Science.gov

Sample records for efficient isotopic labeling

  1. Efficient segmental isotope labeling of multi-domain proteins using Sortase A.

    PubMed

    Freiburger, Lee; Sonntag, Miriam; Hennig, Janosch; Li, Jian; Zou, Peijian; Sattler, Michael

    2015-09-01

    NMR studies of multi-domain protein complexes provide unique insight into their molecular interactions and dynamics in solution. For large proteins domain-selective isotope labeling is desired to reduce signal overlap, but available methods require extensive optimization and often give poor ligation yields. We present an optimized strategy for segmental labeling of multi-domain proteins using the S. aureus transpeptidase Sortase A. Critical improvements compared to existing protocols are (1) the efficient removal of cleaved peptide fragments by centrifugal filtration and (2) a strategic design of cleavable and non-cleavable affinity tags for purification. Our approach enables routine production of milligram amounts of purified segmentally labeled protein for NMR and other biophysical studies.

  2. Highly efficient residue-selective labeling with isotope-labeled Ile, Leu, and Val using a new auxotrophic E. coli strain.

    PubMed

    Miyanoiri, Yohei; Ishida, Yojiro; Takeda, Mitsuhiro; Terauchi, Tsutomu; Inouye, Masayori; Kainosho, Masatsune

    2016-06-01

    We recently developed a practical protocol for preparing proteins bearing stereo-selectively (13)C-methyl labeled leucines and valines, instead of the commonly used (13)C-methyl labeled precursors for these amino acids, by E. coli cellular expression. Using this protocol, proteins with any combinations of isotope-labeled or unlabeled Leu and Val residues were prepared, including some that could not be prepared by the precursor methods. However, there is still room for improvement in the labeling efficiencies for Val residues, using the methods with labeled precursors or Val itself. This is due to the fact that the biosynthesis of Val could not be sufficiently suppressed, even by the addition of large amounts of Val or its precursors. In this study, we completely solved this problem by using a mutant strain derived from E. coli BL21(DE3), in which the metabolic pathways depending on two enzymes, dihydroxy acid dehydratase and β-isopropylmalate dehydrogenase, are completely aborted by deleting the ilvD and leuB genes, which respectively encode these enzymes. The ΔilvD E. coli mutant terminates the conversion from α,β-dihydroxyisovalerate to α-ketoisovalerate, and the conversion from α,β-dihydroxy-α-methylvalerate to α-keto-β-methylvalerate, which produce the preceding precursors for Val and Ile, respectively. By the further deletion of the leuB gene, the conversion from Val to Leu was also fully terminated. Taking advantage of the double-deletion mutant, ΔilvDΔleuB E. coli BL21(DE3), an efficient and residue-selective labeling method with various isotope-labeled Ile, Leu, and Val residues was established.

  3. An efficient synthetic strategy for obtaining 4-methoxy carbon isotope labeled combretastatin A-4 phosphate and other Z-combretastatins.

    PubMed

    Pettit, George R; Minardi, Mathew D; Hogan, Fiona; Price, Pat M

    2010-03-26

    Human cancer and other clinical trials under development employing combretastatin A-4 phosphate (1b, CA4P) should benefit from the availability of a [(11)C]-labeled derivative for positron emission tomography (PET). In order to obtain a suitable precursor for addition of a [(11)C]methyl group at the penultimate step, several new synthetic pathways to CA4P were evaluated. Geometrical isomerization (Z to E) proved to be a challenge, but it was overcome by development of a new CA4P synthesis suitable for 4-methoxy isotope labeling.

  4. Isotope Labeling in Insect Cells

    PubMed Central

    Saxena, Krishna; Dutta, Arpana; Klein-Seetharaman, Judith

    2011-01-01

    Recent years have seen remarkable progress in applying nuclear magnetic resonance (NMR) spectroscopy to proteins that have traditionally been difficult to study due to issues with folding, posttranslational modification, and expression levels or combinations thereof. In particular, insect cells have proved useful in allowing large quantities of isotope-labeled, functional proteins to be obtained and purified to homogeneity, allowing study of their structures and dynamics by using NMR. Here, we provide protocols that have proven successful in such endeavors. PMID:22167667

  5. SAIL--stereo-array isotope labeling.

    PubMed

    Kainosho, Masatsune; Güntert, Peter

    2009-11-01

    Optimal stereospecific and regiospecific labeling of proteins with stable isotopes enhances the nuclear magnetic resonance (NMR) method for the determination of the three-dimensional protein structures in solution. Stereo-array isotope labeling (SAIL) offers sharpened lines, spectral simplification without loss of information and the ability to rapidly collect and automatically evaluate the structural restraints required to solve a high-quality solution structure for proteins up to twice as large as before. This review gives an overview of stable isotope labeling methods for NMR spectroscopy with proteins and provides an in-depth treatment of the SAIL technology.

  6. Optimal design of isotope labeling experiments.

    PubMed

    Yang, Hong; Mandy, Dominic E; Libourel, Igor G L

    2014-01-01

    Stable isotope labeling experiments (ILE) constitute a powerful methodology for estimating metabolic fluxes. An optimal label design for such an experiment is necessary to maximize the precision with which fluxes can be determined. But often, precision gained in the determination of one flux comes at the expense of the precision of other fluxes, and an appropriate label design therefore foremost depends on the question the investigator wants to address. One could liken ILE to shadows that metabolism casts on products. Optimal label design is the placement of the lamp; creating clear shadows for some parts of metabolism and obscuring others.An optimal isotope label design is influenced by: (1) the network structure; (2) the true flux values; (3) the available label measurements; and, (4) commercially available substrates. The first two aspects are dictated by nature and constrain any optimal design. The second two aspects are suitable design parameters. To create an optimal label design, an explicit optimization criterion needs to be formulated. This usually is a property of the flux covariance matrix, which can be augmented by weighting label substrate cost. An optimal design is found by using such a criterion as an objective function for an optimizer. This chapter uses a simple elementary metabolite units (EMU) representation of the TCA cycle to illustrate the process of experimental design of isotope labeled substrates.

  7. Simple, rapid method for the preparation of isotopically labeled formaldehyde

    SciTech Connect

    Hooker, Jacob Matthew; Schonberger, Matthias; Schieferstein, Hanno; Fowler, Joanna S.

    2011-10-04

    Isotopically labeled formaldehyde (*C.sup..sctn.H.sub.2O) is prepared from labeled methyl iodide (*C.sup..sctn.H.sub.3I) by reaction with an oxygen nucleophile having a pendant leaving group. The mild and efficient reaction conditions result in good yields of *C.sup..sctn.H.sub.2O with little or no *C isotopic dilution. The simple, efficient production of .sup.11CH.sub.2O is described. The use of the .sup.11CH.sub.2O for the formation of positron emission tomography tracer compounds is described. The reaction can be incorporated into automated equipment available to radiochemistry laboratories. The isotopically labeled formaldehyde can be used in a variety of reactions to provide radiotracer compounds for imaging studies as well as for scintillation counting and autoradiography.

  8. Matching isotopic distributions from metabolically labeled samples

    PubMed Central

    McIlwain, Sean; Page, David; Huttlin, Edward L.; Sussman, Michael R.

    2008-01-01

    Motivation: In recent years stable isotopic labeling has become a standard approach for quantitative proteomic analyses. Among the many available isotopic labeling strategies, metabolic labeling is attractive for the excellent internal control it provides. However, analysis of data from metabolic labeling experiments can be complicated because the spacing between labeled and unlabeled forms of each peptide depends on its sequence, and is thus variable from analyte to analyte. As a result, one generally needs to know the sequence of a peptide to identify its matching isotopic distributions in an automated fashion. In some experimental situations it would be necessary or desirable to match pairs of labeled and unlabeled peaks from peptides of unknown sequence. This article addresses this largely overlooked problem in the analysis of quantitative mass spectrometry data by presenting an algorithm that not only identifies isotopic distributions within a mass spectrum, but also annotates matches between natural abundance light isotopic distributions and their metabolically labeled counterparts. This algorithm is designed in two stages: first we annotate the isotopic peaks using a modified version of the IDM algorithm described last year; then we use a probabilistic classifier that is supplemented by dynamic programming to find the metabolically labeled matched isotopic pairs. Such a method is needed for high-throughput quantitative proteomic metabolomic experiments measured via mass spectrometry. Results: The primary result of this article is that the dynamic programming approach performs well given perfect isotopic distribution annotations. Our algorithm achieves a true positive rate of 99% and a false positive rate of 1% using perfect isotopic distribution annotations. When the isotopic distributions are annotated given ‘expert’ selected peaks, the same algorithm gets a true positive rate of 77% and a false positive rate of 1%. Finally, when annotating using

  9. Isotope labeling of proteins in insect cells.

    PubMed

    Skora, Lukasz; Shrestha, Binesh; Gossert, Alvar D

    2015-01-01

    Protein targets of contemporary research are often membrane proteins, multiprotein complexes, secreted proteins, or other proteins of human origin. These are difficult to express in the standard expression host used for most nuclear magnetic resonance (NMR) studies, Escherichia coli. Insect cells represent an attractive alternative, since they have become a well-established expression system and simple solutions have been developed for generation of viruses to efficiently introduce the target protein DNA into cells. Insect cells enable production of a larger fraction of the human proteome in a properly folded way than bacteria, as insect cells have a very similar set of cytosolic chaperones and a closely related secretory pathway. Here, the limited and defined glycosylation pattern that insect cells produce is an advantage for structural biology studies. For these reasons, insect cells have been established as the most widely used eukaryotic expression host for crystallographic studies. In the past decade, significant advancements have enabled amino acid type-specific as well as uniform isotope labeling of proteins in insect cells, turning them into an attractive expression host for NMR studies.

  10. NMR studies of isotopically labeled RNA

    SciTech Connect

    Pardi, A.

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  11. Weaving a two-dimensional fishing net from titanoniobate nanosheets embedded with Fe3O4 nanocrystals for highly efficient capture and isotope labeling of phosphopeptides

    NASA Astrophysics Data System (ADS)

    Chen, Xueqin; Li, Siyuan; Zhang, Xiaoxia; Min, Qianhao; Zhu, Jun-Jie

    2015-03-01

    Qualitative and quantitative characterization of phosphopeptides by means of mass spectrometry (MS) is the main goal of MS-based phosphoproteomics, but suffers from their low abundance in the large haystack of various biological molecules. Herein, we introduce two-dimensional (2D) metal oxides to tackle this biological separation issue. A nanocomposite composed of titanoniobate nanosheets embedded with Fe3O4 nanocrystals (Fe3O4-TiNbNS) is constructed via a facile cation-exchange approach, and adopted for the capture and isotope labeling of phosphopeptides. In this nanoarchitecture, the 2D titanoniobate nanosheets offer enlarged surface area and a spacious microenvironment for capturing phosphopeptides, while the Fe3O4 nanocrystals not only incorporate a magnetic response into the composite but, more importantly, also disrupt the restacking process between the titanoniobate nanosheets and thus preserve a greater specific surface for binding phosphopeptides. Owing to the extended active surface, abundant Lewis acid sites and excellent magnetic controllability, Fe3O4-TiNbNS demonstrates superior sensitivity, selectivity and capacity over homogeneous bulk metal oxides, layered oxides, and even restacked nanosheets in phosphopeptide enrichment, and further allows in situ isotope labeling to quantify aberrantly-regulated phosphopeptides from sera of leukemia patients. This composite nanosheet greatly contributes to the MS analysis of phosphopeptides and gives inspiration in the pursuit of 2D structured materials for separation of other biological molecules of interests.Qualitative and quantitative characterization of phosphopeptides by means of mass spectrometry (MS) is the main goal of MS-based phosphoproteomics, but suffers from their low abundance in the large haystack of various biological molecules. Herein, we introduce two-dimensional (2D) metal oxides to tackle this biological separation issue. A nanocomposite composed of titanoniobate nanosheets embedded with Fe3

  12. Preparation of soluble isotopically labeled human growth hormone produced in Escherichia coli.

    PubMed

    Lee, Jin-Hee; Jeong, Ji-Seon; Kim, Sook-Kyung; Song, Jimyeong; Lee, Ji Youn; Baek, Soyun; Choi, Jun-Hyuk

    2016-11-01

    Isotopically labeled proteins have been used as internal standards for mass spectrometry (MS)-based absolute protein quantification. Although this approach can provide highly accurate analyses of proteins of interest within a complex mixture, one of the major limitations of this method is the difficulty in preparing uniformly labeled standards. Human growth hormone (hGH) is one of the most important hormones that circulate throughout the body, and its measurement is primarily of interest in the diagnosis and treatment of growth disorders. In order to provide a useful internal standard for MS-based hGH measurement, we describe an efficient strategy to produce a potentially valuable, stable isotope-labeled hGH with high purity and yield. The strategy involves the following steps: solubilization of hGH under labeling conditions, detection of stable isotope incorporation, large-scale purification, analysis of the labeled protein, and assessment of the labeling efficiency. We show that the yield of soluble hGH under selective isotopic labeling conditions can be greatly increased by optimizing protein expression and extraction. Our efficient method for generating isotopically labeled hGH does not influence the structural integrity of hGH. Finally, we assessed the efficiency of stable isotope labeling at the intact protein level, and the result was further verified by amino acid analysis. These results clearly indicate that our labeling approach allows an almost complete incorporation of (13)C6(15)N4-arginine into the hGH expressed in E.coli without detectable isotope scrambling.

  13. Catalytic gasification: Isotopic labeling and transient reaction

    SciTech Connect

    Saber, J.M.; Falconer, J.L.; Brown, L.F.

    1985-01-01

    Temperature-programmed reaction was used with labeled isotopes (/sup 13/C and /sup 18/O) to study interactions between carbon black and potassium carbonate in pure He and 10% CO/sub 2//90% He atmospheres. Catalytic gasification precursor complexes were observed. Carbon and oxygen-bearing carbon surface groups interacted with the carbonate above 500 K to form surface complexes. Between 500 K and 950 K, and in the presence of gaseous carbon dioxide, the complexes promoted carbon and oxygen exchange between the gas-phase CO/sub 2/ and the surface. Oxygen exchanged between the surface complexes; but carbon did not exchange between the carbonate and the carbon black. As the temperature rose, the complexes decomposed to produce carbon dioxide, and catalytic gasification then began. Elemental potassium formed, and the active catalyst appears to alternate between potassium metal and a potassium-oxygen-carbon complex.

  14. Synthesis of isotopically labelled 2-isopropylthioxanthone from 2,2'-dithiosalicylic acid and deuterium cumene.

    PubMed

    Fang, Chao; Yang, Weicheng; Yang, Chao; Wang, Haoran; Sun, Kai; Luo, Yong

    2016-06-30

    Two efficient synthetic routes of stable deuterium labelled 2-isopropylthioxanthone were presented with 98.1% and 98.8% isotopic abundance in acceptable yields and excellent chemical purities. Their structures and the isotope-abundance were confirmed according to proton nuclear magnetic resonance and liquid chromatography-mass spectrometry.

  15. Multiplexed DNA sequencing and diagnostics by hybridization with enriched stable isotope labels

    SciTech Connect

    Arlinghaus, H.F.; Kwoka, M.N.; Guo, X.Q.; Jacobson, K.B.

    1997-04-15

    A new DNA diagnostic and sequencing system has been developed that uses time-of-flight resonance ionization mass spectrometry (TOF-RIMS) to provide a rapid method of analyzing stable isotope-labeled oligonucleotides in form 1 sequencing by hybridization (SBH). With form 1, the DNA is immobilized on a nylon membrane and enriched isotope-labeled individual oligonucleotide probes are free to seek out complementary DNAs during hybridization. The major advantage of this new approach is that multiple oligonucleotides can be labeled with different enriched isotopes and can all be simultaneously hybridized to the genosensor matrix. The probes can then be simultaneously detected with TOF-RIMS with high selectivity, sensitivity, and efficiency. By using isotopically enriched tin labels, up to 10 labeled oligonucleotides could be examined in a single hybridization to the DNA matrix. Greater numbers of labels are available if rare earth isotopes are employed. In the present study, matrices containing three different DNAs were prepared and simultaneously hybridized with two different probes under a variety of conditions. The results show that DNAs, immobilized on nylon surfaces, can be specifically hybridized to probes labeled with different enriched tin isotopes. Discrimination between complementary and noncomplementary sites of better than 100 was obtained in multiplexed samples. 34 refs., 5 figs.

  16. Stereoselective synthesis of stable-isotope-labeled amino acids

    SciTech Connect

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III; Lodwig, S.N.

    1994-12-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the {alpha}-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids.

  17. [Progress in stable isotope labeled quantitative proteomics methods].

    PubMed

    Zhou, Yuan; Shan, Yichu; Zhang, Lihua; Zhang, Yukui

    2013-06-01

    Quantitative proteomics is an important research field in post-genomics era. There are two strategies for proteome quantification: label-free methods and stable isotope labeling methods which have become the most important strategy for quantitative proteomics at present. In the past few years, a number of quantitative methods have been developed, which support the fast development in biology research. In this work, we discuss the progress in the stable isotope labeling methods for quantitative proteomics including relative and absolute quantitative proteomics, and then give our opinions on the outlook of proteome quantification methods.

  18. Selected scientific topics of the 11th International Isotope Symposium on the Synthesis and Applications of Isotopes and Isotopically Labeled Compounds.

    PubMed

    Atzrodt, Jens; Derdau, Volker

    2013-01-01

    This micro-review describes hot topics and new trends in isotope science discussed at the 11th International Isotope Symposium on the Synthesis and Applications of Isotopes and Isotopically Labeled Compounds from a personal perspective.

  19. High-level secretion and very efficient isotopic labeling of tick anticoagulant peptide (TAP) expressed in the methylotrophic yeast, Pichia pastoris.

    PubMed

    Laroche, Y; Storme, V; De Meutter, J; Messens, J; Lauwereys, M

    1994-11-01

    Tick anticoagulant peptide (TAP) is a potent and specific inhibitor of the blood coagulation protease Factor Xa. We designed and assembled a synthetic TAP-encoding gene (tapo) based on codons preferentially observed in the highly expressed Pichia pastoris alcohol oxidase 1 gene (AOX1), and fused it to a novel hybrid secretory prepro leader sequence. Expression from this gene yielded biologically active rTAP, which was correctly processed at the amino-terminal fusion site, and accumulated in the medium to approximately 1.7 g/l. This corresponds to a molar concentration of 0.24 mM, and is the highest yet described for a recombinant product secreted from P. pastoris. It also represents a seven-fold improvement in productivity compared to rTAP secretion from Saccharomyces cerevisiae, making P. pastoris an attractive host for the industrial-scale production of this potential therapeutic agent. This system was also used to prepare 21 mg 15N-rTAP, 11 mg 13C-rTAP and 27 mg 15N/13C-rTAP, with isotope incorporation levels higher than 98%, and purities sufficient to allow their use in determining the solution structure of the tick anticoagulant peptide using high field NMR.

  20. Proteome Analysis using Selective Incorporation of Isotopically Labeled Amino Acids

    SciTech Connect

    Veenstra, Timothy D.; Martinovic, Suzana; Anderson, Gordon A.; Pasa-Tolic, Liljiana; Smith, Richard D.

    2000-01-01

    A method is described for identifying intact proteins from genomic databases using a combination of accurate molecular mass measurements and partial amino acid content. An initial demonstration was conducted for proteins isolated from Escherichia coli (E. coli) using a multiple auxotrophic strain of K12. Proteins were extracted from the organism grown in natural isotopic abundance minimal medium and also minimal medium containing isotopically labeled leucine (Leu-D10), were mixed and analyzed by capillary isoelectric focusing (CIEF) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR). The incorporation of the isotopically labeled Leu residue has no effect on the CIEF separation of the protein, therefore both versions of the protein are observed within the same FTICR spectrum. The difference in the molecular mass of the natural isotopic abundance and Leu-D10 isotopically labeled proteins is used to determine the number of Leu residues present in that particular protein. Knowledge of the molecular mass and number of Leu residues present can be used to unambiguously identify the intact protein. Preliminary results show the efficacy of using this method to unambiguously identify proteins isolated from E. coli.

  1. Correction of MS data for naturally occurring isotopes in isotope labelling experiments.

    PubMed

    Millard, Pierre; Letisse, Fabien; Sokol, Serguei; Portais, Jean-Charles

    2014-01-01

    Mass spectrometry (MS) in combination with isotope labelling experiments is widely used for investigations of metabolism and other biological processes. Quantitative applications-e.g., (13)C metabolic flux analysis-require correction of raw MS data (isotopic clusters) for the contribution of all naturally abundant isotopes. This chapter describes how to perform such correction using the software IsoCor. This flexible, user-friendly software can be used to exploit any isotopic tracer, from well-known ((13)C, (15)N, (18)O, etc.) to unusual ((57)Fe, (77)Se, etc.) isotopes. It also provides options-e.g., correction for the isotopic purity of the tracer-to improve the accuracy of quantitative isotopic studies, and allows automated correction of large datasets that can be collected with modern MS methods.

  2. Enzymatic synthesis of isotopically labeled isoprenoid diphosphates.

    PubMed

    Christensen, D J; Poulter, C D

    1994-07-01

    Recombinant yeast isopentenyl diphosphate (IPP) isomerase and avian farnesyl diphosphate (FPP) synthase from overproducing strains of Escherichia coli were used to synthesize FPP from IPP and dimethylallyl diphosphate (DMAPP). [2,4,5-13C3]IPP and [2,4,5-13C3]DMAPP were synthesized from ethyl [2-13C]bromoacetate and [1,3-13C2]acetone. Thes compounds were used as substrates for enzymatic synthesis of FPP selectivity labeled at the first or third isoprene residue or at all three.

  3. Absolute peptide quantification by lutetium labeling and nanoHPLC-ICPMS with isotope dilution analysis.

    PubMed

    Rappel, Christina; Schaumlöffel, Dirk

    2009-01-01

    The need of analytical methods for absolute quantitative protein analysis spurred research on new developments in recent years. In this work, a novel approach was developed for accurate absolute peptide quantification based on metal labeling with lutetium diethylenetriamine pentaacetic acid (Lu-DTPA) and nanoflow high-performance liquid chromatography-inductively coupled plasma isotope dilution mass spectrometry (nanoHPLC-ICP-IDMS). In a two-step procedure peptides were derivatized at amino groups with diethylenetriamine pentaacetic anhydride (DTPAA) followed by chelation of lutetium. Electrospray ionization mass spectrometry (ESI MS) of the reaction product demonstrated highly specific peptide labeling. Under optimized nanoHPLC conditions the labeled peptides were baseline-separated, and the excess labeling reagent did not interfere. A 176Lu-labeled spike was continuously added to the column effluent for quantification by ICP-IDMS. The recovery of a Lu-DTPA-labeled standard peptide was close to 100% indicating high labeling efficiency and accurate absolute quantification. The precision of the entire method was 4.9%. The detection limit for Lu-DTPA-tagged peptides was 179 amol demonstrating that lutetium-specific peptide quantification was by 4 orders of magnitude more sensitive than detection by natural sulfur atoms present in cysteine or methionine residues. Furthermore, the application to peptides in insulin tryptic digest allowed the identification of interfering reagents decreasing the labeling efficiency. An additional advantage of this novel approach is the analysis of peptides, which do not naturally feature ICPMS-detectable elements.

  4. Isotope labeling for NMR studies of macromolecular structure and interactions

    SciTech Connect

    Wright, P.E.

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  5. Isotopic Labeling of Red Cabbage Anthocyanins with Atmospheric 13-CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isotopic labeling of plants provides a unique opportunity for understanding metabolic processes. A significant challenge of isotopic labeling during plant growth is that isotopes must be administered without disrupting plant development and at sufficient levels for mass spectral analysis. We describ...

  6. RABA (Reductive Alkylation By Acetone): A novel stable isotope labeling approach for quantitative proteomics

    PubMed Central

    Zhai, Jianjun; Liu, Xiaoyan; Huang, Zhenyu; Zhu, Haining

    2009-01-01

    Quantitative proteomics is challenging and various stable isotope based approaches have been developed to meet the challenge.. Hereby we describe a simple, efficient, reliable and inexpensive method named RABA (reductive alkylation by acetone) to introduce stable isotopes to peptides for quantitative analysis. The RABA method leads to alkylation of N-terminal and lysine amino groups with isopropyl moiety. Using unlabeled (d0) and deuterium labeled (d6) acetone, a 6 Da mass split is introduced to each isopropyl modification between the light and heavy isotope labeled peptides, which is ideally suited for quantitative analysis. The reaction specificity, stoichoimetry, labeling efficiency and linear range of the RABA method has been thoroughly evaluated in this study using standard peptides, tryptic digest of proteins as well as human cell lysate. Reliable quantitative results have been consistently obtained in all experiments. We also applied the RABA method to quantitative analysis of proteins in spinal cords of transgenic mouse models of amyotrophic lateral sclerosis. Highly homologous proteins (transgenic human SOD1 and endogenous mouse SOD1) were distinguished and quantified using the method developed in this study. In addition, the quantitative results using the RABA approach were independently validated by Western blot. PMID:19419886

  7. Heating Isotopically Labeled Bernal Stacked Graphene: A Raman Spectroscopy Study.

    PubMed

    Ek-Weis, Johan; Costa, Sara; Frank, Otakar; Kalbac, Martin

    2014-02-06

    One of the greatest issues of nanoelectronics today is how to control the heating of the components. Graphene is a promising material in this area, and it is essential to study its thermal properties. Here, the effect of heating a bilayer structure was investigated using in situ Raman spectroscopy. In order to observe the effects on each individual layer, an isotopically labeled bilayer graphene was synthesized where the two layers were composed of different carbon isotopes. Therefore, the frequency of the phonons in the Raman spectra was shifted in relation to each other. This technique was used to investigate the influence of different stacking order. It was found that in bilayer graphene grown by chemical vapor deposition (CVD), the two layers behave very similarly for both Bernal stacking and randomly oriented structures, while for transferred samples, the layers act more independently. This highlights a significant dependence on the sample preparation procedure.

  8. Production of isotopically-labeled standards from a uniformly labeled precursor for quantitative volatile metabolomic studies

    PubMed Central

    Gómez-Cortés, Pilar; Brenna, J. Thomas; Sacks, Gavin L.

    2012-01-01

    Optimal accuracy and precision in small molecule profiling by mass spectrometry generally requires isotopically labeled standards chemically representative of all compounds of interest. However, preparation of mixed standards from commercially available pure compounds is often prohibitively expensive and time consuming, and many labeled compounds are not available in pure form. We used a single prototype uniformly labeled [U-13C]-compound to generate [U-13C]-volatile standards for use in subsequent experimental profiling studies. [U-13C]-α-linolenic acid (C18:3n-3, ALA) was thermally oxidized to produce labeled lipid degradation volatiles which were subsequently characterized qualitatively and quantitatively. Twenty-five [U-13C]-labeled volatiles were identified by headspace solid-phase microextraction-gas chromatography-time of flight-mass spectrometry (HS-SPME-GC-TOF-MS) by comparison of spectra with unlabeled volatiles. Using 250 μL starting sample, labeled volatiles were quantified by a reverse isotope dilution procedure. Using the [U-13C]-labeled standards, limits of detection comparable to or better than previous HS-SPME reports were achieved, 0.010–1.04 ng/g. The performance of the [U-13C]-volatile standards was evaluated using a commodity soybean oil (CSO) oxidized at 60°C from 0 to 15 d. Relative responses of n-decane, an unlabeled internal standard otherwise absent from the mixture, and [U-13C]-oxidation products changed by up to 8-fold as the CSO matrix was oxidized, demonstrating that reliance on a single standard in volatile profiling studies yields inaccurate results due to changing matrix effects. The [U-13C]-standard mixture was used to quantify 25 volatiles in oxidized CSO and low-ALA soybean oil with an average relative standard deviation of 8.5%. Extension of this approach to other labeled substrates, e.g., [U-13C]-sugars and amino acids, for profiling studies should be feasible and can dramatically improve quantitative results compared to

  9. Design and Operation of a Continuous 13C and 15N Labeling Chamber for Uniform or Differential, Metabolic and Structural, Plant Isotope Labeling

    PubMed Central

    Soong, Jennifer L; Reuss, Dan; Pinney, Colin; Boyack, Ty; Haddix, Michelle L; Stewart, Catherine E; Cotrufo, M. Francesca

    2014-01-01

    Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O or 2H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation1-4. From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage5-7. The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing 13C and 15N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous 13C and 15N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%13C and 6.7 atom%15N uniform plant label, or material that is differentially labeled by up to 1.29 atom%13C and 0.56 atom%15N in its metabolic and structural components (hot water extractable and hot water residual components

  10. Design and operation of a continuous 13C and 15N labeling chamber for uniform or differential, metabolic and structural, plant isotope labeling.

    PubMed

    Soong, Jennifer L; Reuss, Dan; Pinney, Colin; Boyack, Ty; Haddix, Michelle L; Stewart, Catherine E; Cotrufo, M Francesca

    2014-01-16

    Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as (13)C with (15)N, (18)O or (2)H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation(1-4). From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage(5-7). The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing (13)C and (15)N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous (13)C and (15)N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%(13)C and 6.7 atom%(15)N uniform plant label, or material that is differentially labeled by up to 1.29 atom%(13)C and 0.56 atom%(15)N in its metabolic and structural components (hot water extractable and hot water

  11. Electron linac for medical isotope production with improved energy efficiency and isotope recovery

    DOEpatents

    Noonan, John; Walters, Dean; Virgo, Matt; Lewellen, John

    2015-09-08

    A method and isotope linac system are provided for producing radio-isotopes and for recovering isotopes. The isotope linac is an energy recovery linac (ERL) with an electron beam being transmitted through an isotope-producing target. The electron beam energy is recollected and re-injected into an accelerating structure. The ERL provides improved efficiency with reduced power requirements and provides improved thermal management of an isotope target and an electron-to-x-ray converter.

  12. Mathematical modeling of isotope labeling experiments for metabolic flux analysis.

    PubMed

    Nargund, Shilpa; Sriram, Ganesh

    2014-01-01

    Isotope labeling experiments (ILEs) offer a powerful methodology to perform metabolic flux analysis. However, the task of interpreting data from these experiments to evaluate flux values requires significant mathematical modeling skills. Toward this, this chapter provides background information and examples to enable the reader to (1) model metabolic networks, (2) simulate ILEs, and (3) understand the optimization and statistical methods commonly used for flux evaluation. A compartmentalized model of plant glycolysis and pentose phosphate pathway illustrates the reconstruction of a typical metabolic network, whereas a simpler example network illustrates the underlying metabolite and isotopomer balancing techniques. We also discuss the salient features of commonly used flux estimation software 13CFLUX2, Metran, NMR2Flux+, FiatFlux, and OpenFLUX. Furthermore, we briefly discuss methods to improve flux estimates. A graphical checklist at the end of the chapter provides a reader a quick reference to the mathematical modeling concepts and resources.

  13. Metabolomics relative quantitation with mass spectrometry using chemical derivatization and isotope labeling

    DOE PAGES

    O'Maille, Grace; Go, Eden P.; Hoang, Linh; ...

    2008-01-01

    Comprehensive detection and quantitation of metabolites from a biological source constitute the major challenges of current metabolomics research. Two chemical derivatization methodologies, butylation and amination, were applied to human serum for ionization enhancement of a broad spectrum of metabolite classes, including steroids and amino acids. LC-ESI-MS analysis of the derivatized serum samples provided a significant signal elevation across the total ion chromatogram to over a 100-fold increase in ionization efficiency. It was also demonstrated that derivatization combined with isotopically labeled reagents facilitated the relative quantitation of derivatized metabolites from individual as well as pooled samples.

  14. Using phylogenetic probes for quantification of stable isotope labeling and microbial community analysis

    SciTech Connect

    Brodie, Eoin L; DeSantis, Todd Z; Karaoz, Ulas; Andersen, Gary L

    2014-12-09

    Herein is described methods for a high-sensitivity means to measure the incorporation of stable isotope labeled substrates into RNA following stable isotope probing experiments (SIP). RNA is hybridized to a set of probes such as phylogenetic microarrays and isotope incorporation is quantified such as by secondary ion mass spectrometer imaging (NanoSIMS).

  15. General statistical framework for quantitative proteomics by stable isotope labeling.

    PubMed

    Navarro, Pedro; Trevisan-Herraz, Marco; Bonzon-Kulichenko, Elena; Núñez, Estefanía; Martínez-Acedo, Pablo; Pérez-Hernández, Daniel; Jorge, Inmaculada; Mesa, Raquel; Calvo, Enrique; Carrascal, Montserrat; Hernáez, María Luisa; García, Fernando; Bárcena, José Antonio; Ashman, Keith; Abian, Joaquín; Gil, Concha; Redondo, Juan Miguel; Vázquez, Jesús

    2014-03-07

    The combination of stable isotope labeling (SIL) with mass spectrometry (MS) allows comparison of the abundance of thousands of proteins in complex mixtures. However, interpretation of the large data sets generated by these techniques remains a challenge because appropriate statistical standards are lacking. Here, we present a generally applicable model that accurately explains the behavior of data obtained using current SIL approaches, including (18)O, iTRAQ, and SILAC labeling, and different MS instruments. The model decomposes the total technical variance into the spectral, peptide, and protein variance components, and its general validity was demonstrated by confronting 48 experimental distributions against 18 different null hypotheses. In addition to its general applicability, the performance of the algorithm was at least similar than that of other existing methods. The model also provides a general framework to integrate quantitative and error information fully, allowing a comparative analysis of the results obtained from different SIL experiments. The model was applied to the global analysis of protein alterations induced by low H₂O₂ concentrations in yeast, demonstrating the increased statistical power that may be achieved by rigorous data integration. Our results highlight the importance of establishing an adequate and validated statistical framework for the analysis of high-throughput data.

  16. Raman spectroscopic and mass spectrometric investigations of the hydrogen isotopes and isotopically labelled methane

    SciTech Connect

    Jewett, J.R., Fluor Daniel Hanford

    1997-02-24

    Suitable analytical methods must be tested and developed for monitoring the individual process steps within the fuel cycle of a fusion reactor and for tritium accountability. The utility of laser-Raman spectroscopy accompanied by mass spectrometry with an Omegatron was investigated using the analysis of all hydrogen isotopes and isotopically labeled methanes as an example. The Omegatron is useful for analyzing all hydrogen isotopes mixed with the stable helium isotopes. The application of this mass spectrometer were demonstrated by analyzing mixtures of deuterated methanes. In addition, it was employed to study the radiochemical Witzbach exchange reaction between tritium and methanes. A laser-Raman spectrometer was designed for analysis of tritium-containing gases and was built from individual components. A tritium-compatible, metal-sealed Raman cuvette having windows with good optical properties and additional means for measuring the stray light was first used successfully in this work. The Raman spectra of the hydrogen isotopes were acquired in the pure rotation mode and in the rotation-vibration mode and were used for on. The deuterated methanes were measured by Raman spectroscopy, the wavenumbers determined were assigned to the corresponding vibrations, and the wavenumbers for the rotational fine-structure were summarized in tables. The fundamental Vibrations of the deuterated methanes produced Witzbach reactions were detected and assigned. The fundamental vibrations of the molecules were obtained with Raman spectroscopy for the first time in this work. The @-Raman spectrometer assembled is well suited for the analysis of tritium- containing gases and is practical in combination with mass spectrometry using an Omegatron, for studying gases used in fusion.

  17. Analysis of Hydrogen Isotopic Exchange: Lava Creek Tuff Ash and Isotopically Labeled Water

    NASA Astrophysics Data System (ADS)

    Ross, A. M.; Seligman, A. N.; Bindeman, I. N.; Nolan, G. S.

    2015-12-01

    Nolan and Bindeman (2013) placed secondarily hydrated ash from the 7.7 ka eruption of Mt. Mazama (δD=-149‰, 2.3wt% H2Ot) in isotopically labeled water (+650 ‰ δD, +56 ‰ δ18O) and observed that the H2Ot and δ18O values remained constant, but the δD values of ash increased with the surrounding water at 20, 40 and 70 °C. We expand on this work by conducting a similar experiment with ash from the 640 ka Lava Creek Tuff (LCT, δD of -128 ‰; 2.1 wt.% H2Ot) eruption of Yellowstone to see if significantly older glass (with a hypothesized gel layer on the surface shielding the interior from alteration) produces the same results. We have experiments running at 70, 24, and 5 °C, and periodically remove ~1.5 mg of glass to measure the δD (‰) and H2Ot (wt.%) of water extracted from the glass on a TC/EA MAT 253 continuous flow system. After 600 hours, the δD of the samples left at 5 and 24 °C remains at -128 ‰, but increased 8‰ for the 70 °C run series. However, there is no measurable change in wt.% of H2Ot, indicating that hydrogen exchange is not dictated by the addition of water. We are measuring and will report further progress of isotope exchange. We also plan to analyze the water in the LCT glass for δ18O (‰) to see if, as is the case for the Mt. Mazama glass, the δ18O (‰) remains constant. We also analyzed Mt. Mazama glass from the Nolan and Bindeman (2013) experiments that have now been sitting in isotopically labeled water at room temperature for ~5 years. The water concentration is still unchanged (2.3 wt.% H2Ot), and the δD of the water in the glass is now -111 ‰, causing an increase of 38 ‰. Our preliminary results show that exchange of hydrogen isotopes of hydrated glass is not limited by the age of the glass, and that the testing of hydrogen isotopes of secondarily hydrated glass, regardless of age, may not be a reliable paleoclimate indicator.

  18. NMR studies of two spliced leader RNAs using isotope labeling

    SciTech Connect

    Lapham, J.; Crothers, D.M.

    1994-12-01

    Spliced leader RNAs are a class of RNA molecules (<200 nts) involved in the trans splicing of messenger RNA found in trypanosomes, nematodes, and other lower eukaryotes. The spliced leader RNA from the trypanosome Leptomonas Collosoma exists in two alternate structural forms with similar thermal stabilities. The 54 nucleotides on the 5{prime} end of the SL molecule is structurally independent from the 3{prime} half of the RNA, and displays the two structural forms. Furthermore, the favored of the two structures was shown to contain anomalous nuclease sensitivity and thermal stability features, which suggests that there may be tertiary interactions between the splice site and other nucleotides in the 5{prime} end. Multidimensional NMR studies are underway to elucidate the structural elements present in the SL RNAs that give rise to their physical properties. Two spliced leader sequences have been studied. The first, the 54 nucleotides on the 5{prime} end of the L. Collosoma sequence, was selected because of earlier studies in our laboratory. The second sequence is the 5{prime} end of the trypanosome Crithidia Fasciculata, which was chosen because of its greater sequence homology to other SL sequences. Given the complexity of the NMR spectra for RNA molecules of this size, we have incorporated {sup 15}N/{sup 13}C-labeled nucleotides into the RNA. One of the techniques we have developed to simplify the spectra of these RNA molecules is isotope labeling of specific regions of the RNA. This has been especially helpful in assigning the secondary structure of molecules that may be able to adopt multiple conformations. Using this technique one can examine a part of the molecule without spectral interference from the unlabeled portion. We hope this approach will promote an avenue for studying the structure of larger RNAs in their native surroundings.

  19. Follow the Carbon: Isotopic Labeling Studies of Early Earth Aerosol

    NASA Astrophysics Data System (ADS)

    Hicks, Raea K.; Day, Douglas A.; Jimenez, Jose L.; Tolbert, Margaret A.

    2016-11-01

    Despite the faint young Sun, early Earth might have been kept warm by an atmosphere containing the greenhouse gases CH4 and CO2 in mixing ratios higher than those found on Earth today. Laboratory and modeling studies suggest that an atmosphere containing these trace gases could lead to the formation of organic aerosol haze due to UV photochemistry. Chemical mechanisms proposed to explain haze formation rely on CH4 as the source of carbon and treat CO2 as a source of oxygen only, but this has not previously been verified experimentally. In the present work, we use isotopically labeled precursor gases and unit-mass resolution (UMR) and high-resolution (HR) aerosol mass spectrometry to examine the sources of carbon and oxygen to photochemical aerosol formed in a CH4/CO2/N2 atmosphere. UMR results suggest that CH4 contributes 70-100% of carbon in the aerosol, while HR results constrain the value from 94% to 100%. We also confirm that CO2 contributes approximately 10% of the total mass to the aerosol as oxygen. These results have implications for the geochemical interpretations of inclusions found in Archean rocks on Earth and for the astrobiological potential of other planetary atmospheres.

  20. Follow the Carbon: Isotopic Labeling Studies of Early Earth Aerosol.

    PubMed

    Hicks, Raea K; Day, Douglas A; Jimenez, Jose L; Tolbert, Margaret A

    2016-11-01

    Despite the faint young Sun, early Earth might have been kept warm by an atmosphere containing the greenhouse gases CH4 and CO2 in mixing ratios higher than those found on Earth today. Laboratory and modeling studies suggest that an atmosphere containing these trace gases could lead to the formation of organic aerosol haze due to UV photochemistry. Chemical mechanisms proposed to explain haze formation rely on CH4 as the source of carbon and treat CO2 as a source of oxygen only, but this has not previously been verified experimentally. In the present work, we use isotopically labeled precursor gases and unit-mass resolution (UMR) and high-resolution (HR) aerosol mass spectrometry to examine the sources of carbon and oxygen to photochemical aerosol formed in a CH4/CO2/N2 atmosphere. UMR results suggest that CH4 contributes 70-100% of carbon in the aerosol, while HR results constrain the value from 94% to 100%. We also confirm that CO2 contributes approximately 10% of the total mass to the aerosol as oxygen. These results have implications for the geochemical interpretations of inclusions found in Archean rocks on Earth and for the astrobiological potential of other planetary atmospheres. Key Words: Atmosphere-Early Earth-Planetary atmospheres-Carbon dioxide-Methane. Astrobiology 16, 822-830.

  1. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    PubMed Central

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application. PMID:26813491

  2. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    NASA Astrophysics Data System (ADS)

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application.

  3. Isotope labelling to study molecular fragmentation during the dielectric barrier discharge wet reforming of methane

    NASA Astrophysics Data System (ADS)

    Montoro-Damas, Antonio M.; Gómez-Ramírez, Ana; Gonzalez-Elipe, Agustín R.; Cotrino, José

    2016-09-01

    Isotope labelling is used to study the wet plasma reforming of methane in a dielectric barrier discharge reactor using D2O and CH4 as reactants. Besides the formation of CO and hydrogen as main products, different partitions of H and D atoms are found in the hydrogen (i.e., H2, HD, D2), methane (i.e., CH4, CH3D and CH2D2) and water (D2O, DHO) molecules detected by mass spectrometry as outlet gases of the plasma process. The effect of operating parameters such as applied current, residence time and the addition of oxygen to the reaction mixture is correlated with the H/D distribution in these molecules, the overall reaction yield and the energetic efficiency of the process. The results prove the plasma formation of intermediate excited species that rendering water and methane instead of CO and hydrogen greatly contribute to decrease the overall energy efficiency of the reforming process.

  4. Implementation of an efficient labeling algorithm on a pipelined architecture

    NASA Astrophysics Data System (ADS)

    Olsson, Olof J.; Penman, David W.

    1992-11-01

    This paper describes an efficient approach, developed by the authors, for labelling images using a combination of pipeline (Datacube) and host (general purpose computer) processing. The output of the algorithm is a coordinate list of labelled object pixels that facilitates further high level operations.

  5. Multisubstrate Isotope Labeling and Metagenomic Analysis of Active Soil Bacterial Communities

    PubMed Central

    Verastegui, Y.; Cheng, J.; Engel, K.; Kolczynski, D.; Mortimer, S.; Lavigne, J.; Montalibet, J.; Romantsov, T.; Hall, M.; McConkey, B. J.; Rose, D. R.; Tomashek, J. J.; Scott, B. R.

    2014-01-01

    ABSTRACT Soil microbial diversity represents the largest global reservoir of novel microorganisms and enzymes. In this study, we coupled functional metagenomics and DNA stable-isotope probing (DNA-SIP) using multiple plant-derived carbon substrates and diverse soils to characterize active soil bacterial communities and their glycoside hydrolase genes, which have value for industrial applications. We incubated samples from three disparate Canadian soils (tundra, temperate rainforest, and agricultural) with five native carbon (12C) or stable-isotope-labeled (13C) carbohydrates (glucose, cellobiose, xylose, arabinose, and cellulose). Indicator species analysis revealed high specificity and fidelity for many uncultured and unclassified bacterial taxa in the heavy DNA for all soils and substrates. Among characterized taxa, Actinomycetales (Salinibacterium), Rhizobiales (Devosia), Rhodospirillales (Telmatospirillum), and Caulobacterales (Phenylobacterium and Asticcacaulis) were bacterial indicator species for the heavy substrates and soils tested. Both Actinomycetales and Caulobacterales (Phenylobacterium) were associated with metabolism of cellulose, and Alphaproteobacteria were associated with the metabolism of arabinose; members of the order Rhizobiales were strongly associated with the metabolism of xylose. Annotated metagenomic data suggested diverse glycoside hydrolase gene representation within the pooled heavy DNA. By screening 2,876 cloned fragments derived from the 13C-labeled DNA isolated from soils incubated with cellulose, we demonstrate the power of combining DNA-SIP, multiple-displacement amplification (MDA), and functional metagenomics by efficiently isolating multiple clones with activity on carboxymethyl cellulose and fluorogenic proxy substrates for carbohydrate-active enzymes. PMID:25028422

  6. Structural modeling of protein-RNA complexes using crosslinking of segmentally isotope-labeled RNA and MS/MS.

    PubMed

    Dorn, Georg; Leitner, Alexander; Boudet, Julien; Campagne, Sébastien; von Schroetter, Christine; Moursy, Ahmed; Aebersold, Ruedi; Allain, Frédéric H-T

    2017-03-27

    Ribonucleoproteins (RNPs) are key regulators of cellular function. We established an efficient approach, crosslinking of segmentally isotope-labeled RNA and tandem mass spectrometry (CLIR-MS/MS), to localize protein-RNA interactions simultaneously at amino acid and nucleotide resolution. The approach was tested on polypyrimidine tract binding protein 1 and U1 small nuclear RNP. Our method provides distance restraints to support integrative atomic-scale structural modeling and to gain mechanistic insights into RNP-regulated processes.

  7. Strategies for Extending Metabolomics Studies with Stable Isotope Labelling and Fluxomics

    PubMed Central

    Srivastava, Anubhav; Kowalski, Greg M.; Callahan, Damien L.; Meikle, Peter J.; Creek, Darren J.

    2016-01-01

    This is a perspective from the peer session on stable isotope labelling and fluxomics at the Australian & New Zealand Metabolomics Conference (ANZMET) held from 30 March to 1 April 2016 at La Trobe University, Melbourne, Australia. This report summarizes the key points raised in the peer session which focused on the advantages of using stable isotopes in modern metabolomics and the challenges in conducting flux analyses. The session highlighted the utility of stable isotope labelling in generating reference standards for metabolite identification, absolute quantification, and in the measurement of the dynamic activity of metabolic pathways. The advantages and disadvantages of different approaches of fluxomics analyses including flux balance analysis, metabolic flux analysis and kinetic flux profiling were also discussed along with the use of stable isotope labelling in in vivo dynamic metabolomics. A number of crucial technical considerations for designing experiments and analyzing data with stable isotope labelling were discussed which included replication, instrumentation, methods of labelling, tracer dilution and data analysis. This report reflects the current viewpoint on the use of stable isotope labelling in metabolomics experiments, identifying it as a great tool with the potential to improve biological interpretation of metabolomics data in a number of ways. PMID:27706078

  8. Combination of online enzyme digestion with stable isotope labeling for high-throughput quantitative proteome analysis.

    PubMed

    Wang, Fangjun; Wei, Xiaoluan; Zhou, Hu; Liu, Jing; Figeys, Daniel; Zou, Hanfa

    2012-11-01

    Various enzyme reactors and online enzyme digestion strategies have been developed in recent years. These reactors greatly enhanced the detection sensitivity and proteome coverage in qualitative proteomics. However, these devices have higher rates of miscleavage in protein digestion. Therefore, we investigated the effect of online enzyme digestion on the quantification accuracy of quantitative proteomics using chemical or metabolic isotope labeling approaches. The incomplete digestion would introduce some unexpected variations in comparative quantification when the samples are digested and then chemically isotope labeled in different aliquots. Even when identical protein aliquots are processed on these devices using post-digestion chemical isotope labeling and the CVs of the ratios controlled to less than 50% in replicate analyses, about 10% of the quantified proteins have a ratio greater than two-fold, whereas in theory the ratio is 1:1. Interestingly, the incomplete digestion with enzyme reactor is not a problem when metabolic isotope labeling samples were processed because the proteins are isotopically labeled in vivo prior to their simultaneous digestion within the reactor. Our results also demonstrated that both high quantification accuracy and high proteome coverage can be achieved in comparative proteome quantification using online enzyme digestion even when a limited amount of metabolic isotope labeling samples is used (1683 proteins comparatively quantified from 10(5) Hela cells).

  9. Fully automated software solution for protein quantitation by global metabolic labeling with stable isotopes.

    PubMed

    Bindschedler, L V; Cramer, R

    2011-06-15

    Metabolic stable isotope labeling is increasingly employed for accurate protein (and metabolite) quantitation using mass spectrometry (MS). It provides sample-specific isotopologues that can be used to facilitate comparative analysis of two or more samples. Stable Isotope Labeling by Amino acids in Cell culture (SILAC) has been used for almost a decade in proteomic research and analytical software solutions have been established that provide an easy and integrated workflow for elucidating sample abundance ratios for most MS data formats. While SILAC is a discrete labeling method using specific amino acids, global metabolic stable isotope labeling using isotopes such as (15)N labels the entire element content of the sample, i.e. for (15)N the entire peptide backbone in addition to all nitrogen-containing side chains. Although global metabolic labeling can deliver advantages with regard to isotope incorporation and costs, the requirements for data analysis are more demanding because, for instance for polypeptides, the mass difference introduced by the label depends on the amino acid composition. Consequently, there has been less progress on the automation of the data processing and mining steps for this type of protein quantitation. Here, we present a new integrated software solution for the quantitative analysis of protein expression in differential samples and show the benefits of high-resolution MS data in quantitative proteomic analyses.

  10. Highly enriched multiply-labeled stable isotopic compounds as atmospheric tracers

    DOEpatents

    Goldblatt, M.; McInteer, B.B.

    1974-01-29

    Compounds multiply-labeled with stable isotopes and highly enriched in these isotopes are readily capable of detection in tracer experiments involving high dilutions. Thus, for example, /sup 13/C/sup 18/O/sub 2/ provides a useful tracer for following atmospheric pol lution produced as a result of fossil fuel burning. (Official Gazette)

  11. Stable isotope-labeling studies in metabolomics: new insights into structure and dynamics of metabolic networks

    PubMed Central

    Chokkathukalam, Achuthanunni; Kim, Dong-Hyun; Barrett, Michael P; Breitling, Rainer; Creek, Darren J

    2014-01-01

    The rapid emergence of metabolomics has enabled system-wide measurements of metabolites in various organisms. However, advances in the mechanistic understanding of metabolic networks remain limited, as most metabolomics studies cannot routinely provide accurate metabolite identification, absolute quantification and flux measurement. Stable isotope labeling offers opportunities to overcome these limitations. Here we describe some current approaches to stable isotope-labeled metabolomics and provide examples of the significant impact that these studies have had on our understanding of cellular metabolism. Furthermore, we discuss recently developed software solutions for the analysis of stable isotope-labeled metabolomics data and propose the bioinformatics solutions that will pave the way for the broader application and optimal interpretation of system-scale labeling studies in metabolomics. PMID:24568354

  12. Stable isotope N-phosphorylation labeling for Peptide de novo sequencing and protein quantification based on organic phosphorus chemistry.

    PubMed

    Gao, Xiang; Wu, Hanzhi; Lee, Kim-Chung; Liu, Hongxia; Zhao, Yufen; Cai, Zongwei; Jiang, Yuyang

    2012-12-04

    In this paper, we describe the development of a novel stable isotope N-phosphorylation labeling (SIPL) strategy for peptide de novo sequencing and protein quantification based on organic phosphorus chemistry. The labeling reaction could be performed easily and completed within 40 min in a one-pot reaction without additional cleanup procedures. It was found that N-phosphorylation labeling reagents were activated in situ to form labeling intermediates with high reactivity targeting on N-terminus and ε-amino groups of lysine under mild reaction conditions. The introduction of N-terminal-labeled phosphoryl group not only improved the ionization efficiency of peptides and increased the protein sequence coverage for peptide mass fingerprints but also greatly enhanced the intensities of b ions, suppressed the internal fragments, and reduced the complexity of the tandem mass spectrometry (MS/MS) fragmentation patterns of peptides. By using nano liquid chromatography chip/time-of-flight mass spectrometry (nano LC-chip/TOF MS) for the protein quantification, the obtained results showed excellent correlation of the measured ratios to theoretical ratios with relative errors ranging from 0.5% to 6.7% and relative standard deviation of less than 10.6%, indicating that the developed method was reproducible and precise. The isotope effect was negligible because of the deuterium atoms were placed adjacent to the neutral phosphoryl group with high electrophilicity and moderately small size. Moreover, the SIPL approach used inexpensive reagents and was amenable to samples from various sources, including cell culture, biological fluids, and tissues. The method development based on organic phosphorus chemistry offered a new approach for quantitative proteomics by using novel stable isotope labeling reagents.

  13. Heavy Atom Labeled Nucleotides for Measurement of Kinetic Isotope Effects

    PubMed Central

    Weissman, Benjamin P.; Li, Nan-Sheng; York, Darrin; Harris, Michael; Piccirilli, Joseph A.

    2015-01-01

    Experimental analysis of kinetic isotope effects represents an extremely powerful approach for gaining information about the transition state structure of complex reactions not available through other methodologies. Implementation of this approach to the study of nucleic acid chemistry requires the synthesis of nucleobases and nucleotides enriched for heavy isotopes at specific positions. In this review we highlight current approaches to the synthesis of nucleic acids site-specifically enriched for heavy oxygen and nitrogen and their application in heavy atom isotope effect studies. PMID:25828952

  14. Noninvasive imaging of protein metabolic labeling in single human cells using stable isotopes and Raman microscopy.

    PubMed

    van Manen, Henk-Jan; Lenferink, Aufried; Otto, Cees

    2008-12-15

    We have combined nonresonant Raman microspectroscopy and spectral imaging with stable isotope labeling by amino acids in cell culture (SILAC) to selectively detect the incorporation of deuterium-labeled phenylalanine, tyrosine, and methionine into proteins in intact, single HeLa cells. The C-D stretching vibrational bands in these amino acids are observed in the 2100-2300 cm(-1) spectral region that is devoid of vibrational contributions from other, nondeuterated intracellular constituents. We found that incubation with deuterated amino acids for 8 h in cell culture already led to clearly detectable isotope-related signals in Raman spectra of HeLa cells. As expected, the level of isotope incorporation into proteins increased with incubation time, reaching 55% for deuterated phenylalanine after 28 h. Raman spectral imaging of HeLa cells incubated with deuterium-labeled amino acids showed similar spatial distributions for both isotope-labeled and unlabeled proteins, as evidenced by Raman ratio imaging. The SILAC-Raman methodology presented here combines the strengths of stable isotopic labeling of cells with the nondestructive and quantitative nature of Raman chemical imaging and is likely to become a powerful tool in both cell biology applications and research on tissues or whole organisms.

  15. A facile method for expression and purification of 15N isotope-labeled human Alzheimer's β-amyloid peptides from E. coli for NMR-based structural analysis

    PubMed Central

    Armand, Tara; Ball, K. Aurelia; Chen, Anna; Pelton, Jeffrey G.; Wemmer, David E.; Head-Gordon, Teresa

    2016-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease affecting millions of people worldwide. AD is characterized by the presence of extracellular plaques composed of aggregated/oligomerized β-amyloid peptides with Aβ42 peptide representing a major isoform in the senile plaques. Given the pathological significance of Aβ42 in the progression of AD, there is considerable interest in understanding the structural ensembles for soluble monomer and oligomeric forms of Aβ42. This report describes an efficient method to express and purify high quality 15N isotope-labeled Aβ42 for structural studies by NMR. The protocol involves utilization of an auto induction system with 15N isotope labeled medium, for high-level expression of Aβ42 as a fusion with IFABP. After the over-expression of the 15N isotope-labeled IFABP-Aβ42 fusion protein in the inclusion bodies, pure 15N isotope-labeled Aβ42 peptide is obtained following a purification method that is streamlined and improved from the method originally developed for the isolation of unlabeled Aβ42 peptide (Garai et al., 2009). We obtain a final yield of ∼6 mg/L culture for 15N isotope-labeled Aβ42 peptide. Mass spectrometry and 1H–15N HSQC spectra of monomeric Aβ42 peptide validate the uniform incorporation of the isotopic label. The method described here is equally applicable for the uniform isotope labeling with 15N and 13C in Aβ42 peptide as well as its other variants including any Aβ42 peptide mutants. PMID:26231074

  16. Isotopic labeling of mammalian G protein-coupled receptors (GPCRs) heterologously expressed in Caenorhabditis elegans*

    PubMed Central

    Salom, David; Cao, Pengxiu; Yuan, Yiyuan; Miyagi, Masaru; Feng, Zhaoyang; Palczewski, Krzysztof

    2015-01-01

    High-resolution structural determination and dynamic characterization of membrane proteins by nuclear magnetic resonance (NMR) require their isotopic labeling. Although a number of labeled eukaryotic membrane proteins have been successfully expressed in bacteria, they lack posttranslational modifications and usually need to be refolded from inclusion bodies. This shortcoming of bacterial expression systems is particularly detrimental for the functional expression of G protein-coupled receptors (GPCRs), the largest family of drug targets, due to their inherent instability. In this work we show that proteins expressed by a eukaryotic organism can be isotopically labeled and produced with a quality and quantity suitable for NMR characterization. Using our previously described expression system in Caenorhabditis elegans, we showed the feasibility of labeling proteins produced by these worms with 15N,13C by providing them with isotopically labeled bacteria. 2H labeling also was achieved by growing C. elegans in presence of 70% heavy water. Bovine rhodopsin, simultaneously expressed in muscular and neuronal worm tissues, was employed as the ‘test’ GPCR to demonstrate the viability of this approach. Although the worms’ cell cycle was slightly affected by the presence of heavy isotopes, the final protein yield and quality was appropriate for NMR structural characterization. PMID:25461480

  17. Multisubstrate isotope labeling and metagenomic analysis of active soil bacterial communities.

    PubMed

    Verastegui, Y; Cheng, J; Engel, K; Kolczynski, D; Mortimer, S; Lavigne, J; Montalibet, J; Romantsov, T; Hall, M; McConkey, B J; Rose, D R; Tomashek, J J; Scott, B R; Charles, T C; Neufeld, J D

    2014-07-15

    Soil microbial diversity represents the largest global reservoir of novel microorganisms and enzymes. In this study, we coupled functional metagenomics and DNA stable-isotope probing (DNA-SIP) using multiple plant-derived carbon substrates and diverse soils to characterize active soil bacterial communities and their glycoside hydrolase genes, which have value for industrial applications. We incubated samples from three disparate Canadian soils (tundra, temperate rainforest, and agricultural) with five native carbon ((12)C) or stable-isotope-labeled ((13)C) carbohydrates (glucose, cellobiose, xylose, arabinose, and cellulose). Indicator species analysis revealed high specificity and fidelity for many uncultured and unclassified bacterial taxa in the heavy DNA for all soils and substrates. Among characterized taxa, Actinomycetales (Salinibacterium), Rhizobiales (Devosia), Rhodospirillales (Telmatospirillum), and Caulobacterales (Phenylobacterium and Asticcacaulis) were bacterial indicator species for the heavy substrates and soils tested. Both Actinomycetales and Caulobacterales (Phenylobacterium) were associated with metabolism of cellulose, and Alphaproteobacteria were associated with the metabolism of arabinose; members of the order Rhizobiales were strongly associated with the metabolism of xylose. Annotated metagenomic data suggested diverse glycoside hydrolase gene representation within the pooled heavy DNA. By screening 2,876 cloned fragments derived from the (13)C-labeled DNA isolated from soils incubated with cellulose, we demonstrate the power of combining DNA-SIP, multiple-displacement amplification (MDA), and functional metagenomics by efficiently isolating multiple clones with activity on carboxymethyl cellulose and fluorogenic proxy substrates for carbohydrate-active enzymes. Importance: The ability to identify genes based on function, instead of sequence homology, allows the discovery of genes that would not be identified through sequence alone. This

  18. Efficient synthesis of deuterium labeled hydroxyzine and aripiprazole.

    PubMed

    Vohra, Mohit; Sandbhor, Mahendra; Wozniak, Andrew

    2015-06-15

    Hydroxyzine and aripiprazole are active pharmaceutical ingredients that have been largely acknowledged for their antipsychotic properties. Deuterium labeled isotopes of hydroxyzine and aripiprazole are internal standards that can aid in the further research of non-isotopic forms via quantification analysis using HPLC-MS/MS. The synthesis of hydroxyzine-d8 was accomplished by coupling piperazine-d8 with 4-chlorobenzhydryl chloride followed by the reaction of the first intermediate with 2-(2-chloroethoxy) ethanol to afford 11.7% of hydroxyzine-d8 with 99.5% purity. The synthesis of aripiprazole-d8 was also achieved in two steps. 1,4-Dibromobutane-d8 reacted with 7-hydroxy-3,4-dihydro-2(1H)-quinolinone. The first intermediate was then coupled with 1-(2, 3-dichlorophenyl)piperazine hydrochloride to produce 33.4% of aripiprazole-d8 with 99.93% purity.

  19. Isotope Labeling for Solution and Solid-State NMR Spectroscopy of Membrane Proteins

    PubMed Central

    Verardi, Raffaello; Traaseth, Nathaniel J.; Masterson, Larry R.; Vostrikov, Vitaly V.; Veglia, Gianluigi

    2013-01-01

    In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy. PMID:23076578

  20. Immunoproteomics using polyclonal antibodies and stable isotope-labeled affinity-purified recombinant proteins.

    PubMed

    Edfors, Fredrik; Boström, Tove; Forsström, Björn; Zeiler, Marlis; Johansson, Henrik; Lundberg, Emma; Hober, Sophia; Lehtiö, Janne; Mann, Matthias; Uhlen, Mathias

    2014-06-01

    The combination of immuno-based methods and mass spectrometry detection has great potential in the field of quantitative proteomics. Here, we describe a new method (immuno-SILAC) for the absolute quantification of proteins in complex samples based on polyclonal antibodies and stable isotope-labeled recombinant protein fragments to allow affinity enrichment prior to mass spectrometry analysis and accurate quantification. We took advantage of the antibody resources publicly available from the Human Protein Atlas project covering more than 80% of all human protein-coding genes. Epitope mapping revealed that a majority of the polyclonal antibodies recognized multiple linear epitopes, and based on these results, a semi-automated method was developed for peptide enrichment using polyclonal antibodies immobilized on protein A-coated magnetic beads. A protocol based on the simultaneous multiplex capture of more than 40 protein targets showed that approximately half of the antibodies enriched at least one functional peptide detected in the subsequent mass spectrometry analysis. The approach was further developed to also generate quantitative data via the addition of heavy isotope-labeled recombinant protein fragment standards prior to trypsin digestion. Here, we show that we were able to use small amounts of antibodies (50 ng per target) in this manner for efficient multiplex analysis of quantitative levels of proteins in a human HeLa cell lysate. The results suggest that polyclonal antibodies generated via immunization of recombinant protein fragments could be used for the enrichment of target peptides to allow for rapid mass spectrometry analysis taking advantage of a substantial reduction in sample complexity. The possibility of building up a proteome-wide resource for immuno-SILAC assays based on publicly available antibody resources is discussed.

  1. [Use of DNA-methylases as reagents for the production of isotopically labeled DNAs].

    PubMed

    Bur'ianov, Ia I; Bogdarina, I G; Nesterenko, V F; Baev, A A

    1982-04-01

    The method of incorporation of an isotopic label into DNA by means of DNA-methyltransferases (DNA-methylases) is proposed. DNA was no degraded and retained its biological activity in the DNA-methylase reaction. The specific activity of labelled DNA preparations can be increased, using the mixtures of different DNA-methylases in the enzymatic reaction. An isotopic label was incorporated into DNA, using DNA methylases M. .EcoRII, M.Eco dam and M.EcoMRE600 dcmI. An average activity of 1 microgram of labelled DNA preparations produced by S-adenosylmethionine (methyl-3H) with specific activity of 15 CU/mmol mas about 1 x 10(5) cpm.

  2. Structural determination of larger proteins using stable isotope labeling and NMR spectroscopy

    SciTech Connect

    Unkefer, C.; Hernandez, G.; Springer, P.; Trewhella, J.; Blumenthal, D.; Lidstrom, M.

    1996-04-01

    The project sought to employ stable isotope labeling and NMR spectroscopy to study protein structures and provide insight into important biochemical problems. A methylotrophic bacterial expression system has been developed for uniform deuterium and carbon-13 labeling of proteins for structural studies. These organisms grow using methanol as the sole source of carbon and energy. Because isotopically labeled methanol is relatively inexpensive, the methylotrophs are ideal for expressing proteins labeled uniformly with deuterium and/or carbon-13. This expression system has been employed to prepare deuterated troponin C. NMR spectroscopy measurements have been made on the inhibitory peptide from troponin I (residues 96--115), both as the free peptide and the peptide complexed with deuterated troponin C. Proton-NMR spectroscopy resonance-signal assignments have been made for the free peptide.

  3. Identification of RNA sequence isomer by isotope labeling and LC-MS/MS.

    PubMed

    Li, Siwei; Limbach, Patrick A

    2014-11-01

    Recently, we developed a method for modified ribonucleic acid (RNA) analysis based on the comparative analysis of RNA digests (CARD). Within this CARD approach, sequence or modification differences between two samples are identified through differential isotopic labeling of two samples. Components present in both samples will each be labeled, yielding doublets in the CARD mass spectrum. Components unique to only one sample should be detected as singlets. A limitation of the prior singlet identification strategy occurs when the two samples contain components of unique sequence but identical base composition. At the first stage of mass spectrometry, these sequence isomers cannot be differentiated and would appear as doublets rather than singlets. However, underlying sequence differences should be detectable by collision-induced dissociation tandem mass spectrometry (CID MS/MS), as y-type product ions will retain the original enzymatically incorporated isotope label. Here, we determine appropriate instrumental conditions that enable CID MS/MS of isotopically labeled ribonuclease T1 (RNase T1) digestion products such that the original isotope label is maintained in the product ion mass spectrum. Next, we demonstrate how y-type product ions can be used to differentiate singlets and doublets from isomer sequences. We were then able to extend the utility of this approach by using CID MS/MS for the confirmation of an expected RNase T1 digestion product within the CARD analysis of an Escherichia coli mutant strain even in the presence of interfering and overlapping digestion products from other transfer RNAs.

  4. Quantifying plant phenotypes with isotopic labeling and metabolic flux analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analyses of metabolic flux using stable isotopes in plants have traditionally been restricted to tissues with presumed homogeneous cell populations such as developing seeds, cell suspensions, or cultured roots and root tips. It is now possible to describe these and other more complex tissues such a...

  5. Stable isotope labeling of oligosaccharide cell surface antigens

    SciTech Connect

    Unkefer, C.J.; Silks, L.A. III; Martinez, R.A.

    1998-12-31

    The overall goal of this Laboratory Directed Research and Development (LDRD) project was to develop new methods for synthesis of {sup 13}C-labeled oligosaccharides that are required for nuclear magnetic resonance (NMR) studies of their solution conformation. Oligosaccharides are components of the cell`s outer surface and are involved in important processes such as cell-cell recognition and adhesion. Recently, Danishefsky and coworkers at Slone-Kettering Cancer Center developed a method for the solid-phase chemical synthesis of oligosaccharides. The specific goal of this LDRD project was to prepare uniform {sup 13}C-labeled aldohexose precursors required for the solid-phase synthesis of the Lewis blood-group antigenic determinants. We report the synthesis of {sup 13}C-labeled D-glucal, D-galactal and Fucosyl precursors. We have been collaborating with the Danishefsky group on the synthesis of the Lewis oligosaccharides and the NMR analysis of their solution conformation.

  6. Affordable uniform isotope labeling with (2)H, (13)C and (15)N in insect cells.

    PubMed

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D

    2015-06-01

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80% can be achieved for (15)N and (13)C with yields comparable to expression in full media. For (2)H,(15)N and (2)H,(13)C,(15)N labeling, incorporation is only slightly lower with 75 and 73%, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins.

  7. Sample-efficient learning with auxiliary class-label information

    PubMed Central

    Nguyen, Quang; Valizadegan, Hamed; Seybert, Amy; Hauskrecht, Milos

    2011-01-01

    Building classification models from clinical data collected for past patients often requires additional example labeling and annotation by a human expert. Since example labeling may require to review a complete electronic health record the process can be very time consuming and costly. To make the process more cost-efficient, the number of examples an expert needs to label should be reduced. We develop and test a new approach for the classification learning in which, in addition to class labels provided by an expert, the learner is provided with auxiliary information that reflects how strong the expert feels about the class label. We show that this information can be extremely useful for practical classification tasks based on human assessment and can lead to improved learning with a smaller number of examples. We develop a new classification approach based on the support vector machines and the learning to rank methodologies capable of utilizing the auxiliary information during the model learning process. We demonstrate the benefit of the approach on the problem of learning an alert model for Heparin Induced Thrombocytopenia (HIT) by showing an improved classification performance of the models that are trained on a smaller number of labeled examples. PMID:22195160

  8. Doubly labeled water method: in vivo oxygen and hydrogen isotope fractionation

    SciTech Connect

    Schoeller, D.A.; Leitch, C.A.; Brown, C.

    1986-12-01

    The accuracy and precision of the doubly labeled water method for measuring energy expenditure are influenced by isotope fractionation during evaporative water loss and CO/sub 2/ excretion. To characterize in vivo isotope fractionation, we collected and isotopically analyzed physiological fluids and gases. Breath and transcutaneous water vapor were isotopically fractionated. The degree of fractionation indicated that the former was fractionated under equilibrium control at 37/sup 0/C, and the latter was kinetically fractionated. Sweat and urine were unfractionated. By use of isotopic balance models, the fraction of water lost via fractionating routes was estimated from the isotopic abundances of body water, local drinking water, and dietary solids. Fractionated water loss averaged 23% (SD = 10%) of water turnover, which agreed with our previous estimates based on metabolic rate, but there was a systematic difference between the results based on O/sub 2/ and hydrogen. Corrections for isotopic fractionation of water lost in breath and (nonsweat) transcutaneous loss should be made when using labeled water to measure water turnover or CO/sub 2/ production.

  9. A free-air system for long-term stable carbon isotope labeling of adult forest trees

    EPA Science Inventory

    Stable carbon (C) isotopes, in particular employed in labeling experiments, are an ideal tool to broaden our understanding of C dynamics in trees and forest ecosystems. Here, we present a free-air exposure system, named isoFACE, designed for long-term stable C isotope labeling in...

  10. Addressing the current bottlenecks of metabolomics: Isotopic Ratio Outlier Analysis™, an isotopic-labeling technique for accurate biochemical profiling.

    PubMed

    de Jong, Felice A; Beecher, Chris

    2012-09-01

    Metabolomics or biochemical profiling is a fast emerging science; however, there are still many associated bottlenecks to overcome before measurements will be considered robust. Advances in MS resolution and sensitivity, ultra pressure LC-MS, ESI, and isotopic approaches such as flux analysis and stable-isotope dilution, have made it easier to quantitate biochemicals. The digitization of mass spectrometers has simplified informatic aspects. However, issues of analytical variability, ion suppression and metabolite identification still plague metabolomics investigators. These hurdles need to be overcome for accurate metabolite quantitation not only for in vitro systems, but for complex matrices such as biofluids and tissues, before it is possible to routinely identify biomarkers that are associated with the early prediction and diagnosis of diseases. In this report, we describe a novel isotopic-labeling method that uses the creation of distinct biochemical signatures to eliminate current bottlenecks and enable accurate metabolic profiling.

  11. ZoomQuant: an application for the quantitation of stable isotope labeled peptides.

    PubMed

    Halligan, Brian D; Slyper, Ronit Y; Twigger, Simon N; Hicks, Wayne; Olivier, Michael; Greene, Andrew S

    2005-03-01

    The main goal of comparative proteomics is the quantitation of the differences in abundance of many proteins between two different biological samples in a single experiment. By differentially labeling the peptides from the two samples and combining them in a single analysis, relative ratios of protein abundance can be accurately determined. Protease catalyzed (18)O exchange is a simple method to differentially label peptides, but the lack of robust software tools to analyze the data from mass spectra of (18)O labeled peptides generated by common ion trap mass spectrometers has been a limitation. ZoomQuant is a stand-alone computational tool that analyzes the mass spectra of (18)O labeled peptides from ion trap instruments and determines relative abundance ratios between two samples. Starting with a filtered list of candidate peptides that have been successfully identified by Sequest, ZoomQuant analyzes the isotopic forms of the peptides using high-resolution zoom scan spectrum data. The theoretical isotope distribution is determined from the peptide sequence and is used to deconvolute the peak areas associated with the unlabeled, partially labeled, and fully labeled species. The ratio between the labeled and unlabeled peptides is then calculated using several different methods. ZoomQuant's graphical user interface allows the user to view and adjust the parameters for peak calling and quantitation and select which peptides should contribute to the overall abundance ratio calculation. Finally, ZoomQuant generates a summary report of the relative abundance of the peptides identified in the two samples.

  12. Isotopic labelling studies on far-infrared spectra of nickel-histamine complexes

    NASA Astrophysics Data System (ADS)

    Drożdżewski, Piotr; Kordon, Ewa

    2000-11-01

    Nickel-histamine (hm) complexes type [Ni(hm)Cl 2] and [Ni(hm) 3] X2 (Where X=Cl, Br, I, ClO 4) were investigated in the far-infrared region. Metal isotope labelling and deuteration effects were employed for observed band assignments. Metal-ligand vibrations were discussed and correlated with the structures of the complexes.

  13. Practical considerations in the use of stable isotope labelled compounds as tracers in clinical studies.

    PubMed

    Thompson, G N; Pacy, P J; Ford, G C; Halliday, D

    1989-05-01

    Increasingly widespread usage of stable isotope tracers to aid clinical diagnosis and support basic research has stemmed from both advances in mass spectrometry and the availability of competitively priced labelled compounds. Stable isotopes have been used generally to investigate normal and abnormal metabolic pathways, to estimate energy expenditure and body composition and to quantitate substrate flux and oxidation rates. Despite the fact that the underlying principles relating to the use of stable isotopes for in vivo studies are straightforward, careful consideration must be given to all aspects of human studies. This review highlights some of these, including choice of label and tracer molecule, mode of tracer administration and sampling site, analytical instrumentation, interpretation of data and ethical constraints.

  14. Stable-isotope-labeled carbohydrates and nucleosides: Synthesis and applications in chemistry and biology

    SciTech Connect

    Serianni, A.S.

    1994-12-01

    Carbohydrates play important roles in many key biochemical processes in living cells. For example, they are metabolized to produce energy, mediate cell-cell recognition, and play an indirect role (as constituents of DNA and RNA) in DNA replication, RNA transcription, and protein synthesis. These roles, and others of comparable biochemical significance, have been studied to varying extends with the use of stable isotopically labeled molecules, usually in conjunction with NMR spectroscopy and/or mass spectrometry. For example, carbohydrate metabolism has been monitored in vitro and in vivo with the use of isotopically labeled compounds. Molecular aspects of cell-cell recognition, mediated by cell-surface glycoproteins and glycolipids, have been probed through NMR studies of isotopically labeled oligosaccharides. More recently, the solution behavior of DNA and RNA has been examined through the use of labeled oligonucleotides. In all of these pursuits, the effort and expense to prepare labeled molecules, both of which can be substantial, are more than offset by the wealth of information derived from these studies. This information often cannot be accessed, or can be accessed only with great difficulty, using natural (unlabeled) compounds.

  15. Hydroponic isotope labeling of entire plants and high-performance mass spectrometry for quantitative plant proteomics.

    PubMed

    Bindschedler, Laurence V; Mills, Davinia J S; Cramer, Rainer

    2012-01-01

    Hydroponic isotope labeling of entire plants (HILEP) combines hydroponic plant cultivation and metabolic labeling with stable isotopes using (15)N-containing inorganic salts to label whole and mature plants. Employing (15)N salts as the sole nitrogen source for HILEP leads to the production of healthy-looking plants which contain (15)N proteins labeled to nearly 100%. Therefore, HILEP is suitable for quantitative plant proteomic analysis, where plants are grown in either (14)N- or (15)N-hydroponic media and pooled when the biological samples are collected for relative proteome quantitation. The pooled (14)N-/(15)N-protein extracts can be fractionated in any suitable way and digested with a protease for shotgun proteomics, using typically reverse phase liquid chromatography nanoelectrospray ionization tandem mass spectrometry (RPLC-nESI-MS/MS). Best results were obtained with a hybrid ion trap/FT-MS mass spectrometer, combining high mass accuracy and sensitivity for the MS data acquisition with speed and high-throughput MS/MS data acquisition, increasing the number of proteins identified and quantified and improving protein quantitation. Peak processing and picking from raw MS data files, protein identification, and quantitation were performed in a highly automated way using integrated MS data analysis software with minimum manual intervention, thus easing the analytical workflow. In this methodology paper, we describe how to grow Arabidopsis plants hydroponically for isotope labeling using (15)N salts and how to quantitate the resulting proteomes using a convenient workflow that does not require extensive bioinformatics skills.

  16. Escherichia coli cell-free protein synthesis and isotope labeling of mammalian proteins.

    PubMed

    Terada, Takaho; Yokoyama, Shigeyuki

    2015-01-01

    This chapter describes the cell-free protein synthesis method, using an Escherichia coli cell extract. This is a cost-effective method for milligram-scale protein production and is particularly useful for the production of mammalian proteins, protein complexes, and membrane proteins that are difficult to synthesize by recombinant expression methods, using E. coli and eukaryotic cells. By adjusting the conditions of the cell-free method, zinc-binding proteins, disulfide-bonded proteins, ligand-bound proteins, etc., may also be produced. Stable isotope labeling of proteins can be accomplished by the cell-free method, simply by using stable isotope-labeled amino acid(s) in the cell-free reaction. Moreover, the cell-free protein synthesis method facilitates the avoidance of stable isotope scrambling and dilution over the recombinant expression methods and is therefore advantageous for amino acid-selective stable isotope labeling. Site-specific stable isotope labeling is also possible with a tRNA molecule specific to the UAG codon. By the cell-free protein synthesis method, coupled transcription-translation is performed from a plasmid vector or a PCR-amplified DNA fragment encoding the protein. A milligram quantity of protein can be produced with a milliliter-scale reaction solution in the dialysis mode. More than a thousand solution structures have been determined by NMR spectroscopy for uniformly labeled samples of human and mouse functional domain proteins, produced by the cell-free method. Here, we describe the practical aspects of mammalian protein production by the cell-free method for NMR spectroscopy.

  17. Global Potential of Energy Efficiency Standards and Labeling Programs

    SciTech Connect

    McNeil, Michael A; McNeil, Michael A.; Letschert, Virginie; de la Rue du Can, Stephane

    2008-06-15

    This report estimates the global potential reductions in greenhouse gas emissions by 2030 for energy efficiency improvements associated with equipment (appliances, lighting, and HVAC) in buildings by means of energy efficiency standards and labels (EES&L). A consensus has emerged among the world's scientists and many corporate and political leaders regarding the need to address the threat of climate change through emissions mitigation and adaptation. A further consensus has emerged that a central component of these strategies must be focused around energy, which is the primary generator of greenhouse gas emissions. Two important questions result from this consensus: 'what kinds of policies encourage the appropriate transformation to energy efficiency' and 'how much impact can these policies have'? This report aims to contribute to the dialogue surrounding these issues by considering the potential impacts of a single policy type, applied on a global scale. The policy addressed in this report is Energy Efficient Standards and Labeling (EES&L) for energy-consuming equipment, which has now been implemented in over 60 countries. Mandatory energy performance standards are important because they contribute positively to a nation's economy and provide relative certainty about the outcome (both timing and magnitudes). Labels also contribute positively to a nation's economy and importantly increase the awareness of the energy-consuming public. Other policies not analyzed here (utility incentives, tax credits) are complimentary to standards and labels and also contribute in significant ways to reducing greenhouse gas emissions. We believe the analysis reported here to be the first systematic attempt to evaluate the potential of savings from EES&L for all countries and for such a large set of products. The goal of the analysis is to provide an assessment that is sufficiently well-quantified and accurate to allow comparison and integration with other strategies under

  18. Metabolic Flux Elucidation for Large-Scale Models Using 13C Labeled Isotopes

    PubMed Central

    Suthers, Patrick F.; Burgard, Anthony P.; Dasika, Madhukar S.; Nowroozi, Farnaz; Van Dien, Stephen; Keasling, Jay D.; Maranas, Costas D.

    2007-01-01

    A key consideration in metabolic engineering is the determination of fluxes of the metabolites within the cell. This determination provides an unambiguous description of metabolism before and/or after engineering interventions. Here, we present a computational framework that combines a constraint-based modeling framework with isotopic label tracing on a large-scale. When cells are fed a growth substrate with certain carbon positions labeled with 13C, the distribution of this label in the intracellular metabolites can be calculated based on the known biochemistry of the participating pathways. Most labeling studies focus on skeletal representations of central metabolism and ignore many flux routes that could contribute to the observed isotopic labeling patterns. In contrast, our approach investigates the importance of carrying out isotopic labeling studies using a more comprehensive reaction network consisting of 350 fluxes and 184 metabolites in Escherichia coli including global metabolite balances on cofactors such as ATP, NADH, and NADPH. The proposed procedure is demonstrated on an E. coli strain engineered to produce amorphadiene, a precursor to the anti-malarial drug artemisinin. The cells were grown in continuous culture on glucose containing 20% [U-13C]glucose; the measurements are made using GC-MS performed on 13 amino acids extracted from the cells. We identify flux distributions for which the calculated labeling patterns agree well with the measurements alluding to the accuracy of the network reconstruction. Furthermore, we explore the robustness of the flux calculations to variability in the experimental MS measurements, as well as highlight the key experimental measurements necessary for flux determination. Finally, we discuss the effect of reducing the model, as well as shed light onto the customization of the developed computational framework to other systems. PMID:17632026

  19. Application of SAIL phenylalanine and tyrosine with alternative isotope-labeling patterns for protein structure determination.

    PubMed

    Takeda, Mitsuhiro; Ono, Akira M; Terauchi, Tsutomu; Kainosho, Masatsune

    2010-01-01

    The extensive collection of NOE constraint data involving the aromatic ring signals is essential for accurate protein structure determination, although it is often hampered in practice by the pervasive signal overlapping and tight spin couplings for aromatic rings. We have prepared various types of stereo-array isotope labeled phenylalanines (epsilon- and zeta-SAIL Phe) and tyrosine (epsilon-SAIL Tyr) to overcome these problems (Torizawa et al. 2005), and proven that these SAIL amino acids provide dramatic spectral simplification and sensitivity enhancement for the aromatic ring NMR signals. In addition to these SAIL aromatic amino acids, we recently synthesized delta-SAIL Phe and delta-SAIL Tyr, which allow us to observe and assign delta-(13)C/(1)H signals very efficiently. Each of the various types of SAIL Phe and SAIL Tyr yields well-resolved resonances for the delta-, epsilon- or zeta-(13)C/(1)H signals, respectively, which can readily be assigned by simple and robust pulse sequences. Since the delta-, epsilon-, and zeta-proton signals of Phe/Tyr residues give rise to complementary NOE constraints, the concomitant use of various types of SAIL-Phe and SAIL-Tyr would generate more accurate protein structures, as compared to those obtained by using conventional uniformly (13)C, (15)N-double labeled proteins. We illustrated this with the case of an 18.2 kDa protein, Escherichia coli peptidyl-prolyl cis-trans isomerase b (EPPIb), and concluded that the combined use of zeta-SAIL Phe and epsilon-SAIL Tyr would be practically the best choice for protein structural determinations.

  20. REDOR NMR of stable-isotope-labeled protein binding sites

    SciTech Connect

    Schaefer, J.

    1994-12-01

    Rotational-echo, double resonance (REDOR) NMR, a new analytical spectroscopic technique for solids spinning at the magic angle, has been developed over the last 5 years. REDOR provides a direct measure of heteronuclear dipolar coupling between isolated pairs of labeled nuclei. In a solid with a {sup 13}C-{sup 15}N labeled pair, for example, the {sup 13}C rotational echoes that form each rotor period following a{sup 1}H-{sup 13}C cross-polarization transfer can be prevented from reaching full intensity by insertion of a {sup 15}N {pi} pulse each half rotor period. The REDOR difference (the difference between a {sup 13}C NMR spectrum obtained under these conditions and one obtained with no {sup 15}N {pi} pulses) has a strong dependence on the {sup 13}C-{sup 15}N dipolar coupling, and hence, the {sup 13}C-{sup 15}N internuclear distance. REDOR is described as double-resonance even though three radio frequencies (typically {sup 1}H, {sup 13}C, and {sup 15}N) are used because the protons are removed from the important evolution part of the experiment by resonant decoupling. The dephasing of magnetization in REDOR arises from a local dipolar {sup 13}C-{sup 15}N field gradient and involves no polarization transfer. REDOR has no dependence on {sup 13}C or {sup 15}N chemical-shift tensors and does not require resolution of a {sup 13}C-{sup 15}N coupling in the chemical-shift dimension.

  1. Preparation of uniformly isotope labeled KcsA for solid state NMR: Expression, purification, reconstitution into liposomes and functional assay

    PubMed Central

    Bhate, Manasi P.; Wylie, Benjamin J.; Thompson, Ameer; Tian, Lin; Nimigean, Crina; McDermott, Ann E.

    2013-01-01

    We report the expression, purification, liposome reconstitution and functional validation of uniformly 13C and 15N isotope labeled KcsA, a bacterial potassium channel that has high homology with mammalian channels, for solid-state NMR studies. The expression and purification is optimized for an average yield of ~ 35–40 milligrams per liter of M9 media in a time-efficient way. The protein purity is confirmed by gel electrophoresis and the protein concentration is quantified by UV-Vis absorption spectroscopy. Protocols to efficiently reconstitute KcsA into liposomes are also presented. The presence of liposomes is confirmed by cryo-electron microscopy images and the effect of magic angle spinning on liposome packing is shown. High-resolution solid-state NMR spectra of uniformly isotope labeled KcsA in these liposomes reveal that our protocol yields to a very homogenous KcsA sample with high signal to noise and several well-resolved residues in NMR spectra. Electrophysiology of our samples before and after solid-state NMR show that channel function and selectivity remain intact after the solid-state NMR. PMID:23916531

  2. Turnover of Leaf Waxes in Florida Slash Pine: Results of an Isotopic Labeling Experiment

    NASA Astrophysics Data System (ADS)

    Crumsey, J.; Conte, M. H.; Weber, J. C.; Mortazavi, B.; Smith, M.; Chanton, J.

    2006-12-01

    Isotopic discrimination of terrestrial photosynthesis, atmospheric CO2 concentration, and δ13CO2 are important parameters in global carbon models that are employed to estimate global carbon sources and sinks. Yet, terrestrial isotopic discrimination can be highly variable over space and time, yielding large uncertainties of terrestrial fluxes. The isotopic composition of plant wax aerosols in continental air masses can be used as an indirect measure of the spatial and temporal patterns of photosynthetic discrimination integrated over large (subcontinental) spatial scales. However, the temporal offset between wax biosynthesis and the wax aerosol isotopic signal of photosynthetic discrimination is not well constrained. To further our understanding of this temporal lag, this study sought to determine the turnover time of conifer leaf waxes by performing an isotopic labeling experiment. Four clonal pine saplings were placed in a tent and labeled with enriched 13CO2 for one year, while another four control saplings were grown under ambient CO2. At the end of the year long enrichment, the labeled saplings were removed from the tent and placed in ambient air, such that the wax turnover rate could be determined by analyzing the resultant isotopic and molecular changes. The results of this experiment indicated that after 80 days of sequestering ambient CO2, the wax (and soluble sugar) isotopic composition of the labeled saplings varied minimally. The molecular composition of the waxes, however, did change over time. From these results we concluded that waxes are turning over, but rather than being synthesized de novo from recently fixed carbon precursors they are synthesized using carbon from stored (labeled) carbon pools. Therefore, the δ13C of conifer leaf waxes in aerosols may not reflect recent photosynthetic discrimination, but instead represents photosynthetic discrimination integrated over a longer period of time. The implications of these findings are focused on

  3. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives

    PubMed Central

    Lahoz-Beneytez, Julio; Elemans, Marjet; Zhang, Yan; Ahmed, Raya; Salam, Arafa; Block, Michael; Niederalt, Christoph; Macallan, Derek

    2016-01-01

    Human neutrophils have traditionally been thought to have a short half-life in blood; estimates vary from 4 to 18 hours. This dogma was recently challenged by stable isotope labeling studies with heavy water, which yielded estimates in excess of 3 days. To investigate this disparity, we generated new stable isotope labeling data in healthy adult subjects using both heavy water (n = 4) and deuterium-labeled glucose (n = 9), a compound with more rapid labeling kinetics. To interpret results, we developed a novel mechanistic model and applied it to previously published (n = 5) and newly generated data. We initially constrained the ratio of the blood neutrophil pool to the marrow precursor pool (ratio = 0.26; from published values). Analysis of heavy water data sets yielded turnover rates consistent with a short blood half-life, but parameters, particularly marrow transit time, were poorly defined. Analysis of glucose-labeling data yielded more precise estimates of half-life (0.79 ± 0.25 days; 19 hours) and marrow transit time (5.80 ± 0.42 days). Substitution of this marrow transit time in the heavy water analysis gave a better-defined blood half-life of 0.77 ± 0.14 days (18.5 hours), close to glucose-derived values. Allowing the ratio of blood neutrophils to mitotic neutrophil precursors (R) to vary yielded a best-fit value of 0.19. Reanalysis of the previously published model and data also revealed the origin of their long estimates for neutrophil half-life: an implicit assumption that R is very large, which is physiologically untenable. We conclude that stable isotope labeling in healthy humans is consistent with a blood neutrophil half-life of less than 1 day. PMID:27136946

  4. Discovery and validation of colonic tumor-associated proteins via metabolic labeling and stable isotopic dilution

    PubMed Central

    Huttlin, Edward L.; Chen, Xiaodi; Barrett-Wilt, Gregory A.; Hegeman, Adrian D.; Halberg, Richard B.; Harms, Amy C.; Newton, Michael A.; Dove, William F.; Sussman, Michael R.

    2009-01-01

    The unique biology of a neoplasm is reflected by its distinct molecular profile compared with normal tissue. To understand tumor development better, we have undertaken a quantitative proteomic search for abnormally expressed proteins in colonic tumors from ApcMin/+ (Min) mice. By raising pairs of Min and wild-type mice on diets derived from natural-abundance or 15N-labeled algae, we used metabolic labeling to compare protein levels in colonic tumor versus normal tissue. Because metabolic labeling allows internal control throughout sample preparation and analysis, technical error is minimized as compared with in vitro labeling. Several proteins displayed altered expression, and a subset was validated via stable isotopic dilution using synthetic peptide standards. We also compared gene and protein expression among tumor and nontumor tissue, revealing limited correlation. This divergence was especially pronounced for species showing biological change, highlighting the complementary perspectives provided by transcriptomics and proteomics. Our work demonstrates the power of metabolic labeling combined with stable isotopic dilution as an integrated strategy for the identification and validation of differentially expressed proteins using rodent models of human disease. PMID:19805096

  5. Secondary isotope effects in liquid chromatography behaviour of 2H and 3H labelled solutes and solvents.

    PubMed

    Valleix, Alain; Carrat, Sandrine; Caussignac, Céline; Léonce, Estelle; Tchapla, Alain

    2006-05-26

    water in mobile phases of the same composition (%, w/w) is compared. Independent of the nature of the organic modifier (methanol, acetonitrile or ethanol), the effect of replacing H2O with 2H2O in the mobile phase, is an increase in the retention factors and an improvement in the chromatographic resolution of isotopologue pairs. This increase in the resolution is not accompanied by a change in the chromatographic selectivity. The measurement of liquid-liquid extraction coefficients proves that the effect is mainly due to the modification of the phase ratio. In general the effect of 2H-labelled solvents (2H2O and C2H3CN) as mobile phase components, compared to their isotopically non-modified isomers, can be rationalized on the basis of their lower polarisabilities. Overall the use of perdeuterated rather than isotopically non-modified solvents as mobile phase components leads to the most efficient separation systems.

  6. An efficient on-column expressed protein ligation strategy: Application to segmental triple labeling of human apolipoprotein E3

    PubMed Central

    Zhao, Wentao; Zhang, Yonghong; Cui, Chunxian; Li, Qianqian; Wang, Jianjun

    2008-01-01

    Expressed protein ligation (EPL) is an intein-based approach that has been used for protein engineering and biophysical studies of protein structures. One major problem of the EPL is the low yield of final ligation product, primarily due to the complex procedure of the EPL, preventing EPL from gaining popularity in the research community. Here we report an efficient on-column EPL strategy, which focuses on enhancing the expression level of the intein-fusion protein that generates thioester for the EPL. We applied this EPL strategy to human apolipoprotein E (apoE) and routinely obtained 25–30 mg segmental, triple-labeled apoE from 1-L cell culture. The approaches reported here are general approaches that are not specific for apoE, thus providing a general strategy for a highly efficient EPL. In addition, we also report an isotopic labeling scheme that double-labels one domain and keeps the other domain of apoE deuterated. Such an isotopic labeling scheme can only be achieved using the EPL strategy. Our data indicated that the segmental triple-labeled apoEs using this labeling scheme produced high-quality, simplified NMR spectra, facilitating NMR spectral assignment. For large proteins, such as apoE, perdeuterated protein samples have to be used to reduce the linewidth of NMR signals, causing a major problem for the NOE-based NMR method, since perdeuterated proteins lack protons for NOE measurement. The new labeling strategy solves this problem and provides 13C/15N double-labeled, protonated protein domains, allowing for determination of high-resolution NMR structure of these large proteins. PMID:18305193

  7. Analysis of mitochondrial metabolism in situ: Combining stable isotope labeling with selective permeabilization.

    PubMed

    Nonnenmacher, Yannic; Palorini, Roberta; d'Herouël, Aymeric Fouquier; Krämer, Lisa; Neumann-Schaal, Meina; Chiaradonna, Ferdinando; Skupin, Alexander; Wegner, Andre; Hiller, Karsten

    2016-12-15

    To date, it is well-established that mitochondrial dysfunction does not only play a vital role in cancer but also in other pathological conditions such as neurodegenerative diseases and inflammation. An important tool for the analysis of cellular metabolism is the application of stable isotope labeled substrates, which allow for the tracing of atoms throughout metabolic networks. While such analyses yield very detailed information about intracellular fluxes, the determination of compartment specific fluxes is far more challenging. Most approaches for the deconvolution of compartmented metabolism use computational models whereas experimental methods are rare. Here, we developed an experimental setup based on selective permeabilization of the cytosolic membrane that allows for the administration of stable isotope labeled substrates directly to mitochondria. We demonstrate how this approach can be used to infer metabolic changes in mitochondria induced by either chemical or genetic perturbations and give an outlook on its potential applications.

  8. Review of metabolic pathways activated in cancer cells as determined through isotopic labeling and network analysis.

    PubMed

    Dong, Wentao; Keibler, Mark A; Stephanopoulos, Gregory

    2017-02-10

    Cancer metabolism has emerged as an indispensable part of contemporary cancer research. During the past 10 years, the use of stable isotopic tracers and network analysis have unveiled a number of metabolic pathways activated in cancer cells. Here, we review such pathways along with the particular tracers and labeling observations that led to the discovery of their rewiring in cancer cells. The list of such pathways comprises the reductive metabolism of glutamine, altered glycolysis, serine and glycine metabolism, mutant isocitrate dehydrogenase (IDH) induced reprogramming and the onset of acetate metabolism. Additionally, we demonstrate the critical role of isotopic labeling and network analysis in identifying these pathways. The alterations described in this review do not constitute a complete list, and future research using these powerful tools is likely to discover other cancer-related pathways and new metabolic targets for cancer therapy.

  9. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase.

    PubMed

    Luk, Louis Y P; Ruiz-Pernía, J Javier; Adesina, Aduragbemi S; Loveridge, E Joel; Tuñón, Iñaki; Moliner, Vincent; Allemann, Rudolf K

    2015-07-27

    Chemical ligation has been used to alter motions in specific regions of dihydrofolate reductase from E. coli and to investigate the effects of localized motional changes on enzyme catalysis. Two isotopic hybrids were prepared; one with the mobile N-terminal segment containing heavy isotopes ((2) H, (13) C, (15) N) and the remainder of the protein with natural isotopic abundance, and the other one with only the C-terminal segment isotopically labeled. Kinetic investigations indicated that isotopic substitution of the N-terminal segment affected only a physical step of catalysis, whereas the enzyme chemistry was affected by protein motions from the C-terminal segment. QM/MM studies support the idea that dynamic effects on catalysis mostly originate from the C-terminal segment. The use of isotope hybrids provides insights into the microscopic mechanism of dynamic coupling, which is difficult to obtain with other studies, and helps define the dynamic networks of intramolecular interactions central to enzyme catalysis.

  10. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase†

    PubMed Central

    Luk, Louis Y. P.; Ruiz‐Pernía, J. Javier; Adesina, Aduragbemi S.; Loveridge, E. Joel

    2015-01-01

    Abstract Chemical ligation has been used to alter motions in specific regions of dihydrofolate reductase from E. coli and to investigate the effects of localized motional changes on enzyme catalysis. Two isotopic hybrids were prepared; one with the mobile N‐terminal segment containing heavy isotopes (2H, 13C, 15N) and the remainder of the protein with natural isotopic abundance, and the other one with only the C‐terminal segment isotopically labeled. Kinetic investigations indicated that isotopic substitution of the N‐terminal segment affected only a physical step of catalysis, whereas the enzyme chemistry was affected by protein motions from the C‐terminal segment. QM/MM studies support the idea that dynamic effects on catalysis mostly originate from the C‐terminal segment. The use of isotope hybrids provides insights into the microscopic mechanism of dynamic coupling, which is difficult to obtain with other studies, and helps define the dynamic networks of intramolecular interactions central to enzyme catalysis. PMID:26079622

  11. An efficient run-based connected-component labeling algorithm for three-dimensional binary images

    NASA Astrophysics Data System (ADS)

    He, Lifeng; Chao, Yuyan; Suzuki, Kenji; Tang, Wei; Shi, Zhenghao; Nakamura, Tsuyoshi

    2010-08-01

    This paper presents an run-based efficient label-equivalence-based connected-component labeling algorithms for threedimensional binary images. Our algorithm is run-based. Instead of assigning each foreground voxel, we assign each run a provisional label. Moreover, we also use run data to label foreground voxels without scanning any background voxel in the second scan. Experimental results have demonstrated that our algorithm is much more efficient than conventional three-dimensional labeling algorithms.

  12. Use of isotope-labeled aflatoxins for LC-MS/MS stable isotope dilution analysis of foods.

    PubMed

    Cervino, Christian; Asam, Stefan; Knopp, Dietmar; Rychlik, Michael; Niessner, Reinhard

    2008-03-26

    Aflatoxins are a group of very carcinogenic mycotoxins that can be found on a wide range of food commodities including nuts, cereals, and spices. In this study, the first LC-MS/MS stable isotope dilution assay (SIDA) for the determination of aflatoxins in foods was developed. The development of this method was enabled by easily accessible isotope-labeled (deuterated) aflatoxins B2 and G2, which were synthesized by catalytic deuteration of aflatoxin B1 and G1, purified, and well-characterized by NMR and MS. All four aflatoxins of interest (B1, B2, G1, and G2) were quantified in food samples by using these two labeled internal standards. The response factors (RF) of the linear calibrations were revealed to be matrix independent for labeled aflatoxin B2/aflatoxin B2 and labeled aflatoxin G2/aflatoxin G2. For labeled aflatoxin B 2/aflatoxin B 1 and labeled aflatoxin B2/aflatoxin G1 matrix-matched calibration was performed for the model matrices almonds and wheat flour, showing significant differences of the RFs. Limits of detection (LOD) were determined by applying a statistical approach in the presence of the two model matrices, yielding 0.31 microg/kg (aflatoxin B1), 0.09 microg/kg (aflatoxin B2), 0.38 microg/kg (aflatoxin G1), and 0.32 microg/kg (aflatoxin G2) for almonds (similar LODs were obtained for wheat flour). Recovery rates were between 90 and 105% for all analytes. Coefficients of variation (CV) of 12% (aflatoxin B1), 3.6% (aflatoxin B2), 14% (aflatoxin G1), and 4.8% (aflatoxin G2) were obtained from interassay studies. For further validation, a NIST standard reference food sample was analyzed for aflatoxins B1 and B2. The method was successfully applied to determine trace levels of aflatoxins in diverse food matrices such as peanuts, nuts, grains, and spices. Aflatoxin contents in these samples ranged from about 0.5 to 6 microg/kg.

  13. METHOD TO TEST ISOTOPIC SEPARATION EFFICIENCY OF PALLADIUM PACKED COLUMNS

    SciTech Connect

    Heung, L; Gregory Staack, G; James Klein, J; William Jacobs, W

    2007-06-27

    The isotopic effect of palladium has been applied in different ways to separate hydrogen isotopes for many years. At Savannah River Site palladium deposited on kieselguhr (Pd/k) is used in a thermal cycling absorption process (TCAP) to purify tritium for over ten years. The need to design columns for different throughputs and the desire to advance the performance of TCAP created the need to evaluate different column designs and packing materials for their separation efficiency. In this work, columns with variations in length, diameter and metal foam use, were tested using an isotope displacement method. A simple computer model was also developed to calculate the number of theoretical separation stages using the test results. The effects of column diameter, metal foam and gas flow rate were identified.

  14. UNiquant, a Program for Quantitative Proteomics Analysis Using Stable Isotope Labeling

    PubMed Central

    Huang, Xin; Tolmachev, Aleksey V.; Shen, Yulei; Liu, Miao; Huang, Lin; Zhang, Zhixin; Anderson, Gordon A.; Smith, Richard D.; Chan, Wing C.; Hinrichs, Steven H.; Fu, Kai; Ding, Shi-Jian

    2011-01-01

    Stable isotope labeling (SIL) methods coupled with nanoscale liquid chromatography and high resolution tandem mass spectrometry are increasingly useful for elucidation of the proteome-wide differences between multiple biological samples. Development of more effective programs for the sensitive identification of peptide pairs and accurate measurement of the relative peptide/protein abundance are essential for quantitative proteomic analysis. We developed and evaluated the performance of a new program, termed UNiquant, for analyzing quantitative proteomics data using stable isotope labeling. UNiquant was compared with two other programs, MaxQuant and Mascot Distiller, using SILAC-labeled complex proteome mixtures having either known or unknown heavy/light ratios. For the SILAC-labeled Jeko-1 cell proteome digests with known heavy/light ratios (H/L = 1:1, 1:5, and 1:10), UNiquant quantified a similar number of peptide pairs as MaxQuant for the H/L = 1:1 and 1:5 mixtures. In addition, UNiquant quantified significantly more peptides than MaxQuant and Mascot Distiller in the H/L = 1:10 mixtures. UNiquant accurately measured relative peptide/protein abundance without the need for post-measurement normalization of peptide ratios, which is required by the other programs. PMID:21158445

  15. Evaluation of stereo-array isotope labeling (SAIL) patterns for automated structural analysis of proteins with CYANA.

    PubMed

    Ikeya, Teppei; Terauchi, Tsutomu; Güntert, Peter; Kainosho, Masatsune

    2006-07-01

    Recently we have developed the stereo-array isotope labeling (SAIL) technique to overcome the conventional molecular size limitation in NMR protein structure determination by employing complete stereo- and regiospecific patterns of stable isotopes. SAIL sharpens signals and simplifies spectra without the loss of requisite structural information, thus making large classes of proteins newly accessible to detailed solution structure determination. The automated structure calculation program CYANA can efficiently analyze SAIL-NOESY spectra and calculate structures without manual analysis. Nevertheless, the original SAIL method might not be capable of determining the structures of proteins larger than 50 kDa or membrane proteins, for which the spectra are characterized by many broadened and overlapped peaks. Here we have carried out simulations of new SAIL patterns optimized for minimal relaxation and overlap, to evaluate the combined use of SAIL and CYANA for solving the structures of larger proteins and membrane proteins. The modified approach reduces the number of peaks to nearly half of that observed with uniform labeling, while still yielding well-defined structures and is expected to enable NMR structure determinations of these challenging systems.

  16. Determining metal assimilation efficiency in aquatic invertebrates using enriched stable metal isotope tracers

    USGS Publications Warehouse

    Croteau, M.-N.; Luoma, S.N.; Pellet, B.

    2007-01-01

    We employ a novel approach that combines pulse-chase feeding and multi-labelled stable isotopes to determine gut passage time (GPT), gut retention time (GRT), food ingestion rate (IR) and assimilation efficiency (AE) of three trace elements for a freshwater gastropod. Lettuce isotopically enriched in 53Cr, 65Cu and 106Cd was fed for 2 h to Lymnaea stagnalis. The release of tracers in feces and water was monitored for 48 h, during which unlabelled lettuce was provided ad libidum. The first defecation of 53Cr occurred after 5 h of depuration (GPT), whereas 90% of the ingested 53Cr was recovered in the feces after 22.5 h of depuration (GRT). 53Chromium was not significantly accumulated in the soft tissues upon exposure. In contrast, 65Cu and 106Cd assimilation was detectable for most experimental snails, i.e., 65/63Cu and 106/114Cd ratios in exposed snails were higher than those for controls. Food IR during the labelled feeding phase was 0.16 ?? 0.07 g g-1 d-1. IR was inferred from the amount of 53Cr egested in the feces during depuration and the concentration of 53Cr in the labelled lettuce. Assimilation efficiencies (??95% CI) determined using mass balance calculations were 84 ?? 4% for Cu and 85 ?? 3% for Cd. The ratio method yields similar AE estimates. Expanding the application of this novel stable isotope tracer technique to other metals in a wide variety of species will provide unique opportunities to evaluate the interplay between digestive processes and dietary influx of metals. Understanding the biological processes that modulate dietborne metal uptake is crucial to assess the toxicity of dietborne metals. ?? 2007 Elsevier B.V. All rights reserved.

  17. Molecular and mass spectroscopic analysis of isotopically labeled organic residues

    NASA Technical Reports Server (NTRS)

    Mendoza-Gomez, Celia X.; Greenberg, J. Mayo; Mccain, P.; Ferris, J. P.; Briggs, R.; Degroot, M. S.; Schutte, Willem A.

    1989-01-01

    Experimental studies aimed at understanding the evolution of complex organic molecules on interstellar grains were performed. The photolysis of frozen gas mixtures of various compositions containing H2O, CO, NH3, and CH4 was studied. These species were chosen because of their astrophysical importance as deducted from observational as well as theoretical studies of ice mantles on interstellar grains. These ultraviolet photolyzed ices were warmed up in order to produce refractory organic molecules like the ones formed in molecular clouds when the icy mantles are being irradiated and warmed up either by a nearby stellar source or impulsive heating. The laboratory studies give estimates of the efficiency of production of such organic material under interstellar conditions. It is shown that the gradual carbonization of organic mantles in the diffuse cloud phase leads to higher and higher visual absorptivity - yellow residues become brown in the laboratory. The obtained results can be applied to explaining the organic components of comets and their relevance to the origin of life.

  18. [Ligands of glutamate and dopamine receptors evenly labeled with hydrogen isotopes].

    PubMed

    Zolotarev, Iu A; Firstova, Iu Iu; Abaimov, D A; Dadaian, A K; Kosik, V S; Novikov, A V; Krasnov, N V; Vas'kovskiĭ, B V; Nazimov, I V; Kovalev, G I; Miasoedov, N F

    2009-01-01

    A reaction of high-temperature solid-phase catalytic isotope exchange (HSCIE) was studied for the preparation of tritium- and deuterium-labeled ligands of glutamate and dopamine receptors. Tritium-labeled (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclopenten-5,10-imine ([G-(3)H]MK-801) and R(+)-7-hydroxy-N,N-di-n-propyl-2-aminotetraline ([G-(3)H]-7-OH-DPAT) were obtained with a specific activity of 210 and 120 Ci/mol, respectively. The isotopomeric distribution of deuterium-labeled ligands was studied using time-of-flight mass-spectrometer MX 5310 (ESI-o-TOF) with electrospray and orthogonal ion injection. Mean deuterium incorporation per ligand molecule was 11.09 and 3.21 atoms for [G-(2)H]MK-801 and [G-(2)H]-7-OH-DPAT, respectively. The isotope label was shown to be distributed all over the ligand molecule. The radioreceptor binding of tritium-labeled ligands [G-(3)H]MK-801 and [G-(3)H]-7-OH-DPAT was analyzed using the brain structure of Vistar rats. It was demonstrated that [G-(3)H]MK-801 specifically binds to hippocampus membranes with K(d) 8.3 +/- 1.4 nM, B(max) being 3345 +/- 300 fmol/mg protein. The [G-(3)H]-7-OH-DPAT ligand specifically binds to rat striatum membranes with K(d) 10.01 +/- 0.91 nM and B(max) 125 +/- 4.5 fmol/mg protein. It was concluded that the HSCIE reaction can be used for the preparation of highly tritium-labeled (+)-MK-801 and 7-OH-DPAT with retention of their physiological activities.

  19. Isotope-Labeled Amyloids via Synthesis, Expression, and Chemical Ligation for Use in FTIR, 2D IR, and NMR Studies.

    PubMed

    Zhang, Tianqi O; Grechko, Maksim; Moran, Sean D; Zanni, Martin T

    2016-01-01

    This chapter provides protocols for isotope-labeling the human islet amyloid polypeptide (hIAPP or amylin) involved in type II diabetes and γD-crystallin involved in cataract formation. Because isotope labeling improves the structural resolution, these protocols are useful for experiments using Fourier transform infrared (FTIR), two-dimensional infrared (2D IR), and NMR spectroscopies. Our research group specializes in using 2D IR spectroscopy and isotope labeling. 2D IR spectroscopy provides structural information by measuring solvation from 2D diagonal lineshapes and vibrational couplings from cross peaks. Infrared spectroscopy can be used to study kinetics, membrane proteins, and aggregated proteins. Isotope labeling provides greater certainty in the spectral assignment, which enables new structural insights that are difficult to obtain with other methods. For amylin, we provide a protocol for (13)C/(18)O labeling backbone carbonyls at one or more desired amino acids in order to obtain residue-specific structural resolution. We also provide a protocol for expressing and purifying amylin from E. coli, which enables uniform (13)C or (13)C/(15)N labeling. Uniform labeling is useful for measuring the monomer infrared spectrum in an amyloid oligomer or fiber as well as amyloid protein bound to another polypeptide or protein, such as a chaperone or an inhibitor. In addition, our expression protocol results in 2-2.5 mg of amylin peptide per 1 L cell culture, which is a high enough yield to straightforwardly obtain the 2-10 mg needed for high resolution and solid-state NMR experiments. Finally, we provide a protocol to isotope-label either of the two domains of γD-crystallin using expressed protein ligation. Domain labeling makes it possible to resolve the structures of the two halves of the protein in FTIR and 2D IR spectra. With modifications, these strategies and protocols for isotope labeling can be applied to other amyloid polypeptides and proteins.

  20. Discrete tomography by Bayesian labeling with its efficient algorithm

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan; Dewey, C. Forbes

    2000-10-01

    In inverse reconstruction, there are often cases where the volume or image to be reconstructed takes only a finite number of possible values. By explicitly modeling such information, discrete tomography aims to achieve better reconstruction quality and accuracy for these cases. The paper attempts to develop a framework for a general discrete tomography problem. The approach starts with an explicit model of the discreteness using a Bayesian formula. Class label variables are defined to denote the probabilities of each object point belonging to one particular class. The reconstruction then becomes the problem of assigning labels to each object point in the volume (3D) or image (2D) to be reconstructed. Unsurprisingly, this Bayesian labeling process resembles a segmentation process whose goal is also to estimate a discrete-valued field from continuous-valued observations. An expectation-maximization (EM) algorithm is developed to estimate the class label variables. By introducing another set of variables, the EM algorithm iteratively alternates the estimations of these two sets of variables. A linear equation is finally derived, composed of two terms. One accounts for the effect of the discreteness, and the other represents the integral property of the projection in tomography. This linear equation reveals a very interesting relationship between the discrete tomography and ordinary tomography, suggesting that the ordinary tomography may be treated as a special case of discrete tomography where the discreteness term is neglected. Solving the linear equation is usually very computational. This paper, however, derives an efficient algorithm by using concepts developed previously in the rho-filtered layergram method for conventional tomography. With the proposed high-pass filter, the solution for the linear equation can be computed very efficiently in the Fourier domain. In case the class values are unknown in advance, another level of EM algorithm is invoked to estimate

  1. Recombinant isotope labeled and selenium quantified proteins for absolute protein quantification.

    PubMed

    Zinn, Nico; Winter, Dominic; Lehmann, Wolf D

    2010-03-15

    A novel, widely applicable method for the production of absolutely quantified proteins is described, which can be used as internal standards for quantitative proteomic studies based on mass spectrometry. These standards are recombinant proteins containing an isotope label and selenomethionine. For recombinant protein expression, assembly of expression vectors fitted to cell-free protein synthesis was conducted using the gateway technology which offers fast access to a variety of genes via open reading frame libraries and an easy shuttling of genes between vectors. The proteins are generated by cell-free expression in a medium in which methionine is exchanged against selenomethionine and at least one amino acid is exchanged by a highly stable isotope labeled analogue. After protein synthesis and purification, selenium is used for absolute quantification by element mass spectrometry, while the heavy amino acids in the protein serve as reference in subsequent analyses by LC-ESI-MS or MALDI-MS. Accordingly, these standards are denominated RISQ (for recombinant isotope labeled and selenium quantified) proteins. In this study, a protein was generated containing Lys+6 ([(13)C(6)]-lysine) and Arg+10 ([(13)C(6),(15)N(4)]-arginine) so that each standard tryptic peptide contains a labeled amino acid. Apolipoprotein A1 was synthesized as RISQ protein, and its use as internal standard led to quantification of a reference material within the specified value. Owing to their cell-free expression, RISQ proteins do not contain posttranslational modifications. Thus, correct quantitative data by ESI- or MALDI-MS are restricted to quantifications based on peptides derived from unmodified regions of the analyte protein. Therefore, besides serving as internal standards, RISQ proteins stand out as new tools for quantitative analysis of covalent protein modifications.

  2. Applications and Advantages of Stable Isotope Phosphate Labeling of RNA in Mass Spectrometry.

    PubMed

    Borland, Kayla; Limbach, Patrick A

    2017-04-01

    Mass spectrometry (MS) has become an enabling technology for the characterization of post-transcriptionally modified nucleosides within ribonucleic acids (RNAs). These modified RNAs tend to be more challenging to completely characterize using conventional genomic-based sequencing technologies. As with many biological molecules, information relating to the presence or absence of a particular compound (i.e., qualitative measurement) is only one step in sample characterization. Additional useful information is found by performing quantitative measurements on the levels of the compound of interest in the sample. Phosphate labeling of modified RNAs has been developed by our laboratory to enhance conventional mass spectrometry techniques. By taking advantage of the mechanism of action of many ribonucleases (RNases), digesting RNA samples in the presence of (18)O-labeled water generates an (18)O-labeled 3'-phosphate in each digestion product. We describe the historical development of this approach, contrast this stable isotope labeling strategy with others used in RNA mass spectrometry, and provide examples of new analytical mass spectrometry methods that are enabled by phosphate labeling in this fashion.

  3. Tracing bioavailability of ZnO nanoparticles using stable isotope labeling.

    PubMed

    Larner, Fiona; Dogra, Yuktee; Dybowska, Agnieszka; Fabrega, Julia; Stolpe, Björn; Bridgestock, Luke J; Goodhead, Rhys; Weiss, Dominik J; Moger, Julian; Lead, Jamie R; Valsami-Jones, Eugenia; Tyler, Charles R; Galloway, Tamara S; Rehkämper, Mark

    2012-11-06

    Zinc oxide nanoparticles (ZnO NPs) are widely used in commercial products and knowledge of their environmental fate is a priority for ecological protection. Here we synthesized model ZnO NPs that were made from and thus labeled with the stable isotope (68)Zn and this enables highly sensitive and selective detection of labeled components against high natural Zn background levels. We combine high precision stable isotope measurements and novel bioimaging techniques to characterize parallel water-borne exposures of the common mudshrimp Corophium volutator to (68)ZnO NPs, bulk (68)ZnO, and soluble (68)ZnCl(2) in the presence of sediment. C. volutator is an important component of coastal ecosystems where river-borne NPs will accumulate and is used on a routine basis for toxicity assessments. Our results demonstrate that ionic Zn from ZnO NPs is bioavailable to C. volutator and that Zn uptake is active. Bioavailability appears to be governed primarily by the dissolved Zn content of the water, whereby Zn uptake occurs via the aqueous phase and/or the ingestion of sediment particles with adsorbed Zn from dissolution of ZnO particles. The high sorption capacity of sediments for Zn thus enhances the potential for trophic transfer of Zn derived from readily soluble ZnO NPs. The uncertainties of our isotopic data are too large, however, to conclusively rule out any additional direct uptake route of ZnO NPs by C. volutator.

  4. Chemical imaging of biological materials by NanoSIMS using isotopic and elemental labels

    SciTech Connect

    Weber, P K; Fallon, S J; Pett-Ridge, J; Ghosal, S; Hutcheon, I D

    2006-04-10

    The NanoSIMS 50 combines unprecedented spatial resolution (as good as 50 nm) with ultra-high sensitivity (minimum detection limit of {approx}200 atoms). The NanoSIMS 50 incorporates an array of detectors, enabling simultaneous collection of 5 species originating from the same sputtered volume of a sample. The primary ion beam (Cs{sup +} or O{sup -}) can be scanned across the sample to produce quantitative secondary ion images. This capability for multiple isotope imaging with high spatial resolution provides a novel new approach to the study of biological materials. Studies can be made of sub-regions of tissues, mammalian cells, and bacteria. Major, minor and trace element distributions can be mapped on a submicron scale, growth and metabolism can be tracked using stable isotope labels, and biogenic origin can be determined based on composition. We have applied this technique extensively to mammalian and prokaryotic cells and bacterial spores. The NanoSIMS technology enables the researcher to interrogate the fate of molecules of interest within cells and organs through elemental and isotopic labeling. Biological applications at LLNL will be discussed.

  5. Stable Isotope Labeling Strategy for Curcumin Metabolite Study in Human Liver Microsomes by Liquid Chromatography-Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gao, Dan; Chen, Xiaowu; Yang, Xiaomei; Wu, Qin; Jin, Feng; Wen, Hongliang; Jiang, Yuyang; Liu, Hongxia

    2015-04-01

    The identification of drug metabolites is very important in drug development. Nowadays, the most widely used methods are isotopes and mass spectrometry. However, the commercial isotopic labeled reagents are usually very expensive, and the rapid and convenient identification of metabolites is still difficult. In this paper, an 18O isotope labeling strategy was developed and the isotopes were used as a tool to identify drug metabolites using mass spectrometry. Curcumin was selected as a model drug to evaluate the established method, and the 18O labeled curcumin was successfully synthesized. The non-labeled and 18O labeled curcumin were simultaneously metabolized in human liver microsomes (HLMs) and analyzed by liquid chromatography/mass spectrometry (LC-MS). The two groups of chromatograms obtained from metabolic reaction mixture with and without cofactors were compared and analyzed using Metabolynx software (Waters Corp., Milford, MA, USA). The mass spectra of the newly appearing chromatographic peaks in the experimental sample were further analyzed to find the metabolite candidates. Their chemical structures were confirmed by tandem mass spectrometry. Three metabolites, including two reduction products and a glucuronide conjugate, were successfully detected under their specific HLMs metabolic conditions, which were in accordance with the literature reported results. The results demonstrated that the developed isotope labeling method, together with post-acquisition data processing using Metabolynx software, could be used for fast identification of new drug metabolites.

  6. Stable isotope labeling strategy for curcumin metabolite study in human liver microsomes by liquid chromatography-tandem mass spectrometry.

    PubMed

    Gao, Dan; Chen, Xiaowu; Yang, Xiaomei; Wu, Qin; Jin, Feng; Wen, Hongliang; Jiang, Yuyang; Liu, Hongxia

    2015-04-01

    The identification of drug metabolites is very important in drug development. Nowadays, the most widely used methods are isotopes and mass spectrometry. However, the commercial isotopic labeled reagents are usually very expensive, and the rapid and convenient identification of metabolites is still difficult. In this paper, an (18)O isotope labeling strategy was developed and the isotopes were used as a tool to identify drug metabolites using mass spectrometry. Curcumin was selected as a model drug to evaluate the established method, and the (18)O labeled curcumin was successfully synthesized. The non-labeled and (18)O labeled curcumin were simultaneously metabolized in human liver microsomes (HLMs) and analyzed by liquid chromatography/mass spectrometry (LC-MS). The two groups of chromatograms obtained from metabolic reaction mixture with and without cofactors were compared and analyzed using Metabolynx software (Waters Corp., Milford, MA, USA). The mass spectra of the newly appearing chromatographic peaks in the experimental sample were further analyzed to find the metabolite candidates. Their chemical structures were confirmed by tandem mass spectrometry. Three metabolites, including two reduction products and a glucuronide conjugate, were successfully detected under their specific HLMs metabolic conditions, which were in accordance with the literature reported results. The results demonstrated that the developed isotope labeling method, together with post-acquisition data processing using Metabolynx software, could be used for fast identification of new drug metabolites.

  7. Safety-catch linker strategies for the production of radiopharmaceuticals labeled with positron-emitting isotopes.

    PubMed

    Maclean, Derek; Zhu, Jiang; Chen, Mingying; Hale, Ron; Satymurthy, Nagichettiar; Barrio, Jorge R

    2003-08-27

    A novel synthetic stratetegy for compounds labeled with the positron-emitting isotope carbon-11 is described. The use of precursors attached to a solid support via safety-catch linkers allows selective release of radiolabeled material, leaving unreacted precursor attached to the support. Two different linkers demonstrate the application to the preparation of radiolabeled N-alkyl tertiary amines and N-alkylsulfonamides. This technique is expected to lead to more widespread use of positron emission tomography for the in vivo analysis of compound behavior.

  8. Addressing Raman features of individual layers in isotopically labeled Bernal stacked bilayer graphene

    NASA Astrophysics Data System (ADS)

    Costa, Sara D.; Weis, Johan Ek; Frank, Otakar; Fridrichová, Michaela; Kalbac, Martin

    2016-06-01

    In this report important Raman modes for the evaluation of strain in graphene (the 2D and 2D‧) are analyzed. The isotope labeling is used to disentangle contribution of individual graphene layers of graphene bilayer to the studied Raman modes. It is shown that for Bernal-stacked bilayers, the 2D and the 2D‧ Raman modes have three distinct components that can be assigned to processes originating solely from the top graphene layer, bottom graphene layer, and from a combination of processes originating both from the top and bottom layers. The reported results thus enable addressing the properties of individual graphene layers in graphene bilayer by Raman spectroscopy.

  9. Designer labels for plant metabolism: statistical design of isotope labeling experiments for improved quantification of flux in complex plant metabolic networks.

    PubMed

    Nargund, Shilpa; Sriram, Ganesh

    2013-01-27

    Metabolic fluxes are powerful indicators of cell physiology and can be estimated by isotope-assisted metabolic flux analysis (MFA). The complexity of the compartmented metabolic networks of plants has constrained the application of isotope-assisted MFA to them, principally because of poor identifiability of fluxes from the measured isotope labeling patterns. However, flux identifiability can be significantly improved by a priori design of isotope labeling experiments (ILEs). This computational design involves evaluating the effect of different isotope label and isotopomer measurement combinations on flux identifiability, and thereby identifying optimal labels and measurements toward evaluating the fluxes of interest with the highest confidence. This article reports ILE designs for two major, compartmented plant metabolic pathways - the pentose phosphate pathway (PPP) and γ-aminobutyric acid (GABA) shunt. Together, these pathways represent common motifs in plant metabolism including duplication of pathways in different subcellular compartments, reversible reactions and cyclic carbon flow. To compare various ILE designs, we employed statistical A- and D-optimality criteria. Our computations showed that 1,2-(13)C Glc is a powerful and robust label for the plant PPPs, given currently popular isotopomer measurement techniques (single quadrupole mass spectrometry [MS] and 2-D nuclear magnetic resonance [NMR]). Further analysis revealed that this label can estimate several PPP fluxes better than the popular label 1-(13)C Glc. Furthermore, the concurrent measurement of the isotopomers of hexose and pentose moieties synthesized exclusively in the cytosol or the plastid compartments (measurable through intracellular glucose or sucrose, starch, RNA ribose and histidine) considerably improves the identifiability of PPP fluxes in the individual compartments. Additionally, MS-derived isotopomer measurements outperform NMR-derived measurements in identifying PPP fluxes. The

  10. Stable Isotope Labeling for Improved Comparative Analysis of RNA Digests by Mass Spectrometry.

    PubMed

    Paulines, Mellie June; Limbach, Patrick A

    2017-03-01

    Even with the advent of high throughput methods to detect modified ribonucleic acids (RNAs), mass spectrometry remains a reliable method to detect, characterize, and place post-transcriptional modifications within an RNA sequence. Here we have developed a stable isotope labeling comparative analysis of RNA digests (SIL-CARD) approach, which improves upon the original (18)O/(16)O labeling CARD method. Like the original, SIL-CARD allows sequence or modification information from a previously uncharacterized in vivo RNA sample to be obtained by direct comparison with a reference RNA, the sequence of which is known. This reference is in vitro transcribed using a (13)C/(15)N isotopically enriched nucleoside triphosphate (NTP). The two RNAs are digested with an endonuclease, the specificity of which matches the labeled NTP used for transcription. As proof of concept, several transfer RNAs (tRNAs) were characterized by SIL-CARD, where labeled guanosine triphosphate was used for the reference in vitro transcription. RNase T1 digestion products from the in vitro transcript will be 15 Da higher in mass than the same digestion products from the in vivo tRNA that are unmodified, leading to a doublet in the mass spectrum. Singlets, rather than doublets, arise if a sequence variation or a post-transcriptional modification is present that results in a relative mass shift different from 15 Da. Moreover, the use of the in vitro synthesized tRNA transcript allows for quantitative measurement of RNA abundance. Overall, SIL-CARD simplifies data analysis and enhances quantitative RNA modification mapping by mass spectrometry. Graphical Abstract ᅟ.

  11. Stable Isotope Labeling for Improved Comparative Analysis of RNA Digests by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Paulines, Mellie June; Limbach, Patrick A.

    2017-03-01

    Even with the advent of high throughput methods to detect modified ribonucleic acids (RNAs), mass spectrometry remains a reliable method to detect, characterize, and place post-transcriptional modifications within an RNA sequence. Here we have developed a stable isotope labeling comparative analysis of RNA digests (SIL-CARD) approach, which improves upon the original 18O/16O labeling CARD method. Like the original, SIL-CARD allows sequence or modification information from a previously uncharacterized in vivo RNA sample to be obtained by direct comparison with a reference RNA, the sequence of which is known. This reference is in vitro transcribed using a 13C/15N isotopically enriched nucleoside triphosphate (NTP). The two RNAs are digested with an endonuclease, the specificity of which matches the labeled NTP used for transcription. As proof of concept, several transfer RNAs (tRNAs) were characterized by SIL-CARD, where labeled guanosine triphosphate was used for the reference in vitro transcription. RNase T1 digestion products from the in vitro transcript will be 15 Da higher in mass than the same digestion products from the in vivo tRNA that are unmodified, leading to a doublet in the mass spectrum. Singlets, rather than doublets, arise if a sequence variation or a post-transcriptional modification is present that results in a relative mass shift different from 15 Da. Moreover, the use of the in vitro synthesized tRNA transcript allows for quantitative measurement of RNA abundance. Overall, SIL-CARD simplifies data analysis and enhances quantitative RNA modification mapping by mass spectrometry.

  12. Stable Isotope Labeling for Improved Comparative Analysis of RNA Digests by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Paulines, Mellie June; Limbach, Patrick A.

    2017-01-01

    Even with the advent of high throughput methods to detect modified ribonucleic acids (RNAs), mass spectrometry remains a reliable method to detect, characterize, and place post-transcriptional modifications within an RNA sequence. Here we have developed a stable isotope labeling comparative analysis of RNA digests (SIL-CARD) approach, which improves upon the original 18O/16O labeling CARD method. Like the original, SIL-CARD allows sequence or modification information from a previously uncharacterized in vivo RNA sample to be obtained by direct comparison with a reference RNA, the sequence of which is known. This reference is in vitro transcribed using a 13C/15N isotopically enriched nucleoside triphosphate (NTP). The two RNAs are digested with an endonuclease, the specificity of which matches the labeled NTP used for transcription. As proof of concept, several transfer RNAs (tRNAs) were characterized by SIL-CARD, where labeled guanosine triphosphate was used for the reference in vitro transcription. RNase T1 digestion products from the in vitro transcript will be 15 Da higher in mass than the same digestion products from the in vivo tRNA that are unmodified, leading to a doublet in the mass spectrum. Singlets, rather than doublets, arise if a sequence variation or a post-transcriptional modification is present that results in a relative mass shift different from 15 Da. Moreover, the use of the in vitro synthesized tRNA transcript allows for quantitative measurement of RNA abundance. Overall, SIL-CARD simplifies data analysis and enhances quantitative RNA modification mapping by mass spectrometry.

  13. Multiplexed Analysis of Cage and Cage Free Chicken Egg Fatty Acids Using Stable Isotope Labeling and Mass Spectrometry

    PubMed Central

    Torde, Richard G.; Therrien, Andrew J.; Shortreed, Michael R.; Smith, Lloyd M.; Lamos, Shane M.

    2014-01-01

    Binary stable isotope labeling couple with LC-ESI-MS has been used as a powerful non-targeted approach for the relative quantification of lipids, amino acids, and many other important metabolite classes. A multiplexed approach using three or more isotopic labeling reagents greatly reduces analytical run-time while maintaining excellent sensitivity and reproducibility. Three isotopic cholamine labeling reagents have been developed to take advantage of the pre-ionized character of cholamine, for ESI, and the ease by which stable isotopes can be incorporated into the cholamine structure. These three cholamine labeling reagents have been used to relatively quantify three fatty acid samples simultaneously. The quantification resulted in the observation of 12 fatty acids that had an average absolute error of 0.9% and an average coefficient of variation of 6.1%. Caged versus cage-free isotope labeling experiments showed that cage-free eggs have an increased level of omega-3 fatty acids as compared to caged eggs. This multiplexed fatty acid analysis provides an inexpensive and expedited tool for broad-based lipid profiling that will further aid discoveries in the mechanisms of fatty acid action in cells. PMID:24317525

  14. Carbon allocation belowground in Pinus pinaster using stable carbon isotope pulse labeling technique

    NASA Astrophysics Data System (ADS)

    Dannoura, M.; Bosc, A.; Chipeaux, C.; Sartore, M.; Lambrot, C.; Trichet, P.; Bakker, M.; Loustau, D.; Epron, D.

    2010-12-01

    Carbon allocation belowground competes with aboveground growth and biomass production. In the other hand, it contributes to resource acquisition such as nutrient, water and carbon sequestration in soil. Thus, a better characterization of carbon flow from plant to soil and its residence time within each compartment is an important issue for understanding and modeling forest ecosystem carbon budget. 13C pulse labeling of whole crown was conducted at 4 seasons to study the fate of assimilated carbon by photosynthesis into the root on 12 year old Pinus pinaster planted in the INRA domain of Pierroton. Maritime pine is the most widely planted species in South-West Europe. Stem, root and soil CO2 effluxes and their isotope composition were measured continuously by tunable diode laser absorption spectroscopy with a trace gas analyzer (TGA 100A; Campbell Scientific) coupled to flow-through chambers. 13CO2 recovery and peak were observed in respiration of each compartment after labeling. It appeared sequentially from top of stem to bottom, and to coarse root. The maximum velocity of carbon transfer was calculated as the difference in time lag of recovery between two positions on the trunk or on the root. It ranged between 0.08-0.2 m h-1 in stem and between 0.04-0.12 m h-1 in coarse root. This velocity was higher in warmer season, and the difference between time lag of recovery and peak increased after first frost. Photosynthates arrived underground 1.5 to 5 days after labeling, at similar time in soil CO2 effluxes and coarse root respiration. 0.08-1.4 g of carbon was respired per tree during first 20 days following labeling. It presented 0.6 -10% of 13C used for labeling and it is strongly related to seasons. The isotope signal was detected in fine root organs and microbial biomass by periodical core sampling. The peak was observed 6 days after labeling in early summer while it was delayed more than 10 days in autumn and winter with less amount of carbon allocated

  15. Determination of protein conformation by isotopically labelled cross-linking and dedicated software

    NASA Astrophysics Data System (ADS)

    Nielsen, Tina; Thaysen-Andersen, Morten; Larsen, Nanna; Jørgensen, Flemming S.; Houen, Gunnar; Højrup, Peter

    2007-12-01

    Chemical cross-linking in conjunction with mass spectrometry (MS) can be used for sensitive and rapid investigation of the three-dimensional structure of proteins at low resolution. However, the resulting data are very complex, and on the bioinformatic side, there still exists an urgent need for improving computer software for (semi-) automated cross-linking data analysis. In this study, we have developed dedicated software for rapid and confident identification and validation of cross-linked species using an isotopic labelled cross-linker approach in combination with MS. Deuterated (+4 Da) and non-deuterated (+0 Da) bis(sulfosuccinimidyl)suberate, BS3, was used as homobifunctional cross-linker to tag the cross-linked regions. Peptides generated from proteolysis were separated using high performance liquid chromatography, and peptide mass fingerprinting was obtained for the individual fractions using matrix-assisted laser-desorption ionisation time-of-flight (MALDI TOF) MS. The resulting peptide mass lists were combined and transferred to the program, ProteinXXX, which generated the theoretical mass values of all combinations of cross-linked peptides and dead-end cross-links and compared this to the obtained mass lists. In addition, screening for 4 Da-separated signals aided the identification of potential cross-linked species. Sequence information of these candidates was then obtained using MALDI TOF TOF. The cross-linked peptides could then be validated based on the match of the fragmentation pattern and the theoretical values produced by ProteinXXX. This semi-automated interpretation provided a high analysis speed of cross-linking data, with efficient and confident identification of cross-linked species. Four experiments using different conditions showed a high degree of reproducibility as only 1 and 2 cross-links out of 36 identified was not observed in two experiments. The method was tested using human placenta calreticulin (CRT). Based on the identified cross

  16. In vivo investigation of homocysteine metabolism to polyamines by high-resolution accurate mass spectrometry and stable isotope labeling.

    PubMed

    Ruseva, Silviya; Lozanov, Valentin; Markova, Petia; Girchev, Radoslav; Mitev, Vanio

    2014-07-15

    Polyamines are essential polycations, playing important roles in mammalian physiology. Theoretically, the involvement of homocysteine in polyamine synthesis via S-adenosylmethionine is possible; however, to our knowledge, it has not been established experimentally. Here, we propose an original approach for investigation of homocysteine metabolites in an animal model. The method is based on the combination of isotope-labeled homocysteine supplementation and high-resolution accurate mass spectrometry analysis. Structural identity of the isotope-labeled metabolites was confirmed by accurate mass measurements of molecular and fragment ions and comparison of the retention times and tandem mass spectrometry fragmentation patterns. Isotope-labeled methionine, spermidine, and spermine were detected in all investigated plasma and tissue samples. The induction of moderate hyperhomocysteinemia leads to an alteration in polyamine levels in a different manner. The involvement of homocysteine in polyamine synthesis and modulation of polyamine levels could contribute to a better understanding of the mechanisms connected with homocysteine toxicity.

  17. Chemical Ligation of Folded Recombinant Proteins: Segmental Isotopic Labeling of Domains for NMR Studies

    NASA Astrophysics Data System (ADS)

    Xu, Rong; Ayers, Brenda; Cowburn, David; Muir, Tom W.

    1999-01-01

    A convenient in vitro chemical ligation strategy has been developed that allows folded recombinant proteins to be joined together. This strategy permits segmental, selective isotopic labeling of the product. The src homology type 3 and 2 domains (SH3 and SH2) of Abelson protein tyrosine kinase, which constitute the regulatory apparatus of the protein, were individually prepared in reactive forms that can be ligated together under normal protein-folding conditions to form a normal peptide bond at the ligation junction. This strategy was used to prepare NMR sample quantities of the Abelson protein tyrosine kinase-SH(32) domain pair, in which only one of the domains was labeled with 15N Mass spectrometry and NMR analyses were used to confirm the structure of the ligated protein, which was also shown to have appropriate ligand-binding properties. The ability to prepare recombinant proteins with selectively labeled segments having a single-site mutation, by using a combination of expression of fusion proteins and chemical ligation in vitro, will increase the size limits for protein structural determination in solution with NMR methods. In vitro chemical ligation of expressed protein domains will also provide a combinatorial approach to the synthesis of linked protein domains.

  18. Quantitative Metabolome Analysis Based on Chromatographic Peak Reconstruction in Chemical Isotope Labeling Liquid Chromatography Mass Spectrometry.

    PubMed

    Huan, Tao; Li, Liang

    2015-07-21

    Generating precise and accurate quantitative information on metabolomic changes in comparative samples is important for metabolomics research where technical variations in the metabolomic data should be minimized in order to reveal biological changes. We report a method and software program, IsoMS-Quant, for extracting quantitative information from a metabolomic data set generated by chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS). Unlike previous work of relying on mass spectral peak ratio of the highest intensity peak pair to measure relative quantity difference of a differentially labeled metabolite, this new program reconstructs the chromatographic peaks of the light- and heavy-labeled metabolite pair and then calculates the ratio of their peak areas to represent the relative concentration difference in two comparative samples. Using chromatographic peaks to perform relative quantification is shown to be more precise and accurate. IsoMS-Quant is integrated with IsoMS for picking peak pairs and Zero-fill for retrieving missing peak pairs in the initial peak pairs table generated by IsoMS to form a complete tool for processing CIL LC-MS data. This program can be freely downloaded from the www.MyCompoundID.org web site for noncommercial use.

  19. Synthesis of stable isotopically labelled 3-methylfuran-2(5H)-one and the corresponding strigolactones.

    PubMed

    Cheng, Yun; Ding, Wen-hui; Long, Qin; Zhao, Min; Yang, Jun; Li, Xiao-qiang

    2015-07-01

    Conventional synthetic procedures of strigolactones (SLs) involve the independent synthesis of ring ABC and ring D, followed by a coupling of the two fragments. Here we prepared three kinds of stable, isotopically labelled D-ring analogues productively using a facile protocol. Then, a coupling of the D-rings to ring ABC produced three isotope-labelled SL derivatives. Moreover, (+)-D3-2'-epi-1A and (-)-ent-D3-2'-epi-1A with high enantiomeric purity were obtained via chiral resolution.

  20. Negative ion ESI-MS analysis of natural yellow dye flavonoids--An isotopic labelling study

    NASA Astrophysics Data System (ADS)

    McNab, Hamish; Ferreira, Ester S. B.; Hulme, Alison N.; Quye, Anita

    2009-07-01

    Flavonoids are amongst the most commonly used natural yellow colourants in paintings, as lakes, and in historical textiles as mordant dyes. In this paper, evidence from isotopically labelled substrates is used to propose negative ion electrospray collision induced decomposition mechanisms of flavones, flavonols and an isoflavone. These mechanisms include a retro-Diels-Alder fragmentation (observed for flavones and flavonols) and an M-122 fragmentation (characteristic of 3',4'-dihydroxyflavonols). In addition, the presence of a m/z 125 fragment ion is shown to be characteristic of 2'-hydroxyflavonols and an ion at m/z 149 is shown to be characteristic of 4'-hydroxyflavones. Applications of these methods are exemplified by the identification of a minor component of Dyer's camomile (Anthemis tinctoria L.) and the identification of the dye source in green threads sampled from an 18th Century Scottish tartan fragment.

  1. Stable Isotope Labeling Strategy for Protein-Ligand Binding Analysis in Multi-Component Protein Mixtures

    NASA Astrophysics Data System (ADS)

    DeArmond, Patrick D.; West, Graham M.; Huang, Hai-Tsang; Fitzgerald, Michael C.

    2011-03-01

    Described here is a stable isotope labeling protocol that can be used with a chemical modification- and mass spectrometry-based protein-ligand binding assay for detecting and quantifying both the direct and indirect binding events that result from protein-ligand binding interactions. The protocol utilizes an H{2/16}O2 and H{2/18}O2 labeling strategy to evaluate the chemical denaturant dependence of methionine oxidation in proteins both in the presence and absence of a target ligand. The differential denaturant dependence to the oxidation reactions performed in the presence and absence of ligand provides a measure of the protein stability changes that occur as a result of direct interactions of proteins with the target ligand and/or as a result of indirect interactions involving other protein-ligand interactions that are either induced or disrupted by the ligand. The described protocol utilizes the 18O/16O ratio in the oxidized protein samples to quantify the ligand-induced protein stability changes. The ratio is determined using the isotopic distributions observed for the methionine-containing peptides used for protein identification in the LC-MS-based proteomics readout. The strategy is applied to a multi-component protein mixture in this proof-of-principle experiment, which was designed to evaluate the technique's ability to detect and quantify the direct binding interaction between cyclosporin A and cyclophilin A and to detect the indirect binding interaction between cyclosporin A and calcineurin (i.e., the protein-protein interaction between cyclophilin A and calcineurin that is induced by cyclosporin A binding to cyclophilin A).

  2. Extrinsic labelling of staple food crops with isotopic iron does not consistently result in full equilibration: Revisiting the methodology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrinsic isotopic labeling of food Fe has been used for over 50 years to measure Fe absorption. This method is based on the assumption that complete equilibration occurs between the extrinsic and the intrinsic Fe prior to intestinal absorption. The present study tested this assumption via use of in...

  3. Adaptation of the doubly labeled water method for subjects consuming isotopically enriched water.

    PubMed

    Gretebeck, R J; Schoeller, D A; Socki, R A; Davis-Street, J; Gibson, E K; Schulz, L O; Lane, H W

    1997-02-01

    The use of doubly labeled water (DLW) to measure energy expenditure is subject to error if the background abundance of the oxygen and hydrogen isotope tracers changes during the test period. This study evaluated the accuracy and precision of different methods by which such background isotope changes can be corrected, including a modified method that allows prediction of the baseline that would be achieved if subjects were to consume water from a given source indefinitely. Subjects in this study were eight women (4 test subjects and 4 control subjects) who consumed for 28 days water enriched to resemble drinking water aboard the United States space shuttle. Test subjects and control subjects were given a DLW dose on days 1 and 15, respectively. The change to an enriched water source produced a bias in expenditure calculations that exceeded 2.9 MJ/day (35%), relative to calculations from intake-balance. The proposed correction based on the predicted final abundance of 18O and deuterium after equilibration to the new water source eliminated this bias, as did the traditional use of a control group. This new modified correction method is advantageous under field conditions when subject numbers are limited.

  4. Rapid biosynthesis of stable isotope-labeled peptides from a reconstituted in vitro translation system for targeted proteomics.

    PubMed

    Xian, Feng; Li, Shuwei; Liu, Siqi

    2015-01-01

    Stable isotope-labeled peptides are routinely used as internal standards (a.k.a. reference peptides) for absolute quantitation of proteins in targeted proteomics. These peptides can either be synthesized chemically on solid supports or expressed biologically by concatenating multiple peptides together to a large protein. Neither method, however, has required versatility, convenience, and economy for making a large number of reference peptides. Here, we describe the biosynthesis of stable isotope-labeled peptides from a reconstituted Escherichia coli in vitro translation system. We provide a detailed protocol on how to express these peptides with high purity and how to determine their concentrations with easiness. Our strategy offers a general, fast, and scalable approach for the easy preparation of labeled reference peptides, which will have broad application in both basic research and translational medicine.

  5. Experimental investigation of rates and mechanisms of isotope exchange (O, H) between volcanic ash and isotopically-labeled water

    NASA Astrophysics Data System (ADS)

    Nolan, Gary S.; Bindeman, Ilya N.

    2013-06-01

    The hydrogen and oxygen isotope ratios in hydrous minerals and volcanic glass are routinely used as paleo-proxies to infer the isotopic values of meteoric waters and thus paleo-climatic conditions. We report a series of long-term exposure experiments of distal 7700 BP Mt. Mazama ash (-149‰ δ2H, +7‰ δ18O, 3.8 wt.% H2O) with isotopically-labeled water (+650‰ δ2H, +56‰ δ18O). Experiments were done at 70, 40 and 20 °C, and ranged in duration from 1 to 14454 h (˜20 months), to evaluate the rates of deuterium and 18O exchange, and investigate the relative role of exchange and diffusion. We also investigate the effect of drying on H2Otot and δ2H in native and reacted ash that can be used in defining the protocols for natural sample preparation. We employ Thermal Conversion Elemental Analyzer (TCEA) mass spectrometry, thermogravimetric analysis and a KBr pellet technique with infrared spectroscopy to measure the evolution of δ2H, total water, and OH water peaks in the course of exposure experiments, and in varying lengths of vacuum drying. Time series experiments aided by infrared measurements demonstrate the following new results: (i) It wasobserved that from 5 to >100‰ δ2H increases with time, with faster deuterium exchange at higher temperatures. Times at 15% of theoretical "full δ2H exchange" are: 15.8 years at 20 °C, 5.2 years at 40 °C, and 0.4 years at 70 °C. (ii) Even at extended exposure durations experiments show no net increase in water weight percent nor in δ18O in ash; water released from ash rapidly by thermal decomposition is not enriched in δ18O. This observation clearly suggests that it is hydrogen exchange, and not water addition or oxygen exchange that characterizes the process. (iii) Our time series drying, Fourier transform infrared (FTIR)-KBr and Thermogravimetric Analyzer (TGA) analyses collectively suggest a simple mechanistic view that there are three kinds of "water" in ash: water (mostly H2O) that is less strongly bonded

  6. Isotopic labeling for the understanding of the alteration of limestone used in built cultural heritage

    NASA Astrophysics Data System (ADS)

    Saheb, Mandana; Chabas, Anne; Mertz, Jean-Didier; Rozenbaum, Olivier; Verney-Carron, Aurélie

    2015-04-01

    This project belongs to a specific work aiming at developing isotopic tools to better understand the alteration of materials used in the built cultural heritage. It is focused on the study of the alteration of limestone used in the facades of historic buildings subject to atmospheric polluted environment. Actually in the elevated parts of the buildings, water as rainfall (runoff or wet deposition) or in vapor form (condensation or dry deposition) is the main agent of alteration. Thus, the rock/water interactions need to be well understood to propose adapted solution to better preserve the buildings. To identify the water transfer within the porous limestone and locate the reaction preferential sites, two isotopic tracers (D and 18O) are used to monitor the alteration solution (D) and locate the zones containing the secondary phases (18O). The Saint-Maximin limestone used in many monuments in the suburbs of Paris (France) as a building and restoration stone has been specifically studied. Pristine materials, stones from monuments (monuments in the Paris area) and samples altered in laboratory constitute the analytical corpus to compare different stages of alteration. In a first step the stones are characterized at different scales to identify the alteration pattern (SEM-EDS, Raman microspectrometry, XRD, rugosimetry) and study the water transfers (X-ray tomography, mercury porosimetry, imbibition kinetics). The samples are then altered in the laboratory by realistic and controlled wet or dry deposition using isotopically labeled solutions to locate the reaction zones by SIMS. The multiscale characterization of the alteration pattern has allowed proposing alteration mechanisms linked to the properties of the stones and their location inside the building. Moreover, the location of the reactive zones inside the materials determined by the isotopic experiments helps examining the role of the evolution of porosity and formation of alteration products within the material

  7. Whole proteome analysis of the protozoan parasite Trypanosoma brucei using stable isotope labeling by amino acids in cell culture and mass spectrometry.

    PubMed

    Cirovic, Olivera; Ochsenreiter, Torsten

    2014-01-01

    The single-celled protozoan Trypanosoma brucei spp. is the causative agent of human African trypanosomiasis and nagana in cattle. Quantitative proteomics for the first time has allowed for the characterization of the proteome from several different life stages of the parasite (Butter et al., Mol Cell Proteomics 12:172-179, 2013; Gunasekera et al., BMC Genomics 13:556, 2012; Urbaniak et al., PloS One 7(5):e36619, 2012). To achieve this, stable isotope labeling by amino acids in cell culture (SILAC) (Ong et al., Mol Cell Proteomics 1:376-386, 2002) was adapted to T. brucei spp. cultures. T. brucei cells grown in standard media with dialyzed fetal calf serum containing heavy isotope-labeled amino acids (arginine and lysine) show efficient incorporation of the labeled amino acids into the whole cell proteome (8-12 divisions) and no detectable amino acid conversions. The method can be applied to both of the major life stages of the parasite and in combination with RNAi or gene knockout approaches.

  8. A Method for Sporulating Budding Yeast Cells That Allows for Unbiased Identification of Kinase Substrates Using Stable Isotope Labeling by Amino Acids in Cell Culture

    PubMed Central

    Suhandynata, Ray; Liang, Jason; Albuquerque, Claudio. P.; Zhou, Huilin; Hollingsworth, Nancy M.

    2014-01-01

    Quantitative proteomics has been widely used to elucidate many cellular processes. In particular, stable isotope labeling by amino acids in cell culture (SILAC) has been instrumental in improving the quality of data generated from quantitative high-throughput proteomic studies. SILAC uses the cell’s natural metabolic pathways to label proteins with isotopically heavy amino acids. Incorporation of these heavy amino acids effectively labels a cell’s proteome, allowing the comparison of cell cultures treated under different conditions. SILAC has been successfully applied to a variety of model organisms including yeast, fruit flies, plants, and mice to look for kinase substrates as well as protein–protein interactions. In budding yeast, several kinases are known to play critical roles in different aspects of meiosis. Therefore, the use of SILAC to identify potential kinase substrates would be helpful in the understanding the specific mechanisms by which these kinases act. Previously, it has not been possible to use SILAC to quantitatively study the phosphoproteome of meiotic Saccharomyces cerevisiae cells, because yeast cells sporulate inefficiently after pregrowth in standard synthetic medium. In this study we report the development of a synthetic, SILAC-compatible, pre-sporulation medium (RPS) that allows for efficient sporulation of S. cerevisiae SK1 diploids. Pre-growth in RPS supplemented with heavy amino acids efficiently labels the proteome, after which cells proceed relatively synchronously through meiosis, producing highly viable spores. As proof of principle, SILAC experiments were able to identify known targets of the meiosis-specific kinase Mek1. PMID:25168012

  9. Labeled trees and the efficient computation of derivations

    NASA Technical Reports Server (NTRS)

    Grossman, Robert; Larson, Richard G.

    1989-01-01

    The effective parallel symbolic computation of operators under composition is discussed. Examples include differential operators under composition and vector fields under the Lie bracket. Data structures consisting of formal linear combinations of rooted labeled trees are discussed. A multiplication on rooted labeled trees is defined, thereby making the set of these data structures into an associative algebra. An algebra homomorphism is defined from the original algebra of operators into this algebra of trees. An algebra homomorphism from the algebra of trees into the algebra of differential operators is then described. The cancellation which occurs when noncommuting operators are expressed in terms of commuting ones occurs naturally when the operators are represented using this data structure. This leads to an algorithm which, for operators which are derivations, speeds up the computation exponentially in the degree of the operator. It is shown that the algebra of trees leads naturally to a parallel version of the algorithm.

  10. Isotope coded protein labeling coupled immunoprecipitation (ICPL-IP): a novel approach for quantitative protein complex analysis from native tissue.

    PubMed

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-05-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms--including humans--are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)(1) with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method.

  11. Determining synthesis rates of individual proteins in zebrafish (Danio rerio) with low levels of a stable isotope labelled amino acid.

    PubMed

    Geary, Bethany; Magee, Kieran; Cash, Phillip; Young, Iain S; Whitfield, Phillip D; Doherty, Mary K

    2016-05-01

    The zebrafish is a powerful model organism for the analysis of human cardiovascular development and disease. Understanding these processes at the protein level not only requires changes in protein concentration to be determined but also the rate at which these changes occur on a protein-by-protein basis. The ability to measure protein synthesis and degradation rates on a proteome-wide scale, using stable isotope labelling in conjunction with mass spectrometry is now a well-established experimental approach. With the advent of more selective and sensitive mass spectrometers, it is possible to accurately measure lower levels of stable isotope incorporation, even when sample is limited. In order to challenge the sensitivity of this approach, we successfully determined the synthesis rates of over 600 proteins from the cardiac muscle of the zebrafish using a diet where either 30% or 50% of the L-leucine was replaced with a stable isotope labelled analogue ([(2) H7 ]L-leucine]. It was possible to extract sufficient protein from individual zebrafish hearts to determine the incorporation rate of the label into hundreds of proteins simultaneously, with the two labelling regimens showing a good correlation of synthesis rates.

  12. Tracking the metabolic pulse of plant lipid production with isotopic labeling and flux analyses: Past, present and future.

    PubMed

    Allen, Doug K; Bates, Philip D; Tjellström, Henrik

    2015-04-01

    Metabolism is comprised of networks of chemical transformations, organized into integrated biochemical pathways that are the basis of cellular operation, and function to sustain life. Metabolism, and thus life, is not static. The rate of metabolites transitioning through biochemical pathways (i.e., flux) determines cellular phenotypes, and is constantly changing in response to genetic or environmental perturbations. Each change evokes a response in metabolic pathway flow, and the quantification of fluxes under varied conditions helps to elucidate major and minor routes, and regulatory aspects of metabolism. To measure fluxes requires experimental methods that assess the movements and transformations of metabolites without creating artifacts. Isotopic labeling fills this role and is a long-standing experimental approach to identify pathways and quantify their metabolic relevance in different tissues or under different conditions. The application of labeling techniques to plant science is however far from reaching it potential. In light of advances in genetics and molecular biology that provide a means to alter metabolism, and given recent improvements in instrumentation, computational tools and available isotopes, the use of isotopic labeling to probe metabolism is becoming more and more powerful. We review the principal analytical methods for isotopic labeling with a focus on seminal studies of pathways and fluxes in lipid metabolism and carbon partitioning through central metabolism. Central carbon metabolic steps are directly linked to lipid production by serving to generate the precursors for fatty acid biosynthesis and lipid assembly. Additionally some of the ideas for labeling techniques that may be most applicable for lipid metabolism in the future were originally developed to investigate other aspects of central metabolism. We conclude by describing recent advances that will play an important future role in quantifying flux and metabolic operation in plant

  13. ­Characterization of Reduced Magmatic C-O-H-N Volatiles By Isotopic Labeling

    NASA Astrophysics Data System (ADS)

    Falksen, E.; Armstrong, L. S.; Hirschmann, M. M.

    2014-12-01

    Characterization of COHN species in silicate melts [1-10] is required to understand the role of reduced volatiles in planetary and early Earth processes, including partitioning between planetary cores, mantles, and atmospheres during early differentiation. Vibrational spectroscopy has been used to examine volatile speciation, but for a number of absorptions there is uncertainty as to whether they relate to species containing N, C, or both [1,3]. In particular, an IR band at 3370 cm-1 is commonly attributed to N-H stretching [1,4,5,7], but associated Raman bands near 3280 cm-1 have also been attributed to alkyne (C-H) bonds [8-10]. The 3370 cm-1 IR band appears even in nominally N-free experiments owing to trapped air and is accompanied by a feature at 1615 cm-1 which could be caused by C=O or N-H bonds [1,3,8]. We sought to determine whether N and C were responsible for various IR bands by dissolving different isotopes of N and C in basaltic melts at high pressure and temperature and observing the shift in position of the resulting absorptions. Experiments were conducted at 1.2 GPa and 1400 oC and volatiles were added to a basaltic oxide mix in the form of unlabeled, 13C labeled, and 15N labeled urea [(NH2)2CO]. The resulting glasses were analyzed using FTIR and the theoretical band shifts were predicted based on a classical approximation of a diatomic molecule. Relative to isotopically normal glasses, bands at both 3370 cm-1 and 1615 cm-1 decrease by 4-8 wavenumbers for 15N and not at all for 13C, consistent with origination by N-H bonds in amines or metal-ammine complexes. [1] Stanley et al. (2014) GCA 129, 54-76. [2] Wetzel et al. (2013) PNAS 110, 8010-8013. [3] Armstrong et al. (in prep). [4] Kadik et al. (2011) Geochem. Int. 49, 429-438. [5] Kadik et al. (2013) PEPI 214, 14-24. [6]Mysen (2013) Chem. Geo. 346, 113-124. [7] Mysen et al. (2008) Am. Min. 93, 1760-1770. [8] Mysen et al. (2009) GCA 73, 1696-1710. [9] Dasgupta et al. (2013) GCA 102, 191-212. [10] Chi

  14. Imaging Complex Protein Metabolism in Live Organisms by Stimulated Raman Scattering Microscopy with Isotope Labeling

    PubMed Central

    2016-01-01

    Protein metabolism, consisting of both synthesis and degradation, is highly complex, playing an indispensable regulatory role throughout physiological and pathological processes. Over recent decades, extensive efforts, using approaches such as autoradiography, mass spectrometry, and fluorescence microscopy, have been devoted to the study of protein metabolism. However, noninvasive and global visualization of protein metabolism has proven to be highly challenging, especially in live systems. Recently, stimulated Raman scattering (SRS) microscopy coupled with metabolic labeling of deuterated amino acids (D-AAs) was demonstrated for use in imaging newly synthesized proteins in cultured cell lines. Herein, we significantly generalize this notion to develop a comprehensive labeling and imaging platform for live visualization of complex protein metabolism, including synthesis, degradation, and pulse–chase analysis of two temporally defined populations. First, the deuterium labeling efficiency was optimized, allowing time-lapse imaging of protein synthesis dynamics within individual live cells with high spatial–temporal resolution. Second, by tracking the methyl group (CH3) distribution attributed to pre-existing proteins, this platform also enables us to map protein degradation inside live cells. Third, using two subsets of structurally and spectroscopically distinct D-AAs, we achieved two-color pulse–chase imaging, as demonstrated by observing aggregate formation of mutant hungtingtin proteins. Finally, going beyond simple cell lines, we demonstrated the imaging ability of protein synthesis in brain tissues, zebrafish, and mice in vivo. Hence, the presented labeling and imaging platform would be a valuable tool to study complex protein metabolism with high sensitivity, resolution, and biocompatibility for a broad spectrum of systems ranging from cells to model animals and possibly to humans. PMID:25560305

  15. Analysis of liposoluble carboxylic acids metabolome in human serum by stable isotope labeling coupled with liquid chromatography-mass spectrometry.

    PubMed

    Zhu, Quan-Fei; Zhang, Zheng; Liu, Ping; Zheng, Shu-Jian; Peng, Ke; Deng, Qian-Yun; Zheng, Fang; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-08-19

    Fatty acids (FAs) are groups of liposoluble carboxylic acids (LCAs) and play important roles in various physiological processes. Abnormal contents or changes of FAs are associated with a series of diseases. Here we developed a strategy with stable isotope labeling combined with liquid chromatography-tandem mass spectrometry (IL-LC-MS) analysis for comprehensive profiling and relative quantitation of LCAs in human serum. In this strategy, a pair of isotope labeling reagents (2-dimethylaminoethylamine (DMED)) and d4-2-dimethylaminoethylamine (d4-DMED) were employed to selectively label carboxyl groups of LCAs. The DMED and d4-DMED labeled products can lose four characteristic neutral fragments of 45 and 49Da or 63 and 67Da in collision-induced dissociation. Therefore, quadruple neutral loss scan (QNLS) mode was established and used for non-targeted profiling of LCAs. The peak pairs of DMED and d4-DMED labeling with the same retention time, intensity and characteristic mass differences were extracted from the two NLS spectra respectively, and assigned as potential LCA candidates. Using this strategy, 241 LCA candidates were discovered in the human serum; 156 carboxylic acid compounds could be determined by searching HMDB and METLIN databases (FAs are over 90%) and 21 of these LCAs were successfully identified by standards. Subsequently, a modified pseudo-targeted method with multiple reaction monitoring (MRM) detection mode was developed and used for relative quantification of LCAs in human serum from type 2 diabetes mellitus (T2DM) patients and healthy controls. As a result, 81 LCAs were found to have significant difference between T2DM patients and healthy controls. Taken together, the isotope labeling combined with tandem mass spectrometry analysis demonstrated to be a powerful strategy for identification and quantification of LCA compounds in serum samples.

  16. Amino acid-selective isotope labeling of proteins for nuclear magnetic resonance study: proteins secreted by Brevibacillus choshinensis.

    PubMed

    Tanio, Michikazu; Tanaka, Rikou; Tanaka, Takeshi; Kohno, Toshiyuki

    2009-03-15

    Here we report the first application of amino acid-type selective (AATS) isotope labeling of a recombinant protein secreted by Brevibacillus choshinensis for a nuclear magnetic resonance (NMR) study. To prepare the 15N-AATS-labeled protein, the transformed B. choshinensis was cultured in 15N-labeled amino acid-containing C.H.L. medium, which is commonly used in the Escherichia coli expression system. The analyses of the 1H-15N heteronuclear single quantum coherence (HSQC) spectra of the secreted proteins with a 15N-labeled amino acid demonstrated that alanine, arginine, asparagine, cysteine, glutamine, histidine, lysine, methionine, and valine are suitable for selective labeling, although acidic and aromatic amino acids are not suitable. The 15N labeling for glycine, isoleucine, leucine, serine, and threonine resulted in scrambling to specific amino acids. These results indicate that the B. choshinensis expression system is an alternative tool for AATS labeling of recombinant proteins, especially secretory proteins, for NMR analyses.

  17. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    SciTech Connect

    Trewhella, J.; Cross, T.A.; Unkefer, C.J.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database.

  18. A proteomic approach for quantitation of phosphorylation using stable isotope labeling in cell culture.

    PubMed

    Ibarrola, Nieves; Kalume, Dario E; Gronborg, Mads; Iwahori, Akiko; Pandey, Akhilesh

    2003-11-15

    Posttranslational modifications are major mechanisms of regulating protein activity and function in vertebrate cells. It is essential to obtain qualitative information about posttranslational modification patterns of proteins to understand signal transduction mechanisms in greater detail. However, it is equally important to measure the dynamics of posttranslational modifications such as phosphorylation to approach signaling networks from a systems biology perspective. Despite a number of advances, methods to quantitate posttranslational modifications remain difficult to implement due to a number of factors including lack of a generic method, elaborate chemical steps, and requirement for large amounts of sample. We have previously shown that stable isotope-containing amino acids in cell culture (SILAC) can be used to differentially label growing cell populations for quantitation of protein levels. In this report, we extend the use of SILAC as a novel proteomic approach for the relative quantitation of posttranslational modifications such as phosphorylation. We have used SILAC to quantitate the extent of known phosphorylation sites as well as to identify and quantitate novel phosphorylation sites.

  19. Tracking down sulphate-reducing microorganisms by molecular and isotope-labelling techniques

    NASA Astrophysics Data System (ADS)

    Loy, Alexander

    2010-05-01

    Sulphate-reducing microorganisms (SRM) are of great ecological importance for carbon compound degradation and sulphur cycling in many anoxic ecosystems, including marine sediments, peatlands, and oil reservoirs. However, the activity of SRM can result in oil souring and pipeline corrosion and thus is also an economic burden for the oil industry. Molecular diversity surveys based on rRNA genes and dsrAB, genes that encode major subunits of the dissimilatory sulfite reductase, indicate that our view of the natural diversity of SRM (as we know it from cultivation) is far from being complete. This enormous phylogenetic diversity complicates unbiased identification and quantification of SRM by molecular methods such as fluorescence in situ hybridization, real-time PCR or DNA microarrays. Combining these 16S rRNA and dsrAB-based molecular methods with substrate-mediated isotope labelling techniques is a potential solution for identification and functional characterization of yet uncultivated SRM. Using SRM in peatlands as an example, the problems and opportunities of these techniques for diagnosing and monitoring SRM in the environment will be discussed in this talk.

  20. LC/MS Method for the Determination of Stable Isotope Labeled Promethazine in Human Plasma

    NASA Technical Reports Server (NTRS)

    Zuwei, Wang; Boyd, Jason; Berens, Kurt L.; Putcha, Lakshmi

    2004-01-01

    Promethazine (PMZ) is taken by astronauts orally (PO), intramuscularly (IM) or rectally (PR) for space motion sickness. LC/MS method was developed with off-line solid phase extraction to measure plasma concentrations of PMZ given as stable isotope-labeled (SIL) formulations by the three different routes of administration simultaneously. Samples (0.5ml) were loaded on to Waters Oasis HLB co-polymer cartridges and eluted with 1.0 mL methanol. HPLC separation of the eluted sample was performed using an Agilent Zorbax SB-CN column (50 x 2.1 mm) at a flow rate of 0.2 mL/min for 6 min. Acetonitrile/ ammonium acetate (30 mM) in water (3:2, v/v), pH 5.6 plus or minus 0.1, was used as the mobile phase for separation. Concentrations of PMZ, PMZ-d4 and PMZ-d7 and chlorpromazine (internal standard) were determined using a Micromass ZMD single quadrupole mass spectrometer with Electrospray Ionization (ESI). ESI mass spectra were acquired in positive ion mode with selected ion monitoring of [M+ H]dot plus. The method is rapid, reproducible and the assay specific parameters are listed in a table. A novel, sensitive and specific method for the measurement of PMZ and SIL PMZ in human plasma is reported.

  1. Isotope labeling-based quantitative proteomics of developing seeds of castor oil seed (Ricinus communis L.).

    PubMed

    Nogueira, Fábio C S; Palmisano, Giuseppe; Schwämmle, Veit; Soares, Emanuela L; Soares, Arlete A; Roepstorff, Peter; Domont, Gilberto B; Campos, Francisco A P

    2013-11-01

    In this study, we used a mass spectrometry-based quantification approach employing isotopic (ICPL) and isobaric (iTRAQ) labeling to investigate the pattern of protein deposition during castor oil seed (Ricinus communis L.) development, including that of proteins involved in fatty acid metabolism, seed-storage proteins (SSPs), toxins, and allergens. Additionally, we have used off-line hydrophilic interaction chromatography (HILIC) as a step of peptide fractionation preceding the reverse-phase nanoLC coupled to a LTQ Orbitrap. We were able to identify a total of 1875 proteins, and from these 1748 could be mapped to extant castor gene models, considerably expanding the number of proteins so far identified from developing castor seeds. Cluster validation and statistical analysis resulted in 975 protein trend patterns and the relative abundance of 618 proteins. The results presented in this work give important insights into certain aspects of the biology of castor oil seed development such as carbon flow, anabolism, and catabolism of fatty acid and the pattern of deposition of SSPs, toxins, and allergens such as ricin and 2S albumins. We also found, for the first time, some genes of SSP that are differentially expressed during seed development.

  2. Absolute Quantitation of Glycosylation Site Occupancy Using Isotopically Labeled Standards and LC-MS

    NASA Astrophysics Data System (ADS)

    Zhu, Zhikai; Go, Eden P.; Desaire, Heather

    2014-06-01

    N-linked glycans are required to maintain appropriate biological functions on proteins. Underglycosylation leads to many diseases in plants and animals; therefore, characterizing the extent of glycosylation on proteins is an important step in understanding, diagnosing, and treating diseases. To determine the glycosylation site occupancy, protein N-glycosidase F (PNGase F) is typically used to detach the glycan from the protein, during which the formerly glycosylated asparagine undergoes deamidation to become an aspartic acid. By comparing the abundance of the resulting peptide containing aspartic acid against the one containing non-glycosylated asparagine, the glycosylation site occupancy can be evaluated. However, this approach can give inaccurate results when spontaneous chemical deamidation of the non-glycosylated asparagine occurs. To overcome this limitation, we developed a new method to measure the glycosylation site occupancy that does not rely on converting glycosylated peptides to their deglycosylated forms. Specifically, the overall protein concentration and the non-glycosylated portion of the protein are quantified simultaneously by using heavy isotope-labeled internal standards coupled with LC-MS analysis, and the extent of site occupancy is accurately determined. The efficacy of the method was demonstrated by quantifying the occupancy of a glycosylation site on bovine fetuin. The developed method is the first work that measures the glycosylation site occupancy without using PNGase F, and it can be done in parallel with glycopeptide analysis because the glycan remains intact throughout the workflow.

  3. Novel diagnostics of metabolic dysfunction detected in breath and plasma by selective isotope-assisted labeling.

    PubMed

    Haviland, Julia A; Tonelli, Marco; Haughey, Dermot T; Porter, Warren P; Assadi-Porter, Fariba M

    2012-08-01

    Metabolomics is the study of a unique fingerprint of small molecules present in biological systems under healthy and disease conditions. One of the major challenges in metabolomics is validation of fingerprint molecules to identify specifically perturbed pathways in metabolic aberrations. This step is crucial to the understanding of budding metabolic pathologies and the ability to identify early indicators of common diseases such as obesity, type 2 diabetes mellitus, metabolic syndrome, polycystic ovary syndrome, and cancer. We present a novel approach to diagnosing aberrations in glucose utilization including metabolic pathway switching in a disease state. We used a well-defined prenatally exposed glucocorticoid mouse model that results in adult females with metabolic dysfunction. We applied the complementary technologies of nuclear magnetic resonance spectroscopy and cavity ring-down spectroscopy to analyze serial plasma samples and real-time breath measurements following selective (13)C-isotope-assisted labeling. These platforms allowed us to trace metabolic markers in whole animals and identify key metabolic pathway switching in prenatally glucocorticoid-treated animals. Total glucose flux is significantly proportionally increased through the major oxidative pathways of glycolysis and the pentose phosphate pathway in the prenatally glucocorticoid-treated animals relative to the control animals. This novel diagnostics approach is fast, noninvasive, and sensitive for determining specific pathway utilization, and provides a direct translational application in the health care field.

  4. Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging.

    PubMed

    Paik, Taejong; Chacko, Ann-Marie; Mikitsh, John L; Friedberg, Joseph S; Pryma, Daniel A; Murray, Christopher B

    2015-09-22

    Isotopically labeled nanomaterials have recently attracted much attention in biomedical research, environmental health studies, and clinical medicine because radioactive probes allow the elucidation of in vitro and in vivo cellular transport mechanisms, as well as the unambiguous distribution and localization of nanomaterials in vivo. In addition, nanocrystal-based inorganic materials have a unique capability of customizing size, shape, and composition; with the potential to be designed as multimodal imaging probes. Size and shape of nanocrystals can directly influence interactions with biological systems, hence it is important to develop synthetic methods to design radiolabeled nanocrystals with precise control of size and shape. Here, we report size- and shape-controlled synthesis of rare earth fluoride nanocrystals doped with the β-emitting radioisotope yttrium-90 ((90)Y). Size and shape of nanocrystals are tailored via tight control of reaction parameters and the type of rare earth hosts (e.g., Gd or Y) employed. Radiolabeled nanocrystals are synthesized in high radiochemical yield and purity as well as excellent radiolabel stability in the face of surface modification with different polymeric ligands. We demonstrate the Cerenkov radioluminescence imaging and magnetic resonance imaging capabilities of (90)Y-doped GdF3 nanoplates, which offer unique opportunities as a promising platform for multimodal imaging and targeted therapy.

  5. Abstracts of the 24th international isotope society (UK group) symposium: synthesis and applications of labelled compounds 2015.

    PubMed

    Aigbirhio, F I; Allwein, S; Anwar, A; Atzrodt, J; Audisio, D; Badman, G; Bakale, R; Berthon, F; Bragg, R; Brindle, K M; Bushby, N; Campos, S; Cant, A A; Chan, M Y T; Colbon, P; Cornelissen, B; Czarny, B; Derdau, V; Dive, V; Dunscombe, M; Eggleston, I; Ellis-Sawyer, K; Elmore, C S; Engstrom, P; Ericsson, C; Fairlamb, I J S; Georgin, D; Godfrey, S P; He, L; Hickey, M J; Huscroft, I T; Kerr, W J; Lashford, A; Lenz, E; Lewinton, S; L'Hermite, M M; Lindelöf, Å; Little, G; Lockley, W J S; Loreau, O; Maddocks, S; Marguerit, M; Mirabello, V; Mudd, R J; Nilsson, G N; Owens, P K; Pascu, S I; Patriarche, G; Pimlott, S L; Pinault, M; Plastow, G; Racys, D T; Reif, J; Rossi, J; Ruan, J; Sarpaki, S; Sephton, S M; Simonsson, R; Speed, D J; Sumal, K; Sutherland, A; Taran, F; Thuleau, A; Wang, Y; Waring, M; Watters, W H; Wu, J; Xiao, J

    2016-04-01

    The 24th annual symposium of the International Isotope Society's United Kingdom Group took place at the Møller Centre, Churchill College, Cambridge, UK on Friday 6th November 2015. The meeting was attended by 77 delegates from academia and industry, the life sciences, chemical, radiochemical and scientific instrument suppliers. Delegates were welcomed by Dr Ken Lawrie (GlaxoSmithKline, UK, chair of the IIS UK group). The subsequent scientific programme consisted of oral presentations, short 'flash' presentations in association with particular posters and poster presentations. The scientific areas covered included isotopic synthesis, regulatory issues, applications of labelled compounds in imaging, isotopic separation and novel chemistry with potential implications for isotopic synthesis. Both short-lived and long-lived isotopes were represented, as were stable isotopes. The symposium was divided into a morning session chaired by Dr Rebekka Hueting (University of Oxford, UK) and afternoon sessions chaired by Dr Sofia Pascu (University of Bath, UK) and by Dr Alan Dowling (Syngenta, UK). The UK meeting concluded with remarks from Dr Ken Lawrie (GlaxoSmithKline, UK).

  6. Stereospecific Nickel-Catalyzed Cross-Coupling Reactions of Benzylic Ethers with Isotopically-Labeled Grignard Reagents

    PubMed Central

    2015-01-01

    In this manuscript we highlight the potential of stereospecific nickel-catalyzed cross-coupling reactions for applications in the pharmaceutical industry. Using an inexpensive and sustainable nickel catalyst, we report a gram-scale Kumada cross-coupling reaction. Reactions are highly stereospecific and proceed with inversion at the benzylic position. We also expand the scope of our reaction to incorporate isotopically labeled substituents. PMID:27458328

  7. A device for single leaf labelling with CO2 isotopes to study carbon allocation and partitioning in Arabidopsis thaliana

    PubMed Central

    2013-01-01

    Background Plant biomass consists primarily of carbohydrates derived from photosynthesis. Monitoring the assimilation of carbon via the Calvin-Benson cycle and its subsequent utilisation is fundamental to understanding plant growth. The use of stable and radioactive carbon isotopes, supplied to plants as CO2, allows the measurement of fluxes through the intermediates of primary photosynthetic metabolism, long-distance transport of sugars in the vasculature, and the synthesis of structural and storage components. Results Here we describe the design of a system for supplying isotopically labelled CO2 to single leaves of Arabidopsis thaliana. We demonstrate that the system works well using short pulses of 14CO2 and that it can be used to produce robust qualitative and quantitative data about carbon export from source leaves to the sink tissues, such as the developing leaves and the roots. Time course experiments show the dynamics of carbon partitioning between storage as starch, local production of biomass, and export of carbon to sink tissues. Conclusion This isotope labelling method is relatively simple to establish and inexpensive to perform. Our use of 14CO2 helps establish the temporal and spatial allocation of assimilated carbon during plant growth, delivering data complementary to those obtained in recent studies using 13CO2 and MS-based metabolomics techniques. However, we emphasise that this labelling device could also be used effectively in combination with 13CO2 and MS-based techniques. PMID:24252607

  8. Expression of the GM2-activator protein in the methylotrophic yeast Pichia pastoris, purification, isotopic labeling, and biophysical characterization.

    PubMed

    Wendeler, Michaela; Hoernschemeyer, Joerg; John, Michael; Werth, Norbert; Schoeniger, Maike; Lemm, Thorsten; Hartmann, Rudolf; Kessler, Horst; Sandhoff, Konrad

    2004-03-01

    The GM2-activator protein (GM2AP) belongs to a group of five small, nonenzymatic proteins that are essential cofactors for the degradation of glycosphingolipids in the lysosome. It mediates the interaction between the water-soluble enzyme beta-hexosaminidase A and its membrane-embedded substrate, ganglioside GM2, at the lipid-water interphase. Inherited defects in the gene encoding this glycoprotein cause a fatal neurological storage disorder, the AB variant of GM2 gangliosidosis. With the aim to establish a convenient eukaryotic system that allows the efficient production of functionally folded, glycosylated GM2AP and offers the potential of cost-efficient isotopic labeling for structural studies by NMR spectroscopy, we established the expression of recombinant GM2AP in the methylotrophic yeast Pichia pastoris. For the construction of expression plasmids, either the full cDNA encoding human GM2AP preproprotein was cloned in the expression vector pPIC3.5K, or the cDNA encoding only the mature form of GM2AP was inserted in the vector pPIC9K under control of the alcohol oxidase 1 promoter. Both plasmids led to the successful secretory expression of active, glycosylated GM2AP, which could easily be purified by Ni-NTA chromatography due to the hexahistidine tag introduced at the C-terminus. Remarkably, the expression of this membrane-active protein in P. pastoris was accompanied by two peculiarities which were not encountered in other expression systems for GM2AP: First, a significant fraction of the secreted protein existed in the form of aggregates, and second, considerable amounts of noncovalently bound lipids were associated with the recombinant protein. A three-step purification scheme was therefore devised consisting of Ni-NTA, reversed phase, and gel filtration chromatography, which finally yielded 10-12 mg of purified, monomeric GM2AP per liter of expression supernatant. MALDI- and ESI-TOF mass spectrometry were employed to assess the processing, homogeneity

  9. Efficient isotope separation by single-photon atomic sorting

    SciTech Connect

    Jerkins, M.; Chavez, I.; Raizen, M. G.; Even, U.

    2010-09-15

    We propose a general and scalable approach to isotope separation. The method is based on an irreversible change of the mass-to-magnetic moment ratio of a particular isotope in an atomic beam, followed by a magnetic multipole whose gradients deflect and guide the atoms. The underlying mechanism is a reduction of the entropy of the beam by the information of a single scattered photon for each atom that is separated. We numerically simulate isotope separation for a range of examples, which demonstrate this technique's general applicability to almost the entire periodic table. The practical importance of the proposed method is that large-scale isotope separation should be possible, using ordinary inexpensive magnets and the existing technologies of supersonic beams and lasers.

  10. Intracellular Isotope Localization in Ammonia sp. (Foraminifera) of Oxygen-Depleted Environments: Results of Nitrate and Sulfate Labeling Experiments

    PubMed Central

    Nomaki, Hidetaka; Bernhard, Joan M.; Ishida, Akizumi; Tsuchiya, Masashi; Uematsu, Katsuyuki; Tame, Akihiro; Kitahashi, Tomo; Takahata, Naoto; Sano, Yuji; Toyofuku, Takashi

    2016-01-01

    Some benthic foraminiferal species are reportedly capable of nitrate storage and denitrification, however, little is known about nitrate incorporation and subsequent utilization of nitrate within their cell. In this study, we investigated where and how much 15N or 34S were assimilated into foraminiferal cells or possible endobionts after incubation with isotopically labeled nitrate and sulfate in dysoxic or anoxic conditions. After 2 weeks of incubation, foraminiferal specimens were fixed and prepared for Transmission Electron Microscopy (TEM) and correlative nanometer-scale secondary ion mass spectrometry (NanoSIMS) analyses. TEM observations revealed that there were characteristic ultrastructural features typically near the cell periphery in the youngest two or three chambers of the foraminifera exposed to anoxic conditions. These structures, which are electron dense and ~200–500 nm in diameter and co-occurred with possible endobionts, were labeled with 15N originated from 15N-labeled nitrate under anoxia and were labeled with both 15N and 34S under dysoxia. The labeling with 15N was more apparent in specimens from the dysoxic incubation, suggesting higher foraminiferal activity or increased availability of the label during exposure to oxygen depletion than to anoxia. Our results suggest that the electron dense bodies in Ammonia sp. play a significant role in nitrate incorporation and/or subsequent nitrogen assimilation during exposure to dysoxic to anoxic conditions. PMID:26925038

  11. Biodegradation and mineralization of isotopically labeled TNT and RDX in anaerobic marine sediments.

    PubMed

    Ariyarathna, Thivanka; Vlahos, Penny; Smith, Richard W; Fallis, Stephen; Groshens, Thomas; Tobias, Craig

    2016-10-28

    The lack of knowledge on the fate of explosive compounds 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), particularly in marine ecosystems, constrains the application of bioremediation techniques in explosive-contaminated coastal sites. The authors present a comparative study on anaerobic biodegradation and mineralization of (15) N-nitro group isotopically labeled TNT and RDX in organic carbon-rich, fine-grained marine sediment with native microbial assemblages. Separate sediment slurry experiments were carried out for TNT and RDX at 23°C for 16 d. Dissolved and sediment-sorbed fractions of parent and transformation products, isotopic compositions of sediment, and mineralization products of the dissolved inorganic N pool ((15) NH4(+) ,(15) NO3(-) ,(15) NO2(-) , and (15) N2 ) were measured. The rate of TNT removal from the aqueous phase was faster (0.75 h(-1) ) than that of RDX (0.37 h(-1) ), and (15) N accumulation in sediment was higher in the TNT (13%) than the RDX (2%) microcosms. Mono-amino-dinitrotoluenes were identified as intermediate biodegradation products of TNT. Two percent of the total spiked TNT-N is mineralized to dissolved inorganic N through 2 different pathways: denitration as well as deamination and formation of NH4(+) , facilitated by iron and sulfate reducing bacteria in the sediments. The majority of the spiked TNT-N (85%) is in unidentified pools by day 16. Hexahydro-1,3,5-trinitro-1,3,5-triazine (10%) biodegrades to nitroso derivatives, whereas 13% of RDX-N in nitro groups is mineralized to dissolved inorganic N anaerobically by the end of the experiment. The primary identified mineralization end product of RDX (40%) is NH4(+) , generated through either deamination or mono-denitration, followed by ring breakdown. A reasonable production of N2 gas (13%) was seen in the RDX system but not in the TNT system. Sixty-eight percent of the total spiked RDX-N is in an unidentified pool by day 16 and may include

  12. Efficient multi-value connected component labeling algorithm and its ASIC design

    NASA Astrophysics Data System (ADS)

    Sang, Hongshi; Zhang, Jing; Zhang, Tianxu

    2007-12-01

    An efficient connected component labeling algorithm for multi-value image is proposed in this paper. The algorithm is simple and inerratic suitable for hardware design. A one-dimensional array is used to store equivalence pairs. Record organization of equivalence table is advantageously to find the minimum equivalent label, and can shrink time on processing equivalence table. A pipelined architecture of the algorithm is described to enhance system performance.

  13. Primary Productivity Rates at Station ALOHA Determined by 18O Labeling and the Triple Isotope Composition of Dissolved Oxygen

    NASA Astrophysics Data System (ADS)

    Juranek, L. W.; Quay, P. D.; Karl, D. M.

    2002-12-01

    Although knowledge of accurate Primary Productivity (PPr) rates is essential to the understanding of ocean carbon cycling, the standard method of determining ocean productivity, 14C labeling, often yields uncertain results. Typically, 14C-derived PPr rates fall ambiguously between gross and net productivity because the method is sensitive to recycling of a relatively small POC pool. Bottle incubations using labeled oxygen produced from 18O-enriched water have shown promise in giving a more consistent measure of gross productivity, since the pool of dissolved oxygen is less sensitive to recycling than POC. Typically this method gives gross PPr rates that are 2-3 times 14C-derived rates. Recently Luz and Barkan (2001) have pioneered a new technique to determine PPr rates using the triple isotope composition of dissolved oxygen as an in situ tracer. This relies on the observation that a signature of mass-independent fractionation originating in the stratosphere and imparted to the surface ocean by air-sea exchange is diminished by biological oxygen production. In February 2002 we measured gross productivity using both the 18O-labeling and triple isotope in situ methods at Hawaii Ocean Time-Series station ALOHA in the N. Pacific subtropical gyre. We found the in situ oxygen isotope method yielded double the 14C-derived PPr rates while 18O bottle incubations yielded similar rates as 14C. In addition, comparison of in situ isotope measurements with the biological oxygen saturation state indicate that community respiration is approximately equal to gross photosynthesis in the upper 60 m while from 80-200 m respiration exceeds photosynthesis by at most 10 %. We will present these results along with new results from upcoming measurements at station ALOHA.

  14. Probing Protein 3D Structures and Conformational Changes Using Electrochemistry-Assisted Isotope Labeling Cross-Linking Mass Spectrometry.

    PubMed

    Zheng, Qiuling; Zhang, Hao; Wu, Shiyong; Chen, Hao

    2016-05-01

    This study presents a new chemical cross-linking mass spectrometry (MS) method in combination with electrochemistry and isotope labeling strategy for probing both protein three-dimensional (3D) structures and conformational changes. For the former purpose, the target protein/protein complex is cross-linked with equal mole of premixed light and heavy isotope labeled cross-linkers carrying electrochemically reducible disulfide bonds (i.e., DSP-d0 and DSP-d8 in this study, DSP = dithiobis[succinimidyl propionate]), digested and then electrochemically reduced followed with online MS analysis. Cross-links can be quickly identified because of their reduced intensities upon electrolysis and the presence of doublet isotopic peak characteristics. In addition, electroreduction converts cross-links into linear peptides, facilitating MS/MS analysis to gain increased information about their sequences and modification sites. For the latter purpose of probing protein conformational changes, an altered procedure is adopted, in which the protein in two different conformations is cross-linked using DSP-d0 and DSP-d8 separately, and then the two protein samples are mixed in 1:1 molar ratio. The merged sample is subjected to digestion and electrochemical mass spectrometric analysis. In such a comparative cross-linking experiment, cross-links could still be rapidly recognized based on their responses to electrolysis. More importantly, the ion intensity ratios of light and heavy isotope labeled cross-links reveal the conformational changes of the protein, as exemplified by examining the effect of Ca(2+) on calmodulin conformation alternation. This new cross-linking MS method is fast and would have high value in structural biology. Graphical Abstract ᅟ.

  15. Probing Protein 3D Structures and Conformational Changes Using Electrochemistry-Assisted Isotope Labeling Cross-Linking Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zheng, Qiuling; Zhang, Hao; Wu, Shiyong; Chen, Hao

    2016-05-01

    This study presents a new chemical cross-linking mass spectrometry (MS) method in combination with electrochemistry and isotope labeling strategy for probing both protein three-dimensional (3D) structures and conformational changes. For the former purpose, the target protein/protein complex is cross-linked with equal mole of premixed light and heavy isotope labeled cross-linkers carrying electrochemically reducible disulfide bonds (i.e., DSP-d0 and DSP-d8 in this study, DSP = dithiobis[succinimidyl propionate]), digested and then electrochemically reduced followed with online MS analysis. Cross-links can be quickly identified because of their reduced intensities upon electrolysis and the presence of doublet isotopic peak characteristics. In addition, electroreduction converts cross-links into linear peptides, facilitating MS/MS analysis to gain increased information about their sequences and modification sites. For the latter purpose of probing protein conformational changes, an altered procedure is adopted, in which the protein in two different conformations is cross-linked using DSP-d0 and DSP-d8 separately, and then the two protein samples are mixed in 1:1 molar ratio. The merged sample is subjected to digestion and electrochemical mass spectrometric analysis. In such a comparative cross-linking experiment, cross-links could still be rapidly recognized based on their responses to electrolysis. More importantly, the ion intensity ratios of light and heavy isotope labeled cross-links reveal the conformational changes of the protein, as exemplified by examining the effect of Ca2+ on calmodulin conformation alternation. This new cross-linking MS method is fast and would have high value in structural biology.

  16. Stable Isotope Labeled n-Alkanes to Assess Digesta Passage Kinetics through the Digestive Tract of Ruminants

    PubMed Central

    Warner, Daniel; Ferreira, Luis M. M.; Breuer, Michel J. H.; Dijkstra, Jan; Pellikaan, Wilbert F.

    2013-01-01

    We describe the use of carbon stable isotope (13C) labeled n-alkanes as a potential internal tracer to assess passage kinetics of ingested nutrients in ruminants. Plant cuticular n-alkanes originating from intrinsically 13C labeled ryegrass plants were pulse dosed intraruminally in four rumen-cannulated lactating dairy cows receiving four contrasting ryegrass silage treatments that differed in nitrogen fertilization level (45 or 90 kg nitrogen ha−1) and maturity (early or late). Passage kinetics through the gastrointestinal tract were derived from the δ13C (i.e. the ratio 13C:12C) in apparently undigested fecal material. Isotopic enrichment was observed in a wide range of long-chain n-alkanes (C27–C36) and passage kinetics were determined for the most abundant C29, C31 and C33 n-alkanes, for which a sufficiently high response signal was detected by combustion isotope ratio mass spectrometry. Basal diet treatment and carbon chain length of n-alkanes did not affect fractional passage rates from the rumen (K1) among individual n-alkanes (3.71–3.95%/h). Peak concentration time and transit time showed a quantitatively small, significant (p≤0.002) increase with carbon chain length. K1 estimates were comparable to those of the 13C labeled digestible dry matter fraction (3.38%/h; r = 0.61 to 0.71; p≤0.012). A literature review has shown that n-alkanes are not fermented by microorganisms in the rumen and affirms no preferential depletion of 13C versus 12C. Our results suggest that 13C labeled n-alkanes can be used as nutrient passage tracers and support the reliability of the δ13C signature of digestible feed nutrients as a tool to measure nutrient-specific passage kinetics. PMID:24124493

  17. A simple isotopic labeling method to study cysteine oxidation in Alzheimer's disease: oxidized cysteine-selective dimethylation (OxcysDML).

    PubMed

    Gu, Liqing; Robinson, Renã A S

    2016-04-01

    Cysteine is widely involved in redox signaling pathways through a number of reversible and irreversible modifications. Reversible modifications (e.g., S-glutathionylation, S-nitrosylation, disulfide bonds, and sulfenic acid) are used to protect proteins from oxidative attack and maintain cellular homeostasis, while irreversible oxidations (e.g., sulfinic acid and sulfonic acid) serve as hallmarks of oxidative stress. Proteomic analysis of cysteine-enriched peptides coupled with reduction of oxidized thiols can be used to measure the oxidation states of cysteine, which is helpful for elucidating the role that oxidative stress plays in biology and disease. As an extension of our previously reported cysDML method, we have developed oxidized cysteine-selective dimethylation (OxcysDML), to investigate the site-specific total oxidation of cysteine residues in biologically relevant samples. OxcysDML employs (1) blocking of free thiols by a cysteine-reactive reagent, (2) enrichment of peptides containing reversibly oxidized cysteine by a solid phase resin, and (3) isotopic labeling of peptide amino groups to quantify cysteine modifications arising from different biological conditions. On-resin enrichment and labeling minimizes sample handing time and improves efficiency in comparison with other redox proteomic methods. OxcysDML is also inexpensive and flexible, as it can accommodate the exploration of various cysteine modifications. Here, we applied the method to liver tissues from a late-stage Alzheimer's disease (AD) mouse model and wild-type (WT) controls. Because we have previously characterized this proteome using the cysDML approach, we are able here to probe deeper into the redox status of cysteine in AD. OxcysDML identified 1129 cysteine sites (from 527 proteins), among which 828 cysteine sites underwent oxidative modifications. Nineteen oxidized cysteine sites had significant alteration levels in AD and represent proteins involved in metabolic processes. Overall

  18. Mechanistic investigations aided by isotopic labeling. 10. Investigations of novel furan-2,3-dione rearrangements by oxygen-17 labeling

    SciTech Connect

    Kollenz, G.; Sterk, H.; Hutter, G. )

    1991-01-04

    The oxa 1,3-diene moiety in 4-benzoyl-5-phenylfuran-2,3-dione (1) adds aryl isocyanides or heterocumulenes via formal (4 + 1) or (4 + 2) cycloaddition processes. The unstable primary adducts undergo novel furandione rearrangements to intermediates in which the two oxygen atoms of the lactone moiety in (1) are equivalent. This equivalence was confirmed by {sup 17}O-labeling experiments using {sup 17}O NMR spectroscopic and mass spectroscopic measurements. Comparison of the {sup 17}O chemical shifts in (1), labeled either at the benzoyl and ring oxygens (1a-{sup 17}O) or at both exocyclic ring-carbonyl oxygens (1b-{sup 17}O), with those in the products (2-4) confirmed the proposed pathways of these rearrangements. Reactions involving carbodiimides, isocyanates, and ketene imines were investigated.

  19. Phosphorus use efficiency by cotton measured through 32P isotope technique

    NASA Astrophysics Data System (ADS)

    Marcante, N. C.; Muraoka, T.; Camacho, M. A.; César, F. R. C. F.; Bruno, I. P.

    2012-04-01

    Deficiency of phosphorus (P) is the major limitation to agricultural production in the Brazilian Savannah (Cerrado), which is naturally poor in this nutrient. Most of the P applied by fertilizer in Cerrado soils are converted into low solubility forms and can not be easily absorbed by plants. This occurs for characteristics of adsorption, conditioned by the predominance of low pH and aluminum and iron oxides in the clay fraction. The development of genotypes and cultivars with greater capacity to grow up in soils with low P availability ('phosphorus efficiency') is interesting to improve the agriculture in these areas in a sustainable way. Cotton (Gossypium spp.) is the main product for the fibers used nationally and globally in the textile chain. This study aim was to evaluate the efficiency of absorption and utilization of P by cotton cultivars/genotypes grown in Cerrado soil by the isotopic dilution technique. The soil classified as Ultisols, was labeled with the radioisotope 32P.The experiment was conducted in a greenhouse in a completely randomized design factorial 2 x 17. Factors were considered two levels of P (insufficient = 20 mg kg-1 and sufficient = 120 mg kg-1) and 17 genetic materials of cotton recommended for Cerrado region. Phosphorus levels influenced significantly the shoots dry matter production, the P content and accumulation, the 32P specific activity, the L value and L value less seed cotton P by cultivars and genotypes. The hierarchical clustering analysis used to verify the similarities between the cultivars and genotypes of cotton, classified them into internally homogeneous groups and heterogeneous between different groups. Cultivars FMT 523, FM 910 and CNPA GO 2043 were the most responsive to phosphate fertilizer in sufficient level of P, while the genotype Barbadense 01 and cultivars FM 966LL, IPR Jataí, BRS Aroeira and BRS Buriti were most efficient absorbing P in soils with insufficient level.

  20. Automated LC-HRMS(/MS) approach for the annotation of fragment ions derived from stable isotope labeling-assisted untargeted metabolomics.

    PubMed

    Neumann, Nora K N; Lehner, Sylvia M; Kluger, Bernhard; Bueschl, Christoph; Sedelmaier, Karoline; Lemmens, Marc; Krska, Rudolf; Schuhmacher, Rainer

    2014-08-05

    Structure elucidation of biological compounds is still a major bottleneck of untargeted LC-HRMS approaches in metabolomics research. The aim of the present study was to combine stable isotope labeling and tandem mass spectrometry for the automated interpretation of the elemental composition of fragment ions and thereby facilitate the structural characterization of metabolites. The software tool FragExtract was developed and evaluated with LC-HRMS/MS spectra of both native (12)C- and uniformly (13)C (U-(13)C)-labeled analytical standards of 10 fungal substances in pure solvent and spiked into fungal culture filtrate of Fusarium graminearum respectively. Furthermore, the developed approach is exemplified with nine unknown biochemical compounds contained in F. graminearum samples derived from an untargeted metabolomics experiment. The mass difference between the corresponding fragment ions present in the MS/MS spectra of the native and U-(13)C-labeled compound enabled the assignment of the number of carbon atoms to each fragment signal and allowed the generation of meaningful putative molecular formulas for each fragment ion, which in turn also helped determine the elemental composition of the precursor ion. Compared to laborious manual analysis of the MS/MS spectra, the presented algorithm marks an important step toward efficient fragment signal elucidation and structure annotation of metabolites in future untargeted metabolomics studies. Moreover, as demonstrated for a fungal culture sample, FragExtract also assists the characterization of unknown metabolites, which are not contained in databases, and thus exhibits a significant contribution to untargeted metabolomics research.

  1. Heterologous expression of Cenchritis muricatus protease inhibitor II (CmPI-II) in Pichia pastoris system: Purification, isotopic labeling and preliminary characterization.

    PubMed

    Cabrera-Muñoz, Aymara; Rojas, Laritza; Gil, Dayrom F; González-González, Yamile; Mansur, Manuel; Camejo, Ayamey; Pires, José R; Alonso-Del-Rivero Antigua, Maday

    2016-10-01

    Cenchritis muricatus protease inhibitor II (CmPI-II) is a tight-binding serine protease inhibitor of the Kazal family with an atypical broad specificity, being active against several proteases such as bovine pancreatic trypsin, human neutrophil elastase and subtilisin A. CmPI-II 3D structures are necessary for understanding the molecular basis of its activity. In the present work, we describe an efficient and straightforward recombinant expression strategy, as well as a cost-effective procedure for isotope labeling for NMR structure determination purposes. The vector pCM101 containing the CmPI-II gene, under the control of Pichia pastoris AOX1 promoter was constructed. Methylotrophic Pichia pastoris strain KM71H was then transformed with the plasmid and the recombinant protein (rCmPI-II) was expressed in benchtop fermenter in unlabeled or (15)N-labeled forms using ammonium chloride ((15)N, 99%) as the sole nitrogen source. Protein purification was accomplished by sequential cation exchange chromatography in STREAMLINE DirectHST, anion exchange chromatography on Hitrap Q-Sepharose FF and gel filtration on Superdex 75 10/30, yielding high quantities of pure rCmPI-II and (15)N rCmPI-II. Recombinant proteins displayed similar functional features as compared to the natural inhibitor and NMR spectra indicated folded and homogeneously labeled samples, suitable for further studies of structure and protease-inhibitor interactions.

  2. Development And Evaluation Of Stable Isotope And Fluorescent Labeling And Detection Methodologies For Tracking Injected Bacteria During In Situ Bioremediation

    SciTech Connect

    Mark E. Fuller; Tullis C. Onstott

    2003-12-17

    This report summarizes the results of a research project conducted to develop new methods to label bacterial cells so that they could be tracked and enumerated as they move in the subsurface after they are introduced into the groundwater (i.e., during bioaugmentation). Labeling methods based on stable isotopes of carbon (13C) and vital fluorescent stains were developed. Both approaches proved successful with regards to the ability to effectively label bacterial cells. Several methods for enumeration of fluorescently-labeled cells were developed and validated, including near-real time microplate spectrofluorometry that could be performed in the field. However, the development of a novel enumeration method for the 13C-enriched cells, chemical reaction interface/mass spectrometry (CRIMS), was not successful due to difficulties with the proposed instrumentation. Both labeling methodologies were successfully evaluated and validated during laboratory- and field-scale bacterial transport experiments. The methods developed during this research should be useful for future bacterial transport work as well as other microbial ecology research in a variety of environments. A full bibliography of research articles and meeting presentations related to this project is included (including web links to abstracts and full text reprints).

  3. Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT): a novel glycan-relative quantification strategy.

    PubMed

    Walker, S Hunter; Taylor, Amber D; Muddiman, David C

    2013-09-01

    The Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT) strategy for the sample preparation, data analysis, and relative quantification of N-linked glycans is presented. Glycans are derivatized with either natural (L) or stable-isotope labeled (H) hydrazide reagents and analyzed using reversed phase liquid chromatography coupled online to a Q Exactive mass spectrometer. A simple glycan ladder, maltodextrin, is first used to demonstrate the relative quantification strategy in samples with negligible analytical and biological variability. It is shown that after a molecular weight correction attributable to isotopic overlap and a post-acquisition normalization of the data to account for any systematic bias, a plot of the experimental H:L ratio versus the calculated H:L ratio exhibits a correlation of unity for maltodextrin samples mixed in different ratios. We also demonstrate that the INLIGHT approach can quantify species over four orders of magnitude in ion abundance. The INLIGHT strategy is further demonstrated in pooled human plasma, where it is shown that the post-acquisition normalization is more effective than using a single spiked-in internal standard. Finally, changes in glycosylation are able to be detected in complex biological matrices, when spiked with a glycoprotein. The ability to spike in a glycoprotein and detect change at the glycan level validates both the sample preparation and data analysis strategy, making INLIGHT an invaluable relative quantification strategy for the field of glycomics.

  4. Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT): A Novel Glycan-Relative Quantification Strategy

    NASA Astrophysics Data System (ADS)

    Walker, S. Hunter; Taylor, Amber D.; Muddiman, David C.

    2013-09-01

    The Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT) strategy for the sample preparation, data analysis, and relative quantification of N-linked glycans is presented. Glycans are derivatized with either natural (L) or stable-isotope labeled (H) hydrazide reagents and analyzed using reversed phase liquid chromatography coupled online to a Q Exactive mass spectrometer. A simple glycan ladder, maltodextrin, is first used to demonstrate the relative quantification strategy in samples with negligible analytical and biological variability. It is shown that after a molecular weight correction attributable to isotopic overlap and a post-acquisition normalization of the data to account for any systematic bias, a plot of the experimental H:L ratio versus the calculated H:L ratio exhibits a correlation of unity for maltodextrin samples mixed in different ratios. We also demonstrate that the INLIGHT approach can quantify species over four orders of magnitude in ion abundance. The INLIGHT strategy is further demonstrated in pooled human plasma, where it is shown that the post-acquisition normalization is more effective than using a single spiked-in internal standard. Finally, changes in glycosylation are able to be detected in complex biological matrices, when spiked with a glycoprotein. The ability to spike in a glycoprotein and detect change at the glycan level validates both the sample preparation and data analysis strategy, making INLIGHT an invaluable relative quantification strategy for the field of glycomics.

  5. Sensitive, Efficient Quantitation of 13C-Enriched Nucleic Acids via Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry for Applications in Stable Isotope Probing.

    PubMed

    Wilhelm, Roland; Szeitz, András; Klassen, Tara L; Mohn, William W

    2014-12-01

    Stable isotope probing (SIP) of nucleic acids is a powerful tool for studying the functional traits of microbial populations within complex communities, but SIP involves a number of technical challenges. Many of the difficulties in DNA-SIP and RNA-SIP experiments can be effectively overcome with an efficient, sensitive method for quantitating the isotopic enrichment of nucleic acids. Here, we present a sensitive method for quantitating (13)C enrichment of nucleic acids, requiring a few nanograms of sample, and we demonstrate its utility in typical DNA-SIP and RNA-SIP experiments. All five nucleobases (adenine, guanine, cytosine, thymine, and uracil) were separated and detected by using ultrahigh-performance liquid chromatography-tandem mass spectrometry. We detected all isotopic species in samples with as low as 1.5 atom% (13)C above natural abundance, using 1-ng loadings. Quantitation was used to characterize the isotopic enrichment kinetics of cellulose- and lignin-based microcosm experiments and to optimize the recovery of enriched nucleic acids. Application of our method will minimize the quantity of expensive isotopically labeled substrates required and reduce the risk of failed experiments due to insufficient recovery of labeled nucleic acids for sequencing library preparation.

  6. Sensitive, Efficient Quantitation of 13C-Enriched Nucleic Acids via Ultrahigh-Performance Liquid Chromatography–Tandem Mass Spectrometry for Applications in Stable Isotope Probing

    PubMed Central

    Wilhelm, Roland; Szeitz, András; Klassen, Tara L.

    2014-01-01

    Stable isotope probing (SIP) of nucleic acids is a powerful tool for studying the functional traits of microbial populations within complex communities, but SIP involves a number of technical challenges. Many of the difficulties in DNA-SIP and RNA-SIP experiments can be effectively overcome with an efficient, sensitive method for quantitating the isotopic enrichment of nucleic acids. Here, we present a sensitive method for quantitating 13C enrichment of nucleic acids, requiring a few nanograms of sample, and we demonstrate its utility in typical DNA-SIP and RNA-SIP experiments. All five nucleobases (adenine, guanine, cytosine, thymine, and uracil) were separated and detected by using ultrahigh-performance liquid chromatography–tandem mass spectrometry. We detected all isotopic species in samples with as low as 1.5 atom% 13C above natural abundance, using 1-ng loadings. Quantitation was used to characterize the isotopic enrichment kinetics of cellulose- and lignin-based microcosm experiments and to optimize the recovery of enriched nucleic acids. Application of our method will minimize the quantity of expensive isotopically labeled substrates required and reduce the risk of failed experiments due to insufficient recovery of labeled nucleic acids for sequencing library preparation. PMID:25217022

  7. Efficient mixing of the solar nebula from uniform Mo isotopic composition of meteorites.

    PubMed

    Becker, Harry; Walker, Richard J

    2003-09-11

    The abundances of elements and their isotopes in our Galaxy show wide variations, reflecting different nucleosynthetic processes in stars and the effects of Galactic evolution. These variations contrast with the uniformity of stable isotope abundances for many elements in the Solar System, which implies that processes efficiently homogenized dust and gas from different stellar sources within the young solar nebula. However, isotopic heterogeneity has been recognized on the subcentimetre scale in primitive meteorites, indicating that these preserve a compositional memory of their stellar sources. Small differences in the abundance of stable molybdenum isotopes in bulk rocks of some primitive and differentiated meteorites, relative to terrestrial Mo, suggest large-scale Mo isotopic heterogeneity between some inner Solar System bodies, which implies physical conditions that did not permit efficient mixing of gas and dust. Here we report Mo isotopic data for bulk samples of primitive and differentiated meteorites that show no resolvable deviations from terrestrial Mo. This suggests efficient mixing of gas and dust in the solar nebula at least to 3 au from the Sun, possibly induced by magnetohydrodynamic instabilities. These mixing processes must have occurred before isotopic fractionation of gas-phase elements and volatility-controlled chemical fractionations were established.

  8. Energy Efficiency Standards and Labels in North America: Opportunities for Harmonization

    SciTech Connect

    Vanwiemcgrory, Laura; Wiel, Stephen; Van Wie McGrory, Laura; Harrington, Lloyd

    2002-05-16

    To support the North American Energy Working Group's Expert Group on Energy Efficiency (NAEWG-EE), USDOE commissioned the Collaborative Labeling and Appliance Standards Program (CLASP) to prepare a resource document comparing current standards, labels, and test procedure regulations in Canada, Mexico, and the United States. The resulting document reached the following conclusions: Out of 24 energy-using products for which at least one of the three countries has energy efficiency regulations, three products -- refrigerators/freezers, split system central air conditioners, and room air conditioners -- have similar or identical minimum energy performance standards (MEPS) in the three countries. These same three products, as well as three-phase motors, have similar or identical test procedures throughout the region. There are 10 products with different MEPS and test procedures, but which have the short-term potential to develop common test procedures, MEPS, and/or labels. Three other noteworthy areas where possible energy efficiency initiatives have potential for harmonization are standby losses, uniform endorsement labels, and a new standard or label on windows. This paper explains these conclusions and presents the underlying comparative data.

  9. Carbon Allocation of 13CO2-labeled Photoassimilate in Larix gmelinii Saplings - A Physiological Basis for Isotope Dendroclimatology in Eastern Siberia.

    NASA Astrophysics Data System (ADS)

    Kagawa, A.; Sugimoto, A.; Maximov, T. C.

    2006-12-01

    Tree-ring density and widths have been successfully used to reconstruct summer temperatures in high- northern latitudes, although a discrepancy between tree-growth and temperature has been found for recent decades. The so-called "reduced sensitivity" of tree rings to summer temperatures has been observed especially strongly in northern Siberia (Briffa et al., 1998) and drought stress (increased water use efficiency) arose from global warming and/or increasing CO2 are suggested as causes (Barber et al. 2000, Saurer et al. 2004). By using carbon isotope ratio as an indicator of drought stress and ring-width/density as indicators of growth, we can clarify how drought stress caused by recent global warming affects wood formation of Siberian trees. However, isotope dendroclimatology is still in its infancy and our understanding of basic physiological processes of isotope signal transfer from leaves to tree rings is insufficient. In order to understand translocation, storage, and allocation of photoassimilate to different organs of trees, we pulse- labeled ten L. gmelinii growing in a continuous permafrost zone with stable 13CO2. We studied seasonal course of carbon allocation patterns of photoassimilate among needles, branches, stem and roots and also how spring, summer, and autumn photoassimilate is later used for both earlywood and latewood formation. About half of the carbon in new needles was derived from stored material. The starch pool in non- needle parts, which can be used for xylem formation, drew about 43 percent of its carbon from previous year's photoassimilate, suggesting that carbon storage is the key mechanism behind autocorrelation in (isotope) dendroclimatology. Analysis of intra-annual 13C of the tree rings formed after the labeling revealed that earlywood contained photoassimilate from the previous summer and autumn as well as from the current spring. Latewood was mainly composed of photoassimilate from the current year's summer/autumn, although it

  10. Determining the Composition and Stability of Protein Complexes Using an Integrated Label-Free and Stable Isotope Labeling Strategy

    PubMed Central

    Greco, Todd M.; Guise, Amanda J.; Cristea, Ileana M.

    2016-01-01

    In biological systems, proteins catalyze the fundamental reactions that underlie all cellular functions, including metabolic processes and cell survival and death pathways. These biochemical reactions are rarely accomplished alone. Rather, they involve a concerted effect from many proteins that may operate in a directed signaling pathway and/or may physically associate in a complex to achieve a specific enzymatic activity. Therefore, defining the composition and regulation of protein complexes is critical for understanding cellular functions. In this chapter, we describe an approach that uses quantitative mass spectrometry (MS) to assess the specificity and the relative stability of protein interactions. Isolation of protein complexes from mammalian cells is performed by rapid immunoaffinity purification, and followed by in-solution digestion and high-resolution mass spectrometry analysis. We employ complementary quantitative MS workflows to assess the specificity of protein interactions using label-free MS and statistical analysis, and the relative stability of the interactions using a metabolic labeling technique. For each candidate protein interaction, scores from the two workflows can be correlated to minimize nonspecific background and profile protein complex composition and relative stability. PMID:26867737

  11. Energy-efficiency labels and standards: A guidebook for appliances, equipment and lighting

    SciTech Connect

    McMahon, James E.; Wiel, Stephen

    2001-02-16

    Energy-performance improvements in consumer products are an essential element in any government's portfolio of energy-efficiency and climate change mitigation programs. Governments need to develop balanced programs, both voluntary and regulatory, that remove cost-ineffective, energy-wasting products from the marketplace and stimulate the development of cost-effective, energy-efficient technology. Energy-efficiency labels and standards for appliances, equipment, and lighting products deserve to be among the first policy tools considered by a country's energy policy makers. The U.S. Agency for International Development (USAID) and the United Nations Foundation (UNF) recognize the need to support policy makers in their efforts to implement energy-efficiency standards and labeling programs and have developed this guidebook, together with the Collaborative Labeling and Appliance Standards Program (CLASP), as a primary reference. This guidebook was prepared over the course of the past year with significant contribution from the authors and reviewers mentioned previously. Their diligent participation has made this the international guidance tool it was intended to be. The lead authors would also like to thank the following individuals for their support in the development, production, and distribution of the guidebook: Marcy Beck, Elisa Derby, Diana Dhunke, Ted Gartner, and Julie Osborn of Lawrence Berkeley National Laboratory as well as Anthony Ma of Bevilacqua-Knight, Inc. This guidebook is designed as a manual for government officials and others around the world responsible for developing, implementing, enforcing, monitoring, and maintaining labeling and standards-setting programs. It discusses the pros and cons of adopting energy-efficiency labels and standards and describes the data, facilities, and institutional and human resources needed for these programs. It provides guidance on the design, development, implementation, maintenance, and evaluation of the programs

  12. An efficient climate model with water isotope physics: NEEMY

    NASA Astrophysics Data System (ADS)

    Hu, J.; Emile-Geay, J.

    2015-12-01

    This work describes the development of an isotope-enabled atmosphere-ocean global climate model, NEEMY. This is a model of intermediate complexity, which can run 100 model years in 30 hours using 33 CPUs. The atmospheric component is the SPEEDY-IER (Molteni et al. 2003; Dee et al. 2015a), which is a water isotope-enabled (with equilibrium and kinetic fractionation schemes in precipitation, evaporation and soil moisture) simplified atmospheric general circulation model, with T30 horizontal resolution and 8 vertical layers. The oceanic component is NEMO 3.4 (Madec 2008), a state-of-the-art oceanic model (~2° horizontal resolution and 31 vertical layers) with an oceanic isotope module (a passive tracer scheme). A 1000-year control run shows that NEEMY is stable and its energy is conserved. The mean state is comparable to that of CMIP3-era CGCMs, though much cheaper to run. Atmospheric teleconnections such as the NAO and PNA are simulated very well. NEEMY also simulates the oceanic meridional overturning circulation well. The tropical climate variability is weaker than observations, and the climatology exhibits a double ITCZ problem despite bias corrections. The standard deviation of the monthly mean Nino3.4 index is 0.61K, compared to 0.91K in observations (Reynolds et al. 2002). We document similarities and differences with a close cousin, SPEEDY-NEMO (Kucharski et al. 2015). With its fast speed and relatively complete physical processes, NEEMY is suitable for paleoclimate studies ; we will present some forced simulations of the past millennium and their use in forward-modeling climate proxies, via proxy system models (PSMs, Dee et al 2015b). References Dee, S., D. Noone, N. Buenning, J. Emile-Geay, and Y. Zhou, 2015a: SPEEDY-IER: A fast atmospheric GCM with water isotope physics. J. Geophys. Res. Atmos., 120: 73-91. doi:10.1002/2014JD022194. Dee, S. G., J. Emile-Geay, M. N. Evans, Allam, A., D. M. Thompson, and E. J. Steig, 2015b: PRYSM: an open-source framework

  13. Stable isotope-labeled vitamin D, metabolites and chemical analogs: Synthesis and use in mass spectrometric studies

    SciTech Connect

    Coldwell, R.D.; Trafford, D.J.; Varley, M.J.; Kirk, D.N.; Makin, H.L. )

    1990-10-01

    Methods for the measurement of vitamin D and its metabolites using stable isotope-labeled internal standards and mass spectrometry are reviewed. The synthesis of both labeled and unlabeled standards is illustrated, and details of the synthesis of (26,26,27,27,27(-2)H5)-25,26-dihydroxyvitamin D3 and (28,28,28(-2)H3)-24,25-dihydroxyvitamin D2 are given. The use of in vitro biologic systems for the production of further metabolites of deuterated 25-hydroxyvitamin D3 is discussed. Use of deuterated 25-hydroxydihydrotachysterol3 as a substrate in the isolated perfused rat kidney has provided valuable data for the assignment of structure to a number of metabolites of 25-hydroxydihydrotachysterol3 formed in this system. 51 refs.

  14. Metabolic labeling with stable isotope nitrogen (15N) to follow amino acid and protein turnover of three plastid proteins in Chlamydomonas reinhardtii

    PubMed Central

    2014-01-01

    Background The length of time that a protein remains available to perform its function is significantly influenced by its turnover rate. Knowing the turnover rate of proteins involved in different processes is important to determining how long a function might progress even when the stimulus has been removed and no further synthesis of the particular proteins occurs. In this article, we describe the use of 15N-metabolic labeling coupled to GC-MS to follow the turnover of free amino acids and LC-MS/MS to identify and LC-MS to follow the turnover of specific proteins in Chlamydomonas reinhardtii. Results To achieve the metabolic labeling, the growth medium was formulated with standard Tris acetate phosphate medium (TAP) in which14NH4Cl was replaced with 15NH415NO3 and (14NH4)6Mo7O24.4H2O was replaced with Na2MoO4.2H2O. This medium designated 15N-TAP allowed CC-125 algal cells to grow normally. Mass isotopic distribution revealed successful 15N incorporation into 13 amino acids with approximately 98% labeling efficiency. Tryptic digestion of the 55 kDa SDS-PAGE bands from 14N- and 15N-labeled crude algal protein extracts followed by LC-MS/MS resulted in the identification of 27 proteins. Of these, five displayed peptide sequence confidence levels greater than 95% and protein sequence coverage greater than 25%. These proteins were the RuBisCo large subunit, ATP synthase CF1 alpha and beta subunits, the mitochondrial protein (F1F0 ATP synthase) and the cytosolic protein (S-adenosyl homocysteine hydroxylase). These proteins were present in both labeled and unlabeled samples. Once the newly synthesized 15N-labeled free amino acids and proteins obtained maximum incorporation of the 15N-label, turnover rates were determined after transfer of cells into 14N-TAP medium. The t½ values were determined for the three plastid proteins (RuBisCo, ATP synthase CF1 alpha and beta) by following the reduction of the 15N-fractional abundance over time. Conclusion We describe a more

  15. Status of China's Energy Efficiency Standards and Labels for Appliances and International Collaboration

    SciTech Connect

    Zhou, Nan

    2008-03-01

    China first adopted minimum energy performance standards (MEPS) in 1989. Today, there are standards for a wide range of domestic, commercial and selected industrial equipment. In 1999, China launched a voluntary endorsement label, which has grown to cover over 40 products including water-saving products (See Figure 1). Further, in 2005, China started a mandatory energy information label (also referred to as the 'Energy Label'). Today, the Energy Label is applied to four products including: air conditioners; household refrigerators; clothes washers; and unitary air conditioners (See Figure 2). MEPS and the voluntary endorsement labeling specifications have been updated and revised in order to reflect technology improvements to those products in the market. These programs have had an important impact in reducing energy consumption of appliances in China. Indeed, China has built up a strong infrastructure to develop and implement product standards. Historically, however, the government's primary focus has been on the technical requirements for efficiency performance. Less attention has been paid to monitoring and enforcement with a minimal commitment of resources and little expansion of administrative capacity in this area. Thus, market compliance with both mandatory standards and labeling programs has been questionable and actual energy savings may have been undermined as a result. The establishment of a regularized monitoring system for tracking compliance with the mandatory standard and energy information label in China is a major area for program improvement. Over the years, the Collaborative Labeling and Appliance Standards Program (CLASP) has partnered with several Chinese institutions to promote energy-efficient products in China. CLASP, together with its implementing partner Lawrence Berkeley National Laboratory (LBNL), has assisted China in developing and updating the above-mentioned standards and labeling programs. Because of the increasing need for the

  16. CK-LPA: Efficient community detection algorithm based on label propagation with community kernel

    NASA Astrophysics Data System (ADS)

    Lin, Zhen; Zheng, Xiaolin; Xin, Nan; Chen, Deren

    2014-12-01

    With the rapid development of Web 2.0 and the rise of online social networks, finding community structures from user data has become a hot topic in network analysis. Although research achievements are numerous at present, most of these achievements cannot be adopted in large-scale social networks because of heavy computation. Previous studies have shown that label propagation is an efficient means to detect communities in social networks and is easy to implement; however, some drawbacks, such as low accuracy, high randomness, and the formation of a “monster” community, have been found. In this study, we propose an efficient community detection method based on the label propagation algorithm (LPA) with community kernel (CK-LPA). We assign a corresponding weight to each node according to node importance in the whole network and update node labels in sequence based on weight. Then, we discuss the composition of weights, the label updating strategy, the label propagation strategy, and the convergence conditions. Compared with the primitive LPA, existing drawbacks are solved by CK-LPA. Experiments and benchmarks reveal that our proposed method sustains nearly linear time complexity and exhibits significant improvements in the quality aspect of static community detection. Hence, the algorithm can be applied in large-scale social networks.

  17. USE OF OXYGEN-18 ISOTOPE LABELING FOR MEASUREMENT OF OXIDATIVE STRESS

    EPA Science Inventory

    Oxygen-18 (18-O) labeling provides a sensitive means for quantifying oxygen
    binding that occurs during in vivo oxidations. Oxidants (ozone, nitrogen
    oxides, hydrogen peroxide, etc.) are first synthesized using 18-O, then cells
    or tissues are exposed to the labeled ...

  18. A software toolkit and interface for performing stable isotope labeling and top3 quantification using Progenesis LC-MS.

    PubMed

    Qi, Da; Brownridge, Philip; Xia, Dong; Mackay, Katherine; Gonzalez-Galarza, Faviel F; Kenyani, Jenna; Harman, Victoria; Beynon, Robert J; Jones, Andrew R

    2012-09-01

    Numerous software packages exist to provide support for quantifying peptides and proteins from mass spectrometry (MS) data. However, many support only a subset of experimental methods or instrument types, meaning that laboratories often have to use multiple software packages. The Progenesis LC-MS software package from Nonlinear Dynamics is a software solution for label-free quantitation. However, many laboratories using Progenesis also wish to employ stable isotope-based methods that are not natively supported in Progenesis. We have developed a Java programming interface that can use the output files produced by Progenesis, allowing the basic MS features quantified across replicates to be used in a range of different experimental methods. We have developed post-processing software (the Progenesis Post-Processor) to embed Progenesis in the analysis of stable isotope labeling data and top3 pseudo-absolute quantitation. We have also created export ability to the new data standard, mzQuantML, produced by the Proteomics Standards Initiative to facilitate the development and standardization process. The software is provided to users with a simple graphical user interface for accessing the different features. The underlying programming interface may also be used by Java developers to develop other routines for analyzing data produced by Progenesis.

  19. Discovery of histone modification crosstalk networks by stable isotope labeling of amino acids in cell culture mass spectrometry (SILAC MS).

    PubMed

    Guan, Xiaoyan; Rastogi, Neha; Parthun, Mark R; Freitas, Michael A

    2013-08-01

    In this paper we describe an approach that combines stable isotope labeling of amino acids in cells culture, high mass accuracy liquid chromatography tandem mass spectrometry and a novel data analysis approach to accurately determine relative peptide post-translational modification levels. This paper describes the application of this approach to the discovery of novel histone modification crosstalk networks in Saccharomyces cerevisiae. Yeast histone mutants were generated to mimic the presence/absence of 44 well-known modifications on core histones H2A, H2B, H3, and H4. In each mutant strain the relative change in H3 K79 methylation and H3 K56 acetylation were determined using stable isotope labeling of amino acids in cells culture. This approach showed relative changes in H3 K79 methylation and H3 K56 acetylation that are consistent with known histone crosstalk networks. More importantly, this study revealed additional histone modification sites that affect H3 K79 methylation and H3 K56 acetylation.

  20. Synthesis of isotopically labeled versions of L-MTP-PE (mifamurtide) and MDP.

    PubMed

    Li, Yuexian; Plesescu, Mihaela; Prakash, Shimoga R

    2013-01-01

    L-MTP-PE (1), an immunomodulator and its metabolite MDP (4) were synthesized from labeled l-alanine and its protected derivative, respectively. The key intermediate product for the labeled L-MTP-PE synthesis, [(13) C3 ,D4 ]-alanyl-cephalin (2A), was synthesized from [(13) C3 ,D4 ]-l-alanine (3A) in three steps. The key intermediate product for labeled MDP synthesis, amine 11, was prepared from [(13) C3 ,(15) N]-Boc-l-alanine (5A) in two steps.

  1. From position-specific isotope labeling towards soil fluxomics: a novel toolbox to assess the microbial impact on biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Apostel, C.; Dippold, M. A.; Kuzyakov, Y.

    2015-12-01

    Understanding the microbial impact on C and nutrient cycles is one of the most important challenges in terrestrial biogeochemistry. Transformation of low molecular weight organic substances (LMWOS) is a key step in all biogeochemical cycles because 1) all high molecular substances pass the LMWOS pool during their degradation and 2) only LMWOS can be taken up by microorganisms intact. Thus, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the microbial metabolic network and its control mechanism. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools but studies were nearly exclusively based on uniformly labeled substances. However, such tracers do not allow the differentiation of the intact use of the initial substances from its transformation to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of basic metabolites and quantification of isotope incorporation in CO2 and bulk soil enabled following the basic metabolic pathways of microorganisms. However, the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites like phospholipid fatty acids (PLFA) or amino sugars revealed new insights into the soil fluxome: First, it enables tracing specific anabolic pathways in diverse microbial communities in soils e.g. carbon starvation pathways versus pathways reflecting microbial growth. Second, it allows identification of specific pathways of individual functional microbial groups in soils in situ. Tracing metabolic pathways and understanding their regulating factors are crucial for soil C fluxomics i.e. the unravaling of the complex network of C transformations

  2. Production and application of high quality stable isotope-labeled human immunoglobulin G1 for mass spectrometry analysis.

    PubMed

    Phillip, Amsler; Thierry, Wolf; Christian, Lanshoeft; Anja, Bettighofer; Jochen, Eisfeld; Thomas, Moenius; Claudia, Probst; Coralie, Etter; Olivier, Heudi

    2016-12-12

    Here, we describe the production of stable isotope-labeled human immunoglobulin G1 ([(13) C]-hIgG1) using [(13) C]-L-lysine/arginine-labeled hIgG1. The fermentation process was run in shake flasks containing labeled arginine and lysinethat were incorporated into the produced recombinant hIgG1. The [(13) C]-hIgG1 was purified, and label incorporation was determined to be >99% at all lysine and arginine moieties. Sequence coverage was confirmed by peptide mapping. [(13) C]-hIgG1 was then used as an internal standard (IS) for the development of a liquid chromatography-tandem mass spectrometry method applicable to the quantitative analysis of all human types of hIgG1 in rat serum. Four conserved peptides, namely, GPSVFPLAPSSK, TTPPVLDSDGSFFLYSK, VVSVLTVLHQDWLNGK, and FNWYVDGVEVHNAK, originating from different parts of the fraction crystallizable region of hIgG1, were used for quantitation of hIgG1 in rat serum. The calibration curves with a coefficient of determination (r(2) ) between 0.9950 and 0.9962 resulting from the peak area ratio of each peptide to its respective labeled IS were reproducible. A mean bias within ±20.0% of the nominal values and a precision of ≤20.0 % were obtained for the calibration standards and quality control samples for each peptide. [(13) C]-hIgG1 was shown as a suitable IS for quantitative hIgG1 analysis in preclinical species by LC-MS/MS.

  3. Formation of Kokumi-Enhancing γ-Glutamyl Dipeptides in Parmesan Cheese by Means of γ-Glutamyltransferase Activity and Stable Isotope Double-Labeling Studies.

    PubMed

    Hillmann, Hedda; Behr, Jürgen; Ehrmann, Matthias A; Vogel, Rudi F; Hofmann, Thomas

    2016-03-02

    Recently, γ-glutamyl dipeptides (γ-GPs) were found to be responsible for the attractive kokumi flavor of Parmesan cheese (PC). Quantitation of γ-GPs and their parent amino acids in 13-, 24-, and 30-month ripened PC samples by LC-MS/MS and stable isotope dilution analysis (SIDA), in-cheese (13)C-labeling studies, followed by analysis of the γ-glutamyl transferase (GGT) activity revealed γ-GPs to be generated most efficiently after 24 months of ripening by a GGT-catalyzed transfer of the γ-glutamyl moiety of L-glutamine onto various acceptor amino acids released upon casein proteolysis. Following the identification of milk as a potential GGT source in PC, the functionality of the milk's GGT to generate the target γ-GPs was validated by stable isotope double-labeling (SIDL) experiments. Therefore, raw and heat-treated milk samples were incubated with L-glutamine-[U-(13)C] and acceptor amino acids (X) and the hetero- (γ-Glu-[(13)C5]-X) and homotranspeptidation products (γ-Glu-Gln-[(13)C10]) were quantitated by LC-MS/MS-SIDA using γ-Glu-Ala-[(13)C3] as the internal standard. High GGT activity to generate the γ-GPs and preference for L-phenylalanine and L-methionine as acceptor amino acids were found in raw milk and milk samples heat-treated for 10 min up to a maximum of 65 °C. In comparison, GGT activity and SIDL studies performed with inoculated Lactobacillus strains, including Lactobacillus harbinensis and Lactobacillus casei identified in PC by means of 16S rRNA gene sequencing, did not show any significant GGT activity and unequivocally demonstrated unpasteurized cow's milk, rather than microorganisms, as a key factor in γ-glutamyl dipeptide generation in Parmesan cheese.

  4. Synthesis of isotopically labeled R- or S-[.sup.13C, .sup.2H] glycerols

    DOEpatents

    Martinez, Rodolfo A.; Unkefer, Clifford J.; Alvarez, Marc A.

    2008-01-22

    The present invention is directed to asymmetric chiral labeled glycerols including at least one chiral atom, from one to two .sup.13C atoms and from zero to four deuterium atoms bonded directly to a carbon atom, e.g., (2S) [1,2-.sup.13C.sub.2]glycerol and (2R) [1,2-.sup.13C.sub.2]glycerol, and to the use of such chiral glycerols in the preparation of labeled amino acids.

  5. Quantitative twoplex glycan analysis using (12)C6 and (13)C6 stable isotope 2-aminobenzoic acid labelling and capillary electrophoresis mass spectrometry.

    PubMed

    Váradi, Csaba; Mittermayr, Stefan; Millán-Martín, Silvia; Bones, Jonathan

    2016-12-01

    Capillary electrophoresis (CE) offers excellent efficiency and orthogonality to liquid chromatographic (LC) separations for oligosaccharide structural analysis. Combination of CE with high resolution mass spectrometry (MS) for glycan analysis remains a challenging task due to the MS incompatibility of background electrolyte buffers and additives commonly used in offline CE separations. Here, a novel method is presented for the analysis of 2-aminobenzoic acid (2-AA) labelled glycans by capillary electrophoresis coupled to mass spectrometry (CE-MS). To ensure maximum resolution and excellent precision without the requirement for excessive analysis times, CE separation conditions including the concentration and pH of the background electrolyte, the effect of applied pressure on the capillary inlet and the capillary length were evaluated. Using readily available (12/13)C6 stable isotopologues of 2-AA, the developed method can be applied for quantitative glycan profiling in a twoplex manner based on the generation of extracted ion electropherograms (EIE) for (12)C6 'light' and (13)C6 'heavy' 2-AA labelled glycan isotope clusters. The twoplex quantitative CE-MS glycan analysis platform is ideally suited for comparability assessment of biopharmaceuticals, such as monoclonal antibodies, for differential glycomic analysis of clinical material for potential biomarker discovery or for quantitative microheterogeneity analysis of different glycosylation sites within a glycoprotein. Additionally, due to the low injection volume requirements of CE, subsequent LC-MS analysis of the same sample can be performed facilitating the use of orthogonal separation techniques for structural elucidation or verification of quantitative performance.

  6. An Efficient Site-Specific Method for Irreversible Covalent Labeling of Proteins with a Fluorophore.

    PubMed

    Liu, Jiaquan; Hanne, Jeungphill; Britton, Brooke M; Shoffner, Matthew; Albers, Aaron E; Bennett, Jared; Zatezalo, Rachel; Barfield, Robyn; Rabuka, David; Lee, Jong-Bong; Fishel, Richard

    2015-11-19

    Fluorophore labeling of proteins while preserving native functions is essential for bulk Förster resonance energy transfer (FRET) interaction and single molecule imaging analysis. Here we describe a versatile, efficient, specific, irreversible, gentle and low-cost method for labeling proteins with fluorophores that appears substantially more robust than a similar but chemically distinct procedure. The method employs the controlled enzymatic conversion of a central Cys to a reactive formylglycine (fGly) aldehyde within a six amino acid Formylglycine Generating Enzyme (FGE) recognition sequence in vitro. The fluorophore is then irreversibly linked to the fGly residue using a Hydrazinyl-Iso-Pictet-Spengler (HIPS) ligation reaction. We demonstrate the robust large-scale fluorophore labeling and purification of E.coli (Ec) mismatch repair (MMR) components. Fluorophore labeling did not alter the native functions of these MMR proteins in vitro or in singulo. Because the FGE recognition sequence is easily portable, FGE-HIPS fluorophore-labeling may be easily extended to other proteins.

  7. Counter-diffusion of isotopically labeled trichloroethylene in silica gel and geosorbent micropores: Model development

    SciTech Connect

    McMillan, S.A.; Werth, C.J.

    1999-07-01

    A new model was developed to determine if reduced uptake rates observed during isotope exchange experiments could plausibly be attributed to sterically hindered counter-diffusion in one-dimensional micropores. During exchange experiments, hydrogenated trichloroethylene ({sup 1}HTCE) was displaced with deuterated TCE (DTCE) in the slow-desorbing sites of a silica gel, a groundwater sediment, and a clay and silt fraction. To describe this process, the model accounts for co- and counter-diffusion of TCE isotopes in one-dimensional micropores, where each micropore type is defined by a single codiffusion rate constant and a single counter-diffusion rate constant. For silica gel, isotope exchange was simulated in a single micropore type. For geosorbents, isotope exchange was simulated in a distribution of micropore types characterized by a {gamma} distribution of diffusion rate constants. Simulation results indicate that (1) the proposed model accounts for the mechanisms controlling isotope exchange in the silica gel and the groundwater sediment and (2) the rate of counter-diffusion is up to 6 times slower than the rate of codiffusion. This suggests that steric hindrance between counter-diffusing sorbates can significantly affect mass transfer and, consequently, the transport of chemical mixtures in the subsurface.

  8. Combining position-specific 13C labeling with compound-specific isotope analysis: first steps towards soil fluxomics

    NASA Astrophysics Data System (ADS)

    Dippold, Michaela; Kuzyakov, Yakov

    2015-04-01

    Understanding the soil organic matter (SOM) dynamics is one of the most important challenges in soil science. Transformation of low molecular weight organic substances (LMWOS) is a key step in biogeochemical cycles because 1) all high molecular substances pass this stage during their decomposition and 2) only LMWOS will be taken up by microorganisms. Previous studies on LMWOS were focused on determining net fluxes through the LMWOS pool, but they rarely identified transformations. As LMWOS are the preferred C and energy source for microorganisms, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the biochemical pathways and its controlling factors. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools. Up to now, studies on LMWOS were nearly exclusively based on uniformly labeled organic substances i.e. all C atoms in the molecules were labeled with 13C or 14C. However, this classical approach did not allow the differentiation between use of intact initial substances in any process, or whether they were transformed to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of LMWOS and quantification of 13CO2 and 13C in bulk soil enabled following the basic metabolic pathways of soil microorganisms. However, only the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites allowed 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. So, these are the prerequisites for soil fluxomics. Our studies combining position-specific labeled glucose with amino

  9. Syntheses of halogen derivatives of L-tryptophan, L-tyrosine and L-phenylalanine labeled with hydrogen isotopes.

    PubMed

    Pająk, Małgorzata; Pałka, Katarzyna; Winnicka, Elżbieta; Kańska, Marianna

    2016-01-01

    Halogenated, labeled with tritium and doubly with deuterium and tritium, derivatives of L-tryptophan, i.e. 5'-bromo-[2-(3)H]-, 5'-bromo-[2-(2)H/(3)H]-, 5'-fluoro-[2-(3)H]-5'-fluoro-[2-(2)H/(3)H]-, 6'-fluoro-[2-(3)H]-, 6'-fluoro-[2-(2)H/(3)H]-L-tryptophan, as well as, L-tyrosine, i.e. 3'-fluoro-[2-(3)H]-, 3'-fluoro-[2-(2)H/(3)H]-, 3'-chloro-[2-(3)H]-, and 3'-chloro-[2-(2)H/(3)H]-L-tyrosine, and also L-phenylalanine, i.e. 2'-fluoro-[(3S)-(3)H]-, 2'-fluoro-[(3S)-(2)H/(3) H]-, 2'-chloro-[(3S)-(3)H]-, 2'-chloro-[(3S)-(2)H/(3)H]-, 4'-chloro-[(3S)-(3)H]-, and 4'-chloro-[(3S)-(2)H/(3)H]-L-phenylalanine were synthesized using enzymatic methods. Isotopomers of L-tryptophan were synthesized by coupling of halogenated indoles with S-methyl-L-cysteine carried out in deuteriated or tritiated incubation media. Labeled halogenated derivatives of L-tyrosine were obtained by the enzymatically supported exchange between halogenated L-tyrosine and isotopic water. Labeled halogenated isotopologues of L-Phe were synthesized by the enzymatic addition of ammonia to halogenated cinnamic acid. As a source of hydrogen tritiated water (HTO) and heavy water (D2O) with addition of HTO were used.

  10. Histone H4 acetylation dynamics determined by stable isotope labeling with amino acids in cell culture and mass spectrometry.

    PubMed

    Su, Xiaodan; Zhang, Liwen; Lucas, David M; Davis, Melanie E; Knapp, Amy R; Green-Church, Kari B; Marcucci, Guido; Parthun, Mark R; Byrd, John C; Freitas, Michael A

    2007-04-01

    This paper describes an integrated approach that couples stable isotope labeling with amino acids in cell culture to acetic acid-urea polyacrylamide gel electrophoresis (AU-PAGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the quantitation and dynamics of histone H4 acetylation. The 697 acute lymphoblastic cell lines were grown in regular medium and in medium in which lysine was substituted with deuterium-labeled lysine. Histone deacetylase (HDAC) activity was inhibited by addition of the HDAC inhibitor depsipeptide to the culture medium for different exposure times. Histones were extracted from cells pooled from unlabeled, untreated cells and from labeled, treated cells, followed by AU-PAGE separation. Gel bands corresponding to different acetylation states of H4 were excised, in-gel digested with trypsin, and analyzed by MALDI-TOF MS. Detailed information was obtained for both the change of histone H4 acetylation specific to the N terminus and the global transformation of H4 from one acetylation state to another following treatment with the HDAC inhibitor depsipeptide. The kinetics of H4 acetylation was also assessed. This study provides a quantitative basis for developing potential therapies by using epigenetic regulation and the developed methodology can be applied to quantitation of change for other histone modifications induced by external stimuli.

  11. Probing the Metabolic Network in Bloodstream-Form Trypanosoma brucei Using Untargeted Metabolomics with Stable Isotope Labelled Glucose

    PubMed Central

    Creek, Darren J.; Mazet, Muriel; Achcar, Fiona; Anderson, Jana; Kim, Dong-Hyun; Kamour, Ruwida; Morand, Pauline; Millerioux, Yoann; Biran, Marc; Kerkhoven, Eduard J.; Chokkathukalam, Achuthanunni; Weidt, Stefan K.; Burgess, Karl E. V.; Breitling, Rainer; Watson, David G.; Bringaud, Frédéric; Barrett, Michael P.

    2015-01-01

    Metabolomics coupled with heavy-atom isotope-labelled glucose has been used to probe the metabolic pathways active in cultured bloodstream form trypomastigotes of Trypanosoma brucei, a parasite responsible for human African trypanosomiasis. Glucose enters many branches of metabolism beyond glycolysis, which has been widely held to be the sole route of glucose metabolism. Whilst pyruvate is the major end-product of glucose catabolism, its transamination product, alanine, is also produced in significant quantities. The oxidative branch of the pentose phosphate pathway is operative, although the non-oxidative branch is not. Ribose 5-phosphate generated through this pathway distributes widely into nucleotide synthesis and other branches of metabolism. Acetate, derived from glucose, is found associated with a range of acetylated amino acids and, to a lesser extent, fatty acids; while labelled glycerol is found in many glycerophospholipids. Glucose also enters inositol and several sugar nucleotides that serve as precursors to macromolecule biosynthesis. Although a Krebs cycle is not operative, malate, fumarate and succinate, primarily labelled in three carbons, were present, indicating an origin from phosphoenolpyruvate via oxaloacetate. Interestingly, the enzyme responsible for conversion of phosphoenolpyruvate to oxaloacetate, phosphoenolpyruvate carboxykinase, was shown to be essential to the bloodstream form trypanosomes, as demonstrated by the lethal phenotype induced by RNAi-mediated downregulation of its expression. In addition, glucose derivatives enter pyrimidine biosynthesis via oxaloacetate as a precursor to aspartate and orotate. PMID:25775470

  12. Multi-Isotope Secondary Ion Mass Spectrometry Combining Heavy Water 2H with 15N Labeling As Complementary Tracers for Metabolic Heterogeneity at the Single-Cell Level

    NASA Astrophysics Data System (ADS)

    Kopf, S.; McGlynn, S.; Cowley, E.; Green, A.; Newman, D. K.; Orphan, V. J.

    2014-12-01

    Metabolic rates of microbial communities constitute a key physiological parameter for understanding the in situ growth constraints for life in any environment. Isotope labeling techniques provide a powerful approach for measuring such biological activity, due to the use of isotopically enriched substrate tracers whose incorporation into biological materials can be detected with high sensitivity by isotope-ratio mass spectrometry. Nano-meter scale secondary ion mass spectrometry (NanoSIMS) combined with stable isotope labeling provides a unique tool for studying the spatiometabolic activity of microbial populations at the single cell level in order to assess both community structure and population diversity. However, assessing the distribution and range of microbial activity in complex environmental systems with slow-growing organisms, diverse carbon and nitrogen sources, or heterotrophic subpopulations poses a tremendous technical challenge because the introduction of isotopically labeled substrates frequently changes the nutrient availability and can inflate or bias measures of activity. Here, we present the use of hydrogen isotope labeling with deuterated water as an important new addition to the isotopic toolkit and apply it for the determination of single cell microbial activities by NanoSIMS imaging. This tool provides a labeling technique that minimally alters any aquatic chemical environment, can be administered with strong labels even in minimal addition (natural background is very low), is an equally universal substrate for all forms of life even in complex, carbon and nitrogen saturated systems, and can be combined with other isotopic tracers. The combination of heavy water labeling with the most commonly used NanoSIMS tracer, 15N, is technically challenging but opens up a powerful new set of multi-tracer experiments for the study of microbial activity in complex communities. We present the first truly simultaneous single cell triple isotope system

  13. An algorithm for the deconvolution of mass spectroscopic patterns in isotope labeling studies. Evaluation for the hydrogen-deuterium exchange reaction in ketones.

    PubMed

    Gruber, Christian C; Oberdorfer, Gustav; Voss, Constance V; Kremsner, Jennifer M; Kappe, C Oliver; Kroutil, Wolfgang

    2007-07-20

    An easy to use computerized algorithm for the determination of the amount of each labeled species differing in the number of incorporated isotope labels based on mass spectroscopic data is described and evaluated. Employing this algorithm, the microwave-assisted synthesis of various alpha-labeled deuterium ketones via hydrogen-deuterium exchange with deuterium oxide was optimized with respect to time, temperature, and degree of labeling. For thermally stable ketones the exchange of alpha-protons was achieved at 180 degrees C within 40-200 min. Compared to reflux conditions, the microwave-assisted protocol led to a reduction of the required reaction time from 75-94 h to 40-200 min. The alpha-labeled deuterium ketones were reduced by biocatalytic hydrogen transfer to the corresponding enantiopure chiral alcohols and the deconvolution algorithm validated by regression analysis of a mixture of labeled and unlabeled ketones/alcohols.

  14. Status of the Local Enforcement of Energy Efficiency Standards and Labeling Program in China

    SciTech Connect

    Zhou, Nan; Zheng, Nina; Fino-Chen, Cecilia; Fridley, David; Ning, Cao

    2011-09-26

    As part of its commitment to promoting and improving the local enforcement of appliance energy efficiency standards and labeling, the China National Institute of Standardization (CNIS) launched the National and Local Enforcement of Energy Efficiency Standards and Labeling project on August 14, 2009. The project’s short-term goal is to expand the effort to improve enforcement of standards and labeling requirements to the entire country within three years, with a long-term goal of perfecting overall enforcement. For this project, Jiangsu, Shandong, Sichuan and Shanghai were selected as pilot locations. This report provides information on the local enforcement project’s recent background, activities and results as well as comparison to previous rounds of check-testing in 2006 and 2007. In addition, the report also offers evaluation on the achievement and weaknesses in the local enforcement scheme and recommendations. The results demonstrate both improvement and some backsliding. Enforcement schemes are in place in all target cities and applicable national standards and regulations were followed as the basis for local check testing. Check testing results show in general high labeling compliance across regions with 100% compliance for five products, including full compliance for all three products tested in Jiangsu province and two out of three products tested in Shandong province. Program results also identified key weaknesses in labeling compliance in Sichuan as well as in the efficiency standards compliance levels for small and medium three-phase asynchronous motors and self-ballasted fluorescent lamps. For example, compliance for the same product ranged from as low as 40% to 100% with mixed results for products that had been tested in previous rounds. For refrigerators, in particular, the efficiency standards compliance rate exhibited a wider range of 50% to 100%, and the average rate across all tested models also dropped from 96% in 2007 to 63%, possibly due to

  15. (Bio)degradation of glyphosate in water-sediment microcosms - A stable isotope co-labeling approach.

    PubMed

    Wang, Shizong; Seiwert, Bettina; Kästner, Matthias; Miltner, Anja; Schäffer, Andreas; Reemtsma, Thorsten; Yang, Qi; Nowak, Karolina M

    2016-08-01

    Glyphosate and its metabolite aminomethylphosphonic acid (AMPA) are frequently detected in water and sediments. Up to date, there are no comprehensive studies on the fate of glyphosate in water-sediment microcosms according to OECD 308 guideline. Stable isotope co-labeled (13)C3(15)N-glyphosate was used to determine the turnover mass balance, formation of metabolites, and formation of residues over a period of 80 days. In the water-sediment system, 56% of the initial (13)C3-glyphosate equivalents was ultimately mineralized, whereas the mineralization in the water system (without sediment) was low, reaching only 2% of (13)C-glyphosate equivalents. This finding demonstrates the key role of sediments in its degradation. Glyphosate was detected below detection limit in the water compartment on day 40, but could still be detected in the sediments, ultimately reaching 5% of (13)C3(15)N-glyphosate equivalents. A rapid increase in (13)C(15)N-AMPA was noted after 10 days, and these transformation products ultimately constituted 26% of the (13)C3-glyphosate equivalents and 79% of the (15)N-glyphosate equivalents. In total, 10% of the (13)C label and 12% of the (15)N label were incorporated into amino acids, indicating no risk bearing biogenic residue formation from (13)C3(15)N-glyphosate. Initially, glyphosate was biodegraded via the sarcosine pathway related to microbial growth, as shown by co-labeled (13)C(15)N-glycine and biogenic residue formation. Later, degradation via AMPA dominated under starvation conditions, as shown by the contents of (13)C-glycine. The presented data provide the first evidence of the speciation of the non-extractable residues as well as the utilization of glyphosate as a carbon and nitrogen source in the water-sediment system. This study also highlights the contribution of both the sarcosine and the AMPA degradation pathways under these conditions.

  16. Lewis Acid-Base, Molecular Modeling, and Isotopic Labeling in a Sophomore Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nataro, Chip; Ferguson, Michelle A.; Bocage, Katherine M.; Hess, Brian J.; Ross, Vincent J.; Swarr, Daniel T.

    2004-01-01

    An experiment to prepare a deuterium labeled adduct of a Lewis acid and Lewis base, to use computational methods allowing students to visualize the LUMO of Lewis acids, the HOMO of Lewis bases and the molecular orbitals of the adduct that is formed is developed. This allows students to see the interplay between calculated and experimental results.

  17. Regional cooperation in energy efficiency standard-setting and labeling in North America

    SciTech Connect

    Wiel, Stephen; Van Wie McGrory, Laura

    2003-08-04

    The North American Energy Working Group (NAEWG) was established in 2001 by the governments of Canada, Mexico, and the United States. The goals of NAEWG are to foster communication and cooperation on energy-related matters of common interest, and to enhance North American energy trade and interconnections consistent with the goal of sustainable development, for the benefit of all three countries. At its outset, NAEWG established teams to address different aspects of the energy sector. One, the Energy Efficiency Expert Group, undertook activity in three areas: (1) analyzing commonalities and differences in the test procedures of Canada, Mexico, and the United States, and identifying specific products for which the three countries might consider harmonization; (2) exploring possibilities for increased mutual recognition of laboratory test results; and (3) looking at possibilities for enhanced cooperation in the Energy Star voluntary endorsement labeling program. To support NAEWG's Expert Group on Energy Efficiency (NAEWG-EE), USDOE commissioned Lawrence Berkeley National Laboratory, representing the Collaborative Labeling and Appliance Standards Program (CLASP), to prepare a resource document comparing current standards, labels, and test procedure regulations in Canada, Mexico, and the United States. The resulting document identified 46 energy-using products for which at least one of the three countries has energy efficiency regulations. Three products--refrigerators/freezers, room air conditioners, and integral horsepower three-phase electric motors--have identical minimum energy performance standards (MEPS) and test procedures in the three countries. Ten other products have different MEPS and test procedures, but have the near-term potential for harmonization. NAEWG-EE is currently working to identify mechanisms for mutual recognition of test results. With consultative support from the United States and Canada through NAEWG-EE, Mexico is exploring possibilities for

  18. Automated monitoring of phosphatidylcholine biosyntheses in Plasmodium falciparum by electrospray ionization mass spectrometry through stable isotope labeling experiments.

    PubMed

    Enjalbal, Christine; Roggero, Rodolphe; Cerdan, Rachel; Martinez, Jean; Vial, Henri; Aubagnac, Jean-Louis

    2004-08-01

    The metabolic pathways contributing to phosphatidylcholine biosyntheses in Plasmodium falciparum, the malaria-causing parasite, was explored by electrospray ionization mass spectrometry. Phosphatidylcholine produced by the CDP-choline pathway and by the methylation of phosphatidylethanolamine was identified and quantified through isotopic labeling experiments. A straightforward method based on cone voltage directed in-source fragmentations and relative abundance measurement of endogenous versus deuterated specific fragment ions was developed for simple and rapid automated data acquisition. Such high-throughput analytical protocol allowed us to measure the relative contribution of two different metabolic pathways leading to phosphatidylcholine without performing technically more demanding and time-consuming MS/MS or LC/MS experiments.

  19. Synthesis of stereoarray isotope labeled (SAIL) lysine via the "head-to-tail" conversion of SAIL glutamic acid.

    PubMed

    Terauchi, Tsutomu; Kamikawai, Tomoe; Vinogradov, Maxim G; Starodubtseva, Eugenia V; Takeda, Mitsuhiro; Kainosho, Masatsune

    2011-01-07

    A stereoarray isotope labeled (SAIL) lysine, (2S,3R,4R,5S,6R)-[3,4,5,6-(2)H(4);1,2,3,4,5,6-(13)C(6);2,6-(15)N(2)]lysine, was synthesized by the "head-to-tail" conversion of SAIL-Glu, (2S,3S,4R)-[3,4-(2)H(2);1,2,3,4,5-(13)C(5);2-(15)N]glutamic acid, with high stereospecificities for all five chiral centers. With the SAIL-Lys in hand, the unambiguous simultaneous stereospecific assignments were able to be established for each of the prochiral protons within the four methylene groups of the Lys side chains in proteins.

  20. Evaluation of stable isotope labelling strategies for the quantitation of CP4 EPSPS in genetically modified soya.

    PubMed

    Ocaña, Mireia Fernández; Fraser, Paul D; Patel, Raj K P; Halket, John M; Bramley, Peter M

    2009-02-16

    The introduction of genetically modified (GM) crops into the market has raised a general alertness relating to the control and safety of foods. The applicability of protein separation hyphenated to mass spectrometry to identify the bacterial enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) protein expressed in GM crops has been previously reported [M.F. Ocana, P.D. Fraser, R.K.P. Patel, J.M. Halket, P.M. Bramley, Rapid Commun. Mass Spectrom. 21 (2007) 319.]. Herein, we investigate the suitability of two strategies that employ heavy stable isotopes, i.e. AQUA and iTRAQ, to quantify different levels of CP4 EPSPS in up to four GM preparations. Both quantification strategies showed potential to determine whether the presence of GM material is above the limits established by the European Union. The AQUA quantification procedure involved protein solubilisation/fractionation and subsequent separation using SDS-PAGE. A segment of the gel in which the protein of interest was located was excised, the stable isotope labeled peptide added at a known concentration and proteolytic digestion initiated. Following recovery of the peptides, on-line separation and detection using LC-MS was carried out. A similar approach was used for the iTRAQ workflow with the exception that proteins were digested in solution and generated tryptic peptides were chemically tagged. Both procedures demonstrated the potential for quantitative detection at 0.5% (w/w) GM soya which is a level below the current European Union's threshold for food-labelling. In this context, a comparison between the two procedures is provided within the present study.

  1. Deciphering systemic wound responses of the pumpkin extrafascicular phloem by metabolomics and stable isotope-coded protein labeling.

    PubMed

    Gaupels, Frank; Sarioglu, Hakan; Beckmann, Manfred; Hause, Bettina; Spannagl, Manuel; Draper, John; Lindermayr, Christian; Durner, Jörg

    2012-12-01

    In cucurbits, phloem latex exudes from cut sieve tubes of the extrafascicular phloem (EFP), serving in defense against herbivores. We analyzed inducible defense mechanisms in the EFP of pumpkin (Cucurbita maxima) after leaf damage. As an early systemic response, wounding elicited transient accumulation of jasmonates and a decrease in exudation probably due to partial sieve tube occlusion by callose. The energy status of the EFP was enhanced as indicated by increased levels of ATP, phosphate, and intermediates of the citric acid cycle. Gas chromatography coupled to mass spectrometry also revealed that sucrose transport, gluconeogenesis/glycolysis, and amino acid metabolism were up-regulated after wounding. Combining ProteoMiner technology for the enrichment of low-abundance proteins with stable isotope-coded protein labeling, we identified 51 wound-regulated phloem proteins. Two Sucrose-Nonfermenting1-related protein kinases and a 32-kD 14-3-3 protein are candidate central regulators of stress metabolism in the EFP. Other proteins, such as the Silverleaf Whitefly-Induced Protein1, Mitogen Activated Protein Kinase6, and Heat Shock Protein81, have known defensive functions. Isotope-coded protein labeling and western-blot analyses indicated that Cyclophilin18 is a reliable marker for stress responses of the EFP. As a hint toward the induction of redox signaling, we have observed delayed oxidation-triggered polymerization of the major Phloem Protein1 (PP1) and PP2, which correlated with a decline in carbonylation of PP2. In sum, wounding triggered transient sieve tube occlusion, enhanced energy metabolism, and accumulation of defense-related proteins in the pumpkin EFP. The systemic wound response was mediated by jasmonate and redox signaling.

  2. Improving the efficiency for generation of genome-edited zebrafish by labeling primordial germ cells.

    PubMed

    Dong, Zhangji; Dong, Xiaohua; Jia, Wenshang; Cao, Shasha; Zhao, Qingshun

    2014-10-01

    Although CRISPR/Cas, a new versatile genome-editing tool, has been widely used in a variety of species including zebrafish, an important vertebrate model animal for biomedical research, the low efficiency of germline transmission of induced mutations and particularly knockin alleles made subsequent screening for heritable offspring tedious, time-consuming, expensive and at times impossible. In this study, we reported a method for improving the efficiency of germline transmission screening for generation of genome-edited zebrafish mutants. Co-microinjecting yfp-nanos3 mRNA with Cas9 mRNA, sgRNA and single strand DNA donor to label the distribution of microinjected nucleotides in PGCs (primordial germ cells), we demonstrated that founders carrying labeled PGCs produced much higher numbers of knockin and knockout progeny. In comparison with the common practice of selecting founders by genotyping fin clips, our new strategy of selecting founders with tentatively fluorescent-labeled PGCs significantly increase the ease and speed of generating heritable knocking and knockout animals with CRISPR/Cas9.

  3. High-throughput synthesis of stable isotope-labeled transmembrane proteins for targeted transmembrane proteomics using a wheat germ cell-free protein synthesis system.

    PubMed

    Takemori, Nobuaki; Takemori, Ayako; Matsuoka, Kazuhiro; Morishita, Ryo; Matsushita, Natsuki; Aoshima, Masato; Takeda, Hiroyuki; Sawasaki, Tatsuya; Endo, Yaeta; Higashiyama, Shigeki

    2015-02-01

    Using a wheat germ cell-free protein synthesis system, we developed a high-throughput method for the synthesis of stable isotope-labeled full-length transmembrane proteins as proteoliposomes to mimic the in vivo environment, and we successfully constructed an internal standard library for targeted transmembrane proteomics by using mass spectrometry.

  4. Characterization of Volatile Nylon 6.6 Thermal-Oxidative Degradation Products by Selective Isotopic Labeling and Cryo-GC/MS

    NASA Astrophysics Data System (ADS)

    Smith, Jonell N.; V. White, Gregory; White, Michael I.; Bernstein, Robert; Hochrein, James M.

    2012-09-01

    Aged materials, such as polymers, can exhibit modifications to their chemical structure and physical properties, which may render the material ineffective for its intended purpose. Isotopic labeling was used to characterize low-molecular weight volatile thermal-oxidative degradation products of nylon 6.6 in an effort to better understand and predict changes in the aged polymer. Headspace gas from aged (up to 243 d at 138 °C) nylon 6.6 monomers (adipic acid and 1,6-hexanediamine) and polymer were preconcentrated, separated, and detected using cryofocusing gas chromatography mass spectrometry (cryo-GC/MS). Observations regarding the relative concentrations observed in each chromatographic peak with respect to aging time were used in conjunction with mass spectra for samples aged under ambient air to determine the presence and identity of 18 degradation products. A comparison of the National Institute of Standards and Technology (NIST) library, unlabeled, and isotopically labeled mass spectra (C-13 or N-15) and expected fragmentation pathways of each degradation product were used to identify the location of isotopically labeled atoms within the product's chemical structure, which can later be used to determine the exact origin of the species. In addition, observations for unlabeled nylon 6.6 aged in an O-18 enriched atmosphere were used to determine if the source of oxygen in the applicable degradation products was from the gaseous environment or the polymer. Approximations for relative isotopic ratios of unlabeled to labeled products are reported, where appropriate.

  5. Phosphoric acid functionalized mesoporous organo-silica (EPO) as the adsorbent for in situ enrichment and isotope labeling of endogenous phosphopeptides.

    PubMed

    Qin, Hongqiang; Wang, Fangjun; Wang, Peiyuan; Zhao, Liang; Zhu, Jun; Yang, Qihua; Wu, Ren'an; Ye, Mingliang; Zou, Hanfa

    2012-01-25

    Ti(4+)-EPO nanoparticles were adopted as the adsorbent for in situ solid phase enrichment and isotope labeling of endogenous phosphopeptides, which has great potential application in high-throughput analyses of biological samples for screening and discovery of disease-specific biomarkers.

  6. Correction: NanoSIMS analysis of an isotopically labelled organometallic ruthenium(II) drug to probe its distribution and state in vitro.

    PubMed

    Lee, Ronald F S; Escrig, Stéphane; Croisier, Marie; Clerc-Rosset, Stéphanie; Knott, Graham W; Meibom, Anders; Davey, Curt A; Johnsson, Kai; Dyson, Paul J

    2015-11-28

    Correction for 'NanoSIMS analysis of an isotopically labelled organometallic ruthenium(II) drug to probe its distribution and state in vitro' by Ronald F. S. Lee et al., Chem. Commun., 2015, DOI: 10.1039/c5cc06983a.

  7. Combining Raman and FT-IR spectroscopy with quantitative isotopic labeling for differentiation of E. coli cells at community and single cell levels.

    PubMed

    Muhamadali, Howbeer; Chisanga, Malama; Subaihi, Abdu; Goodacre, Royston

    2015-04-21

    There is no doubt that the contribution of microbially mediated bioprocesses toward maintenance of life on earth is vital. However, understanding these microbes in situ is currently a bottleneck, as most methods require culturing these microorganisms to suitable biomass levels so that their phenotype can be measured. The development of new culture-independent strategies such as stable isotope probing (SIP) coupled with molecular biology has been a breakthrough toward linking gene to function, while circumventing in vitro culturing. In this study, for the first time we have combined Raman spectroscopy and Fourier transform infrared (FT-IR) spectroscopy, as metabolic fingerprinting approaches, with SIP to demonstrate the quantitative labeling and differentiation of Escherichia coli cells. E. coli cells were grown in minimal medium with fixed final concentrations of carbon and nitrogen supply, but with different ratios and combinations of (13)C/(12)C glucose and (15)N/(14)N ammonium chloride, as the sole carbon and nitrogen sources, respectively. The cells were collected at stationary phase and examined by Raman and FT-IR spectroscopies. The multivariate analysis investigation of FT-IR and Raman data illustrated unique clustering patterns resulting from specific spectral shifts upon the incorporation of different isotopes, which were directly correlated with the ratio of the isotopically labeled content of the medium. Multivariate analysis results of single-cell Raman spectra followed the same trend, exhibiting a separation between E. coli cells labeled with different isotopes and multiple isotope levels of C and N.

  8. Distribution of Corpuscular and Lysed Antigens Labeled with Radioactive Isotopes in a Sensitized Organism

    DTIC Science & Technology

    1974-10-04

    obtained in our experiments on a brucellosis model (Shaposhnikov, 1967). FTD-MT-24-1695-7L 1 /.1_ When using soluble proteins and not microboes as the...comparing the distribution of the labeled corpuscular al.d soluble antigen, using one form of animals and one model of allergic sensitization. The...the control animlals , regardless of which antigen was administered to them. 4.* The removal of the radioactive decay products of the antigens took

  9. Pre-malbrancheamide: Synthesis, Isotopic Labeling, Biosynthetic Incorporation, and Detection in Cultures of Malbranchea aurantiaca

    PubMed Central

    Ding, Yousong; Greshock, Thomas J.; Miller, Kenneth A.

    2009-01-01

    An advanced metabolite, named pre-malbrancheamide, involved in the biosynthesis of malbrancheamide (1) and malbrancheamide B (2) has been synthesized in double 13C-labeled form and was incorporated into the indole alkaloid 2 by Malbranchea aurantiaca. In addition, pre-malbrancheamide has been detected as a natural metabolite in cultures of M. aurantiaca. The biosynthetic implications of these experiments are discussed. PMID:18844365

  10. Conformational changes of recombinant monoclonal antibodies by limited proteolytic digestion, stable isotope labeling, and liquid chromatography-mass spectrometry.

    PubMed

    Ponniah, Gomathinayagam; Nowak, Christine; Kita, Adriana; Cheng, Guilong; Kori, Yekaterina; Liu, Hongcheng

    2016-03-15

    Limited proteolytic digestion is a method with a long history that has been used to study protein domain structures and conformational changes. A method of combining limited proteolytic digestion, stable isotope labeling, and mass spectrometry was established in the current study to investigate protein conformational changes. Recombinant monoclonal antibodies with or without the conserved oligosaccharides, and with or without oxidation of the conserved methionine residues, were used to test the newly proposed method. All of the samples were digested in ammonium bicarbonate buffer prepared in normal water. The oxidized deglycosylated sample was also digested in ammonium bicarbonate buffer prepared in (18)O-labeled water. The sample from the digestion in (18)O-water was spiked into each sample digested in normal water. Each mixed sample was subsequently analyzed by liquid chromatography-mass spectrometry (LC-MS). The molecular weight differences between the peptides digested in normal water versus (18)O-water were used to differentiate peaks from the samples. The relative peak intensities of peptides with or without the C-terminal incorporation of (18)O atoms were used to determine susceptibility of different samples to trypsin and chymotrypsin. The results demonstrated that the method was capable of detecting local conformational changes of the recombinant monoclonal antibodies caused by deglycosylation and oxidation.

  11. Determination of thiol metabolites in human urine by stable isotope labeling in combination with pseudo-targeted mass spectrometry analysis

    PubMed Central

    Liu, Ping; Qi, Chu-Bo; Zhu, Quan-Fei; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-01-01

    Precursor ion scan and multiple reaction monitoring scan (MRM) are two typical scan modes in mass spectrometry analysis. Here, we developed a strategy by combining stable isotope labeling (IL) with liquid chromatography-mass spectrometry (LC-MS) under double precursor ion scan (DPI) and MRM for analysis of thiols in 5 types of human cancer urine. Firstly, the IL-LC-DPI-MS method was applied for non-targeted profiling of thiols from cancer samples. Compared to traditional full scan mode, the DPI method significantly improved identification selectivity and accuracy. 103 thiol candidates were discovered in all cancers and 6 thiols were identified by their standards. It is worth noting that pantetheine, for the first time, was identified in human urine. Secondly, the IL-LC-MRM-MS method was developed for relative quantification of thiols in cancers compared to healthy controls. All the MRM transitions of light and heavy labeled thiols were acquired from urines by using DPI method. Compared to DPI method, the sensitivity of MRM improved by 2.1–11.3 folds. In addition, the concentration of homocysteine, γ-glutamylcysteine and pantetheine enhanced more than two folds in cancer patients compared to healthy controls. Taken together, the method demonstrated to be a promising strategy for identification and comprehensive quantification of thiols in human urines. PMID:26888486

  12. Fatty acid labeling from glutamine in hypoxia can be explained by isotope exchange without net reductive isocitrate dehydrogenase (IDH) flux.

    PubMed

    Fan, Jing; Kamphorst, Jurre J; Rabinowitz, Joshua D; Shlomi, Tomer

    2013-10-25

    Acetyl-CoA is an important anabolic precursor for lipid biosynthesis. In the conventional view of mammalian metabolism, acetyl-CoA is primarily derived by the oxidation of glucose-derived pyruvate in mitochondria. Recent studies have employed isotope tracers to show that in cancer cells grown in hypoxia or with defective mitochondria, a major fraction of acetyl-CoA is produced via another route, reductive carboxylation of glutamine-derived α-ketoglutarate (catalyzed by reverse flux through isocitrate dehydrogenase, IDH). Here, we employ a quantitative flux model to show that in hypoxia and in cells with defective mitochondria, oxidative IDH flux persists and may exceed the reductive flux. Therefore, IDH flux may not be a net contributor to acetyl-CoA production, although we cannot rule out net reductive IDH flux in some compartments. Instead of producing large amounts of net acetyl-CoA reductively, the cells adapt by reducing their demand for acetyl-CoA by importing rather than synthesizing fatty acids. Thus, fatty acid labeling from glutamine in hypoxia can be explained by spreading of label without net reductive IDH flux.

  13. Determination of thiol metabolites in human urine by stable isotope labeling in combination with pseudo-targeted mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Qi, Chu-Bo; Zhu, Quan-Fei; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-02-01

    Precursor ion scan and multiple reaction monitoring scan (MRM) are two typical scan modes in mass spectrometry analysis. Here, we developed a strategy by combining stable isotope labeling (IL) with liquid chromatography-mass spectrometry (LC-MS) under double precursor ion scan (DPI) and MRM for analysis of thiols in 5 types of human cancer urine. Firstly, the IL-LC-DPI-MS method was applied for non-targeted profiling of thiols from cancer samples. Compared to traditional full scan mode, the DPI method significantly improved identification selectivity and accuracy. 103 thiol candidates were discovered in all cancers and 6 thiols were identified by their standards. It is worth noting that pantetheine, for the first time, was identified in human urine. Secondly, the IL-LC-MRM-MS method was developed for relative quantification of thiols in cancers compared to healthy controls. All the MRM transitions of light and heavy labeled thiols were acquired from urines by using DPI method. Compared to DPI method, the sensitivity of MRM improved by 2.1–11.3 folds. In addition, the concentration of homocysteine, γ-glutamylcysteine and pantetheine enhanced more than two folds in cancer patients compared to healthy controls. Taken together, the method demonstrated to be a promising strategy for identification and comprehensive quantification of thiols in human urines.

  14. Differential isotope dansylation labeling combined with liquid chromatography mass spectrometry for quantification of intact and N-terminal truncated proteins.

    PubMed

    Tang, Yanan; Li, Liang

    2013-08-20

    The N-terminal amino acids of proteins are important structure units for maintaining the biological function, localization, and interaction networks of proteins. Under different biological conditions, one or several N-terminal amino acids could be cleaved from an intact protein due to processes, such as proteolysis, resulting in the change of protein properties. Thus, the ability to quantify the N-terminal truncated forms of proteins is of great importance, particularly in the area of development and production of protein-based drugs where the relative quantity of the intact protein and its truncated form needs to be monitored. In this work, we describe a rapid method for absolute quantification of protein mixtures containing intact and N-terminal truncated proteins. This method is based on dansylation labeling of the N-terminal amino acids of proteins, followed by microwave-assisted acid hydrolysis of the proteins into amino acids. It is shown that dansyl labeled amino acids are stable in acidic conditions and can be quantified by liquid chromatography mass spectrometry (LC-MS) with the use of isotope analog standards.

  15. Dual isotope study of iodine-125 and indium-111-labeled antibody in athymic mice

    SciTech Connect

    Carney, P.L.; Rogers, P.E.; Johnson, D.K. )

    1989-03-01

    Monoclonal antibody B72.3 was coupled to a benzylisothiocyanate derivative of diethylenetriaminepentaacetic acid (DTPA). The maximum substitution achievable without loss of immunoreactivity was three DTPA groups per immunoglobulin molecule. The resulting conjugate was labeled with {sup 111}In by brief incubation with {sup 111}InCl{sub 3}, giving a mean radiochemical yield of {sup 111}In-labeled antibody of 96%. The ({sup 111}In)B72.3 preparation was mixed with an ({sup 125}I) B72.3 preparation, obtained by the chloramine-T method, and the mixture administered to athymic mice bearing subcutaneous LS174T colon carcinoma xenografts. There were no significant differences (p greater than 0.1) in the biodistributions of the two labels at 1, 2, 5, and 7 days postinjection. These results are contrasted with prior studies showing elevated levels of {sup 111}In in liver, spleen, and kidneys using B72.3-DTPA conjugates prepared via the bicyclic anhydride. It is concluded that protein cross-linking and/or the formation of unstable chelate sites in anhydride coupled conjugates underlie these disparities.

  16. Stable carbon isotope labeling reveals different carry-over effects between functional types of tropical trees in an Ethiopian mountain forest.

    PubMed

    Krepkowski, Julia; Gebrekirstos, Aster; Shibistova, Olga; Bräuning, Achim

    2013-07-01

    We present an intra-annual stable carbon isotope (δ(13)C) study based on a labeling experiment to illustrate differences in temporal patterns of recent carbon allocation to wood structures of two functional types of trees, Podocarpus falcatus (a late-successional evergreen conifer) and Croton macrostachyus (a deciduous broadleaved pioneer tree), in a tropical mountain forest in Ethiopia. Dendrometer data, wood anatomical thin sections, and intra-annual δ(13)C analyses were applied. Isotope data revealed a clear annual growth pattern in both studied species. For P. falcatus, it was possible to synchronize annual δ(13) C peaks, wood anatomical structures and monthly precipitation patterns. The labeling signature was evident for three consecutive years. For C. macrostachyus, isotope data illustrate a rapid decline of the labeling signal within half a year. Our δ(13)C labeling study indicates a distinct difference in carryover effects between trees of different functional types. A proportion of the labeled δ(13)C is stored in reserves of wood parenchyma for up to 3 yr in P. falcatus. By contrast, C. macrostachyus shows a high turnover of assimilates and a carbon carryover effect is only detectable in the subsequent year.

  17. Elemental formula annotation of polar and lipophilic metabolites using (13) C, (15) N and (34) S isotope labelling, in combination with high-resolution mass spectrometry.

    PubMed

    Giavalisco, Patrick; Li, Yan; Matthes, Annemarie; Eckhardt, Aenne; Hubberten, Hans-Michael; Hesse, Holger; Segu, Shruthi; Hummel, Jan; Köhl, Karin; Willmitzer, Lothar

    2011-10-01

    The unbiased and comprehensive analysis of metabolites in any organism presents a major challenge if proper peak annotation and unambiguous assignment of the biological origin of the peaks are required. Here we provide a comprehensive multi-isotope labelling-based strategy using fully labelled (13) C, (15) N and (34) S plant tissues, in combination with a fractionated metabolite extraction protocol. The extraction procedure allows for the simultaneous extraction of polar, semi-polar and hydrophobic metabolites, as well as for the extraction of proteins and starch. After labelling and extraction, the metabolites and lipids were analysed using a high-resolution mass spectrometer providing accurate MS and all-ion fragmentation data, providing an unambiguous readout for every detectable isotope-labelled peak. The isotope labelling assisted peak annotation process employed can be applied in either an automated database-dependent or a database-independent analysis of the plant polar metabolome and lipidome. As a proof of concept, the developed methods and technologies were applied and validated using Arabidopsis thaliana leaf and root extracts. Along with a large repository of assigned elemental compositions, which is provided, we show, using selected examples, the accuracy and reliability of the developed workflow.

  18. Stable isotope labeling of entire Bacillus atrophaeus spores and vegetative cells using bioaerosol mass spectrometry.

    PubMed

    Czerwieniec, Gregg A; Russell, Scott C; Tobias, Herbert J; Pitesky, Maurice E; Fergenson, David P; Steele, Paul; Srivastava, Abneesh; Horn, Joanne M; Frank, Matthias; Gard, Eric E; Lebrilla, Carlito B

    2005-02-15

    Single vegetative cells and spores of Bacillus atrophaeus, formerly Bacillus subtilis var. niger, were analyzed using bioaerosol mass spectrometry. Key biomarkers were identified from organisms grown in 13C and 15N isotopically enriched media. Spore spectra contain peaks from dicipolinate and amino acids. The results indicate that compounds observed in the spectra correspond to material from the spore's core and not the exosporium. Standard compounds and mixtures were analyzed for comparison. The biomarkers for vegetative cells were clearly different from those of the spores, consisting mainly of phosphate clusters and amino acid fragments.

  19. International Review of the Development and Implementation of Energy Efficiency Standards and Labeling Programs

    SciTech Connect

    Zhou, Nan; Zheng, Nina; Fridley, David

    2012-02-28

    Appliance energy efficiency standards and labeling (S&L) programs have been important policy tools for regulating the efficiency of energy-using products for over 40 years and continue to expand in terms of geographic and product coverage. The most common S&L programs include mandatory minimum energy performance standards (MEPS) that seek to push the market for efficient products, and energy information and endorsement labels that seek to pull the market. This study seeks to review and compare some of the earliest and most well-developed S&L programs in three countries and one region: the U.S. MEPS and ENERGY STAR, Australia MEPS and Energy Label, European Union MEPS and Ecodesign requirements and Energy Label and Japanese Top Runner programs. For each program, key elements of S&L programs are evaluated and comparative analyses across the programs undertaken to identify best practice examples of individual elements as well as cross-cutting factors for success and lessons learned in international S&L program development and implementation. The international review and comparative analysis identified several overarching themes and highlighted some common factors behind successful program elements. First, standard-setting and programmatic implementation can benefit significantly from a legal framework that stipulates a specific timeline or schedule for standard-setting and revision, product coverage and legal sanctions for non-compliance. Second, the different MEPS programs revealed similarities in targeting efficiency gains that are technically feasible and economically justified as the principle for choosing a standard level, in many cases at a level that no product on the current market could reach. Third, detailed survey data such as the U.S. Residential Energy Consumption Survey (RECS) and rigorous analyses provide a strong foundation for standard-setting while incorporating the participation of different groups of stakeholders further strengthen the process

  20. Competition for phosphorus: differential uptake from dual-isotope-labeled soil interspaces between shrub and grass

    SciTech Connect

    Caldwell, M.M.; Eissenstat, D.M.; Richards, J.H.; Allen, M.F.

    1985-07-26

    Two species of Agropyron grass differed strikingly in their capacity to compete for phosphate in soil interspaces shared with a common competitor, the sagebrush Artemisia tridentata. Of the total phosphorus-32 and -33 absorbed by Artemisia, 86% was from the interspace shared with Agropyron spicatum and only 14% from that shared with Agropyron desertorum. Actively absorbing mycorrhizal roots of Agropyron and Artemisia were present in both interspaces, where competition for the labeled phosphate occurred. The results have important implications about the way in which plants compete for resources below ground in both natural plant communities and agricultural intercropping systems.

  1. Design and operation of a continuous 13C and 15N labeling chamber for uniform or differential, metabolic and structural, plant tissue isotope labeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tracing heavy stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O o...

  2. Isotope-labelled urea to test colon drug delivery devices in vivo: principles, calculations and interpretations.

    PubMed

    Maurer, Marina J M; Schellekens, Reinout C A; Wutzke, Klaus D; Stellaard, Frans

    2013-01-01

    This paper describes various methodological aspects that were encountered during the development of a system to monitor the in vivo behaviour of a newly developed colon delivery device that enables oral drug treatment of inflammatory bowel diseases. [(13)C]urea was chosen as the marker substance. Release of [(13)C]urea in the ileocolonic region is proven by the exhalation of (13)CO2 in breath due to bacterial fermentation of [(13)C]urea. The (13)CO2 exhalation kinetics allows the calculation of a lag time as marker for delay of release, a pulse time as marker for the speed of drug release and the fraction of the dose that is fermented. To determine the total bioavailability, also the fraction of the dose absorbed from the intestine must be quantified. Initially, this was done by calculating the time-dependent [(13)C]urea appearance in the body urea pool via measurement of (13)C abundance and concentration of plasma urea. Thereafter, a new methodology was successfully developed to obtain the bioavailability data by measurement of the urinary excretion rate of [(13)C]urea. These techniques required two experimental days, one to test the coated device, another to test the uncoated device to obtain reference values for the situation that 100 % of [(13)C]urea is absorbed. This is hampered by large day-to-day variations in urea metabolism. Finally, a completely non-invasive, one-day test was worked out based on a dual isotope approach applying a simultaneous administration of [(13)C]urea in a coated device and [(15)N2]urea in an uncoated device. All aspects of isotope-related analytical methodologies and required calculation and correction systems are described.

  3. Labeling efficiency and toxicity evaluation of CdSe/ZnS quantum dots on Escherichia coli

    NASA Astrophysics Data System (ADS)

    Zhao, Jin-Yun; Jia, Li-Min; Song, Wu-Qi; Zhang, Wen-Li; Fu, Ying-Mei; Zhang, Ying; Cao, Wen-Wu; Sun, Ye; Zheng, Jin-Hua; Zhang, Feng-Min

    2014-06-01

    In comparison with conventional organic dyes, quantum dots (QDs) have unique optical and electronic properties, which provide QDs with a wide scope of prospective application in biology and biomedicine. However, the toxicity of QDs and the fluorescence intensity of labeled bacteria must precede their application in bacterial imaging and tracing in vivo. Here, we show that treatment with CaCl2 significantly improved bacterial labeling efficiency of CdSe/ZnS QDs with the CdSe core size of 3.1 nm (relative fluorescence unit (RFU) value and ratio of fluorescent E. coli) with rising CdSe/ZnS QDs concentration in a concentration-dependent manner. At 12.5 nmol/L CdSe/ZnS QDs concentration, labeled Escherichia coli ( E. coli) DH5 α appeared as short rod-shaped and luminescent with normal size, and the survival rate and ultrastructure did not change in comparison to the control. But the ratio of fluorescent bacteria and RFU were very low. However, the survival rate of transformed E. coli was significantly inhibited by high CdSe/ZnS QDs concentrations (≥25 nmol/L). Moreover, internalization of CdSe/ZnS QDs resulted in ultrastructure damage of transformed E. coli in a concentration-dependent manner (≥25 nmol/L). Therefore, CdSe/ZnS QDs may not suitable for tracing of bacteria in vivo. Moreover, our study also revealed that colony-forming capability assay and transmission electron microscopy could be used to comprehensively evaluate the toxicity of QDs on labeled bacteria. Our findings do provide a new direction toward the improvement and modification of QDs for use in imaging and tracing studies in vivo.

  4. Combining Capillary Electrophoresis Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry and Stable Isotopic Labeling Techniques for Comparative Crustacean Peptidomics

    PubMed Central

    Wang, Junhua; Zhang, Yuzhuo; Xiang, Feng; Zhang, Zichuan; Li, Lingjun

    2010-01-01

    Herein we describe a sensitive and straightforward off-line capillary electrophoresis (CE) matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) interface in conjunction with stable isotopic labeling (SIL) technique for comparative neuropeptidomic analysis in crustacean model organisms. Two SIL schemes, including a binary H/D formaldehyde labeling technique and novel, laboratory-developed multiplexed dimethylated leucine-based isobaric tagging reagents, have been evaluated in these proof-of-concept experiments. We employ these isotopic labeling techniques in conjunction with CE-MALDI MS for quantitative peptidomic analyses of the pericardial organs isolated from two crustacean species, the European green crab Carcinus maenas and the blue crab Callinectes sapidus. Isotopically labeled peptide pairs are found to co-migrate in CE fractions and quantitative changes in relative abundances of peptide pairs are obtained by comparing peak intensities of respective peptide pairs. Several neuropeptide families exhibit changes in response to salinity stress, suggesting potential physiological functions of these signaling peptides. PMID:20334868

  5. High Yield Production and Radiochemical Isolation of Isotopically Pure Arsenic-72 and Novel Radioarsenic Labeling Strategies for the Development of Theranostic Radiopharmaceuticals

    PubMed Central

    Ellison, Paul A.; Barnhart, Todd E.; Chen, Feng; Hong, Hao; Zhang, Yin; Theuer, Charles P.; Cai, Weibo; Nickles, Robert J.; DeJesus, Onofre T.

    2016-01-01

    Radioisotopes of arsenic are of considerable interest to the field of nuclear medicine with unique nuclear and chemical properties making them well-suited for use in novel theranostic radiopharmaceuticals. However, progress must still be made in the production of isotopically pure radioarsenic and in its stable conjugation to biological targeting vectors. This work presents the production and irradiation of isotopically enriched 72Ge(m) discs in an irrigation-cooled target system allowing for the production of isotopically pure 72As with capability on the order of 10 GBq. A radiochemical separation procedure isolated the reactive trivalent radioarsenic in a small volume buffered aqueous solution, while reclaiming 72Ge target material. The direct thiol-labeling of a monoclonal antibody resulted in a conjugate exhibiting exceptionally poor in vivo stability in a mouse model. This prompted further investigations to alternative radioarsenic labeling strategies, including the labeling of the dithiol-containing chelator dihydrolipoic acid, and thiol-modified mesoporous silica nanoparticles (MSN-SH). Radioarsenic-labeled MSN-SH showed exceptional in vivo stability toward dearsenylation. PMID:26646989

  6. High efficiency Hall effect micro-biosensor platform for detection of magnetically labeled biomolecules.

    PubMed

    Sandhu, Adarsh; Kumagai, Yoshimichi; Lapicki, Adam; Sakamoto, Satoshi; Abe, Masanori; Handa, Hiroshi

    2007-04-15

    Detection of magnetically labeled biomolecules using micro-Hall biosensors is a promising method for monitoring biomolecular recognition processes. The measurement efficiency of standard systems is limited by the time taken for magnetic beads to reach the sensing area of the Hall devices. Here, micro-current lines were integrated with Hall effect structures to manipulate the position of magnetic beads via field gradients generated by localized currents flowing in the current lines. Beads were accumulated onto the sensor surface within seconds of passing currents through the current lines. Real-time detection of magnetic beads using current lines integrated with Hall biosensors was achieved. These results are promising in establishing Hall biosensor platforms as efficient and inexpensive means of monitoring biomolecular reactions for medical applications.

  7. Stable Isotope Labeled Tracers for Metabolic Pathway Elucidation by GC-MS and FT-MS

    PubMed Central

    Higashi, Richard M.; Fan, Teresa W-M.; Lorkiewicz, Pawel K.; Moseley, Hunter N.B.; Lane, Andrew N.

    2015-01-01

    Advances in analytical methodologies, principally nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), over the last decade have made large-scale analysis of the human metabolome a reality. This is leading to the reawakening of the importance of metabolism in human diseases, particularly widespread metabolic diseases such as cancer, diabetes, and obesity. Emerging NMR and MS atom-tracking technologies and informatics is poised to revolutionize metabolomics-based research because they deliver the high information throughput (HIT) that is needed for deciphering systems biochemistry. In particular, Stable Isotope Resolved Metabolomics (SIRM) enables unambiguous tracking of individual atoms through compartmentalized metabolic networks, in a wide range of experimental systems, including human subjects. MS offers a wide range of initial capital outlay and operating costs, ranging from gas-chromatography (GC) MS affordable by many individual laboratories, to the HIT-supporting Fourier-transform (FT) class of MS that rivals NMR in cost and infrastructure support. This chapter will focus on sample preparation, instrument, and data processing procedures for these two extremes of MS instrumentation used in SIRM. PMID:25270929

  8. NanoSIMS analysis of an isotopically labelled organometallic ruthenium(II) drug to probe its distribution and state in vitro.

    PubMed

    Lee, Ronald F S; Escrig, Stéphane; Croisier, Marie; Clerc-Rosset, Stéphanie; Knott, Graham W; Meibom, Anders; Davey, Curt A; Johnsson, Kai; Dyson, Paul J

    2015-11-28

    The in vitro inter- and intra-cellular distribution of an isotopically labelled ruthenium(II)-arene (RAPTA) anti-metastatic compound in human ovarian cancer cells was imaged using nano-scale secondary ion mass spectrometry (NanoSIMS). Ultra-high resolution isotopic images of (13)C, (15)N, and Ru indicate that the phosphine ligand remains coordinated to the ruthenium(II) ion whereas the arene detaches. The complex localizes mainly on the membrane or at the interface between cells which correlates with its anti-metastatic effects.

  9. Differential proteomic analysis using isotope-coded protein-labeling strategies: comparison, improvements and application to simulated microgravity effect on Cupriavidus metallidurans CH34.

    PubMed

    Leroy, Baptiste; Rosier, Caroline; Erculisse, Vanessa; Leys, Natalie; Mergeay, Max; Wattiez, Ruddy

    2010-06-01

    Among differential proteomic methods based on stable isotopic labeling, isotope-coded protein labeling (ICPL) is a recent non-isobaric technique devised to label primary amines found in proteins. ICPL overcomes some of the disadvantages found in other chemical-labeling techniques, such as iTRAQ or ICAT. However, previous analyses revealed that more than 30% of the proteins identified in regular ICPL generally remain unquantified. In this study, we describe a modified version of ICPL, named Post-digest ICPL, that makes it possible to label and thus to quantify all the peptides in a sample (bottom-up approach). Optimization and validation of this Post-digest ICPL approach were performed using a standard protein mixture and complex protein samples. Using this strategy, the number of proteins that were identified and quantified was greatly increased in comparison with regular ICPL and cICAT approaches. The pros and cons of this improvement are discussed. This complementary approach to traditional ICPL was applied to the analysis of modification of protein abundances in the model bacterium Cupriavidus metallidurans CH34 after cultivation under simulated microgravity. In this context, two different systems - a 2-D clinorotation and 3-D random positioning device - were used and the results were compared and discussed.

  10. Metabolic cartography: experimental quantification of metabolic fluxes from isotopic labelling studies.

    PubMed

    O'Grady, John; Schwender, Jörg; Shachar-Hill, Yair; Morgan, John A

    2012-03-01

    For the past decade, flux maps have provided researchers with an in-depth perspective on plant metabolism. As a rapidly developing field, significant headway has been made recently in computation, experimentation, and overall understanding of metabolic flux analysis. These advances are particularly applicable to the study of plant metabolism. New dynamic computational methods such as non-stationary metabolic flux analysis are finding their place in the toolbox of metabolic engineering, allowing more organisms to be studied and decreasing the time necessary for experimentation, thereby opening new avenues by which to explore the vast diversity of plant metabolism. Also, improved methods of metabolite detection and measurement have been developed, enabling increasingly greater resolution of flux measurements and the analysis of a greater number of the multitude of plant metabolic pathways. Methods to deconvolute organelle-specific metabolism are employed with increasing effectiveness, elucidating the compartmental specificity inherent in plant metabolism. Advances in metabolite measurements have also enabled new types of experiments, such as the calculation of metabolic fluxes based on (13)CO(2) dynamic labelling data, and will continue to direct plant metabolic engineering. Newly calculated metabolic flux maps reveal surprising and useful information about plant metabolism, guiding future genetic engineering of crops to higher yields. Due to the significant level of complexity in plants, these methods in combination with other systems biology measurements are necessary to guide plant metabolic engineering in the future.

  11. Metabolic cartography: experimental quantification of metabolic fluxes from isotopic labelling studies

    SciTech Connect

    O'Grady J.; Schwender J.; Shachar-Hill, Y.; Morgan, J. A.

    2012-03-01

    For the past decade, flux maps have provided researchers with an in-depth perspective on plant metabolism. As a rapidly developing field, significant headway has been made recently in computation, experimentation, and overall understanding of metabolic flux analysis. These advances are particularly applicable to the study of plant metabolism. New dynamic computational methods such as non-stationary metabolic flux analysis are finding their place in the toolbox of metabolic engineering, allowing more organisms to be studied and decreasing the time necessary for experimentation, thereby opening new avenues by which to explore the vast diversity of plant metabolism. Also, improved methods of metabolite detection and measurement have been developed, enabling increasingly greater resolution of flux measurements and the analysis of a greater number of the multitude of plant metabolic pathways. Methods to deconvolute organelle-specific metabolism are employed with increasing effectiveness, elucidating the compartmental specificity inherent in plant metabolism. Advances in metabolite measurements have also enabled new types of experiments, such as the calculation of metabolic fluxes based on {sup 13}CO{sub 2} dynamic labelling data, and will continue to direct plant metabolic engineering. Newly calculated metabolic flux maps reveal surprising and useful information about plant metabolism, guiding future genetic engineering of crops to higher yields. Due to the significant level of complexity in plants, these methods in combination with other systems biology measurements are necessary to guide plant metabolic engineering in the future.

  12. Metabolic cartography: experimental quantification of metabolic fluxes from isotopic labelling studies

    SciTech Connect

    O'Grady, J; Schwender, J; Shachar-Hill, Y; Morgan, JA

    2012-03-26

    For the past decade, flux maps have provided researchers with an in-depth perspective on plant metabolism. As a rapidly developing field, significant headway has been made recently in computation, experimentation, and overall understanding of metabolic flux analysis. These advances are particularly applicable to the study of plant metabolism. New dynamic computational methods such as non-stationary metabolic flux analysis are finding their place in the toolbox of metabolic engineering, allowing more organisms to be studied and decreasing the time necessary for experimentation, thereby opening new avenues by which to explore the vast diversity of plant metabolism. Also, improved methods of metabolite detection and measurement have been developed, enabling increasingly greater resolution of flux measurements and the analysis of a greater number of the multitude of plant metabolic pathways. Methods to deconvolute organelle-specific metabolism are employed with increasing effectiveness, elucidating the compartmental specificity inherent in plant metabolism. Advances in metabolite measurements have also enabled new types of experiments, such as the calculation of metabolic fluxes based on (CO2)-C-13 dynamic labelling data, and will continue to direct plant metabolic engineering. Newly calculated metabolic flux maps reveal surprising and useful information about plant metabolism, guiding future genetic engineering of crops to higher yields. Due to the significant level of complexity in plants, these methods in combination with other systems biology measurements are necessary to guide plant metabolic engineering in the future.

  13. The sulfonium ion linkage in myeloperoxidase. Direct spectroscopic detection by isotopic labeling and effect of mutation.

    PubMed

    Kooter, I M; Moguilevsky, N; Bollen, A; van der Veen, L A; Otto, C; Dekker, H L; Wever, R

    1999-09-17

    The heme group of myeloperoxidase is covalently linked via two ester bonds to the protein and a unique sulfonium ion linkage involving Met(243). Mutation of Met(243) into Thr, Gln, and Val, which are the corresponding residues of eosinophil peroxidase, lactoperoxidase, and thyroid peroxidase, respectively, and into Cys was performed. The Soret band in the optical absorbance spectrum in the oxidized mutants is now found at approximately 411 nm. Both the pyridine hemochrome spectra and resonance Raman spectra of the mutants are affected by the mutation. In the Met(243) mutants the affinity for chloride has decreased 100-fold. All mutants have lost their chlorination activity, except for the M243T mutant, which still has 15% activity left. By Fourier transform infared difference spectroscopy it was possible to specifically detect the (13)CD(3)-labeled methionyl sulfonium ion linkage. We conclude that the sulfonium ion linkage serves two roles. First, it serves as an electron-withdrawing substituent via its positive charge, and, second, together with its neighboring residue Glu(242), it appears to be responsible for the lower symmetry of the heme group and distortion from the planar conformation normally seen in heme-containing proteins.

  14. A novel method to measure isotopic labeled gas-phase nitrous acid (HO15NO) in biogeochemical studies

    NASA Astrophysics Data System (ADS)

    Wu, Dianming; Kampf, Christopher; Pöschl, Ulrich; Oswald, Robert; Cui, Junfang; Ermel, Michael; Hu, Chunsheng; Trebs, Ivonne; Sörgel, Matthias

    2014-05-01

    We developed a new method (gas-phase stripping-derivatization coupled to LC-MS) to measure the 15N atom percent excess (APE) of HONO in the gas-phase. Gaseous HONO is quantitatively collected and transferred to an azo dye by the well-known Griess reaction in the Long Path Absorption Photometer (LOPAP). The reaction solutions containing the dye are collected at the outflow of the LOPAP, purified by solid-phase extraction and analyzed using high performance liquid chromatography coupled to mass spectrometry (HPLC-MS). The unlabeled azo dye (C18H19O2N5S) with a monoisotopic molecular mass of 369.41 g mol-1 can be detected as its protonated molecular ion ([M+H+], M) by HPLC-MS at a retention time of 2.8 min. Due to the natural isotope distribution M + 0, M + 1, M + 2, and M + 3 ions were considered for the calculation of the 15N APE. The optimal working range was found to be between 20 and 50% for the 15N/14N ratio. The optimum pH and solvents for extraction by SPE and potential interferences are discussed. The method has been applied for the measurement of HO15NO emissions from soil in a dynamic chamber with and without spiking 15N labeled urea. Our results confirm biogenic HONO emissions from soil as HO15NO was measured after addition of 15N urea.

  15. Influence of 13C isotopic labeling location of 13C DNP of acetate using TEMPO free radical

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Lumata, Lloyd

    2015-03-01

    Dynamic nuclear polarization (DNP) via the dissolution method enhances the liquid-state magnetic resonance (NMR or MRI) signals of insensitive nuclear spins by at least 10,000-fold. The basis for all these signal enhancements at room temperature is the polarization transfer from the electrons to nuclear spins at cryogenic temperature and high magnetic field. In this work, we have studied the influence of the location of 13C isotopic labeling on the DNP of sodium acetate at 3.35 T and 1.4 K using a wide ESR linewidth free radical 4-oxo-TEMPO. The carbonyl [1-13C]acetate spins produced a polarization level that is almost twice that of the methyl [2-13C]acetate spins. On the other hand, the polarization of the methyl 13C spins doubled to reach the level of [1-13C]acetate when the methyl group was deuterated. Meanwhile, the solid-state nuclear relaxation of these samples are the same and do not correlate with the polarization levels. These behavior implies that the nuclear relaxation for these samples is dominated by the contribution from the free radicals and the polarization levels can be explained by a thermodynamic picture of DNP.

  16. Dual Label Stable Isotope Incubations Followed By Single Cell Nanosims Analyses To Investigate Microscale Phototroph-Heterotroph Interactions

    NASA Astrophysics Data System (ADS)

    Mayali, X.; Samo, T. J.; Nilson, D.; Arandia Gorostidi, N.; alonso Saez, L.; Moran, X. A.; Weber, P. K.

    2015-12-01

    In natural ecosystems such as lakes and oceans as well as human-engineered systems for sunlight-regulated biomass production (such as algal biofuel ponds), the interaction between autotrophic and heterotrophic processes are critical to determine whether such systems are net autotrophic or heterotrophic. Traditional methods to quantify autotrophy and heterotrophy include primary productivity and bacterial production measurements using radiolabeled substrates that quantify these processes on the bulk scale. To examine the microscale interactions between individual autotrophic and heterotrophic cells, we incubate mixed microbial assemblages with 13C-bicarbonate and 15N-leucine to label individual autotrophs and heterotrophs, respectively. We use nano imaging secondary ion mass spectrometry (with a Cameca NanoSIMS 50) to quantify the incorporation of the rare isotopes by single cells. We will present results from experiments examining the impact of warming on the exchange of C and N between algal and bacterial cells from the coastal Atlantic Ocean, which suggest that increased temperature may strengthen physical interactions and exchange. We will also present data from experiments examining the influence of attached bacteria on the cell-specific inorganic carbon fixation rates of biofuel-producing algal cultures which suggest that certain algal-attached bacterial groups grow faster than when free-living and influence algal growth. We conclude that the examination of individual cells uncover interactions that would be difficult, if not impossible, to investigate with bulk methods.

  17. Automated resonance assignment of the 21 kDa stereo-array isotope labeled thioldisulfide oxidoreductase DsbA

    NASA Astrophysics Data System (ADS)

    Schmidt, Elena; Ikeya, Teppei; Takeda, Mitsuhiro; Löhr, Frank; Buchner, Lena; Ito, Yutaka; Kainosho, Masatsune; Güntert, Peter

    2014-12-01

    The automated chemical shift assignment algorithm FLYA has been extended for use with stereo-array isotope labeled (SAIL) proteins to determine the sequence-specific resonance assignments of large proteins. Here we present the assignment of the backbone and sidechain chemical shifts of the 21 kDa thioldisulfide oxidoreductase DsbA from Escherichia coli that were determined with the SAIL-FLYA algorithm in conjunction with automated peak picking. No manual corrections of peak lists or assignments were applied. The assignments agreed with manually determined reference assignments in 95.4% of the cases if 16 input spectra were used, 94.1% if only 3D 13C/15N-resolved NOESY, CBCA(CO)NH, and 2D [13C/15N,1H]-HSQC were used, and 86.8% if exclusively 3D 13C/15N-resolved NOESY spectra were used. Considering only the assignments that are classified as reliable by the SAIL-FLYA algorithm, the degrees of agreement increased to 97.5%, 96.5%, and 94.2%, respectively. With our approach it is thus possible to automatically obtain almost complete and correct assignments of proteins larger than 20 kDa.

  18. Tracing nitrogenous disinfection byproducts after medium pressure UV water treatment by stable isotope labeling and high resolution mass spectrometry.

    PubMed

    Kolkman, Annemieke; Martijn, Bram J; Vughs, Dennis; Baken, Kirsten A; van Wezel, Annemarie P

    2015-04-07

    Advanced oxidation processes are important barriers for organic micropollutants (e.g., pharmaceuticals, pesticides) in (drinking) water treatment. Studies indicate that medium pressure (MP) UV/H2O2 treatment leads to a positive response in Ames mutagenicity tests, which is then removed after granulated activated carbon (GAC) filtration. The formed potentially mutagenic substances were hitherto not identified and may result from the reaction of photolysis products of nitrate with (photolysis products of) natural organic material (NOM). In this study we present an innovative approach to trace the formation of disinfection byproducts (DBPs) of MP UV water treatment, based on stable isotope labeled nitrate combined with high resolution mass spectrometry. It was shown that after MP UV treatment of artificial water containing NOM and nitrate, multiple nitrogen containing substances were formed. In total 84 N-DBPs were detected at individual concentrations between 1 to 135 ng/L bentazon-d6 equivalents, with a summed concentration of 1.2 μg/L bentazon-d6 equivalents. The chemical structures of three byproducts were confirmed. Screening for the 84 N-DBPs in water samples from a full-scale drinking water treatment plant based on MP UV/H2O2 treatment showed that 22 of the N-DBPs found in artificial water were also detected in real water samples.

  19. Limited Proteolysis Combined with Stable Isotope Labeling Reveals Conformational Changes in Protein (Pseudo)kinases upon Binding Small Molecules.

    PubMed

    Di Michele, Michela; Stes, Elisabeth; Vandermarliere, Elien; Arora, Rohit; Astorga-Wells, Juan; Vandenbussche, Jonathan; van Heerde, Erika; Zubarev, Roman; Bonnet, Pascal; Linders, Joannes T M; Jacoby, Edgar; Brehmer, Dirk; Martens, Lennart; Gevaert, Kris

    2015-10-02

    Likely due to conformational rearrangements, small molecule inhibitors may stabilize the active conformation of protein kinases and paradoxically promote tumorigenesis. We combined limited proteolysis with stable isotope labeling MS to monitor protein conformational changes upon binding of small molecules. Applying this method to the human serine/threonine kinase B-Raf, frequently mutated in cancer, we found that binding of ATP or its nonhydrolyzable analogue AMP-PNP, but not ADP, stabilized the structure of both B-Raf(WT) and B-Raf(V600E). The ATP-competitive type I B-Raf inhibitor vemurafenib and the type II inhibitor sorafenib stabilized the kinase domain (KD) but had distinct effects on the Ras-binding domain. Stabilization of the B-Raf(WT) KD was confirmed by hydrogen/deuterium exchange MS and molecular dynamics simulations. Our results are further supported by cellular assays in which we assessed cell viability and phosphorylation profiles in cells expressing B-Raf(WT) or B-Raf(V600E) in response to vemurafenib or sorafenib. Our data indicate that an overall stabilization of the B-Raf structure by specific inhibitors activates MAPK signaling and increases cell survival, helping to explain clinical treatment failure. We also applied our method to monitor conformational changes upon nucleotide binding of the pseudokinase KSR1, which holds high potential for inhibition in human diseases.

  20. Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs

    PubMed Central

    Schubotz, Florence; Hays, Lindsay E.; Meyer-Dombard, D'Arcy R.; Gillespie, Aimee; Shock, Everett L.; Summons, Roger E.

    2015-01-01

    Streamer biofilm communities (SBC) are often observed within chemosynthetic zones of Yellowstone hot spring outflow channels, where temperatures exceed those conducive to photosynthesis. Nearest the hydrothermal source (75–88°C) SBC comprise thermophilic Archaea and Bacteria, often mixed communities including Desulfurococcales and uncultured Crenarchaeota, as well as Aquificae and Thermus, each carrying diagnostic membrane lipid biomarkers. We tested the hypothesis that SBC can alternate their metabolism between autotrophy and heterotrophy depending on substrate availability. Feeding experiments were performed at two alkaline hot springs in Yellowstone National Park: Octopus Spring and “Bison Pool,” using various 13C-labeled substrates (bicarbonate, formate, acetate, and glucose) to determine the relative uptake of these different carbon sources. Highest 13C uptake, at both sites, was from acetate into almost all bacterial fatty acids, particularly into methyl-branched C15, C17 and C19 fatty acids that are diagnostic for Thermus/Meiothermus, and some Firmicutes as well as into universally common C16:0 and C18:0 fatty acids. 13C-glucose showed a similar, but a 10–30 times lower uptake across most fatty acids. 13C-bicarbonate uptake, signifying the presence of autotrophic communities was only significant at “Bison Pool” and was observed predominantly in non-specific saturated C16, C18, C20, and C22 fatty acids. Incorporation of 13C-formate occurred only at very low rates at “Bison Pool” and was almost undetectable at Octopus Spring, suggesting that formate is not an important carbon source for SBC. 13C-uptake into archaeal lipids occurred predominantly with 13C-acetate, suggesting also that archaeal communities at both springs have primarily heterotrophic carbon assimilation pathways. We hypothesize that these communities are energy-limited and predominantly nurtured by input of exogenous organic material, with only a small fraction being sustained

  1. Residue-Specific Structural Kinetics of Proteins through the Union of Isotope Labeling, Mid-IR Pulse Shaping, and Coherent 2D IR Spectroscopy

    PubMed Central

    Middleton, Chris T.; Woys, Ann Marie; Mukherjee, Sudipta S.; Zanni, Martin T.

    2010-01-01

    We describe a methodology for studying protein kinetics using a rapid-scan technology for collecting 2D IR spectra. In conjunction with isotope labeling, 2D IR spectroscopy is able to probe the secondary structure and environment of individual residues in polypeptides and proteins. It is particularly useful for membrane and aggregate proteins. Our rapid-scan technology relies on a mid-IR pulse shaper that computer generates the pulse shapes, much like in an NMR spectrometer. With this device, data collection is faster, easier, and more accurate. We describe our 2D IR spectrometer, as well as protocols for 13C=18O isotope labeling, and then illustrate the technique with an application to the aggregation of the human islet amyloid polypeptide form type 2 diabetes. PMID:20472067

  2. Quantitative, Time-Resolved Proteomic Analysis by Combining Bioorthogonal Noncanonical Amino Acid Tagging and Pulsed Stable Isotope Labeling by Amino Acids in Cell Culture*

    PubMed Central

    Bagert, John D.; Xie, Yushu J.; Sweredoski, Michael J.; Qi, Yutao; Hess, Sonja; Schuman, Erin M.; Tirrell, David A.

    2014-01-01

    An approach to proteomic analysis that combines bioorthogonal noncanonical amino acid tagging (BONCAT) and pulsed stable isotope labeling with amino acids in cell culture (pSILAC) provides accurate quantitative information about rates of cellular protein synthesis on time scales of minutes. The method is capable of quantifying 1400 proteins produced by HeLa cells during a 30 min interval, a time scale that is inaccessible to isotope labeling techniques alone. Potential artifacts in protein quantification can be reduced to insignificant levels by limiting the extent of noncanonical amino acid tagging. We find no evidence for artifacts in protein identification in experiments that combine the BONCAT and pSILAC methods. PMID:24563536

  3. Application of isotopic labeling, and gas chromatography mass spectrometry, to understanding degradation products and pathways in the thermal-oxidative aging of Nylon 6.6

    SciTech Connect

    White, Gregory Von; Clough, Roger L.; Hochrein, James M.; Bernstein, Robert

    2013-12-01

    Nylon 6.6 containing 13C isotopic labels at specific positions along the macromolecular backbone has been subjected to extensive thermal-oxidative aging at 138 °C for time periods up to 243 days. In complementary experiments, unlabeled Nylon 6.6 was subjected to the same aging conditions under an atmosphere of 18O2. Volatile organic degradation products were analyzed by cryofocusing gas chromatography mass spectrometry (cryo-GC/MS) to identify the isotopic labeling. The labeling results, combined with basic considerations of free radical reaction chemistry, provided insights to the origin of degradation species, with respect to the macromolecular structure. A number of inferences on chemical mechanisms were drawn, based on 1) the presence (or absence) of the isotopic labels in the various products, 2) the location of the isotope within the product molecule, and 3) the relative abundance of products as indicated by large differences in peak intensities in the gas chromatogram. The overall degradation results can be understood in terms of free radical pathways originating from initial attacks on three different positions along the nylon chain which include hydrogen abstraction from: the (CH2) group adjacent to the nitrogen atom, at the (CH2) adjacent the carbonyl group, and direct radical attack on the carbonyl. Understanding the pathways which lead to Nylon 6.6 degradation ultimately provides new insight into changes that can be leveraged to detect and reduce early aging and minimize problems associated with material degradation.

  4. Heavy isotope labeling study of the turnover of forskolin-stimulated adenylate cyclase in BC/sup 3/H1 cell line

    SciTech Connect

    Bouhelal, R.; Bockaert, J.; Mermet-Bouvier, R.; Guillon, G.; Homburger, V.

    1987-06-25

    We have used the method of heavy isotope labeling to study the metabolic turnover of adenylate cyclase in a nonfusing muscle cell line, the BC/sup 3/H1 cells. These cells contains an adenylate cyclase coupled to beta-adrenergic receptors and highly stimulated by forskolin, a potent activator of the enzyme. After transfer of the cells from normal medium to heavy medium (a medium containing heavy labeled amino acids, /sup 3/H, /sup 13/C, /sup 15/N), heavy isotope-labeled adenylate cyclase molecules progressively replace pre-existing light molecules. In sucrose gradient differential sedimentation, after a 5-day switch in heavy medium, the enzyme exhibited a higher mass (s = 8.40 +/- 0.03 S, n = 13) compared to the control enzyme. Indeed, the increase in the sedimentation coefficient of the heavy molecules was due to the synthesis of new molecules of adenylate cyclase labeled with heavy isotope amino acids since in the presence of cycloheximide, an inhibitor of protein synthesis, no change in the sedimentation pattern of the forskolin-stimulated adenylate cyclase occurred. After incorporation of heavy isotope amino acids in the adenylate cyclase molecules, the kinetics parameters of the enzyme did not change. However, adenylate cyclase from cells incubated with heavy medium exhibits an activity about 2-fold lower than control. After switching the cells to the heavy medium, the decrease of the activity of the enzyme occurred during the first 24 h and thereafter remained at a steady state for at least 4 days. In contrast, 24 h after the switch, the sedimentation coefficient of forskolin-stimulated adenylate cyclase was progressively shifted to a higher value.

  5. A coding method for efficient subgraph querying on vertex- and edge-labeled graphs.

    PubMed

    Zhu, Lei; Song, Qinbao; Guo, Yuchen; Du, Lei; Zhu, Xiaoyan; Wang, Guangtao

    2014-01-01

    Labeled graphs are widely used to model complex data in many domains, so subgraph querying has been attracting more and more attention from researchers around the world. Unfortunately, subgraph querying is very time consuming since it involves subgraph isomorphism testing that is known to be an NP-complete problem. In this paper, we propose a novel coding method for subgraph querying that is based on Laplacian spectrum and the number of walks. Our method follows the filtering-and-verification framework and works well on graph databases with frequent updates. We also propose novel two-step filtering conditions that can filter out most false positives and prove that the two-step filtering conditions satisfy the no-false-negative requirement (no dismissal in answers). Extensive experiments on both real and synthetic graphs show that, compared with six existing counterpart methods, our method can effectively improve the efficiency of subgraph querying.

  6. Rapid 'de novo' peptide sequencing by a combination of nanoelectrospray, isotopic labeling and a quadrupole/time-of-flight mass spectrometer.

    PubMed

    Shevchenko, A; Chernushevich, I; Ens, W; Standing, K G; Thomson, B; Wilm, M; Mann, M

    1997-01-01

    Protein microanalysis usually involves the sequencing of gel-separated proteins available in very small amounts. While mass spectrometry has become the method of choice for identifying proteins in databases, in almost all laboratories 'de novo' protein sequencing is still performed by Edman degradation. Here we show that a combination of the nanoelectrospray ion source, isotopic end labeling of peptides and a quadrupole/ time-of-flight instrument allows facile read-out of the sequences of tryptic peptides. Isotopic labeling was performed by enzymatic digestion of proteins in 1:1 16O/18O water, eliminating the need for peptide derivatization. A quadrupole/time-of-flight mass spectrometer was constructed from a triple quadrupole and an electrospray time-of-flight instrument. Tandem mass spectra of peptides were obtained with better than 50 ppm mass accuracy and resolution routinely in excess of 5000. Unique and error tolerant identification of yeast proteins as well as the sequencing of a novel protein illustrate the potential of the approach. The high data quality in tandem mass spectra and the additional information provided by the isotopic end labeling of peptides enabled automated interpretation of the spectra via simple software algorithms. The technique demonstrated here removes one of the last obstacles to routine and high throughput protein sequencing by mass spectrometry.

  7. Optimization of 13C dynamic nuclear polarization: isotopic labeling of free radicals

    NASA Astrophysics Data System (ADS)

    Niedbalski, Peter; Parish, Christopher; Kiswandi, Andhika; Lumata, Lloyd

    Dynamic nuclear polarization (DNP) is a physics technique that amplifies the nuclear magnetic resonance (NMR) signals by transferring the high polarization of the electrons to the nuclear spins. Thus, the choice of free radical is crucial in DNP as it can directly affect the NMR signal enhancement levels, typically on the order of several thousand-fold in the liquid-state. In this study, we have investigated the efficiency of four variants of the well-known 4-oxo-TEMPO radical (normal 4-oxo-TEMPO plus its 15N-enriched and/or perdeuterated variants) for use in DNP of an important metabolic tracer [1-13C]acetate. Though the variants have significant differences in electron paramagnetic resonance (EPR) spectra, we have found that changing the composition of the TEMPO radical through deuteration or 15N doping yields no significant difference in 13C DNP efficiency at 3.35 T and 1.2 K. On the other hand, deuteration of the solvent causes a significant increase of 13C polarization that is consistent over all the 4-oxo-TEMPO variants. These findings are consistent with the thermal mixing model of DNP. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.

  8. Relative quantitation of protein nitration by liquid chromatography–mass spectrometry using isotope-coded dimethyl labeling and chemoprecipitation

    PubMed Central

    Guo, Jia; Prokai-Tatrai, Katalin; Prokai, Laszlo

    2012-01-01

    Protein nitration has been recognized as an important biomarker for nitroxidative stress associated with various diseases. While identification of protein targets for nitration is important, its quantitative profiling also is necessary to understand the biological impact of this low-abundance posttranslational modification. We have previously reported an efficient and straightforward enrichment method for nitropeptides to reduce sample complexity and permit unambiguous site-specific identifications by LC–MS analyses. This approach relies on two chemical derivatization steps: specifically reductive methylation of aliphatic amines and, then, conversion of nitrotyrosines to the corresponding aminotyrosines before their selective capture by a solid-phase reagent we introduced previously. Hence, the method inherently offers the opportunity for relative quantitation of nitropeptides by using isotopic variants of formaldehyde for reductive methylation. This simple method was tested via LC–MS analyses of differently N-methylated nitropeptides and nitroubiquitin as a model nitroprotein enriched from human serum albumin digest and from human plasma, respectively. PMID:22285050

  9. Non-homogeneity of isotopic labelling in 15N gas flux studies: theory, some observations and possible lessons

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Buchen, Caroline; Deppe, Marianna; Eschenbach, Wolfram; Gattinger, Andreas; Giesemann, Anette; Krause, Hans-Martin; Lewicka-Szczebak, Dominika

    2015-04-01

    Quantifying dinitrogen (N2) and nitrous oxide (N2O) fluxes from different soil N pools and processes can be accomplished using the 15N tracer technique but this is subject to four different sources of bias (i. - iv.). This approach includes 15N labelling of selected N pools in soil and subsequent isotope analysis of all relevant N pools as well as of gas samples from enclosures, i.e. mixtures of soil-derived and atmospheric N2 and N2O. Depending on the processes of interest, there may be 15N labelling of one or several N pools, were several labelling treatment are needed in the latter case (e.g. Müller et al., 2004). Measuring pool-derived N2 or N2O has been shown to include two calculation problems, (i.) arising from multiple pools (e.g. Arah, 1992) and (ii.) dealing with the non-random distribution of N2 and N2O mole masses (Hauck et al., 1958). Non-randomness can be solved if m/z 28, 29 and 30 are correctly analysed and the 15N enrichment of one (to distinguish two pools, i.e. soil and atmosphere) or two pools (in case of three pools) is known (Spott & Stange, 2008). Moreover (iii.), NO3- pools generating N2 and N2O via denitrification can be identical or different, e.g. if N2O evolved from higher enriched NO3- in deeper soil was more reduced to N2 compared to N2O evolved from N2O from shallow soil with lower enrichment, or vice versa. Apportioning N2O fluxes to NH4+ (nitrification and/or nitrifier denitrification) and NO3- (denitrification) is often conducted by NO3-labeling, measuring δ15N of emitted N2O and applying mixing equations were the measured 15N enrichment of NH4+and NO3-pool is used. However, this assumes that the average 15N enrichment of NH4+and NO3-in the soil is identical to the enrichment in the active soil domain producing N2 and/or N2O. Violation of this precondition must lead to bias in source apportionment (iv.), but to our knowledge this has not been investigated until now. Here we present conceptual models and model calculations

  10. An optimal defense strategy for phenolic glycoside production in Populus trichocarpa--isotope labeling demonstrates secondary metabolite production in growing leaves.

    PubMed

    Massad, Tara Joy; Trumbore, Susan E; Ganbat, Gantsetseg; Reichelt, Michael; Unsicker, Sybille; Boeckler, Andreas; Gleixner, Gerd; Gershenzon, Jonathan; Ruehlow, Steffen

    2014-07-01

    Large amounts of carbon are required for plant growth, but young, growing tissues often also have high concentrations of defensive secondary metabolites. Plants' capacity to allocate resources to growth and defense is addressed by the growth-differentiation balance hypothesis and the optimal defense hypothesis, which make contrasting predictions. Isotope labeling can demonstrate whether defense compounds are synthesized from stored or newly fixed carbon, allowing a detailed examination of these hypotheses. Populus trichocarpa saplings were pulse-labeled with 13CO2 at the beginning and end of a growing season, and the 13C signatures of phenolic glycosides (salicinoids), sugars, bulk tissue, and respired CO2 were traced over time. Half of the saplings were also subjected to mechanical damage. Populus trichocarpa followed an optimal defense strategy, investing 13C in salicinoids in expanding leaves directly after labeling. Salicinoids turned over quickly, and their production continued throughout the season. Salicin was induced by early-season damage, further demonstrating optimal defense. Salicinoids appear to be of great value to P. trichocarpa, as they command new C both early and late in the growing season, but their fitness benefits require further study. Export of salicinoids between tissues and biochemical pathways enabling induction also needs research. Nonetheless, the investigation of defense production afforded by isotope labeling lends new insights into plants' ability to grow and defend simultaneously.

  11. Microscale synthesis of isotopically labeled R-[6-xH]N5,N10-methylene-5,6,7,8-tetrahydrofolate as a cofactor for thymidylate synthase.

    PubMed

    Agrawal, Nitish; Mihai, Cornelia; Kohen, Amnon

    2004-05-01

    A one-pot synthesis of isotopically labeled R-[6-xH]N5,N10-methylene-5,6,7,8-tetrahydrofolate (CH2H4F) is presented, where x=1, 2, or 3 represents hydrogen, deuterium, or tritium, respectively. The current procedure offers high-yield, high-purity, and microscale-quantity synthesis. In this procedure, two enzymes were used simultaneously in the reaction mixture. The first was Thermoanaerobium brockii alcohol dehydrogenase, which stereospecifically catalyzed a hydride transfer from C-2-labeled isopropanol to the re face of oxidized nicotinamide adenine dinucleotide phosphate to form R-[4-xH]-labeled reduced nicotinamide adenine dinucleotide phosphate. The second enzyme, Escherichia coli dihydrofolate reductase, used the xH to reduce 7,8-dihydrofolate (H2F) to form S-[6-xH]5,6,7,8-tetrahydrofolate (S-[6-xH]H4F). The enzymatic reactions were followed by chemical trapping of S-[6-xH]H4F with formaldehyde to form the final product. Product purification was carried out in a single step by reverse phase high-pressure liquid chromatography separation followed by lyophilization. Two analytical methods were developed to follow the reaction progress. Finally, the utility of the labeled cofactor in mechanistic studies of thymidylate synthase is demonstrated by measuring the tritium kinetic isotope effect on the enzyme's second order rate constant.

  12. Applying Stable Isotope Labeled Amino Acids in Micropatterned Hepatocyte Co-Culture to Directly Determine the Degradation Rate Constant for CYP3A4.

    PubMed

    Takahashi, Ryan H; Shahidi-Latham, Sheerin; Wong, Susan; Chang, Jae H

    2017-03-13

    The rate of enzyme degradation (kdeg) is an important input parameter for the prediction of clinical drug-drug-interactions (DDI) that result from mechanism-based inactivation or induction of cytochrome P450s. Currently, a large range of reported estimates for CYP3A4 enzyme degradation exists, and consequently, large uncertainty exists in steady-state predictions for DDI. In the current investigations, stable isotope labeled amino acids in culture (SILAC) was applied to a long-lived primary human hepatocyte culture, HepatoPac, to directly monitor the degradation of CYP3A4. This approach allowed selective isotope labeling of a population of de novo synthesized CYP3A4, and specific quantification of proteins with mass spectrometry to determine the CYP3A4 degradation within the hepatocytes. The kdeg estimate was 0.026 ± 0.005 h- 1. This value was reproduced by cultures derived across four individual donors. For these cultures, data indicated that CYP3A4 mRNA and total protein expression (i.e. labeled and not labeled P450s), and activity were stable over the period where degradation had been determined. This kdeg value for CYP3A4 was in good agreement with recently reported values that used alternate analytical approaches, but also employed micropatterned primary human hepatocytes as the in vitro model.

  13. Complete equation for the measurement of organic molecules using stable isotope labeled internal standards, exact matching, and mass spectrometry.

    PubMed

    Burke, Daniel G; Mackay, Lindsey G

    2008-07-01

    Highly accurate measurements of the amount of substance of organic molecules in a test material can be obtained using exactly matched calibration solutions and internal standards that are labeled with stable isotope atoms by measuring the amount ratio of analyte to internal standard using mass spectrometry. Estimating the uncertainty of quantitative measurements of organic molecules is a means of evaluating accuracy and of establishing traceability to the International System of Units (SI) and requires a measurement function that fully describes the measuring system. This paper presents the derivation of the equation (measurement function) that describes this complete measurement after the internal standard has equilibrated with the test material matrix. It is similar to the equation for inorganic measurements using isotope dilution techniques, but potential biases during chemical processing arising from whole organic molecule analysis compared to inorganic atomic analysis required greater investigation of the yield factors that occur during organic molecule measurements. In the new equation, a series of ratios of proportionality factors are used to relate the amount of substance in a test material to chromatographic peak area ratios corresponding to mass spectrometer ion current ratios. All the proportionality factors are grouped together to define a measuring system factor F(X), the value of which is determined by the fundamental chemical processes affecting the yields of analyte, internal standard, and reference standard of the analyte in the measurement process. Any factors in the measurement process that affect the mole ratio of analyte to internal standard in the calibration solution differently from the test solution will result in a nonunity value for F(X) and a proportional bias to the measurement, and in this way F(X) represents the concept of recovery of the amount ratio of analyte to internal standard. Thus highly accurate measurements require F(X) or

  14. Improved efficiency of selective photoionization of palladium isotopes via autoionizing Rydberg states

    NASA Astrophysics Data System (ADS)

    Locke, Clayton R.; Kobayashi, Tohru; Midorikawa, Katsumi

    2017-01-01

    Odd-mass-selective ionization of palladium for purposes of resource recycling and management of long-lived fission products can be achieved by exploiting transition selection rules in a well-established three-step excitation process. In this conventional scheme, circularly polarized lasers of the same handedness excite isotopes via two intermediate 2D5/2 core states, and a third laser is then used for ionization via autoionizing Rydberg states. We propose an alternative excitation scheme via intermediate 2D3/2 core states before the autoionizing Rydberg state, improving ionization efficiency by over 130 times. We confirm high selectivity and measure odd-mass isotopes of >99.7(3)% of the total ionized product. We have identified and measured the relative ionization efficiency of the series of Rydberg states that converge to upper ionization limit of the 4 d 9(2D3/2) level, and identify the most efficient excitation is via the Rydberg state at 67668.18(10) cm-1.

  15. Multi-Analytic Based Determination of Substrate Fate From in situ Stable Isotope Labeled Exposures of Natural Microbial Mats

    NASA Astrophysics Data System (ADS)

    Lipton, M. S.; Cory, A.; Riha, K. M.; Huang, E. L.; Boaro, A. A.; Metz, T. O.; Gritsenko, M. A.; Mobberley, J. M.; Nelson, W.; Kim, Y. M.; Moran, J.

    2015-12-01

    Microbial communities play impactful roles in almost every aspect of our society including the environment, climate, agriculture and human health, expanding the functional capacity of life on earth. The recent emergence of a suite of omics driven technologies offers powerful tools for investigating functionality of this community. However, these tools provide only a static snapshot of the community in space and time. The temporal nature of stable isotope probing (SIP) experiments expands the depth at which microbial communities can be investigated and understood. While selectively targeting only metabolically active organisms in a community, the labeled substrate can be tracked spatially, temporally and phylo-genetically and linked to active functions, organism interactions and exchanges. Single SIP technologies are limited in their ability to describe the biological system as a whole. However, integration of multiple SIP based analytics offers a more comprehensive description of substrate fate. The phototroph based microbial mat community resident in Hot Lake, a hypersaline lake located in Washington State, offers a tractable system for testing the multi analytic approach. We exposed the mat to three different 13C-labeled substrates (HCO3-, glucose and acetate) in situ at midday, and subsequently analyzed the mat 24 hours after incubation. The approach revealed different metabolic fates and organism specific uptake. When compared to acetate, glucose and HCO3- showed a greater incorporation into extracellular material, while acetate had a greater conversion to intracellular fatty acids, suggesting that HCO3- and glucose could be more readily shared as a community currency than acetate. All substrates were converted to amino acids and proteins, but while glucose and HCO3- demonstrated considerable incorporation into heterotrophic proteins, the conversion of acetate to these proteins was minimal, potentially implying that acetate derived intermediates are not a

  16. Computationally efficient determination of hydrogen isotope effects on the thermodynamic stability of metal hydrides

    NASA Astrophysics Data System (ADS)

    Nicholson, Kelly M.; Sholl, David S.

    2012-10-01

    Although the thermodynamics of metal hydrides at low to moderate temperatures has been successfully described with density functional theory (DFT) calculations using 0 K total energies and simple harmonic models, it is unclear if this approach is valid for hydrides that are stable at high temperatures. To aid development of computationally efficient methods, this paper uses DFT to explore the predicted stabilities of ZrH2, HfH2, TiH2, LiH, and NaH with four levels of theory. We also investigate isotope effects to understand if these should be accounted for in screening of deuterated or tritiated materials. We show that calculations that account for vibrational corrections to the crystal lattice are not necessary to get an accurate description of relative stabilities of metal hydrides. The shifts in dissociation temperatures due to isotope substitutions are <50 K for all materials, with larger shifts for lighter materials, as expected. We show that accounting for vibrational effects due to isotope substitution in metal hydrides is unnecessary to accurately predict the relative stabilities of metal hydrides at high temperatures.

  17. Tracking amino acid's uptake into the protozoan Acanthamoeba castellanii by stable-isotope labelling and Raman spectral imaging

    NASA Astrophysics Data System (ADS)

    Naemat, Abida; Elsheikha, Hany M.; Notingher, Ioan

    2016-04-01

    The capacity of pathogens to acquire nutrients from their host cells is one of the most fundamental aspects of infection biology. Hence, measuring the patterns of nutrients' uptake by pathogens is essential for understanding the interactions of pathogens with eukaryotic host cells. In this study, we optimized a technique that allows fast and non-destructive measurement of the amino acid Phenylalanine (Phe) acquired by the trophozoite stage of the protozoan Acanthamoeba castellanii (A. castellanii) as they engage with individual human retinal pigment epithelial cells (ARPE-19). ARPE-19 host cells were pre-saturated with Deuterated Phe (L-Phe(D8)) to replace the native substrate Phe (L-Phe). The uptake of L-Phe(D8) by A. castellanii trophozoites was measured by Raman microspectroscopy. This approach allowed us to characterize the uptake patterns of this essential amino acid into A. castellanii trophozoites at a single cell level. At 24 hours post infection (PI) A. castellanii trophozoites are capable of salvaging L-Phe(D8) from host cells. The uptake pattern was time-dependent during the first 24 hours of infection and complete substitution with L-Phe(D8) in all parasites was detected at 48 hours PI. On the other hand, isolated A. castellanii trachyzoites (grown without host cells) did not show significant uptake for L-Phe(D8) from the media; only achieved an uptake ratio of 16-18% of L-Phe(D8) from the culture medium after 24 hours. These findings demonstrate the potential of combining Raman microspectroscopy and stable isotope labelling approaches to elucidate the role of metabolism in mediating A. castellanii interaction with host cells.

  18. Quantitative determination of free and total bisphenol A in human urine using labeled BPA glucuronide and isotope dilution mass spectrometry.

    PubMed

    Kubwabo, Cariton; Kosarac, Ivana; Lalonde, Kaela; Foster, Warren G

    2014-07-01

    Bisphenol A (BPA) is a widely used industrial chemical in the manufacturing of polycarbonate plastic bottles, food and beverage can linings, thermal receipts, and dental sealants. Animal and human studies suggest that BPA may disrupt normal hormonal function and hence, potentially, have negative effects on the human health. While total BPA is frequently reported, it is recognized that free BPA is the biologically active form and is rarely reported in the literature. The objective of this study was to develop a sensitive and improved method for the measurement of free and total BPA in human urine. Use of a labeled conjugated BPA (bisphenol A-d6 β-D-glucuronide) allowed for the optimization of the enzymatic reaction and permitted an accurate determination of the conjugated BPA concentration in urine samples. In addition, a (13)C12-BPA internal standard was used to account for the analytical recoveries and performance of the isotope dilution method. Solid-phase extraction (SPE) combined with derivatization and analysis using a triple quadrupole GC-EI/MS/MS system achieved very low method detection limit of 0.027 ng/mL. BPA concentrations were measured in urine samples collected during the second and third trimesters of pregnancy in 36 Canadian women. Total maternal BPA concentrations in urine samples ranged from not detected to 9.40 ng/mL (median, 1.21 ng/mL), and free BPA concentrations ranged from not detected to 0.950 ng/mL (median, 0.185 ng/mL). Eighty-six percent of the women had detectable levels of conjugated BPA, whereas only 22 % had detectable levels of free BPA in their urine. BPA levels measured in this study agreed well with data reported internationally.

  19. Quantification of protein deposits on silicone hydrogel materials using stable-isotopic labeling and multiple reaction monitoring.

    PubMed

    Omali, Negar Babaei; Zhao, Zhenjun; Zhong, Ling; Raftery, Mark J; Zhu, Hua; Ozkan, Jerome; Willcox, Mark

    2012-01-01

    This study was designed to use multiple reaction monitoring (MRM) for accurate quantification of contact lens protein deposits. Worn lenses used with a multipurpose disinfecting solution were collected after wear. Individual contact lenses were extracted and then digested with trypsin. MRM in conjunction with stable-isotope-labeled peptide standards was used for protein quantification. The results show that lysozyme was the major protein detected from both lens types. The amount of protein extracted from contact lenses was affected by the lens material. Except for keratin-1 (0.83 ± 0.61 vs 0.77 ± 0.20, p = 0.81) or proline rich protein-4 (0.11 ± 0.04 vs 0.15 ± 0.12, p = 0.97), the amounts of lysozyme, lactoferrin, or lipocalin-1 extracted from balafilcon A lenses (12.9 ± 9.01, 0.84 ± 0.50 or 2.06 ± 1.6, respectively) were significantly higher than that extracted from senofilcon A lenses (0.88 ± 0.13, 0.50 ± 0.10 or 0.27 ± 0.23, respectively) (p < 0.05). The amount of protein extracted from contact lenses was dependent on both the individual wearer and the contact lens material. This may have implications for the development of clinical responses during lens wear for different people and with different types of contact lenses. The use of MRM-MS is a powerful analytical tool for the quantification of specific proteins from single contact lenses after wear.

  20. Impact of Cystinosin Glycosylation on Protein Stability by Differential Dynamic Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC).

    PubMed

    Nevo, Nathalie; Thomas, Lucie; Chhuon, Cerina; Andrzejewska, Zuzanna; Lipecka, Joanna; Guillonneau, François; Bailleux, Anne; Edelman, Aleksander; Antignac, Corinne; Guerrera, Ida Chiara

    2017-03-01

    Cystinosis is a rare autosomal recessive lysosomal storage disorder characterized by intralysosomal accumulation of cystine. The causative gene for cystinosis is CTNS, which encodes the protein cystinosin, a lysosomal proton-driven cystine transporter. Over 100 mutations have been reported, leading to varying disease severity, often in correlation with residual cystinosin activity as a transporter and with maintenance of its protein-protein interactions. In this study, we focus on the ΔITILELP mutation, the only mutation reported that sometimes leads to severe forms, inconsistent with its residual transported activity. ΔITILELP is a deletion that eliminates a consensus site on N66, one of the protein's seven glycosylation sites. Our hypothesis was that the ΔITILELP mutant is less stable and undergoes faster degradation. Our dynamic stable isotope labeling by amino acids in cell culture (SILAC) study clearly showed that wild-type cystinosin is very stable, whereas ΔITILELP is degraded three times more rapidly. Additional lysosome inhibition experiments confirmed ΔITILELP instability and showed that the degradation was mainly lysosomal. We observed that in the lysosome, ΔITILELP is still capable of interacting with the V-ATPase complex and some members of the mTOR pathway, similar to the wild-type protein. Intriguingly, our interactomic and immunofluorescence studies showed that ΔITILELP is partially retained at the endoplasmic reticulum (ER). We proposed that the ΔITILELP mutation causes protein misfolding, ER retention and inability to be processed in the Golgi apparatus, and we demonstrated that ΔITILELP carries high-mannose glycans on all six of its remaining glycosylation sites. We found that the high turnover of ΔITILELP, because of its immature glycosylation state in combination with low transport activity, might be responsible for the phenotype observed in some patients.

  1. Synthesis of deuterium-labeled 17-hydroxyprogesterone suitable as an internal standard for isotope dilution mass spectrometry

    SciTech Connect

    Shimizu, K.; Yamaga, N.; Kohara, H.

    1988-03-01

    A synthesis is reported of 17-hydroxyprogesterone, labeled with four atoms of deuterium at ring C and suitable for use as an internal standard for isotope dilution mass spectrometry. Base-catalyzed equilibration of methyl 3 alpha-acetoxy-12-oxo-cholanate (III) with /sup 2/H/sub 2/O, followed by reduction of the 12-oxo group by the modified Wolff-Kisher method using (/sup 2/H)diethylene glycol and (/sup 2/H)hydrazine hydrate afforded (11,11,12,12,23,23(-2)H)lithocholic acid (V). The Meystre-Miescher degradation of the side chain of V yielded 3 alpha-hydroxy-5 beta-(11,11,12,12(-2)H)pregnan-20-one (X). Oxidation of the 3,20-enol-diacetate of X with perbenzoic acid followed by saponification afforded 3 alpha,17-dihydroxy-5 beta-(11,11,12,12(-2)H)pregnan-20-one (XI). Oxidation of XI with N-bromoacetamide yielded 17-hydroxy-5 beta-(11,11,12,12(-2)H)pregnane-3,20-dione (XII). Bromination of XII followed by dehydrobromination yielded 17-hydroxy-(11,11,12,12(-2)H) progesterone (XIV), consisting of 0.3% /sup 2/H0-, 1.1% /sup 2/H/sub 1/-, 8.6% /sup 2/H/sub 2/-, 37.1% /sup 2/H/sub 3/-, 52.1% /sup 2/H/sub 4/-, and 0.8% /sup 2/H/sub 5/-species.

  2. Development and implementation of energy efficiency standards and labeling programs in China: Progress and challenges

    SciTech Connect

    Zhou, Nan; Khanna, Nina Zheng; Fridley, David; Romankiewicz, John

    2013-01-31

    Over the last twenty years, with growing policy emphasis on improving energy efficiency and reducing environmental pollution and carbon emissions, China has implemented a series of new minimum energy performance standards (MEPS) and mandatory and voluntary energy labels to improve appliance energy efficiency. As China begins planning for the next phase of standards and labeling (S&L) program development under the 12th Five Year Plan, an evaluation of recent program developments and future directions is needed to identify gaps that still exist when compared with international best practices. The review of China’s S&L program development and implementation in comparison with major findings from international experiences reveal that there are still areas of improvement, particularly when compared to success factors observed across leading international S&L program. China currently lacks a formalized regulatory process for standard-setting and do not have any legal or regulatory guidance on elements of S&L development such as stakeholder participation or the issue of legal precedence between conflicting national, industrial and local standards. Consequently, China’s laws regarding standard-setting and management of the mandatory energy label program could be updated, as they have not been amended or revised recently and no longer reflects the current situation. While China uses similar principles for choosing target products as the U.S., Australia, EU and Japan, including high energy-consumption, mature industry and testing procedure and stakeholder support, recent MEPS revisions have generally aimed at only eliminating the bottom 20% efficiency of the market. Setting a firm principle based on maximizing energy savings that are technically feasible and economically justified may help improve the stringency of China’s MEPS program and reduce the need for frequent revisions. China also lacks robust survey data and relies primarily on market research data in

  3. (13)C-Labeling the carbon-fixation pathway of a highly efficient artificial photosynthetic system.

    PubMed

    Liu, Chong; Nangle, Shannon N; Colón, Brendan C; Silver, Pamela A; Nocera, Daniel G

    2017-03-15

    Interfacing the CO2-fixing microorganism, Ralstonia eutropha, to the energy derived from hydrogen produced by water splitting is a viable approach to achieving renewable CO2 reduction at high efficiencies. We employ (13)C-labeling to report on the nature of CO2 reduction in the inorganic water splitting|R. eutropha hybrid system. Accumulated biomass in a reactor under a (13)C-enriched CO2 atmosphere may be sampled at different time points during CO2 reduction. Converting the sampled biomass into gaseous CO2 allows the (13)C/(12)C ratio to be determined by gas chromatography-mass spectrometry. After 2 hours of inoculation and the initiation of water splitting, the microbes adapted and began to convert CO2 into biomass. The observed time evolution of the (13)C/(12)C ratio in accumulated biomass is consistent with a Monod model for carbon fixation. Carbon dioxide produced by catabolism was found to be minimal. This rapid response of the bacteria to a hydrogen input and to subsequent CO2 reduction at high efficiency are beneficial to achieving artificial photosynthesis for the storage of renewable energy.

  4. Accurate and Efficient Resolution of Overlapping Isotopic Envelopes in Protein Tandem Mass Spectra

    PubMed Central

    Xiao, Kaijie; Yu, Fan; Fang, Houqin; Xue, Bingbing; Liu, Yan; Tian, Zhixin

    2015-01-01

    It has long been an analytical challenge to accurately and efficiently resolve extremely dense overlapping isotopic envelopes (OIEs) in protein tandem mass spectra to confidently identify proteins. Here, we report a computationally efficient method, called OIE_CARE, to resolve OIEs by calculating the relative deviation between the ideal and observed experimental abundance. In the OIE_CARE method, the ideal experimental abundance of a particular overlapping isotopic peak (OIP) is first calculated for all the OIEs sharing this OIP. The relative deviation (RD) of the overall observed experimental abundance of this OIP relative to the summed ideal value is then calculated. The final individual abundance of the OIP for each OIE is the individual ideal experimental abundance multiplied by 1 + RD. Initial studies were performed using higher-energy collisional dissociation tandem mass spectra on myoglobin (with direct infusion) and the intact E. coli proteome (with liquid chromatographic separation). Comprehensive data at the protein and proteome levels, high confidence and good reproducibility were achieved. The resolving method reported here can, in principle, be extended to resolve any envelope-type overlapping data for which the corresponding theoretical reference values are available. PMID:26439836

  5. The 15N isotope to evaluate fertilizer nitrogen absorption efficiency by the coffee plant.

    PubMed

    Fenilli, Tatiele A B; Reichart, Klaus; Bacchi, Osny O S; Trivelin, Paulo C O; Dourado-Neto, Durval

    2007-12-01

    The use of the 15N label for agronomic research involving nitrogen (N) cycling and the fate of fertilizer-N is well established, however, in the case of long term experimentation with perennial crops like citrus, coffee and rubber tree, there are still shortcomings mainly due to large plant size, sampling procedures, detection levels and interferences on the system. This report tries to contribute methodologically to the design and development of 15N labeled fertilizer experiments, using as an example a coffee crop fertilized with 15N labeled ammonium sulfate, which was followed for two years. The N of the plant derived from the fertilizer was studied in the different parts of the coffee plant in order to evaluate its distribution within the plant and the agronomic efficiency of the fertilizer application practice. An enrichment of the fertilizer-N of the order of 2% 15N abundance was sufficient to study N absorption rates and to establish fertilizer-N balances after one and two years of coffee cropping. The main source of errors in the estimated values lies in the inherent variability among field replicates and not in the measurements of N contents and 15N enrichments of plant material by mass-spectrometry.

  6. Energy-Efficiency Labels and Standards: A Guidebook forAppliances, Equipment, and Lighting - 2nd Edition

    SciTech Connect

    Wiel, Stephen; McMahon, James E.

    2005-04-28

    Energy-performance improvements in consumer products are an essential element in any government's portfolio of energy-efficiency and climate change mitigation programs. Governments need to develop balanced programs, both voluntary and regulatory, that remove cost-ineffective, energy-wasting products from the marketplace and stimulate the development of cost-effective, energy-efficient technology. Energy-efficiency labels and standards for appliances, equipment, and lighting products deserve to be among the first policy tools considered by a country's energy policy makers. The U.S. Agency for International Development (USAID) and several other organizations identified on the cover of this guidebook recognize the need to support policy makers in their efforts to implement energy-efficiency standards and labeling programs and have developed this guidebook, together with the Collaborative Labeling and Appliance Standards Program (CLASP), as a primary reference. This second edition of the guidebook was prepared over the course of the past year, four years after the preparation of the first edition, with a significant contribution from the authors and reviewers mentioned previously. Their diligent participation helps maintain this book as the international guidance tool it has become. The lead authors would like to thank the members of the Communications Office of the Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory for their support in the development, production, and distribution of the guidebook. This guidebook is designed as a manual for government officials and others around the world responsible for developing, implementing, enforcing, monitoring, and maintaining labeling and standards setting programs. It discusses the pros and cons of adopting energy-efficiency labels and standards and describes the data, facilities, and institutional and human resources needed for these programs. It provides guidance on the design, development

  7. Stable isotope labeling by amino acids in cell culture-based liquid chromatography-mass spectrometry assay to measure microtubule dynamics in neuronal cell cultures.

    PubMed

    Polson, Craig; Cantone, Joseph L; Wei, Cong; Drexler, Dieter M; Meredith, Jere E

    2014-12-01

    Microtubules (MTs) are highly dynamic polymers composed of α- and β-tubulin heterodimers. Dysregulation of MT dynamics in neurons may be a contributing factor in the progression of various neurodegenerative diseases. We developed a stable isotope labeling by amino acids in cell culture (SILAC)-based liquid chromatography-mass spectrometry (LC-MS) method to measure the fraction of [(13)C6]leucine-labeled α-tubulin-derived surrogate peptides. Using this approach, we measured the time course of incorporation of [(13)C6]leucine label into the MT and dimer pools isolated from cycling cells and rat primary hippocampal neurons. We found that the MT pool is in rapid equilibrium with the dimer pool in the cycling cells, consistent with rapid MT polymerization/depolymerization during cell proliferation. Conversely, in neurons, we found that labeling of the MT pool was rapid, whereas the dimer pool was delayed. These results suggest that newly synthesized α-tubulin is first incorporated into MTs or complexes that co-sediment with MTs and that appearance of labeled α-tubulin in the dimer pool may be a consequence of MT depolymerization or breakdown. Our results demonstrate that a SILAC-based approach can be used to measure MT dynamics and may have utility for exploring MT dysregulation in various models of neurodegenerative disease.

  8. Structural Analysis of Guanylyl Cyclase-Activating Protein-2 (GCAP-2) Homodimer by Stable Isotope-Labeling, Chemical Cross-Linking, and Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Pettelkau, Jens; Thondorf, Iris; Theisgen, Stephan; Lilie, Hauke; Schröder, Thomas; Arlt, Christian; Ihling, Christian H.; Sinz, Andrea

    2013-12-01

    The topology of the GCAP-2 homodimer was investigated by chemical cross-linking and high resolution mass spectrometry. Complementary conducted size-exclusion chromatography and analytical ultracentrifugation studies indicated that GCAP-2 forms a homodimer both in the absence and in the presence of Ca2+. In-depth MS and MS/MS analysis of the cross-linked products was aided by 15 N-labeled GCAP-2. The use of isotope-labeled protein delivered reliable structural information on the GCAP-2 homodimer, enabling an unambiguous discrimination between cross-links within one monomer (intramolecular) or between two subunits (intermolecular). The limited number of cross-links obtained in the Ca2+-bound state allowed us to deduce a defined homodimeric GCAP-2 structure by a docking and molecular dynamics approach. In the Ca2+-free state, GCAP-2 is more flexible as indicated by the higher number of cross-links. We consider stable isotope-labeling to be indispensable for deriving reliable structural information from chemical cross-linking data of multi-subunit protein assemblies.

  9. Efficient sortase-mediated N-terminal labeling of TEV protease cleaved recombinant proteins.

    PubMed

    Sarpong, Kwabena; Bose, Ron

    2017-03-15

    A major challenge in attaching fluorophores or other handles to proteins is the availability of a site-specific labeling strategy that provides stoichiometric modification without compromising protein integrity. We developed a simple approach that combines TEV protease cleavage, sortase modification and affinity purification to N-terminally label proteins. To achieve stoichiometrically-labeled protein, we included a short affinity tag in the fluorophore-containing peptide for post-labeling purification of the modified protein. This strategy can be easily applied to any recombinant protein with a TEV site and we demonstrate this on Epidermal Growth Factor Receptor (EGFR) and Membrane Scaffold Protein (MSP) constructs.

  10. Identification of Predictive Markers for Response to Neoadjuvant Chemoradiation in Rectal Carcinomas by Proteomic Isotope Coded Protein Label (ICPL) Analysis

    PubMed Central

    Croner, Roland S.; Sevim, Müzeyyen; Metodiev, Metodi V.; Jo, Peter; Ghadimi, Michael; Schellerer, Vera; Brunner, Maximillian; Geppert, Carol; Rau, Tilman; Stürzl, Michael; Naschberger, Elisabeth; Matzel, Klaus E.; Hohenberger, Werner; Lottspeich, Friedrich; Kellermann, Josef

    2016-01-01

    Neoadjuvant chemoradiation (nCRT) is an established procedure in stage union internationale contre le cancer (UICC) II/III rectal carcinomas. Around 53% of the tumours present with good tumor regression after nCRT, and 8%–15% are complete responders. Reliable selection markers would allow the identification of poor or non-responders prior to therapy. Tumor biopsies were harvested from 20 patients with rectal carcinomas, and stored in liquid nitrogen prior to therapy after obtaining patients’ informed consent (Erlangen-No.3784). Patients received standardized nCRT with 5-Fluoruracil (nCRT I) or 5-Fluoruracil ± Oxaliplatin (nCRT II) according to the CAO/ARO/AIO-04 protocol. After surgery, regression grading (Dworak) of the tumors was performed during histopathological examination of the specimens. Tumors were classified as poor (Dworak 1 + 2) or good (Dworak 3 + 4) responders. Laser capture microdissection (LCM) for tumor enrichment was performed on preoperative biopsies. Differences in expressed proteins between poor and good responders to nCRT I and II were identified by proteomic analysis (Isotope Coded Protein Label, ICPL™) and selected markers were validated by immunohistochemistry. Tumors of 10 patients were classified as histopathologically poor (Dworak 1 or 2) and the other 10 tumor samples as histopathologically good (Dworak 3 or 4) responders to nCRT after surgery. Sufficient material in good quality was harvested for ICPL analysis by LCM from all biopsies. We identified 140 differentially regulated proteins regarding the selection criteria and the response to nCRT. Fourteen of these proteins were synchronously up-regulated at least 1.5-fold after nCRT I or nCRT II (e.g., FLNB, TKT, PKM2, SERINB1, IGHG2). Thirty-five proteins showed a complete reciprocal regulation (up or down) after nCRT I or nCRT II and the rest was regulated either according to nCRT I or II. The protein expression of regulated proteins such as PLEC1, TKT, HADHA and TAGLN was

  11. Tracing the human metabolism of stable isotope-labelled drugs by ex vivo NMR spectroscopy. A revision of S-carboxymethyl-L-cysteine biotransformation.

    PubMed

    Meese, C O; Fischer, P

    1990-01-01

    A direct structural identification, and quantitative assessment below the 50 nmol/ml level, of the full pattern of renally excreted metabolites is made possible by 13C NMR measurements of untreated urine samples when stable isotope-labelled (13C) drug analogues are administered to humans. The full potential of the new ex vivo NMR approach is exemplified by a study, for a group of volunteers, of S-carboxymethyl-L-cysteine metabolism. The metabolic sulphoxidation pathway of S-carboxymethyl-L-cysteine in man, accepted so far, needs to be profoundly revised on the basis of the 13C NMR results.

  12. Mass spectrometric measurements of norepinephrine synthesis in man from infusion of stable isotope-labelled L-threo-3,4-dihydroxyphenylserine

    SciTech Connect

    Suzuki, T.; Sakoda, S.; Ueji, M.; Kishimoto, S.

    1985-02-04

    The kinetics of stable isotope-labelled L-threo-3,4-dihydroxyphenylserine (L-threo-DOPS), an immediate precursor of (-)-norepinephrine, was studied to investigate the pharmacologic mechanism of its therapeutic effect on orthostatic hypotension in familial amyloid polyneuropathy (FAP) and on akinesia and freezing in parkinsonism. (/sup 13/C,D)-L-threo-DOPS was synthesized, and 100 mg of the compound was infused for 2 h into two normal subjects, two FAP patients and two patients with the degenerative diseases of the central nervous system. Labelled and endogenous norepinephrine in urine and plasma was assayed simultaneously by gas chromatography/mass spectrometry. The results indicate that the increase in norepinephrine in biological fluids after administration of L-threo-DOPS is attributable mostly to norepinephrine derived from L-threo-DOPS, not to pre-formed endogenous norepinephrine released by L-threo-DOPS.

  13. 1H-detected 1H- 1H correlation spectroscopy of a stereo-array isotope labeled amino acid under fast magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroki; Kainosho, Masatsune; Akutsu, Hideo; Fujiwara, Toshimichi

    2010-04-01

    The combined use of selective deuteration, stereo-array isotope labeling (SAIL), and fast magic-angle spinning effectively suppresses the 1H-1H dipolar couplings in organic solids. This method provided the high-field 1H NMR linewidths comparable to those achieved by combined rotation and multiple-pulse spectroscopy. This technique was applied to two-dimensional 1H-detected 1H-1H polarization transfer CHH experiments of valine. The signal sensitivity for the 1H-detected CHH experiments was greater than that for the 13C-detected 1H-1H polarization transfer experiments by a factor of 2-4. We obtained the 1H-1H distances in SAIL valine by CHH experiments with an accuracy of about 0.2 Å by using a theory developed for 1H-1H polarization transfer in 13C-labeled organic compounds.

  14. Insights into nitrogen allocation and recycling from nitrogen elemental analysis and 15N isotope labelling in 14 genotypes of willow.

    PubMed

    Brereton, Nicholas J B; Pitre, Frederic E; Shield, Ian; Hanley, Steven J; Ray, Michael J; Murphy, Richard J; Karp, Angela

    2014-11-01

    Minimizing nitrogen (N) fertilization inputs during cultivation is essential for sustainable production of bioenergy and biofuels. The biomass crop willow (Salix spp.) is considered to have low N fertilizer requirements due to efficient recycling of nutrients during the perennial cycle. To investigate how successfully different willow genotypes assimilate and allocate N during growth, and remobilize and consequently recycle N before the onset of winter dormancy, N allocation and N remobilization (to and between different organs) were examined in 14 genotypes of a genetic family using elemental analysis and (15)N as a label. Cuttings were established in pots in April and sampled in June, August and at onset of senescence in October. Biomass yield of the trees correlated well with yields recorded in the field. Genotype-specific variation was observed for all traits measured and general trends spanning these sampling points were identified when trees were grouped by biomass yield. Nitrogen reserves in the cutting fuelled the entirety of the canopy establishment, yet earlier cessation of this dependency was linked to higher biomass yields. The stem was found to be the major N reserve by autumn, which constitutes a major source of N loss at harvest, typically every 2-3 years. These data contribute to understanding N remobilization in short rotation coppice willow and to the identification of traits that could potentially be selected for in breeding programmes to further improve the sustainability of biomass production.

  15. Insights into nitrogen allocation and recycling from nitrogen elemental analysis and 15N isotope labelling in 14 genotypes of willow

    PubMed Central

    Brereton, Nicholas J.B.; Pitre, Frederic E.; Shield, Ian; Hanley, Steven J.; Ray, Michael J.; Murphy, Richard J.; Karp, Angela

    2014-01-01

    Minimizing nitrogen (N) fertilization inputs during cultivation is essential for sustainable production of bioenergy and biofuels. The biomass crop willow (Salix spp.) is considered to have low N fertilizer requirements due to efficient recycling of nutrients during the perennial cycle. To investigate how successfully different willow genotypes assimilate and allocate N during growth, and remobilize and consequently recycle N before the onset of winter dormancy, N allocation and N remobilization (to and between different organs) were examined in 14 genotypes of a genetic family using elemental analysis and 15N as a label. Cuttings were established in pots in April and sampled in June, August and at onset of senescence in October. Biomass yield of the trees correlated well with yields recorded in the field. Genotype-specific variation was observed for all traits measured and general trends spanning these sampling points were identified when trees were grouped by biomass yield. Nitrogen reserves in the cutting fuelled the entirety of the canopy establishment, yet earlier cessation of this dependency was linked to higher biomass yields. The stem was found to be the major N reserve by autumn, which constitutes a major source of N loss at harvest, typically every 2–3 years. These data contribute to understanding N remobilization in short rotation coppice willow and to the identification of traits that could potentially be selected for in breeding programmes to further improve the sustainability of biomass production. PMID:24186940

  16. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    SciTech Connect

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Perry, A.; Pikin, A. I.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P.

    2015-08-28

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this study, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.

  17. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    SciTech Connect

    Ostroumov, P. N. Barcikowski, A.; Dickerson, C. A.; Perry, A.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P.; Pikin, A. I.

    2015-08-15

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.

  18. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    DOE PAGES

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; ...

    2015-08-28

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstratemore » stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this study, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.« less

  19. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    NASA Astrophysics Data System (ADS)

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Perry, A.; Pikin, A. I.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P.

    2015-08-01

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.

  20. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source.

    PubMed

    Ostroumov, P N; Barcikowski, A; Dickerson, C A; Perry, A; Pikin, A I; Sharamentov, S I; Vondrasek, R C; Zinkann, G P

    2015-08-01

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.

  1. A simple and efficient algorithm for connected component labeling in color images

    NASA Astrophysics Data System (ADS)

    Celebi, M. Emre

    2012-03-01

    Connected component labeling is a fundamental operation in binary image processing. A plethora of algorithms have been proposed for this low-level operation with the early ones dating back to the 1960s. However, very few of these algorithms were designed to handle color images. In this paper, we present a simple algorithm for labeling connected components in color images using an approximately linear-time seed fill algorithm. Experiments on a large set of photographic and synthetic images demonstrate that the proposed algorithm provides fast and accurate labeling without requiring excessive stack space.

  2. Determining the isotopic abundance of a labeled compound by mass spectrometry and how correcting for natural abundance distribution using analogous data from the unlabeled compound leads to a systematic error.

    PubMed

    Schenk, David J; Lockley, William J S; Elmore, Charles S; Hesk, Dave; Roberts, Drew

    2016-04-01

    When the isotopic abundance or specific activity of a labeled compound is determined by mass spectrometry (MS), it is necessary to correct the raw MS data to eliminate ion intensity contributions, which arise from the presence of heavy isotopes at natural abundance (e.g., a typical carbon compound contains ~1.1% (13) C per carbon atom). The most common approach is to employ a correction in which the mass-to-charge distribution of the corresponding unlabeled compound is used to subtract the natural abundance contributions from the raw mass-to-charge distribution pattern of the labeled compound. Following this correction, the residual intensities should be due to the presence of the newly introduced labeled atoms only. However, this will only be the case when the natural abundance mass isotopomer distribution of the unlabeled compound is the same as that of the labeled species. Although this may be a good approximation, it cannot be accurate in all cases. The implications of this approximation for the determination of isotopic abundance and specific activity have been examined in practice. Isotopically mixed stable-atom labeled valine batches were produced, and both these and [(14) C6 ]carbamazepine were analyzed by MS to determine the extent of the error introduced by the approach. Our studies revealed that significant errors are possible for small highly-labeled compounds, such as valine, under some circumstances. In the case with [(14) C6 ]carbamazepine, the errors introduced were minor but could be significant for (14) C-labeled compounds with particular isotopic distributions. This source of systematic error can be minimized, although not eliminated, by the selection of an appropriate isotopic correction pattern or by the use of a program that varies the natural abundance distribution throughout the correction.

  3. Realistic Fasting Does Not Affect Stable Isotope Levels of a Metabolically Efficient Salamander

    EPA Science Inventory

    Stable isotopes are commonly used to examine various aspects of animal ecology. The use of stable isotopes generally proceeds under the implicit assumption that resource use is the only factor driving variation in stable isotope levels; however, a wealth of studies demonstrate a...

  4. Development of isotope labeling liquid chromatography mass spectrometry for mouse urine metabolomics: quantitative metabolomic study of transgenic mice related to Alzheimer's disease.

    PubMed

    Peng, Jun; Guo, Kevin; Xia, Jianguo; Zhou, Jianjun; Yang, Jing; Westaway, David; Wishart, David S; Li, Liang

    2014-10-03

    Because of a limited volume of urine that can be collected from a mouse, it is very difficult to apply the common strategy of using multiple analytical techniques to analyze the metabolites to increase the metabolome coverage for mouse urine metabolomics. We report an enabling method based on differential isotope labeling liquid chromatography mass spectrometry (LC-MS) for relative quantification of over 950 putative metabolites using 20 μL of urine as the starting material. The workflow involves aliquoting 10 μL of an individual urine sample for ¹²C-dansylation labeling that target amines and phenols. Another 10 μL of aliquot was taken from each sample to generate a pooled sample that was subjected to ¹³C-dansylation labeling. The ¹²C-labeled individual sample was mixed with an equal volume of the ¹³C-labeled pooled sample. The mixture was then analyzed by LC-MS to generate information on metabolite concentration differences among different individual samples. The interday repeatability for the LC-MS runs was assessed, and the median relative standard deviation over 4 days was 5.0%. This workflow was then applied to a metabolomic biomarker discovery study using urine samples obtained from the TgCRND8 mouse model of early onset familial Alzheimer's disease (FAD) throughout the course of their pathological deposition of beta amyloid (Aβ). It was showed that there was a distinct metabolomic separation between the AD prone mice and the wild type (control) group. As early as 15-17 weeks of age (presymptomatic), metabolomic differences were observed between the two groups, and after the age of 25 weeks the metabolomic alterations became more pronounced. The metabolomic changes at different ages corroborated well with the phenotype changes in this transgenic mice model. Several useful candidate biomarkers including methionine, desaminotyrosine, taurine, N1-acetylspermidine, and 5-hydroxyindoleacetic acid were identified. Some of them were found in previous

  5. Nitrogen use efficiency evaluation of aerobic rice under field capacity water potential using {sup 15}N isotopic tracer technique

    SciTech Connect

    Wahid, Ahmad Nazrul Abd; Rahim, Sahibin Abd; Rahim, Khairuddin Abdul; Harun, Abdul Rahim

    2015-09-25

    This study was carried out to evaluate the efficiency use of the nitrogen fertilizer on aerobic rice varieties MR219-4 and MR219-9 which were grown aerobically under field capacity water potential at the controlled environment area or shield house. Direct {sup 15}N isotope tracer method was used in this study, whereby the {sup 15}N isotope was utilized as a tracer for nitrogen nutrient uptake. {sup 15}N isotope presence in the samples is determined by using emission spectrometer analysis and percentage of total nitrogen is determined by using Kjeldahl method. {sup 15}N atom access value contained in the sample will be used in determining the effectiveness of the use of nitrogen in fertilizers through the specific calculation formulas. In this work, the data several data of nitrogen derived from fertilizer (Ndff), total nitrogen, nitrogen uptake and nitrogen use efficiency was obtained.

  6. Measurement of unlabeled and stable isotope-labeled homoarginine, arginine and their metabolites in biological samples by GC-MS and GC-MS/MS.

    PubMed

    Kayacelebi, Arslan Arinc; Knöfel, Ann-Kathrin; Beckmann, Bibiana; Hanff, Erik; Warnecke, Gregor; Tsikas, Dimitrios

    2015-09-01

    Circulating and excretory L-homoarginine (hArg) and asymmetric dimethylarginine (ADMA) are cardiovascular risk factors. L-Arginine (Arg) is the common precursor of hArg and ADMA. This protocol describes gas chromatography-mass spectrometry (GC-MS) and gas chromatography-mass spectrometry-mass spectrometry (GC-MS/MS) methods for the quantitative determination of hArg, Arg and ADMA in biological samples, including human plasma, urine and sputum. Aliquots (10 µL) of native urine, plasma or serum ultrafiltrate (cutoff, 10 kDa), and acetone-deproteinized sputum samples are evaporated to dryness. Then, amino acids are derivatized to their methyl ester N-pentafluoropropionyl derivatives. In parallel, trideuteromethyl ester N-pentafluoropropionyl derivatives of hArg, Arg and ADMA are de novo synthesized from the unlabelled amino acids and used as internal standards. Alternatively, commercially available stable isotope-labeled analogs of hArg, Arg and ADMA are used as internal standards, and they are added to the native biological samples. Quantification is performed by selected ion monitoring in GC-MS and selected reaction monitoring in GC-MS/MS. By these protocols, unlabelled and stable isotope-labeled hArg, Arg and their metabolites including ADMA and ornithine can be measured equally accurately and precisely by GC-MS and GC-MS/MS in several different biological fluids in experimental and clinical settings.

  7. Anaerobic central metabolic pathways in Shewanella oneidensis MR-1interpreted in the light of isotopic metabolite labeling, enzymeactivities and genome annotation

    SciTech Connect

    Tang, Yinjie J.; Meadows, Adam L.; Kirby, James; Keasling, Jay D.

    2006-06-27

    It has been proposed that during growth under anaerobic oroxygen-limited conditions Shewanella oneidensis MR-1 uses theserine-isocitrate lyase pathway common to many methylotrophic anaerobes,in which formaldehyde produced from pyruvate is condensed with glycine toform serine. The serine is then transformed through hydroxypyruvate andglycerate to enter central metabolism at phosphoglycerate. To examine itsuse of the serine-isocitrate lyase pathway under anaerobic conditions, wegrew S. oneidensis MR-1 on [1-13C]lactate as the sole carbon source witheither trimethylamine N-oxide (TMAO) or fumarate as an electron acceptor.Analysis of cellular metabolites indicates that a large percentage(>75 percent) of lactate was partially oxidized to either acetate orpyruvate. The 13C isotope distributions in amino acids and other keymetabolites indicate that, under anaerobic conditions, a complete serinepathway is not present, and lactate is oxidized via a highly reversibleserine degradation pathway. The labeling data also suggest significantactivity in the anaplerotic (malic enzyme and phosphoenolpyruvatecarboxylase) and glyoxylate shunt (isocitrate lyase and malate synthase)reactions. Although the tricarboxylic acid (TCA) cycle is often observedto be incomplete in many other anaerobes (absence of 2-oxoglutaratedehydrogenase activity), isotopic labeling supports the existence of acomplete TCA cycle in S. oneidensis MR-1 under TMAO reductioncondition.

  8. High-resolution direct infusion-based mass spectrometry in combination with whole 13C metabolome isotope labeling allows unambiguous assignment of chemical sum formulas.

    PubMed

    Giavalisco, Patrick; Hummel, Jan; Lisec, Jan; Inostroza, Alvaro Cuadros; Catchpole, Gareth; Willmitzer, Lothar

    2008-12-15

    A new strategy for direct infusion-based metabolite analysis employing a combination of high-resolution mass spectrometry and (13)C-isotope labeling of entire metabolomes is described. Differentially isotope labeled metabolite extracts from otherwise identically grown reference plants were prepared and infused into a Fourier transform ion cyclotron resonance mass spectrometer. The derived accurate mass lists from each extract were searched, using an in-house-developed database search tool, against a number of comprehensive metabolite databases. Comparison of the retrieved chemical formulas from both, the (12)C and (13)C samples, leads to two major advantages compared to nonisotope-based metabolite fingerprinting: first, removal of background contaminations from the result list, due to the (12)C/(13)C peak pairing principle and therefore positive identification of compounds of true biological origin; second, elimination of ambiguity in chemical formula assignment due to the same principle, leading to the clear association of one measured mass to only one chemical formula. Applying this combination of strategies to metabolite extracts of the model plant Arabidopsis thaliana therefore resulted in the reproducible identification of more than 1000 unambiguous chemical sum formulas of biological origin of which more than 80% have not been associated to Arabidopsis before.

  9. A fully automated system with online sample loading, isotope dimethyl labeling and multidimensional separation for high-throughput quantitative proteome analysis.

    PubMed

    Wang, Fangjun; Chen, Rui; Zhu, Jun; Sun, Deguang; Song, Chunxia; Wu, Yifeng; Ye, Mingliang; Wang, Liming; Zou, Hanfa

    2010-04-01

    Multidimensional separation is often applied for large-scale qualitative and quantitative proteome analysis. A fully automated system with integration of a reversed phase-strong cation exchange (RP-SCX) biphasic trap column into vented sample injection system was developed to realize online sample loading, isotope dimethyl labeling and online multidimensional separation of the proteome samples. Comparing to conventionally manual isotope labeling and off-line fractionation technologies, this system is fully automated and time-saving, which is benefit for improving the quantification reproducibility and accuracy. As phosphate SCX monolith was integrated into the biphasic trap column, high sample injection flow rate and high-resolution stepwise fractionation could be easily achieved. Approximately 1000 proteins could be quantified in approximately 30 h proteome analysis, and the proteome coverage of quantitative analysis can be further greatly improved by prolong the multidimensional separation time. This system was applied to analyze the different protein expression level of HCC and normal human liver tissues. After three times replicated analysis, finally 94 up-regulated and 249 down-regulated (HCC/Normal) proteins were successfully obtained. These significantly regulated proteins are widely validated by both gene and proteins expression studies previously. Such as some enzymes involved in urea cycle, methylation cycle and fatty acids catabolism in liver were all observed down-regulated.

  10. Synthesis of four carbon-13-labeled type a trichothecene mycotoxins and their application as internal standards in stable isotope dilution assays.

    PubMed

    Asam, Stefan; Rychlik, Michael

    2006-09-06

    The first stable isotope dilution assay (SIDA) for the simultaneous quantitation of the most abundant type A trichothecenes in foods and feeds was developed. Synthesis of carbon-13-labeled T2-toxin, HT2-toxin, diacetoxyscirpenol, and monoacetoxyscirpenol was accomplished by [13C2]-acetylation of T2-triol and scirpentriol, respectively. Scirpentriol was prepared from diacetoxyscirpenol by complete alkaline hydrolysis and subsequently was converted to [13C6]-triacetoxyscirpentriol by peracetylation with [13C4]-acetic anhydride. The latter compound was selectively hydrolyzed using ammonium hydroxide to give [13C4]-diacetoxyscirpenol and [13C2]-monoacetoxyscirpenol in reasonable yields. Analogously, [13C6]-T2-triacetate was prepared from T2-triol and subjected to controlled hydrolysis to yield [13C4]-T2-toxin and [13C2]-HT2-toxin. All synthesized products were characterized by NMR and MS experiments. Using the prepared isotopically labeled standards, SIDAs were developed for the quantitation of type A trichothecenes in food and feeds. The mycotoxins were quantified by LC-single and tandem MS after cleanup on multifunctional columns. The method revealed good sensitivity with low detection and quantification limits along with excellent recovery and good precision in interassay studies. Food samples were analyzed using the developed SIDA and showed substantial contamination of oat products with T2-toxin and HT2-toxin. Diacetoxyscirpenol was detected on potatoes, whereas monoacetoxyscirpenol was not present in the analyzed samples.

  11. Phosphorus cycling in the Sargasso Sea: Investigation using the oxygen isotopic composition of phosphate, enzyme-labeled fluorescence, and turnover times

    NASA Astrophysics Data System (ADS)

    McLaughlin, Karen; Sohm, Jill A.; Cutter, Gregory A.; Lomas, Michael W.; Paytan, Adina

    2013-04-01

    Dissolved inorganic phosphorus (DIP) concentrations in surface water of vast areas of the ocean are extremely low (<10 nM) and phosphorus (P) availability could limit primary productivity in these regions. We explore the use of oxygen isotopic signature of dissolved phosphate (δ18OPO4) to investigate biogeochemical cycling of P in the Sargasso Sea, Atlantic Ocean. Additional techniques for studying P dynamics including 33P-based DIP turnover time estimates and percent of cells expressing alkaline phosphatase (AP) activity as measured by enzyme-labeling fluorescence are also used. In surface waters, δ18OPO4 values were lower than equilibrium by 3-6‰, indicative of dissolved organic phosphorous (DOP) remineralization by extracellular enzymes. An isotope mass balance model using a variety of possible combinations of enzymatic pathways and substrates indicates that DOP remineralization in the euphotic zone can account for a large proportion on P utilized by phytoplankton (as much as 82%). Relatively short DIP turnover times (4-8 h) and high expression of AP (38-77% of the cells labeled) are consistent with extensive DOP utilization and low DIP availability in the euphotoc zone. In deep water where DOP utilization rates are lower, δ18OPO4 values approach isotopic equilibrium and DIP turnover times are longer. Our data suggests that in the euphotic zone of the Sargasso Sea, DOP may be appreciably remineralized and utilized by phytoplankton and bacteria to supplement cellular requirements. A substantial fraction of photosynthesis in this region is supported by DOP uptake.

  12. A fast, low cost, and highly efficient fluorescent DNA labeling method using methyl green.

    PubMed

    Prieto, Daniel; Aparicio, Gonzalo; Morande, Pablo E; Zolessi, Flavio R

    2014-09-01

    The increasing need for multiple-labeling of cells and whole organisms for fluorescence microscopy has led to the development of hundreds of fluorophores that either directly recognize target molecules or organelles, or are attached to antibodies or other molecular probes. DNA labeling is essential to study nuclear-chromosomal structure, as well as for gel staining, but also as a usual counterstain in immunofluorescence, FISH or cytometry. However, there are currently few reliable red to far-red-emitting DNA stains that can be used. We describe herein an extremely simple, inexpensive and robust method for DNA labeling of cells and electrophoretic gels using the very well-known histological stain methyl green (MG). MG used in very low concentrations at physiological pH proved to have relatively narrow excitation and emission spectra, with peaks at 633 and 677 nm, respectively, and a very high resistance to photobleaching. It can be used in combination with other common DNA stains or antibodies without any visible interference or bleed-through. In electrophoretic gels, MG also labeled DNA in a similar way to ethidium bromide, but, as expected, it did not label RNA. Moreover, we show here that MG fluorescence can be used as a stain for direct measuring of viability by both microscopy and flow cytometry, with full correlation to ethidium bromide staining. MG is thus a very convenient alternative to currently used red-emitting DNA stains.

  13. Use of stable isotope labeled probes to facilitate liquid chromatography/mass spectrometry based high-throughput screening of time-dependent CYP inhibitors.

    PubMed

    Dasgupta, Malini; Tang, Weimin; Caldwell, Gary W; Yan, Zhengyin

    2010-08-15

    Inhibition curve shift is a commonly used approach for screening of time-dependent CYP inhibitors which requires parallel paired incubations to obtain two inhibition curves for comparison. For the control incubation, a test compound is co-incubated with a probe substrate in human liver microsomes (HLM) fortified with NADPH; for the time-dependent incubation (TDI), the test compound is pre-incubated with NADPH-fortified HLM followed by a secondary incubation with a probe substrate. For both incubations, enzyme activity is measured respectively by liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis of the CYP-specific metabolite, and a TDI inhibitor can be readily identified by inhibition curve shifting as a result of CYP inactivation by the test compound during the pre-incubation. In the present study, we describe an alternative approach to facilitate TDI screening in which stable isotope labeled CYP-specific probes are used for the TDI, and non-labeled substrates are included in the control incubation. Because CYP-specific metabolites produced in the TDI are stable isotope labeled, two sets of incubation samples can be combined and then simultaneously analyzed by LC/MS/MS in the same batch run to reduce the run time. This new method has been extensively validated using both a number of known competitive and TDI inhibitors specific to five most common CYPs such as 1A2, 2C9, 2C19, 2D6, and 3A4. The assay is performed in a 96-well format and can be fully automated. Compared to the traditional method, this approach in combination with sample pooling and a short LC/MS/MS gradient significantly enhances the throughput of TDI screening and thus can be easily implemented in drug discovery to evaluate a large number of compounds without adding additional resource.

  14. [Microbial synthesis of deuterium labelled L-phenylalanine with different levels of isotopic enrichment by facultative methylotrophic bacterium Brevibacterium methylicum with RMP assimilation of carbon].

    PubMed

    Mosin, O V; Shvets, V I; Skladnev, D A; Ignatov, I

    2014-01-01

    The preparative microbial synthesis of amino acids labelled with stable isotopes, including deuterium ( 2 H), suitable for biomedical applications by methylotrophic bacteria was studied using L-phenylalanine as example. This amino acid is secreted by Gram-negative aerobic facultative methylotrophic bacteria Brevibacterium methylicum, assimilating methanol via ribulose-5-monophosphate (RMP) cycle of assimilation of carbon, The data on adaptation of L-phenylalanine secreted by methylotrophic bacterium В. methylicum to the maximal concentration of deuterium in the growth medium with 98% 2 Н 2 O and 2% [ 2 Н]methanol, and biosynthesis of deuterium labelled L-phenylalanine With different levels of enrichment are presented. The strain was adapted by means of plating initial cells on firm (2% agarose) minimal growth media with an increasing gradient of 2 Н 2 O concentration from 0; 24.5; 49.0; 73.5 up to 98% 2 Н 2 O followed by subsequent selection of separate colonies stable to the action of 2 Н 2 O. These colonies were capable to produce L-phenylalanine. L-phenylalanine was extracted from growth medium by extraction with isopropanol with the subsequent crystallization in ethanol (output 0.65 g/l). The developed method of microbial synthesis allows to obtain deuterium labelled L-phenylalanine with different levels of isotopic enrichment, depending on concentration of 2 Н 2 O in growth media, from 17% (on growth medium with 24,5% 2 Н 2 O) up to 75% (on growth medium with 98% 2 Н 2 O) of deuterium in the molecule that is confirmed with the data of the electron impact (EI) mass- spectrometry analysis of methyl ethers of N-dimethylamino(naphthalene)-5-sulfochloride (dansyl) phenylalanine in these experimental conditions.

  15. Synthesis of GDP-mannose and mannosylglycerate from labeled mannose by genetically engineered Escherichia coli without loss of specific isotopic enrichment.

    PubMed

    Sampaio, Maria-Manuel; Santos, Helena; Boos, Winfried

    2003-01-01

    We report the construction of an Escherichia coli mutant that harbors two compatible plasmids and that is able to synthesize labeled 2-O-alpha-D-mannosyl-D-glycerate from externally added labeled mannose without the loss of specific isotopic enrichment. The strain carries a deletion in the manA gene, encoding phosphomannose isomerase. This deletion prevents the formation of fructose-6-phosphate from mannose-6-phosphate after the uptake of mannose from the medium by mannose-specific enzyme II of the phosphotransferase system (PtsM). The strain also has a deletion of the cps gene cluster that prevents the synthesis of colanic acid, a mannose-containing polymer. Plasmid-encoded phosphomannomutase (cpsG) and mannose-1-phosphate guanylyltransferase (cpsB) ensure the formation of GDP-mannose. A second plasmid harbors msg, a gene from Rhodothermus marinus that encodes mannosylglycerate synthase, which catalyzes the formation of 2-O-alpha-D-mannosyl-D-glycerate from GDP-mannose and endogenous glycerate. The rate-limiting step in 2-O-alpha-D-mannosyl-D-glycerate formation is the transfer of GDP-mannose to glycerate. 2-O-alpha-D-mannosyl-D-glycerate can be released from cells by treatment with cold-water shock. The final product is formed in a yield exceeding 50% the initial quantity of labeled mannose, including loss during preparation and paper chromatography.

  16. Gas Purge Microextraction Coupled with Stable Isotope Labeling-Liquid Chromatography/Mass Spectrometry for the Analysis of Bromophenols in Aquatic Products.

    PubMed

    Zhang, Shijuan; Yu, Qiuhui; Sheng, Cuncun; You, Jinmao

    2016-12-14

    A green, sensitive, and accurate method was developed for the extraction and determination of bromophenols (BPs) from aquatic products by using organic solvent-free gas purge microsyringe extraction (GP-MSE) technique in combination with stable isotope labeling (SIL) strategy. BPs were extracted by NaHCO3 buffer solution, with recoveries varying from 92.0% to 98.5%. The extracted solution was analyzed by SIL strategy, during which analytes and standards were labeled by 10-methyl-acridone-2-sulfonyl chloride (d0-MASC) and its deuterated counterpart d3-MASC, respectively. The labeling reaction was finished within 10 min with good stability. The liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) sensitivity of BPs was greatly enhanced due to the mass-enhancing property of MASC, while the matrix effect was effectively minimized by the SIL strategy. The limits of detection (LODs) were in the range of 0.10-0.30 μg/kg, while the limits of quantitations (LOQs) were in the range of 0.32-1.0 μg/kg. The proposed method also showed great potential in the qualitative analysis of other bromophenols in the absence of standard.

  17. Efficient method for iodine radioisotope labeling of cyclooctyne-containing molecules using strain-promoted copper-free click reaction.

    PubMed

    Jeon, Jongho; Kang, Jung Ae; Shim, Ha Eun; Nam, You Ree; Yoon, Seonhye; Kim, Hye Rim; Lee, Dong Eun; Park, Sang Hyun

    2015-07-01

    Herein we report an efficient method for iodine radioisotope labeling of cyclooctyne-containing molecules using copper-free click reaction. For this study, radioiodination using the tin precursor 2 was carried out at room temperature to give (125)I-labeled azide ([(125)I]1) with high radiochemical yield (85%) and excellent radiochemical purity. Dibenzocyclooctyne (DBCO) containing cRGD peptide and gold nanoparticle were labeled with [(125)I]1 at 37°C for 30min to give triazoles with good radiochemical yields (67-95%). We next carried out tissue biodistribution study of [(125)I]1 in normal ICR mice to investigate the level of organ accumulation which needs to be considered for pre-targeted in vivo imaging. Large amount of [(125)I]1 distributed rapidly in liver and kidney from bloodstream and underwent rapid renal and hepatobiliary clearance. Moreover [(125)I]1 was found to be highly stable (>92%) in mouse serum for 24h. Therefore [(125)I]1 could be used as a potentially useful radiotracer for pre-targeted imaging. Those results clearly indicated that the present radiolabeling method using copper free click reaction would be quite useful for both in vitro and in vivo labeling of DBCO group containing molecules with iodine radioisotopes.

  18. Impact of isotopic effect on density limit and LHCD efficiency in the FT-2 experiments

    NASA Astrophysics Data System (ADS)

    Lashkul, S. I.; Altukhov, A. B.; Gurchenko, A. D.; Gusakov, E. Z.; Dyachenko, V. V.; Esipov, L. A.; Irzak, M. A.; Kantor, M. Yu.; Kouprienko, D. V.; Perevalov, A. A.; Saveliev, A. N.; Shatalin, S. V.; Stepanov, A. Yu.

    2015-07-01

    Current drive by lower hybrid waves (LHCD) is the most effective method to sustain the plasma current, but it is feasible only at the plasma density not exceeding some density limit nDL. In the present work the main attention is paid to the investigation of this effect on the FT-2 (R = 0.55 m, a = 0.08 m, BT ⩽ 3 T, Ipl = 19-40 kA, f0 = 920 MHz) tokamak. The dependence of LHCD efficiency on isotopic plasma content (hydrogen/deuterium) is studied. Characteristic features of such an experiment are a strong influence of the isotope plasma composition on the LH resonance density nLH. For hydrogen plasma nLH ≈ 3.5 × 1019 m-3, while for deuterium plasma nLH ≈ 2 × 1020 m-3. The suppression of the LHCD and beginning of the interaction of LH waves with ions are determined by the hydrogen/deuterium plasma density rise. In the hot hydrogen plasma (Te(r = 0 cm) ≈ 700 eV) the density limit nDL of LHCD is approximately equal to the resonance value nLH ≈ nLC, where nLC is the point of linear conversion. In the hot deuterium plasma one could expect an increase of nDL because of a much higher value of nLH ⩾ nLC ≈ 1020 m-3. However it appeared that the observed density limit for LHCD generation nDL ≈ (3.5-4) × 1019 m-3 is not determined by nLH. The role of parametric instabilities in CD switch-off is considered in both cases. The cooling of the plasma column and density rise could lead to a reduction of the threshold for the parametric decay of f0 and result in early suppression of LHCD. In both cases the LHCD was inversely proportional to the density, which corresponds to the theoretical predictions. In order to analyse the experimentally observed LHCD efficiency the GRILL3D and FRTC codes have been used.

  19. Isotopic labeling and LC-APCI-MS quantification for investigating absorption of carotenoids and phylloquinone from kale (Brassica oleracea).

    PubMed

    Kurilich, Anne C; Britz, Steven J; Clevidence, Beverly A; Novotny, Janet A

    2003-08-13

    The ability to study bioavailability of nutrients from foods is an important step in determining the health impact of those nutrients. This work describes a method for studying the bioavailability of nutrients from kale (Brassica oleracea var. Acephala) by labeling the nutrients with carbon-13, feeding the kale to an adult volunteer, and analyzing plasma samples for labeled nutrients. Results showed that conditions for producing atmospheric intrinsically labeled kale had no detrimental effect on plant growth. Lutein, beta-carotene, retinol, and phylloquinone were analyzed using liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Analysis of plasma samples showed that labeled lutein peaked in plasma at 11 h (0.23 microM), beta-carotene peaked at 8 (0.058 microM) and 24 h (0.062 microM), retinol peaked at 24 h (0.10 microM), and phylloquinone peaked at 7 h (3.0 nM). This method of labeling kale with (13)C was successful for producing clearly defined kinetic curves for (13)C-lutein,(13)C-beta-carotene, (13)C-retinol, and (13)C-phylloquinone.

  20. An Optimized Protocol for the Efficient Radiolabeling of Gold Nanoparticles by Using a 125I-labeled Azide Prosthetic Group.

    PubMed

    Jeon, Jongho; Shim, Ha Eun; Mushtaq, Sajid; Choi, Mi Hee; Park, Sang Hyun; Choi, Dae Seong; Jang, Beom-Su

    2016-10-10

    Here, we demonstrate a detailed protocol for the radiosynthesis of a (125)I-labeled azide prosthetic group and its application to the efficient radiolabeling of DBCO-group-functionalized gold nanoparticles using a copper-free click reaction. Radioiodination of the stannylated precursor (2) was carried out by using [(125)I]NaI and chloramine T as an oxidant at room temperature for 15 min. After HPLC purification of the crude product, the purified (125)I-labeled azide (1) was obtained with high radiochemical yield (75 ± 10%, n = 8) and excellent radiochemical purity (>99%). For the synthesis of radiolabeled 13-nm-sized gold nanoparticles, the DBCO-functionalized gold nanoparticles (3) were prepared by using a thiolated polyethylene glycol polymer. A copper-free click reaction between 1 and 3 gave the (125)I-labeled gold nanoparticles (4) with more than 95% of radiochemical yield as determined by radio-thin-layer chromatography (radio-TLC). These results clearly indicate that the present radiolabeling method using a strain-promoted copper-free click reaction will be useful for the efficient and convenient radiolabeling of DBCO-group-containing nanomaterials.

  1. Phosphorylcholine-coated semiconducting polymer nanoparticles as rapid and efficient labeling agents for in vivo cell tracking.

    PubMed

    Pu, Kanyi; Shuhendler, Adam J; Valta, Maija P; Cui, Lina; Saar, Matthias; Peehl, Donna M; Rao, Jianghong

    2014-08-01

    Despite the pressing need to noninvasively monitor transplanted cells in vivo with fluorescence imaging, desirable fluorescent agents with rapid labeling capability, durable brightness, and ideal biocompatibility remain lacking. Here, phosphorylcholine-coated near-infrared (NIR) fluorescent semiconducting polymer nanoparticles (SPNs) are reported as a new class of rapid, efficient, and cytocompatible labeling nanoagents for in vivo cell tracking. The phosphorylcholine coating results in efficient and rapid endocytosis and allows the SPN to enter cells within 0.5 h in complete culture medium apparently independent of the cell type, while its NIR fluorescence leads to a tissue penetration depth of 0.5 cm. In comparison to quantum dots and Cy5.5, the SPN is tolerant to physiologically ubiquitous reactive oxygen species (ROS), resulting in durable fluorescence both in vitro and in vivo. These desirable physical and physiological properties of the SPN permit cell tracking of human renal cell carcinoma (RCC) cells in living mice at a lower limit of detection of 10 000 cells with no obvious alteration of cell phenotype after 12 d. SPNs thus can provide unique opportunities for optimizing cellular therapy and deciphering pathological processes as a cell tracking label.

  2. Towards more efficient testing strategies--analyzing the efficiency of toxicity data requirements in relation to the criteria for classification and labelling.

    PubMed

    Nordberg, Anna; Rudén, Christina; Hansson, Sven Ove

    2008-04-01

    This contribution is based on the assumption that the aim of toxicity testing as required by chemicals legislation is to identify as many chemicals of concern to human health and the environment as possible, given a limited amount of resources allocated to testing. Based on this assumption we propose a method for the optimization of test systems for industrial chemicals, based on the calculation of efficiency ratios for tests and test systems. The efficiency ratio of a toxicity test depends on the monetary cost of performing the test and the probability that the test will identify a chemical of concern, as estimated by the rules for classification and warning labelling. Efficiency ratios are estimated based on the results of basic standardized toxicity testing for acute toxicity, subacute toxicity, irritation and sensitization of 1409 industrial chemicals notified in the European Union between 1994 and 2004. This careful evaluation of the regulatory consequences of testing indicated that many of these substances are classified based on short-term testing of acute toxicity, irritation and sensitization and that most of the substances classified due to a 28-day study were also classified based on short-term testing. These results indicate that, within the classification and labelling system, it is currently more efficient to perform short-term testing of a larger number of substances rather than to perform subacute toxicity studies on substances already tested for acute toxicity.

  3. Spatially tracking 13C labeled substrate (bicarbonate) accumulation in microbial communities using laser ablation isotope ratio mass spectrometry

    SciTech Connect

    Moran, James J.; Doll, Charles G.; Bernstein, Hans C.; Renslow, Ryan S.; Cory, Alexandra B.; Hutchison, Janine R.; Lindemann, Stephen R.; Fredrickson, Jim K.

    2014-08-25

    This is a manuscript we would like to submit for publication in Environmental Microbiology Reports. This manuscript contains a description of a laser ablation isotope ratio mass spectrometry methodology developed at PNNL and applied to a microbial system at a PNNL project location – Hot Lake, Washington. I will submit a word document containing the entire manuscript with this Erica input request form.

  4. A low-toxic artificial fluorescent glycoprotein can serve as an efficient cytoplasmic labeling in living cell.

    PubMed

    Si, Jiangju; Liang, Dawei; Kong, Dan; Wu, Sufang; Yuan, Lan; Xiang, Yan; Jiang, Lei

    2015-03-06

    To maintain the virtue of good optical property and discard the dross of conventional fluorescent staining dyes, we provide a strategy for designing new fluorescent scaffolds. In this study, a novel fluorescent labeling glycoprotein (chitosan-poly-L-cysteine, CPC) was synthesized through graft copolymerization. CPC gives emission peak at 465-470 nm when excited at 386 nm. The submicro-scale CPC microspheres could be localized and persisted specifically in the cytoplasm of living cells, with strong blue fluorescence. Moreover, CPC was highly resistant to photo bleaching, the fluorescence was remained stable for up to 72 h as the cells grew and developed. The glycoprotein CPC was bio-compatible and in zero grade cytotoxicity as quantified by MTT assay. The fluorescent labeling process with our newly designed glycoprotein CPC is exceptionally efficient.

  5. Using stable isotopes to reconcile differences in nitrogen uptake efficiency relative to late season fertilization of northern red oak seedlings in Wisconsin bare-root nurseries

    NASA Astrophysics Data System (ADS)

    Fujinuma, R.; Balster, N. J.

    2009-12-01

    Cultural applications (e.g., timing, amount) of nitrogen (N) fertilizer in bareroot tree nurseries have been assessed for some time. However, the use of different metrologies to quantify the efficient use of fertilizer N and its allocation within biomass has confounded comparisons between fertilization regimes. This inconsistency is especially problematic when quantifying N fertilizer uptake efficiency (NFUE) of late season N fertilization in northern red oak (Quercus rubra L.) (NRO) seedlings characterized by episodic flushes in growth and N storage in perennial tissue to support spring growth. The use of isotopic tracers could help elucidate these differences. We therefore hypothesized that: 1) calculations of NFUE using isotopically enriched fertilizer would yield lower, more precise estimates of NFUE relative to traditional methods due to differences in the accounting of mineralized and reabsorbed N, and 2) a significant fraction of leaf N in older leaves (early flushes) would be reabsorbed into root and shoot tissue before abscission relative to leaves produced toward the end of the growing season (late flushes). To test these hypotheses, we conducted an experiment in two-year old NRO seedlings at two bare-root nurseries in Wisconsin. We applied a total of 147 mg N seedling-1 in pulses from early July after the seedlings completed their second leaf flush until late August. The treatments consisted of three replicated plots of 15N enriched (1.000 atom%) ammonium sulfate, three non-enriched plots, and three unfertilized plots (controls) at each nursery. Subsequent changes in plant N uptake and N allocation were quantified from destructively harvested samples taken at 40, 60, and 120 days after the fertilization began. We evaluated three common methods currently used to estimate NFUE (total N without control, total N with control, and isotopic difference). The total N without control method overestimated mean NFUE by 3.2 times relative to the isotope method

  6. Parallel β-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: quantitative benchmark for the interpretation of amyloid and protein infrared spectra.

    PubMed

    Woys, Ann Marie; Almeida, Aaron M; Wang, Lu; Chiu, Chi-Cheng; McGovern, Michael; de Pablo, Juan J; Skinner, James L; Gellman, Samuel H; Zanni, Martin T

    2012-11-21

    Infrared spectroscopy is playing an important role in the elucidation of amyloid fiber formation, but the coupling models that link spectra to structure are not well tested for parallel β-sheets. Using a synthetic macrocycle that enforces a two stranded parallel β-sheet conformation, we measured the lifetimes and frequency for six combinations of doubly (13)C═(18)O labeled amide I modes using 2D IR spectroscopy. The average vibrational lifetime of the isotope labeled residues was 550 fs. The frequencies of the labels ranged from 1585 to 1595 cm(-1), with the largest frequency shift occurring for in-register amino acids. The 2D IR spectra of the coupled isotope labels were calculated from molecular dynamics simulations of a series of macrocycle structures generated from replica exchange dynamics to fully sample the conformational distribution. The models used to simulate the spectra include through-space coupling, through-bond coupling, and local frequency shifts caused by environment electrostatics and hydrogen bonding. The calculated spectra predict the line widths and frequencies nearly quantitatively. Historically, the characteristic features of β-sheet infrared spectra have been attributed to through-space couplings such as transition dipole coupling. We find that frequency shifts of the local carbonyl groups due to nearest neighbor couplings and environmental factors are more important, while the through-space couplings dictate the spectral intensities. As a result, the characteristic absorption spectra empirically used for decades to assign parallel β-sheet secondary structure arises because of a redistribution of oscillator strength, but the through-space couplings do not themselves dramatically alter the frequency distribution of eigenstates much more than already exists in random coil structures. Moreover, solvent exposed residues have amide I bands with >20 cm(-1) line width. Narrower line widths indicate that the amide I backbone is solvent

  7. Low cost labeling with highlighter ink efficiently visualizes developing blood vessels in avian and mouse embryos.

    PubMed

    Takase, Yuta; Tadokoro, Ryosuke; Takahashi, Yoshiko

    2013-12-01

    To understand how blood vessels form to establish the intricate network during vertebrate development, it is helpful if one can visualize the vasculature in embryos. We here describe a novel labeling method using highlighter ink, easily obtained in stationery stores with a low cost, to visualize embryo-wide vasculatures in avian and mice. We tested 50 different highlighters for fluorescent microscopy with filter sets equipped in a standard fluorescent microscope. The yellow and violet inks yielded fluorescent signals specifically detected by the filters used for green fluorescent protein (GFP) and red fluorescent protein (RFP) detections, respectively. When the ink solution was infused into chicken/quail and mouse embryos, vasculatures including large vessels and capillaries were labeled both in living and fixed embryos. Ink-infused embryos were further subjected to histological sections, and double stained with antibodies including QH-1 (quail), α smooth muscle actin (αSMA), and PECAM-1 (mouse), revealing that the endothelial cells were specifically labeled by the infused highlighter ink. Highlighter-labeled signals were detected with a resolution comparable to or higher than signals of fluorescein isothiocyanate (FITC)-lectin and Rhodamine-dextran, conventionally used for angiography. Furthermore, macroconfocal microscopic analyses with ink-infused embryos visualized fine vascular structures of both embryo proper and extra-embryonic plexus in a Z-stack image of 2400 μm thick with a markedly high resolution. Together, the low cost highlighter ink serves as an alternative reagent useful for visualization of blood vessels in developing avian and mouse embryos and possibly in other animals.

  8. Proteomic Analysis of Protein Turnover by Metabolic Whole Rodent Pulse-Chase Isotopic Labeling and Shotgun Mass Spectrometry Analysis.

    PubMed

    Savas, Jeffrey N; Park, Sung Kyu; Yates, John R

    2016-01-01

    The analysis of protein half-life and degradation dynamics has proven critically important to our understanding of a broad and diverse set of biological conditions ranging from cancer to neurodegeneration. Historically these protein turnover measures have been performed in cells by monitoring protein levels after "pulse" labeling of newly synthesized proteins and subsequent chase periods. Comparing the level of labeled protein remaining as a function of time to the initial level reveals the protein's half-life. In this method we provide a detailed description of the workflow required for the determination of protein turnover rates on a whole proteome scale in vivo. Our approach starts with the metabolic labeling of whole rodents by restricting all the nitrogen in their diet to exclusively nitrogen-15 in the form of spirulina algae. After near complete organismal labeling with nitrogen-15, the rodents are then switched to a normal nitrogen-14 rich diet for time periods of days to years. Tissues are harvested, the extracts are fractionated, and the proteins are digested to peptides. Peptides are separated by multidimensional liquid chromatography and analyzed by high resolution orbitrap mass spectrometry (MS). The nitrogen-15 containing proteins are then identified and measured by the bioinformatic proteome analysis tools Sequest, DTASelect2, and Census. In this way, our metabolic pulse-chase approach reveals in vivo protein decay rates proteome-wide.

  9. Vibrational energy relaxation of isotopically labeled amide I modes in cytochrome c: theoretical investigation of vibrational energy relaxation rates and pathways.

    PubMed

    Fujisaki, Hiroshi; Straub, John E

    2007-10-18

    With use of a time-dependent perturbation theory, vibrational energy relaxation (VER) of isotopically labeled amide I modes in cytochrome c solvated with water is investigated. Contributions to the VER are decomposed into two contributions from the protein and water. The VER pathways are visualized by using radial and angular excitation functions for resonant normal modes. Key differences of VER among different amide I modes are demonstrated, leading to a detailed picture of the spatial anisotropy of the VER. The results support the experimental observation that amide I modes in proteins relax with subpicosecond time scales, while the relaxation mechanism turns out to be sensitive to the environment of the amide I mode.

  10. Novel methodology for labelling mesoporous silica nanoparticles using the 18F isotope and their in vivo biodistribution by positron emission tomography

    NASA Astrophysics Data System (ADS)

    Rojas, Santiago; Gispert, Juan Domingo; Menchón, Cristina; Baldoví, Herme G.; Buaki-Sogo, Mireia; Rocha, Milagros; Abad, Sergio; Victor, Victor Manuel; García, Hermenegildo; Herance, José Raúl

    2015-03-01

    Nanoparticles have been proposed for several biomedical applications due to their potential as drug carriers, diagnostic and therapeutic agents. However, only a few of them have been approved for their use in humans. In order to gauge the potential applicability of a specific type of nanoparticle, in vivo biodistribution studies to characterize their pharmacokinetic properties are essential. In this regard, mesoporous silica nanoparticles (30-130 nm) have been functionalized with amino groups in order to react with N-succinimidyl 4-[18F]fluorobenzoate and thus anchor the 18F positron emission isotope by using a novel and easy labelling strategy. In vivo biodistribution was characterized in mice after intravenous administration of radiolabelled nanoparticles by positron emission tomography. Our results indicated that radiolabelled mesoporous silica nanoparticles were excreted into bile and urine and accumulated mainly in the organs of the reticuloendothelial system and lungs.

  11. Thermal rearrangement of 1,4-dinitroimidazole to 2,4-dinitroimidazole. Characterization and investigation of the mechanism by mass spectrometry and isotope labeling

    SciTech Connect

    Bulusu, S.; Damavarapu, R.; Autera, J.R.; Behrens, R. Jr.; Minier, L.M.; Villanueva, J.; Jayasuriya, K.; Axenrod, T.

    1995-04-06

    The thermal rearrangement of 1,4-dinitroimidazole to 2,4-dinitroimidazole has been investigated by differential scanning calorimetry and mass spectrometry techniques. When mixtures of independently prepared deuterium-and {sup 15}N-labeled samples of the 1,4-isomer were subjected to thermal rearrangement, the resulting 2,4-dinitroimidazole failed to show isotope-scrambled molecular ions in its mass spectrum, suggesting that the reaction was intramolecular in nature. This was interpreted to mean that the mechanism was of the (1,5)-sigmatropic type rearrangement. Extensive NMR measurements were used to obtain unequivocal evidence for the identity of the assumed structures of the isomeric dinitroimidazoles. Two byproducts (4-nitroimidazole and a trinitroimidazole), formed during the rearrangement reaction, have also been identified. Plausible mechanisms for their formation are discussed. 15 refs., 3 figs., 3 tabs.

  12. Water-Use Efficiency and Stable Carbon Isotopes: Accounting for Photosynthetic Refixation

    NASA Astrophysics Data System (ADS)

    Ubierna Lopez, N.; Marshall, J. D.

    2007-12-01

    Three processes are performed by every green plant tissue: photosynthesis, respiration and refixation. Each of these affects the ratio of stable isotopes, 12C and 13C. Refixation allows plants to fix a portion of the CO2 produced via respiration prior to releasing the remaining CO2 back into the atmosphere. The process begins with a pool of CO2 already depleted in 13C and subsequently depletes it further, resulting in two simultaneous effects: enrichment of CO2 released into the atmosphere and depletion of biomass that is formed. Recently, considerable research has concentrated on identifying processes that determine the isotopic composition of a given plant tissue. A convincing explanation for the observed enrichment of stems versus leaves has still not been derived. We advocate that refixation can explain currently inexplicable patterns. We hypothesized that leaves re-fix carbon during their entire lifespan when light intensity is below the light compensation point and above total darkness. We grew Idaho hybrid poplars under controlled conditions in a growth chamber. Light intensity was regulated to create three different treatments: (1) Light (PAR=270 μmol/m2s), (2) Shade (PAR=89 μmol/m2s) and (3) Dark (PAR=0 μmol/m2s). For each treatment we modified respiration values by regulating the light environment between total darkness and the light compensation point. For the light treatment group, leaf respired CO2 was collected at 5% (PAR=14) and 22% (PAR=59) of the light growing environment. For the shade treatment group, leaf respired CO2 was collected at 22% (PAR=20) of the light growing environment. We estimated the amount of refixation as (Ddark- Dlight)/Ddark, where Ddark represents dark respiration (μmol/gs) and Dlight respiration during light periods (μmol/gs). Light treatments plants exhibited a maximum refixation level of 53% at PAR=59, with an associated enrichment of leaf respired C isotopic composition (δ13CLR) of 3.3‰. At PAR=14, refixation rate

  13. Does an energy efficiency label alter consumers' purchasing decisions? A latent class approach based on a stated choice experiment in Shanghai.

    PubMed

    Shen, Junyi; Saijo, Tatsuyoshi

    2009-08-01

    In this paper we conducted a hypothetical choice experiment in Shanghai, China, to examine whether the China Energy Efficiency Label influences consumers' choices of air conditioners and refrigerators. A latent class approach was applied to observe both heterogeneities among the respondents and product brands. Our results suggested that consumers in Shanghai were well aware of the China Energy Efficiency Label and tended to pay more attention to products with such labels. In addition, air conditioners and refrigerators affixed with a hypothetical label that indicates saving in electricity bills compared with a standard model received significant preferences, which suggested that the more information manufacturers provide, the more their products would be preferred by consumers. Finally, weighted by class probability, the willingness to pay values for more energy efficient refrigerators were higher than those for more energy efficient air conditioners, implying that Shanghai consumers have greater incentive to pay more for appliances they use more frequently.

  14. Deciphering Systemic Wound Responses of the Pumpkin Extrafascicular Phloem by Metabolomics and Stable Isotope-Coded Protein Labeling1[C][W

    PubMed Central

    Gaupels, Frank; Sarioglu, Hakan; Beckmann, Manfred; Hause, Bettina; Spannagl, Manuel; Draper, John; Lindermayr, Christian; Durner, Jörg

    2012-01-01

    In cucurbits, phloem latex exudes from cut sieve tubes of the extrafascicular phloem (EFP), serving in defense against herbivores. We analyzed inducible defense mechanisms in the EFP of pumpkin (Cucurbita maxima) after leaf damage. As an early systemic response, wounding elicited transient accumulation of jasmonates and a decrease in exudation probably due to partial sieve tube occlusion by callose. The energy status of the EFP was enhanced as indicated by increased levels of ATP, phosphate, and intermediates of the citric acid cycle. Gas chromatography coupled to mass spectrometry also revealed that sucrose transport, gluconeogenesis/glycolysis, and amino acid metabolism were up-regulated after wounding. Combining ProteoMiner technology for the enrichment of low-abundance proteins with stable isotope-coded protein labeling, we identified 51 wound-regulated phloem proteins. Two Sucrose-Nonfermenting1-related protein kinases and a 32-kD 14-3-3 protein are candidate central regulators of stress metabolism in the EFP. Other proteins, such as the Silverleaf Whitefly-Induced Protein1, Mitogen Activated Protein Kinase6, and Heat Shock Protein81, have known defensive functions. Isotope-coded protein labeling and western-blot analyses indicated that Cyclophilin18 is a reliable marker for stress responses of the EFP. As a hint toward the induction of redox signaling, we have observed delayed oxidation-triggered polymerization of the major Phloem Protein1 (PP1) and PP2, which correlated with a decline in carbonylation of PP2. In sum, wounding triggered transient sieve tube occlusion, enhanced energy metabolism, and accumulation of defense-related proteins in the pumpkin EFP. The systemic wound response was mediated by jasmonate and redox signaling. PMID:23085839

  15. Automated NMR structure determination of stereo-array isotope labeled ubiquitin from minimal sets of spectra using the SAIL-FLYA system.

    PubMed

    Ikeya, Teppei; Takeda, Mitsuhiro; Yoshida, Hitoshi; Terauchi, Tsutomu; Jee, Jun-Goo; Kainosho, Masatsune; Güntert, Peter

    2009-08-01

    Stereo-array isotope labeling (SAIL) has been combined with the fully automated NMR structure determination algorithm FLYA to determine the three-dimensional structure of the protein ubiquitin from different sets of input NMR spectra. SAIL provides a complete stereo- and regio-specific pattern of stable isotopes that results in sharper resonance lines and reduced signal overlap, without information loss. Here we show that as a result of the superior quality of the SAIL NMR spectra, reliable, fully automated analyses of the NMR spectra and structure calculations are possible using fewer input spectra than with conventional uniformly 13C/15N-labeled proteins. FLYA calculations with SAIL ubiquitin, using a single three-dimensional "through-bond" spectrum (and 2D HSQC spectra) in addition to the 13C-edited and 15N-edited NOESY spectra for conformational restraints, yielded structures with an accuracy of 0.83-1.15 A for the backbone RMSD to the conventionally determined solution structure of SAIL ubiquitin. NMR structures can thus be determined almost exclusively from the NOESY spectra that yield the conformational restraints, without the need to record many spectra only for determining intermediate, auxiliary data of the chemical shift assignments. The FLYA calculations for this report resulted in 252 ubiquitin structure bundles, obtained with different input data but identical structure calculation and refinement methods. These structures cover the entire range from highly accurate structures to seriously, but not trivially, wrong structures, and thus constitute a valuable database for the substantiation of structure validation methods.

  16. A Method Revealing Bacterial Cell-wall Architecture by Time-dependent Isotope Labeling and Quantitative Liquid Chromatography/Mass Spectrometry

    PubMed Central

    Patti, Gary J.; Chen, Jiawei; Gross, Michael L.

    2009-01-01

    The molecular details of the biosynthesis and resulting architecture of the bacterial cell wall remain unclear but are essential to understanding the activity of glycopeptide antibiotics, the recognition of pathogens by hosts, and the processes of bacterial growth and division. Here we report a new strategy to elucidate bacterial cell-wall architecture based on time-dependent isotope labeling of bacterial cells quantified by liquid chromatography/accurate mass measurement mass spectrometry. The results allow us to track the fate of cell-wall precursors (which contain the vancomycin-binding site) in Enterococcus faecium, a leading antibiotic-resistant pathogen. By comparing isotopic enrichments of post-insertionally modified cell-wall precursors, we find that tripeptides and species without Asx bridges are specific to mature cell wall. Additionally, we find that the sequence of cell-wall maturation varies throughout a cell cycle. We suggest that actively dividing E. faecium cells have three zones of unique peptidoglycan processing. Our results reveal new organizational characteristics of the bacterial cell wall that are important to understanding tertiary structure and designing novel drugs for antibiotic-resistant pathogens. PMID:19281243

  17. Mixed-Isotope Labeling with LC-IMS-MS for Characterization of Protein–Protein Interactions by Chemical Cross-Linking

    SciTech Connect

    Merkley, Eric D.; Baker, Erin S.; Crowell, Kevin L.; Orton, Daniel J.; Taverner, Thomas; Ansong, Charles; Ibrahim, Yehia M.; Burnet, Meagan C.; Cort, John R.; Anderson, Gordon A.; Smith, Richard D.; Adkins, Joshua N.

    2013-02-20

    Chemical cross-linking of proteins followed by proteolysis and mass spectrometric analysis of the resulting cross-linked peptides can provide insights into protein structure and protein-protein interactions. However, cross-linked peptides are by necessity of low stoichometry and have different physicochemical properties than linear peptides, routine unambiguous identification of the cross-linked peptides has remained difficult. To address this challenge, we demonstrated the use of liquid chromatography and ion mobility separations coupled with mass spectrometry in combination with a heavy-isotope labeling method. The combination of mixed-isotope cross-linking and ion mobility provided unique and easily interpretable spectral multiplet features for the intermolecular cross-linked peptides. Application of the method to two different homodimeric proteins - SrfN, a virulence factor from Salmonella Typhimurium and SO_2176, a protein of unknown function from Shewanella oneidensis- revealed several cross-linked peptides from both proteins that were identified with a low false discovery rate (estimated using a decoy approach). A greater number of cross-linked peptides were identified using ion mobility drift time information in the analysis than when the data were summed across the drift time dimension before analysis. The identified cross-linked peptides migrated more quickly in the ion mobility drift tube than the unmodified peptides.

  18. Regioselective synthesis of isotopically labeled Δ9-tetrahydrocannabinolic acid A (THCA-A-D3) by reaction of Δ9-tetrahydrocannabinol-D3 with magnesium methyl carbonate.

    PubMed

    Roth, Nadine; Wohlfarth, Ariane; Müller, Michael; Auwärter, Volker

    2012-10-10

    For the reliable quantification of Δ9-tetrahydrocannabinolic acid A (THCA-A), the biogenetic precursor of Δ9-tetrahydrocannabinol (THC), in biological matrices by LC-MS/MS and GC-MS(/MS), an isotopically labeled internal standard was synthesized starting from Δ9-tetrahydrocannabinol-D(3) (THC-D(3)). Synthesis strategy was based on a method reported by Mechoulam et al. in 1969 using magnesium methyl carbonate (MMC) as carboxylation reagent for the synthesis of cannabinoid acids. Preliminary experiments with THC to optimize yield of the product (THCA-A) resulted in the synthesis of the positional isomer tetrahydrocannabinolic acid B (THCA-B) as a byproduct. Using the optimized conditions for the desired isomer, THCA-A-D(3) was prepared and isolated with a yield of approx. 10% after two synthesis cycles. Isotope purity was estimated to be >99% by relative abundance of the molecular ions. The synthesized compound proved to be suitable as an internal standard for quantification of THCA-A in serum and hair samples of cannabis consumers.

  19. High levels of isotope elimination improve precision and allow individual-based measurements of metabolic rates in animals using the doubly labeled water method

    PubMed Central

    Shirai, Masaki; Niizuma, Yasuaki; Yamamoto, Maki; Oda, Emiko; Ebine, Naoyuki; Oka, Nariko; Yoda, Ken

    2015-01-01

    Doubly labeled water (DLW) can be used to measure energy expenditure in free-ranging animals, but questions have been raised about its accuracy in different species or contexts. We investigated whether differences in the extent of isotope elimination affects the precision and accuracy of the DLW method, which can vary according to the experimental design or metabolic rate of the species. Estimated total energy expenditure by the DLW method (TEEdlw) was compared with actual total energy expenditure simultaneously measured via respirometry (TEEresp) in streaked shearwaters Calonectris leucomelas, a pelagic seabird. Subjects were divided into three groups with different experimental conditions: at rest on the ground for 24 h (Group A) or for 48 h (Group B), and at rest on the water for 24 h (Group C). TEEdlw in Group A matched TEEresp, whereas there was an overestimation of TEEdlw in both Groups B and C compared with TEEresp. However, compared with Group A, TEEdlw in Groups B and C had reduced the isotopic analytical variability and thus higher precision. The best regression model (TEEdlw = 1.37 TEEresp − 14.12) showed a high correlation (R2 = 0.82) between TEEdlw and TEEresp and allows a correction factor for field metabolic rates in streaked shearwaters. Our results demonstrate that the commonly made assumption that the DLW method is not appropriate for individual-based estimates may be incorrect in certain circumstances. Although a correction factor may be necessary when using the DLW method to estimate metabolic rate, greater levels of isotope eliminations provides DLW estimates with high precision, which can adequately represent relative individual estimates. Nevertheless, the DLW method, should be used with caution when characterizing interspecies difference of energy expenditures. PMID:26611463

  20. High levels of isotope elimination improve precision and allow individual-based measurements of metabolic rates in animals using the doubly labeled water method.

    PubMed

    Shirai, Masaki; Niizuma, Yasuaki; Yamamoto, Maki; Oda, Emiko; Ebine, Naoyuki; Oka, Nariko; Yoda, Ken

    2015-11-01

    Doubly labeled water (DLW) can be used to measure energy expenditure in free-ranging animals, but questions have been raised about its accuracy in different species or contexts. We investigated whether differences in the extent of isotope elimination affects the precision and accuracy of the DLW method, which can vary according to the experimental design or metabolic rate of the species. Estimated total energy expenditure by the DLW method (TEEdlw) was compared with actual total energy expenditure simultaneously measured via respirometry (TEEresp) in streaked shearwaters Calonectris leucomelas, a pelagic seabird. Subjects were divided into three groups with different experimental conditions: at rest on the ground for 24 h (Group A) or for 48 h (Group B), and at rest on the water for 24 h (Group C). TEEdlw in Group A matched TEEresp, whereas there was an overestimation of TEEdlw in both Groups B and C compared with TEEresp. However, compared with Group A, TEEdlw in Groups B and C had reduced the isotopic analytical variability and thus higher precision. The best regression model (TEEdlw = 1.37 TEEresp - 14.12) showed a high correlation (R(2) = 0.82) between TEEdlw and TEEresp and allows a correction factor for field metabolic rates in streaked shearwaters. Our results demonstrate that the commonly made assumption that the DLW method is not appropriate for individual-based estimates may be incorrect in certain circumstances. Although a correction factor may be necessary when using the DLW method to estimate metabolic rate, greater levels of isotope eliminations provides DLW estimates with high precision, which can adequately represent relative individual estimates. Nevertheless, the DLW method, should be used with caution when characterizing interspecies difference of energy expenditures.

  1. Quantifying Kinase-Specific Phosphorylation Stoichiometry Using Stable Isotope Labeling In a Reverse In-Gel Kinase Assay.

    PubMed

    Li, Xiang; Cox, Jonathan T; Huang, Weiliang; Kane, Maureen; Tang, Keqi; Bieberich, Charles J

    2016-12-06

    Despite recent advancements in large-scale phosphoproteomics, methods to quantify kinase-specific phosphorylation stoichiometry of protein substrates are lacking. We developed a method to quantify kinase-specific phosphorylation stoichiometry by combining the reverse in-gel kinase assay (RIKA) with high-resolution liquid chromatography-mass spectrometry (LC-MS). Beginning with predetermined ratios of phosphorylated to nonphosphorylated protein kinase CK2 (CK2) substrate molecules, we employed (18)O-labeled adenosine triphosphate ((18)O-ATP) as the phosphate donor in a RIKA, then quantified the ratio of (18)O- versus (16)O-labeled tryptic phosphopeptide using high mass accuracy mass spectrometry (MS). We demonstrate that the phosphorylation stoichiometry determined by this method across a broad percent phosphorylation range correlated extremely well with the predicted value (correlation coefficient = 0.99). This approach provides a quantitative alternative to antibody-based methods of determining the extent of phosphorylation of a substrate pool.

  2. Chemical Isotope Labeling LC-MS for Monitoring Disease Progression and Treatment in Animal Models: Plasma Metabolomics Study of Osteoarthritis Rat Model

    PubMed Central

    Chen, Deying; Su, Xiaoling; Wang, Nan; Li, Yunong; Yin, Hua; Li, Liang; Li, Lanjuan

    2017-01-01

    We report a chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) method generally applicable for tracking metabolomic changes from samples collected in an animal model for studying disease development and treatment. A rat model of surgically induced osteoarthritis (OA) was used as an example to illustrate the workflow and technical performance. Experimental duplicate analyses of 234 plasma samples were carried out using dansylation labeling LC-MS targeting the amine/phenol submetabolome. These samples composed of 39 groups (6 rats per group) were collected at multiple time points with sham operation, OA control group, and OA rats with treatment, separately, using glucosamine/Celecoxib and three traditional Chinese medicines (Epimedii folium, Chuanxiong Rhizoma and Bushen-Huoxue). In total, 3893 metabolites could be detected and 2923 of them were consistently detected in more than 50% of the runs. This high-coverage submetabolome dataset could be used to track OA progression and treatment. Many differentiating metabolites were found and 11 metabolites including 2-aminoadipic acid, saccharopine and GABA were selected as potential biomarkers of OA progression and OA treatment. This study illustrates that CIL LC-MS is a very useful technique for monitoring incremental metabolomic changes with high coverage and accuracy for studying disease progression and treatment in animal models. PMID:28091618

  3. Studies of peptide a- and b-type fragment ions using stable isotope labeling and integrated ion mobility/tandem mass spectrometry.

    PubMed

    Riba Garcia, Isabel; Giles, Kevin; Bateman, Robert H; Gaskell, Simon J

    2008-12-01

    The structures of peptide a- and b-type fragment ions were studied using synthetic peptides including a set of isomeric peptides, differing in the sequence location of an alanine residue labeled with (15)N and uniformly with (13)C. The pattern of isotope labeling of second-generation fragment ions derived via a(n) and b(n) ions (where n = 4 or 5) suggested that these intermediates existed in part as macrocyclic structures, where alternative sites of ring opening gave rise to different linear forms whose simple cleavage might give rise to the observed final products. Similar conclusions were derived from combined ion mobility/tandem MS analyses where different fragmentation patterns were observed for isomeric a- or b-type ions that display different ion mobilities. These analyses were facilitated by a new approach to the processing of ion mobility/tandem MS data, from which distinct and separate product ion spectra are derived from ions that are incompletely separated by ion mobility. Finally, an example is provided of evidence for a macrocyclic structure for b(n) ions where n = 8 or 9.

  4. Chemical Isotope Labeling LC-MS for Monitoring Disease Progression and Treatment in Animal Models: Plasma Metabolomics Study of Osteoarthritis Rat Model

    NASA Astrophysics Data System (ADS)

    Chen, Deying; Su, Xiaoling; Wang, Nan; Li, Yunong; Yin, Hua; Li, Liang; Li, Lanjuan

    2017-01-01

    We report a chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) method generally applicable for tracking metabolomic changes from samples collected in an animal model for studying disease development and treatment. A rat model of surgically induced osteoarthritis (OA) was used as an example to illustrate the workflow and technical performance. Experimental duplicate analyses of 234 plasma samples were carried out using dansylation labeling LC-MS targeting the amine/phenol submetabolome. These samples composed of 39 groups (6 rats per group) were collected at multiple time points with sham operation, OA control group, and OA rats with treatment, separately, using glucosamine/Celecoxib and three traditional Chinese medicines (Epimedii folium, Chuanxiong Rhizoma and Bushen-Huoxue). In total, 3893 metabolites could be detected and 2923 of them were consistently detected in more than 50% of the runs. This high-coverage submetabolome dataset could be used to track OA progression and treatment. Many differentiating metabolites were found and 11 metabolites including 2-aminoadipic acid, saccharopine and GABA were selected as potential biomarkers of OA progression and OA treatment. This study illustrates that CIL LC-MS is a very useful technique for monitoring incremental metabolomic changes with high coverage and accuracy for studying disease progression and treatment in animal models.

  5. Quantitation of methadone enantiomers in humans using stable isotope-labeled (2H3)-, (2H5)-, and (2H8)Methadone

    SciTech Connect

    Nakamura, K.; Hachey, D.L.; Kreek, M.J.; Irving, C.S.; Klein, P.D.

    1982-01-01

    A new technique for simultaneous stereoselective kinetic studies of methadone enantiomers was developed using three deuterium-labeled forms of methadone and GLC-chemical-ionization mass spectrometry. A racemic mixture (1:1) of (R)-(-)-(2H5)methadone (l-form) and (S)-(R)-(2H3)methadone (d-form) was administered orally in place of a single daily dose of unlabeled (+/-)-(2H0)methadone in long-term maintenance patients. Racemic (+/-)-(2H8)methadone was used as an internal standard for the simultaneous quantitation of (2H0)-, (2H3)-, and (2H5)methadone in plasma and urine. A newly developed extraction procedure, using a short, disposable C18 reversed-phase cartridge and improved chemical-ionization procedures employing ammonia gas, resulted in significant reduction of the background impurities contributing to the ions used for isotopic abundance measurements. These improvements enabled the measurement of labeled plasma methadone levels for 120 hr following a single dose. This methodology was applied to the study of methadone kinetics in two patients; in both patients, the analgesically active l-enantiomer of the drug had a longer plasma elimination half-life and a smaller area under the plasma disappearance curve than did the inactive d-form.

  6. Biosynthesis, molecular structure, and domain architecture of potato suberin: a (13)C NMR study using isotopically labeled precursors.

    PubMed

    Yan, B; Stark, R E

    2000-08-01

    Although suberin in potato wound periderm is known to be a polyester containing long-chain fatty acids and phenolics embedded within the cell wall, many aspects of its molecular structure and polymer-polymer connectivities remain elusive. The present work combines biosynthetic incorporation of site-specifically (13)C-enriched acetates and phenylalanines with one- and two-dimensional solid-state (13)C NMR spectroscopic methods to monitor the developing suberin polymer. Exogenous acetate is found to be incorporated preferentially at the carboxyl end of the aliphatic carbon chains, suggesting addition during the later elongation steps of fatty acid synthesis. Carboxyl-labeled phenylalanine precursors provide evidence for the concurrent development of phenolic esters and of monolignols typical of lignin. Experiments with ring-labeled phenylalanine precursors demonstrate a predominance of sinapyl and guaiacyl structures among suberin's phenolic moieties. Finally, the analysis of spin-exchange (solid-state NOESY) NMR experiments in ring-labeled suberin indicates distances of no more than 0.5 nm between pairs of phenolic and oxymethine carbons, which are attributed to the aromatic-aliphatic polyester and the cell wall polysaccharide matrix, respectively. These results offer direct and detailed molecular information regarding the insoluble intermediates of suberin biosynthesis, indicate probable covalent linkages between moieties of its polyester and polysaccharide domains, and yield a clearer overall picture of this agriculturally important protective material.

  7. Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards and Labeling Programs for Clothes Washers, Water Dispensers, Vending Machines and CFLs

    SciTech Connect

    Fridley, David; Zheng, Nina; Zhou, Nan

    2010-06-01

    Since the late 1970s, energy labeling programs and mandatory energy performance standards have been used in many different countries to improve the efficiency levels of major residential and commercial equipment. As more countries and regions launch programs covering a greater range of products that are traded worldwide, greater attention has been given to harmonizing the specific efficiency criteria in these programs and the test methods for measurements. For example, an international compact fluorescent light (CFL) harmonization initiative was launched in 2006 to focus on collaboration between Australia, China, Europe and North America. Given the long history of standards and labeling programs, most major energy-consuming residential appliances and commercial equipment are already covered under minimum energy performance standards (MEPS) and/or energy labels. For these products, such as clothes washers and CFLs, harmonization may still be possible when national MEPS or labeling thresholds are revised. Greater opportunity for harmonization exists in newer energy-consuming products that are not commonly regulated but are under consideration for new standards and labeling programs. This may include commercial products such as water dispensers and vending machines, which are only covered by MEPS or energy labels in a few countries or regions. As China continues to expand its appliance standards and labeling programs and revise existing standards and labels, it is important to learn from recent international experiences with efficiency criteria and test procedures for the same products. Specifically, various types of standards and labeling programs already exist in North America, Europe and throughout Asia for products in China's 2010 standards and labeling programs, namely clothes washers, water dispensers, vending machines and CFLs. This report thus examines similarities and critical differences in energy efficiency values, test procedure specifications and other

  8. An improved stable isotope N-terminal labeling approach with light/heavy TMPP to automate proteogenomics data validation: dN-TOP.

    PubMed

    Bertaccini, Diego; Vaca, Sebastian; Carapito, Christine; Arsène-Ploetze, Florence; Van Dorsselaer, Alain; Schaeffer-Reiss, Christine

    2013-06-07

    In silico gene prediction has proven to be prone to errors, especially regarding precise localization of start codons that spread in subsequent biological studies. Therefore, the high throughput characterization of protein N-termini is becoming an emerging challenge in the proteomics and especially proteogenomics fields. The trimethoxyphenyl phosphonium (TMPP) labeling approach (N-TOP) is an efficient N-terminomic approach that allows the characterization of both N-terminal and internal peptides in a single experiment. Due to its permanent positive charge, TMPP labeling strongly affects MS/MS fragmentation resulting in unadapted scoring of TMPP-derivatized peptide spectra by classical search engines. This behavior has led to difficulties in validating TMPP-derivatized peptide identifications with usual score filtering and thus to low/underestimated numbers of identified N-termini. We present herein a new strategy (dN-TOP) that overwhelmed the previous limitation allowing a confident and automated N-terminal peptide validation thanks to a combined labeling with light and heavy TMPP reagents. We show how this double labeling allows increasing the number of validated N-terminal peptides. This strategy represents a considerable improvement to the well-established N-TOP method with an enhanced and accelerated data processing making it now fully compatible with high-throughput proteogenomics studies.

  9. Multi-isotope labelling of organic matter by diffusion of 2H/18O-H2O vapour and 13C-CO2 into the leaves and its distribution within the plant

    NASA Astrophysics Data System (ADS)

    Studer, M. S.; Siegwolf, R. T. W.; Leuenberger, M.; Abiven, S.

    2015-03-01

    Isotope labelling is a powerful tool to study elemental cycling within terrestrial ecosystems. Here we describe a new multi-isotope technique to label organic matter (OM). We exposed poplars (Populus deltoides × nigra) for 14 days to an atmosphere enriched in 13CO2 and depleted in 2H218O. After 1 week, the water-soluble leaf OM (δ13C = 1346 ± 162‰) and the leaf water were strongly labelled (δ18O = -63 ± 8, δ2H = -156 ± 15‰). The leaf water isotopic composition was between the atmospheric and stem water, indicating a considerable back-diffusion of vapour into the leaves (58-69%) in the opposite direction to the net transpiration flow. The atomic ratios of the labels recovered (18O/13C, 2H/13C) were 2-4 times higher in leaves than in the stems and roots. This could be an indication of the synthesis of more condensed compounds in roots and stems (e.g. lignin vs. cellulose) or might be the result of O and H exchange and fractionation processes during phloem transport and biosynthesis. We demonstrate that the three major OM elements (C, O, H) can be labelled and traced simultaneously within the plant. This approach could be of interdisciplinary interest in the fields of plant physiology, palaeoclimatic reconstruction or soil science.

  10. Comparison of urinary monitoring, faecal monitoring and erythrocyte analysis of stable isotope labels to determine magnesium absorption in human subjects.

    PubMed

    Bohn, Torsten; Walczyk, Thomas; Davidsson, Lena; Pritzkow, Wolfgang; Klingbeil, Patrick; Vogl, Jochen; Hurrell, Richard F

    2004-01-01

    We have evaluated urinary monitoring and erythrocyte analysis to determine Mg absorption in human subjects as alternatives to the conventional technique of faecal monitoring by stable-isotope techniques. Ten healthy adults received 2.2 mmol (25)Mg in water, together with wheat bread, followed 15 min later by intravenous injection of 0.6 mmol (26)Mg (day 1). Brilliant blue and Yb (given on day 0 and day 1 respectively) served as qualitative and quantitative faecal markers. Urine was collected for 6 d after test meal intake. Complete collections of faeces were made until excretion of the second brilliant blue marker (given on day 7). Mg isotope ratios were determined by thermal ionisation-MS in urine and faeces and by inductively coupled plasma-MS in erythrocytes. Absorption was determined based on: (1) 6 d urine pools; (2) 24 h urine pools (collected 22-46 h after test meal intake); (3) erythrocytes from a blood sample drawn on day 14; (4) complete 6 d faecal pools; (5) faecal pools based on the first three consecutive stools after excretion of the first brilliant blue marker. Differences in mean Mg absorption (42 44 %) were statistically insignificant between techniques, except when based on 6 d urine pools for which the value was significantly lower (33 (sd 7) %, P=0.0003, ANOVA). The results indicate that Mg absorption can be determined from 24 h urine pools or erythrocytes obtained 14 d after test meal intake, an alternative method to the more time-consuming and labour-intense faecal monitoring. The choice of technique depends on practical and financial considerations.

  11. Refinement of Isotopically Derived Fine Root Lifespans Using A Locally Released Radiocarbon Label in Oak Ridge, TN.

    NASA Astrophysics Data System (ADS)

    Gaudinski, J. B.; Riley, W. J.; Torn, M. S.; Joslin, J. D.

    2003-12-01

    Isotopic techniques (13C and 14C) are relative newcomers among the approaches used to quantify fine root (< 2 mm diameter) dynamics in a field setting. Direct measurements of the isotopic content of root tissues, used as a proxy for root age, have shown that at least some portion of the fine root system lives for 5-10 years or more. In this work we take advantage of a local radiocarbon (14C) release in Oak Ridge, TN in summer 1999, to examine (1) the influence of stored C in new root growth and (2) the lifespan of fine roots from a mature, temperate deciduous forest. This release provides a local 14C pulse of similar magnitude to the peak of the 14C bomb spike. However, since we have been able to make ecosystem wide measurements within one year of the local 14C release we have much greater time resolution than we do with the standard bomb-14C technique applied today (which is 1-2 years). We have constructed a new multi-compartment model of root growth and decay, whose structure was developed using data from field sampling at Oak Ridge, TN. Model results, constrained with a 14C time series of new root growth, show that fine roots are grown with 10% of their carbon coming from stored C sources. Additionally, a three-year time series of root cores shows that at least two pools are required to account for 14C changes in live and dead fine roots. Testing this 14C data set with our model shows that the shorter-lived root pool has a turnover time (mean lifetime) of a few months and the longer-lived pool has a turnover time of ~5 years.

  12. Relationship between efficiency of nitrogen utilization and isotopic nitrogen fractionation in dairy cows: contribution of digestion v. metabolism?

    PubMed

    Cantalapiedra-Hijar, G; Fouillet, H; Huneau, J F; Fanchone, A; Doreau, M; Nozière, P; Ortigues-Marty, I

    2016-02-01

    Animal tissues are naturally 15N enriched relative to their diet and the extent of this difference (Δ15Nanimal-diet) has been correlated to the efficiency of N assimilation in different species. The rationale is that transamination and deamination enzymes, involved in amino acid metabolism are likely to preferentially convert amino groups containing 14N over 15N. However, in ruminants the contribution of rumen bacterial metabolism relative to animal tissues metabolism to naturally enrich animal proteins in terms of 15N has been not assessed yet. The objective of this study was to assess the impact of rumen and digestion processes on the relationship between Δ15Nanimal-diet and efficiency of N utilization for milk protein yield (milk N efficiency (MNE); milk N yield/N intake) as well as the relationship between the 15N natural abundance of rumen bacteria and the efficiency of N use at the rumen level. Solid- and liquid-associated rumen bacteria, duodenal digesta, feces and plasma proteins were obtained (n=16) from four lactating Holstein cows fed four different diets formulated at two metabolizable protein supplies (80% v. 110% of protein requirements) crossed by two different dietary energy source (diets rich in starch v. fiber). We measured the isotopic N fractionation between animal and diet (Δ15Nanimal-diet) in these different body pools. The Δ15Nanimal-diet was negatively correlated with MNE when measured in solid-associated rumen bacteria, duodenal digesta, feces and plasma proteins, with the strongest correlation found for the latter. However, our results showed a very weak 15N enrichment of duodenal digesta (Δ15Nduodenal digesta-diet mean value=0.42) compared with that observed in plasma proteins (Δ15Nplasma protein-diet mean value=2.41). These data support the idea that most of the isotopic N fractionation observed in ruminant proteins (Δ15Nplasma protein-diet) has a metabolic origin with very little direct impact of the overall digestion process on

  13. 99mTc-labeled HYNIC-DAPI causes plasmid DNA damage with high efficiency.

    PubMed

    Kotzerke, Joerg; Punzet, Robert; Runge, Roswitha; Ferl, Sandra; Oehme, Liane; Wunderlich, Gerd; Freudenberg, Robert

    2014-01-01

    (99m)Tc is the standard radionuclide used for nuclear medicine imaging. In addition to gamma irradiation, (99m)Tc emits low-energy Auger and conversion electrons that deposit their energy within nanometers of the decay site. To study the potential for DNA damage, direct DNA binding is required. Plasmid DNA enables the investigation of the unprotected interactions between molecules and DNA that result in single-strand breaks (SSBs) or double-strand breaks (DSBs); the resulting DNA fragments can be separated by gel electrophoresis and quantified by fluorescent staining. This study aimed to compare the plasmid DNA damage potential of a (99m)Tc-labeled HYNIC-DAPI compound with that of (99m)Tc pertechnetate ((99m)TcO4(-)). pUC19 plasmid DNA was irradiated for 2 or 24 hours. Direct and radical-induced DNA damage were evaluated in the presence or absence of the radical scavenger DMSO. For both compounds, an increase in applied activity enhanced plasmid DNA damage, which was evidenced by an increase in the open circular and linear DNA fractions and a reduction in the supercoiled DNA fraction. The number of SSBs elicited by 99mTc-HYNIC-DAPI (1.03) was twice that caused by (99m)TcO4(-) (0.51), and the number of DSBs increased fivefold in the (99m)Tc-HYNIC-DAPI-treated sample compared with the (99m)TcO4(-) treated sample (0.02 to 0.10). In the presence of DMSO, the numbers of SSBs and DSBs decreased to 0.03 and 0.00, respectively, in the (99m)TcO4(-) treated samples, whereas the numbers of SSBs and DSBs were slightly reduced to 0.95 and 0.06, respectively, in the (99m)Tc-HYNIC-DAPI-treated samples. These results indicated that (99m)Tc-HYNIC-DAPI induced SSBs and DSBs via a direct interaction of the (99m)Tc-labeled compound with DNA. In contrast to these results, (99m)TcO4(-) induced SSBs via radical formation, and DSBs were formed by two nearby SSBs. The biological effectiveness of (99m)Tc-HYNIC-DAPI increased by approximately 4-fold in terms of inducing SSBs and by

  14. 99mTc-Labeled HYNIC-DAPI Causes Plasmid DNA Damage with High Efficiency

    PubMed Central

    Kotzerke, Joerg; Punzet, Robert; Runge, Roswitha; Ferl, Sandra; Oehme, Liane; Wunderlich, Gerd; Freudenberg, Robert

    2014-01-01

    99mTc is the standard radionuclide used for nuclear medicine imaging. In addition to gamma irradiation, 99mTc emits low-energy Auger and conversion electrons that deposit their energy within nanometers of the decay site. To study the potential for DNA damage, direct DNA binding is required. Plasmid DNA enables the investigation of the unprotected interactions between molecules and DNA that result in single-strand breaks (SSBs) or double-strand breaks (DSBs); the resulting DNA fragments can be separated by gel electrophoresis and quantified by fluorescent staining. This study aimed to compare the plasmid DNA damage potential of a 99mTc-labeled HYNIC-DAPI compound with that of 99mTc pertechnetate (99mTcO4−). pUC19 plasmid DNA was irradiated for 2 or 24 hours. Direct and radical-induced DNA damage were evaluated in the presence or absence of the radical scavenger DMSO. For both compounds, an increase in applied activity enhanced plasmid DNA damage, which was evidenced by an increase in the open circular and linear DNA fractions and a reduction in the supercoiled DNA fraction. The number of SSBs elicited by 99mTc-HYNIC-DAPI (1.03) was twice that caused by 99mTcO4− (0.51), and the number of DSBs increased fivefold in the 99mTc-HYNIC-DAPI-treated sample compared with the 99mTcO4− treated sample (0.02 to 0.10). In the presence of DMSO, the numbers of SSBs and DSBs decreased to 0.03 and 0.00, respectively, in the 99mTcO4– treated samples, whereas the numbers of SSBs and DSBs were slightly reduced to 0.95 and 0.06, respectively, in the 99mTc-HYNIC-DAPI-treated samples. These results indicated that 99mTc-HYNIC-DAPI induced SSBs and DSBs via a direct interaction of the 99mTc-labeled compound with DNA. In contrast to these results, 99mTcO4− induced SSBs via radical formation, and DSBs were formed by two nearby SSBs. The biological effectiveness of 99mTc-HYNIC-DAPI increased by approximately 4-fold in terms of inducing SSBs and by approximately 10-fold in terms of

  15. Suppression of isotope scrambling in cell-free protein synthesis by broadband inhibition of PLP enymes for selective 15N-labelling and production of perdeuterated proteins in H2O.

    PubMed

    Su, Xun-Cheng; Loh, Choy-Theng; Qi, Ruhu; Otting, Gottfried

    2011-05-01

    Selectively isotope labelled protein samples can be prepared in vivo or in vitro from selectively labelled amino acids but, in many cases, metabolic conversions between different amino acids result in isotope scrambling. The best results are obtained by cell-free protein synthesis, where metabolic enzymes are generally less active, but isotope scrambling can never be suppressed completely. We show that reduction of E. coli S30 extracts with NaBH(4) presents a simple and inexpensive way to achieve cleaner selective isotope labelling in cell-free protein synthesis reactions. The purpose of the NaBH(4) is to inactivate all pyridoxal-phosphate (PLP) dependent enzymes by irreversible reduction of the Schiff bases formed between PLP and lysine side chains of the enzymes or amino groups of free amino acids. The reduced S30 extracts retain their activity of protein synthesis, can be stored as well as conventional S30 extracts and effectively suppress conversions between different amino acids. In addition, inactivation of PLP-dependent enzymes greatly stabilizes hydrogens bound to α-carbons against exchange with water, minimizing the loss of α-deuterons during cell-free production of proteins from perdeuterated amino acids in H(2)O solution. This allows the production of highly perdeuterated proteins that contain protons at all exchangeable positions, without having to back-exchange labile deuterons for protons as required for proteins that have been synthesized in D(2)O.

  16. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter.

    PubMed

    Haddix, Michelle L; Paul, Eldor A; Cotrufo, M Francesca

    2016-06-01

    The formation and stabilization of soil organic matter (SOM) are major concerns in the context of global change for carbon sequestration and soil health. It is presently believed that lignin is not selectively preserved in soil and that chemically labile compounds bonding to minerals comprise a large fraction of the SOM. Labile plant inputs have been suggested to be the main precursor of the mineral-bonded SOM. Litter decomposition and SOM formation are expected to have temperature sensitivity varying with the lability of plant inputs. We tested this framework using dual (13) C and (15) N differentially labeled plant material to distinguish the metabolic and structural components within a single plant material. Big Bluestem (Andropogon gerardii) seedlings were grown in an enriched (13) C and (15) N environment and then prior to harvest, removed from the enriched environment and allowed to incorporate natural abundance (13) C-CO2 and (15) N fertilizer into the metabolic plant components. This enabled us to achieve a greater than one atom % difference in (13) C between the metabolic and structural components within the plant litter. This differentially labeled litter was incubated in soil at 15 and 35 °C, for 386 days with CO2 measured throughout the incubation. After 14, 28, 147, and 386 days of incubation, the soil was subsequently fractionated. There was no difference in temperature sensitivity of the metabolic and structural components with regard to how much was respired or in the amount of litter biomass stabilized. Only the metabolic litter component was found in the sand, silt, or clay fraction while the structural component was exclusively found in the light fraction. These results support the stabilization framework that labile plant components are the main precursor of mineral-associated organic matter.

  17. Monitoring the biodegradation of polycyclic aromatic hydrocarbons in a co-contaminated soil using stable isotope labeling

    NASA Astrophysics Data System (ADS)

    Wawra, Anna; Friesl-Hanl, Wolfgang; Watzinger, Andrea; Soja, Gerhard; Puschenreiter, Markus

    2016-04-01

    Conventional remediation techniques like "dig and dump" are costly and limited in scale. Plant- and microbe-based alternatives, e.g. phytoremediation options, offer a cheap and environmentally friendly approach that can be applied on larger areas. However, the application of phytoremediation techniques to co-contaminated sites may be hindered due to a potential inhibition of biodegradation processes by the presence of heavy metals in soil. Therefore, the objective of this study is to test the hypothesis that the degradation of organic pollutants can be enhanced by immobilising potentially toxic heavy metals. This study aims to identify the influence of heavy metal immobilisation on the degradation of organic pollutants, and to determine chemical, physical and biological measures further accelerating these processes. The influence of heavy metals on organic pollutant degradation dynamics is assessed using 13C-phospholipid fatty acid analysis (13C-PLFA). Application of 13C-labeled phenanthrene allows the identification of microbial groups responsible for the degradation process. For metal immobilisation and enhanced biodegradation, distinct mineral and organic soil amendments (iron oxides, gravel sludge, biochar) are deployed, partly in combination with fast-growing and pollution-tolerant woody plants (willow, black locust and alder). Results of an incubation batch experiment show a fast degradation of the phenanthrene label within the first two weeks by various microbial groups (gram negative bacteria as indicated by the cy17:0 peak) resulting in a decrease by up to 80% of the total PAH concentration (Σ 16 EPA PAHs) measured in soil. A similar trend was observed in the greenhouse pot experiment, whereby heavy metal accumulation in the woody plants growing on the co-contaminated soil significantly varied with plant species (willow > black locust, alder).

  18. Stabilized porous liposomes with encapsulated Gd-labeled dextran as highly efficient MRI contrast agents

    PubMed Central

    Zaki, Ajlan Al; Jones, Ian W.; Hall, Henry K.; Aspinwall, Craig A; Tsourkas, Andrew

    2014-01-01

    A highly efficient contrast agent for magnetic resonance imaging was developed by encapsulating gadolinium within a stabilized porous liposome. The highly porous membrane leads to a high relaxivity of the encapsulated Gd. The stability of the liposome was improved by forming a polymer network within the bilayer membrane. PMID:24457826

  19. Efficient labeling in vitro with non-ionic gadolinium magnetic resonance imaging contrast agent and fluorescent transfection agent in bone marrow stromal cells of neonatal rats

    PubMed Central

    LI, YING-QIN; TANG, YING; FU, RAO; MENG, QIU-HUA; ZHOU, XUE; LING, ZE-MIN; CHENG, XIAO; TIAN, SU-WEI; WANG, GUO-JIE; LIU, XUE-GUO; ZHOU, LI-HUA

    2015-01-01

    Although studies have been undertaken on gadolinium labeling-based molecular imaging in magnetic resonance imaging (MRI), the use of non-ionic gadolinium in the tracking of stem cells remains uncommon. To investigate the efficiency in tracking of stem cells with non-ionic gadolinium as an MRI contrast agent, a rhodamine-conjugated fluorescent reagent was used to label bone marrow stromal cells (BMSCs) of neonatal rats in vitro, and MRI scanning was undertaken. The fluorescent-conjugated cell uptake reagents were able to deliver gadodiamide into BMSCs, and cell uptake was verified using flow cytometry. In addition, the labeled stem cells with paramagnetic contrast medium remained detectable by an MRI monitor for a minimum of 28 days. The present study suggested that this method can be applied efficiently and safely for the labeling and tracking of bone marrow stromal cells in neonatal rats. PMID:25816076

  20. Characterization of TATP gas phase product ion chemistry via isotope labeling experiments using ion mobility spectrometry interfaced with a triple quadrupole mass spectrometer.

    PubMed

    Tomlinson-Phillips, Jill; Wooten, Alfred; Kozole, Joseph; Deline, James; Beresford, Pamela; Stairs, Jason

    2014-09-01

    Identification of the fragment ion species associated with the ion reaction mechanism of triacetone triperoxide (TATP), a homemade peroxide-based explosive, is presented. Ion mobility spectrometry (IMS) has proven to be a key analytical technique in the detection of trace explosive material. Unfortunately, IMS alone does not provide chemical identification of the ions detected; therefore, it is unknown what ion species are actually formed and separated by the IMS. In IMS, ions are primarily characterized by their drift time, which is dependent on the ion׳s mass and molecular cross-section; thus, IMS as a standalone technique does not provide structural signatures, which is in sharp contrast to the chemical and molecular information that is generally obtained from other customary analytical techniques, such as NMR, Raman and IR spectroscopy and mass spectrometry. To help study the ion chemistry that gives rise to the peaks observed in IMS, the hardware of two different commercial IMS instruments has been directly coupled to triple quadrupole (QQQ) mass spectrometers, in order to ascertain each ion׳s corresponding mass/charge (m/z) ratios with different dopants at two temperatures. Isotope labeling was then used to help identify and confirm the molecular identity of the explosive fragment and adduct ions of TATP. The m/z values and isotope labeling experiments were used to help propose probable molecular formulas for the ion fragments. In this report, the fragment and adduct ions m/z 58 and 240 of TATP have been confirmed to be [C3H6NH·H](+) and [TATP·NH4](+), respectively; while the fragment ions m/z 73 and 89 of TATP are identified as having the molecular formulas [C4H9NH2](+) and [C4H9O2](+), respectively. It is anticipated that the work in this area will not only help to facilitate improvements in mobility-based detection (IMS and MS), but also aid in the development and optimization of MS-based detection algorithms for TATP.

  1. Carbon and Acyl Chain Flux during Stress-induced Triglyceride Accumulation by Stable Isotopic Labeling of the Polar Microalga Coccomyxa subellipsoidea C169.

    PubMed

    Allen, James W; DiRusso, Concetta C; Black, Paul N

    2017-01-06

    Deriving biofuels and other lipoid products from algae is a promising future technology directly addressing global issues of atmospheric CO2 balance. To better understand the metabolism of triglyceride synthesis in algae, we examined their metabolic origins in the model species, Coccomyxa subellipsoidea C169, using stable isotopic labeling. Labeling patterns arising from [U-(13)C]glucose, (13)CO2, or D2O supplementation were analyzed by GC-MS and/or LC-MS over time courses during nitrogen starvation to address the roles of catabolic carbon recycling, acyl chain redistribution, and de novo fatty acid (FA) synthesis during the expansion of the lipid bodies. The metabolic origin of stress-induced triglyceride was found to be a continuous 8:2 ratio between de novo synthesized FA and acyl chain transfer from pre-stressed membrane lipids with little input from lipid remodeling. Membrane lipids were continually synthesized with associated acyl chain editing during nitrogen stress, in contrast to an overall decrease in total membrane lipid. The incorporation rates of de novo synthesized FA into lipid classes were measured over a time course of nitrogen starvation. The synthesis of triglycerides, phospholipids, and galactolipids followed a two-stage pattern where nitrogen starvation resulted in a 2.5-fold increase followed by a gradual decline. Acyl chain flux into membrane lipids was dominant in the first stage followed by triglycerides. These data indicate that the level of metabolic control that determines acyl chain flux between membrane lipids and triglycerides during nitrogen stress relies primarily on the Kennedy pathway and de novo FA synthesis with limited, defined input from acyl editing reactions.

  2. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: A mass spectrometric and isotope labeling study

    SciTech Connect

    Svensson, Jan; Bergman, Ann-Charlotte; Adamson, Ulf; Blombaeck, Margareta; Wallen, Hakan; Joerneskog, Gun

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Fibrinogen was incubated in vitro with glucose or aspirin. Black-Right-Pointing-Pointer Acetylations and glycations were found at twelve lysine sites by mass spectrometry. Black-Right-Pointing-Pointer The labeling by aspirin and glucose occurred dose-dependently. Black-Right-Pointing-Pointer No competition between glucose and aspirin for binding to fibrinogen was found. -- Abstract: Aspirin may exert part of its antithrombotic effects through platelet-independent mechanisms. Diabetes is a condition in which the beneficial effects of aspirin are less prominent or absent - a phenomenon called 'aspirin resistance'. We investigated whether acetylation and glycation occur at specific sites in fibrinogen and if competition between glucose and aspirin in binding to fibrinogen occurs. Our hypothesis was that such competition might be one explanation to 'aspirin resistance' in diabetes. After incubation of fibrinogen in vitro with aspirin (0.8 mM, 24 h) or glucose (100 mM, 5-10 days), we found 12 modified sites with mass spectrometric techniques. Acetylations in the {alpha}-chain: {alpha}K191, {alpha}K208, {alpha}K224, {alpha}K429, {alpha}K457, {alpha}K539, {alpha}K562, in the {beta}-chain: {beta}K233, and in the {gamma}-chain: {gamma}K170 and {gamma}K273. Glycations were found at {beta}K133 and {gamma}K75, alternatively {gamma}K85. Notably, the lysine 539 is a site involved in FXIII-mediated cross-linking of fibrin. With isotope labeling in vitro, using [{sup 14}C-acetyl]salicylic acid and [{sup 14}C]glucose, a labeling of 0.013-0.084 and 0.12-0.5 mol of acetylated and glycated adduct/mol fibrinogen, respectively, was found for clinically (12.9-100 {mu}M aspirin) and physiologically (2-8 mM glucose) relevant plasma concentrations. No competition between acetylation and glycation could be demonstrated. Thus, fibrinogen is acetylated at several lysine residues, some of which are involved in the cross-linking of fibrinogen. This may

  3. Absolute quantification of Pru av 2 in sweet cherry fruit by liquid chromatography/tandem mass spectrometry with the use of a stable isotope-labelled peptide.

    PubMed

    Ippoushi, Katsunari; Sasanuma, Motoe; Oike, Hideaki; Kobori, Masuko; Maeda-Yamamoto, Mari

    2016-08-01

    Pru av 2, a pathogenesis-related (PR) protein present in the sweet cherry (Prunus avium L.) fruit, is the principal allergen of cherry and one of the chief causes of pollen food syndrome (oral allergy syndrome). In this study, a quantitative assay for this protein was developed with the use of the protein absolute quantification (AQUA) method, which consists of liquid chromatography/tandem mass spectrometry (LC/MS/MS) employing TGC[CAM]STDASGK[(13)C6,(15)N2], a stable isotope-labelled internal standard (SIIS) peptide. This assay gave a linear relationship (r(2)>0.99) in a concentration range (2.3-600fmol/μL), and the overall coefficient of variation (CV) for multiple tests was 14.6%. Thus, the contents of this allergenic protein in sweet cherry products could be determined using this assay. This assay should be valuable for allergological investigations of Pru av 2 in sweet cherry and detection of protein contamination in foods.

  4. Pulsed Stable Isotope Labeling of Amino Acids in Cell Culture Uncovers the Dynamic Interactions between HIV-1 and the Monocyte-Derived Macrophage

    PubMed Central

    2011-01-01

    Dynamic interactions between human immunodeficiency virus-1 (HIV-1) and the macrophage govern the tempo of viral dissemination and replication in its human host. HIV-1 affects macrophage phenotype, and the macrophage, in turn, can modulate the viral life cycle. While these processes are linked to host–cell function and survival, the precise intracellular pathways involved are incompletely understood. To elucidate such dynamic virus–cell events, we employed pulsed stable isotope labeling of amino acids in cell culture. Alterations in de novo protein synthesis of HIV-1 infected human monocyte-derived macrophages (MDM) were examined after 3, 5, and 7 days of viral infection. Synthesis rates of cellular metabolic, regulatory, and DNA packaging activities were decreased, whereas, those affecting antigen presentation (major histocompatibility complex I and II) and interferon-induced antiviral activities were increased. Interestingly, enrichment of proteins linked to chromatin assembly or disassembly, DNA packaging, and nucleosome assembly were identified that paralleled virus-induced cytopathology and replication. We conclude that HIV-1 regulates a range of host MDM proteins that affect its survival and abilities to contain infection. PMID:21500866

  5. Studies on DNA adduction with heterocyclic amines by accelerator mass spectrometry: a new technique for tracing isotope-labelled DNA adduction.

    PubMed

    Turteltaub, K W; Vogel, J S; Frantz, C E; Fultz, E

    1993-01-01

    DNA adduction in rodents at doses equivalent to human dietary exposure (10(4)-10(6)-fold lower than laboratory studies) is being studied using accelerator mass spectrometry (AMS). AMS is a nuclear physics technique for detection of cosmogenic isotopes and has been used for specifically selecting and counting 14C. Using AMS, DNA adducts are detectable at levels of 1-10 adducts/10(12) nucleotides following acute and chronic dosing regimes with 14C-labelled carcinogens. The adduct detection limit has been imposed by the natural abundance of 14C in the samples and animal-to-animal variation. AMS is also being coupled to HPLC, multidimensional TLC and radio-immunoassay. In addition, AMS's great sensitivity makes it useful for demonstrating that drugs and chemicals do not bind to DNA. The use of AMS, however, is limited to situations where radiolabelled agents can be used. The data suggest that AMS is extremely useful in obtaining quantitative data on the effects of carcinogens on DNA at the low doses common for actual human exposures and may be useful in human studies.

  6. Characterization and quantification of histidine degradation in therapeutic protein formulations by size exclusion-hydrophilic interaction two dimensional-liquid chromatography with stable-isotope labeling mass spectrometry.

    PubMed

    Wang, Chunlei; Chen, Sike; Brailsford, John A; Yamniuk, Aaron P; Tymiak, Adrienne A; Zhang, Yingru

    2015-12-24

    Two dimensional liquid chromatography (2D-LC) coupling size exclusion (SEC) and hydrophilic interaction chromatography (HILIC) is demonstrated as a useful tool to study polar excipients, such as histidine and its degradant, in protein formulation samples. The SEC-HILIC setup successfully removed interferences from complex sample matrices and enabled accurate mass measurement of the histidine degradation product, which was then determined to be trans-urocanic acid. Because the SEC effluent is a strong solvent for the second dimension HILIC, experimental parameters needed to be carefully chosen, i.e., small transferring loop, fast gradient at high flow rates for the second dimension gradient, in order to mitigate the solvent mismatch and to ensure good peak shapes for HILIC separations. In addition, the generation of trans-urocanic acid was quantified by single heart-cutting SEC-HILIC 2D-LC combined with stable-isotope labeling mass spectrometry. Compared with existing 2D quantification methods, the proposed approach is fast, insensitive to solvent mismatch between dimensions, and tolerant of small retention time shifts in the first dimension. Finally, the first dimension diode array detector was found to be a potential degradation source for photolabile analytes such as trans-urocanic acid.

  7. Preliminary Quantitative Profile of Differential Expression between Rat L6 Myoblasts and Myotubes by Stable Isotope Labeling by Amino acids in Cell Culture

    PubMed Central

    Cui, Ziyou; Chen, Xiulan; Lu, Bingwen; Park, Sung Kyu; Xu, Tao; Xie, Zhensheng; Xue, Peng; Hou, Junjie; Hang, Haiying; Yates, John R.; Yang, Fuquan

    2010-01-01

    Defining the mechanisms governing myogenesis has advanced in recent years. Skeletal-muscle differentiation is a multi-step process controlled spatially and temporally by various factors at the transcription level. To explore those factors involved in myogenesis, stable isotope labeling with amino acids in cell culture (SILAC), coupled with high accuracy mass spectrometry (LTQ-Orbitrap), was applied successfully. Rat L6 cell line is an excellent model system for studying muslce myogenesis in vitro. When mononucleate L6 myoblast cells reach confluent in culture plate, they could transform into multinucleate myotubes by serum starvation. By comparing protein expression of L6 myoblasts and terminally differentiated multinucleated myotubes, 1170 proteins were quantified and 379 proteins changed significantly in fully differentiated myotubes in contrast to myoblasts. These differentially expressed proteins are mainly involved in inter-or intracellular signaling, protein synthesis and degradation, protein folding, cell adhesion and extracelluar matrix, cell structure and motility, metabolism, substance transportation, etc. These findings were supported by many previous studies on myogenic differentiation, of which many up-regulated proteins were found to be involved in promoting skeletal muscle differentiation for the first time in our study. In sum, our results provide new clues for understanding the mechanism of myogenesis. PMID:19253283

  8. Novel tracer method to measure isotopic labeled gas-phase nitrous acid (HO15NO) in biogeochemical studies.

    PubMed

    Wu, Dianming; Kampf, Christopher J; Pöschl, Ulrich; Oswald, Robert; Cui, Junfang; Ermel, Michael; Hu, Chunsheng; Trebs, Ivonne; Sörgel, Matthias

    2014-07-15

    Gaseous nitrous acid (HONO), the protonated form of nitrite, contributes up to ∼60% to the primary formation of hydroxyl radical (OH), which is a key oxidant in the degradation of most air pollutants. Field measurements and modeling studies indicate a large unknown source of HONO during daytime. Here, we developed a new tracer method based on gas-phase stripping-derivatization coupled to liquid chromatography-mass spectrometry (LC-MS) to measure the 15N relative exceedance, ψ(15N), of HONO in the gas-phase. Gaseous HONO is quantitatively collected and transferred to an azo dye, purified by solid phase extraction (SPE), and analyzed using high performance liquid chromatography coupled to mass spectrometry (HPLC-MS). In the optimal working range of ψ(15N)=0.2-0.5, the relative standard deviation of ψ(15N) is <4%. The optimum pH and solvents for extraction by SPE and potential interferences are discussed. The method was applied to measure HO15NO emissions from soil in a dynamic chamber with and without spiking 15) labeled urea. The identification of HO15NO from soil with 15N urea addition confirmed biogenic emissions of HONO from soil. The method enables a new approach of studying the formation pathways of HONO and its role for atmospheric chemistry (e.g., ozone formation) and environmental tracer studies on the formation and conversion of gaseous HONO or aqueous NO2- as part of the biogeochemical nitrogen cycle, e.g., in the investigation of fertilization effects on soil HONO emissions and microbiological conversion of NO2- in the hydrosphere.

  9. Antibody-coupled hydroxyapatite nanoparticles as efficient tools for labeling intracellular proteins.

    PubMed

    Vázquez-Hernández, Fabiola; Mendoza-Acevedo, Salvador; Mendoza-Barrera, Claudia Oliva; Mendoza-Álvarez, Julio; Luna-Arias, Juan Pedro

    2017-02-01

    Smart biomaterials for active targeting are a novel way for biosensing, gene and drug delivery, and bioimaging. The functional additives are chosen according to the material carrier characteristics, i.e. the functional mercapto acids of different lengths. In order to identify the target tissue, cell, organ or molecule, the biomaterial must be equipped with a recognizing molecule on its surface. In most cases, semiconductor o metal materials are employed in bioimaging and biosensing applications; in gene and drug delivery area, it is useful to employ porous nanoparticles as carriers. Hydroxyapatite nanoparticles have been proved efficiently in drug delivery. In this work we established a new protocol to obtain smart hydroxyapatite nanoparticles with 3-mercaptopropionic acid and anti-Actin molecules in order to localize actin molecules in cells.

  10. Increased SNR Efficiency in Velocity Selective Arterial Spin Labeling using Multiple Velocity Selective Saturation Modules (mm-VSASL)

    PubMed Central

    Guo, Jia; Wong, Eric C.

    2014-01-01

    Purpose Velocity-selective arterial spin labeling (VSASL) is theoretically insensitive to transit delay (TD) effects. However, it uses saturation instead of inversion, resulting in compromised signal to noise ratio (SNR). In this study we explore the use of multiple velocity-selective saturation (VSS) modules in VSASL (mm-VSASL) to improve SNR. Methods Theoretical SNR efficiency improvement and optimized parameters were calculated from simulations for mm-VSASL. VSASL with two VSS modules (VSASL-2VSS) was implemented to measure cerebral blood flow in vivo, compared with conventional VSASL (VSASL-1VSS), Pulsed ASL and Pseudo-Continuous ASL. TDs and bolus durations (BDs) were measured to validate the simulations and to examine the TD sensitivity of these preparations. Results Compared with VSASL-1VSS, VSASL-2VSS achieved a significant improvement of SNR (22.1 ± 1.9%, P = 1.7 × 10−6) in vivo, consistent with a 22.7% improvement predicted from simulations. The SNR was comparable to or higher (in GM, P = 4.3 × 10−3) than that using PCASL. VSASL was experimentally verified to have minimal TD effects. Conclusion Utilizing multiple VSS modules can improve the SNR efficiency of VSASL. Mm-VSASL may result in an SNR that is comparable to or even higher than that of PCASL in applications where long PLDs are required. PMID:25251933

  11. Drivers of Plant-Availability of Phosphorus from Thermally Conditioned Sewage Sludge as Assessed by Isotopic Labeling

    PubMed Central

    Andriamananjara, Andry; Rabeharisoa, Lilia; Prud’homme, Loïc; Morel, Christian

    2016-01-01

    Urban sewage sludge is a potential source of phosphorus (P) for agriculture and represents an alternative way to recycle P as fertilizer. However, the use of thermally conditioned sewage sludge (TCSS) required an accurate assessment of its value as P-fertilizer. This work aimed at assessing the plant-availability of P from TCSS. Uptake of P by a mixture of ryegrass and fescue from TCSS and triple super phosphate (TSP) fertilizers was studied using 32P-labeling technique in a greenhouse experiment. Phosphorus was applied at the rate of 50 mg P kg−1.We also conducted incubation experiments considering the same treatments to assess soil microbial respiration. Applications of TCSS and TSP increased plant P uptake that is related to the root P acquisition. The P taken up by plant from soil plant-available P was lower for control compared to TSP or TCSS that was attributed to the increase of root interception of soil P. The contribution of TSP to ryegrass nutrition (Pdff%) was 55% with 22% of the applied P which was taken up by plants (CPU%). The Pdff value for TCSS was 56% with 14% of fertilizer P recovery (CPU%). Shoot biomass and total P uptake from TCSS were lower than those from TSP. As a result, the agronomic effectiveness of TCSS calculated from Pdff value (in comparison with TSP treatment) was 102%, while the AE of TCSS estimated from CPU value (in % TSP) was 64%, which is attributed to microbial activity stimulation inducing P immobilization onto soil constituents and microbial biomass during plant growth. The high C/N ratio of TCSS stimulated soil microbial biomass that competes with plant roots to acquire nutrients, such as P. As a consequence, the P taken up from either native soil or TCSS decreased in similar proportions. The AE value calculated with Pdff% took into account these interactions between soil, plant, and microbial biomass, and is less dependent on operational conditions than the AE value calculated with %Precovery. PMID:27379240

  12. Altered Retinoic Acid Metabolism in Diabetic Mouse Kidney Identified by 18O Isotopic Labeling and 2D Mass Spectrometry

    PubMed Central

    Starkey, Jonathan M.; Zhao, Yingxin; Sadygov, Rovshan G.; Haidacher, Sigmund J.; LeJeune, Wanda S.; Dey, Nilay; Luxon, Bruce A.; Kane, Maureen A.; Napoli, Joseph L.; Denner, Larry; Tilton, Ronald G.

    2010-01-01

    Background Numerous metabolic pathways have been implicated in diabetes-induced renal injury, yet few studies have utilized unbiased systems biology approaches for mapping the interconnectivity of diabetes-dysregulated proteins that are involved. We utilized a global, quantitative, differential proteomic approach to identify a novel retinoic acid hub in renal cortical protein networks dysregulated by type 2 diabetes. Methodology/Principal Findings Total proteins were extracted from renal cortex of control and db/db mice at 20 weeks of age (after 12 weeks of hyperglycemia in the diabetic mice). Following trypsinization, 18O- and 16O-labeled control and diabetic peptides, respectively, were pooled and separated by two dimensional liquid chromatography (strong cation exchange creating 60 fractions further separated by nano-HPLC), followed by peptide identification and quantification using mass spectrometry. Proteomic analysis identified 53 proteins with fold change ≥1.5 and p≤0.05 after Benjamini-Hochberg adjustment (out of 1,806 proteins identified), including alcohol dehydrogenase (ADH) and retinaldehyde dehydrogenase (RALDH1/ALDH1A1). Ingenuity Pathway Analysis identified altered retinoic acid as a key signaling hub that was altered in the diabetic renal cortical proteome. Western blotting and real-time PCR confirmed diabetes-induced upregulation of RALDH1, which was localized by immunofluorescence predominantly to the proximal tubule in the diabetic renal cortex, while PCR confirmed the downregulation of ADH identified with mass spectrometry. Despite increased renal cortical tissue levels of retinol and RALDH1 in db/db versus control mice, all-trans-retinoic acid was significantly decreased in association with a significant decrease in PPARβ/δ mRNA. Conclusions/Significance Our results indicate that retinoic acid metabolism is significantly dysregulated in diabetic kidneys, and suggest that a shift in all-trans-retinoic acid metabolism is a novel feature in

  13. Study of highly efficient bimetallic ruthenium tris-bipyridyl ECL labels for coreactant system.

    PubMed

    Sun, Shiguo; Yang, Yang; Liu, Fengyu; Pang, Yi; Fan, Jiangli; Sun, Licheng; Peng, Xiaojun

    2009-12-15

    A series of bimetallic ruthenium complexes [(bpy)(2)Ru(bpy)(CH(2))(n)(bpy)Ru(bpy)(2)](4+) (1, where bpy is 2,2'-bipyridinyl, n = 3, 5, 8) for the coreactant electrochemiluminescence (ECL) system have been synthesized. Their ECL property at different working electrode has been studied in 0.1 M phosphate buffer by using tripropylamine (TPrA) and 2-(dibutylamino) ethanol (DBAE) as the coreactant. The results demonstrate that the ECL intensity depends largely on the length of the saturated carbon chain linkage: the longer is the carbon chain, the higher is the ECL intensity. A remarkable ECL enhancement (up to about 25 times), in comparison with the commonly used metallic [Ru(bpy)(3)](2+), has been observed from 1c (n = 8) at Pt electrode. With 20 mM TPrA, the log of the ECL intensity increases linearly with the log of complex 1c concentrations over the concentration range of 1.0 x 10(-16) to 1.0 x 10(-6) M at glassy carbon electrode. The detection limit is 1.0 x 10(-16) M at a signal-to-noise ratio of 3. This is the highest ECL detection limit for bimetallic system reported until now. The study provides a general methodology to further improve and tune the ECL efficiency by using multimetallic ruthenium complexes.

  14. Mass spectrometric analysis of free fatty acids in infant milk powders by frozen pretreatment coupled with isotope-labeling derivatization.

    PubMed

    Zhou, Tianxiao; Leng, Jiapeng; Peng, Yaoshan; Zhang, Lei; Guo, Yinlong

    2016-03-01

    In combination with frozen pretreatment and carboxyl group derivatization, a novel workflow was developed for the determination of free fatty acids in milk powder. The workflow showed a significantly enhanced performance for comprehensive free fatty acid analysis owing to a highly efficient frozen extraction method. In addition, the advantages of the workflow also involved high sensitivity and great tolerance to a complex matrix. Characteristic fragment ions of derivatization reagents also provide clear evidence for the qualitative analysis of free fatty acids. Fourteen types of free fatty acids in a number of domestic and overseas infant milk powders have been successfully detected. The content of free fatty acids in the different samples was different, which probably indicates the diverse quality of infant milk powder. The workflow is expected to be a pragmatic tool for the analysis of free fatty acids in intricate matrices.

  15. Seasonal patterns of carbon allocation to respiratory pools in 60-yr-old deciduous (Fagus sylvatica) and evergreen (Picea abies) trees assessed via whole-tree stable carbon isotope labeling.

    PubMed

    Kuptz, Daniel; Fleischmann, Frank; Matyssek, Rainer; Grams, Thorsten E E

    2011-07-01

    • The CO(2) efflux of adult trees is supplied by recent photosynthates and carbon (C) stores. The extent to which these C pools contribute to growth and maintenance respiration (R(G) and R(M), respectively) remains obscure. • Recent photosynthates of adult beech (Fagus sylvatica) and spruce (Picea abies) trees were labeled by exposing whole-tree canopies to (13) C-depleted CO(2). Label was applied three times during the year (in spring, early summer and late summer) and changes in the stable C isotope composition (δ(13) C) of trunk and coarse-root CO(2) efflux were quantified. • Seasonal patterns in C translocation rate (CTR) and fractional contribution of label to CO(2) efflux (F(Label-Max)) were found. CTR was fastest during early summer. In beech, F(Label-Max) was lowest in spring and peaked in trunks during late summer (0.6 ± 0.1, mean ± SE), whereas no trend was observed in coarse roots. No seasonal dynamics in F(Label-Max) were found in spruce. • During spring, the R(G) of beech trunks was largely supplied by C stores. Recent photosynthates supplied growth in early summer and refilled C stores in late summer. In spruce, CO(2) efflux was constantly supplied by a mixture of stored (c. 75%) and recent (c. 25%) C. The hypothesis that R(G) is exclusively supplied by recent photosynthates was rejected for both species.

  16. Household adoption of energy and water-efficient appliances: An analysis of attitudes, labelling and complementary green behaviours in selected OECD countries.

    PubMed

    Dieu-Hang, To; Grafton, R Quentin; Martínez-Espiñeira, Roberto; Garcia-Valiñas, Maria

    2017-03-28

    Using a household-based data set of more than 12,000 households from 11 OECD countries, we analyse the factors underlying the decision by households to adopt energy-efficient and water-efficient equipment. We evaluate the roles of both attitudes and labelling schemes on the adoption of energy and water-efficient equipment, and also the interaction and complementarity between energy and water conservation behaviours. Our findings show: one, 'green' social norms and favourable attitudes towards the environment are associated with an increased likelihood of households' adoption of energy and water-efficient appliances; two, households' purchase decisions are positively affected by their awareness, understanding, and trust of labelling schemes; and three, there is evidence of complementarity between energy conservation and water conservation behaviours.

  17. UV Raman spatially resolved melting dynamics of isotopically labeled polyalanyl peptide: slow alpha-helix melting follows 3(10)-helices and pi-bulges premelting.

    PubMed

    Mikhonin, Aleksandr V; Asher, Sanford A; Bykov, Sergei V; Murza, Adrian

    2007-03-29

    We used UV resonance Raman (UVRR) to examine the spatial dependence of the T-jump secondary structure relaxation of an isotopically labeled 21-residue mainly Ala peptide, AdP. The AdP penultimate Ala residues were perdeuterated, leaving the central residues hydrogenated, to allow separate monitoring of melting of the middle versus the end peptide bonds. For 5 to 30 degrees C T-jumps, the central peptide bonds show a approximately 2-fold slower relaxation time (189 +/- 31 ns) than do the exterior peptide bonds (97 +/- 15 ns). In contrast, for a 20 to 40 degrees C T-jump, the central peptide bond relaxation appears to be faster (56 +/- 6 ns) than that of the penultimate peptide bonds (131 +/- 46 ns). We show that, if the data are modeled as a two-state transition, we find that only exterior peptide bonds show anti-Arrhenius folding behavior; the middle peptide bonds show both normal Arrhenius-like folding and unfolding. This anti-Arrhenius behavior results from the involvement of pi-bulges/helices and 3(10)-helix states in the melting. The unusual temperature dependence of the (un)folding rates of the interior and exterior peptide bonds is due to the different relative (un)folding rates of 3(10)-helices, alpha-helices, and pi-bulges/helices. Pure alpha-helix unfolding rates are approximately 12-fold slower (approximately 1 micros) than that of pi-bulges and 3(10)-helices. In addition, we also find that the alpha-helix is most stable at the AdP N-terminus where eight consecutive Ala occur, whereas the three hydrophilic Arg located in the middle and at the C-terminus destabilize the alpha-helix in these regions and induce defects such as pi-bulges and 3(10)-helices.

  18. Infrared, vibrational circular dichroism, and Raman spectral simulations for β-sheet structures with various isotopic labels, interstrand, and stacking arrangements using density functional theory.

    PubMed

    Welch, William R W; Kubelka, Jan; Keiderling, Timothy A

    2013-09-12

    Infrared (IR), Raman, and vibrational circular dichroism (VCD) spectral variations for different β-sheet structures were studied using simulations based on density functional theory (DFT) force field and intensity computations. The DFT vibrational parameters were obtained for β-sheet fragments containing nine-amides and constrained to a variety of conformations and strand arrangements. These were subsequently transferred onto corresponding larger β-sheet models, normally consisting of five strands with ten amides each, for spectral simulations. Further extension to fibril models composed of multiple stacked β-sheets was achieved by combining the transfer of DFT parameters for each sheet with dipole coupling methods for interactions between sheets. IR spectra of the amide I show different splitting patterns for parallel and antiparallel β-sheets, and their VCD, in the absence of intersheet stacking, have distinct sign variations. Isotopic labeling by (13)C of selected residues yields spectral shifts and intensity changes uniquely sensitive to relative alignment of strands (registry) for antiparallel sheets. Stacking of multiple planar sheets maintains the qualitative spectral character of the single sheet but evidences some reduction in the exciton splitting of the amide I mode. Rotating sheets with respect to each other leads to a significant VCD enhancement, whose sign pattern and intensity is dependent on the handedness and degree of rotation. For twisted β-sheets, a significant VCD enhancement is computed even for sheets stacked with either the same or opposite alignments and the inter-sheet rotation, depending on the sense, can either further increase or weaken the enhanced VCD intensity. In twisted, stacked structures (without rotation), similar VCD amide I patterns (positive couplets) are predicted for both parallel and antiparallel sheets, but different IR intensity distributions still enable their differentiation. Our simulation results prove useful

  19. Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards & Labeling Programs for Copy Machines, External Power Supplies, LED Displays, Residential Gas Cooktops and Televisions

    SciTech Connect

    Zheng, Nina; Zhou, Nan; Fridley, David

    2012-03-01

    This report presents a technical review of international minimum energy performance standards (MEPS), voluntary and mandatory energy efficiency labels and test procedures for five products being considered for new or revised MEPS in China: copy machines, external power supply, LED displays, residential gas cooktops and flat-screen televisions. For each product, an overview of the scope of existing international standards and labeling programs, energy values and energy performance metrics and description and detailed summary table of criteria and procedures in major test standards are presented.

  20. Precipitation efficiency derived from isotope ratios in water vapor distinguishes dynamical and microphysical influences on subtropical atmospheric constituents

    NASA Astrophysics Data System (ADS)

    Bailey, A.; Nusbaumer, J.; Noone, D.

    2015-09-01

    With water vapor and clouds expected to effect significant feedbacks on climate, moisture transport through convective processes has important implications for future temperature change. The precipitation efficiency—the ratio of the rates at which precipitation and condensation form (e = P/C)—is useful for characterizing how much boundary layer moisture recycles through precipitation versus mixes into the free troposphere through cloud detrainment. Yet it is a difficult metric to constrain with traditional observational techniques. This analysis characterizes the precipitation efficiency of convection near the Big Island of Hawaii, USA, using a novel tracer: isotope ratios in water vapor. The synoptic circulation patterns associated with high and low precipitation efficiency are identified, and the importance of large-scale dynamics and local convective processes in regulating vertical distributions of atmospheric constituents important for climate is evaluated. The results suggest that high e days are correlated with plume-like transport originating from the relatively clean tropics, while low e days are associated with westerly transport, generated by a branching of the jet stream. Differences in transport pathway clearly modify background concentrations of water vapor and other trace gases measured at Mauna Loa Observatory; however, local convective processes appear to regulate aerosols there. Indeed, differences between observed and simulated diurnal cycles of particle number concentration indicate that precipitation scavenges aerosols and possibly facilitates new particle formation when e is high. As measurements of isotope ratios in water vapor expand across the subtropics, the techniques presented here can further our understanding of how synoptic weather, precipitation processes, and climate feedbacks interrelate.

  1. Uptake and Distribution of Soil Applied Zinc by Citrus Trees—Addressing Fertilizer Use Efficiency with 68Zn Labeling

    PubMed Central

    Hippler, Franz Walter Rieger; Boaretto, Rodrigo Marcelli; Quaggio, José Antônio; Boaretto, Antonio Enedi; Abreu-Junior, Cassio Hamilton; Mattos, Dirceu

    2015-01-01

    The zinc (Zn) supply increases the fruit yield of Citrus trees that are grown, especially in the highly weathered soils of the tropics due to the inherently low nutrient availability in the soil solution. Leaf sprays containing micronutrients are commonly applied to orchards, even though the nutrient supply via soil could be of practical value. This study aimed to evaluate the effect of Zn fertilizers that are applied to the soil surface on absorption and partitioning of the nutrient by citrus trees. A greenhouse experiment was conducted with one-year-old sweet orange trees. The plants were grown in soils with different textures (18.1 or 64.4% clay) that received 1.8 g Zn per plant, in the form of either ZnO or ZnSO4 enriched with the stable isotope 68Zn. Zinc fertilization increased the availability of the nutrient in the soil and the content in the orange trees. Greater responses were obtained when ZnSO4 was applied to the sandy loam soil due to its lower specific metal adsorption compared to that of the clay soil. The trunk and branches accumulated the most fertilizer-derived Zn (Zndff) and thus represent the major reserve organ for this nutrient in the plant. The trees recovered up to 4% of the applied Zndff. Despite this relative low recovery, the Zn requirement of the trees was met with the selected treatment based on the total leaf nutrient content and increased Cu/Zn-SOD activity in the leaves. We conclude that the efficiency of Zn fertilizers depends on the fertilizer source and the soil texture, which must be taken into account by guidelines for fruit crop fertilization via soil, in substitution or complementation of traditional foliar sprays. PMID:25751056

  2. Uptake and distribution of soil applied zinc by citrus trees-addressing fertilizer use efficiency with 68Zn labeling.

    PubMed

    Hippler, Franz Walter Rieger; Boaretto, Rodrigo Marcelli; Quaggio, José Antônio; Boaretto, Antonio Enedi; Abreu-Junior, Cassio Hamilton; Mattos, Dirceu

    2015-01-01

    The zinc (Zn) supply increases the fruit yield of Citrus trees that are grown, especially in the highly weathered soils of the tropics due to the inherently low nutrient availability in the soil solution. Leaf sprays containing micronutrients are commonly applied to orchards, even though the nutrient supply via soil could be of practical value. This study aimed to evaluate the effect of Zn fertilizers that are applied to the soil surface on absorption and partitioning of the nutrient by citrus trees. A greenhouse experiment was conducted with one-year-old sweet orange trees. The plants were grown in soils with different textures (18.1 or 64.4% clay) that received 1.8 g Zn per plant, in the form of either ZnO or ZnSO4 enriched with the stable isotope 68Zn. Zinc fertilization increased the availability of the nutrient in the soil and the content in the orange trees. Greater responses were obtained when ZnSO4 was applied to the sandy loam soil due to its lower specific metal adsorption compared to that of the clay soil. The trunk and branches accumulated the most fertilizer-derived Zn (Zndff) and thus represent the major reserve organ for this nutrient in the plant. The trees recovered up to 4% of the applied Zndff. Despite this relative low recovery, the Zn requirement of the trees was met with the selected treatment based on the total leaf nutrient content and increased Cu/Zn-SOD activity in the leaves. We conclude that the efficiency of Zn fertilizers depends on the fertilizer source and the soil texture, which must be taken into account by guidelines for fruit crop fertilization via soil, in substitution or complementation of traditional foliar sprays.

  3. The Semiquinone at the Qi Site of the bc1 Complex Explored Using HYSCORE Spectroscopy and Specific Isotopic Labeling of Ubiquinone in Rhodobacter sphaeroides via 13C Methionine and Construction of a Methionine Auxotroph

    PubMed Central

    2015-01-01

    Specific isotopic labeling at the residue or substituent level extends the scope of different spectroscopic approaches to the atomistic level. Here we describe 13C isotopic labeling of the methyl and methoxy ring substituents of ubiquinone, achieved through construction of a methionine auxotroph in Rhodobacter sphaeroides strain BC17 supplemented with l-methionine with the side chain methyl group 13C-labeled. Two-dimensional electron spin echo envelope modulation (HYSCORE) was applied to study the 13C methyl and methoxy hyperfine couplings in the semiquinone generated in situ at the Qi site of the bc1 complex in its membrane environment. The data were used to characterize the distribution of unpaired spin density and the conformations of the methoxy substituents based on density functional theory calculations of 13C hyperfine tensors in the semiquinone of the geometry-optimized X-ray structure of the bc1 complex (Protein Data Bank entry 1PP9) with the highest available resolution. Comparison with other proteins indicates individual orientations of the methoxy groups in each particular case are always different from the methoxy conformations in the anion radical prepared in a frozen alcohol solution. The protocol used in the generation of the methionine auxotroph is more generally applicable and, because it introduces a gene deletion using a suicide plasmid, can be applied repeatedly. PMID:25184535

  4. Synthesis of fluorescent label, DBD-beta-proline, and the resolution efficiency for chiral amines by reversed-phase chromatography.

    PubMed

    Min, Jun Zhe; Toyo'oka, Toshimasa; Kato, Masaru; Fukushima, Takeshi

    2005-01-01

    DBD-d(and l)-beta-proline, new fluorescent chiral derivatization reagents, were synthesized from the reaction of 4-(N,N-dimethylaminosulfonyl)-7- fl uoro-2,1,3-benzoxadiazole (DBD-F) with beta-proline. The racemic mixture synthesized was separated by a chiral stationary phase (CSP) column, Chiralpak AD-H, with n-hexane-EtOH-TFA-diethylamine (70:30:0.1:0.1) as the mobile phase. The dl-forms were decided according to the results obtained from a circular dichroism (CD) detector after separation by the CSP column. The fractionated enantiomers reacted with chiral amine to produce a couple of diastereomers. The labeling proceeded in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and pyridine as the activation reagents. The reaction conditions were mild and no racemization occurred during the diastereomer formation. The resulting diastereomers fluoresced at around 570 nm (excitation at around 460 nm). Good linearity of the calibration curves was obtained in the range 1-75 pmol and the detection limits on chromatogram were less than 1 pmol. The separability of the diastereomers was compared with the diastereomers derived from DBD-d(or l)-proline. The resolution values (Rs) obtained from the diastereomers of three chiral amines with DBD-d(or l)-beta-proline were higher than those derived from DBD-d(or l)-proline, e.g. dl-phenylalanine methylester (dl-PAME), 2.23 vs 1.37; (R)(S)-1-phenylethylamine [(R)(S)-PEA], 2.09 vs 1.13; and (R)(S)-1-(1-naphthyl)ethylamines [(R)(S)-NEA], 5.19 vs 1.23. The results suggest that the position of COOH group on pyrrolidine moiety in the structures is one of the important factors for the efficient separation of a couple of the diastereomers.

  5. Principles of protein labeling techniques.

    PubMed

    Obermaier, Christian; Griebel, Anja; Westermeier, Reiner

    2015-01-01

    Protein labeling methods prior to separation and analysis have become indispensable approaches for proteomic profiling. Basically, three different types of tags are employed: stable isotopes, mass tags, and fluorophores. While proteins labeled with stable isotopes and mass tags are measured and differentiated by mass spectrometry, fluorescent labels are detected with fluorescence imagers. The major purposes for protein labeling are monitoring of biological processes, reliable quantification of compounds and specific detection of protein modifications and isoforms in multiplexed samples, enhancement of detection sensitivity, and simplification of detection workflows. Proteins can be labeled during cell growth by incorporation of amino acids containing different isotopes, or in biological fluids, cells or tissue samples by attaching specific groups to the ε-amino group of lysine, the N-terminus, or the cysteine residues. The principles and the modifications of the different labeling approaches on the protein level are described; benefits and shortcomings of the methods are discussed.

  6. Atmospheric CO2 level affects plants' carbon use efficiency: insights from a 13C labeling experiment on sunflower stands

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoying; Schäufele, Rudi; Schnyder, Hans

    2015-04-01

    The increase of atmospheric CO2 concentration has been shown to stimulate plant photosynthesis and (to a lesser extent) growth, thereby acting as a possible sink for the additional atmospheric CO2. However, this effect is dependent on the efficiency with which plants convert atmospheric carbon into biomass carbon, since a considerable proportion of assimilated carbon is returned to the atmosphere via plant respiration. As a core parameter for carbon cycling, carbon use efficiency of plants (CUE, the ratio of net primary production to gross primary production) quantifies the proportion of assimilated carbon that is incorporated into plant biomass. CUE has rarely been assessed based on measurements of complete carbon balance, due to methodological difficulties in measuring respiration rate of plants in light. Moreover, foliar respiration is known to be inhibited in light, thus foliar respiration rate is generally lower in light than in dark. However, this phenomenon, termed as inhibition of respiration in light (IRL), has rarely been assessed at the stand-scale and been incorporated into the calculation of CUE. Therefore, how CUE responses to atmospheric CO2 levels is still not clear. We studied CUE of sunflower stands grown at sub-ambient CO2 level (200 μmol mol-1) and elevated CO2 level (1000 μmol mol-1) using mesocosm-scale gas exchange facilities which enabled continuous measurements of 13CO2/12CO2 exchange. Appling steady-state 13C labeling, fluxes of respiration and photosynthesis in light were separated, and tracer kinetic in respiration was analyzed. This study provides the first data on CUE at a mesocosm-level including respiration in light in different CO2 environments. We found that CUE of sunflower was lower at an elevated CO2 level than at a sub-ambient CO2 level; and the ignorance of IRL lead to erroneous estimations of CUE. Variation in CUE at atmospheric CO2 levels was attributed to several mechanisms. In this study, CO2 enrichment i) affected the

  7. Quantitation of anacetrapib, stable-isotope labeled-anacetrapib (microdose), and four metabolites in human plasma using liquid chromatography tandem mass spectrometry.

    PubMed

    Chavez-Eng, C M; Lutz, R W; Li, H; Goykhman, D; Bateman, K P; Woolf, E

    2016-02-01

    An ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous determination of (4S,5R)-5-[3,5-bis (trifluoromethyl)phenyl]-3-{[4'-fluoro-5'-isopropyl-2'-methoxy-4-(trifluoromethyl)biphenyl-2-yl] methyl}-4-methyl-1,3-oxazolidin-2-one (anacetrapib, I) and [(13)C5(15)N]-anacetrapib, II in human plasma has been developed to support a clinical study to determine the absolute bioavailability of I. The analytes and the stable-isotope labeled internal standard ([(13)C7(15)N(2)H7]-anacetrapib, III) were extracted from 100μL of human plasma by liquid-liquid extraction using 20/80 isopropyl alcohol/hexane (v/v). The chromatographic separation of the analytes was achieved using Waters BEH Shield RP 18 (50×2.1mm×1.7μm) column and mobile phase gradient of 0.1% formic acid in water (Solvent A) and 0.1% formic acid in acetonitrile (Solvent B) at 0.6mL/min flow rate. The MS/MS detection was performed on AB Sciex 5000 or AB 5500 in positive electrospray ionization mode, operated in selected reaction monitoring mode. The assay was validated in the concentration range 1-2000ng/mL for I; and a lower curve range, 0.025-50ng/mL for II. In addition to the absolute bioavailability determination, it was desired to better elucidate the pharmacokinetic behavior of several hydroxylated metabolites of I. Toward this end, two exploratory assays for the hydroxy metabolites of I were qualified in the concentration range 0.5-500ng/mL. All metabolites were separated on a Supelco Ascentis Express Phenyl-Hexyl (50×2.1mm, 2.7μm) column. Metabolite M4 was analyzed in the negative mode with a mobile phase consisting of a gradient mixture of water (A) and acetonitrile (B). The other three metabolites, M1-M3 were analyzed in the positive mode using a mobile phase gradient of water with 0.1% formic acid (A) and acetonitrile with 0.1% formic acid (B). The assays were utilized to support a clinical study in which a microdosing approach was used to

  8. New insights into the coordination of Cu(II) by the amyloid-B 16 peptide from Fourier transform IR spectroscopy and isotopic labeling.

    PubMed

    El Khoury, Youssef; Dorlet, Pierre; Faller, Peter; Hellwig, Petra

    2011-12-15

    Alzheimer's disease is a neurodegenerative disorder in which the formation of amyloid-β (Aβ) aggregates plays a causative role. There is ample evidence that Cu(II) can bind to Aβ and modulate its aggregation. Moreover, Cu(II) bound to Aβ might be involved in the production of reactive oxygen species, a process supposed to be involved in the Alzheimer's disease. The native Aβ40 contains a high affinity binding site for Cu(II), which is comprised in the N-terminal portion. Thus, Aβ16 (amino acid 1-16 of Aβ) has often been used as a model for Cu(II)-binding to monomeric Aβ. The Cu(II)-binding to Aβ is pH dependent and at pH 7.4, two different type of Cu(II) coordinations exist in equilibrium. These two forms are predominant at pH 6.5 and pH 9.0. In either form, a variety of studies show that the N-terminal Asp and the three His play a key role in the coordination, although the exact binding of these amino acids has not been addressed. Therefore, we studied the coordination modes of Cu(II) at pH 6.5 and 9.0 with the help of Fourier transform infrared (FTIR) spectroscopy. Combined with isotopic labeling of the amino acids involved in the coordination sphere, the data points toward the coordination of Cu(II) via the carboxylate of Asp1 at both pH values in a pseudobridging monovalent fashion. At low pH, His6 binds copper via Nτ, while His13 and His14 are bound via Nπ. At high pH, direct evidence is given on the coordination of Cu(II) via the Nτ atom of His6. Additionally, this study clearly shows the effect of Cu(II) binding on the protonation state of the His residues where a proton displacement takes places on the nitrogen atoms of the imidazole ring.

  9. Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC)-based Quantitative Proteomics Study of a Thyroid Hormone-regulated Secretome in Human Hepatoma Cells*

    PubMed Central

    Chen, Cheng-Yi; Chi, Lang-Ming; Chi, Hsiang-Cheng; Tsai, Ming-Ming; Tsai, Chung-Ying; Tseng, Yi-Hsin; Lin, Yang-Hsiang; Chen, Wei-Jan; Huang, Ya-Hui; Lin, Kwang-Huei

    2012-01-01

    The thyroid hormone, 3, 3′,5-triiodo-l-thyronine (T3), regulates cell growth, development, differentiation, and metabolism via interactions with thyroid hormone receptors (TRs). However, the secreted proteins that are regulated by T3 are yet to be characterized. In this study, we used the quantitative proteomic approach of stable isotope labeling with amino acids in cell culture coupled with nano-liquid chromatography-tandem MS performed on a LTQ-Orbitrap instrument to identify and characterize the T3-regulated proteins secreted in human hepatocellular carcinoma cell lines overexpressing TRα1 (HepG2-TRα1). In total, 1742 and 1714 proteins were identified and quantified, respectively, in three independent experiments. Among these, 61 up-regulated twofold and 11 down-regulated twofold proteins were identified. Eight proteins displaying increased expression and one with decreased expression in conditioned media were validated using Western blotting. Real-time quantitative RT-PCR further disclosed induction of plasminogen activator inhibitor-1 (PAI-1), a T3 target, in a time-course and dose-dependent manner. Serial deletions of the PAI-1 promoter region and subsequent chromatin immunoprecipitation assays revealed that the thyroid hormone response element on the promoter is localized at positions –327/–312. PAI-1 overexpression enhanced tumor growth and migration in a manner similar to what was seen when T3 induced PAI-1 expression in J7-TRα1 cells, both in vitro and in vivo. An in vitro neutralizing assay further supported a crucial role of secreted PAI-1 in T3/TR-regulated cell migration. To our knowledge, these results demonstrate for the first time that proteins involved in the urokinase plasminogen activator system, including PAI-1, uPAR, and BSSP4, are augmented in the extra- and intracellular space of T3-treated HepG2-TRα1 cells. The T3-regulated secretome generated in the current study may provide an opportunity to establish the mechanisms underlying T

  10. Incorporation of 13C labelled root-shoot residues in soil in the presence of Lumbricus terrestris: An isotopic and molecular approach

    NASA Astrophysics Data System (ADS)

    Vidal, Alix; Alexis, Marie; Nguyen Tu, Thanh Tu; Anquetil, Christelle; Vaury, Véronique; Derenne, Sylvie; Quenea, Katell

    2016-04-01

    Litter from plant biomass deposited on soil surface can either be mineralized; releasing CO2 to the atmosphere, or transferred into the soil as organic compounds. Both pathways depend on biotic factors such as litter characteristics and the of soil organism activity. During the last decades, many studies have focused on the origin of organic matter, with a particular attention to the fate of root and shoot litter. It is generally admitted that roots decompose at a slower rate than shoots, resulting in a higher carbon sequestration in soil for compounds originating from roots. Earthworms play a central role in litter decomposition and carbon cycling, ingesting both organic and mineral compounds which are mixed, complexed and dejected in the form of casts at the soil surface or along earthworm burrows. The simultaneous impact of earthworms and root-shoot on soil carbon cycling is still poorly understood. This study aimed at (1) defining the rate of incorporation of root and shoot litter with or without earthworms and (2) characterizing the molecular composition of soil organic matter upon litter decomposition, after one year of experimentation. A mesocosm experiment was set up to follow the incorporation of 13C labelled Ryegrass root and shoot litter in the soil, in the presence of anecic earthworms (Lumbricus terrestris). Soil samples were collected at 0-20 and 40-60 cm, as well as surface casts, at the beginning and after 1, 2, 4, 8, 24 and 54 weeks of experiment. Organic carbon content and δ13C values were determined for all the samples with Elemental Analysis - Isotope Ratio Mass Spectrometry. Lipid-free soil and cast samples after 54 weeks of incubation were analyzed with Pyrolysis-Gas Chromatography-Mass Spectrometry. Pyrolysis products were grouped into six classes: polysaccharides, lignin derived compounds, phenols, N-compounds, aliphatic compounds and sterols. Each pyrolysis product was quantified thanks to its peak area, relative to the total area of the

  11. Efficient enzymatic synthesis and dual-colour fluorescent labelling of DNA probes using long chain azido-dUTP and BCN dyes

    PubMed Central

    Ren, Xiaomei; El-Sagheer, Afaf H.; Brown, Tom

    2016-01-01

    A sterically undemanding azide analogue of dTTP (AHP dUTP) with an alkyl chain and ethynyl attachment to the nucleobase was designed and incorporated into DNA by primer extension, reverse transcription and polymerase chain reaction (PCR). An azide-modified 523 bp PCR amplicon with all 335 thymidines replaced by AHP dU was shown to be a perfect copy of the template from which it was amplified. Replacement of thymidine with AHP dU increases duplex stability, accounting in part for the high incorporation efficiency of the azide-modified triphosphate. Single-stranded azide-labelled DNA was conveniently prepared from PCR products by λ-exonuclease digestion and streptavidin magnetic bead isolation. Efficient fluorescent labelling of single and double-stranded DNA was carried out using dyes functionalized with bicyclo[6.1.0]non-4-yne (BCN) via the strain-promoted alkyne-azide cycloaddition (SPAAC) reaction. This revealed that the degree of labelling must be carefully controlled to achieve optimum fluorescence and avoid fluorescence quenching. Dual-coloured probes were obtained in a single tube fluorescent labelling reaction; and varying the ratios of the two dyes provides a simple method to prepare DNA probes with unique fluorescent signatures. AHP dUTP is a versatile clickable nucleotide with potentially wide applications in biology and nanotechnology including single molecule studies and synthesis of modified aptamer libraries via SELEX. PMID:26819406

  12. Efficient enzymatic synthesis and dual-colour fluorescent labelling of DNA probes using long chain azido-dUTP and BCN dyes.

    PubMed

    Ren, Xiaomei; El-Sagheer, Afaf H; Brown, Tom

    2016-05-05

    A sterically undemanding azide analogue of dTTP (AHP dUTP) with an alkyl chain and ethynyl attachment to the nucleobase was designed and incorporated into DNA by primer extension, reverse transcription and polymerase chain reaction (PCR). An azide-modified 523 bp PCR amplicon with all 335 thymidines replaced by AHP dU was shown to be a perfect copy of the template from which it was amplified. Replacement of thymidine with AHP dU increases duplex stability, accounting in part for the high incorporation efficiency of the azide-modified triphosphate. Single-stranded azide-labelled DNA was conveniently prepared from PCR products by λ-exonuclease digestion and streptavidin magnetic bead isolation. Efficient fluorescent labelling of single and double-stranded DNA was carried out using dyes functionalized with bicyclo[6.1.0]non-4-yne (BCN) via the strain-promoted alkyne-azide cycloaddition (SPAAC) reaction. This revealed that the degree of labelling must be carefully controlled to achieve optimum fluorescence and avoid fluorescence quenching. Dual-coloured probes were obtained in a single tube fluorescent labelling reaction; and varying the ratios of the two dyes provides a simple method to prepare DNA probes with unique fluorescent signatures. AHP dUTP is a versatile clickable nucleotide with potentially wide applications in biology and nanotechnology including single molecule studies and synthesis of modified aptamer libraries via SELEX.

  13. Silicon isotopes indicate enhanced carbon export efficiency in the North Atlantic during deglaciation.

    PubMed

    Hendry, Katharine R; Robinson, Laura F; McManus, Jerry F; Hays, James D

    2014-01-01

    Today's Sargasso Sea is nutrient starved, except for episodic upwelling events caused by wind-driven winter mixing and eddies. Enhanced diatom opal burial in Sargasso Sea sediments indicates that silicic acid, a limiting nutrient today, may have been more available in subsurface waters during Heinrich Stadials, millennial-scale climate perturbations of the last glacial and deglaciation. Here we use the geochemistry of opal-forming organisms from different water depths to demonstrate changes in silicic acid supply and utilization during the most recent Heinrich Stadial. We suggest that during the early phase (17.5-18 ka), wind-driven upwelling replenished silicic acid to the subsurface, resulting in low Si utilization. By 17 ka, stratification reduced the surface silicic acid supply leading to increased Si utilization efficiency. This abrupt shift in Si cycling would have contributed to high regional carbon export efficiency during the recent Heinrich Stadial, despite being a period of increasing atmospheric CO2.

  14. Stable carbon isotope ratios and intrinsic water-use efficiency of Miocene fossil leaves compared to modern congeners

    SciTech Connect

    Marshall, J.D.; Zhang, J.; Rember, W.C.; Jennings, D.; Larson, P. )

    1994-06-01

    Miocene fossil leaves of forest trees were extracted from the Clarkia, Idaho fossil beds and their stable carbon isotope ratios were analyzed. Fossils had higher lignin concentrations and lower cellulose concentrations that modern leaves due to diagenesis and the HF used to extract the fossils. Therefore, [delta][sup 13]C of extracted fossil lignin was compared to that of modern lignin. Fossil lignin [delta][sup 13]C was significantly different from that of congeneric modern leaves (paired t-test, P<0.0001), but was 1.9% less negative. Gymnosperms (Metasequoia, Taxodium) were less negative than angiosperms (e.g., Magnolia, Quercus, Acer, Persea), but no difference between evergreen and deciduous species was detected. Using published estimates of the concentration and [delta][sup 13]C of atmospheric CO[sub 2] during the Miocene was estimated the CO[sub 2] partial pressure gradient across the stomata (intrinsic water-use efficiency). Intrinsic water-use efficiency was at least 70% higher during this past [open quotes]greenhouse[close quotes] period than at present.

  15. Silicon isotopes indicate enhanced carbon export efficiency in the North Atlantic during deglaciation

    NASA Astrophysics Data System (ADS)

    Hendry, Katharine R.; Robinson, Laura F.; McManus, Jerry F.; Hays, James D.

    2014-01-01

    Today’s Sargasso Sea is nutrient starved, except for episodic upwelling events caused by wind-driven winter mixing and eddies. Enhanced diatom opal burial in Sargasso Sea sediments indicates that silicic acid, a limiting nutrient today, may have been more available in subsurface waters during Heinrich Stadials, millennial-scale climate perturbations of the last glacial and deglaciation. Here we use the geochemistry of opal-forming organisms from different water depths to demonstrate changes in silicic acid supply and utilization during the most recent Heinrich Stadial. We suggest that during the early phase (17.5-18 ka), wind-driven upwelling replenished silicic acid to the subsurface, resulting in low Si utilization. By 17 ka, stratification reduced the surface silicic acid supply leading to increased Si utilization efficiency. This abrupt shift in Si cycling would have contributed to high regional carbon export efficiency during the recent Heinrich Stadial, despite being a period of increasing atmospheric CO2.

  16. A cationic Rh(III) complex that efficiently catalyzes hydrogen isotope exchange in hydrosilanes.

    PubMed

    Campos, Jesús; Esqueda, Ana C; López-Serrano, Joaquín; Sánchez, Luis; Cossio, Fernando P; de Cozar, Abel; Alvarez, Eleuterio; Maya, Celia; Carmona, Ernesto

    2010-12-01

    The synthesis and structural characterization of a mixed-sandwich (η(5)-C(5)Me(5))Rh(III) complex of the cyclometalated phosphine PMeXyl(2) (Xyl = 2,6-C(6)H(3)Me(2)) with unusual κ(4)-P,C,C',C'' coordination (compound 1-BAr(f); BAr(f) = B(3,5-C(6)H(3)(CF(3))(2))(4)) are reported. A reversible κ(4) to κ(2) change in the binding of the chelating phosphine in cation 1(+) induced by dihydrogen and hydrosilanes triggers a highly efficient Si-H/Si-D (or Si-T) exchange applicable to a wide range of hydrosilanes. Catalysis can be carried out in an organic solvent solution or without solvent, with catalyst loadings as low as 0.001 mol %, and the catalyst may be recycled a number of times.

  17. Fluorescence energy transfer efficiency in labeled yeast cytochrome c: a rapid screen for ion biocompatibility in aqueous ionic liquids

    SciTech Connect

    Baker, Sheila N; Zhao, Hua; Pandey, Siddharth; Heller, William T; Bright, Frank; Baker, Gary A

    2011-01-01

    A fluorescence energy transfer de-quenching assay was implemented to follow the equilibrium unfolding behaviour of site-specific tetramethylrhodamine-labelled yeast cytochrome c in aqueous ionic liquid solutions; additionally, this approach offers the prospect of naked eye screening for biocompatible ion combinations in hydrated ionic liquids.

  18. Passage of stable isotope-labeled grass silage fiber and fiber-bound protein through the gastrointestinal tract of dairy cows.

    PubMed

    Warner, D; Dijkstra, J; Hendriks, W H; Pellikaan, W F

    2013-01-01

    Fractional passage rates are required to predict nutrient absorption in ruminants but data on nutrient-specific passage kinetics are largely lacking. With the use of the stable isotope ratio (δ) as an internal marker, we assessed passage kinetics of fiber and fiber-bound nitrogen (N) of intrinsically labeled grass silage from fecal and omasal excretion patterns of δ(13)C and δ(15)N. In a 6×6 Latin square, lactating dairy cows received grass silages [455 g/kg of total diet dry matter (DM) ] in a 2×3 factorial arrangement from ryegrass swards fertilized at low (45 kg of N/ha) or high (90 kg of N/ha) levels of N and harvested at 3 maturity stages. Feed intake (16.7±0.48 kg of DM/d; mean ± standard error of the mean) and milk yield (26.7±0.92 kg/d) increased at the high level of N fertilization and at decreasing maturity. Nutrient digestibility decreased with increasing plant maturity, particularly at the high level of N fertilization, essentially reflecting dietary treatment effects on the nutritional composition of the grass silage. Fractional rumen passage rates (K1) were highest and total mean retention time in the gastrointestinal tract (TMRT) was lowest when based on the external marker chromium mordanted fiber (Cr-NDF; 0.047/h and 38.0 h, respectively). Fecal δ(13)C in the acid detergent fiber fraction ((13)CADF) provided the lowest K1 (0.023/h) and the highest TMRT (61.1 h) and highest peak concentration time (PCT; 24.3h) among markers. In comparison, fecal fiber-bound N ((15)NADF) had a considerably higher K1 (0.032/h) and lower TMRT (46.4 h) than (13)CADF. Total N (measured with (15)NDM) had a comparable K1 (0.034/h) to that of (15)NADF but provided the highest fractional passage rates from the proximal colon-cecum (K2; 0.37/h) and lowest PCT (17.4 h) among markers. A literature review indicated unclear effects of grass silage maturity on K1 and unknown effects of N fertilization on K1. Our study indicated no effect of advancing maturity on fecal K1

  19. Engineering of Radioiodine-Labeled Gold Core-Shell Nanoparticles As Efficient Nuclear Medicine Imaging Agents for Trafficking of Dendritic Cells.

    PubMed

    Lee, Sang Bong; Lee, Sang-Woo; Jeong, Shin Young; Yoon, GhilSuk; Cho, Sung Jin; Kim, Sang Kyoon; Lee, In-Kyu; Ahn, Byeong-Cheol; Lee, Jaetae; Jeon, Yong Hyun

    2017-03-15

    The development of highly sensitive, stable, and biocompatible imaging agents allowing visualization of dendritic cell (DC) migration is one of the essential factors for effective DC-based immunotherapy. Here, we used a novel and efficient synthesis approach to develop radioiodine-124-labeled tannic acid gold core-shell nanoparticles ((124)I-TA-Au@AuNPs) for DC labeling and in vivo tracking of their migration using positron emission tomography (PET). (124)I-TA-Au@AuNPs were produced within 40 min in high yield via straightforward tannic acid-mediated radiolabeling chemistry and incorporation of Au shell, which resulted in high radio-sensitivity and excellent chemical stability of nanoparticles in DCs and living mice. (124)I-TA-Au@AuNPs demonstrated good DC labeling efficiency and did not affect cell biological functions, including proliferation and phenotype marker expression. Importantly, (124)I-TA-Au@AuNPs in an extremely low amount (0.1 mg/kg) were successfully applied to track the migration of DCs to lymphoid organs (draining lymph nodes) in mice.

  20. Water use Efficiency in a Blue oak ( Quercus douglasii) Savanna - a Combined Analysis of Stable Isotopes and Eddy Covariance Measurements

    NASA Astrophysics Data System (ADS)

    Mambelli, S.; Tu, K. P.; Knohl, A.; Ma, S.; Baldocchi, D. D.; Dawson, T. E.

    2007-12-01

    Understanding the relationship between carbon assimilation and water consumption by natural vegetation is needed to assess how changes in climate will affect plant carbon and water exchange as well as the energy fluxes of ecosystems. While climate change is expected to cause significant warming, most models also suggest changes in the timing and amount of precipitation received; thus implications of this type of change are particularly acute in Mediterranean regions of the world. Blue oak savannas are already exposed to broad variation in water availability and to severe droughts during the summer months. Our objective was to evaluate the trade-off between carbon gain and water loss (Water Use Efficiency) in this ecosystem at both the leaf and at the ecosystem scales. We monitored the ratio of the partial pressures of CO2 inside the leaf (Ci) and in the outside air (Ca) or Ci/Ca, during the summer months of three subsequent years. This ratio is determined by the balance between photosynthetic capacity and stomatal conductance to water loss. Leaf-level estimates for individual trees were based on the carbon isotope composition (δ13C) of bulk leaf tissue and of recently fixed carbohydrates (leaf soluble sugars). These leaf and individual tree based estimates were then compared with canopy-level estimates derived from continuous eddy covariance measurements of fluxes of CO2, water vapor and meteorological variables from two eddy covariance systems, one above (23m) and one below (2m) the tree canopy. We found that savanna Blue oak trees cope with severe drought through coordinated down-regulation of carbon and water fluxes, i.e. the ratio Ci/Ca remained stable over four summer months, despite decreasing soil water content and leaf water potentials. Stable C isotope composition of leaf soluble sugars is the most robust measure of Ci/Ca because it reflects the initial discrimination of photosynthetic products, without the confounding effects ascribed to storage, tissue

  1. Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions.

    PubMed

    Antoniewicz, Maciek R; Kelleher, Joanne K; Stephanopoulos, Gregory

    2007-01-01

    Metabolic flux analysis (MFA) has emerged as a tool of great significance for metabolic engineering and mammalian physiology. An important limitation of MFA, as carried out via stable isotope labeling and GC/MS and nuclear magnetic resonance (NMR) measurements, is the large number of isotopomer or cumomer equations that need to be solved, especially when multiple isotopic tracers are used for the labeling of the system. This restriction reduces the ability of MFA to fully utilize the power of multiple isotopic tracers in elucidating the physiology of realistic situations comprising complex bioreaction networks. Here, we present a novel framework for the modeling of isotopic labeling systems that significantly reduces the number of system variables without any loss of information. The elementary metabolite unit (EMU) framework is based on a highly efficient decomposition method that identifies the minimum amount of information needed to simulate isotopic labeling within a reaction network using the knowledge of atomic transitions occurring in the network reactions. The functional units generated by the decomposition algorithm, called EMUs, form the new basis for generating system equations that describe the relationship between fluxes and stable isotope measurements. Isotopomer abundances simulated using the EMU framework are identical to those obtained using the isotopomer and cumomer methods, however, require significantly less computation time. For a typical (13)C-labeling system the total number of equations that needs to be solved is reduced by one order-of-magnitude (100s EMUs vs. 1000s isotopomers). As such, the EMU framework is most efficient for the analysis of labeling by multiple isotopic tracers. For example, analysis of the gluconeogenesis pathway with (2)H, (13)C, and (18)O tracers requires only 354 EMUs, compared to more than two million isotopomers.

  2. Allocation of atmospheric CO2 into labile sub-surface carbon pools: a stable isotope labelling approach in a tundra wetland

    NASA Astrophysics Data System (ADS)

    Rüggen, Norman; Knoblauch, Christian; Pfeiffer, Eva-Maria

    2015-04-01

    Greenhouse gas emissions from permafrost-affected wetlands are intensively studied due to their important role in the global carbon cycle. There are concerns of increasing methane and carbon dioxide fluxes from tundra wetlands due to permafrost degradation and hydrology changes in a warming Arctic. Understanding the sub-surface carbon pool interactions will improve the prediction on how trace gas fluxes from these ecosystems will respond to changing environmental conditions. Partitioning the sources of greenhouse gas fluxes will help to evaluate the quantitative role of recently produced plant photosynthates. Furthermore, partitioning allows separating respiration of long-term stored organic matter and freshly produced plant products. This knowledge is crucial for understanding the response of greenhouse gas fluxes in such wetlands to environmental changes. An in situ 13CO2 pulse-labelling experiment has been conducted in the northeast Siberian tundra (Samoylov island, Lena river delta) in August 2013 to quantify interactions among sub-surface carbon pools (DIC, DOC, CH4) in three depths (6, 16 and 36 cm) of the active layer. The experimental site was a low-centred polygon centre in a polygonal tundra landscape, with a sedge-moss (Carex-Scorpidium) plant association. The water table was at the soils' surface and the permafrost table in a depth of 50 cm. After the system has been 13CO2 pulse labelled, all three studied subsurface carbon pools (CH4, DIC and DOC) were clearly 13C-enriched, which accounts for atmospheric C incorporated into these pools. One day after the labelling, in 6 cm depth 1.5 percent of DIC and 0.1 percent of CH4were replaced by label C, which then steadily declined over a ten days period. The label C content of DOC increased gradually over the same period. In 16 cm depth, the label C increased gradually after labelling in both DIC and CH4. Label C was found in DIC and CH4 even in a depth of 36 cm, although in less pronounced concentrations

  3. Long term changes in Intrinsic Water Use Efficiency, the palaoe record derived from stable carbon isotope measurements from tree rings.

    NASA Astrophysics Data System (ADS)

    Gagen, Mary; McCarroll, Danny; Loader, Neil; Young, Giles; Robertson, Iain

    2015-04-01

    Stable carbon isotope (δ13C) measurements from the annual rings of trees are increasingly used to explore long term changes in plant-carbon-water relations, via changes in intrinsic water use efficiency (iWUE); the ratio of photosynthetic rate to stomatal conductance. Many studies report a significant increase in iWEU since industrialisation, which tracks rising global atmospheric CO2. Such changes are logical are trees are known to change their stomatal geometry, number and action in response to rising CO2. However, which increasing iWUE suggests physiological changes which should lead to increased growth increasing iWUE is rarely matched by enhanced tree growth when tree rings are measured, despite increases of up to 30% in iWUE over the recent past (van der Sleen et al 2015). Explanations for the mismatch between iWUE and tree growth records encompass questions over the veracity of δ13C records for recording physiological change (Silva and Howarth 2013), suggestions that moisture stress in warming climates becomes a limit to growth and prevents opportunistic use of rising CO2 by trees (Andreu-Hayles et al 2011) and questions regarding the use of tree ring width, which does not record tree height gain, to record growth. Here we present an extensive range of long term iWUE records, derived broadly from the temperate, high latitude and one tropical forest site to explore the palaeoclimatic perspective on the iWUE-fertilization conundrum in a spatio temporally extensive manner.

  4. The Analysis on Influence of Main Factors on Theoretical Value of Energy Saving Rate for Energy Efficiency Labeling of Civil Buildings

    NASA Astrophysics Data System (ADS)

    Wang, Zhiwei; Wang, Zhenling; Jiang, Bo; Zhang, Fan; Li, Peng; Cao, Wei

    For typical residential buildings, no-large-scale and large-scale public buildings, according to China's Technical Guide for the Energy Efficiency Labeling of Civil Buildings, makes up missing data of the calculation benchmark and determines the boundary conditions for calculating the theoretical values of civil building energy efficiency. Based on equivalent full load hours method, develops a modular program and calculates building energy consumption for the demands of dynamic cooling and heating and lighting etc., finds out the corresponding relationship between star level's theoretical value of energy saving rate and specified-term limiting value in the Guide. With orthogonal experimental design and multiple linear regression, establishes the quantitative function of both the theoretical value of energy saving rate and main factors parameters, analyzes the impact of the control parameter on energy saving rate, and reveals the law of theoretical value of energy saving rate variation with the control parameter. For building energy efficiency labeling upgrade, presents technical measure need to be taken and analyses its feasibility. The results from the study can provide theoretical guidance for energy-saving design or retrofitting of civil buildings.

  5. A label-free and high-efficient GO-based aptasensor for cancer cells based on cyclic enzymatic signal amplification.

    PubMed

    Xiao, Kunyi; Liu, Juan; Chen, Hui; Zhang, Song; Kong, Jilie

    2017-05-15

    A label-free and high-efficient graphene oxide (GO)-based aptasensor was developed for the detection of low quantity cancer cells based on cell-triggered cyclic enzymatic signal amplification (CTCESA). In the absence of target cells, hairpin aptamer probes (HAPs) and dye-labeled linker DNAs stably coexisted in solution, and the fluorescence was quenched by the GO-based FÖrster resonance energy transfer (FRET) process. In the presence of target cells, the specific binding of HAPs with the target cells triggered a conformational alternation, which resulted in linker DNA complementary pairing and cleavage by nicking endonuclease-strand scission cycles. Consequently, more cleaved fragments of linker DNAs with more the terminal labeled dyes could show the enhanced fluorescence because these cleaved DNA fragments hardly combine with GOs and prevent the FRET process. Fluorescence analysis demonstrated that this GO-based aptasensor exhibited selective and sensitive response to the presence of target CCRF-CEM cells in the concentration range from 50 to 10(5) cells. The detection limit of this method was 25 cells, which was approximately 20 times lower than the detection limit of normal fluorescence aptasensors without amplification. With high sensitivity and specificity, it provided a simple and cost-effective approach for early cancer diagnosis.

  6. Quantitative O-glycomics based on improvement of the one-pot method for nonreductive O-glycan release and simultaneous stable isotope labeling with 1-(d0/d5)phenyl-3-methyl-5-pyrazolone followed by mass spectrometric analysis.

    PubMed

    Wang, Chengjian; Zhang, Ping; Jin, Wanjun; Li, Lingmei; Qiang, Shan; Zhang, Ying; Huang, Linjuan; Wang, Zhongfu

    2017-01-06

    Rapid, simple and versatile methods for quantitative analysis of glycoprotein O-glycans are urgently required for current studies on protein O-glycosylation patterns and the search for disease O-glycan biomarkers. Relative quantitation of O-glycans using stable isotope labeling followed by mass spectrometric analysis represents an ideal and promising technique. However, it is hindered by the shortage of reliable nonreductive O-glycan release methods as well as the too large or too small inconstant mass difference between the light and heavy isotope form derivatives of O-glycans, which results in difficulties during the recognition and quantitative analysis of O-glycans by mass spectrometry. Herein we report a facile and versatile O-glycan relative quantification strategy, based on an improved one-pot method that can quantitatively achieve nonreductive release and in situ chromophoric labeling of intact mucin-type O-glycans in one step. In this study, the one-pot method is optimized and applied for quantitative O-glycan release and tagging with either non-deuterated (d0-) or deuterated (d5-) 1-phenyl-3-methyl-5-pyrazolone (PMP). The obtained O-glycan derivatives feature a permanent 10-Da mass difference between the d0- and d5-PMP forms, allowing complete discrimination and comparative quantification of these isotopically labeled O-glycans by mass spectrometric techniques. Moreover, the d0- and d5-PMP derivatives of O-glycans also have a relatively high hydrophobicity as well as a strong UV adsorption, especially suitable for high-resolution separation and high-sensitivity detection by RP-HPLC-UV. We have refined the conditions for the one-pot reaction as well as the corresponding sample purification approach. The good quantitation feasibility, reliability and linearity of this strategy have been verified using bovine fetuin and porcine stomach mucin as model O-glycoproteins. Additionally, we have also successfully applied this method to the quantitative O

  7. Gaining efficiency by parallel quantification and identification of iTRAQ-labeled peptides using HCD and decision tree guided CID/ETD on an LTQ Orbitrap.

    PubMed

    Mischerikow, Nikolai; van Nierop, Pim; Li, Ka Wan; Bernstein, Hans-Gert; Smit, August B; Heck, Albert J R; Altelaar, A F Maarten

    2010-10-01

    Isobaric stable isotope labeling of peptides using iTRAQ is an important method for MS based quantitative proteomics. Traditionally, quantitative analysis of iTRAQ labeled peptides has been confined to beam-type instruments because of the weak detection capabilities of ion traps for low mass ions. Recent technical advances in fragmentation techniques on linear ion traps and the hybrid linear ion trap-orbitrap allow circumventing this limitation. Namely, PQD and HCD facilitate iTRAQ analysis on these instrument types. Here we report a method for iTRAQ-based relative quantification on the ETD enabled LTQ Orbitrap XL, which is based on parallel peptide quantification and peptide identification. iTRAQ reporter ion generation is performed by HCD, while CID and ETD provide peptide identification data in parallel in the LTQ ion trap. This approach circumvents problems accompanying iTRAQ reporter ion generation with ETD and allows quantitative, decision tree-based CID/ETD experiments. Furthermore, the use of HCD solely for iTRAQ reporter ion read out significantly reduces the number of ions needed to obtain informative spectra, which significantly reduces the analysis time. Finally, we show that integration of this method, both with existing CID and ETD methods as well as with existing iTRAQ data analysis workflows, is simple to realize. By applying our approach to the analysis of the synapse proteome from human brain biopsies, we demonstrate that it outperforms a latest generation MALDI TOF/TOF instrument, with improvements in both peptide and protein identification and quantification. Conclusively, our work shows how HCD, CID and ETD can be beneficially combined to enable iTRAQ-based quantification on an ETD-enabled LTQ Orbitrap XL.

  8. Efficient Blind Spectral Unmixing of Fluorescently Labeled Samples Using Multi-Layer Non-Negative Matrix Factorization

    PubMed Central

    Zudaire, Isabel; Ortiz-de-Solorzano, Carlos

    2013-01-01

    The ample variety of labeling dyes and staining methods available in fluorescence microscopy has enabled biologists to advance in the understanding of living organisms at cellular and molecular level. When two or more fluorescent dyes are used in the same preparation, or one dye is used in the presence of autofluorescence, the separation of the fluorescent emissions can become problematic. Various approaches have been recently proposed to solve this problem. Among them, blind non-negative matrix factorization is gaining interest since it requires little assumptions about the spectra and concentration of the fluorochromes. In this paper, we propose a novel algorithm for blind spectral separation that addresses some of the shortcomings of existing solutions: namely, their dependency on the initialization and their slow convergence. We apply this new algorithm to two relevant problems in fluorescence microscopy: autofluorescence elimination and spectral unmixing of multi-labeled samples. Our results show that our new algorithm performs well when compared with the state-of-the-art approaches for a much faster implementation. PMID:24260120

  9. Use of an automated chromium reduction system for hydrogen isotope ratio analysis of physiological fluids applied to doubly labeled water analysis.

    PubMed

    Schoeller, D A; Colligan, A S; Shriver, T; Avak, H; Bartok-Olson, C

    2000-09-01

    The doubly labeled water method is commonly used to measure total energy expenditure in free-living subjects. The method, however, requires accurate and precise deuterium abundance determinations, which can be laborious. The aim of this study was to evaluate a fully automated, high-throughput, chromium reduction technique for the measurement of deuterium abundances in physiological fluids. The chromium technique was compared with an off-line zinc bomb reduction technique and also subjected to test-retest analysis. Analysis of international water standards demonstrated that the chromium technique was accurate and had a within-day precision of <1 per thousand. Addition of organic matter to water samples demonstrated that the technique was sensitive to interference at levels between 2 and 5 g l(-1). Physiological samples could be analyzed without this interference, plasma by 10000 Da exclusion filtration, saliva by sedimentation and urine by decolorizing with carbon black. Chromium reduction of urine specimens from doubly labeled water studies indicated no bias relative to zinc reduction with a mean difference in calculated energy expenditure of -0.2 +/- 3.9%. Blinded reanalysis of urine specimens from a second doubly labeled water study demonstrated a test-retest coefficient of variation of 4%. The chromium reduction method was found to be a rapid, accurate and precise method for the analysis of urine specimens from doubly labeled water.

  10. Distance-dependent emission from dye-labeled oligonucleotides on striped Au/Ag nanowires: effect of secondary structure and hybridization efficiency.

    PubMed

    Stoermer, Rebecca L; Keating, Christine D

    2006-10-11

    When fluorescently tagged oligonucleotides are located near metal surfaces, their emission intensity is impacted by both electromagnetic effects (i.e., quenching and/or enhancement of emission) and the structure of the nucleic acids (e.g., random coil, hairpin, or duplex). We present experiments exploring the effect of label position and secondary structure in oligonucleotide probes as a function of hybridization buffer, which impacts the percentage of double-stranded probes on the surface after exposure to complementary DNA. Nanowires containing identifiable patterns of Au and Ag segments were used as the metal substrates in this work, which enabled us to directly compare different dye positions in a single multiplexed experiment and differences in emission for probes attached to the two metals. The observed metal-dye separation dependence for unstructured surface-bound oligonucleotides is highly sensitive to hybridization efficiency, due to substantial changes in DNA extension from the surface upon hybridization. In contrast, fluorophore labeled oligonucleotides designed to form hairpin secondary structures analogous to solution-phase molecular beacon probes are relatively insensitive to hybridization efficiency, since the folded form is quenched and therefore does not appreciably impact the observed distance-dependence of the response. Differences in fluorescence patterning on Au and Ag were noted as a function of not only chromophore identity but also metal-dye separation. For example, emission intensity for TAMRA-labeled oligonucleotides changed from brighter on Ag for 24-base probes to brighter on Au for 48-base probes. We also observed fluorescence enhancement at the ends of nanowires and at surface defects where heightened electromagnetic fields affect the fluorescence.

  11. Efficient Estimators for Quantum Instanton Evaluation of theKinetic Isotope Effects: Application to the Intramolecular HydrogenTransfer in Pentadiene

    SciTech Connect

    Vanicek, Jiri; Miller, William H.

    2007-06-13

    The quantum instanton approximation is used to compute kinetic isotope effects for intramolecular hydrogen transfer in cis-1,3-pentadiene. Due to the importance of skeleton motions, this system with 13 atoms is a simple prototype for hydrogen transfer in enzymatic reactions. The calculation is carried out using thermodynamic integration with respect to the mass of the isotopes and a path integral Monte Carlo evaluation of relevant thermodynamic quantities. Efficient 'virial' estimators are derived for the logarithmic derivatives of the partition function and the delta-delta correlation functions. These estimators require significantly fewer Monte Carlo samples since their statistical error does not increase with the number of discrete time slices in the path integral. The calculation treats all 39 degrees of freedom quantum-mechanically and uses an empirical valence bond potential based on a modified general AMBER force field.

  12. Seasonal variations in photosynthesis, intrinsic water-use efficiency and stable isotope composition of poplar leaves in a short-rotation plantation

    PubMed Central

    Broeckx, L.S.; Fichot, R.; Verlinden, M.S.; Ceulemans, R.

    2014-01-01

    Photosynthetic carbon assimilation and transpirational water loss play an important role in the yield and the carbon sequestration potential of bioenergy-devoted cultures of fast-growing trees. For six poplar (Populus) genotypes in a short-rotation plantation, we observed significant seasonal and genotypic variation in photosynthetic parameters, intrinsic water-use efficiency (WUEi) and leaf stable isotope composition (δ13C and δ18O). The poplars maintained high photosynthetic rates (between 17.8 and 26.9 μmol m−2 s−1 depending on genotypes) until late in the season, in line with their fast-growth habit. Seasonal fluctuations were mainly explained by variations in soil water availability and by stomatal limitation upon photosynthesis. Stomatal rather than biochemical limitation was confirmed by the constant intrinsic photosynthetic capacity (Vcmax) during the growing season, closely related to leaf nitrogen (N) content. Intrinsic water-use efficiency scaled negatively with carbon isotope discrimination (Δ13Cbl) and positively with the ratio between mesophyll diffusion conductance (gm) and stomatal conductance. The WUEi – Δ13Cbl relationship was partly influenced by gm. There was a trade-off between WUEi and photosynthetic N-use efficiency, but only when soil water availability was limiting. Our results suggest that seasonal fluctuations in relation to soil water availability should be accounted for in future modelling studies assessing the carbon sequestration potential and the water-use efficiency of woody energy crops. PMID:25074859

  13. Elevated CO₂ increases tree-level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites.

    PubMed

    Battipaglia, Giovanna; Saurer, Matthias; Cherubini, Paolo; Calfapietra, Carlo; McCarthy, Heather R; Norby, Richard J; Francesca Cotrufo, M

    2013-01-01

    Elevated CO₂ increases intrinsic water use efficiency (WUE(i) ) of forests, but the magnitude of this effect and its interaction with climate is still poorly understood. We combined tree ring analysis with isotope measurements at three Free Air CO₂ Enrichment (FACE, POP-EUROFACE, in Italy; Duke FACE in North Carolina and ORNL in Tennessee, USA) sites, to cover the entire life of the trees. We used δ¹³C to assess carbon isotope discrimination and changes in water-use efficiency, while direct CO₂ effects on stomatal conductance were explored using δ¹⁸O as a proxy. Across all the sites, elevated CO₂ increased ¹³C-derived water-use efficiency on average by 73% for Liquidambar styraciflua, 77% for Pinus taeda and 75% for Populus sp., but through different ecophysiological mechanisms. Our findings provide a robust means of predicting water-use efficiency responses from a variety of tree species exposed to variable environmental conditions over time, and species-specific relationships that can help modelling elevated CO₂ and climate impacts on forest productivity, carbon and water balances.

  14. Synthesis of 14C-Labelled Octahydor-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine (HMx0 and 15N-Isotopic Hexahyrro-1,3,5-Trinitro-1,3,5-Triazine (RDX) for use in Microcosm Experiments.

    DTIC Science & Technology

    2000-02-01

    bioremediation process. To synthesize C(14)HMX, acetylation of labelled hexamethylenetetramine (C(14)HMTA) was done yielding 3,7-diacetyl-1,3,5,7... hexamethylenetetramine (N(15)HMTA) was done according to the Hale Process. N(15)HMTA was prepared by reaching cold formaldehyde with isotopic nitrogen-15 ammonium hydroxide.

  15. Proteins with High Turnover Rate in Barley Leaves Estimated by Proteome Analysis Combined with in Planta Isotope Labeling1[W][OPEN

    PubMed Central

    Nelson, Clark J.; Alexova, Ralitza; Jacoby, Richard P.; Millar, A. Harvey

    2014-01-01

    Protein turnover is a key component in cellular homeostasis; however, there is little quantitative information on degradation kinetics for individual plant proteins. We have used 15N labeling of barley (Hordeum vulgare) plants and gas chromatography-mass spectrometry analysis of free amino acids and liquid chromatography-mass spectrometry analysis of proteins to track the enrichment of 15N into the amino acid pools in barley leaves and then into tryptic peptides derived from newly synthesized proteins. Using information on the rate of growth of barley leaves combined with the rate of degradation of 14N-labeled proteins, we calculate the turnover rates of 508 different proteins in barley and show that they vary by more than 100-fold. There was approximately a 9-h lag from label application until 15N incorporation could be reliably quantified in extracted peptides. Using this information and assuming constant translation rates for proteins during the time course, we were able to quantify degradation rates for several proteins that exhibit half-lives on the order of hours. Our workflow, involving a stringent series of mass spectrometry filtering steps, demonstrates that 15N labeling can be used for large-scale liquid chromatography-mass spectrometry studies of protein turnover in plants. We identify a series of abundant proteins in photosynthesis, photorespiration, and specific subunits of chlorophyll biosynthesis that turn over significantly more rapidly than the average protein involved in these processes. We also highlight a series of proteins that turn over as rapidly as the well-known D1 subunit of photosystem II. While these proteins need further verification for rapid degradation in vivo, they cluster in chlorophyll and thiamine biosynthesis. PMID:25082890

  16. Dissection of hydrogen bond interaction network around an iron-sulfur cluster by site-specific isotope labeling of hyperthermophilic archaeal Rieske-type ferredoxin.

    PubMed

    Iwasaki, Toshio; Fukazawa, Risako; Miyajima-Nakano, Yoshiharu; Baldansuren, Amgalanbaatar; Matsushita, Shinichi; Lin, Myat T; Gennis, Robert B; Hasegawa, Kazuya; Kumasaka, Takashi; Dikanov, Sergei A

    2012-12-05

    The electronic structure and geometry of redox-active metal cofactors in proteins are tuned by the pattern of hydrogen bonding with the backbone peptide matrix. In this study we developed a method for selective amino acid labeling of a hyperthermophilic archaeal metalloprotein with engineered Escherichia coli auxotroph strains, and we applied this to resolve the hydrogen bond interactions with the reduced Rieske-type [2Fe-2S] cluster by two-dimensional pulsed electron spin resonance technique. Because deep electron spin-echo envelope modulation of two histidine (14)N(δ) ligands of the cluster decreased non-coordinating (15)N signal intensities via the cross-suppression effect, an inverse labeling strategy was employed in which (14)N amino acid-labeled archaeal Rieske-type ferredoxin samples were examined in an (15)N-protein background. This has directly identified Lys45 N(α) as providing the major pathway for the transfer of unpaired electron spin density from the reduced cluster by a "through-bond" mechanism. All other backbone peptide nitrogens interact more weakly with the reduced cluster. The extension of this approach will allow visualizing the three-dimensional landscape of preferred pathways for the transfer of unpaired spin density from a paramagnetic metal center onto the protein frame, and will discriminate specific interactions by a "through-bond" mechanism from interactions which are "through-space" in various metalloproteins.

  17. Efficient Modeling of MS/MS Data for Metabolic Flux Analysis.

    PubMed

    Tepper, Naama; Shlomi, Tomer

    2015-01-01

    Metabolic flux analysis (MFA) is a widely used method for quantifying intracellular metabolic fluxes. It works by feeding cells with isotopic labeled nutrients, measuring metabolite isotopic labeling, and computationally interpreting the measured labeling data to estimate flux. Tandem mass-spectrometry (MS/MS) has been shown to be useful for MFA, providing positional isotopic labeling data. Specifically, MS/MS enables the measurement of a metabolite tandem mass-isotopomer distribution, representing the abundance in which certain parent and product fragments of a metabolite have different number of labeled atoms. However, a major limitation in using MFA with MS/MS data is the lack of a computationally efficient method for simulating such isotopic labeling data. Here, we describe the tandemer approach for efficiently computing metabolite tandem mass-isotopomer distributions in a metabolic network, given an estimation of metabolic fluxes. This approach can be used by MFA to find optimal metabolic fluxes, whose induced metabolite labeling patterns match tandem mass-isotopomer distributions measured by MS/MS. The tandemer approach is applied to simulate MS/MS data in a small-scale metabolic network model of mammalian methionine metabolism and in a large-scale metabolic network model of E. coli. It is shown to significantly improve the running time by between two to three orders of magnitude compared to the state-of-the-art, cumomers approach. We expect the tandemer approach to promote broader usage of MS/MS technology in metabolic flux analysis.

  18. ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.

    SciTech Connect

    BULLOCK,R.M.; BENDER,B.R.

    2000-12-01

    The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.

  19. Synthesis and evaluation of an (125)I-labeled azide prosthetic group for efficient and bioorthogonal radiolabeling of cyclooctyne-group containing molecules using copper-free click reaction.

    PubMed

    Choi, Mi Hee; Shim, Ha Eun; Nam, You Ree; Kim, Hye Rim; Kang, Jung Ae; Lee, Dong-Eun; Park, Sang Hyun; Choi, Dae Seong; Jang, Beom-Su; Jeon, Jongho

    2016-02-01

    Herein we report the radiosynthesis of a pyridine derived azide prosthetic group for iodine radioisotope labeling of dibenzocyclooctyne (DBCO) conjugated molecules. The radiolabeling of the stannylated precursor 2 was conducted using [(125)I]NaI and chloramine-T to give (125)I-labeled azide ([(125)I]1) with high radiochemical yield (72±8%, n=4) and radiochemical purity (>99%). Using (125)I-labeled azide ([(125)I]1), cyclic RGD peptide and near infrared fluorescent molecule were efficiently labeled with modest to good radiochemical yields. The biodistribution study and SPECT/CT images showed that [(125)I]1 underwent rapid renal clearance. These results clearly demonstrated that [(125)I]1 could be used as an useful radiotracer for in vivo pre-targeted imaging as well as efficient in vitro radiolabeling of DBCO containing molecules.

  20. LC-MS determination of bioactive molecules based upon stable isotope-coded derivatization method.

    PubMed

    Toyo'oka, Toshimasa

    2012-10-01

    Liquid chromatography (LC) coupled with mass spectrometry (MS) has been widely used for the analyses of various molecules in many research fields. The electrospray ionization of MS has contributed to the advancement of the LC-MS and LC-MS/MS methods. However, the detection sensitivity is not always sufficient in biological samples, in spite of the highly sensitive ionization method. To increase the sensitivity, chemical derivatization, providing ionization enhancement and avoiding the matrix effect, is effective for various functional groups in the target molecules. However, the accuracy and precision by the determination is sometimes insufficient, especially in complex matrices. In such a case, stable isotope-labeled analogs are often used as the internal standards for the determination of the analytes. When the target compound in samples is limited, a high accuracy and precision is usually obtained by the isotope dilution method. However, the use of individual isotope standards is very difficult for the analyses of multiple molecules in complex matrices. Instead of the use of an isotope analog of the analytes, the differential isotope labeling method based upon chemical derivatization (stable isotope-coded derivatization) (ICD) by both reagents possessing different isotopes is realized. The ICD technique utilizing mass-different isotope tags is known to be an efficient means for metabolite profiling analyses. Thus, the present paper reviews the ICD method reported in the past 10 years. The species of the ICD reagents, their features and the applications to biological specimens are also described in this review.

  1. A Simple and Efficient In Vivo Non-viral RNA Transfection Method for Labeling the Whole Axonal Tree of Individual Adult Long-Range Projection Neurons.

    PubMed

    Porrero, César; Rodríguez-Moreno, Javier; Quetglas, José I; Smerdou, Cristian; Furuta, Takahiro; Clascá, Francisco

    2016-01-01

    We report a highly efficient, simple, and non-infective method for labeling individual long-range projection neurons (LRPNs) in a specific location with enough sparseness and intensity to allow complete and unambiguous reconstructions of their entire axonal tree. The method is based on the "in vivo" transfection of a large RNA construct that drives the massive expression of green fluorescent protein. The method combines two components: injection of a small volume of a hyperosmolar NaCl solution containing the Pal-eGFP-Sindbis RNA construct (Furuta et al., 2001), followed by the application of high-frequency electric current pulses through the micropipette tip. We show that, although each component alone increases transfection efficacy, compared to simple volume injections of standard RNA solution, the highest efficacy (85.7%) is achieved by the combination of both components. In contrast with the infective viral Sindbis vector, RNA transfection occurs exclusively at the position of the injection micropipette tip. This method simplifies consistently labeling one or a few isolated neurons per brain, a strategy that allows unambiguously resolving and quantifying the brain-wide and often multi-branched monosynaptic circuits created by LRPNs.

  2. A Simple and Efficient In Vivo Non-viral RNA Transfection Method for Labeling the Whole Axonal Tree of Individual Adult Long-Range Projection Neurons

    PubMed Central

    Porrero, César; Rodríguez-Moreno, Javier; Quetglas, José I.; Smerdou, Cristian; Furuta, Takahiro; Clascá, Francisco

    2016-01-01

    We report a highly efficient, simple, and non-infective method for labeling individual long-range projection neurons (LRPNs) in a specific location with enough sparseness and intensity to allow complete and unambiguous reconstructions of their entire axonal tree. The method is based on the “in vivo” transfection of a large RNA construct that drives the massive expression of green fluorescent protein. The method combines two components: injection of a small volume of a hyperosmolar NaCl solution containing the Pal-eGFP-Sindbis RNA construct (Furuta et al., 2001), followed by the application of high-frequency electric current pulses through the micropipette tip. We show that, although each component alone increases transfection efficacy, compared to simple volume injections of standard RNA solution, the highest efficacy (85.7%) is achieved by the combination of both components. In contrast with the infective viral Sindbis vector, RNA transfection occurs exclusively at the position of the injection micropipette tip. This method simplifies consistently labeling one or a few isolated neurons per brain, a strategy that allows unambiguously resolving and quantifying the brain-wide and often multi-branched monosynaptic circuits created by LRPNs. PMID:27047347

  3. SU-E-I-65: Estimation of Tagging Efficiency in Pseudo-Continuous Arterial Spin Labeling (pCASL) MRI

    SciTech Connect

    Jen, M; Yan, F; Tseng, Y; Chen, C; Lin, C; Liu, H

    2015-06-15

    Purpose: pCASL was recommended as a potent approach for absolute cerebral blood flow (CBF) quantification in clinical practice. However, uncertainties of tagging efficiency in pCASL remain an issue. This study aimed to estimate tagging efficiency by using short quantitative pulsed ASL scan (FAIR-QUIPSSII) and compare resultant CBF values with those calibrated by using 2D Phase Contrast (PC) MRI. Methods: Fourteen normal volunteers participated in this study. All images, including whole brain (WB) pCASL, WB FAIR-QUIPSSII and single-slice 2D PC, were collected on a 3T clinical MRI scanner with a 8-channel head coil. DeltaM map was calculated by averaging the subtraction of tag/control pairs in pCASL and FAIR-QUIPSSII images and used for CBF calculation. Tagging efficiency was then calculated by the ratio of mean gray matter CBF obtained from pCASL and FAIR-QUIPSSII. For comparison, tagging efficiency was also estimated with 2D PC, a previously established method, by contrast WB CBF in pCASL and 2D PC. Feasibility of estimation from a short FAIR-QUIPSSII scan was evaluated by number of averages required for obtaining a stable deltaM value. Setting deltaM calculated by maximum number of averaging (50 pairs) as reference, stable results were defined within ±10% variation. Results: Tagging efficiencies obtained by 2D PC MRI (0.732±0.092) were significantly lower than which obtained by FAIRQUIPPSSII (0.846±0.097) (P<0.05). Feasibility results revealed that four pairs of images in FAIR-QUIPPSSII scan were sufficient to obtain a robust calibration of less than 10% differences from using 50 pairs. Conclusion: This study found that reliable estimation of tagging efficiency could be obtained by a few pairs of FAIR-QUIPSSII images, which suggested that calibration scan in a short duration (within 30s) was feasible. Considering recent reports concerning variability of PC MRI-based calibration, this study proposed an effective alternative for CBF quantification with pCASL.

  4. Evaluation of the efficiency of Pd/H2 -catalyzed benzylic H/D exchange of dehydroabietinal with D(2) O and synthesis of a tritium-labeled analogue.

    PubMed

    Petros, Robby A; Shah, Jyoti

    2014-01-01

    Dehydroabietinal (DA) has been identified as an important signaling molecule in systemic acquired resistance in plants. Deuterium and tritium-labeled DA were synthesized to confirm its role in signaling and to further elucidate the mechanism by which DA induces systemic acquired resistance. Pd/H2 -catalyzed exchange of benzylic hydrogen atoms of DA with (2) H-H2 O or (3) H-H2 O was conducted with >97% label incorporation for (2) H-DA and a specific activity of 12.6 mCi/mmol for (3) H-DA synthesized from 90 mCi/mmol (3) H-H2 O. The extent of deuterium labeling at each benzylic position was determined via an inverse-gated (13) C NMR experiment. C7 and C15 were 87% and 81% labeled, respectively. Isotope-induced chemical shift changes at C6 were used to approximate the amount of singly (66%) and doubly (17%) labeled (2) H-DA at C7. Results also indicated that two of the three benzylic protons in DA underwent facile exchange. Exchange at the remaining position was likely hampered by steric interactions of nearby methyl groups at the surface of the Pd catalyst.

  5. Assessment of effects of the rising atmospheric nitrogen deposition on nitrogen uptake and long-term water-use efficiency of plants using nitrogen and carbon stable isotopes.

    PubMed

    Yao, F Y; Wang, G A; Liu, X J; Song, L

    2011-07-15

    This study assesses the effects of the atmospheric nitrogen (N) deposition on the N uptake and the long-term water-use efficiency of two C(3) plants (Agropyron cristatum and Leymus chinensis) and two C(4) plants (Amaranthus retroflexus and Setaria viridis) using N and C stable isotopes. In addition, this study explores the potential correlation between leaf N isotope (δ(15)N) values and leaf C isotope (δ(13)C) values. This experiment shows that the atmospheric N deposition has significant effects on the N uptake, δ(15)N and leaf N content (N(m)) of C(3) plants. As the atmospheric N deposition rises, the proportion and the amount of N absorbed from the simulated atmospheric deposition become higher, and the δ(15)N and N(m) of the two C(3) plants both also increase, suggesting that the rising atmospheric N deposition is beneficial for C(3) plants. However, C(4) plants display different patterns in their N uptake and in their variations of δ(15)N and N(m) from those of C(3) plants. C(4) plants absorb less N from the atmospheric deposition, and the leaf N(m) does not change with the elevated atmospheric N deposition. Photosynthetic pathways may account for the differences between C(3) and C(4) plants. This study also shows that atmospheric N deposition does not play a role in determining the δ(13)C and in the long-term water-use efficiency of C(3) and C(4) plants, suggesting that the long-term water-use pattern of the plants does not change with the atmospheric N input. In addition, this study does not observe any relationship between leaf δ(15)N and leaf δ(13)C in both C(3) and C(4) plants.

  6. Characterization of metabolic profile of honokiol in rat feces using liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and (13)C stable isotope labeling.

    PubMed

    Dong, Yinfeng; Tang, Minghai; Song, Hang; Li, Rong; Wang, Chunyu; Ye, Haoyu; Qiu, Neng; Zhang, Yongkui; Chen, Lijuan; Wei, Yuquan

    2014-03-15

    As fecal excretion is one of important routes of elimination of drugs and their metabolites, it is indispensable to investigate the metabolites in feces for more comprehensive information on biotransformation in vivo. In this study, a sensitive and reliable approach based on ultra-performance liquid chromatography/quadrupole-time-of-flight-mass spectrometry (UHPLC-Q-TOF-MS) was applied to characterize the metabolic profile of honokiol in rat feces after the administration of an equimolar mixture of honokiol and [(13)C6]-labeled honokiol. Totally 42 metabolites were discovered and tentatively identified in rat feces samples, 26 metabolites were first reported, including two novel classes of metabolites, methylated and dimeric metabolites of honokiol. Moreover, this study provided basic comparative data on the metabolites in rat plasma, feces and urine, which gave better understanding of the metabolic fate of honokiol in vivo.

  7. Stable isotopes in obesity research.

    PubMed

    Dolnikowski, Gregory G; Marsh, Julian B; Das, Sai Krupa; Welty, Francine K

    2005-01-01

    Obesity is recognized as a major public health problem. Obesity is a multifactorial disease and is often associated with a wide range of comorbidities including hypertension, non-insulin dependent (Type II) diabetes mellitus, and cardiovascular disease, all of which contribute to morbidity and mortality. This review deals with stable isotope mass spectrometric methods and the application of stable isotopes to metabolic studies of obesity. Body composition and total energy expenditure (TEE) can be measured by mass spectrometry using stable isotope labeled water, and the metabolism of protein, lipid, and carbohydrate can be measured using appropriate labeled tracer molecules.

  8. Isotope labeling studies on the formation of multiple addition products of alanine in the pyrolysis residue of glucose/alanine mixtures by high-resolution ESI-TOF-MS.

    PubMed

    Chu, Fong Lam; Sleno, Lekha; Yaylayan, Varoujan A

    2011-11-09

    Pyrolysis was used as a microscale sample preparation tool to generate glucose/alanine reaction products to minimize the use of expensive labeled precursors in isotope labeling studies. The residue remaining after the pyrolysis at 250 °C was analyzed by electrospray time-of-flight mass spectrometry (ESI-TOF-MS). It was observed that a peak at m/z 199.1445 in the ESI-TOF-MS spectrum appeared only when the model system contained at least 2-fold excess alanine. The accurate mass determination indeed indicated the presence of two nitrogen atoms in the molecular formula (C(10)H(18)N(2)O(2)). To verify the origin of the carbon atoms in this unknown compound, model studies with [(13)U(6)]glucose, [(13)C-1]alanine, [(13)C-2]alanine, [(13)C-3]alanine, and [(15)N]alanine were also performed. Glucose furnished six carbon atoms, and alanine provides four carbon (2 × C-2 and 2 × C-3) and two nitrogen atoms. When commercially available fructosylalanine (N-attached to C-1) was reacted with only 1 mol of alanine, a peak at m/z 199.1445 was once again observed. In addition, when 3-deoxyglucosone (3-DG) was reacted with a 2-fold excess of alanine, a peak at m/z 199.1433 was also generated, confirming the points of attachment of the two amino acids at C-1 and C-2 atoms of 3-DG. These studies have indicated that amino acids can undergo multiple addition reactions with 1,2-dicarbonyl compounds such as 3-deoxyglucosone and eventually form a tetrahydropyrazine moiety.

  9. Mixed-Isotope Labeling with LC-IMS-MS for Characterization of Protein-Protein Interactions by Chemical Cross-Linking

    PubMed Central

    Merkley, Eric D.; Baker, Erin S.; Crowell, Kevin L.; Orton, Daniel J.; Taverner, Thomas; Ansong, Charles; Ibrahim, Yehia M.; Burnet, Meagan C.; Cort, John R.; Anderson, Gordon A.; Smith, Richard D.; Adkins, Joshua N.

    2013-01-01

    Chemical cross-linking of proteins followed by proteolysis and mass spectrometric analysis of the resulting cross-linked peptides provides powerful insight into the quaternary structure of protein complexes. Mixed-isotope cross-linking (a method for distinguishing intermolecular cross-links) was coupled with liquid chromatography and ion mobility separations and mass spectrometry (LC-IMS-MS) to provide an additional separation dimension to the traditional cross-linking approach. This method produced multiplet m/z peaks that are aligned in the IMS drift time dimension and serve as signatures of intermolecular cross-linked peptides. We developed an informatics tool to use the amino acid sequence information inherent in the multiplet spacing for accurate identification of the cross-linked peptides. Because of the separation of peptides and cross-linked peptides in drift time, our LC-IMS-MS approach was able to confidently detect more intermolecular cross-linked peptides than LC-MS alone. PMID:23423792

  10. An enhanced in vivo stable isotope labeling by amino acids in cell culture (SILAC) model for quantification of drug metabolism enzymes.

    PubMed

    MacLeod, A Kenneth; Fallon, Padraic G; Sharp, Sheila; Henderson, Colin J; Wolf, C Roland; Huang, Jeffrey T-J

    2015-03-01

    Many of the enzymes involved in xenobiotic metabolism are maintained at a low basal level and are only synthesized in response to activation of upstream sensor/effector proteins. This induction can have implications in a variety of contexts, particularly during the study of the pharmacokinetics, pharmacodynamics, and drug-drug interaction profile of a candidate therapeutic compound. Previously, we combined in vivo SILAC material with a targeted high resolution single ion monitoring (tHR/SIM) LC-MS/MS approach for quantification of 197 peptide pairs, representing 51 drug metabolism enzymes (DME), in mouse liver. However, as important enzymes (for example, cytochromes P450 (Cyp) of the 1a and 2b subfamilies) are maintained at low or undetectable levels in the liver of unstimulated metabolically labeled mice, quantification of these proteins was unreliable. In the present study, we induced DME expression in labeled mice through synchronous ligand-mediated activation of multiple upstream nuclear receptors, thereby enhancing signals for proteins including Cyps 1a, 2a, 2b, 2c, and 3a. With this enhancement, 115 unique, lysine-containing, Cyp-derived peptides were detected in the liver of a single animal, as opposed to 56 in a pooled sample from three uninduced animals. A total of 386 peptide pairs were quantified by tHR/SIM, representing 68 Phase I, 30 Phase II, and eight control proteins. This method was employed to quantify changes in DME expression in the hepatic cytochrome P450 reductase null (HRN) mouse. We observed compensatory induction of several enzymes, including Cyps 2b10, 2c29, 2c37, 2c54, 2c55, 2e1, 3a11, and 3a13, carboxylesterase (Ces) 2a, and glutathione S-transferases (Gst) m2 and m3, along with down-regulation of hydroxysteroid dehydrogenases (Hsd) 11b1 and 17b6. Using DME-enhanced in vivo SILAC material with tHR/SIM, therefore, permits the robust analysis of multiple DME of importance to xenobiotic metabolism, with improved utility for the study of

  11. Detection of reactive metabolites using isotope-labeled glutathione trapping and simultaneous neutral loss and precursor ion scanning with ultra-high-pressure liquid chromatography triple quadruple mass spectrometry.

    PubMed

    Huang, Ke; Huang, Lingyi; van Breemen, Richard B

    2015-04-07

    Metabolic activation of drugs to electrophilic species is responsible for over 60% of black box warnings and drug withdrawals from the market place in the United States. Reactive metabolite trapping using glutathione (GSH) and analysis using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) or HPLC with high resolution mass spectrometry (mass defect filtering) have enabled screening for metabolic activation to become routine during drug development. However, current MS-based approaches cannot detect all GSH conjugates present in complex mixtures, especially those present in extracts of botanical dietary supplements. To overcome these limitations, a fast triple quadrupole mass spectrometer-based approach was developed that can detect positively and negatively charged GSH conjugates in a single analysis without the need for advanced knowledge of the elemental compositions of potential conjugates and while avoiding false positives. This approach utilized UHPLC instead of HPLC to shorten separation time and enhance sensitivity, incorporated stable-isotope labeled GSH to avoid false positives, and used fast polarity switching electrospray MS/MS to detect GSH conjugates that form positive and/or negative ions. The general new method was then used to test the licorice dietary supplement Glycyrrhiza glabra, which was found to form multiple GSH conjugates upon metabolic activation. Among the GSH conjugates found in the licorice assay were conjugates with isoliquiritigenin and glabridin, which is an irreversible inhibitor of cytochrome P450 enzymes.

  12. An analysis of ash and isotopic carbon discrimination (delta13C) methods to evaluate water use efficiency in apple

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apple cultivars are selected for fruit quality, disease and insect resistance, not water use efficiency (WUE), however, the need for more water use efficient crops is accelerating due to climate change and increased competition for water resources. On a whole plant basis, calculation of water use e...

  13. Sugar fragmentation in the maillard reaction cascade: isotope labeling studies on the formation of acetic acid by a hydrolytic beta-dicarbonyl cleavage mechanism.

    PubMed

    Davídek, Tomas; Devaud, Stéphanie; Robert, Fabien; Blank, Imre

    2006-09-06

    The formation of acetic acid was elucidated based on volatile reaction products and related nonvolatile key intermediates. The origin and yield of acetic acid were determined under well-controlled conditions (90-120 degrees C, pH 6-8). Experiments with various 13C-labeled glucose isotopomers in the presence of glycine revealed all six carbon atoms being incorporated into acetic acid: C-1/C-2 ( approximately 70%), C-3/C-4 ( approximately 10%), and C-5/C-6 (approximately 20%). Acetic acid is a good marker of the 2,3-enolization pathway since it is almost exclusively formed from 1-deoxy-2,3-diulose intermediates. Depending on the pH, the acetic acid conversion yield reached 85 mol % when using 1-deoxy-2,3-hexodiulose (1) as a precursor. Hydrolytic beta-dicarbonyl cleavage of 1-deoxy-2,4-hexodiuloses was shown to be the major pathway leading to acetic acid from glucose without the intermediacy of any oxidizing agents. The presence of key intermediates was corroborated for the first time, i.e., tetroses and 2-hydroxy-3-oxobutanal, a tautomer of 1-hydroxy-2,3-butanedione, also referred to as 1-deoxy-2,3-tetrodiulose. The hydrolytic beta-dicarbonyl cleavage represents a general pathway to organic acids, which corresponds to an acyloin cleavage or a retro-Claisen type reaction. Although alternative mechanisms must exist, the frequently reported hydrolytic alpha-dicarbonyl cleavage of 1 can be ruled out as a pathway forming carboxylic acids.

  14. Protected amine labels: a versatile molecular scaffold for multiplexed nominal mass and sub-Da isotopologue quantitative proteomic reagents.

    PubMed

    Ficarro, Scott B; Biagi, Jessica M; Wang, Jinhua; Scotcher, Jenna; Koleva, Rositsa I; Card, Joseph D; Adelmant, Guillaume; He, Huan; Askenazi, Manor; Marshall, Alan G; Young, Nicolas L; Gray, Nathanael S; Marto, Jarrod A

    2014-04-01

    We assemble a versatile molecular scaffold from simple building blocks to create binary and multiplexed stable isotope reagents for quantitative mass spectrometry. Termed Protected Amine Labels (PAL), these reagents offer multiple analytical figures of merit including, (1) robust targeting of peptide N-termini and lysyl side chains, (2) optimal mass spectrometry ionization efficiency through regeneration of primary amines on labeled peptides, (3) an amino acid-based mass tag that incorporates heavy isotopes of carbon, nitrogen, and oxygen to ensure matched physicochemical and MS/MS fragmentation behavior among labeled peptides, and (4) a molecularly efficient architecture, in which the majority of hetero-atom centers can be used to synthesize a variety of nominal mass and sub-Da isotopologue stable isotope reagents. We demonstrate the performance of these reagents in well-established strategies whereby up to four channels of peptide isotopomers, each separated by 4 Da, are quantified in MS-level scans with accuracies comparable to current commercial reagents. In addition, we utilize the PAL scaffold to create isotopologue reagents in which labeled peptide analogs differ in mass based on the binding energy in carbon and nitrogen nuclei, thereby allowing quantification based on MS or MS/MS spectra. We demonstrate accurate quantification for reagents that support 6-plex labeling and propose extension of this scheme to 9-channels based on a similar PAL scaffold. Finally, we provide exemplar data that extend the application of isotopologe-based quantification reagents to medium resolution, quadrupole time-of-flight mass spectrometers.

  15. Elevated CO2 increases tree-level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites

    SciTech Connect

    Battipaglia, Giovanna; Saurer, Matthias; Cherubini, Paulo; Califapietra, Carlo; McCarthy, Heather R; Norby, Richard J; Cotrufo, M. Francesca

    2013-01-01

    Elevated CO2 increases intrinsic water use efficiency (WUEi) of forests, but the magnitude of this effect and its interaction with climate is still poorly understood. We combined tree ring analysis with isotope measurements at three Free Air CO2 Enrichment (FACE, POP-EUROFACE, in Italy; Duke FACE in North Carolina and ORNL in Tennessee, USA) sites, to cover the entire life of the trees. We used 13C to assess carbon isotope discrimination ( 13C ci/ca) and changes in WUEi, while direct CO2 effects on stomatal conductance were explored using 18O as a proxy. Across all the sites, elevated CO2 increased 13C-derived WUEi on average by 73% for Liquidambar styraciflua, 77% for Pinus taeda and 75% for Populus sp., but through different ecophysiological mechanisms. Our findings provide a robust means of predicting WUEi responses from a variety of tree species exposed to variable environmental conditions over time, and species-specific relationships that can help modeling elevated CO2 and climate impacts on forest productivity, carbon and water balances.

  16. Tree-Ring Stable Isotopes Reveal Twentieth-Century Increases in Water-Use Efficiency of Fagus sylvatica and Nothofagus spp. in Italian and Chilean Mountains

    PubMed Central

    Tognetti, Roberto; Lombardi, Fabio; Lasserre, Bruno; Cherubini, Paolo; Marchetti, Marco

    2014-01-01

    Changes in intrinsic water use efficiency (iWUE) were investigated in Fagus sylvatica and Nothofagus spp. over the last century. We combined dendrochronological methods with dual-isotope analysis to investigate whether atmospheric changes enhanced iWUE of Fagus and Nothofagus and tree growth (basal area increment, BAI) along latitudinal gradients in Italy and Chile. Post-maturation phases of the trees presented different patterns in δ13C, Δ13C, δ18O, Ci (internal CO2 concentration), iWUE, and BAI. A continuous enhancement in isotope-derived iWUE was observed throughout the twentieth century, which was common to all sites and related to changes in Ca (ambient CO2 concentration) and secondarily to increases in temperature. In contrast to other studies, we observed a general increasing trend of BAI, with the exception of F. sylvatica in Aspromonte. Both iWUE and BAI were uncoupled with the estimated drought index, which is in agreement with the absence of enduring decline in tree growth. In general, δ13C and δ18O showed a weak relationship, suggesting the major influence of photosynthetic rate on Ci and δ13C, and the minor contribution of the regulation of stomatal conductance to iWUE. The substantial warming observed during the twentieth century did not result in a clear pattern of increased drought stress along these latitudinal transects, because of the variability in temporal trends of precipitation and in specific responses of populations. PMID:25398040

  17. Soil organic carbon can be up-taken by plant roots and stored in plant biosilica: NanoSIMS and isotopic labeling evidences

    NASA Astrophysics Data System (ADS)

    Alexandre, Anne; Santos, Guaciara M.; balesdent, Jerôme; Basile-Doelsch, Isabelle; Borschneck, Daniel; Cazevieille, Patrick; Chevassus-Rosset, Claire; Doelsch, Emmanuel; Harutyunyan, Araks; Lemee, Laurent; Mazur, Jean-Charles; Reyerson, Paul; Signoret, Patrick

    2015-04-01

    Plant biosilica particles called phytoliths contain occluded organic compounds (phytC). Over the last few years, phytC content, nature, origin, paleoenvironmental meaning and impact in the global C cycle has been the subject of increasing debate[1, 2]. Inconsistencies in phytC quantification were fed by the scarcity of in-situ characterization of phytC in phytoliths and by inadequate extraction methods[3]. Very recently, 14C-AMS analyses of soil organic matter (SOM), amendments, plant tissues, atmospheric CO2 and phytolith samples, evidenced that a small but significant pool of phytC is not photosynthetic but derived from old SOM[4,5]. From there, several investigations were started to go further into the characterization of phytC and the mechanisms in play behind old SOM absorption by plant roots and old SOM occlusion in plant biosilica. Here, we first reconstruct at high spatial resolution the 3-dimentional location of phytC and its C/N signature using 3D X-ray microscopy and Nano-scale Secondary Ion Mass Spectrometry (NanoSIMS). A pool of phytC appears homogeneously distributed in the silica structure and its C:N estimate is in the range of amino acid signatures[6]. Then, we use 13C and 15N-labelled amino acids monitored from an hydroponic solution to grass roots, stems, leaves and phytoliths to evidence that amino acids are absorbed as such by the roots and are concentrated in phytC rather than in the plant tissues. These findings strengthen and complement the 14C evidences. Both of them dissuade attempts to use phytC as a proxy of plant C. Further, they open new avenues of investigation regarding the processes which drive SOM mobilization by plant uptake, for a better understanding of soil/plant interactions involved in the terrestrial C cycle. [1] Santos et al. 2010. Radiocarbon 52:113 [2] Santos et al. 2012. Biogeosci. 9:1873 [3] Corbineau et al. 2013 R. Paleobot. Palyn. 197: 179 [4] Reyerson et al. 2013 AGU Fall meeting 2013 (1803125) [5] Santos et al. 2014

  18. Oxygen atom transfer and oxidative water incorporation in cuboidal Mn3MO(n) complexes based on synthetic, isotopic labeling, and computational studies.

    PubMed

    Kanady, Jacob S; Mendoza-Cortes, Jose L; Tsui, Emily Y; Nielsen, Robert J; Goddard, William A; Agapie, Theodor

    2013-01-23

    The oxygen-evolving complex (OEC) of photosystem II contains a Mn(4)CaO(n) catalytic site, in which reactivity of bridging oxidos is fundamental to OEC function. We synthesized structurally relevant cuboidal Mn(3)MO(n) complexes (M = Mn, Ca, Sc; n = 3,4) to enable mechanistic studies of reactivity and incorporation of μ(3)-oxido moieties. We found that Mn(IV)(3)CaO(4) and Mn(IV)(3)ScO(4) were unreactive toward trimethylphosphine (PMe(3)). In contrast, our Mn(III)(2)Mn(IV)(2)O(4) cubane reacts with this phosphine within minutes to generate a novel Mn(III)(4)O(3) partial cubane plus Me(3)PO. We used quantum mechanics to investigate the reaction paths for oxygen atom transfer to phosphine from Mn(III)(2)Mn(IV)(2)O(4) and Mn(IV)(3)CaO(4). We found that the most favorable reaction path leads to partial detachment of the CH(3)COO(-) ligand, which is energetically feasible only when Mn(III) is present. Experimentally, the lability of metal-bound acetates is greatest for Mn(III)(2)Mn(IV)(2)O(4). These results indicate that even with a strong oxygen atom acceptor, such as PMe(3), the oxygen atom transfer chemistry from Mn(3)MO(4) cubanes is controlled by ligand lability, with the Mn(IV)(3)CaO(4) OEC model being unreactive. The oxidative oxide incorporation into the partial cubane, Mn(III)(4)O(3), was observed experimentally upon treatment with water, base, and oxidizing equivalents. (18)O-labeling experiments provided mechanistic insight into the position of incorporation in the partial cubane structure, consistent with mechanisms involving migration of oxide moieties within the cluster but not consistent with selective incorporation at the site available in the starting species. These results support recent proposals for the mechanism of the OEC, involving oxido migration between distinct positions within the cluster.

  19. Synthesis of the isotope-labeled derivatization reagent for carboxylic acids, 7-(N,N-dimethylaminosulfonyl)-4-(aminoethyl)piperazino-2,1,3-benzoxadiazole (d6) [DBD-PZ-NH2 (D)], and its application to the quantification and the determination of relative amount of fatty acids in rat plasma samples by high-performance liquid chromatography/mass spectrometry.

    PubMed

    Tsukamoto, Yuhki; Santa, Tomofumi; Yoshida, Hiroo; Miyano, Hiroshi; Fukushima, Takeshi; Hirayama, Kazuo; Imai, Kazuhiro; Funatsu, Takashi

    2006-04-01

    The isotope-labeled benzofurazan derivatization reagent for carboxylic acids, 7-(N,N-dimethylaminosulfonyl)-4-(aminoethyl)piperazino-2,1,3-benzoxadiazole (d6) [DBD-PZ-NH2 (D)] was synthesized. DBD-PZ-NH2 (D) was used for the accurate quantification of fatty acids by liquid chromatography/mass spectrometry (LC/MS). The standard fatty acids were derivatized with DBD-PZ-NH2 (D) to the stable isotope-labeled compounds for the fatty acids derivatives of DBD-PZ-NH2 and used for the internal standards. The obtained calibration curves for fatty acids were linear over the range 0.1-200 microM (r2 > 0.999). Fatty acids in plasma samples were determined after derivatization with DBD-PZ-NH2 and analyzed by LC/MS using standard fatty acid DBD-PZ-NH2 (D) derivatives as internal standards. Furthermore, the relative amounts of fatty acids in two plasma samples were determined after derivatization with DBD-PZ-NH2 and DBD-PZ-NH2) (D). The isotope-labeled derivatization reagent was useful for accurate quantification and the determination of relative amounts of the metabolites in biological samples having the target functional group.

  20. Approximation Algorithms for Free-Label Maximization

    NASA Astrophysics Data System (ADS)

    de Berg, Mark; Gerrits, Dirk H. P.

    Inspired by air traffic control and other applications where moving objects have to be labeled, we consider the following (static) point labeling problem: given a set P of n points in the plane and labels that are unit squares, place a label with each point in P in such a way that the number of free labels (labels not intersecting any other label) is maximized. We develop efficient constant-factor approximation algorithms for this problem, as well as PTASs, for various label-placement models.

  1. Phosphoprotein Isotope-Coded Solid-Phase Tag Approach for Enrichment and Quantitative Analysis of Phosphopeptides from Complex Mixtures

    SciTech Connect

    Qian, Weijun ); Goshe, Michael B.; Camp, David G. ); Yu, Li-Rong ); Tang, Keqi ); Smith, Richard D. )

    2003-10-15

    Many cellular processes are regulated by reversible protein phosphorylation and the ability to identify and quantify phosphoproteins from proteomes is essential for gaining a better understanding of these dynamic cellular processes. However, a sensitive, efficient and global method capable of addressing the phosphoproteome has yet to be developed. Here we describe an improved stable-isotope labeling method using a Phosphoprotein Isotope-coded Solid-phase Tag (PhIST) for isolating and measuring the relative abundance of phosphorylated peptides from complex peptide mixtures resulting from the enzymatic digestion of extracted proteins. The PhIST approach is an extension of the previously reported Phosphoprotein Isotope-coded Affinity Tag (PhIAT)approach developed by our laboratory1-2, where the O-phosphate moiety on phosphoseryl or phosphothreonyl residues were derivatized by hydroxide ion-medated B-elimination followed by the addition of 1,2-ethanedithiol (EDT). Instead of using the biotin affinity tag, peptides containing the EDT moiety were captured and labeled in one step using isotope-coded solid-phase reagents containing either light (12C6, 14N) or heavy (13C6, 15N) stable isotopes. The captured peptides labeled with the isotope-coded tags were released from the solid-phase support by UV photocleavage and analyzed by capillary LC-MS/MS. The efficiency and sensitivity of the PhIST labeling approach for identification of phosphopeptides from mixtures was demonstrated using casein phosphoproteins. Its utility for proteomic applications is demonstrated by the labeling of soluble proteins from human breast cancer cell line.

  2. Evidence of the chemical reaction of (18)O-labelled nitrite with CO2 in aqueous buffer of neutral pH and the formation of (18)OCO by isotope ratio mass spectrometry.

    PubMed

    Tsikas, Dimitrios; Böhmer, Anke; Gros, Gerolf; Endeward, Volker

    2016-05-01

    Inorganic nitrite (NO2(-), ON-O(-) ←→ (-)O-NO) is the autoxidation product of nitric oxide (NO). Nitrite can also be formed from inorganic nitrate (ONO2(-)), the major oxidation product of NO in erythrocytes, by the catalytic action of bacterial nitrate reductase in gut and oral microflora. Nitrite can be reduced to NO by certain cellular proteins and enzymes, as well as in the gastric juice under acidic conditions. Hemoglobin, xanthine oxidoreductase and carbonic anhydrase (CA) have been reported to convert nitrite to NO. Renal CA isoforms are involved in the reabsorption of nitrite and may, therefore, play an important role in NO homeostasis. Yet, the mechanisms underlying the action of CA on nitrite are incompletely understood. The nitrate/nitrite system is regarded as a reservoir of NO. We have recently shown that nitrite reacts chemically with carbon dioxide (CO2), the regular substrate of CA. The present communication reports a stable isotope ratio mass spectrometry (IRMS) study on the reaction of NO2(-) and CO2 performed in 50 mM HEPES buffer of pH 7.4 at 37 °C. By using (18)O-labelled nitrite ((18)ON-O(-)/(-18)O-NO) and CO2 we observed formation of (18)O-labelled CO2. This finding is an unequivocal evidence of the chemical reaction of (18)ON-O(-)/(-18)O-NO with CO2. The reaction is rapid and involves nucleophilic attack of the negatively charged nitrite via one of its oxygen atoms on the partially positively charged CO2 molecule to form the putative intermediate (18)ON-O-CO2(-)/(-)O2C-(18)O-NO. The by far largest fraction of this intermediate decomposes back to (18)ON-O(-)/(-18)O-NO and CO2. A very small fraction of the intermediate, however, rearranges and finally decomposes to form (18)OCO and nitrite. This reaction is slower in the presence of an isolated erythrocytic CA isoform II. In summary, NO2(-), CO2 and CA are ubiquitous. The chemical reaction of NO2(-) with CO2 and its modulation by CA isoforms may play important roles in the transport of

  3. Stable Isotope Labeling with Amino Acids (SILAC)-Based Proteomics of Primary Human Kidney Cells Reveals a Novel Link between Male Sex Hormones and Impaired Energy Metabolism in Diabetic Kidney Disease.

    PubMed

    Clotet, Sergi; Soler, Maria Jose; Riera, Marta; Pascual, Julio; Fang, Fei; Zhou, Joyce; Batruch, Ihor; Vasiliou, Stella K; Dimitromanolakis, Apostolos; Barrios, Clara; Diamandis, Eleftherios P; Scholey, James W; Konvalinka, Ana

    2017-03-01

    Male sex predisposes to many kidney diseases. Considering that androgens exert deleterious effects in a variety of cell types within the kidney, we hypothesized that dihydrotestosterone (DHT) would alter the biology of the renal tubular cell by inducing changes in the proteome. We employed stable isotope labeling with amino acids (SILAC) in an indirect spike-in fashion to accurately quantify the proteome in DHT- and 17β-estradiol (EST)-treated human proximal tubular epithelial cells (PTEC). Of the 5043 quantified proteins, 76 were differentially regulated. Biological processes related to energy metabolism were significantly enriched among DHT-regulated proteins. SILAC ratios of 3 candidates representing glycolysis, N-acetylglucosamine metabolism and fatty acid β-oxidation, namely glucose-6-phosphate isomerase (GPI), glucosamine-6-phosphate-N-acetyltransferase 1 (GNPNAT1), and mitochondrial trifunctional protein subunit alpha (HADHA), were verified in vitro. In vivo, renal GPI and HADHA protein expression was significantly increased in males. Furthermore, male sex was associated with significantly higher GPI, GNPNAT1, and HADHA kidney protein expression in two different murine models of diabetes. Enrichment analysis revealed a link between our DHT-regulated proteins and oxidative stress within the diabetic kidney. This finding was validated in vivo, as we observed increased oxidative stress levels in control and diabetic male kidneys, compared with females. This in depth quantitative proteomics study of human primary PTEC response to sex hormone administration suggests that male sex hormone stimulation results in perturbed energy metabolism in kidney cells, and that this perturbation results in increased oxidative stress in the renal cortex. The proteome-level changes associated with androgens may play a crucial role in the development of structural and functional changes in the diseased kidney. With our findings, we propose a possible link between diabetic and

  4. Food Labeling

    MedlinePlus

    ... in the U.S. have food labels. On every food label you will see Serving size, number of servings, and number of calories per serving Information on the amount of dietary fat, cholesterol, dietary fiber, dietary sodium, carbohydrates, dietary proteins, vitamins, ...

  5. CAESAR—A high-efficiency CsI(Na) scintillator array for in-beam γ-ray spectroscopy with fast rare-isotope beams

    NASA Astrophysics Data System (ADS)

    Weisshaar, D.; Gade, A.; Glasmacher, T.; Grinyer, G. F.; Bazin, D.; Adrich, P.; Baugher, T.; Cook, J. M.; Diget, C. Aa.; McDaniel, S.; Ratkiewicz, A.; Siwek, K. P.; Walsh, K. A.

    2010-12-01

    We report on the construction and commissioning of the high-efficiency CAESium-iodide scintillator ARray CAESAR, a device designed for in-beam γ-ray spectroscopy experiments utilizing fast beams of rare isotopes at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU). CAESAR consists of 192 CsI(Na) crystals, totaling 290 kg of active scintillator material. For 1 MeV γ rays, a full-energy-peak efficiency of 35% is achieved at an in-beam energy resolution of better than 10% FWHM after event-by-event Doppler reconstruction of the γ rays emitted by nuclei moving with velocities of v/c˜0.3-0.4. The spectral quality of the array allows for the identification of γ-ray transitions with intensities of several 10 counts in the full-energy peak and thus opens new avenues for the study of the most exotic nuclei available at the NSCL for in-beam spectroscopy.

  6. C4 plants use fluctuating light less efficiently than do C3 plants: a study of growth, photosynthesis and carbon isotope discrimination.

    PubMed

    Kubásek, Jiří; Urban, Otmar; Šantrůček, Jiří

    2013-12-01

    Plants in the field are commonly exposed to fluctuating light intensity, caused by variable cloud cover, self-shading of leaves in the canopy and/or leaf movement due to turbulence. In contrast to C3 plant species, only little is known about the effects of dynamic light (DL) on photosynthesis and growth in C4 plants. Two C4 and two C3 monocot and eudicot species were grown under steady light or DL conditions with equal sum of daily incident photon flux. We measured leaf gas exchange, plant growth and dry matter carbon isotope discrimination to infer CO2 bundle sheath leakiness in C4 plants. The growth of all species was reduced by DL, despite only small changes in steady-state gas exchange characteristics, and this effect was more pronounced in C4 than C3 species due to lower assimilation at light transitions. This was partially attributed to increased bundle sheath leakiness in C4 plants under the simulated lightfleck conditions. We hypothesize that DL leads to imbalances in the coordination of C4 and C3 cycles and increasing leakiness, thereby decreasing the quantum efficiency of photosynthesis. In addition to their other constraints, the inability of C4 plants to efficiently utilize fluctuating light likely contributes to their absence in such environments as forest understoreys.

  7. Rapid and efficient localization of depth electrodes and cortical labeling using free and open source medical software in epilepsy surgery candidates

    PubMed Central

    Princich, Juan Pablo; Wassermann, Demian; Latini, Facundo; Oddo, Silvia; Blenkmann, Alejandro Omar; Seifer, Gustavo; Kochen, Silvia

    2013-01-01

    Depth intracranial electrodes (IEs) placement is one of the most used procedures to identify the epileptogenic zone (EZ) in surgical treatment of drug resistant epilepsy patients, about 20–30% of this population. IEs localization is therefore a critical issue defining the EZ and its relation with eloquent functional areas. That information is then used to target the resective surgery and has great potential to affect outcome. We designed a methodological procedure intended to avoid the need for highly specialized medical resources and reduce time to identify the anatomical location of IEs, during the first instances of intracranial EEG recordings. This workflow is based on established open source software; 3D Slicer and Freesurfer that uses MRI and Post-implant CT fusion for the localization of IEs and its relation with automatic labeled surrounding cortex. To test this hypothesis we assessed the time elapsed between the surgical implantation process and the final anatomical localization of IEs by means of our proposed method compared against traditional visual analysis of raw post-implant imaging in two groups of patients. All IEs were identified in the first 24 H (6–24 H) of implantation using our method in 4 patients of the first group. For the control group; all IEs were identified by experts with an overall time range of 36 h to 3 days using traditional visual analysis. It included (7 patients), 3 patients implanted with IEs and the same 4 patients from the first group. Time to localization was restrained in this group by the specialized personnel and the image quality available. To validate our method; we trained two inexperienced operators to assess the position of IEs contacts on four patients (5 IEs) using the proposed method. We quantified the discrepancies between operators and we also assessed the efficiency of our method to define the EZ comparing the findings against the results of traditional analysis. PMID:24427112

  8. Rapid and efficient localization of depth electrodes and cortical labeling using free and open source medical software in epilepsy surgery candidates.

    PubMed

    Princich, Juan Pablo; Wassermann, Demian; Latini, Facundo; Oddo, Silvia; Blenkmann, Alejandro Omar; Seifer, Gustavo; Kochen, Silvia

    2013-01-01

    Depth intracranial electrodes (IEs) placement is one of the most used procedures to identify the epileptogenic zone (EZ) in surgical treatment of drug resistant epilepsy patients, about 20-30% of this population. IEs localization is therefore a critical issue defining the EZ and its relation with eloquent functional areas. That information is then used to target the resective surgery and has great potential to affect outcome. We designed a methodological procedure intended to avoid the need for highly specialized medical resources and reduce time to identify the anatomical location of IEs, during the first instances of intracranial EEG recordings. This workflow is based on established open source software; 3D Slicer and Freesurfer that uses MRI and Post-implant CT fusion for the localization of IEs and its relation with automatic labeled surrounding cortex. To test this hypothesis we assessed the time elapsed between the surgical implantation process and the final anatomical localization of IEs by means of our proposed method compared against traditional visual analysis of raw post-implant imaging in two groups of patients. All IEs were identified in the first 24 H (6-24 H) of implantation using our method in 4 patients of the first group. For the control group; all IEs were identified by experts with an overall time range of 36 h to 3 days using traditional visual analysis. It included (7 patients), 3 patients implanted with IEs and the same 4 patients from the first group. Time to localization was restrained in this group by the specialized personnel and the image quality available. To validate our method; we trained two inexperienced operators to assess the position of IEs contacts on four patients (5 IEs) using the proposed method. We quantified the discrepancies between operators and we also assessed the efficiency of our method to define the EZ comparing the findings against the results of traditional analysis.

  9. Isotopic Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.

    1985-01-01

    An overview is provided of the biogeochemical research. The funding, productivity, personnel and facilities are reviewed. Some of the technical areas covered are: carbon isotopic records; isotopic studies of banded iron formations; isotope effects in microbial systems; studies of organic compounds in ancient sediments; and development in isotopic geochemistry and analysis.

  10. Stable isotope coded derivatizing reagents as internal standards in metabolite profiling.

    PubMed

    Bruheim, Per; Kvitvang, Hans Fredrik Nyvold; Villas-Boas, Silas G

    2013-06-28

    Gas chromatography (GC) and liquid chromatography (LC) coupled to mass spectrometric (MS) detection have become the two main techniques for the analysis of metabolite pools (i.e. Metabolomics). These technologies are especially suited for Metabolite Profiling analysis of various metabolite groups due to high separation capabilities of the chromatographs and high sensitivity of the mass analysers. The trend in quantitative Metabolite Profiling is to add more metabolites and metabolite groups in a single method. This should not be done by compromising the analytical precision. Mass spectrometric detection comes with certain limitations, especially in the quantitative aspects as standards are needed for conversion of ion abundance to concentration and ionization efficiencies are directly dependent on eluent conditions. This calls for novel strategies to counteract all variables that can influence the quantitative precision. Usually, internal standards are used to correct any technical variation. For quantitation of single or just a few analytes this can be executed with spiking isotopically labeled standards. However, for more comprehensive analytical tasks, e.g. profiling tens or hundreds of analytes simultaneously, this strategy becomes expensive and in many cases isotopically labeled standards are not available. An alternative is to introduce a derivatizing step where the sample is derivatized with naturally labeled reagent, while a standard solution is separately derivatized with isotopically labeled reagent and spiked into the sample solution prior to analysis. This strategy, named isotope coded derivatization - ICD, is attractive in the emerging field of quantitative Metabolite Profiling where current protocols can easily comprise over hundred metabolites. This review provides an overview of isotopically labeled derivatizing reagents that have been developed for important metabolite groups with the aim to improve analytical performance and precision.

  11. Uranium Isotopic Analysis with the FRAM Isotopic Analysis Code

    SciTech Connect

    Duc T. Vo; Thomas E. Sampson

    1999-05-01

    FRAM is the acronym for Fixed-energy Response-function Analysis with Multiple efficiency. This software was developed at Los Alamos National Laboratory originally for plutonium isotopic analysis. Later, it was adapted for uranium isotopic analysis in addition to plutonium. It is a code based on a self-calibration using several gamma-ray peaks for determining the isotopic ratios. The versatile-parameter database structure governs all facets of the data analysis. User editing of the parameter sets allows great flexibility in handling data with different isotopic distributions, interfering isotopes, and different acquisition parameters such as energy calibration and detector type.

  12. 18O-Labeled Proteome Reference as Global Internal Standards for Targeted Quantification by Selected Reaction Monitoring-Mass Spectrometry

    SciTech Connect

    Kim, Jong Seo; Fillmore, Thomas L.; Liu, Tao; Robinson, Errol W.; Hossain, Mahmud; Champion, Boyd L.; Moore, Ronald J.; Camp, David G.; Smith, Richard D.; Qian, Weijun

    2011-10-11

    Selected reaction monitoring-mass spectrometry (SRM-MS) is an emerging technology for high throughput targeted protein quantification and verification in biological and biomarker discovery studies; however, the cost associated with the use of stable isotope labeled synthetic peptides as internal standards is prohibitive for quantitatively screening large numbers of candidate proteins as often required in the pre-verification phase of biomarker discovery. Herein we present the proof-of-concept experiments of using an 18O-labeled 'universal' reference as comprehensive internal standards for quantitative SRM-MS analysis. With an 18O-labeled whole proteome sample as reference, every peptide of interest will have its own corresponding heavy isotope labeled internal standard, thus providing an ideal approach for quantitative screening of a large number of candidates using SRM-MS. Our results showed that the 18O incorporation efficiency using a recently improved protocol was >99.5% for most peptides investigated, a level comparable to 13C/15N labeled synthetic peptides in terms of heavy isotope incorporation. The accuracy, reproducibility, and linear dynamic range of quantification were further assessed based on known ratios of standard proteins spiked into mouse plasma with an 18O-labeled mouse plasma reference. A dynamic range of four orders of magnitude in relative concentration was obtained with high reproducibility (i.e., coefficient of variance <10%) based on the 16O/18O peak area ratios. Absolute and relative quantification of C-reactive protein and prostate-specific antigen were demonstrated by coupling an 18O-labeled reference with standard additions of protein standards. Collectively, our results demonstrated that the use of 18O-labeled reference provides a convenient and effective strategy for quantitative SRM screening of large number of candidate proteins.

  13. Food Labels

    MedlinePlus

    ... the food came from, whether the food is organic, and certain health claims. So who decides what ... make that claim. Foods that are labeled "USDA organic" are required to have at least 95% organic ...

  14. Comparison of seasonal variations in water-use efficiency calculated from the carbon isotope composition of tree rings and flux data in a temperate forest.

    PubMed

    Michelot, Alice; Eglin, Thomas; Dufrêne, Eric; Lelarge-Trouverie, Caroline; Damesin, Claire

    2011-02-01

    Tree-ring δ(13) C is often interpreted in terms of intrinsic water-use efficiency (WUE) using a carbon isotope discrimination model established at the leaf level. We examined whether intra-ring δ(13) C could be used to assess variations in intrinsic WUE (W(g), the ratio of carbon assimilation and stomatal conductance to water) and variations in ecosystem WUE (W(t) , the ratio of C assimilation and transpiration) at a seasonal scale. Intra-ring δ(13) C was measured in 30- to 60-µm-thick slices in eight oak trees (Quercus petraea). Canopy W(g) was simulated using a physiologically process-based model. High between-tree variability was observed in the seasonal variations of intra-ring δ(13) C. Six trees showed significant positive correlations between W(g) calculated from intra-ring δ(13) C and canopy W(g) averaged over several days during latewood formation. These results suggest that latewood is a seasonal recorder of W(g) trends, with a temporal lag corresponding to the mixing time of sugars in the phloem. These six trees also showed significant negative correlations between photosynthetic discrimination Δ calculated from intra-ring δ(13) C, and ecosystem W(t), during latewood formation. Despite the observed between-tree variability, these results indicate that intra-ring δ(13) C can be used to access seasonal variations in past W(t).

  15. Quantitative trait loci for water-use efficiency in barley (Hordeum vulgare L.) measured by carbon isotope discrimination under rain-fed conditions on the Canadian Prairies.

    PubMed

    Chen, Jing; Chang, Scott X; Anyia, Anthony O

    2012-06-01

    Barley (Hordeum vulgare L.) yield is commonly limited by low rainfall and high temperature during the growing season on the Canadian Prairies. Empirical knowledge suggests that carbon isotope discrimination (Δ(13)C), through its negative relationship with water-use efficiency (WUE), is a good index for selecting stable yielding crops in some rain-fed environments. Identification of quantitative trait loci (QTL) and linked markers for Δ(13)C will enhance its use efficiency in breeding programs. In the present study, two barley populations (W89001002003 × I60049 or W × I, six-row type, and Merit × H93174006 or M × H, two-row type), containing 200 and 127 recombinant inbred lines (RILs), were phenotyped for leaf Δ(13)C and agronomic traits under rain-fed environments in Alberta, Canada. A transgressive segregation pattern for leaf Δ(13)C was observed among RILs. The broad-sense heritability (H (2)) of leaf Δ(13)C was 0.8, and there was no significant interaction between genotype and environment for leaf Δ(13)C in the W × I RILs. A total of 12 QTL for leaf Δ(13)C were detected in the W × I RILs and 5 QTL in the M × H RILs. For the W × I RILs, a major QTL located on chromosome 3H near marker Bmag606 (9.3, 9.4 and 10.7 cM interval) was identified. This major QTL overlapped with several agronomic traits, with W89001002003 alleles favoring lower leaf Δ(13)C, increased plant height, and reduced leaf area index, grain yield, harvest index and days to maturity at this locus or loci. This major QTL and its associated marker, when validated, maybe useful in breeding programs aimed at improving WUE and yield stability of barley on the Canadian Prairies.

  16. Proteomic response to 5,6-dimethylxanthenone 4-acetic acid (DMXAA, vadimezan) in human non-small cell lung cancer A549 cells determined by the stable-isotope labeling by amino acids in cell culture (SILAC) approach.

    PubMed

    Pan, Shu-Ting; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Yang, Yin-Xue; Wang, Dong; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    5,6-Dimethylxanthenone 4-acetic acid (DMXAA), also known as ASA404 and vadimezan, is a potent tumor blood vessel-disrupting agent and cytokine inducer used alone or in combination with other cytotoxic agents for the treatment of non-small cell lung cancer (NSCLC) and other cancers. However, the latest Phase III clinical trial has shown frustrating outcomes in the treatment of NSCLC, since the therapeutic targets and underlying mechanism for the anticancer effect of DMXAA are not yet fully understood. This study aimed to examine the proteomic response to DMXAA and unveil the global molecular targets and possible mechanisms for the anticancer effect of DMXAA in NSCLC A549 cells using a stable-isotope labeling by amino acids in cell culture (SILAC) approach. The proteomic data showed that treatment with DMXAA modulated the expression of 588 protein molecules in A549 cells, with 281 protein molecules being up regulated and 306 protein molecules being downregulated. Ingenuity pathway analysis (IPA) identified 256 signaling pathways and 184 cellular functional proteins that were regulated by DMXAA in A549 cells. These targeted molecules and signaling pathways were mostly involved in cell proliferation and survival, redox homeostasis, sugar, amino acid and nucleic acid metabolism, cell migration, and invasion and programed cell death. Subsequently, the effects of DMXAA on cell cycle distribution, apoptosis, autophagy, and reactive oxygen species (ROS) generation were experimentally verified. Flow cytometric analysis showed that DMXAA significantly induced G1 phase arrest in A549 cells. Western blotting assays demonstrated that DMXAA induced apoptosis via a mitochondria-dependent pathway and promoted autophagy, as indicated by the increased level of cytosolic cytochrome c, activation of caspase 3, and enhanced expression of beclin 1 and microtubule-associated protein 1A/1B-light chain 3 (LC3-II) in A549 cells. Moreover, DMXAA significantly promoted intracellular ROS

  17. The elusive structure of Pd2(dba)3. Examination by isotopic labeling, NMR spectroscopy, and X-ray diffraction analysis: synthesis and characterization of Pd2(dba-Z)3 complexes.

    PubMed

    Kapdi, Anant R; Whitwood, Adrian C; Williamson, David C; Lynam, Jason M; Burns, Michael J; Williams, Thomas J; Reay, Alan J; Holmes, Jordan; Fairlamb, Ian J S

    2013-06-05

    Pd(0)2(dba)3 (dba = E,E-dibenzylidene acetone) is the most widely used Pd(0) source in Pd-mediated transformations. Pd(0)2(dba-Z)3 (Z = dba aryl substituents) complexes exhibit remarkable and differential catalytic performance in an eclectic array of cross-coupling reactions. The precise structure of these types of complexes has been confounding, since early studies in 1970s to the present day. In this study the solution and solid-state structures of Pd(0)2(dba)3 and Pd(0)2(dba-Z)3 have been determined. Isotopic labeling ((2)H and (13)C) has allowed the solution structures of the freely exchanging major and minor isomers of Pd(0)2(dba)3 to be determined at high field (700 MHz). DFT calculations support the experimentally determined major and minor isomeric structures, which show that the major isomer of Pd(0)2(dba)3 possesses bridging dba ligands found exclusively in a s-cis,s-trans conformation. For the minor isomer one of the dba ligands is found exclusively in a s-trans,s-trans conformation. Single crystal X-ray diffraction analysis of Pd(0)2(dba)3·CHCl3 (high-quality data) shows that all three dba ligands are found over two positions. NMR spectroscopic analysis of Pd(0)2(dba-Z)3 reveals that the aryl substituent has a profound effect on the rate of Pd-olefin exchange and the global stability of the complexes in solution. Complexes containing the aryl substituents, 4-CF3, 4-F, 4-t-Bu, 4-hexoxy, 4-OMe, exhibit well-resolved (1)H NMR spectra at 298 K, whereas those containing 3,5-OMe and 3,4,5-OMe exhibit broad spectra. The solid-state structures of three Pd(0)2(dba-Z)3 complexes (4-F, 4-OMe, 3,5-OMe) have been determined by single crystal X-ray diffraction methods, which have been compared with Goodson's X-ray structure of Pd(0)2(dba-4-OH)3.

  18. p53-Regulated Networks of Protein, mRNA, miRNA, and lncRNA Expression Revealed by Integrated Pulsed Stable Isotope Labeling With Amino Acids in Cell Culture (pSILAC) and Next Generation Sequencing (NGS) Analyses*

    PubMed Central

    Hünten, Sabine; Kaller, Markus; Drepper, Friedel; Oeljeklaus, Silke; Bonfert, Thomas; Erhard, Florian; Dueck, Anne; Eichner, Norbert; Friedel, Caroline C.; Meister, Gunter; Zimmer, Ralf; Warscheid, Bettina; Hermeking, Heiko

    2015-01-01

    We determined the effect of p53 activation on de novo protein synthesis using quantitative proteomics (pulsed stable isotope labeling with amino acids in cell culture/pSILAC) in the colorectal cancer cell line SW480. This was combined with mRNA and noncoding RNA expression analyses by next generation sequencing (RNA-, miR-Seq). Furthermore, genome-wide DNA binding of p53 was analyzed by chromatin-immunoprecipitation (ChIP-Seq). Thereby, we identified differentially regulated proteins (542 up, 569 down), mRNAs (1258 up, 415 down), miRNAs (111 up, 95 down) and lncRNAs (270 up, 123 down). Changes in protein and mRNA expression levels showed a positive correlation (r = 0.50, p < 0.0001). In total, we detected 133 direct p53 target genes that were differentially expressed and displayed p53 occupancy in the vicinity of their promoter. More transcriptionally induced genes displayed occupied p53 binding sites (4.3% mRNAs, 7.2% miRNAs, 6.3% lncRNAs, 5.9% proteins) than repressed genes (2.4% mRNAs, 3.2% miRNAs, 0.8% lncRNAs, 1.9% proteins), suggesting indirect mechanisms of repression. Around 50% of the down-regulated proteins displayed seed-matching sequences of p53-induced miRNAs in the corresponding 3′-UTRs. Moreover, proteins repressed by p53 significantly overlapped with those previously shown to be repressed by miR-34a. We confirmed up-regulation of the novel direct p53 target genes LINC01021, MDFI, ST14 and miR-486 and showed that ectopic LINC01021 expression inhibits proliferation in SW480 cells. Furthermore, KLF12, HMGB1 and CIT mRNAs were confirmed as direct targets of the p53-induced miR-34a, miR-205 and miR-486–5p, respectively. In line with the loss of p53 function during tumor progression, elevated expression of KLF12, HMGB1 and CIT was detected in advanced stages of cancer. In conclusion, the integration of multiple omics methods allowed the comprehensive identification of direct and indirect effectors of p53 that provide new insights and leads into the

  19. Correlated optical and isotopic nanoscopy

    PubMed Central

    Saka, Sinem K.; Vogts, Angela; Kröhnert, Katharina; Hillion, François; Rizzoli, Silvio O; Wessels, Johannes T.

    2014-01-01

    The isotopic composition of different materials can be imaged by secondary ion mass spectrometry. In biology, this method is mainly used to study cellular metabolism and turnover, by pulsing the cells with marker molecules such as amino acids labelled with stable isotopes (15N, 13C). The incorporation of the markers is then imaged with a lateral resolution that can surpass 100 nm. However, secondary ion mass spectrometry cannot identify specific subcellular structures like organelles, and needs to be correlated with a second technique, such as fluorescence imaging. Here, we present a method based on stimulated emission depletion microscopy that provides correlated optical and isotopic nanoscopy (COIN) images. We use this approach to study the protein turnover in different organelles from cultured hippocampal neurons. Correlated optical and isotopic nanoscopy can be applied to a variety of biological samples, and should therefore enable the investigation of the isotopic composition of many organelles and subcellular structures. PMID:24718107

  20. Mass Defect-Based N,N-Dimethyl Leucine Labels for Quantitative Proteomics and Amine Metabolomics of Pancreatic Cancer Cells

    PubMed Central

    Hao, Ling; Johnson, Jillian; Lietz, Christopher B.; Buchberger, Amanda; Frost, Dustin; Kao, W. John; Li, Lingjun

    2017-01-01

    Mass spectrometry-based stable isotope labeling has become a key technology for protein and small-molecule analyses. We developed a multiplexed quantification method for simultaneous proteomics and amine metabolomics analyses via nano reversed-phase liquid chromatography–tandem mass spectrometry (nanoRPLC–MS/MS), called mass defect-based N,N-dimethyl leucine (mdDiLeu) labeling. The duplex mdDiLeu reagents were custom-synthesized with a mass difference of 20.5 mDa, arising from the subtle variation in nuclear binding energy between the two DiLeu isotopologues. Optimal MS resolving powers were determined to be 240K for labeled peptides and 120K for labeled metabolites on the Orbitrap Fusion Lumos instrument. The mdDiLeu labeling does not suffer from precursor interference and dynamic range compression, providing excellent accuracy for MS1-centric quantification. Quantitative information is only revealed at high MS resolution without increasing spectrum complexity and overlapping isotope distribution. Chromatographic performance of polar metabolites was dramatically improved by mdDiLeu labeling with modified hydrophobicity, enhanced ionization efficiency, and picomole levels of detection limits. Paralleled proteomics and amine metabolomics analyses using mdDiLeu were systematically evaluated and then applied to pancreatic cancer cells. PMID:28194987

  1. INCORPORATING CONCENTRATION DEPENDENCE IN STABLE ISOTOPE MIXING MODELS

    EPA Science Inventory

    Stable isotopes are often used as natural labels to quantify the contributions of multiple sources to a mixture. For example, C and N isotopic signatures can be used to determine the fraction of three food sources in a consumer's diet. The standard dual isotope, three source li...

  2. Plasma Biomarker Discovery Using 3D Protein Profiling Coupled with Label-Free Quantitation

    PubMed Central

    Beer, Lynn A.; Tang, Hsin-Yao; Barnhart, Kurt T.; Speicher, David W.

    2011-01-01

    In-depth quantitative profiling of human plasma samples for biomarker discovery remains quite challenging. One promising alternative to chemical derivatization with stable isotope labels for quantitative comparisons is direct, label-free, quantitative comparison of raw LC–MS data. But, in order to achieve high-sensitivity detection of low-abundance proteins, plasma proteins must be extensively pre-fractionated, and results from LC–MS runs of all fractions must be integrated efficiently in order to avoid misidentification of variations in fractionation from sample to sample as “apparent” biomarkers. This protocol describes a powerful 3D protein profiling method for comprehensive analysis of human serum or plasma proteomes, which combines abundant protein depletion and high-sensitivity GeLC–MS/MS with label-free quantitation of candidate biomarkers. PMID:21468938

  3. Rare-isotope and kinetic studies of Pt/SnO2 catalysts

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T.; Wood, George M.; Schryer, David R.; Hess, Robert V.; Miller, Irvin M.; Kielin, Erik J.

    1990-01-01

    Closed-cycle pulsed CO2 laser operation requires the use of an efficient CO-O2 recombination catalyst for these dissociation products which otherwise would degrade the laser operation. The catalyst must not only operate at low temperatures but also must operate efficiently for long periods. In the case of the Laser Atmospheric Wind Sounder (LAWS) laser, an operational lifetime of 3 years is required. Additionally, in order to minimize atmospheric absorption and enhance aerosol scatter of laser radiation, the LAWS system will operate at 9.1 micrometers with an oxygen-18 isotope CO2 lasing medium. Consequently, the catalyst must not only operate at low temperatures but must also preserve the isotopic integrity of the rare-isotope composition in the recombination mode. Several years ago an investigation of commercially available and newly synthesized recombination catalysts for use in closed-cycle pulsed common and rare-isotope CO2 lasers was implemented at the NASA Langley Research Center. Since that time, mechanistic efforts utilizing both common and rare oxygen isotopes have been implemented and continue. Rare-isotope studies utilizing commercially available platinum-tin oxide catalyst have demonstrated that the catalyst contributes oxygen-16 to the product carbon dioxide thus rendering it unusable for rare-isotope applications. A technique has been developed for modification of the surface of the common-isotope catalyst to render it usable. Results of kinetic and isotope label studies using plug flow, recycle plug flow, and closed internal recycle plug flow reactor configuration modes are discussed.

  4. Physicochemical isotope anomalies

    SciTech Connect

    Esat, T.M.

    1988-06-01

    Isotopic composition of refractory elements can be modified, by physical processes such as distillation and sputtering, in unexpected patterns. Distillation enriches the heavy isotopes in the residue and the light isotopes in the vapor. However, current models appear to be inadequate to describe the detailed mass dependence, in particular for large fractionations. Coarse- and fine-grained inclusions from the Allende meteorite exhibit correlated isotope effects in Mg both as mass-dependent fractionation and residual anomalies. This isotope pattern can be duplicated by high temperature distillation in the laboratory. A ubiquitous property of meteoritic inclusions for Mg as well as for most of the other elements, where measurements exist, is mass-dependent fractionation. In contrast, terrestrial materials such as microtektites, tektite buttons as well as lunar orange and green glass spheres have normal Mg isotopic composition. A subset of interplanetary dust particles labelled as chondritic aggregates exhibit excesses in {sup 26}Mg and deuterium anomalies. Sputtering is expected to be a dominant mechanism in the destruction of grains within interstellar dust clouds. An active proto-sun as well as the present solar-wind and solar-flare flux are of sufficient intensity to sputter significant amounts of material. Laboratory experiments in Mg show widespread isotope effects including residual {sup 26}Mg excesses and mass dependent fractionation. It is possible that the {sup 26}Mg excesses in interplanetary dust is related to sputtering by energetic solar-wind particles. The implication if the laboratory distillation and sputtering effects are discussed and contrasted with the anomalies in meteoritic inclusions the other extraterrestrial materials the authors have access to.

  5. Trends in carbon isotope fractionation in atmospheric carbon dioxide constrain water use efficiency of northern ecosystems from the 1980s to 2010

    NASA Astrophysics Data System (ADS)

    Welp, L. R.; Piper, S. C.; Graven, H. D.; Bollenbacher, A.; Meijer, H. A.; Keeling, R. F.

    2013-12-01

    Atmospheric CO2 concentrations have increased by approximately 120 ppm since preindustrial times and have reached levels higher than any other time during the last three to five million years ago with uncertain consequences for the modern terrestrial biosphere. When plants take up CO2 for photosynthesis from the atmosphere through stomata openings in their leaves, water escapes due to the gradient in water vapor pressure from the leaf interior to the atmospheric boundary layer. The amount of carbon assimilated by photosynthesis per water lost determines the water use efficiency (WUE) of the plant. The extra CO2 in the atmosphere has been shown to increase WUE in growth chamber studies, allowing plants to take up the same or more CO2 with reduced stomatal conductance, thereby reducing water loss. Carbon isotope fractionation by plants is related to the CO2 concentration gradient from inside the leaf (Ci) to that in the atmosphere (Ca) (e.g. Farquhar model). Therefore intrinsic water use efficiency (iWUE) of the biosphere, defined as the amount of net photosynthesis divided by the stomatal conductance, leaves an imprint on the record of δ13C in atmospheric CO2. We will present estimates of the biological carbon isotope fractionation of atmospheric CO2 from the Scripps Institution of Oceanography flask network from the 1980s to 2010 and discuss the constraints it provides on trends in iWUE over this period. Using the seasonal co-variation of 13C and CO2, we calculate effective fractionation. This data can be used to test hypothetical trends in iWUE and Ci. The conventional wisdom in the field has been that the ratio of Ci/Ca would remain approximately constant as CO2 rises, which would result in no change in fractionation but a modest increase in iWUE. Keenan et al. (2013) recently published an analysis of FluxNet eddy covariance measurements suggesting that Ci has stayed nearly constant since the mid-1990s, translating to a large ~3% yr-1 increase in i

  6. Ultrasmall Magnetically Engineered Ag2Se Quantum Dots for Instant Efficient Labeling and Whole-Body High-Resolution Multimodal Real-Time Tracking of Cell-Derived Microvesicles.

    PubMed

    Zhao, Jing-Ya; Chen, Gang; Gu, Yi-Ping; Cui, Ran; Zhang, Zhi-Ling; Yu, Zi-Li; Tang, Bo; Zhao, Yi-Fang; Pang, Dai-Wen

    2016-02-17

    Cell-derived microvesicles (MVs) are natural carriers that can transport biological molecules between cells, which are expected to be promising delivery vehicles for therapeutic purposes. Strategies to label MVs are very important for investigation and application of MVs. Herein, ultrasmall Mn-magnetofunctionalized Ag2Se quantum dots (Ag2Se@Mn QDs) integrated with excellent near-infrared (NIR) fluorescence and magnetic resonance (MR) imaging capabilities have been developed for instant efficient labeling of MVs for their in vivo high-resolution dual-mode tracking. The Ag2Se@Mn QDs were fabricated by controlling the reaction of Mn(2+) with the Ag2Se nanocrystals having been pretreated in 80 °C NaOH solution, with an ultrasmall size of ca. 1.8 nm, water dispersibility, high NIR fluorescence quantum yield of 13.2%, and high longitudinal relaxivity of 12.87 mM(-1) s(-1) (almost four times that of the commercial contrast agent Gd-DTPA). The ultrasmall size of the Ag2Se@Mn QDs enables them to be directly and efficiently loaded into MVs by electroporation, instantly and reliably conferring both NIR fluorescence and MR traceability on MVs. Our method for labeling MVs of different origins is universal and free of unfavorable influence on intrinsic behaviors of MVs. The complementary imaging capabilities of the Ag2Se@Mn QDs have made the long-term noninvasive whole-body high-resolution dual-mode tracking of MVs in vivo realized, by which the dynamic biodistribution of MVs has been revealed in a real-time and in situ quantitative manner. This work not only opens a new window for labeling with QDs, but also facilitates greatly the investigation and application of MVs.

  7. Photosynthesis, water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species.

    PubMed

    Cao, X; Jia, J B; Li, H; Li, M C; Luo, J; Liang, Z S; Liu, T X; Liu, W G; Peng, C H; Luo, Z B

    2012-07-01

    Although fast-growing Populus species consume a large amount of water for biomass production, there are considerable variations in water use efficiency (WUE) across different poplar species. To compare differences in growth, WUE and anatomical properties of leaf and xylem and to examine the relationship between photosynthesis/WUE and anatomical properties of leaf and xylem, cuttings of six poplar species were grown in a botanical garden. The growth performance, photosynthesis, intrinsic WUE (WUE(i) ), stable carbon isotope composition (δ(13) C) and anatomical properties of leaf and xylem were analysed in these poplar plants. Significant differences were found in growth, photosynthesis, WUE(i) and anatomical properties among the examined species. Populus cathayana was the clone with the fastest growth and the lowest WUE(i) /δ(13) C, whereas P. × euramericana had a considerable growth increment and the highest WUE(i) /δ(13) C. Among the analysed poplar species, the highest total stomatal density in P. cathayana was correlated with its highest stomatal conductance (g(s) ) and lowest WUE(i) /δ(13) C. Moreover, significant correlations were observed between WUE(i) and abaxial stomatal density and stem vessel lumen area. These data suggest that photosynthesis, WUE(i) and δ(13) C are associated with leaf and xylem anatomy and there are tradeoffs between growth and WUE(i) . It is anticipated that some poplar species, e.g. P. × euramericana, are better candidates for water-limited regions and others, e.g. P. cathayana, may be better for water-abundant areas.

  8. Genetic control of water use efficiency and leaf carbon isotope discrimination in sunflower (Helianthus annuus L.) subjected to two drought scenarios.

    PubMed

    Adiredjo, Afifuddin Latif; Navaud, Olivier; Muños, Stephane; Langlade, Nicolas B; Lamaze, Thierry; Grieu, Philippe

    2014-01-01

    High water use efficiency (WUE) can be achieved by coordination of biomass accumulation and water consumption. WUE is physiologically and genetically linked to carbon isotope discrimination (CID) in leaves of plants. A population of 148 recombinant inbred lines (RILs) of sunflower derived from a cross between XRQ and PSC8 lines was studied to identify quantitative trait loci (QTL) controlling WUE and CID, and to compare QTL associated with these traits in different drought scenarios. We conducted greenhouse experiments in 2011 and 2012 by using 100 balances which provided a daily measurement of water transpired, and we determined WUE, CID, biomass and cumulative water transpired by plants. Wide phenotypic variability, significant genotypic effects, and significant negative correlations between WUE and CID were observed in both experiments. A total of nine QTL controlling WUE and eight controlling CID were identified across the two experiments. A QTL for phenotypic response controlling WUE and CID was also significantly identified. The QTL for WUE were specific to the drought scenarios, whereas the QTL for CID were independent of the drought scenarios and could be found in all the experiments. Our results showed that the stable genomic regions controlling CID were located on the linkage groups 06 and 13 (LG06 and LG13). Three QTL for CID were co-localized with the QTL for WUE, biomass and cumulative water transpired. We found that CID and WUE are highly correlated and have common genetic control. Interestingly, the genetic control of these traits showed an interaction with the environment (between the two drought scenarios and control conditions). Our results open a way for breeding higher WUE by using CID and marker-assisted approaches and therefore help to maintain the stability of sunflower crop production.

  9. Multiple tag labeling method for DNA sequencing

    DOEpatents

    Mathies, Richard A.; Huang, Xiaohua C.; Quesada, Mark A.

    1995-01-01

    A DNA sequencing method described which uses single lane or channel electrophoresis. Sequencing fragments are separated in said lane and detected using a laser-excited, confocal fluorescence scanner. Each set of DNA sequencing fragments is separated in the same lane and then distinguished using a binary coding scheme employing only two different fluorescent labels. Also described is a method of using radio-isotope labels.

  10. Multiple linear regression for isotopic measurements

    NASA Astrophysics Data System (ADS)

    Garcia Alonso, J. I.

    2012-04-01

    There are two typical applications of isotopic measurements: the detection of natural variations in isotopic systems and the detection man-made variations using enriched isotopes as indicators. For both type of measurements accurate and precise isotope ratio measurements are required. For the so-called non-traditional stable isotopes, multicollector ICP-MS instruments are usually applied. In many cases, chemical separation procedures are required before accurate isotope measurements can be performed. The off-line separation of Rb and Sr or Nd and Sm is the classical procedure employed to eliminate isobaric interferences before multicollector ICP-MS measurement of Sr and Nd isotope ratios. Also, this procedure allows matrix separation for precise and accurate Sr and Nd isotope ratios to be obtained. In our laboratory we have evaluated the separation of Rb-Sr and Nd-Sm isobars by liquid chromatography and on-line multicollector ICP-MS detection. The combination of this chromatographic procedure with multiple linear regression of the raw chromatographic data resulted in Sr and Nd isotope ratios with precisions and accuracies typical of off-line sample preparation procedures. On the other hand, methods for the labelling of individual organisms (such as a given plant, fish or animal) are required for population studies. We have developed a dual isotope labelling procedure which can be unique for a given individual, can be inherited in living organisms and it is stable. The detection of the isotopic signature is based also on multiple linear regression. The labelling of fish and its detection in otoliths by Laser Ablation ICP-MS will be discussed using trout and salmon as examples. As a conclusion, isotope measurement procedures based on multiple linear regression can be a viable alternative in multicollector ICP-MS measurements.

  11. Proteomics meets genetics: SILAC labeling of Drosophila melanogaster larvae and cells for in vivo functional studies.

    PubMed

    Cuomo, Alessandro; Sanfilippo, Roberta; Vaccari, Thomas; Bonaldi, Tiziana

    2014-01-01

    Stable isotope labeling by amino acids in cell culture (SILAC) is an established and potent method for quantitative proteomics. When combined with high-resolution mass spectrometry (MS) and efficient algorithms for the analysis of quantitative MS data, SILAC has proven to be the strategy of choice for the in-depth characterization of functional states at the protein level. The fruit fly Drosophila melanogaster is one of the most widely used model systems for studies of genetics and developmental biology. Despite this, a global proteomic approach in Drosophila is rarely considered. Here, we describe an adaptation of SILAC for functional investigation of fruit flies by proteomics: We illustrate how to perform efficient SILAC labeling of cells in culture and whole fly larvae. The combination of SILAC, a highly accurate global protein quantification method, and of the fruit fly, the prime genetics and developmental model, represents a unique opportunity for quantitative proteomic studies in vivo.

  12. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  13. Bcl-2-functionalized ultrasmall superparamagnetic iron oxide nanoparticles coated with amphiphilic polymer enhance the labeling efficiency of islets for detection by magnetic resonance imaging

    PubMed Central

    Yang, Bin; Cai, Haolei; Qin, Wenjie; Zhang, Bo; Zhai, Chuanxin; Jiang, Biao; Wu, Yulian

    2013-01-01

    Based on their versatile, biocompatible properties, superparamagnetic iron oxide (SPIO) or ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are utilized for detecting and tracing cells or tumors in vivo. Here, we developed an innoxious and concise synthesis approach for a novel B-cell lymphoma (Bcl)-2 monoclonal antibody-functionalized USPIO nanoparticle coated with an amphiphilic polymer (carboxylated polyethylene glycol monooleyl ether [OE-PEG-COOH]). These nanoparticles can be effectively internalized by beta cells and label</