Shuttle Ground Operations Efficiencies/Technologies (SGOE/T) study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Scholz, A. L.; Hart, M. T.; Lowry, D. J.
1987-01-01
Methods and technolgoy were defined to reduce the overall operations cost of a major space program. Space Shuttle processing at Kennedy Space Center (KSC) was designed as the working model that would be the source of the operational information. Methods of improving efficiency of ground operations were assessed and technology elements that could reduce cost identified. Emphasis is on: (1) specific technology items and (2) management approaches required to develop and support efficient ground operations. Prime study results are to be recommendations on how to achieve more efficient operations and identification of existing or new technology that would make vehicle processing in both the current program and future programs more efficient and, therefore, less costly.
NASA Technical Reports Server (NTRS)
Byrd, Raymond J.
1990-01-01
This study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advance Launch System (ALS) program, the results of the Operationally Efficient Propulsion System Study (OEPSS) were organized into a series of OEPSS Data Books as follows: Volume 1, Generic Ground Operations Data; Volume 2, Ground Operations Problems; Volume 3, Operations Technology; Volume 4, OEPSS Design Concepts; and Volume 5, OEPSS Final Review Briefing, which summarizes the activities and results of the study. This volume presents ground processing data for a generic LOX/LH2 booster and core propulsion system based on current STS experience. The data presented includes: top logic diagram, process flow, activities bar-chart, loaded timelines, manpower requirements in terms of duration, headcount and skill mix per operations and maintenance instruction (OMI), and critical path tasks and durations.
Third International Symposium on Space Mission Operations and Ground Data Systems, part 1
NASA Technical Reports Server (NTRS)
Rash, James L. (Editor)
1994-01-01
Under the theme of 'Opportunities in Ground Data Systems for High Efficiency Operations of Space Missions,' the SpaceOps '94 symposium included presentations of more than 150 technical papers spanning five topic areas: Mission Management, Operations, Data Management, System Development, and Systems Engineering. The papers focus on improvements in the efficiency, effectiveness, productivity, and quality of data acquisition, ground systems, and mission operations. New technology, techniques, methods, and human systems are discussed. Accomplishments are also reported in the application of information systems to improve data retrieval, reporting, and archiving; the management of human factors; the use of telescience and teleoperations; and the design and implementation of logistics support for mission operations.
Operationally Efficient Propulsion System Study (OEPSS) data book. Executive summary
NASA Technical Reports Server (NTRS)
Wong, George S.
1990-01-01
The study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the Operationally Efficient Propulsion System Study (OEPSS) were organized into a series of OEPSS Data Books as follows: Volume 1, Generic Ground Operations Data; Volume 2, Ground Operations Problems; Volume 3, Operations Technology; Volume 4, OEPSS Design Concepts; and Volume 5, OEPSS Final Review Briefing, which summarizes the activities and results of the study. Summarized here are the salient results of the first year. A synopsis of each volume listed above is presented.
Third International Symposium on Space Mission Operations and Ground Data Systems, part 2
NASA Technical Reports Server (NTRS)
Rash, James L. (Editor)
1994-01-01
Under the theme of 'Opportunities in Ground Data Systems for High Efficiency Operations of Space Missions,' the SpaceOps '94 symposium included presentations of more than 150 technical papers spanning five topic areas: Mission Management, Operations, Data Management, System Development, and Systems Engineering. The symposium papers focus on improvements in the efficiency, effectiveness, and quality of data acquisition, ground systems, and mission operations. New technology, methods, and human systems are discussed. Accomplishments are also reported in the application of information systems to improve data retrieval, reporting, and archiving; the management of human factors; the use of telescience and teleoperations; and the design and implementation of logistics support for mission operations. This volume covers expert systems, systems development tools and approaches, and systems engineering issues.
NASA Technical Reports Server (NTRS)
Miller, Richard B.
1992-01-01
The development and operations costs of the Space IR Telescope Facility (SIRTF) are discussed in the light of minimizing total outlays and optimizing efficiency. The development phase cannot extend into the post-launch segment which is planned to only support system verification and calibration followed by operations with a 70-percent efficiency goal. The importance of reducing the ground-support staff is demonstrated, and the value of the highly sensitive observations to the general astronomical community is described. The Failure Protection Algorithm for the SIRTF is designed for the 5-yr lifetime and the continuous venting of cryogen, and a science driven ground/operations system is described. Attention is given to balancing cost and performance, prototyping during the development phase, incremental development, the utilization of standards, and the integration of ground system/operations with flight system integration and test.
NASA Technical Reports Server (NTRS)
Scholz, A. L.; Hart, M. T.; Lowry, D. J.
1987-01-01
The Ground Operations Evaluation describes the breath and depth of the various study elements selected as a result of an operational analysis conducted during the early part of the study. Analysis techniques used for the evaluation are described in detail. Elements selected for further evaluation are identified; the results of the analysis documented; and a follow-on course of action recommended. The background and rationale for developing recommendations for the current Shuttle or for future programs is presented.
Centralized mission planning and scheduling system for the Landsat Data Continuity Mission
Kavelaars, Alicia; Barnoy, Assaf M.; Gregory, Shawna; Garcia, Gonzalo; Talon, Cesar; Greer, Gregory; Williams, Jason; Dulski, Vicki
2014-01-01
Satellites in Low Earth Orbit provide missions with closer range for studying aspects such as geography and topography, but often require efficient utilization of space and ground assets. Optimizing schedules for these satellites amounts to a complex planning puzzle since it requires operators to face issues such as discontinuous ground contacts, limited onboard memory storage, constrained downlink margin, and shared ground antenna resources. To solve this issue for the Landsat Data Continuity Mission (LDCM, Landsat 8), all the scheduling exchanges for science data request, ground/space station contact, and spacecraft maintenance and control will be coordinated through a centralized Mission Planning and Scheduling (MPS) engine, based upon GMV’s scheduling system flexplan9 . The synchronization between all operational functions must be strictly maintained to ensure efficient mission utilization of ground and spacecraft activities while working within the bounds of the space and ground resources, such as Solid State Recorder (SSR) and available antennas. This paper outlines the functionalities that the centralized planning and scheduling system has in its operational control and management of the Landsat 8 spacecraft.
Ground systems and operations concepts for the Space Infrared Telescope Facility (SIRTF)
NASA Technical Reports Server (NTRS)
Miller, Richard B.
1991-01-01
Key requirements and ground systems implementation strategy for SIRTF which presents a significant challenge in the operational phase of the mission are discussed. The facility is aimed at reliably integrating a guaranteed time program, requests from about 200 guest observer teams per year, and observatory maintenance. SIRFT is characterized by the five-year life time due to cryogen boil-off which means that the ground system must be fully operational at launch and must operate with an efficiency and timeliness rarely achieved in previous space missions.
More Fight-Less Fuel: Reducing Fuel Burn through Ground Process Improvement
2013-06-01
These joint government and commercial air operations management suites are fast, accurate, and offer many of 33 same tools as SPADE. However, the U.S...passing hour of the day. Simulating the operations at an airfield is similar to a host of related operations management problems including restaurant...flight line may yield significant fuel and cost reductions. Focusing on the efficient use of ground resources through air operations management in a
NASA Technical Reports Server (NTRS)
1993-01-01
The Second International Symposium featured 135 oral presentations in these 12 categories: Future Missions and Operations; System-Level Architectures; Mission-Specific Systems; Mission and Science Planning and Sequencing; Mission Control; Operations Automation and Emerging Technologies; Data Acquisition; Navigation; Operations Support Services; Engineering Data Analysis of Space Vehicle and Ground Systems; Telemetry Processing, Mission Data Management, and Data Archiving; and Operations Management. Topics focused on improvements in the productivity, effectiveness, efficiency, and quality of mission operations, ground systems, and data acquisition. Also emphasized were accomplishments in management of human factors; use of information systems to improve data retrieval, reporting, and archiving; design and implementation of logistics support for mission operations; and the use of telescience and teleoperations.
A scientific operations plan for the NASA space telescope. [ground support systems, project planning
NASA Technical Reports Server (NTRS)
West, D. K.; Costa, S. R.
1975-01-01
A ground system is described which is compatible with the operational requirements of the space telescope. The goal of the ground system is to minimize the cost of post launch operations without seriously compromising the quality and total throughput of space telescope science, or jeopardizing the safety of the space telescope in orbit. The resulting system is able to accomplish this goal through optimum use of existing and planned resources and institutional facilities. Cost is also reduced and efficiency in operation increased by drawing on existing experience in interfacing guest astronomers with spacecraft as well as mission control experience obtained in the operation of present astronomical spacecraft.
Space Network Ground Segment Sustainment (SGSS) Project: Developing a COTS-Intensive Ground System
NASA Technical Reports Server (NTRS)
Saylor, Richard; Esker, Linda; Herman, Frank; Jacobsohn, Jeremy; Saylor, Rick; Hoffman, Constance
2013-01-01
Purpose of the Space Network Ground Segment Sustainment (SGSS) is to implement a new modern ground segment that will enable the NASA Space Network (SN) to deliver high quality services to the SN community for the future The key SGSS Goals: (1) Re-engineer the SN ground segment (2) Enable cost efficiencies in the operability and maintainability of the broader SN.
Modified Universal Design Survey: Enhancing Operability of Launch Vehicle Ground Crew Worksites
NASA Technical Reports Server (NTRS)
Blume, Jennifer L.
2010-01-01
Operability is a driving requirement for next generation space launch vehicles. Launch site ground operations include numerous operator tasks to prepare the vehicle for launch or to perform preflight maintenance. Ensuring that components requiring operator interaction at the launch site are designed for optimal human use is a high priority for operability. To promote operability, a Design Quality Evaluation Survey based on Universal Design framework was developed to support Human Factors Engineering (HFE) evaluation for NASA s launch vehicles. Universal Design per se is not a priority for launch vehicle processing however; applying principles of Universal Design will increase the probability of an error free and efficient design which promotes operability. The Design Quality Evaluation Survey incorporates and tailors the seven Universal Design Principles and adds new measures for Safety and Efficiency. Adapting an approach proven to measure Universal Design Performance in Product, each principle is associated with multiple performance measures which are rated with the degree to which the statement is true. The Design Quality Evaluation Survey was employed for several launch vehicle ground processing worksite analyses. The tool was found to be most useful for comparative judgments as opposed to an assessment of a single design option. It provided a useful piece of additional data when assessing possible operator interfaces or worksites for operability.
Shuttle's 160 hour ground turnaround - A design driver
NASA Technical Reports Server (NTRS)
Widick, F.
1977-01-01
Turnaround analysis added a new dimension to the Space Program with the advent of the Space Shuttle. The requirement to turn the flight hardware around in 160 working hours from landing to launch was a significant design driver and a useful tool in forcing the integration of flight and ground systems design to permit an efficient ground operation. Although there was concern that time constraints might increase program costs, the result of the analysis was to minimize facility requirements and simplify operations with resultant cost savings.
The University of Wisconsin OAO operating system
NASA Technical Reports Server (NTRS)
Heacox, H. C.; Mcnall, J. F.
1972-01-01
The Wisconsin OAO operating system is presented which consists of two parts: a computer program called HARUSPEX, which makes possible reasonably efficient and convenient operation of the package and ground operations equipment which provides real-time status monitoring, commanding and a quick-look at the data.
NASA Technical Reports Server (NTRS)
Scholz, A. L.; Hart, M. T.; Lowry, D. J.
1987-01-01
The Technology Information Sheet was assembled in database format during Phase I. This document was designed to provide a repository for information pertaining to 144 Operations and Maintenance Instructions (OMI) controlled operations in the Orbiter Processing Facility (OPF), Vehicle Assembly Building (VAB), and PAD. It provides a way to accumulate information about required crew sizes, operations task time duration (serial and/or parallel), special Ground Support Equipment (GSE). required, and identification of a potential application of existing technology or the need for the development of a new technolgoy item.
Human Factors Analysis to Improve the Processing of Ares-1 Launch Vehicle
NASA Technical Reports Server (NTRS)
Stambolian, Damon B.; Dippolito, Gregory M.; Nyugen, Bao; Dischinger, Charles; Tran, Donald; Henderson, Gena; Barth, Tim
2011-01-01
This slide presentation reviews the use of Human Factors analysis in improving the ground processing procedures for the Ares-1 launch vehicle. The light vehicle engineering designers for Ares-l launch vehicle had to design the flight vehicle for effective, efficient and safe ground operations in the cramped dimensions in a rocket design. The use of a mockup of the area where the technician would be required to work proved to be a very effective method to promote the collaboration between the Ares-1 designers and the ground operations personnel.
GEARS: An Enterprise Architecture Based On Common Ground Services
NASA Astrophysics Data System (ADS)
Petersen, S.
2014-12-01
Earth observation satellites collect a broad variety of data used in applications that range from weather forecasting to climate monitoring. Within NOAA the National Environmental Satellite Data and Information Service (NESDIS) supports these applications by operating satellites in both geosynchronous and polar orbits. Traditionally NESDIS has acquired and operated its satellites as stand-alone systems with their own command and control, mission management, processing, and distribution systems. As the volume, velocity, veracity, and variety of sensor data and products produced by these systems continues to increase, NESDIS is migrating to a new concept of operation in which it will operate and sustain the ground infrastructure as an integrated Enterprise. Based on a series of common ground services, the Ground Enterprise Architecture System (GEARS) approach promises greater agility, flexibility, and efficiency at reduced cost. This talk describes the new architecture and associated development activities, and presents the results of initial efforts to improve product processing and distribution.
Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 4: OEPSS design concepts
NASA Technical Reports Server (NTRS)
Wong, George S.; Ziese, James M.; Farhangi, Shahram
1990-01-01
This study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the OEPSS study have been organized into a series of OEPSS Data Books. This volume describes three propulsion concepts that will simplify the propulsion system design and significantly reduce operational requirements. The concepts include: (1) a fully integrated, booster propulsion module concept for the ALS that avoids the complex system created by using autonomous engines with numerous artificial interfaces; (2) an LOX tank aft concept which avoids potentially dangerous geysering in long LOX propellant lines; and (3) an air augmented, rocket engine nozzle afterburning propulsion concept that will significantly reduce LOX propellant requirements, reduce vehicle size and simplify ground operations and ground support equipment and facilities.
Pilot and Controller Evaluations of Separation Function Allocation in Air Traffic Management
NASA Technical Reports Server (NTRS)
Wing, David; Prevot, Thomas; Morey, Susan; Lewis, Timothy; Martin, Lynne; Johnson, Sally; Cabrall, Christopher; Como, Sean; Homola, Jeffrey; Sheth-Chandra, Manasi;
2013-01-01
Two human-in-the-loop simulation experiments were conducted in coordinated fashion to investigate the allocation of separation assurance functions between ground and air and between humans and automation. The experiments modeled a mixed-operations concept in which aircraft receiving ground-based separation services shared the airspace with aircraft providing their own separation service (i.e., self-separation). Ground-based separation was provided by air traffic controllers without automation tools, with tools, or by ground-based automation with controllers in a managing role. Airborne self-separation was provided by airline pilots using self-separation automation enabled by airborne surveillance technology. The two experiments, one pilot-focused and the other controller-focused, addressed selected key issues of mixed operations, assuming the starting point of current-day operations and modeling an emergence of NextGen technologies and procedures. In the controller-focused experiment, the impact of mixed operations on controller performance was assessed at four stages of NextGen implementation. In the pilot-focused experiment, the limits to which pilots with automation tools could take full responsibility for separation from ground-controlled aircraft were tested. Results indicate that the presence of self-separating aircraft had little impact on the controllers' ability to provide separation services for ground-controlled aircraft. Overall performance was best in the most automated environment in which all aircraft were data communications equipped, ground-based separation was highly automated, and self-separating aircraft had access to trajectory intent information for all aircraft. In this environment, safe, efficient, and highly acceptable operations could be achieved for twice today's peak airspace throughput. In less automated environments, reduced trajectory intent exchange and manual air traffic control limited the safely achievable airspace throughput and negatively impacted the maneuver efficiency of self-separating aircraft through high-density airspace. In a test of scripted conflicts with ground-managed aircraft, flight crews of self-separating aircraft prevented separation loss in all conflicts with detection time greater than one minute. In debrief, pilots indicated a preference for at least five minute's alerting notice and trajectory intent information on all aircraft. When intent information on ground-managed aircraft was available, self-separating aircraft benefited from fewer conflict alerts and fewer required deviations from trajectory-based operations.
Fast ground filtering for TLS data via Scanline Density Analysis
NASA Astrophysics Data System (ADS)
Che, Erzhuo; Olsen, Michael J.
2017-07-01
Terrestrial Laser Scanning (TLS) efficiently collects 3D information based on lidar (light detection and ranging) technology. TLS has been widely used in topographic mapping, engineering surveying, forestry, industrial facilities, cultural heritage, and so on. Ground filtering is a common procedure in lidar data processing, which separates the point cloud data into ground points and non-ground points. Effective ground filtering is helpful for subsequent procedures such as segmentation, classification, and modeling. Numerous ground filtering algorithms have been developed for Airborne Laser Scanning (ALS) data. However, many of these are error prone in application to TLS data because of its different angle of view and highly variable resolution. Further, many ground filtering techniques are limited in application within challenging topography and experience difficulty coping with some objects such as short vegetation, steep slopes, and so forth. Lastly, due to the large size of point cloud data, operations such as data traversing, multiple iterations, and neighbor searching significantly affect the computation efficiency. In order to overcome these challenges, we present an efficient ground filtering method for TLS data via a Scanline Density Analysis, which is very fast because it exploits the grid structure storing TLS data. The process first separates the ground candidates, density features, and unidentified points based on an analysis of point density within each scanline. Second, a region growth using the scan pattern is performed to cluster the ground candidates and further refine the ground points (clusters). In the experiment, the effectiveness, parameter robustness, and efficiency of the proposed method is demonstrated with datasets collected from an urban scene and a natural scene, respectively.
NASA Astrophysics Data System (ADS)
Wang, Rongrong; Chen, Yan; Feng, Daiwei; Huang, Xiaoyu; Wang, Junmin
This paper presents the development and experimental characterizations of a prototyping pure electric ground vehicle, which is equipped with four independently actuated in-wheel motors (FIAIWM) and is powered by a 72 V 200 Ah LiFeYPO 4 battery pack. Such an electric ground vehicle (EGV) employs four in-wheel (or hub) motors to independently drive/brake the four wheels and is one of the promising vehicle architectures primarily due to its actuation flexibility, energy efficiency, and performance potentials. Experimental data obtained from the EGV chassis dynamometer tests were employed to generate the in-wheel motor torque response and power efficiency maps in both driving and regenerative braking modes. A torque distribution method is proposed to show the potentials of optimizing the FIAIWM EGV operational energy efficiency by utilizing the actuation flexibility and the characterized in-wheel motor efficiency and torque response.
NASA Technical Reports Server (NTRS)
Waldrop, Glen S.
1990-01-01
Operations problems and cost drivers were identified for current propulsion systems and design and technology approaches were identified to increase the operational efficiency and to reduce operations costs for future propulsion systems. To provide readily usable data for the ALS program, the results of the OEPSS study were organized into a series of OEPSS Data Books. This volume presents a detailed description of 25 major problems encountered during launch processing of current expendable and reusable launch vehicles. A concise description of each problem and its operational impact on launch processing is presented, along with potential solutions and technology recommendation.
Ground Processing Affordability for Space Vehicles
NASA Technical Reports Server (NTRS)
Ingalls, John; Scott, Russell
2011-01-01
Launch vehicles and most of their payloads spend the majority of their time on the ground. The cost of ground operations is very high. So, why so often is so little attention given to ground processing during development? The current global space industry and economic environment are driving more need for efficiencies to save time and money. Affordability and sustainability are more important now than ever. We can not continue to treat space vehicles as mere science projects. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability which are not available for ELV's (Expendable Launch Vehicles). More human-rated vehicles are being developed, with the retirement of the Space Shuttles, and for a new global space race, yet these cost more than the many unmanned vehicles of today. We can learn many lessons on affordability from RLV's. DFO (Design for Operations) considers ground operations during design, development, and manufacturing-before the first flight. This is often minimized for space vehicles, but is very important. Vehicles are designed for launch and mission operations. You will not be able to do it again if it is too slow or costly to get there. Many times, technology changes faster than space products such that what is launched includes outdated features, thus reducing competitiveness. Ground operations must be considered for the full product Lifecycle, from concept to retirement. Once manufactured, launch vehicles along with their payloads and launch systems require a long path of processing before launch. Initial assembly and testing always discover problems to address. A solid integration program is essential to minimize these impacts, as was seen in the Constellation Ares I-X test rocket. For RLV's, landing/recovery and post-flight turnaround activities are performed. Multi-use vehicles require reconfiguration. MRO (Maintenance, Repair, and Overhaul) must be well-planned--- even for the unplanned problems. Defect limits and standard repairs need to be in-place as well as easily added. Many routine inspections and maintenance can be like an aircraft overhaul. Modifications and technology upgrades should be expected. Another factor affecting ground operations efficiency is trending. It is essential for RLV's, and also useful for ELV's which fly the same or similar models again. Good data analysis of technical and processing performance will determine fixes and improvements needed for safety, design, and future processing. Collecting such data on new or low-frequency vehicles is a challenge. Lessons can be learned from the Space Shuttle, or even the Concorde aircraft. For all of the above topics, efficient business systems must be established for comprehensive program management and good throughput. Drawings, specifications, and manuals for an entire launch vehicle are often in different formats from multiple vendors, plus they have proprietary constraints. Nonetheless, the integration team must ensure that all data needed is compatible and visible to each appropriate team member. Ground processing systems for scheduling, tracking, problem resolution, etc. must be well laid-out. The balance between COTS (commercial off the shelf) and custom software is difficult. Multiple customers, vendors, launch sites, and landing sites add to the complexity of efficient IT (Information Technology) tools.
Modeling and simulation of an unmanned ground vehicle power system
NASA Astrophysics Data System (ADS)
Broderick, John; Hartner, Jack; Tilbury, Dawn M.; Atkins, Ella M.
2014-06-01
Long-duration missions challenge ground robot systems with respect to energy storage and efficient conversion to power on demand. Ground robot systems can contain multiple power sources such as fuel cell, battery and/or ultra-capacitor. This paper presents a hybrid systems framework for collectively modeling the dynamics and switching between these different power components. The hybrid system allows modeling power source on/off switching and different regimes of operation, together with continuous parameters such as state of charge, temperature, and power output. We apply this modeling framework to a fuel cell/battery power system applicable to unmanned ground vehicles such as Packbot or TALON. A simulation comparison of different control strategies is presented. These strategies are compared based on maximizing energy efficiency and meeting thermal constraints.
Zhang, Dawei; Zhang, Kuang; Wu, Qun; Ding, Xumin; Sha, Xuejun
2017-02-06
In this paper, a planar waveguide based on spoof surface plasmon polaritons (SSPPs) with metals on both sides of the corrugated strip as grounds is firstly proposed in microwave region. Simple and efficient conversion between guided waves and SSPPs is realized by gradient corrugated strip with grounds on both sides. Compared with plasmonic waveguide with flaring ground [Laser Photonics Rev. 8, 146 (2014)], the addition of grounds suppresses the radiation loss effectively and improves the low-frequency performance with tighter field confinement, which leads to a wider operating bandwidth. Moreover, as the asymptotic frequency of SSPPs decreasing, the confinement of SSPPs is further enhanced by a defected ground structure (DGS), which is achieved by the periodic grooves symmetrical to those on the corrugated strip. Therefore, miniaturization of the proposed waveguide can be realized. Measured results validate both high efficiency of momentum and impedance matching and enhanced performance in the region of lower frequencies with the wave vectors close to those in free space. Such results have significant values in plasmonic functional devices and integrated circuits in microwave frequencies.
Ground Operations Aerospace Language (GOAL) textbook
NASA Technical Reports Server (NTRS)
Dickison, L. R.
1973-01-01
The textbook provides a semantical explanation accompanying a complete set of GOAL syntax diagrams, system concepts, language component interaction, and general language concepts necessary for efficient language implementation/execution.
Surveillance of ground vehicles for airport security
NASA Astrophysics Data System (ADS)
Blasch, Erik; Wang, Zhonghai; Shen, Dan; Ling, Haibin; Chen, Genshe
2014-06-01
Future surveillance systems will work in complex and cluttered environments which require systems engineering solutions for such applications such as airport ground surface management. In this paper, we highlight the use of a L1 video tracker for monitoring activities at an airport. We present methods of information fusion, entity detection, and activity analysis using airport videos for runway detection and airport terminal events. For coordinated airport security, automated ground surveillance enhances efficient and safe maneuvers for aircraft, unmanned air vehicles (UAVs) and unmanned ground vehicles (UGVs) operating within airport environments.
Hamlin, S.N.
1985-01-01
The U.S. Geological Survey, in cooperation with the Santa Clara Valley Water District, has completed a study of ground-water recharge by injection in the Palo Alto baylands along San Francisco Bay, California. Selected wells within the Water District 's injection-extraction network were monitored to determine hydraulic and chemical interactions affecting well-field operation. The well field was installed to prevent and eliminate saline contamination in the local shallow aquifer system. The primary focus of this study is on factors that affect injection efficiency, specifically well and aquifer clogging. Mixing and break-through curves for major chemical constituents indicate ion exchange, adsorption, and dissolution reactions. Freshwater breakthrough was detected in water-level data, which reflected fluid-density change as well as head buildup. Dissolution of calcium carbonate caused by dilution of saline ground water probably accounts for an apparent increase in specific capacity possibly related to improved aquifer permeability. Adsorption evidently removed trace elements during passage of injected water through the aquifer. In terms of hydraulic and chemical compatibility, the well field is a viable system for ground-water recharge. Aquifer heterogeneity and operational constraints reduce the efficiency of the system. Efficiency may be maximized by careful attention to extraction distribution and quantity and to injection distribution, quantity, and water quality. (USGS)
Bantam System Technology Project
NASA Technical Reports Server (NTRS)
Moon, J. M.; Beveridge, J. R.
1998-01-01
This report focuses on determining a best value, low risk, low cost and highly reliable Data and Command System for support of the launch of low cost vehicles which are to carry small payloads into low earth orbit. The ground-based DCS is considered as a component of the overall ground and flight support system which includes the DCS, flight computer, mission planning system and simulator. Interfaces between the DCS and these other component systems are considered. Consideration is also given to the operational aspects of the mission and of the DCS selected. This project involved: defining requirements, defining an efficient operations concept, defining a DCS architecture which satisfies the requirements and concept, conducting a market survey of commercial and government off-the-shelf DCS candidate systems and rating the candidate systems against the requirements/concept. The primary conclusions are that several low cost, off-the-shelf DCS solutions exist and these can be employed to provide for very low cost operations and low recurring maintenance cost. The primary recommendation is that the DCS design/specification should be integrated within the ground and flight support system design as early as possible to ensure ease of interoperability and efficient allocation of automation functions among the component systems.
The Evolution of Methods of Air Traffic Control.
1984-01-01
Constraints: The fundemental presupposition of this method is that it is only the aircraft which can make the choice of the most cost-efficient profile...the direct operating costs but the return on investment in the ground equipment. Similarly in operational terms, improving the day-to-day quality of
KSC ground operations planning for Space Station
NASA Technical Reports Server (NTRS)
Lyon, J. R.; Revesz, W., Jr.
1993-01-01
At the Kennedy Space Center (KSC) in Florida, processing facilities are being built and activated to support the processing, checkout, and launch of Space Station elements. The generic capability of these facilities will be utilized to support resupply missions for payloads, life support services, and propellants for the 30-year life of the program. Special Ground Support Equipment (GSE) is being designed for Space Station hardware special handling requirements, and a Test, Checkout, and Monitoring System (TCMS) is under development to verify that the flight elements are ready for launch. The facilities and equipment used at KSC, along with the testing required to accomplish the mission, are described in detail to provide an understanding of the complexity of operations at the launch site. Assessments of hardware processing flows through KSC are being conducted to minimize the processing flow times for each hardware element. Baseline operations plans and the changes made to improve operations and reduce costs are described, recognizing that efficient ground operations are a major key to success of the Space Station.
Development of Broadband Telecommunication System for Railways using Laser Technology
NASA Astrophysics Data System (ADS)
Nakamura, Kazuki; Nakagawa, Shingo; Matsubara, Hiroshi; Tatsui, Daisuke; Seki, Kiyotaka; Haruyama, Shinichiro; Teraoka, Fumio
We developed a high-speed telecommunication system applicable to railways, to improve customer service and efficiency of operator's telecommunication between the ground facilities and trains under operations. We manufactured a mobile telecommunication system, capable of recording the transfer rate of 1Gbps in theory by applying the laser beam communication technology. We carried out a field test using trains in active service, and obtained the result of the transfer rate of approximately 700Mbps on the TCP layer between the ground and the train running at a speed of approximately 130km/h.
Operationally Efficient Propulsion System Study (OEPSS): OEPSS Video Script
NASA Technical Reports Server (NTRS)
Wong, George S.; Waldrop, Glen S.; Trent, Donnie (Editor)
1992-01-01
The OEPSS video film, along with the OEPSS Databooks, provides a data base of current launch experience that will be useful for design of future expendable and reusable launch systems. The focus is on the launch processing of propulsion systems. A brief 15-minute overview of the OEPSS study results is found at the beginning of the film. The remainder of the film discusses in more detail: current ground operations at the Kennedy Space Center; typical operations issues and problems; critical operations technologies; and efficiency of booster and space propulsion systems. The impact of system architecture on the launch site and its facility infrastucture is emphasized. Finally, a particularly valuable analytical tool, developed during the OEPSS study, that will provide for the "first time" a quantitative measure of operations efficiency for a propulsion system is described.
NASA Technical Reports Server (NTRS)
Prevot, Thomas
2012-01-01
This paper describes the underlying principles and algorithms for computing the primary controller managed spacing (CMS) tools developed at NASA for precisely spacing aircraft along efficient descent paths. The trajectory-based CMS tools include slot markers, delay indications and speed advisories. These tools are one of three core NASA technologies integrated in NASAs ATM technology demonstration-1 (ATD-1) that will operationally demonstrate the feasibility of fuel-efficient, high throughput arrival operations using Automatic Dependent Surveillance Broadcast (ADS-B) and ground-based and airborne NASA technologies for precision scheduling and spacing.
Ground operations demonstration unit for liquid hydrogen initial test results
NASA Astrophysics Data System (ADS)
Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.
2015-12-01
NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.
Ground Operations Demonstration Unit for Liquid Hydrogen Initial Test Results
NASA Technical Reports Server (NTRS)
Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.
2015-01-01
NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.
Spitzer observatory operations: increasing efficiency in mission operations
NASA Astrophysics Data System (ADS)
Scott, Charles P.; Kahr, Bolinda E.; Sarrel, Marc A.
2006-06-01
This paper explores the how's and why's of the Spitzer Mission Operations System's (MOS) success, efficiency, and affordability in comparison to other observatory-class missions. MOS exploits today's flight, ground, and operations capabilities, embraces automation, and balances both risk and cost. With operational efficiency as the primary goal, MOS maintains a strong control process by translating lessons learned into efficiency improvements, thereby enabling the MOS processes, teams, and procedures to rapidly evolve from concept (through thorough validation) into in-flight implementation. Operational teaming, planning, and execution are designed to enable re-use. Mission changes, unforeseen events, and continuous improvement have often times forced us to learn to fly anew. Collaborative spacecraft operations and remote science and instrument teams have become well integrated, and worked together to improve and optimize each human, machine, and software-system element. Adaptation to tighter spacecraft margins has facilitated continuous operational improvements via automated and autonomous software coupled with improved human analysis. Based upon what we now know and what we need to improve, adapt, or fix, the projected mission lifetime continues to grow - as does the opportunity for numerous scientific discoveries.
Calculation of Operations Efficiency Factors for Mars Surface Missions
NASA Technical Reports Server (NTRS)
Layback, Sharon L.
2014-01-01
For planning of Mars surface missions, to be operated on a sol-by-sol basis by a team on Earth (where a "sol" is a Martian day), activities are described in terms of "sol types" that are strung together to build a surface mission scenario. Some sol types require ground decisions based on a previous sol's results to feed into the activity planning ("ground in the loop"), while others do not. Due to the differences in duration between Earth days and Mars sols, for a given Mars local solar time, the corresponding Earth time "walks" relative to the corresponding times on the prior sol/day. In particular, even if a communication window has a fixed Mars local solar time, the Earth time for that window will be approximately 40 minutes later each succeeding day. Further complexity is added for non-Mars synchronous communication relay assets, and when there are multiple control centers in different Earth time zones. The solution is the development of "ops efficiency factors" that reflect the efficiency of a given operations configuration (how many and location of control centers, types of communication windows, synchronous or non-synchronous nature of relay assets, sol types, more-or-less sustainable operations schedule choices) against a theoretical "optimal" operations configuration for the mission being studied. These factors are then incorporated into scenario models in order to determine the surface duration (and therefore minimum spacecraft surface lifetime) required to fulfill scenario objectives. The resulting model is used to perform "what-if" analyses for variations in scenario objectives. The ops efficiency factor is the ratio of the figure of merit for a given operations factor to the figure of merit for the theoretical optimal configuration. The current implementation is a pair of models in Excel. The first represents a ground operations schedule for 500 sols in each operations configuration for the mission being studied (500 sols was chosen as being a long enough time to capture variations in relay asset interactions, Earth/Mars time phasing, and seasonal variations in holidays). This model is used to estimate the ops efficiency factor for each operations configuration. The second model in a separate Excel spreadsheet is a scenario model, which uses the sol types to rack up the total number of "scenario sols" for that scenario (in other words, the ideal number of sols it would take to perform the scenario objectives). Then, the number of sols requiring ground in the loop is calculated based on the soil types contained in the given scenario. Next, the scenario contains a description of what sequence of operations configurations is used, for how many days each, and this is used with the corresponding ops efficiency factors for each configuration to calculate the "ops duration" corresponding to that scenario. Finally, a margin is applied to determine the minimum surface lifetime required for that scenario. Typically, this level of analysis has not been performed until much later in the mission, and has not been able to influence mission design. Further, the notion of moving to sustainable operations during Prime Mission - and the effect that that move would have on surface mission productivity and mission objective choices - has not been encountered until the most recent rover missions (MSL and Mars 2018).
Advanced ground station architecture
NASA Technical Reports Server (NTRS)
Zillig, David; Benjamin, Ted
1994-01-01
This paper describes a new station architecture for NASA's Ground Network (GN). The architecture makes efficient use of emerging technologies to provide dramatic reductions in size, operational complexity, and operational and maintenance costs. The architecture, which is based on recent receiver work sponsored by the Office of Space Communications Advanced Systems Program, allows integration of both GN and Space Network (SN) modes of operation in the same electronics system. It is highly configurable through software and the use of charged coupled device (CCD) technology to provide a wide range of operating modes. Moreover, it affords modularity of features which are optional depending on the application. The resulting system incorporates advanced RF, digital, and remote control technology capable of introducing significant operational, performance, and cost benefits to a variety of NASA communications and tracking applications.
Integrated Systems Health Management for Space Exploration
NASA Technical Reports Server (NTRS)
Uckun, Serdar
2005-01-01
Integrated Systems Health Management (ISHM) is a system engineering discipline that addresses the design, development, operation, and lifecycle management of components, subsystems, vehicles, and other operational systems with the purpose of maintaining nominal system behavior and function and assuring mission safety and effectiveness under off-nominal conditions. NASA missions are often conducted in extreme, unfamiliar environments of space, using unique experimental spacecraft. In these environments, off-nominal conditions can develop with the potential to rapidly escalate into mission- or life-threatening situations. Further, the high visibility of NASA missions means they are always characterized by extraordinary attention to safety. ISHM is a critical element of risk mitigation, mission safety, and mission assurance for exploration. ISHM enables: In-space maintenance and repair; a) Autonomous (and automated) launch abort and crew escape capability; b) Efficient testing and checkout of ground and flight systems; c) Monitoring and trending of ground and flight system operations and performance; d) Enhanced situational awareness and control for ground personnel and crew; e) Vehicle autonomy (self-sufficiency) in responding to off-nominal conditions during long-duration and distant exploration missions; f) In-space maintenance and repair; and g) Efficient ground processing of reusable systems. ISHM concepts and technologies may be applied to any complex engineered system such as transportation systems, orbital or planetary habitats, observatories, command and control systems, life support systems, safety-critical software, and even the health of flight crews. As an overarching design and operational principle implemented at the system-of-systems level, ISHM holds substantial promise in terms of affordability, safety, reliability, and effectiveness of space exploration missions.
2.097μ Cth:YAG flashlamp pumped high energy high efficiency laser operation (patent pending)
NASA Astrophysics Data System (ADS)
Bar-Joseph, Dan
2018-02-01
Flashlamp pumped Cth:YAG lasers are mainly used in medical applications (urology). The main laser transition is at 2.13μ and is called a quasi-three level having an emission cross-section of 7x10-21 cm2 and a ground state absorption of approximately 5%/cm. Because of the relatively low absorption, combined with a modest emission cross-section, the laser requires high reflectivity output coupling, and therefore high intra-cavity energy density which limits the output to approximately 4J/pulse for reliable operation. This paper will describe a method of efficiently generating high output energy at low intra-cavity energy density by using an alternative 2.097μ transition having an emission cross-section of 5x10-21 cm2 and a ground level absorption of approximately 14%/cm.
Recent Enhancements to the National Transonic Facility (Mixed Mode Operations)
NASA Technical Reports Server (NTRS)
Kilgore, W. Allen; Chan, David; Balakrishna, S.; Wahls, Richard A.
2006-01-01
The U.S. National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the development of a Mixed-mode of operations that combine Air-mode operations with Nitrogen-mode operations. This implementation and operational results of this new Mixed-mode expands the ambient temperature transonic region of testing beyond the Air-mode limitations at a significantly reduced cost over Nitrogen Mode operation.
Operational Reconnaissance for the Anti-Access /Area Denial environment
2015-04-01
locations, the Air Force Distributed Common Ground System ( DCGS ) collects, processes, analyzes, and disseminates over 1.3 million megabits of... DCGS ; satellite data link between the aircraft and ground based receiver; and fiber- optic connection between the receiver, RPA crew, and DCGS . This...analysts and end users. DCGS Integration The Air Force global ISR enterprise is not configured to efficiently receive, exploit, or disseminate fighter
Recovery Act: Tennessee Energy Efficient Schools Initiative Ground Source Heat Pump Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Townsend, Terry; Slusher, Scott
The Tennessee Energy Efficient Schools Initiative (EESI) Hybrid-Water Source Heat Pump (HY-GSHP) Program sought to provide installation costs and operation costs for different Hybrid water source heat pump systems’ configurations so that other State of Tennessee School Districts will have a resource for comparison purposes if considering a geothermal system.
NASA Technical Reports Server (NTRS)
Wing, David J.; Prevot, Thomas; Murdoch, Jennifer L.; Cabrall, Christopher D.; Homola, Jeffrey R.; Martin, Lynne H.; Mercer, Joey S.; Hoadley, Sherwood T.; Wilson, Sara R.; Hubbs, Clay E.;
2010-01-01
This paper presents an air/ground functional allocation experiment conducted by the National Aeronautics and Space Administration (NASA) using two human-in-the-Loop simulations to compare airborne and ground-based approaches to NextGen separation assurance. The approaches under investigation are two trajectory-based four-dimensional (4D) concepts; one referred to as "airborne trajectory management with self-separation" (airborne) the other as "ground-based automated separation assurance" (ground-based). In coordinated simulations at NASA's Ames and Langley Research Centers, the primary operational participants -controllers for the ground-based concept and pilots for the airborne concept - manage the same traffic scenario using the two different 4D concepts. The common scenarios are anchored in traffic problems that require a significant increase in airspace capacity - on average, double, and in some local areas, close to 250% over current day levels - in order to enable aircraft to safely and efficiently traverse the test airspace. The simulations vary common independent variables such as traffic density, sequencing and scheduling constraints, and timing of trajectory change events. A set of common metrics is collected to enable a direct comparison of relevant results. The simulations will be conducted in spring 2010. If accepted, this paper will be the first publication of the experimental approach and early results. An initial comparison of safety and efficiency as well as operator acceptability under the two concepts is expected.
NASA Astrophysics Data System (ADS)
Black, Stephen T.; Eshleman, Wally
1997-01-01
This paper describes the VentureStar™ SSTO RLV and X-33 operations concepts. Applications of advanced technologies, automated ground support systems, advanced aircraft and launch vehicle lessons learned have been integrated to develop a streamlined vehicle and mission processing concept necessary to meet the goals of a commercial SSTO RLV. These concepts will be validated by the X-33 flight test program where financial and technical risk mitigation are required. The X-33 flight test program totally demonstrates the vehicle performance, technology, and efficient ground operations at the lowest possible cost. The Skunk Work's test program approach and test site proximity to the production plant are keys. The X-33 integrated flight and ground test program incrementally expands the knowledge base of the overall system allowing minimum risk progression to the next flight test program milestone. Subsequent X-33 turnaround processing flows will be performed with an aircraft operations philosophy. The differences will be based on research and development, component reliability and flight test requirements.
BEARS: a multi-mission anomaly response system
NASA Astrophysics Data System (ADS)
Roberts, Bryce A.
2009-05-01
The Mission Operations Group at UC Berkeley's Space Sciences Laboratory operates a highly automated ground station and presently a fleet of seven satellites, each with its own associated command and control console. However, the requirement for prompt anomaly detection and resolution is shared commonly between the ground segment and all spacecraft. The efficient, low-cost operation and "lights-out" staffing of the Mission Operations Group requires that controllers and engineers be notified of spacecraft and ground system problems around the clock. The Berkeley Emergency Anomaly and Response System (BEARS) is an in-house developed web- and paging-based software system that meets this need. BEARS was developed as a replacement for an existing emergency reporting software system that was too closedsource, platform-specific, expensive, and antiquated to expand or maintain. To avoid these limitations, the new system design leverages cross-platform, open-source software products such as MySQL, PHP, and Qt. Anomaly notifications and responses make use of the two-way paging capabilities of modern smart phones.
Development of a Ground Operations Demonstration Unit for Liquid Hydrogen at Kennedy Space Center
NASA Astrophysics Data System (ADS)
Notardonato, W. U.
NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project will design, assemble, and test a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives and will culminate with an operational demonstration of the loading of a simulated flight tank with densified propellants. The system will be unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. The integrated refrigerator is the critical feature enabling the testing of the following three functions: zero-loss storage and transfer, propellant densification/conditioning, and on-site liquefaction. This paper will discuss the test objectives, the design of the system, and the current status of the installation.
A review of aircraft turnaround operations and simulations
NASA Astrophysics Data System (ADS)
Schmidt, Michael
2017-07-01
The ground operational processes are the connecting element between aircraft en-route operations and airport infrastructure. An efficient aircraft turnaround is an essential component of airline success, especially for regional and short-haul operations. It is imperative that advancements in ground operations, specifically process reliability and passenger comfort, are developed while dealing with increasing passenger traffic in the next years. This paper provides an introduction to aircraft ground operations focusing on the aircraft turnaround and passenger processes. Furthermore, key challenges for current aircraft operators, such as airport capacity constraints, schedule disruptions and the increasing cost pressure, are highlighted. A review of the conducted studies and conceptual work in this field shows pathways for potential process improvements. Promising approaches attempt to reduce apron traffic and parallelize passenger processes and taxiing. The application of boarding strategies and novel cabin layouts focusing on aisle, door and seat, are options to shorten the boarding process inside the cabin. A summary of existing modeling and simulation frameworks give an insight into state-of-the-art assessment capabilities as it concerns advanced concepts. They are the prerequisite to allow a holistic assessment during the early stages of the preliminary aircraft design process and to identify benefits and drawbacks for all involved stakeholders.
A Near-Term Concept for Trajectory Based Operations with Air/Ground Data Link Communication
NASA Technical Reports Server (NTRS)
McNally, David; Mueller, Eric; Thipphavong, David; Paielli, Russell; Cheng, Jinn-Hwei; Lee, Chuhan; Sahlman, Scott; Walton, Joe
2010-01-01
An operating concept and required system components for trajectory-based operations with air/ground data link for today's en route and transition airspace is proposed. Controllers are fully responsible for separation as they are today, and no new aircraft equipage is required. Trajectory automation computes integrated solutions to problems like metering, weather avoidance, traffic conflicts and the desire to find and fly more time/fuel efficient flight trajectories. A common ground-based system supports all levels of aircraft equipage and performance including those equipped and not equipped for data link. User interface functions for the radar controller's display make trajectory-based clearance advisories easy to visualize, modify if necessary, and implement. Laboratory simulations (without human operators) were conducted to test integrated operation of selected system components with uncertainty modeling. Results are based on 102 hours of Fort Worth Center traffic recordings involving over 37,000 individual flights. The presence of uncertainty had a marginal effect (5%) on minimum-delay conflict resolution performance, and windfavorable routes had no effect on detection and resolution metrics. Flight plan amendments and clearances were substantially reduced compared to today s operations. Top-of-descent prediction errors are the largest cause of failure indicating that better descent predictions are needed to reliably achieve fuel-efficient descent profiles in medium to heavy traffic. Improved conflict detections for climbing flights could enable substantially more continuous climbs to cruise altitude. Unlike today s Conflict Alert, tactical automation must alert when an altitude amendment is entered, but before the aircraft starts the maneuver. In every other failure case tactical automation prevented losses of separation. A real-time prototype trajectory trajectory-automation system is running now and could be made ready for operational testing at an en route Center in 1-2 years.
Performance analysis on a large scale borehole ground source heat pump in Tianjin cultural centre
NASA Astrophysics Data System (ADS)
Yin, Baoquan; Wu, Xiaoting
2018-02-01
In this paper, the temperature distribution of the geothermal field for the vertical borehole ground-coupled heat pump was tested and analysed. Besides the borehole ground-coupled heat pump, the system composed of the ice storage, heat supply network and cooling tower. According to the operation data for nearly three years, the temperature constant zone is in the ground depth of 40m -120m with a temperature gradient of about 3.0°C/100m. The temperature of the soil dropped significantly in the heating season, increased significantly in the cooling season, and reinstated in the transitional season. With the energy balance design of the heating and cooling and the existence of the soil thermal inertia, the soil temperature stayed in a relative stable range and the ground source heat pump system was operated with a relative high efficiency. The geothermal source heat pump was shown to be applicable for large scale utilization.
System for the removal of contaminant soil-gas vapors
Weidner, Jerry R.; Downs, Wayne C.; Kaser, Timothy G.; Hall, H. James
1997-01-01
A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources.
System for the removal of contaminant soil-gas vapors
Weidner, J.R.; Downs, W.C.; Kaser, T.G.; Hall, H.J.
1997-12-16
A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources. 4 figs.
Factors influencing aircraft ground handling performance
NASA Technical Reports Server (NTRS)
Yager, T. J.
1983-01-01
Problems associated with aircraft ground handling operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from tests with instrumented ground vehicles and aircraft, and aircraft wet runway accident investigation are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.
Managing the Implementation of Mission Operations Automation
NASA Technical Reports Server (NTRS)
Sodano, R.; Crouse, P.; Odendahl, S.; Fatig, M.; McMahon, K.; Lakin, J.
2006-01-01
Reducing the cost of mission operations has necessitated a high level of automation both on spacecraft and ground systems. While automation on spacecraft is implemented during the design phase, ground system automation tends to be implemented during the prime mission operations phase. Experience has shown that this tendency for late automation development can be hindered by several factors: additional hardware and software resources may need to be procured; software must be developed and tested on a non-interference basis with primary operations with limited manpower; and established procedures may not be suited for automation requiring substantial rework. In this paper we will review the experience of successfully automating mission operations for seven on-orbit missions: the Compton Gamma Ray Observatory (CGRO), the Rossi X-Ray Timing Explorer (RXTE), the Advanced Composition Explorer (ACE), the Far Ultraviolet Spectroscopic Explorer (FUSE), Interplanetary Physics Laboratory (WIND), Polar Plasma Laboratory (POLAR), and the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE). We will provide lessons learned in areas such as: spacecraft recorder management, procedure development, lights out commanding from the ground system vs. stored command loads, spacecraft contingency response time, and ground station interfaces. Implementing automation strategies during the mission concept and spacecraft integration and test phase as the most efficient method will be discussed.
Ground-Ground Data Communication-Assisted Planning and Coordination: Shorter Verbal Communications
NASA Technical Reports Server (NTRS)
Kessell, Angela Mary; Lee, Paul U.; Smith, Nancy M.; Lee, Hwasoo Eric
2010-01-01
A human-in-the-loop simulation was conducted to investigate the operational feasibility, technical requirements, and potential improvement in airspace efficiency of adding a Multi-Sector Planner position. A subset of the data from that simulation is analyzed here to determine the impact, if any, of ground-ground data communication (Data Comm) on verbal communication and coordination for multi-sector air traffic management. The results suggest that the use of Data Comm significantly decreases the duration of individual verbal communications. The results also suggest that the use of Data Comm, as instantiated in the current simulation, does not obviate the need for accompanying voice calls.
NASA Technical Reports Server (NTRS)
Martelli, Andrea
1994-01-01
This paper presents the capabilities implemented in the SAX system for an efficient operations management during its in-flight mission. SAX is an Italian scientific satellite for x-ray astronomy whose major mission objectives impose quite tight constraints on the implementation of both the space and ground segment. The most relevant mission characteristics require an operative lifetime of two years, performing scientific observations both in contact and in noncontact periods, with a low equatorial orbit supported by one ground station, so that only a few minutes of communications are available each orbit. This operational scenario determines the need to have a satellite capable of performing the scheduled mission automatically and reacting autonomously to contingency situations. The implementation approach of the on-board operations management, through which the necessary automation and autonomy are achieved, follows a hierarchical structure. This has been achieved adopting a distributed avionic architecture. Nine different on-board computers, in fact, constitute the on-board data management system. Each of them performs the local control and monitors its own functions while the system level control is performed at a higher level by the data handling applications software. The SAX on-board architecture provides the ground operators with different options of intervention by three classes of telecommands. The management of the scientific operations will be scheduled by the operation control center via dedicated operating plans. The SAX satellite flight mode is presently being integrated at Alenia Spazio premises in Turin for a launch scheduled for the end of 1995. Once in orbit, the SAX satellite will be subject to intensive check-out activities in order to verify the required mission performances. An overview of the envisaged procedure and of the necessary on-ground activities is therefore depicted as well.
Cost efficient operations for Discovery class missions
NASA Technical Reports Server (NTRS)
Cameron, G. E.; Landshof, J. A.; Whitworth, G. W.
1994-01-01
The Near Earth Asteroid Rendezvous (NEAR) program at The Johns Hopkins University Applied Physics Laboratory is scheduled to launch the first spacecraft in NASA's Discovery program. The Discovery program is to promote low cost spacecraft design, development, and mission operations for planetary space missions. The authors describe the NEAR mission and discuss the design and development of the NEAR Mission Operations System and the NEAR Ground System with an emphasis on those aspects of the design that are conducive to low-cost operations.
Laser photovoltaic power system synergy for SEI applications
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Hickman, J. M.
1991-01-01
Solar arrays can provide reliable space power, but do not operate when there is no solar energy. Photovoltaic arrays can also convert laser energy with high efficiency. One proposal to reduce the required mass of energy storage required is to illuminate the photovoltaic arrays by a ground laser system. It is proposed to locate large lasers on cloud-free sites at one or more ground locations, and use large lenses or mirrors with adaptive optical correction to reduce the beam spread due to diffraction or atmospheric turbulence. During the eclipse periods or lunar night, the lasers illuminate the solar arrays to a level sufficient to provide operating power.
Space Tug avionics definition study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1975-01-01
A top down approach was used to identify, compile, and develop avionics functional requirements for all flight and ground operational phases. Such requirements as safety mission critical functions and criteria, minimum redundancy levels, software memory sizing, power for tug and payload, data transfer between payload, tug, shuttle, and ground were established. Those functional requirements that related to avionics support of a particular function were compiled together under that support function heading. This unique approach provided both organizational efficiency and traceability back to the applicable operational phase and event. Each functional requirement was then allocated to the appropriate subsystems and its particular characteristics were quantified.
Landsat Data Continuity Mission (LDCM) space to ground mission data architecture
Nelson, Jack L.; Ames, J.A.; Williams, J.; Patschke, R.; Mott, C.; Joseph, J.; Garon, H.; Mah, G.
2012-01-01
The Landsat Data Continuity Mission (LDCM) is a scientific endeavor to extend the longest continuous multi-spectral imaging record of Earth's land surface. The observatory consists of a spacecraft bus integrated with two imaging instruments; the Operational Land Imager (OLI), built by Ball Aerospace & Technologies Corporation in Boulder, Colorado, and the Thermal Infrared Sensor (TIRS), an in-house instrument built at the Goddard Space Flight Center (GSFC). Both instruments are integrated aboard a fine-pointing, fully redundant, spacecraft bus built by Orbital Sciences Corporation, Gilbert, Arizona. The mission is scheduled for launch in January 2013. This paper will describe the innovative end-to-end approach for efficiently managing high volumes of simultaneous realtime and playback of image and ancillary data from the instruments to the reception at the United States Geological Survey's (USGS) Landsat Ground Network (LGN) and International Cooperator (IC) ground stations. The core enabling capability lies within the spacecraft Command and Data Handling (C&DH) system and Radio Frequency (RF) communications system implementation. Each of these systems uniquely contribute to the efficient processing of high speed image data (up to 265Mbps) from each instrument, and provide virtually error free data delivery to the ground. Onboard methods include a combination of lossless data compression, Consultative Committee for Space Data Systems (CCSDS) data formatting, a file-based/managed Solid State Recorder (SSR), and Low Density Parity Check (LDPC) forward error correction. The 440 Mbps wideband X-Band downlink uses Class 1 CCSDS File Delivery Protocol (CFDP), and an earth coverage antenna to deliver an average of 400 scenes per day to a combination of LGN and IC ground stations. This paper will also describe the integrated capabilities and processes at the LGN ground stations for data reception using adaptive filtering, and the mission operations approach fro- the LDCM Mission Operations Center (MOC) to perform the CFDP accounting, file retransmissions, and management of the autonomous features of the SSR.
Feasibility Criteria for Interval Management Operations as Part of Arrival Management Operations
NASA Technical Reports Server (NTRS)
Levitt, Ian M.; Weitz, Lesley A.; Barmore, Bryan E.; Castle, Michael W.
2014-01-01
Interval Management (IM) is a future airborne spacing concept that aims to provide more precise inter-aircraft spacing to yield throughput improvements and greater use of fuel efficient trajectories for arrival and approach operations. To participate in an IM operation, an aircraft must be equipped with avionics that provide speeds to achieve and maintain an assigned spacing interval relative to another aircraft. It is not expected that all aircraft will be equipped with the necessary avionics, but rather that IM fits into a larger arrival management concept developed to support the broader mixed-equipage environment. Arrival management concepts are comprised of three parts: a ground-based sequencing and scheduling function to develop an overall arrival strategy, ground-based tools to support the management of aircraft to that schedule, and the IM tools necessary for the IM operation (i.e., ground-based set-up, initiation, and monitoring, and the flight-deck tools to conduct the IM operation). The Federal Aviation Administration is deploying a near-term ground-automation system to support metering operations in the National Airspace System, which falls within the first two components of the arrival management concept. This paper develops a methodology for determining the required delivery precision at controlled meter points for aircraft that are being managed to a schedule and aircraft being managed to a relative spacing interval in order to achieve desired flow rates and adequate separation at the meter points.
NASA Technical Reports Server (NTRS)
1974-01-01
The capabilities for preflight feeding of flight personnel and the supply and control of the space shuttle flight food system were investigated to determine ground support requirements; and the functional details of an onboard food system galley are shown in photographic mockups. The elements which were identified as necessary to the efficient accomplishment of ground support functions include the following: (1) administration; (2) dietetics; (3) analytical laboratories; (4) flight food warehouse; (5) stowage module assembly area; (6) launch site module storage area; (7) alert crew restaurant and disperse crew galleys; (8) ground food warehouse; (9) manufacturing facilities; (10) transport; and (11) computer support. Each element is discussed according to the design criteria of minimum cost, maximum flexibility, reliability, and efficiency consistent with space shuttle requirements. The galley mockup overview illustrates the initial operation configuration, food stowage locations, meal assembly and serving trays, meal preparation configuration, serving, trash management, and the logistics of handling and cleanup equipment.
Gas-driven pump for ground-water samples
Signor, Donald C.
1978-01-01
Observation wells installed for artificial-recharge research and other wells used in different ground-water programs are frequently cased with small-diameter steel pipe. To obtain samples from these small-diameter wells in order to monitor water quality, and to calibrate solute-transport models, a small-diameter pump with unique operating characteristics is required that causes a minimum alternation of samples during field sampling. A small-diameter gas-driven pump was designed and built to obtain water samples from wells of two-inch diameter or larger. The pump is a double-piston type with the following characteristics: (1) The water sample is isolated from the operating gas, (2) no source of electricity is ncessary, (3) operation is continuous, (4) use of compressed gas is efficient, and (5) operation is reliable over extended periods of time. Principles of operation, actual operation techniques, gas-use analyses and operating experience are described. Complete working drawings and a component list are included. Recent modifications and pump construction for high-pressure applications also are described. (Woodard-USGS)
NASA Technical Reports Server (NTRS)
1972-01-01
Major study areas treated in this volume are: 1) operations and control and 2) the telecommunication service system. The TDRS orbit selection, orbital deployment, ground station visibility, sequence of events from launch to final orbit position, and TDRS control center functions required for stationkeeping, repositioning, attitude control, and antenna pointing are briefly treated as part of the operations and control section. The last topic of this section concerns the operations required for efficiently providing the TDRSS user telecommunication services. The discussion treats functions of the GSFC control and data processing facility, ground station, and TDRS control center. The second major portion of this volume deals with the Telecommunication Service System (TSS) which consists of the ground station, TDRS communication equipment and the user transceiver. A summary of the requirements and objectives for the telecommunication services and a brief summary of the TSS capabilities is followed by communication system analysis, signal design, and equipment design. Finally, descriptions of the three TSS elements are presented.
Novitzki, R.P.
1976-01-01
Other recharge-recycling schemes can also be evaluated. Estimating the recycling efficiency (of recharge ponds, trenches, spreading areas, or irrigated fields) provides a basis for predicting water-level declines, the concentration of conservative ions (conservative in the sense that no reaction other than mixing occurs to change the character of the ion being considered) in the water supply and in the regional ground-water system, and the temperature of the water supply. Hatchery development and management schemes can be chosen to optimize hatchery productivity or minimize operation costs while protecting the ground-water system.
Performance Test Results of the NASA-457M v2 Hall Thruster
NASA Technical Reports Server (NTRS)
Soulas, George C.; Haag, Thomas W.; Herman, Daniel A.; Huang, Wensheng; Kamhawi, Hani; Shastry, Rohit
2012-01-01
Performance testing of a second generation, 50 kW-class Hall thruster labeled NASA-457M v2 was conducted at the NASA Glenn Research Center. This NASA-designed thruster is an excellent candidate for a solar electric propulsion system that supports human exploration missions. Thruster discharge power was varied from 5 to 50 kW over discharge voltage and current ranges of 200 to 500 V and 15 to 100 A, respectively. Anode efficiencies varied from 0.56 to 0.71. The peak efficiency was similar to that of other state-of-the-art high power Hall thrusters, but outperformed these thrusters at lower discharge voltages. The 0.05 to 0.18 higher anode efficiencies of this thruster compared to its predecessor were primarily due to which of two stable discharge modes the thruster was operated. One stable mode was at low magnetic field strengths, which produced high anode efficiencies, and the other at high magnetic fields where its predecessor was operated. Cathode keeper voltages were always within 2.1 to 6.2 V and cathode voltages were within 13 V of tank ground during high anode efficiency operation. However, during operation at high magnetic fields, cathode-to-ground voltage magnitudes increased dramatically, exceeding 30 V, due to the high axial magnetic field strengths in the immediate vicinity of the centrally-mounted cathode. The peak thrust was 2.3 N and this occurred at a total thruster input power of 50.0 kW at a 500 V discharge voltage. The thruster demonstrated a thrust-to-power range of 76.4 mN/kW at low power to 46.1 mN/kW at full power, and a specific impulse range of 1420 to 2740 s. For a discharge voltage of 300 V, where specific impulses would be about 2000 s, thrust efficiencies varied from 0.57 to 0.63.
Aerial survey of insect-caused mortality...operation recorder gathers data quickly, cheaply
Steven L. Wert; Bruce Roettigering
1967-01-01
An Aerial survey using an operation recorder was made over a remote forested area of the Sierra Nevada, in central California. Data on insect-caused mortality were gathered. The survey saved several man-weeks of costly ground work that would have otherwise been required to obtain this information. The technique used proved to be an efficient and inexpensive way of...
Usability of calcium carbide gas pressure method in hydrological sciences
NASA Astrophysics Data System (ADS)
Arsoy, S.; Ozgur, M.; Keskin, E.; Yilmaz, C.
2013-10-01
Soil moisture is a key engineering variable with major influence on ecological and hydrological processes as well as in climate, weather, agricultural, civil and geotechnical applications. Methods for quantification of the soil moisture are classified into three main groups: (i) measurement with remote sensing, (ii) estimation via (soil water balance) simulation models, and (iii) measurement in the field (ground based). Remote sensing and simulation modeling require rapid ground truthing with one of the ground based methods. Calcium carbide gas pressure (CCGP) method is a rapid measurement procedure for obtaining soil moisture and relies on the chemical reaction of the calcium carbide reagent with the water in soil pores. However, the method is overlooked in hydrological science applications. Therefore, the purpose of this study is to evaluate the usability of the CCGP method in comparison with standard oven-drying and dielectric methods in terms of accuracy, time efficiency, operational ease, cost effectiveness and safety for quantification of the soil moisture over a wide range of soil types. The research involved over 250 tests that were carried out on 15 different soil types. It was found that the accuracy of the method is mostly within ±1% of soil moisture deviation range in comparison to oven-drying, and that CCGP method has significant advantages over dielectric methods in terms of accuracy, cost, operational ease and time efficiency for the purpose of ground truthing.
Evaluation of jamming efficiency for the protection of a single ground object
NASA Astrophysics Data System (ADS)
Matuszewski, Jan
2018-04-01
The electronic countermeasures (ECM) include methods to completely prevent or restrict the effective use of the electromagnetic spectrum by the opponent. The most widespread means of disorganizing the operation of electronic devices is to create active and passive radio-electronic jamming. The paper presents the way of jamming efficiency calculations for protecting ground objects against the radars mounted on the airborne platforms. The basic mathematical formulas for calculating the efficiency of active radar jamming are presented. The numerical calculations for ground object protection are made for two different electronic warfare scenarios: the jammer is placed very closely and in a determined distance from the protecting object. The results of these calculations are presented in the appropriate figures showing the minimal distance of effective jamming. The realization of effective radar jamming in electronic warfare systems depends mainly on the precise knowledge of radar and the jammer's technical parameters, the distance between them, the assumed value of the degradation coefficient, the conditions of electromagnetic energy propagation and the applied jamming method. The conclusions from these calculations facilitate making a decision regarding how jamming should be conducted to achieve high efficiency during the electronic warfare training.
NASA Technical Reports Server (NTRS)
Shollenberger, C. A.; Smyth, D. N.
1978-01-01
A nonlinear, nonplanar three dimensional jet flap analysis, applicable to the ground effect problem, is presented. Lifting surface methodology is developed for a wing with arbitrary planform operating in an inviscid and incompressible fluid. The classical, infintely thin jet flap model is employed to simulate power induced effects. An iterative solution procedure is applied within the analysis to successively approximate the jet shape until a converged solution is obtained which closely satisfies jet and wing boundary conditions. Solution characteristics of the method are discussed and example results are presented for unpowered, basic powered and complex powered configurations. Comparisons between predictions of the present method and experimental measurements indicate that the improvement of the jet with the ground plane is important in the analyses of powered lift systems operating in ground proximity. Further development of the method is suggested in the areas of improved solution convergence, more realistic modeling of jet impingement and calculation efficiency enhancements.
Surface Operations Systems Improve Airport Efficiency
NASA Technical Reports Server (NTRS)
2009-01-01
With Small Business Innovation Research (SBIR) contracts from Ames Research Center, Mosaic ATM of Leesburg, Virginia created software to analyze surface operations at airports. Surface surveillance systems, which report locations every second for thousands of air and ground vehicles, generate massive amounts of data, making gathering and analyzing this information difficult. Mosaic?s Surface Operations Data Analysis and Adaptation (SODAA) tool is an off-line support tool that can analyze how well the airport surface operation is working and can help redesign procedures to improve operations. SODAA helps researchers pinpoint trends and correlations in vast amounts of recorded airport operations data.
Operational efficiency subpanel advanced mission control
NASA Technical Reports Server (NTRS)
Friedland, Peter
1990-01-01
Herein, the term mission control will be taken quite broadly to include both ground and space based operations as well as the information infrastructure necessary to support such operations. Three major technology areas related to advanced mission control are examined: (1) Intelligent Assistance for Ground-Based Mission Controllers and Space-Based Crews; (2) Autonomous Onboard Monitoring, Control and Fault Detection Isolation and Reconfiguration; and (3) Dynamic Corporate Memory Acquired, Maintained, and Utilized During the Entire Vehicle Life Cycle. The current state of the art space operations are surveyed both within NASA and externally for each of the three technology areas and major objectives are discussed from a user point of view for technology development. Ongoing NASA and other governmental programs are described. An analysis of major research issues and current holes in the program are provided. Several recommendations are presented for enhancing the technology development and insertion process to create advanced mission control environments.
NASA Astrophysics Data System (ADS)
Acevedo, Romina; Orihuela, Nuris; Blanco, Rafael; Varela, Francisco; Camacho, Enrique; Urbina, Marianela; Aponte, Luis Gabriel; Vallenilla, Leopoldo; Acuña, Liana; Becerra, Roberto; Tabare, Terepaima; Recaredo, Erica
2009-12-01
Built in cooperation with the P.R of China, in October 29th of 2008, the Bolivarian Republic of Venezuela launched its first Telecommunication Satellite, the so called VENESAT-1 (Simón Bolívar Satellite), which operates in C (covering Center America, The Caribbean Region and most of South America), Ku (Bolivia, Cuba, Dominican Republic, Haiti, Paraguay, Uruguay, Venezuela) and Ka bands (Venezuela). The launch of VENESAT-1 represents the starting point for Venezuela as an active player in the field of space science and technology. In order to fulfill mission requirements and to guarantee the satellite's health, local professionals must provide continuous monitoring, orbit calculation, maneuvers preparation and execution, data preparation and processing, as well as data base management at the VENESAT-1 Ground Segment, which includes both a primary and backup site. In summary, data processing and real time data management are part of the daily activities performed by the personnel at the ground segment. Using published and unpublished information, this paper presents how human resource organization can enhance space information acquisition and processing, by analyzing the proposed organizational structure for the VENESAT-1 Ground Segment. We have found that the proposed units within the organizational structure reflect 3 key issues for mission management: Satellite Operations, Ground Operations, and Site Maintenance. The proposed organization is simple (3 hierarchical levels and 7 units), and communication channels seem efficient in terms of facilitating information acquisition, processing, storage, flow and exchange. Furthermore, the proposal includes a manual containing the full description of personnel responsibilities and profile, which efficiently allocates the management and operation of key software for satellite operation such as the Real-time Data Transaction Software (RDTS), Data Management Software (DMS), and Carrier Spectrum Monitoring Software (CSM) within the different organizational units. In all this process, the international cooperation has played a key role for the consolidation of its space capabilities, especially through the continuous and arduous exchange of information, documentation and expertise between Chinese and Venezuelan personnel at the ground stations. Based on the principles of technology transfer and human training, since 1999 the Bolivarian Republic of Venezuela has shown an increasing interest in developing local space capabilities for peaceful purposes. According to the analysis we have performed, the proposed organizational structure of the VENESAT-1 ground segment will allow the country to face the challenges imposed by the operation of complex technologies. By enhancing human resource organization, this proposal will help to fulfill mission requirements, and to facilitate the safe access, processing and storage of satellite data across the organization, during both nominal and potential contingency situations.
Preliminary study of a gas burner-driven and ground-coupled heat pump system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, P.F.
1995-12-31
To address the concerns for higher energy efficiency and the immediate phase out of the chlorofluorocarbons (CFCs), a new gas burner-driven, ground-coupled heat pump (GBGCHP) system is proposed for study. The new system is energy efficient and pose no environmental problem. There are three unique features in the proposed system: (1) a patented gas burner-driven compressor with a floating diaphragm piston-cylinder for energy efficiency and accommodating variable load, (2) the ground coupled water-to-air heat exchangers for high coefficient of performance (COPs), and (3) the new refrigerants based on fluoroiodocarbons (FICS) with very little ozone depletion and global warming potential. Amore » preliminary analysis of a prototype heat pump with 3 ton (10.55 kW) heating capacity is presented. The thermodynamics analysis of the system shows that the steady state COP rating higher than 7 is possible with the system operating in heating mode. Additional research work for the GBGCHP system, especially the FICs` thermodynamic properties in the superheated region, is also described.« less
NASA Astrophysics Data System (ADS)
Sandal, Gro Mjeldheim; Manzey, Dietrich
2009-12-01
Today's space operations involve co-working of people with different ethnical, professional and organisational backgrounds. The aim of this study was to examine the implications of cultural diversity for efficient collaboration within the European Space Agency (ESA), and between ESA employees and representatives from other agencies. ESA employees from European countries ( N=576) answered to the CULT Ground Survey. The results showed that differences in relation to leadership and decision making were the most important issues thought to interfere with efficient co-working within ESA, and between ESA employees and colleagues from other agencies. Employees who collaborated with more than three nationalities within ESA indicated most challenges in co-working due to differences in compliance, behavioural norms and competitiveness. Challenges in co-working differed between agencies, and these differences were consistent with value differences in the national populations. The results may have applied value for training of European employees working in international space program teams.
NASA Technical Reports Server (NTRS)
Farhangi, Shahram; Trent, Donnie (Editor)
1992-01-01
A study was directed towards assessing viability and effectiveness of an air augmented ejector/rocket. Successful thrust augmentation could potentially reduce a multi-stage vehicle to a single stage-to-orbit vehicle (SSTO) and, thereby, eliminate the associated ground support facility infrastructure and ground processing required by the eliminated stage. The results of this preliminary study indicate that an air augmented ejector/rocket propulsion system is viable. However, uncertainties resulting from simplified approach and assumptions must be resolved by further investigations.
NASA Technical Reports Server (NTRS)
1983-01-01
An assessment was made of the impact of developments in computational fluid dynamics (CFD) on the traditional role of aerospace ground test facilities over the next fifteen years. With improvements in CFD and more powerful scientific computers projected over this period it is expected to have the capability to compute the flow over a complete aircraft at a unit cost three orders of magnitude lower than presently possible. Over the same period improvements in ground test facilities will progress by application of computational techniques including CFD to data acquisition, facility operational efficiency, and simulation of the light envelope; however, no dramatic change in unit cost is expected as greater efficiency will be countered by higher energy and labor costs.
Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm
NASA Technical Reports Server (NTRS)
Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.
2013-01-01
This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.
Mission operations concepts for Earth Observing System (EOS)
NASA Technical Reports Server (NTRS)
Kelly, Angelita C.; Taylor, Thomas D.; Hawkins, Frederick J.
1991-01-01
Mission operation concepts are described which are being used to evaluate and influence space and ground system designs and architectures with the goal of achieving successful, efficient, and cost-effective Earth Observing System (EOS) operations. Emphasis is given to the general characteristics and concepts developed for the EOS Space Measurement System, which uses a new series of polar-orbiting observatories. Data rates are given for various instruments. Some of the operations concepts which require a total system view are also examined, including command operations, data processing, data accountability, data archival, prelaunch testing and readiness, launch, performance monitoring and assessment, contingency operations, flight software maintenance, and security.
Tracking and data relay satellite system: NASA's new spacecraft data acquisition system
NASA Astrophysics Data System (ADS)
Schneider, W. C.; Garman, A. A.
The growth in NASA's ground network complexity and cost triggered a search for an alternative. Through a lease service contract, Western Union will provide to NASA 10 years of space communications services with a Tracking and Data Relay Satellite System (TDRSS). A constellation of four operating satellites in geostationary orbit and a single ground terminal will provide complete tracking, telemetry and command service for all of NASA's Earth orbital satellites below an altitude of 12,000 km. The system is shared: two satellites will be dedicated to NASA service; a third will provide backup as a shared spare; the fourth satellite will be dedicated to Western Union's Advanced Westar commercial service. Western Union will operate the ground terminal and provide operational satellite control. NASA's Network Control Center will provide the focal point for scheduling user services and controlling the interface between TDRSS and the rest of the NASA communications network, project control centers and data processing facilities. TDRSS single access user spacecraft data systems should be designed for efficient time shared data relay support. Reimbursement policy and rate structure for non-NASA users are currently being developed.
NASA Technical Reports Server (NTRS)
Horz, F.; Heggy, E.; Fong, T.; Kring, D.; Deans, M.; Anglade, A.; Mahiouz, K.; Bualat, M.; Lee, P.; Bluethmann, W.
2009-01-01
Probing radars have been widely recognized by the science community to be an efficient tool to explore lunar subsurface providing a unique capability to address several scientific and operational issues. A wideband (200 to 1200 MHz) Ground Penetrating Radar (GPR) mounted on a surface rover can provide high vertical resolution and probing depth from few tens of centimeters to few tens of meters depending on the sounding frequency and the ground conductivity. This in term can provide a better understand regolith thickness, elemental iron concentration (including ilmenite), volatile presence, structural anomalies and fracturing. All those objectives are of important significance for understanding the local geology and potential sustainable resources for future landing sites in particular exploring the thickness, structural heterogeneity and potential volatiles presence in the lunar regolith. While the operation and data collection of GPR is a straightforward case for most terrestrial surveys, it is a challenging task for remote planetary study especially on robotic platforms due to the complexity of remote operation in rough terrains and the data collection constrains imposed by the mechanical motion of the rover and limitation in data transfer. Nevertheless, Rover mounted GPR can be of great support to perform systematic subsurface surveys for a given landing site as it can provide scientific and operational support in exploring subsurface resources and sample collections which can increase the efficiency of the EVA activities for potential human crews as part of the NASA Constellation Program. In this study we attempt to explore the operational challenges and their impact on the EVA scientific return for operating a rover mounted GPR in support of potential human activity on the moon. In this first field study, we mainly focused on the ability of GPR to support subsurface sample collection and explore shallow subsurface volatiles.
Integration of unmanned systems for tactical operations within hostile environments
NASA Astrophysics Data System (ADS)
Maddux, Gary A.; Bosco, Charles D.; Lawrence, James D.
2006-05-01
The University of Alabama in Huntsville (UAH) is currently investigating techniques and technologies for the integration of a small unmanned aerial vehicle (SUAV) with small unmanned ground vehicles (SUGV). Each vehicle has its own set of unique capabilities, but the efficient integration of the two for a specific application requires modifying and integrating both systems. UAH has been flying and testing an autonomously-controlled small helicopter, called the Flying Bassett (Base Airborne Surveillance and Sensing for Emergency Threat Tracking) for over a year. Recently, integrated operations were performed with four SUGVs, the Matilda (Mesa Robotics, Huntsville, AL), the US Navy Vanguard, the UAH Rover, and the Penetrator (Mesa Robotics). The program has progressed from 1) building an air and ground capability for video and infrared surveillance, 2) integration with ground vehicles in realistic scenarios, to 3) deployment and recovery of ground vehicles. The work was done with the cooperation of the US Army at Ft. Benning, GA and Redstone Arsenal, AL, the Federal Bureau of Investigation in Huntsville, AL, the US Naval Reserve in Knoxville, TN, and local emergency organizations. The results so far have shown that when the air and ground systems are employed together, their utility is greatly enhanced.
A Simulation Testbed for Airborne Merging and Spacing
NASA Technical Reports Server (NTRS)
Santos, Michel; Manikonda, Vikram; Feinberg, Art; Lohr, Gary
2008-01-01
The key innovation in this effort is the development of a simulation testbed for airborne merging and spacing (AM&S). We focus on concepts related to airports with Super Dense Operations where new airport runway configurations (e.g. parallel runways), sequencing, merging, and spacing are some of the concepts considered. We focus on modeling and simulating a complementary airborne and ground system for AM&S to increase efficiency and capacity of these high density terminal areas. From a ground systems perspective, a scheduling decision support tool generates arrival sequences and spacing requirements that are fed to the AM&S system operating on the flight deck. We enhanced NASA's Airspace Concept Evaluation Systems (ACES) software to model and simulate AM&S concepts and algorithms.
Project Profile: Hydrogen Fuel Cell Mobile Lighting Tower (HFCML)
NASA Technical Reports Server (NTRS)
McLaughlin, Russell
2013-01-01
NASA is committed to finding innovative solutions that improve the operational performance of ground support equipment while providing environment and cost benefits, as well. Through the Hydrogen Fuel Cell Mobile Lighting Tower (HFCML) project, NASA gained operational exposure to a novel application of high efficiency technologies. Traditionally, outdoor lighting and auxiliary power at security gates, launch viewing sites, fallback areas, outage support, and special events is provided by diesel generators with metal halide lights. Diesel generators inherently contribute to C02, NOx, particulate emissions, and are very noisy. In 2010, engineers from NASA's Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) introduced KSC operations to a novel technology for outdoor lighting needs. Developed by a team led by Sandia National Laboratory (SNL), the technology pairs a 5kW hydrogen fuel cell with robust high efficiency plasma lights in a towable trailer. Increased efficiency, in both the fuel cell power source and lighting load, yields longer run times between fueling operations while providing greater auxiliary power. Because of the unit's quiet operation and no exhaust fumes, it is capable of being used indoors and in emergency situations, and meets the needs of all other operational roles for metal halide/diesel generators. The only discharge is some water and warm air. Environmental benefits include elimination of diesel particulate emissions and estimated 73% greenhouse gas emissions savings when the hydrogen source is natural gas (per GREET model). As the technology matures the costs could become competitive for the fuel cell units which are approximately 5 times diesel units. Initial operational . concerns included the hydrogen storage tanks and valves, lightning safety/grounding, and required operating and refueling procedures. TEERM facilitated technical information exchange (design drawings, technical standards, and operations manuals) necessary for KSC hydrogen system experts to approve use of the HFCML unit, including initiating the environmental checklist (i.e. exterior lighting waiver due to sea turtles), and development of operations and maintenance instructions. TEERM worked with SNL to establish a bailment agreement for KSC to utilize a Beta unit as part of normal Center Operations for a period of twelve months.
Flight Testing of an Airport Surface Guidance, Navigation, and Control System
NASA Technical Reports Server (NTRS)
Young, Steven D.; Jones, Denise R.
1998-01-01
This document describes operations associated with a set of flight experiments and demonstrations using a Boeing-757-200 (B-757) research aircraft as part of low visibility landing and surface operations (LVLASO) research activities. To support this experiment, the B-757 performed flight and taxi operations at the Hartsfield-Atlanta International Airport (ATL) in Atlanta, GA. The B-757 was equipped with experimental displays that were designed to provide flight crews with sufficient information to enable safe, expedient surface operations in any weather condition down to a runway visual range (RVR) of 300 feet. In addition to flight deck displays and supporting equipment onboard the B-757, there was also a ground-based component of the system that provided for ground controller inputs and surveillance of airport surface movements. The integrated ground and airborne components resulted in a system that has the potential to significantly improve the safety and efficiency of airport surface movements particularly as weather conditions deteriorate. Several advanced technologies were employed to show the validity of the operational concept at a major airport facility, to validate flight simulation findings, and to assess each of the individual technologies performance in an airport environment. Results show that while the maturity of some of the technologies does not permit immediate implementation, the operational concept is valid and the performance is more than adequate in many areas.
NASA Technical Reports Server (NTRS)
1993-01-01
The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.
Progress of Crew Autonomous Scheduling Test (CAST) On the ISS
NASA Technical Reports Server (NTRS)
Healy, Matthew; Marquez, Jessica; Hillenius, Steven; Korth, David; Bakalyar, Lauren Rush; Woodbury, Neil; Larsen, Crystal M.; Bates, Shelby; Kockler, Mikayla; Rhodes, Brooke;
2017-01-01
The United States space policy is evolving toward missions beyond low Earth orbit. In an effort to meet that policy, NASA has recognized Autonomous Mission Operations (AMO) as a valuable capability. Identified within AMO capabilities is the potential for autonomous planning and replanning during human spaceflight operations. That is allowing crew members to collectively or individually participate in the development of their own schedules. Currently, dedicated mission operations planners collaborate with international partners to create daily plans for astronauts aboard the International Space Station (ISS), taking into account mission requirements, ground rules, and various vehicle and payload constraints. In future deep space operations the crew will require more independence from ground support due to communication transmission delays. Furthermore, crew members who are provided with the capability to schedule their own activities are able to leverage direct experience operating in the space environment, and possibly maximize their efficiency. CAST (Crew Autonomous Scheduling Test) is an ISS investigation designed to analyze three important hypotheses about crew autonomous scheduling. First, given appropriate inputs, the crew is able to create and execute a plan in a reasonable period of time without impacts to mission success. Second, the proximity of the planner, in this case the crew, to the planned operations increases their operational efficiency. Third, crew members are more satisfied when given a role in plan development. This presentation shows the progress done in this study with a single astronaut test subject participating in five CAST sessions. CAST is a technology demonstration payload sponsored by the ISS Research Science and Technology Office, and performed by experts in Mission Operations Planning from the Flight Operations Directorate at NASA Johnson Space Center, and researchers across multiple NASA centers.
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.; Singer, Christopher E.; Onken, Jay F.
2008-01-01
The United States (U.S.) plans to return to the Moon by 2020, with the development of a new human-rated space transportation system to replace the Space Shuttle, which is due for retirement in 2010 after it completes its missions of building the International Space Station and servicing the Hubble Space Telescope. Powering the future of space-based scientific exploration will be the Ares I Crew Launch Vehicle, which will transport the Orion Crew Exploration Vehicle to orbit where it will rendezvous with the Lunar Lander. which will be delivered by the Ares V Cargo Launch Vehicle. This new transportation infrastructure, developed by the National Aeronautics and Space Administration (NASA), will allow astronauts to leave low-Earth orbit for extended lunar exploration and preparation for the first footprint on Mars. All space-based operations begin and are controlled from Earth. NASA's philosophy is to deliver safe, reliable, and cost-effective solutions to sustain a multi-billion-dollar program across several decades. Leveraging 50 years of lessons learned, NASA is partnering with private industry, while building on proven hardware experience. This paper will discuss how the Engineering Directorate at NASA's Marshall Space Flight Center is working with the Ares Projects Office to streamline ground operations concepts and reduce costs. Currently, NASA's budget is around $17 billion, which is less than 1 percent of the U.S. Federal budget. Of this amount, NASA invests approximately $4.5 billion each year in Space Shuttle operations, regardless of whether the spacecraft is flying or not. The affordability requirement is for the Ares I to reduce this expense by 50 percent, in order to allow NASA to invest more in space-based scientific operations. Focusing on this metric, the Engineering Directorate provides several solutions-oriented approaches, including Lean/Six Sigma practices and streamlined hardware testing and integration, such as assembling major hardware elements before shipping to the Kennedy Space Center for launch operations. This paper provides top-level details for several cost saving initiatives, including both process and product improvements that will result in space transportation systems that are designed with operations efficiencies in mind. The Engineering Directorate provides both the intellectual capital embodied in an experienced workforce and unique facilities in which to validate the information technology tools that allow a nationwide team to collaboratively connect across miles that separate them and the engineering disciplines that integrate various piece parts into a whole system. As NASA transforms ground-based operations, it also is transitioning its workforce from an era of intense hands-on labor to a new one of mechanized conveniences and robust hardware with simpler interfaces. Ensuring that space exploration is on sound footing requires that operations efficiencies be designed into the transportation system and implemented in the development stage. Applying experience gained through decades of ground and space op'erations, while using value-added processes and modern business and engineering tools, is the philosophy upon which a new era of exploration will be built to solve some of the most pressing exploration challenges today -- namely, safety, reliability, and affordability.
Morgan, David; Warburton, Bruce; Nugent, Graham
2015-01-01
Introduced brushtail possums (Trichosurus vulpecula) and rat species (Rattus spp.) are major vertebrate pests in New Zealand, with impacts on conservation and agriculture being managed largely through poisoning operations. Aerial distribution of baits containing sodium fluoroacetate (1080) has been refined to maximise cost effectiveness and minimise environmental impact, but this method is strongly opposed by some as it is perceived as being indiscriminate. Although ground based control enables precise placement of baits, operations are often more than twice as costly as aerial control, mainly due to the high labour costs. We investigated a new approach to ground based control that combined aerial distribution of non-toxic ‘prefeed’ baits followed by sparse distribution of toxic baits at regular intervals along the GPS tracked prefeeding flight paths. This approach was tested in two field trials in which both 1080 baits and cholecalciferol baits were used in separate areas. Effectiveness of the approach, assessed primarily using ‘chewcards’, was compared with that of scheduled aerial 1080 operations that were conducted in outlying areas of both trials. Contractors carrying out ground based control were able to follow the GPS tracks of aerial prefeeding flight lines very accurately, and with 1080 baits achieved very high levels of kill of possums and rats similar to those achieved by aerial 1080 baiting. Cholecalciferol was less effective in the first trial, but by doubling the amount of cholecalciferol bait used in the second trial, few possums or rats survived. By measuring the time taken to complete ground baiting from GPS tracks, we predicted that the method (using 1080 baits) would be similarly cost effective to aerial 1080 operations for controlling possums and rats, and considerably less expensive than typical current costs of ground based control. The main limitations to the use of the method will be access to, and size of, the operational site, along with topography and vegetation density. PMID:26218095
A survey of unmanned ground vehicles with applications to agricultural and environmental sensing
NASA Astrophysics Data System (ADS)
Bonadies, Stephanie; Lefcourt, Alan; Gadsden, S. Andrew
2016-05-01
Unmanned ground vehicles have been utilized in the last few decades in an effort to increase the efficiency of agriculture, in particular, by reducing labor needs. Unmanned vehicles have been used for a variety of purposes including: soil sampling, irrigation management, precision spraying, mechanical weeding, and crop harvesting. In this paper, unmanned ground vehicles, implemented by researchers or commercial operations, are characterized through a comparison to other vehicles used in agriculture, namely airplanes and UAVs. An overview of different trade-offs of configurations, control schemes, and data collection technologies is provided. Emphasis is given to the use of unmanned ground vehicles in food crops, and includes a discussion of environmental impacts and economics. Factors considered regarding the future trends and potential issues of unmanned ground vehicles include development, management and performance. Also included is a strategy to demonstrate to farmers the safety and profitability of implementing the technology.
Demonstration of Heavy Diesel Hybrid Fleet Vehicles
2015-02-01
Proving Grounds, MD, followed by in-use operator testing at Bangor WA, and San Diego CA. The performance objectives included fuel economy, noise... Fuel Efficiency, Noise Levels. U U U SAR 162 David Cook (805) 982-3477 Page Intentionally Left Blank i COST & PERFORMANCE REPORT Project: #WP...17 6.1.1 Refuse truck Fuel Economy
Summary appraisals of the Nation's ground-water resources; Lower Colorado region
Davidson, E.S.
1979-01-01
The potential for greater development of ground water in the southwestern part of the region is constrained by land subsidence, earth cracks, increasing costs of pumping and transportation, and moderate to poor chemical quality of water. More ground water can be developed in the northeastern part of the region, where the major constraint is pumping cost owing to low to moderate well yields and depth to water. Some benefits can be realized everywhere in the region through changes in current use and greater efficiencies of use. Additional supplies may be made available by capture of natural evapotranspiration. Increasing the efficiency of use is possible hydrologically but, in the near term, is more expensive than increasing groundwater development. Decrease of irrigation, change to water-saving methods of irrigation, use of saline water, decrease of per capita public- supply use, and more reuse of water in almost every type of use could help extend the supply and thereby reduce the current rate of ground-water depletion. Financial problems have not yet caused an overall decrease in pumpage, but, locally, operating costs or partial dewatering of the aquifer has eliminated or decreased withdrawal. Current water laws in all States of the region, except Arizona, control or allocate the use of ground water.
Research on Scheduling Algorithm for Multi-satellite and Point Target Task on Swinging Mode
NASA Astrophysics Data System (ADS)
Wang, M.; Dai, G.; Peng, L.; Song, Z.; Chen, G.
2012-12-01
Nowadays, using satellite in space to observe ground is an important and major method to obtain ground information. With the development of the scientific technology in the field of space, many fields such as military and economic and other areas have more and more requirement of space technology because of the benefits of the satellite's widespread, timeliness and unlimited of area and country. And at the same time, because of the wide use of all kinds of satellites, sensors, repeater satellites and ground receiving stations, ground control system are now facing great challenge. Therefore, how to make the best value of satellite resources so as to make full use of them becomes an important problem of ground control system. Satellite scheduling is to distribute the resource to all tasks without conflict to obtain the scheduling result so as to complete as many tasks as possible to meet user's requirement under considering the condition of the requirement of satellites, sensors and ground receiving stations. Considering the size of the task, we can divide tasks into point task and area task. This paper only considers point targets. In this paper, a description of satellite scheduling problem and a chief introduction of the theory of satellite scheduling are firstly made. We also analyze the restriction of resource and task in scheduling satellites. The input and output flow of scheduling process are also chiefly described in the paper. On the basis of these analyses, we put forward a scheduling model named as multi-variable optimization model for multi-satellite and point target task on swinging mode. In the multi-variable optimization model, the scheduling problem is transformed the parametric optimization problem. The parameter we wish to optimize is the swinging angle of every time-window. In the view of the efficiency and accuracy, some important problems relating the satellite scheduling such as the angle relation between satellites and ground targets, positive and negative swinging angle and the computation of time window are analyzed and discussed. And many strategies to improve the efficiency of this model are also put forward. In order to solve the model, we bring forward the conception of activity sequence map. By using the activity sequence map, the activity choice and the start time of the activity can be divided. We also bring forward three neighborhood operators to search the result space. The front movement remaining time and the back movement remaining time are used to analyze the feasibility to generate solution from neighborhood operators. Lastly, the algorithm to solve the problem and model is put forward based genetic algorithm. Population initialization, crossover operator, mutation operator, individual evaluation, collision decrease operator, select operator and collision elimination operator is designed in the paper. Finally, the scheduling result and the simulation for a practical example on 5 satellites and 100 point targets with swinging mode is given, and the scheduling performances are also analyzed while the swinging angle in 0, 5, 10, 15, 25. It can be shown by the result that the model and the algorithm are more effective than those ones without swinging mode.
Approach to an Affordable and Productive Space Transportation System
NASA Technical Reports Server (NTRS)
McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Robinson, John W.
2012-01-01
This paper describes an approach for creating space transportation architectures that are affordable, productive, and sustainable. The architectural scope includes both flight and ground system elements, and focuses on their compatibility to achieve a technical solution that is operationally productive, and also affordable throughout its life cycle. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper follows up previous work by using a structured process to derive examples of conceptual architectures that integrate a number of advanced concepts and technologies. The examples are not intended to provide a near-term alternative architecture to displace current near-term design and development activity. Rather, the examples demonstrate an approach that promotes early investments in advanced system concept studies and trades (flight and ground), as well as in advanced technologies with the goal of enabling highly affordable, productive flight and ground space transportation systems.
Combined virtual and real robotic test-bed for single operator control of multiple robots
NASA Astrophysics Data System (ADS)
Lee, Sam Y.-S.; Hunt, Shawn; Cao, Alex; Pandya, Abhilash
2010-04-01
Teams of heterogeneous robots with different dynamics or capabilities could perform a variety of tasks such as multipoint surveillance, cooperative transport and explorations in hazardous environments. In this study, we work with heterogeneous robots of semi-autonomous ground and aerial robots for contaminant localization. We developed a human interface system which linked every real robot to its virtual counterpart. A novel virtual interface has been integrated with Augmented Reality that can monitor the position and sensory information from video feed of ground and aerial robots in the 3D virtual environment, and improve user situational awareness. An operator can efficiently control the real multi-robots using the Drag-to-Move method on the virtual multi-robots. This enables an operator to control groups of heterogeneous robots in a collaborative way for allowing more contaminant sources to be pursued simultaneously. The advanced feature of the virtual interface system is guarded teleoperation. This can be used to prevent operators from accidently driving multiple robots into walls and other objects. Moreover, the feature of the image guidance and tracking is able to reduce operator workload.
Performance evaluation of a 1.6-µm methane DIAL system from ground, aircraft and UAV platforms.
Refaat, Tamer F; Ismail, Syed; Nehrir, Amin R; Hair, John W; Crawford, James H; Leifer, Ira; Shuman, Timothy
2013-12-16
Methane is an efficient absorber of infrared radiation and a potent greenhouse gas with a warming potential 72 times greater than carbon dioxide on a per molecule basis. Development of methane active remote sensing capability using the differential absorption lidar (DIAL) technique enables scientific assessments of the gas emission and impacts on the climate. A performance evaluation of a pulsed DIAL system for monitoring atmospheric methane is presented. This system leverages a robust injection-seeded pulsed Nd:YAG pumped Optical Parametric Oscillator (OPO) laser technology operating in the 1.645 µm spectral band. The system also leverages an efficient low noise, commercially available, InGaAs avalanche photo-detector (APD). Lidar signals and error budget are analyzed for system operation on ground in the range-resolved DIAL mode and from airborne platforms in the integrated path DIAL (IPDA) mode. Results indicate system capability of measuring methane concentration profiles with <1.0% total error up to 4.5 km range with 5 minute averaging from ground. For airborne IPDA, the total error in the column dry mixing ratio is less than 0.3% with 0.1 sec average using ground returns. This system has a unique capability of combining signals from the atmospheric scattering from layers above the surface with ground return signals, which provides methane column measurement between the atmospheric scattering layer and the ground directly. In such case 0.5% and 1.2% total errors are achieved with 10 sec average from airborne platforms at 8 km and 15.24 km altitudes, respectively. Due to the pulsed nature of the transmitter, the system is relatively insensitive to aerosol and cloud interferences. Such DIAL system would be ideal for investigating high latitude methane releases over polar ice sheets, permafrost regions, wetlands, and over ocean during day and night. This system would have commercial potential for fossil fuel leaks detection and industrial monitoring applications.
Software Suite to Support In-Flight Characterization of Remote Sensing Systems
NASA Technical Reports Server (NTRS)
Stanley, Thomas; Holekamp, Kara; Gasser, Gerald; Tabor, Wes; Vaughan, Ronald; Ryan, Robert; Pagnutti, Mary; Blonski, Slawomir; Kenton, Ross
2014-01-01
A characterization software suite was developed to facilitate NASA's in-flight characterization of commercial remote sensing systems. Characterization of aerial and satellite systems requires knowledge of ground characteristics, or ground truth. This information is typically obtained with instruments taking measurements prior to or during a remote sensing system overpass. Acquired ground-truth data, which can consist of hundreds of measurements with different data formats, must be processed before it can be used in the characterization. Accurate in-flight characterization of remote sensing systems relies on multiple field data acquisitions that are efficiently processed, with minimal error. To address the need for timely, reproducible ground-truth data, a characterization software suite was developed to automate the data processing methods. The characterization software suite is engineering code, requiring some prior knowledge and expertise to run. The suite consists of component scripts for each of the three main in-flight characterization types: radiometric, geometric, and spatial. The component scripts for the radiometric characterization operate primarily by reading the raw data acquired by the field instruments, combining it with other applicable information, and then reducing it to a format that is appropriate for input into MODTRAN (MODerate resolution atmospheric TRANsmission), an Air Force Research Laboratory-developed radiative transport code used to predict at-sensor measurements. The geometric scripts operate by comparing identified target locations from the remote sensing image to known target locations, producing circular error statistics defined by the Federal Geographic Data Committee Standards. The spatial scripts analyze a target edge within the image, and produce estimates of Relative Edge Response and the value of the Modulation Transfer Function at the Nyquist frequency. The software suite enables rapid, efficient, automated processing of ground truth data, which has been used to provide reproducible characterizations on a number of commercial remote sensing systems. Overall, this characterization software suite improves the reliability of ground-truth data processing techniques that are required for remote sensing system in-flight characterizations.
Hazard calculations of diffuse reflected laser radiation for the SELENE program
NASA Technical Reports Server (NTRS)
Miner, Gilda A.; Babb, Phillip D.
1993-01-01
The hazards from diffuse laser light reflections off water clouds, ice clouds, and fog and from possible specular reflections off ice clouds were assessed with the American National Standards (ANSI Z136.1-1986) for the free-electron-laser parameters under consideration for the Segmented Efficient Laser Emission for Non-Nuclear Electricity (SELENE) Program. Diffuse laser reflection hazards exist for water cloud surfaces less than 722 m in altitude and ice cloud surfaces less than 850 m in altitude. Specular reflections from ice crystals in cirrus clouds are not probable; however, any specular reflection is a hazard to ground observers. The hazard to the laser operators and any ground observers during heavy fog conditions is of such significant magnitude that the laser should not be operated in fog.
NASA Astrophysics Data System (ADS)
Grant, K. D.; Johnson, B. R.; Miller, S. W.; Jamilkowski, M. L.
2014-12-01
The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions. Originally designed to support S-NPP and JPSS, the CGS has demonstrated its scalability and flexibility to incorporate all of these other important missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture will be upgraded to Block 2.0 in 2015 to satisfy several key objectives, including: "operationalizing" S-NPP, which had originally been intended as a risk reduction mission; leveraging lessons learned to date in multi-mission support; taking advantage of newer, more reliable and efficient technologies; and satisfying new requirements and constraints due to the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 48 Technical Performance Measures (TPMs) across 9 categories: Data Availability, Data Latency, Operational Availability, Margin, Scalability, Situational Awareness, Transition (between environments and sites), WAN Efficiency, and Data Recovery Processing. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 9 TPM categories listed above. We will describe how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0 in 2015.
Efficient computer algorithms for infrared astronomy data processing
NASA Technical Reports Server (NTRS)
Pelzmann, R. F., Jr.
1976-01-01
Data processing techniques to be studied for use in infrared astronomy data analysis systems are outlined. Only data from space based telescope systems operating as survey instruments are considered. Resulting algorithms, and in some cases specific software, will be applicable for use with the infrared astronomy satellite (IRAS) and the shuttle infrared telescope facility (SIRTF). Operational tests made during the investigation use data from the celestial mapping program (CMP). The overall task differs from that involved in ground-based infrared telescope data reduction.
Technologies for user-preferred routing
NASA Astrophysics Data System (ADS)
McNally, B. D.; Sridhar, Banavar
1996-05-01
The 1995 report of the RTCA Board of Directors' Select Committee on Free Flight states that 'insufficient capacity, limited access, and excessive operating restrictions have escalated operating costs, increase delays, and decreased efficiency for all users' of the national airspace system. The Air Transport Association estimates the annual loss to be 3.5 billion dollars. The goal of the user preferred routing research is to develop integrated airborne and ground technologies that enable the highest possible level of unconstrained, user-preferred routing in enroute airspace.
VISAGE Visualization for Integrated Satellite, Airborne and Ground-Based Data Exploration
NASA Technical Reports Server (NTRS)
Conover, Helen; Berendes, Todd; Naeger, Aaron; Maskey, Manil; Gatlin, Patrick; Wingo, Stephanie; Kulkarni, Ajinkya; Gupta, Shivangi; Nagaraj, Sriraksha; Wolff, David;
2017-01-01
The primary goal of the VISAGE project is to facilitate more efficient Earth Science investigations via a tool that can provide visualization and analytic capabilities for diverse coincident datasets. This proof-of-concept project will be centered around the GPM Ground Validation program, which provides a valuable source of intensive, coincident observations of atmospheric phenomena. The data are from a wide variety of ground-based, airborne and satellite instruments, with a wide diversity in spatial and temporal scales, variables, and formats, which makes these data difficult to use together. VISAGE will focus on "golden cases" where most ground instruments were in operation and multiple research aircraft sampled a significant weather event, ideally while the GPM Core Observatory passed overhead. The resulting tools will support physical process studies as well as satellite and model validation.
Pairwise Trajectory Management (PTM): Concept Overview
NASA Technical Reports Server (NTRS)
Jones, Kenneth M.; Graff, Thomas J.; Chartrand, Ryan C.; Carreno, Victor; Kibler, Jennifer L.
2017-01-01
Pairwise Trajectory Management (PTM) is an Interval Management (IM) concept that utilizes airborne and ground-based capabilities to enable the implementation of airborne pairwise spacing capabilities in oceanic regions. The goal of PTM is to use airborne surveillance and tools to manage an "at or greater than" inter-aircraft spacing. Due to the precision of Automatic Dependent Surveillance-Broadcast (ADS-B) information and the use of airborne spacing guidance, the PTM minimum spacing distance will be less than distances a controller can support with current automation systems that support oceanic operations. Ground tools assist the controller in evaluating the traffic picture and determining appropriate PTM clearances to be issued. Avionics systems provide guidance information that allows the flight crew to conform to the PTM clearance issued by the controller. The combination of a reduced minimum distance and airborne spacing management will increase the capacity and efficiency of aircraft operations at a given altitude or volume of airspace. This paper provides an overview of the proposed application, description of a few key scenarios, high level discussion of expected air and ground equipment and procedure changes, overview of a potential flight crew human-machine interface that would support PTM operations and some initial PTM benefits results.
NASA Technical Reports Server (NTRS)
1976-01-01
The primary objective of this study was to develop an integrated approach for the development, implementation, and utilization of all software that is required to efficiently and cost-effectively support advanced technology laboratory flight and ground operations. It was recognized that certain aspects of the operations would be mandatory computerized services; computerization of other aspects would be optional. Thus, the analyses encompassed not only alternate computer utilization and implementations but trade studies of the programmatic effects of non-computerized versus computerized approaches to the operations. A general overview of the study is presented.
MCCx C3I Control Center Interface Emulator
NASA Technical Reports Server (NTRS)
Mireles, James R.
2010-01-01
This slide presentation reviews the project to develop and demonstrate alternate Information Technologies and systems for new Mission Control Centers that will reduce the cost of facility development, maintenance and operational costs and will enable more efficient cost and effective operations concepts for ground support operations. The development of a emulator for the Control Center capability will enable the facilities to conduct the simulation requiring interactivity with the Control Center when it is off line or unavailable, and it will support testing of C3I interfaces for both command and telemetry data exchange messages (DEMs).
Analysis and Modeling of Ground Operations at Hub Airports
NASA Technical Reports Server (NTRS)
Atkins, Stephen (Technical Monitor); Andersson, Kari; Carr, Francis; Feron, Eric; Hall, William D.
2000-01-01
Building simple and accurate models of hub airports can considerably help one understand airport dynamics, and may provide quantitative estimates of operational airport improvements. In this paper, three models are proposed to capture the dynamics of busy hub airport operations. Two simple queuing models are introduced to capture the taxi-out and taxi-in processes. An integer programming model aimed at representing airline decision-making attempts to capture the dynamics of the aircraft turnaround process. These models can be applied for predictive purposes. They may also be used to evaluate control strategies for improving overall airport efficiency.
Utilization of the International Space Station for Crew Autonomous Scheduling Test (CAST)
NASA Technical Reports Server (NTRS)
Healy, Matthew; Marquez, Jesica; Hillenius, Steven; Korth, David; Bakalyar, Laure Rush; Woodbury, Neil; Larsen, Crystal M.; Bates, Shelby; Kockler, Mikayla; Rhodes, Brooke;
2017-01-01
The United States space policy is evolving toward missions beyond low Earth orbit. In an effort to meet that policy, NASA has recognized Autonomous Mission Operations (AMO) as a valuable capability. Identified within AMO capabilities is the potential for autonomous planning and replanning during human spaceflight operations. That is allowing crew members to collectively or individually participate in the development of their own schedules. Currently, dedicated mission operations planners collaborate with international partners to create daily plans for astronauts aboard the International Space Station (ISS), taking into account mission requirements, ground rules, and various vehicle and payload constraints. In future deep space operations the crew will require more independence from ground support due to communication transmission delays. Furthermore, crew members who are provided with the capability to schedule their own activities are able to leverage direct experience operating in the space environment, and possibly maximize their efficiency. CAST (Crew Autonomous Scheduling Test) is an ISS investigation designed to analyze three important hypotheses about crew autonomous scheduling. First, given appropriate inputs, the crew is able to create and execute a plan in a reasonable period of time without impacts to mission success. Second, the proximity of the planner, in this case the crew, to the planned operations increases their operational efficiency. Third, crew members are more satisfied when given a role in plan development. This paper presents the results from a single astronaut test subject who participated in five CAST sessions. The details on the operational philosophy of CAST are discussed, including the approach to crew training, selection criteria for test days, and data collection methods. CAST is a technology demonstration payload sponsored by the ISS Research Science and Technology Office, and performed by experts in Mission Operations Planning from the Flight Operations Directorate at NASA Johnson Space Center, and researchers across multiple NASA centers. It is hoped the results of this investigation will guide NASA's implementation of autonomous mission operations for long duration human space missions to Mars and beyond.
An Update on the CCSDS Optical Communications Working Group
NASA Technical Reports Server (NTRS)
Edwards, Bernard L.; Schulz, Klaus-Juergen; Hamkins, Jonathan; Robinson, Bryan; Alliss, Randall; Daddato, Robert; Schmidt, Christopher; Giggebach, Dirk; Braatz, Lena
2017-01-01
International space agencies around the world are currently developing optical communication systems for Near Earth and Deep Space applications for both robotic and human rated spacecraft. These applications include both links between spacecraft and links between spacecraft and ground. The Interagency Operation Advisory Group (IOAG) has stated that there is a strong business case for international cross support of spacecraft optical links. It further concluded that in order to enable cross support the links must be standardized. This paper will overview the history and structure of the space communications international standards body, the Consultative Committee for Space Data Systems (CCSDS), that will develop the standards and provide an update on the proceedings of the Optical Communications Working Group within CCSDS. This paper will also describe the set of optical communications standards being developed and outline some of the issues that must be addressed in the next few years. The paper will address in particular the ongoing work on application scenarios for deep space to ground called High Photon Efficiency, for LEO to ground called Low Complexity, for inter-satellite and near Earth to ground called High Data Rate, as well as associated atmospheric measurement techniques and link operations concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
New inverter-driven ASHPs are gaining ground in colder climates. These systems operate at sub-zero temperatures without the use of electric resistance backup. There are still uncertainties, however, about cold-climate capacity and efficiency in cold weather and questions such as measuring: power consumption, supply, return, and outdoor air temperatures, and air flow through the indoor fan coil. CARB observed a wide range of operating efficiencies and outputs from site to site. Maximum capacities were found to be generally in line with manufacturer's claims as outdoor temperatures fell to -10 degrees F. The reasons for the wide range in heating performance likelymore » include: low indoor air flow rates, poor placement of outdoor units, relatively high return air temperatures, thermostat set back, integration with existing heating systems, and occupants limiting indoor fan speed. Even with lower efficiencies than published in other studies, most of the heat pumps here still provide heat at lower cost than oil, propane, or certainly electric resistance systems.« less
Development and verification of ground-based tele-robotics operations concept for Dextre
NASA Astrophysics Data System (ADS)
Aziz, Sarmad
2013-05-01
The Special Purpose Dextreous Manipulator (Dextre) is the latest addition to the on-orbit segment of the Mobile Servicing System (MSS); Canada's contribution to the International Space Station (ISS). Launched in March 2008, the advanced two-armed robot is designed to perform various ISS maintenance tasks on robotically compatible elements and on-orbit replaceable units using a wide variety of tools and interfaces. The addition of Dextre has increased the capabilities of the MSS, and has introduced significant complexity to ISS robotics operations. While the initial operations concept for Dextre was based on human-in-the-loop control by the on-orbit astronauts, the complexities of robotic maintenance and the associated costs of training and maintaining the operator skills required for Dextre operations demanded a reexamination of the old concepts. A new approach to ISS robotic maintenance was developed in order to utilize the capabilities of Dextre safely and efficiently, while at the same time reducing the costs of on-orbit operations. This paper will describe the development, validation, and on-orbit demonstration of the operations concept for ground-based tele-robotics control of Dextre. It will describe the evolution of the new concepts from the experience gained from the development and implementation of the ground control capability for the Space Station Remote Manipulator System; Canadarm 2. It will discuss the various technical challenges faced during the development effort, such as requirements for high positioning accuracy, force/moment sensing and accommodation, failure tolerance, complex tool operations, and the novel operational tools and techniques developed to overcome them. The paper will also describe the work performed to validate the new concepts on orbit and will discuss the results and lessons learned from the on-orbit checkout and commissioning of Dextre using the newly developed tele-robotics techniques and capabilities.
Airborne Trajectory Management (ABTM): A Blueprint for Greater Autonomy in Air Traffic Management
NASA Technical Reports Server (NTRS)
Cotton, William B.; Wing, David
2017-01-01
The aviation users of the National Airspace System (NAS) - the airlines, General Aviation (GA), the military and, most recently, operators of Unmanned Aircraft Systems (UAS) - are constrained in their operations by the design of the current paradigm for air traffic control (ATC). Some of these constraints include ATC preferred routes, departure fix restrictions and airspace ground delay programs. As a result, most flights cannot operate on their most efficient business trajectories and a great many flights are delayed even getting into the air, which imposes a significant challenge to maintaining efficient flight and network operations. Rather than accepting ever more sophisticated scheduling solutions to accommodate the existing constraints in the airspace, a series of increasingly capable airborne technologies, integrated with planned improvements in the ground system through the Federal Aviation Administration (FAA) Next Generation Air Traffic Management System (NextGen) programs, could produce much greater operational flexibility for flight path optimization by the aviation system users. These capabilities, described in research coming out of NASA's Aeronautics Research Mission Directorate, can maintain or improve operational safety while taking advantage of air and ground NextGen technologies in novel ways. The underlying premise is that the nation's physical airspace is still abundant and underused, and that the delays and inefficient flight operations resulting from artificial structure in airspace use and procedural constraints on those operations may not be necessary for safe and efficient flight. This article is not an indictment of today's NAS or the people who run it. Indeed, it is an exceptional achievement that Air Traffic Management (ATM) - the complex human/machine conglomeration of communications, navigation and surveillance equipment and the rules and procedures for controlling traffic in the airspace - has both the capacity and enables the degree of efficiency in air travel that it does. But it is also true that sixty years of the "radar religion" (i.e., reliance on radar-based command and control) has produced several generations of ATM system operators and researchers who believe that introducing automation within the existing functional structure of ATM is the only way to "modernize" the system. Even NextGen, which began as a proposal for "transformational" change in the way ATC is performed, has morphed over the last decade and a half to become just the inclusion of Global Positioning System (GPS) for navigation, Automatic Dependent Surveillance Broadcast (ADS-B) for surveillance, and Data Communications (Data Comm) for communications, while still operating in rigidly structured airspace with human controllers being responsible for separation and traffic flow management (TFM) within defined sectors of airspace, using the same horizontal separation standards that have been in use since raw primary radar was introduced in the 1950s. No system as massive as the current NAS ATM can be replaced with a better system while simultaneously meeting the transportation and other aviation needs of the nation. A new generation of more flexible operations must emerge and yet coexist in harmony with the current operation (i.e., share the same airspace without segregation), thereby enabling a long-term transformation to take place in the way increasing numbers of flights are handled. Market forces will be the ultimate driver of this transformation, and investment realities mandate that real benefits must accrue to the first operators to adopt these new capabilities. In fact, the kinds of missions envisioned in the emerging world of UAS operations, unachievable under conventional ATM, demand that this transformation take place. Airborne Trajectory Management (ABTM) is proposed as a series of transformational steps leading to vastly increased flexibility in flight operations and capacity in the airspace to accommodate many varied airspace uses while improving safety. As will be described, ABTM enables the gradual emergence of a new paradigm for user-based trajectory management in ATM that brings tangible benefits to equipped operators at every step while leveraging the air and ground investments of NextGen. There are five steps in this ABTM transformation.1 NASA has extensively studied the first and last of these steps, and a roadmap of increasing capabilities and benefits is proposed for bridging between these operational concepts.
NASA Astrophysics Data System (ADS)
Rembala, Richard; Ower, Cameron
2009-10-01
MDA has provided 25 years of real-time engineering support to Shuttle (Canadarm) and ISS (Canadarm2) robotic operations beginning with the second shuttle flight STS-2 in 1981. In this capacity, our engineering support teams have become familiar with the evolution of mission planning and flight support practices for robotic assembly and support operations at mission control. This paper presents observations on existing practices and ideas to achieve reduced operational overhead to present programs. It also identifies areas where robotic assembly and maintenance of future space stations and space-based facilities could be accomplished more effectively and efficiently. Specifically, our experience shows that past and current space Shuttle and ISS assembly and maintenance operations have used the approach of extensive preflight mission planning and training to prepare the flight crews for the entire mission. This has been driven by the overall communication latency between the earth and remote location of the space station/vehicle as well as the lack of consistent robotic and interface standards. While the early Shuttle and ISS architectures included robotics, their eventual benefits on the overall assembly and maintenance operations could have been greater through incorporating them as a major design driver from the beginning of the system design. Lessons learned from the ISS highlight the potential benefits of real-time health monitoring systems, consistent standards for robotic interfaces and procedures and automated script-driven ground control in future space station assembly and logistics architectures. In addition, advances in computer vision systems and remote operation, supervised autonomous command and control systems offer the potential to adjust the balance between assembly and maintenance tasks performed using extra vehicular activity (EVA), extra vehicular robotics (EVR) and EVR controlled from the ground, offloading the EVA astronaut and even the robotic operator on-orbit of some of the more routine tasks. Overall these proposed approaches when used effectively offer the potential to drive down operations overhead and allow more efficient and productive robotic operations.
Autonomous Command Operations of the WIRE Spacecraft
NASA Technical Reports Server (NTRS)
Walyus, Keith; Prior, Mike; Saylor, Richard
1999-01-01
This paper presents operational innovations which will be introduced on NASA's Wide Field Infrared Explorer (WIRE) mission. These innovations include an end-to-end design architecture for an autonomous commanding capability for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented all autonomous command loading capability. This capability allows completely unattended operations over a typical two-day weekend period. The key factors driving design and implementation of this capability were: 1) integration with already existing ground system autonomous capabilities and systems, 2) the desire to evolve autonomous operations capabilities based upon previous SMEX operations experience - specifically the TRACE mission, 3) integration with ground station operations - both autonomous and man-tended, 4) low cost and quick implementation, and 5) end-to-end system robustness. A trade-off study was performed to examine these factors in light of the low-cost, higher-risk SMEX mission philosophy. The study concluded that a STOL (Spacecraft Test and Operations Language) based script, highly integrated with other scripts used to perform autonomous operations, was best suited given the budget and goals of the mission. Each of these factors is discussed in addition to use of the TRACE mission as a testbed for autonomous commanding prior to implementation on WIRE. The capabilities implemented on the WIRE mission are an example of a low-cost, robust, and efficient method for autonomous command loading when implemented with other autonomous features of the ground system. They call be used as a design and implementation template by other missions interested in evolving toward autonomous and lower cost operations. Additionally, the WIRE spacecraft will be used as an operational testbed upon completion of its nominal mission later in 1999. One idea being studied is advanced on-board modeling. Advanced on-board modeling techniques will be used to more efficiently display the spacecraft state. This health and safety information could be used by engineers on the ground or could be used by tile spacecraft for its own assessments. Additionally, this same state information could also be input into the event-driven scheduling system, as the scheduling system will need to assess the spacecraft state before undertaking a new activity. Advanced modeling techniques are being evaluated for a number of NASA missions including The Next Generation Space Telescope (NGST), which is scheduled to launch in 2007.
RFB research and development in WIG vehicles
NASA Astrophysics Data System (ADS)
Fischer, Hanno
An account is given of the development history of wing-in-ground (WIG) effect aircraft at a major West German aircraft manufacturer since 1964; these efforts have encompassed the development of the X113 and X114 'airfoilboat' WIG seaplanes. Attention is given to the aerodynamic efficiency and operational economy trends that result from up-scaling of WIG craft configurations to takeoff gross weights of the order of 300 tons. Also noted is the illustration of comparative efficiency among types of transportation, including WIG vehicles, given by the von Karman-Gabrielli diagram.
Development of a filter regeneration system for advanced spacecraft fluid systems
NASA Technical Reports Server (NTRS)
Behrend, A. F., Jr.; Descamp, V. A.
1974-01-01
The development of a filter regeneration system for efficiently cleaning fluid particulate filters is presented. Based on a backflush/jet impingement technique, the regeneration system demonstrated a cleaning efficiency of 98.7 to 100%. The operating principles and design features are discussed with emphasis on the primary system components that include a regenerable filter, vortex particle separator, and zero-g particle trap. Techniques and equipment used for ground and zero-g performance tests are described. Test results and conclusions, as well as possible areas for commercial application, are included.
Cognitive engineering models in space systems
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1992-01-01
NASA space systems, including mission operations on the ground and in space, are complex, dynamic, predominantly automated systems in which the human operator is a supervisory controller. The human operator monitors and fine-tunes computer-based control systems and is responsible for ensuring safe and efficient system operation. In such systems, the potential consequences of human mistakes and errors may be very large, and low probability of such events is likely. Thus, models of cognitive functions in complex systems are needed to describe human performance and form the theoretical basis of operator workstation design, including displays, controls, and decision support aids. The operator function model represents normative operator behavior-expected operator activities given current system state. The extension of the theoretical structure of the operator function model and its application to NASA Johnson mission operations and space station applications is discussed.
Langley Ground Facilities and Testing in the 21st Century
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Kegelman, Jerome T.; Kilgore, William A.
2010-01-01
A strategic approach for retaining and more efficiently operating the essential Langley Ground Testing Facilities in the 21st Century is presented. This effort takes advantage of the previously completed and ongoing studies at the Agency and National levels. This integrated approach takes into consideration the overall decline in test business base within the nation and reduced utilization in each of the Langley facilities with capabilities to test in the subsonic, transonic, supersonic, and hypersonic speed regimes. The strategy accounts for capability needs to meet the Agency programmatic requirements and strategic goals and to execute test activities in the most efficient and flexible facility operating structure. The structure currently being implemented at Langley offers agility to right-size our capability and capacity from a national perspective, to accommodate the dynamic nature of the testing needs, and will address the influence of existing and emerging analytical tools for design. The paradigm for testing in the retained facilities is to efficiently and reliably provide more accurate and high-quality test results at an affordable cost to support design information needs for flight regimes where the computational capability is not adequate and to verify and validate the existing and emerging computational tools. Each of the above goals are planned to be achieved, keeping in mind the increasing small industry customer base engaged in developing unpiloted aerial vehicles and commercial space transportation systems.
A search asymmetry reversed by figure-ground assignment.
Humphreys, G W; Müller, H
2000-05-01
We report evidence demonstrating that a search asymmetry favoring concave over convex targets can be reversed by altering the figure-ground assignment of edges in shapes. Visual search for a concave target among convex distractors is faster than search for a convex target among concave distractors (a search asymmetry). By using shapes with ambiguous local figure-ground relations, we demonstrated that search can be efficient (with search slopes around 10 ms/item) or inefficient (with search slopes around 30-40 ms/item) with the same stimuli, depending on whether edges are assigned to concave or convex "figures." This assignment process can operate in a top-down manner, according to the task set. The results suggest that attention is allocated to spatial regions following the computation of figure-ground relations in parallel across the elements present. This computation can also be modulated by top-down processes.
NASA Astrophysics Data System (ADS)
Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.
2015-12-01
ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.
Imitative Robotic Control: The Puppet Master
2014-07-09
puppet style control device and the lessons learned while implementing such a device. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17...mission to be completed in a quick, accurate and efficient manner. This paper outlines the potential features of a puppet style control device and the...lessons learned while implementing such a device. INTRODUCTION As ground robotics moves towards autonomous and semi- autonomous operations, the
Technology Development for High Efficiency Optical Communications
NASA Technical Reports Server (NTRS)
Farr, William H.
2012-01-01
Deep space optical communications is a significantly more challenging operational domain than near Earth space optical communications, primarily due to effects resulting from the vastly increased range between transmitter and receiver. The NASA Game Changing Development Program Deep Space Optical Communications Project is developing four key technologies for the implementation of a high efficiency telecommunications system that will enable greater than 10X the data rate of a state-of-the-art deep space RF system (Ka-band) for similar transceiver mass and power burden on the spacecraft. These technologies are a low mass spacecraft disturbance isolation assembly, a flight qualified photon counting detector array, a high efficiency flight laser amplifier and a high efficiency photon counting detector array for the ground-based receiver.
Regional agriculture surveys using ERTS-1 data
NASA Technical Reports Server (NTRS)
Draeger, W. C.; Nichols, J. D.; Benson, A. S.; Larrabee, D. G.; Jenkus, W. M.; Hay, C. M.
1974-01-01
The Center for Remote Sensing Research has conducted studies designed to evaluate the potential application of ERTS data in performing agricultural inventories, and to develop efficient methods of data handling and analysis useful in the operational context for performing large area surveys. This work has resulted in the development of an integrated system utilizing both human and computer analysis of ground, aerial, and space imagery, which has been shown to be very efficient for regional crop acreage inventories. The technique involves: (1) the delineation of ERTS images into relatively homogeneous strata by human interpreters, (2) the point-by-point classification of the area within each strata on the basis of crop type using a human/machine interactive digital image processing system; and (3) a multistage sampling procedure for the collection of supporting aerial and ground data used in the adjustment and verification of the classification results.
NASA Technical Reports Server (NTRS)
Labrune, Yves; Labbe, X.; Roussel, A.; Vielcanet, P.
1994-01-01
In the context of the CNES SPOT4 program CISI is particularly responsible for the development of the SPOT4 Management Centre, part of the SPOT4 ground control system located at CNES Toulouse (France) designed to provide simultaneous control over two satellites. The main operational activities are timed to synchronize with satellite visibilities (ten usable passes per day). The automatic capability of this system is achieved through agenda services (sequence of operations as defined and planned by operator). Therefore, the SPOT4 Management Centre offers limited, efficient and secure human interventions for supervision and decision making. This paper emphasizes the main system characteristics as degree of automation, level of dependability and system parameterization.
Airport surface operations requirements analysis
NASA Technical Reports Server (NTRS)
Groce, John L.; Vonbokern, Greg J.; Wray, Rick L.
1993-01-01
This report documents the results of the Airport Surface Operations Requirements Analysis (ASORA) study. This study was conducted in response to task 24 of NASA Contract NAS1-18027. This study is part of NASA LaRC's Low Visibility Surface Operations program, which is designed to eliminate the constraints on all-weather arrival/departure operations due to the airport/aircraft ground system. The goal of this program is to provide the capability for safe and efficient aircraft operations on the airport surface during low visibility conditions down to zero. The ASORA study objectives were to (1) develop requirements for operation on the airport surface in visibilities down to zero; (2) survey and evaluate likely technologies; (3) develop candidate concepts to meet the requirements; and (4) select the most suitable concept based on cost/benefit factors.
Operations Data Files, driving force behind International Space Station operations
NASA Astrophysics Data System (ADS)
Hoppenbrouwers, Tom; Ferra, Lionel; Markus, Michael; Wolff, Mikael
2017-09-01
Almost all tasks performed by the astronauts on-board the International Space Station (ISS) and by ground controllers in Mission Control Centre, from operation and maintenance of station systems to the execution of scientific experiments or high risk visiting vehicles docking manoeuvres, would not be possible without Operations Data Files (ODF). ODFs are the User Manuals of the Space Station and have multiple faces, going from traditional step-by-step procedures, scripts, cue cards, over displays, to software which guides the crew through the execution of certain tasks. Those key operational documents are standardized as they are used on-board the Space Station by an international crew constantly changing every 3 months. Furthermore this harmonization effort is paramount for consistency as the crew moves from one element to another in a matter of seconds, and from one activity to another. On ground, a significant large group of experts from all International Partners drafts, prepares reviews and approves on a daily basis all Operations Data Files, ensuring their timely availability on-board the ISS for all activities. Unavailability of these operational documents will halt the conduct of experiments or cancel milestone events. This paper will give an insight in the ground preparation work for the ODFs (with a focus on ESA ODF processes) and will present an overview on ODF formats and their usage within the ISS environment today and show how vital they are. Furthermore the focus will be on the recently implemented ODF features, which significantly ease the use of this documentation and improve the efficiency of the astronauts performing the tasks. Examples are short video demonstrations, interactive 3D animations, Execute Tailored Procedures (XTP-versions), tablet products, etc.
A polynomial chaos approach to the analysis of vehicle dynamics under uncertainty
NASA Astrophysics Data System (ADS)
Kewlani, Gaurav; Crawford, Justin; Iagnemma, Karl
2012-05-01
The ability of ground vehicles to quickly and accurately analyse their dynamic response to a given input is critical to their safety and efficient autonomous operation. In field conditions, significant uncertainty is associated with terrain and/or vehicle parameter estimates, and this uncertainty must be considered in the analysis of vehicle motion dynamics. Here, polynomial chaos approaches that explicitly consider parametric uncertainty during modelling of vehicle dynamics are presented. They are shown to be computationally more efficient than the standard Monte Carlo scheme, and experimental results compared with the simulation results performed on ANVEL (a vehicle simulator) indicate that the method can be utilised for efficient and accurate prediction of vehicle motion in realistic scenarios.
NASA Technical Reports Server (NTRS)
Groce, J. L.; Izumi, K. H.; Markham, C. H.; Schwab, R. W.; Thompson, J. L.
1986-01-01
The Local Flow Management/Profile Descent (LFM/PD) algorithm designed for the NASA Transport System Research Vehicle program is described. The algorithm provides fuel-efficient altitude and airspeed profiles consistent with ATC restrictions in a time-based metering environment over a fixed ground track. The model design constraints include accommodation of both published profile descent procedures and unpublished profile descents, incorporation of fuel efficiency as a flight profile criterion, operation within the performance capabilities of the Boeing 737-100 airplane with JT8D-7 engines, and conformity to standard air traffic navigation and control procedures. Holding and path stretching capabilities are included for long delay situations.
FootFall: A Ground Based Operations Toolset Enabling Walking for the ATHLETE Rover
NASA Technical Reports Server (NTRS)
SunSpiral, Vytas; Chavez-Clemente, Daniel; Broxton, Michael; Keely, Leslie; Mihelich, Patrick; Mittman, David; Collins, Curtis
2008-01-01
The ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial Explorer) vehicle consists of six identical, six degree of freedom limbs. FootFall is a ground tool for ATHLETE intended to provide an operator with integrated situational awareness, terrain reconstruction, stability and safety analysis, motion planning, and decision support capabilities to enable the efficient generation of flight software command sequences for walking. FootFall has been under development at NASA Ames for the last year, and having accomplished the initial integration, it is being used to generate command sequences for single footfalls. In this paper, the architecture of FootFall in its current state will be presented, results from the recent Human Robotic Systems Project?s Integrated Field Test (Moses Lake, Washington, June, 2008) will be discussed, and future plans for extending the capabilities of FootFall to enable ATHLETE to walk across a boulder field in real time will be described.
A ground-based memory state tracker for satellite on-board computer memory
NASA Technical Reports Server (NTRS)
Quan, Alan; Angelino, Robert; Hill, Michael; Schwuttke, Ursula; Hervias, Felipe
1993-01-01
The TOPEX/POSEIDON satellite, currently in Earth orbit, will use radar altimetry to measure sea surface height over 90 percent of the world's ice-free oceans. In combination with a precise determination of the spacecraft orbit, the altimetry data will provide maps of ocean topography, which will be used to calculate the speed and direction of ocean currents worldwide. NASA's Jet Propulsion Laboratory (JPL) has primary responsibility for mission operations for TOPEX/POSEIDON. Software applications have been developed to automate mission operations tasks. This paper describes one of these applications, the Memory State Tracker, which allows the ground analyst to examine and track the contents of satellite on-board computer memory quickly and efficiently, in a human-readable format, without having to receive the data directly from the spacecraft. This process is accomplished by maintaining a groundbased mirror-image of spacecraft On-board Computer memory.
Cooperation of Horizontal Ground Heat Exchanger with the Ventilation Unit During Summer - Case Study
NASA Astrophysics Data System (ADS)
Romańska-Zapała, Anna; Furtak, Marcin; Dechnik, Mirosław
2017-10-01
Renewable energy sources are used in the modern energy-efficient buildings to improve their energy balance. One of them is used in the mechanical ventilation system ground air heat exchanger (earth-air heat exchanger - EAHX). This solution, right after heat recovery from exhaust air (recuperation), allows the reduction in the energy needed to obtain the desired temperature of supply air. The article presents the results of "in situ" measurements of pipe ground air heat exchanger cooperating with the air handling unit, supporting cooling the building in the summer season, in Polish climatic conditions. The laboratory consists of a ventilation unit intake - exhaust with rotor for which the source of fresh air is the air intake wall and two air intakes field cooperating with the tube with ground air heat exchangers. Selection of the source of fresh air is performed using sprocket with actuators. This system is part of the ventilation system of the Malopolska Laboratory of Energy-Efficient Building (MLBE) building of Cracow University of Technology. The measuring system are, among others, the sensors of parameters of air inlets and outlets of the heat exchanger channels EAHX and weather station that senses the local weather conditions. The measurement data are recorded and archived by the integrated process control system in the building of MLBE. During the study measurements of operating parameters of the ventilation unit cooperating with the selected source of fresh air were performed. Two cases of operation of the system: using EAHX heat exchanger and without it, were analyzed. Potentially the use of ground air heat exchanger in the mechanical ventilation system can reduce the energy demand for heating or cooling rooms by the pre-adjustment of the supply air temperature. Considering the results can be concluded that the continuous use of these exchangers is not optimal. This relationship is appropriate not only on an annual basis for the transitional periods (spring and autumn), but also in individual days in the potentially most favorable periods of work exchanger (summer and winter). Inappropriate operation of the heat exchanger, will lead to a temporary increase in energy consumption for the preparation of the desired air temperature, relative to the fresh air unit which is non-pretreated. For optimal energy system operation: exchanger EAHX - air handling unit, to preserve the most favourable parameters of inlet air to handling unit, there is a need to dynamically adjust the source of fresh air, depending on changing external conditions and the required outlet temperature of central unit (temperature of air forced to the rooms).
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Shalkhauser, Mary JO
1991-01-01
Emphasis is on a destination directed packet switching architecture for a 30/20 GHz frequency division multiplex access/time division multiplex (FDMA/TDM) geostationary satellite communication network. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment was considered concurrently to ensure cost efficiency and realistic operational constraints.
Circuit-switch architecture for a 30/20-GHz FDMA/TDM geostationary satellite communications network
NASA Technical Reports Server (NTRS)
Ivancic, William D.
1992-01-01
A circuit switching architecture is described for a 30/20 GHz frequency division, multiple access uplink/time division multiplexed downlink (FDMA/TDM) geostationary satellite communications network. Critical subsystems and problem areas are identified and addressed. Work was concentrated primarily on the space segment; however, the ground segment was considered concurrently to ensure cost efficiency and realistic operational constraints.
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Shalkhauser, Mary JO
1992-01-01
A destination-directed packet switching architecture for a 30/20-GHz frequency division multiple access/time division multiplexed (FDMA/TDM) geostationary satellite communications network is discussed. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment has been considered concurrently to ensure cost efficiency and realistic operational constraints.
NASA Technical Reports Server (NTRS)
Rash, James
2014-01-01
NASA's space data-communications infrastructure-the Space Network and the Ground Network-provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft. The Space Network operates several orbiting geostationary platforms (the Tracking and Data Relay Satellite System (TDRSS)), each with its own servicedelivery antennas onboard. The Ground Network operates service-delivery antennas at ground stations located around the world. Together, these networks enable data transfer between user spacecraft and their mission control centers on Earth. Scheduling data-communications events for spacecraft that use the NASA communications infrastructure-the relay satellites and the ground stations-can be accomplished today with software having an operational heritage dating from the 1980s or earlier. An implementation of the scheduling methods and algorithms disclosed and formally specified herein will produce globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary algorithms, a class of probabilistic strategies for searching large solution spaces, is the essential technology invoked and exploited in this disclosure. Also disclosed are secondary methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithms themselves. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure within the expected range of future users and space- or ground-based service-delivery assets. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally. The generalized methods and algorithms are applicable to a very broad class of combinatorial-optimization problems that encompasses, among many others, the problem of generating optimal space-data communications schedules.
Autonomous Commanding of the WIRE Spacecraft
NASA Technical Reports Server (NTRS)
Prior, Mike; Walyus, Keith; Saylor, Rick
1999-01-01
This paper presents the end-to-end design architecture for an autonomous commanding capability to be used on the Wide Field Infrared Explorer (WIRE) mission for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented an autonomous command loading capability. This capability allows completely unattended operations over a typical two- day weekend period. The key factors driving design and implementation of this capability were: 1) Integration with already existing ground system autonomous capabilities and systems, 2) The desire to evolve autonomous operations capabilities based upon previous SMEX operations experience 3) Integration with ground station operations - both autonomous and man-tended, 4) Low cost and quick implementation, and 5) End-to-end system robustness. A trade-off study was performed to examine these factors in light of the low-cost, higher-risk SMEX mission philosophy. The study concluded that a STOL (Spacecraft Test and Operations Language) based script, highly integrated with other scripts used to perform autonomous operations, was best suited given the budget and goals of the mission. Each of these factors is discussed to provide an overview of the autonomous operations capabilities implemented for the mission. The capabilities implemented on the WIRE mission are an example of a low-cost, robust, and efficient method for autonomous command loading when implemented with other autonomous features of the ground system. They can be used as a design and implementation template by other small satellite missions interested in evolving toward autonomous and lower cost operations.
Analysis and design of a high power laser adaptive phased array transmitter
NASA Technical Reports Server (NTRS)
Mevers, G. E.; Soohoo, J. F.; Winocur, J.; Massie, N. A.; Southwell, W. H.; Brandewie, R. A.; Hayes, C. L.
1977-01-01
The feasibility of delivering substantial quantities of optical power to a satellite in low earth orbit from a ground based high energy laser (HEL) coupled to an adaptive antenna was investigated. Diffraction effects, atmospheric transmission efficiency, adaptive compensation for atmospheric turbulence effects, including the servo bandwidth requirements for this correction, and the adaptive compensation for thermal blooming were examined. To evaluate possible HEL sources, atmospheric investigations were performed for the CO2, (C-12)(O-18)2 isotope, CO and DF wavelengths using output antenna locations of both sea level and mountain top. Results indicate that both excellent atmospheric and adaption efficiency can be obtained for mountain top operation with a micron isotope laser operating at 9.1 um, or a CO laser operating single line (P10) at about 5.0 (C-12)(O-18)2um, which was a close second in the evaluation. Four adaptive power transmitter system concepts were generated and evaluated, based on overall system efficiency, reliability, size and weight, advanced technology requirements and potential cost. A multiple source phased array was selected for detailed conceptual design. The system uses a unique adaption technique of phase locking independent laser oscillators which allows it to be both relatively inexpensive and most reliable with a predicted overall power transfer efficiency of 53%.
High Efficiency push-pull class E amplifiers for fusion rocket engines
NASA Astrophysics Data System (ADS)
Gaitan, Gabriel; Ham, Eric; Cohen, S. A.; Swanson, Charles; Chen, Minjie; Brunkhorst, Christopher
2017-10-01
In a Field Reversed Configuration fusion reactor, ions in the plasma are heated by an antenna operating at RF frequencies. This paper presents how push-pull class E amplifiers can be used to efficiently drive this antenna in the MHz range, from 0.5MHz to 4 MHz, while maintaining low harmonic content in the output signal. We offer four different configurations that present a trade-off between efficiency and low harmonic content. The paper presents theoretical values and breadboard results from these configurations, which operate at a power of around 100W. For a practical design, multiple amplifiers would be linked in parallel and would power the RF antenna at around 1MW. These designs provide multiple different options for reactor systems that could be used in a variety of applications, from power plants on the ground to rocket engines in space. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466 and Princeton Environmental Institute.
NASA Astrophysics Data System (ADS)
Adeyeye, Adekunle
In the last few years, interest in propagating-spin-wave based devices has grown largely due to advances in nanotechnology which allows shapes of geometrically confined magnonic elements to be fabricated, the development of new advanced experimental techniques for studying high-frequency magnetization dynamics and the potential use of spin waves as information carriers in spintronic applications. The first part of this talk will focus on design and fabrication strategies for synthesizing nanomagnetic networks with deterministic magnetic ground states. Reliable reconfiguration between ferromagnetic (FM), antiferromagnetic (AFM) and ferrimagnetic ground magnetic states will be shown in rhomboid nanomagnets which stabilize to unique ground states upon field initialized along their short axis. In the second part, a new waveguide consisting of dipolar coupled rhombic shaped nanomagnetic chain that eliminate the requirement of a stand-by power during operation will be presented. The sizes of the nanomagnets are small enough to retain their correct magnetic states once initialized. It will be shown that our waveguide could be used to send spin wave signal around a corner without any stand-by power. Another important parameter for device operation is the manipulation of the output signal, which is similar to a gating operation in a transistor. In our design, gating operation is demonstrated by switching the magnetization of single/multiple nanomagnets in the waveguides in order to manipulate the spin wave amplitude at the output. This work is supported by the National Research Foundation, Prime Minister's Office, under CRP 10-2012-03.
NASA Technical Reports Server (NTRS)
Corker, Kevin; Lebacqz, J. Victor (Technical Monitor)
1997-01-01
The NASA and the FAA have entered into a joint venture to explore, define, design and implement a new airspace management operating concept. The fundamental premise of that concept is that technologies and procedures need to be developed for flight deck and ground operations to improve the efficiency, the predictability, the flexibility and the safety of airspace management and operations. To that end NASA Ames has undertaken an initial development and exploration of "key concepts" in the free flight airspace management technology development. Human Factors issues in automation aiding design, coupled aiding systems between air and ground, communication protocols in distributed decision making, and analytic techniques for definition of concepts of airspace density and operator cognitive load have been undertaken. This paper reports the progress of these efforts, which are not intended to definitively solve the many evolving issues of design for future ATM systems, but to provide preliminary results to chart the parameters of performance and the topology of the analytic effort required. The preliminary research in provision of cockpit display of traffic information, dynamic density definition, distributed decision making, situation awareness models and human performance models is discussed as they focus on the theme of "design requirements".
Increasing the Operational Value of Event Messages
NASA Technical Reports Server (NTRS)
Li, Zhenping; Savkli, Cetin; Smith, Dan
2003-01-01
Assessing the health of a space mission has traditionally been performed using telemetry analysis tools. Parameter values are compared to known operational limits and are plotted over various time periods. This presentation begins with the notion that there is an incredible amount of untapped information contained within the mission s event message logs. Through creative advancements in message handling tools, the event message logs can be used to better assess spacecraft and ground system status and to highlight and report on conditions not readily apparent when messages are evaluated one-at-a-time during a real-time pass. Work in this area is being funded as part of a larger NASA effort at the Goddard Space Flight Center to create component-based, middleware-based, standards-based general purpose ground system architecture referred to as GMSEC - the GSFC Mission Services Evolution Center. The new capabilities and operational concepts for event display, event data analyses and data mining are being developed by Lockheed Martin and the new subsystem has been named GREAT - the GMSEC Reusable Event Analysis Toolkit. Planned for use on existing and future missions, GREAT has the potential to increase operational efficiency in areas of problem detection and analysis, general status reporting, and real-time situational awareness.
Kennedy Space Center Orion Processing Team Planning for Ground Operations
NASA Technical Reports Server (NTRS)
Letchworth, Gary; Schlierf, Roland
2011-01-01
Topics in this presentation are: Constellation Ares I/Orion/Ground Ops Elements Orion Ground Operations Flow Orion Operations Planning Process and Toolset Overview, including: 1 Orion Concept of Operations by Phase 2 Ops Analysis Capabilities Overview 3 Operations Planning Evolution 4 Functional Flow Block Diagrams 5 Operations Timeline Development 6 Discrete Event Simulation (DES) Modeling 7 Ground Operations Planning Document Database (GOPDb) Using Operations Planning Tools for Operability Improvements includes: 1 Kaizen/Lean Events 2 Mockups 3 Human Factors Analysis
An Efficient Universal Trajectory Language
NASA Technical Reports Server (NTRS)
Hagen, George E.; Guerreiro, Nelson M.; Maddalon, Jeffrey M.; Butler, Ricky W.
2017-01-01
The Efficient Universal Trajectory Language (EUTL) is a language for specifying and representing trajectories for Air Traffic Management (ATM) concepts such as Trajectory-Based Operations (TBO). In these concepts, the communication of a trajectory between an aircraft and ground automation is fundamental. Historically, this trajectory exchange has not been done, leading to trajectory definitions that have been centered around particular application domains and, therefore, are not well suited for TBO applications. The EUTL trajectory language has been defined in the Prototype Verification System (PVS) formal specification language, which provides an operational semantics for the EUTL language. The hope is that EUTL will provide a foundation for mathematically verified algorithms that manipulate trajectories. Additionally, the EUTL language provides well-defined methods to unambiguously determine position and velocity information between the reported trajectory points. In this paper, we present the EUTL trajectory language in mathematical detail.
NASA Technical Reports Server (NTRS)
Kramer, Edward (Editor)
1998-01-01
The cryogenic fluid management technologies required for the exploration of the solar system can only be fully developed via space-based experiments. A dedicated spacecraft is the most efficient way to perform these experiments. This report documents the extended conceptual design of the COLD-SAT spacecraft, capable of meeting these experimental requirements. All elements, including the spacecraft, ground segment, launch site modifications and launch vehicle operations, and flight operations are included. Greatly expanded coverage is provided for those areas unique to this cryogenic spacecraft, such as the experiment system, attitude control system, and spacecraft operations. Supporting analyses are included as are testing requirements, facilities surveys, and proposed project timelines.
Inferential Framework for Autonomous Cryogenic Loading Operations
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry G.; Khasin, Michael; Timucin, Dogan; Sass, Jared; Perotti, Jose; Brown, Barbara
2017-01-01
We address problem of autonomous cryogenic management of loading operations on the ground and in space. As a step towards solution of this problem we develop a probabilistic framework for inferring correlations parameters of two-fluid cryogenic flow. The simulation of two-phase cryogenic flow is performed using nearly-implicit scheme. A concise set of cryogenic correlations is introduced. The proposed approach is applied to an analysis of the cryogenic flow in experimental Propellant Loading System built at NASA KSC. An efficient simultaneous optimization of a large number of model parameters is demonstrated and a good agreement with the experimental data is obtained.
Battle Staff Training and Synchronization in Light Infantry Battalions and Task Forces
1991-12-01
Institute for the Behavioral and Social Sciences Fort Benning Field Unit (ARI-Benning) joined the Training Research Laboratory’s Determinants of Effective ...and unforgiving. The effective management and manipulation of stressors in a continuous operations environment, along with an efficient and consistent...an organizational effectiveness model grounded in the General Systems Theory model. An extensive body of work was reviewed, but two authors stand out
Performance of an Advanced Stirling Convertor Based on Heat Flux Sensor Measurements
NASA Technical Reports Server (NTRS)
Wilson, Scott D.
2012-01-01
The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower, Inc., and NASA Glenn Research Center. The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot-end and cold-end temperatures, and specified electrical power output for a given heat input. It is difficult to measure heat input to Stirling convertors due to the complex geometries of the hot components, temperature limits of sensor materials, and invasive integration of sensors. A thin-film heat flux sensor was used to directly measure heat input to an ASC. The effort succeeded in designing and fabricating unique sensors, which were integrated into a Stirling convertor ground test and exposed to test temperatures exceeding 700 C in air for 10,000 hr. Sensor measurements were used to calculate thermal efficiency for ASC-E (Engineering Unit) #1 and #4. The post-disassembly condition of the sensors is also discussed.
High-Capacity Communications from Martian Distances
NASA Technical Reports Server (NTRS)
Williams, W. Dan; Collins, Michael; Hodges, Richard; Orr, Richard S.; Sands, O. Scott; Schuchman, Leonard; Vyas, Hemali
2007-01-01
High capacity communications from Martian distances, required for the envisioned human exploration and desirable for data-intensive science missions, is challenging. NASA s Deep Space Network currently requires large antennas to close RF telemetry links operating at kilobit-per-second data rates. To accommodate higher rate communications, NASA is considering means to achieve greater effective aperture at its ground stations. This report, focusing on the return link from Mars to Earth, demonstrates that without excessive research and development expenditure, operational Mars-to-Earth RF communications systems can achieve data rates up to 1 Gbps by 2020 using technology that today is at technology readiness level (TRL) 4-5. Advanced technology to achieve the needed increase in spacecraft power and transmit aperture is feasible at an only moderate increase in spacecraft mass and technology risk. In addition, both power-efficient, near-capacity coding and modulation and greater aperture from the DSN array will be required. In accord with these results and conclusions, investment in the following technologies is recommended:(1) lightweight (1 kg/sq m density) spacecraft antenna systems; (2) a Ka-band receive ground array consisting of relatively small (10-15 m) antennas; (3) coding and modulation technology that reduces spacecraft power by at least 3 dB; and (4) efficient generation of kilowatt-level spacecraft RF power.
Infinite projected entangled-pair state algorithm for ruby and triangle-honeycomb lattices
NASA Astrophysics Data System (ADS)
Jahromi, Saeed S.; Orús, Román; Kargarian, Mehdi; Langari, Abdollah
2018-03-01
The infinite projected entangled-pair state (iPEPS) algorithm is one of the most efficient techniques for studying the ground-state properties of two-dimensional quantum lattice Hamiltonians in the thermodynamic limit. Here, we show how the algorithm can be adapted to explore nearest-neighbor local Hamiltonians on the ruby and triangle-honeycomb lattices, using the corner transfer matrix (CTM) renormalization group for 2D tensor network contraction. Additionally, we show how the CTM method can be used to calculate the ground-state fidelity per lattice site and the boundary density operator and entanglement entropy (EE) on an infinite cylinder. As a benchmark, we apply the iPEPS method to the ruby model with anisotropic interactions and explore the ground-state properties of the system. We further extract the phase diagram of the model in different regimes of the couplings by measuring two-point correlators, ground-state fidelity, and EE on an infinite cylinder. Our phase diagram is in agreement with previous studies of the model by exact diagonalization.
CFD Simulation of a Wing-In-Ground-Effect UAV
NASA Astrophysics Data System (ADS)
Lao, C. T.; Wong, E. T. T.
2018-05-01
This paper reports a numerical analysis on a wing section used for a Wing-In-Ground-Effect (WIG) unmanned aerial vehicle (UAV). The wing geometry was created by SolidWorks and the incompressible Reynolds-averaged Navier-Stokes (RANS) equations were solved with the Spalart–Allmaras turbulence model using CFD software ANSYS FLUENT. In FLUENT, the Spalart-Allmaras model has been implemented to use wall functions when the mesh resolution is not sufficiently fine. This might make it the best choice for relatively crude simulations on coarse meshes where accurate turbulent flow computations are not critical. The results show that the lift coefficient and lift-drag ratio derived excellent performance enhancement by ground effect. However, the moment coefficient shows inconsistency when the wing is operating in very low altitude - this is owing to the difficulty on the stability control of WIG vehicle. A drag polar estimation based on the analysis also indicated that the Oswald (or span) efficiency of the wing was improved by ground effect.
Calculation of Operations Efficiency Factors for Mars Surface Missions
NASA Technical Reports Server (NTRS)
Laubach, Sharon
2014-01-01
The duration of a mission--and subsequently, the minimum spacecraft lifetime--is a key component in designing the capabilities of a spacecraft during mission formulation. However, determining the duration is not simply a function of how long it will take the spacecraft to execute the activities needed to achieve mission objectives. Instead, the effects of the interaction between the spacecraft and ground operators must also be taken into account. This paper describes a method, using "operations efficiency factors", to account for these effects for Mars surface missions. Typically, this level of analysis has not been performed until much later in the mission development cycle, and has not been able to influence mission or spacecraft design. Further, the notion of moving to sustainable operations during Prime Mission--and the effect that change would have on operations productivity and mission objective choices--has not been encountered until the most recent rover missions (MSL, the (now-cancelled) joint NASA-ESA 2018 Mars rover, and the proposed rover for Mars 2020). Since MSL had a single control center and sun-synchronous relay assets (like MER), estimates of productivity derived from MER prime and extended missions were used. However, Mars 2018's anticipated complexity (there would have been control centers in California and Italy, and a non-sun-synchronous relay asset) required the development of an explicit model of operations efficiency that could handle these complexities. In the case of the proposed Mars 2018 mission, the model was employed to assess the mission return of competing operations concepts, and as an input to component lifetime requirements. In this paper we provide examples of how to calculate the operations efficiency factor for a given operational configuration, and how to apply the factors to surface mission scenarios. This model can be applied to future missions to enable early effective trades between operations design, science mission planning, and spacecraft design.
Sensitivity of Runway Occupancy Time (ROT) to Various Rollout and Turnoff (ROTO) Factors. Volume 1
NASA Technical Reports Server (NTRS)
Goldthorpe, S. H.
1997-01-01
The Terminal Area Productivity (TAP) research program was initiated by NASA to increase the airport capacity for transport aircraft operations. One element of the research program is called Low Visibility Landing and Surface Operations (LVLASO). A goal of the LVLASO research is to develop transport aircraft technologies which reduce Runway Occupancy Time (ROT) so that it does not become the limiting factor in the terminal area operations that determine the capacity of a runway. Under LVLASO, the objective of this study was to determine the sensitivity of ROT to various factors associated with the Rollout and Turnoff (ROTO) operation for transport aircraft. The following operational factors were studied and are listed in the order of decreasing ROT sensitivity: ice/flood runway surface condition, exit entrance ground speed, number of exits, high-speed exit locations and spacing, aircraft type, touchdown ground speed standard deviation, reverse thrust and braking method, accurate exit prediction capability, maximum reverse thrust availability, spiral-arc vs. circle-arc exit geometry, dry/slush/wet/snow runway surface condition, maximum allowed deceleration, auto asymmetric braking on exit, do not stow reverse thrust before the exit, touchdown longitudinal location standard deviation, flap setting, anti-skid efficiency, crosswind conditions, stopping on the exit and touchdown lateral offset.
Airport Surface Movement Technologies: Atlanta Demonstrations Overview
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Young, Steven D.
1997-01-01
A flight demonstration was conducted in August 1997 at the Hartsfield Atlanta (ATL) International Airport as part of low visibility landing and surface operations (LVLASO) research activities. This research was aimed at investigating technology to improve the safety and efficiency of aircraft movements on the surface during the operational phases of roll-out, turnoff, and taxi in any weather condition down to a runway visual range of 300 feet. The system tested at ATL was composed of airborne and ground-based components that were integrated to provide both the flight crew and controllers with supplemental information to enable safe, expedient surface operations. Experimental displays were installed on a Boeing 757-200 research aircraft in both headup and head-down formats. On the ground, an integrated system maintained surveillance of the airport surface and a controller interface provided routing and control instructions. While at ATL, the research aircraft performed a series of flight and taxi operations to show the validity of the operational concept at a major airport facility, to validate simulation findings, and to assess each of the individual technologies performance in an airport environment. The concept was demonstrated to over 100 visitors from the Federal Aviation Administration (FAA) and the aviation community. This paper gives an overview of the LVLASO system and ATL test activities.
NASA Technical Reports Server (NTRS)
Goldthorpe, S. H.
1997-01-01
The Terminal Area Productivity (TAP) research program was initiated by NASA to increase the airport capacity for transport aircraft operations. One element of the research program is called Low Visibility Landing and Surface Operations (LVLASO). A goal of the LVLASO research is to develop transport aircraft technologies which reduce Runway Occupancy Time (ROT) so that it does not become the limiting factor in the terminal area operations that determine the capacity of a runway. Under LVLASO, the objective of this study was to determine the sensitivity of ROT to various factors associated with the Rollout and Turnoff (ROTO) operation for transport aircraft. The following operational factors were studied and are listed in the order of decreasing ROT sensitivity: ice/flood runway surface condition, exit entrance ground speed, number of exits, high-speed exit locations and spacing, aircraft type, touchdown ground speed standard deviation, reverse thrust and braking method, accurate exit prediction capability, maximum reverse thrust availability, spiral-arc vs. circle-arc exit geometry, dry/slush/wet/snow runway surface condition, maximum allowed deceleration, auto asymmetric braking on exit, do not stow reverse thrust before the exit, touchdown longitudinal location standard deviation, flap setting, anti-skid efficiency, crosswind conditions, stopping on the exit and touchdown lateral offset.
MOS 2.0: The Next Generation in Mission Operations Systems
NASA Technical Reports Server (NTRS)
Bindschadler, Duane L.; Boyles, Carole A.; Carrion, Carlos; Delp, Chris L.
2010-01-01
A Mission Operations System (MOS) or Ground System constitutes that portion of an overall space mission Enterprise that resides here on Earth. Over the past two decades, technological innovations in computing and software technologies have allowed an MOS to support ever more complex missions while consuming a decreasing fraction of Project development budgets. Despite (or perhaps, because of) such successes, it is routine to hear concerns about the cost of MOS development. At the same time, demand continues for Ground Systems which will plan more spacecraft activities with fewer commanding errors, provide scientists and engineers with more autonomous functionality, process and manage larger and more complex data more quickly, all while requiring fewer people to develop, deploy, operate and maintain them. One successful approach to such concerns over this period is a multimission approach, based on the reuse of portions (most often software) developed and used in previous missions. The Advanced Multi-Mission Operations System (AMMOS), developed for deep-space science missions, is one successful example of such an approach. Like many computing-intensive systems, it has grown up in a near-organic fashion from a relatively simple set of tools into a complexly interrelated set of capabilities. Such systems, like a city lacking any concept of urban planning, can and will grow in ways that are neither efficient nor particularly easy to sustain. To meet the growing demands and unyielding constraints placed on ground systems, a new approach is necessary. Under the aegis of a multi-year effort to revitalize the AMMOS's multimission operations capabilities, we are utilizing modern practices in systems architecting and model-based engineering to create the next step in Ground Systems: MOS 2.0. In this paper we outline our work (ongoing and planned) to architect and design a multimission MOS 2.0, describe our goals and measureable objectives, and discuss some of the benefits that this top-down, architectural approach holds for creating a more flexible and capable MOS for Missions while holding the line on cost.
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard; Koshak, William; Petersen, Walter; Carey, Larry; Mach, Douglas; Buechler, Dennis; Bateman, Monte; McCaul, Eugene; Bruning, Eric;
2010-01-01
The next generation Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2015 is a follow on to the existing GOES system currently operating over the Western Hemisphere. The system will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. The system provides products including lightning, cloud properties, rainfall rate, volcanic ash, air quality, hurricane intensity, and fire/hot spot characterization. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved spectral, spatial, and temporal resolution for the 16-channel Advanced Baseline Imager (ABI). The Geostationary Lightning Mapper (GLM), an optical transient detector will map total (in-cloud and cloud-to-ground) lightning flashes continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions, from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the higher level algorithms and applications using the GLM alone and decision aids incorporating information from the ABI, ground-based weather radar, and numerical models. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional lightning networks are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time total lightning mapping data are also being provided in an experimental mode to selected National Weather Service (NWS) national centers and forecast offices via the GOES-R Proving Ground to help improve our understanding of the application of these data in operational settings and facilitate early on-orbit user readiness for this new capability.
Tug fleet and ground operations schedules and controls. Volume 2: part 1
NASA Technical Reports Server (NTRS)
1975-01-01
This Tug Fleet and Ground Operations Schedules and Controls Study addresses both ground operational data and technical requirements that span the Tug planning phase and operations phase. A similar study covering mission operations (by others) provides the complimentary flight operations details. The two studies provide the planning data requirements, resource allocation, and control milestones for supporting the requirements of the STS program. This Tug Fleet and Ground Operations Schedules and Controls Study incorporates the basic ground operations requirements and concepts provided by previous studies with the interrelationships of the planning, IUS transition, and Tug fleet operations phases. The interrelationships of these phases were studied as a system to optimize overall program benefits and minimize operational risk factors.
Hodges, Arthur L.
1982-01-01
Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)
Launch and Landing Effects Ground Operations (LLEGO) Model
NASA Technical Reports Server (NTRS)
2008-01-01
LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.
Air Traffic Management Technology Demostration: 1 Research and Procedural Testing of Routes
NASA Technical Reports Server (NTRS)
Wilson, Sara R.; Kibler, Jennifer L.; Hubbs, Clay E.; Smail, James W.
2015-01-01
NASA's Air Traffic Management Technology Demonstration-1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The ATD-1 integrated system consists of the Traffic Management Advisor with Terminal Metering which generates precise time-based schedules to the runway and merge points; Controller Managed Spacing decision support tools which provide controllers with speed advisories and other information needed to meet the schedule; and Flight deck-based Interval Management avionics and procedures which allow flight crews to adjust their speed to achieve precise relative spacing. Initial studies identified air-ground challenges related to the integration of these three scheduling and spacing technologies, and NASA's airborne spacing algorithm was modified to address some of these challenges. The Research and Procedural Testing of Routes human-in-the-loop experiment was then conducted to assess the performance of the new spacing algorithm. The results of this experiment indicate that the algorithm performed as designed, and the pilot participants found the airborne spacing concept, air-ground procedures, and crew interface to be acceptable. However, the researchers concluded that the data revealed issues with the frequency of speed changes and speed reversals.
NASA Astrophysics Data System (ADS)
Grant, K. D.; Panas, M.
2016-12-01
NOAA and NASA are jointly acquiring the next-generation civilian weather satellite system: the Joint Polar Satellite System (JPSS). JPSS replaced the afternoon orbit component and ground processing of NOAA's old POES system. JPSS satellites carry sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a globally distributed, multi-mission system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture has been upgraded to Block 2.0 to satisfy several key objectives, including: "operationalizing" the first satellite, Suomi NPP, which originally was a risk reduction mission; leveraging lessons learned in multi-mission support, taking advantage of newer, more reliable and efficient technologies and satisfying constraints due of the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 48 Technical Performance Measures (TPMs) across 9 categories: Data Availability, Data Latency, Operational Availability, Margin, Scalability, Situational Awareness, Transition (between environments and sites), WAN Efficiency, and Data Recovery Processing. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 9 TPM categories listed above. We will describe how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.
Characterization of Hollow Cathode Performance and Thermal Behavior
NASA Technical Reports Server (NTRS)
Polk, James E.; Goebel, Dan M.; Watkins, Ron; Jameson, Kristina; Yoneshige, Lance; Przybylowski, JoHanna; Cho, Lauren
2006-01-01
Hollow cathodes are one of the main life-limiting components in ion engines and Hall thrusters. Although state-of-the-art hollow cathodes have demonstrated up to 30,352 hours of operation in ground tests with careful handling, future missions are likely to require longer life, more margin and greater resistance to reactive contaminant gases. Three alternate hollow cathode technologies that exploit different emitter materials or geometries to address some of the limitations of state-of-the-art cathodes are being investigated. Performance measurements of impregnated tungsten-iridium dispenser cathodes at discharge currents of 4 to 15 A demonstrated that they have the same operating range and ion production efficiency as conventional tungsten dispenser cathodes. Temperature measurements indicated that tungsten-iridium cathodes also operate at the same emitter temperatures. They did not exhibit the expected reduction in work function at the current densities tested. Hollow cathodes with lanthanum hexaboride emitters operated over a wide current range, but suffered from lower ion production efficiency at currents below about 12.4 A because of higher insert heating requirements. Differences in operating voltages and ion production rates are explained with a simple model of the effect of cathode parameters on discharge behavior.
SensorWeb Evolution Using the Earth Observing One (EO-1) Satellite as a Test Platform
NASA Technical Reports Server (NTRS)
Mandl, Daniel; Frye, Stuart; Cappelaere, Pat; Ly, Vuong; Handy, Matthew; Chien, Steve; Grossman, Robert; Tran, Daniel
2012-01-01
The Earth Observing One (EO-1) satellite was launched in November 2000 as a one year technology demonstration mission for a variety of space technologies. After the first year, in addition to collecting science data from its instruments, the EO-1 mission has been used as a testbed for a variety of technologies which provide various automation capabilities and which have been used as a pathfinder for the creation of SensorWebs. A SensorWeb is the integration of variety of space, airborne and ground sensors into a loosely coupled collaborative sensor system that automatically provides useful data products. Typically, a SensorWeb is comprised of heterogeneous sensors tied together with a messaging architecture and web services. This paper provides an overview of the various technologies that were tested and eventually folded into normal operations. As these technologies were folded in, the nature of operations transformed. The SensorWeb software enables easy connectivity for collaboration with sensors, but the side benefit is that it improved the EO-1 operational efficiency. This paper presents the various phases of EO-1 operation over the past 12 years and also presents operational efficiency gains demonstrated by some metrics.
Low-Cost SIRTF Flight Operations
NASA Astrophysics Data System (ADS)
Deutsch, M.-J.; Ebersole, M.; Nichols, J.
1997-12-01
The Space Infrared Telescope Facility (SIRTF) , the fourth of the Great Observatories, will be placed in a unique solar orbit trailing the Earth, in 2001. SIRTF will acquire both imaging and spectral data using large infrared detector arrays from 3.5mm to 160mm. The primary science objectives are (1) search for and study of brown dwarfs and super planets, (2) discovery and study of protoplanetary debris disks, (3) study of ultraluminous galaxies and active galactic nuclei, and (4) study of the early Universe. Driven by the limited cryogenic lifetime of 2.5 years, with a goal of 5 years, and the severely cost-capped development, a Mission Planning and Operations system is being designed that will result in high on-board efficiency (>90%) and low-cost operation, yet will accommodate rapid response science requirements . SIRTF is designing an architecture for an operations system that will be shared between science and flight operations. Crucial to this effort is the philosophy of an integrated science and engineering plan, co-location, cross-training of teams and common planning tools. The common tool set will enable the automatic generation of an integrated and conflict free planned schedule accommodating 20 000 observations and engineering activities a year. The shared tool set will help generate standard observations , (sometimes non-standard) engineering activities and manage the ground and flight resources and constraints appropriately. The ground software will allow the development from the ground of robust event driven sequences. Flexibility will be provided to incorporate newly discovered science opportunities or health issues late in the process and via quick links. This shared science and flight operations process if used from observation selection through sequence and command generation, will provide a low-cost operations system. Though SIRTF is a 'Great Observatory', its annual mission operations costs will more closely resemble those of an Explorer class mission.
NASA Technical Reports Server (NTRS)
Stupl, Jan; Faber, Nicolas; Foster, Cyrus; Yang, Fan Yang; Nelson, Bron; Aziz, Jonathan; Nuttall, Andrew; Henze, Chris; Levit, Creon
2014-01-01
This paper provides an updated efficiency analysis of the LightForce space debris collision avoidance scheme. LightForce aims to prevent collisions on warning by utilizing photon pressure from ground based, commercial off the shelf lasers. Past research has shown that a few ground-based systems consisting of 10 kilowatt class lasers directed by 1.5 meter telescopes with adaptive optics could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. Our simulation approach utilizes the entire Two Line Element (TLE) catalogue in LEO for a given day as initial input. Least-squares fitting of a TLE time series is used for an improved orbit estimate. We then calculate the probability of collision for all LEO objects in the catalogue for a time step of the simulation. The conjunctions that exceed a threshold probability of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the probability of collision and evaluate the efficiency of the system. This paper describes new simulations with three updated aspects: 1) By utilizing a highly parallel simulation approach employing hundreds of processors, we have extended our analysis to a much broader dataset. The simulation time is extended to one year. 2) We analyze not only the efficiency of LightForce on conjunctions that naturally occur, but also take into account conjunctions caused by orbit perturbations due to LightForce engagements. 3) We use a new simulation approach that is regularly updating the LightForce engagement strategy, as it would be during actual operations. In this paper we present our simulation approach to parallelize the efficiency analysis, its computational performance and the resulting expected efficiency of the LightForce collision avoidance system. Results indicate that utilizing a network of four LightForce stations with 20 kilowatt lasers, 85% of all conjunctions with a probability of collision Pc > 10 (sup -6) can be mitigated.
Airborne Management of Traffic Conflicts in Descent With Arrival Constraints
NASA Technical Reports Server (NTRS)
Doble, Nathan A.; Barhydt, Richard; Krishnamurthy, Karthik
2005-01-01
NASA is studying far-term air traffic management concepts that may increase operational efficiency through a redistribution of decisionmaking authority among airborne and ground-based elements of the air transportation system. One component of this research, En Route Free Maneuvering, allows trained pilots of equipped autonomous aircraft to assume responsibility for traffic separation. Ground-based air traffic controllers would continue to separate traffic unequipped for autonomous operations and would issue flow management constraints to all aircraft. To evaluate En Route Free Maneuvering operations, a human-in-the-loop experiment was jointly conducted by the NASA Ames and Langley Research Centers. In this experiment, test subject pilots used desktop flight simulators to resolve conflicts in cruise and descent, and to adhere to air traffic flow constraints issued by test subject controllers. Simulators at NASA Langley were equipped with a prototype Autonomous Operations Planner (AOP) flight deck toolset to assist pilots with conflict management and constraint compliance tasks. Results from the experiment are presented, focusing specifically on operations during the initial descent into the terminal area. Airborne conflict resolution performance in descent, conformance to traffic flow management constraints, and the effects of conflicting traffic on constraint conformance are all presented. Subjective data from subject pilots are also presented, showing perceived levels of workload, safety, and acceptability of autonomous arrival operations. Finally, potential AOP functionality enhancements are discussed along with suggestions to improve arrival procedures.
Satellite-Relayed Intercontinental Quantum Network.
Liao, Sheng-Kai; Cai, Wen-Qi; Handsteiner, Johannes; Liu, Bo; Yin, Juan; Zhang, Liang; Rauch, Dominik; Fink, Matthias; Ren, Ji-Gang; Liu, Wei-Yue; Li, Yang; Shen, Qi; Cao, Yuan; Li, Feng-Zhi; Wang, Jian-Feng; Huang, Yong-Mei; Deng, Lei; Xi, Tao; Ma, Lu; Hu, Tai; Li, Li; Liu, Nai-Le; Koidl, Franz; Wang, Peiyuan; Chen, Yu-Ao; Wang, Xiang-Bin; Steindorfer, Michael; Kirchner, Georg; Lu, Chao-Yang; Shu, Rong; Ursin, Rupert; Scheidl, Thomas; Peng, Cheng-Zhi; Wang, Jian-Yu; Zeilinger, Anton; Pan, Jian-Wei
2018-01-19
We perform decoy-state quantum key distribution between a low-Earth-orbit satellite and multiple ground stations located in Xinglong, Nanshan, and Graz, which establish satellite-to-ground secure keys with ∼kHz rate per passage of the satellite Micius over a ground station. The satellite thus establishes a secure key between itself and, say, Xinglong, and another key between itself and, say, Graz. Then, upon request from the ground command, Micius acts as a trusted relay. It performs bitwise exclusive or operations between the two keys and relays the result to one of the ground stations. That way, a secret key is created between China and Europe at locations separated by 7600 km on Earth. These keys are then used for intercontinental quantum-secured communication. This was, on the one hand, the transmission of images in a one-time pad configuration from China to Austria as well as from Austria to China. Also, a video conference was performed between the Austrian Academy of Sciences and the Chinese Academy of Sciences, which also included a 280 km optical ground connection between Xinglong and Beijing. Our work clearly confirms the Micius satellite as a robust platform for quantum key distribution with different ground stations on Earth, and points towards an efficient solution for an ultralong-distance global quantum network.
Satellite-Relayed Intercontinental Quantum Network
NASA Astrophysics Data System (ADS)
Liao, Sheng-Kai; Cai, Wen-Qi; Handsteiner, Johannes; Liu, Bo; Yin, Juan; Zhang, Liang; Rauch, Dominik; Fink, Matthias; Ren, Ji-Gang; Liu, Wei-Yue; Li, Yang; Shen, Qi; Cao, Yuan; Li, Feng-Zhi; Wang, Jian-Feng; Huang, Yong-Mei; Deng, Lei; Xi, Tao; Ma, Lu; Hu, Tai; Li, Li; Liu, Nai-Le; Koidl, Franz; Wang, Peiyuan; Chen, Yu-Ao; Wang, Xiang-Bin; Steindorfer, Michael; Kirchner, Georg; Lu, Chao-Yang; Shu, Rong; Ursin, Rupert; Scheidl, Thomas; Peng, Cheng-Zhi; Wang, Jian-Yu; Zeilinger, Anton; Pan, Jian-Wei
2018-01-01
We perform decoy-state quantum key distribution between a low-Earth-orbit satellite and multiple ground stations located in Xinglong, Nanshan, and Graz, which establish satellite-to-ground secure keys with ˜kHz rate per passage of the satellite Micius over a ground station. The satellite thus establishes a secure key between itself and, say, Xinglong, and another key between itself and, say, Graz. Then, upon request from the ground command, Micius acts as a trusted relay. It performs bitwise exclusive or operations between the two keys and relays the result to one of the ground stations. That way, a secret key is created between China and Europe at locations separated by 7600 km on Earth. These keys are then used for intercontinental quantum-secured communication. This was, on the one hand, the transmission of images in a one-time pad configuration from China to Austria as well as from Austria to China. Also, a video conference was performed between the Austrian Academy of Sciences and the Chinese Academy of Sciences, which also included a 280 km optical ground connection between Xinglong and Beijing. Our work clearly confirms the Micius satellite as a robust platform for quantum key distribution with different ground stations on Earth, and points towards an efficient solution for an ultralong-distance global quantum network.
Virtual prototyping of a semi-active transfemoral prosthetic leg.
Lui, Zhen Wei; Awad, Mohammed I; Abouhossein, Alireza; Dehghani-Sanij, Abbas A; Messenger, Neil
2015-05-01
This article presents a virtual prototyping study of a semi-active lower limb prosthesis to improve the functionality of an amputee during prosthesis-environment interaction for level ground walking. Articulated ankle-foot prosthesis and a single-axis semi-active prosthetic knee with active and passive operating modes were considered. Data for level ground walking were collected using a photogrammetric method in order to develop a base-line simulation model and with the hip kinematics input to verify the proposed design. The simulated results show that the semi-active lower limb prosthesis is able to move efficiently in passive mode, and the activation time of the knee actuator can be reduced by approximately 50%. Therefore, this semi-active system has the potential to reduce the energy consumption of the actuators required during level ground walking and requires less compensation from the amputee due to lower deviation of the vertical excursion of body centre of mass. © IMechE 2015.
NASA Technical Reports Server (NTRS)
Callantine, Todd J.; Cabrall, Christopher; Kupfer, Michael; Omar, Faisal G.; Prevot, Thomas
2012-01-01
NASA?s Air Traffic Management Demonstration-1 (ATD-1) is a multi-year effort to demonstrate high-throughput, fuel-efficient arrivals at a major U.S. airport using NASA-developed scheduling automation, controller decision-support tools, and ADS-B-enabled Flight-Deck Interval Management (FIM) avionics. First-year accomplishments include the development of a concept of operations for managing scheduled arrivals flying Optimized Profile Descents with equipped aircraft conducting FIM operations, and the integration of laboratory prototypes of the core ATD-1 technologies. Following each integration phase, a human-in-the-loop simulation was conducted to evaluate and refine controller tools, procedures, and clearance phraseology. From a ground-side perspective, the results indicate the concept is viable and the operations are safe and acceptable. Additional training is required for smooth operations that yield notable benefits, particularly in the areas of FIM operations and clearance phraseology.
Impact of Space Transportation System on planetary spacecraft and missions design
NASA Technical Reports Server (NTRS)
Barnett, P. M.
1975-01-01
Results of Jet Propulsion Laboratory (JPL) activities to define and understand alternatives for planetary spacecraft operations with the Space Transportation System (STS) are summarized. The STS presents a set of interfaces, operational alternatives, and constraints in the prelaunch, launch, and near-earth flight phases of a mission. Shuttle-unique features are defined and coupled with JPL's existing program experience to begin development of operationally efficient alternatives, concepts, and methods for STS-launched missions. The time frame considered begins with the arrival of the planetary spacecraft at Kennedy Space Center and includes prelaunch ground operations, Shuttle-powered flight, and near-earth operations, up to acquisition of the spacecraft signal by the Deep Space Network. The areas selected for study within this time frame were generally chosen because they represent the 'driving conditions' on planetary-mission as well as system design and operations.
Recent Enhancements to the National Transonic Facility
NASA Technical Reports Server (NTRS)
Kilgore, W. A.; Balakrishna, S.; Bobbitt, C. W.; Underwood, P.
2003-01-01
The National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the restoration of reliability and improved performance of the heat exchanger systems resulting in the expansion of the NTF air operations envelope. Additionally, results are presented from a continued effort to reduce model dynamics through the use of a new stiffer balance and sting
NASA Technical Reports Server (NTRS)
Myers, L. P.; Burcham, F. W., Jr.
1983-01-01
Substantial benefits of a full authority digital electronic engine control on an air breathing engine were demonstrated repeatedly in simulation studies, ground engine tests, and engine altitude test facilities. A digital engine electronic control system showed improvements in efficiency, performance, and operation. An additional benefit of full authority digital controls is the capability of detecting and correcting failures and providing engine health diagnostics.
NASA Astrophysics Data System (ADS)
Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.
2012-12-01
The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will contribute the afternoon orbit component and ground processing system. As such, the Joint Polar Satellite System replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. It also replaces the ground processing component of both Polar-orbiting Operational Environmental Satellites, as well as components of the Defense Meteorological Satellite Program (DMSP) replacement, previously known as the Defense Weather Satellite System (DWSS), managed by the Department of Defense (DoD). The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and solar-geophysical observations of the earth, atmosphere and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS), which consists of a Command, Control and Communications Segment (C3S) and an Interface Data Processing Segment (IDPS). Both segments are developed by Raytheon Intelligence and Information Systems (IIS). The C3S is currently flying the Suomi National Polar Partnership (Suomi NPP) satellite and transfers mission data from Suomi NPP and between the ground facilities. The IDPS processes Suomi NPP satellite data to provide Environmental Data Records (EDRs) to NOAA and DoD processing centers operated by the United States government. When the JPSS-1 satellite is launched in early 2017, the responsibilities of the C3S and the IDPS will be expanded to support both Suomi NPP and JPSS-1. The CGS also employs its ground stations at Svalbard, Norway and McMurdo Station, Antarctica, along with a global fiber communications network, to provide data acquisition and routing for multiple additional missions. These include POES, DMSP, NASA Space Communications and Navigation (SCaN, which includes the Earth Observing System [EOS]), Metop for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), Coriolis/WindSat for the DoD, as well as research activities of the National Science Foundation (NSF). The CGS architecture is evolving over the next few years for several key reasons: 1. "Operationalizing" Suomi NPP, which had originally been intended as a risk reduction mission 2. Leveraging lessons learned to date in multi-mission support 3. Taking advantage of newer, more reliable and efficient technologies 4. Satisfying new requirements and constraints due to the continually evolving budgetary environment Three key aspects of the CGS architecture are being prototyped as part of the path to improve operations in the 2015 timeframe. First, the front end architecture for mission data transport is being re-architected to improve reliability and address the incorporation of new ground stations. Second, the IDPS is undergoing a decoupling process to enhance its flexibility and modularity for supporting an array of potential new missions beyond those listed above. Finally, a solution for complete situational awareness across the CGS is being developed, to facilitate quicker and more efficient identification and resolution of system anomalies. This paper discusses the evolution of the CGS architecture to address these future mission needs.
Hubble Space Telescope on-line telemetry archive for monitoring scientific instruments
NASA Astrophysics Data System (ADS)
Miebach, Manfred P.
2002-12-01
A major milestone in an effort to update the aging Hubble Space Telescope (HST) ground system was completed when HST operations were switched to a new ground system, a project called "Vision 2000 Control Center System CCS)", at the time of the third Servicing Mission in December 1999. A major CCS subsystem is the Space Telescope Engineering Data Store, the design of which is based on modern Data Warehousing technology. In fact, the Data Warehouse (DW) as implemented in the CCS Ground System that operates and monitors the Hubble Space Telescope represents, the first use of a commercial Data Warehouse to manage engineering data. By the end of February 2002, the process of populating the Data Warehouse with HST historical telemetry data had been completed, providing access to HST engineering data for a period of over 12 years with a current data volume of 2.8 Terabytes. This paper describes hands-on experience from an end user perspective, using the CCS system capabilities, including the Data Warehouse as an HST engineering telemetry archive. The Engineering Team at the Space Telescope Science Institute is using HST telemetry extensively for monitoring the Scientific Instruments, in particular for · Spacecraft anomaly resolutions · Scientific Instrument trending · Improvements of Instrument operational efficiency The overall idea is to maximize science output of the space observatory. Furthermore, the CCS provides a powerful feature to build, save, and recall real-time display pages customized to specific subsystems and operational scenarios. Engineering teams are using the real-time monitoring capabilities intensively during Servicing Missions and real time commanding to handle anomaly situations, while the Flight Operations Team (FOT) monitors the spacecraft around the clock.
Gain and energy storage in holmium YLF
NASA Technical Reports Server (NTRS)
Storm, Mark E.; Deyst, John P.
1991-01-01
It is demonstrated that Q-switched holmium lasers are capable of high-gain and high-energy operation at 300 K. Small-signal gain coefficients of 0.50 and 0.12/cm have been measured in YLF and YAG, respectively. Small-signal gains of 0.50/cm are comparable to those achievable in Nd:YAG and are not typical of low-gain materials. This large gain in the Ho:YLF material is made possible by operating the amplifier in the ground state depletion mode. The amplifier performance data and associated analysis presented demonstrate that efficient energy storage is possible with very high excited state ion densities of the Ho 5I7 upper laser level. This is an important result since upconversion can limit the 5I7 population. Although upconversion was still present in this experiment, it was possible to achieve efficient energy storage, demonstrating that the problem is manageable even at high excitation densities in YLF.
Encoding the structure of many-body localization with matrix product operators
NASA Astrophysics Data System (ADS)
Pekker, David; Clark, Bryan K.
2017-01-01
Anderson insulators are noninteracting disordered systems which have localized single-particle eigenstates. The interacting analog of Anderson insulators are the many-body localized (MBL) phases. The spectrum of the many-body eigenstates of an Anderson insulator is efficiently represented as a set of product states over the single-particle modes. We show that product states over matrix product operators of small bond dimension is the corresponding efficient description of the spectrum of an MBL insulator. In this language all of the many-body eigenstates are encoded by matrix product states (i.e., density matrix renormalization group wave functions) consisting of only two sets of low bond dimension matrices per site: the Gi matrices corresponding to the local ground state on site i and the Ei matrices corresponding to the local excited state. All 2n eigenstates can be generated from all possible combinations of these sets of matrices.
NASA Technical Reports Server (NTRS)
Ingalls, John; Cipolletti, John
2011-01-01
Proprietary or unique designs and operations are expected early in any industry's development, and often provide a competitive early market advantage. However, there comes a time when a product or industry requires standardization for the whole industry to advance...or survive. For the space industry, that time has come. Here, we will focus on standardization of ground processing for space vehicles and their ground systems. With the retirement of the Space Shuttle, and emergence of a new global space race, affordability and sustainability are more important now than ever. The growing commercialization of the space industry and current global economic environment are driving greater need for efficiencies to save time and money. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability not achievable with traditional ELV's (Expendable Launch Vehicles). More crew/passenger vehicles are also being developed. All of this calls for more attention needed for ground processing-repeatedly before launch and after landing/recovery. RLV's should provide more efficiencies than ELV's, as long as MRO (Maintenance, Repair, and Overhaul) is well-planned-even for the unplanned problems. NASA's Space Shuttle is a primary example of an RLV which was supposed to thrive on reusability savings with efficient ground operations, but lessons learned show that costs were (and still are) much greater than expected. International standards and specifications can provide the commonality needed to simplify design and manufacturing as well as to improve safety, quality, maintenance, and operability. There are standards organizations engaged in the space industry, but ground processing is one of the areas least addressed. Challenges are encountered due to various factors often not considered during development. Multiple vehicle elements, sites, customers, and contractors pose various functional and integration difficulties. Resulting technical publication structures and methods are incongruent. Some processing products are still done on paper, some electronic, and many being converted in between. Business systems then are not fully compatible, and paper as well as electronic conversions are time-consuming and costly. NASA and its Shuttle contractors setup rules and systems to handle what has produced over 130 RLV launches, but they have had many challenges. Attempts have been made to apply aviation industry specifications to make the Shuttle more efficient with its ground processing. One efficiency project example was to make a Shuttle Maintenance Manual (SMM) based on the commercial ATA (Air Transport Association of America) Spec 100 for technical publications. This industry standard, along with others, has been a foundation for efficient global MRO of commercial airlines for years. A modified version was also made for some military aircraft. The SMM project found many similarities in Spec 100 which apply to the Shuttle, and room for expansion for space systems/structures not in aircraft. The SMM project team met with the ATA and representatives from NASA's X-33 and X-34 programs to discuss collaboration on a national space standard based on Spec 100. A pilot project was enabled for a subset of Shuttle systems. Full implementation was not yet achieved, X-33 and X-34 were cancelled, and the Shuttles were then designated for retirement. Nonetheless, we can learn from this project how to expand this concept to all space vehicle products. Since then, ATA has joined with ASD (AeroSpace and Defence Industries Association of Europe) and AIA (Aerospace Industries Association) to form a much-enhanced and expanded international specification: Sl000D, International Specification for Technical Publications. It includes air, land, and sea vehicles, missiles, support equipment, ordnance, and communications. It is used by a growing number of countries for commercial and government products. Its modular design is supported by a Common Source Dabase (CSDB), and COTS (commercial off-the-shelf) software is available for production of IETP's (Interactive Electronic Technical Publications). A few space industry products in Europe have begun to apply Sl000D already. Also, there are other related standards/specifications which have global implications. We have an opportunity to adapt Sl000D and possibly other standards for use with space vehicles and ground systems. Sl000D has plenty of flexibility to apply to any product needed. To successfully grow the viability of the space industry, all members, commercial and government, will need to engage cooperatively in developing and applying standards to move toward interoperability. If we leverage and combine the best existing space standards and specifications, develop new ones to address known gaps, and adapt the best applicable features from other industries, we can establish an infrastructure to not only accelerate current development, but also build longevity for a more cohesive international space community.
Agile: From Software to Mission System
NASA Technical Reports Server (NTRS)
Trimble, Jay; Shirley, Mark H.; Hobart, Sarah Groves
2016-01-01
The Resource Prospector (RP) is an in-situ resource utilization (ISRU) technology demonstration mission, designed to search for volatiles at the Lunar South Pole. This is NASA's first near real time tele-operated rover on the Moon. The primary objective is to search for volatiles at one of the Lunar Poles. The combination of short mission duration, a solar powered rover, and the requirement to explore shadowed regions makes for an operationally challenging mission. To maximize efficiency and flexibility in Mission System design and thus to improve the performance and reliability of the resulting Mission System, we are tailoring Agile principles that we have used effectively in ground data system software development and applying those principles to the design of elements of the mission operations system.
Remote sensing of vegetation canopy photosynthetic and stomatal conductance efficiencies
NASA Technical Reports Server (NTRS)
Myneni, R. B.; Ganapol, B. D.; Asrar, G.
1992-01-01
The problem of remote sensing the canopy photosynthetic and stomatal conductance efficiencies is investigated with the aid of one- and three-dimensional radiative transfer methods coupled to a semi-empirical mechanistic model of leaf photosynthesis and stomatal conductance. Desertlike vegetation is modeled as clumps of leaves randomly distributed on a bright dry soil with partial ground cover. Normalized difference vegetation index (NDVI), canopy photosynthetic (Ep), and stomatal efficiencies (Es) are calculated for various geometrical, optical, and illumination conditions. The contribution of various radiative fluxes to estimates of Ep is evaluated and the magnitude of errors in bulk canopy formulation of problem parameters are quantified. The nature and sensitivity of the relationship between Ep and Es to NDVI is investigated, and an algorithm is proposed for use in operational remote sensing.
Challenges in the 1990's for astronaut training simulators
NASA Technical Reports Server (NTRS)
Brown, Patrick M.; Hajare, Ankur R.; Stark, George E.
1990-01-01
New challenges for the simulation community at the Johnson Space Center both in near and long terms are considered. In the near term, the challenges of supporting an increasing flight rate, maintaining operations while replacing obsolete subsystems, and incorporating forthcoming changes to the Space Shuttle are discussed, and focus is placed on a change of forward flight-deck instruments from electro-mechanical devices to electronic displays. Training astronauts for complex concurrent missions involving multiple spacecraft and geographically dispersed ground facilities is considered to be foremost of the long-term challenges, in addition to the tasks of improving the simulator reliability and the operational efficiency of the facilities.
Automatic detection of animals in mowing operations using thermal cameras.
Steen, Kim Arild; Villa-Henriksen, Andrés; Therkildsen, Ole Roland; Green, Ole
2012-01-01
During the last decades, high-efficiency farming equipment has been developed in the agricultural sector. This has also included efficiency improvement of moving techniques, which include increased working speeds and widths. Therefore, the risk of wild animals being accidentally injured or killed during routine farming operations has increased dramatically over the years. In particular, the nests of ground nesting bird species like grey partridge (Perdix perdix) or pheasant (Phasianus colchicus) are vulnerable to farming operations in their breeding habitat, whereas in mammals, the natural instinct of e.g., leverets of brown hare (Lepus europaeus) and fawns of roe deer (Capreolus capreolus) to lay low and still in the vegetation to avoid predators increase their risk of being killed or injured in farming operations. Various methods and approaches have been used to reduce wildlife mortality resulting from farming operations. However, since wildlife-friendly farming often results in lower efficiency, attempts have been made to develop automatic systems capable of detecting wild animals in the crop. Here we assessed the suitability of thermal imaging in combination with digital image processing to automatically detect a chicken (Gallus domesticus) and a rabbit (Oryctolagus cuniculus) in a grassland habitat. Throughout the different test scenarios, our study animals were detected with a high precision, although the most dense grass cover reduced the detection rate. We conclude that thermal imaging and digital imaging processing may be an important tool for the improvement of wildlife-friendly farming practices in the future.
NASA Technical Reports Server (NTRS)
Fordyce, Jess
1996-01-01
Work carried out to re-engineer the mission analysis segment of JPL's mission planning ground system architecture is reported on. The aim is to transform the existing software tools, originally developed for specific missions on different support environments, into an integrated, general purpose, multi-mission tool set. The issues considered are: the development of a partnership between software developers and users; the definition of key mission analysis functions; the development of a consensus based architecture; the move towards evolutionary change instead of revolutionary replacement; software reusability, and the minimization of future maintenance costs. The current status and aims of new developments are discussed and specific examples of cost savings and improved productivity are presented.
Modeling Weather Impact on Ground Delay Programs
NASA Technical Reports Server (NTRS)
Wang, Yao; Kulkarni, Deepak
2011-01-01
Scheduled arriving aircraft demand may exceed airport arrival capacity when there is abnormal weather at an airport. In such situations, Federal Aviation Administration (FAA) institutes ground-delay programs (GDP) to delay flights before they depart from their originating airports. Efficient GDP planning depends on the accuracy of prediction of airport capacity and demand in the presence of uncertainties in weather forecast. This paper presents a study of the impact of dynamic airport surface weather on GDPs. Using the National Traffic Management Log, effect of weather conditions on the characteristics of GDP events at selected busy airports is investigated. Two machine learning methods are used to generate models that map the airport operational conditions and weather information to issued GDP parameters and results of validation tests are described.
Chapelle, F.H.
1999-01-01
Bioremediation, the use of microbial degradation processes to detoxify environmental contamination, was first applied to petroleum hydrocarbon-contaminated ground water systems in the early 1970s. Since that time, these technologies have evolved in some ways that were clearly anticipated early investigators, and in other ways that were not foreseen. The expectation that adding oxidants and nutrients to contaminated aquifers would enhance biodegradation, for example, has been born out subsequent experience. Many of the technologies now in common use such as air sparging, hydrogen peroxide addition, nitrate addition, and bioslurping, are conceptually similar to the first bioremediation systems put into operation. More unexpected, however, were the considerable technical problems associated with delivering oxidants and nutrients to heterogeneous ground water systems. Experience has shown that the success of engineered bioremediation systems depends largely on how effectively directions and rates of ground water flow can be controlled, and thus how efficiently oxidants and nutrients can be delivered to contaminated aquifer sediments. The early expectation that injecting laboratory-selected or genetically engineered cultures of hydrocarbon-degrading bacteria into aquifers would be a useful bioremediation technology has not been born out subsequent experience. Rather, it appears that petroleum hydrocarbon-degrading bacteria are ubiquitous in ground water systems and that bacterial addition is usually unnecessary. Perhaps the technology that was least anticipated early investigators was the development of intrinsic bioremediation. Experience has shown that natural attenuation mechanisms - biodegradation, dilution, and sorption - limit the migration of contaminants to some degree in all ground water systems. Intrinsic bioremediation is the deliberate use of natural attenuation processes to treat contaminated ground water to specified concentration levels at predetermined points in the aquifer. In current practice, intrinsic bioremediation of petroleum hydrocarbons requires a systematic assessment to show that ambient natural attenuation mechanisms are efficient enough to meet regulatory requirements and a monitoring program to verify that performance requirements are met in the future.
14 CFR 417.405 - Ground safety analysis.
Code of Federal Regulations, 2011 CFR
2011-01-01
... hazard from affecting the public. A launch operator must incorporate the launch site operator's systems... personnel who are knowledgeable of launch vehicle systems, launch processing, ground systems, operations...) Begin a ground safety analysis by identifying the systems and operations to be analyzed; (2) Define the...
14 CFR 417.405 - Ground safety analysis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... hazard from affecting the public. A launch operator must incorporate the launch site operator's systems... personnel who are knowledgeable of launch vehicle systems, launch processing, ground systems, operations...) Begin a ground safety analysis by identifying the systems and operations to be analyzed; (2) Define the...
OFMspert: An architecture for an operator's associate that evolves to an intelligent tutor
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1991-01-01
With the emergence of new technology for both human-computer interaction and knowledge-based systems, a range of opportunities exist which enhance the effectiveness and efficiency of controllers of high-risk engineering systems. The design of an architecture for an operator's associate is described. This associate is a stand-alone model-based system designed to interact with operators of complex dynamic systems, such as airplanes, manned space systems, and satellite ground control systems in ways comparable to that of a human assistant. The operator function model expert system (OFMspert) architecture and the design and empirical validation of OFMspert's understanding component are described. The design and validation of OFMspert's interactive and control components are also described. A description of current work in which OFMspert provides the foundation in the development of an intelligent tutor that evolves to an assistant, as operator expertise evolves from novice to expert, is provided.
A laser primer for orthopaedic nurses.
Michelson, S A
1990-01-01
Laser therapy is an efficient surgical intervention that minimizes tissue manipulation and destruction; however meticulous nursing care is required to safeguard the patient from potential hazards inherent in the procedure. A solid grounding in basic laser concepts including biophysics, correct operation of the equipment, safety, and maintenance will assist the nurse in providing comprehensive, high quality care. The emphasis of nursing practice should be oriented toward comprehensive patient education, psychosocial support, and safeguarding the patient from potential laser hazards.
Case Study for the ARRA-funded GSHP Demonstration at Furman University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing; Malhotra, Mini
With funding provided by the American Recovery and Reinvestment Act, 26 ground source heat pump (GSHP) projects were competitively selected in 2009 to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. One of the selected demonstration projects was proposed by Furman University for ten student housing buildings—the North Village located on the campus in Greeneville, South Carolina. All ten buildings are identical in floor plan and construction. Each building is conditioned by an identical GSHP system consisting of 25 water-to-air heat pump (WAHP) units, a closed-loop vertical ground heat exchanger (GHX) installed undermore » an adjacent parking lot, and two redundant 7.5 hp variable-speed pumps to circulate water through the GHX and the WAHPs. The actual performance of the GSHP systems is analyzed with available measured data for 2014. The annual energy performance is compared with a baseline scenario in which the building is conditioned by air-source heat pumps (ASHPs) with the minimum allowed efficiencies specified in ASHRAE Standard 90.1-2013 (SEER 13 for cooling and 7.8 HSPF for heating) and supplemental electric heaters. The comparison is made in terms of energy savings, operating cost savings, cost-effectiveness, and environmental benefits. Finally, limitations in conducting this analysis are identified and recommendations for further improving the operational efficiency of the GSHP systems are made.« less
Efficient laser operation of Nd3+:Lu2O3 at various wavelengths between 917 nm and 1463 nm
NASA Astrophysics Data System (ADS)
von Brunn, P.; Heuer, A. M.; Fornasiero, L.; Huber, G.; Kränkel, C.
2016-08-01
Even though the first Nd3+-doped sesquioxide lasers have been realized more than 50 years ago, up to now no reports on efficient laser operation of Nd3+:doped sesquioxides can be found. In this work, we review the favorable spectroscopic properties of the sesquioxide Nd3+:Lu2O3 in terms of ground state absorption, stimulated emission, and excited state absorption cross sections as well as the upper level lifetime. Making use of these properties, we achieved efficient laser performance on eight different laser transitions in the wavelength range between 917 nm and 1463 nm under Ti:sapphire laser pumping using state-of-the-art HEM-grown Nd3+:Lu2O3 crystals with good optical quality. At the strongest transition around 1076 nm we determined a slope efficiency of 69%, which represents the highest efficiency ever obtained for a Nd3+-doped sesquioxide. Furthermore, we could generate watt level output powers and high slope efficiencies for seven other transitions. Lasers at 917 nm, 1053 nm, 1108 nm and 1463 nm were realized for the first time and the latter represents one of the longest laser wavelengths obtained on the 4F3/2 → 4I13/2 transition in Nd3+-doped materials.
Modernization of the Cassini Ground System
NASA Technical Reports Server (NTRS)
Razo, Gus; Fujii, Tammy J.
2014-01-01
The Cassini Spacecraft and its ground system have been operational for over 16 years. Modernization presents several challenges due to the personnel, processes, and tools already invested and embedded into the current ground system structure. Every mission's ground system has its own unique complexities and challenges, involving various organizational units. As any mission from its inception to its execution, schedules are always tight. This forces GDS engineers to implement a working ground system that is not necessarily fully optimized. Ground system challenges increase as technology evolves and cyber threats become more sophisticated. Cassini's main challenges were due to its ground system existing before many security requirements were levied on the multi-mission tools and networks. This caused a domino effect on Cassini GDS tools that relied on outdated technological features. In the aerospace industry reliable and established technology is preferred over innovative yet less proven technology. Loss of data for a spacecraft mission can be catastrophic; therefore, there is a reluctance to make changes and updates to the ground system. Nevertheless, all missions and associated teams face the need to modernize their processes and tools. Systems development methods from well-known system analysis and design principles can be applied to many missions' ground systems. Modernization should always be considered, but should be done in such a way that it does not affect flexibility nor interfere with established practices. Cassini has accomplished a secure and efficient ground data system through periodic updates. The obstacles faced while performing the modernization of the Cassini ground system will be outlined, as well as the advantages and challenges that were encountered.
Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Reid, Terry V.; Schifer, Nicholas A.; Briggs, Maxwell H.
2012-01-01
The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. Microporous bulk insulation is used in the ground support test hardware to minimize the loss of thermal energy from the electric heat source to the environment. The insulation package is characterized before operation to predict how much heat will be absorbed by the convertor and how much will be lost to the environment during operation. In an effort to validate these predictions, numerous tasks have been performed, which provided a more accurate value for net heat input into the ASCs. This test and modeling effort included: (a) making thermophysical property measurements of test setup materials to provide inputs to the numerical models, (b) acquiring additional test data that was collected during convertor tests to provide numerical models with temperature profiles of the test setup via thermocouple and infrared measurements, (c) using multidimensional numerical models (computational fluid dynamics code) to predict net heat input of an operating convertor, and (d) using validation test hardware to provide direct comparison of numerical results and validate the multidimensional numerical models used to predict convertor net heat input. This effort produced high fidelity ASC net heat input predictions, which were successfully validated using specially designed test hardware enabling measurement of heat transferred through a simulated Stirling cycle. The overall effort and results are discussed.
Robotic acquisition programs: technical and performance challenges
NASA Astrophysics Data System (ADS)
Thibadoux, Steven A.
2002-07-01
The Unmanned Ground Vehicles/ Systems Joint Project Office (UGV/S JPO) is developing and fielding a variety of tactical robotic systems for the Army and Marine Corps. The Standardized Robotic System (SRS) provides a family of common components that can be installed in existing military vehicles, to allow unmanned operation of the vehicle and its payloads. The Robotic Combat Support System (RCSS) will be a medium sized unmanned system with interchangeable attachments, allowing a remote operator to perform a variety of engineering tasks. The Gladiator Program is a USMC initiative for a small to medium sized, highly mobile UGV to conduct scout/ surveillance missions and to carry various lethal and non-lethal payloads. Acquisition plans for these programs require preplanned evolutionary block upgrades to add operational capability, as new technology becomes available. This paper discusses technical and performance issues that must be resolved and the enabling technologies needed for near term block upgrades of these first generation robotic systems. Additionally, two Joint Robotics Program (JRP) initiatives, Robotic Acquisition through Virtual Environments and Networked Simulations (RAVENS) and Joint Architecture for Unmanned Ground Systems (JAUGS), will be discussed. RAVENS and JAUGS will be used to efficiently evaluate and integrate new technologies to be incorporated in system upgrades.
A Review of Engine Seal Performance and Requirements for Current and Future Army Engine Platforms
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Proctor, Margaret P.
2008-01-01
Sand ingestion continues to impact combat ground and air vehicles in military operations in the Middle East. The T-700 engine used in Apache and Blackhawk helicopters has been subjected to increased overhauls due to sand and dust ingestion during desert operations. Engine component wear includes compressor and turbine blades/vanes resulting in decreased engine power and efficiency. Engine labyrinth seals have also been subjected to sand and dust erosion resulting in tooth tip wear, increased clearances, and loss in efficiency. For the current investigation, a brief overview is given of the history of the T-700 engine development with respect to sand and dust ingestion requirements. The operational condition of labyrinth seals taken out of service from 4 different locations of the T-700 engine during engine overhauls are examined. Collaborative efforts between the Army and NASA to improve turbine engine seal leakage and life capability are currently focused on noncontacting, low leakage, compliant designs. These new concepts should be evaluated for their tolerance to sand laden air. Future R&D efforts to improve seal erosion resistance and operation in desert environments are recommended
NASA Technical Reports Server (NTRS)
Prevot, Thomas; Mercer, Joey S.; Martin, Lynne Hazel; Homola, Jeffrey R.; Cabrall, Christopher D.; Brasil, Connie L.
2011-01-01
In this paper we discuss the development and evaluation of our prototype technologies and procedures for far-term air traffic control operations with automation for separation assurance, weather avoidance and schedule conformance. Controller-in-the-loop simulations in the Airspace Operations Laboratory at the NASA Ames Research Center in 2010 have shown very promising results. We found the operations to provide high airspace throughput, excellent efficiency and schedule conformance. The simulation also highlighted areas for improvements: Short-term conflict situations sometimes resulted in separation violations, particularly for transitioning aircraft in complex traffic flows. The combination of heavy metering and growing weather resulted in an increased number of aircraft penetrating convective weather cells. To address these shortcomings technologies and procedures have been improved and the operations are being re-evaluated with the same scenarios. In this paper we will first describe the concept and technologies for automating separation assurance, weather avoidance, and schedule conformance. Second, the results from the 2010 simulation will be reviewed. We report human-systems integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. Next, improvements will be discussed that were made to address identified shortcomings. We conclude that, with further refinements, air traffic control operations with ground-based automated separation assurance can routinely provide currently unachievable levels of traffic throughput in the en route airspace.
Printed wide-slot antenna design with bandwidth and gain enhancement on low-cost substrate.
Samsuzzaman, M; Islam, M T; Mandeep, J S; Misran, N
2014-01-01
This paper presents a printed wide-slot antenna design and prototyping on available low-cost polymer resin composite material fed by a microstrip line with a rotated square slot for bandwidth enhancement and defected ground structure for gain enhancement. An I-shaped microstrip line is used to excite the square slot. The rotated square slot is embedded in the middle of the ground plane, and its diagonal points are implanted in the middle of the strip line and ground plane. To increase the gain, four L-shaped slots are etched in the ground plane. The measured results show that the proposed structure retains a wide impedance bandwidth of 88.07%, which is 20% better than the reference antenna. The average gain is also increased, which is about 4.17 dBi with a stable radiation pattern in the entire operating band. Moreover, radiation efficiency, input impedance, current distribution, axial ratio, and parametric studies of S11 for different design parameters are also investigated using the finite element method-based simulation software HFSS.
Printed Wide-Slot Antenna Design with Bandwidth and Gain Enhancement on Low-Cost Substrate
Samsuzzaman, M.; Islam, M. T.; Mandeep, J. S.; Misran, N.
2014-01-01
This paper presents a printed wide-slot antenna design and prototyping on available low-cost polymer resin composite material fed by a microstrip line with a rotated square slot for bandwidth enhancement and defected ground structure for gain enhancement. An I-shaped microstrip line is used to excite the square slot. The rotated square slot is embedded in the middle of the ground plane, and its diagonal points are implanted in the middle of the strip line and ground plane. To increase the gain, four L-shaped slots are etched in the ground plane. The measured results show that the proposed structure retains a wide impedance bandwidth of 88.07%, which is 20% better than the reference antenna. The average gain is also increased, which is about 4.17 dBi with a stable radiation pattern in the entire operating band. Moreover, radiation efficiency, input impedance, current distribution, axial ratio, and parametric studies of S11 for different design parameters are also investigated using the finite element method-based simulation software HFSS. PMID:24696661
Yang, Zhongyuan; Sassa, Fumihiro; Hayashi, Kenshi
2018-06-22
Improving the efficiency of detecting the spatial distribution of gas information with a mobile robot is a great challenge that requires rapid sample collection, which is basically determined by the speed of operation of gas sensors. The present work developed a robot equipped with a high-speed gas sensor module based on localized surface plasmon resonance. The sensor module is designed to sample gases from an on-ground odor source, such as a footprint material or artificial odor marker, via a fine sampling tubing. The tip of the sampling tubing was placed close to the ground to reduce the sampling time and the effect of natural gas diffusion. On-ground ethanol odor sources were detected by the robot at high resolution (i.e., 2.5 cm when the robot moved at 10 cm/s), and the reading of gas information was demonstrated experimentally. This work may help in the development of environmental sensing robots, such as the development of odor source mapping and multirobot systems with pheromone tracing.
A hybrid modelling approach for predicting ground vibration from trains
NASA Astrophysics Data System (ADS)
Triepaischajonsak, N.; Thompson, D. J.
2015-01-01
The prediction of ground vibration from trains presents a number of difficulties. The ground is effectively an infinite medium, often with a layered structure and with properties that may vary greatly from one location to another. The vibration from a passing train forms a transient event, which limits the usefulness of steady-state frequency domain models. Moreover, there is often a need to consider vehicle/track interaction in more detail than is commonly used in frequency domain models, such as the 2.5D approach, while maintaining the computational efficiency of the latter. However, full time-domain approaches involve large computation times, particularly where three-dimensional ground models are required. Here, a hybrid modelling approach is introduced. The vehicle/track interaction is calculated in the time domain in order to be able t account directly for effects such as the discrete sleeper spacing. Forces acting on the ground are extracted from this first model and used in a second model to predict the ground response at arbitrary locations. In the present case the second model is a layered ground model operating in the frequency domain. Validation of the approach is provided by comparison with an existing frequency domain model. The hybrid model is then used to study the sleeper-passing effect, which is shown to be less significant than excitation due to track unevenness in all the cases considered.
Joint Polar Satellite System (JPSS) Common Ground System (CGS) Block 3.0 Communications Strategies
NASA Astrophysics Data System (ADS)
Miller, S. W.; Grant, K. D.; Ottinger, K.
2015-12-01
The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The JPSS program is the follow-on for both space and ground systems to the Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a globally distributed, multi-mission system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. In a highly successful international partnership between NOAA and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the CGS currently provides data routing from McMurdo Station in Antarctica to the EUMETSAT processing center in Darmstadt, Germany. Continuing and building upon that partnership, NOAA and EUMETSAT are collaborating on the development of a new path forward for the 2020's. One approach being explored is a concept of operations where each organization shares satellite downlink resources with the other. This paper will describe that approach, as well as modeling results that demonstrate its feasibility and expected performance.
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, R.; Koshak, William J.; Petersen, W. A.; Carey, L.; Mah, D.
2010-01-01
The next generation Geostationary Operational Environmental Satellite (GOES-R) series is a follow on to the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved spectral (3x), spatial (4x), and temporal (5x) resolution for the Advanced Baseline Imager (ABI). The GLM, an optical transient detector and imager operating in the near-IR at 777.4 nm will map all (in-cloud and cloud-to-ground) lighting flashes continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions, from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data are being provided in an experimental mode to selected National Weather Service (NWS) national centers and forecast offices via the GOES-R Proving Ground to help improve our understanding of the application of these data in operational settings and facilitate Day-1 user readiness for this new capability.
Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel
NASA Technical Reports Server (NTRS)
Downey, Joseph; Downey, James; Reinhart, Richard C.; Evans, Michael Alan; Mortensen, Dale John
2016-01-01
The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 248-phase shift keying (PSK) and 1632- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 bsHz) modulation combined with various LDPC encoding rates to maximize throughput. With a symbol rate of 200 Mbaud, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results, compensation techniques for filtering and equalization, and architecture considerations going forward for efficient use of NASA's infrastructure.
Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel
NASA Technical Reports Server (NTRS)
Downey, Joseph A.; Downey, James M.; Reinhart, Richard C.; Evans, Michael A.; Mortensen, Dale J.
2016-01-01
The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 2/4/8-phase shift keying (PSK) and 16/32- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 b/s/Hz) modulation combined with various LDPC encoding rates to maximize through- put. With a symbol rate of 200 M-band, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results, compensation techniques for filtering and equalization, and architecture considerations going forward for efficient use of NASA's infrastructure.
Definition study for an extended manned test of a regenerative life support system
NASA Technical Reports Server (NTRS)
1971-01-01
A program was defined which consists of extended ground-based manned tests of regenerative life support systems. The tests are to evaluate prototypes of advanced life support systems under operational, integrated conditions, thus providing data for the design of efficient environmental control and life support systems for use in long-duration space missions. The requirements are defined for test operations to provide a simulation of an orbiting space laboratory. The features of Phase A and B programs are described. These tests use proven backup equipment to ensure successful evaluation of the advanced subsystems. A pre-tests all-systems checkout period is provided to minimize equipment problems during extended testing and to familiarize all crew and operating staff members with test equipment and procedures.
Developing a space network interface simulator: The NTS approach
NASA Technical Reports Server (NTRS)
Hendrzak, Gary E.
1993-01-01
This paper describes the approach used to redevelop the Network Control Center (NCC) Test System (NTS), a hardware and software facility designed to make testing of the NCC Data System (NCCDS) software efficient, effective, and as rigorous as possible prior to operational use. The NTS transmits and receives network message traffic in real-time. Data transfer rates and message content are strictly controlled and are identical to that of the operational systems. NTS minimizes the need for costly and time-consuming testing with the actual external entities (e.g., the Hubble Space Telescope (HST) Payload Operations Control Center (POCC) and the White Sands Ground Terminal). Discussed are activities associated with the development of the NTS, lessons learned throughout the project's lifecycle, and resulting productivity and quality increases.
Design and operation of grid-interactive thin-film silicon PV systems
NASA Astrophysics Data System (ADS)
Marion, Bill; Atmaram, Gobind; Lashway, Clin; Strachan, John W.
Results are described from the operation of 11 thin-film amorphous silicon photovoltaic systems at three test facilities: the Florida Solar Energy Center, the New Mexico Solar Energy Institute, and Sandia National Laboratories. Commercially available modules from four US manufacturers are used in these systems, with array sizes from 133 to 750 W peak. Measured array efficiencies are from 3.1 to 4.8 percent. Except for one manufacturer, array peak power is in agreement with the calculated design ratings. For certain grid-connected systems, nonoptimal operation exists because the array peak power voltage is below the lower voltage limit of the power conditioning system. Reliability problems are found in two manufacturers' modules when shorts to ground and terminal corrosion occur. Array leakage current data are presented.
Jau, Y. -Y.; Hunker, J. D.; Schwindt, P. D. D.
2015-11-01
We report that methane, CH 4, can be used as an efficient F-state quenching gas for trapped ytterbium ions. The quenching rate coefficient is measured to be (2.8 ± 0.3) × 10 6 s -1 Torr -1. For applications that use microwave hyperfine transitions of the ground-state 171Y b ions, the CH4 induced frequency shift coefficient and the decoherence rate coefficient are measured as δν/ν = (-3.6 ± 0.1) × 10 -6 Torr -1 and 1/T2 = (1.5 ± 0.2) × 10 5 s -1 Torr -1. In our buffer-gas cooled 171Y b+ microwave clock system, we find that onlymore » ≤10 -8 Torr of CH 4 is required under normal operating conditions to efficiently clear the F-state and maintain ≥85% of trapped ions in the ground state with insignificant pressure shift and collisional decoherence of the clock resonance.« less
Energy consumption behavior of submersible pumps using in the Barind area of Bangladesh
NASA Astrophysics Data System (ADS)
Haque, M. E.; Islam, M. R.; Masud, M. H.; Ferdous, J.; Haniu, H.
2017-06-01
In this work the ground water level and water pumping for irrigation and drinking purposes in Barind area of Bangladesh have been studied. The depth of ground water level remains under 30ft throughout the year that enforcing the use of submersible pumps in most parts of Barind zone. The Barind Multipurpose Development Authority (BMDA) and Rajshahi WASA are the major water supplying authority in the Northern Part of Bangladesh by using 14386 and 87 nos of submersible pumps, respectively. An investigation for the values of life cycle cost elements of submersible pumps has also been carried out. The performance of the pumps running in different sites in Barind area were investigated and compared with the lab test results of new pumps. Energy consumption cost is dominating the life cycle cost of the pumps using in Barind region and improper matching of pump standard running conditions and operation/system requirements are the main causes of lower efficiency. It is found that the efficiency of the running pumps is reduced by 20 - 40% than that of lab test results.
Performance, Life, and Operability Trade-Offs in VCE Control Logic Design.
1981-08-01
primarily USAF Actuarial Reports), including all engine returns to the intermediate or depot shop - scheduled and unscheduled - engine and non-engine...Length (Min) Training * Air to Air (ATA) 30 576 87 e Air to Ground (ATG) 30 363 128 Combat e Air Superiority ( ASM ) 13 75 228 e Intercept 2 31 94... ASME , 16th Joint Propulsion Conference, Paper No. ALAA-80-1115, June 30 - July 2, 1980. 2. Akimov, V.M., Starik, D.E., et al., The Economic Efficiency
Integrated Ground Operations Demonstration Units Testing Plans and Status
NASA Technical Reports Server (NTRS)
Johnson, Robert G.; Notardonato, William U.; Currin, Kelly M.; Orozco-Smith, Evelyn M.
2012-01-01
Cryogenic propellant loading operations with their associated flight and ground systems are some of the most complex, critical activities in launch operations. Consequently, these systems and operations account for a sizeable portion of the life cycle costs of any launch program. NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite advances in cryogenics, system health management and command and control technologies. This project was developed to mature, integrate and demonstrate advancement in the current state of the art in these areas using two distinct integrated ground operations demonstration units (GODU): GODU Integrated Refrigeration and Storage (IRAS) and GODU Autonomous Control
Efficient mission control for the 48-satellite Globalstar Constellation
NASA Technical Reports Server (NTRS)
Smith, Dan
1994-01-01
The Globalstar system is being developed by Globalstar, Limited Partnership and will utilize 48 satellites in low earth orbit (See Figure 1) to create a world-wide mobile communications system consistent with Vice President Gore's vision of a Global Information Infrastructure. As a large long term commercial system developed by a newly formed organization, Globalstar provides an excellent opportunity to explore innovative solutions for highly efficient satellite command and control. Design and operational concepts being developed are unencumbered by existing physical and organizational infrastructures. This program really is 'starting with a clean sheet of paper'. Globalstar operations challenges can appear enormous. Clearly, assigning even a single person around the clock to monitor and control each satellite is excessive for Globalstar (it would require a staff of 200! . Even with only a single contact per orbit per satellite, data acquisitions will start or stop every 45 seconds! Although essentially identical, over time the satellites will develop their own 'personalities'and will re quire different data calibrations and levels of support. This paper discusses the Globalstar system and challenges and presents engineering concepts, system design decisions, and operations concepts which address the combined needs and concerns of satellite, ground system, and operations teams. Lessons from past missions have been applied, organizational barriers broken, partnerships formed across the mission segments, and new operations concepts developed for satellite constellation management. Control center requirements were then developed from the operations concepts.
NASA Astrophysics Data System (ADS)
Alibakhshi-Kenari, Mohammad; Naser-Moghadasi, Mohammad; Sadeghzadeh, R. A.; Virdee, Bal S.; Limiti, Ernesto
2016-07-01
This article presents the design of a novel planar antenna structure comprising two pairs of interconnected meandered line loops that are grounded to a truncated T-shaped ground plane through two via holes. The T-shaped ground plane is used as a reflector to enhance the performance of the antenna. The resulting antenna is compact occupying an area of 38.5 × 36.6 mm2 (0.070λo × 0.067λo), where free-space wavelength is 550 MHz. The antenna radiates omnidirectionally in the E plane across its operational bandwidth (550 MHz to 3.85 GHz) with peak gain and efficiency of 5.5 dBi and 90.1%, respectively, at 2.35 GHz and reflection coefficient better than -10 dB. These characteristics make the antenna suitable for numerous applications, in particular, JCDMA, UHF RFID, GSM 900, GPS, KPCS, DCS, IMT-2000, WiMAX, WiFi, and Bluetooth.
Homogeneity of ball milled ceramic powders: Effect of jar shape and milling conditions.
Broseghini, M; D'Incau, M; Gelisio, L; Pugno, N M; Scardi, P
2017-02-01
This paper contains data and supporting information of and complementary to the research article entitled " Effect of jar shape on high-energy planetary ball milling efficiency: simulations and experiments " (Broseghini et al.,) [1]. Calcium fluoride (CaF 2 ) was ground using two jars of different shape (cylindrical and half-moon) installed on a planetary ball-mill, exploring different operating conditions (jar-to-plate angular velocity ratio and milling time). Scanning Electron Microscopy (SEM) images and X-Ray Powder Diffraction data (XRPD) were collected to assess the effect of milling conditions on the end-product crystallite size. Due to the inhomogeneity of the end product, the Whole Powder Pattern Model (WPPM, (Scardi, 2008) [2]) analysis of XRPD data required the hypothesis of a bimodal distribution of sizes - respectively ground (fine fraction) and less-to-not ground (coarse fraction) - confirmed by SEM images and suggested by the previous literature (Abdellatief et al., 2013) [3,4]. Predominance of fine fraction clearly indicates optimal milling conditions.
NASA Technical Reports Server (NTRS)
Baker, G. R.; Fethe, T. P.
1975-01-01
Research in the application of remotely sensed data from LANDSAT or other airborne platforms to the efficient management of a large timber based forest industry was divided into three phases: (1) establishment of a photo/ground sample correlation, (2) investigation of techniques for multi-spectral digital analysis, and (3) development of a semi-automated multi-level sampling system. To properly verify results, three distinct test areas were selected: (1) Jacksonville Mill Region, Lower Coastal Plain, Flatwoods, (2) Pensacola Mill Region, Middle Coastal Plain, and (3) Mississippi Mill Region, Middle Coastal Plain. The following conclusions were reached: (1) the probability of establishing an information base suitable for management requirements through a photo/ground double sampling procedure, alleviating the ground sampling effort, is encouraging, (2) known classification techniques must be investigated to ascertain the level of precision possible in separating the many densities involved, and (3) the multi-level approach must be related to an information system that is executable and feasible.
Thompson, Douglas; Hallquist, Aaron; Anderson, Hyrum
2017-10-17
The various embodiments presented herein relate to utilizing an operational single-channel radar to collect and process synthetic aperture radar (SAR) and ground moving target indicator (GMTI) imagery from a same set of radar returns. In an embodiment, data is collected by randomly staggering a slow-time pulse repetition interval (PRI) over a SAR aperture such that a number of transmitted pulses in the SAR aperture is preserved with respect to standard SAR, but many of the pulses are spaced very closely enabling movers (e.g., targets) to be resolved, wherein a relative velocity of the movers places them outside of the SAR ground patch. The various embodiments of image reconstruction can be based on compressed sensing inversion from undersampled data, which can be solved efficiently using such techniques as Bregman iteration. The various embodiments enable high-quality SAR reconstruction, and high-quality GMTI reconstruction from the same set of radar returns.
NASA Technical Reports Server (NTRS)
DiBlasi, Angelo G.
1992-01-01
A preliminary development plan for an integrated propulsion module (IPM) is described. The IPM, similar to the Space Transportation Main engine (STME) engine, is applicable to the Advanced Launch System (ALS) baseline vehicle. The same STME development program ground rules and time schedule were assumed for the IPM. However, the unique advantages of testing an integrated engine element, in terms of reduced number of hardware and number of system and reliability tests, compared to single standalone engine and MPTA, are highlighted. The potential ability of the IPM to meet the ALS program goals for robustness, operability and reliability is emphasized.
Spitzer Space Telescope in-orbit checkout and science verification operations
NASA Technical Reports Server (NTRS)
Linick, Sue H.; Miles, John W.; Gilbert, John B.; Boyles, Carol A.
2004-01-01
Spitzer Space Telescope, the fourth and final of NASA's great observatories, and the first mission in NASA's Origins Program was launched 25 August 2003 into an Earth-trailing solar orbit. The observatory was designed to probe and explore the universe in the infrared. Before science data could be acquired, however, the observatory had to be initialized, characterized, calibrated, and commissioned. A two phased operations approach was defined to complete this work. These phases were identified as In-Orbit Checkout (IOC) and Science Verification (SV). Because the observatory lifetime is cryogen-limited these operations had to be highly efficient. The IOC/SV operations design accommodated a pre-defined distributed organizational structure and a complex, cryogenic flight system. Many checkout activities were inter-dependent, and therefore the operations concept and ground data system had to provide the flexibility required for a 'short turn-around' environment. This paper describes the adaptive operations system design and evolution, implementation, and lessons-learned from the completion of IOC/SV.
Flight Test Evaluation of the ATD-1 Interval Management Application
NASA Technical Reports Server (NTRS)
Swieringa, Kurt A.; Wilson, Sara R.; Baxley, Brian T.; Roper, Roy D.; Abbott, Terence S.; Levitt, Ian; Scharl, Julien
2017-01-01
Interval Management (IM) is a concept designed to be used by air traffic controllers and flight crews to more efficiently and precisely manage inter-aircraft spacing. Both government and industry have been working together to develop the IM concept and standards for both ground automation and supporting avionics. NASA contracted with Boeing, Honeywell, and United Airlines to build and flight test an avionics prototype based on NASA's spacing algorithm and conduct a flight test. The flight test investigated four different types of IM operations over the course of nineteen days, and included en route, arrival, and final approach phases of flight. This paper examines the spacing accuracy achieved during the flight test and the rate of speed commands provided to the flight crew. Many of the time-based IM operations met or exceeded the operational design goals set out in the standards for the maintain operations and a subset of the achieve operations. Those operations which did not meet the goals were due to issues that are identified and will be further analyzed.
Are We Winning? A Brief History of Military Operations Assessment
2014-09-01
their efforts to execute simultaneous counterinsurgency campaigns. Assessing progress on the ground —what we will refer to here as “ operations ...with operations research. 18 on the ground . Their experience afforded several important lessons in the field of operations assessment... ground , and the types of data that were of most interest. 54. Lambert, "Measuring the Success of the Nato Operation in Bosnia & Herzegovina 1995- 2000
A Task Analytic Process to Define Future Concepts in Aviation
NASA Technical Reports Server (NTRS)
Gore, Brian Francis; Wolter, Cynthia A.
2014-01-01
A necessary step when developing next generation systems is to understand the tasks that operators will perform. One NextGen concept under evaluation termed Single Pilot Operations (SPO) is designed to improve the efficiency of airline operations. One SPO concept includes a Pilot on Board (PoB), a Ground Station Operator (GSO), and automation. A number of procedural changes are likely to result when such changes in roles and responsibilities are undertaken. Automation is expected to relieve the PoB and GSO of some tasks (e.g. radio frequency changes, loading expected arrival information). A major difference in the SPO environment is the shift to communication-cued crosschecks (verbal / automated) rather than movement-cued crosschecks that occur in a shared cockpit. The current article highlights a task analytic process of the roles and responsibilities between a PoB, an approach-phase GSO, and automation.
Calibration and operation of the Faint Object Spectrograph
NASA Technical Reports Server (NTRS)
Harms, R.; Beaver, E.; Burbidge, E.; Hier, R.; Allen, R.; Angel, R.; Bartko, F.; Bohlin, R.; Ford, H.; Davidson, A.
1984-01-01
The design and basic performance characteristics of the Faint Object Spectrograph (FOS), one of five instruments built for use on the Space Telescope observatory, is summarized briefly. The results of the recently completed instrument-level calibration are presented with special emphasis on issues affecting plans for FOS astronomical observations. Examples include such fundamental characteristics as: limiting magnitudes (system sensitivity and noise figures), spectral coverage and resolution, scattered light properties, and instrumental polarization and modulation efficiencies. Also gated toward intended users, a rather detailed description of FOS operating modes is given. The discussion begins with the difficulties anticipated during target acquisition and their hoped-for resolution. Both the 'normal' spectroscopic operating modes of the FOS and its 'exotic' features (e.g. spectropolarimetric, time-tagged, and time-resolved modes) are presented. The paper concludes with an overview of the activities to assure proper alignment and operation of the FOS within the entire Space Telescope system (orbital and ground-based).
NASA Technical Reports Server (NTRS)
Wing, David J.; Adams, Richard J.; Barmore, Bryan E.; Moses, Donald
2001-01-01
This paper presents initial findings of a research study designed to provide insight into the issue of intent information exchange in constrained en-route air-traffic operations and its effect on pilot decision making and flight performance. The piloted simulation was conducted in the Air Traffic Operations Laboratory at the NASA Langley Research Center. Two operational modes for autonomous operations were compared under conditions of low and high operational complexity. The tactical mode was characterized primarily by the use of state information for conflict detection and resolution and an open-loop means for the pilot to meet operational constraints. The strategic mode involved the combined use of state and intent information, provided the pilot an additional level of alerting, and allowed a closed-loop approach to meeting operational constraints. Operational constraints included separation assurance, schedule adherence, airspace hazard avoidance, flight efficiency, and passenger comfort. Potential operational benefits of both modes are illustrated through several scenario case studies. Subjective pilot ratings and comments comparing the tactical and strategic modes are presented.
NASA Technical Reports Server (NTRS)
Wing, David J.; Adams, Richard J.; Barmore, Bryan E.; Moses, Donald
2002-01-01
This paper presents initial findings of a research study designed to provide insight into the issue of intent information exchange in constrained en-route air-traffic operations and its effect on pilot decision making and flight performance. The piloted simulation was conducted in the Air Traffic Operations Laboratory at the NASA Langley Research Center. Two operational modes for autonomous operations were compared under conditions of low and high operational complexity. The tactical mode was characterized primarily by the use of state information for conflict detection and resolution and an open-loop means for the pilot to meet operational constraints. The strategic mode involved the combined use of state and intent information, provided the pilot an additional level of alerting, and allowed a closed-loop approach to meeting operational constraints. Operational constraints included separation assurance, schedule adherence, airspace hazard avoidance, flight efficiency, and passenger comfort. Potential operational benefits of both modes are illustrated through several scenario case studies. Subjective pilot ratings and comments comparing the tactical and strategic modes are presented.
Preliminary study on the Validation of FY-4A Lightning Mapping Imager
NASA Astrophysics Data System (ADS)
Cao, D.; Lu, F.; Qie, X.; Zhang, X.; Huang, F.; Wang, D.
2017-12-01
The FengYun-4 (FY-4) geostationary meteorological satellite is the second generation of China's geostationary meteorological satellite. The FY-4A was launched on December 11th, 2016. It includes a new instrument Lightning Mapping Imager (LMI) for total lightning (cloud and cloud-to-ground flashes) detection. The LMI operates at a wavelength of 777.4nm with 1.9ms integrated time. And it could observe lightning activity continuously day and night with spatial resolution of 7.8 km (sub satellite point) over China region. The product algorithm of LMI consists of false signal filtering and flash clustering analysis. The false signal filtering method is used to identify and remove non-lightning artifacts in optical events. The flash clustering analysis method is used to cluster "event" into "group" and "flash" using specified time and space threshold, and the other non-lightning optical events are filtered further more in the clustering analysis. The ground-based lightning location network (LLN) in China and WWLLN (World Wide Lightning Location Network) were both used to make preliminary validation of LMI. The detection efficiency for cloud-to-ground lightning, spatial and temporal accuracy of LMI were estimated by the comparison of lightning observations from ground-based network and LMI. The day and night biases were also estiamted. Although the LLN and WWLLN mainly observe return strokes in cloud-to-ground flash, the accuracy of LMI still could be estimated for that it was not associated with the flash type mostly. The false alarm efficiency of LMI was estimated using the Geostationary Interferometric Infrared Sounder (GIIRS), another payloads on the FY-4A satellite. The GIIRS could identify the convective cloud region and give more information about the cloud properties. The GIIRS products were used to make a rough evaluation of false alarm efficiency of LMI. The results of this study reveal details of characteristics of LMI instrument. It is also found that the product algorithm of LMI is effective and the LMI products could be used for the analysis of lightning activity in China in a certain extent.
Towards Human-Friendly Efficient Control of Multi-Robot Teams
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Theodoridis, Theodoros; Barrero, David F.; Hu, Huosheng; McDonald-Maiers, Klaus
2013-01-01
This paper explores means to increase efficiency in performing tasks with multi-robot teams, in the context of natural Human-Multi-Robot Interfaces (HMRI) for command and control. The motivating scenario is an emergency evacuation by a transport convoy of unmanned ground vehicles (UGVs) that have to traverse, in shortest time, an unknown terrain. In the experiments the operator commands, in minimal time, a group of rovers through a maze. The efficiency of performing such tasks depends on both, the levels of robots' autonomy, and the ability of the operator to command and control the team. The paper extends the classic framework of levels of autonomy (LOA), to levels/hierarchy of autonomy characteristic of Groups (G-LOA), and uses it to determine new strategies for control. An UGVoriented command language (UGVL) is defined, and a mapping is performed from the human-friendly gesture-based HMRI into the UGVL. The UGVL is used to control a team of 3 robots, exploring the efficiency of different G-LOA; specifically, by (a) controlling each robot individually through the maze, (b) controlling a leader and cloning its controls to followers, and (c) controlling the entire group. Not surprisingly, commands at increased G-LOA lead to a faster traverse, yet a number of aspects are worth discussing in this context.
NASA Astrophysics Data System (ADS)
Wheeler, Pamela; Cobb, Richard; Hartsfield, Carl; Prince, Benjamin
2016-09-01
Space Situational Awareness (SSA) is of utmost importance in today's congested and contested space environment. Satellites must perform orbital corrections for station keeping, devices like high efficiency electric propulsion systems such as a Hall effect thrusters (HETs) to accomplish this are on the rise. The health of this system is extremely important to ensure the satellite can maintain proper position and perform its intended mission. Electron temperature is a commonly used diagnostic to determine the efficiency of a hall thruster. Recent papers have coordinated near infrared (NIR) spectral measurements of emission lines in xenon and krypton to electron temperature measurements. Ground based observations of these spectral lines could allow the health of the thruster to be determined while the satellite is in operation. Another issue worth considering is the availability of SSA assets for ground-based observations. The current SSA architecture is limited and task saturated. If smaller telescopes, like those at universities, could successfully detect these signatures they could augment data collection for the SSA network. To facilitate this, precise atmospheric modeling must be used to pull out the signature. Within the atmosphere, the NIR has a higher transmission ratio and typical HET propellants are approximately 3x the intensity in the NIR versus the visible spectrum making it ideal for ground based observations. The proposed research will focus on developing a model to determine xenon and krypton signatures through the atmosphere and estimate the efficacy through ground-based observations. The model will take power modes, orbit geometries, and satellite altitudes into consideration and be correlated with lab and field observations.
Review of Nuclear Thermal Propulsion Ground Test Options
NASA Technical Reports Server (NTRS)
Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen
2015-01-01
High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.
Post-evaluation of a ground source heat pump system for residential space heating in Shanghai China
NASA Astrophysics Data System (ADS)
Lei, Y.; Tan, H. W.; Wang, L. Z.
2017-11-01
Residents of Southern China are increasingly concerned about the space heating in winter. The chief aim of the present work is to find a cost-effective way for residential space heating in Shanghai, one of the biggest city in south China. Economic and energy efficiency of three residential space heating ways, including ground source heat pump (GSHP), air source heat pump (ASHP) and wall-hung gas boiler (WHGB), are assessed based on Long-term measured data. The results show that the heat consumption of the building is 120 kWh/m2/y during the heating season, and the seasonal energy efficiency ratio (SEER) of the GSHP, ASHP and WHGB systems are 3.27, 2.30, 0.88 respectively. Compared to ASHP and WHGB, energy savings of GSHP during the heating season are 6.2 kgce/(m2.y) and 2.2 kgce/(m2.y), and the payback period of GSHP are 13.3 and 7.6 years respectively. The sensitivity analysis of various factors that affect the payback period is carried out, and the results suggest that SEER is the most critical factor affecting the feasibility of ground source heat pump application, followed by building load factor and energy price factor. These findings of the research have led the author to the conclusion that ground source heat pump for residential space heating in Shanghai is a good alternative, which can achieve significant energy saving benefits, and a good system design and operation management are key factors that can shorten the payback period.
NASA Astrophysics Data System (ADS)
Vasil'ev, G. P.; Gornov, V. F.; Dmitriev, A. N.; Kolesova, M. V.; Yurchenko, V. A.
2018-01-01
The paper is devoted to a problem of increasing the efficiency of low-potential geothermal heat in heat pump systems of residential buildings the Moscow oblast of Russia, including Moscow. Estimates of a natural geothermal potential in the Moscow oblast (based on climatological data for the period from 1982 to 2011) are presented and a "Typical climatic year of natural soil temperature variations for the geoclimatic conditions of the Moscow oblast, including the city of Moscow" is proposed. Numerical simulation of the influence of geothermal energy potential and the depth of heat wells on the efficiency of ground source heat pump systems for the heat supply of residential buildings is carried out. Analysis of the numerical simulation showed that the operation of a heat pump system in a house heating mode under the geoclimatic conditions of the Moscow oblast leads to a temperature drop of the heat-exchange medium circulating through heat wells to 5-6°C by the end of the first 10 years of operation, and the process stabilizes by the 15th year of operation, and further changes in the heat-exchange medium temperature do not any longer significantly affect the temperature of the heat-exchange medium in the heat well. In this case, the exact dependence of the heat-exchange medium temperature drop on the depth is not revealed. Data on the economically expedient heat well depth for the conditions of the Moscow oblast ensuring a net present value for the whole residential building life cycle are presented. It is found that the heat well depth of 60 m can be considered as an endpoint for the Moscow oblast, and a further heat well deepening is economically impractical.
UAV Trajectory Modeling Using Neural Networks
NASA Technical Reports Server (NTRS)
Xue, Min
2017-01-01
Large amount of small Unmanned Aerial Vehicles (sUAVs) are projected to operate in the near future. Potential sUAV applications include, but not limited to, search and rescue, inspection and surveillance, aerial photography and video, precision agriculture, and parcel delivery. sUAVs are expected to operate in the uncontrolled Class G airspace, which is at or below 500 feet above ground level (AGL), where many static and dynamic constraints exist, such as ground properties and terrains, restricted areas, various winds, manned helicopters, and conflict avoidance among sUAVs. How to enable safe, efficient, and massive sUAV operations at the low altitude airspace remains a great challenge. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative works on establishing infrastructure and developing policies, requirement, and rules to enable safe and efficient sUAVs' operations. To achieve this goal, it is important to gain insights of future UTM traffic operations through simulations, where the accurate trajectory model plays an extremely important role. On the other hand, like what happens in current aviation development, trajectory modeling should also serve as the foundation for any advanced concepts and tools in UTM. Accurate models of sUAV dynamics and control systems are very important considering the requirement of the meter level precision in UTM operations. The vehicle dynamics are relatively easy to derive and model, however, vehicle control systems remain unknown as they are usually kept by manufactures as a part of intellectual properties. That brings challenges to trajectory modeling for sUAVs. How to model the vehicle's trajectories with unknown control system? This work proposes to use a neural network to model a vehicle's trajectory. The neural network is first trained to learn the vehicle's responses at numerous conditions. Once being fully trained, given current vehicle states, winds, and desired future trajectory, the neural network should be able to predict the vehicle's future states at next time step. A complete 4-D trajectory are then generated step by step using the trained neural network. Experiments in this work show that the neural network can approximate the sUAV's model and predict the trajectory accurately.
International Space Station Alpha user payload operations concept
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.; Crysel, William B.; Duncan, Elaine F.; Rider, James W.
1994-01-01
International Space Station Alpha (ISSA) will accommodate a variety of user payloads investigating diverse scientific and technology disciplines on behalf of five international partners: Canada, Europe, Japan, Russia, and the United States. A combination of crew, automated systems, and ground operations teams will control payload operations that require complementary on-board and ground systems. This paper presents the current planning for the ISSA U.S. user payload operations concept and the functional architecture supporting the concept. It describes various NASA payload operations facilities, their interfaces, user facility flight support, the payload planning system, the onboard and ground data management system, and payload operations crew and ground personnel training. This paper summarizes the payload operations infrastructure and architecture developed at the Marshall Space Flight Center (MSFC) to prepare and conduct ISSA on-orbit payload operations from the Payload Operations Integration Center (POIC), and from various user operations locations. The authors pay particular attention to user data management, which includes interfaces with both the onboard data management system and the ground data system. Discussion covers the functional disciplines that define and support POIC payload operations: Planning, Operations Control, Data Management, and Training. The paper describes potential interfaces between users and the POIC disciplines, from the U.S. user perspective.
The Taxiway Navigation and Situation Awareness (T-NASA) System
NASA Technical Reports Server (NTRS)
Foyle, David C.; Sridhar, Banavar (Technical Monitor)
1997-01-01
The goal of NASA's Terminal Area Productivity (TAP) Low-Visibility Landing and Surface Operations (LVLASO) subelement is to improve the efficiency of airport surface operations for commercial aircraft operating in weather conditions to Category IIIB while maintaining a high degree of safety. Currently, surface operations are one of the least technologically sophisticated components of the air transport system, being conducted in the 1990's with the same basic technology as in the 1930's. Pilots are given little or no explicit information about their current position, and routing information is limited to ATC communications and airport charts. In TAP/LVLASO, advanced technologies such as satellite navigation systems, digital data communications, advanced information presentation technology, and ground surveillance systems will be integrated into flight deck displays to enable expeditious and safe traffic movement on the airport surface. The cockpit display suite is called the T-NASA (Taxiway Navigation and Situation Awareness) System. This system has three integrated components: 1) Moving Map track-up airport surface display with own-ship, traffic and graphical route guidance 2) Scene-Linked Symbology - route/taxi information virtually projected via a Head-up Display (HUD) onto the forward scene; and, 3) 3-D Audio Ground Collision Avoidance and Navigation system - spatially-localized auditory traffic and navigation alerts. In the current paper, the design philosophy of the T-NASA system will be presented, and the T-NASA system display components described.
High Impact Weather Forecasts and Warnings with the GOES-R Geostationary Lightning Mapper (GLM)
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William; Mach, Douglas M.
2011-01-01
The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. A major advancement over the current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM). The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, a GOES-R Risk Reduction Science Team and Algorithm Working Group Lightning Applications Team have begun to develop cal/val performance monitoring tools and new applications using the GLM alone, in conjunction with other instruments, and merged or blended integrated observing system products combining satellite, radar, in-situ and numerical models. Proxy total lightning data from the NASA Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based lightning networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms.
Rapid Propellant Loading Approach Exploration
2010-11-01
the impact upon ground operations of three configuration options. Ground operations management was addressed through a series of studies performed...and operations management system can enable safe rapid propellant loading operations with limited operator knowledge and involvement. A single
NASA Technical Reports Server (NTRS)
Wingenback, W.; Carter, J., Jr.
1979-01-01
A conceptual design of a 3600 rpm reciprocation expander was developed for maximum thermal input power of 80 kW. The conceptual design covered two engine configurations; a single cylinder design for simple cycle operation and a two cylinder design for reheat cycle operation. The reheat expander contains a high pressure cylinder and a low pressure cylinder with steam being reheated to the initial inlet temperature after expansion in the high pressure cylinder. Power generation is accomplished with a three-phase induction motor coupled directly to the expander and connected electrically to the public utility power grid. The expander, generator, water pump and control system weigh 297 kg and are dish mounted. The steam condenser, water tank and accessory pumps are ground based. Maximum heat engine efficiency is 33 percent: maximum power conversion efficiency is 30 percent. Total cost is $3,307 or $138 per kW of maximum output power.
Building the Traffic, Navigation, and Situation Awareness System (T-NASA) for Surface Operations
NASA Technical Reports Server (NTRS)
McCann, Robert S.
1996-01-01
We report the results of a part-task simulation evaluating the separate and combined effects of an electronic moving map display and newly developed HUD symbology on ground taxi performance, under moderate- and low-visibility conditions. Twenty-four commercial airline pilots carried out a series of 28 gate-to-runway taxi trials at Chicago O'Hare. Half of the trials were conducted under moderate visibility (RVR 1400 ft), and half under low visibility (RVR 700 ft). In the baseline condition, where navigation support was limited to surface features and a Jeppesen paper map, navigation errors were committed on almost half of the trials. These errors were virtually abolished when the electronic moving map or the HUD symbology was available; in addition, compare, the baseline condition, both forms of navigation aid yielded an increase in forward taxi speed. The speed increase was greater for HUD than the electronic moving map, and greater under low visibility than under moderate visibility. These results suggest that combination of electronic moving map and HUD symbology has the potential to greatly increase the efficiency of ground operations, particularly under low-visibility conditions.
NASA Astrophysics Data System (ADS)
Babcock, K. P.; Ge, S.; Crifasi, R. R.
2006-12-01
Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The model will quantitatively assess the interaction between surface water and ground water, particularly the amount of exchange between the creek and ground water and to what extent these systems influence each other. Model sensitivity study will help identify important system parameters. A comprehensive model of the study area will serve as a tool for efficiently allocating water throughout the study area (from Boulder Creek). Water allocation is needed to prevent the eutrophication of the ponds, improve fishery management, and efficiently meet the water rights obligations in the watershed.
A Ground Systems Architecture Transition for a Distributed Operations System
NASA Technical Reports Server (NTRS)
Sellers, Donna; Pitts, Lee; Bryant, Barry
2003-01-01
The Marshall Space Flight Center (MSFC) Ground Systems Department (GSD) recently undertook an architecture change in the product line that serves the ISS program. As a result, the architecture tradeoffs between data system product lines that serve remote users versus those that serve control center flight control teams were explored extensively. This paper describes the resulting architecture that will be used in the International Space Station (ISS) payloads program, and the resulting functional breakdown of the products that support this architecture. It also describes the lessons learned from the path that was followed, as a migration of products cause the need to reevaluate the allocation of functions across the architecture. The result is a set of innovative ground system solutions that is scalable so it can support facilities of wide-ranging sizes, from a small site up to large control centers. Effective use of system automation, custom components, design optimization for data management, data storage, data transmissions, and advanced local and wide area networking architectures, plus the effective use of Commercial-Off-The-Shelf (COTS) products, provides flexible Remote Ground System options that can be tailored to the needs of each user. This paper offers a description of the efficiency and effectiveness of the Ground Systems architectural options that have been implemented, and includes successful implementation examples and lessons learned.
Apparatus and method for grounding compressed fuel fueling operator
Cohen, Joseph Perry; Farese, David John; Xu, Jianguo
2002-06-11
A safety system for grounding an operator at a fueling station prior to removing a fuel fill nozzle from a fuel tank upon completion of a fuel filling operation is provided which includes a fuel tank port in communication with the fuel tank for receiving and retaining the nozzle during the fuel filling operation and a grounding device adjacent to the fuel tank port which includes a grounding switch having a contact member that receives physical contact by the operator and where physical contact of the contact member activates the grounding switch. A releasable interlock is included that provides a lock position wherein the nozzle is locked into the port upon insertion of the nozzle into the port and a release position wherein the nozzle is releasable from the port upon completion of the fuel filling operation and after physical contact of the contact member is accomplished.
Space Mission Operations Ground Systems Integration Customer Service
NASA Technical Reports Server (NTRS)
Roth, Karl
2014-01-01
The facility, which is now the Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center in Huntsville, AL, has provided continuous space mission and related services for the space industry since 1961, from Mercury Redstone through the International Space Station (ISS). Throughout the long history of the facility and mission support teams, the HOSC has developed a stellar customer support and service process. In this era, of cost cutting, and providing more capability and results with fewer resources, space missions are looking for the most efficient way to accomplish their objectives. One of the first services provided by the facility was fax transmission of documents to, then, Cape Canaveral in Florida. The headline in the Marshall Star, the newspaper for the newly formed Marshall Space Flight Center, read "Exact copies of Documents sent to Cape in 4 minutes." The customer was Dr. Wernher von Braun. Currently at the HOSC we are supporting, or have recently supported, missions ranging from simple ISS payloads requiring little more than "bentpipe" telemetry access, to a low cost free-flyer Fast, Affordable, Science and Technology Satellite (FASTSAT), to a full service ISS payload Alpha Magnetic Spectrometer 2 (AMS2) supporting 24/7 operations at three operations centers around the world with an investment of over 2 billion dollars. The HOSC has more need and desire than ever to provide fast and efficient customer service to support these missions. Here we will outline how our customer-centric service approach reduces the cost of providing services, makes it faster and easier than ever for new customers to get started with HOSC services, and show what the future holds for our space mission operations customers. We will discuss our philosophy concerning our responsibility and accessibility to a mission customer as well as how we deal with the following issues: initial contact with a customer, reducing customer cost, changing regulations and security, and cultural differences, to ensure an efficient response to customer issues using a small Customer Service Team (CST) and adaptability, constant communication with customers, technical expertise and knowledge of services, and dedication to customer service. The HOSC Customer Support Team has implemented a variety of processes, and procedures that help to mitigate the potential problems that arise when integrating ground system services for a variety of complex missions and the lessons learned from this experience will lead the future of customer service in the space operations industry.
Numerical operator calculus in higher dimensions.
Beylkin, Gregory; Mohlenkamp, Martin J
2002-08-06
When an algorithm in dimension one is extended to dimension d, in nearly every case its computational cost is taken to the power d. This fundamental difficulty is the single greatest impediment to solving many important problems and has been dubbed the curse of dimensionality. For numerical analysis in dimension d, we propose to use a representation for vectors and matrices that generalizes separation of variables while allowing controlled accuracy. Basic linear algebra operations can be performed in this representation using one-dimensional operations, thus bypassing the exponential scaling with respect to the dimension. Although not all operators and algorithms may be compatible with this representation, we believe that many of the most important ones are. We prove that the multiparticle Schrödinger operator, as well as the inverse Laplacian, can be represented very efficiently in this form. We give numerical evidence to support the conjecture that eigenfunctions inherit this property by computing the ground-state eigenfunction for a simplified Schrödinger operator with 30 particles. We conjecture and provide numerical evidence that functions of operators inherit this property, in which case numerical operator calculus in higher dimensions becomes feasible.
Alternate aircraft fuels: Prospects and operational implications
NASA Technical Reports Server (NTRS)
Witcofski, R. D.
1977-01-01
The potential use of coal-derived aviation fuels was assessed. The studies addressed the prices and thermal efficiencies associated with the production of coal-derived aviation kerosene, liquid methane and liquid hydrogen and the air terminal requirements and subsonic transport performance when utilizing liquid hydrogen. The fuel production studies indicated that liquid methane can be produced at a lower price and with a higher thermal efficiency than aviation kerosene or liquid hydrogen. Ground facilities of liquefaction, storage, distribution and refueling of liquid hydrogen fueled aircraft at airports appear technically feasibile. The aircraft studies indicate modest onboard energy savings for hydrogen compared to conventional fuels. Liquid hydrogen was found to be superior to both aviation kerosene and liquid methane from the standpoint of aircraft engine emissions.
Kim, Hak-Joon; Han, Bangwoo; Kim, Yong-Jin; Yoa, Seok-Jun; Oda, Tetsuji
2012-08-01
To remove particles in corrosive gases generated by semiconductor industries, we have developed a novel non-metallic, two-stage electrostatic precipitator (ESP). Carbon brush electrodes and grounded carbon fiber-reinforced polymer (CFRP) form the ionization stage, and polyvinyl chloride collection plates are used in the collection stage of the ESP The collection performance of the ESP downstream of a wet scrubber was evaluated with KC1, silica, and mist particles (0.01-10 pm), changing design and operation parameters such as the ESP length, voltage, and flow rate. A long-term and regeneration performance (12-hr) test was conducted at the maximum operation conditions of the scrubber and ESP and the performance was then demonstrated for 1 month with exhaust gases from wet scrubbers at the rooftop of a semiconductor manufacturing plant in Korea. The results showed that the electrical and collection performance of the ESP (16 channels, 400x400 mm2) was maintained with different grounded plate materials (stainless steel and CFRP) and different lengths of the ionization stage. The collection efficiency of the ESP at high air velocity was enhanced with increases in applied voltages and collection plate lengths. The ESP (16 channels with 100 mm length, 400x400 mm2x540 mm with a 10-mm gap) removed more than 90% of silica and mistparticles with 10 and 12 kV applied to the ESPat the air velocity of 2 m/s and liquid-to-gas ratio of 3.6 L/m3. Decreased performance after 13 hours ofcontinuous operation was recovered to the initial performance level by 5 min of water washing. Moreover during the 1-month operation at the demonstration site, the ESP showed average collection efficiencies of 97% based on particle number and 92% based on total particle mass, which were achieved with a much smaller specific corona power of 0.28 W/m3/hr compared with conventional ESPs.
Efficiency of irrigation water application in sugarcane cultivation in Pakistan.
Watto, Muhammad Arif; Mugera, Amin W
2015-07-01
Diminishing irrigation water supplies are threatening the sustainability of irrigated agriculture in Pakistan. Within the context of dwindling water resources and low agricultural water productivity, it is imperative to improve efficiency in agricultural production and to make efficient use of available water resources. This study employs a non-parametric approach to estimate the extent of technical and irrigation water efficiency in sugarcane cultivation in Pakistan. The mean technical efficiency score is 0.96 for tube-well owners whereas it is 0.94 for water buyers. The mean irrigation water efficiency score is 0.86 for tube-well owners whereas it is 0.72 for water buyers. We find that across all farms, 59% of the tube-well owners and 45% of the water buyers are fully technically efficient, whereas only 36% of the tube-well owners and 30% of the water buyer are fully efficient in irrigation water use. This study finds that sugarcane growers are operating at fairly high technical efficiency levels. But, there is considerable potential to improve irrigation water efficiency. This study proposes expanding the role of agricultural extension services from merely agronomic grounds to guide farmers to undertake cost benefit analysis of the available production technology, would help achieve higher efficiency levels. © 2014 Society of Chemical Industry.
Theoretical study of the effect of ground proximity on the induced efficiency of helicopter rotors
NASA Technical Reports Server (NTRS)
Heyson, H. H.
1977-01-01
A study of rotors in forward flight within ground effect showed that the ground-induced interference is an upwash and a decrease in forward velocity. The interference velocities are large, oppose the normal flow through the rotor, and have large effects on the induced efficiency. Hovering with small ground clearances may result in significant blade stall. As speed is increased from hover in ground effect, power initially increases rather than decreases. At very low heights above the ground, the power requirements become nonlinear with speed as a result of the streamwise interference. The streamwise interference becomes greater as the wake approaches the ground and eventually distorts the wake to form the ground vortex which contributes to certain observed directional stability problems.
LaRC-developed catalysts for CO2 lasers
NASA Technical Reports Server (NTRS)
Upchurch, Billy T.; Kielin, Erik J.; Miller, Irvin M.
1990-01-01
Pulsed CO2 lasers have many remote sensing applications from space, airborne, and ground platforms. The NASA Laser Atmospheric Wind Sounder (LAWS) system will be designed to measure wind velocities from polar earth orbit for a period of up to three years. Accordingly, this and other applications require a closed-cycle pulsed CO2 laser which necessitates the use of an efficient CO-O2 recombination catalyst for these dissociation products which otherwise would degrade the laser operation. The required catalyst must not only operate at low temperatures but also must operate efficiently for long time periods. The research effort at NASA LaRC has centered around development and testing of CO oxidation catalysts for closed-cycle, pulsed, common and rare-isotope CO2 lasers. Researchers examined available commercial catalysts both in a laser and under simulated closed-cycle laser conditions with efforts aimed toward a thorough understanding of the fundamental catalytic reaction. These data were used to design and synthesize new catalyst compositions to better meet the catalyst requirements for closed-cycle pulsed CO2 lasers. Syntheses and test results for catalysts developed at Langley Research Center which have significantly better long-term decay characteristics than previously available catalysts and at the same time operate quite well under lower temperature conditions are discussed.
NASA Technical Reports Server (NTRS)
Shell, Elaine M.; Lue, Yvonne; Chu, Martha I.
1999-01-01
Flight software (FSW) is a mission critical element of spacecraft functionality and performance. When ground operations personnel interface to a spacecraft, they are dealing almost entirely with onboard software. This software, even more than ground/flight communications systems, is expected to perform perfectly at all times during all phases of on-orbit mission life. Due to the fact that FSW can be reconfigured and reprogrammed to accommodate new spacecraft conditions, the on-orbit FSW maintenance team is usually significantly responsible for the long-term success of a science mission. Failure of FSW can result in very expensive operations work-around costs and lost science opportunities. There are three basic approaches to staffing on-orbit software maintenance, namely: (1) using the original developers, (2) using mission operations personnel, or (3) assembling a Center of Excellence for multi-spacecraft on-orbit FSW support. This paper explains a National Aeronautics and Space Administration, Goddard Space Flight Center (NASA/GSFC) experience related to the roles of on-orbit FSW maintenance personnel. It identifies the advantages and disadvantages of each of the three approaches to staffing the FSW roles, and demonstrates how a cost efficient on-orbit FSW Maintenance Center of Excellence can be established and maintained with significant return on the investment.
14 CFR 139.329 - Pedestrians and ground vehicles.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Pedestrians and ground vehicles. 139.329... OF AIRPORTS Operations § 139.329 Pedestrians and ground vehicles. In a manner authorized by the... pedestrians and ground vehicles necessary for airport operations; (b) Establish and implement procedures for...
14 CFR 139.329 - Pedestrians and ground vehicles.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pedestrians and ground vehicles. 139.329... OF AIRPORTS Operations § 139.329 Pedestrians and ground vehicles. In a manner authorized by the... pedestrians and ground vehicles necessary for airport operations; (b) Establish and implement procedures for...
An analytical model for train-induced ground vibrations from railways
NASA Astrophysics Data System (ADS)
Karlström, A.; Boström, A.
2006-04-01
To investigate ground vibrations from railways an analytical approach is taken. The ground is modelled as a stratified half-space with linearly viscoelastic layers. On top of the ground a rectangular embankment is placed, supporting the rails and the sleepers. The rails are modelled as Euler-Bernoulli beams where the propagating forces (wheel loads) are acting and the sleepers are modelled with an anisotropic Kirchhoff plate. The solution is based on Fourier transforms in time and along the track. In the transverse direction the fields in the embankment are developed in Fourier series and in the half-space with Fourier transforms. The resulting numerical scheme is very efficient, permitting displacement fields far outside the track to be calculated. Numerical examples are given for an X2 train that operates at the site Ledsgard in Sweden. The displacements are simulated at 70 and 200 km/h and are compared with the displacements from simpler models. The simulations are also validated against measurements, with very good agreement. At 70 km/h the track displacements agree almost exactly and at 200 km/h the displacements are a very good approximation of the measurement.
Monje, O; Stutte, G; Chapman, D
2005-10-01
Plant stand gas exchange was measured nondestructively in microgravity during the Photosynthesis Experiment Subsystem Testing and Operations experiment conducted onboard the International Space Station. Rates of evapotranspiration and photosynthesis measured in space were compared with ground controls to determine if microgravity directly affects whole-stand gas exchange of Triticum aestivum. During six 21-day experiment cycles, evapotranspiration was determined continuously from water addition rates to the nutrient delivery system, and photosynthesis was determined from the amount of CO2 added to maintain the chamber CO2 concentration setpoint. Plant stand evapotranspiration, net photosynthesis, and water use efficiency were not altered by microgravity. Although leaf area was significantly reduced in microgravity-grown plants compared to ground control plants, leaf area distribution was not affected enough to cause significant differences in the amounts of light absorbed by the flight and ground control plant stands. Microgravity also did not affect the response of evapotranspiration to changes in chamber vapor pressure difference of 12-day-old wheat plant stands. These results suggest that gravity naïve plants grown at moderate light levels (300 micromol m(-2) s(-1)) behave the same as ground control plants. This implies that future plant-based regenerative life support systems can be sized using 1 g data because water purification and food production rates operate at nearly the same rates as in 1 g at moderate light levels. However, it remains to be verified whether the present results are reproducible in plants grown under stronger light levels.
Energy Efficient Engine: Flight propulsion system final design and analysis
NASA Technical Reports Server (NTRS)
Davis, Donald Y.; Stearns, E. Marshall
1985-01-01
The Energy Efficient Engine (E3) is a NASA program to create fuel saving technology for future transport engines. The Flight Propulsion System (FPS) is the engine designed to achieve E3 goals. Achieving these goals required aerodynamic, mechanical and system technologies advanced beyond that of current production engines. These technologies were successfully demonstrated in component rigs, a core engine and a turbofan ground test engine. The design and benefits of the FPS are presented. All goals for efficiency, environmental considerations, and economic payoff were met. The FPS has, at maximum cruise, 10.67 km (35,000 ft), M0.8, standard day, a 16.9 percent lower installed specific fuel consumption than a CF6-50C. It provides an 8.6 percent reduction in direct operating cost for a short haul domestic transport and a 16.2 percent reduction for an international long distance transport.
A European mobile satellite system concept exploiting CDMA and OBP
NASA Technical Reports Server (NTRS)
Vernucci, A.; Craig, A. D.
1993-01-01
This paper describes a novel Land Mobile Satellite System (LMSS) concept applicable to networks allowing access to a large number of gateway stations ('Hubs'), utilizing low-cost Very Small Aperture Terminals (VSAT's). Efficient operation of the Forward-Link (FL) repeater can be achieved by adopting a synchronous Code Division Multiple Access (CDMA) technique, whereby inter-code interference (self-noise) is virtually eliminated by synchronizing orthogonal codes. However, with a transparent FL repeater, the requirements imposed by the highly decentralized ground segment can lead to significant efficiency losses. The adoption of a FL On-Board Processing (OBP) repeater is proposed as a means of largely recovering this efficiency impairment. The paper describes the network architecture, the system design and performance, the OBP functions and impact on implementation. The proposed concept, applicable to a future generation of the European LMSS, was developed in the context of a European Space Agency (ESA) study contract.
Intercomparison of fog water samplers
NASA Astrophysics Data System (ADS)
Schell, Dieter; Georgii, Hans-Walter; Maser, Rolf; Jaeschke, Wolfgang; Arends, Beate G.; Kos, Gerard P. A.; Winkler, Peter; Schneider, Thomas; Berner, Axel; Kruisz, Christian
1992-11-01
During the Po Valley Fog Experiment 1989, two fogwater collectors were operated simultaneously at the ground and the results were compared to each other. The chemical analyses of the samples as well as the collection efficiencies showed remarkable differences between both collectors. Some differences in the solute concentrations in the samples of both collectors could be expected due to small differences in the 50-percent cut-off diameters. The large differences in the collection efficiencies however cannot be explained by these small variations of d sub 50, because normally only a small fraction of the water mass is concentrated in the size range of 5-7-micron droplets. It is shown that it is not sufficient to characterize a fogwater collector only by its cut-off diameter. The results of several wind tunnel calibration tests show that the collection efficiencies of the fogwater collectors are a function of windspeed and shape of the droplet spectra.
Operational Improvements From the In-Trail Procedure in the North Atlantic Organized Track System
NASA Technical Reports Server (NTRS)
Chartrand, Ryan C.; Bussink, Frank J. L.; Graff, Thomas J.; Murdoch, Jennifer L.; Jones, Kenneth M.
2008-01-01
This paper explains the computerized batch processing experiment examining the operational impacts of the introduction of Automatic Dependent Surveillance-Broadcast (ADS-B) equipment and the In-Trail Procedure (ITP) to the North Atlantic Organized Track System (NATOTS). This experiment was conducted using the Traffic Manager (TMX), a desktop simulation capable of simulating airspace environments and aircraft operations. ADS-B equipment can enable the use of new ground and airborne procedures, such as the ITP. The ITP is among the first of these new procedures, which will make use of improved situation awareness in the local surrounding airspace of ADS-B equipped aircraft to enable more efficient oceanic flight level changes. The data collected were analyzed with respect to multiple operationally relevant parameters including fuel burn, request approval rates, and the distribution of fuel savings. This experiment showed that through the use of ADS-B or ADS-B and the ITP that operational improvements and benefits could be achieved.
NASA Technical Reports Server (NTRS)
Chartrand, Ryan C.; Bussink, Frank J.; Graff, Thomas J.; Jones, Kenneth M.
2009-01-01
This paper explains the computerized batch processing experiment examining the operational impacts of the introduction of Automatic Dependent Surveillance-Broadcast (ADS-B) equipment and the In-Trail Procedure (ITP) to the North Atlantic Organized Track System. This experiment was conducted using the Traffic Manager (TMX), a desktop simulation capable of simulating airspace environments and aircraft operations. ADS-B equipment can enable the use of new ground and airborne procedures, such as the ITP. ITP is among the first of these new procedures, which will make use of improved situation awareness in the local surrounding airspace of ADS-B equipped aircraft to enable more efficient oceanic flight level changes. The collected data were analyzed with respect to multiple operationally relevant parameters including fuel burn, request approval rates, and the distribution of fuel savings. This experiment showed that through the use of ADS-B or ADS-B and the ITP that operational improvements and benefits could be achieved.
The IUE Science Operations Ground System
NASA Technical Reports Server (NTRS)
Pitts, Ronald E.; Arquilla, Richard
1994-01-01
The International Ultraviolet Explorer (IUE) Science Operations System provides full realtime operations capabilities and support to the operations staff and astronomer users. The components of this very diverse and extremely flexible hardware and software system have played a major role in maintaining the scientific efficiency and productivity of the IUE. The software provides the staff and user with all the tools necessary for pre-visit and real-time planning and operations analysis for any day of the year. Examples of such tools include the effects of spacecraft constraints on target availability, maneuver times between targets, availability of guide stars, target identification, coordinate transforms, e-mail transfer of Observatory forms and messages, and quick-look analysis of image data. Most of this extensive software package can also be accessed remotely by individual users for information, scheduling of shifts, pre-visit planning, and actual observing program execution. Astronomers, with a modest investment in hardware and software, may establish remote observing sites. We currently have over 20 such sites in our remote observers' network.
Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geis, J.; Arnold, J.H.
1994-09-01
Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States` Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV`s whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Sincemore » the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, the authors have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible they modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.« less
Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)
NASA Technical Reports Server (NTRS)
Geis, Jack; Arnold, Jack H.
1994-01-01
Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States' Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV's whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, we have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible we modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.
Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)
NASA Astrophysics Data System (ADS)
Geis, Jack; Arnold, Jack H.
1994-09-01
Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States' Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV's whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, we have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible we modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.
Path planning and energy management of solar-powered unmanned ground vehicles
NASA Astrophysics Data System (ADS)
Kaplan, Adam
Many of the applications pertinent to unmanned vehicles, such as environmental research and analysis, communications, and information-surveillance and reconnaissance, benefit from prolonged vehicle operation time. Conventional efforts to increase the operational time of electric-powered unmanned vehicles have traditionally focused on the design of energy-efficient components and the identification of energy efficient search patterns, while little attention has been paid to the vehicle's mission-level path plan and power management. This thesis explores the formulation and generation of integrated motion-plans and power-schedules for solar-panel equipped mobile robots operating under strict energy constraints, which cannot be effectively addressed through conventional motion planning algorithms. Transit problems are considered to design time-optimal paths using both Balkcom-Mason and Pseudo-Dubins curves. Additionally, a more complicated problem to generate mission plans for vehicles which must persistently travel between certain locations, similar to the traveling salesperson problem (TSP), is presented. A comparison between one of the common motion-planning algorithms and experimental results of the prescribed algorithms, made possible by use of a test environment and mobile robot designed and developed specifically for this research, are presented and discussed.
The 15 cm diameter ion thruster research
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1974-01-01
The startup reliability of a 15 cm diameter mercury bombardment ion thruster which employs a pulsed high voltage tickler electrode on the main and neutralizer cathodes is examined. Startup of the thruster is achieved 100% of the time on the main cathode and 98.7% of the time on the neutralizer cathode over a 3640 cycle test. The thruster was started from a 20 C initial condition and operated for an hour at a 600 mA beam current. An energy efficiency of 75% and a propellant utilization efficiency of 77% was achieved over the complete cycle. The effect of a single cusp magnetic field thruster length on its performance is discussed. Guidelines are formulated for the shaping of magnetic field lines in thrusters. A model describing double ion production in mercury discharges is presented. The production route is shown to occur through the single ionic ground state. Photographs of the interior of an operating-hollow cathode are presented. A cathode spot is shown to be present if the cathode is free of low work-function surfaces. The spot is observed if a low work-function oxide coating is applied to the cathode insert. Results show that low work-function oxide coatings tend to migrate during thruster operation.
Witnessing eigenstates for quantum simulation of Hamiltonian spectra
Santagati, Raffaele; Wang, Jianwei; Gentile, Antonio A.; Paesani, Stefano; Wiebe, Nathan; McClean, Jarrod R.; Morley-Short, Sam; Shadbolt, Peter J.; Bonneau, Damien; Silverstone, Joshua W.; Tew, David P.; Zhou, Xiaoqi; O’Brien, Jeremy L.; Thompson, Mark G.
2018-01-01
The efficient calculation of Hamiltonian spectra, a problem often intractable on classical machines, can find application in many fields, from physics to chemistry. We introduce the concept of an “eigenstate witness” and, through it, provide a new quantum approach that combines variational methods and phase estimation to approximate eigenvalues for both ground and excited states. This protocol is experimentally verified on a programmable silicon quantum photonic chip, a mass-manufacturable platform, which embeds entangled state generation, arbitrary controlled unitary operations, and projective measurements. Both ground and excited states are experimentally found with fidelities >99%, and their eigenvalues are estimated with 32 bits of precision. We also investigate and discuss the scalability of the approach and study its performance through numerical simulations of more complex Hamiltonians. This result shows promising progress toward quantum chemistry on quantum computers. PMID:29387796
NASA Technical Reports Server (NTRS)
Pham, Kim; Bialas, Thomas
2012-01-01
The DDS SDOGS Integration Manager (DSIM) provides translation between native control and status formats for systems within DDS and SDOGS, and the ASIST (Advanced Spacecraft Integration and System Test) control environment in the SDO MOC (Solar Dynamics Observatory Mission Operations Center). This system was created in response for a need to centralize remote monitor and control of SDO Ground Station equipments using ASIST control environment in SDO MOC, and to have configurable table definition for equipment. It provides translation of status and monitoring information from the native systems into ASIST-readable format to display on pages in the MOC. The manager is lightweight, user friendly, and efficient. It allows data trending, correlation, and storing. It allows using ASIST as common interface for remote monitor and control of heterogeneous equipments. It also provides failover capability to back up machines.
A real-time freehand ultrasound calibration system with automatic accuracy feedback and control.
Chen, Thomas Kuiran; Thurston, Adrian D; Ellis, Randy E; Abolmaesumi, Purang
2009-01-01
This article describes a fully automatic, real-time, freehand ultrasound calibration system. The system was designed to be simple and sterilizable, intended for operating-room usage. The calibration system employed an automatic-error-retrieval and accuracy-control mechanism based on a set of ground-truth data. Extensive validations were conducted on a data set of 10,000 images in 50 independent calibration trials to thoroughly investigate the accuracy, robustness, and performance of the calibration system. On average, the calibration accuracy (measured in three-dimensional reconstruction error against a known ground truth) of all 50 trials was 0.66 mm. In addition, the calibration errors converged to submillimeter in 98% of all trials within 12.5 s on average. Overall, the calibration system was able to consistently, efficiently and robustly achieve high calibration accuracy with real-time performance.
Spacelab operations planning. [ground handling, launch, flight and experiments
NASA Technical Reports Server (NTRS)
Lee, T. J.
1976-01-01
The paper reviews NASA planning in the fields of ground, launch and flight operations and experiment integration to effectively operate Spacelab. Payload mission planning is discussed taking consideration of orbital analysis and the mission of a multiuser payload which may be either single or multidiscipline. Payload analytical integration - as active process of analyses to ensure that the experiment payload is compatible to the mission objectives and profile ground and flight operations and that the resource demands upon Spacelab can be satisfied - is considered. Software integration is touched upon and the major integration levels in ground operational processing of Spacelab and its experimental payloads are examined. Flight operations, encompassing the operation of the Space Transportation System and the payload, are discussed as are the initial Spacelab missions. Charts and diagrams are presented illustrating the various planning areas.
Quality Management in Astronomical Software and Data Systems
NASA Astrophysics Data System (ADS)
Radziwill, N. M.
2007-10-01
As the demand for more sophisticated facilities increases, the complexity of the technical and organizational challenges faced by operational space- and ground-based telescopes also increases. In many organizations, funding tends not to be proportional to this trend, and steps must be taken to cultivate a lean environment in both development and operations to consistently do more with less. To facilitate this transition, an organization must be aware of how it can meet quality-related goals, such as reducing variation, improving productivity of people and systems, streamlining processes, ensuring compliance with requirements (scientific, organizational, project, or regulatory), and increasing user satisfaction. Several organizations are already on this path. Quality-based techniques for the efficient, effective development of new telescope facilities and maintenance of existing facilities are described.
A scientific operations plan for the large space telescope. [ground support system design
NASA Technical Reports Server (NTRS)
West, D. K.
1977-01-01
The paper describes an LST ground system which is compatible with the operational requirements of the LST. The goal of the approach is to minimize the cost of post launch operations without seriously compromising the quality and total throughput of LST science. Attention is given to cost constraints and guidelines, the telemetry operations processing systems (TELOPS), the image processing facility, ground system planning and data flow, and scientific interfaces.
NASA Technical Reports Server (NTRS)
Scholz, A. L.; Hart, M. T.; Lowry, D. J.
1987-01-01
The Preliminary Issues Database (PIDB) was assembled very early in the study as one of the fundamental tools to be used throughout the study. Data was acquired from a variety of sources and compiled in such a way that the data could be easily sorted in accordance with a number of different analytical objectives. The system was computerized to significantly expedite sorting and make it more usable. The information contained in the PIDB is summarized and the reader is provided with the capability to manually find items of interest.
Advanced cargo aircraft may offer a potential renaissance in freight transportation
NASA Technical Reports Server (NTRS)
Morris, Shelby J.; Sawyer, Wallace C.
1993-01-01
The increasing demand for air freight transportation has prompted studies of large, aerodynamically efficient cargo-optimized aircraft capable of carrying intermodal containers, which are typically 8 x 8 x 20 ft. Studies have accordingly been conducted within NASA to ascertain the specifications and projected operating costs of such a vehicle, as well as to identify critical, development-pacing technologies. Attention is here given not only to the rather conventional, 10-turbofan engined configuration thus arrived at, but numerous innovative configurations featuring such concepts as spanloading, removable cargo pods, and ground effect.
Evaluation of Flight Deck-Based Interval Management Crew Procedure Feasibility
NASA Technical Reports Server (NTRS)
Wilson, Sara R.; Murdoch, Jennifer L.; Hubbs, Clay E.; Swieringa, Kurt A.
2013-01-01
Air traffic demand is predicted to increase over the next 20 years, creating a need for new technologies and procedures to support this growth in a safe and efficient manner. The National Aeronautics and Space Administration's (NASA) Air Traffic Management Technology Demonstration - 1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The integration of these technologies will increase throughput, reduce delay, conserve fuel, and minimize environmental impacts. The ground-based tools include Traffic Management Advisor with Terminal Metering for precise time-based scheduling and Controller Managed Spacing decision support tools for better managing aircraft delay with speed control. The core airborne technology in ATD-1 is Flight deck-based Interval Management (FIM). FIM tools provide pilots with speed commands calculated using information from Automatic Dependent Surveillance - Broadcast. The precise merging and spacing enabled by FIM avionics and flight crew procedures will reduce excess spacing buffers and result in higher terminal throughput. This paper describes a human-in-the-loop experiment designed to assess the acceptability and feasibility of the ATD-1 procedures used in a voice communications environment. This experiment utilized the ATD-1 integrated system of ground-based and airborne technologies. Pilot participants flew a high-fidelity fixed base simulator equipped with an airborne spacing algorithm and a FIM crew interface. Experiment scenarios involved multiple air traffic flows into the Dallas-Fort Worth Terminal Radar Control airspace. Results indicate that the proposed procedures were feasible for use by flight crews in a voice communications environment. The delivery accuracy at the achieve-by point was within +/- five seconds and the delivery precision was less than five seconds. Furthermore, FIM speed commands occurred at a rate of less than one per minute, and pilots found the frequency of the speed commands to be acceptable at all times throughout the experiment scenarios.
Effects of adsorptive properties of biofilter packing materials on toluene removal.
Oh, Dong Ik; Song, Jihyeon; Hwang, Sun Jin; Kim, Jae Young
2009-10-15
Various adsorptive materials, including granular activated carbon (GAC) and ground tire rubber (GTR), were mixed with compost in biofilters used for treating gaseous toluene, and the effects of the mixtures on the stability of biofilter performance were investigated. A transient loading test demonstrated that a sudden increase in inlet toluene loading was effectively attenuated in the compost/GAC biofilter, which was the most significant advantage of adding adsorptive materials to the biofilter packing media. Under steady conditions with inlet toluene loading rates of 18.8 and 37.5 g/m(3)/h, both the compost and the compost/GAC biofilters achieved overall toluene removal efficiencies greater than 99%. In the compost/GAC mixture, however, biodegradation activity declined as the GAC mass fraction increased. Because of the low water-holding capacity of GTR, the compost/ground tire mixture did not show a significant improvement in toluene removal efficiency throughout the entire operational period. Furthermore, nitrogen limitations affected system performance in all the biofilters, but an external nitrogen supply resulted in the recovery of the toluene removal efficiency only in the compost biofilter during the test periods. Consequently, the introduction of excessive adsorptive materials was unfavorable for long-term performance, suggesting that the mass ratio of the adsorptive materials in such mixtures should be carefully selected to achieve high and steady biofilter performance.
1998-10-21
The Glenn Research Center (GRC) Telescience Support Center (TSC) is a NASA telescience ground facility that provides the capability to execute ground support operations of on-orbit International Space Station (ISS) and Space Shuttle payloads. This capability is provided with the coordination with the Marshall Space Flight Center (MSFC) Huntsville Operations Support Center (HOSC), the Johnson Space Center (JSC) Mission Control Center in Houston (MCC-H) and other remote ground control facilities. The concept of telescience is a result of NASA's vision to provide worldwide distributed ISS ground operations that will enable payload developers and scientists to control and monitor their on-board payloads from any location -- not necessarily a NASA site. This concept enhances the quality of scientific and technological data while decreasing operation costs of long-term support activities by providing ground operation services to a Principal Investigator and Engineering Team at their home site. The TSC acts as a hub in which users can either locate their operations staff within the walls of the TSC or request the TSC operation capabilities be extended to a location more convenient such as a university.
The Development of Project Orion Ground Safety Requirements
NASA Technical Reports Server (NTRS)
Kirkpatrick, Paul; Condzella, Bill; Williams, Jeff
2011-01-01
In spite of a very compressed schedule, Project Orion's AFT safety team was able to pull together a comprehensive set of ground safety requirements using existing requirements and subject matter experts. These requirements will serve as the basis for the design of GSE and ground operations. Using the above lessons as a roadmap, new Projects can produce the same results. A rigorous set of ground safety requirements is required to assure ground support equipment (GSE) and associated flight hardware ground operations are conducted safety
NASA Technical Reports Server (NTRS)
Chien, Steve; Doubleday, Joshua; Ortega, Kevin; Tran, Daniel; Bellardo, John; Williams, Austin; Piug-Suari, Jordi; Crum, Gary; Flatley, Thomas
2012-01-01
The Intelligent Payload Experiment (IPEX) is a cubesat manifested for launch in October 2013 that will flight validate autonomous operations for onboard instrument processing and product generation for the Intelligent Payload Module (IPM) of the Hyperspectral Infra-red Imager (HyspIRI) mission concept. We first describe the ground and flight operations concept for HyspIRI IPM operations. We then describe the ground and flight operations concept for the IPEX mission and how that will validate HyspIRI IPM operations. We then detail the current status of the mission and outline the schedule for future development.
F-state quenching with CH{sub 4} for buffer-gas cooled {sup 171}Y b{sup +} frequency standard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jau, Y.-Y., E-mail: yjau@sandia.gov; Hunker, J. D.; Schwindt, P. D. D.
2015-11-15
We report that methane, CH{sub 4}, can be used as an efficient F-state quenching gas for trapped ytterbium ions. The quenching rate coefficient is measured to be (2.8 ± 0.3) × 10{sup 6} s{sup −1} Torr{sup −1}. For applications that use microwave hyperfine transitions of the ground-state {sup 171}Y b ions, the CH{sub 4} induced frequency shift coefficient and the decoherence rate coefficient are measured as δν/ν = (−3.6 ± 0.1) × 10{sup −6} Torr{sup −1} and 1/T{sub 2} = (1.5 ± 0.2) × 10{sup 5} s{sup −1} Torr{sup −1}. In our buffer-gas cooled {sup 171}Y b{sup +} microwave clockmore » system, we find that only ≤10{sup −8} Torr of CH{sub 4} is required under normal operating conditions to efficiently clear the F-state and maintain ≥85% of trapped ions in the ground state with insignificant pressure shift and collisional decoherence of the clock resonance.« less
New luster for space robots and automation
NASA Technical Reports Server (NTRS)
Heer, E.
1978-01-01
Consideration is given to the potential role of robotics and automation in space transportation systems. Automation development requirements are defined for projects in space exploration, global services, space utilization, and space transport. In each category the potential automation of ground operations, on-board spacecraft operations, and in-space handling is noted. The major developments of space robot technology are noted for the 1967-1978 period. Economic aspects of ground-operation, ground command, and mission operations are noted.
Lessons Learned from Engineering a Multi-Mission Satellite Operations Center
NASA Technical Reports Server (NTRS)
Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David
2006-01-01
NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being reengineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEiX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the reengineering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team s experiences with integrating multiple missions into a fleet-based automated ground system.
Lessons Learned from Engineering a Multi-Mission Satellite Operations Center
NASA Technical Reports Server (NTRS)
Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David
2006-01-01
NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being re-engineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the re-enginering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team's experiences with integrating multiple missions into a fleet-automated ground system.
Mission Operations with an Autonomous Agent
NASA Technical Reports Server (NTRS)
Pell, Barney; Sawyer, Scott R.; Muscettola, Nicola; Smith, Benjamin; Bernard, Douglas E.
1998-01-01
The Remote Agent (RA) is an Artificial Intelligence (AI) system which automates some of the tasks normally reserved for human mission operators and performs these tasks autonomously on-board the spacecraft. These tasks include activity generation, sequencing, spacecraft analysis, and failure recovery. The RA will be demonstrated as a flight experiment on Deep Space One (DSI), the first deep space mission of the NASA's New Millennium Program (NMP). As we moved from prototyping into actual flight code development and teamed with ground operators, we made several major extensions to the RA architecture to address the broader operational context in which PA would be used. These extensions support ground operators and the RA sharing a long-range mission profile with facilities for asynchronous ground updates; support ground operators monitoring and commanding the spacecraft at multiple levels of detail simultaneously; and enable ground operators to provide additional knowledge to the RA, such as parameter updates, model updates, and diagnostic information, without interfering with the activities of the RA or leaving the system in an inconsistent state. The resulting architecture supports incremental autonomy, in which a basic agent can be delivered early and then used in an increasingly autonomous manner over the lifetime of the mission. It also supports variable autonomy, as it enables ground operators to benefit from autonomy when L'@ey want it, but does not inhibit them from obtaining a detailed understanding and exercising tighter control when necessary. These issues are critical to the successful development and operation of autonomous spacecraft.
The MAP Autonomous Mission Control System
NASA Technical Reports Server (NTRS)
Breed, Juile; Coyle, Steven; Blahut, Kevin; Dent, Carolyn; Shendock, Robert; Rowe, Roger
2000-01-01
The Microwave Anisotropy Probe (MAP) mission is the second mission in NASA's Office of Space Science low-cost, Medium-class Explorers (MIDEX) program. The Explorers Program is designed to accomplish frequent, low cost, high quality space science investigations utilizing innovative, streamlined, efficient management, design and operations approaches. The MAP spacecraft will produce an accurate full-sky map of the cosmic microwave background temperature fluctuations with high sensitivity and angular resolution. The MAP spacecraft is planned for launch in early 2001, and will be staffed by only single-shift operations. During the rest of the time the spacecraft must be operated autonomously, with personnel available only on an on-call basis. Four (4) innovations will work cooperatively to enable a significant reduction in operations costs for the MAP spacecraft. First, the use of a common ground system for Spacecraft Integration and Test (I&T) as well as Operations. Second, the use of Finite State Modeling for intelligent autonomy. Third, the integration of a graphical planning engine to drive the autonomous systems without an intermediate manual step. And fourth, the ability for distributed operations via Web and pager access.
NASA Technical Reports Server (NTRS)
Lohr, Gary W.; Williams, Dan; Abbott, Terence; Baxley, Brian; Greco, Adam; Ridgway, Richard
2005-01-01
The Small Aircraft Transportation System Higher Volume Operations (SATS HVO) concept holds the promise for increased efficiency and throughput at many of the nations under-used airports. This concept allows for concurrent operations at uncontrolled airports that under today s procedures are restricted to one arrival or one departure operation at a time, when current-day IFR separation standards are applied. To allow for concurrent operations, SATS HVO proposes several fundamental changes to today's system. These changes include: creation of dedicated airspace, development of new procedures and communications (phraseologies), and assignment of roles and responsibilities for pilots and controllers, among others. These changes would affect operations on the airborne side (pilot) as well as the groundside (controller and air traffic flow process). The focus of this paper is to discuss some of the issues and potential problems that have been considered in the development of the SATS HVO concept, in particular from the ground side perspective. Reasonable solutions to the issues raised here have been proposed by the SATS HVO team, and are discussed in this paper.
NASA Technical Reports Server (NTRS)
Singer, Christopher E.; Dumbacher, Daniel L.; Lyles, Gary M.; Onken, Jay F.
2008-01-01
The United States (U.S.) is charting a renewed course for lunar exploration, with the fielding of a new human-rated space transportation system to replace the venerable Space Shuttle, which will be retired after it completes its missions of building the International Space Station (ISS) and servicing the Hubble Space Telescope. Powering the future of space-based scientific exploration will be the Ares I Crew Launch Vehicle, which will transport the Orion Crew Exploration Vehicle to orbit where it will rendezvous with the Altair Lunar Lander, which will be delivered by the Ares V Cargo Launch Vehicle (fig. 1). This configuration will empower rekindled investigation of Earth's natural satellite in the not too distant future. This new exploration infrastructure, developed by the National Aeronautics and Space Administration (NASA), will allow astronauts to leave low-Earth orbit (LEO) for extended lunar missions and preparation for the first long-distance journeys to Mars. All space-based operations - to LEO and beyond - are controlled from Earth. NASA's philosophy is to deliver safe, reliable, and cost-effective architecture solutions to sustain this multi-billion-dollar program across several decades. Leveraging SO years of lessons learned, NASA is partnering with private industry and academia, while building on proven hardware experience. This paper outlines a few ways that the Engineering Directorate at NASA's Marshall Space Flight Center is working with the Constellation Program and its project offices to streamline ground operations concepts by designing for operability, which reduces lifecycle costs and promotes sustainable space exploration.
Embracing Safe Ground Test Facility Operations and Maintenance
NASA Technical Reports Server (NTRS)
Dunn, Steven C.; Green, Donald R.
2010-01-01
Conducting integrated operations and maintenance in wind tunnel ground test facilities requires a balance of meeting due dates, efficient operation, responsiveness to the test customer, data quality, effective maintenance (relating to readiness and reliability), and personnel and facility safety. Safety is non-negotiable, so the balance must be an "and" with other requirements and needs. Pressure to deliver services faster at increasing levels of quality in under-maintained facilities is typical. A challenge for management is to balance the "need for speed" with safety and quality. It s especially important to communicate this balance across the organization - workers, with a desire to perform, can be tempted to cut corners on defined processes to increase speed. Having a lean staff can extend the time required for pre-test preparations, so providing a safe work environment for facility personnel and providing good stewardship for expensive National capabilities can be put at risk by one well-intending person using at-risk behavior. This paper documents a specific, though typical, operational environment and cites management and worker safety initiatives and tools used to provide a safe work environment. Results are presented and clearly show that the work environment is a relatively safe one, though still not good enough to keep from preventing injury. So, the journey to a zero injury work environment - both in measured reality and in the minds of each employee - continues. The intent of this paper is to provide a benchmark for others with operational environments and stimulate additional sharing and discussion on having and keeping a safe work environment.
Flight tests show potential benefits of data link as primary communication medium
NASA Technical Reports Server (NTRS)
Scanlon, Charles H.; Knox, Charles E.
1991-01-01
Message exchange for air traffic control (ATC) purposes via data link offers the potential benefits of increasing the airspace system safety and efficiency. This is accomplished by reducing communication errors and relieving the overloaded ATC radio frequencies, which hamper efficient message exchanges during peak traffic periods in many busy terminal areas. However, the many uses and advantages of data link create additional questions concerning the interface among the human-users and the cockpit and ground systems. A flight test was conducted in the NASA Langley B-737 airplane to contrast flight operations using current voice communications with the use of data link for transmitting both strategic and tactical ATC clearances during a typical commercial airline flight from takeoff to landing. Commercial airplane pilots were used as test subjects.
NASTRAN internal improvements for 1992 release
NASA Technical Reports Server (NTRS)
Chan, Gordon C.
1992-01-01
The 1992 NASTRAN release incorporates a number of improvements transparent to users. The NASTRAN executable was made smaller by 70 pct. for the RISC base Unix machines by linking NASTRAN into a single program, freeing some 33 megabytes of system disc space that can be used by NASTRAN for solving larger problems. Some basic matrix operations, such as forward-backward substitution (FBS), multiply-add (MPYAD), matrix transpose, and fast eigensolution extraction routine (FEER), have been made more efficient by including new methods, new logic, new I/O techniques, and, in some cases, new subroutines. Some of the improvements provide ground work ready for system vectorization. These are finite element basic operations, and are used repeatedly in a finite element program such as NASTRAN. Any improvements on these basic operations can be translated into substantial cost and cpu time savings. NASTRAN is also discussed in various computer platforms.
Maximizing industrial infrastructure efficiency in Iceland
NASA Astrophysics Data System (ADS)
Ingason, Helgi Thor; Sigfusson, Thorsteinn I.
2010-08-01
As a consequence of the increasing aluminum production in Iceland, local processing of aluminum skimmings has become a feasible business opportunity. A recycling plant for this purpose was built in Helguvik on the Reykjanes peninsula in 2003. The case of the recycling plant reflects increased concern regarding environmental aspects of the industry. An interesting characteristic of this plant is the fact that it is run in the same facilities as a large fishmeal production installation. It is operated by the same personnel and uses—partly—the same equipment and infrastructure. This paper reviews the grounds for these decisions and the experience of this merger of a traditional fish melting industry and a more recent aluminum melting industry after 6 years of operation. The paper is written by the original entrepreneurs behind the company, who provide observations on how the aluminum industry in Iceland has evolved since the starting of Alur’s operation and what might be expected in the near future.
The GOES-R Series Geostationary Lightning Mapper (GLM)
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas M.
2011-01-01
The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), which will have just completed Critical Design Review and move forward into the construction phase of instrument development. The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (an engineering development unit and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based lightning networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms
NASA Astrophysics Data System (ADS)
Armitage, D. M.; Bacon, D. J.; Massey-Norton, J. T.; Miller, J. M.
1980-11-01
Groundwater is attractive as a potential low temperature energy source in residential space conditioning applications. When used in conjunction with a heat pump, ground water can serve as both a heat source and a heat sink. Major hydrogeologic aspects that affect system use include groundwater temperature and availability at shallow depths as these factors influence operational efficiency. Ground water quality is considered as it affects the performance and life expectancy of the water side heat exchanger. Environmental impacts related to groundwater heat pump system use are most influenced by water use and disposal methods. In general, recharge to the subsurface is recommended. Legal restrictions on system use are often stricter at the municipal and county levels than at state and federal levels. Computer simulations indicate that under a variety of climatologic conditions, groundwater heat pumps use less energy than conventional heating and cooling equipment. Life cycle cost comparisons with conventional equipment depend on alternative system choices and well cost options included in the groundwater heat pump system.
Shelf life of fresh meat products under LED or fluorescent lighting.
Steele, K S; Weber, M J; Boyle, E A E; Hunt, M C; Lobaton-Sulabo, A S; Cundith, C; Hiebert, Y H; Abrolat, K A; Attey, J M; Clark, S D; Johnson, D E; Roenbaugh, T L
2016-07-01
Enhanced pork loin chops, beef longissimus lumborum steaks, semimembranosus steaks (superficial and deep portions), ground beef, and ground turkey were displayed under light emitting diode (LED) and fluorescent (FLS) lighting in two multi-shelf, retail display cases with identical operating parameters. Visual and instrumental color, internal product temperature, case temperature, case cycling, thiobarbituric acid reactive substances (TBARS), and Enterobacteriaceae and aerobic plate counts were evaluated. Under LED, beef products (except the deep portion of beef semimembranosus steaks) showed less (P<0.05) visual discoloration. Pork loin chops had higher (P<0.05) L* values for LED lighting. Other than beef longissimus lumborum steaks, products displayed under LED lights had colder internal temperatures than products under FLS lights (P<0.05). Under LED, pork loin chops, ground turkey, and beef semimembranosus steaks had higher (P<0.05) values for TBARS. LED provides colder case and product temperatures, more case efficiency, and extended color life by at least 0.5d for longissimus and semimembranosus steaks; however, some LED cuts showed increased lipid oxidation. Copyright © 2016. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Garcia, Jerry L.; McCleskey, Carey M.; Bollo, Timothy R.; Rhodes, Russel E.; Robinson, John W.
2012-01-01
This paper presents a structured approach for achieving a compatible Ground System (GS) and Flight System (FS) architecture that is affordable, productive and sustainable. This paper is an extension of the paper titled "Approach to an Affordable and Productive Space Transportation System" by McCleskey et al. This paper integrates systems engineering concepts and operationally efficient propulsion system concepts into a structured framework for achieving GS and FS compatibility in the mid-term and long-term time frames. It also presents a functional and quantitative relationship for assessing system compatibility called the Architecture Complexity Index (ACI). This paper: (1) focuses on systems engineering fundamentals as it applies to improving GS and FS compatibility; (2) establishes mid-term and long-term spaceport goals; (3) presents an overview of transitioning a spaceport to an airport model; (4) establishes a framework for defining a ground system architecture; (5) presents the ACI concept; (6) demonstrates the approach by presenting a comparison of different GS architectures; and (7) presents a discussion on the benefits of using this approach with a focus on commonality.
LANDSAT-D ground segment operations plan, revision A
NASA Technical Reports Server (NTRS)
Evans, B.
1982-01-01
The basic concept for the utilization of LANDSAT ground processing resources is described. Only the steady state activities that support normal ground processing are addressed. This ground segment operations plan covers all processing of the multispectral scanner and the processing of thematic mapper through data acquisition and payload correction data generation for the LANDSAT 4 mission. The capabilities embedded in the hardware and software elements are presented from an operations viewpoint. The personnel assignments associated with each functional process and the mechanisms available for controlling the overall data flow are identified.
Lights Out Operations of a Space, Ground, Sensorweb
NASA Technical Reports Server (NTRS)
Chien, Steve; Tran, Daniel; Johnston, Mark; Davies, Ashley Gerard; Castano, Rebecca; Rabideau, Gregg; Cichy, Benjamin; Doubleday, Joshua; Pieri, David; Scharenbroich, Lucas;
2008-01-01
We have been operating an autonomous, integrated sensorweb linking numerous space and ground sensors in 24/7 operations since 2004. This sensorweb includes elements of space data acquisition (MODIS, GOES, and EO-1), space asset retasking (EO-1), integration of data acquired from ground sensor networks with on-demand ground processing of data into science products. These assets are being integrated using web service standards from the Open Geospatial Consortium. Future plans include extension to fixed and mobile surface and subsurface sea assets as part of the NSF's ORION Program.
Advanced user support programme—TEMPUS IML-2
NASA Astrophysics Data System (ADS)
Diefenbach, A.; Kratz, M.; Uffelmann, D.; Willnecker, R.
1995-05-01
The DLR Microgravity User Support Centre (MUSC) in Cologne has supported microgravity experiments in the field of materials and life sciences since 1979. In the beginning of user support activities, MUSC tasks comprised the basic ground and mission support, whereas present programmes are expanded on, for example, powerful telescience and advanced real time data acquisition capabilities for efficient experiment operation and monitoring. In view of the Space Station era, user support functions will increase further. Additional tasks and growing responsibilities must be covered, e.g. extended science support as well as experiment and facility operations. The user support for TEMPUS IML-2, under contract of the German Space Agency DARA, represents a further step towards the required new-generation of future ground programme. TEMPUS is a new highly sophisticated Spacelab multi-user facility for containerless processing of metallic samples. Electromagnetic levitation technique is applied and various experiment diagnosis tools are offered. Experiments from eight U.S. and German investigator groups have been selected for flight on the second International Microgravity Laboratory Mission IML-2 in 1994. Based on the experience gained in the research programme of the DLR Institute for Space Simulation since 1984, MUSC is performing a comprehensive experiment preparation programme in close collaboration with the investigator teams. Complex laboratory equipment has been built up for technology and experiment preparation development. New experiment techniques have been developed for experiment verification tests. The MUSC programme includes thorough analysis and testing of scientific requirements of every proposed experiment with respect to the facility hard- and software capabilities. In addition, studies on the experiment-specific operation requirements have been performed and suitable telescience scenarios were analysed. The present paper will give a survey of the TEMPUS user support tasks emphasizing the advanced science support activities, which are considered significant for future ground programmes.
NASA Technical Reports Server (NTRS)
1979-01-01
Deep Space Network progress in flight project support, tracking and data acquisition, research and technology, network engineering, hardware and software implementation, and operations is cited. Topics covered include: tracking and ground based navigation; spacecraft/ground communication; station control and operations technology; ground communications; and deep space stations.
[Dendrobium officinale stereoscopic cultivation method].
Si, Jin-Ping; Dong, Hong-Xiu; Liao, Xin-Yan; Zhu, Yu-Qiu; Li, Hui
2014-12-01
The study is aimed to make the most of available space of Dendrobium officinale cultivation facility, reveal the yield and functional components variation of stereoscopic cultivated D. officinale, and improve quality, yield and efficiency. The agronomic traits and yield variation of stereoscopic cultivated D. officinale were studied by operating field experiment. The content of polysaccharide and extractum were determined by using phenol-sulfuric acid method and 2010 edition of "Chinese Pharmacopoeia" Appendix X A. The results showed that the land utilization of stereoscopic cultivated D. officinale increased 2.74 times, the stems, leaves and their total fresh or dry weight in unit area of stereoscopic cultivated D. officinale were all heavier than those of the ground cultivated ones. There was no significant difference in polysaccharide content between stereoscopic cultivation and ground cultivation. But the extractum content and total content of polysaccharide and extractum were significantly higher than those of the ground cultivated ones. In additional, the polysaccharide content and total content of polysaccharide and extractum from the top two levels of stereoscopic culture matrix were significantly higher than that of the ones from the other levels and ground cultivation. Steroscopic cultivation can effectively improves the utilization of space and yield, while the total content of polysaccharides and extractum were significantly higher than that of the ground cultivated ones. The significant difference in Dendrobium polysaccharides among the plants from different height of stereo- scopic culture matrix may be associated with light factor.
NASA Astrophysics Data System (ADS)
Srivastava, Abhay; Tian, Ye; Qie, Xiushu; Wang, Dongfang; Sun, Zhuling; Yuan, Shanfeng; Wang, Yu; Chen, Zhixiong; Xu, Wenjing; Zhang, Hongbo; Jiang, Rubin; Su, Debin
2017-11-01
The performances of Beijing Lightning Network (BLNET) operated in Beijing-Tianjin-Hebei urban cluster area have been evaluated in terms of detection efficiency and relative location accuracy. A self-reference method has been used to show the detection efficiency of BLNET, for which fast antenna waveforms have been manually examined. Based on the fast antenna verification, the average detection efficiency of BLNET is 97.4% for intracloud (IC) flashes, 73.9% for cloud-to-ground (CG) flashes and 93.2% for the total flashes. Result suggests the CG detection of regional dense network is highly precise when the thunderstorm passes over the network; however it changes day to day when the thunderstorms are outside the network. Further, the CG stroke data from three different lightning location networks across Beijing are compared. The relative detection efficiency of World Wide Lightning Location Network (WWLLN) and Chinese Meteorology Administration - Lightning Detection Network (CMA-LDN, also known as ADTD) are approximately 12.4% (16.8%) and 36.5% (49.4%), respectively, comparing with fast antenna (BLNET). The location of BLNET is in middle, while WWLLN and CMA-LDN average locations are southeast and northwest, respectively. Finally, the IC pulses and CG return stroke pulses have been compared with the S-band Doppler radar. This type of study is useful to know the approximate situation in a region and improve the performance of lightning location networks in the absence of ground truth. Two lightning flashes occurred on tower in the coverage of BLNET show that the horizontal location error was 52.9 m and 250 m, respectively.
Automated Long - Term Scheduling for the SOFIA Airborne Observatory
NASA Technical Reports Server (NTRS)
Civeit, Thomas
2013-01-01
The NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German project to develop and operate a gyro-stabilized 2.5-meter telescope in a Boeing 747SP. SOFIA's first science observations were made in December 2010. During 2011, SOFIA accomplished 30 flights in the "Early Science" program as well as a deployment to Germany. The new observing period, known as Cycle 1, is scheduled to begin in 2012. It includes 46 science flights grouped in four multi-week observing campaigns spread through a 13-month span. Automation of the flight scheduling process offers a major challenge to the SOFIA mission operations. First because it is needed to mitigate its relatively high cost per unit observing time compared to space-borne missions. Second because automated scheduling techniques available for ground-based and space-based telescopes are inappropriate for an airborne observatory. Although serious attempts have been made in the past to solve part of the problem, until recently mission operations staff was still manually scheduling flights. We present in this paper a new automated solution for generating SOFIA long-term schedules that will be used in operations from the Cycle 1 observing period. We describe the constraints that should be satisfied to solve the SOFIA scheduling problem in the context of real operations. We establish key formulas required to efficiently calculate the aircraft course over ground when evaluating flight schedules. We describe the foundations of the SOFIA long-term scheduler, the constraint representation, and the random search based algorithm that generates observation and instrument schedules. Finally, we report on how the new long-term scheduler has been used in operations to date.
Test and training simulator for ground-based teleoperated in-orbit servicing
NASA Technical Reports Server (NTRS)
Schaefer, Bernd E.
1989-01-01
For the Post-IOC(In-Orbit Construction)-Phase of COLUMBUS it is intended to use robotic devices for the routine operations of ground-based teleoperated In-Orbit Servicing. A hardware simulator for verification of the relevant in-orbit operations technologies, the Servicing Test Facility, is necessary which mainly will support the Flight Control Center for the Manned Space-Laboratories for operational specific tasks like system simulation, training of teleoperators, parallel operation simultaneously to actual in-orbit activities and for the verification of the ground operations segment for telerobotics. The present status of definition for the facility functional and operational concept is described.
Cooling of Electric Motors Used for Propulsion on SCEPTOR
NASA Technical Reports Server (NTRS)
Christie, Robert J.; Dubois, Arthur; Derlaga, Joseph M.
2017-01-01
NASA is developing a suite of hybrid-electric propulsion technologies for aircraft. These technologies have the benefit of lower emissions, diminished noise, increased efficiency, and reduced fuel burn. These will provide lower operating costs for aircraft operators. Replacing internal combustion engines with distributed electric propulsion is a keystone of this technology suite, but presents many new problems to aircraft system designers. One of the problems is how to cool these electric motors without adding significant aerodynamic drag, cooling system weight or fan power. This paper discusses the options evaluated for cooling the motors on SCEPTOR (Scalable Convergent Electric Propulsion Technology and Operations Research): a project that will demonstrate Distributed Electric Propulsion technology in flight. Options for external and internal cooling, inlet and exhaust locations, ducting and adjustable cowling, and axial and centrifugal fans were evaluated. The final design was based on a trade between effectiveness, simplicity, robustness, mass and performance over a range of ground and flight operation environments.
A Personnel Launch System for safe and efficient manned operations
NASA Astrophysics Data System (ADS)
Petro, Andrew J.; Andrews, Dana G.; Wetzel, Eric D.
1990-10-01
Several Conceptual designs for a simple, rugged Personnel Launch System (PLS) are presented. This system could transport people to and from Low Earth Orbit (LEO) starting in the late 1990's using a new modular Advanced Launch System (ALS) developed for the Space Exploration Initiative (SEI). The PLS is designed to be one element of a new space transportation architecture including heavy-lift cargo vehicles, lunar transfer vehicles, and multiple-role spcecraft such as the current Space Shuttle. The primary role of the PLS would be to deliver crews embarking on lunar or planetary missions to the Space Station, but it would also be used for earth-orbit sortie missions, space rescue missions, and some satellite servicing missions. The PLS design takes advantage of emerging electronic and structures technologies to offer a robust vehicle with autonomous operating and quick turnaround capabilities. Key features include an intact abort capability anywhere in the operating envelope, and elimination of all toxic propellants to streamline ground operations.
The Ogallala Ground Water Contamination Superfund site was identified in 1989 through municipal well sampling. Tetrachloroethene (PCE), a solvent commonly used in dry cleaner operations, was the primary ground water target chemical of concern (COC) that..
Numerical operator calculus in higher dimensions
Beylkin, Gregory; Mohlenkamp, Martin J.
2002-01-01
When an algorithm in dimension one is extended to dimension d, in nearly every case its computational cost is taken to the power d. This fundamental difficulty is the single greatest impediment to solving many important problems and has been dubbed the curse of dimensionality. For numerical analysis in dimension d, we propose to use a representation for vectors and matrices that generalizes separation of variables while allowing controlled accuracy. Basic linear algebra operations can be performed in this representation using one-dimensional operations, thus bypassing the exponential scaling with respect to the dimension. Although not all operators and algorithms may be compatible with this representation, we believe that many of the most important ones are. We prove that the multiparticle Schrödinger operator, as well as the inverse Laplacian, can be represented very efficiently in this form. We give numerical evidence to support the conjecture that eigenfunctions inherit this property by computing the ground-state eigenfunction for a simplified Schrödinger operator with 30 particles. We conjecture and provide numerical evidence that functions of operators inherit this property, in which case numerical operator calculus in higher dimensions becomes feasible. PMID:12140360
Development of a Residential Ground-Source Integrated Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, C Keith; Baxter, Van D; Hern, Shawn
2013-01-01
A residential-size ground-source integrated heat pump (GSIHP) system has been developed and is currently being field tested. The system is a nominal 2-ton (7 kW) cooling capacity, variable-speed unit, which is multi-functional, e.g. space cooling, space heating, dedicated water heating, and simultaneous space cooling and water heating. High-efficiency brushless permanent-magnet (BPM) motors are used for the compressor, indoor blower, and pumps to obtain the highest component performance and system control flexibility. Laboratory test data were used to calibrate a vapor-compression simulation model (HPDM) for each of the four primary modes of operation. The model was used to optimize the internalmore » control options and to simulate the selected internal control strategies, such as controlling to a constant air supply temperature in the space heating mode and a fixed water temperature rise in water heating modes. Equipment performance maps were generated for each operation mode as functions of all independent variables for use in TRNSYS annual energy simulations. These were performed for the GSIHP installed in a well-insulated 2600 ft2(242 m2) house and connected to a vertical ground loop heat exchanger(GLHE). We selected a 13 SEER (3.8 CSPF )/7.7 HSPF (2.3 HSPF, W/W) ASHP unit with 0.90 Energy Factor (EF) resistance water heater as the baseline for energy savings comparisons. The annual energy simulations were conducted over five US climate zones. In addition, appropriate ground loop sizes were determined for each location to meet 10-year minimum and maximum design entering water temperatures (EWTs) to the equipment. The prototype GSIHP system was predicted to use 52 to 59% less energy than the baseline system while meeting total annual space conditioning and water heating loads.« less
Automated Platform Management System Scheduling
NASA Technical Reports Server (NTRS)
Hull, Larry G.
1990-01-01
The Platform Management System was established to coordinate the operation of platform systems and instruments. The management functions are split between ground and space components. Since platforms are to be out of contact with the ground more than the manned base, the on-board functions are required to be more autonomous than those of the manned base. Under this concept, automated replanning and rescheduling, including on-board real-time schedule maintenance and schedule repair, are required to effectively and efficiently meet Space Station Freedom mission goals. In a FY88 study, we developed several promising alternatives for automated platform planning and scheduling. We recommended both a specific alternative and a phased approach to automated platform resource scheduling. Our recommended alternative was based upon use of exactly the same scheduling engine in both ground and space components of the platform management system. Our phased approach recommendation was based upon evolutionary development of the platform. In the past year, we developed platform scheduler requirements and implemented a rapid prototype of a baseline platform scheduler. Presently we are rehosting this platform scheduler rapid prototype and integrating the scheduler prototype into two Goddard Space Flight Center testbeds, as the ground scheduler in the Scheduling Concepts, Architectures, and Networks Testbed and as the on-board scheduler in the Platform Management System Testbed. Using these testbeds, we will investigate rescheduling issues, evaluate operational performance and enhance the platform scheduler prototype to demonstrate our evolutionary approach to automated platform scheduling. The work described in this paper was performed prior to Space Station Freedom rephasing, transfer of platform responsibility to Code E, and other recently discussed changes. We neither speculate on these changes nor attempt to predict the impact of the final decisions. As a consequence some of our work and results may be outdated when this paper is published.
A Human-Autonomy Teaming Approach for a Flight-Following Task
NASA Technical Reports Server (NTRS)
Brandt, Summer L.; Lachter, Joel; Russell, Ricky; Shively, R. Jay
2017-01-01
Human involvement with increasingly autonomous systems must adjust to allow for a more dynamic relationship involving cooperation and teamwork. As part of an ongoing project to develop a framework for human autonomy teaming (HAT) in aviation, a study was conducted to evaluate proposed tenets of HAT. Participants performed a flight-following task at a ground station both with and without HAT features enabled. Overall, participants preferred the ground station with HAT features enabled over the station without the HAT features. Participants reported that the HAT displays and automation were preferred for keeping up with operationally important issues. Additionally, participants reported that the HAT displays and automation provided enough situation awareness to complete the task, reduced the necessary workload and were efficient. Overall, there was general agreement that HAT features supported teaming with the automation. These results will be used to refine and expand our proposed framework for human-autonomy teaming.
High-Payoff Space Transportation Design Approach with a Technology Integration Strategy
NASA Technical Reports Server (NTRS)
McCleskey, C. M.; Rhodes, R. E.; Chen, T.; Robinson, J.
2011-01-01
A general architectural design sequence is described to create a highly efficient, operable, and supportable design that achieves an affordable, repeatable, and sustainable transportation function. The paper covers the following aspects of this approach in more detail: (1) vehicle architectural concept considerations (including important strategies for greater reusability); (2) vehicle element propulsion system packaging considerations; (3) vehicle element functional definition; (4) external ground servicing and access considerations; and, (5) simplified guidance, navigation, flight control and avionics communications considerations. Additionally, a technology integration strategy is forwarded that includes: (a) ground and flight test prior to production commitments; (b) parallel stage propellant storage, such as concentric-nested tanks; (c) high thrust, LOX-rich, LOX-cooled first stage earth-to-orbit main engine; (d) non-toxic, day-of-launch-loaded propellants for upper stages and in-space propulsion; (e) electric propulsion and aero stage control.
Network of time-multiplexed optical parametric oscillators as a coherent Ising machine
NASA Astrophysics Data System (ADS)
Marandi, Alireza; Wang, Zhe; Takata, Kenta; Byer, Robert L.; Yamamoto, Yoshihisa
2014-12-01
Finding the ground states of the Ising Hamiltonian maps to various combinatorial optimization problems in biology, medicine, wireless communications, artificial intelligence and social network. So far, no efficient classical and quantum algorithm is known for these problems and intensive research is focused on creating physical systems—Ising machines—capable of finding the absolute or approximate ground states of the Ising Hamiltonian. Here, we report an Ising machine using a network of degenerate optical parametric oscillators (OPOs). Spins are represented with above-threshold binary phases of the OPOs and the Ising couplings are realized by mutual injections. The network is implemented in a single OPO ring cavity with multiple trains of femtosecond pulses and configurable mutual couplings, and operates at room temperature. We programmed a small non-deterministic polynomial time-hard problem on a 4-OPO Ising machine and in 1,000 runs no computational error was detected.
Native Vegetation Performance under a Solar PV Array at the National Wind Technology Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beatty, Brenda; Macknick, Jordan; McCall, James
Construction activities at most large-scale ground installations of photovoltaic (PV) arrays are preceded by land clearing and re-grading to uniform slope and smooth surface conditions to facilitate convenient construction access and facility operations. The impact to original vegetation is usually total eradication followed by installation of a gravel cover kept clear of vegetation by use of herbicides. The degree to which that total loss can be mitigated by some form of revegetation is a subject in its infancy, and most vegetation studies at PV development sites only address weed control and the impact of tall plants on the efficiency ofmore » the solar collectors from shading.This study seeks to address this void, advancing the state of knowledge of how constructed PV arrays affect ground-level environments, and to what degree plant cover, having acceptable characteristics within engineering constraints, can be re-established.« less
Results of an On-Going Long Duration Ground Test of the DS1 Flight Spare Engine
NASA Technical Reports Server (NTRS)
Anderson, John R.; Goodfellow, Keith D.; Polk, James E.; Shotwell, Robert F.; Rawlin, Vincent K.; Sovey, James S.; Patterson, Michael J.
2000-01-01
Ground testing of the DS1 night spare thruster (FT2) is presently being conducted. To date, the thruster has accumulated over 4500 hours of operation. Comparison of FT2 with the performance of the engineering model thruster 2 (EMT2) during the 8.2 khr test shows a transient, lasting for about 3000 hours, during which the discharge chamber efficiency decreases for both thrusters. The flow rates are 2% lower for FT2 than for EMT2 and the discharge chamber performance is 4.5% lower for FT2 during the transient. Sensitivity data obtained during the test show that the lower flow rate accounts for about half of the observed difference. After the initial transients decay, the performance of both thrusters is comparable with the exception of the electron backstreaming margin--which is 6 V lower for FT2.
Advanced Ground Systems Maintenance Prognostics Project
NASA Technical Reports Server (NTRS)
Perotti, Jose M.
2015-01-01
The project implements prognostics capabilities to predict when a component system or subsystem will no longer meet desired functional or performance criteria, called the end of life. The capability also provides an assessment of the remaining useful life of a hardware component. The project enables the delivery of system health advisories to ground system operators. This project will use modeling techniques and algorithms to assess components' health andpredict remaining life for such components. The prognostics capability being developed will beused:during the design phase and during pre/post operations to conduct planning and analysis ofsystem design, maintenance & logistics plans, and system/mission operations plansduring real-time operations to monitor changes to components' health and assess their impacton operations.This capability will be interfaced to Ground Operations' command and control system as a part ofthe AGSM project to help assure system availability and mission success. The initial modelingeffort for this capability will be developed for Liquid Oxygen ground loading applications.
File-Based Operations and CFDP On-Board Implementation
NASA Astrophysics Data System (ADS)
Herrera Alzu, Ignacio; Peran Mazon, Francisco; Gonzalo Palomo, Alfonso
2014-08-01
Since several years ago, there is an increasing interest among the space agencies, ESA in particular, in deploying File-based Operations (FbO) for Space missions. This aims at simplifying, from the Ground Segment's perspective, the access to the Space Segment and ultimately the overall operations. This is particularly important for deep Space missions, where the Ground-Space interaction can become too complex to handle just with traditional packet-based services. The use of a robust protocol for transferring files between Ground and Space is a key for the FbO approach, and the CCSDS File Delivery Protocol (CFDP) is nowadays the main candidate for doing this job. Both Ground and Space Segments need to be adapted for FbO, being the Ground Segment naturally closer to this concept. This paper focusses on the Space Segment. The main implications related to FbO/CFDP, the possible on-board implementations and the foreseen operations are described. The case of Euclid, the first ESA mission to be file-based operated with CFDP, is also analysed.
Advanced Ground Systems Maintenance Physics Models For Diagnostics Project
NASA Technical Reports Server (NTRS)
Perotti, Jose M.
2015-01-01
The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.
Achieving Operability via the Mission System Paradigm
NASA Technical Reports Server (NTRS)
Hammer, Fred J.; Kahr, Joseph R.
2006-01-01
In the past, flight and ground systems have been developed largely-independently, with the flight system taking the lead, and dominating the development process. Operability issues have been addressed poorly in planning, requirements, design, I&T, and system-contracting activities. In many cases, as documented in lessons-learned, this has resulted in significant avoidable increases in cost and risk. With complex missions and systems, operability is being recognized as an important end-to-end design issue. Never-the-less, lessons-learned and operability concepts remain, in many cases, poorly understood and sporadically applied. A key to effective application of operability concepts is adopting a 'mission system' paradigm. In this paradigm, flight and ground systems are treated, from an engineering and management perspective, as inter-related elements of a larger mission system. The mission system consists of flight hardware, flight software, telecom services, ground data system, testbeds, flight teams, science teams, flight operations processes, procedures, and facilities. The system is designed in functional layers, which span flight and ground. It is designed in response to project-level requirements, mission design and an operations concept, and is developed incrementally, with early and frequent integration of flight and ground components.
Ground Data System Risk Mitigation Techniques for Faster, Better, Cheaper Missions
NASA Technical Reports Server (NTRS)
Catena, John J.; Saylor, Rick; Casasanta, Ralph; Weikel, Craig; Powers, Edward I. (Technical Monitor)
2000-01-01
With the advent of faster, cheaper, and better missions, NASA Projects acknowledged that a higher level of risk was inherent and accepted with this approach. It was incumbent however upon each component of the Project whether spacecraft, payload, launch vehicle, or ground data system to ensure that the mission would nevertheless be an unqualified success. The Small Explorer (SMEX) program's ground data system (GDS) team developed risk mitigation techniques to achieve these goals starting in 1989. These techniques have evolved through the SMEX series of missions and are practiced today under the Triana program. These techniques are: (1) Mission Team Organization--empowerment of a closeknit ground data system team comprising system engineering, software engineering, testing, and flight operations personnel; (2) Common Spacecraft Test and Operational Control System--utilization of the pre-launch spacecraft integration system as the post-launch ground data system on-orbit command and control system; (3) Utilization of operations personnel in pre-launch testing--making the flight operations team an integrated member of the spacecraft testing activities at the beginning of the spacecraft fabrication phase; (4) Consolidated Test Team--combined system, mission readiness and operations testing to optimize test opportunities with the ground system and spacecraft; and (5). Reuse of Spacecraft, Systems and People--reuse of people, software and on-orbit spacecraft throughout the SMEX mission series. The SMEX ground system development approach for faster, cheaper, better missions has been very successful. This paper will discuss these risk management techniques in the areas of ground data system design, implementation, test, and operational readiness.
On sustainable and efficient design of ground-source heat pump systems
NASA Astrophysics Data System (ADS)
Grassi, W.; Conti, P.; Schito, E.; Testi, D.
2015-11-01
This paper is mainly aimed at stressing some fundamental features of the GSHP design and is based on a broad research we are performing at the University of Pisa. In particular, we focus the discussion on an environmentally sustainable approach, based on performance optimization during the entire operational life. The proposed methodology aims at investigating design and management strategies to find the optimal level of exploitation of the ground source and refer to other technical means to cover the remaining energy requirements and modulate the power peaks. The method is holistic, considering the system as a whole, rather than focusing only on some components, usually considered as the most important ones. Each subsystem is modeled and coupled to the others in a full set of equations, which is used within an optimization routine to reproduce the operative performances of the overall GSHP system. As a matter of fact, the recommended methodology is a 4-in-1 activity, including sizing of components, lifecycle performance evaluation, optimization process, and feasibility analysis. The paper reviews also some previous works concerning possible applications of the proposed methodology. In conclusion, we describe undergoing research activities and objectives of future works.
NASA Technical Reports Server (NTRS)
Solakiewiz, Richard; Koshak, William
2008-01-01
Continuous monitoring of the ratio of cloud flashes to ground flashes may provide a better understanding of thunderstorm dynamics, intensification, and evolution, and it may be useful in severe weather warning. The National Lighting Detection Network TM (NLDN) senses ground flashes with exceptional detection efficiency and accuracy over most of the continental United States. A proposed Geostationary Lightning Mapper (GLM) aboard the Geostationary Operational Environmental Satellite (GOES-R) will look at the western hemisphere, and among the lightning data products to be made available will be the fundamental optical flash parameters for both cloud and ground flashes: radiance, area, duration, number of optical groups, and number of optical events. Previous studies have demonstrated that the optical flash parameter statistics of ground and cloud lightning, which are observable from space, are significantly different. This study investigates a Bayesian network methodology for discriminating lightning flash type (ground or cloud) using the lightning optical data and ancillary GOES-R data. A Directed Acyclic Graph (DAG) is set up with lightning as a "root" and data observed by GLM as the "leaves." This allows for a direct calculation of the joint probability distribution function for the lighting type and radiance, area, etc. Initially, the conditional probabilities that will be required can be estimated from the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) together with NLDN data. Directly manipulating the joint distribution will yield the conditional probability that a lightning flash is a ground flash given the evidence, which consists of the observed lightning optical data [and possibly cloud data retrieved from the GOES-R Advanced Baseline Imager (ABI) in a more mature Bayesian network configuration]. Later, actual GLM and NLDN data can be used to refine the estimates of the conditional probabilities used in the model; i.e., the Bayesian network is a learning network. Methods for efficient calculation of the conditional probabilities (e.g., an algorithm using junction trees), finding data conflicts, goodness of fit, and dealing with missing data will also be addressed.
Cooling/grounding mount for hybrid circuits
NASA Technical Reports Server (NTRS)
Bagstad, B.; Estrada, R.; Mandel, H.
1981-01-01
Extremely short input and output connections, adequate grounding, and efficient heat removal for hybrid integrated circuits are possible with mounting. Rectangular clamp holds hybrid on printed-circuit board, in contact with heat-conductive ground plate. Clamp is attached to ground plane by bolts.
Pairwise Trajectory Management (PTM): Concept Description and Documentation
NASA Technical Reports Server (NTRS)
Jones, Kenneth M.; Graff, Thomas J.; Carreno, Victor; Chartrand, Ryan C.; Kibler, Jennifer L.
2018-01-01
Pairwise Trajectory Management (PTM) is an Interval Management (IM) concept that utilizes airborne and ground-based capabilities to enable the implementation of airborne pairwise spacing capabilities in oceanic regions. The goal of PTM is to use airborne surveillance and tools to manage an "at or greater than" inter-aircraft spacing. Due to the accuracy of Automatic Dependent Surveillance-Broadcast (ADS-B) information and the use of airborne spacing guidance, the minimum PTM spacing distance will be less than distances a controller can support with current automation systems that support oceanic operations. Ground tools assist the controller in evaluating the traffic picture and determining appropriate PTM clearances to be issued. Avionics systems provide guidance information that allows the flight crew to conform to the PTM clearance issued by the controller. The combination of a reduced minimum distance and airborne spacing management will increase the capacity and efficiency of aircraft operations at a given altitude or volume of airspace. This document provides an overview of the proposed application, a description of several key scenarios, a high level discussion of expected air and ground equipment and procedure changes, a description of a NASA human-machine interface (HMI) prototype for the flight crew that would support PTM operations, and initial benefits analysis results. Additionally, included as appendices, are the following documents: the PTM Operational Services and Environment Definition (OSED) document and a companion "Future Considerations for the Pairwise Trajectory Management (PTM) Concept: Potential Future Updates for the PTM OSED" paper, a detailed description of the PTM algorithm and PTM Limit Mach rules, initial PTM safety requirements and safety assessment documents, a detailed description of the design, development, and initial evaluations of the proposed flight crew HMI, an overview of the methodology and results of PTM pilot training requirements focus group and human-in-the-loop testing activities, and the PTM Pilot Guide.
2016-09-01
vehicle idling, energy strategy, energy behavior, energy reductions, behavior change 15. NUMBER OF PAGES 79 16. PRICE CODE 17. SECURITY...INFLUENCE HUMAN BEHAVIOR AND NEGATIVELY AFFECT ENERGY CONSUMPTION IN USMC GROUND UNITS DURING OPERATIONS by John A. Peters September 2016...NEGATIVELY AFFECT ENERGY CONSUMPTION IN USMC GROUND UNITS DURING OPERATIONS 5. FUNDING NUMBERS 6. AUTHOR(S) John A. Peters 7. PERFORMING
Achieving Lights-Out Operation of SMAP Using Ground Data System Automation
NASA Technical Reports Server (NTRS)
Sanders, Antonio
2013-01-01
The approach used in the SMAP ground data system to provide reliable, automated capabilities to conduct unattended operations has been presented. The impacts of automation on the ground data system architecture were discussed, including the three major automation patterns identified for SMAP and how these patterns address the operations use cases. The architecture and approaches used by SMAP will set the baseline for future JPL Earth Science missions.
Space Weather and the Ground-Level Solar Proton Events of the 23rd Solar Cycle
NASA Astrophysics Data System (ADS)
Shea, M. A.; Smart, D. F.
2012-10-01
Solar proton events can adversely affect space and ground-based systems. Ground-level events are a subset of solar proton events that have a harder spectrum than average solar proton events and are detectable on Earth's surface by cosmic radiation ionization chambers, muon detectors, and neutron monitors. This paper summarizes the space weather effects associated with ground-level solar proton events during the 23rd solar cycle. These effects include communication and navigation systems, spacecraft electronics and operations, space power systems, manned space missions, and commercial aircraft operations. The major effect of ground-level events that affect manned spacecraft operations is increased radiation exposure. The primary effect on commercial aircraft operations is the loss of high frequency communication and, at extreme polar latitudes, an increase in the radiation exposure above that experienced from the background galactic cosmic radiation. Calculations of the maximum potential aircraft polar route exposure for each ground-level event of the 23rd solar cycle are presented. The space weather effects in October and November 2003 are highlighted together with on-going efforts to utilize cosmic ray neutron monitors to predict high energy solar proton events, thus providing an alert so that system operators can possibly make adjustments to vulnerable spacecraft operations and polar aircraft routes.
Enhanced networks operations using the X Window System
NASA Technical Reports Server (NTRS)
Linares, Irving
1993-01-01
We propose an X Window Graphical User Interface (GUI) which is tailored to the operations of NASA GSFC's Network Control Center (NCC), the NASA Ground Terminal (NGT), the White Sands Ground Terminal (WSGT), and the Second Tracking and Data Relay Satellite System (TDRSS) Ground Terminal (STGT). The proposed GUI can also be easily extended to other Ground Network (GN) Tracking Stations due to its standardized nature.
Web Application Software for Ground Operations Planning Database (GOPDb) Management
NASA Technical Reports Server (NTRS)
Lanham, Clifton; Kallner, Shawn; Gernand, Jeffrey
2013-01-01
A Web application facilitates collaborative development of the ground operations planning document. This will reduce costs and development time for new programs by incorporating the data governance, access control, and revision tracking of the ground operations planning data. Ground Operations Planning requires the creation and maintenance of detailed timelines and documentation. The GOPDb Web application was created using state-of-the-art Web 2.0 technologies, and was deployed as SaaS (Software as a Service), with an emphasis on data governance and security needs. Application access is managed using two-factor authentication, with data write permissions tied to user roles and responsibilities. Multiple instances of the application can be deployed on a Web server to meet the robust needs for multiple, future programs with minimal additional cost. This innovation features high availability and scalability, with no additional software that needs to be bought or installed. For data governance and security (data quality, management, business process management, and risk management for data handling), the software uses NAMS. No local copy/cloning of data is permitted. Data change log/tracking is addressed, as well as collaboration, work flow, and process standardization. The software provides on-line documentation and detailed Web-based help. There are multiple ways that this software can be deployed on a Web server to meet ground operations planning needs for future programs. The software could be used to support commercial crew ground operations planning, as well as commercial payload/satellite ground operations planning. The application source code and database schema are owned by NASA.
Status of Brayton Cycle Power Conversion Development at NASA GRC
NASA Technical Reports Server (NTRS)
Mason, Lee S.; Shaltens, Richard K.; Dolce, James L.; Cataldo, Robert L.
2002-01-01
The NASA Glenn Research Center (GRC) is pursuing the development of Brayton cycle power conversion for various NASA initiatives. Brayton cycle power systems offer numerous advantages for space power generation including high efficiency, long life, high maturity, and broad scalability. Candidate mission applications include surface rovers and bases, advanced propulsion vehicles, and earth orbiting satellites. A key advantage is the ability for Brayton converters to span the wide range of power demands of future missions from several kilowatts to multi-megawatts using either solar, isotope, or reactor heat sources. Brayton technology has been under development by NASA since the early 1960's resulting in engine prototypes in the 2 to 15 kW-class that have demonstrated conversion efficiency of almost 30% and cumulative operation in excess of 40,000 hours. Present efforts at GRC are focusing on a 2 kW testbed as a proving ground for future component advances and operational strategies, and a 25 kW engine design as a modular building block for 100 kW-class electric propulsion and Mars surface power applications.
The Satellite Nuclear Power Station - An option for future power generation.
NASA Technical Reports Server (NTRS)
Williams, J. R.; Clement, J. D.
1973-01-01
A new concept in nuclear power generation is being explored which essentially eliminates major objections to nuclear power. The Satellite Nuclear Power Station, remotely operated in synchronous orbit, would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space and no radioactive materials would ever be returned to earth. Even the worst possible accident to such a plant should have negligible effect on the earth. An exploratory study of a satellite nuclear power station to provide 10,000 MWe to the earth has shown that the system could weigh about 20 million pounds and cost less than $1000/KWe. An advanced breeder reactor operating with an MHD power cycle could achieve an efficiency of about 50% with a 1100 K radiator temperature. If a hydrogen moderated gas core reactor is used, its breeding ratio of 1.10 would result in a fuel doubling time of a few years. A rotating fluidized bed or NERVA type reactor might also be used. The efficiency of power transmission from synchronous orbit would range from 70% to 80%.
Fabrication Infrastructure to Enable Efficient Exploration and Utilization of Space
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Fikes, John C.; McLemore, Carole A.; Manning, Curtis W.; Good, Jim
2007-01-01
Unlike past one-at-a-time mission approaches, system-of-systems infrastructures will be needed to enable ambitious scenarios for sustainable future space exploration and utilization. Fabrication infrastructure will be needed to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, vehicle components and crew systems. The fabrication infrastructure will need the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR Element supports the entire life cycle of Exploration by: reducing downtime due to failed components; decreasing risk to crew by recovering quickly from degraded operation of equipment; improving system functionality with advanced geometry capabilities; and enhancing mission safety by reducing assembly part counts of original designs where possible. This paper addresses the fabrication infrastructures that support efficient, affordable, reliable infrastructures for both space exploration systems and logistics; these infrastructures allow sustained, affordable and highly effective operations on the Moon, Mars and beyond.
Advanced Ground Systems Maintenance Functional Fault Models For Fault Isolation Project
NASA Technical Reports Server (NTRS)
Perotti, Jose M. (Compiler)
2014-01-01
This project implements functional fault models (FFM) to automate the isolation of failures during ground systems operations. FFMs will also be used to recommend sensor placement to improve fault isolation capabilities. The project enables the delivery of system health advisories to ground system operators.
Initial Closed Operation of the CELSS Test Facility Engineering Development Unit
NASA Technical Reports Server (NTRS)
Kliss, Mark
1995-01-01
As part of the NASA Controlled Ecological Life Support System (CELSS) Program, a CELSS Test Facility (CTF) is being planned for installation on the Space Station. The CTF will be used to provide data on the productivity and efficiency of a variety of CELSS higher plant crops grown sequentially from seed to harvest in the microgravity environment of the Space Station. Stringent environmental control will be maintained while fundamental crop productivity issues, such as carbon dioxide uptake and oxygen production rates, water transpiration rates, and biomass accumulation rates are obtained for comparison with ground-based data. In order to obtain an early realistic determination of the subsystem and system requirements necessary to provide the appropriate environmental conditions specified for CTF crop productivity experiments, an Engineering Development Unit (EDU) has been constructed and is undergoing initial operational testing at NASA Ames Research Center. The EDU is a ground-based testbed which will be used to characterize the integrated performance of major subsystem technologies, to evaluate hardware candidates and control strategies required for the CTF, and to further define the ability to meet CTF requirements within present Space Station constraints. This paper describes the initial closed operational testing of the EDU. Measured performance data are compared with the specified functional requirements and results from initial closed testing are presented. Plans for future science and technology testing are discussed.
Metabolic Expenditures During Extravehicular Activity: Spaceflight versus Ground-based Simulation
NASA Technical Reports Server (NTRS)
Klein, Jill; Conkin, Johnny; Gernhardt, Michael; Srinivasan, Ramachandra
2008-01-01
In general metabolic rates tend to be higher in NBL than in flight: a) Restraint method dependent; b) Significant differences between the NBL and flight for BRT and APFR (buoyancy effects); and c) No significant difference between NBL and flight for free float and SRMS/SSRMS operations. The total metabolic energy expenditure for a given task and for the EVA as a whole are similar between NBL and flight: a) NBL metabolic rates are higher, but training EVAs are constrained to 5 hours; and b) Flight metabolic rates are lower, but the EVAs are typically an hour or more longer in duration. NBL metabolic rates provide a useful operational tool for flight planning. Quantifying differences and similarities between training and flight improves knowledge for preparation of safe and efficient EVAs.
Application of parallelized software architecture to an autonomous ground vehicle
NASA Astrophysics Data System (ADS)
Shakya, Rahul; Wright, Adam; Shin, Young Ho; Momin, Orko; Petkovsek, Steven; Wortman, Paul; Gautam, Prasanna; Norton, Adam
2011-01-01
This paper presents improvements made to Q, an autonomous ground vehicle designed to participate in the Intelligent Ground Vehicle Competition (IGVC). For the 2010 IGVC, Q was upgraded with a new parallelized software architecture and a new vision processor. Improvements were made to the power system reducing the number of batteries required for operation from six to one. In previous years, a single state machine was used to execute the bulk of processing activities including sensor interfacing, data processing, path planning, navigation algorithms and motor control. This inefficient approach led to poor software performance and made it difficult to maintain or modify. For IGVC 2010, the team implemented a modular parallel architecture using the National Instruments (NI) LabVIEW programming language. The new architecture divides all the necessary tasks - motor control, navigation, sensor data collection, etc. into well-organized components that execute in parallel, providing considerable flexibility and facilitating efficient use of processing power. Computer vision is used to detect white lines on the ground and determine their location relative to the robot. With the new vision processor and some optimization of the image processing algorithm used last year, two frames can be acquired and processed in 70ms. With all these improvements, Q placed 2nd in the autonomous challenge.
USGS California Water Science Center water programs in California
Shulters, Michael V.
2005-01-01
California is threatened by many natural hazards—fire, floods, landslides, earthquakes. The State is also threatened by longer-term problems, such as hydrologic effects of climate change, and human-induced problems, such as overuse of ground water and degradation of water quality. The threats and problems are intensified by increases in population, which has risen to nearly 36.8 million. For the USGS California Water Science Center, providing scientific information to help address hazards, threats, and hydrologic issues is a top priority. To meet the demands of a growing California, USGS scientific investigations are helping State and local governments improve emergency management, optimize resources, collect contaminant-source and -mobility information, and improve surface- and ground-water quality. USGS hydrologic studies and data collection throughout the State give water managers quantifiable and detailed scientific information that can be used to plan for development and to protect and more efficiently manage resources. The USGS, in cooperation with state, local, and tribal agencies, operates more than 500 instrument stations, which monitor streamflow, ground-water levels, and surface- and ground-water constituents to help protect water supplies and predict the threats of natural hazards. The following are some of the programs implemented by the USGS, in cooperation with other agencies, to obtain and analyze information needed to preserve California's environment and resources.
NASA Astrophysics Data System (ADS)
Cerwin, Steve; Barnes, Julie; Kell, Scott; Walters, Mark
2003-09-01
This paper describes development and application of a novel method to accomplish real-time solid angle acoustic direction finding using two 8-element orthogonal microphone arrays. The developed prototype system was intended for localization and signature recognition of ground-based sounds from a small UAV. Recent advances in computer speeds have enabled the implementation of microphone arrays in many audio applications. Still, the real-time presentation of a two-dimensional sound field for the purpose of audio target localization is computationally challenging. In order to overcome this challenge, a crosspower spectrum phase1 (CSP) technique was applied to each 8-element arm of a 16-element cross array to provide audio target localization. In this paper, we describe the technique and compare it with two other commonly used techniques; Cross-Spectral Matrix2 and MUSIC3. The results show that the CSP technique applied to two 8-element orthogonal arrays provides a computationally efficient solution with reasonable accuracy and tolerable artifacts, sufficient for real-time applications. Additional topics include development of a synchronized 16-channel transmitter and receiver to relay the airborne data to the ground-based processor and presentation of test data demonstrating both ground-mounted operation and airborne localization of ground-based gunshots and loud engine sounds.
NASA Technical Reports Server (NTRS)
Takamura, Eduardo; Mangum, Kevin
2016-01-01
The National Aeronautics and Space Administration (NASA) invests millions of dollars in spacecraft and ground system development, and in mission operations in the pursuit of scientific knowledge of the universe. In recent years, NASA sent a probe to Mars to study the Red Planet's upper atmosphere, obtained high resolution images of Pluto, and it is currently preparing to find new exoplanets, rendezvous with an asteroid, and bring a sample of the asteroid back to Earth for analysis. The success of these missions is enabled by mission assurance. In turn, mission assurance is backed by information assurance. The information systems supporting NASA missions must be reliable as well as secure. NASA - like every other U.S. Federal Government agency - is required to manage the security of its information systems according to federal mandates, the most prominent being the Federal Information Security Management Act (FISMA) of 2002 and the legislative updates that followed it. Like the management of enterprise information technology (IT), federal information security management takes a "one-size fits all" approach for protecting IT systems. While this approach works for most organizations, it does not effectively translate into security of highly specialized systems such as those supporting NASA missions. These systems include command and control (C&C) systems, spacecraft and instrument simulators, and other elements comprising the ground segment. They must be carefully configured, monitored and maintained, sometimes for several years past the missions' initially planned life expectancy, to ensure the ground system is protected and remains operational without any compromise of its confidentiality, integrity and availability. Enterprise policies, processes, procedures and products, if not effectively tailored to meet mission requirements, may not offer the needed security for protecting the information system, and they may even become disruptive to mission operations. Certain protective measures for the general enterprise may not be as efficient within the ground segment. This is what the authors have concluded through observations and analysis of patterns identified from the various security assessments performed on NASA missions such as MAVEN, OSIRIS-REx, New Horizons and TESS, to name a few. The security audits confirmed that the framework for managing information system security developed by the National Institute of Standards and Technology (NIST) for the federal government, and adopted by NASA, is indeed effective. However, the selection of the technical, operational and management security controls offered by the NIST model - and how they are implemented - does not always fit the nature and the environment where the ground system operates in even though there is no apparent impact on mission success. The authors observed that unfit controls, that is, controls that are not necessarily applicable or sufficiently effective in protecting the mission systems, are often selected to facilitate compliance with security requirements and organizational expectations even if the selected controls offer minimum or non-existent protection. This paper identifies some of the standard security controls that can in fact protect the ground system, and which of them offer little or no benefit at all. It offers multiple scenarios from real security audits in which the controls are not effective without, of course, disclosing any sensitive information about the missions assessed. In addition to selection and implementation of controls, the paper also discusses potential impact of recent legislation such as the Federal Information Security Modernization Act (FISMA) of 2014 - aimed at the enterprise - on the ground system, and offers other recommendations to Information System Owners (ISOs).
Autonomous Sensorweb Operations for Integrated Space, In-Situ Monitoring of Volcanic Activity
NASA Technical Reports Server (NTRS)
Chien, Steve A.; Doubleday, Joshua; Kedar, Sharon; Davies, Ashley G.; Lahusen, Richard; Song, Wenzhan; Shirazi, Behrooz; Mandl, Daniel; Frye, Stuart
2010-01-01
We have deployed and demonstrated operations of an integrated space in-situ sensorweb for monitoring volcanic activity. This sensorweb includes a network of ground sensors deployed to the Mount Saint Helens volcano as well as the Earth Observing One spacecraft. The ground operations and space operations are interlinked in that ground-based intelligent event detections can cause the space segment to acquire additional data via observation requests and space-based data acquisitions (thermal imagery) can trigger reconfigurations of the ground network to allocate increased bandwidth to areas of the network best situated to observe the activity. The space-based operations are enabled by an automated mission planning and tasking capability which utilizes several Opengeospatial Consortium (OGC) Sensorweb Enablement (SWE) standards which enable acquiring data, alerts, and tasking using web services. The ground-based segment also supports similar protocols to enable seamless tasking and data delivery. The space-based segment also supports onboard development of data products (thermal summary images indicating areas of activity, quicklook context images, and thermal activity alerts). These onboard developed products have reduced data volume (compared to the complete images) which enables them to be transmitted to the ground more rapidly in engineering channels.
Centrifugal microfluidic platforms: advanced unit operations and applications.
Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N
2015-10-07
Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as liquid transport, metering, mixing and valving. The available unit operations cover the entire range of automated liquid handling requirements and enable efficient miniaturization, parallelization, and integration of assays.
Non-Toxic Reaction Control System for the Reusable First Stage Vehicle
NASA Technical Reports Server (NTRS)
Keith, E. L.; Rothschild, W. J.
1999-01-01
This paper presents the Boeing Reusable Space Systems vision of a Reaction Control System (RCS) for the Reusable First Stage (RFS) being considered as a replacement for the Solid Rocket Booster for the Space Shuttle. The requirement is to achieve reliable vehicle control during the upper atmospheric portion of the RFS trajectory while enabling more efficient ground operations, unhindered by constraints caused by operating with highly toxic RCS propellants. Boeing's objective for this effort is to develop a safer, more efficient and environmentally friendly RCS design approach that is suitable for the RFS concept of operations, including a low cost, efficient turnaround cycle. The Boeing RCS concept utilizes ethanol and liquid oxygen in place of the highly toxic, suspected carcinogen, ozone-depleting mono-methyl-hydrazine and highly toxic nitrogen tetroxide. The Space Shuttle Upgrade program, under the leadership of the NASA Johnson Space Flight Center, is currently developing liquid oxygen and ethanol (ethyl alcohol) technology for use as non-toxic orbital maneuvering system (OMS) and RCS. The development of this liquid oxygen and ethanol technology for the Space Shuttle offers a significant leverage to select much of the same technology for the RFS program. There are significant design and development issues involved with bringing this liquid oxygen and ethanol technology to a state of maturity suitable for an operational RCS. The risks associated with a new LOX and Ethanol RCS are mitigated by maintaining kerosene and hydrogen peroxide RCS technology as an alternative. These issues, presented within this paper, include managing the oxygen supply and achieving reliable ignition in the short pulse mode of engine operation. Performance, reliability and operations requirements are presented along with a specific RCS design concept to satisfying these requirements. The work reported in this paper was performed under NASA Marshall Space Flight Center Contract Number NAS8-97272 to define Reusable First Stage design concepts for the Space Shuttle.
Non-Toxic Reaction Control System for the Reusable First Stage Vehicle
NASA Technical Reports Server (NTRS)
Keith, E. L.; Rothschild, W. J.
1999-01-01
This paper presents the Boeing Reusable Space Systems vision of a Reaction Control System (RCS) for the Reusable First Stage (RFS) being considered as a replacement for the Solid Rocket Booster for the Space Shuttle. The requirement is to,achieve reliable vehicle control during the upper atmospheric portion of the RFS trajectory while enabling more efficient ground operations, unhindered by constraints caused by operating with highly toxic RCS propellants. Boeing's objective for this effort is to develop a safer, more efficient and environmentally friendly RCS design approach that is suitable for the RFS concept of operations, including a low cost, efficient turnaround cycle. The Boeing RCS concept utilizes ethanol and liquid oxygen in place of the highly toxic, suspected carcinogen, ozone- depleting mono-methyl-hydrazine and highly toxic nitrogen tetroxide. The Space Shuttle Upgrade program, under the leadership of the NASA Johnson Space Flight Center, is currently developing liquid oxygen and ethanol (ethyl alcohol) technology for use as non-toxic orbital maneuvering system (OMS) and RCS. The development of this liquid oxygen and ethanol technology for the Space Shuffle offers a significant leverage to select much of the same technology for the RFS program. There are significant design and development issues involved with bringing this liquid oxygen and ethanol technology to a state of maturity suitable for an operational RCS, The risks associated with a new LOX and Ethanol RCS are mitigated by maintaining kerosene and hydrogen peroxide RCS technology as an alternative. These issues, presented within this paper, include managing the oxygen supply and achieving reliable ignition in the short pulse mode of engine operation. Performance, reliability and operations requirements are presented along with a specific RCS design concept to satisfying these requirements. The work reported in this paper was performed under NASA Marshall Space Flight Center Contract to define Reusable First Stage design concepts for the Space Shuttle.
Turnaround operations analysis for OTV. Volume 2: Detailed technical report
NASA Technical Reports Server (NTRS)
1988-01-01
The objectives and accomplishments were to adapt and apply the newly created database of Shuttle/Centaur ground operations. Previously defined turnaround operations analyses were to be updated for ground-based OTVs (GBOTVs) and space-based OTVs (SBOTVs), design requirements identified for both OTV and Space Station accommodations hardware, turnaround operations costs estimated, and a technology development plan generated to develop the required capabilities. Technical and programmatic data were provided for NASA pertinent to OTV round and space operations requirements, turnaround operations, task descriptions, timelines and manpower requirements, OTV modular design and booster and Space Station interface requirements. SBOTV accommodations development schedule, cost and turnaround operations requirements, and a technology development plan for ground and space operations and space-based accommodations facilities and support equipment. Significant conclusion are discussed.
1987-09-01
understanding of the water resources system. Operation CVSIM operates on a daily time-step and incorporates both surface and ground -water responses...subunits and calculates riparian evapotranspiration, pumpage, recharge, storage, and outflow. SEASID Operates Seaside coastal ground -water basin and...diversions. Reservoir effects included controlled releases to the river, spills, evaporation, and leakage. Ground -water flow in the upper watershed is
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Ground Safety § 417.403 General. (a) Public safety. A launch operator must... with launch processing and post-launch operations. (b) Ground safety analysis. A launch operator must...
The Aeronautical Data Link: Taxonomy, Architectural Analysis, and Optimization
NASA Technical Reports Server (NTRS)
Morris, A. Terry; Goode, Plesent W.
2002-01-01
The future Communication, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) System will rely on global satellite navigation, and ground-based and satellite based communications via Multi-Protocol Networks (e.g. combined Aeronautical Telecommunications Network (ATN)/Internet Protocol (IP)) to bring about needed improvements in efficiency and safety of operations to meet increasing levels of air traffic. This paper will discuss the development of an approach that completely describes optimal data link architecture configuration and behavior to meet the multiple conflicting objectives of concurrent and different operations functions. The practical application of the approach enables the design and assessment of configurations relative to airspace operations phases. The approach includes a formal taxonomic classification, an architectural analysis methodology, and optimization techniques. The formal taxonomic classification provides a multidimensional correlation of data link performance with data link service, information protocol, spectrum, and technology mode; and to flight operations phase and environment. The architectural analysis methodology assesses the impact of a specific architecture configuration and behavior on the local ATM system performance. Deterministic and stochastic optimization techniques maximize architectural design effectiveness while addressing operational, technology, and policy constraints.
Considering social and environmental concerns as reservoir operating objectives
NASA Astrophysics Data System (ADS)
Tilmant, A.; Georis, B.; Doulliez, P.
2003-04-01
Sustainability principles are now widely recognized as key criteria for water resource development schemes, such as hydroelectric and multipurpose reservoirs. Development decisions no longer rely solely on economic grounds, but also consider environmental and social concerns through the so-called environmental and social impact assessments. The objective of this paper is to show that environmental and social concerns can also be addressed in the management (operation) of existing or projected reservoir schemes. By either adequately exploiting the results of environmental and social impact assessments, or by carrying out survey of water users, experts and managers, efficient (Pareto optimal) reservoir operating rules can be derived using flexible mathematical programming techniques. By reformulating the problem as a multistage flexible constraint satisfaction problem, incommensurable and subjective operating objectives can contribute, along with classical economic objectives, to the determination of optimal release decisions. Employed in a simulation mode, the results can be used to assess the long-term impacts of various operating rules on the social well-being of affected populations as well as on the integrity of the environment. The methodology is illustrated with a reservoir reallocation problem in Chile.
Intelligent resources for satellite ground control operations
NASA Technical Reports Server (NTRS)
Jones, Patricia M.
1994-01-01
This paper describes a cooperative approach to the design of intelligent automation and describes the Mission Operations Cooperative Assistant for NASA Goddard flight operations. The cooperative problem solving approach is being explored currently in the context of providing support for human operator teams and also in the definition of future advanced automation in ground control systems.
Assessment of future natural gas vehicle concepts
NASA Astrophysics Data System (ADS)
Groten, B.; Arrigotti, S.
1992-10-01
The development of Natural Gas Vehicles is progressing rapidly under the stimulus of recent vehicle emission regulations. The development is following what can be viewed as a three step progression. In the first step, contemporary gasoline or diesel fueled automobiles are retrofitted with equipment enabling the vehicle to operate on either natural gas or standard liquid fuels. The second step is the development of vehicles which utilize traditional internal combustion engines that have been modified to operate exclusively on natural gas. These dedicated natural gas vehicles operate more efficiently and have lower emissions than the dual fueled vehicles. The third step is the redesigning, from the ground up, of a vehicle aimed at exploiting the advantages of natural gas as an automotive fuel while minimizing its disadvantages. The current report is aimed at identifying the R&D needs in various fuel storage and engine combinations which have potential for providing increased efficiency, reduced emissions, and reductions in vehicle weight and size. Fuel suppliers, automobile and engine manufacturers, many segments of the natural gas and other industries, and regulatory authorities will influence or be affected by the development of such a third generation vehicle, and it is recommended that GRI act to bring these groups together in the near future to begin, developing the focus on a 'designed-for-natural-gas' vehicle.
Selective Internal Heat Distribution in Modified Trombe Wall
NASA Astrophysics Data System (ADS)
Szyszka, Jerzy; Kogut, Janusz; Skrzypczak, Izabela; Kokoszka, Wanda
2017-12-01
At present, the requirements for thermal insulation of the external walls in buildings are being increased. There is a need to reduce energy consumption for heating rooms during the winter season. This may be achieved by increasing the thermal resistance of the outer partitions, using solutions that utilize either recuperation or solar radiation. The most popular systems include either solar collectors, or heat pump links or ground exchangers. Trombe walls (TW) are a very promising passive heating system, which requires little or no effort to operate, and may be very convenient in different climate conditions. A typical TW consists of a masonry wall painted a dark, heat absorbing paint colour and faced with a single or double layer of glass. The principle of operation is based on the photothermal conversion of solar radiation. There are various modifications of TW. They may improve the energy efficiency in relation to the climate conditions in which they operate. The hybrid solutions are also known. The efficiency of walls is related to the use of proper materials. In TW, the compromise should be sought between the thermal resistance and the ability to distribute heat from the absorbed energy of solar radiation. The paper presents an overview of the most commonly used solutions and discusses its own concept dedicated to the climate conditions of Central Europe.
Review of factors affecting aircraft wet runway performance
NASA Technical Reports Server (NTRS)
Yager, T. J.
1983-01-01
Problems associated with aircraft operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from investigations conducted at the Langley Aircraft Landing Loads and Traction Facility and from tests with instrumented ground vehicles and aircraft are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.
NASA Research on an Integrated Concept for Airport Surface Operations Management
NASA Technical Reports Server (NTRS)
Gupta, Gautam
2012-01-01
Surface operations at airports in the US are based on tactical operations, where departure aircraft primarily queue up and wait at the departure runways. There have been attempts to address the resulting inefficiencies with both strategic and tactical tools for metering departure aircraft. This presentation gives an overview of Spot And Runway Departure Advisor with Collaborative Decision Making (SARDA-CDM): an integrated strategic and tactical system for improving surface operations by metering departure aircraft. SARDA-CDM is the augmentation of ground and local controller advisories through sharing of flight movement and related operations information between airport operators, flight operators and air traffic control at the airport. The goal is to enhance the efficiency of airport surface operations by exchanging information between air traffic control and airline operators, while minimizing adverse effects on stakeholders and passengers. The presentation motivates the need for departure metering, and provides a brief background on the previous work on SARDA. Then, the concept of operations for SARDA-CDM is described. Then the preliminary results from testing the concept in a real-time automated simulation environment are described. Results indicate benefits such as reduction in taxiing delay and fuel consumption. Further, the preliminary implementation of SARDA-CDM seems robust for two minutes delay in gate push-back times.
Behavior analysis of container ship in maritime accident in order to redefine the operating criteria
NASA Astrophysics Data System (ADS)
Ancuţa, C.; Stanca, C.; Andrei, C.; Acomi, N.
2017-08-01
In order to enhance the efficiency of maritime transport, container ships operators proceeded to increase the sizes of ships. The latest generation of ships in operation has 19,000 TEU capacity and the perspective is 21,000 TEU within the next years. The increasing of the sizes of container ships involves risks of maritime accidents occurrences. Nowadays, the general rules on operational security, tend to be adjusted as a result of the evaluation for each vessel. To create the premises for making an informed decision, the captain have to be aware of ships behavior in such situations. Not less important is to assure permanent review of the procedures for operation of ship, including the specific procedures in special areas, confined waters or separation schemes. This paper aims at analysing the behavior of the vessel and the respond of the structure of a container ship in maritime accident, in order to redefine the operating criteria. The method selected by authors for carrying out the research is computer simulations. Computer program provides the responses of the container ship model in various situations. Therefore, the simulations allow acquisition of a large category of data, in the scope of improving the prevention of accidents or mitigation of effects as much as possible. Simulations and assessments of certain situations that the ship might experience will be carried out to redefine the operating criteria. The envisaged scenarios are: introducing of maneuver speed for specific areas with high risk of collision or grounding, introducing of flooding scenarios of some compartments in loading programs, conducting of complex simulations in various situations for each vessel type. The main results of this work are documented proposals for operating criteria, intended to improve the safety in case of marine accidents, collisions and groundings. Introducing of such measures requires complex cost benefit analysis, that should not neglect the extreme economic impact that may result from such casualties.
Some psychological and engineering aspects of the extravehicular activity of astronauts.
Khrunov, E V
1973-01-01
One of the main in-flight problems being fulfilled by astronauts is the preparation for and realization of egress into open space for the purpose of different kinds of extravehicular activity, such as, the performance of scientific experiments, repairing and dismantling operations etc. The astronaut's activity outside the space vehicle is the most difficult item of the space flight programme, which is complicated by a number of space factors affecting a man, viz. dynamic weightlessness, work in a space suit under conditions of excessive pressure, difficulties of space orientation etc. The peculiarities mentioned require special training of the cosmonaut. The physical training involves a series of exercises forming the body-control habits necessary for work in a state of weightlessness. In a new kind of training use is made of equipment simulating the state of weightlessness. From analysis of the available data and the results of my own investigations during ground training and the Soyuz 4 and 5 flights one can establish the following peculiarities of the astronaut's extravehicular activity: (1) Operator response lag in the planned algorithm; (ii) systematic appearance of some stereotype errors in the mounting and dismantling of the outer equipment and in scientific-technical experiments; (iii) a high degree of emotional strain and 30-35% decrease in in-flight working capacity of the astronaut compared with the ground training data; (iv) a positive influence of space adaptation on the cosmonaut and the efficiency of his work in open space; (v) the necessity for further engineering and psychological analysis of the astronaut's activity under conditions of the long space flight of the multi-purpose orbital station. One of the main reasons for the above peculiarities is the violation of the control-coordination functions of the astronaut in the course of the dynamical operations. The paper analyses the extravehicular activity of the astronaut and presents some recommendations for its more efficient realization. Proposals are given concerning the complex engineering, psychological and technical investigations to be made during in-flight egress.
46 CFR 111.05-13 - Grounding connection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-13 Grounding... power sources operating in parallel in the system. ...
Systems Architecture for Fully Autonomous Space Missions
NASA Technical Reports Server (NTRS)
Esper, Jamie; Schnurr, R.; VanSteenberg, M.; Brumfield, Mark (Technical Monitor)
2002-01-01
The NASA Goddard Space Flight Center is working to develop a revolutionary new system architecture concept in support of fully autonomous missions. As part of GSFC's contribution to the New Millenium Program (NMP) Space Technology 7 Autonomy and on-Board Processing (ST7-A) Concept Definition Study, the system incorporates the latest commercial Internet and software development ideas and extends them into NASA ground and space segment architectures. The unique challenges facing the exploration of remote and inaccessible locales and the need to incorporate corresponding autonomy technologies within reasonable cost necessitate the re-thinking of traditional mission architectures. A measure of the resiliency of this architecture in its application to a broad range of future autonomy missions will depend on its effectiveness in leveraging from commercial tools developed for the personal computer and Internet markets. Specialized test stations and supporting software come to past as spacecraft take advantage of the extensive tools and research investments of billion-dollar commercial ventures. The projected improvements of the Internet and supporting infrastructure go hand-in-hand with market pressures that provide continuity in research. By taking advantage of consumer-oriented methods and processes, space-flight missions will continue to leverage on investments tailored to provide better services at reduced cost. The application of ground and space segment architectures each based on Local Area Networks (LAN), the use of personal computer-based operating systems, and the execution of activities and operations through a Wide Area Network (Internet) enable a revolution in spacecraft mission formulation, implementation, and flight operations. Hardware and software design, development, integration, test, and flight operations are all tied-in closely to a common thread that enables the smooth transitioning between program phases. The application of commercial software development techniques lays the foundation for delivery of product-oriented flight software modules and models. Software can then be readily applied to support the on-board autonomy required for mission self-management. An on-board intelligent system, based on advanced scripting languages, facilitates the mission autonomy required to offload ground system resources, and enables the spacecraft to manage itself safely through an efficient and effective process of reactive planning, science data acquisition, synthesis, and transmission to the ground. Autonomous ground systems in turn coordinate and support schedule contact times with the spacecraft. Specific autonomy software modules on-board include mission and science planners, instrument and subsystem control, and fault tolerance response software, all residing within a distributed computing environment supported through the flight LAN. Autonomy also requires the minimization of human intervention between users on the ground and the spacecraft, and hence calls for the elimination of the traditional operations control center as a funnel for data manipulation. Basic goal-oriented commands are sent directly from the user to the spacecraft through a distributed internet-based payload operations "center". The ensuing architecture calls for the use of spacecraft as point extensions on the Internet. This paper will detail the system architecture implementation chosen to enable cost-effective autonomous missions with applicability to a broad range of conditions. It will define the structure needed for implementation of such missions, including software and hardware infrastructures. The overall architecture is then laid out as a common thread in the mission life cycle from formulation through implementation and flight operations.
Ground operation of robotics on Space Station Freedom
NASA Technical Reports Server (NTRS)
Wojcik, Z. Alex; Hunter, David G.; Cantin, Marc R.
1993-01-01
This paper reflects work carried out on Ground Operated Telerobotics (GOT) in 1992 to refine further the ideas, procedures, and technologies needed to test the procedures in a high latency environment, and to integrate GOT into Space Station Freedom operations. Space Station Freedom (SSF) will be in operation for 30 years, and will depend on robots to carry out a significant part of the assembly, maintenance, and utilization workload. Current plans call for on-orbit robotics to be operated by on-board crew members. This approach implies that on-orbit robotics operations use up considerable crew time, and that these operations cannot be carried out when SSF is unmanned. GOT will allow robotic operations to be operated from the ground, with on-orbit crew interventions only when absolutely required. The paper reviews how GOT would be implemented, how GOT operations would be planned and supported, and reviews GOT issues, critical success factors, and benefits.
Ground operation of robotics on Space Station Freedom
NASA Astrophysics Data System (ADS)
Wojcik, Z. Alex; Hunter, David G.; Cantin, Marc R.
1993-03-01
This paper reflects work carried out on Ground Operated Telerobotics (GOT) in 1992 to refine further the ideas, procedures, and technologies needed to test the procedures in a high latency environment, and to integrate GOT into Space Station Freedom operations. Space Station Freedom (SSF) will be in operation for 30 years, and will depend on robots to carry out a significant part of the assembly, maintenance, and utilization workload. Current plans call for on-orbit robotics to be operated by on-board crew members. This approach implies that on-orbit robotics operations use up considerable crew time, and that these operations cannot be carried out when SSF is unmanned. GOT will allow robotic operations to be operated from the ground, with on-orbit crew interventions only when absolutely required. The paper reviews how GOT would be implemented, how GOT operations would be planned and supported, and reviews GOT issues, critical success factors, and benefits.
A manpower scheduling heuristic for aircraft maintenance application
NASA Astrophysics Data System (ADS)
Sze, San-Nah; Sze, Jeeu-Fong; Chiew, Kang-Leng
2012-09-01
This research studies a manpower scheduling for aircraft maintenance, focusing on in-flight food loading operation. A group of loading teams with flexible shifts is required to deliver and upload packaged meals from the ground kitchen to aircrafts in multiple trips. All aircrafts must be served within predefined time windows. The scheduling process takes into account of various constraints such as meal break allocation, multi-trip traveling and food exposure time limit. Considering the aircrafts movement and predefined maximum working hours for each loading team, the main objective of this study is to form an efficient roster by assigning a minimum number of loading teams to the aircrafts. We proposed an insertion based heuristic to generate the solutions in a short period of time for large instances. This proposed algorithm is implemented in various stages for constructing trips due to the presence of numerous constraints. The robustness and efficiency of the algorithm is demonstrated in computational results. The results show that the insertion heuristic more efficiently outperforms the company's current practice.
Ran, Niva A.; Roland, Steffen; Love, John A.; ...
2017-07-19
Here, a long standing question in organic electronics concerns the effects of molecular orientation at donor/acceptor heterojunctions. Given a well-controlled donor/acceptor bilayer system, we uncover the genuine effects of molecular orientation on charge generation and recombination. These effects are studied through the point of view of photovoltaics—however, the results have important implications on the operation of all optoelectronic devices with donor/acceptor interfaces, such as light emitting diodes and photodetectors. Our findings can be summarized by two points. First, devices with donor molecules face-on to the acceptor interface have a higher charge transfer state energy and less non-radiative recombination, resulting inmore » larger open-circuit voltages and higher radiative efficiencies. Second, devices with donor molecules edge-on to the acceptor interface are more efficient at charge generation, attributed to smaller electronic coupling between the charge transfer states and the ground state, and lower activation energy for charge generation.« less
Application of the conjugate-gradient method to ground-water models
Manteuffel, T.A.; Grove, D.B.; Konikow, Leonard F.
1984-01-01
The conjugate-gradient method can solve efficiently and accurately finite-difference approximations to the ground-water flow equation. An aquifer-simulation model using the conjugate-gradient method was applied to a problem of ground-water flow in an alluvial aquifer at the Rocky Mountain Arsenal, Denver, Colorado. For this application, the accuracy and efficiency of the conjugate-gradient method compared favorably with other available methods for steady-state flow. However, its efficiency relative to other available methods depends on the nature of the specific problem. The main advantage of the conjugate-gradient method is that it does not require the use of iteration parameters, thereby eliminating this partly subjective procedure. (USGS)
NASA Technical Reports Server (NTRS)
Bateman, Monte; Mach, Douglas; Blakeslee, Richard J.; Koshak, William
2018-01-01
As part of the calibration/validation (cal/val) effort for the Geostationary Lightning Mapper (GLM) on GOES-16, we need to assess instrument performance (detection efficiency and accuracy). One major effort is to calculate the detection efficiency of GLM by comparing to multiple ground-based systems. These comparisons will be done pair-wise between GLM and each other source. A complication in this process is that the ground-based systems sense different properties of the lightning signal than does GLM (e.g., RF vs. optical). Also, each system has a different time and space resolution and accuracy. Preliminary results indicate that GLM is performing at or above its specification.
Validation of spatially resolved all sky imager derived DNI nowcasts
NASA Astrophysics Data System (ADS)
Kuhn, Pascal; Wilbert, Stefan; Schüler, David; Prahl, Christoph; Haase, Thomas; Ramirez, Lourdes; Zarzalejo, Luis; Meyer, Angela; Vuilleumier, Laurent; Blanc, Philippe; Dubrana, Jean; Kazantzidis, Andreas; Schroedter-Homscheidt, Marion; Hirsch, Tobias; Pitz-Paal, Robert
2017-06-01
Mainly due to clouds, Direct Normal Irradiance (DNI) displays short-term local variabilities affecting the efficiency of concentrating solar power (CSP) plants. To enable efficient plant operation, DNI nowcasts in high spatial and temporal resolutions for 15 to 30 minutes ahead are required. Ground-based All Sky Imagers (ASI) can be used to detect, track and predict 3D positions of clouds possibly shading the plant. The accuracy and reliability of these ASI-derived DNI nowcasts must be known to allow its application in solar power plants. Within the framework of the European project DNICast, an ASI-based nowcasting system was developed and implemented at the Plataforma Solar de Almería (PSA). Its validation methodology and validation results are presented in this work. The nowcasting system outperforms persistence forecasts for volatile irradiance situations.
Laser, optical and thermomechanical properties of Yb-doped fluorapatite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, S.A.; Smith, L.K.; DeLoach, L.D.
The laser performance of Yb-doped fluorapatite (Ca[sub 5](PO[sub 4])[sub 3]F or FAP), is assessed by employing a Ti:sapphire laser operating at 905 nm as the pump source. The authors have measured slope efficiencies to be as high as 79%; the residual decrement from the quantum defect-limited efficiency of 87% is accounted for by the presence of passive loss at the 1,043-nm laser wavelength. The important spectral properties of Yb:FAP were evaluated, including the absorption and emission cross sections, excited-state lifetime, and ground-state energy-level splitting. The emission and absorption cross sections of Yb[sup 3+] in FAP are found to be substantiallymore » larger than those of other Yb-doped media. The thermal, physical, and optical properties of the FAP host are reported as well.« less
Advanced Autonomous Systems for Space Operations
NASA Astrophysics Data System (ADS)
Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.
2002-01-01
New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not otherwise possible, as well as many more efficient and low cost applications. In addition, utilizing component and system modeling and reasoning capabilities, autonomous systems will play an increasing role in ground operations for space missions, where they will both reduce the human workload as well as provide greater levels of monitoring and system safety. This paper will focus specifically on new and innovative software for remote, autonomous, space systems flight operations. Topics to be presented will include a brief description of key autonomous control concepts, the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New on-board software for autonomous science data acquisition for planetary exploration will be described, as well as advanced systems for safe planetary landings. A new multi-agent architecture that addresses some of the challenges of autonomous systems will be presented. Autonomous operation of ground systems will also be considered, including software for autonomous in-situ propellant production and management, and closed- loop ecological life support systems (CELSS). Finally, plans and directions for the future will be discussed.
The IXV Ground Segment design, implementation and operations
NASA Astrophysics Data System (ADS)
Martucci di Scarfizzi, Giovanni; Bellomo, Alessandro; Musso, Ivano; Bussi, Diego; Rabaioli, Massimo; Santoro, Gianfranco; Billig, Gerhard; Gallego Sanz, José María
2016-07-01
The Intermediate eXperimental Vehicle (IXV) is an ESA re-entry demonstrator that performed, on the 11th February of 2015, a successful re-entry demonstration mission. The project objectives were the design, development, manufacturing and on ground and in flight verification of an autonomous European lifting and aerodynamically controlled re-entry system. For the IXV mission a dedicated Ground Segment was provided. The main subsystems of the IXV Ground Segment were: IXV Mission Control Center (MCC), from where monitoring of the vehicle was performed, as well as support during pre-launch and recovery phases; IXV Ground Stations, used to cover IXV mission by receiving spacecraft telemetry and forwarding it toward the MCC; the IXV Communication Network, deployed to support the operations of the IXV mission by interconnecting all remote sites with MCC, supporting data, voice and video exchange. This paper describes the concept, architecture, development, implementation and operations of the ESA Intermediate Experimental Vehicle (IXV) Ground Segment and outlines the main operations and lessons learned during the preparation and successful execution of the IXV Mission.
The Geostationary Lightning Mapper: Its Performance and Calibration
NASA Astrophysics Data System (ADS)
Christian, H. J., Jr.
2015-12-01
The Geostationary Lightning Mapper (GLM) has been developed to be an operational instrument on the GOES-R series of spacecraft. The GLM is a unique instrument, unlike other meteorological instruments, both in how it operates and in the information content that it provides. Instrumentally, it is an event detector, rather than an imager. While processing almost a billion pixels per second with 14 bits of resolution, the event detection process reduces the required telemetry bandwidth by almost 105, thus keeping the telemetry requirements modest and enabling efficient ground processing that leads to rapid data distribution to operational users. The GLM was designed to detect about 90 percent of the total lightning flashes within its almost hemispherical field of view. Based on laboratory calibration, we expect the on-orbit detection efficiency to be closer to 85%, making it the highest performing, large area coverage total lightning detector. It has a number of unique design features that will enable it have near uniform special resolution over most of its field of view and to operate with minimal impact on performance during solar eclipses. The GLM has no dedicated on-orbit calibration system, thus the ground-based calibration provides the bases for the predicted radiometric performance. A number of problems were encountered during the calibration of Flight Model 1. The issues arouse from GLM design features including its wide field of view, fast lens, the narrow-band interference filters located in both object and collimated space and the fact that the GLM is inherently a event detector yet the calibration procedures required both calibration of images and events. The GLM calibration techniques were based on those developed for the Lightning Imaging Sensor calibration, but there are enough differences between the sensors that the initial GLM calibration suggested that it is significantly more sensitive than its design parameters. The calibration discrepancies have been resolved and will be discussed. Absolute calibration will be verified on-orbit using vicarious cloud reflections. In addition to details of the GLM calibration, the presentation will address the unique design of the GLM, its features, capabilities and performance.
The carbon footprint of Australian ambulance operations.
Brown, Lawrence H; Canyon, Deon V; Buettner, Petra G; Crawford, J Mac; Judd, Jenni
2012-12-01
To determine the greenhouse gas emissions associated with the energy consumption of Australian ambulance operations, and to identify the predominant energy sources that contribute to those emissions. A two-phase study of operational and financial data from a convenience sample of Australian ambulance operations to inventory their energy consumption and greenhouse gas emissions for 1 year. State- and territory-based ambulance systems serving 58% of Australia's population and performing 59% of Australia's ambulance responses provided data for the study. Emissions for the participating systems totalled 67 390 metric tons of carbon dioxide equivalents. For ground ambulance operations, emissions averaged 22 kg of carbon dioxide equivalents per ambulance response, 30 kg of carbon dioxide equivalents per patient transport and 3 kg of carbon dioxide equivalents per capita. Vehicle fuels accounted for 58% of the emissions from ground ambulance operations, with the remainder primarily attributable to electricity consumption. Emissions from air ambulance transport were nearly 200 times those for ground ambulance transport. On a national level, emissions from Australian ambulance operations are estimated to be between 110 000 and 120 000 tons of carbon dioxide equivalents each year. Vehicle fuels are the primary source of emissions for ground ambulance operations. Emissions from air ambulance transport are substantially higher than those for ground ambulance transport. © 2012 The Authors. EMA © 2012 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
An operations concept methodology to achieve low-cost mission operations
NASA Technical Reports Server (NTRS)
Ledbetter, Kenneth W.; Wall, Stephen D.
1993-01-01
Historically, the Mission Operations System (MOS) for a space mission has been designed last because it is needed last. This has usually meant that the ground system must adjust to the flight vehicle design, sometimes at a significant cost. As newer missions have increasingly longer flight operations lifetimes, the MOS becomes proportionally more difficult and more resource-consuming. We can no longer afford to design the MOS last. The MOS concept may well drive the spacecraft, instrument, and mission designs, as well as the ground system. A method to help avoid these difficulties, responding to the changing nature of mission operations is presented. Proper development and use of an Operations Concept document results in a combined flight and ground system design yielding enhanced operability and producing increased flexibility for less cost.
Use of low orbital satellite communications systems for humanitarian programs
NASA Technical Reports Server (NTRS)
Vlasov, Vladimir N.; Gorkovoy, Vladimir
1991-01-01
Communication and information exchange play a decisive role in progress and social development. However, in many parts of the world the communication infrastructure is inadequate and the capacity for on-line exchange of information may not exist. This is true of underdeveloped countries, remote and relatively inaccessible regions, sites of natural disasters, and of all cases where the resources needed to create complex communication systems are limited. The creation of an inexpensive space communications system to service such areas is therefore a high priority task. In addition to a relatively low-cost space segment, an inexpensive space communications systems requires a large number of ground terminals, which must be relatively inexpensive, energy efficient (using power generated by storage batteries, or solar arrays, etc.), small in size, and must not require highly expert maintenance. The ground terminals must be portable, and readily deployable. Communications satellites in geostationary orbit at altitudes of about 36,000 km are very expensive and require complex and expensive ground stations and launch vehicles. Given current technology, it is categorically impossible to develop inexpensive satellite systems with portable ground terminals using such satellites. To solve the problem of developing an inexpensive satellite communications system that can operate with relatively small ground stations, including portable terminals, we propose to use a system with satellites in low Earth orbit, at an altitude of 900-1500 km. Because low orbital satellites are much closer to the Earth than geostationary ones and require vastly less energy expenditure by the satellite and ground terminals for transmission of messages, a system using them is relatively inexpensive. Such a system could use portable ground terminals no more complex than ordinary mobile police radios.
Virtualized Multi-Mission Operations Center (vMMOC) and its Cloud Services
NASA Technical Reports Server (NTRS)
Ido, Haisam Kassim
2017-01-01
His presentation will cover, the current and future, technical and organizational opportunities and challenges with virtualizing a multi-mission operations center. The full deployment of Goddard Space Flight Centers (GSFC) Virtualized Multi-Mission Operations Center (vMMOC) is nearly complete. The Space Science Mission Operations (SSMO) organizations spacecraft ACE, Fermi, LRO, MMS(4), OSIRIS-REx, SDO, SOHO, Swift, and Wind are in the process of being fully migrated to the vMMOC. The benefits of the vMMOC will be the normalization and the standardization of IT services, mission operations, maintenance, and development as well as ancillary services and policies such as collaboration tools, change management systems, and IT Security. The vMMOC will also provide operational efficiencies regarding hardware, IT domain expertise, training, maintenance and support.The presentation will also cover SSMO's secure Situational Awareness Dashboard in an integrated, fleet centric, cloud based web services fashion. Additionally the SSMO Telemetry as a Service (TaaS) will be covered, which allows authorized users and processes to access telemetry for the entire SSMO fleet, and for the entirety of each spacecrafts history. Both services leverage cloud services in a secure FISMA High and FedRamp environment, and also leverage distributed object stores in order to house and provide the telemetry. The services are also in the process of leveraging the cloud computing services elasticity and horizontal scalability. In the design phase is the Navigation as a Service (NaaS) which will provide a standardized, efficient, and normalized service for the fleet's space flight dynamics operations. Additional future services that may be considered are Ground Segment as a Service (GSaaS), Telemetry and Command as a Service (TCaaS), Flight Software Simulation as a Service, etc.
Manned geosynchronous mission requirements and systems analysis study extension
NASA Technical Reports Server (NTRS)
1981-01-01
Turnaround requirements for the manned orbital transfer vehicle (MOTV) baseline and alternate concepts with and without a space operations center (SOC) are defined. Manned orbital transfer vehicle maintenance, refurbishment, resupply, and refueling are considered as well as the most effective combination of ground based and space based turnaround activities. Ground and flight operations requirements for abort are identified as well as low cost approaches to space and ground operations through maintenance and missions sensitivity studies. The recommended turnaround mix shows that space basing MOTV at SOC with periodic return to ground for overhaul results in minimum recurring costs. A pressurized hangar at SOC reduces labor costs by approximately 50%.
Center for Ground Vehicle Development and Integration
2011-04-22
UNCLASSIFIED OPSEC# 21798 CGVDI Organizational Chart CGVDI Director Project and Operations Management Project Management Operations Management Engineered...Metals Welding Assembly / Paint UNCLASSIFIED UNCLASSIFIED OPSEC# 21798 Project and Operations Management CGVDI serves as a single entry point to RDECOM...for ground vehicle system integration projects, as well as for managing cost, schedule, performance and risk. Project Management Operations
Re-Engineering of the Hubble Space Telescope (HST) to Reduce Operational Costs
NASA Technical Reports Server (NTRS)
Garvis, Michael; Dougherty, Andrew; Whittier, Wallace
1996-01-01
Satellite telemetry processing onboard the Hubble Space Telescope (HST) is carried out using dedicated software and hardware. The current ground system is expensive to operate and maintain. The mandate to reduce satellite ground system operations and maintenance costs by the year 2000 led NASA to upgrade the command and control systems in order to improve the data processing capabilities, reduce operator experience levels and increase system standardization. As a result, a command and control system product development team was formed to redesign and develop the HST ground system. The command and control system ground system development consists of six elements. The results of the prototyping phase carried out for the following of these elements are presented: the front end processor; middleware, and the graphical user interface.
Vision systems for manned and robotic ground vehicles
NASA Astrophysics Data System (ADS)
Sanders-Reed, John N.; Koon, Phillip L.
2010-04-01
A Distributed Aperture Vision System for ground vehicles is described. An overview of the hardware including sensor pod, processor, video compression, and displays is provided. This includes a discussion of the choice between an integrated sensor pod and individually mounted sensors, open architecture design, and latency issues as well as flat panel versus head mounted displays. This technology is applied to various ground vehicle scenarios, including closed-hatch operations (operator in the vehicle), remote operator tele-operation, and supervised autonomy for multi-vehicle unmanned convoys. In addition, remote vision for automatic perimeter surveillance using autonomous vehicles and automatic detection algorithms is demonstrated.
NASA Astrophysics Data System (ADS)
Shrestha, Gaurav; Uchida, Youhei; Kuronuma, Satoru; Yamaya, Mutsumi; Katsuragi, Masahiko; Kaneko, Shohei; Shibasaki, Naoaki; Yoshioka, Mayumi
2017-08-01
Development of a ground-source heat pump (GSHP) system with higher efficiency, and evaluation of its operating performance, is essential to expand the growth of GSHP systems in Japan. A closed-loop GSHP system was constructed utilizing a flowing (artesian) well as a ground heat exchanger (GHE). The system was demonstrated for space-heating and space-cooling of a room (area 126.7 m2) in an office building. The average coefficient of performance was found to be 4.5 for space-heating and 8.1 for space-cooling. The maximum heat exchange rate was 70.8 W/m for space-heating and 57.6 W/m for space-cooling. From these results, it was determined that a GSHP system with a flowing well as a GHE can result in higher performance. With this kind of highly efficient system, energy saving and cost reduction can be expected. In order to assess appropriate locations for the installation of similar kinds of GSHP systems in Aizu Basin, a suitability map showing the distribution of groundwater up-flowing areas was prepared based on the results of a regional-scale three-dimensional analytical model. Groundwater up-flowing areas are considered to be suitable because the flowing well can be constructed at these areas. Performance evaluation of the GSHP system utilizing the flowing well, in conjunction with the prepared suitability map for its installation, can assist in the promotion of GSHP systems in Japan.
NASA Technical Reports Server (NTRS)
Jones, E. B.
1983-01-01
As remote sensing increasingly becomes more of an operational tool in the field of snow management and snow hydrology, there is need for some degree of standardization of ""snowpack ground truth'' techniques. This manual provides a first step in standardizing these procedures and was prepared to meet the needs of remote sensing researchers in planning missions requiring ground truth as well as those providing the ground truth. Focus is on ground truth for remote sensors primarily operating in the microwave portion of the electromagnetic spectrum; nevertheless, the manual should be of value to other types of sensor programs. This first edition of ground truth procedures must be updated as new or modified techniques are developed.
A ground moving target emergency tracking method for catastrophe rescue
NASA Astrophysics Data System (ADS)
Zhou, X.; Li, D.; Li, G.
2014-11-01
In recent years, great disasters happen now and then. Disaster management test the emergency operation ability of the government and society all over the world. Immediately after the occurrence of a great disaster (e.g., earthquake), a massive nationwide rescue and relief operation need to be kicked off instantly. In order to improve the organizations efficiency of the emergency rescue, the organizers need to take charge of the information of the rescuer teams, including the real time location, the equipment with the team, the technical skills of the rescuers, and so on. One of the key factors for the success of emergency operations is the real time location of the rescuers dynamically. Real time tracking methods are used to track the professional rescuer teams now. But volunteers' participation play more and more important roles in great disasters. However, real time tracking of the volunteers will cause many problems, e.g., privacy leakage, expensive data consumption, etc. These problems may reduce the enthusiasm of volunteers' participation for catastrophe rescue. In fact, the great disaster is just small probability event, it is not necessary to track the volunteers (even rescuer teams) every time every day. In order to solve this problem, a ground moving target emergency tracking method for catastrophe rescue is presented in this paper. In this method, the handheld devices using GPS technology to provide the location of the users, e.g., smart phone, is used as the positioning equipment; an emergency tracking information database including the ID of the ground moving target (including the rescuer teams and volunteers), the communication number of the handheld devices with the moving target, and the usually living region, etc., is built in advance by registration; when catastrophe happens, the ground moving targets that living close to the disaster area will be filtered by the usually living region; then the activation short message will be sent to the selected ground moving target through the communication number of the handheld devices. The handheld devices receive and identify the activation short message, and send the current location information to the server. Therefore, the emergency tracking mode is triggered. The real time location of the filtered target can be shown on the organizer's screen, and the organizer can assign the rescue tasks to the rescuer teams and volunteers based on their real time location. The ground moving target emergency tracking prototype system is implemented using Oracle 11g, Visual Studio 2010 C#, Android, SMS Modem, and Google Maps API.
Ecological Aspects of Condition of Ground Deposits in Shershnevsky Reservoir
NASA Astrophysics Data System (ADS)
Arkanova, I. A.; Denisov, S. E.; Knutarev, D. Yu
2017-11-01
The article considers the aspects of the condition of ground deposits influencing the operating conditions of the water intake facilities in the Shershnevsky reservoir being the only source of the utility and drinking water supply in Chelyabinsk. The object of the research is a section near the Sosnovskie intake stations of the Shershnevsky reservoir. Based on the hydrometric surveys of the studied section and using the Kriging method and the Surfer suite, we calculated the volume of ground deposits. As a result of the analyses, the authors have proved that ground deposits in the studied section have a technology-related nature which is connected with the annual growth of the volume of ground deposits which is inadmissible in the operating conditions of the pump stations of water intake facilities whereas ground deposits will fully block the intake windows of pump stations. In case the bed area of the Shershnevsky reservoir is not timely treated, the ground deposits here will complicate the operation of the pump stations which will result in a technological problem of the treatment facilities operation up to a transfer of the pump station premises to other territories less exposed to the deposits. The treatment of the Shershnevsky reservoir from the ground deposits accumulated in the course of time will help to considerably increase its actual capacity, which will allow one to increase water circulation paths and to improve the water quality indices. In its turn, the water quality improvement will decrease the supply of suspended solids into the water intake facilities and cut the reagent costs in the course of the treatment water works operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, Piljae; Liu, Xiaobing
High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights the findings of a case study of one of the ARRA-funded GSHP demonstration projects, a ground-source variable refrigerant flow (GS-VRF) system installed at the Human Health Building at Oakland University in Rochester, Michigan.more » This case study is based on the analysis of measured performance data, maintenance records, construction costs, and simulations of the energy consumption of conventional central heating, ventilation, and air-conditioning (HVAC) systems providing the same level of space conditioning as the demonstrated GS-VRF system. The evaluated performance metrics include the energy efficiency of the heat pump equipment and the overall GS-VRF system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of the GS-VRF system compared with conventional HVAC systems. This case study also identified opportunities for reducing uncertainties in the performance evaluation, improving the operational efficiency, and reducing the installed cost of similar GSHP systems in the future.« less
Private Pilot Ground School Course. Instructor's Guide.
ERIC Educational Resources Information Center
Schlenker, Richard M.
This manual consists of 10 lesson plans for use by instructors teaching a private pilot ground school course. Addressed in the individual lesson plans are the following topics: aerodynamics and principles of flight, flight instruments and systems, operational publications, regulations, airplane operations, engine operations, radio communications,…
The GOES-R Geostationary Lightning Mapper (GLM)
NASA Astrophysics Data System (ADS)
Goodman, S. J.; Blakeslee, R. J.; Koshak, W. J.; Mach, D. M.; Bailey, J. C.; Buechler, D. E.; Carey, L. D.; Schultz, C. J.; Bateman, M. G.; McCaul, E., Jr.; Stano, G. T.
2012-12-01
The Geostationary Operational Environmental Satellite (GOES-R) series provides the continuity for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning activity (in-cloud and cloud-to-ground lightning flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development, an Algorithm Working Group (AWG) Lightning Detection Science and Applications Team developed the Level 2 (stroke and flash) algorithms from the Level 1 lightning event (pixel level) data. Proxy data sets used to develop the GLM operational algorithms as well as cal/val performance monitoring tools were derived from the NASA Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) instruments in low earth orbit, and from ground-based lightning networks and intensive pre-launch field campaigns. GLM will produce the same or similar lightning flash attributes provided by the LIS and OTD, and thus extends their combined climatology over the western hemisphere into the coming decades. Science and application development along with pre-operational product demonstrations and evaluations at NWS forecast offices and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and check-out of GOES-R in late 2015. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings. Results from recent field campaigns and forecaster evaluations on the utility of the total lightning products will be presented.
On the ground state of Yang-Mills theory
NASA Astrophysics Data System (ADS)
Bakry, Ahmed S.; Leinweber, Derek B.; Williams, Anthony G.
2011-08-01
We investigate the overlap of the ground state meson potential with sets of mesonic-trial wave functions corresponding to different gluonic distributions. We probe the transverse structure of the flux tube through the creation of non-uniform smearing profiles for the string of glue connecting two color sources in Wilson loop operator. The non-uniformly UV-regulated flux-tube operators are found to optimize the overlap with the ground state and display interesting features in the ground state overlap.
Design requirements for operational earth resources ground data processing
NASA Technical Reports Server (NTRS)
Baldwin, C. J.; Bradford, L. H.; Burnett, E. S.; Hutson, D. E.; Kinsler, B. A.; Kugle, D. R.; Webber, D. S.
1972-01-01
Realistic tradeoff data and evaluation techniques were studied that permit conceptual design of operational earth resources ground processing systems. Methodology for determining user requirements that utilize the limited information available from users is presented along with definitions of sensor capabilities projected into the shuttle/station era. A tentative method is presented for synthesizing candidate ground processing concepts.
DAG-TM Concept Element 11 CNS Performance Assessment: ADS-B Performance in the TRACON
NASA Technical Reports Server (NTRS)
Raghavan, Rajesh S.
2004-01-01
Distributed Air/Ground (DAG) Traffic Management (TM) is an integrated operational concept in which flight deck crews, air traffic service providers and aeronautical operational control personnel use distributed decision-making to enable user preferences and increase system capacity, while meeting air traffic management (ATM) safety requirements. It is a possible operational mode under the Free Flight concept outlined by the RTCA Task Force 3. The goal of DAG-TM is to enhance user flexibility/efficiency and increase system capacity, without adversely affecting system safety or restricting user accessibility to the National Airspace System (NAS). DAG-TM will be accomplished with a human-centered operational paradigm enabled by procedural and technological innovations. These innovations include automation aids, information sharing and Communication, Navigation, and Surveillance (CNS) / ATM technologies. The DAG-TM concept is intended to eliminate static restrictions to the maximum extent possible. In this paradigm, users may plan and operate according to their preferences - as the rule rather than the exception - with deviations occurring only as necessary. The DAG-TM concept elements aim to mitigate the extent and impact of dynamic NAS constraints, while maximizing the flexibility of airspace operations
Application of a Modified Universal Design Survey for Evaluation of Ares 1 Ground Crew Worksites
NASA Technical Reports Server (NTRS)
Blume, Jennifer L.
2010-01-01
Operability is a driving requirement for NASA's Ares 1 launch vehicle. Launch site ground operations include several operator tasks to prepare the vehicle for launch or to perform maintenance. Ensuring that components requiring operator interaction at the launch site are designed for optimal human use is a high priority for operability. To support design evaluation, the Ares 1 Upper Stage (US) element Human Factors Engineering (HFE) group developed a survey based on the Universal Design approach. Universal Design is a process to create products that can be used effectively by as many people as possible. Universal Design per se is not a priority for Ares 1 because launch vehicle processing is a specialized skill and not akin to a consumer product that should be used by all people of all abilities. However, applying principles of Universal Design will increase the probability of an error free and efficient design which is a priority for Ares 1. The Design Quality Evaluation Survey centers on the following seven principles: (1) Equitable use, (2) Flexibility in use, (3) Simple and intuitive use, (4) Perceptible information, (5) Tolerance for error, (6) Low physical effort, (7) Size and space for approach and use. Each principle is associated with multiple evaluation criteria which were rated with the degree to which the statement is true. All statements are phrased in the utmost positive, or the design goal so that the degree to which judgments tend toward "completely agree" directly reflects the degree to which the design is good. The Design Quality Evaluation Survey was employed for several US analyses. The tool was found to be most useful for comparative judgments as opposed to an assessment of a single design option. It provided a useful piece of additional data when assessing possible operator interfaces or worksites for operability
ISTP Science Data Systems and Products
NASA Astrophysics Data System (ADS)
Mish, William H.; Green, James L.; Reph, Mary G.; Peredo, Mauricio
1995-02-01
The International Solar-Terrestrial Physics (ISTP) program will provide simultaneous coordinated scientific measurements from most of the major areas of geospace including specific locations on the Earth's surface. This paper describes the comprehensive ISTP ground science data handling system which has been developed to promote optimal mission planning and efficient data processing, analysis and distribution. The essential components of this ground system are the ISTP Central Data Handling Facility (CDHF), the Information Processing Division's Data Distribution Facility (DDF), the ISTP/Global Geospace Science (GGS) Science Planning and Operations Facility (SPOF) and the NASA Data Archive and Distribution Service (NDADS). The ISTP CDHF is the one place in the program where measurements from this wide variety of geospace and ground-based instrumentation and theoretical studies are brought together. Subsequently, these data will be distributed, along with ancillary data, in a unified fashion to the ISTP Principal Investigator (PI) and Co-Investigator (CoI) teams for analysis on their local systems. The CDHF ingests the telemetry streams, orbit, attitude, and command history from the GEOTAIL, WIND, POLAR, SOHO, and IMP-8 Spacecraft; computes summary data sets, called Key Parameters (KPs), for each scientific instrument; ingests pre-computed KPs from other spacecraft and ground basel investigations; provides a computational platform for parameterized modeling; and provides a number of ‘data services” for the ISTP community of investigators. The DDF organizes the KPs, decommutated telemetry, and associated ancillary data into products for duistribution to the ISTP community on CD-ROMs. The SPOF is the component of the GGS program responsible for the development and coordination of ISTP science planning operations. The SPOF operates under the direction of the ISTP Project Scientist and is responsible for the development and coordination of the science plan for ISTP spacecraft. Instrument command requests for the WIND and POLAR investigations are submitted by the PIs to the SPOF where they are checked for science conflicts, forwarded to the GSFC Command Management Syntem/Payload Operations Control Center (CMS/POCC) for engineering conflict validation, and finally incorporated into the conflict-free science operations plan. Conflict resolution is accomplished through iteration between the PIs, SPOF and CMS and in consultation with the Project Scientist when necessary. The long term archival of ISTP KP and level-zero data will be undertaken by NASA's National Space Science Data Center using the NASA Data Archive and Distribution Service (NDADS). This on-line archive facility will provide rapid access to archived KPs and event data and includes security features to restrict access to the data during the time they are proprietary.
Cloud-to-ground lightning activity in Colombia: A 14-year study using lightning location system data
NASA Astrophysics Data System (ADS)
Herrera, J.; Younes, C.; Porras, L.
2018-05-01
This paper presents the analysis of 14 years of cloud-to-ground lightning activity observation in Colombia using lightning location systems (LLS) data. The first Colombian LLS operated from 1997 to 2001. After a few years, this system was upgraded and a new LLS has been operating since 2007. Data obtained from these two systems was analyzed in order to obtain lightning parameters used in designing lightning protection systems. The flash detection efficiency was estimated using average peak current maps and some theoretical results previously published. Lightning flash multiplicity was evaluated using a stroke grouping algorithm resulting in average values of about 1.0 and 1.6 for positive and negative flashes respectively and for both LLS. The time variation of this parameter changes slightly for the years considered in this study. The first stroke peak current for negative and positive flashes shows median values close to 29 kA and 17 kA respectively for both networks showing a great dependence on the flash detection efficiency. The average percentage of negative and positive flashes shows a 74.04% and 25.95% of occurrence respectively. The daily variation shows a peak between 23 and 02 h. The monthly variation of this parameter exhibits a bimodal behavior typical of the regions located near The Equator. The lightning flash density was obtained dividing the study area in 3 × 3 km cells and resulting in maximum average values of 25 and 35 flashes km- 2 year- 1 for each network respectively. A comparison of these results with global lightning activity hotspots was performed showing good correlation. Besides, the lightning flash density variation with altitude shows an inverse relation between these two variables.
Secure real-time wireless video streaming in the aeronautical telecommunications network
NASA Astrophysics Data System (ADS)
Czernik, Pawel; Olszyna, Jakub
2010-09-01
As Air Traffic Control Systems move from a voice only environment to one in which clearances are issued via data link, there is a risk that an unauthorized entity may attempt to masquerade as either the pilot or controller. In order to protect against this and related attacks, air-ground communications must be secured. The challenge is to add security in an environment in which bandwidth is limited. The Aeronautical Telecommunications Network (ATN) is an enabling digital network communications technology that addresses capacity and efficiency issues associated with current aeronautical voice communication systems. Equally important, the ATN facilitates migration to free flight, where direct computer-to-computer communication will automate air traffic management, minimize controller and pilot workload, and improve overall aircraft routing efficiency. Protecting ATN communications is critical since safety-of-flight is seriously affected if an unauthorized entity, a hacker for example, is able to penetrate an otherwise reliable communications system and accidentally or maliciously introduce erroneous information that jeopardizes the overall safety and integrity of a given airspace. However, an ATN security implementation must address the challenges associated with aircraft mobility, limited bandwidth communication channels, and uninterrupted operation across organizational and geopolitical boundaries. This paper provides a brief overview of the ATN, the ATN security concept, and begins a basic introduction to the relevant security concepts of security threats, security services and security mechanisms. Security mechanisms are further examined by presenting the fundamental building blocks of symmetric encipherment, asymmetric encipherment, and hash functions. The second part of this paper presents the project of cryptographiclly secure wireless communication between Unmanned Aerial Vehicles (UAV) and the ground station in the ATM system, based on the ARM9 processor development kid and Embedded Linux operation system.
Discrete Event Command & Control for Networked Teams with Multiple Missions
2009-03-16
Architecture for Unmanned Ground Systems ( JAUGS )10, and is an efficient means to realize the high-level OODA loops (observe, orient, decide, act) of 4D...for Unmanned Ground systems ( JAUGS )10, and is an efficient means to realize the OODA loops (observe, orient, decide, act) of 4D/RCS11. DEC is able to
National Air Space (NAS) Data Exchange Environment Through 2060
NASA Technical Reports Server (NTRS)
Roy, Aloke
2015-01-01
NASA's NextGen Concepts and Technology Development (CTD) Project focuses on capabilities to improve safety, capacity and efficiency of the National Air Space (NAS). In order to achieve those objectives, NASA sought industry-Government partnerships to research and identify solutions for traffic flow management, dynamic airspace configuration, separation assurance, super density operations, airport surface operations and similar forward-looking air-traffic modernization (ATM) concepts. Data exchanges over NAS being the key enabler for most of these ATM concepts, the Sub-Topic area 3 of the CTD project sought to identify technology candidates that can satisfy air-to-air and air/ground communications needs of the NAS in the year 2060 timeframe. Honeywell, under a two-year contract with NASA, is working on this communications technology research initiative. This report summarizes Honeywell's research conducted during the second year of the study task.
A post-processing system for automated rectification and registration of spaceborne SAR imagery
NASA Technical Reports Server (NTRS)
Curlander, John C.; Kwok, Ronald; Pang, Shirley S.
1987-01-01
An automated post-processing system has been developed that interfaces with the raw image output of the operational digital SAR correlator. This system is designed for optimal efficiency by using advanced signal processing hardware and an algorithm that requires no operator interaction, such as the determination of ground control points. The standard output is a geocoded image product (i.e. resampled to a specified map projection). The system is capable of producing multiframe mosaics for large-scale mapping by combining images in both the along-track direction and adjacent cross-track swaths from ascending and descending passes over the same target area. The output products have absolute location uncertainty of less than 50 m and relative distortion (scale factor and skew) of less than 0.1 per cent relative to local variations from the assumed geoid.
Applying face identification to detecting hijacking of airplane
NASA Astrophysics Data System (ADS)
Luo, Xuanwen; Cheng, Qiang
2004-09-01
That terrorists hijacked the airplanes and crashed the World Trade Center is disaster to civilization. To avoid the happening of hijack is critical to homeland security. To report the hijacking in time, limit the terrorist to operate the plane if happened and land the plane to the nearest airport could be an efficient way to avoid the misery. Image processing technique in human face recognition or identification could be used for this task. Before the plane take off, the face images of pilots are input into a face identification system installed in the airplane. The camera in front of pilot seat keeps taking the pilot face image during the flight and comparing it with pre-input pilot face images. If a different face is detected, a warning signal is sent to ground automatically. At the same time, the automatic cruise system is started or the plane is controlled by the ground. The terrorists will have no control over the plane. The plane will be landed to a nearest or appropriate airport under the control of the ground or cruise system. This technique could also be used in automobile industry as an image key to avoid car stealth.
Ground penetrating radar for asparagus detection
NASA Astrophysics Data System (ADS)
Seyfried, Daniel; Schoebel, Joerg
2016-03-01
Ground penetrating radar is a promising technique for detection of buried objects. Recently, radar has more and more been identified to provide benefits for a plurality of applications, where it can increase efficiency of operation. One of these fields is the industrial automatic harvesting process of asparagus, which is performed so far by cutting the soil ridge at a certain height including all the asparagus spears and subsequently sieving the latter out of the soil. However, the height where the soil is cut is a critical parameter, since a wrong value leads to either damage of the roots of the asparagus plants or to a reduced crop yield as a consequence of too much biomass remaining in the soil. In this paper we present a new approach which utilizes ground penetrating radar for non-invasive sensing in order to obtain information on the optimal height for cutting the soil. Hence, asparagus spears of maximal length can be obtained, while keeping the roots at the same time undamaged. We describe our radar system as well as the subsequent digital signal processing steps utilized for extracting the information required from the recorded radar data, which then can be fed into some harvesting unit for setting up the optimal cutting height.
NASA Technical Reports Server (NTRS)
England, C.
2000-01-01
For human or large robotic exploration of Mars, engineering devices such as power sources will be utilized that interact closely with the Martian environment. Heat sources for power production, for example, will use the low ambient temperature for efficient heat rejection. The Martian ambient, however, is highly variable, and will have a first order influence on the efficiency and operation of all large-scale equipment. Diurnal changes in temperature, for example, can vary the theoretical efficiency of power production by 15% and affect the choice of equipment, working fluids, and operating parameters. As part of the Mars Exploration program, missions must acquire the environmental data needed for design, operation and maintenance of engineering equipment including the transportation devices. The information should focus on the variability of the environment, and on the differences among locations including latitudes, altitudes, and seasons. This paper outlines some of the WHY's, WHAT's and WHERE's of the needed data, as well as some examples of how this data will be used. Environmental data for engineering design should be considered a priority in Mars Exploration planning. The Mars Thermal Environment Radiator Characterization (MTERC), and Dust Accumulation and Removal Technology (DART) experiments planned for early Mars landers are examples of information needed for even small robotic missions. Large missions will require proportionately more accurate data that encompass larger samples of the Martian surface conditions. In achieving this goal, the Mars Exploration program will also acquire primary data needed for understanding Martian weather, surface evolution, and ground-atmosphere interrelationships.
Calibration aspects of the JEM-EUSO mission
NASA Astrophysics Data System (ADS)
Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.
2015-11-01
The JEM-EUSO telescope will be, after calibration, a very accurate instrument which yields the number of received photons from the number of measured photo-electrons. The project is in phase A (demonstration of the concept) including already operating prototype instruments, i.e. many parts of the instrument have been constructed and tested. Calibration is a crucial part of the instrument and its use. The focal surface (FS) of the JEM-EUSO telescope will consist of about 5000 photo-multiplier tubes (PMTs), which have to be well calibrated to reach the required accuracy in reconstructing the air-shower parameters. The optics system consists of 3 plastic Fresnel (double-sided) lenses of 2.5 m diameter. The aim of the calibration system is to measure the efficiencies (transmittances) of the optics and absolute efficiencies of the entire focal surface detector. The system consists of 3 main components: (i) Pre-flight calibration devices on ground, where the efficiency and gain of the PMTs will be measured absolutely and also the transmittance of the optics will be. (ii) On-board relative calibration system applying two methods: a) operating during the day when the JEM-EUSO lid will be closed with small light sources on board. b) operating during the night, together with data taking: the monitoring of the background rate over identical sites. (iii) Absolute in-flight calibration, again, applying two methods: a) measurement of the moon light, reflected on high altitude, high albedo clouds. b) measurements of calibrated flashes and tracks produced by the Global Light System (GLS). Some details of each calibration method will be described in this paper.
Ground controlled robotic assembly operations for Space Station Freedom
NASA Technical Reports Server (NTRS)
Parrish, Joseph C.
1991-01-01
A number of dextrous robotic systems and associated positioning and transportation devices are available on Space Station Freedom (SSF) to perform assembly tasks that would otherwise need to be performed by extravehicular activity (EVA) crewmembers. The currently planned operating mode for these robotic systems during the assembly phase is teleoperation by intravehicular activity (IVA) crewmembers. While this operating mode is less hazardous and expensive than manned EVA operations, and has insignificant control loop time delays, the amount of IVA time available to support telerobotic operations is much less than the anticipated requirements. Some alternative is needed to allow the robotic systems to perform useful tasks without exhausting the available IVA resources; ground control is one such alternative. The issues associated with ground control of SSF robotic systems to alleviate onboard crew time availability constraints are investigated. Key technical issues include the effect of communication time delays, the need for safe, reliable execution of remote operations, and required modifications to the SSF ground and flight system architecture. Time delay compensation techniques such as predictive displays and world model-based force reflection are addressed and collision detection and avoidance strategies to ensure the safety of the on-orbit crew, Orbiter, and SSF are described. Although more time consuming and difficult than IVA controlled teleoperations or manned EVA, ground controlled telerobotic operations offer significant benefits during the SSF assembly phase, and should be considered in assembly planning activities.
Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications
NASA Technical Reports Server (NTRS)
Mishkin, Andrew; Lee, Young; Korth, David; LeBlanc, Troy
2007-01-01
For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.
Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications
NASA Technical Reports Server (NTRS)
Korth, David; LeBlanc, Troy; Mishkin, Andrew; Lee, Young
2006-01-01
For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.
Single Stage Rocket Technology's real time data system
NASA Technical Reports Server (NTRS)
Voglewede, Steven D.
1994-01-01
The Single Stage Rocket Technology (SSRT) Delta Clipper Experimental (DC-X) Program is a United States Air Force Ballistic Missile Defense Organization (BMDO) rapid prototyping initiative that is currently demonstrating technology readiness for reusable suborbital rockets. The McDonnell Douglas DC-X rocket performed technology demonstrations at the U.S. Army White Sands Missile Range in New Mexico from April-October in 1993. The DC-X Flight Operations Control Center (FOCC) contains the ground control system that is used to monitor and control the DC-X vehicle and its Ground Support Systems (GSS). The FOCC is operated by a flight crew of three operators. Two operators manage the DC-X Flight Systems and one operator is the Ground Systems Manager. A group from McDonnell Douglas Aerospace at KSC developed the DC-X ground control system for the FOCC. This system is known as the Real Time Data System (RTDS). The RTDS is a distributed real time control and monitoring system that utilizes the latest available commercial off-the-shelf computer technology. The RTDS contains front end interfaces for the DC-X RF uplink/downlink and fiber optic interfaces to the GSS equipment. This paper describes the RTDS architecture and FOCC layout. The DC-X applications and ground operations are covered.
Adapting New Space System Designs into Existing Ground Infrastructure
NASA Technical Reports Server (NTRS)
Delgado, Hector N.; McCleskey, Carey M.
2008-01-01
As routine space operations extend beyond earth orbit, the ability for ground infrastructures to take on new launch vehicle systems and a more complex suite of spacecraft and payloads has become a new challenge. The U.S. Vision for Space Exploration and its Constellation Program provides opportunities for our space operations community to meet this challenge. Presently, as new flight and ground systems add to the overall groundbased and space-based capabilities for NASA and its international partners, specific choices are being made as to what to abandon, what to retain, as well as what to build new. The total ground and space-based infrastructure must support a long-term, sustainable operation after it is all constructed, deployed, and activated. This paper addresses key areas of engineering concern during conceptual design, development, and routine operations, with a particular focus on: (1) legacy system reusability, (2) system supportability attributes and operations characteristics, (3) ground systems design trades and criteria, and (4) technology application survey. Each key area explored weighs the merits of reusability of the infrastructure in terms of: engineering analysis methods and techniques; top-level facility, systems, and equipment design criteria; and some suggested methods for making the operational system attributes (the "-ilities") highly visible to the design teams and decisionmakers throughout the design process.
U. S. Atlantic Fleet, Eighth Amphibious Force. Operation Plan Number 2-44
1944-01-01
distributed with this Operation Order. (c) Panoramic Bench Sketches No. P-l for Boach 259 and No. P~3 for Loach 26l (South) givo viator level...To indicate tank or ID targets. (g) Green Cluster, White Cluster - Lift Artillery fire. Page 32 of 33. ANNEX KENS . GTMFIRS SUPPORT PLAN. TABLE VI...AURORA . SFCP 5 AUX GROUND SPOT - LIVERMORS SFCP 6 AUX GROUND SPOT - LA GLOIRE SFCP 7 AUX GROUND -SPOT ~ TERM- ERIC SFCP 8 AUX GROUND SPOT - ORION-KEAR
Ground Robotic Hand Applications for the Space Program study (GRASP)
NASA Astrophysics Data System (ADS)
Grissom, William A.; Rafla, Nader I.
1992-04-01
This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time.
Economics in ground operations of the Space Shuttle
NASA Technical Reports Server (NTRS)
Gray, R. H.
1973-01-01
The physical configuration, task versatility, and typical mission profile of the Space Shuttle are illustrated and described, and a comparison of shuttle and expendable rocket costs is discussed, with special emphasis upon savings to be achieved in ground operations. A review of economies achieved by engineering design improvements covers the automated checkout by onboard shuttle systems, the automated launch processing system, the new maintenance concept, and the analogy of Space Shuttle and airline repetitive operations. The Space Shuttle is shown to represent a new level in space flight technology, particularly, the sophistication of the systems and procedures devised for its support and ground operations.
Ground Robotic Hand Applications for the Space Program study (GRASP)
NASA Technical Reports Server (NTRS)
Grissom, William A.; Rafla, Nader I. (Editor)
1992-01-01
This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time.
Comparative analysis of hospital energy use: pacific northwest and scandinavia.
Burpee, Heather; McDade, Erin
2014-01-01
This study aimed to establish the potential for significant energy reduction in hospitals in the United States by providing evidence of Scandinavian operational precedents with high Interior Environmental Quality (IEQ) and substantially lower energy profiles than comparable U.S. facilities. These facilities set important precedents for design teams seeking operational examples for achieving aggressive energy and interior environmental quality goals. This examination of operational hospitals is intended to offer hospital owners, designers, and building managers a strong case and concrete framework for strategies to achieve exceptionally high performing buildings. Energy efficient hospitals have the potential to significantly impact the U.S.'s overall energy profile, and key stakeholders in the hospital industry need specific, operationally grounded precedents in order to successfully implement informed energy reduction strategies. This study is an outgrowth of previous research evaluating high quality, low energy hospitals that serve as examples for new high performance hospital design, construction, and operation. Through extensive interviews, numerous site visits, the development of case studies, and data collection, this team has established thorough qualitative and quantitative analyses of several contemporary hospitals in Scandinavia and the Pacific Northwest. Many Scandinavian hospitals demonstrate a low energy profile, and when analyzed in comparison with U.S. hospitals, such Scandinavian precedents help define the framework required to make significant changes in the U.S. hospital building industry. Eight hospitals, four Scandinavian and four Pacific Northwest, were quantitatively compared using the Environmental Protection Agency's Portfolio Manager, allowing researchers to answer specific questions about the impact of energy source and architectural and mechanical strategies on energy efficiency in operational hospitals. Specific architectural, mechanical, and plant systems make these Scandinavian hospitals more energy efficient than their Pacific Northwest counterparts. More importantly, synergistic systems integration allows for their significant reductions in energy consumption. This quantitative comparison of operational Scandinavian and Pacific Northwest hospitals resulted in compelling evidence of the potential for deep energy savings in the U.S., and allowed researchers to outline specific strategies for achieving such reductions. © 2014 Vendome Group, LLC.
Software Correlator for Radioastron Mission
NASA Astrophysics Data System (ADS)
Likhachev, Sergey F.; Kostenko, Vladimir I.; Girin, Igor A.; Andrianov, Andrey S.; Rudnitskiy, Alexey G.; Zharov, Vladimir E.
In this paper, we discuss the characteristics and operation of Astro Space Center (ASC) software FX correlator that is an important component of space-ground interferometer for Radioastron project. This project performs joint observations of compact radio sources using 10m space radio telescope (SRT) together with ground radio telescopes at 92, 18, 6 and 1.3 cm wavelengths. In this paper, we describe the main features of space-ground VLBI data processing of Radioastron project using ASC correlator. Quality of implemented fringe search procedure provides positive results without significant losses in correlated amplitude. ASC Correlator has a computational power close to real time operation. The correlator has a number of processing modes: “Continuum”, “Spectral Line”, “Pulsars”, “Giant Pulses”,“Coherent”. Special attention is paid to peculiarities of Radioastron space-ground VLBI data processing. The algorithms of time delay and delay rate calculation are also discussed, which is a matter of principle for data correlation of space-ground interferometers. During five years of Radioastron SRT successful operation, ASC correlator showed high potential of satisfying steady growing needs of current and future ground and space VLBI science. Results of ASC software correlator operation are demonstrated.
The History of the CONCAM Project: All Sky Monitors in the Digital Age
NASA Astrophysics Data System (ADS)
Nemiroff, Robert; Shamir, Lior; Pereira, Wellesley
2018-01-01
The CONtinuous CAMera (CONCAM) project, which ran from 2000 to (about) 2008, consisted of real-time, Internet-connected, fisheye cameras located at major astronomical observatories. At its peak, eleven CONCAMs around the globe monitored most of the night sky, most of the time. Initially designed to search for transients and stellar variability, CONCAMs gained initial notoriety as cloud monitors. As such, CONCAMs made -- and its successors continue to make -- ground-based astronomy more efficient. The original, compact, fisheye-observatory-in-a-suitcase design underwent several iterations, starting with CONCAM0 and with the last version dubbed CONCAM3. Although the CONCAM project itself concluded after centralized funding diminished, today more locally-operated, commercially-designed, CONCAM-like devices operate than ever before. It has even been shown that modern smartphones can operate in a CONCAM-like mode. It is speculated that the re-instatement of better global coordination of current wide-angle sky monitors could lead to better variability monitoring of the brightest stars and transients.
Design considerations for the beamwaveguide retrofit of a ground antenna station
NASA Technical Reports Server (NTRS)
Veruttipong, T.; Withington, J.; Galindo-Israel, V.; Imbriale, W.; Bathker, D.
1987-01-01
A primary requirement of the NASA Deep Space Network (DSN) is to provide for optimal reception of very low signal levels. This requirement necessitates optimizing the antenna gain to the total system operating noise level quotient. Low overall system noise levels of 16 to 20 K are achieved by using cryogenically cooled preamplifiers closely coupled with an appropriately balanced antenna gain/spillover design. Additionally, high-power transmitters (up to 400 kW CW) are required for spacecraft emergency command and planetary radar experiments. The frequency bands allocated for deep space telemetry are narrow bands near 2.1 and 2.3 GHz (Ka-band), 7.1 and 8.4 GHz (X-band), and 32 and 34.5 GHz (Ka-band). In addition, planned operations for the Search for Extraterrestrial Intelligence (SETI) program require continuous low-noise receive coverage over the 1 to 10 GHz band. To summarize, DSN antennas must operate efficiently with low receive noise and high-power uplink over the 1 to 35 GHz band.
A Method of Separation Assurance for Instrument Flight Procedures at Non-Radar Airports
NASA Technical Reports Server (NTRS)
Conway, Sheila R.; Consiglio, Maria
2002-01-01
A method to provide automated air traffic separation assurance services during approach to or departure from a non-radar, non-towered airport environment is described. The method is constrained by provision of these services without radical changes or ambitious investments in current ground-based technologies. The proposed procedures are designed to grant access to a large number of airfields that currently have no or very limited access under Instrument Flight Rules (IFR), thus increasing mobility with minimal infrastructure investment. This paper primarily addresses a low-cost option for airport and instrument approach infrastructure, but is designed to be an architecture from which a more efficient, albeit more complex, system may be developed. A functional description of the capabilities in the current NAS infrastructure is provided. Automated terminal operations and procedures are introduced. Rules of engagement and the operations are defined. Results of preliminary simulation testing are presented. Finally, application of the method to more terminal-like operations, and major research areas, including necessary piloted studies, are discussed.
Fishery research in the Great Lakes using a low-cost remotely operated vehicle
Kennedy, Gregory W.; Brown, Charles L.; Argyle, Ray L.
1988-01-01
We used a MiniROVER MK II remotely operated vehicle (ROV) to collect ground-truth information on fish and their habitat in the Great Lakes that have traditionally been collected by divers, or with static cameras, or submersibles. The ROV, powered by 4 thrusters and controlled by the pilot at the surface, was portable and efficient to operate throughout the Great Lakes in 1987, and collected a total of 30 h of video data recorded for later analysis. We collected 50% more substrate information per unit of effort with the ROV than with static cameras. Fish behavior ranged from no avoidance reaction in ambient light, to erratic responses in the vehicle lights. The ROV's field of view depended on the time of day, light levels, and density of zooplankton. Quantification of the data collected with the ROV (either physical samples or video image data) will serve to enhance the use of the ROV as a research tool to conduct fishery research on the Great Lakes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ally, Moonis Raza; Baxter, Van D; Munk, Jeffrey D
2012-01-01
This paper presents data, analyses, measures of performance, and conclusions for a ground-source heat pump (GSHP) providing space conditioning to a 345m2 house whose envelope is made of structural insulated panels (SIP). The entire thermal load of this SIP house with RSI-3.7 (RUS-21) walls, triple pane windows with a U-factor of 1.64 W/m2 K (0.29 Btu/h ft2 oF) and solar heat gain coefficient (SHGC) of 0.25, a roof assembly with overall thermal resistance of about RSI-8.8 (RUS-50) and low leakage rates of 0.74 ACH at 50Pa was satisfied with a 2.16-Ton (7.56 kW) GSHP unit consuming negligible (9.83kWh) auxiliary heatmore » during peak winter season. The highest and lowest heating COP achieved was 4.90 (October) and 3.44 (February), respectively. The highest and lowest cooling COP achieved was 6.09 (April) and 3.88 (August). These COPs are calculated on the basis of the total power input (including duct, ground loop, and control power losses ). The second Law (Exergy) analysis provides deep insight into how systemic inefficiencies are distributed among the various GSHP components. Opportunities for design and further performance improvements are identified. Through Exergy analysis we provide a true measure of how closely actual performance approaches the ideal, and it unequivocally identifies, better than energy analysis does, the sources and causes of lost work, the root cause of system inefficiencies.« less
2012-02-14
COCOA BEACH, Fla. -- Lee Pagel, the NASA Participant Evaluation Panel PEP deputy for the Commercial Crew Program CCP, talks to industry partners and stakeholders during a preproposal conference at the Courtyard Marriott in Cocoa Beach, Fla. The meeting focused on information related to NASA's release of the Commercial Crew Integrated Capability CCiCap Announcement for Proposals on Feb. 7. More than 50 people from 25 aerospace companies attended the conference to find out what the space agency would be looking for in terms of milestones, funding, schedules, strategies, safety cultures, business modules and eventual flight certification standards of integrated crew space transportation systems. The goal of the CCiCap is to develop an indigenous U.S. transportation system that can safely, affordably and routinely fly to low Earth orbit destinations, including the International Space Station. Proposals are due March 23 and NASA plans to award multiple Space Act Agreements, valued from $300 million to $500 million each, toward the development of fully integrated commercial crew transportation systems in the summer of 2012. For more information, visit www.nasa.gov/commercialcrew Photo credit: Kim Shiflett The Ground Systems Development and Operations Program is developing the necessary ground systems, infrastructure and operational approaches required to safely process, assemble, transport and launch the next generation of rockets and spacecraft in support of NASA’s exploration objectives. Future work also will replace the antiquated communications, power and vehicle access resources with modern efficient systems. Some of the utilities and systems slated for replacement have been used since the VAB opened in 1965. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Kim Shiflett
Integrated payload and mission planning, phase 3. Volume 3: Ground real-time mission operations
NASA Technical Reports Server (NTRS)
White, W. J.
1977-01-01
The payloads tentatively planned to fly on the first two Spacelab missions were analyzed to examine the cost relationships of providing mission operations support from onboard vs the ground-based Payload Operations Control Center (POCC). The quantitative results indicate that use of a POCC, with data processing capability, to support real-time mission operations is the most cost effective case.
Pointing, Shane; Hayes-Jonkers, Charmaine; Bohanna, India; Clough, Alan
2012-02-01
Closed circuit television (CCTV) systems which incorporate real-time communication links between camera room operators and on-the-ground security may limit injuries resulting from alcohol-related assault. This pilot study examined CCTV footage and operator records of security responses for two periods totalling 22 days in 2010-2011 when 30 alcohol-related assaults were recorded. Semistructured discussions were conducted with camera room operators during 18 h of observation. Camera operators were proactive, efficiently directing street security to assault incidents. The system intervened in 40% (n=12) of alcohol-related assaults, limiting possible injury. This included three incidents judged as potentially preventable. A further five (17%) assault incidents were also judged as potentially preventable, while 43% (n=13) happened too quickly for intervention. Case studies describe security intervention in each category. Further research is recommended, particularly to evaluate the effects on preventing injuries through targeted awareness training to improve responsiveness and enhance the preventative capacity of similar CCTV systems.
Key Performance Indicators in Radiology: You Can't Manage What You Can't Measure.
Harvey, H Benjamin; Hassanzadeh, Elmira; Aran, Shima; Rosenthal, Daniel I; Thrall, James H; Abujudeh, Hani H
2016-01-01
Quality assurance (QA) is a fundamental component of every successful radiology operation. A radiology QA program must be able to efficiently and effectively monitor and respond to quality problems. However, as radiology QA has expanded into the depths of radiology operations, the task of defining and measuring quality has become more difficult. Key performance indicators (KPIs) are highly valuable data points and measurement tools that can be used to monitor and evaluate the quality of services provided by a radiology operation. As such, KPIs empower a radiology QA program to bridge normative understandings of health care quality with on-the-ground quality management. This review introduces the importance of KPIs in health care QA, a framework for structuring KPIs, a method to identify and tailor KPIs, and strategies to analyze and communicate KPI data that would drive process improvement. Adopting a KPI-driven QA program is both good for patient care and allows a radiology operation to demonstrate measurable value to other health care stakeholders. Copyright © 2015 Mosby, Inc. All rights reserved.
76 FR 53714 - Notice of Request for the Approval of a New Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-29
... Transportation, 1200 New Jersey Avenue, SE., Docket Operations, M-30, West Building, Ground Floor, Room W12- 140...., Docket Operations, M-30, West Building, Ground Floor, Room W12-140, Washington, DC 20590-0001 between 9 a... New Jersey Avenue, SE., Docket Operations, M-30, West Building, [[Page 53715
Naga Babu, A; Reddy, D Srinivasa; Kumar, G Suresh; Ravindhranath, K; Krishna Mohan, G V
2018-07-15
Water pollution by industrial and anthropogenic actives has become a serious threat to the environment. World Health Organization (WHO) has identified that lead and fluoride amid the environmental pollutants are most poisonous water contaminants with devastating impact on the human race. The present work proposes a study on economical bio-adsorbent based technique using exhausted coffee grounds in the removal of lead and fluoride contaminants from water. The exhausted coffee grounds gathered from industrial wastes have been acid-activated and examined for their adsorption capacity. The surface morphology and elemental characterization of pre-and-post adsorption operations by FESEM, EDX and FTIR spectral analysis confirmed the potential of the exhausted coffee ground as successful bio-sorbent. However, thermodynamic analysis confirmed the adsorption to be spontaneous physisorption with Langmuir mode of homogenous monolayer deposition. The kinetics of adsorption is well defined by pseudo second order model for both lead and fluoride. A significant quantity of lead and fluoride is removed from the synthetic contaminated water by the proposed bio-sorbent with the respective sorption capabilities of 61.6 mg/g and 9.05 mg/g. However, the developed bio-sorbent is also recyclable and is capable of removing the lead and fluoride from the domestic and industrial waste-water sources with an overall removal efficiency of about 90%. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bozzo, E.; Antonelli, A.; Argan, A.; Barret, D.; Binko, Pavel; Brandt, S.; Cavazzuti, E.; Courvoisier, T.; den Herder, J. W.; Feroci, M.; Ferrigno, C.; Giommi, P.; Götz, D.; Guy, L.; Hernanz, M.; in't Zand, J. J. M.; Klochkov, D.; Kuulkers, Erik; Motch, C.; Lumb, D.; Papitto, A.; Pittori, Carlotta; Rohlfs, R.; Santangelo, A.; Schmid, C.; Schwope, A. D.; Smith, P. J.; Webb, N. A.; Wilms, J.; Zane, S.
2014-07-01
LOFT, the Large Observatory For X-ray Timing, was one of the ESA M3 mission candidates that completed their assessment phase at the end of 2013. LOFT is equipped with two instruments, the Large Area Detector (LAD) and the Wide Field Monitor (WFM). The LAD performs pointed observations of several targets per orbit (~90 minutes), providing roughly ~80 GB of proprietary data per day (the proprietary period will be 12 months). The WFM continuously monitors about 1/3 of the sky at a time and provides data for about ~100 sources a day, resulting in a total of ~20 GB of additional telemetry. The LOFT Burst alert System additionally identifies on-board bright impulsive events (e.g., Gamma-ray Bursts, GRBs) and broadcasts the corresponding position and trigger time to the ground using a dedicated system of ~15 VHF receivers. All WFM data are planned to be made public immediately. In this contribution we summarize the planned organization of the LOFT ground segment (GS), as established in the mission Yellow Book1. We describe the expected GS contributions from ESA and the LOFT consortium. A review is provided of the planned LOFT data products and the details of the data flow, archiving and distribution. Despite LOFT was not selected for launch within the M3 call, its long assessment phase ( >2 years) led to a very solid mission design and an efficient planning of its ground operations.
The Evaluation of GPS techniques for UAV-based Photogrammetry in Urban Area
NASA Astrophysics Data System (ADS)
Yeh, M. L.; Chou, Y. T.; Yang, L. S.
2016-06-01
The efficiency and high mobility of Unmanned Aerial Vehicle (UAV) made them essential to aerial photography assisted survey and mapping. Especially for urban land use and land cover, that they often changes, and need UAVs to obtain new terrain data and the new changes of land use. This study aims to collect image data and three dimensional ground control points in Taichung city area with Unmanned Aerial Vehicle (UAV), general camera and Real-Time Kinematic with positioning accuracy down to centimetre. The study area is an ecological park that has a low topography which support the city as a detention basin. A digital surface model was also built with Agisoft PhotoScan, and there will also be a high resolution orthophotos. There will be two conditions for this study, with or without ground control points and both were discussed and compared for the accuracy level of each of the digital surface models. According to check point deviation estimate, the model without ground control points has an average two-dimension error up to 40 centimeter, altitude error within one meter. The GCP-free RTK-airborne approach produces centimeter-level accuracy with excellent to low risk to the UAS operators. As in the case of the model with ground control points, the accuracy of x, y, z coordinates has gone up 54.62%, 49.07%, and 87.74%, and the accuracy of altitude has improved the most.
Performance of an Advanced Stirling Convertor Based on Heat Flux Sensor Measurements
NASA Technical Reports Server (NTRS)
Wilson, Dcott D.
2012-01-01
The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower, Inc., and NASA Glenn Research Center. The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot-end and cold-end temperatures, and specified electrical power output for a given heat input. It is difficult to measure heat input to Stirling convertors due to the complex geometries of the hot components, temperature limits of sensor materials, and invasive integration of sensors. A thin-film heat flux sensor was used to directly measure heat input to an ASC. The effort succeeded in designing and fabricating unique sensors, which were integrated into a Stirling convertor ground test and exposed to test temperatures exceeding 700 C in air for 10,000 hr. Sensor measurements were used to calculate thermal efficiency for ASC-E (Engineering Unit) #1 and #4. The post-disassembly condition of the sensors is also discussed.
Orbital Maneuvering Vehicle (OMV) remote servicing kit
NASA Technical Reports Server (NTRS)
Brown, Norman S.
1988-01-01
With the design and development of the Orbital Maneuvering Vehicle (OMV) progressing toward an early 1990 initial operating capability (IOC), a new era in remote space operations will evolve. The logical progression to OMV front end kits would make available in situ satellite servicing, repair, and consummables resupply to the satellite community. Several conceptual design study efforts are defining representative kits (propellant tanks, debris recovery, module servicers); additional focus must also be placed on an efficient combination module servicer and consummables resupply kit. A remote servicer kit of this type would be designed to perform many of the early maintenance/resupply tasks in both nominal and high inclination orbits. The kit would have the capability to exchange Orbital Replacement Units (ORUs), exchange propellant tanks, and/or connect fluid transfer umbilicals. Necessary transportation system functions/support could be provided by interfaces with the OMV, Shuttle (STS), or Expendable Launch Vehicle (ELV). Specific remote servicer kit designs, as well as ground and flight demonstrations of servicer technology are necessary to prepare for the potential overwhelming need. Ground test plans should adhere to the component/system/breadboard test philosophy to assure maximum capability of one-g testing. The flight demonstration(s) would most likely be a short duration, Shuttle-bay experiment to validate servicer components requiring a micro-g environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shurupov, A. V.; Zavalova, V. E., E-mail: zavalova@fites.ru; Kozlov, A. V.
The report presents the results of the development and field testing of a mobile test facility based on a helical magnetic cumulative generator (MCGTF). The system is designed for full-scale modeling of lightning currents to study the safety of power plants of any type, including nuclear power plants. Advanced technologies of high-energy physics for solving both engineering and applied problems underlie this pilot project. The energy from the magnetic cumulative generator (MCG) is transferred to a high-impedance load with high efficiency of more than 50% using pulse transformer coupling. Modeling of the dynamics of the MEG that operates in amore » circuit with lumped parameters allows one to apply the law of inductance output during operation of the MCG, thus providing the required front of the current pulse in the load without using any switches. The results of field testing of the MCGTF are presented for both the ground loop and the model load. The ground loop generates a load resistance of 2–4 Ω. In the tests, the ohmic resistance of the model load is 10 Ω. It is shown that the current pulse parameters recorded in the resistive-inductive load are close to the calculated values.« less
An algorithm for calculi segmentation on ureteroscopic images.
Rosa, Benoît; Mozer, Pierre; Szewczyk, Jérôme
2011-03-01
The purpose of the study is to develop an algorithm for the segmentation of renal calculi on ureteroscopic images. In fact, renal calculi are common source of urological obstruction, and laser lithotripsy during ureteroscopy is a possible therapy. A laser-based system to sweep the calculus surface and vaporize it was developed to automate a very tedious manual task. The distal tip of the ureteroscope is directed using image guidance, and this operation is not possible without an efficient segmentation of renal calculi on the ureteroscopic images. We proposed and developed a region growing algorithm to segment renal calculi on ureteroscopic images. Using real video images to compute ground truth and compare our segmentation with a reference segmentation, we computed statistics on different image metrics, such as Precision, Recall, and Yasnoff Measure, for comparison with ground truth. The algorithm and its parameters were established for the most likely clinical scenarii. The segmentation results are encouraging: the developed algorithm was able to correctly detect more than 90% of the surface of the calculi, according to an expert observer. Implementation of an algorithm for the segmentation of calculi on ureteroscopic images is feasible. The next step is the integration of our algorithm in the command scheme of a motorized system to build a complete operating prototype.
NASA Technical Reports Server (NTRS)
Ward, Jennifer G.; Cummins, Kenneth L.; Krider, E. Philip
2007-01-01
The NASA Kennedy Space Center (KSC) and Air Force Eastern Range (ER) use data from two cloud-to-ground lightning detection networks, CGLSS and NLDN, during ground and launch operations at the KSC-ER. For these applications, it is very important to understand the location accuracy and detection efficiency of each network near the KSC-ER. If a cloud-to-ground (CG) lightning strike is missed or mis-located by even a small amount, the result could have significant safety implications, require expensive retests, or create unnecessary delays or scrubs in launches. Therefore, it is important to understand the performance of each lightning detection system in considerable detail. To evaluate recent upgrades in the CGLSS sensors in 2000 and the entire NLDN in 2002- 2003, we have compared. measurements provided by these independent networks in the summers of 2005 and 2006. Our analyses have focused on the fraction of first strokes reported individually and in-common by each network (flash detection efficiency), the spatial separation between the strike points reported by both networks (relative location accuracy), and the values of the estimated peak current, Ip, reported by each network. The results within 100 km of the KSC-ER show that the networks produce very similar values of Ip (except for a small scaling difference) and that the relative location accuracy is consistent with model estimates that give median values of 200-300m for the CGLSS and 600-700m for the NLDN in the region of the KSC-ER. Because of differences in the network geometries and sensor gains, the NLDN does not report 10-20% of the flashes that have a low Ip (2 kA < |Ip| < 16 kA), both networks report 99 % of the flashes that have intermediate values of Ip (16< |Ip| < 50 kA), and the CGLSS fails to report 20-30% of the high-current events (|Ip| >=0 kA).
Remotely controlled sensor apparatus for use in dig-face characterization system
Josten, N.E.; Svoboda, J.M.
1999-05-25
A remotely controlled sensor platform apparatus useful in a dig-face characterization system is deployed from a mobile delivery device such as standard heavy construction equipment. The sensor apparatus is designed to stabilize sensors against extraneous motions induced by heavy equipment manipulations or other outside influences, and includes a terrain sensing and sensor elevation control system to maintain the sensors in close ground proximity. The deployed sensor apparatus is particularly useful in collecting data in work environments where human access is difficult due to the presence of hazardous conditions, rough terrain, or other circumstances that prevent efficient data collection by conventional methods. Such work environments include hazardous waste sites, unexploded ordnance sites, or construction sites. Data collection in these environments by utilizing the deployed sensor apparatus is desirable in order to protect human health and safety, or to assist in planning daily operations to increase efficiency. 13 figs.
Remotely controlled sensor apparatus for use in dig-face characterization system
Josten, Nicholas E.; Svoboda, John M.
1999-01-01
A remotely controlled sensor platform apparatus useful in a dig-face characterization system is deployed from a mobile delivery device such as standard heavy construction equipment. The sensor apparatus is designed to stabilize sensors against extraneous motions induced by heavy equipment manipulations or other outside influences, and includes a terrain sensing and sensor elevation control system to maintain the sensors in close ground proximity. The deployed sensor apparatus is particularly useful in collecting data in work environments where human access is difficult due to the presence of hazardous conditions, rough terrain, or other circumstances that prevent efficient data collection by conventional methods. Such work environments include hazardous waste sites, unexploded ordnance sites, or construction sites. Data collection in these environments by utilizing the deployed sensor apparatus is desirable in order to protect human health and safety, or to assist in planning daily operations to increase efficiency.
A variational eigenvalue solver on a photonic quantum processor
Peruzzo, Alberto; McClean, Jarrod; Shadbolt, Peter; Yung, Man-Hong; Zhou, Xiao-Qi; Love, Peter J.; Aspuru-Guzik, Alán; O’Brien, Jeremy L.
2014-01-01
Quantum computers promise to efficiently solve important problems that are intractable on a conventional computer. For quantum systems, where the physical dimension grows exponentially, finding the eigenvalues of certain operators is one such intractable problem and remains a fundamental challenge. The quantum phase estimation algorithm efficiently finds the eigenvalue of a given eigenvector but requires fully coherent evolution. Here we present an alternative approach that greatly reduces the requirements for coherent evolution and combine this method with a new approach to state preparation based on ansätze and classical optimization. We implement the algorithm by combining a highly reconfigurable photonic quantum processor with a conventional computer. We experimentally demonstrate the feasibility of this approach with an example from quantum chemistry—calculating the ground-state molecular energy for He–H+. The proposed approach drastically reduces the coherence time requirements, enhancing the potential of quantum resources available today and in the near future. PMID:25055053
Use of automated rendezvous trajectory planning to improve spacecraft operations efficiency
NASA Technical Reports Server (NTRS)
Mulder, Tom A.
1991-01-01
The current planning process for space shuttle rendezvous with a second Earth-orbiting vehicle is time consuming and costly. It is a labor-intensive, manual process performed pre-mission with the aid of specialized maneuver processing tools. Real-time execution of a rendezvous plan must closely follow a predicted trajectory, and targeted solutions leading up to the terminal phase are computed on the ground. Despite over 25 years of Gemini, Apollo, Skylab, and shuttle vehicle-to-vehicle rendezvous missions flown to date, rendezvous in Earth orbit still requires careful monitoring and cannot be taken for granted. For example, a significant trajectory offset was experienced during terminal phase rendezvous of the STS-32 Long Duration Exposure Facility retrieval mission. Several improvements can be introduced to the present rendezvous planning process to reduce costs, produce more fuel-efficient profiles, and increase the probability of mission success.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ran, Niva A.; Roland, Steffen; Love, John A.
Here, a long standing question in organic electronics concerns the effects of molecular orientation at donor/acceptor heterojunctions. Given a well-controlled donor/acceptor bilayer system, we uncover the genuine effects of molecular orientation on charge generation and recombination. These effects are studied through the point of view of photovoltaics—however, the results have important implications on the operation of all optoelectronic devices with donor/acceptor interfaces, such as light emitting diodes and photodetectors. Our findings can be summarized by two points. First, devices with donor molecules face-on to the acceptor interface have a higher charge transfer state energy and less non-radiative recombination, resulting inmore » larger open-circuit voltages and higher radiative efficiencies. Second, devices with donor molecules edge-on to the acceptor interface are more efficient at charge generation, attributed to smaller electronic coupling between the charge transfer states and the ground state, and lower activation energy for charge generation.« less
Improving INPE'S balloon ground facilities for operation of the protoMIRAX experiment
NASA Astrophysics Data System (ADS)
Mattiello-Francisco, F.; Rinke, E.; Fernandes, J. O.; Cardoso, L.; Cardoso, P.; Braga, J.
2014-10-01
The system requirements for reusing the scientific balloon ground facilities available at INPE were a challenge to the ground system engineers involved in the protoMIRAX X-ray astronomy experiment. A significant effort on software updating was required for the balloon ground station. Considering that protoMIRAX is a pathfinder for the MIRAX satellite mission, a ground infrastructure compatible with INPE's satellite operation approach would be useful and highly recommended to control and monitor the experiment during the balloon flights. This approach will make use of the SATellite Control System (SATCS), a software-based architecture developed at INPE for satellite commanding and monitoring. SATCS complies with particular operational requirements of different satellites by using several customized object-oriented software elements and frameworks. We present the ground solution designed for protoMIRAX operation, the Control and Reception System (CRS). A new server computer, properly configured with Ethernet, has extended the existing ground station facilities with switch, converters and new software (OPS/SERVER) in order to support the available uplink and downlink channels being mapped to TCP/IP gateways required by SATCS. Currently, the CRS development is customizing the SATCS for the kernel functions of protoMIRAX command and telemetry processing. Design-patterns, component-based libraries and metadata are widely used in the SATCS in order to extend the frameworks to address the Packet Utilization Standard (PUS) for ground-balloon communication, in compliance with the services provided by the data handling computer onboard the protoMIRAX balloon.
Navigation Operations for the Magnetospheric Multiscale Mission
NASA Technical Reports Server (NTRS)
Long, Anne; Farahmand, Mitra; Carpenter, Russell
2015-01-01
The Magnetospheric Multiscale (MMS) mission employs four identical spinning spacecraft flying in highly elliptical Earth orbits. These spacecraft will fly in a series of tetrahedral formations with separations of less than 10 km. MMS navigation operations use onboard navigation to satisfy the mission definitive orbit and time determination requirements and in addition to minimize operations cost and complexity. The onboard navigation subsystem consists of the Navigator GPS receiver with Goddard Enhanced Onboard Navigation System (GEONS) software, and an Ultra-Stable Oscillator. The four MMS spacecraft are operated from a single Mission Operations Center, which includes a Flight Dynamics Operations Area (FDOA) that supports MMS navigation operations, as well as maneuver planning, conjunction assessment and attitude ground operations. The System Manager component of the FDOA automates routine operations processes. The GEONS Ground Support System component of the FDOA provides the tools needed to support MMS navigation operations. This paper provides an overview of the MMS mission and associated navigation requirements and constraints and discusses MMS navigation operations and the associated MMS ground system components built to support navigation-related operations.
Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions
Luco, N.; Cornell, C.A.
2007-01-01
Introduced in this paper are several alternative ground-motion intensity measures (IMs) that are intended for use in assessing the seismic performance of a structure at a site susceptible to near-source and/or ordinary ground motions. A comparison of such IMs is facilitated by defining the "efficiency" and "sufficiency" of an IM, both of which are criteria necessary for ensuring the accuracy of the structural performance assessment. The efficiency and sufficiency of each alternative IM, which are quantified via (i) nonlinear dynamic analyses of the structure under a suite of earthquake records and (ii) linear regression analysis, are demonstrated for the drift response of three different moderate- to long-period buildings subjected to suites of ordinary and of near-source earthquake records. One of the alternative IMs in particular is found to be relatively efficient and sufficient for the range of buildings considered and for both the near-source and ordinary ground motions. ?? 2007, Earthquake Engineering Research Institute.
Exogenous spatial attention influences figure-ground assignment.
Vecera, Shaun P; Flevaris, Anastasia V; Filapek, Joseph C
2004-01-01
In a hierarchical stage account of vision, figure-ground assignment is thought to be completed before the operation of focal spatial attention. Results of previous studies have supported this account by showing that unpredictive, exogenous spatial precues do not influence figure-ground assignment, although voluntary attention can influence figure-ground assignment. However, in these studies, attention was not summoned directly to a region in a figure-ground display. In three experiments, we addressed the relationship between figure-ground assignment and visuospatial attention. In Experiment 1, we replicated the finding that exogenous precues do not influence figure-ground assignment when they direct attention outside of a figure-ground stimulus. In Experiment 2, we demonstrated that exogenous attention can influence figure-ground assignment if it is directed to one of the regions in a figure-ground stimulus. In Experiment 3, we demonstrated that exogenous attention can influence figure-ground assignment in displays that contain a Gestalt figure-ground cue; this result suggests that figure-ground processes are not entirely completed prior to the operation of focal spatial attention. Exogenous spatial attention acts as a cue for figure-ground assignment and can affect the outcome of figure-ground processes.
Operation UPSHOT-KNOTHOLE. Operational Summary, Nevada Proving Grounds, 1 March - 9 June 1953
1982-08-01
EXTRACTED VERSION OPERATION UPSHOT-KNOTHOLE -- Operational Summary Nevada Proving Grounds ,* 1 March-9 June 1953 Headquarters Field Command Armed...Weapons Effects Tests 9. PERIORUMING 004CAWIZAY10ON AME ANO AOO1RESS 10. P140GRAM ELEMENPT, PROJECT, TASK AREA a 1114.01110 UNIT NUMBERS Headquarters Field ...process of preparation. Activities in prepara- tion for the operational period have been previously recorded in Field Commnand Histo y DO I "’* 1473
Integrating Automation into a Multi-Mission Operations Center
NASA Technical Reports Server (NTRS)
Surka, Derek M.; Jones, Lori; Crouse, Patrick; Cary, Everett A, Jr.; Esposito, Timothy C.
2007-01-01
NASA Goddard Space Flight Center's Space Science Mission Operations (SSMO) Project is currently tackling the challenge of minimizing ground operations costs for multiple satellites that have surpassed their prime mission phase and are well into extended mission. These missions are being reengineered into a multi-mission operations center built around modern information technologies and a common ground system infrastructure. The effort began with the integration of four SMEX missions into a similar architecture that provides command and control capabilities and demonstrates fleet automation and control concepts as a pathfinder for additional mission integrations. The reengineered ground system, called the Multi-Mission Operations Center (MMOC), is now undergoing a transformation to support other SSMO missions, which include SOHO, Wind, and ACE. This paper presents the automation principles and lessons learned to date for integrating automation into an existing operations environment for multiple satellites.
NASA Technical Reports Server (NTRS)
Adams, J. H., Jr.; Andreev, Valeri; Christl, M. J.; Cline, David B.; Crawford, Hank; Judd, E. G.; Pennypacker, Carl; Watts, J. W.
2007-01-01
The JEM-EUSO collaboration intends to study high energy cosmic ray showers using a large downward looking telescope mounted on the Japanese Experiment Module of the International Space Station. The telescope focal plane is instrumented with approx.300k pixels operating as a digital camera, taking snapshots at approx. 1MHz rate. We report an investigation of the trigger and reconstruction efficiency of various algorithms based on time and spatial analysis of the pixel images. Our goal is to develop trigger and reconstruction algorithms that will allow the instrument to detect energies low enough to connect smoothly to ground-based observations.
St. Michael's Improvement Program - A Collaborative Approach to Sustainable Cost Savings.
Trafford, Anne; Jane, Danielle
2017-01-01
In response to a challenging financial environment and increasing patient demand, St. Michael's Hospital needed to find long-term sustainable solutions to continue to provide high-quality patient care and invest in key priorities. By conducting Operational Reviews in focused areas, the hospital achieved $7.4 million of in-year savings in the first year, found standardizations, process efficiencies and direct cost savings that positioned itself for success in future funding models. Initiatives were grounded in evidence and relied heavily on the effective execution by the leadership, front-line staff and physicians. As organizations face similar challenges, this journey can provide key learnings.
A compact high-speed pnCCD camera for optical and x-ray applications
NASA Astrophysics Data System (ADS)
Ihle, Sebastian; Ordavo, Ivan; Bechteler, Alois; Hartmann, Robert; Holl, Peter; Liebel, Andreas; Meidinger, Norbert; Soltau, Heike; Strüder, Lothar; Weber, Udo
2012-07-01
We developed a camera with a 264 × 264 pixel pnCCD of 48 μm size (thickness 450 μm) for X-ray and optical applications. It has a high quantum efficiency and can be operated up to 400 / 1000 Hz (noise≍ 2:5 ° ENC / ≍4:0 ° ENC). High-speed astronomical observations can be performed with low light levels. Results of test measurements will be presented. The camera is well suitable for ground based preparation measurements for future X-ray missions. For X-ray single photons, the spatial position can be determined with significant sub-pixel resolution.
Near-space flight of a correlated photon system
Tang, Zhongkan; Chandrasekara, Rakhitha; Sean, Yau Yong; Cheng, Cliff; Wildfeuer, Christoph; Ling, Alexander
2014-01-01
We report the successful test flight of a device for generating and monitoring correlated photon pairs under near-space conditions up to 35.5 km altitude. Data from ground based qualification tests and the high altitude experiment demonstrate that the device continues to operate even under harsh environmental conditions. The design of the rugged, compact and power-efficient photon pair system is presented. This design enables autonomous photon pair systems to be deployed on low-resource platforms such as nanosatellites hosting remote nodes of a quantum key distribution network. These results pave the way for tests of entangled photon technology in low earth orbit. PMID:25219935
NASA Technical Reports Server (NTRS)
Zernic, Michael J.
2002-01-01
Broadband satellite communications for aeronautics marries communication and network technologies to address NASA's goals in information technology base research and development, thereby serving the safety and capacity needs of the National Airspace System. This marriage of technology increases the interactivity between airborne vehicles and ground systems. It improves decision-making and efficiency, reduces operation costs, and improves the safety and capacity of the National Airspace System. To this end, a collaborative project called the Aeronautical Satellite Assisted Process for Information Exchange through Network Technologies, or Aero-SAPIENT, was conducted out of Tinker AFB, Oklahoma, during November and December 2000.
Characterization of a Low-Cost Multi-Parameter Sensor for Resource Applications: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron M; Sengupta, Manajit; Andreas, Afshin M
Low-cost multi-parameter sensing and measurement devices enable cost-effective monitoring of the functional, operational reliability, efficiency, and resiliency of the electrical grid. The National Renewable Research Laboratory (NREL) Solar Radiation Research Laboratory (SRRL), in collaboration with Arable Labs Inc., deployed Arable Lab's Mark multi-parameter sensor system. The unique suite of system sensors measures the down-welling and upwelling shortwave solar resource and longwave radiation, humidity, air temperature, and ground temperature. This study describes the shortwave calibration, characteriza-tion, and validation of measurement accuracy of this instrument by comparison with existing instruments that are part of NREL-SRRL's Baseline Measurement System.
Commonality of Ground Systems in Launch Operations
NASA Technical Reports Server (NTRS)
Quinn, Shawn M.
2008-01-01
NASA is examining the utility of requiring a certain degree of commonality in both flight and ground systems in the Constellation Program. While the benefits of commonality seem obvious in terms of minimizing upfront development and long-term operations and maintenance costs, success in real, large-scale engineering systems used to support launch operations is relatively unknown. A broad literature review conducted for this paper did not yield a single paper specifically addressing the application of commonality for ground systems at any launch site in the United States or abroad. This paper provides a broad overview of the ground systems, captures historical and current application of commonality at the launch site, and offers suggestions for additional research to further develop commonality approaches.
Quantum Vertex Model for Reversible Classical Computing
NASA Astrophysics Data System (ADS)
Chamon, Claudio; Mucciolo, Eduardo; Ruckenstein, Andrei; Yang, Zhicheng
We present a planar vertex model that encodes the result of a universal reversible classical computation in its ground state. The approach involves Boolean variables (spins) placed on links of a two-dimensional lattice, with vertices representing logic gates. Large short-ranged interactions between at most two spins implement the operation of each gate. The lattice is anisotropic with one direction corresponding to computational time, and with transverse boundaries storing the computation's input and output. The model displays no finite temperature phase transitions, including no glass transitions, independent of circuit. The computational complexity is encoded in the scaling of the relaxation rate into the ground state with the system size. We use thermal annealing and a novel and more efficient heuristic \\x9Dannealing with learning to study various computational problems. To explore faster relaxation routes, we construct an explicit mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating a novel approach to reversible classical computation based on quantum annealing.
Space debris removal by ground-based lasers: main conclusions of the European project CLEANSPACE.
Esmiller, Bruno; Jacquelard, Christophe; Eckel, Hans-Albert; Wnuk, Edwin
2014-11-01
Studies show that the number of debris in low Earth orbit is exponentially growing despite future debris release mitigation measures considered. Specifically, the already existing population of small and medium debris (between 1 cm and several dozens of cm) is today a concrete threat to operational satellites. A ground-based laser solution which can remove, at low expense and in a nondestructive way, hazardous debris around selected space assets appears as a highly promising answer. This solution is studied within the framework of the CLEANSPACE project which is part of the FP7 space program. The overall CLEANSPACE objective is: to propose an efficient and affordable global system architecture, to tackle safety regulation aspects, political implications and future collaborations, to develop affordable technological bricks, and to establish a roadmap for the development and the future implantation of a fully functional laser protection system. This paper will present the main conclusions of the CLEANSPACE project.
Aerial surveillance vehicles augment security at shipping ports
NASA Astrophysics Data System (ADS)
Huck, Robert C.; Al Akkoumi, Muhammad K.; Cheng, Samuel; Sluss, James J., Jr.; Landers, Thomas L.
2008-10-01
With the ever present threat to commerce, both politically and economically, technological innovations provide a means to secure the transportation infrastructure that will allow efficient and uninterrupted freight-flow operations for trade. Currently, freight coming into United States ports is "spot checked" upon arrival and stored in a container yard while awaiting the next mode of transportation. For the most part, only fences and security patrols protect these container storage yards. To augment these measures, the authors propose the use of aerial surveillance vehicles equipped with video cameras and wireless video downlinks to provide a birds-eye view of port facilities to security control centers and security patrols on the ground. The initial investigation described in this paper demonstrates the use of unmanned aerial surveillance vehicles as a viable method for providing video surveillance of container storage yards. This research provides the foundation for a follow-on project to use autonomous aerial surveillance vehicles coordinated with autonomous ground surveillance vehicles for enhanced port security applications.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Force, Dale A.; Kacpura, Thomas J.
2013-01-01
The design, fabrication and RF performance of the output traveling-wave tube amplifier (TWTA) for a space based Ka-band software defined radio (SDR) is presented. The TWTA, the SDR and the supporting avionics are integrated to forms a testbed, which is currently located on an exterior truss of the International Space Station (ISS). The SDR in the testbed communicates at Ka-band frequencies through a high-gain antenna directed to NASA s Tracking and Data Relay Satellite System (TDRSS), which communicates to the ground station located at White Sands Complex. The application of the testbed is for demonstrating new waveforms and software designed to enhance data delivery from scientific spacecraft and, the waveforms and software can be upgraded and reconfigured from the ground. The construction and the salient features of the Ka-band SDR are discussed. The testbed is currently undergoing on-orbit checkout and commissioning and is expected to operate for 3 to 5 years in space.
NASA Astrophysics Data System (ADS)
Dugave, Maxime; Göhmann, Frank; Kozlowski, Karol K.; Suzuki, Junji
2016-09-01
We use the form factors of the quantum transfer matrix in the zero-temperature limit in order to study the two-point ground-state correlation functions of the XXZ chain in the antiferromagnetic massive regime. We obtain novel form factor series representations of the correlation functions which differ from those derived either from the q-vertex-operator approach or from the algebraic Bethe Ansatz approach to the usual transfer matrix. We advocate that our novel representations are numerically more efficient and allow for a straightforward calculation of the large-distance asymptotic behaviour of the two-point functions. Keeping control over the temperature corrections to the two-point functions we see that these are of order {T}∞ in the whole antiferromagnetic massive regime. The isotropic limit of our result yields a novel form factor series representation for the two-point correlation functions of the XXX chain at zero magnetic field. Dedicated to the memory of Petr Petrovich Kulish.
Effect of Different Sugar Beet Pulp Pretreatments on Biogas Production Efficiency.
Ziemiński, Krzysztof; Kowalska-Wentel, Monika
2017-03-01
The objective of this study was to determine the effect of different sugar beet pulp (SBP) pretreatments on biogas yield from anaerobic digestion. SBP was subjected to grinding, thermal-pressure processing, enzymatic hydrolysis, or combination of these pretreatments. It was observed that grinding of SBP to 2.5-mm particles resulted in the cumulative biogas productivity of 617.2 mL/g volatile solids (VS), which was 20.2 % higher compared to the biogas yield from the not pretreated SBP, and comparable to that from not ground, enzymatically hydrolyzed SBP. The highest cumulative biogas productivity, 898.7 mL/g VS, was obtained from the ground, thermal-pressure pretreated and enzymatically hydrolyzed SBP. The latter pretreatment variant enabled to achieve the highest glucose concentration (24.765 mg/mL) in the enzymatic hydrolysates. The analysis of energy balance showed that the increase in the number of SBP pretreatment operations significantly reduced the gain of electric energy.
Nanosat Intelligent Power System Development
NASA Technical Reports Server (NTRS)
Johnson, Michael A.; Beaman, Robert G.; Mica, Joseph A.; Truszkowski, Walter F.; Rilee, Michael L.; Simm, David E.
1999-01-01
NASA Goddard Space Flight Center is developing a class of satellites called nano-satellites. The technologies developed for these satellites will enable a class of constellation missions for the NASA Space Science Sun-Earth Connections theme and will be of great benefit to other NASA enterprises. A major challenge for these missions is meeting significant scientific- objectives with limited onboard and ground-based resources. Total spacecraft power is limited by the small satellite size. Additionally, it is highly desirable to minimize operational costs by limiting the ground support required to manage the constellation. This paper will describe how these challenges are met in the design of the nanosat power system. We will address the factors considered and tradeoffs made in deriving the nanosat power system architecture. We will discuss how incorporating onboard fault detection and correction capability yields a robust spacecraft power bus without the mass and volume penalties incurred from redundant systems and describe how power system efficiency is maximized throughout the mission duration.
Potential Application of NASA Aerospace Technology to Ground-Based Power System
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.; Welch, Gerard E.; Bakhle, Milind A.; Brown, Gerald V.
2000-01-01
A review of some of the basic gas turbine technology being developed at the NASA John H. Glenn Research Center at Lewis Field, which may have the potential to be applied to ground-based systems, is presented in this paper. Only a sampling of the large number of research activities underway at the Glenn Research Center can be represented here. The items selected for presentation are those that may lead to increased power and efficiency, reduced cycle design time and cost, improved thermal design, reduced fatigue and fracture, reduced mechanical friction and increased operating margin. The topic of improved material will be presented in this conference and shall not be discussed here. The topics selected for presentation are key research activities at the Glenn Center of Excellence on Turbo-machinery. These activities should be of interest and utility to this ISABE (International Symposium on Air Breathing Engines) Special Forum on Aero-Derivative Land-Based Gas Turbines and to the power industry.
Operations Nomenclature [Annexes
NASA Technical Reports Server (NTRS)
Shannon, Yvette Y.
2011-01-01
The purpose of Operations Nomenclature (OpNom) is to document methods for denoting all hardware and software and associated data referenced by operations products produced by the International Space Station (ISS) operations community. This includes Operations Data File (ODF) procedures, ground and onboard displays, mission rules, commands, messages and advisories, planning products, etc. This document applies to all agencies and individuals participating in or contributing to ISS mission operations. Mission operations include ground checkout, training, and simulations, as well as real-time activities. The document also applies to all operations documentation (paper or electronic media) and other products that refer to ISS-related equipment or activities.
NASA Technical Reports Server (NTRS)
1983-01-01
Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.
A comparison of 8.415-, 32.0- and 565646-GHz deep space telemetry links
NASA Technical Reports Server (NTRS)
Dickinson, R. M.
1985-01-01
An economic and performance comparison is made of spacecraft telecommunication links at 8.415, 32.0, and 565646 GHz (0.53-micron wavelength) for the return of 3.43 x 10 to the 11th power bits from a Saturn Orbiter/Titan Probe mission in year 2000. Technical performance and costs for both ends of the links are included. Spacecraft antenna or telescope efficiencies, pointing losses, ground-based or Earth-orbiting relay terminals efficiencies, noise temperatures, recurring and nonrecurring engineering, and maintenance and operations costs are modeled. Weather effects, dc-to-RF or laser power conversion efficiencies, gravity and other environment distortions gain reductions, and the cost of pointing and tracking are analyzed. The effort is focused primarily on the microwave frequency links. There are large uncertainties in the cost results, but conclusions indicate that for a mid-1990's launch, the Ka-band system is as cost effective as X-band. The Ka-band system has a data rate advantage as compared to the X-band system for the same dc power input to the spacecraft. The magnitude of the advantage is a complex function of the weather at the DSN stations and the elevation angle of the ground antenna. A simple numerical comparison of the advantage is difficult and curves are provided. The optical frequency link is more costly based on the launch-to-orbit costs for the orbiting terminal. A more detailed study of the optical system is recommended to quantify astrometric tracking benefits and improve the accuracy of the cost estimate.
Recent field experiments with commercial satellite imagery direct downlink.
Gonzalez, Anthony R; Amber, Samuel H
US Pacific Command's strategy includes assistance to United States government relief agencies and nongovernment organizations during humanitarian aid and disaster relief operations in the Asia-Pacific region. Situational awareness during these operations is enhanced by broad interagency access to unclassified commercial satellite imagery. The Remote Ground Terminal-a mobile satellite downlink ground station-has undergone several technology demonstrations and participated in an overseas deployment exercise focused on a natural disaster scenario. This ground station has received new commercial imagery within 20 minutes, hastening a normally days-long process. The Army Geospatial Center continues to manage technology development and product improvement for the Remote Ground Terminal. Furthermore, this ground station is now on a technology transition path into the Distributed Common Ground System-Army program of record.
Transforming Our SMEX Organization by Way of Innovation, Standardization, and Automation
NASA Technical Reports Server (NTRS)
Madden, Maureen; Crouse, Pat; Carry, Everett; Esposito, timothy; Parker, Jeffrey; Bradley, David
2006-01-01
NASA's Small Explorer (SMEX) Flight Operations Team (FOT) is currently tackling the challenge of supporting ground operations for several satellites that have surpassed their designed lifetime and have a dwindling budget. At Goddard Space Flight Center (GSFC), these missions are presently being reengineered into a fleet-oriented ground system. When complete, this ground system will provide command and control of four SMEX missions, and will demonstrate fleet automation and control concepts as a pathfinder for additional mission integrations. A goal of this reengineering effort is to demonstrate new ground-system technologies that show promise of supporting longer mission lifecycles and simplifying component integration. In pursuit of this goal, the SMEX organization has had to examine standardization, innovation, and automation. A core technology being demonstrated in this effort is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture focuses on providing standard interfaces for ground system applications to promote application interoperability. Building around commercial Message Oriented Middleware and providing a common messaging standard allows GMSEC to provide the capabilities necessary to support integration of new software components into existing missions and increase the level of interaction within the system. For SMS, GMSEC has become the technology platform to transform flight operations with the innovation and automation necessary to reduce operational costs. The automation technologies supported in SMEX are built upon capabilities provided by the GMSEC architecture that allows the FOT to further reduce the involvement of the console, operator. Initially, SMEX is automating only routine operations, such as safety and health monitoring, basic commanding, and system recovery. The operational concepts being developed here will reduce the need for staffed passes and are a necessity for future fleet management. As this project continues to evolve, additional innovations beyond GMSEC and automation have, and will continue to be developed. The team developed techniques for migrating ground systems of existing on-orbit assets. The tools necessary to monitor and control software failures were integrated and tailored for operational environments. All this was done with a focus of extending fleet operations to mission beyond SMU. The result of this work is the foundation for a broader fleet-capable ground system that will include several missions supported by the Space Science Mission Operations Project.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-15
... Notice of Intent to Delete the soils of Operable Unit 1 and the underlying ground water of the... preclude future actions under Superfund. This partial deletion pertains to the soils of Operable Unit 1 and... Partial Deletion for the soils of Operable Unit 1 and the underlying ground water of the approximately 8...
Advanced Ground Systems Maintenance Physics Models for Diagnostics Project
NASA Technical Reports Server (NTRS)
Harp, Janicce Leshay
2014-01-01
The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations.
Fact Sheets of CTAS and NASA Decision-Support Tools and Concepts
NASA Technical Reports Server (NTRS)
Lee, Katharine
2004-01-01
Distributed Air/Ground (DAG) Traffic Management (TM) is an integrated operational concept in which flight deck crews, air traffic service providers and aeronautical operational control personnel use distributed decision-making to enable user preferences and increase system capacity, while meeting air traffic management (ATM) requirements. It is a possible operational mode under the Free Flight concept outlined by the RTCA Task Force 3. The goal of DAG-TM is to enhance user flexibility/efficiency and increase system capacity, without adversely affecting system safety or restricting user accessibility to the National Airspace System (NAS). DAG-TM will be accomplished with a human-centered operational paradigm enabled by procedural and technological innovations. These innovations include automation aids, information sharing and Communication, Navigation, and Surveillance (CNS) / ATM technologies. The DAG-TM concept is intended to eliminate static restrictions to the maximum extent possible. In this paradigm, users may plan and operate according to their preferences - as the rule rather than the exception - with deviations occumng eyond the year 2015. Out of a total of 15 concept elements, 4 have been selected for initial sutidies (see Key Elements in sidebar). DAG-TM research is being performed at Ames, Glenn, and Langley Research Centers.
Usage of Fault Detection Isolation & Recovery (FDIR) in Constellation (CxP) Launch Operations
NASA Technical Reports Server (NTRS)
Ferrell, Rob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Spirkovska, Lilly; Hall, David; Brown, Barbara
2010-01-01
This paper will explore the usage of Fault Detection Isolation & Recovery (FDIR) in the Constellation Exploration Program (CxP), in particular Launch Operations at Kennedy Space Center (KSC). NASA's Exploration Technology Development Program (ETDP) is currently funding a project that is developing a prototype FDIR to demonstrate the feasibility of incorporating FDIR into the CxP Ground Operations Launch Control System (LCS). An architecture that supports multiple FDIR tools has been formulated that will support integration into the CxP Ground Operation's Launch Control System (LCS). In addition, tools have been selected that provide fault detection, fault isolation, and anomaly detection along with integration between Flight and Ground elements.
CATIA V5 Virtual Environment Support for Constellation Ground Operations
NASA Technical Reports Server (NTRS)
Kelley, Andrew
2009-01-01
This summer internship primarily involved using CATIA V5 modeling software to design and model parts to support ground operations for the Constellation program. I learned several new CATIA features, including the Imagine and Shape workbench and the Tubing Design workbench, and presented brief workbench lessons to my co-workers. Most modeling tasks involved visualizing design options for Launch Pad 39B operations, including Mobile Launcher Platform (MLP) access and internal access to the Ares I rocket. Other ground support equipment, including a hydrazine servicing cart, a mobile fuel vapor scrubber, a hypergolic propellant tank cart, and a SCAPE (Self Contained Atmospheric Protective Ensemble) suit, was created to aid in the visualization of pad operations.
14 CFR 417.109 - Ground safety.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Ground safety. 417.109 Section 417.109... TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.109 Ground safety. (a) Ground safety... 417.115(c), and subpart E of this part provide launch operator ground safety requirements. ...
14 CFR 417.109 - Ground safety.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Ground safety. 417.109 Section 417.109... TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.109 Ground safety. (a) Ground safety... 417.115(c), and subpart E of this part provide launch operator ground safety requirements. ...
Ground Systems Development and Operations (GSDO): Exploration Begins Here [Grades K-4
NASA Technical Reports Server (NTRS)
Hill, Trudy
2012-01-01
Presentation to inform the non-NASA general public and school children of ground systems development and operations activities at Kennedy Space Center, particularly on what GSDO is and does, in a high level overview.
Ground-vehicle operator training using a low-cost simulator
DOT National Transportation Integrated Search
2006-05-01
Pilots, controllers, and ground-vehicle operators all have an important role in runway safety. Their actions, either individually or collectively can cause or avert a runway incursion. The roles and responsibilities of pilots and controllers in this ...
2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Bai, Yingxin; Yu, Jirong
2009-01-01
Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed in NASA Langley Research Center. This laser system is capable of making a vertical profiling of CO2 from ground and column measurement of CO2 from air and space-borne platform. The transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. A Ho:YLF laser operating in the range of 2.05 micrometers can be tuned over several characteristic lines of CO2 absorption. Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of CO2 with a repetition rate of 5 Hz and pulse energy of 75 mJ. For coherent detection, high repetition rate is required for speckle averaging to obtain highly precise measurements. However, a diode pumped Ho:Tm:YLF laser can not operate in high repetition rate due to the large heat loading and up-conversion. A Tm:fiber laser pumped Ho:YLF laser with low heat loading can operate in high repetition rate. A theoretical model has been established to simulate the performance of Tm:fiber laser pumped Ho:YLF lasers. For continuous wave (CW) operation, high pump intensity with small beam size is suitable for high efficiency. For Q-switched operation, the optimal energy extraction relies on the pump intensity, pump volume, and pump duration which is inversely proportion to the repetition rate. CW and Q-switched Ho:YLF lasers with different linear cavity configurations have been designed and demonstrated for a 30 W Tm:fiber pump laser. The CW Ho laser slope efficiency and optical-to-optical efficiencies reach 65% and 55%, respectively. The pulsed laser efficiency depends on the repetition rate. For 1 kHz operation, the optical-to-optical efficiency is 39% when the pump power is 14.5W. Currently, the injection seeding success rate is between 99.4% and 99.95%. After a ten thousand pulses, the standard deviation of the laser frequency jitter is about 3 MHz. It meets the requirements of highly precise CO2 concentration measurement. In conclusion, an injection seeded, high repetition rate, Q-switched Ho:YLF laser has been developed for a coherent CO2 differential absorption lidar. This master-slave laser system has high optical-to-optical efficiency and seeding success rate. It can potentially meet the requirements of the coherent detection of CO2 concentration by a differential absorption lidar technique.
NASA Technical Reports Server (NTRS)
Grindle, Laurie; Sakahara, Robert; Hackenberg, Davis; Johnson, William
2017-01-01
The topics discussed are the UAS-NAS project life-cycle and ARMD thrust flow down, as well as the UAS environments and how we operate in those environments. NASA's Armstrong Flight Research Center at Edwards, CA, is leading a project designed to help integrate unmanned air vehicles into the world around us. The Unmanned Aircraft Systems Integration in the National Airspace System project, or UAS in the NAS, will contribute capabilities designed to reduce technical barriers related to safety and operational challenges associated with enabling routine UAS access to the NAS. The project falls under the Integrated Systems Research Program office managed at NASA Headquarters by the agency's Aeronautics Research Mission Directorate. NASA's four aeronautics research centers - Armstrong, Ames Research Center, Langley Research Center, and Glenn Research Center - are part of the technology development project. With the use and diversity of unmanned aircraft growing rapidly, new uses for these vehicles are constantly being considered. Unmanned aircraft promise new ways of increasing efficiency, reducing costs, enhancing safety and saving lives 460265main_ED10-0132-16_full.jpg Unmanned aircraft systems such as NASA's Global Hawks (above) and Predator B named Ikhana (below), along with numerous other unmanned aircraft systems large and small, are the prime focus of the UAS in the NAS effort to integrate them into the national airspace. Credits: NASA Photos 710580main_ED07-0243-37_full.jpg The UAS in the NAS project envisions performance-based routine access to all segments of the national airspace for all unmanned aircraft system classes, once all safety-related and technical barriers are overcome. The project will provide critical data to such key stakeholders and customers as the Federal Aviation Administration and RTCA Special Committee 203 (formerly the Radio Technical Commission for Aeronautics) by conducting integrated, relevant system-level tests to adequately address safety and operational challenges of national airspace access by unmanned aircraft systems, or UAS. In the process, the project will work with other key stakeholders to define necessary deliverables and products to help enable such access. Within the project, NASA is focusing on five sub-projects. These five focus areas include assurance of safe separation of unmanned aircraft from manned aircraft when flying in the national airspace; safety-critical command and control systems and radio frequencies to enable safe operation of UAS; human factors issues for ground control stations; airworthiness certification standards for UAS avionics and integrated tests and evaluation designed to determine the viability of emerging UAS technology. Five Focus Areas of the UAS Integration in the NAS Project Separation Assurance Provide an assessment of how planned Next Generation Air Transportation System (NextGen) separation assurance systems, with different functional allocations, perform for UAS in mixed operations with manned aircraft Assess the applicability to UAS and the performance of NASA NextGen separation assurance systems in flight tests with realistic latencies and uncertain trajectories Assess functional allocations ranging from today's ground-based, controller-provided aircraft separation to fully autonomous airborne self-separation Communications Develop data and rationale to obtain appropriate frequency spectrum allocations to enable safe and efficient operation of UAS in the NAS Develop and validate candidate secure safety-critical command and control system/subsystem test equipment for UAS that complies with UAS international/national frequency regulations, standards and recommended practices and minimum operational and aviation system performance standards for UAS Perform analysis to support recommendations for integration of safety-critical command and control systems and air traffic control communications to ensure safe and efficient operation of UAS in the NAS Human Systems Integration Develop a research test bed and database to provide data and proof of concept for GCS - ground control station - operations in the NAS Coordinate with standards organizations to develop human-factors guidelines for GCS operation in the NAS Certification Define a UAS classification scheme and approach to determining Federal Aviation Regulation airworthiness requirements applicable to all UAS digital avionics Provide hazard and risk-related data to support development of type design criteria and best development practices Integrated Tests and Evaluation Integrate and test mature concepts from technical elements to demonstrate and test viability Evaluate the performance of technology development in a relevant environment (full-mission, human-in-the-loop simulations and flight tests)
Orion Pad Abort 1 Flight Test - Ground and Flight Operations
NASA Technical Reports Server (NTRS)
Hackenbergy, Davis L.; Hicks, Wayne
2011-01-01
This paper discusses the ground and flight operations aspects to the Pad Abort 1 launch. The paper details the processes used to plan all operations. The paper then discussions the difficulties of integration and testing, while detailing some of the lessons learned throughout the entire launch campaign. Flight operational aspects of the launc are covered in order to provide the listener with the full suite of operational issues encountered in preparation for the first flight test of the Orion Launch Abort System.
Space station operations task force. Panel 2 report: Ground operations and support systems
NASA Technical Reports Server (NTRS)
1987-01-01
The Ground Operations Concept embodied in this report provides for safe multi-user utilization of the Space Station, eases user integration, and gives users autonomy and flexibility. It provides for meaningful multi-national participation while protecting U.S. interests. The concept also supports continued space operations technology development by maintaining NASA expertise and enabling technology evolution. Given attention here are pre/post flight operations, logistics, sustaining engineering/configuration management, transportation services/rescue, and information systems and communication.
Subsurface Thermal Energy Storage for Improved Heating and Air Conditioning Efficiency
2016-11-21
This project involved a field demonstration of subsurface thermal energy storage for improving the geothermal heat pump air conditioning efficiency... geothermal heat pump systems, undesirable heating of the ground may occur. This demonstration was performed at the MCAS, Beaufort, SC, where several...buildings with geothermal heat pump systems were exhibiting excessively high ground loop temperatures. These buildings were retrofitted with dry fluid
Use of Virtual Reality for Space Flight
NASA Technical Reports Server (NTRS)
Harm, Deborah; Taylor, L. C.; Reschke, M. F.
2011-01-01
Virtual environments offer unique training opportunities, particularly for training astronauts and preadapting them to the novel sensory conditions of microgravity. Two unresolved human factors issues in virtual reality (VR) systems are: 1) potential "cybersickness", and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Active exploratory behavior in a new environment, with resulting feedback and the formation of new associations between sensory inputs and response outputs, promotes appropriate perception and motor control in the new environment. Thus, people adapt to consistent, sustained alterations of sensory input such as those produced by microgravity. Our research examining the effects of repeated exposures to a full field of view dome VR system showed that motion sickness and initial decrements in eye movement and postural control were greatly diminished following three exposures. These results suggest that repeated transitions between VR and the normal environment preflight might be a useful countermeasure for neurosensory and sensorimotor effects of space flight. The range of VR applications is enormous, extending from ground-based VR training for extravehicular activities at NASA, to medical and educational uses. It seems reasonable to suggest that other space related uses of VR should be investigated. For example, 1) use of head-mounted VR on orbit to rehearse/practice upcoming operational activities, and 2) ground-based VR training for emergency egress procedures. We propose that by combining VR designed for operational activities preflight, along with an appropriate schedule to facilitate sensorimotor adaptation and improve spatial orientation would potentially accomplish two important goals for astronauts and cosmonauts, preflight sensorimotor adaption and enhanced operational training at the same time. Such efforts could support both improved health and performance on orbit and improved operational training in the most efficient manner.
NASA Astrophysics Data System (ADS)
Schulze, Norman R.; Maxfield, B.; Boucher, C.
1995-01-01
Solid State Laser Initiated Ordnance (LIO) offers new technology having potential for enhanced safety, reduced costs, and improved operational efficiency. Concerns over the absence of programmatic applications of the technology, which has prevented acceptance by flight programs, should be abated since LIO has now been operationally implemented by the Laser Initiated Ordnance Sounding Rocket Demonstration (LOSRD) Program. The first launch of solid state laser diode LIO at the NASA Wallops Flight Facility (WFF) occurred on March 15, 1995 with all mission objectives accomplished. This project, Phase 3 of a series of three NASA Headquarters LIO demonstration initiatives, accomplished its objective by the flight of a dedicated, all-LIO sounding rocket mission using a two-stage Nike-Orion launch vehicle. LIO flight hardware, made by The Ensign-Bickford Company under NASA's first Cooperative Agreement with Profit Making Organizations, safely initiated three demanding pyrotechnic sequence events, namely, solid rocket motor ignition from the ground and in flight, and flight termination, i.e., as a Flight Termination System (FTS). A flight LIO system was designed, built, tested, and flown to support the objectives of quickly and inexpensively putting LIO through ground and flight operational paces. The hardware was fully qualified for this mission, including component testing as well as a full-scale system test. The launch accomplished all mission objectives in less than 11 months from proposal receipt. This paper concentrates on accomplishments of the ordnance aspects of the program and on the program's implementation and results. While this program does not generically qualify LIO for all applications, it demonstrated the safety, technical, and operational feasibility of those two most demanding applications, using an all solid state safe and arm system in critical flight applications.
Environmental analysis burial of offsite low-level waste at SRP
NASA Astrophysics Data System (ADS)
Poe, W. L.; Moyer, R. A.
1980-12-01
The environmental effects of receipt and burial of low level naval waste are assessed. This low level waste was sent to the NRC-licensed burial ground operated by Chem-Nuclear Systems, Inc., at Barnwell, South Carolina. The DOE announced that DOE-generated low level waste would no longer be buried at commercial waste burial sites. The SRP was selected to receive the Naval waste described in this analysis. Receipt and burial of these wastes will have a negligible effect on SRP's environment and increase only sightly the environmental effects of the SRP operations discussed in the EIS on SRP waste management operations. The environmental effects of burial of this waste at Chem-Nuclear Burial Ground or at the SRP Burial Ground are described in this environmental analysis to permit assessment of incremental effects caused by the decision to bury this Naval waste in the SRP Burial Ground rather than in the Barnwell Burial Ground. The radiological effects from burial of this waste in either the SRP or Chem-Nuclear Burial Ground are very small when compared to those from natural background radiation or to the annual population dose commitment from operation of SRP. The environmental effects of burial at SRP to dose commitments normally received by the population surrounding SRP are compared.
Re-engineering Nascom's network management architecture
NASA Technical Reports Server (NTRS)
Drake, Brian C.; Messent, David
1994-01-01
The development of Nascom systems for ground communications began in 1958 with Project Vanguard. The low-speed systems (rates less than 9.6 Kbs) were developed following existing standards; but, there were no comparable standards for high-speed systems. As a result, these systems were developed using custom protocols and custom hardware. Technology has made enormous strides since the ground support systems were implemented. Standards for computer equipment, software, and high-speed communications exist and the performance of current workstations exceeds that of the mainframes used in the development of the ground systems. Nascom is in the process of upgrading its ground support systems and providing additional services. The Message Switching System (MSS), Communications Address Processor (CAP), and Multiplexer/Demultiplexer (MDM) Automated Control System (MACS) are all examples of Nascom systems developed using standards such as, X-windows, Motif, and Simple Network Management Protocol (SNMP). Also, the Earth Observing System (EOS) Communications (Ecom) project is stressing standards as an integral part of its network. The move towards standards has produced a reduction in development, maintenance, and interoperability costs, while providing operational quality improvement. The Facility and Resource Manager (FARM) project has been established to integrate the Nascom networks and systems into a common network management architecture. The maximization of standards and implementation of computer automation in the architecture will lead to continued cost reductions and increased operational efficiency. The first step has been to derive overall Nascom requirements and identify the functionality common to all the current management systems. The identification of these common functions will enable the reuse of processes in the management architecture and promote increased use of automation throughout the Nascom network. The MSS, CAP, MACS, and Ecom projects have indicated the potential value of commercial-off-the-shelf (COTS) and standards through reduced cost and high quality. The FARM will allow the application of the lessons learned from these projects to all future Nascom systems.
The GOES-R GeoStationary Lightning Mapper (GLM)
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas
2011-01-01
The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms (environmental data records), cal/val performance monitoring tools, and new applications using GLM alone, in combination with the ABI, merged with ground-based sensors, and decision aids augmented by numerical weather prediction model forecasts. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. An international field campaign planned for 2011-2012 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) overpasses, and related ground and in-situ lightning and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and application development.
Ground Systems Development and Operations (GSDO) Education 101: Exploration Begins Here [Grades 9-12
NASA Technical Reports Server (NTRS)
Hill, Trudy
2012-01-01
Presentation to inform the non-NASA general public and school children of ground systems development and operations activities at Kennedy Space Center, particularly on what GSDO is and does, in a high level overview.
Mathematical model of rolling an elastic wheel over deformable support base
NASA Astrophysics Data System (ADS)
Volskaia, V. N.; Zhileykin, M. M.; Zakharov, A. Y.
2018-02-01
One of the main direction of economic growth in Russia remains to be a speedy development of north and northeast regions that are the constituents of the 60 percent of the country territory. The further development of these territories requires new methods and technologies for solving transport and technological problems when off-road transportation of cargoes and people is conducting. One of the fundamental methods of patency prediction is imitation modeling of wheeled vehicles movement in different operating conditions. Both deformable properties of tires and physical and mechanical properties of the ground: normal tire deflection and gauge depth; variation of contact patch area depending on the load and pressure of air in the tire; existence of hysteresis losses in the tire material which are influencing on the rolling resistance due to friction processes between tire and ground in the contact patch; existence of the tangential reaction from the ground by entire contact area influence on the tractive patency. Nowadays there are two main trends in theoretical research of interaction wheeled propulsion device with ground: analytical method involving mathematical description of explored process and finite element method based on computational modeling. Mathematical models of interaction tire with the ground are used both in processes of interaction individual wheeled propulsion device with ground and researches of mobile vehicle dynamical models operated in specific road and climate conditions. One of the most significant imperfection of these models is the description of interaction wheel with flat deformable support base whereas profile of real support base surface has essential height of unevenness which is commensurate with radius of the wheel. The description of processes taking place in the ground under influence of the wheeled propulsion device using the finite element method is relatively new but most applicable lately. The application of this method allows to provide the most accurate description of the interaction process of a wheeled propulsion devices and the ground, also this method allows to define tension in the ground, deformation of the ground and the tire and ground’s compression. However, the high laboriousness of computations is essential shortcoming of that method therefore it’s hard to use these models as part of the general motion model of multi-axis wheeled vehicles. The purpose of this research is the elaboration of mathematical model of elastic wheel rolling over deformable rough support base taking into account the contact patch deformation. The mathematical model of rectilinear rolling an elastic wheel over rough deformable support base, taking into account variation of contact patch area and variation in the direction of the radial and tangential reactions also load bearing capacity of the ground, is developed. The efficiency of developed mathematical model of rectilinear rolling an elastic wheel over rough deformable support base is proved by the simulation methods.
Service on demand for ISS users
NASA Astrophysics Data System (ADS)
Hüser, Detlev; Berg, Marco; Körtge, Nicole; Mildner, Wolfgang; Salmen, Frank; Strauch, Karsten
2002-07-01
Since the ISS started its operational phase, the need of logistics scenarios and solutions, supporting the utilisation of the station and its facilities, becomes increasingly important. Our contribution to this challenge is a SERVICE On DEMAND for ISS users, which offers a business friendly engineering and logistics support for the resupply of the station. Especially the utilisation by commercial and industrial users is supported and simplified by this service. Our industrial team, consisting of OHB-System and BEOS, provides experience and development support for space dedicated hard- and software elements, their transportation and operation. Furthermore, we operate as the interface between customer and the envisaged space authorities. Due to a variety of tailored service elements and the ongoing servicing, customers can concentrate on their payload content or mission objectives and don't have to deal with space-specific techniques and regulations. The SERVICE On DEMAND includes the following elements: ITR is our in-orbit platform service. ITR is a transport rack, used in the SPACEHAB logistics double module, for active and passive payloads on subrack- and drawer level of different standards. Due to its unique late access and early retrieval capability, ITR increases the flexibility concerning transport capabilities to and from the ISS. RIST is our multi-functional test facility for ISPR-based experiment drawer and locker payloads. The test program concentrates on physical and functional interface and performance testing at the payload developers site prior to the shipment to the integration and launch. The RIST service program comprises consulting, planning and engineering as well. The RIST test suitcase is planned to be available for lease or rent to users, too. AMTSS is an advanced multimedia terminal consulting service for communication with the space station scientific facilities, as part of the user home-base. This unique ISS multimedia kit combines communication technologies, software tools and hardware to provide a simple and cost-efficient access to data from the station, using the interconnection ground subnetwork. BEOLOG is our efficient ground logistics service for the transportation of payload hardware and support equipment from the user location to the launch/landing sites for the ISS service flights and back home. The main function of this service is the planning and organisation of all packaging, handling, storage & transportation tasks according to international rules. In conclusion, we offer novel service elements for logistics ground- and flight-infrastructure, dedicated for ISS users. These services can be easily adapted to the needs of users and are suitable for other μg- platforms as well.
Scheduling Software for Complex Scenarios
NASA Technical Reports Server (NTRS)
2006-01-01
Preparing a vehicle and its payload for a single launch is a complex process that involves thousands of operations. Because the equipment and facilities required to carry out these operations are extremely expensive and limited in number, optimal assignment and efficient use are critically important. Overlapping missions that compete for the same resources, ground rules, safety requirements, and the unique needs of processing vehicles and payloads destined for space impose numerous constraints that, when combined, require advanced scheduling. Traditional scheduling systems use simple algorithms and criteria when selecting activities and assigning resources and times to each activity. Schedules generated by these simple decision rules are, however, frequently far from optimal. To resolve mission-critical scheduling issues and predict possible problem areas, NASA historically relied upon expert human schedulers who used their judgment and experience to determine where things should happen, whether they will happen on time, and whether the requested resources are truly necessary.
NASA Technical Reports Server (NTRS)
Yang, Genevie Velarde; Mohr, David; Kirby, Charles E.
2008-01-01
To keep Cassini on its complex trajectory, more than 200 orbit trim maneuvers (OTMs) have been planned from July 2004 to July 2010. With only a few days between many of these OTMs, the operations process of planning and executing the necessary commands had to be automated. The resulting Maneuver Automation Software (MAS) process minimizes the workforce required for, and maximizes the efficiency of, the maneuver design and uplink activities. The MAS process is a well-organized and logically constructed interface between Cassini's Navigation (NAV), Spacecraft Operations (SCO), and Ground Software teams. Upon delivery of an orbit determination (OD) from NAV, the MAS process can generate a maneuver design and all related uplink and verification products within 30 minutes. To date, all 112 OTMs executed by the Cassini spacecraft have been successful. MAS was even used to successfully design and execute a maneuver while the spacecraft was in safe mode.
Highly Automated Arrival Management and Control System Suitable for Early NextGen
NASA Technical Reports Server (NTRS)
Swenson, Harry N.; Jung, Jaewoo
2013-01-01
This is a presentation of previously published work conducted in the development of the Terminal Area Precision Scheduling and Spacing (TAPSS) system. Included are concept and technical descriptions of the TAPSS system and results from human in the loop simulations conducted at Ames Research Center. The Terminal Area Precision Scheduling and Spacing system has demonstrated through research and extensive high-fidelity simulation studies to have benefits in airport arrival throughput, supporting efficient arrival descents, and enabling mixed aircraft navigation capability operations during periods of high congestion. NASA is currently porting the TAPSS system into the FAA TBFM and STARS system prototypes to ensure its ability to operate in the FAA automation Infrastructure. NASA ATM Demonstration Project is using the the TAPSS technologies to provide the ground-based automation tools to enable airborne Interval Management (IM) capabilities. NASA and the FAA have initiated a Research Transition Team to enable potential TAPSS and IM Technology Transfer.
The NASA Ames Life Sciences Data Archive: Biobanking for the Final Frontier
NASA Technical Reports Server (NTRS)
Rask, Jon; Chakravarty, Kaushik; French, Alison J.; Choi, Sungshin; Stewart, Helen J.
2017-01-01
The NASA Ames Institutional Scientific Collection involves the Ames Life Sciences Data Archive (ALSDA) and a biospecimen repository, which are responsible for archiving information and non-human biospecimens collected from spaceflight and matching ground control experiments. The ALSDA also manages a biospecimen sharing program, performs curation and long-term storage operations, and facilitates distribution of biospecimens for research purposes via a public website (https:lsda.jsc.nasa.gov). As part of our best practices, a tissue viability testing plan has been developed for the repository, which will assess the quality of samples subjected to long-term storage. We expect that the test results will confirm usability of the samples, enable broader science community interest, and verify operational efficiency of the archives. This work will also support NASA open science initiatives and guides development of NASA directives and policy for curation of biological collections.
The California Cooperative Remote Sensing Project
NASA Technical Reports Server (NTRS)
Hlavka, Christine A.; Sheffner, Edwin J.
1988-01-01
The USDA, the California Department of Water Resources (CDWR), the Remote Sensing Research Program of the University of California (UCB) and NASA have completed a 4-yr cooperative project on the use of remote sensing in monitoring California agriculture. This report is a summary of the project and the final report of NASA's contribution to it. The cooperators developed procedures that combined the use of LANDSAT Multispectral Scanner imagery and digital data with good ground survey data for area estimation and mapping of the major crops in California. An inventory of the Central Valley was conducted as an operational test of the procedures. The satellite and survey data were acquired by USDA and UCB and processed by CDWR and NASA. The inventory was completed on schedule, thus demonstrating the plausibility of the approach, although further development of the data processing system is necessary before it can be used efficiently in an operational environment.
Initial astronomical results with a new 5-14 micron Si:Ga 58x62 DRO array camera
NASA Technical Reports Server (NTRS)
Gezari, Dan; Folz, Walter; Woods, Larry
1989-01-01
A new array camera system was developed using a 58 x 62 pixel Si:Ga (gallium doped silicon) DRO (direct readout) photoconductor array detector manufactured by Hughes/Santa Barbara Research Center (SBRC). The camera system is a broad band photometer designed for 5 to 14 micron imaging with large ground-based optical telescopes. In a typical application a 10 micron photon flux of about 10(exp 9) photons sec(exp -1) m(exp -2) microns(exp -1) arcsec(exp -2) is incident in the telescope focal plane, while the detector well capacity of these arrays is 10(exp 5) to 10 (exp 6) electrons. However, when the real efficiencies and operating conditions are accounted for, the 2-channel 3596 pixel array operates with about 1/2 full wells at 10 micron and 10% bandwidth with high duty cycle and no real experimental compromises.
Progress in diode-pumped alexandrite lasers as a new resource for future space lidar missions
NASA Astrophysics Data System (ADS)
Damzen, M. J.; Thomas, G. M.; Teppitaksak, A.; Minassian, A.
2017-11-01
Satellite-based remote sensing using laser-based lidar techniques provides a powerful tool for global 3-D mapping of atmospheric species (e.g. CO2, ozone, clouds, aerosols), physical attributes of the atmosphere (e.g. temperature, wind speed), and spectral indicators of Earth features (e.g. vegetation, water). Such information provides a valuable source for weather prediction, understanding of climate change, atmospheric science and health of the Earth eco-system. Similarly, laser-based altimetry can provide high precision ground topography mapping and more complex 3-D mapping (e.g. canopy height profiling). The lidar technique requires use of cutting-edge laser technologies and engineered designs that are capable of enduring the space environment over the mission lifetime. The laser must operate with suitably high electrical-to-optical efficiency and risk reduction strategy adopted to mitigate against laser failure or excessive operational degradation of laser performance.
Optimizing integrated airport surface and terminal airspace operations under uncertainty
NASA Astrophysics Data System (ADS)
Bosson, Christabelle S.
In airports and surrounding terminal airspaces, the integration of surface, arrival and departure scheduling and routing have the potential to improve the operations efficiency. Moreover, because both the airport surface and the terminal airspace are often altered by random perturbations, the consideration of uncertainty in flight schedules is crucial to improve the design of robust flight schedules. Previous research mainly focused on independently solving arrival scheduling problems, departure scheduling problems and surface management scheduling problems and most of the developed models are deterministic. This dissertation presents an alternate method to model the integrated operations by using a machine job-shop scheduling formulation. A multistage stochastic programming approach is chosen to formulate the problem in the presence of uncertainty and candidate solutions are obtained by solving sample average approximation problems with finite sample size. The developed mixed-integer-linear-programming algorithm-based scheduler is capable of computing optimal aircraft schedules and routings that reflect the integration of air and ground operations. The assembled methodology is applied to a Los Angeles case study. To show the benefits of integrated operations over First-Come-First-Served, a preliminary proof-of-concept is conducted for a set of fourteen aircraft evolving under deterministic conditions in a model of the Los Angeles International Airport surface and surrounding terminal areas. Using historical data, a representative 30-minute traffic schedule and aircraft mix scenario is constructed. The results of the Los Angeles application show that the integration of air and ground operations and the use of a time-based separation strategy enable both significant surface and air time savings. The solution computed by the optimization provides a more efficient routing and scheduling than the First-Come-First-Served solution. Additionally, a data driven analysis is performed for the Los Angeles environment and probabilistic distributions of pertinent uncertainty sources are obtained. A sensitivity analysis is then carried out to assess the methodology performance and find optimal sampling parameters. Finally, simulations of increasing traffic density in the presence of uncertainty are conducted first for integrated arrivals and departures, then for integrated surface and air operations. To compare the optimization results and show the benefits of integrated operations, two aircraft separation methods are implemented that offer different routing options. The simulations of integrated air operations and the simulations of integrated air and surface operations demonstrate that significant traveling time savings, both total and individual surface and air times, can be obtained when more direct routes are allowed to be traveled even in the presence of uncertainty. The resulting routings induce however extra take off delay for departing flights. As a consequence, some flights cannot meet their initial assigned runway slot which engenders runway position shifting when comparing resulting runway sequences computed under both deterministic and stochastic conditions. The optimization is able to compute an optimal runway schedule that represents an optimal balance between total schedule delays and total travel times.
Multi-object medium resolution optical spectroscopy at the E-ELT
NASA Astrophysics Data System (ADS)
Spanò, Paolo; Bonifacio, Piercarlo
2008-07-01
We present the design of a compact medium resolution spectrograph (R~15,000-20,000), intended to operate on a 42m telescope in seeing-limited mode. Our design takes full advantage of some new technology optical components, like volume phase holographic (VPH) gratings. At variance with the choice of complex large echelle spectrographs, which have been the standard on 8m class telescopes, we selected an efficient VPH spectrograph with a limited beam diameter, in order to keep overall dimensions and costs low, using proven available technologies. To obtain such a resolution, we need to moderately slice the telescope image plane onto the spectrograph entrance slit (5-6 slices). Then, standard telescope AO-mode (GLAO, Ground Layer Adaptive Optics) can be used over a large field of view (~10 arcmin), without loosing efficiency. Multiplex capabilities can greatly increase the observing efficiency. A robotic pick-up mirror system can be implemented, within conventional environmental conditions (temperature, pressure, gravity, size), demanding only standard mechanical and optical tolerances. A modular approach allows us scaling multiplex capabilities on overall costs and available space.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-08
... Operations, M-30, West Building Ground Floor, Room W12-140, 1200 New Jersey Avenue, SE., Washington, DC 20590. Hand Delivery: U.S. Department of Transportation, Docket Operations, M-30, West Building Ground Floor... [[Page 39193
AGSM Functional Fault Models for Fault Isolation Project
NASA Technical Reports Server (NTRS)
Harp, Janicce Leshay
2014-01-01
This project implements functional fault models to automate the isolation of failures during ground systems operations. FFMs will also be used to recommend sensor placement to improve fault isolation capabilities. The project enables the delivery of system health advisories to ground system operators.
Yobbi, D.K.
1996-01-01
The potential for subsurface storage and recovery of treated effluent into the uppermost producing zone (zone A) of the Upper Floridan aquifer in St. Petersburg, Florida, is being studied by the U.S. Geological Survey, in cooperation with the city of St. Petersburg and the Southwest Florida Water Management District. A measure of the success of this practice is the recovery efficiency, or the quantity of water relative to the quantity injected, that can be recovered before the water that is withdrawn fails to meet water-quality standards. The feasibility of this practice will depend upon the ability of the injected zone to receive, store, and discharge the injected fluid. A cylindrical model of ground-water flow and solute transport, incorporating available data on aquifer properties and water quality, was developed to determine the relation of recovery efficiency to various aquifer and fluid properties that could prevail in the study area. The reference case for testing was a base model considered representative of the saline aquifer underlying St. Petersburg. Parameter variations in the tests represent possible variations in aquifer conditions in the area. The model also was used to study the effect of various cyclic injection and withdrawal schemes on the recovery efficiency of the well and aquifer system. A base simulation assuming 15 days of injection of effluent at a rate of 1.0 million gallons per day and 15 days of withdrawal at a rate of 1.0 million gallons per day was used as reference to compare changes in various hydraulic and chemical parameters on recovery efficiency. A recovery efficiency of 20 percent was estimated for the base simulation. For practical ranges of hydraulic and fluid properties that could prevail in the study area, the model analysis indicates that (1) the greater the density contrast between injected and resident formation water, the lower the recovery efficiency, (2) recovery efficiency decreases significantly as dispersion increases, (3) high formation permeability favors low recovery efficiencies, and (4) porosity and anisotropy have little effect on recovery efficiencies. In several hypothetical tests, the recovery efficiency fluctuated between about 4 and 76 percent. The sensitivity of recovery efficiency to variations in the rate and duration of injection (0.25, 0.50, 1.0, and 2.0 million gallons per day) and withdrawal cycles (60, 180, and 365 days) was determined. For a given operational scheme, recovery efficiency increased as the injection and withdrawal rate is increased. Model results indicate that recovery efficiencies of between about 23 and 37 percent can be obtained for different subsurface storage and recovery schemes. Five successive injection, storage, and recovery cycles can increase the recovery efficiency to about 46 to 62 percent. There is a larger rate of increase at smaller rates than at larger rates. Over the range of variables studied, recovery efficiency improved with successive cycles, increasing rapidly during initial cycles tyhen more slowly at later cycles. The operation of a single well used for subsurface storage and recovery appears to be technically feasible under moderately favorable conditions; however, the recovery efficiency is higly dependent upon local physical and operational parameters. A combination of hydraulic, chemical, and operational parameters that minimize dispersion and buoyancy flow, maximizes recovery efficiency. Recovery efficiency was optimal where resident formation water density and permeabilities were relatively similar and low.
Automatic cloud coverage assessment of Formosat-2 image
NASA Astrophysics Data System (ADS)
Hsu, Kuo-Hsien
2011-11-01
Formosat-2 satellite equips with the high-spatial-resolution (2m ground sampling distance) remote sensing instrument. It has been being operated on the daily-revisiting mission orbit by National Space organization (NSPO) of Taiwan since May 21 2004. NSPO has also serving as one of the ground receiving stations for daily processing the received Formosat- 2 images. The current cloud coverage assessment of Formosat-2 image for NSPO Image Processing System generally consists of two major steps. Firstly, an un-supervised K-means method is used for automatically estimating the cloud statistic of Formosat-2 image. Secondly, manual estimation of cloud coverage from Formosat-2 image is processed by manual examination. Apparently, a more accurate Automatic Cloud Coverage Assessment (ACCA) method certainly increases the efficiency of processing step 2 with a good prediction of cloud statistic. In this paper, mainly based on the research results from Chang et al, Irish, and Gotoh, we propose a modified Formosat-2 ACCA method which considered pre-processing and post-processing analysis. For pre-processing analysis, cloud statistic is determined by using un-supervised K-means classification, Sobel's method, Otsu's method, non-cloudy pixels reexamination, and cross-band filter method. Box-Counting fractal method is considered as a post-processing tool to double check the results of pre-processing analysis for increasing the efficiency of manual examination.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1992-01-01
Archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data and information. In the search for extraterrestrial intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. Topics covered include tracking and ground-based navigation; communications, spacecraft-ground; station control and system technology; capabilities for new projects; network upgrade and sustaining; network operations and operations support; and TDA program management and analysis.
ESOC - The satellite operation center of the European Space Agency
NASA Astrophysics Data System (ADS)
Dworak, H. P.
1980-04-01
The operation and individual functions of the European Space Operation Center (ESOC) that controls the flight of ESA satellites are presented. The main role of the ESOC is discussed and its division into three areas: telemetry, remote piloting, and tracking is outlined. Attention is given to the manipulation of experimental data collected on board the satellites as well as to the functions of the individual ground stations. A block diagram of the information flow to the Meteosat receiving station is presented along with the network outlay of data flow between the ground stations and the ESOC. Distribution of tasks between the ground operation manager, spacecraft operations manager, and flight dynamic software coordinator is discussed with reference to a mission team. A short description of the current missions including COS-B, GEOS-1 and 2, Meteosat, OTS, and ISEE-B is presented
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1991-01-01
This quarterly reports on space communications, radio navigation, radio science, and ground based radio and radar astronomy in connection with the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and in operations. Also included is standards activity at JPL for space data and information systems and DSN work. Specific areas of research are: Tracking and ground based navigation; Spacecraft and ground communications; Station control and system technology; DSN Systems Implementation; and DSN Operations.
NASA Planning for Orion Multi-Purpose Crew Vehicle Ground Operations
NASA Technical Reports Server (NTRS)
Letchworth, Gary; Schlierf, Roland
2011-01-01
The NASA Orion Ground Processing Team was originally formed by the Kennedy Space Center (KSC) Constellation (Cx) Project Office's Orion Division to define, refine and mature pre-launch and post-landing ground operations for the Orion human spacecraft. The multidisciplined KSC Orion team consisted of KSC civil servant, SAIC, Productivity Apex, Inc. and Boeing-CAPPS engineers, project managers and safety engineers, as well as engineers from Constellation's Orion Project and Lockheed Martin Orion Prime contractor. The team evaluated the Orion design configurations as the spacecraft concept matured between Systems Design Review (SDR), Systems Requirement Review (SRR) and Preliminary Design Review (PDR). The team functionally decomposed prelaunch and post-landing steps at three levels' of detail, or tiers, beginning with functional flow block diagrams (FFBDs). The third tier FFBDs were used to build logic networks and nominal timelines. Orion ground support equipment (GSE) was identified and mapped to each step. This information was subsequently used in developing lower level operations steps in a Ground Operations Planning Document PDR product. Subject matter experts for each spacecraft and GSE subsystem were used to define 5th - 95th percentile processing times for each FFBD step, using the Delphi Method. Discrete event simulations used this information and the logic network to provide processing timeline confidence intervals for launch rate assessments. The team also used the capabilities of the KSC Visualization Lab, the FFBDs and knowledge of the spacecraft, GSE and facilities to build visualizations of Orion pre-launch and postlanding processing at KSC. Visualizations were a powerful tool for communicating planned operations within the KSC community (i.e., Ground Systems design team), and externally to the Orion Project, Lockheed Martin spacecraft designers and other Constellation Program stakeholders during the SRR to PDR timeframe. Other operations planning tools included Kaizen/Lean events, mockups and human factors analysis. The majority of products developed by this team are applicable as KSC prepares 21st Century Ground Systems for the Orion Multi-Purpose Crew Vehicle and Space Launch System.
Mars Pathfinder mission operations concepts
NASA Technical Reports Server (NTRS)
Sturms, Francis M., Jr.; Dias, William C.; Nakata, Albert Y.; Tai, Wallace S.
1994-01-01
The Mars Pathfinder Project plans a December 1996 launch of a single spacecraft. After jettisoning a cruise stage, an entry body containing a lander and microrover will directly enter the Mars atmosphere and parachute to a hard landing near the sub-solar latitude of 15 degrees North in July 1997. Primary surface operations last for 30 days. Cost estimates for Pathfinder ground systems development and operations are not only lower in absolute dollars, but also are a lower percentage of total project costs than in past planetary missions. Operations teams will be smaller and fewer than typical flight projects. Operations scenarios have been developed early in the project and are being used to guide operations implementation and flight system design. Recovery of key engineering data from entry, descent, and landing is a top mission priority. These data will be recorded for playback after landing. Real-time tracking of a modified carrier signal through this phase can provide important insight into the spacecraft performance during entry, descent, and landing in the event recorded data is never recovered. Surface scenarios are dominated by microrover activity and lander imaging during 7 hours of the Mars day from 0700 to 1400 local solar time. Efficient uplink and downlink processes have been designed to command the lander and microrover each Mars day.
Tug fleet and ground operations schedules and controls. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1975-01-01
This study presents Tug Fleet and Ground Operations Schedules and Controls plan. This plan was developed and optimized out of a combination of individual Tug program phased subplans, special emphasis studies, contingency analyses and sensitivity analyses. The subplans cover the Tug program phases: (1) Tug operational, (2) Interim Upper Stage (IUS)/Tug fleet utilization, (3) and IUS/Tug payload integration, (4) Tug site activation, (5) IUS/Tug transition, (6) Tug acquisition. Resource requirements (facility, GSE, TSE, software, manpower, logistics) are provided in each subplan, as are appropriate Tug processing flows, active and total IUS and Tug fleet requirements, fleet management and Tug payload integration concepts, facility selection recommendations, site activation and IUS to Tug transition requirements. The impact of operational concepts on Tug acquisition is assessed and the impact of operating Tugs out of KSC and WTR is analyzed and presented showing WTR as a delta. Finally, cost estimates for fleet management and ground operations of the DDT&E and operational phases of the Tug program are given.
NASA Technical Reports Server (NTRS)
Kuhn, Richard E.
1986-01-01
The current understanding of the effects of ground proximity on V/STOL and STOL aircraft is reviewd. Areas covered include (1) single jet suckdown in hover, (2) fountain effects on multijet configurations, (3) STOL ground effects including the effect of the ground vortex flow field, (4) downwash at the tail, and (5) hot gas ingestion in both hover and STOL operation. The equipment needed for large scale testing to extend the state of the art is reviewed and developments in three areas are recommended as follows: (1) improve methods for simulating the engine exhaust and inlet flows; (2) develop a model support system that can simulate realistic rates of climb and descent as well as steady height operation; and (3) develop a blowing BLC ground board as an alternative to a moving belt ground board to properly simulate the flow on the ground.
An intelligent position-specific training system for mission operations
NASA Technical Reports Server (NTRS)
Schneider, M. P.
1992-01-01
Marshall Space Flight Center's (MSFC's) payload ground controller training program provides very good generic training; however, ground controller position-specific training can be improved by including position-specific training systems in the training program. This report explains why MSFC needs to improve payload ground controller position-specific training. The report describes a generic syllabus for position-specific training systems, a range of system designs for position-specific training systems, and a generic development process for developing position-specific training systems. The report also describes a position-specific training system prototype that was developed for the crew interface coordinator payload operations control center ground controller position. The report concludes that MSFC can improve the payload ground controller training program by incorporating position-specific training systems for each ground controller position; however, MSFC should not develop position-specific training systems unless payload ground controller position experts will be available to participate in the development process.
NASA Astrophysics Data System (ADS)
Shinmoto, Kazuya; Kadowaki, Kazunori; Nishimoto, Sakae; Kitani, Isamu
This paper describes experimental study on NO removal from a simulated exhausted-gas using repetitive surface discharge on a glass barrier subjected to polarity-reversed voltage pulses. The very fast polarity-reversal with a rise time of 20ns is caused by direct grounding of a charged coaxial cable of 10m in length. Influence of voltage rise time on energy efficiency for NO removal is studied. Results of NO removal using a barrier-type plasma reactor with screw-plane electrode system indicates that the energy efficiency for the very fast polarity reversal caused by direct grounding becomes higher than that for the slower polarity reversal caused by grounding through an inductor at the cable end. The energy efficiency for the direct grounding is about 80g/kWh for 50% NO removal ratio and is about 60g/kWh for 100% NO removal ratio. Very intense discharge light is observed at the initial time of 10ns for the fast polarity reversal, whereas the intensity in the initial discharge light for the slower polarity reversal is relatively small. To confirm the effectiveness of the polarity-reversed pulse application, comparison of the energy efficiency between the polarity-reversed voltage pulse and ac 60Hz voltage will be presented.
Geothermal waste heat utilization from in situ thermal bitumen recovery operations.
Nakevska, Nevenka; Schincariol, Robert A; Dehkordi, S Emad; Cheadle, Burns A
2015-01-01
In situ thermal methods for bitumen extraction introduce a tremendous amount of energy into the reservoirs raising ambient temperatures of 13 °C to as high as 200 °C at the steam chamber edge and 50 °C along the reservoir edge. In essence these operations have unintentionally acted as underground thermal energy storage systems which can be recovered after completion of bitumen extraction activities. Groundwater flow and heat transport models of the Cold Lake, Alberta, reservoir, coupled with a borehole heat exchanger (BHE) model, allowed for investigating the use of closed-loop geothermal systems for energy recovery. Three types of BHEs (single U-tube, double U-tube, coaxial) were tested and analyzed by comparing outlet temperatures and corresponding heat extraction rates. Initial one year continuous operation simulations show that the double U-tube configuration had the best performance producing an average temperature difference of 5.7 °C, and an average heat extraction of 41 W/m. Given the top of the reservoir is at a depth of 400 m, polyethylene piping provided for larger extraction gains over more thermally conductive steel piping. Thirty year operation simulations illustrate that allowing 6 month cyclic recovery periods only increases the loop temperature gain by a factor of 1.2 over continuous operation. Due to the wide spacing of existing boreholes and reservoir depth, only a small fraction of the energy is efficiently recovered. Drilling additional boreholes between existing wells would increase energy extraction. In areas with shallower bitumen deposits such as the Athabasca region, i.e. 65 to 115 m deep, BHE efficiencies should be larger. © 2014, National Ground Water Association.