 3 decades of V. cholerae monitoring from environmental and clinical sources in Mexico (S. Y. Choi et al., mBio 7:e02160-15, 2016, http://dx.doi.org/10.1128/mBio.02160-15). It reveals that multiple V. cholerae variants, including classical strains from the previous pandemic, as well as completely novel biotypes, have been circulating in Mexico. This discovery has important implications for the epidemiology and evolution of V. cholerae. PMID:27143391

  15. Time series analysis of cholera in Matlab, Bangladesh, during 1988-2001.

    PubMed

    Ali, Mohammad; Kim, Deok Ryun; Yunus, Mohammad; Emch, Michael

    2013-03-01

    The study examined the impact of in-situ climatic and marine environmental variability on cholera incidence in an endemic area of Bangladesh and developed a forecasting model for understanding the magnitude of incidence. Diarrhoea surveillance data collected between 1988 and 2001 were obtained from a field research site in Matlab, Bangladesh. Cholera cases were defined as Vibrio cholerae O1 isolated from faecal specimens of patients who sought care at treatment centres serving the Matlab population. Cholera incidence for 168 months was correlated with remotely-sensed sea-surface temperature (SST) and in-situ environmental data, including rainfall and ambient temperature. A seasonal autoregressive integrated moving average (SARIMA) model was used for determining the impact of climatic and environmental variability on cholera incidence and evaluating the ability of the model to forecast the magnitude of cholera. There were 4,157 cholera cases during the study period, with an average of 1.4 cases per 1,000 people. Since monthly cholera cases varied significantly by month, it was necessary to stabilize the variance of cholera incidence by computing the natural logarithm to conduct the analysis. The SARIMA model shows temporal clustering of cholera at one- and 12-month lags. There was a 6% increase in cholera incidence with a minimum temperature increase of one degree celsius in the current month. For increase of SST by one degree celsius, there was a 25% increase in the cholera incidence at currrent month and 18% increase in the cholera incidence at two months. Rainfall did not influenc to cause variation in cholera incidence during the study period. The model forecast the fluctuation of cholera incidence in Matlab reasonably well (Root mean square error, RMSE: 0.108). Thus, the ambient and sea-surface temperature-based model could be used in forecasting cholera outbreaks in Matlab.

  16. [Cholera in 1831. Challenges for science and the federal government].

    PubMed

    Stamm-Kuhlmann, T

    1989-01-01

    The peak of the first great cholera pandemic in 1831 fomented the controversy among contagionists and non-contagionists. In the following year the public debate centered around the correct interpretation of the recent experiences with cholera. The central government of the bureaucratic-absolutist monarchy in Prussia adhered to a firmly contagionist interpretation of the disease and reacted accordingly. Local authorities in Königsberg and Berlin and the bourgeoisie in the merchant city of Danzig, however, stressed the destructive consequences of the cordon system. They considered the results of an interruption in trade and industry to be worse than the damage inflicted by the epidemic. The summer of 1831 demonstrated that cholera could not be stopped by the cordons, but the King's medical advisors nevertheless remained contagionists. Non-contagionists put forward several hypotheses to explain the origin and the spreading of cholera, mainly "miasma" theory and the Hippocratic paradigm of "epidemic constitution". The correlation between poverty and disease, however, was widely noticed. Physicians in the city of Bremen pointed to the necessity of sanitary precautions to be taken in cholera-free periods. On the other hand, many "honest" citizens believed that individuals with a "dissolute" conduct of life were more at risk to contract cholera than others. Instead of costly sanitary policies, the well-to-do classes preferred to identify the defense against cholera with the segregation of unwelcome elements of society. The article is based on hitherto unpublished sources from the former Prussian State Archives at Merseburg, GDR, and the State Archive of the Hanseatic City of Bremen.

  17. Satellites and Human Health: Potential for Tracking Cholera Outbreaks

    NASA Astrophysics Data System (ADS)

    Jutla, A. S.; Akanda, A. S.; Islam, S.

    2009-12-01

    Cholera continues to be a significant health threat across the globe. The pattern and magnitude of the seven global pandemics suggest that cholera outbreaks primarily originate in coastal regions and spread inland through secondary means. Cholera bacteria show strong association with zooplankton and phytoplankton abundance in coastal ecosystems. Characterization of space-time variability of chlorophyll, a surrogate for phytoplankton abundance, in Northern Bay of Bengal (BoB) is an essential step to develop any methodology for tracking cholera in the Bengal Delta from space. Using ten years of satellite data, this study (a) quantifies the space-time distribution of chlorophyll in BoB region and (b) presents a hypothesis as to how coastal plankton may be related with cholera outbreaks. Preliminary results suggest that variability of chlorophyll at daily scale, irrespective of spatial averaging, resembles white noise. At a monthly scale, chlorophyll shows distinct annual seasonality and chlorophyll values are significantly higher close to the coast than those in the offshore regions. At pixel level (9 km) on monthly scale, on the other hand, chlorophyll does not exhibit much persistence in time. With increased spatial averaging, temporal persistence of monthly chlorophyll increases and lag one autocorrelation stabilizes around 0.60 for 1200 km2 or larger areal averages. Spatial analyses of chlorophyll suggest that coastal region in BoB have a stable sill at 100 km range. Using satellite chlorophyll data, we observe that phytoplankton blooms occur every year in BoB, yet severe cholera outbreaks happen in certain years. This study provides a working hypothesis on how BoB coastal plankton blooms aided by regional hydroclimatic processes may lead to possible cholera outbreaks in Bengal Delta.

  18. Efficacy of Ciprofloxacin for Treatment of Cholera Associated with Diminished Susceptibility to Ciprofloxacin to Vibrio cholerae O1

    PubMed Central

    Khan, Wasif Ali; Saha, Debasish; Ahmed, Sabeena; Salam, Mohammed Abdus; Bennish, Michael Louis

    2015-01-01

    Objective We identified a poor clinical response to treatment of cholera with a single 1 g dose of ciprofloxacin, a standard treatment for cholera. Methods To determine reasons for the poor response and better therapeutic approaches we examined the minimal inhibitor concentration (MIC, n = 275) and disc-diffusion zone sizes (n = 205) for ciprofloxacin and nalidixic acid of V. cholerae O1 strains isolated in Bangladesh from 1994 to 2012, and reexamined data from 161patients infected with Vibrio cholerae O1 recruited in four clinical trials who received single- or multiple-dose ciprofloxacin for treatment of cholera and compared their clinical response to the V. cholerae O1 susceptibility. Results Although all 275 isolates of V. cholerae O1 remained susceptible to ciprofloxacin using standard MIC and disc-diffusion thresholds, the MIC90 to ciprofloxacin increased from 0.010 in 1994 to 0.475 μgm/ml in 2012. Isolates became frankly resistant to nalidixic with the MIC90 increasing from 21 μgm/ml in 1994 to >256 μgm/ml and 166 of 205 isolates from 1994 to 2005 being frankly resistant using disc-diffusion testing. Isolates resistant to nalidixic acid by disc-diffusion testing had a median ciprofloxacin MIC of 0.190 μgm/ml (10th-90th centiles 0.022 to 0.380); nalidixic acid-susceptible isolates had a median ciprofloxacin MIC of 0.002 (0.002 to 0.012).The rate of clinical success with single-dose ciprofloxacin treatment for nalidixic acid-susceptible strains was 94% (61 of 65 patients) and bacteriologic success 97% (63/65) compared to 18% (12/67) and 8% (5/67) respectively with nalidixic acid-resistant strains (P<0.001 for both comparisons). Multiple-dose treatment with ciprofloxacin had 86% and 100% clinical and bacteriologic success rates respectively in patients infected with nalidixic acid-susceptible strains of V. cholerae O1 compared to clinical success 67% and bacteriologic success 60% with nalidixic acid-resistant strains. Conclusions Single-dose ciprofloxacin

  19. Epidemic cholera in a crowded urban environment, Port-au-Prince, Haiti.

    PubMed

    Dunkle, Stacie E; Mba-Jonas, Adamma; Loharikar, Anagha; Fouché, Bernadette; Peck, Mireille; Ayers, Tracy; Archer, W Roodly; De Rochars, Valery M Beau; Bender, Thomas; Moffett, Daphne B; Tappero, Jordan W; Dahourou, George; Roels, Thierry; Quick, Robert

    2011-11-01

    We conducted a case-control study to investigate factors associated with epidemic cholera. Water treatment and handwashing may have been protective, highlighting the need for personal hygiene for cholera prevention in contaminated urban environments. We also found a diverse diet, a possible proxy for improved nutrition, was protective against cholera.

  20. Cholera in coastal Africa: a systematic review of its heterogeneous environmental determinants.

    PubMed

    Rebaudet, Stanislas; Sudre, Bertrand; Faucher, Benoît; Piarroux, Renaud

    2013-11-01

    According to the "cholera paradigm," epidemiology of this prototypical waterborne disease is considered to be driven directly by climate-induced variations in coastal aquatic reservoirs of Vibrio cholerae. This systematic review on environmental determinants of cholera in coastal Africa shows that instead coastal epidemics constitute a minor part of the continental cholera burden. Most of coastal cholera foci are located near estuaries, lagoons, mangrove forests, and on islands. Yet outbreaks often originate in coastal cities, where cholera is more likely to be imported from distant areas. Cholera outbreaks also may intensify in densely populated slum quarters before spreading to adjacent regions. Frequent seasonality of cholera incidence appears driven by the rainfall-induced contamination of unprotected water sources through latrine overflow and sewage, as well as by the periodicity of human activities like fishing or traveling. Lulls in transmission periods of several years are repeatedly recorded even in high-risk coastal areas. To date, environmental studies have failed to demonstrate a perennial aquatic reservoir of toxigenic V. cholerae around the continent. Finally, applicability of the cholera paradigm therefore appears questionable in Africa, although available data remain limited. Thorough surveys with microbiological analyses of water samples and prospective genotyping of environmental and clinical strains of V. cholerae are needed to understand determinants of cholera in coastal Africa and better target prevention and control measures.

  1. 9 CFR 309.5 - Swine; disposal because of hog cholera.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Swine; disposal because of hog cholera... INSPECTION AND CERTIFICATION ANTE-MORTEM INSPECTION § 309.5 Swine; disposal because of hog cholera. (a) All swine found by an inspector to be affected with hog cholera shall be identified as U.S. Condemned...

  2. 9 CFR 309.5 - Swine; disposal because of hog cholera.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Swine; disposal because of hog cholera... INSPECTION AND CERTIFICATION ANTE-MORTEM INSPECTION § 309.5 Swine; disposal because of hog cholera. (a) All swine found by an inspector to be affected with hog cholera shall be identified as U.S. Condemned...

  3. 9 CFR 309.5 - Swine; disposal because of hog cholera.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Swine; disposal because of hog cholera... INSPECTION AND CERTIFICATION ANTE-MORTEM INSPECTION § 309.5 Swine; disposal because of hog cholera. (a) All swine found by an inspector to be affected with hog cholera shall be identified as U.S. Condemned...

  4. 9 CFR 309.5 - Swine; disposal because of hog cholera.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Swine; disposal because of hog cholera... INSPECTION AND CERTIFICATION ANTE-MORTEM INSPECTION § 309.5 Swine; disposal because of hog cholera. (a) All swine found by an inspector to be affected with hog cholera shall be identified as U.S. Condemned...

  5. A model to predict when a cholera outbreak might hit the Congo

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-09-01

    In 2011, as many as 600,000 people in 58 countries contracted cholera, with thousands succumbing to the disease. In most countries, cholera is rare. In others, like the Democratic Republic of the Congo, cholera is an endemic threat, always lurking in the background waiting for the right set of conditions to spark an outbreak.

  6. 9 CFR 309.5 - Swine; disposal because of hog cholera.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Swine; disposal because of hog cholera... INSPECTION AND CERTIFICATION ANTE-MORTEM INSPECTION § 309.5 Swine; disposal because of hog cholera. (a) All swine found by an inspector to be affected with hog cholera shall be identified as U.S. Condemned...

  7. Viable but nonculturable Vibrio cholerae O1 in biofilms in the aquatic environment and their role in cholera transmission.

    PubMed

    Alam, Munirul; Sultana, Marzia; Nair, G Balakrish; Siddique, A K; Hasan, Nur A; Sack, R Bradley; Sack, David A; Ahmed, K U; Sadique, A; Watanabe, H; Grim, Christopher J; Huq, A; Colwell, Rita R

    2007-11-06

    Vibrio cholerae persists in aquatic environments predominantly in a nonculturable state. In this study coccoid, nonculturable V. cholerae O1 in biofilms maintained for 495 days in Mathbaria, Bangladesh, pond water became culturable upon animal passage. Culturability, biofilm formation, and the wbe, ctxA, and rstR2 genes were monitored by culture, direct fluorescent antibody (DFA), and multiplex PCR. DFA counts were not possible after formation of biofilm. Furthermore, wbe, but not ctxA, were amplifiable, even after incubation for 54 and 68 days at room temperature ( approximately 25 degrees C) and 4 degrees C, respectively, when no growth was detectable. Slower biofilm formation and extended culturability were observed for cultures incubated at 4 degrees C, compared with approximately 25 degrees C, suggesting biofilm production to be temperature dependent and linked to loss of culturability. Small colonies appearing after incubation in microcosms for 54 and 68 days at 25 degrees C and 4 degrees C, respectively, were wbe positive and ctxA and rstR2 negative, indicating loss of bacteriophage CTXphi. The coccoid V. cholerae O1 observed as free cells in microcosms incubated for 495 days could not be cultured, but biofilms in the same microcosms yielded culturable cells. It is concluded that biofilms can act as a reservoir for V. cholerae O1 between epidemics because of its long-term viability in biofilms. In contrast to biofilms produced in Mathbaria pond water, V. cholerae O1 in biofilms present in cholera stools and incubated under identical conditions as the Mathbaria pond water biofilms could not be cultured after 2 months, indicating that those V. cholerae cells freshly discharged into the environment are significantly less robust than cells adapted to environmental conditions.

  8. Diagnosis of Vibrio cholerae O1 infection in Africa.

    PubMed

    Keddy, Karen H; Sooka, Arvinda; Parsons, Michele B; Njanpop-Lafourcade, Berthe-Marie; Fitchet, Kaye; Smith, Anthony M

    2013-11-01

    Isolation of Vibrio cholerae O1 is necessary for cholera outbreak confirmation. Rapid diagnostic testing of fecal specimens, based on lipopolysaccharide detection of V. cholerae O1 or O139, may assist in early outbreak detection and surveillance. Cary-Blair transport medium is recommended for specimen transport. Filter paper, although used in epidemics, needs evaluation against rectal swab specimens. Fecal specimens are subcultured onto selective and nonselective media, including 5% blood agar and TCBS agar, for detection of V. cholerae O1 or O139. Suspicious, oxidase-positive isolates are serotyped in monovalent antisera. Antimicrobial-susceptibility testing is performed to detect resistance. Molecular characterization supports phenotypic identification and outbreak investigations. The presence of genes encoding cholera toxin, lipopolysaccharide, and El Tor biotype traits can be confirmed. Standardized pulsed-field gel electrophoresis analysis facilitates strain comparison. Quality management ensures reliability of results through validation and verification of functional laboratory equipment; quality control of testing procedures, laboratory reagents, and consumables; and participation in proficiency-testing schemes.

  9. A model for Vibrio cholerae colonization of the human intestine.

    PubMed

    Spagnuolo, Anna Maria; Dirita, Victor; Kirschner, Denise

    2011-11-21

    Vibrio cholerae is a strict human pathogen that causes the disease cholera. It is an old-world pathogen that has re-emerged as a new threat since the early 1990s. V. cholerae colonizes the upper, small intestine where it produces a toxin that leads to watery diarrhea, characterizing the disease (Kahn et al., 1988). The dynamics of colonization by the bacteria of the intestines are largely unknown. Although a large initial infectious dose is required for infection, data suggests that only a smaller sub-population colonizes a portion of the small bowel leading to disease. There are many barriers to colonization in the intestines including peristalsis, fluid wash-out, viscosity of the mucus layer, and pH. We are interested in identifying the mechanisms that allow this sub-population of bacteria to survive and colonize the intestines when faced with these barriers. To elaborate the dynamics of V. cholerae infection, we have developed a mathematical model based on a convection-diffusion-reaction-swimming equation capturing bacterial dynamics coupled with Stokes equations governing fluid velocity where we developed a novel non-local boundary condition. Our results indicate that both host and bacterial factors contribute to bacterial density in the gut. Host factors include intestinal diffusion and convection rates while bacterial factors include adherence, motility and growth rates. This model can ultimately be used to test therapeutic strategies against V. cholerae.

  10. Case studies in cholera: lessons in medical history and science.

    PubMed Central

    Kavic, S. M.; Frehm, E. J.; Segal, A. S.

    1999-01-01

    Cholera, a prototypical secretory diarrheal disease, is an ancient scourge that has both wrought great suffering and taught many valuable lessons, from basic sanitation to molecular signal transduction. Victims experience the voluminous loss of bicarbonate-rich isotonic saline at a rate that may lead to hypovolemic shock, metabolic acidosis, and death within afew hours. Intravenous solution therapy as we know it was first developed in an attempt to provide life-saving volume replacement for cholera patients. Breakthroughs in epithelial membrane transport physiology, such as the discovery of sugar and salt cotransport, have paved the way for oral replacement therapy in areas of the world where intravenous replacement is not readily available. In addition, the discovery of the cholera toxin has yielded vital information about toxigenic infectious diseases, providing a framework in which to study fundamental elements of intracellular signal transduction pathways, such as G-proteins. Cholera may even shed light on the evolution and pathophysiology of cystic fibrosis, the most commonly inherited disease among Caucasians. The goal of this paper is to review, using case studies, some of the lessons learned from cholera throughout the ages, acknowledging those pioneers whose seminal work led to our understanding of many basic concepts in medical epidemiology, microbiology, physiology, and therapeutics. PMID:11138935

  11. Isolation of isoelectrically pure cholera toxin for crystallization

    NASA Astrophysics Data System (ADS)

    Spangler, Brenda D.; Westbrook, Edwin M.

    1991-03-01

    We have determined that the failure of cholera toxin to crystallize well results from its isoelectric heterogeneity, which is probably due to a post-translational process such as deamidation of its B subunit. Every sample of cholera toxin we have examined from commercial or academic suppliers has been heterogeneous; heterogeneous cholera toxin does not crystallize satisfactorily. We have overcome this problem by using ion-exchange fast protein liquid chromatography (FPLC) to obtain an isoelectrically homogeneous species of cholera toxin. Homogeneous cholera toxin crystallizes readily, forming single, nonmosaic crystals suitable for X-ray diffraction studies. For this process, protein was applied to a MonoQ ion-exchange column, then eluted with an isocratic low salt buffer followed by a linear salt gradient (0-100 mM NaCl). Column fractions were analyzed on isoelectric focusing gels, and those fractions containing the desired homogeneous species were pooled and concentrated. Crystals formed within 24 to 48 h in a MOPS/PEG buffer, which made use of slow isoelectric precipitation to induce crystallization.

  12. On the probability of extinction of the Haiti cholera epidemic

    NASA Astrophysics Data System (ADS)

    Bertuzzo, Enrico; Finger, Flavio; Mari, Lorenzo; Gatto, Marino; Rinaldo, Andrea

    2014-05-01

    Nearly 3 years after its appearance in Haiti, cholera has already exacted more than 8,200 deaths and 670,000 reported cases and it is feared to become endemic. However, no clear evidence of a stable environmental reservoir of pathogenic Vibrio cholerae, the infective agent of the disease, has emerged so far, suggesting that the transmission cycle of the disease is being maintained by bacteria freshly shed by infected individuals. Thus in principle cholera could possibly be eradicated from Haiti. Here, we develop a framework for the estimation of the probability of extinction of the epidemic based on current epidemiological dynamics and health-care practice. Cholera spreading is modelled by an individual-based spatially-explicit stochastic model that accounts for the dynamics of susceptible, infected and recovered individuals hosted in different local communities connected through hydrologic and human mobility networks. Our results indicate that the probability that the epidemic goes extinct before the end of 2016 is of the order of 1%. This low probability of extinction highlights the need for more targeted and effective interventions to possibly stop cholera in Haiti.

  13. Nonredundant Roles of Iron Acquisition Systems in Vibrio cholerae.

    PubMed

    Peng, Eric D; Wyckoff, Elizabeth E; Mey, Alexandra R; Fisher, Carolyn R; Payne, Shelley M

    2015-12-07

    Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, thrives in both marine environments and the human host. To do so, it must encode the tools necessary to acquire essential nutrients, including iron, under these vastly different conditions. A number of V. cholerae iron acquisition systems have been identified; however, the precise role of each system is not fully understood. To test the roles of individual systems, we generated a series of mutants in which only one of the four systems that support iron acquisition on unsupplemented LB agar, Feo, Fbp, Vct, and Vib, remains functional. Analysis of these mutants under different growth conditions showed that these systems are not redundant. The strain carrying only the ferrous iron transporter Feo grew well at acidic, but not alkaline, pH, whereas the ferric iron transporter Fbp promoted better growth at alkaline than at acidic pH. A strain defective in all four systems (null mutant) had a severe growth defect under aerobic conditions but accumulated iron and grew as well as the wild type in the absence of oxygen, suggesting the presence of an additional, unidentified iron transporter in V. cholerae. In support of this, the null mutant was only moderately attenuated in an infant mouse model of infection. While the null mutant used heme as an iron source in vitro, we demonstrate that heme is not available to V. cholerae in the infant mouse intestine.

  14. Isolation of isoelectrically pure cholera toxin for crystallization

    SciTech Connect

    Spangler, B.D.; Westbrook, E.M.

    1989-01-01

    We have determined that the failure of cholera toxin to crystallize well results from its isoelectric heterogeneity, which is probably due to a post-translational process such as deamidation of its B subunit. Every sample of cholera toxin we have examined from commercial or academic suppliers has been heterogeneous; heterogeneous cholera toxin does not crystallize satisfactorily. We have overcome this problem by using ion-exchange fast protein liquid chromatography (FPLC) to obtain an isoelectrically homogeneous species of cholera toxin. Homogeneous cholera toxin crystallizes readily, forming single, nonmosaic crystals suitable for x-ray diffraction studies. For this process, protein was applied to a MonoQ ion-exchange column, then eluted with an isocratic low salt buffer followed by a linear salt gradient (0-100 mM NaCl). Column fractions were analyzed on isoelectric focusing gels, and those fractions containing the desired homogeneous species were pooled and concentrated. Crystals formed within 24 to 48 hours in a MOPS/PEG buffer, which made use of slow isoelectric precipitation to induce crystallization. 23 refs., 6 figs.

  15. Cholera ante portas – The re-emergence of cholera in Kinshasa after a ten-year hiatus

    PubMed Central

    Bompangue, Didier; Vesenbeckh, Silvan Manuel; Giraudoux, Patrick; Castro, Marcia; Muyembe, Jean-Jacques; Kebela Ilunga, Benoît; Murray, Megan

    2012-01-01

    Background: Cholera is an endemic disease in certain well-defined areas in the east of the Democratic Republic of Congo (DRC). The west of the country, including the mega-city Kinshasa, has been free of cases since mid 2001 when the last outbreak ended. Methods and Findings: We used routinely collected passive surveillance data to construct epidemic curves of the cholera cases and map the spatio-temporal progress of the disease during the first 47 weeks of 2011. We compared the spatial distribution of disease spread to that which occurred in the last cholera epidemic in Kinshasa between 1996 and 2001. To better understand previous determinants of cholera spread in this region, we conducted a correlation analysis to assess the impact of rainfall on weekly health zone cholera case counts between December 1998 and March 2001 and a Generalized Linear Model (GLM) regression analysis to identify factors that have been associated with the most vulnerable health zones within Kinshasa between October 1998 and June 1999. In February 2011, cholera reemerged in a region surrounding Kisangani and gradually spread westwards following the course of the Congo River to Kinshasa, home to 10 million people. Ten sampled isolates were confirmed to be Vibrio cholerae O1, biotype El Tor, serotype Inaba, resistant to trimethoprim-sulfa, furazolidone, nalidixic acid, sulfisoxaole, and streptomycin, and intermediate resistant to Chloramphenicol. An analysis of a previous outbreak in Kinshasa shows that rainfall was correlated with case counts and that health zone population densities as well as fishing and trade activities were predictors of case counts. Conclusion: Cholera is particularly difficult to tackle in the DRC. Given the duration of the rainy season and increased riverine traffic from the eastern provinces in late 2011, we expect further increases in cholera in the coming months and especially within the mega-city Kinshasa. We urge all partners involved in the response to remain

  16. Health impairments arising from drinking water resources contaminated with Vibrio cholerae.

    PubMed

    Ramamurthy, T; Chakraborty, S; Nair, G B; Bhattacharya, S K

    2000-01-01

    The endemic and seasonal nature of cholera depends upon the survival of toxigenic Vibrio cholerae in various niches of the aquatic environment. To understand the transmission and ecology of V. cholerae, it is necessary to know which component in the aquatic ecosystem can harbor it and thus contribute to the endemic presence. Toxigenic V. cholerae is now recognized as an autochthonous member of the microflora in many aquatic environments based on its protracted survival and proliferation without losing the virulence determinants. This article summarizes knowledge about the ecology, survival strategies and elimination techniques of V. cholerae from natural waters with special reference to drinking water.

  17. Vibrio cholerae O139 in Calcutta, 1992-1998: incidence, antibiograms, and genotypes.

    PubMed Central

    Basu, A.; Garg, P.; Datta, S.; Chakraborty, S.; Bhattacharya, T.; Khan, A.; Ramamurthy, S.; Bhattacharya, S. K.; Yamasaki, S.; Takeda, Y.; Nair, G. B.

    2000-01-01

    We report results of surveillance for cholera caused by Vibrio cholerae O139 from September 1992, when it was first identified, to December 1998. V. cholerae O139 dominated as the causative agent of cholera in Calcutta during 1992-93 and 1996- 97, while the O1 strains dominated during the rest of the period. Dramatic shifts in patterns of resistance to cotrimoxazole, neomycin, and streptomycin were observed. Molecular epidemiologic studies showed clonal diversity among the O139 strains and continuous emergence of new epidemic clones, reflected by changes in the structure, organization, and location of the CTX prophages in the V. cholerae O139 PMID:10756147

  18. The hows and whys of constructing a native recombinant cholera vaccine

    PubMed Central

    Boustanshenas, Mina; Bakhshi, Bita

    2014-01-01

    Emergence of different ctxB genotypes within virulent Vibrio cholerae populations accentuates the need to develop a vaccine that has the potential to protect against all cholera toxin genotypes. Oral administration of rCTB—alone and in combination with 2 dominant domestic killed whole cells of V. cholerae (O1 Ogawa El Tor and O1 Inaba El Tor) plus one standard V. cholerae (O1 Ogawa classic ATCC 14035)—has shown satisfactory protection as a potent vaccine candidate against toxigenic V. cholerae. PMID:24165439

  19. Report of the 1966-67 cholera vaccine field trial in rural East Pakistan*

    PubMed Central

    McCormack, William M.; Rahman, A. S. M. Mizanur; Chowdhury, A. K. M. Alauddin; Mosley, Wiley H.; Phillips, Robert A.

    1969-01-01

    In a controlled study, it has been shown that the prior administration of cholera vaccine had no beneficial effect on the clinical course of cholera as measured by either the condition of the patient on admission to hospital or the subsequent course of the disease. In fact, the disease was, if anything, more severe in those who had received cholera vaccine. Although the presence of a high vibriocidal titre is associated with protection from cholera, pre-existing antibody had no effect on the clinical course of the disease in those patients who developed cholera. PMID:5306540

  20. Conjugated Linoleic Acid Reduces Cholera Toxin Production In Vitro and In Vivo by Inhibiting Vibrio cholerae ToxT Activity

    PubMed Central

    Nag, Drubhajyoti; Plecha, Sarah C.; Sinha, Ritam; Koley, Hemanta

    2015-01-01

    The severe diarrheal disease cholera is endemic in over 50 countries. Current therapies for cholera patients involve oral and/or intravenous rehydration, often combined with the use of antibiotics to shorten the duration and intensity of the disease. However, as antibiotic resistance increases, treatment options will become limited. Linoleic acid has been shown to be a potent negative effector of V. cholerae virulence that acts on the major virulence transcription regulator protein, ToxT, to inhibit virulence gene expression. ToxT activates transcription of the two major virulence factors required for disease, cholera toxin (CT) and toxin-coregulated pilus (TCP). A conjugated form of linoleic acid (CLA) is currently sold over the counter as a dietary supplement and is generally recognized as safe by the U.S. Food and Drug Administration. This study examined whether CLA could be used as a new therapy to reduce CT production, which, in turn, would decrease disease duration and intensity in cholera patients. CLA could be used in place of traditional antibiotics and would be very unlikely to generate resistance, as it affects only virulence factor production and not bacterial growth or survival. PMID:26392502

  1. Genome-Wide Study of the Defective Sucrose Fermenter Strain of Vibrio cholerae from the Latin American Cholera Epidemic

    PubMed Central

    Garza, Daniel Rios; Thompson, Cristiane C.; Loureiro, Edvaldo Carlos Brito; Dutilh, Bas E.; Inada, Davi Toshio; Junior, Edivaldo Costa Sousa; Cardoso, Jedson Ferreira; Nunes, Márcio Roberto T.; de Lima, Clayton Pereira Silva; Silvestre, Rodrigo Vellasco Duarte; Nunes, Keley Nascimento Barbosa; Santos, Elisabeth C. O.; Edwards, Robert A.; Vicente, Ana Carolina P.; de Sá Morais, Lena Lillian Canto

    2012-01-01

    The 7th cholera pandemic reached Latin America in 1991, spreading from Peru to virtually all Latin American countries. During the late epidemic period, a strain that failed to ferment sucrose dominated cholera outbreaks in the Northern Brazilian Amazon region. In order to understand the genomic characteristics and the determinants of this altered sucrose fermenting phenotype, the genome of the strain IEC224 was sequenced. This paper reports a broad genomic study of this strain, showing its correlation with the major epidemic lineage. The potentially mobile genomic regions are shown to possess GC content deviation, and harbor the main V. cholera virulence genes. A novel bioinformatic approach was applied in order to identify the putative functions of hypothetical proteins, and was compared with the automatic annotation by RAST. The genome of a large bacteriophage was found to be integrated to the IEC224's alanine aminopeptidase gene. The presence of this phage is shown to be a common characteristic of the El Tor strains from the Latin American epidemic, as well as its putative ancestor from Angola. The defective sucrose fermenting phenotype is shown to be due to a single nucleotide insertion in the V. cholerae sucrose-specific transportation gene. This frame-shift mutation truncated a membrane protein, altering its structural pore-like conformation. Further, the identification of a common bacteriophage reinforces both the monophyletic and African-Origin hypotheses for the main causative agent of the 1991 Latin America cholera epidemics. PMID:22662140

  2. Changing genotypes of cholera toxin (CT) of Vibrio cholerae O139 in Bangladesh and description of three new CT genotypes.

    PubMed

    Bhuiyan, Nurul A; Nusrin, Suraia; Alam, Munirul; Morita, Masatomo; Watanabe, Haruo; Ramamurthy, Thandavarayan; Cravioto, Alejandro; Nair, Gopinath Balakrish

    2009-11-01

    We determined the genotype of cholera toxin by amplifying and sequencing the B-subunit in a sequential collection of 90 strains of Vibrio cholerae O139 isolated over the past 13 years since its first description in 1992. Representative strains isolated during 1993-1997 harboured ctxB of El Tor type (genotype 3). Twenty-six strains isolated during 1999, 2001, 2005 and three strains isolated in 1998, 2000 and 2002 were identified to belong to new ctxB genotypes 4 and 5, respectively. Genotype 5 was similar to genotype 1 except at position 28 (D-->A). The genotype 6 was similar to genotype 4 except at position 34 (H-->P). The implication of switch in terms of function of the toxin and its impact on human disease is unclear. How this change has influenced their prevalence relative to that of V. cholerae O1 in human infection is also not clear. The other common virulence gene clusters including the Vibrio pathogenicity island-1, Vibrio seventh pandemic island (VSP)-I and VSP-II of V. cholerae O139 did not show any remarkable difference from that of the O1 El Tor strains. Overall, the majority of the O139 strains tested in this study were similar to the El Tor strains but had altered ctxB genotype. This change and the impact that it causes to the epidemiology of cholera caused by O139 should be closely monitored.

  3. Genome-wide study of the defective sucrose fermenter strain of Vibrio cholerae from the Latin American cholera epidemic.

    PubMed

    Garza, Daniel Rios; Thompson, Cristiane C; Loureiro, Edvaldo Carlos Brito; Dutilh, Bas E; Inada, Davi Toshio; Junior, Edivaldo Costa Sousa; Cardoso, Jedson Ferreira; Nunes, Márcio Roberto T; de Lima, Clayton Pereira Silva; Silvestre, Rodrigo Vellasco Duarte; Nunes, Keley Nascimento Barbosa; Santos, Elisabeth C O; Edwards, Robert A; Vicente, Ana Carolina P; de Sá Morais, Lena Lillian Canto

    2012-01-01

    The 7th cholera pandemic reached Latin America in 1991, spreading from Peru to virtually all Latin American countries. During the late epidemic period, a strain that failed to ferment sucrose dominated cholera outbreaks in the Northern Brazilian Amazon region. In order to understand the genomic characteristics and the determinants of this altered sucrose fermenting phenotype, the genome of the strain IEC224 was sequenced. This paper reports a broad genomic study of this strain, showing its correlation with the major epidemic lineage. The potentially mobile genomic regions are shown to possess GC content deviation, and harbor the main V. cholera virulence genes. A novel bioinformatic approach was applied in order to identify the putative functions of hypothetical proteins, and was compared with the automatic annotation by RAST. The genome of a large bacteriophage was found to be integrated to the IEC224's alanine aminopeptidase gene. The presence of this phage is shown to be a common characteristic of the El Tor strains from the Latin American epidemic, as well as its putative ancestor from Angola. The defective sucrose fermenting phenotype is shown to be due to a single nucleotide insertion in the V. cholerae sucrose-specific transportation gene. This frame-shift mutation truncated a membrane protein, altering its structural pore-like conformation. Further, the identification of a common bacteriophage reinforces both the monophyletic and African-Origin hypotheses for the main causative agent of the 1991 Latin America cholera epidemics.

  4. Conjugated Linoleic Acid Reduces Cholera Toxin Production In Vitro and In Vivo by Inhibiting Vibrio cholerae ToxT Activity.

    PubMed

    Withey, Jeffrey H; Nag, Drubhajyoti; Plecha, Sarah C; Sinha, Ritam; Koley, Hemanta

    2015-12-01

    The severe diarrheal disease cholera is endemic in over 50 countries. Current therapies for cholera patients involve oral and/or intravenous rehydration, often combined with the use of antibiotics to shorten the duration and intensity of the disease. However, as antibiotic resistance increases, treatment options will become limited. Linoleic acid has been shown to be a potent negative effector of V. cholerae virulence that acts on the major virulence transcription regulator protein, ToxT, to inhibit virulence gene expression. ToxT activates transcription of the two major virulence factors required for disease, cholera toxin (CT) and toxin-coregulated pilus (TCP). A conjugated form of linoleic acid (CLA) is currently sold over the counter as a dietary supplement and is generally recognized as safe by the U.S. Food and Drug Administration. This study examined whether CLA could be used as a new therapy to reduce CT production, which, in turn, would decrease disease duration and intensity in cholera patients. CLA could be used in place of traditional antibiotics and would be very unlikely to generate resistance, as it affects only virulence factor production and not bacterial growth or survival.

  5. [Cholera in children. A report of 8 cases].

    PubMed

    Lezama-Basulto, L A; Mota-Hernández, F; Bravo-Barrios, E

    1993-11-01

    Cholera is an acute intestinal infection caused by Vibrio cholerae 01. When an infected person presents severe dehydration and is not adequately treated, he or she will develop hypovolemic shock and eventually could died. There is scarce information concerning this disease in the Pediatric group. Herein we report on eight cases of Pediatric cholera, in children 17 month to four years of age. Seven patients out of eight were admitted presenting dehydration. Four presenting mild or moderate dehydration and three presenting hypovolemic shock. These three patients were rehydrated by intravenous route and thereafter the hydration was maintained by oral therapy. The outcome was uneventful in six patients. One patient developed abdominal distention probably due to hypopotassemia, and another patient presented hyponatremia and seizures. All the patients recovered within five days after admission.

  6. Mortality Rates during Cholera Epidemic, Haiti, 2010–2011

    PubMed Central

    Rondy, Marc; Boncy, Jacques; Munger, André; Mekaoui, Helmi; Rymshaw, Ellen; Page, Anne-Laure; Toure, Brahima; Degail, Marie Amelie; Nicolas, Sarala; Grandesso, Francesco; Ginsbourger, Maud; Polonsky, Jonathan; Alberti, Kathryn P.; Terzian, Mego; Olson, David; Porten, Klaudia; Ciglenecki, Iza

    2016-01-01

    The 2010 cholera epidemic in Haiti was one of the largest cholera epidemics ever recorded. To estimate the magnitude of the death toll during the first wave of the epidemic, we retrospectively conducted surveys at 4 sites in the northern part of Haiti. Overall, 70,903 participants were included; at all sites, the crude mortality rates (19.1–35.4 deaths/1,000 person-years) were higher than the expected baseline mortality rate for Haiti (9 deaths/1,000 person-years). This finding represents an excess of 3,406 deaths (2.9-fold increase) for the 4.4% of the Haiti population covered by these surveys, suggesting a substantially higher cholera mortality rate than previously reported. PMID:26886511

  7. Review of recent trends in cholera research and control

    PubMed Central

    Felsenfeld, O.

    1966-01-01

    Since 1961 cholera El Tor has been sweeping through the Far East, and this dissemination of the disease has stimulated research not only in the countries afflicted but also in Europe and the Americas. New laboratories and workers have entered the field and many fresh ideas and concepts have emerged. The time seemed ripe, therefore, to survey the most important papers published since 1959, when the literature on cholera was thoroughly reviewed by Pollitzer, for the benefit both of those engaged in research and of those concerned with public health practice. This review covers history and incidence, causative agents (including the ”classical”, ”El Tor” and ”incomplete” forms), pathophysiology, diagnosis, treatment, mode of spreading and control measures (with particular reference to public health education and the International Sanitary Regulations). An annex, intended for laboratory use, contains selected procedures for the isolation and identification of cholera vibrios. PMID:5328492

  8. Stepwise changes in viable but nonculturable Vibrio cholerae cells.

    PubMed

    Imamura, Daisuke; Mizuno, Tamaki; Miyoshi, Shin-ichi; Shinoda, Sumio

    2015-05-01

    Many bacterial species are known to become viable but nonculturable (VBNC) under conditions that are unsuitable for growth. In this study, the requirements for resuscitation of VBNC-state Vibrio cholerae cells were found to change over time. Although VBNC cells could initially be converted to culturable by treatment with catalase or HT-29 cell extract, they subsequently entered a state that was not convertible to culturable by these factors. However, fluorescence microscopy revealed the presence of live cells in this state, from which VBNC cells were resuscitated by co-cultivation with HT-29 human colon adenocarcinoma cells. Ultimately, all cells entered a state from which they could not be resuscitated, even by co-cultivation with HT-29. These characteristic changes in VBNC-state cells were a common feature of strains in both V. cholerae O1 and O139 serogroups. Thus, the VBNC state of V. cholerae is not a single property but continues to change over time.

  9. Flow cytofluorometric monitoring of leukocyte apoptosis in experimental cholera

    NASA Astrophysics Data System (ADS)

    Lotsmanova, Ekaterina Y.; Kravtsov, Alexander L.; Livanova, Ludmila F.; Kobkova, Irina M.; Kuznetsov, Oleg S.; Shchukovskaya, Tatyana N.; Smirnova, Nina I.; Kutyrev, Vladimir V.

    2003-10-01

    Flow cytofluorometric DNA analysis was applied to determine of the relative contents of proliferative (more then 2C DNA per cell) and apoptotic (less then 2C DNA per cell) leukocytes in blood of adult rabbits, challenged with 10,000 times the 50 % effective dose of Vibrio cholerae virulent strain by the RITARD technique. It has been shown that irreversible increase the percentage of cells carrying DNA in the degradation stage brings to disbalance between the genetically controlled cell proliferation and apoptosis that leads to animal death from the cholera infection. Such fatal changes were not observed in challenging of immunized animals that were not died. Thus received data show that the flow cytofluorometric measurements may be used for detection of transgressions in homeostasis during acute infection diseases, for outlet prognosis of the cholera infection.

  10. Mortality Rates during Cholera Epidemic, Haiti, 2010-2011.

    PubMed

    Luquero, Francisco J; Rondy, Marc; Boncy, Jacques; Munger, André; Mekaoui, Helmi; Rymshaw, Ellen; Page, Anne-Laure; Toure, Brahima; Degail, Marie Amelie; Nicolas, Sarala; Grandesso, Francesco; Ginsbourger, Maud; Polonsky, Jonathan; Alberti, Kathryn P; Terzian, Mego; Olson, David; Porten, Klaudia; Ciglenecki, Iza

    2016-03-01

    The 2010 cholera epidemic in Haiti was one of the largest cholera epidemics ever recorded. To estimate the magnitude of the death toll during the first wave of the epidemic, we retrospectively conducted surveys at 4 sites in the northern part of Haiti. Overall, 70,903 participants were included; at all sites, the crude mortality rates (19.1-35.4 deaths/1,000 person-years) were higher than the expected baseline mortality rate for Haiti (9 deaths/1,000 person-years). This finding represents an excess of 3,406 deaths (2.9-fold increase) for the 4.4% of the Haiti population covered by these surveys, suggesting a substantially higher cholera mortality rate than previously reported.

  11. Cholera toxin can catalyze ADP-ribosylation of cytoskeletal proteins

    SciTech Connect

    Kaslow, H.R.; Groppi, V.E.; Abood, M.E.; Bourne, H.R.

    1981-11-01

    Cholera toxin catalyzes transfer of radiolabel from (/sup 32/P)NAD/sup +/ to several peptides in particulate preparations of human foreskin fibroblasts. Resolution of these peptides by two-dimensional gel electrophoresis allowed identification of two peptides of M/sub r/ = 42,000 and 52,000 as peptide subunits of a regulatory component of adenylate cyclase. The radiolabeling of another group of peptides (M/sub r/ = 50,000 to 65,000) suggested that cholera toxin could catalyze ADP-ribosylation of cytoskeletal proteins. This suggestion was confirmed by showing that incubation with cholera toxin and (/sup 32/P)NAD/sup +/ caused radiolabeling of purified microtubule and intermediate filament proteins.

  12. A global map of suitability for coastal Vibrio cholerae under current and future climate conditions.

    PubMed

    Escobar, Luis E; Ryan, Sadie J; Stewart-Ibarra, Anna M; Finkelstein, Julia L; King, Christine A; Qiao, Huijie; Polhemus, Mark E

    2015-09-01

    Vibrio cholerae is a globally distributed water-borne pathogen that causes severe diarrheal disease and mortality, with current outbreaks as part of the seventh pandemic. Further understanding of the role of environmental factors in potential pathogen distribution and corresponding V. cholerae disease transmission over time and space is urgently needed to target surveillance of cholera and other climate and water-sensitive diseases. We used an ecological niche model (ENM) to identify environmental variables associated with V. cholerae presence in marine environments, to project a global model of V. cholerae distribution in ocean waters under current and future climate scenarios. We generated an ENM using published reports of V. cholerae in seawater and freely available remotely sensed imagery. Models indicated that factors associated with V. cholerae presence included chlorophyll-a, pH, and sea surface temperature (SST), with chlorophyll-a demonstrating the greatest explanatory power from variables selected for model calibration. We identified specific geographic areas for potential V. cholerae distribution. Coastal Bangladesh, where cholera is endemic, was found to be environmentally similar to coastal areas in Latin America. In a conservative climate change scenario, we observed a predicted increase in areas with environmental conditions suitable for V. cholerae. Findings highlight the potential for vulnerability maps to inform cholera surveillance, early warning systems, and disease prevention and control.

  13. Effects of local climate variability on transmission dynamics of cholera in Matlab, Bangladesh.

    PubMed

    Islam, M S; Sharker, M A Y; Rheman, S; Hossain, S; Mahmud, Z H; Islam, M S; Uddin, A M K; Yunus, M; Osman, M S; Ernst, R; Rector, I; Larson, C P; Luby, S P; Endtz, H P; Cravioto, A

    2009-11-01

    Cholera is considered as a model for climate-related infectious diseases. In Bangladesh, cholera epidemics occur during summer and winter seasons, but it is not known how climate variability influences the seasonality of cholera. Therefore, the variability pattern of cholera events was studied in relation to the variation in local climate variables in Matlab, Bangladesh. Classification and regression tree (CART) and principal component analysis (PCA) were used to study the dependency and variability pattern of monthly total cholera cases. An average temperature <23.25 degrees C corresponded to the lowest average cholera occurrence (23 cases/month). At a temperature of >or=23.25 degrees C and sunshine <4.13h/day, the cholera occurrence was 39 cases/month. With increased sunshine (>or=4.13h/day) and temperature (23.25-28.66 degrees C), the second highest cholera occurrence (44 cases/month) was observed. When the sunshine was >or=4.13h/day and the temperature was >28.66 degrees C, the highest cholera occurrence (54 cases/month) was observed. These results demonstrate that in summer and winter seasons in Bangladesh, temperature and sunshine hours compensate each other for higher cholera incidence. The synergistic effect of temperature and sunshine hours provided the highest number of cholera cases.

  14. Familial aggregation of Vibrio cholerae-associated infection in Matlab, Bangladesh.

    PubMed

    Rahman, Kazi Mizanur; Duggal, Priya; Harris, Jason B; Saha, Sajal Kumar; Streatfield, Peter Kim; Ryan, Edward T; Calderwood, Stephen B; Qadri, Firdausi; Yunus, Mohammad; LaRocque, Regina C

    2009-12-01

    Vibrio cholerae is a major cause of diarrhoeal illness in endemic regions, such as Bangladesh. Understanding the factors that determine an individual's susceptibility to infection due to V. cholerae may lead to improved prevention and control strategies. Increasing evidence suggests that human genetic factors affect the severity of V. cholerae-associated infection. This study, therefore, sought to characterize the heritable component of susceptibility to infection due to V. cholerae using the Matlab Health and Demographic Surveillance System database of the International Centre for Diarrhoeal Disease Research, Bangladesh. In total, 144 pedigrees that included a cholera patient and 341 pedigrees without a cholera patient were evaluated during 1 January-31 December 1992. The odds of the sibling of a patient being admitted with cholera were 7.67 times the odds of the sibling of an unaffected individual being admitted with cholera [95% confidence interval (CI) 2.40-24.5, p < 0.001], after adjustment for gender, age, socioeconomic status, and hygiene practices. Although exposure to environmental reservoirs is essential in the epidemiology of cholera, household-specific factors, such as familial relatedness to an index case, may also be important determinants of risk of cholera. Further analysis of human genetic factors that contribute to susceptibility to cholera may be productive.

  15. [Epidemiological Surveillance of Cholera in Russia During the Period of the Seventh Pandemic].

    PubMed

    Onishhenko, G G; Moskvitina, E A; Kruglikov, V D; Titova, S V; Adamenko, O L; Vodop'ianov, A S; Vodop'ianov, S O

    2015-01-01

    In this work basic stages of formation of the epidemiological surveillance of cholera in Russia are described. In 1990-s for the first time zoning by epidemic manifestations of cholera was carried out at the level of subjects forming parts of Russia and other Republics of the Soviet Union with the introduction of differential tactics of epidemiological surveillance. Improvement of epidemiological surveillance of cholera was aimed at harmonization with the IHR (2005), integration of epidemiological surveillance of cholera and social-hygienic monitoring of water objects of I and II categories. Characterization of isolated Vibrio cholerae strains (1990-2014) on the genomic basis determined the emergence of new VNTR-genotypes of V. cholerae O1 ctxAB+ tcpA+, responsible for outbreaks, simultaneously with isolation of V. cholerae 01 ctxAB-tcpA-strains during monitoring of environmental objectsfor cholera. A viewpoint is considered of the beginning of the eighth cholera pandemic in the context of emergence of V. cholerae El Tor strains with CTXφ prophage carrying ctxB gene of cholera toxin of classical biovar. Main directions offurther enhancement ofepidemiological surveillance include the study of basic data structures used in the epidemiological surveillance system, the use of zoning of municipal units offederal subjects with corresponding surveillance tactics and expected economic effect.

  16. Unique Clones of Vibrio cholerae O1 El Tor with Haitian Type ctxB Allele Implicated in the Recent Cholera Epidemics from Nigeria, Africa

    PubMed Central

    Pazhani, Gururaja Perumal; Abiodun, Iwalokun Bamidele; Afolabi, Oluwadun; Kolawole, Olukoya Daniel; Mukhopadhyay, Asish K.; Ramamurthy, Thanadarayan

    2016-01-01

    Background and Objectives The antimicrobial susceptibility patterns and genetic characteristics of Vibrio cholerae O1, which is responsible for several cholera epidemics in Nigeria, are not reported in detail since 2007. In this study, we screened V. cholerae O1 El Tor biotype isolates from cholera cases and water samples from different states to investigate their phenotypic and genetic attributes with special reference to their clonality. Results All the V. cholerae O1 biotype El Tor isolates isolated during 2007–2013 were susceptible to fluoroquinolones and tetracycline, the drugs currently used in the treatment of cholera cases in Nigeria. Emergence of CT genotype 7 (Haitian type of ctxB allele) was predominantly seen among Ogawa serotype and the CT genotype 1 (classical ctxB allele) was mostly found in Inaba serotype. Overall, V. cholerae O1 from clinical and water samples were found to be closely related as determined by the pulsed-field gel electrophoresis. V. cholerae isolates from Abia, Kano and Bauchi were found to be genetically distinct from the other states of Nigeria. Conclusion Fecal contamination of the water sources may be the possible source of the cholera infection. Combined prevalence of Haitian and classical ctxB alleles were detected in Ogawa and Inaba serotypes, respectively. This study further demonstrated that V. cholerae O1 with the ctxB has been emerged similar to the isolates reported in Haiti. Our findings suggest that the use of fluoroquinolones or tetracycline/doxycycline may help in the effective management of acute cholera in the affected Nigerian states. In addition, strengthening the existing surveillance in the hospitals of all the states and supply of clean drinking water may control cholera outbreaks in the future. PMID:27479360

  17. Vibrio cholerae classical biotype strains reveal distinct signatures in Mexico.

    PubMed

    Alam, Munirul; Islam, M Tarequl; Rashed, Shah Manzur; Johura, Fatema-tuz; Bhuiyan, Nurul A; Delgado, Gabriela; Morales, Rosario; Mendez, Jose Luis; Navarro, Armando; Watanabe, Haruo; Hasan, Nur-A; Colwell, Rita R; Cravioto, Alejandro

    2012-07-01

    Vibrio cholerae O1 classical (CL) biotype caused the fifth and sixth pandemics, and probably the earlier cholera pandemics, before the El Tor (ET) biotype initiated the seventh pandemic in Asia in the 1970s by completely displacing the CL biotype. Although the CL biotype was thought to be extinct in Asia and although it had never been reported from Latin America, V. cholerae CL and ET biotypes, including a hybrid ET, were found associated with areas of cholera endemicity in Mexico between 1991 and 1997. In this study, CL biotype strains isolated from areas of cholera endemicity in Mexico between 1983 and 1997 were characterized in terms of major phenotypic and genetic traits and compared with CL biotype strains isolated in Bangladesh between 1962 and 1989. According to sero- and biotyping data, all V. cholerae strains tested had the major phenotypic and genotypic characteristics specific for the CL biotype. Antibiograms revealed the majority of the Bangladeshi strains to be resistant to trimethoprim-sulfamethoxazole, furazolidone, ampicillin, and gentamicin, while the Mexican strains were sensitive to all of these drugs, as well as to ciprofloxacin, erythromycin, and tetracycline. Pulsed-field gel electrophoresis (PFGE) of NotI-digested genomic DNA revealed characteristic banding patterns for all of the CL biotype strains although the Mexican strains differed from the Bangladeshi strains in 1 to 2 DNA bands. The difference was subtle but consistent, as confirmed by the subclustering patterns in the PFGE-based dendrogram, and can serve as a regional signature, suggesting the pre-1991 existence and evolution of the CL biotype strains in the Americas, independent from Asia.

  18. Vaccination Strategies to Combat an Infectious Globe: Oral Cholera Vaccines

    PubMed Central

    López-Gigosos, Rosa M; Plaza, Elena; Díez-Díaz, Rosa M; Calvo, Maria J

    2011-01-01

    Cholera is a substantial health burden in many countries in Africa and Asia, where it is endemic. It is as well responsible for ongoing epidemics in sub-Saharan Africa which are becoming greater in terms of frequency, extension, and duration. Given the availability of two oral cholera vaccines and the new data on their efficacy, field effectiveness, feasibility, and acceptance in cholera-affected populations and in travelers, these vaccines should be used in endemic areas, in travelers for these areas and should be considered in areas at risk for outbreaks. The two vaccines currently available in worldwide are: (1) The killed oral vaccine (Dukoral, licensed by SBL–Sweden to Crucell–Holland) is recommended since 1999 by WHO and consists of a mixture of four preparations of heat or formalin killed whole cell Vibrio cholera O1 (Inaba and Ogaba serotypes, and classical and El Tor biotypes) that are then added with purified recombinant cholera toxin (CT) B subunit. Because CT cross-reacts with Escherichia coli LT the vaccine also provides short-term protection against ETEC (enterotoxigenic E. coli) which is of added benefit for travelers. It is available in more than 60 countries. (2) A bivalent O1 and O139 whole cell oral vaccine without CT B subunit (Shanchol) has been lately developed in Vietnam (licensed by VaBiotech–Viet Nam to Shantha Biotechnics–India. It is available in India and Indonesia. A structured search of papers in PubMed and reports on cholera vaccines by WHO and CDC, as well as critical reading and synthesis of the information was accomplished. Inclusion criteria were defined according to reports quality and relevance. PMID:21572610

  19. Spatial and environmental connectivity analysis in a cholera vaccine trial.

    PubMed

    Emch, Michael; Ali, Mohammad; Root, Elisabeth D; Yunus, Mohammad

    2009-02-01

    This paper develops theory and methods for vaccine trials that utilize spatial and environmental information. Satellite imagery is used to identify whether households are connected to one another via water bodies in a study area in rural Bangladesh. Then relationships between neighborhood-level cholera vaccine coverage and placebo incidence and neighborhood-level spatial variables are measured. The study hypothesis is that unvaccinated people who are environmentally connected to people who have been vaccinated will be at lower risk compared to unvaccinated people who are environmentally connected to people who have not been vaccinated. We use four datasets including: a cholera vaccine trial database, a longitudinal demographic database of the rural population from which the vaccine trial participants were selected, a household-level geographic information system (GIS) database of the same study area, and high resolution Quickbird satellite imagery. An environmental connectivity metric was constructed by integrating the satellite imagery with the vaccine and demographic databases linked with GIS. The results show that there is a relationship between neighborhood rates of cholera vaccination and placebo incidence. Thus, people are indirectly protected when more people in their environmentally connected neighborhood are vaccinated. This result is similar to our previous work that used a simpler Euclidean distance neighborhood to measure neighborhood vaccine coverage [Ali, M., Emch, M., von Seidlein, L., Yunus, M., Sack, D. A., Holmgren, J., et al. (2005). Herd immunity conferred by killed oral cholera vaccines in Bangladesh. Lancet, 366(9479), 44-49]. Our new method of measuring environmental connectivity is more precise since it takes into account the transmission mode of cholera and therefore this study validates our assertion that the oral cholera vaccine provides indirect protection in addition to direct protection.

  20. Bacterial Shedding in Household Contacts of Cholera Patients in Dhaka, Bangladesh

    PubMed Central

    Weil, Ana A.; Begum, Yasmin; Chowdhury, Fahima; Khan, Ashraful I.; Leung, Daniel T.; LaRocque, Regina C.; Charles, Richelle C.; Ryan, Edward T.; Calderwood, Stephen B.; Qadri, Firdausi; Harris, Jason B.

    2014-01-01

    Multiple Vibrio cholerae infections within the same household are common. Household contacts of patients with cholera were observed with daily clinical assessments and collection of rectal swab cultures for nine days after presentation of the index case. During the follow-up period, 71 (24%) of 294 household contacts developed a positive V. cholerae rectal swab, signifying bacterial shedding. The average length of bacterial shedding was 2.0 days (95% confidence interval 1.7–2.4). However, 16 (5%) of 294 contacts shed V. cholerae for ≥ 4 days. In a multivariate analysis, malnutrition was predictive of long-term shedding (odds ratio = 1.4, 95% confidence interval = 1.3–13, P = 0.02). High rates of V. cholerae infection and bacterial shedding among household contacts of cholera patients represent an opportunity for intervention to reduce V. cholerae transmission. PMID:25114012

  1. An intracellular replication niche for Vibrio cholerae in the amoeba Acanthamoeba castellanii

    PubMed Central

    Van der Henst, Charles; Scrignari, Tiziana; Maclachlan, Catherine; Blokesch, Melanie

    2016-01-01

    Vibrio cholerae is a human pathogen and the causative agent of cholera. The persistence of this bacterium in aquatic environments is a key epidemiological concern, as cholera is transmitted through contaminated water. Predatory protists, such as amoebae, are major regulators of bacterial populations in such environments. Therefore, we investigated the interaction between V. cholerae and the amoeba Acanthamoeba castellanii at the single-cell level. We observed that V. cholerae can resist intracellular killing. The non-digested bacteria were either released or, alternatively, established a replication niche within the contractile vacuole of A. castellanii. V. cholerae was maintained within this compartment even upon encystment. The pathogen ultimately returned to its aquatic habitat through lysis of A. castellanii, a process that was dependent on the production of extracellular polysaccharide by the pathogen. This study reinforces the concept that V. cholerae is a facultative intracellular bacterium and describes a new host–pathogen interaction. PMID:26394005

  2. A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models

    PubMed Central

    Yen, Minmin; Cairns, Lynne S.; Camilli, Andrew

    2017-01-01

    Effective prevention strategies will be essential in reducing disease burden due to bacterial infections. Here we harness the specificity and rapid-acting properties of bacteriophages as a potential prophylaxis therapy for cholera, a severely dehydrating disease caused by Vibrio cholerae. To this end, we test a cocktail of three virulent phages in two animal models of cholera pathogenesis (infant mouse and rabbit models). Oral administration of the phages up to 24 h before V. cholerae challenge reduces colonization of the intestinal tract and prevents cholera-like diarrhea. None of the surviving V. cholerae colonies are resistant to all three phages. Genome sequencing and variant analysis of the surviving colonies indicate that resistance to the phages is largely conferred by mutations in genes required for the production of the phage receptors. For acute infections, such as cholera, phage prophylaxis could provide a strategy to limit the impact of bacterial disease on human health. PMID:28146150

  3. Environmental surveillance for toxigenic Vibrio cholerae in surface waters of Haiti.

    PubMed

    Kahler, Amy M; Haley, Bradd J; Chen, Arlene; Mull, Bonnie J; Tarr, Cheryl L; Turnsek, Maryann; Katz, Lee S; Humphrys, Michael S; Derado, Gordana; Freeman, Nicole; Boncy, Jacques; Colwell, Rita R; Huq, Anwar; Hill, Vincent R

    2015-01-01

    Epidemic cholera was reported in Haiti in 2010, with no information available on the occurrence or geographic distribution of toxigenic Vibrio cholerae in Haitian waters. In a series of field visits conducted in Haiti between 2011 and 2013, water and plankton samples were collected at 19 sites. Vibrio cholerae was detected using culture, polymerase chain reaction, and direct viable count methods (DFA-DVC). Cholera toxin genes were detected by polymerase chain reaction in broth enrichments of samples collected in all visits except March 2012. Toxigenic V. cholerae was isolated from river water in 2011 and 2013. Whole genome sequencing revealed that these isolates were a match to the outbreak strain. The DFA-DVC tests were positive for V. cholerae O1 in plankton samples collected from multiple sites. Results of this survey show that toxigenic V. cholerae could be recovered from surface waters in Haiti more than 2 years after the onset of the epidemic.

  4. Whole-genome sequence comparisons reveal the evolution of Vibrio cholerae O1.

    PubMed

    Kim, Eun Jin; Lee, Chan Hee; Nair, G Balakrish; Kim, Dong Wook

    2015-08-01

    The analysis of the whole-genome sequences of Vibrio cholerae strains from previous and current cholera pandemics has demonstrated that genomic changes and alterations in phage CTX (particularly in the gene encoding the B subunit of cholera toxin) were major features in the evolution of V. cholerae. Recent studies have revealed the genetic mechanisms in these bacteria by which new variants of V. cholerae are generated from type-specific strains; these mechanisms suggest that certain strains are selected by environmental or human factors over time. By understanding the mechanisms and driving forces of historical and current changes in the V. cholerae population, it would be possible to predict the direction of such changes and the evolution of new variants; this has implications for the battle against cholera.

  5. An outbreak of El Tor cholera associated with a tribal funeral in Irian Jaya, Indonesia.

    PubMed

    Korthuis, P T; Jones, T R; Lesmana, M; Clark, S M; Okoseray, M; Ingkokusumo, G; Wignall, F S

    1998-09-01

    An outbreak of El Tor biotype cholera occurring in a rural village in Irian Jaya, Indonesia was evaluated for risk factors associated with death from cholera. Among those dying in the village during the epidemic, a significant association between membership in one of the five tribal groups in the village complex was associated with an elevated risk of suffering a cholera death (odds ratio = 5.9). Interviews with members of the decedents' families revealed a very strong association (odds ratio = 11.6) between risk of cholera death and having attended the two day funeral of a woman who died of a cholera-like illness a few days prior to an outbreak of cholera-like diarrheal disease in the village complex. Recent flooding may have contributed to the creation of an environment conducive to cholera transmission.

  6. Avian cholera in Southern Great Petrel (Macronectes giganteus) from Antarctica

    USGS Publications Warehouse

    Leotta, G.A.; Rivas, M.; Chinen, I.; Vigo, G.B.; Moredo, F.A.; Coria, N.; Wolcott, M.J.

    2003-01-01

    A southern giant petrel (Macronectes giganteus) was found dead at Potter Peninsula, King George Island, South Shetland, Antarctica. The adult male was discovered approximately 48 hr after death. Macroscopic and microscopic lesions were compatible with avian cholera and the bacterium Pasteurella multocida subsp. gallicida, serotype A1 was isolated from lung, heart, liver, pericardial sac, and air sacs. In addition, Escherichia coli was isolated from pericardial sac and air sacs. This is the first known report of avian cholera in a southern giant petrel in Antarctica.

  7. [Djibouti, history of 2 epidemics of cholera: 1993-1994].

    PubMed

    Morillon, M; De Pina, J J; Husser, J A; Baudet, J M; Bertherat, E; Martet, G

    1998-01-01

    When two cholera epidemics broke out in Djibouti, respectively in 1993 and 1994, Bioforce was obliged to intervene. The first time, three goals were pursued: setting up a rehydration centre in a tent, organizing epidemiological surveillance and training local personnel in treatment and diagnosis techniques. The next year, the epidemic followed serious flooding. The epidemiological analysis showed that cholera had become endemic in the poor neighbourhoods of the town and that epidemic break-outs were favoured by contaminated surface water and disturbances in the distribution of drinking water. The epidemic of 1997, likewise following flooding, only confirmed this point of view.

  8. Direct detection of Vibrio cholerae in stool samples.

    PubMed Central

    Varela, P; Pollevick, G D; Rivas, M; Chinen, I; Binsztein, N; Frasch, A C; Ugalde, R A

    1994-01-01

    A direct method to detect Vibrio cholerae in stool samples was developed by using a PCR procedure that did not require a DNA purification step. Dilution (1/100) of stool samples prevented inhibition of the reaction by contaminants, and two consecutive PCRs, the second one with a nested primer, achieved the desired sensitivity. Comparison of the results obtained from stool swab samples processed by the two-step PCR and by an enzyme-linked immunosorbent assay using GM1 as the capture molecule showed that the former is more sensitive and gave positive results even when V. cholerae was not culturable or dead. Images PMID:8051251

  9. Transposon-facilitated recombination in classical biotypes of Vibrio cholerae.

    PubMed Central

    Sublett, R D; Romig, W R

    1981-01-01

    Transposon-facilitated recombination (Tfr) donors of classical Vibrio cholerae strain 162 were constructed by introducing the ampicillin transposon Tn1 into the P conjugative plasmid and the bacterial chromosome. The improved donors mediated high-frequency, polarized transfer of chromosomal genes from origins to confirm the gene orders of the previous classical strain 162 genetic map and to establish its circularity. Significant transfer of linked genes from E1 Tor Tfr donors to classical recipients was demonstrated, and other evidence for genetic relatedness of these two V. cholerae biotypes is discussed. PMID:6265372

  10. Assessment of factors influencing antimicrobial activity of carvacrol and cymene against Vibrio cholerae in food.

    PubMed

    Rattanachaikunsopon, Pongsak; Phumkhachorn, Parichat

    2010-11-01

    Carvacrol and cymene, phenolic compounds naturally present in the essential oil of oregano and thyme, were examined for their antimicrobial activity against Vibrio cholerae (ATCC 14033, VC1, and VC7) inoculated in carrot juice. Carvacrol exhibited a dose dependent inhibitory effect on the bacteria. Although cymene did not have antimicrobial activity against the bacteria, it enhanced the inhibitory ability of carvacrol. At 25 °C, the lowest concentrations of carvacrol and cymene required for zero detectable viable count varied depending on bacterial strains; 5 and 5 ppm, respectively, for VC7; 5 and 7.5 ppm, respectively, for VC1; and 7.5 and 7.5 ppm, respectively, for ATCC 14033. This study also examined several factors influencing the antimicrobial activity of carvacrol and cymene against V. cholerae ATCC 14033, including temperature, bacterial cell number, and food substrate. Carvacrol and cymene inhibited the bacterium in carrot juice at 25 °C more efficiently than at 15 and 4 °C. The doses of both compounds required for zero detectable viable count increased as the number of the bacterial cells in the carrot juice increased. The fat content and the complexity of foods were shown to decrease the antimicrobial activity of the compounds.

  11. Climate and socioeconomic influences on interannual variability of cholera in Nigeria.

    PubMed

    Leckebusch, Gregor C; Abdussalam, Auwal F

    2015-07-01

    Cholera is one of the most important climate sensitive diseases in Nigeria that pose a threat to public health because of its fatality and endemic nature. This study aims to investigate the influences of meteorological and socioeconomic factors on the spatiotemporal variability of cholera morbidity and mortality in Nigeria. Stepwise multiple regression and generalised additive models were fitted for individual states as well as for three groups of the states based on annual precipitation. Different meteorological variables were analysed, taking into account socioeconomic factors that are potentially enhancing vulnerability (e.g. absolute poverty, adult literacy, access to pipe borne water). Results quantify the influence of both climate and socioeconomic variables in explaining the spatial and temporal variability of the disease incidence and mortality. Regional importance of different factors is revealed, which will allow further insight into the disease dynamics. Additionally, cross validated models suggest a strong possibility of disease prediction, which will help authorities to put effective control measures in place which depend on prevention, and or efficient response.

  12. Improved purification process for cholera toxin and its application to the quantification of residual toxin in cholera vaccines.

    PubMed

    Jang, Hyun; Kim, Hyo Seung; Kim, Jeong Ah; Seo, Jin Ho; Carbis, Rodney

    2009-01-01

    A simplified method for the purification of cholera toxin was developed. The 569B strain of Vibrio cholerae, a recognized hyper-producer of cholera toxin, was propagated in a bioreactor under conditions that promote the production of the toxin. The toxin was separated from the bacterial cells using 0.2-microm crossflow microfiltration, the clarified toxin was passed through the membrane into the permeate, and the bacterial cells were retained in the retentate. The 0.2-microm permeate was then concentrated 3-fold and diafiltered against 10 mM phosphate buffer, pH 7.6, using 30-kDa crossflow ultrafiltration. The concentrated toxin was loaded onto a cation exchange column, the toxin was bound to the column, and most of the impurities were passed unimpeded through the column. The toxin was eluted with a salt gradient of phosphate buffer, pH7.0, containing 1.0M NaCl. The peak containing the toxin was assayed for cholera toxin and protein and the purity was determined to be 92%. The toxin peak had a low endotoxin level of 3.1 EU/microg of toxin. The purified toxin was used to prepare antiserum against whole toxin, which was used in a G(M1) ganglioside-binding ELISA to determine residual levels of toxin in an oral inactivated whole-cell cholera vaccine. The G(M1) ganglioside-binding ELISA was shown to be very sensitive and capable of detecting as little as 1 ng/ml of cholera toxin.

  13. Growth of Vibrio cholerae O1 Ogawa Eltor in freshwater.

    PubMed

    Vital, Marius; Füchslin, Hans Peter; Hammes, Frederik; Egli, Thomas

    2007-07-01

    Growth of Vibrio cholerae O1 Ogawa Eltor was studied with a growth assay in which autoclaved and filtered (0.22 microm) freshwater was inoculated at low cell density (5 x 10(3) cells ml(-1)) and proliferation was followed with flow cytometry. Against the common view, V. cholerae was able to grow extensively in different kinds of freshwater. The bacterium multiplied in river water, lake water and effluent of a wastewater treatment plant up to a cell density of 1.55 x 10(6) cells ml(-1). In these samples, apparent assimilable organic carbon (AOC(app)) concentrations ranged from 52 up to 800 microg l(-1) and the results demonstrate a positive trend between the AOC(app) concentration and final cell concentration, suggesting that AOC was a key parameter governing growth of V. cholerae. No growth was observed in waters (tap and bottled drinking water) containing less than approximately 60 microg AOC(app) l(-1). When pure cultures of V. cholerae were grown on identical lake water at different temperatures (20, 25 and 30 degrees C) the maximum specific growth rates (micromax) achieved were 0.22 h(-1), 0.32 h(-1) and 0.45 h(-1), respectively. In addition, growth was characterized in lake water samples amended with different concentrations of NaCl. The highest micromax of V. cholerae was recorded at moderate salinity levels (5 g NaCl l(-1), micromax=0.84 h(-1)), whereas at 30 g NaCl l(-1) (micromax=0.30 h(-1)) or 0 g NaCl l(-1) (micromax)=0.40 h(-1)) specific growth rates were significantly reduced. In the water tested here, micro(max) of V. cholerae was always around 50 % of that exhibited by a freshwater community of indigenous bacteria enriched from the water sampling site. Direct batch competition experiments between V. cholerae and the lake water bacterial community were performed at different temperatures in which V. cholerae was enumerated in the total community using fluorescent-surface antibodies. In all cases V. cholerae was able to grow and constituted around 10

  14. Rapid and Scalable Plant-based Production of a Cholera Toxin B Subunit Variant to Aid in Mass Vaccination against Cholera Outbreaks

    PubMed Central

    Bennett, Lauren J.; Baldauf, Keegan J.; Kajiura, Hiroyuki; Fujiyama, Kazuhito; Matoba, Nobuyuki

    2013-01-01

    Introduction Cholera toxin B subunit (CTB) is a component of an internationally licensed oral cholera vaccine. The protein induces neutralizing antibodies against the holotoxin, the virulence factor responsible for severe diarrhea. A field clinical trial has suggested that the addition of CTB to killed whole-cell bacteria provides superior short-term protection to whole-cell-only vaccines; however, challenges in CTB biomanufacturing (i.e., cost and scale) hamper its implementation to mass vaccination in developing countries. To provide a potential solution to this issue, we developed a rapid, robust, and scalable CTB production system in plants. Methodology/Principal Findings In a preliminary study of expressing original CTB in transgenic Nicotiana benthamiana, the protein was N-glycosylated with plant-specific glycans. Thus, an aglycosylated CTB variant (pCTB) was created and overexpressed via a plant virus vector. Upon additional transgene engineering for retention in the endoplasmic reticulum and optimization of a secretory signal, the yield of pCTB was dramatically improved, reaching >1 g per kg of fresh leaf material. The protein was efficiently purified by simple two-step chromatography. The GM1-ganglioside binding capacity and conformational stability of pCTB were virtually identical to the bacteria-derived original B subunit, as demonstrated in competitive enzyme-linked immunosorbent assay, surface plasmon resonance, and fluorescence-based thermal shift assay. Mammalian cell surface-binding was corroborated by immunofluorescence and flow cytometry. pCTB exhibited strong oral immunogenicity in mice, inducing significant levels of CTB-specific intestinal antibodies that persisted over 6 months. Moreover, these antibodies effectively neutralized the cholera holotoxin in vitro. Conclusions/Significance Taken together, these results demonstrated that pCTB has robust producibility in Nicotiana plants and retains most, if not all, of major biological activities of

  15. Immune Responses to the O-Specific Polysaccharide Antigen in Children Who Received a Killed Oral Cholera Vaccine Compared to Responses following Natural Cholera Infection in Bangladesh

    PubMed Central

    Uddin, Taher; Xu, Peng; Aktar, Amena; Johnson, Russell A.; Rahman, Mohammad Arif; Alam, Mohammad Murshid; Bufano, Meagan Kelly; Eckhoff, Grace; Wu-Freeman, Ying; Yu, Yanan; Sultana, Tania; Khanam, Farhana; Saha, Amit; Chowdhury, Fahima; Khan, Ashraf I.; Charles, Richelle C.; LaRocque, Regina C.; Harris, Jason B.; Calderwood, Stephen B.; Kováč, Pavol; Qadri, Firdausi; Ryan, Edward T.

    2013-01-01

    Current oral cholera vaccines induce lower levels of protective efficacy and shorter durations of protection in young children than in adults. Immunity against cholera is serogroup specific, and immune responses to Vibrio cholerae lipopolysaccharide (LPS), the antigen that mediates serogroup-specific responses, are associated with protection against disease. Despite this, responses against V. cholerae O-specific polysaccharide (OSP), a key component of the LPS responsible for specificity, have not been characterized in children. Here, we report a comparison of polysaccharide antibody responses in children from a region in Bangladesh where cholera is endemic, including infants (6 to 23 months, n = 15), young children (24 to 59 months, n = 14), and older children (5 to 15 years, n = 23) who received two doses of a killed oral cholera vaccine 14 days apart. We found that infants and young children receiving the vaccine did not mount an IgG, IgA, or IgM antibody response to V. cholerae OSP or LPS, whereas older children showed significant responses. In comparison to the vaccinees, young children with wild-type V. cholerae O1 Ogawa infection did mount significant antibody responses against OSP and LPS. We also demonstrated that OSP responses correlated with age in vaccinees, but not in cholera patients, reflecting the ability of even young children with wild-type cholera to develop OSP responses. These differences might contribute to the lower efficacy of protection rendered by vaccination than by wild-type disease in young children and suggest that efforts to improve lipopolysaccharide-specific responses might be critical for achieving optimal cholera vaccine efficacy in this younger age group. PMID:23515016

  16. Epidemic cholera among refugees in Malawi, Africa: treatment and transmission.

    PubMed Central

    Swerdlow, D. L.; Malenga, G.; Begkoyian, G.; Nyangulu, D.; Toole, M.; Waldman, R. J.; Puhr, D. N.; Tauxe, R. V.

    1997-01-01

    Between 23 August and 15 December 1990 an epidemic of cholera affected Mozambican refugees in Malawi causing 1931 cases (attack rate = 2.4%); 86% of patients had arrived in Malawi < 3 months before illness onset. There were 68 deaths (case-fatality rate = 3.5%); most deaths (63%) occurred within 24 h of hospital admission which may have indicated delayed presentation to health facilities and inadequate early rehydration. Mortality was higher in children < 4 years old and febrile deaths may have been associated with prolonged i.v. use. Significant risk factors for illness (P < 0.05) in two case-control studies included drinking river water (odds ratio [OR] = 3.0); placing hands into stored household drinking water (OR = 6.0); and among those without adequate firewood to reheat food, eating leftover cooked peas (OR = 8.0). Toxigenic V. cholerae O1, serotype Inaba, was isolated from patients and stored household water. The rapidity with which newly arrived refugees became infected precluded effective use of a cholera vaccine to prevent cases unless vaccination had occurred immediately upon camp arrival. Improved access to treatment and care of paediatric patients, and increased use of oral rehydration therapy, could decrease mortality. Preventing future cholera outbreaks in Africa will depend on interrupting both waterborne and foodborne transmission of this pathogen. PMID:9207730

  17. Cholera transmission dynamic models for public health practitioners

    PubMed Central

    2014-01-01

    Great progress has been made in mathematical models of cholera transmission dynamics in recent years. However, little impact, if any, has been made by models upon public health decision-making and day-to-day routine of epidemiologists. This paper provides a brief introduction to the basics of ordinary differential equation models of cholera transmission dynamics. We discuss a basic model adapted from Codeço (2001), and how it can be modified to incorporate different hypotheses, including the importance of asymptomatic or inapparent infections, and hyperinfectious V. cholerae and human-to-human transmission. We highlight three important challenges of cholera models: (1) model misspecification and parameter uncertainty, (2) modeling the impact of water, sanitation and hygiene interventions and (3) model structure. We use published models, especially those related to the 2010 Haitian outbreak as examples. We emphasize that the choice of models should be dictated by the research questions in mind. More collaboration is needed between policy-makers, epidemiologists and modelers in public health. PMID:24520853

  18. Invariant recognition of polychromatic images of Vibrio cholerae 01

    NASA Astrophysics Data System (ADS)

    Alvarez-Borrego, Josue; Mourino-Perez, Rosa R.; Cristobal, Gabriel; Pech-Pacheco, Jose L.

    2002-04-01

    Cholera is an acute intestinal infectious disease. It has claimed many lives throughout history, and it continues to be a global health threat. Cholera is considered one of the most important emergence diseases due its relation with global climate changes. Automated methods such as optical systems represent a new trend to make more accurate measurements of the presence and quantity of this microorganism in its natural environment. Automatic systems eliminate observer bias and reduce the analysis time. We evaluate the utility of coherent optical systems with invariant correlation for the recognition of Vibrio cholerae O1. Images of scenes are recorded with a CCD camera and decomposed in three RGB channels. A numeric simulation is developed to identify the bacteria in the different samples through an invariant correlation technique. There is no variation when we repeat the correlation and the variation between images correlation is minimum. The position-, scale-, and rotation-invariant recognition is made with a scale transform through the Mellin transform. The algorithm to recognize Vibrio cholerae O1 is the presence of correlation peaks in the green channel output and their absence in red and blue channels. The discrimination criterion is the presence of correlation peaks in red, green, and blue channels.

  19. Assessing effects of cholera vaccination in the presence of interference.

    PubMed

    Perez-Heydrich, Carolina; Hudgens, Michael G; Halloran, M Elizabeth; Clemens, John D; Ali, Mohammad; Emch, Michael E

    2014-09-01

    Interference occurs when the treatment of one person affects the outcome of another. For example, in infectious diseases, whether one individual is vaccinated may affect whether another individual becomes infected or develops disease. Quantifying such indirect (or spillover) effects of vaccination could have important public health or policy implications. In this article we use recently developed inverse-probability weighted (IPW) estimators of treatment effects in the presence of interference to analyze an individually-randomized, placebo-controlled trial of cholera vaccination that targeted 121,982 individuals in Matlab, Bangladesh. Because these IPW estimators have not been employed previously, a simulation study was also conducted to assess the empirical behavior of the estimators in settings similar to the cholera vaccine trial. Simulation study results demonstrate the IPW estimators can yield unbiased estimates of the direct, indirect, total, and overall effects of vaccination when there is interference provided the untestable no unmeasured confounders assumption holds and the group-level propensity score model is correctly specified. Application of the IPW estimators to the cholera vaccine trial indicates the presence of interference. For example, the IPW estimates suggest on average 5.29 fewer cases of cholera per 1000 person-years (95% confidence interval 2.61, 7.96) will occur among unvaccinated individuals within neighborhoods with 60% vaccine coverage compared to neighborhoods with 32% coverage. Our analysis also demonstrates how not accounting for interference can render misleading conclusions about the public health utility of vaccination.

  20. On the space-time evolution of a cholera epidemic

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Azaele, S.; Maritan, A.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2008-01-01

    We study how river networks, acting as environmental corridors for pathogens, affect the spreading of cholera epidemics. Specifically, we compare epidemiological data from the real world with the space-time evolution of infected individuals predicted by a theoretical scheme based on reactive transport of infective agents through a biased network portraying actual river pathways. The data pertain to a cholera outbreak in South Africa which started in 2000 and affected in particular the KwaZulu-Natal province. The epidemic lasted for 2 years and involved about 140,000 confirmed cholera cases. Hydrological and demographic data have also been carefully considered. The theoretical tools relate to recent advances in hydrochory, migration fronts, and infection spreading and are novel in that nodal reactions describe the dynamics of cholera. Transport through network links provides the coupling of the nodal dynamics of infected people, who are assumed to reside at the nodes. This proves a realistic scheme. We argue that the theoretical scheme is remarkably capable of predicting actual outbreaks and, indeed, that network structures play a controlling role in the actual, rather anisotropic propagation of infections, in analogy to spreading of species or to migration processes that also use rivers as ecological corridors.

  1. Genetics of Natural Competence in Vibrio cholerae and other Vibrios.

    PubMed

    Antonova, Elena S; Hammer, Brian K

    2015-06-01

    Many Gram-positive and Gram-negative bacteria can become naturally competent to take up extracellular DNA from the environment via a dedicated uptake apparatus. The genetic material that is acquired can (i) be used for nutrients, (ii) aid in genome repair, and (iii) promote horizontal gene transfer when incorporated onto the genome by homologous recombination, the process of "transformation." Recent studies have identified multiple environmental cues sufficient to induce natural transformation in Vibrio cholerae and several other Vibrio species. In V. cholerae, nutrient limitation activates the cAMP receptor protein regulator, quorum-sensing signals promote synthesis of HapR-controlled QstR, chitin stimulates production of TfoX, and low extracellular nucleosides allow CytR to serve as an additional positive regulator. The network of signaling systems that trigger expression of each of these required regulators is well described, but the mechanisms by which each in turn controls competence apparatus genes is poorly understood. Recent work has defined a minimal set of genes that encode apparatus components and begun to characterize the architecture of the machinery by fluorescence microscopy. While studies with a small set of V. cholerae reference isolates have identified regulatory and competence genes required for DNA uptake, future studies may identify additional genes and regulatory connections, as well as revealing how common natural competence is among diverse V. cholerae isolates and other Vibrio species.

  2. Cholera in Bahrain: epidemiological characteristics of an outbreak*

    PubMed Central

    Gunn, Robert A.; Kimball, Ann M.; Mathew, P. P.; Dutta, S. R.; Rifaat, A. H. M.

    1981-01-01

    In the period 10 August 1978-23 January 1979, 913 culture-confirmed cases of cholera caused by Vibrio cholerae, biotype El Tor, serotype Ogawa, occurred in Bahrain. After discovery of the initial cases, others occurred sporadically, and the incidence reached a peak of 25-35 cases per day during the seventh week of the outbreak (16-22 September). The overall attack rate (27 per 10 000) was low and the outbreak subsided without mass immunization campaigns or rigorous border control of persons and imports. Investigation of 746 culture-confirmed cases that occurred in the period 10 August—13 October 1978, showed that cases occurred throughout most areas of the country and mainly affected infants, young children, and adult working-age males. Symptoms were very mild; fewer than 20% of patients required specific rehydration therapy. The highest attack rate (84 per 10 000) occurred in infants less than 1 year of age. No common vehicle or mode of transmission was identified. A matched-pair study of 35 cases and controls showed that adult cases were more likely than controls to have consumed food or beverage outside of the home before becoming ill. V. cholerae was isolated from stored drinking water in the houses of 8 cases but not from numerous samples of food and tap-water. It was presumed that cholera transmission occurred through a complex interaction of mild and asymptomatically infected persons with food, water, and the environment. PMID:6973417

  3. Host-pathogen interactions: A cholera surveillance system

    SciTech Connect

    Wright, Aaron T.

    2016-02-22

    Bacterial pathogen-secreted proteases may play a key role in inhibiting a potentially widespread host-pathogen interaction. Activity-based protein profiling enabled the identification of a major Vibrio cholerae serine protease that limits the ability of a host-derived intestinal lectin to bind to the bacterial pathogen in vivo.

  4. Persistence of Pasteurella multocida in wetlands following avian cholera outbreaks

    USGS Publications Warehouse

    Blanchong, Julie A.; Samuel, M.D.; Goldberg, D.R.; Shadduck, D.J.; Lehr, M.A.

    2006-01-01

    Avian cholera, caused by Pasteurella multocida, affects waterbirds across North America and occurs worldwide among various avian species. Once an epizootic begins, contamination of the wetland environment likely facilitates the transmission of P. multocida to susceptible birds. To evaluate the ability of P. multocida serotype-1, the most common serotype associated with avian cholera in waterfowl in western and central North America, to persist in wetlands and to identify environmental factors associated with its persistence, we collected water and sediment samples from 23 wetlands during winters and springs of 1996a??99. These samples were collected during avian cholera outbreaks and for up to 13 wk following initial sampling. We recovered P. multocida from six wetlands that were sampled following the initial outbreaks, but no P. multocida was isolated later than 7 wk after the initial outbreak sampling. We found no significant relationship between the probability of recovery of P. multocida during resampling and the abundance of the bacterium recovered during initial sampling, the substrate from which isolates were collected, isolate virulence, or water quality conditions previously suggested to be related to the abundance or survival of P. multocida. Our results indicate that wetlands are unlikely to serve as a long-term reservoir for P. multocida because the bacterium does not persist in wetlands for long time periods following avian cholera outbreaks.

  5. Hydroclimatic mechanisms of cholera transmission in the Bengal Delta

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-07-01

    Cholera, a deadly waterborne disease, remains a major threat in many areas of the world, including the Bengal Delta region. In this region, cholera outbreaks have two annual peaks; the first occurs during the dry season in the spring, and the second occurs in the fall following the wet season. However, the large-scale hydroclimatic processes underlying the propagation of the disease have not been well understood. Akanda et al. show that cholera outbreaks in the Bengal Delta region propagate from the coast to inland and from spring to fall following two distinct transmission cycles. The first outbreak begins in the spring near the coast when northward movement of plankton-rich seawater and increasing salinity promote the growth of cholera-causing bacteria in rivers, which are used for irrigation, sanitation, and consumption. The second outbreak begins in the fall, after summer floods and monsoons affect sanitation conditions that aid in bacterial transmission by contaminating waters over much of Bangladesh. (Water Resources Research, doi:10.1029/ 2010WR009914, 2011)

  6. Analyzing transmission dynamics of cholera with public health interventions.

    PubMed

    Posny, Drew; Wang, Jin; Mukandavire, Zindoga; Modnak, Chairat

    2015-06-01

    Cholera continues to be a serious public health concern in developing countries and the global increase in the number of reported outbreaks suggests that activities to control the diseases and surveillance programs to identify or predict the occurrence of the next outbreaks are not adequate. These outbreaks have increased in frequency, severity, duration and endemicity in recent years. Mathematical models for infectious diseases play a critical role in predicting and understanding disease mechanisms, and have long provided basic insights in the possible ways to control infectious diseases. In this paper, we present a new deterministic cholera epidemiological model with three types of control measures incorporated into a cholera epidemic setting: treatment, vaccination and sanitation. Essential dynamical properties of the model with constant intervention controls which include local and global stabilities for the equilibria are carefully analyzed. Further, using optimal control techniques, we perform a study to investigate cost-effective solutions for time-dependent public health interventions in order to curb disease transmission in epidemic settings. Our results show that the basic reproductive number (R0) remains the model's epidemic threshold despite the inclusion of a package of cholera interventions. For time-dependent controls, the results suggest that these interventions closely interplay with each other, and the costs of controls directly affect the length and strength of each control in an optimal strategy.

  7. Low detection of Vibrio cholerae carriage in healthcare workers returning to 12 Latin American countries from Haiti.

    PubMed

    Llanes, R; Somarriba, L; Hernández, G; Bardaji, Y; Aguila, A; Mazumder, R N

    2015-04-01

    SUMMARY This investigation was undertaken to characterize the prevalence of intestinal Vibrio cholerae in healthcare workers (HCWs) returning from Haiti due to the ongoing cholera epidemic. Eight hundred and fifty asymptomatic HCWs of the Cuban Medical Brigade, who planned to leave Haiti, were studied by laboratory screening of stool culture for V. cholerae. A very low percentage (0.23%) of toxigenic V. cholerae serogroup O1, serotype Ogawa was found. To the best of our knowledge, this study represents the largest reported screening study for V. cholerae infection in asymptomatic HCWs returning from a cholera-affected country. Cholera transmission to health personnel highlights a possible risk of transmitting cholera during mobilization of the population for emergency response. Aid workers are encouraged to take precautions to reduce their risk for acquiring cholera and special care should be taken by consuming safe water and food and practising regular hand washing.

  8. The discovery of cholera - like enterotoxins produced by Escherichia coli causing secretory diarrhoea in humans

    PubMed Central

    Sack, R. Bradley

    2011-01-01

    Non-vibrio cholera has been recognized as a clinical entity for as long as cholera was known to be caused by Vibrio cholerae. Until 1968, the aetiologic agent of this syndrome was not known. Following a series of studies in patients with non-vibrio cholera it was found that these patients had large concentrations of Escherichia coli in the small bowel and stools which produced cholera toxin-like enterotoxins, and had fluid and electrolyte transport abnormalities in the small bowel similar to patients with documented cholera. Furthermore, these patients developed antibodies to the cholera-like enterotoxin. Later studies showed that these strains, when fed to volunteers produced a cholera-like disease and that two enterotoxins were found to be produced by these organisms: a heat-labile enterotoxin (LT) which is nearly identical to cholera toxin, and a heat-stable enterotoxin (ST), a small molecular weight polypeptide. E. coli that produced one or both of these enterotoxins were designated enterotoxigenic E. coli (ETEC). ETEC are now known not only to cause a severe cholera-like illness, but to be the most common bacterial cause of acute diarrhoea in children in the developing world, and to be the most common cause of travellers’ diarrhoea in persons who visit the developing world. PMID:21415491

  9. Acanthamoeba polyphaga is a possible host for Vibrio cholerae in aquatic environments.

    PubMed

    Sandström, Gunnar; Saeed, Amir; Abd, Hadi

    2010-09-01

    Acanthamoeba is a genus of free-living amoebae found to be able to host many bacterial species living in the environment. Acanthamoebae and Vibrio cholerae are found in the aquatic environments of cholera endemic areas. Previously it has been shown that V. cholerae O1 and O139 can survive and grow in Acanthamoeba castellanii. The aim of this study was to examine the ability of Acanthamoeba polyphaga to host V. cholerae O1 and O139. The interaction between A. polyphaga and V. cholerae strains was studied by means of viable amoeba cell counts and viable count of the bacteria in the absence and presence of amoebae. The viable count of intracellularly growing bacteria was estimated by utilizing gentamicin assay. Electron microscopy was used to determine the localization of V. cholerae inside A. polyphaga. The results showed that A. polyphaga enhanced growth and survival of V. cholerae, which grew and survived inside the amoeba cells for 2weeks. The electron microscopy showed that A. polyphaga hosted intracellular V. cholerae localized in the vacuoles of amoeba cell. Neither the presence of V. cholerae together with A. polyphaga nor the intracellular localization of the bacteria inhibited growth and survival of A. polyphaga. The outcome of the interaction between these microorganisms may support strongly the role of A. polyphaga as host for V. cholerae O1 and O139.

  10. The epidemiology and antimicrobial resistance of cholera cases in Iran during 2013

    PubMed Central

    Masoumi-Asl, Hossein; Gouya, Mohammad Mehdi; Rahbar, Mohammad; Sabourian, Roghieh

    2016-01-01

    Background and Objectives: Cholera is an endemic diarrheal disease in Iran, caused by Vibrio Cholerae. The epidemiology, transmission route, environmental determinants and antimicrobial resistant pattern of cholera have been changed during recent years. In this study the epidemiology and antimicrobial resistance of cholera in Iran during 2013 outbreak was investigated. Materials and Methods: A retrospective, cross-sectional study was carried out using cholera national surveillance system collected data in 2013. Bacterial identification and antimicrobial susceptibility testing were done on 60 Vibrio cholerae isolates, serotype Inaba. Results: During July to November 2013, 256 confirmed cholera cases were diagnosed by stool culture. Two hundred and eleven out of 256 (83%) cases were imported from Afghanistan and Pakistan. The prevalent age group was 16–30 years old, 90% were male, 98.8% affected by Inaba serotype and case fatality rate was 2.7%. The results of antimicrobial susceptibility testing on 60 V. cholerae, serotype Inaba showed that all isolates were resistant to nalidixic acid, tetracyclin and trimethoprim-sulfamethoxazole and intermediate resistance to erythromycin but sensitive to ciprofloxacin, cefixime and ampicillin. Conclusion: Migrants from neighboring countries played a key role in cholera outbreak in Iran during 2013. The results of antimicrobial susceptibility testing on 60 V. cholerae, serotype Inaba showed an increasing resistance rate in comparison with previous years. PMID:28210461

  11. Cholera outbreaks in South and Southeast Asia: descriptive analysis, 2003-2012.

    PubMed

    Mahapatra, Tanmay; Mahapatra, Sanchita; Babu, Giridhara R; Tang, Weiming; Banerjee, Barnali; Mahapatra, Umakanta; Das, Aritra

    2014-01-01

    We conducted descriptive analysis of available information regarding the epidemiology of cholera outbreaks in South and Southeast Asia during 2003-2012. Information from 58 articles, 8 reports, and World Health Organization databases were analyzed. Overall, 113 cholera outbreaks were studied in South and Southeast Asia during the past 10 years. The majority of the outbreaks (69%) occurred in Southeast Asia, including India (52%). The highest number of outbreaks was observed in 2004 (25.7%). The most commonly identified source was contaminated water: however, in some countries, the spread of cholera was facilitated via contaminated seafood (e.g., Myanmar, Thailand, and Singapore). Several genotypes and phenotypes of Vibrio cholerae, the causative agent of cholera, were identified in the outbreaks, including V. cholerae O1 El Tor (Ogawa and Inaba) and V. cholerae O139. The emergence of multidrug-resistant V. cholerae strains was a major concern. Cholera-related mortality was found to be low across the outbreaks, except in Orissa, India (currently Odisha) during 2007, where the case fatality rate was 8.6%. Potential limitations included underreporting, discrepancies, possible exclusion of nonindexed reports, and incomprehensive search terms. The provision of safe water and proper sanitation appear to be critical for the control of further spread of cholera in South Asian and Southeast Asian regions.

  12. Hydrology and Human Health: Predicting Cholera Outbreaks using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Jutla, A. S.; Akanda, A. S.; Islam, S.

    2010-12-01

    Cholera bacteria survive and thrive in two distinctively different environments: the micro- and the macro-environmental processes that vary over a range of spatial and temporal scales. While micro-environmental conditions are necessary for maintaining epidemic conditions, macro-environmental conditions set the stage for initial outbreak and endemicity of the disease. As macro-environmental processes provide natural ecological niche for V. cholerae and there is powerful evidence of new biotypes emerging, it is unlikely that cholera will be fully eradicated, a condition which necessitates exploration of alternate means to develop prediction mechanism for cholera outbreaks. Satellite remote sensing data provides reliable estimates of plankton abundance through chlorophyll content which then can be used to understand cholera - chlorophyll relationships. However, the functional nature of association of cholera incidence with chlorophyll and its predictive capabilities are not well understood. Here we show that cholera outbreaks in Bengal Delta can be predicted two to three months in advance with an overall prediction accuracy of greater than 80% using combination of satellite derived chlorophyll and air temperature. Such high prediction accuracy is achievable because the two seasonal peaks of cholera in Bengal Delta are controlled by two distinctive macro-environmental processes. We have found that interannual variability of pre- monsoonal cholera outbreaks is intricately linked with coastal plankton through a cascade of hydro-coastal processes. Post- monsoonal cholera outbreaks, on the other hand, are related with wide spreading flooding and subsequent breakdown of the sanitary conditions. Our results demonstrate that satellite data, with a careful choice of space and time scales, can be very effective to develop a cholera prediction model for the Bengal delta with several months lead time. We anticipate that our modeling framework will provide essential lead time for

  13. Antimicrobial Susceptibility of Autochthonous Aquatic Vibrio cholerae in Haiti

    PubMed Central

    Baron, Sandrine; Lesne, Jean; Jouy, Eric; Larvor, Emeline; Kempf, Isabelle; Boncy, Jacques; Rebaudet, Stanilas; Piarroux, Renaud

    2016-01-01

    We investigated the antimicrobial susceptibility of 50 environmental isolates of Vibrio cholerae non-O1/non-O139 collected in surface waters in Haiti in July 2012, during an active cholera outbreak. A panel of 16 antibiotics was tested on the isolates using the disk diffusion method and PCR detection of seven resistance-associated genes (strA/B, sul1/2, ermA/B, and mefA). All isolates were susceptible to amoxicillin-clavulanic acid, cefotaxime, imipenem, ciprofloxacin, norfloxacin, amikacin, and gentamicin. Nearly a quarter (22.0%) of the isolates were susceptible to all 16 antimicrobials tested and only 8.0% of the isolates (n = 4) were multidrug-resistant. The highest proportions of resistant isolates were observed for sulfonamide (70.0%), amoxicillin (12.0%), and trimethoprim-sulfamethoxazole (10.0%). One strain was resistant to erythromycin and one to doxycycline, two antibiotics used to treat cholera in Haiti. Among the 50 isolates, 78% possessed at least two resistance-associated genes, and the genes sul1, ermA, and strB were detected in all four multidrug-resistant isolates. Our results clearly indicate that the autochthonous population of V. cholerae non-O1/non-O139 found in surface waters in Haiti shows antimicrobial patterns different from that of the outbreak strain. The presence in the Haitian aquatic environment of V. cholerae non-O1/non-O139 with reduced susceptibility or resistance to antibiotics used in human medicine may constitute a mild public health threat. PMID:27818656

  14. Connecting Environmental Observations with Cholera Outbreaks in Bangladesh

    NASA Astrophysics Data System (ADS)

    Stack, D.; Sandborn, A.; Widmeyer, P. A.; Escobar, V. M.

    2011-12-01

    Research has demonstrated that cholera epidemics in Bangladesh occur seasonally. This bimodal outbreak pattern closely follows times when large monsoon events are most frequent (spring and fall). While these patterns are presented in regional data, this knowledge alone cannot forecast the severity and location of cholera outbreaks until a monsoon event occurs, or an outbreak is reported. Therefore, there can only be reactive responses to cholera outbreaks. A heightened understanding of the link between environmental factors and outbreak occurrence will greatly enhance disease management capabilities. A predictive tool capable of giving an advanced warning of the environmental hazards that lead to location specific outbreaks allows for proactive and preventative responses, minimizing negative effects. A specific goal of this research was to relate latitude-longitude data with existing points associated with V. cholerae human case data collected from four cities in Bangladesh. Remotely sensed products were used to better understand the correlation between human outbreak occurrences, chlorophyll-a estimates, sea surface temperature (SST), and rainfall. Using MODIS, SeaWiFS, and TRMM satellite data, a gridded regional image was developed. Correlation analyses of the data were studied within the context of geographically diverse locations for the four cities of interest. Seasonal relationships were found between the cholera case data and all three of the chosen remotely sensed parameters. The strongest correlation found was between chlorophyll-a concentrations and reported human cases. The primary deliverable of this project was the production of an interactive Google Earth base map for use in a pilot design study that will lead to the development of applications to connect earth science products with water and health studies. The base map, with its inherent value of merging remotely sensed data with in situ observation points, can be used as a basis for constructing

  15. Implementation of an alert and response system in Haiti during the early stage of the response to the cholera epidemic.

    PubMed

    Santa-Olalla, Patricia; Gayer, Michelle; Magloire, Roc; Barrais, Robert; Valenciano, Marta; Aramburu, Carmen; Poncelet, Jean Luc; Gustavo Alonso, Juan Carlos; Van Alphen, Dana; Heuschen, Florence; Andraghetti, Roberta; Lee, Robert; Drury, Patrick; Aldighieri, Sylvain

    2013-10-01

    The start of the cholera epidemic in Haiti quickly highlighted the necessity of the implementation of an Alert and Response (A&R) System to complement the existing national surveillance system. The national system had been able to detect and confirm the outbreak etiology but required external support to monitor the spread of cholera and coordinate response, because much of the information produced was insufficiently timely for real-time monitoring and directing of a rapid, targeted response. The A&R System was designed by the Pan American Health Organization/World Health Organization in collaboration with the Haiti Ministry of Health, and it was based on a network of partners, including any institution, structure, or individual that could identify, verify, and respond to alerts. The defined objectives were to (1) save lives through early detection and treatment of cases and (2) control the spread through early intervention at the community level. The operational structure could be broken down into three principle categories: (1) alert (early warning), (2) verification and assessment of the information, and (3) efficient and timely response in coordination with partners to avoid duplication. Information generated by the A&R System was analyzed and interpreted, and the qualitative information was critical in qualifying the epidemic and defining vulnerable areas, particularly because the national surveillance system reported incomplete data for more than one department. The A&R System detected a number of alerts unrelated to cholera and facilitated rapid access to that information. The sensitivity of the system and its ability to react quickly was shown in May of 2011, when an abnormal increase in alerts coming from several communes in the Sud-Est Department in epidemiological weeks (EWs) 17 and 18 were noted and disseminated network-wide and response activities were implemented. The national cholera surveillance system did not register the increase until EWs 21 and

  16. Implementation of an Alert and Response System in Haiti during the Early Stage of the Response to the Cholera Epidemic

    PubMed Central

    Santa-Olalla, Patricia; Gayer, Michelle; Magloire, Roc; Barrais, Robert; Valenciano, Marta; Aramburu, Carmen; Poncelet, Jean Luc; Gustavo Alonso, Juan Carlos; Van Alphen, Dana; Heuschen, Florence; Andraghetti, Roberta; Lee, Robert; Drury, Patrick; Aldighieri, Sylvain

    2013-01-01

    The start of the cholera epidemic in Haiti quickly highlighted the necessity of the implementation of an Alert and Response (A&R) System to complement the existing national surveillance system. The national system had been able to detect and confirm the outbreak etiology but required external support to monitor the spread of cholera and coordinate response, because much of the information produced was insufficiently timely for real-time monitoring and directing of a rapid, targeted response. The A&R System was designed by the Pan American Health Organization/World Health Organization in collaboration with the Haiti Ministry of Health, and it was based on a network of partners, including any institution, structure, or individual that could identify, verify, and respond to alerts. The defined objectives were to (1) save lives through early detection and treatment of cases and (2) control the spread through early intervention at the community level. The operational structure could be broken down into three principle categories: (1) alert (early warning), (2) verification and assessment of the information, and (3) efficient and timely response in coordination with partners to avoid duplication. Information generated by the A&R System was analyzed and interpreted, and the qualitative information was critical in qualifying the epidemic and defining vulnerable areas, particularly because the national surveillance system reported incomplete data for more than one department. The A&R System detected a number of alerts unrelated to cholera and facilitated rapid access to that information. The sensitivity of the system and its ability to react quickly was shown in May of 2011, when an abnormal increase in alerts coming from several communes in the Sud-Est Department in epidemiological weeks (EWs) 17 and 18 were noted and disseminated network-wide and response activities were implemented. The national cholera surveillance system did not register the increase until EWs 21 and

  17. Adapting to the global shortage of cholera vaccines: targeted single dose cholera vaccine in response to an outbreak in South Sudan.

    PubMed

    Parker, Lucy A; Rumunu, John; Jamet, Christine; Kenyi, Yona; Lino, Richard Laku; Wamala, Joseph F; Mpairwe, Allan M; Ciglenecki, Iza; Luquero, Francisco J; Azman, Andrew S; Cabrol, Jean-Clement

    2017-01-18

    Shortages of vaccines for epidemic diseases, such as cholera, meningitis, and yellow fever, have become common over the past decade, hampering efforts to control outbreaks through mass reactive vaccination campaigns. Additionally, various epidemiological, political, and logistical challenges, which are poorly documented in the literature, often lead to delays in reactive campaigns, ultimately reducing the effect of vaccination. In June 2015, a cholera outbreak occurred in Juba, South Sudan, and because of the global shortage of oral cholera vaccine, authorities were unable to secure sufficient doses to vaccinate the entire at-risk population-approximately 1 million people. In this Personal View, we document the first public health use of a reduced, single-dose regimen of oral cholera vaccine, and show the details of the decision-making process and timeline. We also make recommendations to help improve reactive vaccination campaigns against cholera, and discuss the importance of new and flexible context-specific dose regimens and vaccination strategies.

  18. Virulence profile and clonal relationship among the Vibrio cholerae isolates from ground and surface water in a cholera endemic area during rainy season.

    PubMed

    Goel, A K; Jain, M; Kumar, P; Kamboj, D V; Singh, L

    2010-01-01

    All the V. cholerae non-O1, non-O139 isolates from ground and surface water samples collected during the rainy season (rainfall contributes significantly in the spread of cholera) contained ompW and a regulatory toxR gene, while many others possessed accessory cholera toxin (ace), hemolysin (hlyA) and outer membrane protein (ompU) genes. All the isolates lacked ctxAB, tcp, zot, rfbO1 and rfbO139 genes. The strains could be grouped into two main clusters colligating the isolates from ground water and surface water samples. The results suggest that surface water harbors various virulent V. cholerae strains that contaminate the ground water due to rain or poor hygienic practices, and result in the emergence of new toxigenic strains for cholera.

  19. Cholera toxin production during anaerobic trimethylamine N-oxide respiration is mediated by stringent response in Vibrio cholerae.

    PubMed

    Oh, Young Taek; Park, Yongjin; Yoon, Mi Young; Bari, Wasimul; Go, Junhyeok; Min, Kyung Bae; Raskin, David M; Lee, Kang-Mu; Yoon, Sang Sun

    2014-05-09

    As a facultative anaerobe, Vibrio cholerae can grow by anaerobic respiration. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly promoted during anaerobic growth using trimethylamine N-oxide (TMAO) as an alternative electron acceptor. Here, we investigated the molecular mechanisms of TMAO-stimulated CT production and uncovered the crucial involvement of stringent response in this process. V. cholerae 7th pandemic strain N16961 produced a significantly elevated level of ppGpp, the bacterial stringent response alarmone, during anaerobic TMAO respiration. Bacterial viability was impaired, and DNA replication was also affected under the same growth condition, further suggesting that stringent response is induced. A ΔrelA ΔspoT ppGpp overproducer strain produced an enhanced level of CT, whereas anaerobic growth via TMAO respiration was severely inhibited. In contrast, a ppGpp-null strain (ΔrelA ΔspoT ΔrelV) grew substantially better, but produced no CT, suggesting that CT production and bacterial growth are inversely regulated in response to ppGpp accumulation. Bacterial capability to produce CT was completely lost when the dksA gene, which encodes a protein that works cooperatively with ppGpp, was deleted. In the ΔdksA mutant, stringent response growth inhibition was alleviated, further supporting the inverse regulation of CT production and anaerobic growth. In vivo virulence of ΔrelA ΔspoT ΔrelV or ΔdksA mutants was significantly attenuated. The ΔrelA ΔspoT mutant maintained virulence when infected with exogenous TMAO despite its defective growth. Together, our results reveal that stringent response is activated under TMAO-stimulated anaerobic growth, and it regulates CT production in a growth-dependent manner in V. cholerae.

  20. Considerations for oral cholera vaccine use during outbreak after earthquake in Haiti, 2010-2011.

    PubMed

    Date, Kashmira A; Vicari, Andrea; Hyde, Terri B; Mintz, Eric; Danovaro-Holliday, M Carolina; Henry, Ariel; Tappero, Jordan W; Roels, Thierry H; Abrams, Joseph; Burkholder, Brenton T; Ruiz-Matus, Cuauhtémoc; Andrus, Jon; Dietz, Vance

    2011-11-01

    Oral cholera vaccines (OCVs) have been recommended in cholera-endemic settings and preemptively during outbreaks and complex emergencies. However, experience and guidelines for reactive use after an outbreak has started are limited. In 2010, after over a century without epidemic cholera, an outbreak was reported in Haiti after an earthquake. As intensive nonvaccine cholera control measures were initiated, the feasibility of OCV use was considered. We reviewed OCV characteristics and recommendations for their use and assessed global vaccine availability and capacity to implement a vaccination campaign. Real-time modeling was conducted to estimate vaccine impact. Ultimately, cholera vaccination was not implemented because of limited vaccine availability, complex logistical and operational challenges of a multidose regimen, and obstacles to conducting a campaign in a setting with population displacement and civil unrest. Use of OCVs is an option for cholera control; guidelines for their appropriate use in epidemic and emergency settings are urgently needed.

  1. Genomic epidemiology of Vibrio cholerae O1 associated with floods, Pakistan, 2010.

    PubMed

    Shah, Muhammad Ali; Mutreja, Ankur; Thomson, Nicholas; Baker, Stephen; Parkhill, Julian; Dougan, Gordon; Bokhari, Habib; Wren, Brendan W

    2014-01-01

    In August 2010, Pakistan experienced major floods and a subsequent cholera epidemic. To clarify the population dynamics and transmission of Vibrio cholerae in Pakistan, we sequenced the genomes of all V. cholerae O1 El Tor isolates and compared the sequences to a global collection of 146 V. cholerae strains. Within the global phylogeny, all isolates from Pakistan formed 2 new subclades (PSC-1 and PSC-2), lying in the third transmission wave of the seventh-pandemic lineage that could be distinguished by signature deletions and their antimicrobial susceptibilities. Geographically, PSC-1 isolates originated from the coast, whereas PSC-2 isolates originated from inland areas flooded by the Indus River. Single-nucleotide polymorphism accumulation analysis correlated river flow direction with the spread of PSC-2. We found at least 2 sources of cholera in Pakistan during the 2010 epidemic and illustrate the value of a global genomic data bank in contextualizing cholera outbreaks.

  2. Achievements and challenges for the use of killed oral cholera vaccines in the global stockpile era.

    PubMed

    Desai, Sachin N; Pezzoli, Lorenzo; Alberti, Kathryn P; Martin, Stephen; Costa, Alejandro; Perea, William; Legros, Dominique

    2016-11-04

    Cholera remains an important but neglected public health threat, affecting the health of the poorest populations and imposing substantial costs on public health systems. Cholera can be eliminated where access to clean water, sanitation, and satisfactory hygiene practices are sustained, but major improvements in infrastructure continue to be a distant goal. New developments and trends of cholera disease burden, the creation of an affordable cholera vaccine for use in developing countries, as well as recent evidence of vaccination impact has created an increased demand for oral cholera vaccine (OCV). The global OCV stockpile was established in 2013 and with support from Gavi, has assisted in achieving rapid access to vaccine in emergencies. Recent WHO prequalification of a second affordable OCV supports the stockpile goals of increased availability and distribution to affected populations. It serves as an essential step towards an integrated cholera control and prevention strategy in emergency and endemic settings.

  3. Considerations for Oral Cholera Vaccine Use during Outbreak after Earthquake in Haiti, 2010−2011

    PubMed Central

    Vicari, Andrea; Hyde, Terri B.; Mintz, Eric; Danovaro-Holliday, M. Carolina; Henry, Ariel; Tappero, Jordan W.; Roels, Thierry H.; Abrams, Joseph; Burkholder, Brenton T.; Ruiz-Matus, Cuauhtémoc; Andrus, Jon; Dietz, Vance

    2011-01-01

    Oral cholera vaccines (OCVs) have been recommended in cholera-endemic settings and preemptively during outbreaks and complex emergencies. However, experience and guidelines for reactive use after an outbreak has started are limited. In 2010, after over a century without epidemic cholera, an outbreak was reported in Haiti after an earthquake. As intensive nonvaccine cholera control measures were initiated, the feasibility of OCV use was considered. We reviewed OCV characteristics and recommendations for their use and assessed global vaccine availability and capacity to implement a vaccination campaign. Real-time modeling was conducted to estimate vaccine impact. Ultimately, cholera vaccination was not implemented because of limited vaccine availability, complex logistical and operational challenges of a multidose regimen, and obstacles to conducting a campaign in a setting with population displacement and civil unrest. Use of OCVs is an option for cholera control; guidelines for their appropriate use in epidemic and emergency settings are urgently needed. PMID:22099114

  4. Small Molecule-Induced Allosteric Activation of the Vibrio Cholerae RTX Cysteine Protease Domain

    SciTech Connect

    Lupardus, P.J.; Shen, A.; Bogyo, M.; Garcia, K.C.

    2009-05-19

    Vibrio cholerae RTX (repeats in toxin) is an actin-disrupting toxin that is autoprocessed by an internal cysteine protease domain (CPD). The RTX CPD is efficiently activated by the eukaryote-specific small molecule inositol hexakisphosphate (InsP{sub 6}), and we present the 2.1 angstrom structure of the RTX CPD in complex with InsP{sub 6}. InsP{sub 6} binds to a conserved basic cleft that is distant from the protease active site. Biochemical and kinetic analyses of CPD mutants indicate that InsP{sub 6} binding induces an allosteric switch that leads to the autoprocessing and intracellular release of toxin-effector domains.

  5. Anti-bacterial and anti-toxic immunity induced by a killed whole-cell-cholera toxin B subunit cholera vaccine is essential for protection against lethal bacterial infection in mouse pulmonary cholera model.

    PubMed

    Kang, S-S; Yang, J S; Kim, K W; Yun, C-H; Holmgren, J; Czerkinsky, C; Han, S H

    2013-07-01

    The lack of appropriate animal model for studying protective immunity has limited vaccine development against cholera. Here, we demonstrate a pulmonary cholera model conferred by intranasal administration of mice with live Vibrio cholerae. The bacterial components, but not cholera toxin, caused lethal and acute pneumonia by inducing massive inflammation. Intranasal immunization with Dukoral, comprising killed whole bacteria and recombinant cholera toxin B subunit (rCTB), developed both mucosal and systemic antibody responses with protection against the lethal challenge. Either rCTB-free Dukoral or rCTB alone partially protected the mice against the challenge. However, reconstitution of rCTB-free Dukoral with rCTB restored full protection. Parenteral immunization with Dukoral evoked strong systemic immunity without induction of mucosal immunity or protection from the challenge. These results suggest that both anti-bacterial and anti-toxic immunity are required for protection against V. cholerae-induced pneumonia, and this animal model is useful for pre-clinical evaluation of candidate cholera vaccines.

  6. Vibrio cholerae cytolysin is essential for high enterotoxicity and apoptosis induction produced by a cholera toxin gene-negative V. cholerae non-O1, non-O139 strain.

    PubMed

    Saka, Hector Alex; Bidinost, Carla; Sola, Claudia; Carranza, Pablo; Collino, Cesar; Ortiz, Susana; Echenique, Jose Ricardo; Bocco, José Luis

    2008-02-01

    Cholera toxin (CT) gene-negative Vibrio cholerae non-O1, non-O139 strains may cause severe diarrhea though their pathogenic mechanism remains unclear. V. cholerae cytolysin (VCC) is a pore-forming exotoxin encoded in the hlyA gene of V. cholerae whose contribution to the pathogenesis is not fully understood. In this work, the virulence properties of a CT gene-negative V. cholerae non-O1, non-O139 strain causing a cholera-like syndrome were analyzed. Inoculation of rabbit ileal loops with the wild type strain induced extensive fluid accumulation, accompanied by severe histopathological damage characterized by villus shortening, lymphangiectasia and focal areas of necrosis. These pathogenic effects were abrogated by mutation of the hlyA gene thus pointing out the main role of VCC in the virulence of the strain. Interestingly, this toxin was capable of triggering apoptosis in human intestinal cell lines due to its anion channel activity. Moreover, the wild type strain also induced increased apoptosis of the intestinal epithelium cells which was not observed upon inoculation of the VCC null mutant strain, indicating that VCC may trigger apoptotic cell death during infection in vivo. Altogether, these results support a main role of VCC in the pathogenesis of the CT gene-negative V. cholerae non-O1, non-O139 strain and identify apoptosis as a previously unrecognized cell death pathway triggered by VCC.

  7. Investigating the role of water in the Diffusion of Cholera using Agent-Based simulation

    NASA Astrophysics Data System (ADS)

    Augustijn, Ellen-Wien; Doldersum, Tom; Augustijn, Denie

    2014-05-01

    Traditionally, cholera was considered to be a waterborne disease. Currently we know that many other factors can contribute to the spread of this disease including human mobility and human behavior. However, the hydrological component in cholera diffusion is significant. The interplay between cholera and water includes bacteria (V. cholera) that survive in the aquatic environment, the possibility that run-off water from dumpsites carries the bacteria to surface water (rivers and lakes), and when the bacteria reach streams they can be carried downstream to infect new locations. Modelling is a very important tool to build theory on the interplay between different types of transmission mechanisms that together are responsible for the spread of Cholera. Agent-based simulation models are very suitable to incorporate behavior at individual level and to reproduce emergence. However, it is more difficult to incorporate the hydrological components in this type of model. In this research we present the hydrological component of an Agent-Based Cholera model developed to study a Cholera epidemic in Kumasi (Ghana) in 2005. The model was calibrated on the relative contribution of each community to the distributed pattern of cholera rather than the absolute number of incidences. Analysis of the results shows that water plays an important role in the diffusion of cholera: 75% of the cholera cases were infected via river water that was contaminated by runoff from the dumpsites. To initiate infections upstream, the probability of environment-to-human transmission seemed to be overestimated compared to what may be expected from literature. Scenario analyses show that there is a strong relation between the epidemic curve and the rainfall. Removing dumpsites that are situated close to the river resulted in a strong decrease in the number of cholera cases. Results are sensitive to the scheduling of the daily activities and the survival time of the cholera bacteria.

  8. Complexity of rice-water stool from patients with Vibrio cholerae plays a role in the transmission of infectious diarrhea.

    PubMed

    Nelson, Eric J; Chowdhury, Ashrafuzzaman; Harris, Jason B; Begum, Yasmin A; Chowdhury, Fahima; Khan, Ashraful I; Larocque, Regina C; Bishop, Anne L; Ryan, Edward T; Camilli, Andrew; Qadri, Firdausi; Calderwood, Stephen B

    2007-11-27

    At the International Centre for Diarrhoeal Disease Research, Bangladesh, one-half of the rice-water stool samples that were culture-positive for Vibrio cholerae did not contain motile V. cholerae by standard darkfield microscopy and were defined as darkfield-negative (DF(-)). We evaluated the host and microbial factors associated with DF status, as well as the impact of DF status on transmission. Viable counts of V. cholerae in DF(-) stools were three logs lower than in DF(+) stools, although DF(-) and DF(+) stools had similar direct counts of V. cholerae by microscopy. In DF(-) samples, non-V. cholerae bacteria outnumbered V. cholerae 10:1. Lytic V. cholerae bacteriophage were present in 90% of DF(-) samples compared with 35% of DF(+) samples, suggesting that bacteriophage may limit culture-positive patients from producing DF(+) stools. V. cholerae in DF(-) and DF(+) samples were found both planktonically and in distinct nonplanktonic populations; the distribution of organisms between these compartments did not differ appreciably between DF(-) and DF(+) stools. This biology may impact transmission because epidemiological data suggested that household contacts of a DF(+) index case were at greater risk of infection with V. cholerae. We propose a model in which V. cholerae multiply in the small intestine to produce a fluid niche that is dominated by V. cholerae. If lytic phage are present, viable counts of V. cholerae drop, stools become DF(-), other microorganisms bloom, and cholera transmission is reduced.

  9. Detection of ctx gene positive non-O1/non-O139 V. cholerae in shrimp aquaculture environments.

    PubMed

    Madhusudana, Rao B; Surendran, P K

    2013-06-01

    Water and post-larvae samples from black tiger (Penaeus monodon) shrimp hatcheries; pond water, pond sediment and shrimp from aquaculture farms were screened for the presence of V. cholerae. A V. cholerae-duplex PCR method was developed by utilizing V. cholerae species specific sodB primers and ctxAB genes specific primers. Incidence of V. cholerae was not observed in shrimp hatchery samples but was noticed in aquaculture samples. The incidence of V. cholerae was higher in pond water (7.6%) than in pond sediment (5.2%). Shrimp head (3.6%) portion had relatively higher incidence than shrimp muscle (1.6%). All the V. cholerae isolates (n = 42) belonged to non-O1/non-O139 serogroup, of which 7% of the V. cholerae isolates were potentially cholera-toxigenic (ctx positive). All the ctx positive V. cholerae (n = 3) were isolated from the pond water. Since, cholera toxin (CT) is the major contributing factor for cholera gravis, it is proposed that the mere presence of non-O1/non-O139 V. cholerae need not be the biohazard criterion in cultured black tiger shrimp but only the presence of ctx carrying non-O1/non-O139 V. cholerae may be considered as potential public health risk.

  10. Rainfall mediations in the spreading of epidemic cholera

    NASA Astrophysics Data System (ADS)

    Righetto, L.; Bertuzzo, E.; Mari, L.; Schild, E.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2013-10-01

    Following the empirical evidence of a clear correlation between rainfall events and cholera resurgence that was observed in particular during the recent outbreak in Haiti, a spatially explicit model of epidemic cholera is re-examined. Specifically, we test a multivariate Poisson rainfall generator, with parameters varying in space and time, as a driver of enhanced disease transmission. The relevance of the issue relates to the key insight that predictive mathematical models may provide into the course of an ongoing cholera epidemic aiding emergency management (say, in allocating life-saving supplies or health care staff) or in evaluating alternative management strategies. Our model consists of a set of dynamical equations (SIRB-like i.e. subdivided into the compartments of Susceptible, Infected and Recovered individuals, and including a balance of Bacterial concentrations in the water reservoir) describing a connected network of human communities where the infection results from the exposure to excess concentrations of pathogens in the water. These, in turn, are driven by rainfall washout of open-air defecation sites or cesspool overflows, hydrologic transport through waterways and by mobility of susceptible and infected individuals. We perform an a posteriori analysis (from the beginning of the epidemic in October 2010 until December 2011) to test the model reliability in predicting cholera cases and in testing control measures, involving vaccination and sanitation campaigns, for the ongoing epidemic. Even though predicting reliably the timing of the epidemic resurgence proves difficult due to rainfall inter-annual variability, we find that the model can reasonably quantify the total number of reported infection cases in the selected time-span. We then run a multi-seasonal prediction of the course of the epidemic until December 2015, to investigate conditions for further resurgences and endemicity of cholera in the region with a view to policies which may bring to

  11. Uptake and retention of Vibrio cholerae O1 in the Eastern oyster, Crassostrea virginica.

    PubMed Central

    Murphree, R L; Tamplin, M L

    1995-01-01

    Vibrio cholerae 01, the causative agent of cholera, is known to persist in estuarine environments as endogenous microflora. The recent introduction of V. cholerae 01 into estuaries of the North and South American continents has stimulated the need to determine the effect of controlled purification on reducing this pathogen in edible molluscan shellfish. Experiments defined parameters for the uptake and retention of V. cholerae 01 in tissues of Crassostrea virginica, and these parameters were compared with those for Escherichia coli and Salmonella tallahassee, bacteria which are usually eliminated from moderately contaminated shellfish within 48 h. Oysters accumulated greater concentrations of V. cholerae 01 than E. coli and S. tallahassee. When V. cholerae 01 was exposed to controlled purification at 15, 19 and 25 degrees C over 48 h, it persisted in oysters at markedly higher levels than E. coli and S. tallahassee. The concentration of a V. cholerae 01-specific agglutinin did not positively correlate with the uptake or retention of V. cholerae 01. These data show that state and federally approved controlled purification techniques are not effective at reducing V. cholerae 01 in oysters. PMID:7487003

  12. Worldwide Occurrence of Integrative Conjugative Element Encoding Multidrug Resistance Determinants in Epidemic Vibrio cholerae O1

    PubMed Central

    Marin, Michel A.; Fonseca, Erica L.; Andrade, Bruno N.; Cabral, Adriana C.; Vicente, Ana Carolina P.

    2014-01-01

    In the last decades, there has been an increase of cholera epidemics caused by multidrug resistant strains. Particularly, the integrative and conjugative element (ICE) seems to play a major role in the emergence of multidrug resistant Vibrio cholerae. This study fully characterized, by whole genome sequencing, new ICEs carried by multidrug resistant V. cholerae O1 strains from Nigeria (2010) (ICEVchNig1) and Nepal (1994) (ICEVchNep1). The gene content and gene order of these two ICEs are the same, and identical to ICEVchInd5, ICEVchBan5 and ICEVchHai1 previously identified in multidrug resistant V. cholerae O1. This ICE is characterized by dfrA1, sul2, strAB and floR antimicrobial resistance genes, and by unique gene content in HS4 and HS5 ICE regions. Screening for ICEs, in publicly available V. cholerae genomes, revealed the occurrence and widespread distribution of this ICE among V. cholerae O1. Metagenomic analysis found segments of this ICE in marine environments far from the direct influence of the cholera epidemic. Therefore, this study revealed the epidemiology of a spatio-temporal prevalent ICE in V. cholerae O1. Its occurrence and dispersion in V. cholerae O1 strains from different continents throughout more than two decades can be indicative of its role in the fitness of the current pandemic lineage. PMID:25265418

  13. Vibrio cholerae laboratory infection of the adult house fly Musca domestica.

    PubMed

    El-Bassiony, G M; Luizzi, V; Nguyen, D; Stoffolano, J G; Purdy, A E

    2016-12-01

    The present study was designed to test the hypothesis that house flies may be capable of specifically harbouring ingested Vibrio cholerae in their digestive tracts. Flies were continuously fed green fluorescent protein (GFP)-labelled, non-O1/non-O139 environmental strains of V. cholerae. Bacterial burdens were quantitatively measured using plate counts and localization was directly observed using confocal microscopy. Vibrio cholerae were present in the fly alimentary canal after just 4 h, and reached a plateau of ∼10(7) colony-forming units (CFU)/fly after 5 days in those flies most tolerant of the pathogen. However, individual flies were resistant to the pathogen: one or more flies were found to carry < 180 V. cholerae CFU at each time-point examined. In flies carrying V. cholerae, the pathogen was predominantly localized to the midgut rather than the rectal space or crop. The proportion of house flies carrying V. cholerae in the midgut was dose-dependent: the continuous ingestion of a concentrated, freshly prepared dose of V. cholerae increased the likelihood that fluorescent cells would be observed. However, V. cholerae may be a transient inhabitant of the house fly. This work represents the first demonstration that V. cholerae can inhabit the house fly midgut, and provides a platform for future studies of host, pathogen and environmental mediators of the successful colonization of this disease vector.

  14. Vibrio cholerae lipopolysaccharide loaded chitosan nanoparticle could save life by induction of specific immunoglobulin isotype.

    PubMed

    Fasihi-Ramandi, Mahdi; Ghobadi-Ghadikolaee, Hamideh; Ahmadi-Renani, Sajjad; Taheri, Ramezan Ali; Ahmadi, Kazem

    2017-02-28

    The lipopolysaccharide (LPS) of Vibrio cholerae (V. cholerae) plays an important role in cholera disease and the induction of primary protection. In this study, we evaluate mice humoral immune response in intranasal and intraperitoneal administrated V. cholerae LPS. The results showed that the intranasal administration of LPS-chitosan nanoparticle induced the high level of antibodies compared to intraperitoneal injection of antigen without chitosan (P < .001). These results indicated that intranasal and intraperitoneal administration of LPS has been able to induce the high level of antibodies both in the sera and lavage fluid and confirmed our strategy for using intranasal administration of antigen.

  15. Survivability and molecular variation in Vibrio cholerae from epidemic sites in China.

    PubMed

    Li, X Q; Wang, M; Deng, Z A; Shen, J C; Zhang, X Q; Liu, Y F; Cai, Y S; Wu, X W; DI, B

    2015-01-01

    The survival behaviour of Vibrio cholerae in cholera epidemics, together with its attributes of virulence-associated genes and molecular fingerprints, are significant for managing cholera epidemics. Here, we selected five strains representative of V. cholerae O1 and O139 involved in cholera events, examined their survival capacity in large volumes of water sampled from epidemic sites of a 2005 cholera outbreak, and determined virulence-associated genes and molecular subtype changes of the surviving isolates recovered. The five strains exhibited different survival capacities varying from 17 to 38 days. The virulence-associated genes of the surviving isolates remained unchanged, while their pulsotypes underwent slight variation. In particular, one waterway-isolated strain maintained virulence-associated genes and evolved to share the same pulsotype as patient strains, highlighting its role in the cholera outbreak. The strong survival capacity and molecular attributes of V. cholerae might account for its persistence in environmental waters and the long duration of the cholera outbreak, allowing effective control measures.

  16. Linking Satellite Derived Land Surface Temperature with Cholera: A Case Study for South Sudan

    NASA Astrophysics Data System (ADS)

    Aldaach, H. S. V.; Jutla, A.; Akanda, A. S.; Colwell, R. R.

    2014-12-01

    A sudden onset of cholera in South Sudan, in April 2014 in Northern Bari in Juba town resulted in more than 400 cholera cases after four weeks of initial outbreak with a case of fatality rate of CFR 5.4%. The total number of reported cholera cases for the period of April to July, 2014 were 5,141 including 114 deaths. With the limited efficacy of cholera vaccines, it is necessary to develop mechanisms to predict cholera occurrence and thereafter devise intervention strategies for mitigating impacts of the disease. Hydroclimatic processes, primarily precipitation and air temperature are related to epidemic and episodic outbreak of cholera. However, due to coarse resolution of both datasets, it is not possible to precisely locate the geographical location of disease. Here, using Land Surface Temperature (LST) from MODIS sensors, we have developed an algorithm to identify regions susceptible for cholera. Conditions for occurrence of cholera were detectable at least one month in advance in South Sudan and were statistically sensitive to hydroclimatic anomalies of land surface and air temperature, and precipitation. Our results indicate significant spatial and temporal averaging required to infer usable information from LST over South Sudan. Preliminary results that geographically location of cholera outbreak was identifiable within 1km resolution of the LST data.

  17. Hurricanes, climate change and the cholera epidemic in Puerto Rico of 1855-1856.

    PubMed

    Christenson, Bernard

    2008-01-01

    Hurricanes and global climate changes may affect the environmental factors of cholera dynamics in warm coastal areas, vulnerable to seasonal or sporadic outbreaks. The cholera epidemic of Puerto Rico in 1855-1856 had a profound effect on the Puerto Rican society; but it was not influenced by any climatic events, such as preceding hurricanes or storms based on past documentary sources. Particularly, the environmental non-toxigenic strains of Vibrio Cholerae in Puerto Rican water sources can maintain their pathogenic potential for sporadic or erratic toxigenic cholera outbreaks--if a "perfect storm" ever occurs.

  18. Detection of Vibrio cholerae in environmental waters including drinking water reservoirs of Azerbaijan.

    PubMed

    Rashid, Ahmadov; Haley, Bradd J; Rajabov, Mukhtar; Ahmadova, Sevinj; Gurbanov, Shair; Colwell, Rita R; Huq, Anwar

    2013-02-01

    Cholera, a globally prevalent gastrointestinal disease, remains a persistent problem in many countries including the former Soviet republics of the Caucasus region where sporadic outbreaks occurred recently. Historically, this region has experienced cholera during every pandemic since 1816; however, no known comprehensive evaluation of the presence of Vibrio cholerae in surface waters using molecular methods has been done. Here we present the first report of the presence of V. cholerae in surface waters of Azerbaijan and its seasonality, using a combination of bacteriological and molecular methods. Findings from the present study indicate a peak in the presence of V. cholerae in warmer summer months relative to colder winter months. In the Caspian Sea, water temperature when optimal for growth of V. cholerae was significantly associated with detection of V. cholerae. Vibrio cholerae was simultaneously detected at freshwater sites including two water reservoirs. Most importantly, detection of V. cholerae in these water reservoirs, the source of municipal drinking water, poses a potential health risk to the population due to the limited and insufficient treatment of water in Azerbaijan. Routine monitoring of environmental waters used for recreational purposes, and especially drinking water reservoirs, is highly recommended as a measure for public health safety.

  19. "I'm not dog, no!": cries of resistance against cholera control campaigns.

    PubMed

    Nations, M K; Monte, C M

    1996-09-01

    Popular reactions toward government efforts to control the recent cholera epidemic in Northeast Brazil are evaluated. Intensive ethnographic interviews and participant-observation in two urban slums (favelas), reveal a high level of resistance on the part of impoverished residents towards official cholera control interventions and mass media campaigns. "Non-compliance" with recommended regimens is described more as a revolt against accusatory attitudes and actions of the elite than as an outright rejection of care by the poor. "Hidden transcripts" about "The Dog's Disease," as cholera is popularly called, voices a history of social and economic inequity and domination in Northeast Brazil. Here, cholera is encumbered by the trappings of metaphor. Two lurid cultural stereotypes, pessoa imunda (filthy, dirty person) and vira lata (stray mutt dog) are used, it is believed, to equate the poor with cholera. The morally disgracing and disempowering imagery of cholera is used to blame and punish the poor and to collectively taint and separate their communities from wealthy neighborhoods. The authors argue that metaphoric trappings have tragic consequences: they deform the experience of having cholera and inhibit the sick and dying from seeking treatment early enough. Controlling cholera requires eliminating "blaming the victim" rhetoric while attacking the social roots of cholera: poverty, low earning power, female illiteracy, sexism, lack of basic sanitation and clean water supplies, medical hegemony, etc. For health interventions to be effective, it is necessary to take into account people's "hidden transcripts" when designing action programs.

  20. Inhibition of ADP-ribosyltransferase activity of cholera toxin by MDL 12330A and chlorpromazine.

    PubMed

    Bitonti, A J

    1984-04-30

    ADP-ribosylation by cholera toxin of the guanine nucleotide binding regulatory protein (Gs) of rat liver membrane adenylate cyclase was inhibited by 0.1-1 mM MDL 12330A or 0.1-1 mM chlorpromazine. Basal as well as cholera toxin activated adenylate cyclase activity in liver membranes was also inhibited by the two drugs. NAD glycohydrolase activity and self-ADP-ribosylation of cholera toxin were also inhibited by MDL 12330A and chlorpromazine. These effects of MDL 12330A and chlorpromazine may be related to their effects on cholera toxin-induced fluid secretion in vivo.

  1. Comparative genomics of Vibrio cholerae from Haiti, Asia, and Africa.

    PubMed

    Reimer, Aleisha R; Van Domselaar, Gary; Stroika, Steven; Walker, Matthew; Kent, Heather; Tarr, Cheryl; Talkington, Deborah; Rowe, Lori; Olsen-Rasmussen, Melissa; Frace, Michael; Sammons, Scott; Dahourou, Georges Anicet; Boncy, Jacques; Smith, Anthony M; Mabon, Philip; Petkau, Aaron; Graham, Morag; Gilmour, Matthew W; Gerner-Smidt, Peter

    2011-11-01

    Cholera was absent from the island of Hispaniola at least a century before an outbreak that began in Haiti in the fall of 2010. Pulsed-field gel electrophoresis (PFGE) analysis of clinical isolates from the Haiti outbreak and recent global travelers returning to the United States showed indistinguishable PFGE fingerprints. To better explore the genetic ancestry of the Haiti outbreak strain, we acquired 23 whole-genome Vibrio cholerae sequences: 9 isolates obtained in Haiti or the Dominican Republic, 12 PFGE pattern-matched isolates linked to Asia or Africa, and 2 nonmatched outliers from the Western Hemisphere. Phylogenies for whole-genome sequences and core genome single-nucleotide polymorphisms showed that the Haiti outbreak strain is genetically related to strains originating in India and Cameroon. However, because no identical genetic match was found among sequenced contemporary isolates, a definitive genetic origin for the outbreak in Haiti remains speculative.

  2. Epidemic cholera in Latin America: spread and routes of transmission.

    PubMed

    Guthmann, J P

    1995-12-01

    In the most recent epidemic of cholera in Latin America, nearly a million cases were reported and almost 9000 people died between January 1991 and December 1993. The epidemic spread rapidly from country to country, affecting in three years all the countries of Latin America except Uruguay and the Caribbean. Case-control studies carried out in Peru showed a significant association between drinking water and risk of disease. Cholera was associated with the consumption of unwashed fruit and vegetables, with eating food from street vendors and with contaminated crabmeat transported in travellers' luggage. This article documents the spread of the epidemic and its routes of transmission and discusses whether the introduction of the epidemic to Peru and its subsequent spread throughout the continent could have been prevented.

  3. The human, societal, and scientific legacy of cholera

    PubMed Central

    Greenough, William B.

    2004-01-01

    The recent history of research on cholera illustrates the importance of establishing research and care facilities equipped with advanced technologies at locations where specific health problems exist. It is in such settings, where scientific research is often considered difficult due to poverty and the lack of essential infrastructure, that investigators from many countries are able to make important advances. On this, the 25th anniversary of the founding of the International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), this article seeks to recount the Centre’s demonstration of how high-quality research on important global health issues, including cholera, can be accomplished in conditions that may be considered by many as unsuitable for scientific research. PMID:14755327

  4. Genomics of immune response to typhoid and cholera vaccines.

    PubMed

    Majumder, Partha P

    2015-06-19

    Considerable variation in antibody response (AR) was observed among recipients of an injectable typhoid vaccine and an oral cholera vaccine. We sought to find whether polymorphisms in genes of the immune system, both innate and adaptive, were associated with the observed variation in response. For both vaccines, we were able to discover and validate several polymorphisms that were significantly associated with immune response. For the typhoid vaccines, these polymorphisms were on genes that belonged to pathways of polysaccharide recognition, signal transduction, inhibition of T-cell proliferation, pro-inflammatory signalling and eventual production of antimicrobial peptides. For the cholera vaccine, the pathways included epithelial barrier integrity, intestinal homeostasis and leucocyte recruitment. Even though traditional wisdom indicates that both vaccines should act as T-cell-independent antigens, our findings reveal that the vaccines induce AR using different pathways.

  5. A successful response to an outbreak of cholera in Afghanistan.

    PubMed

    Kakar, Faizullah; Ahmadzai, Abdul Hamid; Habib, Najibullah; Taqdeer, Asadullah; Hartman, A Frederick

    2008-01-01

    Although postconflict Afghanistan has some of the worst health indicators in the world, the government is working hard to rebuild the health infrastructure, extend services to underserved areas and improve the quality of health services. An outbreak of cholera ElTor O1 that struck Kabul and spread nationwide in 2005, prompted a collaborative response from the Afghan Ministry of Public Health, partner agencies, and the system established to provide the Basic Package of Health Services, of which diarrhoeal disease control is an essential component. This response illustrates that, with good preparation, it is possible to respond to an outbreak of cholera effectively. The very low mortality rate during the outbreak (0.1%) shows how a resource-poor country can succeed in providing high-quality health services with government commitment, coordinated action by partners, proper case management and treatment and expanded access to services.

  6. Molecular architecture and assembly principles of Vibrio cholerae biofilms.

    PubMed

    Berk, Veysel; Fong, Jiunn C N; Dempsey, Graham T; Develioglu, Omer N; Zhuang, Xiaowei; Liphardt, Jan; Yildiz, Fitnat H; Chu, Steven

    2012-07-13

    In their natural environment, microbes organize into communities held together by an extracellular matrix composed of polysaccharides and proteins. We developed an in vivo labeling strategy to allow the extracellular matrix of developing biofilms to be visualized with conventional and superresolution light microscopy. Vibrio cholerae biofilms displayed three distinct levels of spatial organization: cells, clusters of cells, and collections of clusters. Multiresolution imaging of living V. cholerae biofilms revealed the complementary architectural roles of the four essential matrix constituents: RbmA provided cell-cell adhesion; Bap1 allowed the developing biofilm to adhere to surfaces; and heterogeneous mixtures of Vibrio polysaccharide, RbmC, and Bap1 formed dynamic, flexible, and ordered envelopes that encased the cell clusters.

  7. Intranasal immunization with recombinant toxin-coregulated pilus and cholera toxin B subunit protects rabbits against Vibrio cholerae O1 challenge.

    PubMed

    Kundu, Juthika; Mazumder, Rupa; Srivastava, Ranjana; Srivastava, Brahm S

    2009-07-01

    Intranasal immunization, a noninvasive method of vaccination, has been found to be effective in inducing systemic and mucosal immune responses. The present study was aimed at investigating the efficacy of intranasal immunization in inducing mucosal immunity in experimental cholera by subunit recombinant protein vaccines from Vibrio cholerae O1. The structural genes encoding toxin-coregulated pilus A (TcpA) and B subunit of cholera toxin (CtxB) from V. cholerae O1 were cloned and expressed in Escherichia coli. Rabbits were immunized intranasally with purified TcpA and CtxB alone or a mixture of TcpA and CtxB. Immunization with TcpA and CtxB alone conferred, respectively, 41.1% and 70.5% protection against V. cholerae challenge, whereas immunization with a mixture of both antigens conferred complete (100%) protection, as assayed in the rabbit ileal loop model. Serum titers of immunoglobulin G (IgG) antibodies to TcpA and CtxB, and anti-TcpA- and anti-CtxB-specific sIgA in intestinal lavage of vaccinated animals were found to be significantly elevated compared with unimmunized controls. Vibriocidal antibodies were detected at remarkable levels in rabbits receiving TcpA antigen and their titers correlated with protection. Thus, mucosal codelivery of pertinent cholera toxoids provides enhanced protection against experimental cholera.

  8. The January 1977 avian cholera epornitic in northwest California.

    PubMed

    Oddo, A F; Pagan, R D; Worden, L; Botzler, R G

    1978-07-01

    A total of 844 birds were observed dead at three sites in Humboldt County and an estimated 6750 birds died at three sites in Del Norte County, California. Coots were the primary species affected. The isolation of Pasteurella multocida from a snowy egret (Egretta thula) is the first reported case of avian cholera in this bird. There was evidence for a distinct sequence in the bird species dying at one site; American coots (Fulica americana) appeared to be the first species to die.

  9. Detection, Isolation, and Identification of Vibrio cholerae from the Environment

    PubMed Central

    Huq, Anwar; Haley, Bradd J.; Taviani, Elisa; Chen, Arlene; Hasan, Nur A.; Colwell, Rita R.

    2012-01-01

    Recent molecular advances in microbiology have greatly improved the detection of bacterial pathogens in the environment. Improvement and a downward trend in the cost of molecular detection methods have contributed to increased frequency of detection of pathogenic microorganisms where traditional culture-based detection methods have failed. Culture methods also have been greatly improved and the confluence of the two suites of methods provides a powerful tool for detection, isolation, and characterization of pathogens. While molecular detection provides data on the presence and type of pathogens, culturing methods allow a researcher to preserve the organism of interest for “–omics” studies, such as genomic, metabolomic, secretomic, and transcriptomic analysis, which are rapidly becoming more affordable. This has yielded a clearer understanding of the ecology and epidemiology of microorganisms that cause disease. Specifically, important advances have been made over the past several years on isolation, detection, and identification of Vibrio cholerae, the causative agent of cholera in humans. In this unit, we present commonly accepted methods for isolation, detection, and characterization of V. cholerae, providing more extensive knowledge of the ecology and epidemiology of this organism. This unit has been fully revised and updated from the earlier unit (Huq, Grim et al. 2006) with the latest knowledge and additional information not previously included. We have also taken into account of cost of reagents and equipment that may be prohibitive for many researchers and have, therefore, included protocols for all laboratories, including those with limited resources, likely to be located in regions of cholera endemicity. PMID:22875567

  10. Construction of a Vibrio cholerae prototype vaccine strain O395-N1-E1 which accumulates cell-associated cholera toxin B subunit.

    PubMed

    Rhie, Gi-eun; Jung, Hae-Mi; Kim, Bong Su; Mekalanos, John J

    2008-10-09

    Because of its production and use in Vietnam, the most widely used oral cholera vaccine consists of heat- or formalin-killed Vibrio cholerae whole cells (WC). An earlier version of this type of vaccine called whole cell-recombinant B subunit vaccine (BS-WC) produced in Sweden also contained the B subunit of cholera toxin (CTB). Both WC and BS-WC vaccines produced moderate levels of protection in field trials designed to evaluate their cholera efficacy. V. cholerae cells in these vaccines induce antibacterial immunity, and CTB contributes to the vaccine's efficacy presumably by stimulating production of anti-toxin neutralizing antibody. Although more effective than the WC vaccine, the BS-WC vaccine has not been adopted for manufacture by developing world countries primarily because the CTB component is difficult to manufacture and include in the vaccine in the doses needed to induce significant immune responses. We reasoned this was a technical problem that might be solved by engineering strains of V. cholerae that express cell-associated CTB that would co-purify with the bacterial cell fraction during the manufacture of WC vaccine. Here we report that construction of a V. cholerae O1 classical strain, O395-N1-E1, that has been engineered to accumulate CTB in the periplasmic fraction by disrupting the epsE gene of type II secretion pathway. O395-N1-E1 induces anti-CTB IgG and vibriocidal antibodies in mice immunized with two doses of formalin killed whole cells. Intraperitoneal immunization of mice with O395-N1-E1 induced a significantly higher anti-CTB antibody response compared to that of the parental strain, O395-N1. Our results suggest that this prototype cholera vaccine candidate strain may assist in preparing improved and inexpensive oral BS-WC cholera vaccine without the need to purify CTB separately.

  11. Vibrio cholerae O139 Conjugate Vaccines: Synthesis and Immunogenicity of V. cholerae O139 Capsular Polysaccharide Conjugates with Recombinant Diphtheria Toxin Mutant in Mice

    PubMed Central

    Kossaczka, Zuzana; Shiloach, Joseph; Johnson, Virginia; Taylor, David N.; Finkelstein, Richard A.; Robbins, John B.; Szu, Shousun C.

    2000-01-01

    Epidemiologic and experimental data provide evidence that a critical level of serum immunoglobulin G (IgG) antibodies to the surface polysaccharide of Vibrio cholerae O1 (lipopolysaccharide) and of Vibrio cholerae O139 (capsular polysaccharide [CPS]) is associated with immunity to the homologous pathogen. The immunogenicity of polysaccharides, especially in infants, may be enhanced by their covalent attachment to proteins (conjugates). Two synthetic schemes, involving 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and 1-cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP) as activating agents, were adapted to prepare four conjugates of V. cholerae O139 CPS with the recombinant diphtheria toxin mutant, CRMH21G. Adipic acid dihydrazide was used as a linker. When injected subcutaneously into young outbred mice by a clinically relevant dose and schedule, these conjugates elicited serum CPS antibodies of the IgG and IgM classes with vibriocidal activity to strains of capsulated V. cholerae O139. Treatment of these sera with 2-mercaptoethanol (2-ME) reduced, but did not eliminate, their vibriocidal activity. These results indicate that the conjugates elicited IgG with vibriocidal activity. Conjugates also elicited high levels of serum diphtheria toxin IgG. Convalescent sera from 20 cholera patients infected with V. cholerae O139 had vibriocidal titers ranging from 100 to 3,200: absorption with the CPS reduced the vibriocidal titer of all sera to ≤50. Treatment with 2-ME reduced the titers of 17 of 20 patients to ≤50. These data show that, like infection with V. cholerae O1, infection with V. cholerae O139 induces vibriocidal antibodies specific to the surface polysaccharide of this bacterium (CPS) that are mostly of IgM class. Based on these data, clinical trials with the V. cholerae O139 CPS conjugates with recombinant diphtheria toxin are planned. PMID:10948122

  12. Ganglioside GM1-mediated transcytosis of cholera toxin bypasses the retrograde pathway and depends on the structure of the ceramide domain.

    PubMed

    Saslowsky, David E; te Welscher, Yvonne M; Chinnapen, Daniel J-F; Wagner, Jessica S; Wan, Joy; Kern, Eli; Lencer, Wayne I

    2013-09-06

    Cholera toxin causes diarrheal disease by binding ganglioside GM1 on the apical membrane of polarized intestinal epithelial cells and trafficking retrograde through sorting endosomes, the trans-Golgi network (TGN), and into the endoplasmic reticulum. A fraction of toxin also moves from endosomes across the cell to the basolateral plasma membrane by transcytosis, thus breeching the intestinal barrier. Here we find that sorting of cholera toxin into this transcytotic pathway bypasses retrograde transport to the TGN. We also find that GM1 sphingolipids can traffic from apical to basolateral membranes by transcytosis in the absence of toxin binding but only if the GM1 species contain cis-unsaturated or short acyl chains in the ceramide domain. We found previously that the same GM1 species are needed to efficiently traffic retrograde into the TGN and endoplasmic reticulum and into the recycling endosome, implicating a shared mechanism of action for sorting by lipid shape among these pathways.

  13. A Periplasmic Polymer Curves Vibrio cholerae and Promotes Pathogenesis.

    PubMed

    Bartlett, Thomas M; Bratton, Benjamin P; Duvshani, Amit; Miguel, Amanda; Sheng, Ying; Martin, Nicholas R; Nguyen, Jeffrey P; Persat, Alexandre; Desmarais, Samantha M; VanNieuwenhze, Michael S; Huang, Kerwyn Casey; Zhu, Jun; Shaevitz, Joshua W; Gitai, Zemer

    2017-01-12

    Pathogenic Vibrio cholerae remains a major human health concern. V. cholerae has a characteristic curved rod morphology, with a longer outer face and a shorter inner face. The mechanism and function of this curvature were previously unknown. Here, we identify and characterize CrvA, the first curvature determinant in V. cholerae. CrvA self-assembles into filaments at the inner face of cell curvature. Unlike traditional cytoskeletons, CrvA localizes to the periplasm and thus can be considered a periskeletal element. To quantify how curvature forms, we developed QuASAR (quantitative analysis of sacculus architecture remodeling), which measures subcellular peptidoglycan dynamics. QuASAR reveals that CrvA asymmetrically patterns peptidoglycan insertion rather than removal, causing more material insertions into the outer face than the inner face. Furthermore, crvA is quorum regulated, and CrvA-dependent curvature increases at high cell density. Finally, we demonstrate that CrvA promotes motility in hydrogels and confers an advantage in host colonization and pathogenesis.

  14. Novel Vibrio cholerae O139 genes involved in lipopolysaccharide biosynthesis.

    PubMed Central

    Stroeher, U H; Parasivam, G; Dredge, B K; Manning, P A

    1997-01-01

    The sequence of part of the rfb region of Vibrio cholerae serogroup O139 and the physical map of a 35-kb region of the O139 chromosome have been determined. The O139 rfb region presented contains a number of open reading frames which show similarities to other rfb and capsular biosynthesis genes found in members of the Enterobacteriaceae family and in V. cholerae O1. The cloned and sequenced region can complement the defects in O139 antigen biosynthesis in transposon insertions within the O139 rfb cluster. Linkage is demonstrated among IS1358 of V. cholerae O139, the rfb region, and the recently reported otnA and otnB genes (E. M. Bik, A. E. Bunschoten, R. D. Gouw, and F. R. Mooi, EMBO J. 14:209-216, 1995). In addition, the whole of this region has been linked to the rfaD gene. Furthermore, determination of the sequence flanking IS1358 has revealed homology to other rfb-like genes. The exact site of insertion with respect to rfaD is defined for the novel DNAs of both the Bengal and the Argentinian O139 isolates. PMID:9098074

  15. Differential thiol-based switches jumpstart Vibrio cholerae pathogenesis

    PubMed Central

    Liu, Zhi; Wang, Hui; Zhou, Zhigang; Naseer, Nawar; Xiang, Fu; Kan, Biao; Goulian, Mark; Zhu, Jun

    2015-01-01

    Bacterial pathogens utilize gene expression versatility to adapt to environmental changes. Vibrio cholerae, the causative agent of cholera, encounters redox potential changes when it transitions from oxygen-rich aquatic reservoirs to the oxygen-limiting human gastrointestinal tract. We previously showed that the virulence regulator AphB uses thiol-based switches to sense the anoxic host environment and transcriptionally activate the key virulence activator tcpP. Here, by performing a high-throughput transposon sequencing screen in vivo, we identified OhrR as another regulator that enables V. cholerae rapid anoxic adaptation. Like AphB, reduced OhrR binds to and regulates the tcpP promoter. OhrR and AphB displayed differential dynamics in response to redox potential changes: OhrR is reduced more rapidly than AphB. Furthermore, OhrR thiol modification is required for rapid activation of virulence and successful colonization. This reveals a mechanism whereby bacterial pathogens employ posttranslational modifications of multiple transcription factors to sense and adapt to dynamic environmental changes. PMID:26748713

  16. An assistant ship surgeon's account of cholera at sea.

    PubMed

    Goodyer, Bronwen E J

    2008-09-01

    The diary of Thomas Graham, a naval ship surgeon, brings the voyage of HMS troopship Apollo in 1849 to life. A year after England's second great cholera outbreak, the pervasive fear of the disease became a reality onboard when cholera broke out. The intended voyage from England to China was diverted to South America where the ship was put into quarantine. So bad were the conditions onboard that the Times correspondent wrote: 'I have never seen a convict-ship in which the convicts were not more comfortably lodged'. Graham's writing provides an insightful record of life at sea in the mid-nineteenth century and the circumstances that led to this cholera outbreak, namely the overcrowding and poor hygiene. He wrote about the current beliefs and assumptions surrounding the disease; that the foul air was to blame. He also noted the varied methods taken to confine patients and treat the disease. The diary is supported by evidence from naval records and newspaper articles. Graham's writing gives us a glimpse into the life of a man who saw the world from a perspective inaccessible to us and the experience of observing newly discovered continents, cultures and wildlife, which he meticulously recorded. This was Graham's last piece of writing as he died unexpectedly of malaria shortly after the journey's end. The diary encapsulates the struggle to overcome disease and the tragic plight a humble ship surgeon shared with the crew.

  17. Sociomedical indicators in the cholera epidemic in Ferrara of 1855.

    PubMed

    Scapoli, Chiara; Guidi, Enrica; Angelini, Lauretta; Stefanati, Armando; Gregorio, Pasquale

    2003-01-01

    The historical report on the cholera epidemic of 1855, conserved in Ferrara City's archives allowed us to verify the probable relation between the environment and epidemic in a broad sense, using log-linear analysis and multiple logistic regression. Two thousand and thirty-three cases were analyzed and the quantitative/qualitative variables available from the report were analyzed in relationship with mortality and morbidity rates, considered as response variables. From the analysis of the quantitative variables, it emerges that the variables having a significant influence on the morbidity/mortality rates are the number of individuals and the average number of inhabitants per house. From the analysis of the qualitative variables, it emerges that all the descriptive variables of the state of the streets and houses express a strong association with mortality and morbidity. With the present analysis, data available--a detailed 'street by street' morbidity and mortality recording from cholera in 1855 in Ferrara--were analyzed with modern means and the overall picture that emerge is that in the better kept houses in the better parts of the town had less cholera morbidity and especially mortality.

  18. Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic.

    PubMed

    Capone, Florinda; De Cataldis, Valentina; De Luca, Roberta

    2015-11-01

    A reaction-diffusion system modeling cholera epidemic in a non-homogeneously mixed population is introduced. The interaction between population and toxigenic Vibrio cholerae concentration in contaminated water has been taken into account. The existence of biologically meaningful equilibria is investigated together with their linear and nonlinear stability. Using the data collected during the Haiti cholera epidemic, a numerical simulation is performed.

  19. Cholera toxin B subunit pentamer reassembled from Escherichia coli inclusion bodies for use in vaccination.

    PubMed

    Tamaki, Yukihiro; Harakuni, Tetsuya; Yamaguchi, Rui; Miyata, Takeshi; Arakawa, Takeshi

    2016-03-04

    The cholera toxin B subunit (CTB) is secreted in its pentameric form from Escherichia coli if its leader peptide is replaced with one of E. coli origin. However, the secretion of the pentamer is generally severely impaired when the molecule is mutated or fused to a foreign peptide. Therefore, we attempted to regenerate pentameric CTB from the inclusion bodies (IBs) of E. coli. Stepwise dialysis of the IBs solubilized in guanidine hydrochloride predominantly generated soluble high-molecular-mass (HMM) aggregates and only a small fraction of pentamer. Three methods to reassemble homogeneous pentameric molecules were evaluated: (i) using a pentameric coiled-coil fusion partner, expecting it to function as an assembly core; (ii) optimizing the protein concentration during refolding; and (iii) eliminating contaminants before refolding. Coiled-coil fusion had some effect, but substantial amounts of HMM aggregates were still generated. Varying the protein concentration from 0.05 mg/mL to 5mg/mL had almost no effect. In contrast, eliminating the contaminants before refolding had a robust effect, and only the pentamer was regenerated, with no detectable HMM aggregates. Surprisingly, the protein concentration at refolding was up to 5mg/mL when the contaminants were removed, with no adverse effects on refolding. The regenerated pentamer was indistinguishable in its biochemical and immunological characteristics from CTB secreted from E. coli or choleragenoid from Vibrio cholerae. This study provides a simple but very efficient strategy for pentamerizing CTB with a highly homogeneous molecular conformation, with which it may be feasible to engineer CTB derivatives and CTB fusion antigens.

  20. Genomic profiles of clinical and environmental isolates of Vibrio cholerae O1 in cholera-endemic areas of Bangladesh

    PubMed Central

    Zo, Young-Gun; Rivera, Irma N. G.; Russek-Cohen, Estelle; Islam, M. Sirajul; Siddique, A. K.; Yunus, M.; Sack, R. Bradley; Huq, Anwar; Colwell, Rita R.

    2002-01-01

    Diversity, relatedness, and ecological interactions of toxigenic Vibrio cholerae O1 populations in two distinctive habitats, the human intestine and the aquatic environment, were analyzed. Twenty environmental isolates and 42 clinical isolates were selected for study by matching serotype, geographic location of isolation in Bangladesh, and season of isolation. Genetic profiling was done by enterobacterial repetitive intergenic consensus sequence–PCR, optimized for profiling by using the fully sequenced V. cholerae El Tor N16961 genome. Five significant clonal clusters of haplotypes were found from 57 electrophoretic types. Isolates from different areas or habitats intermingled in two of the five significant clusters. Frequencies of haplotypes differed significantly only between the environmental populations (exact test; P < 0.05). Analysis of molecular variance yielded a population genetic structure reflecting the differentiating effects of geographic area, habitat, and sampling time. Although a parameter confounding the latter differences explained 9% of the total molecular variance in the entire population (P < 0.01), the net effect of habitat and time could not be separated because of the small number of environmental isolates included in the study. Five subpopulations from a single area were determined, and from these we were able to estimate a relative differentiating effect of habitat, which was small compared with the effect of temporal change. In conclusion, the resulting population structure supports the hypothesis that spatial and temporal fluctuations in the composition of toxigenic V. cholerae populations in the aquatic environment can cause shifts in the dynamics of the disease. PMID:12205294

  1. Prevalence of vibrio cholerae and salmonella in a major shrimp production area in Thailand.

    PubMed

    Dalsgaard, A; Huss, H H; H-Kittikun, A; Larsen, J L

    1995-11-01

    In 1992 and 1993, a 7 months study carried out in a major shrimp-producing area in Southern Thailand to study the prevalence of Vibrio cholerae and Salmonella. A total of 158 samples were examined including water, sediment, shrimp, pelleted feed, shrimp gut, and chicken manure. Salmonella was not recovered from any sample type studied. V. cholerae O1 was isolated from 2 (2%) and V. cholerae non-O1 was isolated from 35 (33%) of 107 samples examined. The occurrence of V. cholerae was not significantly influenced by water salinity, temperature, dissolved oxygen or pH. There was no correlation between fecal coliform counts and the prevalence of V. cholerae. The results indicate that V. cholerae non-O1 is ubiquitous in aquatic environments where shrimp culture is practised under a variety of environmental conditions. The public health significance of non-O1 V. cholerae in shrimp culture remains to be determined. V. cholerae O1 and Salmonella do not appear to constitute a hygienic problem even if chicken manure was used as fertilizer.

  2. Inventory Management of Cholera Vaccinations in the Event of Complex Natural Disasters

    DTIC Science & Technology

    2015-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT INVENTORY MANAGEMENT OF CHOLERA VACCINATIONS IN THE...December 2015 3. REPORT TYPE AND DATES COVERED MBA professional report 4. TITLE AND SUBTITLE INVENTORY MANAGEMENT OF CHOLERA VACCINATIONS IN THE...This MBA Project explores the considerations and recommendations for mass vaccination campaigns in response to natural disasters and their secondary

  3. Use of filter paper as a transport medium for laboratory diagnosis of cholera under field conditions.

    PubMed

    Page, Anne-Laure; Alberti, Kathryn P; Guénolé, Alain; Mondongue, Vital; Lonlas Mayele, Sylvaine; Guerin, Philippe J; Quilici, Marie-Laure

    2011-08-01

    Confirmation of a cholera epidemic is based on bacteriological identification of the agent and requires the sending of samples to a culture laboratory, often in countries with limited resources. Comparison of the use of filter paper with the use of Cary-Blair reference medium for stool transport showed that this simple transport medium is appropriate for the recovery of Vibrio cholerae.

  4. Cholera: assessing the risk to travellers and identifying methods of protection.

    PubMed

    Steffen, Robert; Acar, Jacques; Walker, Eric; Zuckerman, Jane

    2003-05-01

    This review is based on the findings of a consultation meeting involving consultants in travel medicine and focusing on the risks of cholera to the traveller. Cholera is a severe diarrhoeal disease transmitted via the faeco-oral route and commonly associated with poor sanitation. Between the years of 1995 and 2001, the WHO reported 1829 cases of cholera in developed countries, the majority of which were imported. However, it is believed that this figure reflects less than 10% of the true incidence of cholera due to milder cases being unrecognised, as well as significant underreporting. Travellers to epidemic countries may be at increased risk of contracting cholera if they ingest contaminated food or water. It has been estimated that there are 0.2 cases of cholera per 100,000 European and North American travellers, though there is some evidence that this rate is higher. Oral vaccines are a necessary and welcome advance as, in addition to preventing illness, they can minimise the possibility of transmission of cholera to disease-free regions. The morbidity from cholera can range from asymptomatic or oligosymptomatic infection to disruption of holiday and business plans, or even severe toxicity and dehydration. If untreated, severe illnesses can be fatal, although fatalities have not been reported among travellers for many years.

  5. Cholera Transmission in Ouest Department of Haiti: Dynamic Modeling and the Future of the Epidemic

    PubMed Central

    Kirpich, Alexander; Weppelmann, Thomas A.; Yang, Yang; Ali, Afsar; Morris, J. Glenn; Longini, Ira M.

    2015-01-01

    In the current study, a comprehensive, data driven, mathematical model for cholera transmission in Haiti is presented. Along with the inclusion of short cycle human-to-human transmission and long cycle human-to-environment and environment-to-human transmission, this novel dynamic model incorporates both the reported cholera incidence and remote sensing data from the Ouest Department of Haiti between 2010 to 2014. The model has separate compartments for infectious individuals that include different levels of infectivity to reflect the distribution of symptomatic and asymptomatic cases in the population. The environmental compartment, which serves as a source of exposure to toxigenic V. cholerae, is also modeled separately based on the biology of causative bacterium, the shedding of V. cholerae O1 by humans into the environment, as well as the effects of precipitation and water temperature on the concentration and survival of V. cholerae in aquatic reservoirs. Although the number of reported cholera cases has declined compared to the initial outbreak in 2010, the increase in the number of susceptible population members and the presence of toxigenic V. cholerae in the environment estimated by the model indicate that without further improvements to drinking water and sanitation infrastructures, intermittent cholera outbreaks are likely to continue in Haiti. PMID:26488620

  6. Host intestinal signal-promoted biofilm dispersal induces Vibrio cholerae colonization.

    PubMed

    Hay, Amanda J; Zhu, Jun

    2015-01-01

    Vibrio cholerae causes human infection through ingestion of contaminated food and water, leading to the devastating diarrheal disease cholera. V. cholerae forms matrix-encased aggregates, known as biofilms, in the native aquatic environment. While the formation of V. cholerae biofilms has been well studied, little is known about the dispersal from biofilms, particularly upon entry into the host. In this study, we found that the exposure of mature biofilms to physiologic levels of the bile salt taurocholate, a host signal for the virulence gene induction of V. cholerae, induces an increase in the number of detached cells with a concomitant decrease in biofilm mass. Scanning electron microscopy micrographs of biofilms exposed to taurocholate revealed an altered, perhaps degraded, appearance of the biofilm matrix. The inhibition of protein synthesis did not alter rates of detachment, suggesting that V. cholerae undergoes a passive dispersal. Cell-free media from taurocholate-exposed biofilms contains a larger amount of free polysaccharide, suggesting an abiotic degradation of biofilm matrix by taurocholate. Furthermore, we found that V. cholerae is only able to induce virulence in response to taurocholate after exit from the biofilm. Thus, we propose a model in which V. cholerae ingested as a biofilm has coopted the host-derived bile salt signal to detach from the biofilm and go on to activate virulence.

  7. Protective efficacy of oral whole-cell/recombinant-B-subunit cholera vaccine in Peruvian military recruits.

    PubMed

    Sanchez, J L; Vasquez, B; Begue, R E; Meza, R; Castellares, G; Cabezas, C; Watts, D M; Svennerholm, A M; Sadoff, J C; Taylor, D N

    1994-11-05

    The cholera epidemic in South America has reinforced the need for safe and effective oral vaccines. In a randomised, double-blind, placebo-controlled efficacy trial among 1563 Peruvian military recruits we have investigated the protective efficacy of an oral inactivated whole-cell/recombinant-B-subunit (WC/rBS) cholera vaccine. Participants were given two oral doses of cholera vaccine or Escherichia coli K12 placebo, with an interval of 7-14 days. 1426 (91%) subjects received the two prescribed doses and were followed up for a mean of 18 weeks (median 21 weeks). After vaccination, Vibrio cholerae O1 El Tor Ogawa was isolated from 17 subjects with diarrhoea. 16 of the cholera cases occurred 2 weeks or longer after the second dose of vaccine (14 placebo recipients, 2 vaccinees). We also detected 14 symptomless infections (11 [7 placebo recipients, 4 vaccinees]) 2 weeks or longer after the second dose. The vaccine had significant protective efficacy against cholera (86% [95% CI 37-97], p < 0.01) but not against symptomless infection (42% [-96 to 85]). All cholera cases were in people of blood group O, who made up 76% of the study population (p < 0.01). Two doses of WC/rBS vaccine, given 1 to 2 weeks apart, provide rapid, short-term protection against symptomatic cholera in adult South Americans, who are predominantly of blood group O. Long-term efficacy studies in Peruvian adults and children are under way.

  8. Peak occurrences of ciguatera fish poisoning precede cholera outbreaks in Hong Kong.

    PubMed Central

    Kwan, L. C.; Cheung, D. K. F.; Kam, K. M.

    2003-01-01

    Occurrences of ciguatera fish poisoning (CFP) and Vibrio cholerae infected patients in Hong Kong were reviewed for the 13-year period 1989-2001. Peak activity of CFP preceded peak activity of cholera in nine of the years except in 4 years (1990, 1991, 1992, 1996) where it was observed that the total number of cholera cases were all less than or equal to five per year (P < 0.05). Average time interval was 2.4 months between peaks of CFP and Vibrio cholerae outbreaks. Findings suggested that the factors that affect cholera and ciguatera occurrences may not be operating in some years but when they are operating, they will affect both cholera and CFP. CFP peaks have consistently occurred before Vibrio cholerae peaks in our locality so much so that the occurrence of the latter can now be almost accurately predicted since 1998. CFP peaks served as an early warning for public measures to be in place before occurrence of cholera outbreaks. PMID:12948360

  9. Cholera Transmission in Ouest Department of Haiti: Dynamic Modeling and the Future of the Epidemic.

    PubMed

    Kirpich, Alexander; Weppelmann, Thomas A; Yang, Yang; Ali, Afsar; Morris, J Glenn; Longini, Ira M

    2015-01-01

    In the current study, a comprehensive, data driven, mathematical model for cholera transmission in Haiti is presented. Along with the inclusion of short cycle human-to-human transmission and long cycle human-to-environment and environment-to-human transmission, this novel dynamic model incorporates both the reported cholera incidence and remote sensing data from the Ouest Department of Haiti between 2010 to 2014. The model has separate compartments for infectious individuals that include different levels of infectivity to reflect the distribution of symptomatic and asymptomatic cases in the population. The environmental compartment, which serves as a source of exposure to toxigenic V. cholerae, is also modeled separately based on the biology of causative bacterium, the shedding of V. cholerae O1 by humans into the environment, as well as the effects of precipitation and water temperature on the concentration and survival of V. cholerae in aquatic reservoirs. Although the number of reported cholera cases has declined compared to the initial outbreak in 2010, the increase in the number of susceptible population members and the presence of toxigenic V. cholerae in the environment estimated by the model indicate that without further improvements to drinking water and sanitation infrastructures, intermittent cholera outbreaks are likely to continue in Haiti.

  10. The antigenic relationship between Brettanomyces-Debaryomyces strains and the Salmonella cholerae-suis O antigen.

    PubMed

    Aksoycan, N; Sağanak, I; Wells, G

    1978-01-01

    The immune sera for Brettanomyces lambicus, B. claussenii, Debaryomyces hansenii and D. marama agglutinated Salmonella cholerae-suis (0:6(2), 7). The immune serum for S. cholerae-suis agglutinated B. lambicus, B. clausenni, D. hansenii and D. marama. Absorption and agglutination cross-tested demonstrated common antigen factor(s) in the tested yeasts and Salmonella 0:7 antigen.

  11. Toxigenic Vibrio cholerae identified in estuaries of Tanzania using PCR techniques.

    PubMed

    Dalusi, Lucy; Lyimo, Thomas J; Lugomela, Charles; Hosea, Ken M M; Sjöling, Sara

    2015-03-01

    The current study assessed the occurrence of the Vibrio cholerae serogroups O1 and O139 in environmental samples along salinity gradients in three selected estuaries of Tanzania both through culture independent methods and by cultured bacteria. Occurrence of V. cholerae was determined by PCR targeting the V. cholerae outer membrane protein gene ompW. Furthermore, the presence of toxigenic strains and serogroups O1 and O139 was determined using multiplex PCR with specific primers targeting the cholera toxin gene subunit A, ctxA, and serotype specific primers, O1-rfb and O139-rfb, respectively. Results showed that V. cholerae occurred in approximately 10% (n = 185) of both the environmental samples and isolated bacteria. Eight of the bacteria isolates (n = 43) were confirmed as serogroup O1 while one belonged to serogroup O139, the first reported identification of this epidemic strain in East African coastal waters. All samples identified as serogroup O1 or O139 and a number of non-O1/O139 strains were ctxA positive. This study provides in situ evidence of the presence of pathogenic V. cholerae O1 and O139 and a number of V. cholerae non-O1/O139 that carry the cholera toxin gene in estuaries along the coast of Tanzania.

  12. Dynamics of Vibrio cholerae abundance in Austrian saline lakes, assessed with quantitative solid-phase cytometry.

    PubMed

    Schauer, Sonja; Jakwerth, Stefan; Bliem, Rupert; Baudart, Julia; Lebaron, Philippe; Huhulescu, Steliana; Kundi, Michael; Herzig, Alois; Farnleitner, Andreas H; Sommer, Regina; Kirschner, Alexander

    2015-11-01

    In order to elucidate the main predictors of Vibrio cholerae dynamics and to estimate the risk of Vibrio cholera-related diseases, a recently developed direct detection approach based on fluorescence in situ hybridization and solid-phase cytometry (CARD-FISH/SPC) was applied in comparison to cultivation for water samples from the lake Neusiedler See, Austria and three shallow alkaline lakes over a period of 20 months. Vibrio cholerae attached to crustacean zooplankton was quantified via FISH and epifluorescence microscopy. Concentrations obtained by CARD-FISH/SPC were significantly higher than those obtained by culture in 2011, but were mostly of similar magnitude in 2012. Maximum cell numbers were 1.26 × 10(6) V. cholerae per L in Neusiedler See and 7.59 × 10(7) V. cholerae per L in the shallow alkaline lakes. Only on a few occasions during summer was the crustacean zooplankton the preferred habitat for V. cholerae. In winter, V. cholerae was not culturable but could be quantified at all sites with CARD-FISH/SPC. Beside temperature, suspended solids, zooplankton and ammonium were the main predictors of V. cholerae abundance in Neusiedler See, while in the shallow alkaline lakes it was organic carbon, conductivity and phosphorus. Based on the obtained concentrations a first estimation of the health risk for visitors of the lake could be performed.

  13. Hydroclimatology of dual-peak annual cholera incidence: Insights from a spatially explicit model

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Mari, L.; Righetto, L.; Gatto, M.; Casagrandi, R.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2012-03-01

    Cholera incidence in some regions of the Indian subcontinent may exhibit two annual peaks although the main environmental drivers that have been linked to the disease (e.g., sea surface temperature, zooplankton abundance, river discharge) peak once per year during the summer. An empirical hydroclimatological explanation relating cholera transmission to river flows and to the disease spatial spreading has been recently proposed. We specifically support and substantiate mechanistically such hypothesis by means of a spatially explicit model of cholera transmission. Our framework directly accounts for the role of a model river network in transporting and redistributing cholera bacteria among human communities as well as for spatial and temporal annual fluctuations of river flows. The model is forced by seasonal environmental drivers, namely river flow, temperature and chlorophyll concentration in the coastal environment, a proxy for Vibrio cholerae concentration. Our results show that these drivers may suffice to generate dual-peak cholera prevalence patterns for proper combinations of timescales involved in pathogen transport, hydrologic variability and disease unfolding. The model explains the possible occurrence of spatial patterns of cholera incidence characterized by a spring peak confined to coastal areas and a fall peak involving inland regions. Our modeling framework suggests insights on how environmental drivers concert the generation of complex spatiotemporal infections and proposes an explanation for the different cholera patterns (dual or single annual peaks) exhibited by regions that share similar hydroclimatological forcings.

  14. Preparation and evaluation of a freeze-dried oral killed cholera vaccine formulation.

    PubMed

    Borde, Annika; Larsson, Anette; Holmgren, Jan; Nygren, Erik

    2011-11-01

    Different oral liquid cholera vaccines have proved to be safe and effective, but their formulations present problems for use in low-income countries, since large package volumes have to be transported and cold chain maintenance is required. A solid state formulation would here be more advantageous, and consequently, the possibility to develop a dry cholera vaccine formulation by freeze-drying was investigated. The ability of sucrose, trehalose and mannitol to provide process stabilization during freeze-drying was tested on a formalin-killed whole-cell Vibrio cholerae model vaccine. A matrix of sucrose or trehalose prevented bacterial aggregation, preserved cell morphology and maintained practically completely the protective lipopolysaccharide (LPS) antigen on the cell surface and its reactivity with specific antibody in vitro. After reconstitution, this formulation also retained the capacity to elicit a strong serum and gut mucosal anti-LPS antibody response in orally immunized mice, as compared to the corresponding liquid vaccine formulation. The full preservation of the in vivo immunogenicity was also maintained when the internationally widely licensed oral cholera vaccine Dukoral™, which comprises a cocktail of inactivated V. cholerae together with cholera toxin B-subunit (CTB), was freeze-dried using sucrose for stabilization. Thus, we present a process generating a dry oral inactivated whole-cell cholera vaccine formulation with attractive features for public health use in cholera-afflicted settings.

  15. Comparative and Genetic Analyses of the Putative Vibrio cholerae Lipopolysaccharide Core Oligosaccharide Biosynthesis (wav) Gene Cluster

    PubMed Central

    Nesper, Jutta; Kraiß, Anita; Schild, Stefan; Blaβ, Julia; Klose, Karl E.; Bockemühl, Jochen; Reidl, Joachim

    2002-01-01

    We identified five different putative wav gene cluster types, which are responsible for the synthesis of the core oligosaccharide (OS) region of Vibrio cholerae lipopolysaccharide. Preliminary evidence that the genes encoded by this cluster are involved in core OS biosynthesis came from analysis of the recently released O1 El Tor V. cholerae genome sequence and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of O1 El Tor mutant strains defective in three genes (waaF, waaL, and wavB). Investigations of 38 different V. cholerae strains by Southern blotting, PCR, and sequencing analyses showed that the O1 El Tor wav gene cluster type is prevalent among clinical isolates of different serogroups associated with cholera and environmental O1 strains. In contrast, we found differences in the wav gene contents of 19 unrelated non-O1, non-O139 environmental and human isolates not associated with cholera. These strains contained four new wav gene cluster types that differ from each other in distinct gene loci, providing evidence for horizontal transfer of wav genes and for limited structural diversity of the core OS among V. cholerae isolates. Our results show genetic diversity in the core OS biosynthesis gene cluster and predominance of the type 1 wav gene locus in strains associated with clinical cholera, suggesting that a specific core OS structure could contribute to V. cholerae virulence. PMID:11953379

  16. Vibrio cholerae O1 from superficial water of the Tucunduba Stream, Brazilian Amazon

    PubMed Central

    Sá, L.L.C.; Vale, E.R.V.; Garza, D.R.; Vicente, A.C.P.

    2012-01-01

    Isolation and genetic characterization of an environmental Vibrio cholerae O1 from the Amazon is reported. This strain lacks two major virulence factors - CTX and TCP - but carries other genes related to virulence. Genetic similarity with epidemic strains is evaluated and the importance of V. cholerae surveillance in the Amazon is emphasized. PMID:24031874

  17. Environmental factor analysis of cholera in China using remote sensing and geographical information systems.

    PubMed

    Xu, M; Cao, C X; Wang, D C; Kan, B; Xu, Y F; Ni, X L; Zhu, Z C

    2016-04-01

    Cholera is one of a number of infectious diseases that appears to be influenced by climate, geography and other natural environments. This study analysed the environmental factors of the spatial distribution of cholera in China. It shows that temperature, precipitation, elevation, and distance to the coastline have significant impact on the distribution of cholera. It also reveals the oceanic environmental factors associated with cholera in Zhejiang, which is a coastal province of China, using both remote sensing (RS) and geographical information systems (GIS). The analysis has validated the correlation between indirect satellite measurements of sea surface temperature (SST), sea surface height (SSH) and ocean chlorophyll concentration (OCC) and the local number of cholera cases based on 8-year monthly data from 2001 to 2008. The results show the number of cholera cases has been strongly affected by the variables of SST, SSH and OCC. Utilizing this information, a cholera prediction model has been established based on the oceanic and climatic environmental factors. The model indicates that RS and GIS have great potential for designing an early warning system for cholera.

  18. Survival and distribution of Vibrio cholerae in a tropical rain forest stream

    SciTech Connect

    Perez-Rosas, N.; Hazen, T.C.

    1988-12-31

    For 12 months Vibrio cholerae and fecal coliforms were monitored along with 9 other water quality parameters at 12 sites in a rain forest watershed in Puerto Rico. Densities of V. cholerae and fecal coliforms were not significantly correlated even though the highest densities of both bacteria were found at a sewage outfall. High densities of V. cholerae were also found at pristine sites high in the watershed. V. cholerae and Escherichia coli were inoculated into membrane diffusion chambers, placed at two sites and monitored for 5 days on two different occasions. Two different direct count methods indicated that the density of E. coli and V. cholerae did not change significantly during the course of either study. Physiological activity, as measured by INT-reduction and relative nucleic acid composition declined for E. coli during the first 12 h then increased and remained variable during the remainder of the study. V. cholerae activity, as measured by relative nucleic acid concentrations, remained high and unchanged for the entire study. INT-reduction in V. cholerae declined initially but regained nearly all of it`s original activity within 48 h. This study suggests that V. cholerae is an indigenous organism in tropical freshwaters and that assays other than fecal coliforms or E. coli must be used for assessing public health risk in tropical waters.

  19. Occurrence of Vibrio cholerae serotype O1 in Maryland and Louisiana estuaries.

    PubMed Central

    Colwell, R R; Seidler, R J; Kaper, J; Joseph, S W; Garges, S; Lockman, H; Maneval, D; Bradford, H; Roberts, N; Remmers, E; Huq, I; Huq, A

    1981-01-01

    Vibrio cholerae serotype O1 has been isolated from Chesapeake Bay in Maryland and estuaries and sewers in Louisiana. The occurrence of V. cholerae O1 in the aquatic environment in the absence of human disease suggests that this organism survives and multiples in the natural environment. PMID:7235699

  20. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae.

    PubMed

    Faruque, Shah M; Mekalanos, John J

    2012-11-15

    Understanding the genetic and ecological factors which support the emergence of new clones of pathogenic bacteria is vital to develop preventive measures. Vibrio cholerae the causative agent of cholera epidemics represents a paradigm for this process in that this organism evolved from environmental non-pathogenic strains by acquisition of virulence genes. The major virulence factors of V. cholerae, cholera toxin (CT) and toxin coregulated pilus (TCP) are encoded by a lysogenic bacteriophage (CTXφ) and a pathogenicity island, respectively. Additional phages which cooperate with the CTXφ in horizontal transfer of genes in V. cholerae have been characterized, and the potential exists for discovering yet new phages or genetic elements which support the transfer of genes for environmental fitness and virulence leading to the emergence of new epidemic strains. Phages have also been shown to play a crucial role in modulating seasonal cholera epidemics. Thus, the complex array of natural phenomena driving the evolution of pathogenic V. cholerae includes, among other factors, phages that either participate in horizontal gene transfer or in a bactericidal selection process favoring the emergence of new clones of V. cholerae.

  1. A novel kit for rapid detection of Vibrio cholerae O1.

    PubMed Central

    Hasan, J A; Huq, A; Tamplin, M L; Siebeling, R J; Colwell, R R

    1994-01-01

    We report on the development and testing of a novel, rapid, colorimetric immunodiagnostic kit, Cholera SMART, for direct detection of the presence of Vibrio cholerae O1 in clinical specimens. Unlike conventional culture methods requiring several days to complete, the Cholera SMART kit can be used directly in the field by untrained or minimally skilled personnel to detect V. cholerae O1 in less than 15 min, without cumbersome laboratory equipment. A total of 120 clinical and environmental bacterial strains, including both O1 and non-O1 serotypes of V. cholerae isolated from samples collected from a variety of geographical regions, were tested, and positive reactions were observed only with V. cholerae O1. Also, results of a field trial in Bangladesh, employing Cholera SMART, showed 100% specificity and 96% sensitivity compared with conventional culture methods. Another field trial, in Mexico, showed that Cholera SMART was 100% in agreement with a recently described coagglutination test when 108 stool specimens were tested. PMID:8126193

  2. A cluster of Vibrio cholerae O1 infections in French travelers to Rajasthan (India), May 2006.

    PubMed

    Tarantola, Arnaud; Vaucel, Jacques; Laviolle, Céline; Quilici, Marie-Laure; Thiolet, Jean-Michel; Fournier, Jean-Michel

    2008-01-01

    A woman aged 60 years was hospitalized for Vibrio cholerae serogroup O1 cholera. Twenty-six fellow travelers and 48 health care workers who cared for the patient were individually traced and contacted. Of the 23/27 travelers with diarrhea during the trip, 4 presented antibodies. There was no person-to-person transmission.

  3. The role of socioeconomic status in longitudinal trends of cholera in Matlab, Bangladesh, 1993-2007.

    PubMed

    Root, Elisabeth Dowling; Rodd, Joshua; Yunus, Mohammad; Emch, Michael

    2013-01-01

    There has been little evidence of a decline in the global burden of cholera in recent years as the number of cholera cases reported to WHO continues to rise. Cholera remains a global threat to public health and a key indicator of lack of socioeconomic development. Overall socioeconomic development is the ultimate solution for control of cholera as evidenced in developed countries. However, most research has focused on cross-county comparisons so that the role of individual- or small area-level socioeconomic status (SES) in cholera dynamics has not been carefully studied. Reported cases of cholera in Matlab, Bangladesh have fluctuated greatly over time and epidemic outbreaks of cholera continue, most recently with the introduction of a new serotype into the region. The wealth of longitudinal data on the population of Matlab provides a unique opportunity to explore the impact of socioeconomic status and other demographic characteristics on the long-term temporal dynamics of cholera in the region. In this population-based study we examine which factors impact the initial number of cholera cases in a bari at the beginning of the 0139 epidemic and the factors impacting the number of cases over time. Cholera data were derived from the ICDDR,B health records and linked to socioeconomic and geographic data collected as part of the Matlab Health and Demographic Surveillance System. Longitudinal zero-inflated Poisson (ZIP) multilevel regression models are used to examine the impact of environmental and socio-demographic factors on cholera counts across baris. Results indicate that baris with a high socioeconomic status had lower initial rates of cholera at the beginning of the 0139 epidemic (γ(01) = -0.147, p = 0.041) and a higher probability of reporting no cholera cases (α(01) = 0.156, p = 0.061). Populations in baris characterized by low SES are more likely to experience higher cholera morbidity at the beginning of an epidemic than populations in high

  4. Elimination of cholera in the democratic Republic of the Congo: the new national policy.

    PubMed

    Muyembe, Jean Jacques; Bompangue, Didier; Mutombo, Guy; Akilimali, Laurent; Mutombo, Annie; Miwanda, Berthe; Mpuruta, Jean de Dieu; Deka, Kabunga Kambale; Bitakyerwa, Fataki; Saidi, Jaime Mufitini; Mutadi, Armand Luhembwe; Kakongo, Raphael Senga; Birembano, Freddy; Mengel, Martin; Gessner, Bradford D; Ilunga, Benoît Kebela

    2013-11-01

    We evaluated published and unpublished data on cholera cases and deaths reported from clinical care facilities in the 56 health districts of the Democratic Republic of Congo to the National Ministry of Health during 2000-2011. Cholera incidence was highest in the eastern provinces bordering lakes and epidemics primarily originated in this region. Along with a strong seasonal component, our data suggest a potential Vibrio cholerae reservoir in the Rift Valley lakes and the possible contribution of the lakes' fishing industry to the spread of cholera. The National Ministry of Health has committed to the elimination-rather than control-of cholera in DRC and has adopted a new national policy built on improved alert, response, case management, and prevention. To achieve this goal and implement all these measures it will require strong partners in the international community with a similar vision.

  5. Identifying environmental risk factors of cholera in a coastal area with geospatial technologies.

    PubMed

    Xu, Min; Cao, Chunxiang; Wang, Duochun; Kan, Biao

    2014-12-29

    Satellites contribute significantly to environmental quality and public health. Environmental factors are important indicators for the prediction of disease outbreaks. This study reveals the environmental factors associated with cholera in Zhejiang, a coastal province of China, using both Remote Sensing (RS) and Geographic information System (GIS). The analysis validated the correlation between the indirect satellite measurements of sea surface temperature (SST), sea surface height (SSH) and ocean chlorophyll concentration (OCC) and the local cholera magnitude based on a ten-year monthly data from the year 1999 to 2008. Cholera magnitude has been strongly affected by the concurrent variables of SST and SSH, while OCC has a one-month time lag effect. A cholera prediction model has been established based on the sea environmental factors. The results of hot spot analysis showed the local cholera magnitude in counties significantly associated with the estuaries and rivers.

  6. Recurrent epidemic cholera with high mortality in Cameroon: persistent challenges 40 years into the seventh pandemic.

    PubMed

    Cartwright, E J; Patel, M K; Mbopi-Keou, F X; Ayers, T; Haenke, B; Wagenaar, B H; Mintz, E; Quick, R

    2013-10-01

    Cameroon has experienced recurrent cholera epidemics with high mortality rates. In September 2009, epidemic cholera was detected in the Far North region of Cameroon and the reported case-fatality rate was 12%. We conducted village-, healthcare facility- and community-level surveys to investigate reasons for excess cholera mortality. Results of this investigation suggest that cholera patients who died were less likely to seek care, receive rehydration therapy and antibiotics at a healthcare facility, and tended to live further from healthcare facilities. Furthermore, use of oral rehydration salts at home was very low in both decedents and survivors. Despite the many challenges inherent to delivering care in Cameroon, practical measures could be taken to reduce cholera mortality in this region, including the timely provision of treatment supplies, training of healthcare workers, establishment of rehydration centres, and promotion of household water treatment and enhanced handwashing with soap.

  7. Resveratrol--a potential inhibitor of biofilm formation in Vibrio cholerae.

    PubMed

    Augustine, Nimmy; Goel, A K; Sivakumar, K C; Kumar, R Ajay; Thomas, Sabu

    2014-02-15

    Resveratrol, a phytochemical commonly found in the skin of grapes and berries, was tested for its biofilm inhibitory activity against Vibrio cholerae. Biofilm inhibition was assessed using crystal violet assay. MTT assay was performed to check the viability of the treated bacterial cells and the biofilm architecture was analysed using confocal laser scanning microscopy. The possible target of the compound was determined by docking analysis. Results showed that subinhibitory concentrations of the compound could significantly inhibit biofilm formation in V. cholerae in a concentration-dependent manner. AphB was found to be the putative target of resveratrol using docking analysis. The results generated in this study proved that resveratrol is a potent biofilm inhibitor of V. cholerae and can be used as a novel therapeutic agent against cholera. To our knowledge, this is the first report of resveratrol showing antibiofilm activity against V. cholerae.

  8. Predictors of disease severity in patients admitted to a cholera treatment center in urban Haiti.

    PubMed

    Valcin, Claude-Lyne; Severe, Karine; Riche, Claudia T; Anglade, Benedict S; Moise, Colette Guiteau; Woodworth, Michael; Charles, Macarthur; Li, Zhongze; Joseph, Patrice; Pape, Jean W; Wright, Peter F

    2013-10-01

    Cholera, previously unrecognized in Haiti, spread through the country in the fall of 2010. An analysis was performed to understand the epidemiological characteristics, clinical management, and risk factors for disease severity in a population seen at the GHESKIO Cholera Treatment Center in Port-au-Prince. A comprehensive review of the medical records of patients admitted during the period of October 28, 2010-July 10, 2011 was conducted. Disease severity on admission was directly correlated with older age, more prolonged length of stay, and presentation during the two epidemic waves seen in the observation period. Although there was a high seroprevalence of human immunodeficiency virus (HIV), severity of cholera was not greater with HIV infection. This study documents the correlation of cholera waves with rainfall and its reduction in settings with improved sanitary conditions and potable water when newly introduced cholera affects all ages equally so that interventions must be directed throughout the population.

  9. Identifying Environmental Risk Factors of Cholera in a Coastal Area with Geospatial Technologies

    PubMed Central

    Xu, Min; Cao, Chunxiang; Wang, Duochun; Kan, Biao

    2014-01-01

    Satellites contribute significantly to environmental quality and public health. Environmental factors are important indicators for the prediction of disease outbreaks. This study reveals the environmental factors associated with cholera in Zhejiang, a coastal province of China, using both Remote Sensing (RS) and Geographic information System (GIS). The analysis validated the correlation between the indirect satellite measurements of sea surface temperature (SST), sea surface height (SSH) and ocean chlorophyll concentration (OCC) and the local cholera magnitude based on a ten-year monthly data from the year 1999 to 2008. Cholera magnitude has been strongly affected by the concurrent variables of SST and SSH, while OCC has a one-month time lag effect. A cholera prediction model has been established based on the sea environmental factors. The results of hot spot analysis showed the local cholera magnitude in counties significantly associated with the estuaries and rivers. PMID:25551518

  10. Report of the 1966-67 cholera vaccine field trial in rural East Pakistan*

    PubMed Central

    Mosley, Wiley H.; McCormack, William M.; Fahimuddin, M.; Aziz, K. M. A.; Rahman, A. S. M. Mizanur; Chowdhury, A. K. M. Alauddin; Martin, Albert R.; Feeley, John C.; Phillips, Robert A.

    1969-01-01

    A controlled cholera vaccine field trial was carried out in rural East Pakistan during the 1966-67 cholera season. A commercial cholera vaccine of average potency was tested in 40 000 children aged 3 months to 14 years in 1- and 2-dose schedules. In the cholera season extending for 8 months following immunization, a single dose produced an over-all protection of 46%; 2 doses at an interval of 1 month provided 64% protection. The single dose was virtually ineffective in children under 5 years, but provided significant protection in older children. The enhanced effect of the 2-dose schedule was primarily due to the boosting of protection in children under the age of 5 years. The duration of significant protection, even with the 2-dose schedule, did not appear to extend beyond the first 3 months of the 8-month cholera season. PMID:5306538

  11. A co-infection model of malaria and cholera diseases with optimal control.

    PubMed

    Okosun, K O; Makinde, O D

    2014-12-01

    In this paper we formulate a mathematical model for malaria-cholera co-infection in order to investigate their synergistic relationship in the presence of treatments. We first analyze the single infection steady states, calculate the basic reproduction number and then investigate the existence and stability of equilibria. We then analyze the co-infection model, which is found to exhibit backward bifurcation. The impact of malaria and its treatment on the dynamics of cholera is further investigated. Secondly, we incorporate time dependent controls, using Pontryagin's Maximum Principle to derive necessary conditions for the optimal control of the disease. We found that malaria infection may be associated with an increased risk of cholera but however, cholera infection is not associated with an increased risk for malaria. Therefore, to effectively control malaria, the malaria intervention strategies by policy makers must at the same time also include cholera control.

  12. High-Resolution Crystal Structures Elucidate the Molecular Basis of Cholera Blood Group Dependence.

    PubMed

    Heggelund, Julie Elisabeth; Burschowsky, Daniel; Bjørnestad, Victoria Ariel; Hodnik, Vesna; Anderluh, Gregor; Krengel, Ute

    2016-04-01

    Cholera is the prime example of blood-group-dependent diseases, with individuals of blood group O experiencing the most severe symptoms. The cholera toxin is the main suspect to cause this relationship. We report the high-resolution crystal structures (1.1-1.6 Å) of the native cholera toxin B-pentamer for both classical and El Tor biotypes, in complexes with relevant blood group determinants and a fragment of its primary receptor, the GM1 ganglioside. The blood group A determinant binds in the opposite orientation compared to previously published structures of the cholera toxin, whereas the blood group H determinant, characteristic of blood group O, binds in both orientations. H-determinants bind with higher affinity than A-determinants, as shown by surface plasmon resonance. Together, these findings suggest why blood group O is a risk factor for severe cholera.

  13. [The development of biochip to detect anti-cholera antibodies in human blood serum].

    PubMed

    Utkin, D V; Osina, N A; Spitsin, A N; Kireev, M N; Gromova, O V; Zakharova, T L; Naidenova, E V; Kuklev, V E

    2015-02-01

    The full-scaled agglutinating immunoassay is commonly applied to detect content of antibodies to cholera agent Vibrio cholerae human in blood serum under application of serological diagnostic. The time of analysis implementation amounts to 18 hours. To shorten time of detection of antibodies a biological microchip (biochip) was developed. The biochip represents an activated slide with immobilized corpuscle and soluble antigen cholera agent (O-antigens, cholera toxin). The experimental work resulted in development of scheme of biochip and selection of optimal conditions of sorption and implementation of immunologic analysis using biochip. The application of biochip facilitated to detect specific antibodies to antigens of cholera agent in commercial experimental animal serums and blood serums of ill patients. The time of analysis implementation amounted to 2-3 hours. The results are substantiated by bacteriological and serological methods.

  14. Vibrio cholerae O139 Bengal infections among tourists to Southeast Asia: an intercontinental foodborne outbreak.

    PubMed

    Boyce, T G; Mintz, E D; Greene, K D; Wells, J G; Hockin, J C; Morgan, D; Tauxe, R V

    1995-11-01

    To determine the source and extent of an outbreak of Vibrio cholerae O139 Bengal infections among 630 cruise ship passengers to Southeast Asia, a retrospective cohort study was done. Questionnaires were sent to all passengers from the United States, Canada, and the United Kingdom, and serum samples were requested from all passengers reporting diarrhea. A case was defined as diarrheal illness with onset between 8 and 28 February 1994 and a cholera antitoxic antibody titer > or = 800. Six passengers, including 1 with bacteremia, met the case definition. Illness was associated with eating yellow rice at a buffet restaurant in Bangkok on 10 February (relative risk undefined, P = .005). This international outbreak demonstrates foodborne transmission of Vibrio cholerae O139 Bengal, an emerging cause of epidemic cholera in Asia, to tourists from Western countries. Physicians should suspect infection with either V. cholerae O1 or O139 in any patient with severe watery diarrhea after travel to the developing world.

  15. High-Resolution Crystal Structures Elucidate the Molecular Basis of Cholera Blood Group Dependence

    PubMed Central

    Heggelund, Julie Elisabeth; Burschowsky, Daniel; Bjørnestad, Victoria Ariel; Hodnik, Vesna; Anderluh, Gregor; Krengel, Ute

    2016-01-01

    Cholera is the prime example of blood-group-dependent diseases, with individuals of blood group O experiencing the most severe symptoms. The cholera toxin is the main suspect to cause this relationship. We report the high-resolution crystal structures (1.1–1.6 Å) of the native cholera toxin B-pentamer for both classical and El Tor biotypes, in complexes with relevant blood group determinants and a fragment of its primary receptor, the GM1 ganglioside. The blood group A determinant binds in the opposite orientation compared to previously published structures of the cholera toxin, whereas the blood group H determinant, characteristic of blood group O, binds in both orientations. H-determinants bind with higher affinity than A-determinants, as shown by surface plasmon resonance. Together, these findings suggest why blood group O is a risk factor for severe cholera. PMID:27082955

  16. Draft Genome Sequence of Non-O1 and Non-O139 Vibrio cholerae Strain VCC19

    PubMed Central

    de Sá, Pablo Caracciolo Gomes; Da Silva, Miriam Lopes; Carneiro, Adriana Ribeiro; Gomes, Jaqueline Conceição Meireles; Dias, Larissa Maranhão; Alves, Jorianne Thyeska Castro; De Oliveira Veras, Adonney Allan; Baraúna, Rafael Azevedo; Das Graças, Diego Assis; Matté, Maria Helena; Sato, Maria Ines Zanolli; Hachich, Elayse Maria; Matté, Glavur Rogério; Ramos, Rommel Thiago Jucá

    2014-01-01

    Vibrio cholerae O1 is the causative agent of cholera and is ubiquitous in the aquatic environment, while V. cholerae strains non-O1 and non-O139 are recognized as causative agents of sporadic and localized outbreaks of diarrhea. Here, we report the complete sequence of a non-O1 and non-O139 V. cholerae strain (VCC19), which was isolated from the environment in Brazil. The sequence includes the integrative conjugative element (ICE). This paper is the first report of the presence of such an element in a V. cholerae strain isolated in Brazil. PMID:25377699

  17. Spatio-temporal clustering of cholera: the impact of flood control in Matlab, Bangladesh, 1983-2003.

    PubMed

    Carrel, Margaret; Emch, Michael; Streatfield, Peter K; Yunus, Mohammad

    2009-09-01

    Introducing flood control to an area of endemic waterborne diseases could have significant impacts on spatio-temporal occurrence of cholera. Using 21-year data from Bangladesh, we conducted cluster analysis to explore changes in spatial and temporal distribution of cholera incidence since the construction of flood control structures. Striking changes in temporal cluster patterns emerged, including a shift from dry-season to rainy-season clusters following flood protection and delayed clustering inside the protected areas. Spatial differences in pre-flood protection and post-protection cholera clusters are weaker. Changes in spatio-temporal cholera clustering, associated with implementation of flood protection strategies, could affect local cholera prevention efforts.

  18. Rapid Spread of Vibrio cholerae O1 El Tor Variant in Odisha, Eastern India, in 2008 and 2009

    PubMed Central

    Khuntia, H. K.; Pal, B. B.; Samal, S. K.

    2013-01-01

    The emergence and spread of Vibrio cholerae O1 El Tor variant strains causing severe diarrhea has been witnessed worldwide in recent years. In the state of Odisha, India, the spread of the V. cholerae O1 El Tor variant strains was studied during outbreaks in 2008 and 2009. Analysis of 194 V. cholerae O1 Ogawa strains revealed that V. cholerae O1 El Tor variant strains are spreading gradually throughout the state, causing outbreaks replacing typical V. cholerae O1 El Tor biotype strains. PMID:23515546

  19. The Role of Vibrio cholerae Haemagglutinin Protease (HAP) in Extra-Intestinal Infection

    PubMed Central

    Koley, Hemanta; Pal, Amit

    2016-01-01

    Introduction Based on the diversity of surface O antigen Vibrio cholerae can be classified into 206 serogroups. Vibrio cholerae is the causative agent of cholera and extra intestinal infections like, septicemia, wound infection and haemorrhagic reactions. Pathogenic factors of V. cholerae extra-intestinal infection are yet to be explored. Aim To identify the pathogenic factor associated with V. cholerae extra-intestinal infection. Materials and Methods This study was carried out between April, 2007 to October 2007 in National Institute of Cholera and Enteric Diseases (NICED). Haemagglutinin Protease (HAP), a major secreted proteolytic enzyme, was purified from the culture supernatant of Vibrio cholerae O1 strain C6709 after removal of outer membrane vesicles using a single step ion-exchange chromatography. Function of HAP was characterized by animal model, like, subcutaneous mouse assay, basement membrane component’s degradation assays and tissue culture assays. Result When suckling mouse was subcutaneously injected with culture supernatant of C6709 strain or purified HAP in both cases, distinct in vivo haemorrhagic response along with histopathological changes like necrosis of the capillaries and muscle layer, acute myofibre degeneration as well as moderate number of erythrocyte scattered through the skin, capillary necrosis, acute myofiber degeneration and necrosis of muscle layer were found. When Tryptic Soy Broth (TSB) media was used, the haemorrhagic effects in suckling mouse were not detectable. The major protein components, laminin and collagen, of basement membrane comprising of vascular endothelial cells, were degraded by HAP. Purified HAP showed cell rounding effects on Int 407 cells. Conclusion Result indicates that HAP may be a causative agent of Vibrio cholerae mediated extra-intestinal infection. This study confirms that Vibrio cholera as a sole pathogen can cause the extra-intestinal infection. This information is important for public health

  20. Molecular insights into the evolutionary pathway of Vibrio cholerae O1 atypical El Tor variants.

    PubMed

    Kim, Eun Jin; Lee, Dokyung; Moon, Se Hoon; Lee, Chan Hee; Kim, Sang Jun; Lee, Jae Hyun; Kim, Jae Ouk; Song, Manki; Das, Bhabatosh; Clemens, John D; Pape, Jean William; Nair, G Balakrish; Kim, Dong Wook

    2014-09-01

    Pandemic V. cholerae strains in the O1 serogroup have 2 biotypes: classical and El Tor. The classical biotype strains of the sixth pandemic, which encode the classical type cholera toxin (CT), have been replaced by El Tor biotype strains of the seventh pandemic. The prototype El Tor strains that produce biotype-specific cholera toxin are being replaced by atypical El Tor variants that harbor classical cholera toxin. Atypical El Tor strains are categorized into 2 groups, Wave 2 and Wave 3 strains, based on genomic variations and the CTX phage that they harbor. Whole-genome analysis of V. cholerae strains in the seventh cholera pandemic has demonstrated gradual changes in the genome of prototype and atypical El Tor strains, indicating that atypical strains arose from the prototype strains by replacing the CTX phages. We examined the molecular mechanisms that effected the emergence of El Tor strains with classical cholera toxin-carrying phage. We isolated an intermediary V. cholerae strain that carried two different CTX phages that encode El Tor and classical cholera toxin, respectively. We show here that the intermediary strain can be converted into various Wave 2 strains and can act as the source of the novel mosaic CTX phages. These results imply that the Wave 2 and Wave 3 strains may have been generated from such intermediary strains in nature. Prototype El Tor strains can become Wave 3 strains by excision of CTX-1 and re-equipping with the new CTX phages. Our data suggest that inter-chromosomal recombination between 2 types of CTX phages is possible when a host bacterial cell is infected by multiple CTX phages. Our study also provides molecular insights into population changes in V. cholerae in the absence of significant changes to the genome but by replacement of the CTX prophage that they harbor.

  1. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection

    PubMed Central

    Hsiao, Ansel; Shamsir Ahmed, A.M.; Subramanian, Sathish; Griffin, Nicholas W.; Drewry, Lisa L.; Petri, William A.; Haque, Rashidul; Ahmed, Tahmeed; Gordon, Jeffrey I.

    2015-01-01

    Given the global burden of diarrheal diseases1, it is important to understand how members of the gut microbiota affect the risk for, course of, and recovery from disease in children and adults. The acute, voluminous diarrhea caused by Vibrio cholerae represents a dramatic example of enteropathogen invasion and gut microbial community disruption. We have conducted a detailed time-series metagenomic study of fecal microbiota collected during the acute diarrheal and recovery phases of cholera in a cohort of Bangladeshi adults living in an area with a high burden of disease2. We find that recovery is characterized by a pattern of accumulation of bacterial taxa that shows similarities to the pattern of assembly/maturation of the gut microbiota in healthy Bangladeshi children3. To define underlying mechanisms, we introduced into gnotobiotic mice an artificial community that was composed of human gut bacterial species that directly correlate with recovery from cholera in adults and are indicative of normal microbiota maturation in healthy Bangladeshi children3. One of the species, Ruminococcus obeum, exhibited consistent increases in its relative abundance upon V. cholerae infection of the mice. Follow-up analyses, including mono- and co-colonization studies, established that R. obeum restricts V. cholerae colonization, that R. obeum luxS [autoinducer-2 (AI-2) synthase] expression and AI-2 production increase significantly with V. cholerae invasion, and that R. obeum AI-2 causes quorum-sensing mediated repression of several V. cholerae colonization factors. Co-colonization with V. cholerae mutants disclosed that R. obeum AI-2 reduces Vibrio colonization/pathogenicity through a novel pathway that does not depend on the V. cholerae AI-2 sensor, LuxP. The approach described can be used to mine the gut microbiota of Bangladeshi or other populations for members that use autoinducers and/or other mechanisms to limit colonization with V. cholerae, or conceivably other

  2. Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement.

    PubMed

    Lobitz, B; Beck, L; Huq, A; Wood, B; Fuchs, G; Faruque, A S; Colwell, R

    2000-02-15

    It has long been known that cholera outbreaks can be initiated when Vibrio cholerae, the bacterium that causes cholera, is present in drinking water in sufficient numbers to constitute an infective dose, if ingested by humans. Outbreaks associated with drinking or bathing in unpurified river or brackish water may directly or indirectly depend on such conditions as water temperature, nutrient concentration, and plankton production that may be favorable for growth and reproduction of the bacterium. Although these environmental parameters have routinely been measured by using water samples collected aboard research ships, the available data sets are sparse and infrequent. Furthermore, shipboard data acquisition is both expensive and time-consuming. Interpolation to regional scales can also be problematic. Although the bacterium, V. cholerae, cannot be sensed directly, remotely sensed data can be used to infer its presence. In the study reported here, satellite data were used to monitor the timing and spread of cholera. Public domain remote sensing data for the Bay of Bengal were compared directly with cholera case data collected in Bangladesh from 1992-1995. The remote sensing data included sea surface temperature and sea surface height. It was discovered that sea surface temperature shows an annual cycle similar to the cholera case data. Sea surface height may be an indicator of incursion of plankton-laden water inland, e.g., tidal rivers, because it was also found to be correlated with cholera outbreaks. The extensive studies accomplished during the past 25 years, confirming the hypothesis that V. cholerae is autochthonous to the aquatic environment and is a commensal of zooplankton, i.e., copepods, when combined with the findings of the satellite data analyses, provide strong evidence that cholera epidemics are climate-linked.

  3. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection.

    PubMed

    Hsiao, Ansel; Ahmed, A M Shamsir; Subramanian, Sathish; Griffin, Nicholas W; Drewry, Lisa L; Petri, William A; Haque, Rashidul; Ahmed, Tahmeed; Gordon, Jeffrey I

    2014-11-20

    Given the global burden of diarrhoeal diseases, it is important to understand how members of the gut microbiota affect the risk for, course of, and recovery from disease in children and adults. The acute, voluminous diarrhoea caused by Vibrio cholerae represents a dramatic example of enteropathogen invasion and gut microbial community disruption. Here we conduct a detailed time-series metagenomic study of faecal microbiota collected during the acute diarrhoeal and recovery phases of cholera in a cohort of Bangladeshi adults living in an area with a high burden of disease. We find that recovery is characterized by a pattern of accumulation of bacterial taxa that shows similarities to the pattern of assembly/maturation of the gut microbiota in healthy Bangladeshi children. To define the underlying mechanisms, we introduce into gnotobiotic mice an artificial community composed of human gut bacterial species that directly correlate with recovery from cholera in adults and are indicative of normal microbiota maturation in healthy Bangladeshi children. One of the species, Ruminococcus obeum, exhibits consistent increases in its relative abundance upon V. cholerae infection of the mice. Follow-up analyses, including mono- and co-colonization studies, establish that R. obeum restricts V. cholerae colonization, that R. obeum luxS (autoinducer-2 (AI-2) synthase) expression and AI-2 production increase significantly with V. cholerae invasion, and that R. obeum AI-2 causes quorum-sensing-mediated repression of several V. cholerae colonization factors. Co-colonization with V. cholerae mutants discloses that R. obeum AI-2 reduces Vibrio colonization/pathogenicity through a novel pathway that does not depend on the V. cholerae AI-2 sensor, LuxP. The approach described can be used to mine the gut microbiota of Bangladeshi or other populations for members that use autoinducers and/or other mechanisms to limit colonization with V. cholerae, or conceivably other enteropathogens.

  4. Integrating Terrestrial Hydrology and Coastal Ecology: Understanding Cholera Dynamics using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Islam, S.; Jutla, A. S.; Akanda, A. S.

    2009-12-01

    Cholera, an acute water-borne diarrheal illness, remains endemic in many regions of the world, specifically the coastal regions of South Asia, Sub-Saharan Africa, and Latin America. The disease has reemerged as a global killer with the world witnessing an unprecedented rise in cholera infection and transmission since the 1990s. In addition, global warming and natural disasters can contribute to outbreaks or occurrences of cholera in places where they normally do not pose a problem, including the US coastal areas. This study investigates relationship(s) between cholera incidences, coastal processes and terrestrial hydrology and explores the utility of using remote sensing data to track coastal plankton blooms and subsequent cholera outbreaks in vulnerable regions. Most of the studies over the last several decades have primarily focused on the microbiological and epidemiological understanding of cholera outbreaks, however, successful identification and mechanistic understanding of large scale hydrological, geophysical and coastal processes governing plankton-cholera relationships is important for developing any predictive model for disease outbreaks. The impact of climate change induced sea level rise on aquatic ecosystems and the altered spatial signature of coastal salinity distribution is likely to have significant impact on the composition of the plankton community and the production and growth of the cholera bacteria. Development of a holistic understanding of these processes requires long and reliable chlorophyll dataset, a surrogate for plankton abundance, which is now available through satellites. We will present a plausible pathway relating cholera, sea surface temperature, chlorophyll, and terrestrial hydrology through river discharge and satellite estimated coastal plankton abundance. Remote sensing, with its unprecedented spatial and temporal coverage, has capabilities to monitor coastal processes and track potential cholera outbreaks in endemic regions.

  5. Biological characterization of v. Cholerae-specific bacteriophages isolated from water sources in Georgia.

    PubMed

    Elbakidze, T; Kokashvili, T; Janelidze, N; Porchkhidze, K; Koberidze, T; Tediashvili, M

    2015-03-01

    Vibrio cholerae, a widely spread bacterium in various marine, fresh, and brackish water environments, can cause a devastating diarrheal disease - cholera and also mild forms of gastroenteritis. Bacterial viruses are natural controllers of bacterial population density in water systems. The goal of this study was to isolate and characterize V. cholerae-specific bacteriophages occurring in the Georgian coastal zone of the Black Sea and inland water reservoirs in the eastern part of Georgia. During 2006-2009, 71 phages lytic to V. cholerae were collected from these aquatic environments. The phage isolation rate was varying from 8% to 15%, depending on the sampling season and site, and the abundance of host bacteria. The majority of phages specific to V. cholerae were collected from freshwater sources. The phage isolation showed seasonal character covering warm period -from April to September. Based on basic characteristics of primary phage isolates (lytic spectrum, virion morphology and DNA restriction profiles) 23 V. cholerae -specific phages were selected for series of consecutive screenings. Comparatively wide spectrum of lytic activity was revealed in case of 14 phages specific to V. cholerae O1, and one phage - VchBS3, active against non-O1 V. cholerae. Three phages active against V. cholerae non-O1 and six V. cholerae O1 -specific phages have been studied in detail for a number of biological features (stability in different solutions, temperature-, pH- and UV- sensitivity, influence of high ionic strength etc.), considered to be additional important characteristics for selection of phages with therapeutic potential.

  6. Comparative proteomic analysis reveals activation of mucosal innate immune signaling pathways during cholera.

    PubMed

    Ellis, Crystal N; LaRocque, Regina C; Uddin, Taher; Krastins, Bryan; Mayo-Smith, Leslie M; Sarracino, David; Karlsson, Elinor K; Rahman, Atiqur; Shirin, Tahmina; Bhuiyan, Taufiqur R; Chowdhury, Fahima; Khan, Ashraful Islam; Ryan, Edward T; Calderwood, Stephen B; Qadri, Firdausi; Harris, Jason B

    2015-03-01

    Vibrio cholerae O1 is a major cause of acute watery diarrhea in over 50 countries. Evidence suggests that V. cholerae O1 may activate inflammatory pathways, and a recent study of a Bangladeshi population showed that variants in innate immune genes play a role in mediating susceptibility to cholera. We analyzed human proteins present in the small intestine of patients infected with V. cholerae O1 to characterize the host response to this pathogen. We collected duodenal biopsy specimens from patients with acute cholera after stabilization and again 30 days after initial presentation. Peptides extracted from biopsy specimens were sequenced and quantified using label-free mass spectrometry and SEQUEST. Twenty-seven host proteins were differentially abundant between the acute and convalescent stages of infection; the majority of these have known roles in innate defense, cytokine production, and apoptosis. Immunostaining confirmed that two proteins, WARS and S100A8, were more abundant in lamina propria cells during the acute stage of cholera. Analysis of the differentially abundant proteins revealed the activation of key regulators of inflammation by the innate immune system, including Toll-like receptor 4, nuclear factor kappa-light-chain-enhancer of activated B cells, mitogen-activated protein kinases, and caspase-dependent inflammasomes. Interleukin-12β (IL-12β) was a regulator of several proteins that were activated during cholera, and we confirmed that IL-12β was produced by lymphocytes recovered from duodenal biopsy specimens of cholera patients. Our study shows that a broad inflammatory response is generated in the gut early after onset of cholera, which may be critical in the development of long-term mucosal immunity against V. cholerae O1.

  7. Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement

    NASA Technical Reports Server (NTRS)

    Lobitz, B.; Beck, L.; Huq, A.; Wood, B.; Fuchs, G.; Faruque, A. S.; Colwell, R.

    2000-01-01

    It has long been known that cholera outbreaks can be initiated when Vibrio cholerae, the bacterium that causes cholera, is present in drinking water in sufficient numbers to constitute an infective dose, if ingested by humans. Outbreaks associated with drinking or bathing in unpurified river or brackish water may directly or indirectly depend on such conditions as water temperature, nutrient concentration, and plankton production that may be favorable for growth and reproduction of the bacterium. Although these environmental parameters have routinely been measured by using water samples collected aboard research ships, the available data sets are sparse and infrequent. Furthermore, shipboard data acquisition is both expensive and time-consuming. Interpolation to regional scales can also be problematic. Although the bacterium, V. cholerae, cannot be sensed directly, remotely sensed data can be used to infer its presence. In the study reported here, satellite data were used to monitor the timing and spread of cholera. Public domain remote sensing data for the Bay of Bengal were compared directly with cholera case data collected in Bangladesh from 1992-1995. The remote sensing data included sea surface temperature and sea surface height. It was discovered that sea surface temperature shows an annual cycle similar to the cholera case data. Sea surface height may be an indicator of incursion of plankton-laden water inland, e.g., tidal rivers, because it was also found to be correlated with cholera outbreaks. The extensive studies accomplished during the past 25 years, confirming the hypothesis that V. cholerae is autochthonous to the aquatic environment and is a commensal of zooplankton, i.e., copepods, when combined with the findings of the satellite data analyses, provide strong evidence that cholera epidemics are climate-linked.

  8. Evidence of a dominant lineage of Vibrio cholerae-specific lytic bacteriophages shed by cholera patients over a 10-year period in Dhaka, Bangladesh.

    PubMed

    Seed, Kimberley D; Bodi, Kip L; Kropinski, Andrew M; Ackermann, Hans-Wolfgang; Calderwood, Stephen B; Qadri, Firdausi; Camilli, Andrew

    2011-01-01

    Lytic bacteriophages are hypothesized to contribute to the seasonality and duration of cholera epidemics in Bangladesh. However, the bacteriophages contributing to this phenomenon have yet to be characterized at a molecular genetic level. In this study, we isolated and sequenced the genomes of 15 bacteriophages from stool samples from cholera patients spanning a 10-year surveillance period in Dhaka, Bangladesh. Our results indicate that a single novel bacteriophage type, designated ICP1 (for the International Centre for Diarrhoeal Disease Research, Bangladesh cholera phage 1) is present in all stool samples from cholera patients, while two other bacteriophage types, one novel (ICP2) and one T7-like (ICP3), are transient. ICP1 is a member of the Myoviridae family and has a 126-kilobase genome comprising 230 open reading frames. Comparative sequence analysis of ICP1 and related isolates from this time period indicates a high level of genetic conservation. The ubiquitous presence of ICP1 in cholera patients and the finding that the O1 antigen of lipopolysaccharide (LPS) serves as the ICP1 receptor suggest that ICP1 is extremely well adapted to predation of human-pathogenic V. cholerae O1.

  9. Inhibition of the sodium-translocating NADH-ubiquinone oxidoreductase [Na+-NQR] decreases cholera toxin production in Vibrio cholerae O1 at the late exponential growth phase.

    PubMed

    Minato, Yusuke; Fassio, Sara R; Reddekopp, Rylan L; Häse, Claudia C

    2014-01-01

    Two virulence factors produced by Vibrio cholerae, cholera toxin (CT) and toxin-corregulated pilus (TCP), are indispensable for cholera infection. ToxT is the central regulatory protein involved in activation of CT and TCP expression. We previously reported that lack of a respiration-linked sodium-translocating NADH-ubiquinone oxidoreductase (Na(+)-NQR) significantly increases toxT transcription. In this study, we further characterized this link and found that Na(+)-NQR affects toxT expression only at the early-log growth phase, whereas lack of Na(+)-NQR decreases CT production after the mid-log growth phase. Such decreased CT production was independent of toxT and ctxB transcription. Supplementing a respiratory substrate, l-lactate, into the growth media restored CT production in the nqrA-F mutant, suggesting that decreased CT production in the Na(+)-NQR mutant is dependent on electron transport chain (ETC) activity. This notion was supported by the observations that two chemical inhibitors, a Na(+)-NQR specific inhibitor 2-n-Heptyl-4-hydroxyquinoline N-oxide (HQNO) and a succinate dehydrogenase (SDH) inhibitor, thenoyltrifluoroacetone (TTFA), strongly inhibited CT production in both classical and El Tor biotype strains of V. cholerae. Accordingly, we propose the main respiratory enzyme of V. cholerae, as a potential drug target to treat cholera because human mitochondria do not contain Na(+)-NQR orthologs.

  10. Environmental determinants of cholera outbreaks in inland Africa: a systematic review of main transmission foci and propagation routes.

    PubMed

    Rebaudet, Stanislas; Sudre, Bertrand; Faucher, Benoît; Piarroux, Renaud

    2013-11-01

    Cholera is generally regarded as the prototypical waterborne and environmental disease. In Africa, available studies are scarce, and the relevance of this disease paradigm is questionable. Cholera outbreaks have been repeatedly reported far from the coasts: from 2009 through 2011, three-quarters of all cholera cases in Africa occurred in inland regions. Such outbreaks are either influenced by rainfall and subsequent floods or by drought- and water-induced stress. Their concurrence with global climatic events has also been observed. In lakes and rivers, aquatic reservoirs of Vibrio cholerae have been evocated. However, the role of these reservoirs in cholera epidemiology has not been established. Starting from inland cholera-endemic areas, epidemics burst and spread to various environments, including crowded slums and refugee camps. Human displacements constitute a major determinant of this spread. Further studies are urgently needed to better understand these complex dynamics, improve water and sanitation efforts, and eliminate cholera from Africa.

  11. [DETERMINATION OF TYPES OF EPIDEMIC MANIFESTATIONS OF CHOLERA IN REGIONS OF THE CRIMEA FEDERAL DISTRICT (REPUBLIC OF CRIMEA)].

    PubMed

    Onischenko, G G; Popova, A Yu; Moskvitina, E A; Penkovskaya, N A; Listopad, S A; Titova, S V; Kruglikov, V D

    2015-01-01

    The aim of the study was determination of the type of epidemic manifestations of cholera in the Republic of Crimea based on evaluation of epidemic manifestations of cholera risk of introduction and spread of the infection. It was concluded, that, based on the cholera outbreaks, that had taken place, contamination of surface water bodies (fresh and sea) and sewage by Vibrio cholerae O1 ctxA+ and Vibrio cholerae O1 ctXA- potential epidemic danger of introduction of the infection by various types of international transport, population migration, the presence of epidemiologic risk in realization of water pathway of transmission of cholera causative agent and several other social conditions, the Republic of Crimea remains in the group of territories of type I by epidemic manifestations of cholera.

  12. Vibrio cholerae and Aeromonas: do they share a mutual host?

    PubMed

    Senderovich, Yigal; Gershtein, Yana; Halewa, Etti; Halpern, Malka

    2008-03-01

    Species of the genus Aeromonas are native inhabitants of aquatic environments and have recently been considered as an emergent human pathogen. It is estimated that aeromonads cause up to 13% of reported gastroenteritis cases in the United States. Although the autochthonous existence of Aeromonas in the aquatic environment has been established, its natural reservoir is as yet unknown. Chironomids are closely related to mosquitoes except they do not bite and they are the most widely distributed insects in freshwater. They infest drinking water systems in Israel and all over the world. Vibrio cholerae inhabit chironomids and are able to degrade their egg masses. The degradation of the egg masses is followed by failure of the eggs to hatch. In the current study, egg masses from a waste stabilization pond and a river in northern Israel were collected and cultured during a five-month period. Bacterial colonies were randomly chosen and checked for their egg mass degradation abilities. In addition to V. cholerae, most of the other isolates that had the ability to degrade the egg masses were identified as Aeromonas species, thus, demonstrating that Aeromonas species are natural inhabitants of chironomid egg masses. The following virulence-associated genes were detected in Aeromonas species that were isolated from chironomid egg masses: alt (78%); ahpB (76%); act/aerA/hlyA (65%); fla (59%); pla/lipH3/apl-1/lip (43%); and ast (2%). These findings indicate that the Aeromonas species inhabiting chironomid egg masses pose a potential health risk. Understanding the natural reservoir of Aeromonas will help to develop methods to monitor and control the bacteria in fresh and drinking water reservoirs and to better understand the relationships between chironomids, V. cholerae and Aeromonas populations.

  13. [The 1853-1856 cholera epidemic in the Portuguese press].

    PubMed

    Almeida, Maria Antónia Pires de

    2011-12-01

    The article examines science and technology communication aimed at a non-specialized audience, using the general press as the main source in this endeavor to capture an image of the popularization of science in Portugal. Based on the fact that the nineteenth-century press was overtly concerned with garnering an audience and spreading knowledge, the study uses news, articles, and advertisements about the 1853-1856 cholera epidemic to assess the era's scientific knowledge (especially about prevention and treatment) and how this information was conveyed to society and used by it.

  14. Studies of cholera El Tor in the Philippines*

    PubMed Central

    Joseph, P. R.; Tamayo, J. F.; Mosley, W. H.; Alvero, M. G.; Dizon, J. J.; Henderson, D. A.

    1965-01-01

    The introduction of cholera into many of the islands of the Philippines in 1961 often occurred in an explosive manner. The disease was introduced into Bacolod City and Talisay in Negros Occidental Province in such a manner in November 1961. The authors describe the results of an analysis of hospital and health department records in Bacolod City and Talisay and the results of interviews conducted with adult patients 10 months after the explosive outbreak. The results suggest that infection during the initial explosive wave of cases in Bacolod City and Talisay in November 1961 was transmitted principally by shrimp that were consumed raw. PMID:5295144

  15. Attenuated recombinant strains of Vibrio cholerae for oral immunization*

    PubMed Central

    Srivastava, Brahm S.; Sinha, V. B.; Srivastava, Ranjana

    1979-01-01

    Two attenuated strains of Vibrio cholerae, CD1 and CD3, have been isolated that have remained stable since 1976. These strains are motile, adhere to and multiply in rabbit intestine, and colonize the gut of infant mice for 6-7 days. Both strains are antigenic and provide protection to challenge in the mouse protection test and in the rabbit ileal loop model. Because of their ability to adhere to and colonize the gut, and since they are antigenic, strains CD1 and CD3 have the potentiality of oral vaccines. PMID:316742

  16. The three-dimensional crystal structure of cholera toxin

    SciTech Connect

    Zhang, Rong-Guang; Westbrook, M.L.; Nance, S.; Spangler, B.D.; Scott, D.L.; Westbrook, E.M.

    1996-02-01

    The clinical manifestations of cholera are largely attributable to the actions of a secreted hexameric AB{sub 5} enterotoxin (choleragen). We have solved the three-dimensional structure of choleragen at 2.5 {Angstrom} resolution and compared the refined coordinates with those of choleragenoid (isolated B pentamer) and the heat-labile enterotoxin from Escherichia coli (LT). The crystalline coordinates provide a detailed view of the stereochemistry implicated in binding to GM1 gangliosides and in carrying out ADP-ribosylation. The A2 chain of choleragen, in contrast to that of LT, is a nearly continuous {alpha}-helix with an interpretable carboxyl tail.

  17. Functional Characterization of Cholera Toxin Inhibitors Using Human Intestinal Organoids.

    PubMed

    Zomer-van Ommen, Domenique D; Pukin, Aliaksei V; Fu, Ou; Quarles van Ufford, Linda H C; Janssens, Hettie M; Beekman, Jeffrey M; Pieters, Roland J

    2016-07-28

    Preclinical drug testing in primary human cell models that recapitulate disease can significantly reduce animal experimentation and time-to-the-clinic. We used intestinal organoids to quantitatively study the potency of multivalent cholera toxin inhibitors. The method enabled the determination of IC50 values over a wide range of potencies (15 pM to 9 mM). The results indicate for the first time that an organoid-based swelling assay is a useful preclinical method to evaluate inhibitor potencies of drugs that target pathogen-derived toxins.

  18. Chlorination of Household Drinking Water Among Cholera Patients' Households to Prevent Transmission of Toxigenic Vibrio cholerae in Dhaka, Bangladesh: CHoBI7 Trial.

    PubMed

    Rashid, Mahamud-Ur; George, Christine Marie; Monira, Shirajum; Mahmud, Toslim; Rahman, Zillur; Mustafiz, Munshi; Saif-Ur-Rahman, K M; Parvin, Tahmina; Bhuyian, Sazzadul Islam; Zohura, Fatema; Begum, Farzana; Biswas, Shwapon Kumar; Akhter, Shamima; Zhang, Xiaotong; Sack, David; Sack, R Bradley; Alam, Munirul

    2016-12-07

    Household members of cholera patients are at a 100 times higher risk of cholera infections than the general population because of shared contaminated drinking water sources and secondary transmission through poor household hygiene practices. In this study, we investigated the bactericidal concentration of free chlorine required to inactivate Vibrio cholerae in household drinking water in Dhaka, Bangladesh. In laboratory experiments, we found that the concentrations of free chlorine required to inactivate 10(5) colony-forming units (CFU)/mL of V. cholerae serogroups O1 and O139 were 0.1 mg/L and 0.2 mg/L, respectively. The concentration of free chlorine generated by a single chlorine tablet (sodium dichloroisocyanurate [33 mg]) after a 30-minute reaction time in a 10-L sealed vessel containing Dhaka city municipal supply water was 1.8 mg/L; and the concentration declined to 0.26 mg/L after 24 hours. In field measurements, water collected from 165 households enrolled in a randomized controlled trial (RCT) of a chlorine and handwashing with soap intervention (Cholera-Hospital-Based-Intervention-for-7-Days [CHoBI7]), we observed significantly higher free chlorine concentrations in the 82 intervention arm households (mean = 1.12 mg/L, standard deviation [SD] = 0.52, range = 0.07-2.6 mg/L) compared with the 83 control households (0.017 mg/L, SD = 0.01, range = 0-0.06 mg/L) (P < 0.001) during spot check visits. These findings suggest that point-of-use chlorine tablets present an effective approach to inactivate V. cholerae from drinking water in households of cholera patients in Dhaka city. This result is consistent with the findings from the RCT of CHoBI7 which found that this intervention led to a significant reduction in symptomatic cholera infections among household members of cholera patients and no stored drinking water samples with detectable V. cholerae.

  19. Cholera epidemic associated with raw vegetables--Lusaka, Zambia, 2003-2004.

    PubMed

    2004-09-03

    Zambia experienced widespread cholera epidemics in 1991 (13,154 cases), 1992 (11,659), and 1999 (11,327). In response to the large outbreak in 1999, the Zambian Ministry of Health (ZMOH) urged use of in-home chlorination with the locally produced solution, Clorin, and the practice increased substantially Clorin had been introduced in Zambia in 1998 as part of the Safe Water System (SWS), a point-of-use water disinfection and safe-water storage strategy launched by the Society for Family Health, in partnership with ZMOH, the U.S. Agency for International Development, and CDC. Although no outbreaks were reported during 2000-2002, cholera remained endemic. Epidemic cholera returned to Zambia in November 2003, when cases of toxigenic Vibrio cholerae O1, serotype Ogawa, biotype El Tor were confirmed in the capital city, Lusaka. During November 28, 2003-January 4, 2004, an estimated 2,529 cholera cases and 128 cholera deaths (case-fatality rate [CFR] = 5.1%) occurred in Lusaka. In February 2004, the Lusaka District Health Management Team (LDHMT) invited CDC to assist in an investigation of the epidemic. This report summarizes the results of that investigation, which implicated foodborne transmission via raw vegetables and demonstrated a protective role for hand washing with soap. The results underscore the importance of hygiene, clean water, and sanitary food handling for cholera prevention.

  20. Historical Epidemiology of the Second Cholera Pandemic: Relevance to Present Day Disease Dynamics

    PubMed Central

    Chan, Christina H.; Tuite, Ashleigh R.; Fisman, David N.

    2013-01-01

    Despite nearly two centuries of study, the fundamental transmission dynamic properties of cholera remain incompletely characterized. We used historical time-series data on the spread of cholera in twelve European and North American cities during the second cholera pandemic, as reported in Amariah Brigham’s 1832 A Treatise on Epidemic Cholera, to parameterize simple mathematical models of cholera transmission. Richards growth models were used to derive estimates of the basic reproductive number (R0) (median: 16.0, range: 1.9 to 550.9) and the proportion of unrecognized cases (mean: 96.3%, SD: 0.04%). Heterogeneity in model-generated R0 estimates was consistent with variability in cholera dynamics described by contemporary investigators and may represent differences in the nature of cholera spread. While subject to limitations associated with measurement and the absence of microbiological diagnosis, historical epidemic data are a potentially rich source for understanding pathogen dynamics in the absence of control measures, particularly when used in conjunction with simple and readily interpretable mathematical models. PMID:23991117

  1. A five-year study on the epidemiological approaches to cholera in Iran

    PubMed Central

    Mafi, Moharam; Goya, Mohammad Mahdi; Hajia, Massoud

    2016-01-01

    Background: Cholera is considered a key indicator of social development but still is reported in various cities of Iran. The present study aimed to analyze the available information regarding cholera outbreaks since 2010 in Iran. Methods: All cases reported to the Center for Disease Control and Prevention of Ministry of Health and Education who had been confirmed as cholera cases by the Health Reference Laboratory, were entered into this study since 2010. A specific spreadsheet was designed to ensure the safe keeping of the patient records. Results: A total of 1522 patients were clinically diagnosed as cholera with laboratory confirmation over the study period. Cholera was detected in 26 Provinces and 115 cities during this period. Mean age of the patients was 35.1±17, both the Inaba and Ogawa strains were isolated. The highest mortality and the morbidity rate was 1.98% in 2013. The most cholera prevalent provinces in order of frequency were Baluchistan, Alborz, Gilan, Golestan and Qom, as well as Tehran. Inaba serotype was the most common cause of mortality and morbidity in 2013. Conclusion: These findings indicate significant outbreaks of cholera in some of the provinces of Iran and warrant appropriate treatment and preventive measures. PMID:27757199

  2. Highly diverse recombining populations of Vibrio cholerae and Vibrio parahaemolyticus in French Mediterranean coastal lagoons.

    PubMed

    Esteves, Kévin; Mosser, Thomas; Aujoulat, Fabien; Hervio-Heath, Dominique; Monfort, Patrick; Jumas-Bilak, Estelle

    2015-01-01

    Vibrio parahaemolyticus and Vibrio cholerae are ubiquitous to estuarine and marine environments. These two species found in Mediterranean coastal systems can induce infections in humans. Environmental isolates of V. cholerae (n = 109) and V. parahaemolyticus (n = 89) sampled at different dates, stations and water salinities were investigated for virulence genes and by a multilocus sequence-based analysis (MLSA). V. cholerae isolates were all ctxA negative and only one isolate of V. parahaemolyticus displayed trh2 gene. Most Sequence Types (ST) corresponded to unique ST isolated at one date or one station. Frequent recombination events were detected among different pathogenic species, V. parahaemolyticus, V. cholerae, Vibrio mimicus, and Vibrio metoecus. Recombination had a major impact on the diversification of lineages. The genetic diversity assessed by the number of ST/strain was higher in low salinity condition for V. parahaemolyticus and V. cholerae whereas the frequency of recombination events in V. cholerae was lower in low salinity condition. Mediterranean coastal lagoon systems housed V. cholerae and V. parahaemolyticus with genetic diversities equivalent to the worldwide diversity described so far. The presence of STs found in human infections as well as the frequency of recombination events in environmental vibrios populations could predict a potential epidemiological risk.

  3. Triplex reverse transcription-PCR for detecting viable toxigenic Vibrio cholerae in water samples in Thailand.

    PubMed

    Kanoktippornchai, Boonnapa; Chomvarin, Chariya; Engchanil, Chulapan; Wongboot, Warawan

    2014-03-01

    Abstract. Detection of toxigenic Vibrio cholerae O1/O139 in aquatic environment is difficult to achieve using the culture method. For direct detection of viable toxigenic V. cholerae in aquatic environment, we developed a triplex reverse transcription (RT)-PCR, targeting genes for the outer membrane protein (ompW), cholera toxin A (ctxA) and toxin-coregulated pilli (tcpA) and compared the assay with the culture method. After enrichment of the bacteria-containing filters in alkaline peptone water for 6 hours, the sensitivity of triplex RT-PCR for detecting V. cholerae was 7 cfu/ml. Of the 80 environmental water samples collected from various regions in Northeast Thailand, triplex RT-PCR detected 15 toxigenic and 20 non-toxigenic V. cholerae, whereas the culture method detected only 3 toxigenic V. cholerae--containing water samples. These results show that this triplex RT-PCR method could be used as an alternative tool for rapid and sensitive identification of viable toxigenic V cholerae in environmental water samples.

  4. Intracellular survival and replication of Vibrio cholerae O139 in aquatic free-living amoebae.

    PubMed

    Abd, Hadi; Weintraub, Andrej; Sandström, Gunnar

    2005-07-01

    Vibrio cholerae is a highly infectious bacterium responsible for large outbreaks of cholera among humans at regular intervals. A seasonal distribution of epidemics is known but the role of naturally occurring habitats are virtually unknown. Plankton has been suggested to play a role, because bacteria can attach to such organisms forming a biofilm. Acanthamoebea castellanii is an environmental amoeba that has been shown to be able to ingest and promote growth of several bacteria of different origin. The aim of the present study was to determine whether or not an intra-amoebic behaviour of V. cholerae O139 exists. Interaction between these microorganisms in co-culture was studied by culturable counts, gentamicin assay, electron microscopy, and polymerase chain reaction. The interaction resulted in intra-amoebic growth and survival of V. cholerae in the cytoplasm of trophozoites as well as in the cysts of A. castellanii. These data show symbiosis between these microorganisms, a facultative intracellular behaviour of V. cholerae contradicting the generally held view, and a role of free-living amoebae as hosts for V. cholerae O139. Taken together, this opens new doors to study the ecology, immunity, epidemiology, and treatment of cholera.

  5. Isolation of Vibrio cholerae from aquatic birds in Colorado and Utah.

    PubMed Central

    Ogg, J E; Ryder, R A; Smith, H L

    1989-01-01

    Vibrio cholerae was isolated from cloacal swabs and freshly voided feces collected from 20 species of aquatic birds in Colorado and Utah during 1986 and 1987. About 17% (198 of 1,131) fecal specimens collected from July 1986 through August 1987 contained the organism. Both O1 and non-O1 V. cholerae strains were isolated from the fecal specimens. Isolates from eight birds (representing five species) agglutinated in O group 1 antiserum. Supernatants of broth cultures from three isolates which typed as V. cholerae O1 serotype Ogawa gave reactions typical of cholera toxin when tested on Y-1 mouse adrenal cell cultures. Several serovars of non-O1 V. cholerae were isolated from the fecal specimens; serovar 22 was the most prevalent type. All non-O1 isolates were cytotoxic to Y-1 mouse adrenal cells. Only non-O1 V. cholerae was detected in water samples collected from the habitat of the birds. The results of this study suggest that aquatic birds serve as carriers and disseminate V. cholerae over a wide area. PMID:2705773

  6. Characterization of Vibrio cholerae isolates from 1976 to 2013 in Shandong Province, China.

    PubMed

    Lü, Hui; Yuan, Yuqi; Sun, Na; Bi, Zhenwang; Guan, Bing; Shao, Kun; Wang, Tongzhan; Bi, Zhenqiang

    Cholera continues to be a serious public health issue in developing countries. We analyzed the epidemiological data of cholera from 1976 to 2013 in Shandong Province, an eastern coastal area of China. A total of 250 Vibrio cholerae isolates were selected for PCR analysis of virulence genes and pulsed-field gel electrophoresis (PFGE). The analysis of the virulence genes showed that the positive rates for tcpA and tcpI were the highest among strains from the southwest region, which had the highest incidence rate of cholera. Low positive rates for tcpA, tcpI and ctxAB among isolates from after 2000 may be an influencing factor contributing to the contemporary decline in cholera incidence rates. Spatiotemporal serotype shifts (Ogawa, Inaba, Ogawa, Inaba and O139) generally correlated with the variations in the PFGE patterns (PIV, PIIIc, PIa, PIIIb, PIIIa, PIb, and PII). O1 strains from different years or regions also had similar PFGE patterns, while O139 strains exclusively formed one cluster and differed from all other O1 strains. These data indicate that V. cholerae isolates in Shandong Province have continually undergone spatiotemporal changes. The serotype switching between Ogawa and Inaba originated from indigenous strains, while the emergence of serogroup O139 appeared to be unrelated to endemic V. cholerae O1 strains.

  7. Characterization of Vibrio cholerae from 1986 to 2012 in Yunnan Province, southwest China bordering Myanmar.

    PubMed

    Gu, Wenpeng; Yin, Jianwen; Yang, Jianbin; Li, Chaoqun; Chen, Yujuan; Yin, Jie; Xu, Wen; Zhao, Shiwen; Liang, Junrong; Jing, Huaiqi; Fu, Xiaoqing

    2014-01-01

    Vibrio cholerae is an important infectious pathogen causing serious human diarrhea. We analyzed 568 V. cholerae strains isolated from 1986 to 2012 in Yunnan province, southwest China bordering Myanmar. Polymerase chain reactions for detecting virulence genes, antibiotic susceptibility tests and pulse-field gel electrophoresis (PFGE) were performed. The results showed all the strains were El Tor biotype from 1986. The ctxB subunit sequence analysis for all strains have shown that cholera between 1986 and 1995 was associated with mixed infections with El Tor and El Tor variants, while infections after 1996 were all caused by El Tor variant strains. All of the strains were sensitive to aminoglycosides and quinolone antibiotics while resistant to β-lactamase and carbapenem antibiotics increased gradually. 568 V. cholerae were divided into 218 PFGE-NotI patterns, and the isolates before 2001 and after 2011 were separated into two groups according to PFGE results. The strains isolated before 2001 were mainly referred to native cholera in Yunnan, and after 2011 were primarily referred to as imported strains from Myanmar, which showed the variation of V. cholerae in this area. The molecular characteristics of V. cholerae indicated regularity in bacterial variation and evolution in Yunnan province.

  8. Historical epidemiology of the second cholera pandemic: relevance to present day disease dynamics.

    PubMed

    Chan, Christina H; Tuite, Ashleigh R; Fisman, David N

    2013-01-01

    Despite nearly two centuries of study, the fundamental transmission dynamic properties of cholera remain incompletely characterized. We used historical time-series data on the spread of cholera in twelve European and North American cities during the second cholera pandemic, as reported in Amariah Brigham's 1832 A Treatise on Epidemic Cholera, to parameterize simple mathematical models of cholera transmission. Richards growth models were used to derive estimates of the basic reproductive number (R0) (median: 16.0, range: 1.9 to 550.9) and the proportion of unrecognized cases (mean: 96.3%, SD: 0.04%). Heterogeneity in model-generated R0 estimates was consistent with variability in cholera dynamics described by contemporary investigators and may represent differences in the nature of cholera spread. While subject to limitations associated with measurement and the absence of microbiological diagnosis, historical epidemic data are a potentially rich source for understanding pathogen dynamics in the absence of control measures, particularly when used in conjunction with simple and readily interpretable mathematical models.

  9. Notes from the Field: Ongoing Cholera Outbreak - Kenya, 2014-2016.

    PubMed

    George, Githuka; Rotich, Jacob; Kigen, Hudson; Catherine, Kiama; Waweru, Bonface; Boru, Waqo; Galgalo, Tura; Githuku, Jane; Obonyo, Mark; Curran, Kathryn; Narra, Rupa; Crowe, Samuel J; O'Reilly, Ciara E; Macharia, Daniel; Montgomery, Joel; Neatherlin, John; De Cock, Kevin M; Lowther, Sara; Gura, Zeinab; Langat, Daniel; Njeru, Ian; Kioko, Jackson; Muraguri, Nicholas

    2016-01-29

    On January 6, 2015, a man aged 40 years was admitted to Kenyatta National Hospital in Nairobi, Kenya, with acute watery diarrhea. The patient was found to be infected with toxigenic Vibrio cholerae serogroup O1, serotype Inaba. A subsequent review of surveillance reports identified four patients in Nairobi County during the preceding month who met either of the Kenya Ministry of Health suspected cholera case definitions: 1) severe dehydration or death from acute watery diarrhea (more than four episodes in 12 hours) in a patient aged ≥5 years, or 2) acute watery diarrhea in a patient aged ≥2 years in an area where there was an outbreak of cholera. An outbreak investigation was immediately initiated. A confirmed cholera case was defined as isolation of V. cholerae O1 or O139 from the stool of a patient with suspected cholera or a suspected cholera case that was epidemiologically linked to a confirmed case. By January 15, 2016, a total of 11,033 suspected or confirmed cases had been reported from 22 of Kenya's 47 counties (Table). The outbreak is ongoing.

  10. Successful comeback of the single-dose live oral cholera vaccine CVD 103-HgR.

    PubMed

    Herzog, Christian

    2016-01-01

    Effective and easy to administer cholera vaccines are in need more than ever, for at risk populations and travellers alike. In many parts of the world cholera is still endemic, causing outbreaks and constituting repeatedly serious public health problems. The oral live cholera vaccine CVD 103-HgR (Orochol, Mutachol), the first genetically modified organism (GMO) used as vaccine, was in its time (launched 1993, Switzerland) the ideal cholera vaccine: single-dose, protective efficacy of 80-100% against moderate to severe cholera, acting within 8 days and exhibiting excellent safety, indiscernible from placebo. However, there were strong headwinds: In the 1990s the indication for cholera vaccines was generally downplayed by experts and in 1997 the European Commission called for a moratorium of GMOs which blocked the registration in the European Union. Thus, demand for this vaccine remained low and in 2003 it was taken off the market for economic reasons. After a decade in obscurity it (Vaxchora) has resurfaced again, now produced in the U.S. and equipped with a U.S. FDA license (June 10, 2016). What had happened? This commentary gives a critical account of an almost unbelievable string of misadventures, emerging adverse circumstances and man-made failures which nearly killed this single-dose live oral cholera vaccine. The good news is that patience and persistence lead to success in the end, allowing good science to prevail for the benefit of those in need.

  11. Quorum-sensing autoinducers resuscitate dormant Vibrio cholerae in environmental water samples.

    PubMed

    Bari, S M Nayeemul; Roky, M Kamruzzaman; Mohiuddin, M; Kamruzzaman, M; Mekalanos, John J; Faruque, Shah M

    2013-06-11

    Cholera epidemics have long been known to spread through water contaminated with human fecal material containing the toxigenic bacterium Vibrio cholerae. However, detection of V. cholerae in water is complicated by the existence of a dormant state in which the organism remains viable, but resists cultivation on routine bacteriological media. Growth in the mammalian intestine has been reported to trigger "resuscitation" of such dormant cells, and these studies have prompted the search for resuscitation factors. Although some positive reports have emerged from these investigations, the precise molecular signals that activate dormant V. cholerae have remained elusive. Quorum-sensing autoinducers are small molecules that ordinarily regulate bacterial gene expression in response to cell density or interspecies bacterial interactions. We have found that isolation of pathogenic clones of V. cholerae from surface waters in Bangladesh is dramatically improved by using enrichment media containing autoinducers either expressed from cloned synthase genes or prepared by chemical synthesis. These results may contribute to averting future disasters by providing a strategy for early detection of V. cholerae in surface waters that have been contaminated with the stools of cholera patients or asymptomatic infected human carriers.

  12. Highly diverse recombining populations of Vibrio cholerae and Vibrio parahaemolyticus in French Mediterranean coastal lagoons

    PubMed Central

    Esteves, Kévin; Mosser, Thomas; Aujoulat, Fabien; Hervio-Heath, Dominique; Monfort, Patrick; Jumas-Bilak, Estelle

    2015-01-01

    Vibrio parahaemolyticus and Vibrio cholerae are ubiquitous to estuarine and marine environments. These two species found in Mediterranean coastal systems can induce infections in humans. Environmental isolates of V. cholerae (n = 109) and V. parahaemolyticus (n = 89) sampled at different dates, stations and water salinities were investigated for virulence genes and by a multilocus sequence-based analysis (MLSA). V. cholerae isolates were all ctxA negative and only one isolate of V. parahaemolyticus displayed trh2 gene. Most Sequence Types (ST) corresponded to unique ST isolated at one date or one station. Frequent recombination events were detected among different pathogenic species, V. parahaemolyticus, V. cholerae, Vibrio mimicus, and Vibrio metoecus. Recombination had a major impact on the diversification of lineages. The genetic diversity assessed by the number of ST/strain was higher in low salinity condition for V. parahaemolyticus and V. cholerae whereas the frequency of recombination events in V. cholerae was lower in low salinity condition. Mediterranean coastal lagoon systems housed V. cholerae and V. parahaemolyticus with genetic diversities equivalent to the worldwide diversity described so far. The presence of STs found in human infections as well as the frequency of recombination events in environmental vibrios populations could predict a potential epidemiological risk. PMID:26236294

  13. Impaired mucosal antibody response to cholera toxin in vitamin A-deficient rats immunized with oral cholera vaccine.

    PubMed Central

    Wiedermann, U; Hanson, L A; Holmgren, J; Kahu, H; Dahlgren, U I

    1993-01-01

    To investigate the importance of vitamin A in the ability to respond to oral antigen administration, rats were fed a vitamin A-free diet. The animals were immunized perorally three times with a mixture of cholera toxin (CT) and a commercial cholera vaccine. The total immunoglobulin A (IgA) concentration as well as the specific IgA anti-CT antibody levels in serum and bile was significantly lower in the vitamin A-deficient animals than in the paired fed controls (animals that were fed a normal commercial diet in an amount equal to the amount the deficient animals consumed), while the levels of total and specific anti-CT IgG were not affected to the same extent by the vitamin A deficiency. The number of IgA anti-CT antibody-producing cells in the mesenteric lymph nodes after immunization was also significantly lower in the vitamin A-deficient rats than in the control rats. Supplementation of the diet with retinyl palmitate restored the ability to mount an IgA antibody response to the antigen, since the level of specific IgA anti-CT antibodies in relation to the total IgA concentration was as high in the vitamin A-supplemented group as in the paired fed control group. Restricted diet intake by itself did not affect the ability to respond adequately to the antigen since there was no difference in IgA anti-CT antibody level between paired fed rats and those being fed ad libitum. Assessment of transforming growth factor beta in cell cultures revealed no difference between vitamin A-deficient and paired fed animals. In summary, vitamin A deficiency resulted in a decreased number of IgA-producing cells, decreased IgA production, and a reduced ability to respond with IgA antibodies to the oral cholera vaccine. PMID:8359917

  14. Quorum sensing-regulated chitin metabolism provides grazing resistance to Vibrio cholerae biofilms.

    PubMed

    Sun, Shuyang; Tay, Qi Xiang Martin; Kjelleberg, Staffan; Rice, Scott A; McDougald, Diane

    2015-08-01

    Association of Vibrio cholerae with chitinous surfaces of zooplankton is important for its persistence in marine environments, as it provides accessibility to nutrients and resistance to stresses. Predation by heterotrophic protists has a major impact on the survival of V. cholerae. V. cholerae forms biofilms as its main defensive strategy, and quorum sensing (QS) additionally regulates the production of antiprotozoal factors. The role of chitin and QS regulation in V. cholerae grazing resistance was investigated by exposing V. cholerae wild-type (WT) and QS mutant biofilms grown on chitin flakes to the bacteriotrophic, surface-feeding flagellate Rhynchomonas nasuta. V. cholerae formed more biofilm biomass on chitin flakes compared with nonchitinous surfaces. The growth of R. nasuta was inhibited by WT biofilms grown on chitin flakes, whereas the inhibition was attenuated in QS mutant biofilms. The chitin-dependent toxicity was also observed when the V. cholerae biofilms were developed under continuous flow or grown on a natural chitin source, the exoskeleton of Artemia. In addition, the antiprotozoal activity and ammonium concentration of V. cholerae biofilm supernatants were quantified. The ammonium levels (3.5 mM) detected in the supernatants of V. cholerae WT biofilms grown on chitin flakes were estimated to reduce the number of R. nasuta by >80% in add-back experiments, and the supernatant of QS mutant biofilms was less toxic owing to a decrease in ammonium production. Transcriptomic analysis revealed that the majority of genes involved in chitin metabolism and chemotaxis were significantly downregulated in QS mutant biofilms when grown on chitin compared with the WT biofilms.

  15. Constitutive type VI secretion system expression gives Vibrio cholerae intra- and interspecific competitive advantages.

    PubMed

    Unterweger, Daniel; Kitaoka, Maya; Miyata, Sarah T; Bachmann, Verena; Brooks, Teresa M; Moloney, Jessica; Sosa, Oscar; Silva, David; Duran-Gonzalez, Jorge; Provenzano, Daniele; Pukatzki, Stefan

    2012-01-01

    The type VI secretion system (T6SS) mediates protein translocation across the cell membrane of Gram-negative bacteria, including Vibrio cholerae - the causative agent of cholera. All V. cholerae strains examined to date harbor gene clusters encoding a T6SS. Structural similarity and sequence homology between components of the T6SS and the T4 bacteriophage cell-puncturing device suggest that the T6SS functions as a contractile molecular syringe to inject effector molecules into prokaryotic and eukaryotic target cells. Regulation of the T6SS is critical. A subset of V. cholerae strains, including the clinical O37 serogroup strain V52, express T6SS constitutively. In contrast, pandemic strains impose tight control that can be genetically disrupted: mutations in the quorum sensing gene luxO and the newly described regulator gene tsrA lead to constitutive T6SS expression in the El Tor strain C6706. In this report, we examined environmental V. cholerae isolates from the Rio Grande with regard to T6SS regulation. Rough V. cholerae lacking O-antigen carried a nonsense mutation in the gene encoding the global T6SS regulator VasH and did not display virulent behavior towards Escherichia coli and other environmental bacteria. In contrast, smooth V. cholerae strains engaged constitutively in type VI-mediated secretion and displayed virulence towards prokaryotes (E. coli and other environmental bacteria) and a eukaryote (the social amoeba Dictyostelium discoideum). Furthermore, smooth V. cholerae strains were able to outcompete each other in a T6SS-dependent manner. The work presented here suggests that constitutive T6SS expression provides V. cholerae with an advantage in intraspecific and interspecific competition.

  16. Reduced Susceptibility to Extended-Spectrum β-Lactams in Vibrio cholerae Isolated in Bangladesh

    PubMed Central

    Ceccarelli, Daniela; Alam, Munirul; Huq, Anwar; Colwell, Rita R.

    2016-01-01

    β-lactams are antibiotic molecules able to inhibit cell wall biosynthesis. Among other mechanisms, resistance in Gram-negative bacteria is mostly associated with production of β-lactamase enzymes able to bind and hydrolyze the β-lactam ring. Extended-spectrum β-lactamases extend this ability also to third- and fourth-generation cephalosporins, as well as to carbapenems and monobactams. Vibrio cholerae is the causative agent of epidemic cholera and a public health burden for developing countries like Bangladesh. Although appropriate oral or intravenous rehydration is the therapy of choice for cholera, severe infections and V. cholerae-associated septicemia are treated with antimicrobial drugs, including doxycycline, erythromycin, azithromycin, ciprofloxacin, and/or third-generation cephalosporins. In the years after the introduction of antibiotics in clinical practice, V. cholerae developed resistance to commonly used drugs worldwide mostly through gene acquisition via horizontal gene transfer. Reduced susceptibility of V. cholerae to third-generation cephalosporins has been occasionally documented. However, carbapenemase-producing V. cholerae has been reported at higher rates than resistance to extended-spectrum β-lactams, mainly associated with blaNDM-1 emergence and successful plasmid dissemination. Recent findings suggest limited β-lactam resistance is present in V. cholerae O1 isolates collected during ecological and epidemiological surveillance in Bangladesh. However, a trend to intermediate-susceptibility insurgence was observed. Horizontal gene transfer of β-lactam resistance from enteric pathogens to environmental microorganisms should not be underrated, given the ability of V. cholerae to acquire new genetic information. PMID:27803895

  17. A combined vaccine approach against Vibrio cholerae and ETEC based on outer membrane vesicles

    PubMed Central

    Leitner, Deborah R.; Lichtenegger, Sabine; Temel, Philipp; Zingl, Franz G.; Ratzberger, Desiree; Roier, Sandro; Schild-Prüfert, Kristina; Feichter, Sandra; Reidl, Joachim; Schild, Stefan

    2015-01-01

    Enteric infections induced by pathogens like Vibrio cholerae and enterotoxigenic Escherichia coli (ETEC) remain a massive burden in developing countries with increasing morbidity and mortality rates. Previously, we showed that the immunization with genetically detoxified outer membrane vesicles (OMVs) derived from V. cholerae elicits a protective immune response based on the generation of O antigen antibodies, which effectively block the motility by binding to the sheathed flagellum. In this study, we investigated the potential of lipopolysaccharide (LPS)-modified and toxin negative OMVs isolated from V. cholerae and ETEC as a combined OMV vaccine candidate. Our results indicate that the immunization with V. cholerae or ETEC OMVs induced a species-specific immune response, whereas the combination of both OMV species resulted in a high-titer, protective immune response against both pathogens. Interestingly, the immunization with V. cholerae OMVs alone resulted in a so far uncharacterized and cholera toxin B-subunit (CTB) independent protection mechanism against an ETEC colonization. Furthermore, we investigated the potential use of V. cholerae OMVs as delivery vehicles for the heterologously expression of the ETEC surface antigens, CFA/I, and FliC. Although we induced a detectable immune response against both heterologously expressed antigens, none of these approaches resulted in an improved protection compared to a simple combination of V. cholerae and ETEC OMVs. Finally, we expanded the current protection model from V. cholerae to ETEC by demonstrating that the inhibition of motility via anti-FliC antibodies represents a relevant protection mechanism of an OMV-based ETEC vaccine candidate in vivo. PMID:26322032

  18. Examining rainfall and cholera dynamics in Haiti using statistical and dynamic modeling approaches.

    PubMed

    Eisenberg, Marisa C; Kujbida, Gregory; Tuite, Ashleigh R; Fisman, David N; Tien, Joseph H

    2013-12-01

    Haiti has been in the midst of a cholera epidemic since October 2010. Rainfall is thought to be associated with cholera here, but this relationship has only begun to be quantitatively examined. In this paper, we quantitatively examine the link between rainfall and cholera in Haiti for several different settings (including urban, rural, and displaced person camps) and spatial scales, using a combination of statistical and dynamic models. Statistical analysis of the lagged relationship between rainfall and cholera incidence was conducted using case crossover analysis and distributed lag nonlinear models. Dynamic models consisted of compartmental differential equation models including direct (fast) and indirect (delayed) disease transmission, where indirect transmission was forced by empirical rainfall data. Data sources include cholera case and hospitalization time series from the Haitian Ministry of Public Health, the United Nations Water, Sanitation and Health Cluster, International Organization for Migration, and Hôpital Albert Schweitzer. Rainfall data was obtained from rain gauges from the U.S. Geological Survey and Haiti Regeneration Initiative, and remote sensing rainfall data from the National Aeronautics and Space Administration Tropical Rainfall Measuring Mission. A strong relationship between rainfall and cholera was found for all spatial scales and locations examined. Increased rainfall was significantly correlated with increased cholera incidence 4-7 days later. Forcing the dynamic models with rainfall data resulted in good fits to the cholera case data, and rainfall-based predictions from the dynamic models closely matched observed cholera cases. These models provide a tool for planning and managing the epidemic as it continues.

  19. Critical analysis of compositions and protective efficacies of oral killed cholera vaccines.

    PubMed

    Kabir, Shahjahan

    2014-09-01

    Two cholera vaccines, sold as Shanchol and Dukoral, are currently available. This review presents a critical analysis of the protective efficacies of these vaccines. Children under 5 years of age are very vulnerable to cholera and account for the highest incidence of cholera cases and more than half of the resulting deaths. Both Shanchol and Dukoral are two-spaced-dose oral vaccines comprising large numbers of killed cholera bacteria. The former contains Vibrio cholerae O1 and O139 cells, and the latter contains V. cholerae O1 cells with the recombinant B subunit of cholera toxin. In a field trial in Kolkata (India), Shanchol, the preferred vaccine, protected 45% of the test subjects in all of the age groups and only 17% of the children under 5 years of age during the first year of surveillance. In a field trial in Peru, two spaced doses of Dukoral offered negative protection in children under 5 years of age and little protection (15%) in vaccinees over 6 years of age during the first year of surveillance. Little is known about Dukoral's long-term protective efficacy. Both of these vaccines have questionable compositions, using V. cholerae O1 strains isolated in 1947 that have been inactivated by heat and formalin treatments that may denature protein. Immunological studies revealed Dukoral's reduced and short-lived efficacy, as measured by several immunological endpoints. Various factors, such as the necessity for multiple doses, poor protection of children under 5 years of age, the requirement of a cold supply chain, production costs, and complex logistics of vaccine delivery, greatly reduce the suitability of either of these vaccines for endemic or epidemic cholera control in resource-poor settings.

  20. A metalloprotease secreted by the type II secretion system links Vibrio cholerae with collagen.

    PubMed

    Park, Bo R; Zielke, Ryszard A; Wierzbicki, Igor H; Mitchell, Kristie C; Withey, Jeffrey H; Sikora, Aleksandra E

    2015-03-01

    Vibrio cholerae is autochthonous to various aquatic niches and is the etiological agent of the life-threatening diarrheal disease cholera. The persistence of V. cholerae in natural habitats is a crucial factor in the epidemiology of cholera. In contrast to the well-studied V. cholerae-chitin connection, scarce information is available about the factors employed by the bacteria for the interaction with collagens. Collagens might serve as biologically relevant substrates, because they are the most abundant protein constituents of metazoan tissues and V. cholerae has been identified in association with invertebrate and vertebrate marine animals, as well as in a benthic zone of the ocean where organic matter, including collagens, accumulates. Here, we describe the characterization of the V. cholerae putative collagenase, VchC, encoded by open reading frame VC1650 and belonging to the subfamily M9A peptidases. Our studies demonstrate that VchC is an extracellular collagenase degrading native type I collagen of fish and mammalian origin. Alteration of the predicted catalytic residues coordinating zinc ions completely abolished the protein enzymatic activity but did not affect the translocation of the protease by the type II secretion pathway into the extracellular milieu. We also show that the protease undergoes a maturation process with the aid of a secreted factor(s). Finally, we propose that V. cholerae is a collagenovorous bacterium, as it is able to utilize collagen as a sole nutrient source. This study initiates new lines of investigations aiming to uncover the structural and functional components of the V. cholerae collagen utilization program.

  1. A Metalloprotease Secreted by the Type II Secretion System Links Vibrio cholerae with Collagen

    PubMed Central

    Park, Bo R.; Zielke, Ryszard A.; Wierzbicki, Igor H.; Mitchell, Kristie C.; Withey, Jeffrey H.

    2015-01-01

    Vibrio cholerae is autochthonous to various aquatic niches and is the etiological agent of the life-threatening diarrheal disease cholera. The persistence of V. cholerae in natural habitats is a crucial factor in the epidemiology of cholera. In contrast to the well-studied V. cholerae-chitin connection, scarce information is available about the factors employed by the bacteria for the interaction with collagens. Collagens might serve as biologically relevant substrates, because they are the most abundant protein constituents of metazoan tissues and V. cholerae has been identified in association with invertebrate and vertebrate marine animals, as well as in a benthic zone of the ocean where organic matter, including collagens, accumulates. Here, we describe the characterization of the V. cholerae putative collagenase, VchC, encoded by open reading frame VC1650 and belonging to the subfamily M9A peptidases. Our studies demonstrate that VchC is an extracellular collagenase degrading native type I collagen of fish and mammalian origin. Alteration of the predicted catalytic residues coordinating zinc ions completely abolished the protein enzymatic activity but did not affect the translocation of the protease by the type II secretion pathway into the extracellular milieu. We also show that the protease undergoes a maturation process with the aid of a secreted factor(s). Finally, we propose that V. cholerae is a collagenovorous bacterium, as it is able to utilize collagen as a sole nutrient source. This study initiates new lines of investigations aiming to uncover the structural and functional components of the V. cholerae collagen utilization program. PMID:25561716

  2. Cholera between 1991 and 1997 in Mexico was associated with infection by classical, El Tor, and El Tor variants of Vibrio cholerae.

    PubMed

    Alam, Munirul; Nusrin, Suraia; Islam, Atiqul; Bhuiyan, Nurul A; Rahim, Niaz; Delgado, Gabriela; Morales, Rosario; Mendez, Jose Luis; Navarro, Armando; Gil, Ana I; Watanabe, Haruo; Morita, Masatomo; Nair, G Balakrish; Cravioto, Alejandro

    2010-10-01

    Vibrio cholerae O1 biotype El Tor (ET), the cause of the current 7th pandemic, has recently been replaced in Asia and Africa by an altered ET biotype possessing cholera toxin (CTX) of the classical (CL) biotype that originally caused the first six pandemics before becoming extinct in the 1980s. Until recently, the ET prototype was the biotype circulating in Peru; a detailed understanding of the evolutionary trend of V. cholerae causing endemic cholera in Latin America is lacking. The present retrospective microbiological, molecular, and phylogenetic study of V. cholerae isolates recovered in Mexico (n = 91; 1983 to 1997) shows the existence of the pre-1991 CL biotype and the ET and CL biotypes together with the altered ET biotype in both epidemic and endemic cholera between 1991 and 1997. According to sero- and biotyping data, the altered ET, which has shown predominance in Mexico since 1991, emerged locally from ET and CL progenitors that were found coexisting until 1997. In Latin America, ET and CL variants shared a variable number of phenotypic markers, while the altered ET strains had genes encoding the CL CTX (CTX(CL)) prophage, ctxB(CL) and rstR(CL), in addition to resident rstR(ET), as the underlying regional signature. The distinct regional fingerprints for ET in Mexico and Peru and their divergence from ET in Asia and Africa, as confirmed by subclustering patterns in a pulsed-field gel electrophoresis (NotI)-based dendrogram, suggest that the Mexico epidemic in 1991 may have been a local event and not an extension of the epidemics occurring in Asia and South America. Finally, the CL biotype reservoir in Mexico is unprecedented and must have contributed to the changing epidemiology of global cholera in ways that need to be understood.

  3. Comparative genome analysis of VSP-II and SNPs reveals heterogenic variation in contemporary strains of Vibrio cholerae O1 isolated from cholera patients in Kolkata, India.

    PubMed

    Imamura, Daisuke; Morita, Masatomo; Sekizuka, Tsuyoshi; Mizuno, Tamaki; Takemura, Taichiro; Yamashiro, Tetsu; Chowdhury, Goutam; Pazhani, Gururaja P; Mukhopadhyay, Asish K; Ramamurthy, Thandavarayan; Miyoshi, Shin-Ichi; Kuroda, Makoto; Shinoda, Sumio; Ohnishi, Makoto

    2017-02-13

    Cholera is an acute diarrheal disease and a major public health problem in many developing countries in Asia, Africa, and Latin America. Since the Bay of Bengal is considered the epicenter for the seventh cholera pandemic, it is important to understand the genetic dynamism of Vibrio cholerae from Kolkata, as a representative of the Bengal region. We analyzed whole genome sequence data of V. cholerae O1 isolated from cholera patients in Kolkata, India, from 2007 to 2014 and identified the heterogeneous genomic region in these strains. In addition, we carried out a phylogenetic analysis based on the whole genome single nucleotide polymorphisms to determine the genetic lineage of strains in Kolkata. This analysis revealed the heterogeneity of the Vibrio seventh pandemic island (VSP)-II in Kolkata strains. The ctxB genotype was also heterogeneous and was highly related to VSP-II types. In addition, phylogenetic analysis revealed the shifts in predominant strains in Kolkata. Two distinct lineages, 1 and 2, were found between 2007 and 2010. However, the proportion changed markedly in 2010 and lineage 2 strains were predominant thereafter. Lineage 2 can be divided into four sublineages, I, II, III and IV. The results of this study indicate that lineages 1 and 2-I were concurrently prevalent between 2007 and 2009, and lineage 2-III observed in 2010, followed by the predominance of lineage 2-IV in 2011 and continued until 2014. Our findings demonstrate that the epidemic of cholera in Kolkata was caused by several distinct strains that have been constantly changing within the genetic lineages of V. cholerae O1 in recent years.

  4. Molecular analyses of Vibrio cholerae O1 clinical strains, including new nontoxigenic variants isolated in Mexico during the Cholera epidemic years between 1991 and 2000.

    PubMed

    Lizárraga-Partida, Marcial Leonardo; Quilici, Marie-Laure

    2009-05-01

    We studied the evolution of Vibrio cholerae O1 during the 1991 to 2000 cholera epidemic in Mexico by biochemical, serological, and molecular characterization of strains collected during this period. Strains were divided into toxigenic and nontoxigenic groups according to the presence or absence of genes encoding cholera toxin. As previously reported, we characterized two populations among toxigenic strains, which were present from the first year of the epidemic. BglI rRNA analysis revealed that these strains had ribotype profiles, denoted M5 and M6 in our study, that were identical to those previously designated Koblavi B5 or Popovic 5 and Popovic 6a or Tamayo B21a, respectively. Ribotype M5 was isolated between 1991 and 1993. This ribotype had a low level of genetic variation as detected by pulsed-field gel electrophoresis (PFGE). Ribotype M6 persisted from 1991 to 2000. However, PFGE profiles suggested that two epidemiologically unrelated strains coexisted within this single ribotype from 1995 until the end of the epidemic. We identified three new BglI ribotypes, Mx1, Mx2, and Mx3, from nontoxigenic V. cholerae O1 strains isolated between 1998 and 2000; one of them grouped strains positive for the toxin-coregulated pilus island. They differed from nontoxigenic clones isolated in Latin America and on the U.S. Gulf Coast and are probably autochthonous Mexican V. cholerae O1 variants. Most of these new variants were isolated from states surrounding the Gulf of Mexico, where the highest incidence of cholera in the country was recorded. Thus, the Mexican Gulf Coast, like the U.S. Gulf Coast, may act as an environmental reservoir of V. cholerae O1.

  5. Comparative genome analysis of VSP-II and SNPs reveals heterogenic variation in contemporary strains of Vibrio cholerae O1 isolated from cholera patients in Kolkata, India

    PubMed Central

    Sekizuka, Tsuyoshi; Mizuno, Tamaki; Takemura, Taichiro; Yamashiro, Tetsu; Chowdhury, Goutam; Pazhani, Gururaja P.; Mukhopadhyay, Asish K.; Ramamurthy, Thandavarayan; Miyoshi, Shin-ichi; Kuroda, Makoto; Shinoda, Sumio; Ohnishi, Makoto

    2017-01-01

    Cholera is an acute diarrheal disease and a major public health problem in many developing countries in Asia, Africa, and Latin America. Since the Bay of Bengal is considered the epicenter for the seventh cholera pandemic, it is important to understand the genetic dynamism of Vibrio cholerae from Kolkata, as a representative of the Bengal region. We analyzed whole genome sequence data of V. cholerae O1 isolated from cholera patients in Kolkata, India, from 2007 to 2014 and identified the heterogeneous genomic region in these strains. In addition, we carried out a phylogenetic analysis based on the whole genome single nucleotide polymorphisms to determine the genetic lineage of strains in Kolkata. This analysis revealed the heterogeneity of the Vibrio seventh pandemic island (VSP)-II in Kolkata strains. The ctxB genotype was also heterogeneous and was highly related to VSP-II types. In addition, phylogenetic analysis revealed the shifts in predominant strains in Kolkata. Two distinct lineages, 1 and 2, were found between 2007 and 2010. However, the proportion changed markedly in 2010 and lineage 2 strains were predominant thereafter. Lineage 2 can be divided into four sublineages, I, II, III and IV. The results of this study indicate that lineages 1 and 2-I were concurrently prevalent between 2007 and 2009, and lineage 2-III observed in 2010, followed by the predominance of lineage 2-IV in 2011 and continued until 2014. Our findings demonstrate that the epidemic of cholera in Kolkata was caused by several distinct strains that have been constantly changing within the genetic lineages of V. cholerae O1 in recent years. PMID:28192431

  6. Characterization and Genetic Variation of Vibrio cholerae Isolated from Clinical and Environmental Sources in Thailand

    PubMed Central

    Siriphap, Achiraya; Leekitcharoenphon, Pimlapas; Kaas, Rolf S.; Theethakaew, Chonchanok; Aarestrup, Frank M.; Sutheinkul, Orasa; Hendriksen, Rene S.

    2017-01-01

    Cholera is still an important public health problem in several countries, including Thailand. In this study, a collection of clinical and environmental V. cholerae serogroup O1, O139, and non-O1/non-O139 strains originating from Thailand (1983 to 2013) was characterized to determine phenotypic and genotypic traits and to investigate the genetic relatedness. Using a combination of conventional methods and whole genome sequencing (WGS), 78 V. cholerae strains were identified. WGS was used to determine the serogroup, biotype, virulence, mobile genetic elements, and antimicrobial resistance genes using online bioinformatics tools. In addition, phenotypic antimicrobial resistance was determined by the minimal inhibitory concentration (MIC) test. The 78 V. cholerae strains belonged to the following serogroups O1: (n = 44), O139 (n = 16) and non-O1/non-O139 (n = 18). Interestingly, we found that the typical El Tor O1 strains were the major cause of clinical cholera during 1983–2000 with two Classical O1 strains detected in 2000. In 2004–2010, the El Tor variant strains revealed genotypes of the Classical biotype possessing either only ctxB or both ctxB and rstR while they harbored tcpA of the El Tor biotype. Thirty O1 and eleven O139 clinical strains carried CTXϕ (Cholera toxin) and tcpA as well four different pathogenic islands (PAIs). Beside non-O1/non-O139, the O1 environmental strains also presented chxA and Type Three Secretion System (TTSS). The in silico MultiLocus Sequence Typing (MLST) discriminated the O1 and O139 clinical strains from other serogroups and environmental strains. ST69 was dominant in the clinical strains belonging to the 7th pandemic clone. Non-O1/non-O139 and environmental strains showed various novel STs indicating genetic variation. Multidrug-resistant (MDR) strains were observed and conferred resistance to ampicillin, azithromycin, nalidixic acid, sulfamethoxazole, tetracycline, and trimethoprim and harboured variants of the SXT elements

  7. [Prevalence of type III secretion system genes in cholera vibrios from different serogroups].

    PubMed

    Eroshenko, G A; Kutyrev, V V; Fadeeva, A V; Shavina, N Iu; Stepanov, A V

    2008-01-01

    Prevalence of vcs genes coding the type III secretion system (T3SS) in cholera vibrios of different serogroups isolated in Russia and neighboring countries was studied for the first time. Virulent strains of O1 and O139 serogroups as well as toxigenic Vibrio cholerae strains of other serogroups contained no T3SS genes. Unlike mentioned strains, 29.2% of atoxigenic non O1/non O139 cholera vibrios isolated from patients in Russia and neighboring countries contained the T3SS genes cluster, which might contribute to the pathogenic properties of these strains.

  8. Rapid detection of Vibrio cholerae O139 Bengal from stool specimens by PCR.

    PubMed Central

    Albert, M J; Islam, D; Nahar, S; Qadri, F; Falklind, S; Weintraub, A

    1997-01-01

    In a previous study using pure bacterial cultures in a PCR assay, a primer pair corresponding to a unique chromosomal region of Vibrio cholerae O139 Bengal generated an amplicon from only V. cholerae O139 Bengal. PCR with the same primer pair was used to screen 180 diarrheal stool specimens. All the 67 V. cholerae O139 culture-positive stool specimens were positive by PCR, and the remaining specimens, which contained either other recognized enteric pathogens or no pathogens, were all negative by PCR. PMID:9163504

  9. [On the epidemic of cholera and its prevention and control by the railway authorities in 1932].

    PubMed

    Huang, H P; Song, M H

    2016-01-28

    In 1932, the epidemic of cholera in China was serious, spreading to all provinces nationwide, causing heavy casualties. In order to prevent cholera epidemics spread along the railway line, the National Government Ministry of Railways and the local railway administration had taken all countermeasures, including the promulgation of epidemic prevention laws and regulations, quarantine, isolated check-up, disinfection, vaccination and even interruption of traffic. The measures of railway authorities had achieved a certain success. In August 1932, cholera epidemic began to subside gradually.

  10. CHOLERA FORCING” The Myth of the Good Epidemic and the Coming of Good Water

    PubMed Central

    2009-01-01

    It has been frequently claimed that cholera epidemics, both in the 19th century and today, were and can be the key stimulus for procurement of safe water and sanitation, an idea that I call “cholera forcing.” “Technology forcing” refers to imposition of exogenous factors that suddenly make possible achievements that had not seemed so; cholera has been seen in this light. I argue that this view oversimplifies and underrepresents the importance of industrialization in securing water supplies. Careful study of the financial, political, and administrative foundations of such changes will be more fruitful. PMID:19820212

  11. Avian cholera in ospreys: first occurrence and possible mode of transmission

    USGS Publications Warehouse

    Hindman, L.J.; Harvey, W.F.; Costanzo, G.R.; Converse, K.A.; Stein, G.

    1997-01-01

    In 1994, six Ospreys (Pandion haliaetus) were recovered during the later stages of an epizootic of avian cholera (Pasteurella multocida) in diving ducks and seabirds on Chesapeake Bay in Maryland and Virginia. Pasteurella multocida was isolated from four Ospreys submitted for bacterial examination. This is believed to be the first report of avian cholera in Ospreys. The same isolate, serotype 3,4, was isolated from the Ospreys, diving ducks,and seabirds collected during the epizootic. Possible modes of transmission of avian cholera in Ospreys were either the ingestion of sick waterfowl or use of infected carcasses or bones as nest material.

  12. Geospatial and temporal patterns of annual cholera outbreaks in Matlab, Bangladesh

    NASA Astrophysics Data System (ADS)

    Majumder, M. S.; de Klerk, K.; Meyers, D.

    2012-12-01

    Cholera is a waterborne diarrheal disease endemic to Bangladesh, resulting in 1 million diagnoses annually. Such disease burden results in incalculable lost wages and treatment expenses, taken from the pockets of an already impoverished society. Two seasonally correlated outbreaks of cholera occur in Bangladesh every year. In the spring and early summer, the Bay of Bengal - which serves as a natural reservoir for the cholera bacteria - flows inland, causing the first outbreak amongst coastal communities. Waste containing the cholera bacteria enters the sewage system and remains untreated due to poor water and sanitation infrastructure. Therefore, during the following monsoon season, flooding of cholera-contaminated sewage into drinking water sources results in a second outbreak. Though considered common knowledge among local populations, this geographic and temporal progression has not been empirically verified in the current literature. The aim of our ongoing study is to systematically analyze the seasonal trajectory of endemic cholera in Bangladesh. This paper discusses the results obtained from a comprehensive survey of available cholera data from the International Centre of Diarrheal Disease Research, Bangladesh (ICDDR,B) in Matlab, Bangladesh. Matlab thana is a near-coastal community that consists of 142 villages. Monsoon season takes place from June through October. Due to its proximity to the Meghna River, which opens into the Bay of Bengal, the area experiences significant flooding during these months. Using 10 years of geographically referenced cholera data, cases were plotted in time and space. Preliminary patterns suggest that villages closer to the Meghna River experience the majority of the area's cholera outbreaks and that case count is highest in late spring and late fall. April/May and November/December represent 25% and 23% of total annual case counts respectively. Moreover, villages further from the coastline demonstrate 57% higher relative

  13. Fucosylation and protein glycosylation create functional receptors for cholera toxin

    PubMed Central

    Wands, Amberlyn M; Fujita, Akiko; McCombs, Janet E; Cervin, Jakob; Dedic, Benjamin; Rodriguez, Andrea C; Nischan, Nicole; Bond, Michelle R; Mettlen, Marcel; Trudgian, David C; Lemoff, Andrew; Quiding-Järbrink, Marianne; Gustavsson, Bengt; Steentoft, Catharina; Clausen, Henrik; Mirzaei, Hamid; Teneberg, Susann; Yrlid, Ulf; Kohler, Jennifer J

    2015-01-01

    Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors using its B subunit (CTB). The ganglioside (glycolipid) GM1 is thought to be the sole CT receptor; however, the mechanism by which CTB binding to GM1 mediates internalization of CT remains enigmatic. Here we report that CTB binds cell surface glycoproteins. Relative contributions of gangliosides and glycoproteins to CTB binding depend on cell type, and CTB binds primarily to glycoproteins in colonic epithelial cell lines. Using a metabolically incorporated photocrosslinking sugar, we identified one CTB-binding glycoprotein and demonstrated that the glycan portion of the molecule, not the protein, provides the CTB interaction motif. We further show that fucosylated structures promote CTB entry into a colonic epithelial cell line and subsequent host cell intoxication. CTB-binding fucosylated glycoproteins are present in normal human intestinal epithelia and could play a role in cholera. DOI: http://dx.doi.org/10.7554/eLife.09545.001 PMID:26512888

  14. Genetic Diversity and Population Structure of Vibrio cholerae

    PubMed Central

    Beltrán, Pilar; Delgado, Gabriela; Navarro, Armando; Trujillo, Francisca; Selander, Robert K.; Cravioto, Alejandro

    1999-01-01

    Multilocus enzyme electrophoresis (MLEE) of 397 Vibrio cholerae isolates, including 143 serogroup reference strains and 244 strains from Mexico and Guatemala, identified 279 electrophoretic types (ETs) distributed in two major divisions (I and II). Linkage disequilibrium was demonstrated in both divisions and in subdivision Ic of division I but not in subdivision Ia, which includes 76% of the ETs. Despite this evidence of relatively frequent recombination, clonal lineages may persist for periods of time measured in at least decades. In addition to the pandemic clones of serogroups O1 and O139, which form a tight cluster of four ETs in subdivision Ia, MLEE analysis identified numerous apparent clonal lineages of non-O1 strains with intercontinental distributions. A clone of serogroup O37 that demonstrated epidemic potential in the 1960s is closely related to the pandemic O1/O139 clones, but the nontoxigenic O1 Inaba El Tor reference strain is not. A strain of serogroup O22, which has been identified as the most likely donor of exogenous rfb region DNA to the O1 progenitor of the O139 clone, is distantly related to the O1/O139 clones. The close evolutionary relationships of the O1, O139, and O37 epidemic clones indicates that new cholera clones are likely to arise by the modification of a lineage that is already epidemic or is closely related to such a clone. PMID:9986816

  15. Proteomic analysis of Vibrio cholerae outer membrane vesicles

    PubMed Central

    Altindis, Emrah; Fu, Yang; Mekalanos, John J.

    2014-01-01

    Outer membrane vesicles (OMVs) produced by Gram-negative bacteria provide an interesting research material for defining cell-envelope proteins without experimental cell disruption. OMVs are also promising immunogenic platforms and may play important roles in bacterial survival and pathogenesis. We used in-solution trypsin digestion coupled to mass spectrometry to identify 90 proteins present in OMVs of Vibrio cholerae when grown under conditions that activate the TCP pilus virulence regulatory protein (ToxT) virulence regulon. The ToxT expression profile and potential contribution to virulence of these proteins were assessed using ToxT and in vivo RNA-seq, Tn-seq, and cholera stool proteomic and other genome-wide data sets. Thirteen OMV-associated proteins appear to be essential for cell growth, and therefore may represent antibacterial drug targets. Another 12 nonessential OMV proteins, including DegP protease, were required for intestinal colonization in rabbits. Comparative proteomics of a degP mutant revealed the importance of DegP in the incorporation of nine proteins into OMVs, including ones involved in biofilm matrix formation and various substrates of the type II secretion system. Taken together, these results suggest that DegP plays an important role in determining the content of OMVs and also affects phenotypes such as intestinal colonization, proper function of the type II secretion system, and formation of biofilm matrix. PMID:24706774

  16. Replication patterns and organization of replication forks in Vibrio cholerae.

    PubMed

    Stokke, Caroline; Waldminghaus, Torsten; Skarstad, Kirsten

    2011-03-01

    We have investigated the replication patterns of the two chromosomes of the bacterium Vibrio cholerae grown in four different media. By combining flow cytometry and quantitative real-time PCR with computer simulations, we show that in rich media, V. cholerae cells grow with overlapping replication cycles of both the large chromosome (ChrI) and the small chromosome (ChrII). In Luria-Bertani (LB) medium, initiation occurs at four copies of the ChrI origin and two copies of the ChrII origin. Replication of ChrII was found to occur at the end of the ChrI replication period in all four growth conditions. Novel cell-sorting experiments with marker frequency analysis support these conclusions. Incubation with protein synthesis inhibitors indicated that the potential for initiation of replication of ChrII was present at the same time as that of ChrI, but was actively delayed until much of ChrI was replicated. Investigations of the localization of SeqA bound to new DNA at replication forks indicated that the forks were co-localized in pairs when cells grew without overlapping replication cycles and in higher-order structures during more rapid growth. The increased degree of fork organization during rapid growth may be a means by which correct segregation of daughter molecules is facilitated.

  17. Endocytosis of cholera toxin by human enterocytes is developmentally regulated.

    PubMed

    Lu, Lei; Khan, Sameer; Lencer, Wayne; Walker, W Allan

    2005-08-01

    Many secretory diarrheas including cholera are more prevalent and fulminant in young infants than in older children and adults. Cholera toxin (CT) elicits a cAMP-dependent chloride secretory response in intestinal epithelia, which accounts for the fundamental pathogenesis of this toxigenic diarrhea. We have previously reported that the action of this bacterial enterotoxin is excessive in immature enterocytes and under developmental regulation. In this study, we tested the hypothesis that enhanced endocytosis by immature human enterocytes may, in part, account for the excessive secretory response to CT noted in the immature intestine and that enterocyte endocytosis of CT is developmentally regulated. To test this hypothesis, we used specific inhibitors to define endocytic pathways in mature and immature cell lines. We showed that internalization of CT in adult enterocytes is less and occurs via the caveolae/raft-mediated pathway in contrast to an enhanced immature human enterocyte CT uptake that occurs via a clathrin pathway. We also present evidence that this clathrin pathway is developmentally regulated as demonstrated by its response to corticosteroids, a known maturation factor that causes a decreased CT endocytosis by this pathway.

  18. Randomized Controlled Trial of Hospital-Based Hygiene and Water Treatment Intervention (CHoBI7) to Reduce Cholera

    PubMed Central

    Monira, Shirajum; Sack, David A.; Rashid, Mahamud-ur; Saif-Ur-Rahman, K.M.; Mahmud, Toslim; Rahman, Zillur; Mustafiz, Munshi; Bhuyian, Sazzadul Islam; Winch, Peter J.; Leontsini, Elli; Perin, Jamie; Begum, Farzana; Zohura, Fatema; Biswas, Shwapon; Parvin, Tahmina; Zhang, Xiaotong; Jung, Danielle; Sack, R. Bradley; Alam, Munirul

    2016-01-01

    The risk for cholera infection is >100 times higher for household contacts of cholera patients during the week after the index patient seeks hospital care than it is for the general population. To initiate a standard of care for this high-risk population, we developed Cholera-Hospital-Based-Intervention-for-7-Days (CHoBI7), which promotes hand washing with soap and treatment of water. To test CHoBI7, we conducted a randomized controlled trial among 219 intervention household contacts of 82 cholera patients and 220 control contacts of 83 cholera patients in Dhaka, Bangladesh, during 2013–2014. Intervention contacts had significantly fewer symptomatic Vibrio cholerae infections than did control contacts and 47% fewer overall V. cholerae infections. Intervention households had no stored drinking water with V. cholerae and 14 times higher odds of hand washing with soap at key events during structured observation on surveillance days 5, 6, or 7. CHoBI7 presents a promising approach for controlling cholera among highly susceptible household contacts of cholera patients. PMID:26811968

  19. From Fall to Spring, or Spring to Fall? Seasonal Cholera Transmission Cycles and Implications for Climate Change

    NASA Astrophysics Data System (ADS)

    Akanda, A. S.; Jutla, A. S.; Huq, A.; Colwell, R.; Islam, S.; WE Reason

    2010-12-01

    Cholera remains a major public health threat in many developing countries around the world. The striking seasonality and the annual recurrence of this infectious disease in endemic areas continues to be of considerable interest to scientists and public health workers. Despite major advances in the ecological, and microbiological understanding of Vibrio cholerae, the causative agent, the role of underlying macro-scale hydroclimatic processes in propagating the disease in different seasons and years is not well understood. The incidence of cholera in the Bengal Delta region, the ‘native homeland’ of cholera, shows distinct biannual peaks in the southern floodplains, as opposed to single annual peaks in coastal areas and the northern parts of Bangladesh, as well as other cholera-endemic regions in the world. A coupled analysis of the regional hydroclimate and cholera incidence reveals a strong association of the spatio-temporal variability of incidence peaks with seasonal processes and extreme events. At a seasonal scale, the cycles indicate a spring-fall transmission pattern, contrary to the prevalent notion of a fall-spring transmission cycle. We show that the asymmetric seasonal hydroclimatology affects regional cholera dynamics by providing a coastal growth environment for bacteria in spring, while propagating transmission to fall by flooding. This seasonal interpretation of the progression of cholera has important implications, for formulating effective cholera intervention and mitigation efforts through improved water management and understanding the impacts of changing climate patterns on seasonal cholera transmission. (Water Environental Research Education Actionable Solutions Network)

  20. Linkage of Global Water Resources, Climate, and Human Health: A Conundrum for Which Cholera Offers a Paradigm (Invited)

    NASA Astrophysics Data System (ADS)

    Colwell, R.

    2010-12-01

    An environmental source of cholera was hypothesized as early as the late nineteenth century by Robert Koch. Standard bacteriological procedures for isolation of vibrios from environmental samples, including water, between epidemics generally were unsuccessful because Vibrio cholerae, a marine vibrio, enters into a dormant, "viable but nonculturable stage," when conditions are unfavorable for growth and reproduction. An association of Vibrio cholerae with zooplankton, notably copepods, has been established. Furthermore, the sporadicity and erraticity of cholera epidemics have been correlated with El Niño. Since zooplankton harbor the bacterium and zooplankton blooms follow phytoplankton blooms, remote sensing can be employed to predict cholera epidemics from sea surface temperature (SST), ocean height (OH), chlorophyll, and turbidity data. Cholera occurs seasonally in Bangladesh, with two annual peaks in the number of cases. From clinical remote sensing data, it has been found that SST, OH, and blooms of phytoplankton and zooplankton are correlated with cholera epidemics. Thus, selected climatological factors and incidence of V. cholerae can be recorded, bringing the potential of predicting conditions conducive to cholera outbreaks to reality. A simple filtration intervention takes into account the association of V. cholerae with plankton, and has proven to be a simple solution to the age-old problem of controlling this waterborne disease for villagers in remote regions of Bangladesh.

  1. Randomized Controlled Trial of Hospital-Based Hygiene and Water Treatment Intervention (CHoBI7) to Reduce Cholera.

    PubMed

    George, Christine Marie; Monira, Shirajum; Sack, David A; Rashid, Mahamud-ur; Saif-Ur-Rahman, K M; Mahmud, Toslim; Rahman, Zillur; Mustafiz, Munshi; Bhuyian, Sazzadul Islam; Winch, Peter J; Leontsini, Elli; Perin, Jamie; Begum, Farzana; Zohura, Fatema; Biswas, Shwapon; Parvin, Tahmina; Zhang, Xiaotong; Jung, Danielle; Sack, R Bradley; Alam, Munirul

    2016-02-01

    The risk for cholera infection is >100 times higher for household contacts of cholera patients during the week after the index patient seeks hospital care than it is for the general population. To initiate a standard of care for this high-risk population, we developed Cholera-Hospital-Based-Intervention-for-7-Days (CHoBI7), which promotes hand washing with soap and treatment of water. To test CHoBI7, we conducted a randomized controlled trial among 219 intervention household contacts of 82 cholera patients and 220 control contacts of 83 cholera patients in Dhaka, Bangladesh, during 2013-2014. Intervention contacts had significantly fewer symptomatic Vibrio cholerae infections than did control contacts and 47% fewer overall V. cholerae infections. Intervention households had no stored drinking water with V. cholerae and 14 times higher odds of hand washing with soap at key events during structured observation on surveillance days 5, 6, or 7. CHoBI7 presents a promising approach for controlling cholera among highly susceptible household contacts of cholera patients.

  2. Occurrence in Mexico, 1998-2008, of Vibrio cholerae CTX+ El Tor carrying an additional truncated CTX prophage.

    PubMed

    Alam, Munirul; Rashed, Shah Manzur; Mannan, Shahnewaj Bin; Islam, Tarequl; Lizarraga-Partida, Marcial Leonardo; Delgado, Gabriela; Morales-Espinosa, Rosario; Mendez, Jose Luis; Navarro, Armando; Watanabe, Haruo; Ohnishi, Makoto; Hasan, Nur A; Huq, Anwar; Sack, R Bradley; Colwell, Rita R; Cravioto, Alejandro

    2014-07-08

    The seventh cholera pandemic caused by Vibrio cholerae O1 El Tor (ET) has been superseded in Asia and Africa by altered ET possessing the cholera toxin (CTX) gene of classical (CL) biotype. The CL biotype of V. cholerae was isolated, along with prototypic and altered ET, during the 1991 cholera epidemic in Mexico and subsequently remained endemic until 1997. Microbiological, molecular, and phylogenetic analyses of clinical and environmental V. cholerae isolated in Mexico between 1998 and 2008 revealed important genetic events favoring predominance of ET over CL and altered ET. V. cholerae altered ET was predominant after 1991 but not after 2000. V. cholerae strains isolated between 2001 and 2003 and a majority isolated in 2004 lacked CTX prophage (Φ) genes encoding CTX subunits A and B and repeat sequence transcriptional regulators of ET and CL biotypes: i.e., CTXΦ(-). Most CTXΦ(-) V. cholerae isolated in Mexico between 2001 and 2003 also lacked toxin coregulated pili tcpA whereas some carried either tcpA(ET) or a variant tcpA with noticeable sequence dissimilarity from tcpA(CL). The tcpA variants were not detected in 2005 after CTXΦ(+) ET became dominant. All clinical and environmental V. cholerae O1 strains isolated during 2005-2008 in Mexico were CTXΦ(+) ET, carrying an additional truncated CTXΦ instead of RS1 satellite phage. Despite V. cholerae CTXΦ(-) ET exhibiting heterogeneity in pulsed-field gel electrophoresis patterns, CTXΦ(+) ET isolated during 2004-2008 displayed homogeneity and clonal relationship with V. cholerae ET N16961 and V. cholerae ET isolated in Peru.

  3. Occurrence in Mexico, 1998–2008, of Vibrio cholerae CTX+ El Tor carrying an additional truncated CTX prophage

    PubMed Central

    Alam, Munirul; Rashed, Shah Manzur; Mannan, Shahnewaj Bin; Islam, Tarequl; Lizarraga-Partida, Marcial Leonardo; Delgado, Gabriela; Morales-Espinosa, Rosario; Mendez, Jose Luis; Navarro, Armando; Watanabe, Haruo; Ohnishi, Makoto; Hasan, Nur A.; Huq, Anwar; Sack, R. Bradley; Colwell, Rita R.; Cravioto, Alejandro

    2014-01-01

    The seventh cholera pandemic caused by Vibrio cholerae O1 El Tor (ET) has been superseded in Asia and Africa by altered ET possessing the cholera toxin (CTX) gene of classical (CL) biotype. The CL biotype of V. cholerae was isolated, along with prototypic and altered ET, during the 1991 cholera epidemic in Mexico and subsequently remained endemic until 1997. Microbiological, molecular, and phylogenetic analyses of clinical and environmental V. cholerae isolated in Mexico between 1998 and 2008 revealed important genetic events favoring predominance of ET over CL and altered ET. V. cholerae altered ET was predominant after 1991 but not after 2000. V. cholerae strains isolated between 2001 and 2003 and a majority isolated in 2004 lacked CTX prophage (Φ) genes encoding CTX subunits A and B and repeat sequence transcriptional regulators of ET and CL biotypes: i.e., CTXΦ−. Most CTXΦ− V. cholerae isolated in Mexico between 2001 and 2003 also lacked toxin coregulated pili tcpA whereas some carried either tcpAET or a variant tcpA with noticeable sequence dissimilarity from tcpACL. The tcpA variants were not detected in 2005 after CTXΦ+ ET became dominant. All clinical and environmental V. cholerae O1 strains isolated during 2005–2008 in Mexico were CTXΦ+ ET, carrying an additional truncated CTXΦ instead of RS1 satellite phage. Despite V. cholerae CTXΦ− ET exhibiting heterogeneity in pulsed-field gel electrophoresis patterns, CTXΦ+ ET isolated during 2004–2008 displayed homogeneity and clonal relationship with V. cholerae ET N16961 and V. cholerae ET isolated in Peru. PMID:24958870

  4. Non-O1/non-O139 Vibrio cholerae carrying multiple virulence factors and V. cholerae O1 in the Chesapeake Bay, Maryland.

    PubMed

    Ceccarelli, Daniela; Chen, Arlene; Hasan, Nur A; Rashed, Shah M; Huq, Anwar; Colwell, Rita R

    2015-03-01

    Non-O1/non-O139 Vibrio cholerae inhabits estuarine and coastal waters globally, but its clinical significance has not been sufficiently investigated, despite the fact that it has been associated with septicemia and gastroenteritis. The emergence of virulent non-O1/non-O139 V. cholerae is consistent with the recognition of new pathogenic variants worldwide. Oyster, sediment, and water samples were collected during a vibrio surveillance program carried out from 2009 to 2012 in the Chesapeake Bay, Maryland. V. cholerae O1 was detected by a direct fluorescent-antibody (DFA) assay but was not successfully cultured, whereas 395 isolates of non-O1/non-O139 V. cholerae were confirmed by multiplex PCR and serology. Only a few of the non-O1/non-O139 V. cholerae isolates were resistant to ampicillin and/or penicillin. Most of the isolates were sensitive to all antibiotics tested, and 77 to 90% carried the El Tor variant hemolysin gene hlyAET, the actin cross-linking repeats in toxin gene rtxA, the hemagglutinin protease gene hap, and the type 6 secretion system. About 19 to 21% of the isolates carried the neuraminidase-encoding gene nanH and/or the heat-stable toxin (NAG-ST), and only 5% contained a type 3 secretion system. None of the non-O1/non-O139 V. cholerae isolates contained Vibrio pathogenicity island-associated genes. However, ctxA, ace, or zot was present in nine isolates. Fifty-five different genotypes showed up to 12 virulence factors, independent of the source of isolation, and represent the first report of both antibiotic susceptibility and virulence associated with non-O1/non-O139 V. cholerae from the Chesapeake Bay. Since these results confirm the presence of potentially pathogenic non-O1/non-O139 V. cholerae, monitoring for total V. cholerae, regardless of serotype, should be done within the context of public health.

  5. A Therapeutic Chemical Chaperone Inhibits Cholera Intoxication and Unfolding/Translocation of the Cholera Toxin A1 Subunit

    PubMed Central

    Navarro-Garcia, Fernando; Huerta, Jazmin; Massey, Shane; Burlingame, Mansfield; Pande, Abhay H.; Tatulian, Suren A.; Teter, Ken

    2011-01-01

    Cholera toxin (CT) travels as an intact AB5 protein toxin from the cell surface to the endoplasmic reticulum (ER) of an intoxicated cell. In the ER, the catalytic A1 subunit dissociates from the rest of the toxin. Translocation of CTA1 from the ER to the cytosol is then facilitated by the quality control mechanism of ER-associated degradation (ERAD). Thermal instability in the isolated CTA1 subunit generates an unfolded toxin conformation that acts as the trigger for ERAD-mediated translocation to the cytosol. In this work, we show by circular dichroism and fluorescence spectroscopy that exposure to 4-phenylbutyric acid (PBA) inhibited the thermal unfolding of CTA1. This, in turn, blocked the ER-to-cytosol export of CTA1 and productive intoxication of either cultured cells or rat ileal loops. In cell culture studies PBA did not affect CT trafficking to the ER, CTA1 dissociation from the holotoxin, or functioning of the ERAD system. PBA is currently used as a therapeutic agent to treat urea cycle disorders. Our data suggest PBA could also be used in a new application to prevent or possibly treat cholera. PMID:21526142

  6. Gas phase characterization of the noncovalent quaternary structure of cholera toxin and the cholera toxin B subunit pentamer.

    PubMed

    Williams, Jonathan P; Smith, Daniel C; Green, Brian N; Marsden, Brian D; Jennings, Keith R; Roberts, Lynne M; Scrivens, James H

    2006-05-01

    Cholera toxin (CTx) is an AB5 cytotonic protein that has medical relevance in cholera and as a novel mucosal adjuvant. Here, we report an analysis of the noncovalent homopentameric complex of CTx B chain (CTx B5) using electrospray ionization triple quadrupole mass spectrometry and tandem mass spectrometry and the analysis of the noncovalent hexameric holotoxin usingelectrospray ionization time-of-flight mass spectrometry over a range of pH values that correlate with those encountered by this toxin after cellular uptake. We show that noncovalent interactions within the toxin assemblies were maintained under both acidic and neutral conditions in the gas phase. However, unlike the related Escherichia coli Shiga-like toxin B5 pentamer (SLTx B), the CTx B5 pentamer was stable at low pH, indicating that additional interactions must be present within the latter. Structural comparison of the CTx B monomer interface reveals an additional alpha-helix that is absent in the SLTx B monomer. In silico energy calculations support interactions between this helix and the adjacent monomer. These data provide insight into the apparent stabilization of CTx B relative to SLTx B.

  7. Molecular epidemiologic analysis of Vibrio cholerae O1 isolated during the 1997-8 cholera epidemic in southern Thailand.

    PubMed Central

    Kondo, S.; Kongmuang, U.; Kalnauwakul, S.; Matsumoto, C.; Chen, C. H.; Nishibuchi, M.

    2001-01-01

    An unusually high incidence of Vibrio cholerae O1 infection was observed in southern Thailand between late December 1997 and March 1998. Fifty-seven V. cholerae O1 strains were isolated in five provinces during this epidemic and were examined. They were El Tor Ogawa strains exhibiting similar antibiograms. All strains were resistant to tetracycline, which had not been reported in Thailand since 1993. The ribotypes. hybridization patterns with ctx and zot gene probes, arbitrarily primed PCR profiles, and pulsed-field gel electrophoresis profiles of the representative strains were compared with the clinical strains isolated from patients in India and Bangladesh in 1997 and 1998 and from international travellers originating from various Asian countries during the 1992-8 period. All southern Thailand strains and the 1998 international traveller strain of Thai origin showed indistinguishable genetic fingerprinting patterns that were distinct from those of other test strains. The results suggest that a tetracycline-resistant clone newly emerged in late December 1997 caused the large epidemic in southern Thailand and that the variants with a slightly different antibiogram appeared during the course of the spreading epidemic. PMID:11561977

  8. A therapeutic chemical chaperone inhibits cholera intoxication and unfolding/translocation of the cholera toxin A1 subunit.

    PubMed

    Taylor, Michael; Banerjee, Tuhina; Navarro-Garcia, Fernando; Huerta, Jazmin; Massey, Shane; Burlingame, Mansfield; Pande, Abhay H; Tatulian, Suren A; Teter, Ken

    2011-04-19

    Cholera toxin (CT) travels as an intact AB(5) protein toxin from the cell surface to the endoplasmic reticulum (ER) of an intoxicated cell. In the ER, the catalytic A1 subunit dissociates from the rest of the toxin. Translocation of CTA1 from the ER to the cytosol is then facilitated by the quality control mechanism of ER-associated degradation (ERAD). Thermal instability in the isolated CTA1 subunit generates an unfolded toxin conformation that acts as the trigger for ERAD-mediated translocation to the cytosol. In this work, we show by circular dichroism and fluorescence spectroscopy that exposure to 4-phenylbutyric acid (PBA) inhibited the thermal unfolding of CTA1. This, in turn, blocked the ER-to-cytosol export of CTA1 and productive intoxication of either cultured cells or rat ileal loops. In cell culture studies PBA did not affect CT trafficking to the ER, CTA1 dissociation from the holotoxin, or functioning of the ERAD system. PBA is currently used as a therapeutic agent to treat urea cycle disorders. Our data suggest PBA could also be used in a new application to prevent or possibly treat cholera.

  9. [The cholera epidemics and the development of public health in Meiji Japan. 1. Modernity, cholera, and health thought].

    PubMed

    Chemouilli, Philippe

    2004-01-01

    We present here the beginnings of public health politics in Meiji Japan (1868-1912). Due to a two century isolation of Japan, public health concepts developed in the West from the end of the 18th century were foreign in premodern Japan. Due to its isolation, Japan was also relatively preserved from some acute infectious diseases such as cholera. In this paper, we investigate the role of cholera epidemics in the emergence of public health concepts in the peculiar context of Meiji Japan. We show that chronic diseases such as tuberculosis and leprosy were neglected for a long time and that the Meiji government set priority on acute infectious diseases that were considered as long as they disturbed public order. Nevertheless, some physicians and government officials considered issues of welfare and poverty. We also review some emerging concepts of social medicine. We try to show, that in Japan as well as in Western nations, public health politics were not exempt of contradictions and paradoxes and a permanent tension existed between coercitive policies and conceptions of welfare and rights to health.

  10. A Comparison of Spatial and Social Clustering of Cholera in Matlab, Bangladesh

    PubMed Central

    Giebultowicz, Sophia; Ali, Mohammad; Yunus, Mohammad; Emch, Michael

    2010-01-01

    Infectious diseases often cluster spatially, but can also cluster socially because they are transmitted within social networks. This study compares spatial and social clustering of cholera in rural Bangladesh. Data include a spatially referenced longitudinal demographic database which consists of approximately 200,000 people and laboratory-confirmed cholera cases from 1983 to 2003. Matrices are created of kinship ties between households using a complete network design and distance matrices are also created to model spatial relationships. Moran's I statistics are calculated to measure clustering within both social and spatial matrices. The results show that cholera always clusters in space and seldom within social networks. Cholera is transmitted mostly through the local environment rather than through person-to-person contact. Comparing spatial and social network analysis can help improve understanding of disease transmission. PMID:21195655

  11. Microbiological surveillance of intra-neighbourhood El Tor cholera transmission in rural Bangaldesh*

    PubMed Central

    Spira, W. M.; Khan, M. U.; Saeed, Y. A.; Sattar, M. A.

    1980-01-01

    The apparent failure of handpump tubewells to reduce the incidence of cholera among users in the flooded rural area of Bangladesh has stimulated interest in defining precisely the means of Vibrio cholerae transmission during localized outbreaks. Cholera-infected neighbourhoods were placed under intensive microbiological surveillance to pinpoint contaminated sources and subsequent infections. The results show that cholera transmission was via contaminated surface water, particularly water taken into households for cooking or drinking. Infections resulted from a daily dose not exceeding 105 organisms and the frequency of exposure appeared to be a major determinant of the infection rate. The importance of these data in environmental interventions and particularly in the provision of tubewells is discussed. PMID:6975182

  12. Antibiotic resistance of vibrio cholerae: special considerations of R-plasmids.

    PubMed

    Kuwahara, S

    1978-09-01

    Studies on the transmission of R plasmid by conjugation between enterobacteria and vibrio or related bacteria were reviewed. The majority of the reports confirmed successful transmission from enterobacteria to Vibrio cholerae and related species, although the transmission frequencies were extremely low and the transmitted R plasmid was very unstable except for thermosensitive kanamycin plasmid and usual R plasmid coexisting with P plasmid. Strains of V. cholerae and Aeromonas liquefaciens as well as A. salmonicida bearing R plasmid were detected in nature. R plasmid was relatively unstable in V. cholerae strains with which transmission of R plasmid to enterobacteria was confirmed. At present, only 3 R plasmids have been obtained from naturally occurring strains of V. cholerae. Although the 2 European plasmids belong to the C incompatibility group with 98 megadalton closed covalent circular DNA molecule, one plasmid belongs to the J group with more than 25 megadalton molecular weight, and no CCC of satelite DNA was detected in bacteria harboring this plasmid.

  13. Disease dynamics in a coupled cholera model linking within-host and between-host interactions.

    PubMed

    Wang, Xueying; Wang, Jin

    2016-09-19

    A new modelling framework is proposed to study the within-host and between-host dynamics of cholera, a severe intestinal infection caused by the bacterium Vibrio cholerae. The within-host dynamics are characterized by the growth of highly infectious vibrios inside the human body. These vibrios shed from humans contribute to the environmental bacterial growth and the transmission of the disease among humans, providing a link from the within-host dynamics at the individual level to the between-host dynamics at the population and environmental level. A fast-slow analysis is conducted based on the two different time scales in our model. In particular, a bifurcation study is performed, and sufficient and necessary conditions are derived that lead to a backward bifurcation in cholera epidemics. Our result regarding the backward bifurcation highlights the challenges in the prevention and control of cholera.

  14. H-NS: an overarching regulator of the Vibrio cholerae life cycle.

    PubMed

    Ayala, Julio C; Silva, Anisia J; Benitez, Jorge A

    2017-01-01

    Vibrio cholerae has become a model organism for studies connecting virulence, pathogen evolution and infectious disease ecology. The coordinate expression of motility, virulence and biofilm enhances its pathogenicity, environmental fitness and fecal-oral transmission. The histone-like nucleoid structuring protein negatively regulates gene expression at multiple phases of the V. cholerae life cycle. Here we discuss: (i) the regulatory and structural implications of H-NS chromatin-binding in the two-chromosome cholera bacterium; (ii) the factors that counteract H-NS repression; and (iii) a model for the regulation of the V. cholerae life cycle that integrates H-NS repression, cyclic diguanylic acid signaling and the general stress response.

  15. Experimental Reservoirs of Human Pathogens: The Vibrio Cholerae Paradigm (7th Annual SFAF Meeting, 2012)

    ScienceCinema

    Colwell, Rita [University of Maryland

    2016-07-12

    Rita Colwell on "Experimental Reservoirs of Human Pathogens: The Vibrio cholerae paradigm" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  16. Research Spotlight: Model suggests path to ending the ongoing Haitian cholera epidemic

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-05-01

    Since early November 2010 a deadly cholera epidemic has been spreading across the Caribbean nation of Haiti, killing thousands of people and infecting hundreds of thousands. While infection rates are being actively monitored, health organizations have been left without a clear understanding of exactly how the disease has spread across Haiti. Cholera can spread through exposure to contaminated water, and the disease travels over long distances if an infected individual moves around the country. Using representations of these two predominant dispersion mechanisms, along with information on the size of the susceptible population, the number of infected individuals, and the aquatic concentration of the cholera-causing bacteria for more than 500 communities, Bertuzzo et al. designed a model that was able to accurately reproduce the progression of the Haitian cholera epidemic. (Geophysical Research Letters, doi:10.1029/2011GL046823, 2011)

  17. Introducing cholera vaccination in Asia, Africa and Haiti: a meeting report.

    PubMed

    Hall, Robert H; Sack, David A

    2015-01-15

    Orally-administered cholera vaccine (OCV) has been increasingly examined as an additional tool to intervene against endemic and epidemic cholera. In 2013, short- and long-term field experience with OCV under nine distinctive field settings was reported from India, Bangladesh, Vietnam, Guinea, Haiti, and Thailand. Lead investigators from each of these projects presented their findings at a symposium chaired by Drs. David A. Sack and Robert H. Hall at the Vaccines for Enteric Diseases (VED) Conference in Bangkok on November 7, 2013. The objective of the symposium was to describe the unique features of each setting and project, share field experience of implementing cholera vaccination, discuss results, and identify constraints to the wider use of OCV. The VED provided a forum where >200 attendees engaged with this exciting and potentially decisive new development in the cholera field.

  18. Slave mortality during the cholera epidemic in Rio de Janeiro (1855-1856): a preliminary analysis.

    PubMed

    Kodama, Kaori; Pimenta, Tânia Salgado; Bastos, Francisco Inácio; Bellido, Jaime Gregorio

    2012-12-01

    The article offers a preliminary analysis of the sociodemographic profile of deaths recorded during the first cholera epidemic in Rio de Janeiro, based on data gathered from death records at Santa Casa de Misericórdia Hospital. After cholera appeared in the country in 1855, Brazilian medical reports indicated a social bias, with slaves and the free poor suffering high mortality. From a historical perspective, however, little research has been done on the epidemic and its dynamics. The recovery of original data on cholera and the analysis of cholera mortality rates help us to better understand aspects of the slave universe in the urban zone of Rio de Janeiro in the period following the end of the slave trade.

  19. From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen

    PubMed Central

    Weynberg, Karen D.; Voolstra, Christian R.; Neave, Matthew J.; Buerger, Patrick; van Oppen, Madeleine J. H.

    2015-01-01

    Disease is an increasing threat to reef-building corals. One of the few identified pathogens of coral disease is the bacterium Vibrio coralliilyticus. In Vibrio cholerae, infection by a bacterial virus (bacteriophage) results in the conversion of non-pathogenic strains to pathogenic strains and this can lead to cholera pandemics. Pathogenicity islands encoded in the V. cholerae genome play an important role in pathogenesis. Here we analyse five whole genome sequences of V. coralliilyticus to examine whether virulence is similarly driven by horizontally acquired elements. We demonstrate that bacteriophage genomes encoding toxin genes with homology to those found in pathogenic V. cholerae are integrated in V. coralliilyticus genomes. Virulence factors located on chromosomal pathogenicity islands also exist in some strains of V. coralliilyticus. The presence of these genetic signatures indicates virulence in V. coralliilyticus is driven by prophages and other horizontally acquired elements. Screening for pathogens of coral disease should target conserved regions in these elements. PMID:26644037

  20. Clonal transmission, dual peak, and off-season cholera in Bangladesh.

    PubMed

    Alam, Munirul; Islam, Atiqul; Bhuiyan, Nurul A; Rahim, Niaz; Hossain, Anowar; Khan, G Yeahia; Ahmed, Dilruba; Watanabe, Haruo; Izumiya, Hidemasa; Faruque, Abu S G; Akanda, Ali S; Islam, Shafiqul; Sack, R Bradley; Huq, Anwar; Colwell, Rita R; Cravioto, Alejandro

    2011-01-01

    Vibrio cholerae is an estuarine bacterium associated with a single peak of cholera (March-May) in coastal villages of Bangladesh. For an unknown reason, however, cholera occurs in a unique dual peak (March-May and September-November) pattern in the city of Dhaka that is bordered by a heavily polluted freshwater river system and flood embankment. In August 2007, extreme flooding was accompanied by an unusually severe diarrhea outbreak in Dhaka that resulted in a record high illness. This study was aimed to understand the unusual outbreak and if it was related to the circulation of a new V. cholerae clone. Nineteen V. cholerae isolated during the peak of the 2007 outbreak were subjected to extensive phenotypic and molecular analyses, including multi-locus genetic screening by polymerase chain reaction (PCR), sequence-typing of the ctxB gene, and pulsed-field gel electrophoresis (PFGE). Factors associated with the unusual incidence of cholera were determined and analysis of the disease severity was done. Overall, microbiological and molecular data confirmed that the hypervirulent V. cholerae was O1 biotype El Tor (ET) that possessed cholera toxin (CT) of the classical biotype. The PFGE (NotI) and dendrogram clustering confirmed that the strains were clonal and related to the pre-2007 variant ET from Dhaka and Matlab and resembled one of two distinct clones of the variant ET confirmed to be present in the estuarine ecosystem of Bangladesh. Results of the analyses of both diarrheal case data for three consecutive years (2006-2008) and regional hydroclimatology over three decades (1980-2009) clearly indicate that the pattern of cholera occurring in Dhaka, and not seen at other endemic sites, was associated with flood waters transmitting the infectious clone circulating via the fecal-oral route during and between the dual seasonal cholera peaks in Dhaka. Circular river systems and flood embankment likely facilitate transmission of infectious V. cholerae throughout the