Sample records for efficient light emitters

  1. Prediction and design of efficient exciplex emitters for high-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes.

    PubMed

    Liu, Xiao-Ke; Chen, Zhan; Zheng, Cai-Jun; Liu, Chuan-Lin; Lee, Chun-Sing; Li, Fan; Ou, Xue-Mei; Zhang, Xiao-Hong

    2015-04-08

    High-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes based on exciplex emitters are demonstrated. The best device, based on a TAPC:DPTPCz emitter, shows a high external quantum efficiency of 15.4%. Strategies for predicting and designing efficient exciplex emitters are also provided. This approach allow prediction and design of efficient exciplex emitters for achieving high-efficiency organic light-emitting diodes, for future use in displays and lighting applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High performance incandescent lighting using a selective emitter and nanophotonic filters

    NASA Astrophysics Data System (ADS)

    Leroy, Arny; Bhatia, Bikram; Wilke, Kyle; Ilic, Ognjen; Soljačić, Marin; Wang, Evelyn N.

    2017-09-01

    Previous approaches for improving the efficiency of incandescent light bulbs (ILBs) have relied on tailoring the emitted spectrum using cold-side interference filters that reflect the infrared energy back to the emitter while transmitting the visible light. While this approach has, in theory, potential to surpass light-emitting diodes (LEDs) in terms of luminous efficiency while conserving the excellent color rendering index (CRI) inherent to ILBs, challenges such as low view factor between the emitter and filter, high emitter (>2800 K) and filter temperatures and emitter evaporation have significantly limited the maximum efficiency. In this work, we first analyze the effect of non-idealities in the cold-side filter, the emitter and the view factor on the luminous efficiency. Second, we theoretically and experimentally demonstrate that the loss in efficiency associated with low view factors can be minimized by using a selective emitter (e.g., high emissivity in the visible and low emissivity in the infrared) with a filter. Finally, we discuss the challenges in achieving a high performance and long-lasting incandescent light source including the emitter and filter thermal stability as well as emitter evaporation.

  3. Highly efficient and stable organic light-emitting diodes with a greatly reduced amount of phosphorescent emitter

    PubMed Central

    Fukagawa, Hirohiko; Shimizu, Takahisa; Kamada, Taisuke; Yui, Shota; Hasegawa, Munehiro; Morii, Katsuyuki; Yamamoto, Toshihiro

    2015-01-01

    Organic light-emitting diodes (OLEDs) have been intensively studied as a key technology for next-generation displays and lighting. The efficiency of OLEDs has improved markedly in the last 15 years by employing phosphorescent emitters. However, there are two main issues in the practical application of phosphorescent OLEDs (PHOLEDs): the relatively short operational lifetime and the relatively high cost owing to the costly emitter with a concentration of about 10% in the emitting layer. Here, we report on our success in resolving these issues by the utilization of thermally activated delayed fluorescent materials, which have been developed in the past few years, as the host material for the phosphorescent emitter. Our newly developed PHOLED employing only 1 wt% phosphorescent emitter exhibits an external quantum efficiency of over 20% and a long operational lifetime of about 20 times that of an OLED consisting of a conventional host material and 1 wt% phosphorescent emitter. PMID:25985084

  4. High efficiency incandescent lighting

    DOEpatents

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  5. Efficient triplet harvesting of hybrid white organic light-emitting diodes using thermally activated delayed fluorescence green emitter

    NASA Astrophysics Data System (ADS)

    Lee, Song Eun; Lee, Ho Won; Baek, Hyun Jung; Yun, Tae Jun; Yun, Geum Jae; Kim, Woo Young; Kim, Young Kwan

    2016-10-01

    Hybrid white organic light-emitting diodes (WOLEDs) were fabricated by applying triplet harvesting (TH) using a green thermally activated delayed fluorescence (TADF) emitter. The triplet exciton of the green TADF emitter can be upconverted to its singlet state. The TH involved energy transfer of triplet exciton from a blue fluorescent emitter to a green TADF and red phosphorescent emitters, where they can decay radiatively. In addition, the triplet exciton of the green TADF emitter was energy transferred to its singlet state for a reverse intersystem crossing by green emission. Enhanced hybrid WOLEDs were demonstrated using an efficient green TADF emitter combined with red phosphorescent and blue fluorescent emitters. Hybrid WOLEDs were fabricated with various hole-electron recombination zones as changing blue emitting layer thicknesses. Among these, hybrid WOLEDs showed a maximum external quantum efficiency of 11.23%, luminous efficiency of 29.20 cd/A, and a power efficiency of 26.21 lm/W. Moreover, the WOLED exhibited electroluminescence spectra with Commission International de L'Éclairage chromaticity of (0.38, 0.36) at 1000 cd/m2 and a color rendering index of 82 at a practical brightness of 20,000 cd/m2.

  6. Optical devices featuring nonpolar textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D; Moldawer, Adam; Bhattacharyya, Anirban; Abell, Joshua

    2013-11-26

    A semiconductor emitter, or precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate in a nonpolar orientation. The textured layers enhance light extraction, and the use of nonpolar orientation greatly enhances internal quantum efficiency compared to conventional devices. Both the internal and external quantum efficiencies of emitters of the invention can be 70-80% or higher. The invention provides highly efficient light emitting diodes suitable for solid state lighting.

  7. Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells

    PubMed Central

    Kim, Joondong; Yun, Ju-Hyung; Kim, Hyunyub; Cho, Yunae; Park, Hyeong-Ho; Kumar, M. Melvin David; Yi, Junsin; Anderson, Wayne A.; Kim, Dong-Wook

    2015-01-01

    Periodical nanocone-arrays were employed in an emitter region for high efficient Si solar cells. Conventional wet-etching process was performed to form the nanocone-arrays for a large area, which spontaneously provides the graded doping features for a selective emitter. This enables to lower the electrical contact resistance and enhances the carrier collection due to the high electric field distribution through a nanocone. Optically, the convex-shaped nanocones efficiently reduce light-reflection and the incident light is effectively focused into Si via nanocone structure, resulting in an extremely improved the carrier collection performances. This nanocone-arrayed selective emitter simultaneously satisfies optical and electrical improvement. We report the record high efficiency of 16.3% for the periodically nanoscale patterned emitter Si solar cell. PMID:25787933

  8. Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells.

    PubMed

    Kim, Joondong; Yun, Ju-Hyung; Kim, Hyunyub; Cho, Yunae; Park, Hyeong-Ho; Kumar, M Melvin David; Yi, Junsin; Anderson, Wayne A; Kim, Dong-Wook

    2015-03-19

    Periodical nanocone-arrays were employed in an emitter region for high efficient Si solar cells. Conventional wet-etching process was performed to form the nanocone-arrays for a large area, which spontaneously provides the graded doping features for a selective emitter. This enables to lower the electrical contact resistance and enhances the carrier collection due to the high electric field distribution through a nanocone. Optically, the convex-shaped nanocones efficiently reduce light-reflection and the incident light is effectively focused into Si via nanocone structure, resulting in an extremely improved the carrier collection performances. This nanocone-arrayed selective emitter simultaneously satisfies optical and electrical improvement. We report the record high efficiency of 16.3% for the periodically nanoscale patterned emitter Si solar cell.

  9. Combined selective emitter and filter for high performance incandescent lighting

    NASA Astrophysics Data System (ADS)

    Leroy, Arny; Bhatia, Bikram; Wilke, Kyle; Ilic, Ognjen; Soljačić, Marin; Wang, Evelyn N.

    2017-08-01

    The efficiency of incandescent light bulbs (ILBs) is inherently low due to the dominant emission at infrared wavelengths, diminishing its popularity today. ILBs with cold-side filters that transmit visible light but reflect infrared radiation back to the filament can surpass the efficiency of state-of-the-art light-emitting diodes (LEDs). However, practical challenges such as imperfect geometrical alignment (view factor) between the filament and cold-side filters can limit the maximum achievable efficiency and make the use of cold-side filters ineffective. In this work, we show that by combining a cold-side optical filter with a selective emitter, the effect of the imperfect view factor between the filament and filter on the system efficiency can be minimized. We experimentally and theoretically demonstrate energy savings of up to 67% compared to a bare tungsten emitter at 2000 K, representing a 34% improvement over a bare tungsten filament with a filter. Our work suggests that this approach can be competitive with LEDs in both luminous efficiency and color rendering index (CRI) when using selective emitters and filters already demonstrated in the literature, thus paving the way for next-generation high-efficiency ILBs.

  10. Combined selective emitter and filter for high performance incandescent lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroy, Arny; Bhatia, Bikram; Wilke, Kyle

    The efficiency of incandescent light bulbs (ILBs) is inherently low due to the dominant emission at infrared wavelengths, diminishing its popularity today. ILBs with cold-side filters that transmit visible light but reflect infrared radiation back to the filament can surpass the efficiency of state-of-the- art light-emitting diodes (LEDs). However, practical challenges such as imperfect geometrical alignment (view factor) between the filament and cold-side filters can limit the maximum achievable efficiency and make the use of cold-side filters ineffective. Here in this work, we show that by combining a cold-side optical filter with a selective emitter, the effect of the imperfectmore » view factor between the filament and filter on the system efficiency can be minimized. We experimentally and theoretically demonstrate energy savings of up to 67% compared to a bare tungsten emitter at 2000 K, representing a 34% improvement over a bare tungsten filament with a filter. Our work suggests that this approach can be competitive with LEDs in both luminous efficiency and color rendering index (CRI) when using selective emitters and filters already demonstrated in the literature, thus paving the way for next-generation high-efficiency ILBs.« less

  11. Combined selective emitter and filter for high performance incandescent lighting

    DOE PAGES

    Leroy, Arny; Bhatia, Bikram; Wilke, Kyle; ...

    2017-09-01

    The efficiency of incandescent light bulbs (ILBs) is inherently low due to the dominant emission at infrared wavelengths, diminishing its popularity today. ILBs with cold-side filters that transmit visible light but reflect infrared radiation back to the filament can surpass the efficiency of state-of-the- art light-emitting diodes (LEDs). However, practical challenges such as imperfect geometrical alignment (view factor) between the filament and cold-side filters can limit the maximum achievable efficiency and make the use of cold-side filters ineffective. Here in this work, we show that by combining a cold-side optical filter with a selective emitter, the effect of the imperfectmore » view factor between the filament and filter on the system efficiency can be minimized. We experimentally and theoretically demonstrate energy savings of up to 67% compared to a bare tungsten emitter at 2000 K, representing a 34% improvement over a bare tungsten filament with a filter. Our work suggests that this approach can be competitive with LEDs in both luminous efficiency and color rendering index (CRI) when using selective emitters and filters already demonstrated in the literature, thus paving the way for next-generation high-efficiency ILBs.« less

  12. Fluorescent filtered electrophosphorescence

    DOEpatents

    Forrest, Stephen; Sun, Yiru; Giebink, Noel; Thompson, Mark E.

    2010-08-03

    The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters for the efficient utilization of all of the electrically generated excitons.

  13. Fluorescent filtered electrophosphorescence

    DOEpatents

    Forrest, Stephen R [Princeton, NJ; Sun, Yiru [Princeton, NJ; Giebink, Noel [Princeton, NJ; Thompson, Mark E [Anaheim Hills, CA

    2009-01-06

    The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters for the efficient utilization of all of the electrically generated excitons.

  14. Up-conversion in rare-earth doped micro-particles applied to new emissive two-dimensional displays

    NASA Astrophysics Data System (ADS)

    Milliez, Anne Janet

    Up-conversion (UC) in rare-earth co-doped fluorides to convert diode laser light in the near infrared to red, green and blue visible light is applied to make possible high performance emissive displays. The infrared-to-visible UC in the materials we study is a sequential form of non-linear two photon absorption in which a strong absorbing constituent absorbs two low energy photons and transfers this energy to another constituent which emits visible light. Some of the UC emitters' most appealing characteristics for displays are: a wide color gamut with very saturated colors, very high brightness operation without damage to the emitters, long lifetimes and efficiencies comparable to those of existing technologies. Other advantages include simplicity of fabrication, versatility of operating modes, and the potential for greatly reduced display weight and depth. Thanks to recent advances in material science and diode laser technology at the excitation wavelength, UC selected materials can be very efficient visible emitters. However, optimal UC efficiencies strongly depend on chosing proper operating conditions. In this thesis, we studied the conditions required for optimization. We demonstrated that high efficiency UC depends on high pump irradiance, low temperature and low scattering. With this understanding we can predict how to optimally use UC emitters in a wide range of applications. In particular, we showed how our very efficient UC emitters can be applied to make full color displays and very efficient white light sources.

  15. Highly efficient and stable white organic light emitting diode base on double recombination zones of phosphorescent blue/orange emitters.

    PubMed

    Lee, Seok Jae; Koo, Ja Ryong; Lim, Dong Hwan; Park, Hye Rim; Kim, Young Kwan; Ha, Yunkyoung

    2011-08-01

    We demonstrated efficient and stable white phosphorescent organic light-emitting diodes (OLEDs) with double-emitting layers (D-EMLs), which were comprised of two emissive layers with a hole transport-type host of N,N'-dicarbazolyl-3,5-benzene (mCP) and a electron transport-type host of 2,2',2"-(1,3,5-benzenetryl)tris(1-phenyl)-1H-benzimidazol (TPBi) with blue/orange emitters, respectively. We fabricated two type white devices with single emitting layer (S-EML) and D-EML of orange emitter, maintaining double recombination zone of blue emitter. In addition, the device architecture was developed to confine excitons inside the D-EMLs and to manage triplet excitons by controlling the charge injection. As a result, light-emitting performances of white OLED with D-EMLs were improved and showed the steady CIE coordinates compared to that with S-EML of orange emitter, which demonstrated the maximum luminous efficiency and external quantum efficiency were 21.38 cd/A and 11.09%. It also showed the stable white emission with CIE(x,y) coordinates from (x = 0.36, y = 0.37) at 6 V to (x = 0.33, y = 0.38) at 12 V.

  16. Pyrimidine-based twisted donor-acceptor delayed fluorescence molecules: a new universal platform for highly efficient blue electroluminescence.

    PubMed

    Park, In Seob; Komiyama, Hideaki; Yasuda, Takuma

    2017-02-01

    Deep-blue emitters that can harvest both singlet and triplet excited states to give high electron-to-photon conversion efficiencies are highly desired for applications in full-color displays and white lighting devices based on organic light-emitting diodes (OLEDs). Thermally activated delayed fluorescence (TADF) molecules based on highly twisted donor-acceptor (D-A) configurations are promising emitting dopants for the construction of efficient deep-blue OLEDs. In this study, a simple and versatile D-A system combining acridan-based donors and pyrimidine-based acceptors has been developed as a new platform for high-efficiency deep-blue TADF emitters. The designed pre-twisted acridan-pyrimidine D-A molecules exhibit small singlet-triplet energy splitting and high photoluminescence quantum yields, functioning as efficient deep-blue TADF emitters. The OLEDs utilizing these TADF emitters display bright blue electroluminescence with external quantum efficiencies of up to 20.4%, maximum current efficiencies of 41.7 cd A -1 , maximum power efficiencies of 37.2 lm W -1 , and color coordinates of (0.16, 0.23). The design strategy featuring such acridan-pyrimidine D-A motifs can offer great prospects for further developing high-performance deep-blue TADF emitters and TADF-OLEDs.

  17. Light coupling for on-chip optical interconnects

    NASA Astrophysics Data System (ADS)

    Gao, Xumin; Yuan, Jialei; Yang, Yongchao; Li, Yuanhang; Cai, Wei; Li, Xin; Wang, Yongjin

    2017-12-01

    An on-chip optical interconnect of a light emitter, waveguide and photodetector based on p-n junction InGaN/GaN multiple quantum wells (MQWs) is fabricated to investigate the light coupling efficiency of suspended waveguides connecting the light emitter and photodetector. Optical characterizations indicate that the photocurrent of the photodetector is mainly induced by the emitted light that is transmitted through the waveguides. Suspended waveguides with and without air gaps are reported in this paper. A 1 mA current injection into the light emitter induces a photocurrent of 17.3 nA and 205.5 nA for the photodetector connected to the waveguides that with 10 μm air gaps and without air gaps, respectively. Finite-difference time-domain simulations are performed to analyze the gap effect on the coupling efficiency of the light transmission. Both the gap distance and the index variation of the gap materials are analyzed to verify the potential optical sensing functions of the on-chip optical interconnect. A possible strategy for increasing the light coupling efficiency is proven by simulations.

  18. Broadband Light Collection Efficiency Enhancement of Carbon Nanotube Excitons Coupled to Metallo-Dielectric Antenna Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shayan, Kamran; Rabut, Claire; Kong, Xiaoqing

    The realization of on-chip quantum networks ideally requires lossless interfaces between photons and solid-state quantum emitters. We propose and demonstrate on-chip arrays of metallo-dielectric antennas (MDA) that are tailored toward efficient and broadband light collection from individual embedded carbon nanotube quantum emitters by trapping air gaps on chip that form cavity modes. Scalable implementation is realized by employing polymer layer dry-transfer techniques that avoid solvent incompatibility issues, as well as a planar design that avoids solid-immersion lenses. Cryogenic measurements demonstrate 7-fold enhanced exciton intensity when compared to emitters located on bare wafers, corresponding to a light collection efficiency (LCE) upmore » to 92% in the best case (average LCE of 69%) into a narrow output cone of +/-15 degrees that enables a priori fiber-to-chip butt coupling. The demonstrated MDA arrays are directly compatible with other quantum systems, particularly 2D materials, toward enabling efficient on-chip quantum light sources or spin-photon interfaces requiring unity light collection, both at cryogenic or room temperature.« less

  19. Phosphorescent cyclometalated complexes for efficient blue organic light-emitting diodes

    PubMed Central

    Suzuri, Yoshiyuki; Oshiyama, Tomohiro; Ito, Hiroto; Hiyama, Kunihisa; Kita, Hiroshi

    2014-01-01

    Phosphorescent emitters are extremely important for efficient organic light-emitting diodes (OLEDs), which attract significant attention. Phosphorescent emitters, which have a high phosphorescence quantum yield at room temperature, typically contain a heavy metal such as iridium and have been reported to emit blue, green and red light. In particular, the blue cyclometalated complexes with high efficiency and high stability are being developed. In this review, we focus on blue cyclometalated complexes. Recent progress of computational analysis necessary to design a cyclometalated complex is introduced. The prediction of the radiative transition is indispensable to get an emissive cyclometalated complex. We summarize four methods to control phosphorescence peak of the cyclometalated complex: (i) substituent effect on ligands, (ii) effects of ancillary ligands on heteroleptic complexes, (iii) design of the ligand skeleton, and (iv) selection of the central metal. It is considered that novel ligand skeletons would be important to achieve both a high efficiency and long lifetime in the blue OLEDs. Moreover, the combination of an emitter and a host is important as well as the emitter itself. According to the dependences on the combination of an emitter and a host, the control of exciton density of the triplet is necessary to achieve both a high efficiency and a long lifetime, because the annihilations of the triplet state cause exciton quenching and material deterioration. PMID:27877712

  20. Phosphorescent cyclometalated complexes for efficient blue organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Suzuri, Yoshiyuki; Oshiyama, Tomohiro; Ito, Hiroto; Hiyama, Kunihisa; Kita, Hiroshi

    2014-10-01

    Phosphorescent emitters are extremely important for efficient organic light-emitting diodes (OLEDs), which attract significant attention. Phosphorescent emitters, which have a high phosphorescence quantum yield at room temperature, typically contain a heavy metal such as iridium and have been reported to emit blue, green and red light. In particular, the blue cyclometalated complexes with high efficiency and high stability are being developed. In this review, we focus on blue cyclometalated complexes. Recent progress of computational analysis necessary to design a cyclometalated complex is introduced. The prediction of the radiative transition is indispensable to get an emissive cyclometalated complex. We summarize four methods to control phosphorescence peak of the cyclometalated complex: (i) substituent effect on ligands, (ii) effects of ancillary ligands on heteroleptic complexes, (iii) design of the ligand skeleton, and (iv) selection of the central metal. It is considered that novel ligand skeletons would be important to achieve both a high efficiency and long lifetime in the blue OLEDs. Moreover, the combination of an emitter and a host is important as well as the emitter itself. According to the dependences on the combination of an emitter and a host, the control of exciton density of the triplet is necessary to achieve both a high efficiency and a long lifetime, because the annihilations of the triplet state cause exciton quenching and material deterioration.

  1. Analysis of the external and internal quantum efficiency of multi-emitter, white organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Furno, Mauro; Rosenow, Thomas C.; Gather, Malte C.; Lüssem, Björn; Leo, Karl

    2012-10-01

    We report on a theoretical framework for the efficiency analysis of complex, multi-emitter organic light emitting diodes (OLEDs). The calculation approach makes use of electromagnetic modeling to quantify the overall OLED photon outcoupling efficiency and a phenomenological description for electrical and excitonic processes. From the comparison of optical modeling results and measurements of the total external quantum efficiency, we obtain reliable estimates of internal quantum yield. As application of the model, we analyze high-efficiency stacked white OLEDs and comment on the various efficiency loss channels present in the devices.

  2. Constraints on drivers for visible light communications emitters based on energy efficiency.

    PubMed

    Del Campo-Jimenez, Guillermo; Perez-Jimenez, Rafael; Lopez-Hernandez, Francisco Jose

    2016-05-02

    In this work we analyze the energy efficiency constraints on drivers for Visible light communication (VLC) emitters. This is the main reason why LED is becoming the main source of illumination. We study the effect of the waveform shape and the modulation techniques on the overall energy efficiency of an LED lamp. For a similar level of illumination, we calculate the emitter energy efficiency ratio η (PLED/PTOTAL) for different signals. We compare switched and sinusoidal signals and analyze the effect of both OOK and OFDM modulation techniques depending on the power supply adjustment, level of illumination and signal amplitude distortion. Switched and OOK signals present higher energy efficiency behaviors (0.86≤η≤0.95) than sinusoidal and OFDM signals (0.53≤η≤0.79).

  3. Manipulating the Electronic Excited State Energies of Pyrimidine-Based Thermally Activated Delayed Fluorescence Emitters To Realize Efficient Deep-Blue Emission.

    PubMed

    Komatsu, Ryutaro; Ohsawa, Tatsuya; Sasabe, Hisahiro; Nakao, Kohei; Hayasaka, Yuya; Kido, Junji

    2017-02-08

    The development of efficient and robust deep-blue emitters is one of the key issues in organic light-emitting devices (OLEDs) for environmentally friendly, large-area displays or general lighting. As a promising technology that realizes 100% conversion from electrons to photons, thermally activated delayed fluorescence (TADF) emitters have attracted considerable attention. However, only a handful of examples of deep-blue TADF emitters have been reported to date, and the emitters generally show large efficiency roll-off at practical luminance over several hundreds to thousands of cd m -2 , most likely because of the long delayed fluorescent lifetime (τ d ). To overcome this problem, we molecularly manipulated the electronic excited state energies of pyrimidine-based TADF emitters to realize deep-blue emission and reduced τ d . We then systematically investigated the relationships among the chemical structure, properties, and device performances. The resultant novel pyrimidine emitters, called Ac-XMHPMs (X = 1, 2, and 3), contain different numbers of bulky methyl substituents at acceptor moieties, increasing the excited singlet (E S ) and triplet state (E T ) energies. Among them, Ac-3MHPM, with a high E T of 2.95 eV, exhibited a high external quantum efficiency (η ext,max ) of 18% and an η ext of 10% at 100 cd m -2 with Commission Internationale de l'Eclairage chromaticity coordinates of (0.16, 0.15). These efficiencies are among the highest values to date for deep-blue TADF OLEDs. Our molecular design strategy provides fundamental guidance to design novel deep-blue TADF emitters.

  4. Harvesting Triplet Excitons with Exciplex Thermally Activated Delayed Fluorescence Emitters toward High Performance Heterostructured Organic Light-Emitting Field Effect Transistors.

    PubMed

    Song, Li; Hu, Yongsheng; Liu, Zheqin; Lv, Ying; Guo, Xiaoyang; Liu, Xingyuan

    2017-01-25

    The utilization of triplet excitons plays a key role in obtaining high emission efficiency for organic electroluminescent devices. However, to date, only phosphorescent materials have been implemented to harvest the triplet excitons in the organic light-emitting field effect transistors (OLEFETs). In this work, we report the first incorporation of exciplex thermally activated delayed fluorescence (TADF) emitters in heterostructured OLEFETs to harvest the triplet excitons. By developing a new kind of exciplex TADF emitter constituted by m-MTDATA (4,4',4″-tris(N-3-methylphenyl-N-phenylamino)triphenylamine) as the donor and OXD-7 (1,3-bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene) as the acceptor, an exciton utilization efficiency of 74.3% for the devices was achieved. It is found that the injection barrier between hole transport layer and emission layer as well as the ratio between donor and acceptor would influence the external quantum efficiency (EQE) significantly. Devices with a maximum EQE of 3.76% which is far exceeding the reported results for devices with conventional fluorescent emitters were successfully demonstrated. Moreover, the EQE at high brightness even outperformed the result for organic light-emitting diode based on the same emitter. Our results demonstrate that the exciplex TADF emitters can be promising candidates to develop OLEFETs with high performance.

  5. Theoretical investigation of confocal microscopy using an elliptically polarized cylindrical vector laser beam: Visualization of quantum emitters near interfaces

    NASA Astrophysics Data System (ADS)

    Boichenko, Stepan

    2018-04-01

    We theoretically study laser-scanning confocal fluorescence microscopy using elliptically polarized cylindrical vector excitation light as a tool for visualization of arbitrarily oriented single quantum dipole emitters located (1) near planar surfaces enhancing fluorescence, (2) in a thin supported polymer film, (3) in a freestanding polymer film, and (4) in a dielectric planar microcavity. It is shown analytically that by using a tightly focused azimuthally polarized beam, it is possible to exclude completely the orientational dependence of the image intensity maximum of a quantum emitter that absorbs light as a pair of incoherent independent linear dipoles. For linear dipole quantum emitters, the orientational independence degree higher than 0.9 can normally be achieved (this quantity equal to 1 corresponds to completely excluded orientational dependence) if the collection efficiency of the microscope objective and the emitter's total quantum yield are not strongly orientationally dependent. Thus, the visualization of arbitrarily oriented single quantum emitters by means of the studied technique can be performed quite efficiently.

  6. Emission enhancement, light extraction and carrier dynamics in InGaAs/GaAs nanowire arrays

    NASA Astrophysics Data System (ADS)

    Kivisaari, Pyry; Chen, Yang; Anttu, Nicklas

    2018-03-01

    Nanowires (NWs) have the potential for a wide range of new optoelectronic applications. For example, light-emitting diodes that span over the whole visible spectrum are currently being developed from NWs to overcome the well known green gap problem. However, due to their small size, NW devices exhibit special properties that complicate their analysis, characterization, and further development. In this paper, we develop a full optoelectronic simulation tool for NW array light emitters accounting for carrier transport and wave-optical emission enhancement (EE), and we use the model to simulate InGaAs/GaAs NW array light emitters with different geometries and temperatures. Our results show that NW arrays emit light preferentially to certain angles depending on the NW diameter and temperature, encouraging temperature- and angle-resolved measurements of NW array light emission. On the other hand, based on our results both the EE and light extraction efficiency can easily change by at least a factor of two between room temperature and 77 K, complicating the characterization of NW light emitters if conventional methods are used. Finally, simulations accounting for surface recombination emphasize its major effect on the device performance. For example, a surface recombination velocity of 104 cm s-1 reported earlier for bare InGaAs surfaces results in internal quantum efficiencies less than 30% for small-diameter NWs even at the temperature of 30 K. This highlights that core-shell structures or high-quality passivation techniques are eventually needed to achieve efficient NW-based light emitters.

  7. Selective emitter solar cell formation by NH3 plasma nitridation and single diffusion

    NASA Astrophysics Data System (ADS)

    Wu, Yung-Hsien; Chen, Lun-Lun; Wu, Jia-Rong; Wu, Min-Lin

    2010-01-01

    A new and simple process for fabricating a selective emitter solar cell has been proposed. Lightly and heavily doped emitters could be concurrently formed after a single POCl3 diffusion step through the selective formation of SiNx, which serves as the diffusion barrier and can be grown by NH3 plasma nitridation of the Si surface. The desired phosphorus depth profile for the lightly and heavily doped region verifies the eligibility of this process. From the electrical characterization, the selective emitter solar cell fabricated by this process manifests a higher absolute conversion efficiency than a conventional one by 0.5%. It is the enhanced response to the short wavelength light and the reduced surface recombination that causes the considerable improvement in conversion efficiency which is beneficial to further hold the competitive advantage for solar cell manufacturers. Most importantly, the proposed process can be fully integrated into the conventional solar cell process in a mass-production laboratory.

  8. Fabrication and optimization of phosphorescent organic light emitting diodes for solid-state lighting applications

    NASA Astrophysics Data System (ADS)

    Bhansali, Unnat S.

    Organic Light Emitting Diodes (OLEDs) have made tremendous progress over the last decade and are under consideration for use as solid-state lighting sources to replace the existing incandescent and fluorescent technology. Use of metal-organic phosphorescent complexes as bright emitters and efficient charge transporting organic semiconductors has resulted in OLEDs with internal quantum efficiency ˜ 100% and power efficiency ˜100 lm/W (green OLEDs) at 1000 cd/m2. For lighting applications, white OLEDs (WOLEDs) are required to have a color rendering index (CRI) > 80, correlated color temperature (CCT) (2700 ≤ WOLEDs ≤ 6500 °K), power efficiency > 100 lm/W and a lifetime > 25,000 hrs (at 70% of its original lumen value) at a brightness of 1000 cd/m2. Typically, high CRIs and high power efficiencies are obtained by either a combination of a blue fluorescent emitter with green and red phosphorescent emitters or a stack of blue, green and red phosphorescent emitters doped in a host material. In this work, we implement a single-emitter WOLEDs (SWOLEDs) approach by using monomer (blue) and broad excimer emissions (green and orange) from a self-sensitizing Pt-based phosphorescent complex, designed and synthesized by Prof. M.A. Omary's group. We have optimized and demonstrated high efficiency turquoise-blue OLEDs from monomer emission of Pt(ptp)2-bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) doped in a phosphine-oxide based host molecule and an electron transport molecule. The device peak power efficiency and external quantum efficiency were maintained >40 lm/W and >11%, respectively throughout the wide range of dopant concentrations (1% to 10%). A monotonic increase in the excimer/monomer emission intensity ratio is observed at the higher doping concentrations within 1%-10%, causing a small green-shift in the color. The peak performance of 60 -- 70 lm/W for the best optimized device represents the highest power efficiency known to date for blue OLEDs. Typically, the commercially available and most commonly used Ir-based emitters suffer from triplet-triplet annihilation and self-quenching issues due to their long triplet excited lifetimes (˜1 mus). The performance of these OLEDs is hence very sensitive to the dopant concentration. On the other hand, Pt(ptp)2 is a self-sensitizing, fast phosphor with triplet lifetimes ~100 ns and near unity quantum yield at room temperature. We have demonstrated high peak efficiency yellow OLEDs from undoped (neat) thin films of the emitter complex (>30 lm/W) and near 100% Internal Quantum Efficiency (IQE) with faster radiative recombination rate than doped films, thus proving the existence of self-sensitization in electroluminescence. We have successfully combined the monomer emission (low dopant concentrations) and excimer emission of Pt(ptp)2 to achieve high CRI SWOLEDs using a 2-layer and a 3-layer graded-doping design. The best color metrics were a CRI=62 and a CCT = 3452 K for a WOLED with the highest power efficiency = 31.3 lm/W and EQE = 17.4%, representing excellent performance for single-emitter WOLEDs.

  9. High efficiency and stable white OLED using a single emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jian

    2016-01-18

    The ultimate objective of this project was to demonstrate an efficient and stable white OLED using a single emitter on a planar glass substrate. The focus of the project is on the development of efficient and stable square planar phosphorescent emitters and evaluation of such class of materials in the device settings. Key challenges included improving the emission efficiency of molecular dopants and excimers, controlling emission color of emitters and their excimers, and improving optical and electrical stability of emissive dopants. At the end of this research program, the PI has made enough progress to demonstrate the potential of excimer-basedmore » white OLED as a cost-effective solution for WOLED panel in the solid state lighting applications.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hong-Ru; Wang, Shih-Yin; Ou, Sin-Liang

    The 120-nm-thick cobalt-doped ZnO (Co-doped ZnO, CZO) dilute magnetic films deposited by pulsed laser deposition were employed as the n-electrodes for both lateral-type blue (450 nm) and green (520 nm) InGaN light emitters. In comparison to the conventional blue and green emitters, there were 15.9% and 17.7% enhancements in the output power (@350 mA) after fabricating the CZO n-electrode on the n-GaN layer. Observations on the role of CZO n-electrodes in efficiency improvement of InGaN light emitters were performed. Based on the results of Hall measurements, the carrier mobilities were 176 and 141 cm{sup 2}/V s when the electrons passed through the n-GaN and themore » patterned-CZO/n-GaN, respectively. By incorporating the CZO n-electrode into the InGaN light emitters, the electrons would be scattered because of the collisions between the magnetic atoms and the electrons as the device is driven, leading to the reduction of the electron mobility. Therefore, the excessively large mobility difference between electron and hole carriers occurred in the conventional InGaN light emitter can be efficiently decreased after preparing the CZO n-electrode on the n-GaN layer, resulting in the increment of carrier recombination rate and the improvement of light output power.« less

  11. Highly efficient deep-blue organic light emitting diode with a carbazole based fluorescent emitter

    NASA Astrophysics Data System (ADS)

    Sahoo, Snehasis; Dubey, Deepak Kumar; Singh, Meenu; Joseph, Vellaichamy; Thomas, K. R. Justin; Jou, Jwo-Huei

    2018-04-01

    High efficiency deep-blue emission is essential to realize energy-saving, high-quality display and lighting applications. We demonstrate here a deep-blue organic light emitting diode using a novel carbazole based fluorescent emitter 7-[4-(diphenylamino)phenyl]-9-(2-ethylhexyl)-9H-carbazole-2-carbonitrile (JV234). The solution processed resultant device shows a maximum luminance above 1,750 cd m-2 and CIE coordinates (0.15,0.06) with a 1.3 lm W-1 power efficiency, 2.0 cd A-1 current efficiency, and 4.1% external quantum efficiency at 100 cd m-2. The resulting deep-blue emission enables a greater than 100% color saturation. The high efficiency may be attributed to the effective host-to-guest energy transfer, suitable device architecture facilitating balanced carrier injection and low doping concentration preventing efficiency roll-off caused by concentration quenching.

  12. Ultra High p-doping Material Research for GaN Based Light Emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vladimir Dmitriev

    2007-06-30

    The main goal of the Project is to investigate doping mechanisms in p-type GaN and AlGaN and controllably fabricate ultra high doped p-GaN materials and epitaxial structures. Highly doped p-type GaN-based materials with low electrical resistivity and abrupt doping profiles are of great importance for efficient light emitters for solid state lighting (SSL) applications. Cost-effective hydride vapor phase epitaxial (HVPE) technology was proposed to investigate and develop p-GaN materials for SSL. High p-type doping is required to improve (i) carrier injection efficiency in light emitting p-n junctions that will result in increasing of light emitting efficiency, (ii) current spreading inmore » light emitting structures that will improve external quantum efficiency, and (iii) parameters of Ohmic contacts to reduce operating voltage and tolerate higher forward currents needed for the high output power operation of light emitters. Highly doped p-type GaN layers and AlGaN/GaN heterostructures with low electrical resistivity will lead to novel device and contact metallization designs for high-power high efficiency GaN-based light emitters. Overall, highly doped p-GaN is a key element to develop light emitting devices for the DOE SSL program. The project was focused on material research for highly doped p-type GaN materials and device structures for applications in high performance light emitters for general illumination P-GaN and p-AlGaN layers and multi-layer structures were grown by HVPE and investigated in terms of surface morphology and structure, doping concentrations and profiles, optical, electrical, and structural properties. Tasks of the project were successfully accomplished. Highly doped GaN materials with p-type conductivity were fabricated. As-grown GaN layers had concentration N{sub a}-N{sub d} as high as 3 x 10{sup 19} cm{sup -3}. Mechanisms of doping were investigated and results of material studies were reported at several International conferences providing better understanding of p-type GaN formation for Solid State Lighting community. Grown p-type GaN layers were used as substrates for blue and green InGaN-based LEDs made by HVPE technology at TDI. These results proved proposed technical approach and facilitate fabrication of highly conductive p-GaN materials by low-cost HVPE technology for solid state lighting applications. TDI has started the commercialization of p-GaN epitaxial materials.« less

  13. Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cultrera, L.; Gulliford, C.; Bartnik, A.

    2016-03-28

    The intrinsic emittance of electron beams generated from a multi-alkali photocathode operated in a high voltage DC gun is reported. The photocathode showed sensitivity extending to the infrared part of the spectrum up to 830 nm. The measured intrinsic emittances of electron beams generated with light having wavelength longer than 800 nm are approaching the limit imposed by the thermal energy of electrons at room temperature with quantum efficiencies comparable to metallic photocathodes used in operation of modern photoinjectors.

  14. Interband Tunneling for Hole Injection in III-Nitride Ultraviolet Emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuewei; Krishnamoorthy, Sriram; Johnson, Jared M.

    Low p-type conductivity and high contact resistance remain a critical problem in wide band gap AlGaN-based ultraviolet light emitters due to the high acceptor ionization energy. In this work, interband tunneling is demonstrated for non-equilibrium injection of holes through the use of ultra-thin polarization-engineered layers that enhance tunneling probability by several orders of magnitude over a PN homojunction. Al 0.3Ga 0.7N interband tunnel junctions with a lowresistance of 5.6 × 10 -4 Ω cm 2 were obtained and integrated on ultraviolet light emitting diodes.Tunnel injection of holes was used to realize GaN-free ultraviolet light emitters with bottom and top n-typemore » Al 0.3Ga 0.7N contacts. At an emission wavelength of 327 nm, stable output power of 6 W/cm 2 at a current density of 120 A/cm 2 with a forward voltage of 5.9 V was achieved. Our demonstration of efficient interband tunneling could enable device designs for higher efficiency ultraviolet emitters.« less

  15. Compact multiwavelength transmitter module for multimode fiber optic ribbon cable

    DOEpatents

    Deri, Robert J.; Pocha, Michael D.; Larson, Michael C.; Garrett, Henry E.

    2002-01-01

    A compact multiwavelength transmitter module for multimode fiber optic ribbon cable, which couples light from an M.times.N array of emitters onto N fibers, where the M wavelength may be distributed across two or more vertical-cavity surface-emitting laser (VCSEL) chips, and combining emitters and multiplexer into a compact package that is compatible with placement on a printed circuit board. A key feature is bringing together two emitter arrays fabricated on different substrates--each array designed for a different wavelength--into close physical proximity. Another key feature is to compactly and efficiently combine the light from two or more clusters of optical emitters, each in a different wavelength band, into a fiber ribbon.

  16. Triplet diffusion leads to triplet-triplet annihilation in organic phosphorescent emitters

    NASA Astrophysics Data System (ADS)

    Zhang, Yifan; Forrest, Stephen R.

    2013-12-01

    In organic materials, triplet-triplet annihilation (TTA) can be dominated by triplet diffusion or triplet-to-triplet energy transfer. Here, we discuss the diffusion and transfer dominated mechanisms in the context of photoluminescence (PL) transient measurements from thin films of archetype phosphorescent organic light emitters based on Ir and Pt complexes. We find that TTA in these emitters is controlled by diffusion due to a Dexter-type exchange interaction, suggesting triplet radiative decay and TTA are independent processes. Minimizing the PL and absorption spectral overlap in phosphorescent emitters can lead to a significantly decreased TTA rate, and thus suppressed efficiency roll-off in phosphorescent organic light emitting diodes at high brightness.

  17. Enhanced blue responses in nanostructured Si solar cells by shallow doping

    NASA Astrophysics Data System (ADS)

    Cheon, Sieun; Jeong, Doo Seok; Park, Jong-Keuk; Kim, Won Mok; Lee, Taek Sung; Lee, Heon; Kim, Inho

    2018-03-01

    Optimally designed Si nanostructures are very effective for light trapping in crystalline silicon (c-Si) solar cells. However, when the lateral feature size of Si nanostructures is comparable to the junction depth of the emitter, dopant diffusion in the lateral direction leads to excessive doping in the nanostructured emitter whereby poor blue responses arise in the external quantum efficiency (EQE). The primary goal of this study is to find the correlation of emitter junction depth and carrier collection efficiency in nanostructured c-Si solar cells in order to enhance the blue responses. We prepared Si nanostructures of nanocone shape by colloidal lithography, with silica beads of 520 nm in diameter, followed by a reactive ion etching process. c-Si solar cells with a standard cell architecture of an Al back surface field were fabricated varying the emitter junction depth. We varied the emitter junction depth by adjusting the doping level from heavy doping to moderate doping to light doping and achieved greatly enhanced blue responses in EQE from 47%-92% at a wavelength of 400 nm. The junction depth analysis by secondary ion mass-spectroscopy profiling and the scanning electron microscopy measurements provided us with the design guide of the doping level depending on the nanostructure feature size for high efficiency nanostructured c-Si solar cells. Optical simulations showed us that Si nanostructures can serve as an optical resonator to amplify the incident light field, which needs to be considered in the design of nanostructured c-Si solar cells.

  18. Material platforms for spin-based photonic quantum technologies

    NASA Astrophysics Data System (ADS)

    Atatüre, Mete; Englund, Dirk; Vamivakas, Nick; Lee, Sang-Yun; Wrachtrup, Joerg

    2018-05-01

    A central goal in quantum optics and quantum information science is the development of quantum networks to generate entanglement between distributed quantum memories. Experimental progress relies on the quality and efficiency of the light-matter quantum interface connecting the quantum states of photons to internal states of quantum emitters. Quantum emitters in solids, which have properties resembling those of atoms and ions, offer an opportunity for realizing light-matter quantum interfaces in scalable and compact hardware. These quantum emitters require a material platform that enables stable spin and optical properties, as well as a robust manufacturing of quantum photonic circuits. Because no emitter system is yet perfect and different applications may require different properties, several light-matter quantum interfaces are being developed in various platforms. This Review highlights the progress in three leading material platforms: diamond, silicon carbide and atomically thin semiconductors.

  19. High efficiency blue and white phosphorescent organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Eom, Sang-Hyun

    Organic light-emitting devices (OLEDs) have important applications in full-color flat-panel displays and as solid-state lighting sources. Achieving high efficiency deep-blue phosphorescent OLEDs (PHOLEDs) is necessary for high performance full-color displays and white light sources with a high color rendering index (CRI); however it is more challenging compared to the longer wavelength light emissions such as green and red due to the higher energy excitations for the deep-blue emitter as well as the weak photopic response of deep-blue emission. This thesis details several effective strategies to enhancing efficiencies of deep-blue PHOLEDs based on iridium(III) bis(4',6'-difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6), which are further employed to demonstrate high efficiency white OLEDs by combining the deep-blue emitter with green and red emitters. First, we have employed 1,1-bis-(di-4-tolylaminophenyl) cyclohexane (TAPC) as the hole transporting material to enhance electron and triplet exciton confinement in Fir6-based PHOLEDs, which increased external quantum efficiency up to 18 %. Second, dual-emissive-layer (D-EML) structures consisting of an N,N -dicarbazolyl-3,5-benzene (mCP) layer doped with 4 wt % FIr6 and a p-bis (triphenylsilyly)benzene (UGH2) layer doped with 25 wt % FIr6 was employed to maximize exciton generation in the emissive layer. Combined with the p-i-n device structure, high power efficiencies of (25 +/- 2) lm/W at 100 cd/m2 and (20 +/- 2) lm/W at 1000 cd/m 2 were achieved. Moreover, the peak external quantum efficiency of (20 +/- 1) % was achieved by employing tris[3-(3-pyridyl)mesityl]borane (3TPYMB) as the electron transporting material, which further improves the exciton confinement in the emissive layer. With Cs2CO3 doping in the 3TPYMB layer to greatly increase its electrical conductivity, a peak power efficiency up to (36 +/- 2) lm/W from the deep-blue PHOLED was achieved, which also maintains Commission Internationale de L'Eclairage (CIE) coordinates of (0.16, 0.28). High efficiency white PHOLEDs are also demonstrated by incorporating green and red phosphorescent emitters together with the deep-blue emitter FIr6. Similar to the FIr6-only devices, the D-EML structure with high triplet energy charge transport materials leads to a maximum external quantum efficiency of (19 +/- 1) %. Using the p-i-n device structure, a peak power efficiency of (40 +/- 2) lm/W and (36 +/- 2) lm/W at 100 cd/m2 were achieved, and the white PHOLED possesses a CRI of 79 and CIE coordinates of (0.37, 0.40). The limited light extraction from the planar-type OLEDs is also one of the remaining challenges to the OLED efficiency. Here we have developed a simple soft lithography technique to fabricate a transparent, close-packed hemispherical microlens arrays. The application of such microlens arrays to the glass surface of the large-area fluorescent OLEDs enhanced the light extraction efficiency up to (70 +/- 7)%. It is also shown that the light extraction efficiency of the OLEDs is affected by microlens contact angle, OLEDs size, and detailed layer structure of the OLEDs.

  20. Electrically-driven GHz range ultrafast graphene light emitter (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Youngduck; Gao, Yuanda; Shiue, Ren-Jye; Wang, Lei; Aslan, Ozgur Burak; Kim, Hyungsik; Nemilentsau, Andrei M.; Low, Tony; Taniguchi, Takashi; Watanabe, Kenji; Bae, Myung-Ho; Heinz, Tony F.; Englund, Dirk R.; Hone, James

    2017-02-01

    Ultrafast electrically driven light emitter is a critical component in the development of the high bandwidth free-space and on-chip optical communications. Traditional semiconductor based light sources for integration to photonic platform have therefore been heavily studied over the past decades. However, there are still challenges such as absence of monolithic on-chip light sources with high bandwidth density, large-scale integration, low-cost, small foot print, and complementary metal-oxide-semiconductor (CMOS) technology compatibility. Here, we demonstrate the first electrically driven ultrafast graphene light emitter that operate up to 10 GHz bandwidth and broadband range (400 1600 nm), which are possible due to the strong coupling of charge carriers in graphene and surface optical phonons in hBN allow the ultrafast energy and heat transfer. In addition, incorporation of atomically thin hexagonal boron nitride (hBN) encapsulation layers enable the stable and practical high performance even under the ambient condition. Therefore, electrically driven ultrafast graphene light emitters paves the way towards the realization of ultrahigh bandwidth density photonic integrated circuits and efficient optical communications networks.

  1. FAST TRACK COMMUNICATION Host-free, yellow phosphorescent material in white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Meng-Ting; Chu, Miao-Tsai; Lin, Jin-Sheng; Tseng, Mei-Rurng

    2010-11-01

    A white organic light-emitting diode (WOLED) with a high power efficiency has been demonstrated by dispersing a host-free, yellow phosphorescent material in between double blue phosphorescent emitters. The device performance achieved a comparable value to that of using a complicated host-guest doping system to form the yellow emitter in WOLEDs. Based on this device concept as well as the molecular engineering of blue phosphorescent host material and light-extraction film, a WOLED with a power efficiency of 65 lm W-1 at a practical brightness of 1000 cd m-2 with Commission Internationale d'Echariage coordinates (CIEx,y) of (0.37, 0.47) was achieved.

  2. Highly Simplified Tandem Organic Light-Emitting Devices Incorporating a Green Phosphorescence Ultrathin Emitter within a Novel Interface Exciplex for High Efficiency.

    PubMed

    Xu, Ting; Zhou, Jun-Gui; Huang, Chen-Chao; Zhang, Lei; Fung, Man-Keung; Murtaza, Imran; Meng, Hong; Liao, Liang-Sheng

    2017-03-29

    Herein we report a novel design philosophy of tandem OLEDs incorporating a doping-free green phosphorescent bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonato)iridium(III) (Ir(ppy) 2 (acac)) as an ultrathin emissive layer (UEML) into a novel interface-exciplex-forming structure of 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and 1,3,5-tri(p-pyrid-3-yl-phenyl)benzene (TmPyPB). Particularly, relatively low working voltage and remarkable efficiency are achieved and the designed tandem OLEDs exhibit a peak current efficiency of 135.74 cd/A (EQE = 36.85%) which is two times higher than 66.2 cd/A (EQE = 17.97%) of the device with a single emitter unit. This might be one of the highest efficiencies of OLEDs applying ultrathin emitters without light extraction. Moreover, with the proposed structure, the color gamut of the displays can be effectively increased from 76% to 82% NTSC if the same red and blue emissions as those in the NTSC are applied. A novel form of harmonious fusion among interface exciplex, UEML, and tandem structure is successfully realized, which sheds light on further development of ideal OLED structure with high efficiency, simplified fabrication, low power consumption, low cost, and improved color gamut, simultaneously.

  3. Narrowband infrared emitters for combat ID

    NASA Astrophysics Data System (ADS)

    Pralle, Martin U.; Puscasu, Irina; Daly, James; Fallon, Keith; Loges, Peter; Greenwald, Anton; Johnson, Edward

    2007-04-01

    There is a strong desire to create narrowband infrared light sources as personnel beacons for application in infrared Identify Friend or Foe (IFF) systems. This demand has augmented dramatically in recent years with the reports of friendly fire casualties in Afghanistan and Iraq. ICx Photonics' photonic crystal enhanced TM (PCE TM) infrared emitter technology affords the possibility of creating narrowband IR light sources tuned to specific IR wavebands (near 1-2 microns, mid 3-5 microns, and long 8-12 microns) making it the ideal solution for infrared IFF. This technology is based on a metal coated 2D photonic crystal of air holes in a silicon substrate. Upon thermal excitation the photonic crystal modifies the emitted yielding narrowband IR light with center wavelength commensurate with the periodicity of the lattice. We have integrated this technology with microhotplate MEMS devices to yield 15mW IR light sources in the 3-5 micron waveband with wall plug efficiencies in excess of 10%, 2 orders of magnitude more efficient that conventional IR LEDs. We have further extended this technology into the LWIR with a light source that produces 9 mW of 8-12 micron light at an efficiency of 8%. Viewing distances >500 meters were observed with fielded camera technologies, ideal for ground to ground troop identification. When grouped into an emitter panel, the viewing distances were extended to 5 miles, ideal for ground to air identification.

  4. Small slot waveguide rings for on-chip quantum optical circuits.

    PubMed

    Rotenberg, Nir; Türschmann, Pierre; Haakh, Harald R; Martin-Cano, Diego; Götzinger, Stephan; Sandoghdar, Vahid

    2017-03-06

    Nanophotonic interfaces between single emitters and light promise to enable new quantum optical technologies. Here, we use a combination of finite element simulations and analytic quantum theory to investigate the interaction of various quantum emitters with slot-waveguide rings. We predict that for rings with radii as small as 1.44 μm, with a Q-factor of 27,900, near-unity emitter-waveguide coupling efficiencies and emission enhancements on the order of 1300 can be achieved. By tuning the ring geometry or introducing losses, we show that realistic emitter-ring systems can be made to be either weakly or strongly coupled, so that we can observe Rabi oscillations in the decay dynamics even for micron-sized rings. Moreover, we demonstrate that slot waveguide rings can be used to directionally couple emission, again with near-unity efficiency. Our results pave the way for integrated solid-state quantum circuits involving various emitters.

  5. Highly efficient exciplex organic light-emitting diodes using thermally activated delayed fluorescent emitters as donor and acceptor materials.

    PubMed

    Jeon, Sang Kyu; Yook, Kyoung Soo; Lee, Jun Yeob

    2016-06-03

    Highly efficient exciplex type organic light-emitting diodes were developed using thermally activated delayed fluorescent emitters as donors and acceptors of an exciplex. Blue emitting bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) was a donor and 9,9'-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole) (DDCzTrz) and 9,9',9″-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl)tris(9H-carbazole) (TCzTrz) were acceptor materials. The exciplexes of DMAC-DPS:TCzTrz and DMAC-DPS:DDCzTrz resulted in high photoluminescence quantum yield and high quantum efficiency in the green exciplex organic light-emitting diodes. High quantum efficiencies of 13.4% and 15.3% were obtained in the DMAC-DPS:DDCzTrz and DMAC-DPS:TCzTrz exciplex devices.

  6. Highly efficient exciplex organic light-emitting diodes using thermally activated delayed fluorescent emitters as donor and acceptor materials

    NASA Astrophysics Data System (ADS)

    Jeon, Sang Kyu; Yook, Kyoung Soo; Lee, Jun Yeob

    2016-06-01

    Highly efficient exciplex type organic light-emitting diodes were developed using thermally activated delayed fluorescent emitters as donors and acceptors of an exciplex. Blue emitting bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) was a donor and 9,9‧-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole) (DDCzTrz) and 9,9‧,9″-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl)tris(9H-carbazole) (TCzTrz) were acceptor materials. The exciplexes of DMAC-DPS:TCzTrz and DMAC-DPS:DDCzTrz resulted in high photoluminescence quantum yield and high quantum efficiency in the green exciplex organic light-emitting diodes. High quantum efficiencies of 13.4% and 15.3% were obtained in the DMAC-DPS:DDCzTrz and DMAC-DPS:TCzTrz exciplex devices.

  7. Purely organic electroluminescent material realizing 100% conversion from electricity to light

    PubMed Central

    Kaji, Hironori; Suzuki, Hajime; Fukushima, Tatsuya; Shizu, Katsuyuki; Suzuki, Katsuaki; Kubo, Shosei; Komino, Takeshi; Oiwa, Hajime; Suzuki, Furitsu; Wakamiya, Atsushi; Murata, Yasujiro; Adachi, Chihaya

    2015-01-01

    Efficient organic light-emitting diodes have been developed using emitters containing rare metals, such as platinum and iridium complexes. However, there is an urgent need to develop emitters composed of more abundant materials. Here we show a thermally activated delayed fluorescence material for organic light-emitting diodes, which realizes both approximately 100% photoluminescence quantum yield and approximately 100% up-conversion of the triplet to singlet excited state. The material contains electron-donating diphenylaminocarbazole and electron-accepting triphenyltriazine moieties. The typical trade-off between effective emission and triplet-to-singlet up-conversion is overcome by fine-tuning the highest occupied molecular orbital and lowest unoccupied molecular orbital distributions. The nearly zero singlet–triplet energy gap, smaller than the thermal energy at room temperature, results in an organic light-emitting diode with external quantum efficiency of 29.6%. An external quantum efficiency of 41.5% is obtained when using an out-coupling sheet. The external quantum efficiency is 30.7% even at a high luminance of 3,000 cd m−2. PMID:26477390

  8. Doping-free white organic light-emitting diodes without blue molecular emitter: An unexplored approach to achieve high performance via exciplex emission

    NASA Astrophysics Data System (ADS)

    Luo, Dongxiang; Xiao, Ye; Hao, Mingming; Zhao, Yu; Yang, Yibin; Gao, Yuan; Liu, Baiquan

    2017-02-01

    Doping-free white organic light-emitting diodes (DF-WOLEDs) are promising for the low-cost commercialization because of their simplified device structures. However, DF-WOLEDs reported thus far in the literature are based on the use of blue single molecular emitters, whose processing can represent a crucial point in device manufacture. Herein, DF-WOLEDs without the blue single molecular emitter have been demonstrated by managing a blue exciplex system. For the single-molecular-emitter (orange or yellow emitter) DF-WOLEDs, (i) a color rendering index (CRI) of 81 at 1000 cd/m2 can be obtained, which is one of the highest for the single-molecular-emitter WOLEDs, or (ii) a high efficiency of 35.4 lm/W can be yielded. For the dual-molecular-emitter (yellow/red emitters) DF-WOLED, a high CRI of 85 and low correlated color temperature of 2376 K at 1000 cd/m2 have been simultaneously achieved, which has not been reported by previous DF-WOLEDs. Such presented findings may unlock an alternative avenue to the simplified but high-performance WOLEDs.

  9. Record Efficiency on Large Area P-Type Czochralski Silicon Substrates

    NASA Astrophysics Data System (ADS)

    Hallam, Brett; Wenham, Stuart; Lee, Haeseok; Lee, Eunjoo; Lee, Hyunwoo; Kim, Jisun; Shin, Jeongeun; Cho, Kyeongyeon; Kim, Jisoo

    2012-10-01

    In this work we report a world record independently confirmed efficiency of 19.4% for a large area p-type Czochralski grown solar cell fabricated with a full area aluminium back surface field. This is achieved using the laser doped selective emitter solar cell technology on an industrial screen print production line with the addition of laser doping and light induced plating equipment. The use of a modified diffusion process is explored in which the emitter is diffused to a sheet resistance of 90 Ω/square and subsequent etch back of the emitter to 120 Ω/square. This results in a lower surface concentration of phosphorus compared to that of emitters diffused directly to 120 Ω/square. This modified diffusion process subsequently reduces the conductivity of the surface in relation to that of the heavily diffused laser doped contacts and avoids parasitic plating, resulting an average absolute increase in efficiency of 0.4% compared to cells fabricated without an emitter etch back process.

  10. From classical to quantum plasmonics: Classical emitter and SPASER

    NASA Astrophysics Data System (ADS)

    Balykin, V. I.

    2018-02-01

    The key advantage of plasmonics is in pushing our control of light down to the nanoscale. It is possible to envision lithographically fabricated plasmonic devices for future quantum information processing or cryptography at the nanoscale in two dimensions. A first step in this direction is a demonstration of a highly efficient nanoscale light source. Here we demonstrate two types of nanoscale sources of optical fields: 1) the classical metallic nanostructure emitter and 2) the plasmonic nanolaser - SPASER.

  11. Regular dislocation networks in silicon as a tool for nanostructure devices used in optics, biology, and electronics.

    PubMed

    Kittler, M; Yu, X; Mchedlidze, T; Arguirov, T; Vyvenko, O F; Seifert, W; Reiche, M; Wilhelm, T; Seibt, M; Voss, O; Wolff, A; Fritzsche, W

    2007-06-01

    Well-controlled fabrication of dislocation networks in Si using direct wafer bonding opens broad possibilities for nanotechnology applications. Concepts of dislocation-network-based light emitters, manipulators of biomolecules, gettering and insulating layers, and three-dimensional buried conductive channels are presented and discussed. A prototype of a Si-based light emitter working at a wavelength of about 1.5 microm with an efficiency potential estimated at 1% is demonstrated.

  12. Continuous-wave mid-infrared photonic crystal light emitters at room temperature

    NASA Astrophysics Data System (ADS)

    Weng, Binbin; Qiu, Jijun; Shi, Zhisheng

    2017-01-01

    Mid-infrared photonic crystal enhanced lead-salt light emitters operating under continuous-wave mode at room temperature were investigated in this work. For the device, an active region consisting of 9 pairs of PbSe/Pb0.96Sr0.04Se quantum wells was grown by molecular beam epitaxy method on top of a Si(111) substrate which was initially dry-etched with a two-dimensional photonic crystal structure in a pattern of hexagonal holes. Because of the photonic crystal structure, an optical band gap between 3.49 and 3.58 µm was formed, which matched with the light emission spectrum of the quantum wells at room temperature. As a result, under optical pumping, using a near-infrared continuous-wave semiconductor laser, the device exhibited strong photonic crystal band-edge mode emissions and delivered over 26.5 times higher emission efficiency compared to the one without photonic crystal structure. The output power obtained was up to 7.68 mW (the corresponding power density was 363 mW/cm2), and a maximum quantum efficiency reached to 1.2%. Such photonic crystal emitters can be used as promising light sources for novel miniaturized gas-sensing systems.

  13. Localised excitation of a single photon source by a nanowaveguide.

    PubMed

    Geng, Wei; Manceau, Mathieu; Rahbany, Nancy; Sallet, Vincent; De Vittorio, Massimo; Carbone, Luigi; Glorieux, Quentin; Bramati, Alberto; Couteau, Christophe

    2016-01-29

    Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities are good candidates but do not tackle how to effectively address a nanoscale emitter. Using a nanowire nanowaveguide, we realise an hybrid nanodevice which locally excites a single photon source (SPS). The nanowire acts as a passive or active sub-wavelength waveguide to excite the quantum emitter. Our results show that localised excitation of a SPS is possible and is compared with free-space excitation. Our proof of principle experiment presents an absolute addressing efficiency ηa ~ 10(-4) only ~50% lower than the one using free-space optics. This important step demonstrates that sufficient guided light in a nanowaveguide made of a semiconductor nanowire is achievable to excite a single photon source. We accomplish a hybrid system offering great potentials for electrically driven SPSs and efficient single photon collection and detection, opening the way for optimum absorption/emission of nanoscale emitters. We also discuss how to improve the addressing efficiency of a dipolar nanoscale emitter with our system.

  14. Localised excitation of a single photon source by a nanowaveguide

    PubMed Central

    Geng, Wei; Manceau, Mathieu; Rahbany, Nancy; Sallet, Vincent; De Vittorio, Massimo; Carbone, Luigi; Glorieux, Quentin; Bramati, Alberto; Couteau, Christophe

    2016-01-01

    Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities are good candidates but do not tackle how to effectively address a nanoscale emitter. Using a nanowire nanowaveguide, we realise an hybrid nanodevice which locally excites a single photon source (SPS). The nanowire acts as a passive or active sub-wavelength waveguide to excite the quantum emitter. Our results show that localised excitation of a SPS is possible and is compared with free-space excitation. Our proof of principle experiment presents an absolute addressing efficiency ηa ~ 10−4 only ~50% lower than the one using free-space optics. This important step demonstrates that sufficient guided light in a nanowaveguide made of a semiconductor nanowire is achievable to excite a single photon source. We accomplish a hybrid system offering great potentials for electrically driven SPSs and efficient single photon collection and detection, opening the way for optimum absorption/emission of nanoscale emitters. We also discuss how to improve the addressing efficiency of a dipolar nanoscale emitter with our system. PMID:26822999

  15. Highly Efficient Broadband Yellow Phosphor Based on Zero-Dimensional Tin Mixed-Halide Perovskite.

    PubMed

    Zhou, Chenkun; Tian, Yu; Yuan, Zhao; Lin, Haoran; Chen, Banghao; Clark, Ronald; Dilbeck, Tristan; Zhou, Yan; Hurley, Joseph; Neu, Jennifer; Besara, Tiglet; Siegrist, Theo; Djurovich, Peter; Ma, Biwu

    2017-12-27

    Organic-inorganic hybrid metal halide perovskites have emerged as a highly promising class of light emitters, which can be used as phosphors for optically pumped white light-emitting diodes (WLEDs). By controlling the structural dimensionality, metal halide perovskites can exhibit tunable narrow and broadband emissions from the free-exciton and self-trapped excited states, respectively. Here, we report a highly efficient broadband yellow light emitter based on zero-dimensional tin mixed-halide perovskite (C 4 N 2 H 14 Br) 4 SnBr x I 6-x (x = 3). This rare-earth-free ionically bonded crystalline material possesses a perfect host-dopant structure, in which the light-emitting metal halide species (SnBr x I 6-x 4- , x = 3) are completely isolated from each other and embedded in the wide band gap organic matrix composed of C 4 N 2 H 14 Br - . The strongly Stokes-shifted broadband yellow emission that peaked at 582 nm from this phosphor, which is a result of excited state structural reorganization, has an extremely large full width at half-maximum of 126 nm and a high photoluminescence quantum efficiency of ∼85% at room temperature. UV-pumped WLEDs fabricated using this yellow emitter together with a commercial europium-doped barium magnesium aluminate blue phosphor (BaMgAl 10 O 17 :Eu 2+ ) can exhibit high color rendering indexes of up to 85.

  16. Fluorescence enhancement and strong-coupling in faceted plasmonic nanocavities

    NASA Astrophysics Data System (ADS)

    Kongsuwan, Nuttawut; Demetriadou, Angela; Chikkaraddy, Rohit; Baumberg, Jeremy J.; Hess, Ortwin

    2018-06-01

    Emission properties of a quantum emitter can be significantly modified inside nanometre-sized gaps between two plasmonic nanostructures. This forms a nanoscopic optical cavity which allows single-molecule detection and single-molecule strong-coupling at room temperature. However, plasmonic resonances of a plasmonic nanocavity are highly sensitive to the exact gap morphology. In this article, we shed light on the effect of gap morphology on the plasmonic resonances of a faceted nanoparticle-on-mirror (NPoM) nanocavity and their interaction with quantum emitters. We find that with increasing facet width the NPoM nanocavity provides weaker field enhancement and thus less coupling strength to a single quantum emitter since the effective mode volume increases with the facet width. However, if multiple emitters are present, a faceted NPoM nanocavity is capable of accommodating a larger number of emitters, and hence the overall coupling strength is larger due to the collective and coherent energy exchange from all the emitters. Our findings pave the way to more efficient designs of nanocavities for room-temperature light-matter strong-coupling, thus providing a big step forward to a non-cryogenic platform for quantum technologies.

  17. Highly efficient near-infrared light-emitting diodes by using type-II CdTe/CdSe core/shell quantum dots as a phosphor

    NASA Astrophysics Data System (ADS)

    Shen, Huaibin; Zheng, Ying; Wang, Hongzhe; Xu, Weiwei; Qian, Lei; Yang, Yixing; Titov, Alexandre; Hyvonen, Jake; Li, Lin Song

    2013-11-01

    In this paper, we present an innovative method for the synthesis of CdTe/CdSe type-II core/shell structure quantum dots (QDs) using ‘greener’ chemicals. The PL of CdTe/CdSe type-II core/shell structure QDs ranges from 600 to 820 nm, and the as-synthesized core/shell structures show narrow size distributions and stable and high quantum yields (50-75%). Highly efficient near-infrared light-emitting diodes (LEDs) have been demonstrated by employing the CdTe/CdSe type-II core/shell QDs as emitters. The devices fabricated based on these type-II core/shell QDs show color-saturated near-infrared emission from the QD layers, a low turn-on voltage of 1.55 V, an external quantum efficiency (EQE) of 1.59%, and a current density and maximum radiant emittance of 2.1 × 103 mA cm-2 and 17.7 mW cm-2 at 8 V it is the first report to use type-II core/shell QDs as near-infrared emitters and these results may offer a practicable platform for the realization of near-infrared QD-based light-emitting diodes, night-vision-readable displays, and friend/foe identification system.

  18. Highly efficient white OLEDs for lighting applications

    NASA Astrophysics Data System (ADS)

    Murano, Sven; Burghart, Markus; Birnstock, Jan; Wellmann, Philipp; Vehse, Martin; Werner, Ansgar; Canzler, Tobias; Stübinger, Thomas; He, Gufeng; Pfeiffer, Martin; Boerner, Herbert

    2005-10-01

    The use of organic light-emitting diodes (OLEDs) for large area general lighting purposes is gaining increasing interest during the recent years. Especially small molecule based OLEDs have already shown their potential for future applications. For white light emission OLEDs, power efficiencies exceeding that of incandescent bulbs could already be demonstrated, however additional improvements are needed to further mature the technology allowing for commercial applications as general purpose illuminating sources. Ultimately the efficiencies of fluorescent tubes should be reached or even excelled, a goal which could already be achieved in the past for green OLEDs.1 In this publication the authors will present highly efficient white OLEDs based on an intentional doping of the charge carrier transport layers and the usage of different state of the art emission principles. This presentation will compare white PIN-OLEDs based on phosphorescent emitters, fluorescent emitters and stacked OLEDs. It will be demonstrated that the reduction of the operating voltage by the use of intentionally doped transport layers leads to very high power efficiencies for white OLEDs, demonstrating power efficiencies of well above 20 lm/W @ 1000 cd/m2. The color rendering properties of the emitted light is very high and CRIs between 85 and 95 are achieved, therefore the requirements for standard applications in the field of lighting applications could be clearly fulfilled. The color coordinates of the light emission can be tuned within a wide range through the implementation of minor structural changes.

  19. Concepts for high efficient white OLEDs for lighting applications

    NASA Astrophysics Data System (ADS)

    Hunze, A.; Krause, R.; Seidel, S.; Weiss, O.; Kozlowski, F.; Schmid, G.; Meyer, J.; Kröger, M.; Johannes, H. H.; Kowalsky, W.; Dobbertin, T.

    2007-09-01

    Apart from usage of organic light emitting diodes for flat panel display applications OLEDs are a potential candidate for the next solid state lighting technology. One key parameter is the development of high efficient, stable white devices. To realize this goal there are different concepts. Especially by using highly efficient phosphorescent guest molecules doped into a suitable host material high efficiency values can be obtained. We started our investigations with a single dopant and extended this to a two phosphorescent emitter approach leading to a device with a high power efficiency of more than 25 lm/W @ 1000 cd/m2. The disadvantage of full phosphorescent device setups is that esp. blue phosphorescent emitters show an insufficient long-term stability. A possibility to overcome this problem is the usage of more stable fluorescent blue dopants, whereas, due to the fact that only singlet excitons can decay radiatively, the efficiency is lower. With a concept, proposed by Sun et al.1 in 2006, it is possible to manage the recombination zone and thus the contribution from the different dopants. With this approach stable white color coordinates with sufficient current efficiency values have been achieved.

  20. Highly efficient blue and warm white organic light-emitting diodes with a simplified structure

    NASA Astrophysics Data System (ADS)

    Li, Xiang-Long; Ouyang, Xinhua; Chen, Dongcheng; Cai, Xinyi; Liu, Ming; Ge, Ziyi; Cao, Yong; Su, Shi-Jian

    2016-03-01

    Two blue fluorescent emitters were utilized to construct simplified organic light-emitting diodes (OLEDs) and the remarkable difference in device performance was carefully illustrated. A maximum current efficiency of 4.84 cd A-1 (corresponding to a quantum efficiency of 4.29%) with a Commission Internationale de l’Eclairage (CIE) coordinate of (0.144, 0.127) was achieved by using N,N-diphenyl-4″-(1-phenyl-1H-benzo[d]imidazol-2-yl)-[1, 1‧:4‧, 1″-terphenyl]-4-amine (BBPI) as a non-doped emission layer of the simplified blue OLEDs without carrier-transport layers. In addition, simplified fluorescent/phosphorescent (F/P) hybrid warm white OLEDs without carrier-transport layers were fabricated by utilizing BBPI as (1) the blue emitter and (2) the host of a complementary yellow phosphorescent emitter (PO-01). A maximum current efficiency of 36.8 cd A-1 and a maximum power efficiency of 38.6 lm W-1 were achieved as a result of efficient energy transfer from the host to the guest and good triplet exciton confinement on the phosphorescent molecules. The blue and white OLEDs are among the most efficient simplified fluorescent blue and F/P hybrid white devices, and their performance is even comparable to that of most previously reported complicated multi-layer devices with carrier-transport layers.

  1. Planar field emitters and high efficiency photocathodes based on ultrananocrystalline diamond

    DOEpatents

    Sumant, Anirudha V.; Baryshev, Sergey V.; Antipov, Sergey P.

    2016-08-16

    A method of forming a field emitter comprises disposing a first layer on a substrate. The first layer is seeded with nanodiamond particles. The substrate with the first layer disposed thereon is maintained at a first temperature and a first pressure in a mixture of gases which includes nitrogen. The first layer is exposed to a microwave plasma to form a nitrogen doped ultrananocrystalline diamond film on the first layer, which has a percentage of nitrogen in the range of about 0.05 atom % to about 0.5 atom %. The field emitter has about 10.sup.12 to about 10.sup.14 emitting sites per cm.sup.2. A photocathode can also be formed similarly by forming a nitrogen doped ultrananocrystalline diamond film on a substrate similar to the field emitter, and then hydrogen terminating the film. The photocathode is responsive to near ultraviolet light as well as to visible light.

  2. Planar Field Emitters and High Efficiency Photocathodes Based on Ultrananocrystalline Diamond

    NASA Technical Reports Server (NTRS)

    Sumant, Anirudha V. (Inventor); Baryshev, Sergey V. (Inventor); Antipov, Sergey P. (Inventor)

    2016-01-01

    A method of forming a field emitter comprises disposing a first layer on a substrate. The first layer is seeded with nanodiamond particles. The substrate with the first layer disposed thereon is maintained at a first temperature and a first pressure in a mixture of gases which includes nitrogen. The first layer is exposed to a microwave plasma to form a nitrogen doped ultrananocrystalline diamond film on the first layer, which has a percentage of nitrogen in the range of about 0.05 atom % to about 0.5 atom %. The field emitter has about 10.sup.12 to about 10.sup.14 emitting sites per cm.sup.2. A photocathode can also be formed similarly by forming a nitrogen doped ultrananocrystalline diamond film on a substrate similar to the field emitter, and then hydrogen terminating the film. The photocathode is responsive to near ultraviolet light as well as to visible light.

  3. Effect of soil properties on Hydraulic characteristics under subsurface drip irrigation

    NASA Astrophysics Data System (ADS)

    Fan, Wangtao; Li, Gang

    2018-02-01

    Subsurface drip irrigation (SDI) is a technique that has a high potential in application because of its high efficiency in water-saving. The hydraulic characteristics of SDI sub-unit pipe network can be affected by soil physical properties as the emitters are buried in soils. The related research, however, is not fully explored. The laboratory tests were carried out in the present study to determine the effects of hydraulic factors including operating pressure, initial soil water content, and bulk density on flow rate and its sensitivity to each hydraulic factor for two types of SDI emitters (PLASSIM emitter and Heping emitter). For this purpose, three soils with contrasting textures (i.e., light sand, silt loam, and light clay) were repacked with two soil bulk density (1.25 and1.40 g cm-3) with two initial soil water content (12% and 18%) in plexiglass columns with 40 cm in diameter and 40 cm in height. Drip emitters were buried at depth of 20 cm to measure the flow rates under seven operating pressures (60, 100, 150, 200, 250, 300, and 370 kPa). We found that the operating pressure was the dominating factor of flow rate of the SDI emitter, and flow rate increased with the increase of operating pressure. The initial soil water content and bulk density also affected the flow rate, and their effects were the most notable in the light sand soil. The sensitivity of flow rate to each hydraulic factor was dependent on soil texture, and followed a descending order of light sand>silt loam>light clay for both types of emitters. Further, the sensitivity of flow rate to each hydraulic factor decreased with the increase of operating pressure, initial soil water content, and bulk density. This study may be used to guide the soil specific-design of SDI emitters for optimal water use and management.

  4. Ultrafast Graphene Light Emitters.

    PubMed

    Kim, Young Duck; Gao, Yuanda; Shiue, Ren-Jye; Wang, Lei; Aslan, Ozgur Burak; Bae, Myung-Ho; Kim, Hyungsik; Seo, Dongjea; Choi, Heon-Jin; Kim, Suk Hyun; Nemilentsau, Andrei; Low, Tony; Tan, Cheng; Efetov, Dmitri K; Taniguchi, Takashi; Watanabe, Kenji; Shepard, Kenneth L; Heinz, Tony F; Englund, Dirk; Hone, James

    2018-02-14

    Ultrafast electrically driven nanoscale light sources are critical components in nanophotonics. Compound semiconductor-based light sources for the nanophotonic platforms have been extensively investigated over the past decades. However, monolithic ultrafast light sources with a small footprint remain a challenge. Here, we demonstrate electrically driven ultrafast graphene light emitters that achieve light pulse generation with up to 10 GHz bandwidth across a broad spectral range from the visible to the near-infrared. The fast response results from ultrafast charge-carrier dynamics in graphene and weak electron-acoustic phonon-mediated coupling between the electronic and lattice degrees of freedom. We also find that encapsulating graphene with hexagonal boron nitride (hBN) layers strongly modifies the emission spectrum by changing the local optical density of states, thus providing up to 460% enhancement compared to the gray-body thermal radiation for a broad peak centered at 720 nm. Furthermore, the hBN encapsulation layers permit stable and bright visible thermal radiation with electronic temperatures up to 2000 K under ambient conditions as well as efficient ultrafast electronic cooling via near-field coupling to hybrid polaritonic modes under electrical excitation. These high-speed graphene light emitters provide a promising path for on-chip light sources for optical communications and other optoelectronic applications.

  5. Coupling of individual quantum emitters to channel plasmons.

    PubMed

    Bermúdez-Ureña, Esteban; Gonzalez-Ballestero, Carlos; Geiselmann, Michael; Marty, Renaud; Radko, Ilya P; Holmgaard, Tobias; Alaverdyan, Yury; Moreno, Esteban; García-Vidal, Francisco J; Bozhevolnyi, Sergey I; Quidant, Romain

    2015-08-07

    Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen-vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems.

  6. Low damage dry etch for III-nitride light emitters

    NASA Astrophysics Data System (ADS)

    Nedy, Joseph G.; Young, Nathan G.; Kelchner, Kathryn M.; Hu, Yanling; Farrell, Robert M.; Nakamura, Shuji; DenBaars, Steven P.; Weisbuch, Claude; Speck, James S.

    2015-08-01

    We have developed a dry etch process for the fabrication of lithographically defined features close to light emitting layers in the III-nitride material system. The dry etch was tested for its effect on the internal quantum efficiency of c-plane InGaN quantum wells using the photoluminescence of a test structure with two active regions. No change was observed in the internal quantum efficiency of the test active region when the etched surface was greater than 71 nm away. To demonstrate the application of the developed dry etch process, surface-etched air gaps were fabricated 275 nm away from the active region of an m-plane InGaN/GaN laser diode and served as the waveguide upper cladding. Electrically injected lasing was observed without the need for regrowth or recovery anneals. This dry etch opens up a new design tool that can be utilized in the next generation of GaN light emitters.

  7. Emissivity Tuned Emitter for RTPV Power Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carl M. Stoots; Robert C. O'Brien; Troy M. Howe

    Every mission launched by NASA to the outer planets has produced unexpected results. The Voyager I and II, Galileo, and Cassini missions produced images and collected scientific data that totally revolutionized our understanding of the solar system and the formation of the planetary systems. These missions were enabled by the use of nuclear power. Because of the distances from the Sun, electrical power was produced using the radioactive decay of a plutonium isotope. Radioisotopic Thermoelectric Generators (RTGs) used in the past and currently used Multi-Mission RTGs (MMRTGs) provide power for space missions. Unfortunately, RTGs rely on thermocouples to convert heatmore » to electricity and are inherently inefficient ({approx} 3-7% thermal to electric efficiency). A Radioisotope Thermal Photovoltaic (RTPV) power source has the potential to reduce the specific mass of the onboard power supply by increasing the efficiency of thermal to electric conversion. In an RTPV, a radioisotope heats an emitter, which emits light to a photovoltaic (PV) cell, which converts the light into electricity. Developing an emitter tuned to the desired wavelength of the photovoltaic is a key part in increasing overall performance. Researchers at the NASA Glenn Research Center (GRC) have built a Thermal Photovoltaic (TPV) system, that utilizes a simulated General Purpose Heat Source (GPHS) from a MMRTG to heat a tantalum emitter. The GPHS is a block of graphite roughly 10 cm by 10 cm by 5 cm. A fully loaded GPHS produces 250 w of thermal power and weighs 1.6 kgs. The GRC system relies on the GPHS unit radiating at 1200 K to a tantalum emitter that, in turn, radiates light to a GaInAs photo-voltaic cell. The GRC claims system efficiency of conversion of 15%. The specific mass is around 167 kg/kWe. A RTPV power source that utilized a ceramic or ceramic-metal (cermet) matrix would allow for the combination of the heat source, canister, and emitter into one compact unit, and allow variation in size and shape to optimize temperature and emission spectra.« less

  8. Amber light-emitting diode comprising a group III-nitride nanowire active region

    DOEpatents

    Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel

    2014-07-22

    A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.

  9. Magnetic field effect in organic light emitting diodes based on donor-acceptor exciplexes showing thermally activated delayed fluorescence

    NASA Astrophysics Data System (ADS)

    Baniya, S.; Pang, Z.; Sun, D.; Basel, T.; Zhai, Y.; Kwon, O.; Choi, H.; Vardeny, Z. V.

    2016-09-01

    A new type of organic light-emitting diode (OLED) has emerged that shows enhanced operational stability and large internal quantum efficiency approaching 100%, which is based on exciplexes in donor-acceptor (D-A) blends having thermally activated delayed fluorescence (TADF) when doped with fluorescent emitters. We have investigated magnetoelectroluminescence (MEL) and magneto-conductivity in such TADF-based OLEDs, as well as magnetophotoluminescence (MPL) in thin films based on the OLEDs active layers, with various fluorescence emitters. We found that both MEL and MPL responses are thermally activated with substantially lower activation energy compared to that in the pristine undoped D-A exciplex host blend. In addition, both MPL and MEL steeply decrease with the emitters' concentration. This indicates the existence of a loss mechanism, whereby the triplet charge-transfer state in the D-A exciplex host blend may directly decay to the lowest, non-emissive triplet state of the additive fluorescent emitter molecules.

  10. High-luminosity blue and blue-green gallium nitride light-emitting diodes.

    PubMed

    Morkoç, H; Mohammad, S N

    1995-01-06

    Compact and efficient sources of blue light for full color display applications and lighting eluded and tantalized researchers for many years. Semiconductor light sources are attractive owing to their reliability and amenability to mass manufacture. However, large band gaps are required to achieve blue color. A class of compound semiconductors formed by metal nitrides, GaN and its allied compounds AIGaN and InGaN, exhibits properties well suited for not only blue and blue-green emitters, but also for ultraviolet emitters and detectors. What thwarted engineers and scientists from fabricating useful devices from these materials in the past was the poor quality of material and lack of p-type doping. Both of these obstacles have recently been overcome to the point where highluminosity blue and blue-green light-emitting diodes are now available in the marketplace.

  11. Acquiring High-Performance Deep-Blue OLED Emitters through an Unexpected Blueshift Color-Tuning Effect Induced by Electron-Donating -OMe Substituents.

    PubMed

    Peng, Song; Zhao, Yihuan; Fu, Caixia; Pu, Xuemei; Zhou, Liang; Huang, Yan; Lu, Zhiyun

    2018-06-07

    A series of blue-emissive 7-(diphenylamino)-4-phenoxycoumarin derivatives bearing -CF 3 , -OMe, or -N(Me) 2 substituents on the phenoxy subunit were synthesized. Although both the -CF 3 and -N(Me) 2 modifications were found to trigger redshifted fluorescence, the -OMe substitution was demonstrated to exert an unexpected blueshift color-tuning effect toward the deep-blue region. The reason is that the moderate electron-donating -OMe group can endow coumarins with unaltered HOMO but elevated LUMO energy levels. Moreover, the -OMe substitution was found to be beneficial to the thermal stability of these coumarins. Therefore, the trimethoxy-substituted objective compound can act as a high-performance deep-blue organic light-emitting diode (OLED) emitter, and OLED based on it emits deep-blue light with CIE coordinates of (0.148, 0.084), maximum luminance of 7800 cd m -2 , and maximum external quantum efficiency of 5.1 %. These results not only shed light on the molecular design strategy for high-performance deep-blue OLED emitters through color-tuning, but also show the perspective of coumarin derivatives as deep-blue OLED emitters. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Triphenylvinyl anthracene based emitter for non-doped blue light emitting devices with unusual emission behavior

    NASA Astrophysics Data System (ADS)

    Islam, Amjad; Zhang, Dongdong; Usman, Khurram; Siddique, Ahmad Hassan; Wattoo, Abdul Ghafar; Khalid, Hamad; Ouyang, Xinhua; Duan, Lian; Ge, Ziyi

    2018-05-01

    A novel blue luminogen based on triphenylvinyl anthracene was synthesized. The photophysical, thermal and aggregation induced emission as well as electroluminescent properties were investigated. The luminogen demonstrated typical aggregation caused quenching (ACQ) effect. A non-doped organic light emitting device was fabricated and realized a current efficiency of 3.25 cd/A, an external quantum efficiency of 1.41%, power efficiency of 2.11 m/W and a maximum luminance of 11761.8 cd/m2 were achieved.

  13. Output limitations to single stage and cascaded 2-2.5 mum light emitting diodes

    NASA Astrophysics Data System (ADS)

    Hudson, Andrew Ian

    Since the advent of precise semiconductor engineering techniques in the 1960s, considerable effort has been devoted both in academia and private industry to the fabrication and testing of complex structures. In addition to other techniques, molecular beam epitaxy (MBE) has made it possible to create devices with single mono-layer accuracy. This facilitates the design of precise band structures and the selection of specific spectroscopic properties for light source materials. The applications of such engineered structures have made solid state devices common commercial quantities. These applications include solid state lasers, light emitting diodes and light sensors. Band gap engineering has been used to design emitters for many wavelength bands, including the short wavelength (SWIR) infrared region which ranges from 1.5 to 2.5mum. Practical devices include sensors operating in the 2-2.5mum range. When designing such a device, necessary concerns include the required bias voltage, operating current, input impedance and especially for emitters, the wall-plug efficiency. Three types of engineered structures are considered in this thesis. These include GaInAsSb quaternary alloy bulk active regions, GaInAsSb multiple quantum well devices (MQW) and GaInAsSb cascaded light emitting diodes. The three structures are evaluated according to specific standards applied to emitters of infrared light. The spectral profiles are obtained with photo or electro-luminescence, for the purpose of locating the peak emission wavelength. The peak wavelength for these specimens is in the 2.2-2.5mum window. The emission efficiency is determined by employing three empirical techniques: current/voltage (IV), radiance/current (LI), and carrier lifetime measurements. The first verifies that the structure has the correct electrical properties, by measuring among other parameters the activation voltage. The second is used to determine the energy efficiency of the device, including the wall-plug and quantum efficiencies. The last provides estimates of the relative magnitude of the Shockley Read Hall, radiative and Auger coefficients. These constants illustrate the overall radiative efficiency of the material, by noting comparisons between radiative and non-radiative recombination rates.

  14. Eastern Kodak Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y.S. Tyan

    2009-06-30

    Lighting consumes more than 20% of electricity generated in the United States. Solid state lighting relies upon either inorganic or organic light-emitting diodes (OLEDs). OLED devices because of their thinness, fast response, excellent color, and efficiency could become the technology of choice for future lighting applications, provided progress is made to increase power efficiency and device lifetime and to develop cost-effective manufacturing processes. As a first step in this process, Eastman Kodak Company has demonstrated an OLED device architecture having an efficacy over 50 lm/W that exceeds the specifications of DOE Energy Star Program Requirements for Solid State Lighting. Themore » project included work designed to optimize an OLED device, based on a stacked-OLED structure, with performance parameters of: low voltage; improved light extraction efficiency; improved internal quantum efficiency; and acceptable lifetime. The stated goal for the end of the project was delivery of an OLED device architecture, suitable for development into successful commercial products, having over 50 lum/W power efficiency and 10,000 hours lifetime at 1000 cd/m{sup 2}. During the project, Kodak developed and tested a tandem hybrid IES device made with a fluorescent blue emitter, a phosphorescent yellow emitter, and a phosphorescent red emitter in a stacked structure. The challenge was to find low voltage materials that do not absorb excessive amounts of emitted light when the extraction enhancement structure is applied. Because an extraction enhancement structure forces the emitted light to travel several times through the OLED layers before it is emitted, it exacerbates the absorption loss. A variety of ETL and HTL materials was investigated for application in the low voltage SSL device structure. Several of the materials were found to successfully yield low operating device voltages without incurring excessive absorption loss when the extraction enhancement structure was applied. An internal extraction layer comprises two essential components: a light extraction element (LEE) that does the actual extraction of emitted light and a light coupling layer (LCL) that allows the emitted light to interact with the extraction element. Modeling results show that the optical index of the LCL needs to be high, preferably higher than that of the organic layers with an n value of {approx}1.8. In addition, since the OLED structure needs to be built on top of it the LCL needs to be physically and chemically benign. As the project concluded, our focus was on the tandem hybrid device, which proved to be the more efficient architecture. Cost-efficient device fabrication will provide the next challenges with this device architecture in order to allow this architecture to be commercialized.« less

  15. Organic light-emitting diodes for lighting: High color quality by controlling energy transfer processes in host-guest-systems

    NASA Astrophysics Data System (ADS)

    Weichsel, Caroline; Reineke, Sebastian; Furno, Mauro; Lüssem, Björn; Leo, Karl

    2012-02-01

    Exciton generation and transfer processes in a multilayer organic light-emitting diode (OLED) are studied in order to realize OLEDs with warm white color coordinates and high color-rendering index (CRI). We investigate a host-guest-system containing four phosphorescent emitters and two matrix materials with different transport properties. We show, by time-resolved spectroscopy, that an energy back-transfer from the blue emitter to the matrix materials occurs, which can be used to transport excitons to the other emitter molecules. Furthermore, we investigate the excitonic and electronic transfer processes by designing suitable emission layer stacks. As a result, we obtain an OLED with Commission Internationale de lÉclairage (CIE) coordinates of (0.444;0.409), a CRI of 82, and a spectrum independent of the applied current. The OLED shows an external quantum efficiency of 10% and a luminous efficacy of 17.4 lm/W at 1000 cd/m2.

  16. Near-infrared roll-off-free electroluminescence from highly stable diketopyrrolopyrrole light emitting diodes

    PubMed Central

    Sassi, Mauro; Buccheri, Nunzio; Rooney, Myles; Botta, Chiara; Bruni, Francesco; Giovanella, Umberto; Brovelli, Sergio; Beverina, Luca

    2016-01-01

    Organic light emitting diodes (OLEDs) operating in the near-infrared spectral region are gaining growing relevance for emerging photonic technologies, such as lab-on-chip platforms for medical diagnostics, flexible self-medicated pads for photodynamic therapy, night vision and plastic-based telecommunications. The achievement of efficient near-infrared electroluminescence from solution-processed OLEDs is, however, an open challenge due to the low photoluminescence efficiency of most narrow-energy-gap organic emitters. Diketopyrrolopyrrole-boron complexes are promising candidates to overcome this limitation as they feature extremely high photoluminescence quantum yield in the near-infrared region and high chemical stability. Here, by incorporating suitably functionalized diketopyrrolopyrrole derivatives emitting at ~760 nm in an active matrix of poly(9,9-dioctylfluorene-alt-benzothiadiazole) and without using complex light out-coupling or encapsulation strategies, we obtain all-solution-processed NIR-OLEDs with external quantum efficiency as high as 0.5%. Importantly, our test-bed devices show no efficiency roll-off even for high current densities and high operational stability, retaining over 50% of the initial radiant emittance for over 50 hours of continuous operation at 10 mA/cm2, which emphasizes the great applicative potential of the proposed strategy. PMID:27677240

  17. A Yellow-Emitting Homoleptic Iridium(III) Complex Constructed from a Multifunctional Spiro Ligand for Highly Efficient Phosphorescent Organic Light-Emitting Diodes.

    PubMed

    Ren, Bao-Yi; Guo, Run-Da; Zhong, Dao-Kun; Ou, Chang-Jin; Xiong, Gang; Zhao, Xiang-Hua; Sun, Ya-Guang; Jurow, Matthew; Kang, Jun; Zhao, Yi; Li, Sheng-Biao; You, Li-Xin; Wang, Lin-Wang; Liu, Yi; Huang, Wei

    2017-07-17

    To suppress concentration quenching and to improve charge-carrier injection/transport in the emission layer (EML) of phosphorescent organic light-emitting diodes (PhOLEDs), a facial homoleptic iridium(III) complex emitter with amorphous characteristics was designed and prepared in one step from a multifunctional spiro ligand containing spiro[fluorene-9,9'-xanthene] (SFX) unit. Single-crystal X-ray analysis of the resulting fac-Ir(SFXpy) 3 complex revealed an enlarged Ir···Ir distance and negligible intermolecular π-π interactions between the spiro ligands. The emitter exhibits yellow emission and almost equal energy levels compared to the commercial phosphor iridium(III) bis(4-phenylthieno[3,2-c]pyridinato-N,C 2 ')acetylacetonate (PO-01). Dry-processed devices using a common host, 4,4'-bis(N-carbazolyl)-1,1'-biphenyl, and the fac-Ir(SFXpy) 3 emitter at a doping concentration of 15 wt % exhibited a peak performance of 46.2 cd A -1 , 36.3 lm W -1 , and 12.1% for the current efficiency (CE), power efficiency (PE), and external quantum efficiency (EQE), respectively. Compared to control devices using PO-01 as the dopant, the fac-Ir(SFXpy) 3 -based devices remained superior in the doping range between 8 and 15 wt %. The current densities went up with increasing doping concentration at the same driving voltage, while the roll-offs remain relatively low even at high doping levels. The superior performance of the new emitter-based devices was ascribed to key roles of the spiro ligand for suppressing aggregation and assisting charge-carrier injection/transport. Benefiting from the amorphous stability of the emitter, the wet-processed device also exhibited respectful CE, PE, and EQE of 32.2 cd A -1 , 22.1 lm W -1 , and 11.3%, respectively, while the EQE roll-off was as low as 1.7% at the luminance of 1000 cd m -2 . The three-dimensional geometry and binary-conjugation features render SFX the ideal multifunctional module for suppressing concentration quenching, facilitating charge-carrier injection/transport, and improving the amorphous stability of iridium(III)-based phosphorescent emitters.

  18. Beyond conventional c-plane GaN-based light emitting diodes: A systematic exploration of LEDs on semi-polar orientations

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza

    Despite enormous efforts and investments, the efficiency of InGaN-based green and yellow-green light emitters remains relatively low, and that limits progress in developing full color display, laser diodes, and bright light sources for general lighting. The low efficiency of light emitting devices in the green-to-yellow spectral range, also known as the "Green Gap", is considered a global concern in the LED industry. The polar c-plane orientation of GaN, which is the mainstay in the LED industry, suffers from polarization-induced separation of electrons and hole wavefunctions (also known as the "quantum confined Stark effect") and low indium incorporation efficiency that are the two main factors that contribute to the Green Gap phenomenon. One possible approach that holds promise for a new generation of green and yellow light emitting devices with higher efficiency is the deployment of nonpolar and semi-polar crystallographic orientations of GaN to eliminate or mitigate polarization fields. In theory, the use of other GaN planes for light emitters could also enhance the efficiency of indium incorporation compared to c-plane. In this thesis, I present a systematic exploration of the suitable GaN orientation for future lighting technologies. First, in order to lay the groundwork for further studies, it is important to discuss the analysis of processes limiting LED efficiency and some novel designs of active regions to overcome these limitations. Afterwards, the choice of nonpolar orientations as an alternative is discussed. For nonpolar orientation, the (1100)-oriented (mo-plane) structures on patterned Si (112) and freestanding m-GaN are studied. The semi-polar orientations having substantially reduced polarization field are found to be more promising for light-emitting diodes (LEDs) owing to high indium incorporation efficiency predicted by theoretical studies. Thus, the semi-polar orientations are given close attention as alternatives for future LED technology. (Abstract shortened by ProQuest.).

  19. Highly Efficient Simplified Single-Emitting-Layer Hybrid WOLEDs with Low Roll-off and Good Color Stability through Enhanced Förster Energy Transfer.

    PubMed

    Zhang, Dongdong; Cai, Minghan; Zhang, Yunge; Zhang, Deqiang; Duan, Lian

    2015-12-30

    Single-emitting layer hybrid white organic light-emitting diodes (SEL-hybrid-WOLEDs) usually suffer from low efficiency, significant roll-off, and poor color stability, attributed to the incomplete energy transfer from the triplet states of the blue fluorophores to the phosphors. Here, we demonstrate highly efficient SEL-hybrid-WOLEDs with low roll-off and good color-stability utilizing blue thermally activated delayed fluorescence (TADF) materials as the host emitters. The triplet states of the blue TADF host emitter can be up-converted into its singlet states, and then the energy is transferred to the complementary phosphors through the long-range Förster energy transfer, enhancing the energy transfer from the host to the dopant. Simplified SEL-hybrid-WOLEDs achieve the highest forward-viewing external quantum efficiency (EQE) of 20.8% and power efficiency of 51.2 lm/W with CIE coordinates of (0.398, 0.456) at a luminance of 500 cd/m(2). The device EQE only slightly drops to 19.6% at a practical luminance of 1000 cd/m(2) with a power efficiency of 38.7 lm/W. Furthermore, the spectra of the device are rather stable with the raising voltage. The reason can be assigned to the enhanced Förster energy transfer, wide charge recombination zone, as well as the bipolar charge transporting ability of the host emitter. We believe that our work may shed light on the future development of highly efficient SEL-hybrid-WOLEDs with simultaneous low roll-off and good color stability.

  20. The Role of Triplet Exciton Diffusion in Light-Upconverting Polymer Glasses.

    PubMed

    Raišys, Steponas; Kazlauskas, Karolis; Juršėnas, Saulius; Simon, Yoan C

    2016-06-22

    Light upconversion (UC) via triplet-triplet annihilation (TTA) by using noncoherent photoexcitation at subsolar irradiance power densities is extremely attractive, particularly for enhanced solar energy harvesting. Unfortunately, practical TTA-UC application is hampered by low UC efficiency of upconverting polymer glasses, which is commonly attributed to poor exciton diffusion of the triplet excitons across emitter molecules. The present study addresses this issue by systematically evaluating triplet exciton diffusion coefficients and diffusion lengths (LD) in a UC model system based on platinum-octaethylporphyrin-sensitized poly(methyl methacrylate)/diphenylanthracene (emitter) films as a function of emitter concentration (15-40 wt %). For this evaluation time-resolved photoluminescence bulk-quenching technique followed by Stern-Volmer-type quenching analysis of experimental data was employed. The key finding is that although increasing emitter concentration in the disordered PMMA/DPA/PtOEP films improves triplet exciton diffusion, and thus LD, this does not result in enhanced UC quantum yield. Conversely, improved LD accompanied by the accelerated decay of UC intensity on millisecond time scale degrades TTA-UC performance at high emitter loadings (>25 wt %) and suggests that diffusion-enhanced nonradiative decay of triplet excitons is the major limiting factor.

  1. Simple single-emitting layer hybrid white organic light emitting with high color stability

    NASA Astrophysics Data System (ADS)

    Nguyen, C.; Lu, Z. H.

    2017-10-01

    Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.

  2. Mulifunctional Dendritic Emitter: Aggregation-Induced Emission Enhanced, Thermally Activated Delayed Fluorescent Material for Solution-Processed Multilayered Organic Light-Emitting Diodes

    PubMed Central

    Matsuoka, Kenichi; Albrecht, Ken; Yamamoto, Kimihisa; Fujita, Katsuhiko

    2017-01-01

    Thermally activated delayed fluorescence (TADF) materials emerged as promising light sources in third generation organic light-emitting diodes (OLED). Much effort has been invested for the development of small molecular TADF materials and vacuum process-based efficient TADF-OLEDs. In contrast, a limited number of solution processable high-molecular weight TADF materials toward low cost, large area, and scalable manufacturing of solution processed TADF-OLEDs have been reported so far. In this context, we report benzophenone-core carbazole dendrimers (GnB, n = generation) showing TADF and aggregation-induced emission enhancement (AIEE) properties along with alcohol resistance enabling further solution-based lamination of organic materials. The dendritic structure was found to play an important role for both TADF and AIEE activities in the neat films. By using these multifunctional dendritic emitters as non-doped emissive layers, OLED devices with fully solution processed organic multilayers were successfully fabricated and achieved maximum external quantum efficiency of 5.7%. PMID:28139768

  3. Mulifunctional Dendritic Emitter: Aggregation-Induced Emission Enhanced, Thermally Activated Delayed Fluorescent Material for Solution-Processed Multilayered Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Matsuoka, Kenichi; Albrecht, Ken; Yamamoto, Kimihisa; Fujita, Katsuhiko

    2017-01-01

    Thermally activated delayed fluorescence (TADF) materials emerged as promising light sources in third generation organic light-emitting diodes (OLED). Much effort has been invested for the development of small molecular TADF materials and vacuum process-based efficient TADF-OLEDs. In contrast, a limited number of solution processable high-molecular weight TADF materials toward low cost, large area, and scalable manufacturing of solution processed TADF-OLEDs have been reported so far. In this context, we report benzophenone-core carbazole dendrimers (GnB, n = generation) showing TADF and aggregation-induced emission enhancement (AIEE) properties along with alcohol resistance enabling further solution-based lamination of organic materials. The dendritic structure was found to play an important role for both TADF and AIEE activities in the neat films. By using these multifunctional dendritic emitters as non-doped emissive layers, OLED devices with fully solution processed organic multilayers were successfully fabricated and achieved maximum external quantum efficiency of 5.7%.

  4. Realizing Highly Efficient Solution-Processed Homojunction-Like Sky-Blue OLEDs by Using Thermally Activated Delayed Fluorescent Emitters Featuring an Aggregation-Induced Emission Property.

    PubMed

    Wu, Kailong; Wang, Zian; Zhan, Lisi; Zhong, Cheng; Gong, Shaolong; Xie, Guohua; Yang, Chuluo

    2018-04-05

    Two new blue emitters, i.e., bis-[2-(9,9-dimethyl-9,10-dihydroacridine)-phenyl]-sulfone ( o-ACSO2) and bis-[3-(9,9-dimethyl-9,10-dihydroacridine)-phenyl]-sulfone ( m-ACSO2), with reserved fine thermally activated delayed fluorescent (TADF) nature and simply tuned thermal and optoelectronic properties, were synthesized by isomer engineering. The meta-linking compound, i.e., m-ACSO2, obtains the highest photoluminescence quantum yield with a small singlet-triplet energy gap, a moderate delayed fluorescent lifetime, excellent solubility, and neat film homogeneity. Due to its unique aggregation-induced emission (AIE) character, neat film-based heterojunction-like organic light-emitting diodes (OLEDs) are achievable. By inserting an excitonic inert exciton-blocking layer, the PN heterojunction-like emission accompanied by intefacial exciplex was shifted to a homojunction-like channel mainly from the AIE emitter itself, providing a new tactic to generate efficient blue color from neat films. The solution-processed nondoped sky-blue OLED employing m-ACSO2 as emitter with homojunction-like emission achieved a maximum external quantum efficiency of 17.2%. The design strategies presented herein provide practical methods to construct efficient blue TADF dyes and realize high-performance blue TADF devices.

  5. Lock-in thermography approach for imaging the efficiency of light emitters and optical coolers

    NASA Astrophysics Data System (ADS)

    Radevici, Ivan; Tiira, Jonna; Oksanen, Jani

    2017-02-01

    Developing optical cooling technologies requires access to reliable efficiency measurement techniques and ability to detect spatial variations in the efficiency and light emission of the devices. We investigate the possibility to combine the calorimetric efficiency measurement principles with lock-in thermography (LIT) and conventional luminescence microscopy to enable spatially resolved measurement of the efficiency, current spreading and local device heating of double diode structures (DDS) serving as test vessels for developing thermophotonic cooling devices. Our approach enables spatially resolved characterization and localization of the losses of the double diode structures as well as other light emitting semiconductor devices. In particular, the approach may allow directly observing effects like current crowding and surface recombination on the light emission and heating of the DDS devices.

  6. Chemical nature of the light emitter of the Aequorea green fluorescent protein

    PubMed Central

    Niwa, Haruki; Inouye, Satoshi; Hirano, Takashi; Matsuno, Tatsuki; Kojima, Satoshi; Kubota, Masayuki; Ohashi, Mamoru; Tsuji, Frederick I.

    1996-01-01

    The jellyfish Aequorea victoria possesses in the margin of its umbrella a green fluorescent protein (GFP, 27 kDa) that serves as the ultimate light emitter in the bioluminescence reaction of the animal. The protein is made up of 238 amino acid residues in a single polypeptide chain and produces a greenish fluorescence (λmax = 508 nm) when irradiated with long ultraviolet light. The fluorescence is due to the presence of a chromophore consisting of an imidazolone ring, formed by a post-translational modification of the tripeptide -Ser65-Tyr66-Gly67-. GFP has been used extensively as a reporter protein for monitoring gene expression in eukaryotic and prokaryotic cells, but relatively little is known about the chemical mechanism by which fluorescence is produced. To obtain a better understanding of this problem, we studied a peptide fragment of GFP bearing the chromophore and a synthetic model compound of the chromophore. The results indicate that the GFP chromophore consists of an imidazolone ring structure and that the light emitter is the singlet excited state of the phenolate anion of the chromophore. Further, the light emission is highly dependent on the microenvironment around the chromophore and that inhibition of isomerization of the exo-methylene double bond of the chromophore accounts for its efficient light emission. PMID:8942983

  7. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs

    PubMed Central

    Furukawa, Taro; Nakanotani, Hajime; Inoue, Munetomo; Adachi, Chihaya

    2015-01-01

    Recently, triplet harvesting via a thermally activated delayed fluorescence (TADF) process has been established as a realistic route for obtaining ultimate internal electroluminescence (EL) quantum efficiency in organic light-emitting diodes (OLEDs). However, the possibility that the rather long transient lifetime of the triplet excited states would reduce operational stability due to an increased chance for unwarranted chemical reactions has been a concern. Herein, we demonstrate dual enhancement of EL efficiency and operational stability in OLEDs by employing a TADF molecule as an assistant dopant and a fluorescent molecule as an end emitter. The proper combination of assistant dopant and emitter molecules realized a “one-way” rapid Förster energy transfer of singlet excitons from TADF molecules to fluorescent emitters, reducing the number of cycles of intersystem crossing (ISC) and reverse ISC in the TADF molecules and resulting in a significant enhancement of operational stability compared to OLEDs with a TADF molecule as the end emitter. In addition, we found that the presence of this rapid energy transfer significantly suppresses singlet-triplet annihilation. Using this finely-tuned rapid triplet-exciton upconversion scheme, OLED performance and lifetime was greatly improved. PMID:25673259

  8. Transparent organic light-emitting diodes with balanced white emission by minimizing waveguide and surface plasmonic loss.

    PubMed

    Zhang, Yi-Bo; Ou, Qing-Dong; Li, Yan-Qing; Chen, Jing-De; Zhao, Xin-Dong; Wei, Jian; Xie, Zhong-Zhi; Tang, Jian-Xin

    2017-07-10

    It is challenging in realizing high-performance transparent organic light-emitting diodes (OLEDs) with symmetrical light emission to both sides. Herein, an efficient transparent OLED with highly balanced white emission to both sides is demonstrated by integrating quasi-periodic nanostructures into the organic emitter and the metal-dielectric composite top electrode, which can simultaneously suppressing waveguide and surface plasmonic loss. The power efficiency and external quantum efficiency are raised to 83.5 lm W -1 and 38.8%, respectively, along with a bi-directional luminance ratio of 1.26. The proposed scheme provides a facile route for extending application scope of transparent OLEDs for future transparent displays and lightings.

  9. All Solution-processed Stable White Quantum Dot Light-emitting Diodes with Hybrid ZnO@TiO2 as Blue Emitters

    PubMed Central

    Chen, Jing; Zhao, Dewei; Li, Chi; Xu, Feng; Lei, Wei; Sun, Litao; Nathan, Arokia; Sun, Xiao Wei

    2014-01-01

    White quantum dot light-emitting diodes (QD-LEDs) have been a promising candidate for high-efficiency and color-saturated displays. However, it is challenging to integrate various QD emitters into one device and also to obtain efficient blue QDs. Here, we report a simply solution-processed white QD-LED using a hybrid ZnO@TiO2 as electron injection layer and ZnCdSeS QD emitters. The white emission is obtained by integrating the yellow emission from QD emitters and the blue emission generated from hybrid ZnO@TiO2 layer. We show that the performance of white QD-LEDs can be adjusted by controlling the driving force for hole transport and electroluminescence recombination region via varying the thickness of hole transport layer. The device is demonstrated with a maximum luminance of 730 cd/m2 and power efficiency of 1.7 lm/W, exhibiting the Commission Internationale de l'Enclairage (CIE) coordinates of (0.33, 0.33). The unencapsulated white QD-LED has a long lifetime of 96 h at its initial luminance of 730 cd/m2, primarily due to the fact that the device with hybrid ZnO@TiO2 has low leakage current and is insensitive to the oxygen and the moisture. These results indicate that hybrid ZnO@TiO2 provides an alternate and effective approach to achieve high-performance white QD-LEDs and also other optoelectronic devices. PMID:24522341

  10. Excitation enhancement and extraction enhancement with photonic crystals

    DOEpatents

    Shapira, Ofer; Soljacic, Marin; Zhen, Bo; Chua, Song-Liang; Lee, Jeongwon; Joannopoulos, John

    2015-03-03

    Disclosed herein is a system for stimulating emission from at least one an emitter, such as a quantum dot or organic molecule, on the surface of a photonic crystal comprising a patterned dielectric substrate. Embodiments of this system include a laser or other source that illuminates the emitter and the photonic crystal, which is characterized by an energy band structure exhibiting a Fano resonance, from a first angle so as to stimulate the emission from the emitter at a second angle. The coupling between the photonic crystal and the emitter may result in spectral and angular enhancement of the emission through excitation and extraction enhancement. These enhancement mechanisms also reduce the emitter's lasing threshold. For instance, these enhancement mechanisms enable lasing of a 100 nm thick layer of diluted organic molecules solution with reduced threshold intensity. This reduction in lasing threshold enables more efficient organic light emitting devices and more sensitive molecular sensing.

  11. Highly Efficient Solution-Processed Deep-Red Organic Light-Emitting Diodes Based on an Exciplex Host Composed of a Hole Transporter and a Bipolar Host.

    PubMed

    Huang, Manli; Jiang, Bei; Xie, Guohua; Yang, Chuluo

    2017-10-19

    With the aim to achieve highly efficient deep-red emission, we introduced an exciplex forming cohost, 4,4',4″-tris(3-methylphenylphenylamino)triphenylamine (m-MTDATA): 2,5-bis(2-(9H-carbazol-9-yl)phenyl)-1,3,4-oxadiazole (o-CzOXD) (1:1). Due to the efficient triplet up-conversion processes upon the exciplex forming cohost, excellent performances of the devices were achieved with deep-red emission. Using the heteroleptic iridium complexes as the guest dopants, the solution-processed deep-red phosphorescent organic light-emitting diodes (PhOLEDs) with the iridium(III) bis(6-(4-(tert-butyl)phenyl)phenanthridine)acetylacetonate [(TP-BQ) 2 Ir(acac)]-based phosphorescent emitter exhibited an electroluminescent peak at 656 nm and a maximum external quantum efficiency (EQE) of 11.9%, which is 6.6 times that of the device based on the guest emitter doped in the polymer-based cohost. The unique exciplex with a typical hole transporter and a bipolar material is ideal and universal for hosting the red PhOLEDs and tremendously improves the device performances.

  12. Highly Efficient Red and White Organic Light-Emitting Diodes with External Quantum Efficiency beyond 20% by Employing Pyridylimidazole-Based Metallophosphors.

    PubMed

    Miao, Yanqin; Tao, Peng; Wang, Kexiang; Li, Hongxin; Zhao, Bo; Gao, Long; Wang, Hua; Xu, Bingshe; Zhao, Qiang

    2017-11-01

    Two highly efficient red neutral iridium(III) complexes, Ir1 and Ir2, were rationally designed and synthesized by selecting two pyridylimidazole derivatives as the ancillary ligands. Both Ir1 and Ir2 show nearly the same photoluminescence emission with the maximum peak at 595 nm (shoulder band at about 638 nm) and achieve high solution quantum yields of up to 0.47 for Ir1 and 0.57 for Ir2. Employing Ir1 and Ir2 as emitters, the fabricated red organic light-emitting diodes (OLEDs) show outstanding performance with the maximum external quantum efficiency (EQE), current efficiency (CE), and power efficiency (PE) of 20.98%, 33.04 cd/A, and 33.08 lm/W for the Ir1-based device and 22.15%, 36.89 cd/A, and 35.85 lm/W for the Ir2-based device, respectively. Furthermore, using Ir2 as red emitter, a trichromatic hybrid white OLED, showing good warm white emission with low correlated color temperature of <2200 K under the voltage of 4-6 V, was fabricated successfully. The white device also realizes excellent device efficiencies with the maximum EQE, CE, and PE reaching 22.74%, 44.77 cd/A, and 46.89 lm/W, respectively. Such high electroluminescence performance for red and white OLEDs indicates that Ir1 and Ir2 as efficient red phosphors have great potential for future OLED displays and lightings applications.

  13. Blue organic light-emitting diodes based on terpyridine-substituted triphenylamine chromophores

    NASA Astrophysics Data System (ADS)

    Fan, Congbin; Wang, Xiaomei; Luo, Jianfang

    2017-02-01

    Two terpyridine-substituted triphenylamine chromophores, namely 4-[4-(2,2‧:6‧,2″-terpyridinyl)]phenyltriphenylamine (chromophore I) and 4-[4-(2,2‧:6‧,2″-terpyridinyl)] styryltriphenylamine (chromophore II), have been designed and applied as emitters in organic light-emitting diodes (OLED). Chromophore I and II exhibit high thermal stability with decomposition temperatures higher than 334 °C. And these chromophores show significantly different luminescent performance due to the role of different rigid phenyl/flexible styryl unit interlinking terpyridine and triphenylamine units which have different lowest unoccupied molecular orbital (LUMO) levels. The fluorescence lifetime of chromophore I is 3-fold longer than that of chromophore II and the maximum brightness of device used chromophore I as an emitting-layer in OLED is 28-fold larger than that of chromophore II in OLED. Chromophore I as an emitter in OLED exhibits blue electroluminescence peak at 460 nm (Commission Internationale de L'Eclairage (CIE) x = 0.19, y = 0.22). By using chromophore I as an emitter in a four layers device, an efficient blue emission with the maximum brightness 3000 cd/m2 and maximum luminescence efficiency 3.6 cd/A is obtained.

  14. White-Light Emission from Layered Halide Perovskites.

    PubMed

    Smith, Matthew D; Karunadasa, Hemamala I

    2018-03-20

    With nearly 20% of global electricity consumed by lighting, more efficient illumination sources can enable massive energy savings. However, effectively creating the high-quality white light required for indoor illumination remains a challenge. To accurately represent color, the illumination source must provide photons with all the energies visible to our eye. Such a broad emission is difficult to achieve from a single material. In commercial white-light sources, one or more light-emitting diodes, coated by one or more phosphors, yield a combined emission that appears white. However, combining emitters leads to changes in the emission color over time due to the unequal degradation rates of the emitters and efficiency losses due to overlapping absorption and emission energies of the different components. A single material that emits broadband white light (a continuous emission spanning 400-700 nm) would obviate these problems. In 2014, we described broadband white-light emission upon near-UV excitation from three new layered perovskites. To date, nine white-light-emitting perovskites have been reported by us and others, making this a burgeoning field of study. This Account outlines our work on understanding how a bulk material, with no obvious emissive sites, can emit every color of the visible spectrum. Although the initial discoveries were fortuitous, our understanding of the emission mechanism and identification of structural parameters that correlate with the broad emission have now positioned us to design white-light emitters. Layered hybrid halide perovskites feature anionic layers of corner-sharing metal-halide octahedra partitioned by organic cations. The narrow, room-temperature photoluminescence of lead-halide perovskites has been studied for several decades, and attributed to the radiative recombination of free excitons (excited electron-hole pairs). We proposed that the broad white emission we observed primarily stems from exciton self-trapping. Here, the exciton couples strongly to the lattice, creating transient elastic lattice distortions that can be viewed as "excited-state defects". These deformations stabilize the exciton affording a broad emission with a large Stokes shift. Although material defects very likely contribute to the emission width, our mechanistic studies suggest that the emission mostly arises from the bulk material. Ultrafast spectroscopic measurements support self-trapping, with new, transient, electronic states appearing upon photoexcitation. Importantly, the broad emission appears common to layered Pb-Br and Pb-Cl perovskites, albeit with a strong temperature dependence. Although the emission is attributed to light-induced defects, it still reflects changes in the crystal structure. We find that greater out-of-plane octahedral tilting increases the propensity for the broad emission, enabling synthetic control over the broad emission. Many of these perovskites have color rendering abilities that exceed commercial requirements and mixing halides affords both "warm" and "cold" white light. The most efficient white-light-emitting perovskite has a quantum efficiency of 9%. Improving this value will make these phosphors attractive for solid-state lighting, particularly as large-area coatings that can be deposited inexpensively. The emission mechanism can also be extended to other low-dimensional systems. We hope this Account aids in expanding the phase space of white-light emitters and controlling their exciton dynamics by the synthetic, spectroscopic, theoretical, and engineering communities.

  15. Nanostructured GaAs solar cells via metal-assisted chemical etching of emitter layers.

    PubMed

    Song, Yunwon; Choi, Keorock; Jun, Dong-Hwan; Oh, Jungwoo

    2017-10-02

    GaAs solar cells with nanostructured emitter layers were fabricated via metal-assisted chemical etching. Au nanoparticles produced via thermal treatment of Au thin films were used as etch catalysts to texture an emitter surface with nanohole structures. Epi-wafers with emitter layers 0.5, 1.0, and 1.5 um in thickness were directly textured and a window layer removal process was performed before metal catalyst deposition. A nanohole-textured emitter layer provides effective light trapping capabilities, reducing the surface reflection of a textured solar cell by 11.0%. However, because the nanostructures have high surface area to volume ratios and large numbers of defects, various photovoltaic properties were diminished by high recombination losses. Thus, we have studied the application of nanohole structures to GaAs emitter solar cells and investigated the cells' antireflection and photovoltaic properties as a function of the nanohole structure and emitter thickness. Due to decreased surface reflection and improved shunt resistance, the solar cell efficiency increased from 4.25% for non-textured solar cells to 7.15% for solar cells textured for 5 min.

  16. New Materials and Device Designs for Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    O'Brien, Barry Patrick

    Research and development of organic materials and devices for electronic applications has become an increasingly active area. Display and solid-state lighting are the most mature applications and, and products have been commercially available for several years as of this writing. Significant efforts also focus on materials for organic photovoltaic applications. Some of the newest work is in devices for medical, sensor and prosthetic applications. Worldwide energy demand is increasing as the population grows and the standard of living in developing countries improves. Some studies estimate as much as 20% of annual energy usage is consumed by lighting. Improvements are being made in lightweight, flexible, rugged panels that use organic light emitting diodes (OLEDs), which are particularly useful in developing regions with limited energy availability and harsh environments. Displays also benefit from more efficient materials as well as the lighter weight and ruggedness enabled by flexible substrates. Displays may require different emission characteristics compared with solid-state lighting. Some display technologies use a white OLED (WOLED) backlight with a color filter, but these are more complex and less efficient than displays that use separate emissive materials that produce the saturated colors needed to reproduce the entire color gamut. Saturated colors require narrow-band emitters. Full-color OLED displays up to and including television size are now commercially available from several suppliers, but research continues to develop more efficient and more stable materials. This research program investigates several topics relevant to solid-state lighting and display applications. One project is development of a device structure to optimize performance of a new stable Pt-based red emitter developed in Prof Jian Li's group. Another project investigates new Pt-based red, green and blue emitters for lighting applications and compares a red/blue structure with a red/green/blue structure to produce light with high color rendering index. Another part of this work describes the fabrication of a 14.7" diagonal full color active-matrix OLED display on plastic substrate. The backplanes were designed and fabricated in the ASU Flexible Display Center and required significant engineering to develop; a discussion of that process is also included.

  17. Photonic crystal light emitting diode based on Er and Si nanoclusters co-doped slot waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo Savio, R.; Galli, M.; Liscidini, M.

    We report on the design, fabrication, and electro-optical characterization of a light emitting device operating at 1.54 μm, whose active layer consists of silicon oxide containing Er-doped Si nanoclusters. A photonic crystal (PhC) is fabricated on the top-electrode to enhance the light extraction in the vertical direction, and thus the external efficiency of the device. This occurs if a photonic mode of the PhC slab is resonant with the Er emission energy, as confirmed by theoretical calculations and experimental analyses. We measure an increase of the extraction efficiency by a factor of 3 with a high directionality of light emission inmore » a narrow vertical cone. External quantum efficiency and power efficiency are among the highest reported for this kind of material. These results are important for the realization of CMOS-compatible efficient light emitters at telecom wavelengths.« less

  18. Versatile Indolocarbazole-Isomer Derivatives as Highly Emissive Emitters and Ideal Hosts for Thermally Activated Delayed Fluorescent OLEDs with Alleviated Efficiency Roll-Off.

    PubMed

    Zhang, Dongdong; Song, Xiaozeng; Cai, Minghan; Kaji, Hironori; Duan, Lian

    2018-02-01

    Maintaining high efficiency at high brightness levels is an exigent challenge for real-world applications of thermally activated delayed fluorescent organic light-emitting diodes (TADF-OLEDs). Here, versatile indolocarbazole-isomer derivatives are developed as highly emissive emitters and ideal hosts for TADF-OLEDs to alleviate efficiency roll-off. It is observed that photophysical and electronic properties of these compounds can be well modulated by varying the indolocarbazole isomers. A photoluminescence quantum yield (η PL ) approaching unity and a maximum external quantum efficiency (EQE max ) of 25.1% are obtained for the emitter with indolo[3,2-a]carbazolyl subunit. Remarkably, record-high EQE/power efficiency of 26.2%/69.7 lm W -1 at the brightness level of 5000 cd m -2 with a voltage of only 3.74 V are also obtained using the same isomer as the host in a green TADF-OLED. It is evident that TADF hosts with high η PL values, fast reverse intersystem crossing processes, and balanced charge transport properties may open the path toward roll-off-free TADF-OLEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Single Spatial-Mode Room-Temperature-Operated 3.0 to 3.4 micrometer Diode Lasers

    NASA Technical Reports Server (NTRS)

    Frez, Clifford F.; Soibel, Alexander; Belenky, Gregory; Shterengas, Leon; Kipshidze, Gela

    2010-01-01

    Compact, highly efficient, 3.0 to 3.4 m light emitters are in demand for spectroscopic analysis and identification of chemical substances (including methane and formaldehyde), infrared countermeasures technologies, and development of advanced infrared scene projectors. The need for these light emitters can be currently addressed either by bulky solid-state light emitters with limited power conversion efficiency, or cooled Interband Cascade (IC) semiconductor lasers. Researchers here have developed a breakthrough approach to fabrication of diode mid-IR lasers that have several advantages over IC lasers used for the Mars 2009 mission. This breakthrough is due to a novel design utilizing the strain-engineered quantum-well (QW) active region and quinternary barriers, and due to optimization of device material composition and growth conditions (growth temperatures and rates). However, in their present form, these GaSb-based laser diodes cannot be directly used as a part of sensor systems. The device spectrum is too broad to perform spectroscopic analysis of gas species, and operating currents and voltages are too high. In the current work, the emitters were fabricated as narrow-ridge waveguide index-guided lasers rather than broad stripe-gain guided multimode Fabry-Perot (FP) lasers as was done previously. These narrow-ridge waveguide mid-IR lasers exhibit much lower power consumptions, and can operate in a single spatial mode that is necessary for demonstration of single-mode distributed feedback (DBF) devices for spectroscopic applications. These lasers will enable a new generation of compact, tunable diode laser spectrometers with lower power consumption, reduced complexity, and significantly reduced development costs. These lasers can be used for the detection of HCN, C2H2, methane, and ethane.

  20. High flux, narrow bandwidth compton light sources via extended laser-electron interactions

    DOEpatents

    Barty, V P

    2015-01-13

    New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.

  1. Reappraisal of solid selective emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1990-01-01

    New rare earth oxide emitters show greater efficiency than previous emitters. As a result, based on a simple model the efficiency of these emitters was calculated. Results indicate that the emission band of the selective emitter must be at relatively low energy (less than or equal to .52 eV) to obtain maximum efficiency at moderate emitter temperatures (less than or equal to 1500 K). Thus low bandgap energy PV materials are required to obtain an efficient thermophotovoltaic (TPV) system. Of the 4 specific rare earths (Nd, Ho, Er, Yb) studied Ho has the largest efficiency at moderate temperatures (72 percent at 1500 K). A comparison was made between a selective emitter TPV system and a TPV system that uses a thermal emitter plus a band pass filter to make the thermal emitter behave like a selective emitter. Results of the comparison indicate that only for very optimistic filter and thermal emitter properties will the filter TPV system have a greater efficiency than the selective emitter system.

  2. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOEpatents

    Neil, George R.

    1996-01-01

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  3. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOEpatents

    Neil, G.R.

    1996-07-30

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  4. Concepts for the material development of phosphorescent organic materials processable from solution and their application in OLEDs

    NASA Astrophysics Data System (ADS)

    Janietz, S.; Krueger, H.; Thesen, M.; Salert, B.; Wedel, A.

    2014-10-01

    One example of organic electronics is the application of polymer based light emitting devices (PLEDs). PLEDs are very attractive for large area and fine-pixel displays, lighting and signage. The polymers are more amenable to solution processing by printing techniques which are favourable for low cost production in large areas. With phosphorescent emitters like Ir-complexes higher quantum efficiencies were obtained than with fluorescent systems, especially if multilayer stack systems with separated charge transport and emitting layers were applied in the case of small molecules. Polymers exhibit the ability to integrate all the active components like the hole-, electron-transport and phosphorescent molecules in only one layer. Here, the active components of a phosphorescent system - triplet emitter, hole- and electron transport molecules - can be linked as a side group to a polystyrene main chain. By varying the molecular structures of the side groups as well as the composition of the side chains with respect to the triplet emitter, hole- and electron transport structure, and by blending with suitable glass-forming, so-called small molecules, brightness, efficiency and lifetime of the produced OLEDs can be optimized. By choosing the triplet emitter, such as iridium complexes, different emission colors can be specially set. Different substituted triazine molecules were introduced as side chain into a polystyrene backbone and applied as electron transport material in PLED blend systems. The influence of alkyl chain lengths of the performance will be discussed. For an optimized blend system with a green emitting phosphorescent Ir-complex efficiencies of 60 cd/A and an lifetime improvement of 66.000 h @ 1000 cd/m2 were achieved.

  5. Simple color tuning of phosphorescent dendrimer light emitting diodes

    NASA Astrophysics Data System (ADS)

    Namdas, Ebinazar B.; Anthopoulos, Thomas D.; Samuel, Ifor D. W.; Frampton, Michael J.; Lo, Shih-Chun; Burn, Paul L.

    2005-04-01

    A simple way of tuning the emission color in solution processed phosphorescent organic light emitting diodes is demonstrated. For each color a single emissive spin-coated layer consisting of a blend of three materials, a fac-tris(2-phenylpyridyl)iridium (III) cored dendrimer (Ir-G1) as the green emitter, a heteroleptic [bis(2-phenylpyridyl)-2-(2'-benzo[4,5-α]thienyl)pyridyl]iridium (III) cored dendrimer [Ir(ppy)2btp] as the red emitter, and 4,4'-bis(N-carbazolyl) biphenyl (CBP) as the host was employed. By adjusting the relative amount of green and red dendrimers in the blends, the color of the light emission was tuned from green to red. High efficiency two layer devices were achieved by evaporating a layer of electron transporting 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene (TPBI) on top of the spin-coated emissive layer. A brightness of 100cd/m2 was achieved at drive voltages in the range 5.3-7.3 V. The peak external efficiencies at this brightness ranged from 31cd/A(18lm/W) to 7cd/A(4lm/W).

  6. Multi-messenger Light Curves from Gamma-Ray Bursts in the Internal Shock Model

    NASA Astrophysics Data System (ADS)

    Bustamante, Mauricio; Heinze, Jonas; Murase, Kohta; Winter, Walter

    2017-03-01

    Gamma-ray bursts (GRBs) are promising as sources of neutrinos and cosmic rays. In the internal shock scenario, blobs of plasma emitted from a central engine collide within a relativistic jet and form shocks, leading to particle acceleration and emission. Motivated by present experimental constraints and sensitivities, we improve the predictions of particle emission by investigating time-dependent effects from multiple shocks. We produce synthetic light curves with different variability timescales that stem from properties of the central engine. For individual GRBs, qualitative conclusions about model parameters, neutrino production efficiency, and delays in high-energy gamma-rays can be deduced from inspection of the gamma-ray light curves. GRBs with fast time variability without additional prominent pulse structure tend to be efficient neutrino emitters, whereas GRBs with fast variability modulated by a broad pulse structure can be inefficient neutrino emitters and produce delayed high-energy gamma-ray signals. Our results can be applied to quantitative tests of the GRB origin of ultra-high-energy cosmic rays, and have the potential to impact current and future multi-messenger searches.

  7. Physics of Efficiency Droop in GaN:Eu Light-Emitting Diodes.

    PubMed

    Fragkos, Ioannis E; Dierolf, Volkmar; Fujiwara, Yasufumi; Tansu, Nelson

    2017-12-01

    The internal quantum efficiency (IQE) of an electrically-driven GaN:Eu based device for red light emission is analyzed in the framework of a current injection efficiency model (CIE). The excitation path of the Eu +3 ion is decomposed in a multiple level system, which includes the carrier transport phenomena across the GaN/GaN:Eu/GaN active region of the device, and the interactions among traps, Eu +3 ions and the GaN host. The identification and analysis of the limiting factors of the IQE are accomplished through the CIE model. The CIE model provides a guidance for high IQE in the electrically-driven GaN:Eu based red light emitters.

  8. High-efficiency emitting materials based on phenylquinoline/carbazole-based compounds for organic light emitting diode applications

    NASA Astrophysics Data System (ADS)

    Jin, Sung-Ho

    2009-08-01

    Highly efficient light-emitting materials based on phenylquinoline-carbazole derivative has been synthesized for organic-light emitting diodes (OLEDs). The materials form high quality amorphous thin films by thermal evaporation and the energy levels can be easily adjusted by the introduction of different electron donating and electron withdrawing groups on carbazoylphenylquinoline. Non-doped deep-blue OLEDs using Et-CVz-PhQ as the emitter show bright emission (CIE coordinates, x=0.156, y=0.093) with an external quantum efficiency of 2.45 %. Furthermore, the material works as an excellent host material for BCzVBi to get high-performance OLEDs with excellent deep-blue CIE coordinates (x=0.155, y=0.157), high power efficiency (5.98 lm/W), and high external quantum efficiency (5.22 %). Cyclometalated Ir(III) μ-chloride bridged dimers were synthesized by iridium trichloride hydrate with an excess of our developed deep-blue emitter, Et-CVz-PhQ. The Ir(III) complexes were prepared by the dimers with the corresponding ancillary ligands. The chloride bridged diiridium complexes can be easily converted to mononuclear Ir(III) complexes by replacing the two bridging chlorides with bidentate monoanionic ancillary ligands. Among the various types of ancillary ligands, we firstly used picolinic acid N-oxide, including picolinic acid and acetylacetone as an ancillary ligands for Ir(III) complexes. The PhOLEDs also shows reasonably high brightness and good luminance efficiency of 20,000 cd/m2 and 12 cd/A, respectively.

  9. Organic Light-Emitting Devices (OLEDS) and Their Optically Detected Magnetic Resonance (ODMR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Gang

    2003-01-01

    Organic Light-Emitting Devices (OLEDs), both small molecular and polymeric have been studied extensively since the first efficient small molecule OLED was reported by Tang and VanSlyke in 1987. Burroughes' report on conjugated polymer-based OLEDs led to another track in OLED development. These developments have resulted in full color, highly efficient (up to {approx} 20% external efficiency 60 lm/W power efficiency for green emitters), and highly bright (> 140,000 Cd/m{sup 2} DC, {approx}2,000,000 Cd/m{sup 2} AC), stable (>40,000 hr at 5 mA/cm{sup 2}) devices. OLEDs are Lambertian emitters, which intrinsically eliminates the view angle problem of liquid crystal displays (LCDs). Thusmore » OLEDs are beginning to compete with the current dominant LCDs in information display. Numerous companies are now active in this field, including large companies such as Pioneer, Toyota, Estman Kodak, Philipps, DuPont, Samsung, Sony, Toshiba, and Osram, and small companies like Cambridge Display Technology (CDT), Universal Display Corporation (UDC), and eMagin. The first small molecular display for vehicular stereos was introduced in 1998, and polymer OLED displays have begun to appear in commercial products. Although displays are the major application for OLEDs at present, they are also candidates for nest generation solid-state lighting. In this case the light source needs to be white in most cases. Organic transistors, organic solar cells, etc. are also being developed vigorously.« less

  10. Diamond-based single-photon emitters

    NASA Astrophysics Data System (ADS)

    Aharonovich, I.; Castelletto, S.; Simpson, D. A.; Su, C.-H.; Greentree, A. D.; Prawer, S.

    2011-07-01

    The exploitation of emerging quantum technologies requires efficient fabrication of key building blocks. Sources of single photons are extremely important across many applications as they can serve as vectors for quantum information—thereby allowing long-range (perhaps even global-scale) quantum states to be made and manipulated for tasks such as quantum communication or distributed quantum computation. At the single-emitter level, quantum sources also afford new possibilities in terms of nanoscopy and bio-marking. Color centers in diamond are prominent candidates to generate and manipulate quantum states of light, as they are a photostable solid-state source of single photons at room temperature. In this review, we discuss the state of the art of diamond-based single-photon emitters and highlight their fabrication methodologies. We present the experimental techniques used to characterize the quantum emitters and discuss their photophysical properties. We outline a number of applications including quantum key distribution, bio-marking and sub-diffraction imaging, where diamond-based single emitters are playing a crucial role. We conclude with a discussion of the main challenges and perspectives for employing diamond emitters in quantum information processing.

  11. Infrared Organic Light-Emitting Diodes with Carbon Nanotube Emitters.

    PubMed

    Graf, Arko; Murawski, Caroline; Zakharko, Yuriy; Zaumseil, Jana; Gather, Malte C

    2018-03-01

    While organic light-emitting diodes (OLEDs) covering all colors of the visible spectrum are widespread, suitable organic emitter materials in the near-infrared (nIR) beyond 800 nm are still lacking. Here, the first OLED based on single-walled carbon nanotubes (SWCNTs) as the emitter is demonstrated. By using a multilayer stacked architecture with matching charge blocking and charge-transport layers, narrow-band electroluminescence at wavelengths between 1000 and 1200 nm is achieved, with spectral features characteristic of excitonic and trionic emission of the employed (6,5) SWCNTs. Here, the OLED performance is investigated in detail and it is found that local conduction hot-spots lead to pronounced trion emission. Analysis of the emissive dipole orientation shows a strong horizontal alignment of the SWCNTs with an average inclination angle of 12.9° with respect to the plane, leading to an exceptionally high outcoupling efficiency of 49%. The SWCNT-based OLEDs represent a highly attractive platform for emission across the entire nIR. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Simultaneously Enhancing Light Emission and Suppressing Efficiency Droop in GaN Microwire-Based Ultraviolet Light-Emitting Diode by the Piezo-Phototronic Effect.

    PubMed

    Wang, Xingfu; Peng, Wenbo; Yu, Ruomeng; Zou, Haiyang; Dai, Yejing; Zi, Yunlong; Wu, Changsheng; Li, Shuti; Wang, Zhong Lin

    2017-06-14

    Achievement of p-n homojuncted GaN enables the birth of III-nitride light emitters. Owing to the wurtzite-structure of GaN, piezoelectric polarization charges present at the interface can effectively control/tune the optoelectric behaviors of local charge-carriers (i.e., the piezo-phototronic effect). Here, we demonstrate the significantly enhanced light-output efficiency and suppressed efficiency droop in GaN microwire (MW)-based p-n junction ultraviolet light-emitting diode (UV LED) by the piezo-phototronic effect. By applying a -0.12% static compressive strain perpendicular to the p-n junction interface, the relative external quantum efficiency of the LED is enhanced by over 600%. Furthermore, efficiency droop is markedly reduced from 46.6% to 7.5% and corresponding droop onset current density shifts from 10 to 26.7 A cm -2 . Enhanced electrons confinement and improved holes injection efficiency by the piezo-phototronic effect are revealed and theoretically confirmed as the physical mechanisms. This study offers an unconventional path to develop high efficiency, strong brightness and high power III-nitride light sources.

  13. Dual function conducting polymer diodes

    DOEpatents

    Heeger, Alan J.; Yu, Gang

    1996-01-01

    Dual function diodes based on conjugated organic polymer active layers are disclosed. When positively biased the diodes function as light emitters. When negatively biased they are highly efficient photodiodes. Methods of preparation and use of these diodes in displays and input/output devices are also disclosed.

  14. Organic light-emitting device with a phosphor-sensitized fluorescent emission layer

    DOEpatents

    Forrest, Stephen [Ann Arbor, MI; Kanno, Hiroshi [Osaka, JP

    2009-08-25

    The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters. The emissive region of the devices of the present invention comprise at least one phosphor-sensitized layer which has a combined emission from a phosphorescent emitter and a fluorescent emitter. In preferred embodiments, the invention relates to white-emitting OLEDS (WOLEDs).

  15. Light emission from silicon: Some perspectives and applications

    NASA Astrophysics Data System (ADS)

    Fiory, A. T.; Ravindra, N. M.

    2003-10-01

    Research on efficient light emission from silicon devices is moving toward leading-edge advances in components for nano-optoelectronics and related areas. A silicon laser is being eagerly sought and may be at hand soon. A key advantage is in the use of silicon-based materials and processing, thereby using high yield and low-cost fabrication techniques. Anticipated applications include an optical emitter for integrated optical circuits, logic, memory, and interconnects; electro-optic isolators; massively parallel optical interconnects and cross connects for integrated circuit chips; lightwave components; high-power discrete and array emitters; and optoelectronic nanocell arrays for detecting biological and chemical agents. The new technical approaches resolve a basic issue with native interband electro-optical emission from bulk Si, which competes with nonradiative phonon- and defect-mediated pathways for electron-hole recombination. Some of the new ways to enhance optical emission efficiency in Si diode devices rely on carrier confinement, including defect and strain engineering in the bulk material. Others use Si nanocrystallites, nanowires, and alloying with Ge and crystal strain methods to achieve the carrier confinement required to boost radiative recombination efficiency. Another approach draws on the considerable progress that has been made in high-efficiency, solar-cell design and uses the reciprocity between photo- and light-emitting diodes. Important advances are also being made with silicon-oxide materials containing optically active rare-earth impurities.

  16. Non-Doped Sky-Blue OLEDs Based on Simple Structured AIE Emitters with High Efficiencies at Low Driven Voltages.

    PubMed

    Islam, Amjad; Zhang, Dongdong; Peng, Ruixiang; Yang, Rongjuan; Hong, Ling; Song, Wei; Wei, Qiang; Duan, Lian; Ge, Ziyi

    2017-09-05

    Blue organic light-emitting diodes (OLEDs) are necessary for flat-panel display technologies and lighting applications. To make more energy-saving, low-cost and long-lasting OLEDs, efficient materials as well as simple structured devices are in high demand. However, a very limited number of blue OLEDs achieving high stability and color purity have been reported. Herein, three new sky-blue emitters, 1,4,5-triphenyl-2-(4-(1,2,2-triphenylvinyl)phenyl)-1H-imidazole (TPEI), 1-(4-methoxyphenyl)-4,5-diphenyl-2-(4-(1,2,2-triphenylvinyl)phenyl)-1H-imidazole (TPEMeOPhI) and 1-phenyl-2,4,5-tris(4-(1,2,2-triphenylvinyl)phenyl)-1H-imidazole (3TPEI), with a combination of imidazole and tetraphenylethene groups, have been developed. High photoluminescence quantum yields are obtained for these materials. All derivatives have demonstrated aggregation-induced emission (AIE) behavior, excellent thermal stability with high decomposition and glass transition temperatures. Non-doped sky-blue OLEDs with simple structure have been fabricated employing these materials as emitters and realized high efficiencies of 2.41 % (4.92 cd A -1 , 2.70 lm W -1 ), 2.16 (4.33 cd A -1 , 2.59 lm W -1 ) and 3.13 % (6.97 cd A -1 , 4.74 lm W -1 ) for TPEI, TPEMeOPhI and 3TPEI, with small efficiency roll-off. These are among excellent results for molecules constructed from the combination of imidazole and TPE reported so far. The high performance of a 3TPEI-based device shows the promising potential of the combination of imidazole and AIEgen for synthesizing efficient electroluminescent materials for OLED devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Influence of electron transport layer thickness on optical properties of organic light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guohong; Liu, Yong; Li, Baojun

    2015-06-07

    We investigate experimentally and theoretically the influence of electron transport layer (ETL) thickness on properties of typical N,N′-diphenyl-N,N′-bis(1-naphthyl)-[1,1′-biphthyl]-4,4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}) heterojunction based organic light-emitting diodes (OLEDs), where the thickness of ETL is varied to adjust the distance between the emitting zone and the metal electrode. The devices showed a maximum current efficiency of 3.8 cd/A when the ETL thickness is around 50 nm corresponding to an emitter-cathode distance of 80 nm, and a second maximum current efficiency of 2.6 cd/A when the ETL thickness is around 210 nm corresponding to an emitter-cathode distance of 240 nm. We adopt a rigorous electromagnetic approach that takesmore » parameters, such as dipole orientation, polarization, light emitting angle, exciton recombination zone, and diffusion length into account to model the optical properties of devices as a function of varying ETL thickness. Our simulation results are accurately consistent with the experimental results with a widely varying thickness of ETL, indicating that the theoretical model may be helpful to design high efficiency OLEDs.« less

  18. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Cho, Himchan; Jeong, Su-Hun; Park, Min-Ho; Kim, Young-Hoon; Wolf, Christoph; Lee, Chang-Lyoul; Heo, Jin Hyuck; Sadhanala, Aditya; Myoung, NoSoung; Yoo, Seunghyup; Im, Sang Hyuk; Friend, Richard H.; Lee, Tae-Woo

    2015-12-01

    Organic-inorganic hybrid perovskites are emerging low-cost emitters with very high color purity, but their low luminescent efficiency is a critical drawback. We boosted the current efficiency (CE) of perovskite light-emitting diodes with a simple bilayer structure to 42.9 candela per ampere, similar to the CE of phosphorescent organic light-emitting diodes, with two modifications: We prevented the formation of metallic lead (Pb) atoms that cause strong exciton quenching through a small increase in methylammonium bromide (MABr) molar proportion, and we spatially confined the exciton in uniform MAPbBr3 nanograins (average diameter = 99.7 nanometers) formed by a nanocrystal pinning process and concomitant reduction of exciton diffusion length to 67 nanometers. These changes caused substantial increases in steady-state photoluminescence intensity and efficiency of MAPbBr3 nanograin layers.

  19. Generation of uniform light by use of diode lasers and a truncated paraboloid with a Lambertian scatterer.

    PubMed

    Alahautala, Taito; Hernberg, Rolf

    2004-02-01

    Uniform illumination was generated by use of a large number of diode laser emitters and a single nonimaging paraboloid with a Lambertian scatterer in the truncation plane. Laser light traverses a path toward the Lambertian surface and back by total internal reflection. An overall efficiency of 69% was demonstrated. Improvements that would increase the efficiency to more than 85% are suggested. The illuminated area is circular, with 14-mm diameter. The spatial nonuniformity of the beam profile is less than +/- 2%.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bustamante, Mauricio; Heinze, Jonas; Winter, Walter

    Gamma-ray bursts (GRBs) are promising as sources of neutrinos and cosmic rays. In the internal shock scenario, blobs of plasma emitted from a central engine collide within a relativistic jet and form shocks, leading to particle acceleration and emission. Motivated by present experimental constraints and sensitivities, we improve the predictions of particle emission by investigating time-dependent effects from multiple shocks. We produce synthetic light curves with different variability timescales that stem from properties of the central engine. For individual GRBs, qualitative conclusions about model parameters, neutrino production efficiency, and delays in high-energy gamma-rays can be deduced from inspection of themore » gamma-ray light curves. GRBs with fast time variability without additional prominent pulse structure tend to be efficient neutrino emitters, whereas GRBs with fast variability modulated by a broad pulse structure can be inefficient neutrino emitters and produce delayed high-energy gamma-ray signals. Our results can be applied to quantitative tests of the GRB origin of ultra-high-energy cosmic rays, and have the potential to impact current and future multi-messenger searches.« less

  1. Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure

    NASA Astrophysics Data System (ADS)

    Scott, Riccardo; Heckmann, Jan; Prudnikau, Anatol V.; Antanovich, Artsiom; Mikhailov, Aleksandr; Owschimikow, Nina; Artemyev, Mikhail; Climente, Juan I.; Woggon, Ulrike; Grosse, Nicolai B.; Achtstein, Alexander W.

    2017-12-01

    Intrinsically directional light emitters are potentially important for applications in photonics including lasing and energy-efficient display technology. Here, we propose a new route to overcome intrinsic efficiency limitations in light-emitting devices by studying a CdSe nanoplatelets monolayer that exhibits strongly anisotropic, directed photoluminescence. Analysis of the two-dimensional k-space distribution reveals the underlying internal transition dipole distribution. The observed directed emission is related to the anisotropy of the electronic Bloch states governing the exciton transition dipole moment and forming a bright plane. The strongly directed emission perpendicular to the platelet is further enhanced by the optical local density of states and local fields. In contrast to the emission directionality, the off-resonant absorption into the energetically higher 2D-continuum of states is isotropic. These contrasting optical properties make the oriented CdSe nanoplatelets, or superstructures of parallel-oriented platelets, an interesting and potentially useful class of semiconductor-based emitters.

  2. Axial diffusion barriers in near-infrared nanopillar LEDs.

    PubMed

    Scofield, Adam C; Lin, Andrew; Haddad, Michael; Huffaker, Diana L

    2014-11-12

    The growth of GaAs/GaAsP axial heterostructures is demonstrated and implemented as diffusion current barriers in nanopillar light-emitting diodes at near-infrared wavelengths. The nanopillar light-emitting diodes utilize an n-GaAs/i-InGaAs/p-GaAs axial heterostructure for current injection. Axial GaAsP segments are inserted into the n- and p-GaAs portions of the nanopillars surrounding the InGaAs emitter region, acting as diffusion barriers to provide enhanced carrier confinement. Detailed characterization of growth of the GaAsP inserts and electronic band-offset measurements are used to effectively implement the GaAsP inserts as diffusion barriers. The implementation of these barriers in nanopillar light-emitting diodes provides a 5-fold increase in output intensity, making this a promising approach to high-efficiency pillar-based emitters in the near-infrared wavelength range.

  3. Benzimidazobenzothiazole-based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes: A quantum-chemical TD-DFT study

    NASA Astrophysics Data System (ADS)

    Zhu, Qiuling; Wen, Keke; Feng, Songyan; Guo, Xugeng; Zhang, Jinglai

    2018-03-01

    Based upon two thermally activated delayed fluorescence (TADF) emitters 1 and 2, compounds 3-6 have been designed by replacing the carbazol group with the bis(4-biphenyl)amine one (3 and 4) and introducing the electron-withdrawing CF3 group into the acceptor unit of 3 and 4 (5 and 6). It is found that the present calculations predict comparable but relatively large energy differences (approximate 0.5 eV) between the lowest singlet S1 and triplet T1 states (Δ EST) for the six targeted compounds. In order to explain the highly-efficient TADF behavior observed in compounds 1 and 2, the"triplet reservoir" mechanism has been proposed. In addition, the fluorescence rates of all six compounds are very large, in 107-108 orders of magnitude. According to the present calculations, it is a reasonable assumption that the newly designed compounds 3-6 could be considered as the potential TADF emitters, which needs to be further verified by experimental techniques.

  4. Biomimetic light-harvesting funnels for re-directioning of diffuse light.

    PubMed

    Pieper, Alexander; Hohgardt, Manuel; Willich, Maximilian; Gacek, Daniel Alexander; Hafi, Nour; Pfennig, Dominik; Albrecht, Andreas; Walla, Peter Jomo

    2018-02-14

    Efficient sunlight harvesting and re-directioning onto small areas has great potential for more widespread use of precious high-performance photovoltaics but so far intrinsic solar concentrator loss mechanisms outweighed the benefits. Here we present an antenna concept allowing high light absorption without high reabsorption or escape-cone losses. An excess of randomly oriented pigments collects light from any direction and funnels the energy to individual acceptors all having identical orientations and emitting ~90% of photons into angles suitable for total internal reflection waveguiding to desired energy converters (funneling diffuse-light re-directioning, FunDiLight). This is achieved using distinct molecules that align efficiently within stretched polymers together with others staying randomly orientated. Emission quantum efficiencies can be >80% and single-foil reabsorption <0.5%. Efficient donor-pool energy funneling, dipole re-orientation, and ~1.5-2 nm nearest donor-acceptor transfer occurs within hundreds to ~20 ps. Single-molecule 3D-polarization experiments confirm nearly parallel emitters. Stacked pigment selection may allow coverage of the entire solar spectrum.

  5. Phosphorescent Organic Light Emitting Diodes Implementing Platinum Complexes

    NASA Astrophysics Data System (ADS)

    Ecton, Jeremy Exton

    Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable materials for OLEDs with high external quantum efficiency's (EQE) and high operational lifetimes. Recently, significant improvements in the internal quantum efficiency or ratio of generated photons to injected electrons have been achieved with the advent of phosphorescent complexes with the ability to harvest both singlet and triplet excitons. Since then, a variety of phosphorescent complexes containing heavy metal centers including Os, Ni, Ir, Pd, and Pt have been developed. Thus far, the majority of the work in the field has focused on iridium based complexes. Platinum based complexes, however, have received considerably less attention despite demonstrating efficiency's equal to or better than their iridium analogs. In this study, a series of OLEDs implementing newly developed platinum based complexes were demonstrated with efficiency's or operational lifetimes equal to or better than their iridium analogs for select cases. In addition to demonstrating excellent device performance in OLEDs, platinum based complexes exhibit unique photophysical properties including the ability to form excimer emission capable of generating broad white light emission from a single emitter and the ability to form narrow band emission from a rigid, tetradentate molecular structure for select cases. These unique photophysical properties were exploited and their optical and electrical properties in a device setting were elucidated. Utilizing the unique properties of a tridentate Pt complex, Pt-16, a highly efficient white device employing a single emissive layer exhibited a peak EQE of over 20% and high color quality with a CRI of 80 and color coordinates CIE(x=0.33, y=0.33). Furthermore, by employing a rigid, tetradentate platinum complex, PtN1N, with a narrow band emission into a microcavity organic light emitting diode (MOLED), significant enhancement in the external quantum efficiency was achieved. The optimized MOLED structure achieved a light out-coupling enhancement of 1.35 compared to the non-cavity structure with a peak EQE of 34.2%. In addition to demonstrating a high light out-coupling enhancement, the microcavity effect of a narrow band emitter in a MOLED was elucidated.

  6. Control of fluorescence in quantum emitter and metallic nanoshell hybrids for medical applications

    NASA Astrophysics Data System (ADS)

    Singh, Mahi R.; Guo, Jiaohan; J. Cid, José M.; De Hoyos Martinez, Jesús E.

    2017-03-01

    We study the light emission from a quantum emitter and double metallic nanoshell hybrid systems. Quantum emitters act as local sources which transmit their light efficiently due to a double nanoshell near field. The double nanoshell consists of a dielectric core and two outer nanoshells. The first nanoshell is made of a metal, and the second spacer nanoshell is made of a dielectric material or human serum albumin. We have calculated the fluorescence emission for a quantum emitter-double nanoshell hybrid when it is injected in an animal or a human body. Surface plasmon polariton resonances in the double nanoshell are calculated using Maxwell's equations in the quasi-static approximation, and the fluorescence emission is evaluated using the density matrix method in the presence of dipole-dipole interactions. We have compared our theory with two fluorescence experiments in hybrid systems in which the quantum emitter is Indocyanine Green or infrared fluorescent molecules. The outer spacer nanoshell of double metallic nanoshells consists of silica and human serum albumin with variable thicknesses. Our theory explains the enhancement of fluorescence spectra in both experiments. We find that the thickness of the spacer nanoshell layer increases the enhancement when the fluorescence decreases. The enhancement of the fluorescence depends on the type of quantum emitter, spacer layer, and double nanoshell. We also found that the peak of the fluorescence spectrum can be shifted by changing the shape and the size of the nanoshell. The fluorescence spectra can be switched from one peak to two peaks by removing the degeneracy of excitonic states in the quantum emitter. Hence, using these properties, one can use these hybrids as sensing and switching devices for applications in medicine.

  7. Analysis of lasers as a solution to efficiency droop in solid-state lighting

    DOE PAGES

    Chow, Weng W.; Crawford, Mary H.

    2015-10-06

    This letter analyzes the proposal to mitigate the efficiency droop in solid-state light emitters by replacing InGaN light-emitting diodes (LEDs) with lasers. The argument in favor of this approach is that carrier-population clamping after the onset of lasing limits carrier loss to that at threshold, while stimulated emission continues to grow with injection current. A fully quantized (carriers and light) theory that is applicable to LEDs and lasers (above and below threshold) is used to obtain a quantitative evaluation. The results confirm the potential advantage of higher laser output power and efficiency above lasing threshold, while also indicating disadvantages includingmore » low efficiency prior to lasing onset, sensitivity of lasing threshold to temperature, and the effects of catastrophic laser failure. As a result, a solution to some of these concerns is suggested that takes advantage of recent developments in nanolasers.« less

  8. High efficiency light source using solid-state emitter and down-conversion material

    DOEpatents

    Narendran, Nadarajah; Gu, Yimin; Freyssinier, Jean Paul

    2010-10-26

    A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

  9. One-Step Borylation of 1,3-Diaryloxybenzenes Towards Efficient Materials for Organic Light-Emitting Diodes.

    PubMed

    Hirai, Hiroki; Nakajima, Kiichi; Nakatsuka, Soichiro; Shiren, Kazushi; Ni, Jingping; Nomura, Shintaro; Ikuta, Toshiaki; Hatakeyama, Takuji

    2015-11-09

    The development of a one-step borylation of 1,3-diaryloxybenzenes, yielding novel boron-containing polycyclic aromatic compounds, is reported. The resulting boron-containing compounds possess high singlet-triplet excitation energies as a result of localized frontier molecular orbitals induced by boron and oxygen. Using these compounds as a host material, we successfully prepared phosphorescent organic light-emitting diodes exhibiting high efficiency and adequate lifetimes. Moreover, using the present one-step borylation, we succeeded in the synthesis of an efficient, thermally activated delayed fluorescence emitter and boron-fused benzo[6]helicene. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Progress in reliable single emitters and laser bars for efficient CW-operation in the near-infrared emission range

    NASA Astrophysics Data System (ADS)

    Zorn, Martin; Hülsewede, Ralf; Pietrzak, Agnieszka; Meusel, Jens; Sebastian, Jürgen

    2015-03-01

    Laser bars, laser arrays, and single emitters are highly-desired light sources e.g. for direct material processing, pump sources for solid state and fiber lasers or medical applications. These sources require high output powers with optimal efficiency together with good reliability resulting in a long lifetime of the device. Desired wavelengths range from 760 nm in esthetic skin treatment over 915 nm, 940 nm and 976 nm to 1030 nm for direct material processing and pumping applications. In this publication we present our latest developments for the different application-defined wavelengths in continuouswave operation mode. At 760nm laser bars with 30 % filling factor and 1.5 mm resonator length show optical output powers around 90-100 W using an optimized design. For longer wavelengths between 915 nm and 1030 nm laser bars with 4 mm resonator length and 50 % filling factor show reliable output powers above 200 W. The efficiency reached lies above 60% and the slow axis divergence (95% power content) is below 7°. Further developments of bars tailored for 940 nm emission wavelength reach output powers of 350 W. Reliable single emitters for effective fiber coupling having emitter widths of 90 μm and 195 μm are presented. They emit optical powers of 12 W and 24 W, respectively, at emission wavelengths of 915 nm, 940 nm and 976 nm. Moreover, reliability tests of 90 μm-single emitters at a power level of 12W currently show a life time over 3500 h.

  11. Record high efficiency of screen-printed silicon aluminum back surface field solar cell: 20.29%

    NASA Astrophysics Data System (ADS)

    Kim, Ki Hyung; Park, Chang Sub; Doo Lee, Jae; Youb Lim, Jong; Yeon, Je Min; Kim, Il Hwan; Lee, Eun Joo; Cho, Young Hyun

    2017-08-01

    We have achieved a record high cell efficiency of 20.29% for an industrial 6-in. p-type monocrystalline silicon solar cell with a full-area aluminum back surface field (Al-BSF) by simply modifying the cell structure and optimizing the process with the existing cell production line. The cell efficiency was independently confirmed by the Solar Energy Research Institute of Singapore (SERIS). To increase the cell efficiency, for example, in four busbars, double printing, a lightly doped emitter with a sheet resistance of 90 to 100 Ω/□, and front surface passivation by using silicon oxynitride (SiON) on top of a silicon nitride (SiN x ) antireflection layer were adopted. To optimize front side processing, PC1D simulation was carried out prior to cell fabrication. The resulting efficiency gain is 0.64% compared with that in the reference cells with three busbars, a single antireflection coating layer, and a low-sheet-resistance emitter.

  12. Tuning of the emission color of organic light emitting diodes via smartly designed aluminum plasmonics

    NASA Astrophysics Data System (ADS)

    Auer-Berger, Manuel; Tretnak, Veronika; Wenzl, Franz-Peter; Krenn, Joachim; List-Kratochvil, Emil J. W.

    2017-02-01

    With the invention of phosphorescent emitter material, organic light emitting diodes with internal quantum yields of up to 100% can be realized. Still, the extraction of the light from the OLED stack is a bottleneck, which hampers the availability of OLEDs with large external quantum efficiencies. In this contribution, we highlight the advantages of integrating aluminum nanodisc arrays into the OLED stack. By this, not only the out-coupling of light can be enhanced, but also the emission color can be tailored and controlled. By means of extinction- and fluorescence spectroscopy measurements we are able to show how the sharp features observed in the extinction measurements correlate with a very selective fluorescence enhancement of the organic emitter materials used in these studies. At the same time, localized surface plasmon resonances of the individual nanodiscs further modify the emission spectrum, e.g., by filtering the green emission tail. A combination of these factors leads to a modification of the emission color in between CIE1931 (x,y) chromaticity coordinates of (0.149, 0.225) and (0.152, 0.352). After accounting for the sensitivity of the human eye, we are able to demonstrate that this adjustment of the chromaticity coordinates goes is accompanied by an increase in device efficiency.

  13. Tuneable light-emitting carbon-dot/polymer flexible films prepared through one-pot synthesis

    NASA Astrophysics Data System (ADS)

    Bhunia, Susanta Kumar; Nandi, Sukhendu; Shikler, Rafi; Jelinek, Raz

    2016-02-01

    Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies.Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08400h

  14. Tuning charge balance in PHOLEDs with ambipolar host materials to achieve high efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padmaperuma, Asanga B.; Koech, Phillip K.; Cosimbescu, Lelia

    2009-08-27

    The efficiency and stability of blue organic light emitting devices (OLEDs) continue to be a primary roadblock to developing organic solid state white lighting. For OLEDs to meet the high power conversion efficiency goal, they will require both close to 100% internal quantum efficiency and low operating voltage in a white light emitting device.1 It is generally accepted that such high quantum efficiency, can only be achieved with the use of organometallic phosphor doped OLEDs. Blue OLEDs are particularly important for solid state lighting. The simplest (and therefore likely the lowest cost) method of generating white light is to downmore » convert part of the emission from a blue light source with a system of external phosphors.2 A second method of generating white light requires the superposition of the light from red, green and blue OLEDs in the correct ratio. Either of these two methods (and indeed any method of generating white light with a high color rendering index) critically depends on a high efficiency blue light component.3 A simple OLED generally consists of a hole-injecting anode, a preferentially hole transporting organic layer (HTL), an emissive layer that contains the recombination zone and ideally transports both holes and electrons, a preferentially electron-transporting layer (ETL) and an electron-injecting cathode. Color in state-of-the-art OLEDs is generated by an organometallic phosphor incorporated by co-sublimation into the emissive layer (EML).4 New materials functioning as hosts, emitters, charge transporting, and charge blocking layers have been developed along with device architectures leading to electrophosphorescent based OLEDs with high quantum efficiencies near the theoretical limit. However, the layers added to the device architecture to enable high quantum efficiencies lead to higher operating voltages and correspondingly lower power efficiencies. Achievement of target luminance power efficiencies will require new strategies for lowering operating voltages, particularly if this is to be achieved in a device that can be manufactured at low cost. To avoid the efficiency losses associated with phosphorescence quenching by back-energy transfer from the dopant onto the host, the triplet excited states of the host material must be higher in energy than the triplet excited state of the dopant.5 This must be accomplished without sacrificing the charge transporting properties of the composite.6 Similar problems limit the efficiency of OLED-based displays, where blue light emitters are the least efficient and least stable. We previously demonstrated the utility of organic phosphine oxide (PO) materials as electron transporting HMs for FIrpic in blue OLEDs.7 However, the high reluctance of PO materials to oxidation and thus, hole injection limits the ability to balance charge injection and transport in the EML without relying on charge transport by the phosphorescent dopant. PO host materials were engineered to transport both electrons and holes in the EML and still maintain high triplet exciton energy to ensure efficient energy transfer to the dopant (Figure 1). There are examples of combining hole transporting moieties (mainly aromatic amines) with electron transport moieties (e.g., oxadiazoles, triazines, boranes)8 to develop new emitter and host materials for small molecule and polymer9 OLEDs. The challenge is to combine the two moieties without lowering the triplet energy of the target molecule. For example, coupling of a dimesitylphenylboryl moiety with a tertiary aromatic amine (FIAMBOT) results in intramolecular electron transfer from the amine to the boron atom through the bridging phenyl. The mesomeric effect of the dimesitylphenylboryl unit acts to extend conjugation and lowers triplet exciton energies (< 2.8 eV) rendering such systems inadequate as ambipolar hosts for blue phosphors.« less

  15. Diffusion-Driven Charge Transport in Light Emitting Devices

    PubMed Central

    Oksanen, Jani; Suihkonen, Sami

    2017-01-01

    Almost all modern inorganic light-emitting diode (LED) designs are based on double heterojunctions (DHJs) whose structure and current injection principle have remained essentially unchanged for decades. Although highly efficient devices based on the DHJ design have been developed and commercialized for energy-efficient general lighting, the conventional DHJ design requires burying the active region (AR) inside a pn-junction. This has hindered the development of emitters utilizing nanostructured ARs located close to device surfaces such as nanowires or surface quantum wells. Modern DHJ III-N LEDs also exhibit resistive losses that arise from the DHJ device geometry. The recently introduced diffusion-driven charge transport (DDCT) emitter design offers a novel way to transport charge carriers to unconventionally placed ARs. In a DDCT device, the AR is located apart from the pn-junction and the charge carriers are injected into the AR by bipolar diffusion. This device design allows the integration of surface ARs to semiconductor LEDs and offers a promising method to reduce resistive losses in high power devices. In this work, we present a review of the recent progress in gallium nitride (GaN) based DDCT devices, and an outlook of potential DDCT has for opto- and microelectronics. PMID:29231900

  16. Evidence of low injection efficiency for implanted p-emitters in bipolar 4H-SiC high-voltage diodes

    NASA Astrophysics Data System (ADS)

    Matthus, Christian D.; Huerner, Andreas; Erlbacher, Tobias; Bauer, Anton J.; Frey, Lothar

    2018-06-01

    In this study, the influence of the emitter efficiency on the forward current-voltage characteristics, especially the conductivity modulation of bipolar SiC-diodes was analyzed. It was determined that the emitter efficiency of p-emitters formed by ion implantation is significantly lower compared to p-emitters formed by epitaxy. In contrast to comparable studies, experimental approach was arranged that the influence of the quality of the drift-layer or the thickness of the emitter on the conductivity modulation could be excluded for the fabricated bipolar SiC-diodes of this work. Thus, it can be established that the lower emitter injection efficiency is mainly caused by the reduced electron lifetime in p-emitters formed by ion implantation. Therefore, a significant enhancement of the electron lifetime in implanted p-emitters is mandatory for e.g. SiC-MPS-diodes where the functionality of the devices depends significantly on the injection efficiency.

  17. Unidirectional emission in an all-dielectric nanoantenna

    NASA Astrophysics Data System (ADS)

    Feng, Tianhua; Zhang, Wei; Liang, Zixian; Xu, Yi

    2018-03-01

    All-dielectric nanoantennas are a promising alternative to plasmonic optical antennas for engineering light emission because of their low-loss nature in the optical spectrum. Nevertheless, it is still challenging to manipulate directional light emission with subwavelength all-dielectric nanoantennas. Here, we propose and numerically demonstrate that a hollow silicon nanodisk can serve as a versatile antenna for directing and enhancing the emission from either an electric or magnetic dipole emitter. When primarily coupled to both electric and magnetic dipole modes of a nanoantenna, broadband nearly-unidirectional emission can be realized by the interference of two modes, which can be spectrally tuned via the geometric parameters in an easy way. More importantly, the emission directions for the magnetic and electric dipole emitters are shown as opposite to each other through control of the phase difference between the induced magnetic and electric dipole modes of the antenna. Meanwhile, the Purcell factors can be enhanced by more than one order of magnitude and high quantum efficiencies can be maintained at the visible spectrum for both kinds of dipole emitters. We further show that these unidirectional emission phenomena can withstand small disorder effects of in-plane dipole orientation and location. Our study provides a simple yet versatile platform that can shape the emission of both magnetic and electric dipole emitters.

  18. Highly Efficient TADF Polymer Electroluminescence with Reduced Efficiency Roll-off via Interfacial Exciplex Host Strategy.

    PubMed

    Lin, Xingdong; Zhu, Yunhui; Zhang, Baohua; Zhao, Xiaofei; Yao, Bing; Cheng, Yanxiang; Li, Zhanguo; Qu, Yi; Xie, Zhiyuan

    2018-01-10

    Solution-processed organic light-emitting diodes (s-OLED) consisting of TAPC/TmPyPB interfacial exciplex host and polymer PAPTC TADF emitter are prepared, simultaneously displaying ultralow voltages (2.50/2.91/3.51/4.91 V at luminance of 1/100/1000/1000 cd m -2 ), high efficiencies (14.9%, 50.1 lm W -1 ), and extremely low roll-off rates (J 50 of 63.16 mA cm -2 , L 50 of ca. 15000 cd m -2 ). Such performance is distinctly higher than that of pure-PAPTC s-OLED. Compared to pure-PAPTC, the advanced emissive layer structure of TAPC:PAPTC/TmPyPB is unique in much higher PL quantum yield (79.5 vs 36.3%) and nearly 4-fold enhancement in k RISC of the PAPTC emitter to 1.48 × 10 7 s -1 .

  19. Tetradentate Schiff base platinum(II) complexes as new class of phosphorescent materials for high-efficiency and white-light electroluminescent devices.

    PubMed

    Che, Chi-Ming; Chan, Siu-Chung; Xiang, Hai-Feng; Chan, Michael C W; Liu, Yu; Wang, Yue

    2004-07-07

    The capabilities of readily prepared and sublimable Pt(II) Schiff base triplet emitters as OLED dopants have been examined; maximum luminous and power efficiencies and luminance of 31 cd A(-1), 14 lm W(-1), and 23,000 cd m(-2), respectively, and white EL (CIE: 0.33, 0.35) by simultaneous host/dopant emission, have been achieved.

  20. Storage of charge carriers on emitter molecules in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Weichsel, Caroline; Burtone, Lorenzo; Reineke, Sebastian; Hintschich, Susanne I.; Gather, Malte C.; Leo, Karl; Lüssem, Björn

    2012-08-01

    Organic light-emitting diodes (OLEDs) using the red phosphorescent emitter iridium(III)bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate) [Ir(MDQ)2(acac)] are studied by time-resolved electroluminescence measurements. A transient overshoot after voltage turn-off is found, which is attributed to electron accumulation on Ir(MDQ)2(acac) molecules. The mechanism is verified via impedance spectroscopy and by application of positive and negative off-voltages. We calculate the density of accumulated electrons and find that it scales linearly with the doping concentration of the emitter. Using thin quenching layers, we locate the position of the emission zone during normal OLED operation and after voltage turn-off. In addition, the transient overshoot is also observed in three-color white-emitting OLEDs. By time- and spectrally resolved measurements using a streak camera, we directly attribute the overshoot to electron accumulation on Ir(MDQ)2(acac). We propose that similar processes are present in many state-of-the-art OLEDs and believe that the quantification of charge carrier storage will help to improve the efficiency of OLEDs.

  1. Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror

    NASA Astrophysics Data System (ADS)

    Weeraddana, Dilusha; Premaratne, Malin; Gunapala, Sarath D.; Andrews, David L.

    2017-08-01

    The ability to control light-matter interactions in quantum objects opens up many avenues for new applications. We look at this issue within a fully quantized framework using a fundamental theory to describe mirror-assisted resonance energy transfer (RET) in nanostructures. The process of RET communicates electronic excitation between suitably disposed donor and acceptor particles in close proximity, activated by the initial excitation of the donor. Here, we demonstrate that the energy transfer rate can be significantly controlled by careful positioning of the RET emitters near a mirror. The results deliver equations that elicit new insights into the associated modification of virtual photon behavior, based on the quantum nature of light. In particular, our results indicate that energy transfer efficiency in nanostructures can be explicitly expedited or suppressed by a suitably positioned neighboring mirror, depending on the relative spacing and the dimensionality of the nanostructure. Interestingly, the resonance energy transfer between emitters is observed to "switch off" abruptly under suitable conditions of the RET system. This allows one to quantitatively control RET systems in a new way.

  2. Efficient, inkjet-printed TADF-OLEDs with an ultra-soluble NHetPHOS complex

    NASA Astrophysics Data System (ADS)

    Verma, Anand; Zink, Daniel M.; Fléchon, Charlotte; Leganés Carballo, Jaime; Flügge, Harald; Navarro, José M.; Baumann, Thomas; Volz, Daniel

    2016-03-01

    Using printed organic light-emitting diodes (OLEDs) for lighting, smart-packaging and other mass-market applications has remained a dream since the first working OLED devices were demonstrated in the late 1980s. The realization of this long-term goal is hindered by the very low abundance of iridium and problems when using low-cost wet chemical production processes. Abundant, solution-processable Cu(I) complexes promise to lower the cost of OLEDs. A new copper iodide NHetPHOS emitter was prepared and characterized in solid state with photoluminescence spectroscopy and UV photoelectron spectroscopy under ambient conditions. The photoluminescence quantum efficiency was determined as 92 ± 5 % in a thin film with yellowish-green emission centered around 550 nm. This puts the material on par with the most efficient copper complexes known so far. The new compound showed superior solubility in non-polar solvents, which allowed for the fabrication of an inkjet-printed OLED device from a decalin-based ink formulation. The emission layer could be processed under ambient conditions and was annealed under air. In a very simple stack architecture, efficiency values up to 45 cd A-1 corresponding to 13.9 ± 1.9 % EQE were achieved. These promising results open the door to printed, large-scale OLED devices with abundant copper emitters.

  3. Improvements of phosphorescent white OLEDs performance for lighting application.

    PubMed

    Lee, Jonghee; Chu, Hye Yong; Lee, Jeong-Ik; Song, Ki-Im; Lee, Su Jin

    2008-10-01

    We developed white OLED device with high power efficiency, in which blue and orange phosphorescent emitters were used. By introduction of multi-functional interlayer which has partial doping of orange dopant inside EBL, we report WOLEDs with peak external efficiencies up to (14.1% EQE, 31.3 Im/W) without light out-coupling technique. At 1000 cd/m2, the performance achieved was 11.9% EQE, 18.7 Im/W with CIE = (0.39, 0.44). We also found that WOLED performances are related with doping ratio of the orange dopant that was inserted inside EBL.

  4. High-efficiency, deep-junction, epitaxial InP solar cells on (100) and (111)B InP substrates

    NASA Technical Reports Server (NTRS)

    Venkatasubramanian, R.; Timmons, M. L.; Hutchby, J. A.; Walters, Robert J.; Summers, Geoffrey P.

    1994-01-01

    We report on the development and performance of deep-junction (approximately 0.25 micron), graded-emitter-doped, n(sup +)-p InP solar cells grown by metallorganic chemical vapor deposition (MOCVD). A novel, diffusion-transport process for obtaining lightly-doped p-type base regions of the solar cell is described. The I-V data and external quantum-efficiency response of these cells are presented. The best active-area AMO efficiency for these deep-junction cells on (100)-oriented InP substrates is 16.8 percent, with a J(sub SC) of 31.8 mA/sq cm, a V(sub OC) of 0.843 V, and a fill-factor of 0.85. By comparison, the best cell efficiency on the (111)B-oriented InP substrates was 15.0 percent. These efficiency values for deep-junction cells are encouraging and compare favorably with performance of thin-emitter (0.03 micron) epitaxial cells as well as that of deep-emitter diffused cells. The cell performance and breakdown voltage characteristics of a batch of 20 cells on each of the orientations are presented, indicating the superior breakdown voltage properties and other characteristics of InP cells on the (111)B orientation. Spectral response, dark I-V data, and photoluminescence (PL) measurements on the InP cells are presented with an analysis on the variation in J(sub SC) and V(sub OC) of the cells. It is observed, under open-circuit conditions, that lower-V(sub OC) cells exhibit higher band-edge PL intensity for both the (100) and (111)B orientations. This anomalous behavior suggests that radiative recombination in the heavily-doped n(sup +)-InP emitter may be detrimental to achieving higher V(sub OC) in n(sup +)-p InP solar cells.

  5. White organic light-emitting diodes with fluorescent tube efficiency.

    PubMed

    Reineke, Sebastian; Lindner, Frank; Schwartz, Gregor; Seidler, Nico; Walzer, Karsten; Lüssem, Björn; Leo, Karl

    2009-05-14

    The development of white organic light-emitting diodes (OLEDs) holds great promise for the production of highly efficient large-area light sources. High internal quantum efficiencies for the conversion of electrical energy to light have been realized. Nevertheless, the overall device power efficiencies are still considerably below the 60-70 lumens per watt of fluorescent tubes, which is the current benchmark for novel light sources. Although some reports about highly power-efficient white OLEDs exist, details about structure and the measurement conditions of these structures have not been fully disclosed: the highest power efficiency reported in the scientific literature is 44 lm W(-1) (ref. 7). Here we report an improved OLED structure which reaches fluorescent tube efficiency. By combining a carefully chosen emitter layer with high-refractive-index substrates, and using a periodic outcoupling structure, we achieve a device power efficiency of 90 lm W(-1) at 1,000 candelas per square metre. This efficiency has the potential to be raised to 124 lm W(-1) if the light outcoupling can be further improved. Besides approaching internal quantum efficiency values of one, we have also focused on reducing energetic and ohmic losses that occur during electron-photon conversion. We anticipate that our results will be a starting point for further research, leading to white OLEDs having efficiencies beyond 100 lm W(-1). This could make white-light OLEDs, with their soft area light and high colour-rendering qualities, the light sources of choice for the future.

  6. Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit.

    PubMed

    Shin, Hyun; Lee, Sunghun; Kim, Kwon-Hyeon; Moon, Chang-Ki; Yoo, Seung-Jun; Lee, Jeong-Hwan; Kim, Jang-Joo

    2014-07-16

    A high-efficiency blue-emitting organic light-emitting diode (OLED) approaching theoretical efficiency using an exciplex-forming co-host composed of N,N'-dicarbazolyl-3,5-benzene (mCP) and bis-4,6-(3,5-di-3-pyridylphenyl)- 2-methylpyrimidine (B3PYMPM) is fabricated. Iridium(III)bis[(4,6-difluorophenyl)- pyridinato-N,C2']picolinate (FIrpic) is used as the emitter, which turns out to have a preferred horizontal dipole orientation in the emitting layer. The OLED shows a maximum external quantum efficiency of 29.5% (a maximum current efficiency of 62.2 cd A(-1) ), which is in perfect agreement with the theoretical prediction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Highly efficient phosphorescent, TADF, and fluorescent OLEDs (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Jang-Joo; Kim, Kwon-Hyeon; Moon, Chang-Ki; Shin, Hyun

    2016-09-01

    High efficiency OLEDs based on phosphorescent, thermally activated delayed fluorescent (TADF) and fluorescent emitters will be presented. We will show that EQEs over 60% is achievable if OLEDs are fabricated using organic semiconductors with the refractive indices of 1.5 and fully horizontal emitting dipoles without any extra light extracting structure. We will also show that reverse intersystem crossing RISC rate plays an important role to reduce the efficiency roll-off in efficient TADF and fluorescent OLEDs and a couple to methods will be presented to increase the RISC rate in the devices.

  8. Enhanced infra-red emission from sub-millimeter microelectromechanical systems micro hotplates via inkjet deposited carbon nanoparticles and fullerenes

    NASA Astrophysics Data System (ADS)

    De Luca, A.; Cole, M. T.; Fasoli, A.; Ali, S. Z.; Udrea, F.; Milne, W. I.

    2013-06-01

    In this paper, we demonstrate a micro-inkjet printing technique as a reproducible post-process for the deposition of carbon nanoparticles and fullerene adlayers onto fully CMOS compatible micro-electro-mechanical silicon-on-insulator infrared (IR) light sources to enhance their infrared emission. We show experimentally a significant increase in the infrared emission efficiency of the coated emitters. We numerically validate these findings with models suggesting a dominant performance increase for wavelengths <5.5 μm. Here, the bimodal size distribution in the diameter of the carbon nanoparticles, relative to the fullerenes, is an effective mediator towards topologically enhanced emittance of our miniaturised emitters. A 90% improvement in IR emission power density has been shown which we have rationalised with an increase in the mean thickness of the deposited carbon nanoparticle adlayer.

  9. The Role of Metal Halide Perovskites in Next-Generation Lighting Devices.

    PubMed

    Lozano, Gabriel

    2018-06-28

    The development of smart illumination sources represents a central challenge of the current technology. In this context, the quest for novel materials that enable efficient light generation is essential. Metal halide compounds with perovskite crystalline structure (ABX3) have gained tremendous interest in the last five years since they come as easy-to-prepare high performance semiconductors. Perovskite absorbers are driving the power-conversion-efficiencies of thin film photovoltaics to unprecedented values. Nowadays, mixed-cation mixed-halide lead perovskite solar cells reach efficiencies consistently over 20% and promise to get close to 30% in multi-junction devices when combined with silicon cells at no surcharge. Nonetheless, perovskites' fame extends further since extensive research on these novel semiconductors has also revealed their brightest side. Soon after their irruption in the photovoltaic scenario, demonstration of efficient color tunable -with high color purity- perovskite emitters has opened new avenues for light generation applications that are timely to discuss herein.

  10. Determination of the efficiency of commercially available dose calibrators for beta-emitters.

    PubMed

    Valley, Jean-François; Bulling, Shelley; Leresche, Michel; Wastiel, Claude

    2003-03-01

    The goals of this investigation are to determine whether commercially available dose calibrators can be used to measure the activity of beta-emitting radionuclides used in pain palliation and to establish whether manufacturer-supplied calibration factors are appropriate for this purpose. Six types of commercially available dose calibrators were studied. Dose calibrator response was controlled for 5 gamma-emitters used for calibration or typically encountered in routine use. For the 4 most commonly used beta-emitters ((32)P, (90)Sr, (90)Y, and (169)Er) dose calibrator efficiency was determined in the syringe geometry used for clinical applications. Efficiency of the calibrators was also measured for (153)Sm and (186)Re, 2 beta-emitters with significant gamma-contributions. Source activities were traceable to national standards. All calibrators measured gamma-emitters with a precision of +/-10%, in compliance with Swiss regulatory requirements. For beta-emitters, dose calibrator intrinsic efficiency depends strongly on the maximal energy of the beta-spectrum and is notably low for (169)Er. Manufacturer-supplied calibration factors give accurate results for beta-emitters with maximal beta-energy in the middle-energy range (1 MeV) but are not appropriate for use with low-energy ((169)Er) or high-energy ((90)Y) beta-emitters. beta-emitters with significant gamma-contributions behave like gamma-emitters. Commercially available dose calibrators have an intrinsic efficiency that is sufficient for the measurement of beta-emitters, including beta-emitters with a low maximum beta-energy. Manufacturer-supplied calibration factors are reliable for gamma-emitters and beta-emitters in the middle-energy range. For low- and high-energy beta-emitters, the use of manufacturer-supplied calibration factors introduces significant measurement inaccuracy.

  11. Exciplex-triplet energy transfer: A new method to achieve extremely efficient organic light-emitting diode with external quantum efficiency over 30% and drive voltage below 3 V

    NASA Astrophysics Data System (ADS)

    Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Yamazaki, Shunpei

    2014-04-01

    A novel approach to enhance the power efficiency of an organic light-emitting diode (OLED) by employing energy transfer from an exciplex to a phosphorescent emitter is reported. It was found that excitation energy of an exciplex formed between an electron-transporting material with a π-deficient quinoxaline moiety and a hole-transporting material with aromatic amine structure can be effectively transferred to a phosphorescent iridium complex in an emission layer of a phosphorescent OLED. Moreover, such an exciplex formation increases quantum efficiency and reduces drive voltage. A highly efficient, low-voltage, and long-life OLED based on this energy transfer is also demonstrated. This OLED device exhibited extremely high external quantum efficiency of 31% even without any attempt to enhance light outcoupling and also achieved a low drive voltage of 2.8 V and a long lifetime of approximately 1,000,000 h at a luminance of 1,000 cd/m2.

  12. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyeon; D'Aléo, Anthony; Chen, Xian-Kai; Sandanayaka, Atula D. S.; Yao, Dandan; Zhao, Li; Komino, Takeshi; Zaborova, Elena; Canard, Gabriel; Tsuchiya, Youichi; Choi, Eunyoung; Wu, Jeong Weon; Fages, Frédéric; Brédas, Jean-Luc; Ribierre, Jean-Charles; Adachi, Chihaya

    2018-02-01

    Near-infrared organic light-emitting diodes and semiconductor lasers could benefit a variety of applications including night-vision displays, sensors and information-secured displays. Organic dyes can generate electroluminescence efficiently at visible wavelengths, but organic light-emitting diodes are still underperforming in the near-infrared region. Here, we report thermally activated delayed fluorescent organic light-emitting diodes that operate at near-infrared wavelengths with a maximum external quantum efficiency of nearly 10% using a boron difluoride curcuminoid derivative. As well as an effective upconversion from triplet to singlet excited states due to the non-adiabatic coupling effect, this donor-acceptor-donor compound also exhibits efficient amplified spontaneous emission. By controlling the polarity of the active medium, the maximum emission wavelength of the electroluminescence spectrum can be tuned from 700 to 780 nm. This study represents an important advance in near-infrared organic light-emitting diodes and the design of alternative molecular architectures for photonic applications based on thermally activated delayed fluorescence.

  13. Tunneling-injection in vertical quasi-2D heterojunctions enabled efficient and adjustable optoelectronic conversion

    PubMed Central

    Tan, Wei-Chun; Chiang, Chia-Wei; Hofmann, Mario; Chen, Yang-Fang

    2016-01-01

    The advent of 2D materials integration has enabled novel heterojunctions where carrier transport proceeds thrsough different ultrathin layers. We here demonstrate the potential of such heterojunctions on a graphene/dielectric/semiconductor vertical stack that combines several enabling features for optoelectronic devices. Efficient and stable light emission was achieved through carrier tunneling from the graphene injector into prominent states of a luminescent material. Graphene’s unique properties enable fine control of the band alignment in the heterojunction. This advantage was used to produce vertical tunneling-injection light-emitting transistors (VtiLET) where gating allows adjustment of the light emission intensity independent of applied bias. This device was shown to simultaneously act as a light detecting transistor with a linear and gate tunable sensitivity. The presented development of an electronically controllable multifunctional light emitter, light detector and transistor open up a new route for future optoelectronics. PMID:27507171

  14. Tunneling-injection in vertical quasi-2D heterojunctions enabled efficient and adjustable optoelectronic conversion

    NASA Astrophysics Data System (ADS)

    Tan, Wei-Chun; Chiang, Chia-Wei; Hofmann, Mario; Chen, Yang-Fang

    2016-08-01

    The advent of 2D materials integration has enabled novel heterojunctions where carrier transport proceeds thrsough different ultrathin layers. We here demonstrate the potential of such heterojunctions on a graphene/dielectric/semiconductor vertical stack that combines several enabling features for optoelectronic devices. Efficient and stable light emission was achieved through carrier tunneling from the graphene injector into prominent states of a luminescent material. Graphene’s unique properties enable fine control of the band alignment in the heterojunction. This advantage was used to produce vertical tunneling-injection light-emitting transistors (VtiLET) where gating allows adjustment of the light emission intensity independent of applied bias. This device was shown to simultaneously act as a light detecting transistor with a linear and gate tunable sensitivity. The presented development of an electronically controllable multifunctional light emitter, light detector and transistor open up a new route for future optoelectronics.

  15. Efficient blue and green phosphorescent OLEDs with host material containing electronically isolated carbazolyl fragments

    NASA Astrophysics Data System (ADS)

    Grigalevicius, Saulius; Tavgeniene, Daiva; Krucaite, Gintare; Blazevicius, Dovydas; Griniene, Raimonda; Lai, Yi-Ning; Chiu, Hao-Hsuan; Chang, Chih-Hao

    2018-05-01

    Dry process-able host materials are well suited to realize high performance phosphorescent organic light-emitting diodes (OLED) with precise deposition of organic layers. We demonstrate in this study high efficiency green and blue phosphorescent OLED devices by employing 3-[bis(9-ethylcarbazol-3-yl)methyl]-9-hexylcarbazole based host material. By doping a typical green emitter of fac tris(2-phenylpyridine)iridium (Ir (ppy)3) in the compound the resultant dry-processed green device exhibited superior performance with low turn on voltage of 3.0 V and with peak efficiencies of 11.4%, 39.9 cd/A and 41.8 lm/W. When blue emitter of bis [2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium (III) was used, the resultant blue device showed turn on voltage of 2.9 V and peak efficiencies of 9.4%, 21.4 cd/A and 21.7 lm/W. The high efficiencies may be attributed to the host possessing high triplet energy level, effective host-to-guest energy transfer and effective carrier injection balance.

  16. Light modulated switches and radio frequency emitters

    DOEpatents

    Wilson, Mahlon T.; Tallerico, Paul J.

    1982-01-01

    The disclosure relates to a light modulated electron beam driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  17. Light modulated electron beam driven radiofrequency emitter

    DOEpatents

    Wilson, M.T.; Tallerico, P.J.

    1979-10-10

    The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  18. A robust yellow-emitting metallophosphor with electron-injection/-transporting traits for highly efficient white organic light-emitting diodes.

    PubMed

    Zhou, Guijiang; Yang, Xiaolong; Wong, Wai-Yeung; Wang, Qi; Suo, Si; Ma, Dongge; Feng, Jikang; Wang, Lixiang

    2011-10-24

    With the aim of endowing triplet emitters in the development of organic light-emitting devices (OLEDs) with electron-injection/-transporting (EI/ET) features, the phenylsulfonyl moiety was introduced into the phenyl ring of a 2-phenylpyridine (Hppy) ligand and the yellow phosphorescent heteroleptic iridium(III) complex 1 was developed. It was shown that the SO(2)Ph unit could provide EI/ET character to 1, as indicated from both electrochemical and computational data. Complex 1 is a promising yellow-emitting material for both monochromatic OLEDs and white OLEDs (WOLEDs). The outstanding electronic traits associated with 1, coupled with careful device design, afforded very attractive electroluminescent performances for two-element WOLEDs, including a low turn-on voltage of less than 3.7 V, a maximum brightness of 48,000 cd m(-2), an external quantum efficiency of 13.0%, a luminance efficiency of 34.7 cd A(-1), and a power efficiency of 24.3 Lm W(-1). In addition, a good color rendering index (CRI) of about 74, a stable white color with a Commission Internationale de L'Eclairage (CIE(x,y)) variation of Δ(x, y) < ±(0.02, 0.02), and a correlated color temperature higher than 5130 K were obtained. These encouraging results indicate the potential of these WOLEDs as good candidates for warm indoor lighting sources, as well as the critical contribution of such key EI/ET properties to triplet emitters to advance new OLED research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enhancing Three-dimensional Movement Control System for Assemblies of Machine-Building Facilities

    NASA Astrophysics Data System (ADS)

    Kuzyakov, O. N.; Andreeva, M. A.

    2018-01-01

    Aspects of enhancing three-dimensional movement control system are given in the paper. Such system is to be used while controlling assemblies of machine-building facilities, which is a relevant issue. The base of the system known is three-dimensional movement control device with optical principle of action. The device consists of multi point light emitter and light receiver matrix. The processing of signals is enhanced to increase accuracy of measurements by switching from discrete to analog signals. Light receiver matrix is divided into four areas, and the output value of each light emitter in each matrix area is proportional to its luminance level. Thus, determing output electric signal value of each light emitter in corresponding area leads to determing position of multipoint light emitter and position of object tracked. This is done by using Case-based reasoning method, the precedent in which is described as integral signal value of each matrix area, coordinates of light receivers, which luminance level is high, and decision to be made in this situation.

  20. The application of high efficient yellow phosphorescent material to white OLEDs

    NASA Astrophysics Data System (ADS)

    Lin, Jin-Sheng; Ku, Chun-Neng; Huang, Pang-Chi; Wu, Cheng-An; Chang, Meng-Hao; Liou, Jia-Lun; Tseng, Mei-Rurng

    2014-10-01

    A new type of thiopyridinyl-based iridium molecule (POT) was used as the yellow phosphorescent material in our research. On fabricating a yellow PHOLED by doping POT-02 with host as the emitter, the device achieved a high power efficiency of 66.0 lm/W and an external quantum efficiency of 23.2%. On the other hand, a white organic lightemitting diode (WOLED) with a high power efficiency has been demonstrated by dispersing a host-free, yellow phosphorescent material in-between double blue phosphorescent emitters. In this study, we introduce a simple process for generating yellow emission of a WOLED by using the B/Y/B EML configuration. The B/Y/B EML configuration can achieve a higher efficiency and a smaller color shift with various operational brightness values. Based on the concept of this device, the molecular engineering of the blue phosphorescent host material as well as the light-extraction film, a WOLED with a power efficiency of 103 lm/W and an external quantum efficiency of 38.2% at a practical brightness of 1000 cd/m2 with CIE coordinates (CIEx, y) of (0.36, 0.48) can be achieved.

  1. Omnidirectional structured light in a flexible configuration.

    PubMed

    Paniagua, Carmen; Puig, Luis; Guerrero, José J

    2013-10-14

    Structured light is a perception method that allows us to obtain 3D information from images of the scene by projecting synthetic features with a light emitter. Traditionally, this method considers a rigid configuration, where the position and orientation of the light emitter with respect to the camera are known and calibrated beforehand. In this paper we propose a new omnidirectional structured light system in flexible configuration, which overcomes the rigidness of the traditional structured light systems. We propose the use of an omnidirectional camera combined with a conic pattern light emitter. Since the light emitter is visible in the omnidirectional image, the computation of its location is possible. With this information and the projected conic in the omnidirectional image, we are able to compute the conic reconstruction, i.e., the 3D information of the conic in the space. This reconstruction considers the recovery of the depth and orientation of the scene surface where the conic pattern is projected. One application of our proposed structured light system in flexible configuration consists of a wearable omnicamera with a low-cost laser in hand for visual impaired personal assistance.

  2. Simplified efficient phosphorescent organic light-emitting diodes by organic vapor phase deposition

    NASA Astrophysics Data System (ADS)

    Pfeiffer, P.; Beckmann, C.; Stümmler, D.; Sanders, S.; Simkus, G.; Heuken, M.; Vescan, A.; Kalisch, H.

    2017-12-01

    The most efficient phosphorescent organic light-emitting diodes (OLEDs) are comprised of complex stacks with numerous organic layers. State-of-the-art phosphorescent OLEDs make use of blocking layers to confine charge carriers and excitons. On the other hand, simplified OLEDs consisting of only three organic materials have shown unexpectedly high efficiency when first introduced. This was attributed to superior energy level matching and suppressed external quantum efficiency (EQE) roll-off. In this work, we study simplified OLED stacks, manufactured by organic vapor phase deposition, with a focus on charge balance, turn-on voltage (Von), and efficiency. To prevent electrons from leaking through the device, we implemented a compositionally graded emission layer. By grading the emitter with the hole transport material, charge confinement is enabled without additional blocking layers. Our best performing organic stack is composed of only three organic materials in two layers including the emitter Ir(ppy)3 and yields a Von of 2.5 V (>1 cd/m2) and an EQE of 13% at 3000 cd/m2 without the use of any additional light extraction techniques. Changes in the charge balance, due to barrier tuning or adjustments in the grading parameters and layer thicknesses, are clearly visible in the current density-voltage-luminance (J-V-L) measurements. As charge injection at the electrodes and organic interfaces is of great interest but difficult to investigate in complex device structures, we believe that our simplified organic stack is not only a potent alternative to complex state-of-the-art OLEDs but also a well suited test vehicle for experimental studies focusing on the modification of the electrode-organic semiconductor interface.

  3. Efficient room-temperature source of polarized single photons

    DOEpatents

    Lukishova, Svetlana G.; Boyd, Robert W.; Stroud, Carlos R.

    2007-08-07

    An efficient technique for producing deterministically polarized single photons uses liquid-crystal hosts of either monomeric or oligomeric/polymeric form to preferentially align the single emitters for maximum excitation efficiency. Deterministic molecular alignment also provides deterministically polarized output photons; using planar-aligned cholesteric liquid crystal hosts as 1-D photonic-band-gap microcavities tunable to the emitter fluorescence band to increase source efficiency, using liquid crystal technology to prevent emitter bleaching. Emitters comprise soluble dyes, inorganic nanocrystals or trivalent rare-earth chelates.

  4. An accurate two-dimensional LBIC solution for bipolar transistors

    NASA Astrophysics Data System (ADS)

    Benarab, A.; Baudrand, H.; Lescure, M.; Boucher, J.

    1988-05-01

    A complete solution of the diffusion problem of carriers generated by a located light beam in the emitter and base region of a bipolar structure is presented. Green's function method and moment method are used to solve the 2-D diffusion equation in these regions. From the Green's functions solution of these equations, the light beam induced currents (LBIC) in the different junctions of the structure due to an extended generation represented by a rectangular light spot; are thus decided. The equations of these currents depend both on the parameters which characterise the structure, surface states, dimensions of the emitter and the base region, and the characteristics of the light spot, that is to say, the width and the wavelength. Curves illustrating the variation of the various LBIC in the base region junctions as a function of the impact point of the light beam ( x0) for different values of these parameters are discussed. In particular, the study of the base-emitter currents when the light beam is swept right across the sample illustrates clearly a good geometrical definition of the emitter region up to base end of the emitter-base space-charge areas and a "whirl" lateral diffusion beneath this region, (i.e. the diffusion of the generated carriers near the surface towards the horizontal base-emitter junction and those created beneath this junction towards the lateral (B-E) junctions).

  5. Mask-less patterning of organic light emitting diodes using electrospray and selective biasing on pixel electrodes

    NASA Astrophysics Data System (ADS)

    Lee, Sangyeob; Koo, Hyun; Cho, Sunghwan

    2015-04-01

    Wet process of soluble organic light emitting diode (OLED) materials has attracted much attention due to its potential as a large-area manufacturing process with high productivity. Electrospray (ES) deposition is one of candidates of organic thin film formation process for OLED. However, to fabricate red, green, and blue emitters for color display, a fine metal mask is required during spraying emitter materials. We demonstrate a mask-less color pixel patterning process using ES of soluble OLED materials and selective biasing on pixel electrodes and a spray nozzle. We show red and green line patterns of OLED materials. It was found that selective patterning can be allowed by coulomb repulsion between nozzle and pixel. Furthermore, we fabricated blue fluorescent OLED devices by vacuum evaporation and ES processes. The device performance of ES processed OLED showed nearly identical current-voltage characteristics and slightly lower current efficiency compared to vacuum processed OLED.

  6. Controlling Synergistic Oxidation Processes for Efficient and Stable Blue Thermally Activated Delayed Fluorescence Devices.

    PubMed

    Cui, Lin-Song; Deng, Ya-Li; Tsang, Daniel Ping-Kuen; Jiang, Zuo-Quan; Zhang, Qisheng; Liao, Liang-Sheng; Adachi, Chihaya

    2016-09-01

    Efficient sky-blue organic light-emitting diodes (OLEDs) employing thermally activated delayed fluorescence (TADF) display a three orders of magnitude increase in lifetime, which is superior to those of controlled phosphorescent OLEDs used in this study. The combination of electro-oxidation and photo-oxidation of the TADF emitters in their triplet excited-states is suppressed through molecule design and device engineering. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Donor-σ-Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual Upconversion.

    PubMed

    Geng, Yan; D'Aleo, Anthony; Inada, Ko; Cui, Lin-Song; Kim, Jong Uk; Nakanotani, Hajime; Adachi, Chihaya

    2017-12-22

    A family of organic emitters with a donor-σ-acceptor (D-σ-A) motif is presented. Owing to the weakly coupled D-σ-A intramolecular charge-transfer state, a transition from the localized excited triplet state ( 3 LE) and charge-transfer triplet state ( 3 CT) to the charge-transfer singlet state ( 1 CT) occurred with a small activation energy and high photoluminescence quantum efficiency. Two thermally activated delayed fluorescence (TADF) components were identified, one of which has a very short lifetime of 200-400 ns and the other a longer TADF lifetime of the order of microseconds. In particular, the two D-σ-A materials presented strong blue emission with TADF properties in toluene. These results will shed light on the molecular design of new TADF emitters with short delayed lifetimes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Efficient red organic electroluminescent devices by doping platinum(II) Schiff base emitter into two host materials with stepwise energy levels.

    PubMed

    Zhou, Liang; Kwok, Chi-Chung; Cheng, Gang; Zhang, Hongjie; Che, Chi-Ming

    2013-07-15

    In this work, organic electroluminescent (EL) devices with double light-emitting layers (EMLs) having stepwise energy levels were designed to improve the EL performance of a red-light-emitting platinum(II) Schiff base complex. A series of devices with single or double EML(s) were fabricated and characterized. Compared with single-EML devices, double-EML devices showed improved EL efficiency and brightness, attributed to better balance in carriers. In addition, the stepwise distribution in energy levels of host materials is instrumental in broadening the recombination zone, thus delaying the roll-off of EL efficiency. The highest EL current efficiency and power efficiency of 17.36 cd/A and 14.73 lm/W, respectively, were achieved with the optimized double-EML devices. At high brightness of 1000 cd/m², EL efficiency as high as 8.89 cd/A was retained.

  9. Overcoming the Fundamental Bottlenecks to a new world-record silicon solar cell. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohatgi, Ajeet; Zimbardi, Francesco; Rounsaville, Brian

    The objective of the work performed within this contract is to reveal the materials and device physics that currently limit the experimental world record efficiency to 25% for single junction Si (2013), and to demonstrate 26.5% efficiency. The starting efficiency for this project was 23.9% in 2013. Four strategies are being combined throughout the project to achieve 26.5% cell efficiency: (1) passivated contacts via tunnel dielectrics, (2) emitter optimization and passivation through dopant profile engineering, (3) enhanced light trapping through development of photonic crystals and (4) base optimization.

  10. Emittance Theory for Thin Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.

    1994-01-01

    Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).

  11. High-Performance Field Emission from a Carbonized Cork.

    PubMed

    Lee, Jeong Seok; Lee, Hak Jun; Yoo, Jae Man; Kim, Taewoo; Kim, Yong Hyup

    2017-12-20

    To broaden the range of application of electron beams, low-power field emitters are needed that are miniature and light. Here, we introduce carbonized cork as a material for field emitters. The light natural cork becomes a graphitic honeycomb upon carbonization, with the honeycomb cell walls 100-200 nm thick and the aspect ratio larger than 100, providing an ideal structure for the field electron emission. Compared to nanocarbon field emitters, the cork emitter produces a high current density and long-term stability with a low turn-on field. The nature of the cork material makes it quite simple to fabricate the emitter. Furthermore, any desired shape of the emitter tailored for the final application can easily be prepared for point, line, or planar emission.

  12. Quantum efficiency harmonic analysis of exciton annihilation in organic light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, J. S.; Giebink, N. C., E-mail: ncg2@psu.edu

    2015-06-29

    Various exciton annihilation processes are known to impact the efficiency roll-off of organic light emitting diodes (OLEDs); however, isolating and quantifying their contribution in the presence of other factors such as changing charge balance continue to be a challenge for routine device characterization. Here, we analyze OLED electroluminescence resulting from a sinusoidal dither superimposed on the device bias and show that nonlinearity between recombination current and light output arising from annihilation mixes the quantum efficiency measured at different dither harmonics in a manner that depends uniquely on the type and magnitude of the annihilation process. We derive a series ofmore » analytical relations involving the DC and first harmonic external quantum efficiency that enable annihilation rates to be quantified through linear regression independent of changing charge balance and evaluate them for prototypical fluorescent and phosphorescent OLEDs based on the emitters 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran and platinum octaethylporphyrin, respectively. We go on to show that, in most cases, it is sufficient to calculate the needed quantum efficiency harmonics directly from derivatives of the DC light versus current curve, thus enabling this analysis to be conducted solely from standard light-current-voltage measurement data.« less

  13. Versatile benzimidazole/triphenylamine hybrids: efficient nondoped deep-blue electroluminescence and good host materials for phosphorescent emitters.

    PubMed

    Gong, Shaolong; Zhao, Yongbiao; Wang, Meng; Yang, Chuluo; Zhong, Cheng; Qin, Jingui; Ma, Dongge

    2010-09-03

    Two new bipolar compounds, N,N,N',N'-tetraphenyl-5'-(1-phenyl-1H-benzimidazol-2-yl)-1,1':3',1''-terphenyl-4,4''-diamine (1) and N,N,N',N'-tetraphenyl-5'-(1-phenyl-1H-benzimidazol-2-yl)-1,1':3',1''-terphenyl-3,3''-diamine (2), were synthesized and characterized, and their thermal, photophysical, and electrochemical properties were investigated. Compounds 1 and 2 possess good thermal stability with high glass-transition temperatures of 109-129 degrees C and thermal decomposition temperatures of 501-531 degrees C. The fluorescence quantum yield of 1 (0.52) is higher than that of 2 (0.16), which could be attributed to greater pi conjugation between the donor and acceptor moieties. A nondoped deep-blue fluorescent organic light-emitting diode (OLED) using 1 as the blue emitter displays high performance, with a maximum current efficiency of 2.2 cd A(-1) and a maximum external efficiency of 2.9 % at the CIE coordinates of (0.17, 0.07) that are very close to the National Television System Committee's blue standard (0.15, 0.07). Electrophosphorescent devices using the two compounds as host materials for green and red phosphor emitters show high efficiencies. The best performance of a green phosphorescent device was achieved using 2 as the host, with a maximum current efficiency of 64.3 cd A(-1) and a maximum power efficiency of 68.3 lm W(-1); whereas the best performance of a red phosphorescent device was achieved using 1 as the host, with a maximum current efficiency of 11.5 cd A(-1), and a maximum power efficiency of 9.8 lm W(-1). The relationship between the molecular structures and optoelectronic properties are discussed.

  14. Bi-alkali antimonide photocathode growth: An X-ray diffraction study

    DOE PAGES

    Schubert, Susanne; Wong, Jared; Feng, Jun; ...

    2016-07-21

    Bi-alkali antimonide photocathodes are one of the best known sources of electrons for high current and/or high bunch charge applications like Energy Recovery Linacs or Free Electron Lasers. Despite their high quantum efficiency in visible light and low intrinsic emittance, the surface roughness of these photocathodes prohibits their use as low emittance cathodes in high accelerating gradient superconducting and normal conducting radio frequency photoguns and limits the minimum possible intrinsic emittance near the threshold. Also, the growth process for these materials is largely based on recipes obtained by trial and error and is very unreliable. In this paper, using X-raymore » diffraction, we investigate the different structural and chemical changes that take place during the growth process of the bi-alkali antimonide material K 2 CsSb. Our measurements give us a deeper understanding of the growth process of alkali-antimonide photocathodes allowing us to optimize it with the goal of minimizing the surface roughness to preserve the intrinsic emittance at high electric fields and increasing its reproducibility.« less

  15. The Effect of Temperature on the Radiative Performance of Ho-Yag Thin Film Selective Emitters

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Good, Brian S.

    1995-01-01

    We present the emitter efficiency results for the thin film 25 percent Ho YAG (Yttrium Aluminum Garnet, Y3Al5O12) selective emitter from 1000 to 1700 K with a platinum substrate. Spectral emittance and emissive power measurements were made (1.2 less than lambda less than 3.2 microns) and used to calculate the radiative efficiency. The radiative efficiency and power density of rare earth doped selective emitters are strongly dependent on temperature and experimental results indicate an optimum temperature (1650 K for Ho YAG) for thermophotovoltaic (TPV) applications.

  16. Directive and enhanced spontaneous emission using shifted cubes nanoantenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahari, B.; Tellez-Limon, R.; Kante, B., E-mail: bkante@ucsd.edu

    2016-09-07

    Recent studies have demonstrated that nano-patch antennas formed by metallic nanocubes placed on top of a metallic film largely enhance the spontaneous emission rate of quantum emitters due to the confinement of the electromagnetic field in the small nanogap cavity. The popularity of this architecture is, in part, due to the ease in fabrication. In this contribution, we theoretically demonstrate that a dimer formed by two metallic nanocubes embedded in a dielectric medium exhibits enhanced emission rate compared to the nano-patch antenna. Furthermore, we compare the directivity and radiation efficiency of both nanoantennas. From these characteristics, we obtained information aboutmore » the “material efficiency” and the coupling mismatch efficiency between a dipole emitter and the nanoantenna. These quantities provide a more intuitive insight than the Purcell factor or localized density of states, opening new perspectives in nanoantenna design for ultra-directive light emission.« less

  17. Grain Size Modulation and Interfacial Engineering of CH3 NH3 PbBr3 Emitter Films through Incorporation of Tetraethylammonium Bromide.

    PubMed

    Jamaludin, Nur Fadilah; Yantara, Natalia; Ng, Yan Fong; Li, Mingjie; Goh, Teck Wee; Thirumal, Krishnamoorthy; Sum, Tze Chien; Mathews, Nripan; Soci, Cesare; Mhaisalkar, Subodh

    2018-05-07

    Metal halide perovskites have demonstrated breakthrough performances as absorber and emitter materials for photovoltaic and display applications respectively. However, despite the low manufacturing cost associated with solution-based processing, the propensity for defect formation with this technique has led to an increasing need for defect passivation. Here, we present an inexpensive and facile method to remedy surface defects through a postdeposition treatment process using branched alkylammonium cation species. The simultaneous realignment of interfacial energy levels upon incorporation of tetraethylammonium bromide onto the surface of CH 3 NH 3 PbBr 3 films contributes favorably toward the enhancement in overall light-emitting diode characteristics, achieving maximum luminance, current efficiency, and external quantum efficiency values of 11 000 cd m -2 , 0.68 cd A -1 , and 0.16 %, respectively. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The potential of ill-nitride laser diodes for solid-state lighting [Advantages of III-Nitride Laser Diodes in Solid-State Lighting

    DOE PAGES

    Wierer, Jonathan; Tsao, Jeffrey Y.

    2014-09-01

    III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from direct emitters is equally challenging for bothmore » LEDs and LDs, with neither source having a direct advantage. Lastly, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. These advantages make LDs a compelling source for future SSL.« less

  19. Influence of non-line of sight luminescent emitters in visible light communication systems

    NASA Astrophysics Data System (ADS)

    Ghorai, Anaranya; Walvekar, Pratik; Nayak, Shreyas; Narayan, K. S.

    2018-01-01

    We introduce and demonstrate concepts which utilize the non-line of sight fraction of light incident on a detector assembly in a visible-light communication (VLC) system. In addition to ambient light, realistic enclosures where VLC is implemented consist of a sizable fraction of scattered and reflected light. We present results of VLC systems with detectors responding to contributions from the light source scattered off a surface embedded with fluorescent and phosphorescent emitters besides the direct line of sight signal. Contribution from the emitters takes a form of discernible fluctuations in the detector signal. The implication of our results from noise analysis of these fluctuations indicates the possibility of utilizing smart coatings to further tailor VLC capabilities.

  20. Effect of Stepwise Doping on Lifetime and Efficiency of Blue and White Phosphorescent Organic Light Emitting Diodes.

    PubMed

    Lee, Song Eun; Lee, Ho Won; Lee, Seok Jae; Koo, Ja-ryong; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Hye Jeong; Yoon, Seung Soo; Kim, Young Kwan

    2015-02-01

    We investigated a light emission mechanism of blue phosphorescent organic light emitting diodes (PHOLEDs), using a stepwise doping profile of 2, 8, and 14 wt.% within the emitting layer (EML). We fabricated several blue PHOLEDs with phosphorescent blue emitter iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,C2]picolinate doped in N,N'-dicarbazolyl-3,5-benzene as a p-type host material. A blue PHOLED with the highest doping concentration as part of the EML close to an electron transporting layer showed a maximum luminous efficiency of 20.74 cd/A, and a maximum external quantum efficiency of 10.52%. This can be explained by effective electron injection through a highly doped EML side. Additionally, a white OLED based on the doping profile was fabricated with two thin red EMLs within a blue EML maintaining a thickness of 30 nm for the entire EML. Keywords: Blue Phosphorescent Organic Light Emitting Diodes, Stepwise Doping Structure, Charge Trapping Effect.

  1. Efficient Color-Stable Inverted White Organic Light-Emitting Diodes with Outcoupling-Enhanced ZnO Layer.

    PubMed

    Zhao, Xin-Dong; Li, Yan-Qing; Xiang, Heng-Yang; Zhang, Yi-Bo; Chen, Jing-De; Xu, Lu-Hai; Tang, Jian-Xin

    2017-01-25

    Inverted organic light-emitting diode (OLED) has attracted extensive attention due to the demand in active-matrix OLED display panels as its geometry enables the direct connection with n-channel transistor backplane on the substrate. One key challenge of high-performance inverted OLED is an efficient electron-injection layer with superior electrical and optical properties to match the indium tin oxide cathode on substrate. We here propose a synergistic electron-injection architecture using surface modification of ZnO layer to simultaneously promote electron injection into organic emitter and enhance out-coupling of waveguided light. An efficient inverted white OLED is realized by introducing the nanoimprinted aperiodic nanostructure of ZnO for broadband and angle-independent light out-coupling and inserting an n-type doped interlayer for energy level tuning and injection barrier lowering. As a result, the optimized inverted white OLEDs have an external quantum efficiency of 42.4% and a power efficiency of 85.4 lm W 1- , which are accompanied by the superiority of angular color stability over the visible wavelength range. Our results may inspire a promising approach to fabricate high-efficiency inverted OLEDs for large-scale display panels.

  2. Efficient non-doped phosphorescent orange, blue and white organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Yin, Yongming; Yu, Jing; Cao, Hongtao; Zhang, Letian; Sun, Haizhu; Xie, Wenfa

    2014-10-01

    Efficient phosphorescent orange, blue and white organic light-emitting devices (OLEDs) with non-doped emissive layers were successfully fabricated. Conventional blue phosphorescent emitters bis [4,6-di-fluorophenyl]-pyridinato-N,C2'] picolinate (Firpic) and Bis(2,4-difluorophenylpyridinato) (Fir6) were adopted to fabricate non-doped blue OLEDs, which exhibited maximum current efficiency of 7.6 and 4.6 cd/A for Firpic and Fir6 based devices, respectively. Non-doped orange OLED was fabricated utilizing the newly reported phosphorescent material iridium (III) (pbi)2Ir(biq), of which manifested maximum current and power efficiency of 8.2 cd/A and 7.8 lm/W. The non-doped white OLEDs were achieved by simply combining Firpic or Fir6 with a 2-nm (pbi)2Ir(biq). The maximum current and power efficiency of the Firpic and (pbi)2Ir(biq) based white OLED were 14.8 cd/A and 17.9 lm/W.

  3. Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off

    NASA Astrophysics Data System (ADS)

    Wu, Tien-Lin; Huang, Min-Jie; Lin, Chih-Chun; Huang, Pei-Yun; Chou, Tsu-Yu; Chen-Cheng, Ren-Wu; Lin, Hao-Wu; Liu, Rai-Shung; Cheng, Chien-Hong

    2018-04-01

    Organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) materials are promising for the realization of highly efficient light emitters. However, such devices have so far suffered from efficiency roll-off at high luminance. Here, we report the design and synthesis of two diboron-based molecules, CzDBA and tBuCzDBA, which show excellent TADF properties and yield efficient OLEDs with very low efficiency roll-off. These donor-acceptor-donor (D-A-D) type and rod-like compounds concurrently generate TADF with a photoluminescence quantum yield of 100% and an 84% horizontal dipole ratio in the thin film. A green OLED based on CzDBA exhibits a high external quantum efficiency of 37.8 ± 0.6%, a current efficiency of 139.6 ± 2.8 cd A-1 and a power efficiency of 121.6 ± 3.1 lm W-1 with an efficiency roll-off of only 0.3% at 1,000 cd m-2. The device has a peak emission wavelength of 528 nm and colour coordinates of the Commission International de ĺEclairage (CIE) of (0.31, 0.61), making it attractive for colour-display applications.

  4. One-dimensional organic lead halide perovskites with efficient bluish white-light emission

    NASA Astrophysics Data System (ADS)

    Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu

    2017-01-01

    Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2-]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.

  5. One-dimensional organic lead halide perovskites with efficient bluish white-light emission

    PubMed Central

    Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu

    2017-01-01

    Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2−]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials. PMID:28051092

  6. One-dimensional organic lead halide perovskites with efficient bluish white-light emission.

    PubMed

    Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C; van de Burgt, Lambertus J; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu

    2017-01-04

    Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C 4 N 2 H 14 PbBr 4 , in which the edge sharing octahedral lead bromide chains [PbBr 4   2- ] ∞ are surrounded by the organic cations C 4 N 2 H 14   2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.

  7. Gap-Mode Surface-Plasmon-Enhanced Photoluminescence and Photoresponse of MoS2.

    PubMed

    Wu, Zhi-Qian; Yang, Jing-Liang; Manjunath, Nallappagar K; Zhang, Yue-Jiao; Feng, Si-Rui; Lu, Yang-Hua; Wu, Jiang-Hong; Zhao, Wei-Wei; Qiu, Cai-Yu; Li, Jian-Feng; Lin, Shi-Sheng

    2018-05-22

    2D materials hold great potential for designing novel electronic and optoelectronic devices. However, 2D material can only absorb limited incident light. As a representative 2D semiconductor, monolayer MoS 2 can only absorb up to 10% of the incident light in the visible, which is not sufficient to achieve a high optical-to-electrical conversion efficiency. To overcome this shortcoming, a "gap-mode" plasmon-enhanced monolayer MoS 2 fluorescent emitter and photodetector is designed by squeezing the light-field into Ag shell-isolated nanoparticles-Au film gap, where the confined electromagnetic field can interact with monolayer MoS 2 . With this gap-mode plasmon-enhanced configuration, a 110-fold enhancement of photoluminescence intensity is achieved, exceeding values reached by other plasmon-enhanced MoS 2 fluorescent emitters. In addition, a gap-mode plasmon-enhanced monolayer MoS 2 photodetector with an 880% enhancement in photocurrent and a responsivity of 287.5 A W -1 is demonstrated, exceeding previously reported plasmon-enhanced monolayer MoS 2 photodetectors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Long-lived and highly efficient green and blue phosphorescent emitters and device architectures for OLED displays

    NASA Astrophysics Data System (ADS)

    Eickhoff, Christian; Murer, Peter; Geßner, Thomas; Birnstock, Jan; Kröger, Michael; Choi, Zungsun; Watanabe, Soichi; May, Falk; Lennartz, Christian; Stengel, Ilona; Münster, Ingo; Kahle, Klaus; Wagenblast, Gerhard; Mangold, Hannah

    2015-09-01

    In this paper, two OLED device concepts are introduced. First, classical phosphorescent green carbene emitters with unsurpassed lifetime, combined with low voltage and high efficiency are presented and the associated optimized OLED stacks are explained. Second, a path towards highly efficient, long-lived deep blue systems is shown. The high efficiencies can be reached by having the charge-recombination on the phosphorescent carbene emitter while at the same time short emissive lifetimes are realized by fast energy transfer to the fluorescent emitter, which eventually allows for higher OLED stability in the deep blue. Device architectures, materials and performance data are presented showing that carbene type emitters have the potential to outperform established phosphorescent green emitters both in terms of lifetime and efficiency. The specific class of green emitters under investigation shows distinctly larger electron affinities (2.1 to 2.5 eV) and ionization potentials (5.6 to 5.8 eV) as compared to the "standard" emitter Ir(ppy)3 (5.0/1.6 eV). This difference in energy levels requires an adopted OLED design, in particular with respect to emitter hosts and blocking layers. Consequently, in the diode setup presented here, the emitter species is electron transporting or electron trapping. For said green carbene emitters, the typical peak wavelength is 525 nm yielding CIE color coordinates of (x = 0.33, y = 0.62). Device data of green OLEDs are shown with EQEs of 26 %. Driving voltage at 1000 cd/m2 is below 3 V. In an optimized stack, a device lifetime of LT95 > 15,000 h (1000 cd/m2) has been reached, thus fulfilling AMOLED display requirements.

  9. Long term stable deep red light-emitting electrochemical cells based on an emissive, rigid cationic Ir(iii) complex

    DOE PAGES

    Namanga, Jude E.; Ruhr-Univ. Bochum, Bochum; Gerlitzki, Niels; ...

    2017-02-17

    Here, the new cationic iridium complex [Ir(bzq) 2(biq)][PF 6] (bzq = benzo[ h]quinolinato and biq = 2,2'-biquinoline) has been synthesized for application as an emitter in light emitting electrochemical cells (LECs). The molecular structure and crystal packing of this complex were established by single X-ray diffraction (SXRD). The electrochemical and photophysical properties of the complex were examined to determine the frontier orbital energies as well as the optical transitions that led to photoemission. The complex was found to emit at 644 nm and 662 nm for powder and thin films, respectively. A high powder photoluminescence quantum yield of 25% wasmore » determined, which is attributed to a reduction in vibrational modes of the complex due to the use of the rigid cyclometalated (C^N) bzq ligand. A LEC with [Ir(bzq) 2(biq)][PF 6] as the emitter was fabricated which showed a deep red emission (662 nm) with a luminance of 33.65 cd m –2, yielding a current efficiency of 0.33 cd A –1 and a power efficiency of 0.2 lm W –1. Most importantly, the LEC based on [Ir(bzq) 2(biq)][PF 6] demonstrated a lifetime of 280 hours which is among the longest device lifetimes reported for any deep red light emitting LEC.« less

  10. Long term stable deep red light-emitting electrochemical cells based on an emissive, rigid cationic Ir(iii) complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namanga, Jude E.; Ruhr-Univ. Bochum, Bochum; Gerlitzki, Niels

    Here, the new cationic iridium complex [Ir(bzq) 2(biq)][PF 6] (bzq = benzo[ h]quinolinato and biq = 2,2'-biquinoline) has been synthesized for application as an emitter in light emitting electrochemical cells (LECs). The molecular structure and crystal packing of this complex were established by single X-ray diffraction (SXRD). The electrochemical and photophysical properties of the complex were examined to determine the frontier orbital energies as well as the optical transitions that led to photoemission. The complex was found to emit at 644 nm and 662 nm for powder and thin films, respectively. A high powder photoluminescence quantum yield of 25% wasmore » determined, which is attributed to a reduction in vibrational modes of the complex due to the use of the rigid cyclometalated (C^N) bzq ligand. A LEC with [Ir(bzq) 2(biq)][PF 6] as the emitter was fabricated which showed a deep red emission (662 nm) with a luminance of 33.65 cd m –2, yielding a current efficiency of 0.33 cd A –1 and a power efficiency of 0.2 lm W –1. Most importantly, the LEC based on [Ir(bzq) 2(biq)][PF 6] demonstrated a lifetime of 280 hours which is among the longest device lifetimes reported for any deep red light emitting LEC.« less

  11. Tunnel-injected sub 290 nm ultra-violet light emitting diodes with 2.8% external quantum efficiency

    NASA Astrophysics Data System (ADS)

    Zhang, Yuewei; Jamal-Eddine, Zane; Akyol, Fatih; Bajaj, Sanyam; Johnson, Jared M.; Calderon, Gabriel; Allerman, Andrew A.; Moseley, Michael W.; Armstrong, Andrew M.; Hwang, Jinwoo; Rajan, Siddharth

    2018-02-01

    We report on the high efficiency tunnel-injected ultraviolet light emitting diodes (UV LEDs) emitting at 287 nm. Deep UV LED performance has been limited by the severe internal light absorption in the p-type contact layers and low electrical injection efficiency due to poor p-type conduction. In this work, a polarization engineered Al0.65Ga0.35N/In0.2Ga0.8N tunnel junction layer is adopted for non-equilibrium hole injection to replace the conventionally used direct p-type contact. A reverse-graded AlGaN contact layer is further introduced to realize a low resistance contact to the top n-AlGaN layer. This led to the demonstration of a low tunnel junction resistance of 1.9 × 10-3 Ω cm2 obtained at 1 kA/cm2. Light emission at 287 nm with an on-wafer peak external quantum efficiency of 2.8% and a wall-plug efficiency of 1.1% was achieved. The measured power density at 1 kA/cm2 was 54.4 W/cm2, confirming the efficient hole injection through interband tunneling. With the benefits of the minimized internal absorption and efficient hole injection, a tunnel-injected UV LED structure could enable future high efficiency UV emitters.

  12. Radiative Performance of Rare Earth Garnet Thin Film Selective Emitters

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Good, Brian S.

    1994-01-01

    In this paper we present the first emitter efficiency results for the thin film 40 percent Er-1.5 percent Ho YAG (Yttrium Aluminum Garnet, Y3Al5O12) and 25 percent Ho YAG selective emitter at 1500 K with a platinum substrate. Spectral emittance and emissive power measurements were made (1.2 less than lambda less than 3.2 microns). Emitter efficiency and power density are significantly improved with the addition of multiple rare earth dopants. Predicted efficiency results are presented for an optimized (equal power density in the Er, (4)I(sub 15/2)-(4)I(sub 13/2) at 1.5 microns, and Ho, (5)I(sub 7)-(5)I(sub 8) at 2.0 micron emission bands) Er-Ho YAG thin film selective emitter.

  13. Large-area high-efficiency flexible PHOLED lighting panels

    NASA Astrophysics Data System (ADS)

    Pang, Huiqing; Mandlik, Prashant; Levermore, Peter A.; Silvernail, Jeff; Ma, Ruiqing; Brown, Julie J.

    2012-09-01

    Organic Light Emitting Diodes (OLEDs) provide various attractive features for next generation illumination systems, including high efficiency, low power, thin and flexible form factor. In this work, we incorporated phosphorescent emitters and demonstrated highly efficient white phosphorescent OLED (PHOLED) devices on flexible plastic substrates. The 0.94 cm2 small-area device has total thickness of approximately 0.25 mm and achieved 63 lm/W at 1,000 cd/m2 with CRI = 85 and CCT = 2920 K. We further designed and fabricated a 15 cm x 15 cm large-area flexible white OLED lighting panels, finished with a hybrid single-layer ultra-low permeability single layer barrier (SLB) encapsulation film. The flexible panel has an active area of 116.4 cm2, and achieved a power efficacy of 47 lm/W at 1,000 cd/m2 with CRI = 83 and CCT = 3470 K. The efficacy of the panel at 3,000 cd/m2 is 43 lm/W. The large-area flexible PHOLED lighting panel is to bring out enormous possibilities to the future general lighting applications.

  14. Optical based tactile shear and normal load sensor

    DOEpatents

    Salisbury, Curt Michael

    2015-06-09

    Various technologies described herein pertain to a tactile sensor that senses normal load and/or shear load. The tactile sensor includes a first layer and an optically transparent layer bonded together. At least a portion of the first layer is made of optically reflective material. The optically transparent layer is made of resilient material (e.g., clear silicone rubber). The tactile sensor includes light emitter/light detector pair(s), which respectively detect either normal load or shear load. Light emitter(s) emit light that traverses through the optically transparent layer and reflects off optically reflective material of the first layer, and light detector(s) detect and measure intensity of reflected light. When a normal load is applied, the optically transparent layer compresses, causing a change in reflected light intensity. When shear load is applied, a boundary between optically reflective material and optically absorptive material is laterally displaced, causing a change in reflected light intensity.

  15. New Triplet Sensitization Routes for Photon Upconversion: Thermally Activated Delayed Fluorescence Molecules, Inorganic Nanocrystals, and Singlet-to-Triplet Absorption.

    PubMed

    Yanai, Nobuhiro; Kimizuka, Nobuo

    2017-10-17

    Photon upconversion based on triplet-triplet annihilation (TTA-UC) has attracted much interest because of its possible applications to renewable energy production and biological fields. In particular, the UC of near-infrared (NIR) light to visible (vis) light is imperative to overcome the Shockley-Queisser limit of single-junction photovoltaic cells, and the efficiency of photocatalytic hydrogen production from water can also be improved with the aid of vis-to-ultraviolet (UV) UC. However, both processes have met limitations in the wavelength range, efficiency, and sensitivity for weak incident light. This Account describes recent breakthroughs that solve these major problems, new triplet sensitization routes to significantly enlarge the range of conversion wavelength by minimizing the energy loss during intersystem crossing (ISC) of triplet sensitizers or bypassing the ISC process. The photochemical processes of TTA-UC in general start with the absorption of longer wavelength incident light by triplet sensitizers, which generate the triplet states via ISC. This ISC inevitably accompanies the energy loss of hundreds of millielectronvolts, which significantly limits the TTA-UC with large anti-Stokes shifts. The small S 1 -T 1 gap of molecules showing thermally activated delayed fluorescence (TADF) allows the sensitization of emitters with the highest T 1 and S 1 energy levels ever employed in TTA-UC, which results in efficient vis-to-UV UC. As alternatives to molecular sensitizers in the NIR region, inorganic nanocrystals with broad NIR absorption bands have recently been shown to work as effective sensitizers for NIR-to-vis TTA-UC. Their small exchange splitting minimizes the energy loss during triplet sensitization. The modification of nanocrystal surfaces with organic acceptors via coordination bonds allows efficient energy transfer between the components and succeeding TTA processes. To remove restrictions on the energy loss during ISC, molecules with direct singlet-to-triplet (S-T) excitation are employed as triplet sensitizers. Although the S-T absorption is spin forbidden, large spin-orbital coupling occurs for appropriately designed metal complexes, which allow S-T absorption in the NIR region with large absorption coefficients. While the triplet lifetime of such S-T absorption sensitizers is often short (less than microsecond), the integration of the molecular sensitizers with emitter assemblies allows facile Dexter energy transfer to the surrounding emitter molecules, leading to efficient NIR-to-vis UC emission through triplet energy migration (TEM) in the condensed state. By judicious modification of the chromophore structures, the first example of NIR-to-blue UC has also been achieved. It is essential to combine these new triplet sensitization routes with an upconverted energy collection (UPCON) approach in molecular assemblies to effectively populate emitter triplets and to overcome remaining issues including back energy transfer. We propose two overall materials designs for the TEM-UPCON strategy, core-shell-shell structures and trilayer structures composed of triplet donor, acceptor, and energy collector. The fusion between triplet science and chemistry of self-assembly would overcome previous difficulties of NIR-to-vis and vis-to-UV TTA-UC toward real-world applications ranging from energy to biology.

  16. Emittance Theory for Cylindrical Fiber Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1998-01-01

    A fibrous rare earth selective emitter is approximated as an infinitely long cylinder. The spectral emittance, epsilon(lambda), is obtained by solving the radiative transfer equations with appropriate boundary conditions and uniform temperature. For optical depths, Kappa(R) = alpha(lambda)R, where alpha(lambda) is the extinction coefficient and R is the cylinder radius, greater than 1 the spectral emittance is nearly at its maximum value. There is an optimum cylinder radius, R(opt), for maximum emitter efficiency, eta(E). Values for R(opt) are strongly dependent on the number of emission bands of the material. The optimum radius decreases slowly with increasing emitter temperature, while the maximum efficiency and useful radiated power increase rapidly with increasing temperature.

  17. Efficient hybrid white polymer light-emitting devices with electroluminescence covered the entire visible range and reduced efficiency roll-off

    NASA Astrophysics Data System (ADS)

    Hu, Sujun; Zhu, Minrong; Zou, Qinghua; Wu, Hongbin; Yang, Chuluo; Wong, Wai-Yeung; Yang, Wei; Peng, Junbiao; Cao, Yong

    2012-02-01

    We report efficient hybrid white polymer light emitting devices (WPLEDs) fabricated via simple solution-proceeded process from a newly synthesized wide band-gap fluorene-co-dibenzothiophene-S,S-dioxide copolymer, which dually function as fluorescent blue emitter and host material for electrophosphorescent sky-blue, yellow, and saturated-red dyes. The Commission Internationale d'Énclairage coordinates of the best devices are (0.356, 0.334), with electroluminescence covered the entire visible light spectrum from 400 to 780 nm, resulting in a high color rendering index of 90. Incorporation of a bilayer electrode consisting of water/alcohol-soluble conjugated polymer and Al as electron-injection cathode boosts an enhancement of 50% in device efficiency, leading to external quantum efficiency of 12.6%, and peak power efficiency of 21.4 l m W-1 as measured in an integrating sphere. Both the efficiency and the color quality of the obtained device are ranking among one of the highest values for WPLEDs reported to date. Furthermore, as compared with those all-phosphorescent WPLEDs, the hybrid WPLEDs studied here exhibit a significantly reduced efficiency roll-off due to the very low doping concentration.

  18. Bias-free lateral terahertz emitters—A simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granzner, R., E-mail: ralf.granzner@tu-ilmenau.de; Schwierz, F.; Polyakov, V. M.

    2015-07-28

    The design and performance of bias-free InN-based THz emitters that exploit lateral photocurrents is studied by means of numerical simulations. We use a drift-diffusion model with adjusted carrier temperatures and mobilities. The applicability of this approach is demonstrated by a comparison with results from Monte-Carlo simulations. We consider a simple but robust lateral emitter concept using metal stripes with two different thicknesses with one of them being thin enough to be transparent for THz radiation. This arrangement can be easily multiplexed and the efficiency of this concept has already been demonstrated by experiment for GaAs substrates. In the present study,more » we consider InN, which is known to be an efficient photo-Dember emitter because of its superior transport properties. Our main focus is on the impact of the emitter design on the emission efficiency assuming different operation principles. Both the lateral photo-Dember (LPD) effect and built-in lateral field effects are considered. The appropriate choice of the metal stripe and window geometry as well as the impact of surface Fermi level pinning are investigated in detail, and design guidelines for efficient large area emitters using multiplexed structures are provided. We find that InN LPD emitters do not suffer from Fermi level pinning at the InN surface. The optimum emission efficiency is found for LPD emitter structures having 200 nm wide illumination windows and mask stripes. Emitter structures in which lateral electric fields are induced by the metal mask contacts can have a considerably higher efficiency than pure LPD emitters. In the best case, the THz emission of such structures is increased by one order of magnitude. Their optimum window size is 1 μm without the necessity of a partially transparent set of mask stripes.« less

  19. High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter

    NASA Astrophysics Data System (ADS)

    Shimizu, Makoto; Kohiyama, Asaka; Yugami, Hiroo

    2015-01-01

    We demonstrate a high-efficiency solar-thermophotovoltaic system (STPV) using a monolithic, planar, and spectrally selective absorber/emitter. A complete STPV system using gallium antimonide (GaSb) cells was designed and fabricated to conduct power generation tests. To produce a high-efficiency STPV, it is important to match the thermal radiation spectrum with the sensitive region of the GaSb cells. Therefore, to reach high temperatures with low incident power, a planar absorber/emitter is incorporated for controlling the thermal radiation spectrum. This multilayer coating consists of thin-film tungsten sandwiched by yttria-stabilized zirconia. The system efficiency is estimated to be 16% when accounting for the optical properties of the fabricated absorber/emitter. Power generation tests using a high-concentration solar simulator show that the absorber/emitter temperature peaks at 1640 K with an incident power density of 45 W/cm2, which can be easily obtained by low-cost optics such as Fresnel lenses. The conversion efficiency became 23%, exceeding the Shockley-Queisser limit for GaSb, with a bandgap of 0.67 eV. Furthermore, a total system efficiency of 8% was obtained with the view factor between the emitter and the cell assumed to be 1.

  20. Direct Detection of Singlet-Triplet Interconversion in OLED Magnetoelectroluminescence with a Metal-Free Fluorescence-Phosphorescence Dual Emitter

    NASA Astrophysics Data System (ADS)

    Ratzke, Wolfram; Bange, Sebastian; Lupton, John M.

    2018-05-01

    We demonstrate that a simple phenazine derivative can serve as a dual emitter for organic light-emitting diodes, showing simultaneous luminescence from the singlet and triplet excited states at room temperature without the need of heavy-atom substituents. Although devices made with this emitter achieve only low quantum efficiencies of <0.2 % , changes in fluorescence and phosphorescence intensity on the subpercent scale caused by an external magnetic field of up to 30 mT are clearly resolved with an ultra-low-noise optical imaging technique. The results demonstrate the concept of using simple reporter molecules, available commercially, to optically detect the spin of excited states formed in an organic light-emitting diode and thereby probe the underlying spin statistics of recombining electron-hole pairs. A clear anticorrelation of the magnetic-field dependence of singlet and triplet emission shows that it is the spin interconversion between singlet and triplet which dominates the magnetoluminescence response: the phosphorescence intensity decreases by the same amount as the fluorescence intensity increases. The concurrent detection of singlet and triplet emission as well as device resistance at cryogenic and room temperature constitute a useful tool to disentangle the effects of spin-dependent recombination from spin-dependent transport mechanisms.

  1. Study of ultra-low emittance design for SPEAR3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M. -H.; Huang, X.; Safranek, J.

    2015-09-17

    Since its 2003 construction, the SPEAR3 synchrotron light source at SLAC has continuously improved its performance by raising beam current, top-off injection, and smaller emittance. This makes SPEAR3 one of the most productive light sources in the world. Now, to further enhance the performance of SPEAR3, we are looking into the possibility of converting SPEAR3 to an ultra-low emittance storage ring within its site constraint.

  2. Efficient red, green, blue and white organic light-emitting diodes with same exciplex host

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hao; Wu, Szu-Wei; Huang, Chih-Wei; Hsieh, Chung-Tsung; Lin, Sung-En; Chen, Nien-Po; Chang, Hsin-Hua

    2016-03-01

    Recently, exciplex had drawn attention because of its potential for efficient electroluminescence or for use as a host in organic light-emitting diodes (OLEDs). In this study, four kinds of hole transport material/electron transport material combinations were examined to verify the formation of exciplex and the corresponding energy bandgaps. We successfully demonstrated that the combination of tris(4-carbazoyl-9-ylphenyl)amine (TCTA) and 3,5,3‧,5‧-tetra(m-pyrid-3-yl)phenyl[1,1‧]biphenyl (BP4mPy) could form a stable exciplex emission with an adequate energy gap. Using exciplex as a host in red, green, and blue phosphorescent OLEDs with an identical trilayer architecture enabled effective energy transfer from exciplex to emitters, achieving corresponding efficiencies of 8.8, 14.1, and 15.8%. A maximum efficiency of 11.3% and stable emission was obtained in white OLEDs.

  3. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites

    NASA Astrophysics Data System (ADS)

    Xiao, Zhengguo; Kerner, Ross A.; Zhao, Lianfeng; Tran, Nhu L.; Lee, Kyung Min; Koh, Tae-Wook; Scholes, Gregory D.; Rand, Barry P.

    2017-01-01

    Organic-inorganic hybrid perovskite materials are emerging as highly attractive semiconductors for use in optoelectronics. In addition to their use in photovoltaics, perovskites are promising for realizing light-emitting diodes (LEDs) due to their high colour purity, low non-radiative recombination rates and tunable bandgap. Here, we report highly efficient perovskite LEDs enabled through the formation of self-assembled, nanometre-sized crystallites. Large-group ammonium halides added to the perovskite precursor solution act as a surfactant that dramatically constrains the growth of 3D perovskite grains during film forming, producing crystallites with dimensions as small as 10 nm and film roughness of less than 1 nm. Coating these nanometre-sized perovskite grains with longer-chain organic cations yields highly efficient emitters, resulting in LEDs that operate with external quantum efficiencies of 10.4% for the methylammonium lead iodide system and 9.3% for the methylammonium lead bromide system, with significantly improved shelf and operational stability.

  4. High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer.

    PubMed

    Miyoshi, Yusuke; Fukazawa, Yusuke; Amasaka, Yuya; Reckmann, Robin; Yokoi, Tomoya; Ishida, Kazuki; Kawahara, Kenji; Ago, Hiroki; Maki, Hideyuki

    2018-03-29

    High-speed light emitters integrated on silicon chips can enable novel architectures for silicon-based optoelectronics, such as on-chip optical interconnects, and silicon photonics. However, conventional light sources based on compound semiconductors face major challenges for their integration with a silicon-based platform because of their difficulty of direct growth on a silicon substrate. Here we report ultra-high-speed (100-ps response time), highly integrated graphene-based on-silicon-chip blackbody emitters in the near-infrared region including telecommunication wavelength. Their emission responses are strongly affected by the graphene contact with the substrate depending on the number of graphene layers. The ultra-high-speed emission can be understood by remote quantum thermal transport via surface polar phonons of the substrates. We demonstrated real-time optical communications, integrated two-dimensional array emitters, capped emitters operable in air, and the direct coupling of optical fibers to the emitters. These emitters can open new routes to on-Si-chip, small footprint, and high-speed emitters for highly integrated optoelectronics and silicon photonics.

  5. Blue emitting 1,8-naphthalimides with electron transport properties for organic light emitting diode applications

    NASA Astrophysics Data System (ADS)

    Ulla, Hidayath; Kiran, M. Raveendra; Garudachari, B.; Ahipa, T. N.; Tarafder, Kartick; Adhikari, Airody Vasudeva; Umesh, G.; Satyanarayan, M. N.

    2017-09-01

    In this article, the synthesis, characterization and use of two novel naphthalimides as electron-transporting emitter materials for organic light emitting diode (OLED) applications are reported. The molecules were obtained by substituting electron donating chloro-phenoxy group at the C-4 position. A detailed optical, thermal, electrochemical and related properties were systematically studied. Furthermore, theoretical calculations (DFT) were performed to get a better understanding of the electronic structures. The synthesized molecules were used as electron transporters and emitters in OLEDs with three different device configurations. The devices with the molecules showed blue emission with efficiencies of 1.89 cdA-1, 0.98 lmW-1, 0.71% at 100 cdm-2. The phosphorescent devices with naphthalimides as electron transport materials displayed better performance in comparison to the device without any electron transporting material and were analogous with the device using standard electron transporting material, Alq3. The results demonstrate that the naphthalimides could play a significant part in the progress of OLEDs.

  6. Highly efficient orange and warm white phosphorescent OLEDs based on a host material with a carbazole-fluorenyl hybrid.

    PubMed

    Du, Xiaoyang; Huang, Yun; Tao, Silu; Yang, Xiaoxia; Wu, Chuan; Wei, Huaixin; Chan, Mei-Yee; Yam, Vivian Wing-Wah; Lee, Chun-Sing

    2014-06-01

    A new carbazole-fluorenyl hybrid compound, 3,3'(2,7-di(naphthaline-2-yl)-9H-fluorene-9,9-diyl)bis(9-phenyl-9H-carbazole) (NFBC) was synthesized and characterized. The compound exhibits blue-violet emission both in solution and in film, with peaks centered at 404 and 420 nm. In addition to the application as a blue emitter, NFBC is demonstrated to be a good host for phosphorescent dopants. By doping Ir(2-phq)3 in NFBC, a highly efficient orange organic light-emitting diode (OLED) with a maximum efficiency of 32 cd A(-1) (26.5 Lm W(-1)) was obtained. Unlike most phosphorescent OLEDs, the device prepared in our study shows little efficiency roll-off at high brightness and maintains current efficiencies of 31.9 and 26.8 cd A(-1) at a luminance of 1000 and 10,000 cd m(-2), respectively. By using NFBC simultaneously as a blue fluorescence emitter and as a host for a phosphorescent dopant, a warm white OLED with a maximum efficiency of 22.9 Lm W(-1) (21.9 cd A(-1)) was also obtained. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High-efficiency white OLEDs based on small molecules

    NASA Astrophysics Data System (ADS)

    Hatwar, Tukaram K.; Spindler, Jeffrey P.; Ricks, M. L.; Young, Ralph H.; Hamada, Yuuhiko; Saito, N.; Mameno, Kazunobu; Nishikawa, Ryuji; Takahashi, Hisakazu; Rajeswaran, G.

    2004-02-01

    Eastman Kodak Company and SANYO Electric Co., Ltd. recently demonstrated a 15" full-color, organic light-emitting diode display (OLED) using a high-efficiency white emitter combined with a color-filter array. Although useful for display applications, white emission from organic structures is also under consideration for other applications, such as solid-state lighting, where high efficiency and good color rendition are important. By incorporating adjacent blue and orange emitting layers in a multi-layer structure, highly efficient, stable white emission has been attained. With suitable host and dopant combinations, a luminance yield of 20 cd/A and efficiency of 8 lm/W have been achieved at a drive voltage of less than 8 volts and luminance level of 1000 cd/m2. The estimated external efficiency of this device is 6.3% and a high level of operational stability is observed. To our knowledge, this is the highest performance reported so far for white organic electroluminescent devices. We will review white OLED technology and discuss the fabrication and operating characteristics of these devices.

  8. High-performance organic light-emitting diodes comprising ultrastable glass layers

    PubMed Central

    Rodríguez-Viejo, Javier

    2018-01-01

    Organic light-emitting diodes (OLEDs) are one of the key solid-state light sources for various applications including small and large displays, automotive lighting, solid-state lighting, and signage. For any given commercial application, OLEDs need to perform at their best, which is judged by their device efficiency and operational stability. We present OLEDs that comprise functional layers fabricated as ultrastable glasses, which represent the thermodynamically most favorable and, thus, stable molecular conformation achievable nowadays in disordered solids. For both external quantum efficiencies and LT70 lifetimes, OLEDs with four different phosphorescent emitters show >15% enhancements over their respective reference devices. The only difference to the latter is the growth condition used for ultrastable glass layers that is optimal at about 85% of the materials’ glass transition temperature. These improvements are achieved through neither material refinements nor device architecture optimization, suggesting a general applicability of this concept to maximize the OLED performance, no matter which specific materials are used. PMID:29806029

  9. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting

    PubMed Central

    Song, Young Hyun; Ji, Eun Kyung; Jeong, Byung Woo; Jung, Mong Kwon; Kim, Eun Young; Yoon, Dae Ho

    2016-01-01

    We report on Y3Al5O12: Ce3+ ceramic phosphor plate (CPP) using nano phosphor for high power laser diode (LD) application for white light in automotive lighting. The prepared CPP shows improved luminous properties as a function of Ce3+ concentration. The luminous properties of the Y3Al5O12: Ce3+ CPP nano phosphor are improved when compared to the Y3Al5O12: Ce3+ CPP with bulk phosphor, and hence, the luminous emittance, luminous flux, and conversion efficiency are improved. The Y3Al5O12: Ce3+ CPP with an optimal Ce3+ content of 0.5 mol % shows 2733 lm/mm2 value under high power blue radiant flux density of 19.1 W/mm2. The results indicate that Y3Al5O12: Ce3+ CPP using nano phosphor can serve as a potential material for solid-state laser lighting in automotive applications. PMID:27502730

  10. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting.

    PubMed

    Song, Young Hyun; Ji, Eun Kyung; Jeong, Byung Woo; Jung, Mong Kwon; Kim, Eun Young; Yoon, Dae Ho

    2016-08-09

    We report on Y3Al5O12: Ce(3+) ceramic phosphor plate (CPP) using nano phosphor for high power laser diode (LD) application for white light in automotive lighting. The prepared CPP shows improved luminous properties as a function of Ce(3+) concentration. The luminous properties of the Y3Al5O12: Ce(3+) CPP nano phosphor are improved when compared to the Y3Al5O12: Ce(3+) CPP with bulk phosphor, and hence, the luminous emittance, luminous flux, and conversion efficiency are improved. The Y3Al5O12: Ce(3+) CPP with an optimal Ce(3+) content of 0.5 mol % shows 2733 lm/mm(2) value under high power blue radiant flux density of 19.1 W/mm(2). The results indicate that Y3Al5O12: Ce(3+) CPP using nano phosphor can serve as a potential material for solid-state laser lighting in automotive applications.

  11. Continued advances in high brightness fiber-coupled laser modules for efficient pumping of fiber and solid-state lasers

    NASA Astrophysics Data System (ADS)

    Hemenway, M.; Chen, Z.; Urbanek, W.; Dawson, D.; Bao, L.; Kanskar, M.; DeVito, M.; Martinsen, R.

    2018-02-01

    Both the fibber laser and diode-pumped solid-state laser market continue to drive advances in pump diode module brightness. We report on the continued progress by nLIGHT to develop and deliver the highest brightness diode-laser pumps using single-emitter technology. Continued advances in multimode laser diode technology [13] and fiber-coupling techniques have enabled higher emitter counts in the element packages, enabling us to demonstrate 305 W into 105 μm - 0.16 NA. This brightness improvement is achieved by leveraging our prior-reported package re-optimization, allowing an increase in the emitter count from two rows of nine emitters to two rows of twelve emitters. Leveraging the two rows off twelve emitter architecture,, product development has commenced on a 400 W into 200 μm - 00.16 NA package. Additionally, the advances in pump technology intended for CW Yb-doped fiber laser pumping has been leveraged to develop the highest brightness 793 nm pump modules for 2 μm Thulium fiber laser pumping, generating 150 W into 200 μm - 0.18 NA and 100 W into 105 μm - 0.15 NA. Lastly, renewed interest in direct diode materials processing led us to experiment with wavelength multiplexing our existing state of the art 200 W, 105 μm - 00.15 NA package into a combined output of 395 WW into 105 μm - 0.16 NA.

  12. Chemical regeneration of emitter surface increases thermionic diode life

    NASA Technical Reports Server (NTRS)

    Breiteieser, R.

    1966-01-01

    Chemical regeneration of sublimated emitter electrode increases the operating efficiency and life of thermionic diodes. A gas which forms chemical compounds with the sublimated emitter material is introduced into the space between the emitter and the collector. The compounds migrate to the emitter where they decompose and redeposit the emitter material.

  13. Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide.

    PubMed

    Thyrrestrup, Henri; Kiršanskė, Gabija; Le Jeannic, Hanna; Pregnolato, Tommaso; Zhai, Liang; Raahauge, Laust; Midolo, Leonardo; Rotenberg, Nir; Javadi, Alisa; Schott, Rüdiger; Wieck, Andreas D; Ludwig, Arne; Löbl, Matthias C; Söllner, Immo; Warburton, Richard J; Lodahl, Peter

    2018-03-14

    Establishing a highly efficient photon-emitter interface where the intrinsic linewidth broadening is limited solely by spontaneous emission is a key step in quantum optics. It opens a pathway to coherent light-matter interaction for, e.g., the generation of highly indistinguishable photons, few-photon optical nonlinearities, and photon-emitter quantum gates. However, residual broadening mechanisms are ubiquitous and need to be combated. For solid-state emitters charge and nuclear spin noise are of importance, and the influence of photonic nanostructures on the broadening has not been clarified. We present near-lifetime-limited linewidths for quantum dots embedded in nanophotonic waveguides through a resonant transmission experiment. It is found that the scattering of single photons from the quantum dot can be obtained with an extinction of 66 ± 4%, which is limited by the coupling of the quantum dot to the nanostructure rather than the linewidth broadening. This is obtained by embedding the quantum dot in an electrically contacted nanophotonic membrane. A clear pathway to obtaining even larger single-photon extinction is laid out; i.e., the approach enables a fully deterministic and coherent photon-emitter interface in the solid state that is operated at optical frequencies.

  14. Extremely high efficiency phosphorescent organic light-emitting diodes with horizontal emitting dipoles

    NASA Astrophysics Data System (ADS)

    Kim, Kwon-Hyeon; Moon, Chang-Ki; Lee, Jeong-Hwan; Kim, Jang-Joo

    2014-10-01

    We present the factors influencing the orientation of the phosphorescent dyes in phosphorescent OLEDs. And, we report that an OLED containing a phosphorescent emitter with horizontally oriented dipoles in an exciplex-forming co-host that exhibits an extremely high EQE of 32.3% and power efficiency of 142 lm/W, the highest values ever reported in literature. Furthermore, we experimentally and theoretically correlated the EQE of OLEDs to the PL quantum yield and the horizontal dipole ratio of phosphorescent dyes using three different dyes.

  15. Study of ultra-low emittance design for Spear3 using longitudinal gradient dipole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M. -H.; Huang, X.; Safranek, J.

    2015-09-24

    Since its 2003 construction, the SPEAR3 synchrotron light source at SLAC has continuously improved its performance by raising beam current, top-off injection, and smaller emittance. This makes SPEAR3 one of the most productive light sources in the world. Now to further enhance the performance of SPEAR3, we are looking into the possibility of converting SPEAR3 to an ultra-low emittance storage ring within its site constraint.

  16. Phosphorescence white organic light-emitting diodes with single emitting layer based on isoquinolinefluorene-carbazole containing host.

    PubMed

    Koo, Ja Ryong; Lee, Seok Jae; Hyung, Gun Woo; Kim, Bo Young; Shin, Hyun Su; Lee, Kum Hee; Yoon, Seung Soo; Kim, Woo Young; Kim, Young Kwan

    2013-03-01

    We have demonstrated a stable phosphorescent white organic light-emitting diodes (WOLEDs) using an orange emitter, Bis(5-benzoyl-2-(4-fluorophenyl)pyridinato-C,N) iridium(III)acetylacetonate [(Bz4Fppy)2Ir(III)acac] doped into a newly synthesized blue host material, 2-(carbazol-9-yl)-7-(isoquinolin-1-yl)-9,9-diethylfluorene (CzFliq). When 1 wt.% (Bz4Fppy)2Ir(III)acac was doped into emitting layer, it was realized an improved EL performance and a pure white color in the OLED. The optimum WOLED showed maximum values as a luminous efficiency of 10.14 cd/A, a power efficiency of 10.24 Im/W, a peak external quantum efficiency 4.07%, and Commission Internationale de L'Eclairage coordinates of (0.34, 0.39) at 8 V.

  17. Optically isolated signal coupler with linear response

    DOEpatents

    Kronberg, James W.

    1994-01-01

    An optocoupler for isolating electrical signals that translates an electrical input signal linearly to an electrical output signal. The optocoupler comprises a light emitter, a light receiver, and a light transmitting medium. The light emitter, preferably a blue, silicon carbide LED, is of the type that provides linear, electro-optical conversion of electrical signals within a narrow wavelength range. Correspondingly, the light receiver, which converts light signals to electrical signals and is preferably a cadmium sulfide photoconductor, is linearly responsive to light signals within substantially the same wavelength range as the blue LED.

  18. Metal Complexes for Organic Optoelectronic Applications

    NASA Astrophysics Data System (ADS)

    Huang, Liang

    Organic optoelectronic devices have drawn extensive attention by over the past two decades. Two major applications for Organic optoelectronic devices are efficient organic photovoltaic devices(OPV) and organic light emitting diodes (OLED). Organic Solar cell has been proven to be compatible with the low cost, large area bulk processing technology and processed high absorption efficiencies compared to inorganic solar cells. Organic light emitting diodes are a promising approach for display and solid state lighting applications. To improve the efficiency, stability, and materials variety for organic optoelectronic devices, several emissive materials, absorber-type materials, and charge transporting materials were developed and employed in various device settings. Optical, electrical, and photophysical studies of the organic materials and their corresponding devices were thoroughly carried out. In this thesis, Chapter 1 provides an introduction to the background knowledge of OPV and OLED research fields presented. Chapter 2 discusses new porphyrin derivatives- azatetrabenzylporphyrins for OPV and near infrared OLED applications. A modified synthetic method is utilized to increase the reaction yield of the azatetrabenzylporphyrin materials and their photophysical properties, electrochemical properties are studied. OPV devices are also fabricated using Zinc azatetrabenzylporphyrin as donor materials. Pt(II) azatetrabenzylporphyrin were also synthesized and used in near infra-red OLED to achieve an emission over 800 nm with reasonable external quantum efficiencies. Chapter 3, discusses the synthesis, characterization, and device evaluation of a series of tetradentate platinum and palladium complexesfor single doped white OLED applications and RGB white OLED applications. Devices employing some of the developed emitters demonstrated impressively high external quantum efficiencies within the range of 22%-27% for various emitter concentrations. And the palladium complex, i.e. Pd3O3, enables the fabrication of stable devices achieving nearly 1000h. at 1000cd/m2 without any outcoupling enhancement while simultaneously achieving peak external quantum efficiencies of 19.9%. Chapter 4 discusses tetradentate platinum and palladium complexes as deep blue emissive materials for display and lighting applications. The platinum complex PtNON, achieved a peak external quantum efficiency of 24.4 % and CIE coordinates of (0.18, 0.31) in a device structure designed for charge confinement and the palladium complexes Pd2O2 exhibited peak external quantum efficiency of up to 19.2%.

  19. Remote detection of single emitters via optical waveguides

    NASA Astrophysics Data System (ADS)

    Then, Patrick; Razinskas, Gary; Feichtner, Thorsten; Haas, Philippe; Wild, Andreas; Bellini, Nicola; Osellame, Roberto; Cerullo, Giulio; Hecht, Bert

    2014-05-01

    The integration of lab-on-a-chip technologies with single-molecule detection techniques may enable new applications in analytical chemistry, biotechnology, and medicine. We describe a method based on the reciprocity theorem of electromagnetic theory to determine and optimize the detection efficiency of photons emitted by single quantum emitters through truncated dielectric waveguides of arbitrary shape positioned in their proximity. We demonstrate experimentally that detection of single quantum emitters via such waveguides is possible, confirming the predicted behavior of the detection efficiency. Our findings blaze the trail towards efficient lensless single-emitter detection compatible with large-scale optofluidic integration.

  20. Advantages of III-nitride laser diodes in solid-state lighting: Advantages of III-nitride laser diodes in solid-state lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wierer, Jonathan J.; Tsao, Jeffrey Y.

    2015-01-14

    III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from color mixed emitters is equally challenging formore » both LEDs and LDs, with neither source having a direct advantage. Fourth, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. Finally, the smaller area and higher current density operation of LDs provides them with a potential cost advantage over LEDs. These advantages make LDs a compelling source for future SSL.« less

  1. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1993-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source.

  2. High Efficiency Quantum Well Waveguide Solar Cells and Methods for Constructing the Same

    NASA Technical Reports Server (NTRS)

    Sood, Ashok K. (Inventor); Welser, Roger E. (Inventor)

    2014-01-01

    Photon absorption, and thus current generation, is hindered in conventional thin-film solar cell designs, including quantum well structures, by the limited path length of incident light passing vertically through the device. Optical scattering into lateral waveguide structures provides a physical mechanism to increase photocurrent generation through in-plane light trapping. However, the insertion of wells of high refractive index material with lower energy gap into the device structure often results in lower voltage operation, and hence lower photovoltaic power conversion efficiency. The voltage output of an InGaAs quantum well waveguide photovoltaic device can be increased by employing a III-V material structure with an extended wide band gap emitter heterojunction. Analysis of the light IV characteristics reveals that non-radiative recombination components of the underlying dark diode current have been reduced, exposing the limiting radiative recombination component and providing a pathway for realizing solar-electric conversion efficiency of 30% or more in single junction cells.

  3. Novel Design of Iridium Phosphors with Pyridinylphosphinate Ligands for High-Efficiency Blue Organic Light-emitting Diodes

    PubMed Central

    Wu, Zheng-Guang; Jing, Yi-Ming; Lu, Guang-Zhao; Zhou, Jie; Zheng, You-Xuan; Zhou, Liang; Wang, Yi; Pan, Yi

    2016-01-01

    Due to the high quantum efficiency and wide scope of emission colors, iridium (Ir) (III) complexes have been widely applied as guest materials for OLEDs (organic light-emitting diodes). Contrary to well-developed Ir(III)-based red and green phosphorescent complexes, the efficient blue emitters are rare reported. Like the development of the LED, the absence of efficient and stable blue materials hinders the widely practical application of the OLEDs. Inspired by this, we designed two novel ancillary ligands of phenyl(pyridin-2-yl)phosphinate (ppp) and dipyridinylphosphinate (dpp) for efficient blue phosphorescent iridium complexes (dfppy)2Ir(ppp) and (dfppy)2Ir(dpp) (dfppy = 2-(2,4-difluorophenyl)pyridine) with good electron transport property. The devices using the new iridium phosphors display excellent electroluminescence (EL) performances with a peak current efficiency of 58.78 cd/A, a maximum external quantum efficiency of 28.3%, a peak power efficiency of 52.74 lm/W and negligible efficiency roll-off ratios. The results demonstrated that iridium complexes with pyridinylphosphinate ligands are potential blue phosphorescent materials for OLEDs. PMID:27929124

  4. Status and Progress of High-efficiency Silicon Solar Cells

    NASA Astrophysics Data System (ADS)

    Xiao, Shaoqing; Xu, Shuyan

    High-efficiency Si solar cells have attracted more and more attention from researchers, scientists, engineers of photovoltaic (PV) industry for the past few decades. Many high-quality researchers and engineers in both academia and industry seek solutions to improve the cell efficiency and reduce the cost. This desire has stimulated a growing number of major research and research infrastructure programmes, and a rapidly increasing number of publications in this filed. This chapter reviews materials, devices and physics of high-efficiency Si solar cells developed over the last 20 years. In this chapter there is a fair number of topics, not only from the material viewpoint, introducing various materials that are required for high-efficiency Si solar cells, such as base materials (FZ-Si, CZ-Si, MCZ-Si and multi-Si), emitter materials (diffused emitter and deposited emitter), passivation materials (Al-back surface field, high-low junction, SiO2, SiO x , SiN x , Al2O3 and a-Si:H), and other functional materials (antireflective layer, TCO and metal electrode), but also from the device and physics point of view, elaborating on physics, cell concept, development and status of all kinds of high-efficiency Si solar cells, such as passivated emitter and rear contact (PERC), passivated emitter and rear locally diffused (PERL), passivated emitter and rear totally diffused (PERT), Pluto, interdigitated back-contacted (IBC), emitter-wrap-through (EWT), metallization-wrap-through (MWT), Heterojunction with intrinsic thin-layer (HIT) and so on. Some representative examples of high-efficiency Si solar cell materials and devices with excellent performance and competitive advantages are presented.

  5. III-V semiconductor nanoresonators-a new strategy for passive, active, and nonlinear all-dielectric metamaterials

    DOE PAGES

    Liu, Sheng; Keeler, Gordon A.; Reno, John L.; ...

    2016-06-10

    We demonstrate 2D and multilayer dielectric metamaterials made from III–V semiconductors using a monolithic fabrication process. The resulting structures could be used to recompress chirped femtosecond optical pulses and in a variety of other optical applications requiring low loss. Moreover, these III–V all-dielectric metamaterials could enable novel active applications such as efficient nonlinear frequency converters, light emitters, detectors, and modulators.

  6. An electron transporting blue emitter for OLED

    NASA Astrophysics Data System (ADS)

    Qi, Boyuan; Luo, Jiaxiu; Li, Suyue; Xiao, Lixin; Sun, Wenfang; Chen, Zhijian; Qu, Bo; Gong, Qihuang

    2010-11-01

    After the premier commercialization of OLED in 1997, OLED has been considered as the candidate for the next generation of flat panel display. In comparison to liquid crystal display (LCD) and plasma display panel (PDP), OLED exhibits promising merits for display, e.g., flexible, printable, micro-buildable and multiple designable. Although many efforts have been made on electroluminescent (EL) materials and devices, obtaining highly efficient and pure blue light is still a great challenge. In order to improve the emission efficiency and purity of the blue emission, a new bipolar blue light emitter, 2,7-di(2,2':6',2"-terpyridine)- 2,7-diethynyl-9,9-dioctyl-9H-fluorene (TPEF), was designed and synthesized. A blue OLED was obtained with the configuration of ITO/PEDOT/PVK:CBP:TPEF/LiF/Al. The device exhibits a turn-on voltage of 9 V and a maximum brightness of 12 cd/m2 at 15 V. The device gives a deep blue emission located at 420 nm with the Commission Internationale de l'Eclairage (CIE) coordinates of (0.17, 0.10). We also use TPEF as electron transporting material in the device of ITO/PPV/TPEF/LiF/Al, the turn-on voltage is 3 V. It is proved the current in the device was enhanced indeed by using the new material.

  7. Rare Earth Doped Yttrium Aluminum Garnet (YAG) Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie T.; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study presents a spectral emittance model for films and cylinders of rare earth doped yttrium aluminum garnets. Good agreement between experimental and theoretical film spectral emittances was found for erbium and holmium aluminum garnets. Spectral emittances of films are sensitive to temperature differences across the film. For operating conditions of interest, the film emitter experiences a linear temperature variation whereas the cylinder emitter has a more advantageous uniform temperature. Emitter efficiency is also a sensitive function of temperature. For holminum aluminum garnet film the efficiency is 0.35 at 1446K but only 0.27 at 1270 K.

  8. Emittance Theory for Cylindrical Fiber Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1998-01-01

    A fibrous rare earth selective emitter is approximated as an infinitely long, cylinder. The spectral emittance, e(sub x), is obtained L- by solving the radiative transfer equations with appropriate boundary conditions and uniform temperature. For optical depth, K(sub R), where alpha(sub lambda), is the extinction coefficient and R is the cylinder radius, greater than 1 the spectral emittance depths, K(sub R) alpha(sub lambda)R, is nearly at its maximum value. There is an optimum cylinder radius, R(sub opt) for maximum emitter efficiency, n(sub E). Values for R(sub opt) are strongly dependent on the number of emission bands of the material. The optimum radius decreases slowly with increasing emitter temperature, while the maximum efficiency and useful radiated power increase rapidly with increasing, temperature.

  9. Rare Earth Garnet Selective Emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional impurities, in the development of solid state laser crystals. Doping, dependent on the particular ion and crystal structure, may be as high as 100 at. % (complete substitution of yttrium ion with the rare earth ion). These materials have high melting points, 1940 C for YAG (Yttrium Aluminum Garnet), and low emissivity in the near infrared making them excellent candidates for a thin film selective emitter. As previously stated, the spectral emittance of a rare earth emitter is characterized by one or more well defined emission bands. Outside the emission band the emittance(absorptance) is much lower. Therefore, it is expected that emission outside the band for a thin film selective emitter will be dominated by the emitter substrate. For an efficient emitter (power in the emission band/total emitted power) the substrate must have low emittance, epsilon(sub S). This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium(Ho) and erbium (Er) doped YAG thin film selective emitters at (1500 K), and compares those results with the theoretical spectral emittance.

  10. Highly efficient inverted top emitting organic light emitting diodes using a transparent top electrode with color stability on viewing angle

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Bum; Lee, Jeong-Hwan; Moon, Chang-Ki; Kim, Jang-Joo

    2014-02-01

    We report a highly efficient phosphorescent green inverted top emitting organic light emitting diode with excellent color stability by using the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile/indium zinc oxide top electrode and bis(2-phenylpyridine)iridium(III) acetylacetonate as the emitter in an exciplex forming co-host system. The device shows a high external quantum efficiency of 23.4% at 1000 cd/m2 corresponding to a current efficiency of 110 cd/A, low efficiency roll-off with 21% at 10 000 cd/m2 and low turn on voltage of 2.4 V. Especially, the device showed very small color change with the variation of Δx = 0.02, Δy = 0.02 in the CIE 1931 coordinates as the viewing angle changes from 0° to 60°. The performance of the device is superior to that of the metal/metal cavity structured device.

  11. Ultra-Thin Monocrystalline Silicon Solar Cell with 12.2% Efficiency Using Silicon-On-Insulator Substrate.

    PubMed

    Bian, Jian-Tao; Yu, Jian; Duan, Wei-Yuan; Qiu, Yu

    2015-04-01

    Single side heterojunction silicon solar cells were designed and fabricated using Silicon-On-Insulator (SOI) substrate. The TCAD software was used to simulate the effect of silicon layer thickness, doping concentration and the series resistance. A 10.5 µm thick monocrystalline silicon layer was epitaxially grown on the SOI with boron doping concentration of 2 x 10(16) cm(-3) by thermal CVD. Very high Voc of 678 mV was achieved by applying amorphous silicon heterojunction emitter on the front surface. The single cell efficiency of 12.2% was achieved without any light trapping structures. The rear surface recombination and the series resistance are the main limiting factors for the cell efficiency in addition to the c-Si thickness. By integrating an efficient light trapping scheme and further optimizing fabrication process, higher efficiency of 14.0% is expected for this type of cells. It can be applied to integrated circuits on a monolithic chip to meet the requirements of energy autonomous systems.

  12. Efficient non-doped phosphorescent orange, blue and white organic light-emitting devices.

    PubMed

    Yin, Yongming; Yu, Jing; Cao, Hongtao; Zhang, Letian; Sun, Haizhu; Xie, Wenfa

    2014-10-24

    Efficient phosphorescent orange, blue and white organic light-emitting devices (OLEDs) with non-doped emissive layers were successfully fabricated. Conventional blue phosphorescent emitters bis [4,6-di-fluorophenyl]-pyridinato-N,C(2')] picolinate (Firpic) and Bis(2,4-difluorophenylpyridinato) (Fir6) were adopted to fabricate non-doped blue OLEDs, which exhibited maximum current efficiency of 7.6 and 4.6 cd/A for Firpic and Fir6 based devices, respectively. Non-doped orange OLED was fabricated utilizing the newly reported phosphorescent material iridium (III) (pbi)₂Ir(biq), of which manifested maximum current and power efficiency of 8.2 cd/A and 7.8 lm/W. The non-doped white OLEDs were achieved by simply combining Firpic or Fir6 with a 2-nm (pbi)₂Ir(biq). The maximum current and power efficiency of the Firpic and (pbi)₂Ir(biq) based white OLED were 14.8 cd/A and 17.9 lm/W.

  13. A new light emitting diode-light emitting diode portable carbon dioxide gas sensor based on an interchangeable membrane system for industrial applications.

    PubMed

    de Vargas-Sansalvador, I M Pérez; Fay, C; Phelan, T; Fernández-Ramos, M D; Capitán-Vallvey, L F; Diamond, D; Benito-Lopez, F

    2011-08-12

    A new system for CO(2) measurement (0-100%) based on a paired emitter-detector diode arrangement as a colorimetric detection system is described. Two different configurations were tested: configuration 1 (an opposite side configuration) where a secondary inner-filter effect accounts for CO(2) sensitivity. This configuration involves the absorption of the phosphorescence emitted from a CO(2)-insensitive luminophore by an acid-base indicator and configuration 2 wherein the membrane containing the luminophore is removed, simplifying the sensing membrane that now only contains the acid-base indicator. In addition, two different instrumental configurations have been studied, using a paired emitter-detector diode system, consisting of two LEDs wherein one is used as the light source (emitter) and the other is used in reverse bias mode as the light detector. The first configuration uses a green LED as emitter and a red LED as detector, whereas in the second case two identical red LEDs are used as emitter and detector. The system was characterised in terms of sensitivity, dynamic response, reproducibility, stability and temperature influence. We found that configuration 2 presented a better CO(2) response in terms of sensitivity. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Comparative study on luminescence extraction strategies of LED by large-scale fabrication of nanopillar and nanohole structures

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Li, Junmei; Sheikhi, Moheb; Jiang, Jie’an; Yang, Zhenhai; Li, Hongwei; Guo, Shiping; Sheng, Jiang; Sun, Jie; Bo, Baoxue; Ye, Jichun

    2018-06-01

    Light extraction and current injection are two important considerations in the development of high efficiency light-emitting-diodes (LEDs), but usually cannot be satisfied simultaneously in nanostructure patterned devices. In this work, we investigated near-UV LEDs with nanopillar and nanohole patterns to improve light extraction efficiency. Photoluminescence (PL) intensities were enhanced by 8.0 and 4.1 times for nanopillar and nanohole LEDs compared to that of planar LED. Nanopillar LED exhibits higher PL emission than that of the nanohole LED, attributing to a convex shape sidewall for more effective outward light scattering, and reduction of quantum-confined-stark-effect owing to strain relaxation. However, nanopillar LED exhibits lower electroluminescence intensity than the nanohole sample, which calls for further optimization in carrier distributions. Experimental results were further supported by near-field electric field simulations. This work demonstrates the difference in optical and electrical behaviors between the nanopillar and nanohole LEDs, paving the way for detailed understanding on luminescence extraction mechanisms of nanostructure patterned UV emitters.

  15. Influence of Surface Roughness on Strong Light-Matter Interaction of a Quantum Emitter-Metallic Nanoparticle System.

    PubMed

    Lu, Yu-Wei; Li, Ling-Yan; Liu, Jing-Feng

    2018-05-08

    We investigate the quantum optical properties of strong light-matter interaction between a quantum emitter and a metallic nanoparticle beyond idealized structures with a smooth surface. Based on the local coupling strength and macroscopic Green's function, we derived an exact quantum optics approach to obtain the field enhancement and light-emission spectrum of a quantum emitter. Numerical simulations show that the surface roughness has a greater effect on the near-field than on the far-field, and slightly increases the vacuum Rabi splitting on average. Further, we verified that the near-field enhancement is mainly determined by the surface features of hot-spot area.

  16. Microfluidic White Organic Light-Emitting Diode Based on Integrated Patterns of Greenish-Blue and Yellow Solvent-Free Liquid Emitters

    NASA Astrophysics Data System (ADS)

    Kobayashi, Naofumi; Kasahara, Takashi; Edura, Tomohiko; Oshima, Juro; Ishimatsu, Ryoichi; Tsuwaki, Miho; Imato, Toshihiko; Shoji, Shuichi; Mizuno, Jun

    2015-10-01

    We demonstrated a novel microfluidic white organic light-emitting diode (microfluidic WOLED) based on integrated sub-100-μm-wide microchannels. Single-μm-thick SU-8-based microchannels, which were sandwiched between indium tin oxide (ITO) anode and cathode pairs, were fabricated by photolithography and heterogeneous bonding technologies. 1-Pyrenebutyric acid 2-ethylhexyl ester (PLQ) was used as a solvent-free greenish-blue liquid emitter, while 2,8-di-tert-butyl-5,11-bis(4-tert-butylphenyl)-6,12-diphenyltetracene (TBRb)-doped PLQ was applied as a yellow liquid emitter. In order to form the liquid white light-emitting layer, the greenish-blue and yellow liquid emitters were alternately injected into the integrated microchannels. The fabricated electro-microfluidic device successfully exhibited white electroluminescence (EL) emission via simultaneous greenish-blue and yellow emissions under an applied voltage of 100 V. A white emission with Commission Internationale de l’Declairage (CIE) color coordinates of (0.40, 0.42) was also obtained; the emission corresponds to warm-white light. The proposed device has potential applications in subpixels of liquid-based microdisplays and for lighting.

  17. Brightness-enhanced high-efficiency single emitters for fiber laser pumping

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Rappaport, Noam; Shamay, Moshe; Cohen, Shalom; Berk, Yuri; Klumel, Genadi; Don, Yaroslav; Peleg, Ophir; Levy, Moshe

    2013-02-01

    Reliable single emitters delivering <10W in the 9xx nm spectral range, are common energy sources for fiber laser pumps. The brightness (radiance) of a single emitter, which connotes the angular concentration of the emitted energy, is just as important a parameter as the output power alone for fiber coupling applications. We report on the development of high-brightness single emitters that demonstrate <12W output with 60% wall-plug efficiency and a lateral emission angle that is compatible with coupling into 0.15 NA delivery fiber. Using a purpose developed active laser model, simulation of far-field patterns in the lateral (slow) axis can be performed for different epitaxial wafer structures. By optimizing both the wafer and chip designs, we have both increased the device efficiency and improved the slow-axis divergence in high-current operation. Device reliability data are presented. The next-generation emitters will be integrated in SCD's NEON fiber pump modules to upgrade the pump output towards higher ex-fiber powers with high efficiency.

  18. Notes on Experiments: A Versatile Light-Emitter-Detector Arrangement for Use with a Microcomputer.

    ERIC Educational Resources Information Center

    Kirkup, Les

    1987-01-01

    Describes efforts of members of the biology and physics departments of Paisley College (Scotland) to develop a simple light-emitter-detector arrangement adapted as a colorimeter interfaced with a microcomputer for use by undergraduate students. Discusses the setup and provides a computer program in BASIC to run it. (CW)

  19. Efficient, deep-blue TADF-emitters for OLED display applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Volz, Daniel; Baumann, Thomas

    2016-09-01

    Currently, the mobile display market is strongly shifting towards AMOLED technology, in order to enable curved and flexible displays. This leads to a growing demand for highly efficient OLED emitters to reduce the power consumption and increase display resolution at the same time. While highly efficient green and red OLEDs already found their place in commercial OLED-displays, the lack of efficient blue emitters is still an issue. Consequently, the active area for blue is considerably larger than for green and red pixels, to make up for the lower efficiency. We intend to close this efficiency-gap with novel emitters based on thermally activated delayed fluorescence (TADF) technology. Compared to state-of-the-art fluorescent dopants, the efficiency of TADF-emitters is up to four times higher. At the same time, it is possible to design them in a way to maintain deep blue emission, i.e. CIE y < 0.2. These aspects are relevant to produce efficient high resolution AMOLED displays. Apart from these direct customer benefits, our TADF technology does not contain any rare elements, which allows for the fabrication of sustainable OLED technology. In this work, we highlight one of our recently developed blue TADF materials. Basic material properties as well as first device results are discussed. In a bottom-emitting device, a CIEx/CIEy coordinate of (0.16/0.17) was achieved with efficiency values close to 20% EQE.

  20. Highly Efficient Deep Blue Organic Light-Emitting Diodes Based on Imidazole: Significantly Enhanced Performance by Effective Energy Transfer with Negligible Efficiency Roll-off.

    PubMed

    Shan, Tong; Liu, Yulong; Tang, Xiangyang; Bai, Qing; Gao, Yu; Gao, Zhao; Li, Jinyu; Deng, Jian; Yang, Bing; Lu, Ping; Ma, Yuguang

    2016-10-26

    Great efforts have been devoted to develop efficient deep blue organic light-emitting diodes (OLEDs) materials meeting the standards of European Broadcasting Union (EBU) standard with Commission International de L'Eclairage (CIE) coordinates of (0.15, 0.06) for flat-panel displays and solid-state lightings. However, high-performance deep blue OLEDs are still rare for applications. Herein, two efficient deep blue emitters, PIMNA and PyINA, are designed and synthesized by coupling naphthalene with phenanthreneimidazole and pyreneimidazole, respectively. The balanced ambipolar transporting natures of them are demonstrated by single-carrier devices. Their nondoped OLEDs show deep blue emissions with extremely small CIE y of 0.034 for PIMNA and 0.084 for PyINA, with negligible efficiency roll-off. To take advantage of high photoluminescence quantum efficiency of PIMNA and large fraction of singlet exciton formation of PyINA, doped devices are fabricated by dispersing PyINA into PIMNA. A significantly improved maximum external quantum efficiency (EQE) of 5.05% is obtained through very effective energy transfer with CIE coordinates of (0.156, 0.060), and the EQE remains 4.67% at 1000 cd m -2 , which is among the best of deep blue OLEDs reported matching stringent EBU standard well.

  1. Direct Observation of Ultralow Vertical Emittance using a Vertical Undulator - presentation slides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootton, Kent

    2015-09-17

    Direct emittance measurement based on vertical undulator is discussed. Emittance was evaluated from peak ratios, the smallest measured being =0.9 ±0.3 pm rad. The angular distribution of undulator radiation departs from Gaussian approximations, a fact of which diffraction-limited light sources should be aware.

  2. Anderson localization to enhance light-matter interaction (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Garcia, Pedro David

    2016-04-01

    Deliberately introducing disorder in low-dimensional nanostructures like photonic crystal waveguides (PCWs) [1] or photonic crystals (PCs) [2] leads to Anderson localization where light is efficiently trapped by random multiple scattering with the lattice imperfections. These disorder-induced optical modes hace been demonstrated to be very promising for cavity-quantum electrodynamics (QED) experiments where the radiative emission rate of single quantum emitters can be controlled when tuned through resonance with one of these random cavities. Our statistical analysis of the emission dynamics from single quantum dots embeded in disordered PCWs [3] provides detailed insigth about the statistical properties of QED in these complex nanostructures. In addition, using internal light sources reveals new physics in the form of nonuniversal intensity correlations between the different scattered paths within the structure which imprint the local QED properties deep inside the complex structure onto the far-field intensity pattern [2]. Finally, increasing the optical gain in PCWs allows on-chip random nanolasing where the cavity feedback is provided by the intrinsic disorder which enables highly efficient, stable, and broadband tunable lasers with very small mode volumes [4]. The figure of merit of these disorder-induced cavities is their localization length which determines to a large degree the coupling efficiency of a quantum emitter to a disorder-induced cavity as well as the efficiency of random lasing and reveals a strongly dispersive behavior and a non-trivial dependence on disorder in PCWs [5]. [1] L. Sapienza, H. Thyrrestrup, S. Stobbe, P.D. Garcia, S. Smolka, and P. Lodahl, Science 327, 1352 (2010). [2] P. D. García, S. Stobbe, I. Soellner and P. Lodahl, Physical Review Letters 109, 253902 (2012). [3] A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P.D. Garcia, and P. Lodahl, Opt. Express 22, 30992 (2014). [4] J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, Nature Nanotechnology, 9, 285 (2014). [5] P.D. Garcia, A. Javadi, and P. Lodahl, In preparation.

  3. Low emittance electron storage rings

    NASA Astrophysics Data System (ADS)

    Levichev, E. B.

    2018-01-01

    Low-emittance electron (positron) beams are essential for synchrotron light sources, linear collider damping rings, and circular Crab Waist colliders. In this review, the principles and methods of emittance minimization are discussed, prospects for developing relativistic electron storage rings with small beam phase volume are assessed, and problems related to emittance minimization are examined together with their possible solutions. The special features and engineering implementation aspects of various facilities are briefly reviewed.

  4. On the Ionization and Ion Transmission Efficiencies of Different ESI-MS Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Jonathan T.; Marginean, Ioan; Smith, Richard D.

    2014-09-30

    It is well known that the achievable sensitivity of electrospray ionization mass spectrometry (ESI-MS) is largely determined by the ionization efficiency in the ESI source and ion transmission efficiency through the ESI-MS interface. In this report we systematically study the ion transmission and ionization efficiencies in different ESI-MS interface configurations. The configurations under investigation include a single emitter/single inlet capillary, single emitter/multi-inlet capillary, and a subambient pressure ionization with nanoelectrospray (SPIN) MS interfaces with a single emitter and an emitter array, respectively. We present an effective method to evaluate the overall ion utilization efficiency of an ESI-MS interface by measuringmore » the total gas phase ion current transmitted through the interface and correlating it to the observed ion abundance measured in the corresponding mass spectrum. Our experimental results suggest that the overall ion utilization efficiency in the SPIN-MS interface configurations is better than that in the inlet capillary based ESI-MS interface configurations.« less

  5. Internal quantum efficiency mapping analysis for a >20%-efficiency n-type bifacial solar cell with front-side emitter formed by BBr3 thermal diffusion

    NASA Astrophysics Data System (ADS)

    Simayi, Shalamujiang; Mochizuki, Toshimitsu; Kida, Yasuhiro; Shirasawa, Katsuhiko; Takato, Hidetaka

    2017-10-01

    This paper presents a large-area (239-cm2) high-efficiency n-type bifacial solar cell that is processed using tube-furnace thermal diffusion employing liquid sources BBr3 for the front-side boron emitter and POCl3 for the rear-side phosphorus back surface field (BSF). The SiN x /Al2O3 stack was applied to the front-side boron emitter as a passivation layer. Both the front and rear-side electrodes are obtained using screen-printed contacts with H-patterns. The resulting highest-efficiency solar cell has front- and rear-side efficiencies of 20.3 and 18.7%, respectively, while the corresponding bifaciality is up to 92%. Finally, the passivation quality of the SiN x /Al2O3 stack on the front-side boron emitter and rear-side phosphorus BSF is investigated and visualized by measuring the internal quantum efficiency mapping of the bifacial solar cell.

  6. High-power laser diodes with high polarization purity

    NASA Astrophysics Data System (ADS)

    Rosenkrantz, Etai; Yanson, Dan; Peleg, Ophir; Blonder, Moshe; Rappaport, Noam; Klumel, Genady

    2017-02-01

    Fiber-coupled laser diode modules employ power scaling of single emitters for fiber laser pumping. To this end, techniques such as geometrical, spectral and polarization beam combining (PBC) are used. For PBC, linear polarization with high degree of purity is important, as any non-perfectly polarized light leads to losses and heating. Furthermore, PBC is typically performed in a collimated portion of the beams, which also cancels the angular dependence of the PBC element, e.g., beam-splitter. However, we discovered that single emitters have variable degrees of polarization, which depends both on the operating current and far-field divergence. We present data to show angle-resolved polarization measurements that correlate with the ignition of high-order modes in the slow-axis emission of the emitter. We demonstrate that the ultimate laser brightness includes not only the standard parameters such as power, emitting area and beam divergence, but also the degree of polarization (DoP), which is a strong function of the latter. Improved slow-axis divergence, therefore, contributes not only to high brightness but also high beam combining efficiency through polarization.

  7. Tritium-field betacells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walko, R.J.; Lincoln, R.C.; Baca, W.E.

    1991-01-01

    Betavoltaic power sources operate by converting the nuclear decay energy of beta-emitting radioisotopes into electricity. Since they are not chemically driven, they could operate at temperatures which would either be to hot or too cold for typical chemical batteries. Further, for long lived isotopes, they offer the possibility of multi-decade active lifetimes. Two approaches are being investigated: direct and indirect conversion. Direct conversion cells consist of semiconductor diodes similar to photovoltaic cells. Beta particle directly bombard these cells, generating electron-hole pairs in the semiconductor which are converted to useful power. Many using low power flux beta emitters, wide bandgap semiconductorsmore » are required to achieve useful conversion efficiencies. The combination of tritium, as the beta emitter, and gallium phosphide (GaP), as the semiconductor converter, was evaluated. Indirect conversion betacells first convert the beta energy to light with a phosphor, and then to electricity with photovoltaic cells. An indirect conversion power source using a tritium radioluminescent (RL) light is being investigated. Our analysis indicates that this approach has the potential for significant volume and cost savings over the direct conversion method. 7 refs., 11 figs.« less

  8. Tritium-field betacells

    NASA Astrophysics Data System (ADS)

    Walko, R. J.; Lincoln, R. C.; Baca, W. E.; Goods, S. H.; Negley, G. H.

    Betavoltaic power sources operate by converting the nuclear decay energy of beta-emitting radioisotopes into electricity. Since they are not chemically driven, they could operate at temperatures which would either be too hot or too cold for typical chemical batteries. Further, for long lived isotopes, they offer the possibility of multi-decade active lifetimes. Two approaches are being investigated: direct and indirect conversion. Direct conversion cells consist of semiconductor diodes similar to photovoltaic cells. Beta particle directly bombard these cells, generating electron-hole pairs in the semiconductor which are converted to useful power. When using low power flux beta emitters, wide bandgap semiconductors are required to achieve useful conversion efficiencies. The combination of tritium, as the beta emitter, and gallium phosphide (GaP), as the semiconductor converter, was evaluated. Indirect conversion betacells first convert the beta energy to light with a phosphor, and then to electricity with photovoltaic cells. An indirect conversion power source using a tritium radioluminescent (RL) light is being investigated. Our analysis indicates that this approach has the potential for significant volume and cost savings over the direct conversion method.

  9. Cu gettering by phosphorus-doped emitters in p-type silicon: Effect on light-induced degradation

    NASA Astrophysics Data System (ADS)

    Inglese, Alessandro; Laine, Hannu S.; Vähänissi, Ville; Savin, Hele

    2018-01-01

    The presence of copper (Cu) contamination is known to cause relevant light-induced degradation (Cu-LID) effects in p-type silicon. Due to its high diffusivity, Cu is generally regarded as a relatively benign impurity, which can be readily relocated during device fabrication from the wafer bulk, i.e. the region affected by Cu-LID, to the surface phosphorus-doped emitter. This contribution examines in detail the impact of gettering by industrially relevant phosphorus layers on the strength of Cu-LID effects. We find that phosphorus gettering does not always prevent the occurrence of Cu-LID. Specifically, air-cooling after an isothermal anneal at 800°C results in only weak impurity segregation to the phosphorus-doped layer, which turns out to be insufficient for effectively mitigating Cu-LID effects. Furthermore, we show that the gettering efficiency can be enhanced through the addition of a slow cooling ramp (-4°C/min) between 800°C and 600°C, resulting in the nearly complete disappearance of Cu-LID effects.

  10. Improved light-extraction efficiency from organic light-emitting diodes using hazy SiO2 thin films created by using an aerosol-deposition method

    NASA Astrophysics Data System (ADS)

    Moon, Byung Seuk; Lee, Soo-Hyoung; Huh, Yoon Ho; Kwon, O. Eun; Park, Byoungchoo; Lee, Bumjoo; Lee, Seung-Hyun; Hwang, Inchan

    2015-04-01

    We herein report an investigation of the effect of rough thin films of SiO2 granules deposited on glass substrates of organic light-emitting devices (OLEDs) by using a simple, low-cost and scalable process based on a powder spray of SiO2 granules in vacuum, known as the aerosol-deposition method, with regard to their external light-extraction capabilities. The rough and hazy thin SiO2 films produced by using aerosol-deposition and acting as scattering centers were able to efficiently reduce the light-trapping loss in the glass substrate (glass mode) for internally-generated photons and to enhance the external quantum efficiency (EQE) of the OLEDs. Based on aerosol-deposited silica films with a thickness of 800 nm and a haze of 22% on glass substrates, the EQE of phosphorescent green OLEDs was found to be enhanced by 17%, from an EQE of 7.0% for smooth bare glass substrates to an EQE of 8.2%. Furthermore, the EQEs of fluorescent blue and phosphorescent red OLEDs were shown to be enhanced by 16%, from an EQE of 3.7% to 4.3%, and by 16%, from an EQE of 9.3% to 10.8%, respectively. These improvements in the EQEs without serious changes in the emission spectra or the Lambertian emitter property clearly indicate the high potential of the aerosol-deposition technique for the realization of highly-efficient light extraction in colorful OLED lighting.

  11. Metal Photocathodes for Free Electron Laser Applications

    NASA Astrophysics Data System (ADS)

    Greaves, Corin Michael Ricardo

    Synchrotron x-ray radiation sources have revolutionized many areas of science from elucidating the atomic structure of proteins to understanding the electronic structure of complex materials such as the cuprate superconductors. In a Free Electron Laser (FEL), the main difference to the synchrotron radiation mechanism is that the light field acts on the electron beam, over a long distance in an undulator, and causes electron bunching at the optical wavelength. Electrons in different parts of the electron bunch are therefore correlated, and so emit coherently, with a brightness that scales as the square of the number of electrons. In order to lase, the electron beam in a FEL must have a transverse geometric emittance less than the wavelength of the light to be produced. For the generation of x-ray wavelengths, this is one of the most difficult challenges in the design and construction of a FEL. The geometric emittance can be "compressed" by acceleration to very high energy, but with the penalty of very large physical size and very large cost. The motivation for this work was provided by the desire to investigate the fundamental origin of the emittance of an electron beam as it is born at a photocathode. If this initial, or "thermal" emittance can be reduced, the energy, scale and cost of accelerators potentially would be reduced. As the LCLS used copper as its photocathode, this material was the one studied in this work. Copper was used in the LCLS as it represented a "robust" material that could stand the very high accelerating gradients used in the photoinjector of the FEL. Metals are also prompt photoemitters, and so can be used to produce very short electron bunches. This can be a useful property for creation of extremely short FEL pulses, and also for creation of beams that are allowed to expand under space charge forces, but in a way that results in linear fields, allowing subsequent recompression. An ideal photocathode for FEL photoinjector should have high quantum efficiency (QE), small emittance, fast temporal response, long lifetime, and minimal complexity. High QE of cathodes require less power for driving laser and also reduce the risk of damaging the cathode materials. Small emittance reduce the scale of the accelerator, therefore, the cost. Metal photocathodes such as copper exhibit long lifetime and fast response, but have quite low quantum efficiency ( < 10-4). The aim in this work was to understand the quantum yield of the metal, and the transverse momentum spectrum, as the product of the latter and the cathode beam spot size gives the transverse emittance. Initial x-ray diffraction work provided evidence that the LCLS photocathode consisted of large low index single crystal grains, and so work focused on the study of single crystals that could be produced with atomically ordered surfaces, rather than a polycrystalline material. Present theories of quantum yield and transverse emittance assume the basic premise that the metal is entirely disordered, and work here shows that this is fundamentally incorrect, and that the order of the surface plays a critical role in determining the characteristics of emission. In order to investigate these surfaces, I constructed a laser-based ultra-low energy angle resolved photoemission system, capable of measuring the momentum spectrum of the emission and wavelength and angle dependent electron yield. This system has been commissioned, and data taken on low index surfaces of copper. Results from this work on single crystal copper demonstrates that emitted electrons from the band structure of a material can exhibit small emittance and high quantum efficiency. We show that the emission from the Cu(111) surface state is highly correlated between angle of incidence and excitation energy. This manifests itself in the form of a truncated emission cone, rather than the isotropic emission predicted from the normal model. This clearly then reduces the emittance from the normal values. It also results in extremely strong polarization dependence, with p-s asymmetry of up to 16 at low photon energy. It also directly suggests ways through changing materials, or by material design to significantly reduce emittance, at the same time increasing electron yield. These results show the benefits that could be gained from electronic engineering of cathodes and should have direct impact in the design of future FEL photoinjectors. (Abstract shortened by UMI.)

  12. Minimum emittance in TBA and MBA lattices

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Peng, Yue-Mei

    2015-03-01

    For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 31/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design.

  13. Distinguishing triplet energy transfer and trap-assisted recombination in multi-color organic light-emitting diode with an ultrathin phosphorescent emissive layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Qin, E-mail: xueqin19851202@163.com; Liu, Shouyin; Xie, Guohua

    2014-03-21

    An ultrathin layer of deep-red phosphorescent emitter tris(1-phenylisoquinoline) iridium (III) (Ir(piq){sub 3}) is inserted within different positions of the electron blocking layer fac-tris (1-phenylpyrazolato-N,C{sup 2′})-iridium(III) (Ir(ppz){sub 3}) to distinguish the contribution of the emission from the triplet exciton energy transfer/diffusion from the adjacent blue phosphorescent emitter and the trap-assisted recombination from the narrow band-gap emitter itself. The charge trapping effect of the narrow band-gap deep-red emitter which forms a quantum-well-like structure also plays a role in shaping the electroluminescent characteristics of multi-color organic light-emitting diodes. By accurately controlling the position of the ultrathin sensing layer, it is considerably easy tomore » balance the white emission which is quite challenging for full-color devices with multiple emission zones. There is nearly no energy transfer detectable if 7 nm thick Ir(ppz){sub 3} is inserted between the blue phosphorescent emitter and the ultrathin red emitter.« less

  14. Distributed proximity sensor system having embedded light emitters and detectors

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan (Inventor)

    1990-01-01

    A distributed proximity sensor system is provided with multiple photosensitive devices and light emitters embedded on the surface of a robot hand or other moving member in a geometric pattern. By distributing sensors and emitters capable of detecting distances and angles to points on the surface of an object from known points in the geometric pattern, information is obtained for achieving noncontacting shape and distance perception, i.e., for automatic determination of the object's shape, direction and distance, as well as the orientation of the object relative to the robot hand or other moving member.

  15. Radiation damage of gallium arsenide production cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Garlick, G. F. J.

    1987-01-01

    High-efficiency gallium arsenide cells, made by the liquid epitaxy method (LPE), have been irradiated with 1-MeV electrons up to fluences of 10 to the 16th e/sq cm. Measurements have been made of cell spectral response and dark and light-excited current-voltage characteristics and analyzed using computer-based models to determine underlying parameters such as damage coefficients. It is possible to use spectral response to sort out damage effects in the different cell component layers. Damage coefficients are similar to other reported in the literature for the emitter and buffer (base). However, there is also a damage effect in the window layer and possibly at the window emitter interface similar to that found for proton-irradiated liquid-phase epitaxy-grown cells. Depletion layer recombination is found to be less than theoretically expected at high fluence.

  16. High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays.

    PubMed

    Hobbs, Richard G; Yang, Yujia; Fallahi, Arya; Keathley, Philip D; De Leo, Eva; Kärtner, Franz X; Graves, William S; Berggren, Karl K

    2014-11-25

    Here we demonstrate the design, fabrication, and characterization of ultrafast, surface-plasmon enhanced Au nanorod optical field emitter arrays. We present a quantitative study of electron emission from Au nanorod arrays fabricated by high-resolution electron-beam lithography and excited by 35 fs pulses of 800 nm light. We present accurate models for both the optical field enhancement of Au nanorods within high-density arrays, and electron emission from those nanorods. We have also studied the effects of surface plasmon damping induced by metallic interface layers at the substrate/nanorod interface on near-field enhancement and electron emission. We have identified the peak optical field at which the electron emission mechanism transitions from a 3-photon absorption mechanism to strong-field tunneling emission. Moreover, we have investigated the effects of nanorod array density on nanorod charge yield, including measurement of space-charge effects. The Au nanorod photocathodes presented in this work display 100-1000 times higher conversion efficiency relative to previously reported UV triggered emission from planar Au photocathodes. Consequently, the Au nanorod arrays triggered by ultrafast pulses of 800 nm light in this work may outperform equivalent UV-triggered Au photocathodes, while also offering nanostructuring of the electron pulse produced from such a cathode, which is of interest for X-ray free-electron laser (XFEL) development where nanostructured electron pulses may facilitate more efficient and brighter XFEL radiation.

  17. High-efficiency tris(8-hydroxyquinoline)aluminum (Alq3) complexes for organic white-light-emitting diodes and solid-state lighting.

    PubMed

    Pérez-Bolívar, César; Takizawa, Shin-ya; Nishimura, Go; Montes, Victor A; Anzenbacher, Pavel

    2011-08-08

    Combinations of electron-withdrawing and -donating substituents on the 8-hydroxyquinoline ligand of the tris(8-hydroxyquinoline)aluminum (Alq(3)) complexes allow for control of the HOMO and LUMO energies and the HOMO-LUMO gap responsible for emission from the complexes. Here, we present a systematic study on tuning the emission and electroluminescence (EL) from Alq(3) complexes from the green to blue region. In this study, we explored the combination of electron-donating substituents on C4 and C6. Compounds 1-6 displayed the emission tuning between 478 and 526 nm, and fluorescence quantum yield between 0.15 and 0.57. The compounds 2-6 were used as emitters and hosts in organic light-emitting diodes (OLEDs). The highest OLED external quantum efficiency (EQE) observed was 4.6%, which is among the highest observed for Alq(3) complexes. Also, the compounds 3-5 were used as hosts for red phosphorescent dopants to obtain white light-emitting diodes (WOLED). The WOLEDs displayed high efficiency (EQE up to 19%) and high white color purity (color rendering index (CRI≈85). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Intrinsic white-light emission from layered hybrid perovskites.

    PubMed

    Dohner, Emma R; Jaffe, Adam; Bradshaw, Liam R; Karunadasa, Hemamala I

    2014-09-24

    We report on the second family of layered perovskite white-light emitters with improved photoluminescence quantum efficiencies (PLQEs). Upon near-ultraviolet excitation, two new Pb-Cl and Pb-Br perovskites emit broadband "cold" and "warm" white light, respectively, with high color rendition. Emission from large, single crystals indicates an origin from the bulk material and not surface defect sites. The Pb-Br perovskite has a PLQE of 9%, which is undiminished after 3 months of continuous irradiation. Our mechanistic studies indicate that the emission has contributions from strong electron-phonon coupling in a deformable lattice and from a distribution of intrinsic trap states. These hybrids provide a tunable platform for combining the facile processability of organic materials with the structural definition of crystalline, inorganic solids.

  19. Programmable near-infrared ranging system

    DOEpatents

    Everett, Jr., Hobart R.

    1989-01-01

    A high angular resolution ranging system particularly suitable for indoor plications involving mobile robot navigation and collision avoidance uses a programmable array of light emitters that can be sequentially incremented by a microprocessor. A plurality of adjustable level threshold detectors are used in an optical receiver for detecting the threshold level of the light echoes produced when light emitted from one or more of the emitters is reflected by a target or object in the scan path of the ranging system.

  20. High efficient white organic light-emitting diodes with single emissive layer using phosphorescent red, green, and blue dopants

    NASA Astrophysics Data System (ADS)

    Kim, You-Hyun; Wai Cheah, Kok; Young Kim, Woo

    2013-07-01

    Phosphorescent white organic light-emitting diodes (PHWOLEDs) with single emissive layer were fabricated by co-doping phosphorescent blue, green, and red emitters with different concentrations. WOLEDs using Ir(piq)3 and Ir(ppy)3 as red and green dopants along with 8% of Firpic as blue dopant with host materials of 4CzPBP in the emissive layer were compared under various doping ratio between Ir(piq)3 and Ir(ppy)3. Triplet-triplet Dexter energy transfer in single emissive PHWOLEDs including three primary colors was saturated from higher triplet energy levels to lower triplet energy levels directly.

  1. Analysis of translucent and opaque photocathodes.

    PubMed

    Sizelove, J R; Love Iii, J A

    1966-09-01

    By an analysis of the photodetection process, the response of photodetectors to wide band, noncoherent light and guidelines for its improvement are determined. In this paper, the phenomenon of multiple reflections within the emitter of a reflecting-translucent and a reflecting-opaque photocathode is analyzed. Geometrical and optical configurations and solid state parameters are evaluated in terms of their effect on the photodetection process. The quantum yield, the percent of incident light absorbed, and the collection efficiency are determined as functions of the thickness of the emitting layer. These results are then employed to suggest areas of improvement in the use of state-of-the-art photocathodes.

  2. Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems

    NASA Astrophysics Data System (ADS)

    Kohiyama, Asaka; Shimizu, Makoto; Yugami, Hiroo

    2018-04-01

    We numerically investigate radiative heat transfer enhancement using spectral and geometric control of the absorber/emitter. A high extraction of the radiative heat transfer from the emitter as well as minimization of the optical losses from the absorber leads to high extraction and solar thermophotovoltaic (STPV) system efficiency. The important points for high-efficiency STPV design are discussed for the low and high area ratio of the absorber/emitter. The obtained general guideline will support the design of various types of STPV systems.

  3. Chemiluminescence involving acidic and ambient ion light emitters. The chemiluminescence of the 9-acridinepercarboxylate anion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, E.H.; Roswell, D.F.; Dupont, A.C.

    The reaction of phenyl 9-acridinecarboxylate with an excess of peroxide ion in THF/water (67/33 mol %) leads to the emission of either bright yellow-green light or bright blue light, depending on the reaction conditions. The blue emission is favored by high concentrations of hydrogen peroxide and water, for example. 9-Acridinepercarboxylic acid is a common intermediate in the reactions. The light emitter responsible for the blue chemiluminescence is acridone, whereas that responsible for the yellow-green chemiluminescence is the anion of acridone. The effects of base concentration and solvent composition on the relative proportions of these two emitters have produced evidence that,more » contrary to the expectation of simple theory, a dioxetanone is not an intermediate in the reaction. Other cases where chemiluminescence may involve percarboxylate and peroxide ions are discussed.« less

  4. Rare Earth Doped High Temperature Ceramic Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study develops a spectral emittance model for films of rare earth containing materials. Although there are several possible rare earth doped high temperature materials, this study was confined to rare earth aluminum garnets. Good agreement between experimental and theoretical spectral emittances was found for erbium, thulium and erbium-holmium aluminum garnets. Spectral emittances of these films are sensitive to temperature differences across the film. Emitter efficiency is also a sensitive function of temperature. For thulium aluminum garnet the efficiency is 0.38 at 1700 K but only 0.19 at 1262 K.

  5. High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films.

    PubMed

    Purandare, Sumit; Gomez, Eliot F; Steckl, Andrew J

    2014-03-07

    Organic light-emitting diodes (OLED) were fabricated on flexible and transparent reconstituted cellulose obtained from wood pulp. Cellulose is naturally available, abundant, and biodegradable and offers a unique substrate alternative for the fabrication of flexible OLEDs. Transparent cellulose material was formed by dissolution of cellulose in an organic solvent (dimethyl acetamide) at elevated temperature (165 °C) in the presence of a salt (LiCl). The optical transmission of 40-μm thick transparent cellulose sheet averaged 85% over the visible spectrum. High brightness and high efficiency thin film OLEDs were fabricated on transparent cellulose films using phosphorescent Ir(ppy)3 as the emitter material. The OLEDs achieved current and luminous emission efficiencies as high as 47 cd A(-1) and 20 lm W(-1), respectively, and a maximum brightness of 10,000 cd m(-2).

  6. High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films

    NASA Astrophysics Data System (ADS)

    Purandare, Sumit; Gomez, Eliot F.; Steckl, Andrew J.

    2014-03-01

    Organic light-emitting diodes (OLED) were fabricated on flexible and transparent reconstituted cellulose obtained from wood pulp. Cellulose is naturally available, abundant, and biodegradable and offers a unique substrate alternative for the fabrication of flexible OLEDs. Transparent cellulose material was formed by dissolution of cellulose in an organic solvent (dimethyl acetamide) at elevated temperature (165 °C) in the presence of a salt (LiCl). The optical transmission of 40-μm thick transparent cellulose sheet averaged 85% over the visible spectrum. High brightness and high efficiency thin film OLEDs were fabricated on transparent cellulose films using phosphorescent Ir(ppy)3 as the emitter material. The OLEDs achieved current and luminous emission efficiencies as high as 47 cd A-1 and 20 lm W-1, respectively, and a maximum brightness of 10 000 cd m-2.

  7. Detailed Modeling of Physical Processes in Electron Sources for Accelerator Applications

    NASA Astrophysics Data System (ADS)

    Chubenko, Oksana; Afanasev, Andrei

    2017-01-01

    At present, electron sources are essential in a wide range of applications - from common technical use to exploring the nature of matter. Depending on the application requirements, different methods and materials are used to generate electrons. State-of-the-art accelerator applications set a number of often-conflicting requirements for electron sources (e.g., quantum efficiency vs. polarization, current density vs. lifetime, etc). Development of advanced electron sources includes modeling and design of cathodes, material growth, fabrication of cathodes, and cathode testing. The detailed simulation and modeling of physical processes is required in order to shed light on the exact mechanisms of electron emission and to develop new-generation electron sources with optimized efficiency. The purpose of the present work is to study physical processes in advanced electron sources and develop scientific tools, which could be used to predict electron emission from novel nano-structured materials. In particular, the area of interest includes bulk/superlattice gallium arsenide (bulk/SL GaAs) photo-emitters and nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) photo/field-emitters. Work supported by The George Washington University and Euclid TechLabs LLC.

  8. Kinetic Monte Carlo simulation of the efficiency roll-off, emission color, and degradation of organic light-emitting diodes (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Coehoorn, Reinder; van Eersel, Harm; Bobbert, Peter A.; Janssen, Rene A. J.

    2015-10-01

    The performance of Organic Light Emitting Diodes (OLEDs) is determined by a complex interplay of the charge transport and excitonic processes in the active layer stack. We have developed a three-dimensional kinetic Monte Carlo (kMC) OLED simulation method which includes all these processes in an integral manner. The method employs a physically transparent mechanistic approach, and is based on measurable parameters. All processes can be followed with molecular-scale spatial resolution and with sub-nanosecond time resolution, for any layer structure and any mixture of materials. In the talk, applications to the efficiency roll-off, emission color and lifetime of white and monochrome phosphorescent OLEDs [1,2] are demonstrated, and a comparison with experimental results is given. The simulations show to which extent the triplet-polaron quenching (TPQ) and triplet-triplet-annihilation (TTA) contribute to the roll-off, and how the microscopic parameters describing these processes can be deduced properly from dedicated experiments. Degradation is treated as a result of the (accelerated) conversion of emitter molecules to non-emissive sites upon a triplet-polaron quenching (TPQ) process. The degradation rate, and hence the device lifetime, is shown to depend on the emitter concentration and on the precise type of TPQ process. Results for both single-doped and co-doped OLEDs are presented, revealing that the kMC simulations enable efficient simulation-assisted layer stack development. [1] H. van Eersel et al., Appl. Phys. Lett. 105, 143303 (2014). [2] R. Coehoorn et al., Adv. Funct. Mater. (2015), publ. online (DOI: 10.1002/adfm.201402532)

  9. Compact 2100 nm laser diode module for next-generation DIRCM

    NASA Astrophysics Data System (ADS)

    Dvinelis, Edgaras; Greibus, Mindaugas; TrinkÅ«nas, Augustinas; NaujokaitÄ--, Greta; Vizbaras, Augustinas; Vizbaras, Dominykas; Vizbaras, Kristijonas

    2017-10-01

    Compact high-power 2100 nm laser diode module for next-generation directional infrared countermeasure (DIRCM) systems is presented. Next-generation DIRCM systems require compact, light-weight and robust laser modules which could provide intense IR light emission capable of disrupting the tracking sensor of heat-seeking missile. Currently used solid-state and fiber laser solutions for mid-IR band are bulky and heavy making them difficult to implement in smaller form-factor DIRCM systems. Recent development of GaSb laser diode technology greatly improved optical output powers and efficiencies of laser diodes working in 1900 - 2450 nm band [1] while also maintaining very attractive size, weight, power consumption and cost characteristics. 2100 nm laser diode module presented in this work performance is based on high-efficiency broad emitting area GaSb laser diode technology. Each laser diode emitter is able to provide 1 W of CW output optical power with working point efficiency up to 20% at temperature of 20 °C. For output beam collimation custom designed fast-axis collimator and slow-axis collimator lenses were used. These lenses were actively aligned and attached using UV epoxy curing. Total 2 emitters stacked vertically were used in 2100 nm laser diode module. Final optical output power of the module goes up to 2 W at temperature of 20 °C. Total dimensions of the laser diode module are 35 x 25 x 16 mm (L x W x H) with a weight of 28 grams. Finally output beam is bore-sighted to mechanical axes of the module housing allowing for easy integration into next-generation DIRCM systems.

  10. Enhanced thermaly managed packaging for III-nitride light emitters

    NASA Astrophysics Data System (ADS)

    Kudsieh, Nicolas

    In this Dissertation our work on `enhanced thermally managed packaging of high power semiconductor light sources for solid state lighting (SSL)' is presented. The motivation of this research and development is to design thermally high stable cost-efficient packaging of single and multi-chip arrays of III-nitrides wide bandgap semiconductor light sources through mathematical modeling and simulations. Major issues linked with this technology are device overheating which causes serious degradation in their illumination intensity and decrease in the lifetime. In the introduction the basics of III-nitrides WBG semiconductor light emitters are presented along with necessary thermal management of high power cingulated and multi-chip LEDs and laser diodes. This work starts at chip level followed by its extension to fully packaged lighting modules and devices. Different III-nitride structures of multi-quantum well InGaN/GaN and AlGaN/GaN based LEDs and LDs were analyzed using advanced modeling and simulation for different packaging designs and high thermal conductivity materials. Study started with basic surface mounted devices using conventional packaging strategies and was concluded with the latest thermal management of chip-on-plate (COP) method. Newly discovered high thermal conductivity materials have also been incorporated for this work. Our study also presents the new approach of 2D heat spreaders using such materials for SSL and micro LED array packaging. Most of the work has been presented in international conferences proceedings and peer review journals. Some of the latest work has also been submitted to well reputed international journals which are currently been reviewed for publication. .

  11. Design, fabrication, and experimental characterization of plasmonic photoconductive terahertz emitters.

    PubMed

    Berry, Christopher; Hashemi, Mohammad Reza; Unlu, Mehmet; Jarrahi, Mona

    2013-07-08

    In this video article we present a detailed demonstration of a highly efficient method for generating terahertz waves. Our technique is based on photoconduction, which has been one of the most commonly used techniques for terahertz generation (1-8). Terahertz generation in a photoconductive emitter is achieved by pumping an ultrafast photoconductor with a pulsed or heterodyned laser illumination. The induced photocurrent, which follows the envelope of the pump laser, is routed to a terahertz radiating antenna connected to the photoconductor contact electrodes to generate terahertz radiation. Although the quantum efficiency of a photoconductive emitter can theoretically reach 100%, the relatively long transport path lengths of photo-generated carriers to the contact electrodes of conventional photoconductors have severely limited their quantum efficiency. Additionally, the carrier screening effect and thermal breakdown strictly limit the maximum output power of conventional photoconductive terahertz sources. To address the quantum efficiency limitations of conventional photoconductive terahertz emitters, we have developed a new photoconductive emitter concept which incorporates a plasmonic contact electrode configuration to offer high quantum-efficiency and ultrafast operation simultaneously. By using nano-scale plasmonic contact electrodes, we significantly reduce the average photo-generated carrier transport path to photoconductor contact electrodes compared to conventional photoconductors (9). Our method also allows increasing photoconductor active area without a considerable increase in the capacitive loading to the antenna, boosting the maximum terahertz radiation power by preventing the carrier screening effect and thermal breakdown at high optical pump powers. By incorporating plasmonic contact electrodes, we demonstrate enhancing the optical-to-terahertz power conversion efficiency of a conventional photoconductive terahertz emitter by a factor of 50 (10).

  12. On the Ionization and Ion Transmission Efficiencies of Different ESI-MS Interfaces

    PubMed Central

    Cox, Jonathan T.; Marginean, Ioan; Smith, Richard D.; Tang, Keqi

    2014-01-01

    The achievable sensitivity of electrospray ionization mass spectrometry (ESI-MS) is largely determined by the ionization efficiency in the ESI source and ion transmission efficiency through the ESI-MS interface. These performance characteristics are difficult to evaluate and compare across multiple platforms as it is difficult to correlate electrical current measurements to actual analyte ions reaching the detector of a mass spectrometer. We present an effective method to evaluate the overall ion utilization efficiency of an ESI-MS interface by measuring the total gas phase ion current transmitted through the interface and correlating it to the observed ion abundance measured in the corresponding mass spectrum. Using this method we systematically studied the ion transmission and ionization efficiencies of different ESI-MS interface configurations, including a single emitter/single inlet capillary, single emitter/multi-inlet capillary, and a subambient pressure ionization with nanoelectrospray (SPIN) MS interface with a single emitter and an emitter array, respectively. Our experimental results indicate that the overall ion utilization efficiency of SPIN-MS interface configurations exceeds that of the inlet capillary-based ESI-MS interface configurations. PMID:25267087

  13. On the ionization and ion transmission efficiencies of different ESI-MS interfaces.

    PubMed

    Cox, Jonathan T; Marginean, Ioan; Smith, Richard D; Tang, Keqi

    2015-01-01

    The achievable sensitivity of electrospray ionization mass spectrometry (ESI-MS) is largely determined by the ionization efficiency in the ESI source and ion transmission efficiency through the ESI-MS interface. These performance characteristics are difficult to evaluate and compare across multiple platforms as it is difficult to correlate electrical current measurements to actual analyte ions reaching the detector of a mass spectrometer. We present an effective method to evaluate the overall ion utilization efficiency of an ESI-MS interface by measuring the total gas-phase ion current transmitted through the interface and correlating it to the observed ion abundance measured in the corresponding mass spectrum. Using this method, we systematically studied the ion transmission and ionization efficiencies of different ESI-MS interface configurations, including a single emitter/single inlet capillary, single emitter/multi-inlet capillary, and a subambient pressure ionization with nanoelectrospray (SPIN) MS interface with a single emitter and an emitter array, respectively. Our experimental results indicate that the overall ion utilization efficiency of SPIN-MS interface configurations exceeds that of the inlet capillary-based ESI-MS interface configurations.

  14. Blue Light Emitting Polyphenylene Dendrimers with Bipolar Charge Transport Moieties.

    PubMed

    Zhang, Guang; Auer-Berger, Manuel; Gehrig, Dominik W; Blom, Paul W M; Baumgarten, Martin; Schollmeyer, Dieter; List-Kratochvil, E J W; Müllen, Klaus

    2016-10-20

    Two light-emitting polyphenylene dendrimers with both hole and electron transporting moieties were synthesized and characterized. Both molecules exhibited pure blue emission solely from the pyrene core and efficient surface-to-core energy transfers when characterized in a nonpolar environment. In particular, the carbazole- and oxadiazole-functionalized dendrimer ( D1 ) manifested a pure blue emission from the pyrene core without showing intramolecular charge transfer (ICT) in environments with increasing polarity. On the other hand, the triphenylamine- and oxadiazole-functionalized one ( D2 ) displayed notable ICT with dual emission from both the core and an ICT state in highly polar solvents. D1 , in a three-layer organic light emitting diode (OLED) by solution processing gave a pure blue emission with Commission Internationale de l'Éclairage 1931 CIE xy = (0.16, 0.12), a peak current efficiency of 0.21 cd/A and a peak luminance of 2700 cd/m². This represents the first reported pure blue dendrimer emitter with bipolar charge transport and surface-to-core energy transfer in OLEDs.

  15. Fabrication and electrical characterization of planar lighting devices with Cs3Sb photocathode emitters

    NASA Astrophysics Data System (ADS)

    Jeong, Hyo-Soo; Keller, Kris; Culkin, Brad

    2017-03-01

    Non-vacuum process technology was used to produce Cs3Sb photocathodes on substrates, and in-situ panel devices were fabricated. The performance of the devices was characterized by measuring the anode current as functions of the devices' operation times. An excitation light source with a 475-nm wavelength was used for the photocathodes. The device has a simple diode structure, providing unique characteristics such as a large gap, vertical electron beam directionality, and resistance to surface contamination from ion bombardment and poisoning by outgassing species. Accordingly, Cs3Sb photocathodes function as flat emitters, and the emission properties of the photocathode emitters depend on the vacuum level of the devices. An improved current stability has been observed after conducting an electrical conditioning process to remove possible adsorbates on the Cs3Sb flat emitters.

  16. Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals beyond Quantum Size.

    PubMed

    Kim, Young-Hoon; Wolf, Christoph; Kim, Young-Tae; Cho, Himchan; Kwon, Woosung; Do, Sungan; Sadhanala, Aditya; Park, Chan Gyung; Rhee, Shi-Woo; Im, Sang Hyuk; Friend, Richard H; Lee, Tae-Woo

    2017-07-25

    Colloidal metal-halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter D B (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > D B (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than D B show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete film coverage and prevents exciton quenching at the PEDOT:PSS/perovskite particle film interface. With these strategies, we achieved a very high PLQE (∼60.5%) in compact perovskite particle films without any complex post-treatments and multilayers and a high current efficiency of 15.5 cd/A in the LEDs of colloidal perovskite NCs, even in a simplified structure, which is the highest efficiency to date in green LEDs that use colloidal organic-inorganic metal-halide perovskite nanoparticles including perovskite QDs and NCs. These results can help to guide development of various light-emitting optoelectronic applications based on perovskite NCs.

  17. Mirrorless lasing from light emitters in percolating clusters

    NASA Astrophysics Data System (ADS)

    Burlak, Gennadiy; Rubo, Y. G.

    2015-07-01

    We describe the lasing effect in the three-dimensional percolation system, where the percolating cluster is filled by active media composed by light emitters excited noncoherently. We show that, due to the presence of a topologically nontrivial photonic structure, the stimulated emission is modified with respect to both conventional and random lasers. The time dynamics and spectra of the lasing output are studied numerically with finite-difference time-domain approach. The Fermat principle and Monte Carlo approach are applied to characterize the optimal optical path and interconnection between the radiating emitters. The spatial structure of the laser mode is found by a long-time FDTD simulation.

  18. Optical devices featuring textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC

    2011-10-11

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  19. Optical devices featuring textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC

    2012-08-07

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  20. One-Shot Multiple Borylation toward BN-Doped Nanographenes.

    PubMed

    Matsui, Kohei; Oda, Susumu; Yoshiura, Kazuki; Nakajima, Kiichi; Yasuda, Nobuhiro; Hatakeyama, Takuji

    2018-01-31

    One-shot double, triple, and quadruple borylation reactions of triarylamines were developed through a judicious choice of boron source and Brønsted base. With the aid of borylation reactions, a variety of BN-doped nanographenes were synthesized in two steps from commercially available starting materials. An organic light-emitting diode device employing BN-doped nanographene as an emitter exhibited deep pure-blue emission at 460 nm, with CIE coordinates of (0.13, 0.11), and an external quantum efficiency of 18.3%.

  1. Quantum dot light emitting devices for photomedical applications.

    PubMed

    Chen, Hao; He, Juan; Lanzafame, Raymond; Stadler, Istvan; Hamidi, Hamid El; Liu, Hui; Celli, Jonathan; Hamblin, Michael R; Huang, Yingying; Oakley, Emily; Shafirstein, Gal; Chung, Ho-Kyoon; Wu, Shin-Tson; Dong, Yajie

    2017-03-01

    While OLEDs have struggled to find a niche lighting application that can fully take advantage of their unique form factors as thin, flexible, lightweight and uniformly large-area luminaire, photomedical researchers have been in search of low-cost, effective illumination devices with such form factors that could facilitate widespread clinical applications of photodynamic therapy (PDT) or photobiomodulation (PBM). Although existing OLEDs with either fluorescent or phosphorescent emitters cannot achieve the required high power density at the right wavelength windows for photomedicine, the recently developed ultrabright and efficient deep red quantum dot light emitting devices (QLEDs) can nicely fit into this niche. Here, we report for the first time the in-vitro study to demonstrate that this QLED-based photomedical approach could increase cell metabolism over control systems for PBM and kill cancerous cells efficiently for PDT. The perspective of developing wavelength-specific, flexible QLEDs for two critical photomedical fields (wound repair and cancer treatment) will be presented with their potential impacts summarized. The work promises to generate flexible QLED-based light sources that could enable the widespread use and clinical acceptance of photomedical strategies including PDT and PBM.

  2. Quantum dot light emitting devices for photomedical applications

    PubMed Central

    Chen, Hao; He, Juan; Lanzafame, Raymond; Stadler, Istvan; Hamidi, Hamid El; Liu, Hui; Celli, Jonathan; Hamblin, Michael R.; Huang, Yingying; Oakley, Emily; Shafirstein, Gal; Chung, Ho-Kyoon; Wu, Shin-Tson; Dong, Yajie

    2017-01-01

    While OLEDs have struggled to find a niche lighting application that can fully take advantage of their unique form factors as thin, flexible, lightweight and uniformly large-area luminaire, photomedical researchers have been in search of low-cost, effective illumination devices with such form factors that could facilitate widespread clinical applications of photodynamic therapy (PDT) or photobiomodulation (PBM). Although existing OLEDs with either fluorescent or phosphorescent emitters cannot achieve the required high power density at the right wavelength windows for photomedicine, the recently developed ultrabright and efficient deep red quantum dot light emitting devices (QLEDs) can nicely fit into this niche. Here, we report for the first time the in-vitro study to demonstrate that this QLED-based photomedical approach could increase cell metabolism over control systems for PBM and kill cancerous cells efficiently for PDT. The perspective of developing wavelength-specific, flexible QLEDs for two critical photomedical fields (wound repair and cancer treatment) will be presented with their potential impacts summarized. The work promises to generate flexible QLED-based light sources that could enable the widespread use and clinical acceptance of photomedical strategies including PDT and PBM. PMID:28867926

  3. 'Squeezing' near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion.

    PubMed

    Karalis, Aristeidis; Joannopoulos, J D

    2016-07-01

    We numerically demonstrate near-field planar ThermoPhotoVoltaic systems with very high efficiency and output power, at large vacuum gaps. Example performances include: at 1200 °K emitter temperature, output power density 2 W/cm(2) with ~47% efficiency at 300 nm vacuum gap; at 2100 °K, 24 W/cm(2) with ~57% efficiency at 200 nm gap; and, at 3000 °K, 115 W/cm(2) with ~61% efficiency at 140 nm gap. Key to this striking performance is a novel photonic design forcing the emitter and cell single modes to cros resonantly couple and impedance-match just above the semiconductor bandgap, creating there a 'squeezed' narrowband near-field emission spectrum. Specifically, we employ surface-plasmon-polariton thermal emitters and silver-backed semiconductor-thin-film photovoltaic cells. The emitter planar plasmonic nature allows for high-power and stable high-temperature operation. Our simulations include modeling of free-carrier absorption in both cell electrodes and temperature dependence of the emitter properties. At high temperatures, the efficiency enhancement via resonant mode cross-coupling and matching can be extended to even higher power, by appropriately patterning the silver back electrode to enforce also an absorber effective surface-plasmon-polariton mode. Our proposed designs can therefore lead the way for mass-producible and low-cost ThermoPhotoVoltaic micro-generators and solar cells.

  4. ‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion

    PubMed Central

    Karalis, Aristeidis; Joannopoulos, J. D.

    2016-01-01

    We numerically demonstrate near-field planar ThermoPhotoVoltaic systems with very high efficiency and output power, at large vacuum gaps. Example performances include: at 1200 °K emitter temperature, output power density 2 W/cm2 with ~47% efficiency at 300 nm vacuum gap; at 2100 °K, 24 W/cm2 with ~57% efficiency at 200 nm gap; and, at 3000 °K, 115 W/cm2 with ~61% efficiency at 140 nm gap. Key to this striking performance is a novel photonic design forcing the emitter and cell single modes to cros resonantly couple and impedance-match just above the semiconductor bandgap, creating there a ‘squeezed’ narrowband near-field emission spectrum. Specifically, we employ surface-plasmon-polariton thermal emitters and silver-backed semiconductor-thin-film photovoltaic cells. The emitter planar plasmonic nature allows for high-power and stable high-temperature operation. Our simulations include modeling of free-carrier absorption in both cell electrodes and temperature dependence of the emitter properties. At high temperatures, the efficiency enhancement via resonant mode cross-coupling and matching can be extended to even higher power, by appropriately patterning the silver back electrode to enforce also an absorber effective surface-plasmon-polariton mode. Our proposed designs can therefore lead the way for mass-producible and low-cost ThermoPhotoVoltaic micro-generators and solar cells. PMID:27363522

  5. Tailoring the chirality of light emission with spherical Si-based antennas.

    PubMed

    Zambrana-Puyalto, Xavier; Bonod, Nicolas

    2016-05-21

    Chirality of light is of fundamental importance in several enabling technologies with growing applications in life sciences, chemistry and photodetection. Recently, some attention has been focused on chiral quantum emitters. Consequently, optical antennas which are able to tailor the chirality of light emission are needed. Spherical nanoresonators such as colloids are of particular interest to design optical antennas since they can be synthesized at a large scale and they exhibit good optical properties. Here, we show that these colloids can be used to tailor the chirality of a chiral emitter. To this purpose, we derive an analytic formalism to model the interaction between a chiral emitter and a spherical resonator. We then compare the performances of metallic and dielectric spherical antennas to tailor the chirality of light emission. It is seen that, due to their strong electric dipolar response, metallic spherical nanoparticles spoil the chirality of light emission by yielding achiral fields. In contrast, thanks to the combined excitation of electric and magnetic modes, dielectric Si-based particles feature the ability to inhibit or to boost the chirality of light emission. Finally, it is shown that dual modes in dielectric antennas preserve the chirality of light emission.

  6. Comparative Study of Zn(O,S) Buffer Layers and CIGS Solar Cells Fabricated by CBD, ALD, and Sputtering: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramanathan, K.; Mann, J.; Glynn, S.

    2012-06-01

    Zn(O,S) thin films were deposited by chemical bath deposition (CBD), atomic layer deposition, and sputtering. Composition of the films and band gap were measured and found to follow the trends described in the literature. CBD Zn(O,S) parameters were optimized and resulted in an 18.5% efficiency cell that did not require post annealing, light soaking, or an undoped ZnO layer. Promising results were obtained with sputtering. A 13% efficiency cell was obtained for a Zn(O,S) emitter layer deposited with 0.5%O2. With further optimization of process parameters and an analysis of the loss mechanisms, it should be possible to increase the efficiency.

  7. Microcavity enhanced single photon emission from two-dimensional WSe2

    NASA Astrophysics Data System (ADS)

    Flatten, L. C.; Weng, L.; Branny, A.; Johnson, S.; Dolan, P. R.; Trichet, A. A. P.; Gerardot, B. D.; Smith, J. M.

    2018-05-01

    Atomically flat semiconducting materials such as monolayer WSe2 hold great promise for novel optoelectronic devices. Recently, quantum light emission has been observed from bound excitons in exfoliated WSe2. As part of developing optoelectronic devices, the control of the radiative properties of such emitters is an important step. Here, we report the coupling of a bound exciton in WSe2 to open microcavities. We use a range of radii of curvature in the plano-concave cavity geometry with mode volumes in the λ3 regime, giving Purcell factors of up to 8 while increasing the photon flux five-fold. Additionally, we determine the quantum efficiency of the single photon emitter to be η=0.46 ±0.03 . Our findings pave the way to cavity-enhanced monolayer based single photon sources for a wide range of applications in nanophotonics and quantum information technologies.

  8. Active magneto-optical control of spontaneous emission in graphene

    DOE PAGES

    Kort-Kamp, W. J. M.; Amorim, B.; Bastos, G.; ...

    2015-11-13

    In this study, we investigate the spontaneous emission rate of a two-level quantum emitter near a graphene-coated substrate under the influence of an external magnetic field or strain induced pseudomagnetic field. We demonstrate that the application of the magnetic field can substantially increase or decrease the decay rate. We show that a suppression as large as 99% in the Purcell factor is achieved even for moderate magnetic fields. The emitter's lifetime is a discontinuous function of |B|, which is a direct consequence of the occurrence of discrete Landau levels in graphene. We demonstrate that, in the near-field regime, the magneticmore » field enables an unprecedented control of the decay pathways into which the photon/polariton can be emitted. Our findings strongly suggest that a magnetic field could act as an efficient agent for on-demand, active control of light-matter interactions in graphene at the quantum level.« less

  9. Physics issues in diffraction limited storage ring design

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Bai, ZhengHe; Gao, WeiWei; Feng, GuangYao; Li, WeiMin; Wang, Lin; He, DuoHui

    2012-05-01

    Diffraction limited electron storage ring is considered a promising candidate for future light sources, whose main characteristics are higher brilliance, better transverse coherence and better stability. The challenge of diffraction limited storage ring design is how to achieve the ultra low beam emittance with acceptable nonlinear performance. Effective linear and nonlinear parameter optimization methods based on Artificial Intelligence were developed for the storage ring physical design. As an example of application, partial physical design of HALS (Hefei Advanced Light Source), which is a diffraction limited VUV and soft X-ray light source, was introduced. Severe emittance growth due to the Intra Beam Scattering effect, which is the main obstacle to achieve ultra low emittance, was estimated quantitatively and possible cures were discussed. It is inspiring that better performance of diffraction limited storage ring can be achieved in principle with careful parameter optimization.

  10. Deterministic photon-emitter coupling in chiral photonic circuits.

    PubMed

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  11. Deterministic photon-emitter coupling in chiral photonic circuits

    NASA Astrophysics Data System (ADS)

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  12. Thermally activated delayed fluorescent phenothiazine–dibenzo[a,j]phenazine–phenothiazine triads exhibiting tricolor-changing mechanochromic luminescence† †Electronic supplementary information (ESI) available: Synthetic procedures, spectroscopic data, copies of NMR charts, physicochemical properties, and device fabrication and performances. CCDC 1452024. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6sc04863c Click here for additional data file. Click here for additional data file.

    PubMed Central

    Okazaki, Masato; Pander, Piotr; Higginbotham, Heather; Monkman, Andrew P.

    2017-01-01

    Novel U-shaped donor–acceptor–donor (D–A–D) π-conjugated multi-functional molecules comprising dibenzo[a,j]phenazine (DBPHZ) as an acceptor and phenothiazines (PTZ) as donors have been developed. Most importantly, the D–A–D compounds exhibit not only distinct tricolor-changeable mechanochromic luminescence (MCL) properties but also efficient thermally activated delayed fluorescence (TADF). Quantum chemical calculations, X-ray diffraction analysis, and systematic studies on the photophysical properties indicated that the “two-conformation-switchable” PTZ units play a highly important role in achieving multi-color-changing MCL. Time-resolved photophysical measurements revealed that the developed D–A–D compounds also exhibit efficient orange-TADF. Furthermore, organic light-emitting diode (OLED) devices fabricated with the new TADF emitters have achieved high external quantum efficiencies (EQEs) up to 16.8%, which significantly exceeds the theoretical maximum (∼5%) of conventional fluorescent emitters. PMID:28553504

  13. Efficient HOMO-LUMO separation by multiple resonance effect toward ultrapure blue thermally activated delayed fluorescence

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Takuji; Ikuta, Toshiaki; Shiren, Kazushi; Nakajima, Kiichi; Nomura, Shintaro; Ni, Jingping

    2016-09-01

    Organic light-emitting diodes (OLEDs) play an important role in the new generation of flat-panel displays. Conventional OLEDs employing fluorescent materials together with triplet-triplet annihilation suffer from a relatively low internal quantum efficiency (IQE) of 62.5%. On the other hand, the IQE of OLEDs employing phosphorescent or thermally activated delayed fluorescence (TADF) materials can reach 100%. However, these materials exhibit very broad peaks with a full-width at half-maximum (FWHM) of 70-100 nm and cannot satisfy the color-purity requirements for displays. Therefore, the latest commercial OLED displays employ blue fluorescent materials with a relatively low IQE, and efficient blue emitters with a small FWHM are highly needed. In our manuscript, we present organic molecules that exhibit ultrapure blue fluorescence based on TADF. These molecules consist of three benzene rings connected by one boron and two nitrogen atoms, which establish a rigid polycyclic framework and significant localization of the highest occupied and lowest unoccupied molecular orbitals by a multiple resonance effect. An OLED device based on the new emitter exhibits ultrapure blue emission at 467 nm with an FWHM of 28 nm, Commission Internationale de l'Eclairage (CIE) coordinates of (0.12, 0.13), and an IQE of 100%, which represent record-setting performance for blue OLED devices.

  14. Interfacing a small thermophotovoltaic generator to the grid

    NASA Astrophysics Data System (ADS)

    Durisch, W.; Grob, B.; Mayor, J.-C.; Panitz, J.-C.; Rosselet, A.

    1999-03-01

    A prototype thermophotovoltaic generator and grid-interfacing device have been developed to demonstrate the feasibility of grid-connected operation. For this purpose a conventional butane burner (rated power 1.35 kWth) was equipped with a ceramic composite emitter made of rare earth oxides. A water layer between emitter and photocells was used to protect the photocells against overheating. It absorbs the nonconvertible emitter radiation and is heated up thereby. The hot water so produced in larger units of this type could be used in a primary recirculation loop to transfer heat to a secondary domestic hot water system. For the photovoltaic generator, commercial grade silicon solar cells with 16% efficiency (under standard test conditions) were used. With the radiation of the emitter, a current of 4.6 A at a maximum power point voltage of 3.3 V was produced, corresponding to a DC output of 15 W and a thermal to DC power conversion efficiency of 1.1%. A specially developed high efficiency DC/DC converter and a modified, commercially available inverter were used to feed the generated power to the local grid. Under the experimental conditions in question the DC/DC-converter and the grid-inverter had efficiencies of 98 and 91%, respectively resulting in an overall interface efficiency of 89%. From modeling of the measured electrical characteristics of the photo cell generator under solar and emitter radiation, it is concluded that the photo current was about three times higher under the filtered emitter radiation. Under these conditions the electrical losses of the photocells were significantly higher than under sunlight.

  15. New Molecular Design Concurrently Providing Superior Pure Blue, Thermally Activated Delayed Fluorescence and Optical Out-Coupling Efficiencies.

    PubMed

    Rajamalli, P; Senthilkumar, N; Huang, P-Y; Ren-Wu, C-C; Lin, H-W; Cheng, C-H

    2017-08-16

    Simultaneous enhancement of out-coupling efficiency, internal quantum efficiency, and color purity in thermally activated delayed fluorescence (TADF) emitters is highly desired for the practical application of these materials. We designed and synthesized two isomeric TADF emitters, 2DPyM-mDTC and 3DPyM-pDTC, based on di(pyridinyl)methanone (DPyM) cores as the new electron-accepting units and di(tert-butyl)carbazole (DTC) as the electron-donating units. 3DPyM-pDTC, which is structurally nearly planar with a very small ΔE ST , shows higher color purity, horizontal ratio, and quantum yield than 2DPyM-mDTC, which has a more flexible structure. An electroluminescence device based on 3DPyM-pDTC as the dopant emitter can reach an extremely high external quantum efficiency of 31.9% with a pure blue emission. This work also demonstrates a way to design materials with a high portion of horizontal molecular orientation to realize a highly efficient pure-blue device based on TADF emitters.

  16. Optical spectroscopy and photo modification of individual single-photon emitters in hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Jayakumar, Harishankar; Shotan, Zav; Considine, Christopher; Mazkoit, Mažena; Fedder, Helmut; Wrachtrup, Joerg; Alkauskas, Audrius; Doherty, Marcus; Menon, Vinod; Meriles, Carlos

    Fluorescent defects recently observed under ambient conditions in hexagonal boron nitride (h-BN) promise to open novel opportunities for the implementation of on-chip photonic devices that rely on identical photons from single emitters. Here we report on the room temperature photo-luminescence dynamics of individual emitters in multilayer h-BN flakes exposed to blue laser light. Comparison of optical spectra recorded at successive times reveals considerable spectral diffusion, possibly the result of slowly fluctuating, trapped-carrier-induced stark shifts. Large spectral jumps - reaching up to 100 nm - followed by bleaching are observed in most cases upon prolonged exposure to blue light, an indication of one-directional, photo-chemical changes likely taking place on the flake surface. Remarkably, only a fraction of the observed emitters also fluoresces on green illumination suggesting a more complex optical excitation dynamics than previously anticipated and raising questions on the physical nature of the atomic defect at play.

  17. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1994-01-01

    A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.

  18. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1994-05-31

    A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.

  19. PHILOSOPHY FOR NSLS-II DESIGN WITH SUB-NANOMETER HORIZONTAL EMITTANCE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OZAKI,S.; BENGTSSON, J.; KRAMER, S.L.

    2007-06-25

    NSLS-II at Brookhaven National Laboratory is a new third-generation storage ring light source, whose construction is on the verge of being approved by DOE. When completed, NSLS-II with its ability to provide users with a wide range of spectrum, ranging from IR to ultra-high brightness hard x-ray beams will replace the existing two (20+ years old) NSLS light sources. While presenting an overview of the NSLS-II accelerator system, this paper focuses on the strategy and development of a novel <1 nm emittance light source.

  20. Cool white light-emitting three stack OLED structures for AMOLED display applications.

    PubMed

    Springer, Ramon; Kang, Byoung Yeop; Lampande, Raju; Ahn, Dae Hyun; Lenk, Simone; Reineke, Sebastian; Kwon, Jang Hyuk

    2016-11-28

    This paper demonstrates 2-stack and 3-stack white organic light-emitting diodes (WOLEDs) with fluorescent blue and phosphorescent yellow emissive units. The 2-stack and 3-stack WOLED comprises blue-yellow and blue-blue-yellow (blue-yellow-blue) combinations. The position of the yellow emitter and possible cavity lengths in different stack architectures are theoretically and experimentally investigated to reach Commission Internationale de L'Eclairage (CIE) coordinates of near (0.333/0.333). Here, a maximum external quantum efficiency (EQE) of 23.6% and current efficiency of 62.2 cd/A at 1000 cd/m2 as well as suitable CIE color coordinates of (0.335/0.313) for the blue-blue-yellow 3-stack hybrid WOLED structure is reported. In addition, the blue-yellow-blue 3-stack architecture exhibits an improved angular dependence compared to the blue-blue-yellow structure at a decreased EQE of 19.1%.

  1. Molecularly Engineered Organic-Inorganic Hybrid Perovskite with Multiple Quantum Well Structure for Multicolored Light-Emitting Diodes

    PubMed Central

    Hu, Hongwei; Salim, Teddy; Chen, Bingbing; Lam, Yeng Ming

    2016-01-01

    Organic-inorganic hybrid perovskites have the potential to be used as a new class of emitters with tunable emission, high color purity and good ease of fabrication. Recent studies have so far been focused on three-dimensional (3D) perovskites, such as CH3NH3PbBr3 and CH3NH3PbI3 for green and infrared emission. Here, we explore a new series of hybrid perovskite emitters with a general formula of (C4H9NH3)2(CH3NH3)n−1PbnI3n+1 (where n = 1, 2, 3), which possesses a multiple quantum well structure. The quantum well thickness of these materials is adjustable through simple molecular engineering which results in a continuously tunable bandgap and emission spectra. Deep saturated red emission was obtained with a peak external quantum efficiency of 2.29% and a maximum luminance of 214 cd/m2. Green and blue LEDs were also demonstrated through halogen substitutions in these hybrid perovskites. We expect these results to open up the way towards high performance perovskite LEDs through molecular-structure engineering of these perovskite emitters. PMID:27633084

  2. Solution-processable red-emission organic materials containing triphenylamine and benzothiodiazole units: synthesis and applications in organic light-emitting diodes.

    PubMed

    Yang, Yi; Zhou, Yi; He, Qingguo; He, Chang; Yang, Chunhe; Bai, Fenglian; Li, Yongfang

    2009-06-04

    Three solution-processable red-emissive organic materials with a hole-transporting unit triphenylamine (TPA) as the core part and a D-pi-A bipolar structure as the branch part, TPA-BT (single-branched molecule), b-TPA-BT (bibranched molecule), and t-TPA-BT (tribranched molecule), were synthesized by the Heck coupling reaction. Herein, for the D-pi-A push-pull structure, we use TPA as the electron donor, benzothiodiazole (BT) as the electron acceptor, and the vinylene bond as the pi-bridge connecting the TPA and BT units. The compounds exhibit good solubility in common organic solvents, benefited from the three-dimensional spatial configuration of TPA units and the branch structure of the molecules. TPA-BT, b-TPA-BT, and t-TPA-BT show excellent photoluminescent properties with maximum emission peaks at ca. 630 nm. High-performance red-emission organic light-emitting diodes (OLEDs) were fabricated with the active layer spin coated from a solution of these compounds. The OLED based on TPA-BT displayed a low turn-on voltage of 2.0 V, a maximum luminance of 12192 cd/m2, and a maximum current efficiency of 1.66 cd/A, which is among the highest values for the solution-processed red-emission OLEDs. In addition, high-performance white-light-emitting diodes (WLEDs) with maximum luminance around 4400 cd/m2 and maximum current efficiencies above 4.5 cd/A were realized by separately doping the three TPA-BT-containing molecules as red emitter and poly(6,6'-bi-(9,9'-dihexylfluorene)- co-(9,9'-dihexylfluorene-3-thiophene-5'-yl)) as green emitter into blue poly(9,9-dioctylfluorene-2,7-diyl) host material with suitable weight ratios.

  3. Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih

    Ultra violet light emitting diodes (UV LEDs) face critical limitations in both the injection efficiency and the light extraction efficiency due to the resistive and absorbing p-type contact layers. In this work, we investigate the design and application of polarization engineered tunnel junctions for ultra-wide bandgap AlGaN (Al mole fraction >50%) materials towards highly efficient UV LEDs. We demonstrate that polarization-induced three dimensional charge is beneficial in reducing tunneling barriers especially for high composition AlGaN tunnel junctions. In addition, the design of graded tunnel junction structures could lead to low tunneling resistance below 10 –3 Ω cm 2 and lowmore » voltage consumption below 1 V (at 1 kA/cm 2) for high composition AlGaN tunnel junctions. Experimental demonstration of 292 nm emission was achieved through non-equilibrium hole injection into wide bandgap materials with bandgap energy larger than 4.7 eV, and detailed modeling of tunnel junctions shows that they can be engineered to have low resistance and can enable efficient emitters in the UV-C wavelength range.« less

  4. Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions

    DOE PAGES

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; ...

    2016-09-19

    Ultra violet light emitting diodes (UV LEDs) face critical limitations in both the injection efficiency and the light extraction efficiency due to the resistive and absorbing p-type contact layers. In this work, we investigate the design and application of polarization engineered tunnel junctions for ultra-wide bandgap AlGaN (Al mole fraction >50%) materials towards highly efficient UV LEDs. We demonstrate that polarization-induced three dimensional charge is beneficial in reducing tunneling barriers especially for high composition AlGaN tunnel junctions. In addition, the design of graded tunnel junction structures could lead to low tunneling resistance below 10 –3 Ω cm 2 and lowmore » voltage consumption below 1 V (at 1 kA/cm 2) for high composition AlGaN tunnel junctions. Experimental demonstration of 292 nm emission was achieved through non-equilibrium hole injection into wide bandgap materials with bandgap energy larger than 4.7 eV, and detailed modeling of tunnel junctions shows that they can be engineered to have low resistance and can enable efficient emitters in the UV-C wavelength range.« less

  5. Design rules for charge-transport efficient host materials for phosphorescent organic light-emitting diodes.

    PubMed

    May, Falk; Al-Helwi, Mustapha; Baumeier, Björn; Kowalsky, Wolfgang; Fuchs, Evelyn; Lennartz, Christian; Andrienko, Denis

    2012-08-22

    The use of blue phosphorescent emitters in organic light-emitting diodes (OLEDs) imposes demanding requirements on a host material. Among these are large triplet energies, the alignment of levels with respect to the emitter, the ability to form and sustain amorphous order, material processability, and an adequate charge carrier mobility. A possible design strategy is to choose a π-conjugated core with a high triplet level and to fulfill the other requirements by using suitable substituents. Bulky substituents, however, induce large spatial separations between conjugated cores, can substantially reduce intermolecular electronic couplings, and decrease the charge mobility of the host. In this work we analyze charge transport in amorphous 2,8-bis(triphenylsilyl)dibenzofuran, an electron-transporting material synthesized to serve as a host in deep-blue OLEDs. We show that mesomeric effects delocalize the frontier orbitals over the substituents recovering strong electronic couplings and lowering reorganization energies, especially for electrons, while keeping energetic disorder small. Admittance spectroscopy measurements reveal that the material has indeed a high electron mobility and a small Poole-Frenkel slope, supporting our conclusions. By linking electronic structure, molecular packing, and mobility, we provide a pathway to the rational design of hosts with high charge mobilities.

  6. Loss mechanisms in high-efficiency solar cells: Study of material properties and high-efficiency solar-cell performance on material composition: Project tasks

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1985-01-01

    Loss mechanisms in high-efficiency solar cells were discussed. Fundamental limitations and practical solutions were stressed. Present cell efficiency is limited by many recombination sites: emitter, base, contacts, and oxide/silicon interface. Use of polysilicon passivation was suggested. After reduction of these losses, a 25% efficient cell could be built. A floating emitter cell design was shown that had the potential of low recombination losses.

  7. Photonically engineered incandescent emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-08-26

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  8. Photonically Engineered Incandescent Emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2005-03-22

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  9. Emittance and lifetime measurement with damping wigglers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G. M.; Shaftan, T., E-mail: shaftan@bnl.gov; Cheng, W. X.

    National Synchrotron Light Source II (NSLS-II) is a new third-generation storage ring light source at Brookhaven National Laboratory. The storage ring design calls for small horizontal emittance (<1 nm-rad) and diffraction-limited vertical emittance at 12 keV (8 pm-rad). Achieving low value of the beam size will enable novel user experiments with nm-range spatial and meV-energy resolution. The high-brightness NSLS-II lattice has been realized by implementing 30-cell double bend achromatic cells producing the horizontal emittance of 2 nm rad and then halving it further by using several Damping Wigglers (DWs). This paper is focused on characterization of the DW effects inmore » the storage ring performance, namely, on reduction of the beam emittance, and corresponding changes in the energy spread and beam lifetime. The relevant beam parameters have been measured by the X-ray pinhole camera, beam position monitors, beam filling pattern monitor, and current transformers. In this paper, we compare the measured results of the beam performance with analytic estimates for the complement of the 3 DWs installed at the NSLS-II.« less

  10. Fractal-Like Materials Design with Optimized Radiative Properties for High-Efficiency Solar Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Clifford K.; Ortega, Jesus D.; Christian, Joshua Mark

    Novel designs to increase light trapping and thermal efficiency of concentrating solar receivers at multiple length scales have been conceived, designed, and tested. The fractal-like geometries and features are introduced at both macro (meters) and meso (millimeters to centimeters) scales. Advantages include increased solar absorptance, reduced thermal emittance, and increased thermal efficiency. Radial and linear structures at the meso (tube shape and geometry) and macro (total receiver geometry and configuration) scales redirect reflected solar radiation toward the interior of the receiver for increased absorptance. Hotter regions within the interior of the receiver can reduce thermal emittance due to reduced localmore » view factors to the environment, and higher concentration ratios can be employed with similar surface irradiances to reduce the effective optical aperture, footprint, and thermal losses. Coupled optical/fluid/thermal models have been developed to evaluate the performance of these designs relative to conventional designs. Modeling results showed that fractal-like structures and geometries can increase the effective solar absorptance by 5 – 20% and the thermal efficiency by several percentage points at both the meso and macro scales, depending on factors such as intrinsic absorptance. Meso-scale prototypes were fabricated using additive manufacturing techniques, and a macro-scale bladed receiver design was fabricated using Inconel 625 tubes. On-sun tests were performed using the solar furnace and solar tower at the National Solar Thermal Test facility. The test results demonstrated enhanced solar absorptance and thermal efficiency of the fractal-like designs.« less

  11. Tunable plasmon-enhanced broadband light harvesting for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Que, Meidan; Zhu, Liangliang; Yang, Yawei; Liu, Jie; Chen, Peng; Chen, Wei; Yin, Xingtian; Que, Wenxiu

    2018-04-01

    In this work, we report a reliable method for synthesizing (Au, Au/Ag core)/(TiO2 shell) nanostructures with their plasmonic wavelengths covering the visible light region for perovskite solar cells. The mono- and bi-metallic core-shell nanoparticles exhibit tunable localized surface plasmon resonance wavelength and function as "light tentacle" to improve the photo-electricity conversion efficiency. Plasmonic nanoparticles with different sizes and shapes, different thicknesses of TiO2 shell and Ag interlayer are found to have a strong influence on the localized surface plasmon resonance enhancement effect. The experimental photovoltaic performance of perovskite solar cells is significantly enhanced when the plasmonic nanoparticles are embedded inmesoporous TiO2 scaffolds. A champion photo-electricity conversion efficiency of 17.85% is achieved with nanoparticles (Au/Ag, λLSPR = 650 nm), giving a 18.7% enhancement over that of the pristine device (15.04%). Finite-difference time-domain simulations show that nanorod Au in mesoporus TiO2 scaffold induces the most intense electromagnetic coupling, and provides a novel emitter for photon flux in mesoporous perovskite solar cells. These theoretical results are consistent with the corresponding experimental those. Thus, enhancing the incident light intensities around 650 nm will be most favorable to the improvement of the photo-electricity conversion efficiency of perovskite solar cells.

  12. Spatial exciton allocation strategy with reduced energy loss for high-efficiency fluorescent/phosphorescent hybrid white organic light-emitting diodes

    DOE PAGES

    Zhao, Fangchao; Wei, Ying; Xu, Hui; ...

    2017-05-17

    Due to the poor operational lifetime of blue phosphorescent dopants and blue thermally activated delayed fluorescent (TADF) materials, hybrid white organic light-emitting diodes (WOLEDs) with conventional blue fluorescent emitters are still preferred for commercial applications in general lighting. However, the improvement in the overall efficiency of hybrid WOLEDs has been limited due to energy losses during the energy transfer process and exciton quenching after the spatial separation of the singlet and triplet excitons. Here we demonstrate the development of a Spatial Exciton Allocation Strategy (SEAS) to achieve close to 100% internal quantum efficiency (IQE) in blue-yellow complementary color hybrid WOLEDs.more » The employed blue fluorophore not only has a resonant triplet level with the yellow phosphor to reduce energy loss during energy transfer processes and triplet–triplet annihilation (TTA), but also has a resonant singlet level with the electron transport layer to extend singlet exciton distribution and enhance both singlet and triplet exciton utilization. Thus, the resulting hybrid WOLEDs exhibited 104 lm W -1 efficacy at 100 cd m -2 and 74 lm W -1 at 1000 cd m -2 with CIE coordinates of (0.42, 0.44) which is warm white and suitable for indoor lighting.« less

  13. Spatial exciton allocation strategy with reduced energy loss for high-efficiency fluorescent/phosphorescent hybrid white organic light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Fangchao; Wei, Ying; Xu, Hui

    Due to the poor operational lifetime of blue phosphorescent dopants and blue thermally activated delayed fluorescent (TADF) materials, hybrid white organic light-emitting diodes (WOLEDs) with conventional blue fluorescent emitters are still preferred for commercial applications in general lighting. However, the improvement in the overall efficiency of hybrid WOLEDs has been limited due to energy losses during the energy transfer process and exciton quenching after the spatial separation of the singlet and triplet excitons. Here we demonstrate the development of a Spatial Exciton Allocation Strategy (SEAS) to achieve close to 100% internal quantum efficiency (IQE) in blue-yellow complementary color hybrid WOLEDs.more » The employed blue fluorophore not only has a resonant triplet level with the yellow phosphor to reduce energy loss during energy transfer processes and triplet–triplet annihilation (TTA), but also has a resonant singlet level with the electron transport layer to extend singlet exciton distribution and enhance both singlet and triplet exciton utilization. Thus, the resulting hybrid WOLEDs exhibited 104 lm W -1 efficacy at 100 cd m -2 and 74 lm W -1 at 1000 cd m -2 with CIE coordinates of (0.42, 0.44) which is warm white and suitable for indoor lighting.« less

  14. Deterministic control of the emission from light sources in 1D nanoporous photonic crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Galisteo-López, Juan F.

    2017-02-01

    Controlling the emission of a light source demands acting on its local photonic environment via the local density of states (LDOS). Approaches to exert such control on large scale samples, commonly relying on self-assembly methods, usually lack from a precise positioning of the emitter within the material. Alternatively expensive and time consuming techniques can be used to produce samples of small dimensions where a deterministic control on emitter position can be achieved. In this work we present a full solution process approach to fabricate photonic architectures containing nano-emitters which position can be controlled with nanometer precision over squared milimiter regions. By a combination of spin and dip coating we fabricate one-dimensional (1D) nanoporous photonic crystals, which potential in different fields such as photovoltaics or sensing has been previously reported, containing monolayers of luminescent polymeric nanospheres. We demonstrate how, by modifying the position of the emitters within the photonic crystal, their emission properties (photoluminescence intensity and angular distribution) can be deterministically modified. Further, the nano-emitters can be used as a probe to study the LDOS distribution within these systems with a spatial resolution of 25 nm (provided by the probe size) carrying out macroscopic measurements over squared milimiter regions. Routes to enhance light-matter interaction in this kind of systems by combining them with metallic surfaces are finally discussed.

  15. Experimental Realization of Efficient, Room Temperature Single-Photon Sources with Definite Circular and Linear Polarizations

    NASA Astrophysics Data System (ADS)

    Boutsidis, Christos

    In this thesis I present experimental demonstrations of room-temperature, single-photon sources with definite linear and circular polarizations. Definite photon polarization increases the efficiency of quantum communication systems. In contrast with cryogenic-temperature single-photon sources based on epitaxial quantum dots requiring expensive MBE and nanofabrication, my method utilizes a mature liquid crystal technology, which I made consistent with single-emitter fluorescence microscopy. The structures I have prepared are planar-aligned cholesteric liquid crystals forming 1-D photonic bandgaps for circularly-polarized light, which were used to achieve definite circularly-polarized fluorescence of single emitters doped in this environment. I also used planar-aligned nematic liquid crystals to align single molecules with linear dipole moments and achieved definite linearly-polarized fluorescence. I used single nanocrystal quantum dots, single nanodiamond color-centers, rare-earth-doped nanocrystals, and single terrylene and DiIC18(3) dye molecules as emitters. For nanocrystal quantum dots I observed circular polarization dissymmetry factors as large as ge = --1.6. In addition, I observed circularly-polarized resonances in the fluorescence of emitters within a cholesteric microcavity, with cavity quality factors of up to Q ˜ 250. I also showed that the fluorescence of DiIC18(3) dye molecules in planar-aligned nematic cells exhibits definite linear polarization, with a degree of polarization of rho = --0.58 +/- 0.03. Distributed Bragg reflectors form another type of microcavity that can be used to realize a single-photon source. I characterized the fluorescence from nanocrystal quantum dots doped in the defect layers of such microcavites, both organic and inorganic. Finally, to demonstrate the single-photon properties of single-emitter-doped cholesteric and nematic liquid crystal structures and distributed Bragg reflector microcavities, I present observations of photon antibunching from emitters doped in each of these structures. These experimental observations include photon antibunching from: nanocrystal quantum dots and nanodiamond color-centers doped in a cholesteric microcavity; terrylene and DiIC 18(3) dye molecules doped in nematic structures, and nanocrystal quantum dots doped in the distributed Bragg reflector microcavity. A value of the zero-time second-order coherence as low as g(2)(0) = 0.001 +/- 0.03 was measured. These results represent an important step forward in the realization of room temperature single-photon sources with definite polarization for secure quantum communication.

  16. ZnO nanowires for tunable near-UV/blue LED

    NASA Astrophysics Data System (ADS)

    Pauporté, Thierry; Lupan, Oleg; Viana, Bruno

    2012-02-01

    Nanowires (NWs)-based light emitting diodes (LEDs) have drawn large interest due to many advantages compared to thin film based devices. Markedly improved performances are expected from nanostructured active layers for light emission. Nanowires can act as direct waveguides and favor light extraction without the use of lenses and reflectors. Moreover, the use of wires avoids the presence of grain boundaries and then the emission efficiency should be boosted by the absence of non-radiative recombinations at the joint defects. Electrochemical deposition technique was used for the preparation of ZnO-NWs based light emitters. Nanowires of high structural and optical quality have been epitaxially grown on p-GaN single crystalline films substrates. We have shown that the emission is directional with a wavelength that was tuned and red-shifted toward the visible region by doping with Cu in ZnO NWs.

  17. Towards a 4{sup th} generation storage ring at the Canadian Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dallin, Les; Wurtz, Ward

    2016-07-27

    Demands from beamline scientists for more brilliant sources of synchrotron radiation have resulted in the emergence of 4{sup th} generation (diffraction-limited) storage rings. The practical development of the multi-bend achromat (MBA) concept by MAX IV lab has spurred many synchrotron light sources around the world to develop similar machines. For existing facilities two options are available: upgrading existing machines or building a new structure. The Canadian Light Source (CLS) has explored both options. For a new low emittance source in the existing CLS tunnel a decrease in electron energy would be required. A machine similar to the ALS upgrade couldmore » be contemplated. To achieve low emittance at our present energy of 2.9 GeV a new storage ring is desirable. Several options have been investigated. These designs use extremely strong focusing magnets to achieve extremely low emittances in compact lattice achromats.« less

  18. Matching optics for Gaussian beams

    NASA Technical Reports Server (NTRS)

    Gunter, William D. (Inventor)

    1991-01-01

    A system of matching optics for Gaussian beams is described. The matching optics system is positioned between a light beam emitter (such as a laser) and the input optics of a second optics system whereby the output from the light beam emitter is converted into an optimum input for the succeeding parts of the second optical system. The matching optics arrangement includes the combination of a light beam emitter, such as a laser with a movable afocal lens pair (telescope) and a single movable lens placed in the laser's output beam. The single movable lens serves as an input to the telescope. If desired, a second lens, which may be fixed, is positioned in the beam before the adjustable lens to serve as an input processor to the movable lens. The system provides the ability to choose waist diameter and position independently and achieve the desired values with two simple adjustments not requiring iteration.

  19. Overview of Lattice Design and Evaluation for the APS Upgrade

    DOE PAGES

    Borland, M.; Emery, L.; Lindberg, R.; ...

    2017-08-01

    The Advanced Photon Source (APS) is a 7-GeV synchrotron light source that has been in operation since 1996. Since that time, the effective emittance has been decreased from 8 nm to 3.1 nm, which is very competitive for a 3rd-generation light source. However, newer facilities such as PETRA-III, NSLS-II, and MAX-IV are pushing the emittance to significantly smaller values. MAX-IV in particular has set the current benchmark with an emittance of about 300 pm at 3 GeV. This was accomplished by use of a multi-bend achromat lattice, which takes advantage of the 1/M3 scaling of the emittance with respect tomore » the number of dipoles M. In order to ensure that our facility remains competitive, APS is pursuing a major upgrade, which involves replacement of the existing double-bend lattice with a seven-bend achromat lattice, promising a 40-fold reduction in emittance. This paper describes the process of developing and evaluating candidate lattice designs. Two candidate 6-GeV lattices are described: one providing a natural emittance of 67 pm and the other providing 41 pm. Our analysis includes single-particle dynamics as well as single- and multi-bunch collective effects.« less

  20. High-performance planar green light-emitting diodes based on a PEDOT:PSS/CH3NH3PbBr3/ZnO sandwich structure

    NASA Astrophysics Data System (ADS)

    Shi, Zhi-Feng; Sun, Xu-Guang; Wu, Di; Xu, Ting-Ting; Zhuang, Shi-Wei; Tian, Yong-Tao; Li, Xin-Jian; Du, Guo-Tong

    2016-05-01

    Recently, perovskite-based light-emitting diodes based on organometal halide emitters have attracted much attention because of their excellent properties of high color purity, tunable emission wavelength and a low-temperature processing technique. As is well-known, organic light-emitting diodes have shown powerful capabilities in this field; however, the fabrication of these devices typically relies on high-temperature and high-vacuum processes, which increases the final cost of the product and renders them uneconomical for use in large-area displays. Organic/inorganic hybrid halide perovskites match with these material requirements, as it is possible to prepare such materials with high crystallinity through solution processing at low temperature. Herein, we demonstrated a high-brightness green light-emitting diode based on PEDOT:PSS/CH3NH3PbBr3/ZnO sandwich structures by a spin-coating method combined with a sputtering system. Under forward bias, a dominant emission peak at ~530 nm with a low full width of half-maximum (FWHM) of 30 nm can be achieved at room temperature. Owing to the high surface coverage of the CH3NH3PbBr3 layer and a device design based on carrier injection and a confinement configuration, the proposed diode exhibits good electroluminescence performance, with an external quantum efficiency of 0.0645%. More importantly, we investigated the working stability of the studied diode under continuous operation to verify the sensitivity of the electroluminescence performance to ambient atmosphere and to assess the suitability of the diode for practical applications. Moreover, the underlying reasons for the undesirable emission decay are tentatively discussed. This demonstration of an effective green electroluminescence based on CH3NH3PbBr3 provides valuable information for the design and development of perovskites as efficient emitters, thus facilitating their use in existing applications and suggesting new potential applications.

  1. Design of ortho-Substituted Donor-Acceptor Molecules as Highly Efficient Green Thermally Activated Delayed Fluorescent Emitters

    NASA Astrophysics Data System (ADS)

    Cha, Jae-Ryung; Gong, Myoung-Seon; Lee, Tak Jae; Ha, Tae Hoon; Lee, Chil Won

    2018-04-01

    The ortho-substituted donor-acceptor molecules 2-(4,6-diphenyl-1, 3, 5-triazin-2-yl)- N,Ndiphenylaniline (DPA- o-Trz) and 2-(4,6-diphenyl-1, 3, 5-triazine-2-yl)- N,N-di- p-tolylaniline (MPA- o-Trz) were designed, synthesized, and found to exhibit green fluorescence characteristics. Notably, the singlet-triplet energy gap was less than 0.1 eV, indicating that reverse intersystem crossing gave rise to thermally activated delayed fluorescence (TADF). The organic light-emitting device performance of MPA- o-Trz showed a high external quantum efficiency of 16.3% and good color stability from 0.1 cd/m2 to 5000 cd/m2.

  2. Highly Efficient Thermally Activated Delayed Fluorescence from an Excited-State Intramolecular Proton Transfer System

    PubMed Central

    2017-01-01

    Thermally activated delayed fluorescence (TADF) materials have shown great potential for highly efficient organic light-emitting diodes (OLEDs). While the current molecular design of TADF materials primarily focuses on combining donor and acceptor units, we present a novel system based on the use of excited-state intramolecular proton transfer (ESIPT) to achieve efficient TADF without relying on the well-established donor–acceptor scheme. In an appropriately designed acridone-based compound with intramolecular hydrogen bonding, ESIPT leads to separation of the highest occupied and lowest unoccupied molecular orbitals, resulting in TADF emission with a photoluminescence quantum yield of nearly 60%. High external electroluminescence quantum efficiencies of up to 14% in OLEDs using this emitter prove that efficient triplet harvesting is possible with ESIPT-based TADF materials. This work will expand and accelerate the development of a wide variety of TADF materials for high performance OLEDs. PMID:28776019

  3. Resonant cavity light-emitting diodes based on dielectric passive cavity structures

    NASA Astrophysics Data System (ADS)

    Ledentsov, N.; Shchukin, V. A.; Kropp, J.-R.; Zschiedrich, L.; Schmidt, F.; Ledentsov, N. N.

    2017-02-01

    A novel design for high brightness planar technology light-emitting diodes (LEDs) and LED on-wafer arrays on absorbing substrates is proposed. The design integrates features of passive dielectric cavity deposited on top of an oxide- semiconductor distributed Bragg reflector (DBR), the p-n junction with a light emitting region is introduced into the top semiconductor λ/4 DBR period. A multilayer dielectric structure containing a cavity layer and dielectric DBRs is further processed by etching into a micrometer-scale pattern. An oxide-confined aperture is further amended for current and light confinement. We study the impact of the placement of the active region into the maximum or minimum of the optical field intensity and study an impact of the active region positioning on light extraction efficiency. We also study an etching profile composed of symmetric rings in the etched passive cavity over the light emitting area. The bottom semiconductor is an AlGaAs-AlAs multilayer DBR selectively oxidized with the conversion of the AlAs layers into AlOx to increase the stopband width preventing the light from entering the semiconductor substrate. The approach allows to achieve very high light extraction efficiency in a narrow vertical angle keeping the reasonable thermal and current conductivity properties. As an example, a micro-LED structure has been modeled with AlGaAs-AlAs or AlGaAs-AlOx DBRs and an active region based on InGaAlP quantum well(s) emitting in the orange spectral range at 610 nm. A passive dielectric SiO2 cavity is confined by dielectric Ta2O5/SiO2 and AlGaAs-AlOx DBRs. Cylindrically-symmetric structures with multiple ring patterns are modeled. It is demonstrated that the extraction coefficient of light to the air can be increased from 1.3% up to above 90% in a narrow vertical angle (full width at half maximum (FWHM) below 20°). For very small oxide-confined apertures 100nm the narrowing of the FWHM for light extraction can be reduced down to 5°. Consequently high efficiency high brightness arrays of micro-LEDs becomes possible. For single emitters the approach is particularly interesting for oscillator strength engineering allowing high speed data transmission and for single photonics applying single quantum dot (QD) emitters and allowing >90% coupling of the emission into single mode fiber. We also note that for longer wavelength ( 1300nm) QDs the thickness of the layers and surface patterns significantly increase allowing greatly reduced processing tolerances and applying further simplifications due to the possibility of using high contrast GaAs-AlOx DBRs.

  4. A novel semiconductor-based, fully incoherent amplified spontaneous emission light source for ghost imaging

    PubMed Central

    Hartmann, Sébastien; Elsäßer, Wolfgang

    2017-01-01

    Initially, ghost imaging (GI) was demonstrated with entangled light from parametric down conversion. Later, classical light sources were introduced with the development of thermal light GI concepts. State-of-the-art classical GI light sources rely either on complex combinations of coherent light with spatially randomizing optical elements or on incoherent lamps with monochromating optics, however suffering strong losses of efficiency and directionality. Here, a broad-area superluminescent diode is proposed as a new light source for classical ghost imaging. The coherence behavior of this spectrally broadband emitting opto-electronic light source is investigated in detail. An interferometric two-photon detection technique is exploited in order to resolve the ultra-short correlation timescales. We thereby quantify the coherence time, the photon statistics as well as the number of spatial modes unveiling a complete incoherent light behavior. With a one-dimensional proof-of-principle GI experiment, we introduce these compact emitters to the field which could be beneficial for high-speed GI systems as well as for long range GI sensing in future applications. PMID:28150737

  5. Recent advances on organic blue thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs)

    PubMed Central

    Bui, Thanh-Tuân; Goubard, Fabrice; Ibrahim-Ouali, Malika; Gigmes, Didier

    2018-01-01

    The design of highly emissive and stable blue emitters for organic light emitting diodes (OLEDs) is still a challenge, justifying the intense research activity of the scientific community in this field. Recently, a great deal of interest has been devoted to the elaboration of emitters exhibiting a thermally activated delayed fluorescence (TADF). By a specific molecular design consisting into a minimal overlap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) due to a spatial separation of the electron-donating and the electron-releasing parts, luminescent materials exhibiting small S1–T1 energy splitting could be obtained, enabling to thermally upconvert the electrons from the triplet to the singlet excited states by reverse intersystem crossing (RISC). By harvesting both singlet and triplet excitons for light emission, OLEDs competing and sometimes overcoming the performance of phosphorescence-based OLEDs could be fabricated, justifying the interest for this new family of materials massively popularized by Chihaya Adachi since 2012. In this review, we proposed to focus on the recent advances in the molecular design of blue TADF emitters for OLEDs during the last few years. PMID:29507635

  6. Highly Efficient White Organic Light-Emitting Diodes with Ultrathin Emissive Layers and a Spacer-Free Structure

    PubMed Central

    Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung

    2016-01-01

    Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach. PMID:27170543

  7. Highly Efficient White Organic Light-Emitting Diodes with Ultrathin Emissive Layers and a Spacer-Free Structure.

    PubMed

    Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung

    2016-05-12

    Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach.

  8. Highly Efficient White Organic Light-Emitting Diodes with Ultrathin Emissive Layers and a Spacer-Free Structure

    NASA Astrophysics Data System (ADS)

    Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung

    2016-05-01

    Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach.

  9. Highly efficient organic light emitting diodes formed by solution processed red emitters with evaporated blue common layer structure.

    PubMed

    Cho, Ye Ram; Kim, Hyung Suk; Yu, Young-Jun; Suh, Min Chul

    2015-10-30

    We prepared highly-efficient solution-processed red phosphorescent organic light emitting diodes (PHOLEDs) with a blue common layer structure that can reasonably confine the triplet excitons inside of the red emission layer (EML) with the assistance of a bipolar exciton blocking layer. The red PHOLEDs containing EML with a 7 : 3 ratio of 11-(4,6-diphenyl-[1,3,5]triazin-2-yl)-12-phenyl-11,12-dihydro-11,12-diaza-indeno[2,1-a]fluorene (n-type host, NH) : 4-(3-(triphenylen-2-yl)phenyl)dibenzo[b,d]thiophene (p-type host, PH) doped with 5% Iridium(III) bis(2-(3,5-dimethylphenyl)quinolinato-N,C2')tetramethylheptadionate (Red Dopant, RD) produced the highest current and power efficiencies at 23.4 cd/A and 13.6 lm/W, with a 19% external quantum efficiency at 1000 cd/m(2). To the best of our knowledge, such efficiency was the best among those that have been obtained from solution-processed small molecular red PHOLEDs. In addition, the host molecules utilized in this study have no flexible spacers, such as an alkyl chain, which normally deteriorate the stability of the device.

  10. Highly efficient organic light emitting diodes formed by solution processed red emitters with evaporated blue common layer structure

    NASA Astrophysics Data System (ADS)

    Cho, Ye Ram; Kim, Hyung Suk; Yu, Young-Jun; Suh, Min Chul

    2015-10-01

    We prepared highly-efficient solution-processed red phosphorescent organic light emitting diodes (PHOLEDs) with a blue common layer structure that can reasonably confine the triplet excitons inside of the red emission layer (EML) with the assistance of a bipolar exciton blocking layer. The red PHOLEDs containing EML with a 7 : 3 ratio of 11-(4,6-diphenyl-[1,3,5]triazin-2-yl)-12-phenyl-11,12-dihydro-11,12-diaza-indeno[2,1-a]fluorene (n-type host, NH) : 4-(3-(triphenylen-2-yl)phenyl)dibenzo[b,d]thiophene (p-type host, PH) doped with 5% Iridium(III) bis(2-(3,5-dimethylphenyl)quinolinato-N,C2’)tetramethylheptadionate (Red Dopant, RD) produced the highest current and power efficiencies at 23.4 cd/A and 13.6 lm/W, with a 19% external quantum efficiency at 1000 cd/m2. To the best of our knowledge, such efficiency was the best among those that have been obtained from solution-processed small molecular red PHOLEDs. In addition, the host molecules utilized in this study have no flexible spacers, such as an alkyl chain, which normally deteriorate the stability of the device.

  11. Highly efficient organic light emitting diodes formed by solution processed red emitters with evaporated blue common layer structure

    PubMed Central

    Cho, Ye Ram; Kim, Hyung Suk; Yu, Young-Jun; Suh, Min Chul

    2015-01-01

    We prepared highly-efficient solution-processed red phosphorescent organic light emitting diodes (PHOLEDs) with a blue common layer structure that can reasonably confine the triplet excitons inside of the red emission layer (EML) with the assistance of a bipolar exciton blocking layer. The red PHOLEDs containing EML with a 7 : 3 ratio of 11-(4,6-diphenyl-[1,3,5]triazin-2-yl)-12-phenyl-11,12-dihydro-11,12-diaza-indeno[2,1-a]fluorene (n-type host, NH) : 4-(3-(triphenylen-2-yl)phenyl)dibenzo[b,d]thiophene (p-type host, PH) doped with 5% Iridium(III) bis(2-(3,5-dimethylphenyl)quinolinato-N,C2’)tetramethylheptadionate (Red Dopant, RD) produced the highest current and power efficiencies at 23.4 cd/A and 13.6 lm/W, with a 19% external quantum efficiency at 1000 cd/m2. To the best of our knowledge, such efficiency was the best among those that have been obtained from solution-processed small molecular red PHOLEDs. In addition, the host molecules utilized in this study have no flexible spacers, such as an alkyl chain, which normally deteriorate the stability of the device. PMID:26514274

  12. Rare Earth Optical Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Jenkins, Phillip (Inventor)

    2004-01-01

    A rare earth optical temperature sensor is disclosed for measuring high temperatures. Optical temperature sensors exist that channel emissions from a sensor to a detector using a light pipe. The invention uses a rare earth emitter to transform the sensed thermal energy into a narrow band width optical signal that travels to a detector using a light pipe. An optical bandpass filter at the detector removes any noise signal outside of the band width of the signal from the emitter.

  13. Photocell Optimization Using Dark State Protection.

    PubMed

    Fruchtman, Amir; Gómez-Bombarelli, Rafael; Lovett, Brendon W; Gauger, Erik M

    2016-11-11

    Conventional photocells suffer a fundamental efficiency threshold imposed by the principle of detailed balance, reflecting the fact that good absorbers must necessarily also be fast emitters. This limitation can be overcome by "parking" the energy of an absorbed photon in a dark state which neither absorbs nor emits light. Here we argue that suitable dark states occur naturally as a consequence of the dipole-dipole interaction between two proximal optical dipoles for a wide range of realistic molecular dimers. We develop an intuitive model of a photocell comprising two light-absorbing molecules coupled to an idealized reaction center, showing asymmetric dimers are capable of providing a significant enhancement of light-to-current conversion under ambient conditions. We conclude by describing a road map for identifying suitable molecular dimers for demonstrating this effect by screening a very large set of possible candidate molecules.

  14. Low emittance lattice for the storage ring of the Turkish Light Source Facility TURKAY

    NASA Astrophysics Data System (ADS)

    Nergiz, Z.; Aksoy, A.

    2015-06-01

    The TAC (Turkish Accelerator Center) project aims to build an accelerator center in Turkey. The first stage of the project is to construct an Infra-Red Free Electron Laser (IR-FEL) facility. The second stage is to build a synchrotron radiation facility named TURKAY, which is a third generation synchrotron radiation light source that aims to achieve a high brilliance photon beam from a low emittance electron beam at 3 GeV. The electron beam parameters are highly dependent on the magnetic lattice of the storage ring. In this paper a low emittance storage ring for TURKAY is proposed and the beam dynamic properties of the magnetic lattice are investigated. Supported by Turkish Republic Ministry of Development (DPT2006K120470)

  15. The origin of luminescence from di[4-(4-diphenylaminophenyl)phenyl]sulfone (DAPSF), a blue light emitter: an X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) study.

    PubMed

    Zhang, Duo; Zhang, Hui; Zhang, Xiaohong; Sham, Tsun-Kong; Hu, Yongfeng; Sun, Xuhui

    2016-03-07

    The electronic structure and optical properties of di[4-(4-diphenylaminophenyl)phenyl]sulfone (denoted as DAPSF), a highly efficient fluorophor, have been investigated using X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) spectroscopy at excitation energies across the C, N, O K-edges and the sulfur K-edge. The results indicate that the blue luminescence is mainly related to the sulfur functional group.

  16. Efficient modulation of optical and electrical properties of X-shaped thermally activated delayed fluorescence emitters by substitution.

    PubMed

    Fan, Jianzhong; Wang, Xin; Lin, Lili; Wang, Chuankui

    2016-08-01

    A series of X-shaped thermally activated delayed fluorescence (TADF) emitters are systematically studied by first-principles calculations. Effects of the cyano group adding to the acceptor unit and the hydroxyl group adding to the donor part on the optical and electrical properties are analyzed. It is found that both kinds of groups can efficiently increase the emission wavelength to realize full-color emission. Although they play different roles in modulating the energy level of frontier orbitals, the S-T energy gap, the reorganization energy and transfer integral for different molecules, they can efficiently increase the charge transfer rate and reduce the difference of electron transfer rate and hole transfer rate. These results indicate that these designed strategies are efficient to achieve balanced charge transfer rates and modulate emission colors. By analyzing the energy matching between the TADF emitters and three kinds of hosts, the emission spectra of the 3,5-bis(N-carbazolyl)benzene (mcp) and the absorption spectra of most TADF emitters have a large overlap, which provides helpful information in application of these TADF molecules.

  17. Simulation of Soil Wetting Patterns in Drip and Subsurface Irrigation. Effects in Design and Irrigation Management Variables.

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sinobas, L.; Gil-Rodríguez, M.; Sánchez, R.; Losada, A.; Castañón, G.; Juana, L.; Laguna, F. V.; Benítez, J.

    2010-05-01

    Conventional drip irrigation is considered one of the most efficient irrigation systems. Alternatively to traditional surface drip irrigation systems (DI), laterals are deployed underneath the soil surface, as in subsurface drip irrigation (SDI), leading to a higher potential efficiency, which is of especial interest in places where water is a limited source. The design and management of DI and SDI systems involve selection of an appropriate combination of emitter discharge rate and spacing between emitters and the inlet pressure and irrigation time for any given set of soil, crop, and climatic conditions, as well as understanding the wetted zone pattern around the emitter. Likewise, water distribution is affected by soil hydraulic properties, initial water content, emitter discharge, irrigation frequency, evapotranspiration and root characteristics. However, complexity arousing of soil water properties and soil profile characteristics means that these are often not properly considered in the design and management of those systems. A better understanding of the infiltration process around the discharge point source should contribute to increase water use efficiency and thus to reduce the risk of environmental impact of irrigation. In this regard, numerical models have been proved to be a powerful tool to analyze the evolution of the wetting pattern during the distribution and redistribution processes, in order to explore irrigation management strategies, to set up the duration of irrigation, and finally to optimize water use efficiency. Also, irrigation design variables such as emitter spacing and discharge could also be assessed. In this study the suitability of the HYDRUS-2D to simulate infiltration process around an emitter during irrigation of a loamy soil with drip and SDI laterals has been addressed. The model was then applied in order to evaluate the main dimensions of the wetted soil volume surrounding the emitter during irrigation. Irrigation uniformity with DI and SDI laterals were determined by field evaluations at different inlet head pressures. Results were related with estimations made on water distribution within the soil that were simulated taking into account the emitter discharge at different lateral locations, initial soil water content, soil hydraulic properties and time of irrigation. Conclusions highlight the effect of emitter discharge, emitter spacing, and irrigation time on wetting patterns, and thus solute transport, in both drip and subsurface drip irrigation. The effect of emitter depth was also considered in SDI. Some recommendations for the design and management of these irrigation systems are also provided.

  18. Engineering of Semiconductor Nanocrystals for Light Emitting Applications

    PubMed Central

    Todescato, Francesco; Fortunati, Ilaria; Minotto, Alessandro; Signorini, Raffaella; Jasieniak, Jacek J.; Bozio, Renato

    2016-01-01

    Semiconductor nanocrystals are rapidly spreading into the display and lighting markets. Compared with liquid crystal and organic LED displays, nanocrystalline quantum dots (QDs) provide highly saturated colors, wide color gamut, resolution, rapid response time, optical efficiency, durability and low cost. This remarkable progress has been made possible by the rapid advances in the synthesis of colloidal QDs and by the progress in understanding the intriguing new physics exhibited by these nanoparticles. In this review, we provide support to the idea that suitably engineered core/graded-shell QDs exhibit exceptionally favorable optical properties, photoluminescence and optical gain, while keeping the synthesis facile and producing QDs well suited for light emitting applications. Solid-state laser emitters can greatly profit from QDs as efficient gain materials. Progress towards fabricating low threshold, solution processed DFB lasers that are optically pumped using one- and two-photon absorption is reviewed. In the field of display technologies, the exploitation of the exceptional photoluminescence properties of QDs for LCD backlighting has already advanced to commercial levels. The next big challenge is to develop the electroluminescence properties of QD to a similar state. We present an overview of QLED devices and of the great perspectives for next generation display and lighting technologies. PMID:28773794

  19. Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays.

    PubMed

    Tran, Toan Trong; Wang, Danqing; Xu, Zai-Quan; Yang, Ankun; Toth, Milos; Odom, Teri W; Aharonovich, Igor

    2017-04-12

    Quantum emitters in two-dimensional materials are promising candidates for studies of light-matter interaction and next generation, integrated on-chip quantum nanophotonics. However, the realization of integrated nanophotonic systems requires the coupling of emitters to optical cavities and resonators. In this work, we demonstrate hybrid systems in which quantum emitters in 2D hexagonal boron nitride (hBN) are deterministically coupled to high-quality plasmonic nanocavity arrays. The plasmonic nanoparticle arrays offer a high-quality, low-loss cavity in the same spectral range as the quantum emitters in hBN. The coupled emitters exhibit enhanced emission rates and reduced fluorescence lifetimes, consistent with Purcell enhancement in the weak coupling regime. Our results provide the foundation for a versatile approach for achieving scalable, integrated hybrid systems based on low-loss plasmonic nanoparticle arrays and 2D materials.

  20. Coupling Correction and Beam Dynamics at Ultralow Vertical Emittance in the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steier, Christoph; Robin, D.; Wolski, A.

    2008-03-17

    For synchrotron light sources and for damping rings of linear colliders it is important to be able to minimize the vertical emittance and to correct the spurious vertical dispersion. This allows one to maximize the brightness and/or the luminosity. A commonly used tool to measure the skew error distribution is the analysis of orbit response matrices using codes like LOCO. Using the new Matlab version of LOCO and 18 newly installed power supplies for individual skew quadrupoles at the ALS the emittance ratio could be reduced below 0.1% at 1.9 GeV yielding a vertical emittance of about 5 pm. Atmore » those very low emittances, additional effects like intra beam scattering become more important, potentially limiting the minimum emittance for machine like the damping rings of linear colliders.« less

  1. Self-sensing of temperature rises on light emitting diode based optrodes

    NASA Astrophysics Data System (ADS)

    Dehkhoda, Fahimeh; Soltan, Ahmed; Ponon, Nikhil; Jackson, Andrew; O'Neill, Anthony; Degenaar, Patrick

    2018-04-01

    Objective. This work presents a method to determine the surface temperature of microphotonic medical implants like LEDs. Our inventive step is to use the photonic emitter (LED) employed in an implantable device as its own sensor and develop readout circuitry to accurately determine the surface temperature of the device. Approach. There are two primary classes of applications where microphotonics could be used in implantable devices; opto-electrophysiology and fluorescence sensing. In such scenarios, intense light needs to be delivered to the target. As blue wavelengths are scattered strongly in tissue, such delivery needs to be either via optic fibres, two-photon approaches or through local emitters. In the latter case, as light emitters generate heat, there is a potential for probe surfaces to exceed the 2 °C regulatory. However, currently, there are no convenient mechanisms to monitor this in situ. Main results. We present the electronic control circuit and calibration method to monitor the surface temperature change of implantable optrode. The efficacy is demonstrated in air, saline, and brain. Significance. This paper, therefore, presents a method to utilize the light emitting diode as its own temperature sensor.

  2. Sub-bandgap response of graphene/SiC Schottky emitter bipolar phototransistor examined by scanning photocurrent microscopy

    NASA Astrophysics Data System (ADS)

    Barker, Bobby G., Jr.; Chava, Venkata Surya N.; Daniels, Kevin M.; Chandrashekhar, M. V. S.; Greytak, Andrew B.

    2018-01-01

    Graphene layers grown epitaxially on SiC substrates are attractive for a variety of sensing and optoelectronic applications because the graphene acts as a transparent, conductive, and chemically responsive layer that is mated to a wide-bandgap semiconductor with large breakdown voltage. Recent advances in control of epitaxial growth and doping of SiC epilayers have increased the range of electronic device architectures that are accessible with this system. In particular, a recently-introduced Schottky-emitter bipolar phototransistor (SEPT) based on an epitaxial graphene (EG) emitter grown on a p-SiC base epilayer has been found to exhibit a maximum common emitter current gain of 113 and a UV responsivity of 7.1 A W-1. The behavior of this device, formed on an n +-SiC substrate that serves as the collector, was attributed to a very large minority carrier injection efficiency at the EG/p-SiC Schottky contact. This large minority carrier injection efficiency is in turn related to the large built-in potential found at a EG/p-SiC Schottky junction. The high performance of this device makes it critically important to analyze the sub bandgap visible response of the device, which provides information on impurity states and polytype inclusions in the crystal. Here, we employ scanning photocurrent microscopy (SPCM) with sub-bandgap light as well as a variety of other techniques to clearly demonstrate a localized response based on the graphene transparent electrode and an approximately 1000-fold difference in responsivity between 365 nm and 444 nm excitation. A stacking fault propagating from the substrate/epilayer interface, assigned as a single layer of the 8H-SiC polytype within the 4H-SiC matrix, is found to locally increase the photocurrent substantially. The discovery of this polytype heterojunction opens the potential for further development of heteropolytype devices based on the SEPT architecture.

  3. Organic light emitters gain longevity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Service, R.E.

    1996-08-16

    Organic thin-film displays were for many years a research curiosity with no staying power. Now their stamina is beginning to match their unbeatable toughness and lightness. For much of the past decade, researchers have been promising to put thin films of light-emitting plastics and other organic materials on display: large, flexible, inexpensive and efficient screens to be used for everything from lightweight backlights for computer displays to TVs that you can hang flat on the wall or roll up and put in your pocket. Yet, many of these promises have fallen flat as well. Organic lights have tended to burnmore » out after just days or weeks of operation. But now long-lived organic thin film displays are beginning to shine. By crafting films without as many burnout causing defects and building devices with additional film layers to enhance light emission, researchers around the work have recently improved the brightness, lifetime, and future prosects of their devices. This article describes recent developments and improvements in the field.« less

  4. Deterministic Integration of Quantum Dots into on-Chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography.

    PubMed

    Schnauber, Peter; Schall, Johannes; Bounouar, Samir; Höhne, Theresa; Park, Suk-In; Ryu, Geun-Hwan; Heindel, Tobias; Burger, Sven; Song, Jin-Dong; Rodt, Sven; Reitzenstein, Stephan

    2018-04-11

    The development of multinode quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates, and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of preselected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multimode interference beamsplitter via in situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with g (2) (0) = 0.13 ± 0.02. Due to its high patterning resolution as well as spectral and spatial control, in situ electron beam lithography allows for integration of preselected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way toward multinode, fully integrated quantum photonic chips.

  5. Development of New Front Side Metallization Method of Aluminum Electroplating for Silicon Solar Cell

    NASA Astrophysics Data System (ADS)

    Willis, Megan D.

    In this thesis, the methods of aluminum electroplating in an ionic liquid for silicon solar cell front side metallization were studied. It focused on replacing the current silver screen printing with an alternative metallization technology using a low-cost Earth-abundant metal for mass production, due to the high cost and limited availability of silver. A conventional aluminum electroplating method was employed for silicon solar cells fabrication on both p-type and n-type substrates. The highest efficiency of 17.9% was achieved in the n-type solar cell with a rear junction, which is comparable to that of the same structure cell with screen printed silver electrodes from industrial production lines. It also showed better spiking resistant performance than the common structure p-type solar cell. Further efforts were put on the development of a novel light-induced plating of aluminum technique. The aluminum was deposited directly on a silicon substrate without the assistance of a conductive seed layer, thus simplified and reduced the process cost. The plated aluminum has good adhesion to the silicon surface with the resistivity as low as 4x10-6 Ω-cm. A new demo tool was designed and set up for the light-induced plating experiment, aiming to utilize this technique in large-size solar cells fabrication and mass production. Besides the metallization methods, a comprehensive sensitivity analysis for the efficiency dispersion in the production of crystalline-Si solar cells was presented based on numerical simulations. Temperature variation in the diffusion furnace was the most significant cause of the efficiency dispersion. It was concluded that a narrow efficiency range of +/-0.5% absolute is achievable if the emitter diffusion temperature is confined to a 13°C window, while other cell parameters vary within their normal windows. Possible methods to minimize temperature variation in emitter diffusion were proposed.

  6. Optical properties of hybrid spherical nanoclusters containing quantum emitters and metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yannopapas, V.; Paspalakis, E.

    2018-05-01

    We study theoretically the optical response of a hybrid spherical cluster containing quantum emitters and metallic nanoparticles. The quantum emitters are modeled as two-level quantum systems whose dielectric function is obtained via a density matrix approach wherein the modified spontaneous emission decay rate at the position of each quantum emitter is calculated via the electromagnetic Green's tensor. The problem of light scattering off the hybrid cluster is solved by employing the coupled-dipole method. We find, in particular, that the presence of the quantum emitters in the cluster, even in small fractions, can significantly alter the absorption and extinction spectra of the sole cluster of the metallic nanoparticles, where the corresponding electromagnetic modes can have a weak plexcitonic character under suitable conditions.

  7. Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: the plasmonic Dicke effect.

    PubMed

    Pustovit, Vitaliy N; Shahbazyan, Tigran V

    2009-02-20

    We identify a new mechanism for cooperative emission of light by an ensemble of N dipoles near a metal nanostructure supporting a surface plasmon. The cross talk between emitters due to the virtual plasmon exchange leads to the formation of three plasmonic superradiant modes whose radiative decay rates scale with N, while the total radiated energy is thrice that of a single emitter. Our numerical simulations indicate that the plasmonic Dicke effect survives nonradiative losses in the metal.

  8. Manipulation of Thermally Activated Delayed Fluorescence of Blue Exciplex Emission: Fully Utilizing Exciton Energy for Highly Efficient Organic Light Emitting Diodes with Low Roll-Off.

    PubMed

    Wang, Zixing; Wang, Hedan; Zhu, Jun; Wu, Peng; Shen, Bowen; Dou, Dehai; Wei, Bin

    2017-06-28

    The application of exciplex energy has become a unique way to achieve organic light-emitting diodes (OLEDs) with high efficiencies, low turn-on voltage, and low roll-off. Novel δ-carboline derivatives with high triplet energy (T 1 ≈ 2.92 eV) and high glass transition temperature (T g ≈ 153 °C) were employed to manipulate exciplex emissions in this paper. Deep blue (peak at 436 nm) and pure blue (peak at 468 nm) thermally activated delayed fluorescence (TADF) of exciplex OLEDs were demonstrated by utilizing them as emitters with the maximum current efficiency (CE) of 4.64 cd A -1 , power efficiency (PE) of 2.91 lm W -1 , and external quantum efficiency (EQE) of 2.36%. Highly efficient blue phosphorescent OLEDs doped with FIrpic showed a maximum CE of 55.6 cd A -1 , PE of 52.9 lm W -1 , and EQE of 24.6% respectively with very low turn on voltage at 2.7 V. The devices still remain high CE of 46.5 cd A -1 at 100 cd m -2 , 45.4 cd A -1 at 1000 cd m -2 and 42.3 cd A -1 at 5000 cd m -2 with EQE close to 20% indicating low roll-off. Manipulating blue exciplex emissions by chemical structure gives an ideal strategy to fully utilize all exciton energies for lighting of OLEDs.

  9. Monte Carlo calculation of the sensitivity of a commercial dose calibrator to gamma and beta radiation.

    PubMed

    Laedermann, Jean-Pascal; Valley, Jean-François; Bulling, Shelley; Bochud, François O

    2004-06-01

    The detection process used in a commercial dose calibrator was modeled using the GEANT 3 Monte Carlo code. Dose calibrator efficiency for gamma and beta emitters, and the response to monoenergetic photons and electrons was calculated. The model shows that beta emitters below 2.5 MeV deposit energy indirectly in the detector through bremsstrahlung produced in the chamber wall or in the source itself. Higher energy beta emitters (E > 2.5 MeV) deposit energy directly in the chamber sensitive volume, and dose calibrator sensitivity increases abruptly for these radionuclides. The Monte Carlo calculations were compared with gamma and beta emitter measurements. The calculations show that the variation in dose calibrator efficiency with measuring conditions (source volume, container diameter, container wall thickness and material, position of the source within the calibrator) is relatively small and can be considered insignificant for routine measurement applications. However, dose calibrator efficiency depends strongly on the inner-wall thickness of the detector.

  10. Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip.

    PubMed

    Kim, Je-Hyung; Aghaeimeibodi, Shahriar; Richardson, Christopher J K; Leavitt, Richard P; Englund, Dirk; Waks, Edo

    2017-12-13

    Scalable quantum photonic systems require efficient single photon sources coupled to integrated photonic devices. Solid-state quantum emitters can generate single photons with high efficiency, while silicon photonic circuits can manipulate them in an integrated device structure. Combining these two material platforms could, therefore, significantly increase the complexity of integrated quantum photonic devices. Here, we demonstrate hybrid integration of solid-state quantum emitters to a silicon photonic device. We develop a pick-and-place technique that can position epitaxially grown InAs/InP quantum dots emitting at telecom wavelengths on a silicon photonic chip deterministically with nanoscale precision. We employ an adiabatic tapering approach to transfer the emission from the quantum dots to the waveguide with high efficiency. We also incorporate an on-chip silicon-photonic beamsplitter to perform a Hanbury-Brown and Twiss measurement. Our approach could enable integration of precharacterized III-V quantum photonic devices into large-scale photonic structures to enable complex devices composed of many emitters and photons.

  11. Broadband sensitized photon up-conversion at subsolar irradiance (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pedrini, Jacopo; Monguzzi, Angelo; Meinardi, Francesco

    2016-09-01

    A crucial limit of solar devices is their inability to harvest the full solar spectrum. Currently, sensitized up-conversion based on triplet-tripled annihilation (STTA-UC) in bi-component organic systems is the most promising technique to recover sub-bandgap photons, showing good efficiencies also at excitation intensities comparable to the solar irradiance. In STTA-UC, high-energy light is generated through annihilation of metastable triplet states of molecules acting as emitters, which are populated via resonant energy transfer from a light-harvesting sensitizer. However, suitable sensitizers show narrow absorption bands, limiting the fraction of recoverable photons, therefore preventing the application of STTA-UC to real-world devices. Here we demonstrate how to overcome the described limit by using multiple sensitizers that work cooperatively to broaden the overall system absorption band. This is obtained using an additional sensitizer that transfers the extra harvested energy to the main one (sensitization of the sensitizer), or a set of properly designed complementary absorbing sensitizers all able to excite simultaneously the same emitter (multi-sensitizers). In both cases STTA-UC performances result strongly enhanced compared to the corresponding mono-sensitizer system, increasing the up-converted light intensity generated at AM 1.5 up to two times. Remarkably, by coupling our light converters to a DSSC we prove its operation by exploiting exclusively sub-bandgap photons. A detailed modeling of the photophysical processes involved in these complex systems allows us to draw the guidelines for the design of the next generation STTA-UC materials, encouraging their application to photovoltaic technologies.

  12. Exciplex-Forming Cohost for High Efficiency and High Stability Phosphorescent Organic Light-Emitting Diodes.

    PubMed

    Shih, Chun-Jen; Lee, Chih-Chien; Chen, Ying-Hao; Biring, Sajal; Kumar, Gautham; Yeh, Tzu-Hung; Sen, Somaditya; Liu, Shun-Wei; Wong, Ken-Tsung

    2018-01-17

    An exciplex forming cohost system is employed to achieve a highly efficient organic light-emitting diode (OLED) with good electroluminescent lifetime. The exciplex is formed at the interfacial contact of a conventional star-shaped carbazole hole-transporting material, 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA), and a triazine electron-transporting material, 2,4,6-tris[3-(1H-pyrazol-1-yl)phenyl]-1,3,5-triazine (3P-T2T). The excellent combination of TCTA and 3P-T2T is applied as the cohost of a common green phosphorescent emitter with almost zero energy loss. When Ir(ppy) 2 (acac) is dispersed in such exciplex cohost system, OLED device with maximum external quantum efficiency of 29.6%, the ultrahigh power efficiency of 147.3 lm/W, and current efficiency of 107 cd/A were successfully achieved. More importantly, the OLED device showed a low-efficiency roll-off and an operational lifetime (τ 80 ) of ∼1020 min with the initial brightness of 2000 cd/m 2 , which is 56 times longer than the reference device. The significant difference of device stability was attributed to the degradation of exciplex system for energy transfer process, which was investigated by the photoluminescence aging measurement at room temperature and 100 K, respectively.

  13. Fibrous selective emitter structures from sol-gel process

    NASA Astrophysics Data System (ADS)

    Chen, K. C.

    1999-03-01

    Selective emitters have the potential benefit of high efficiency due to the matching of emission spectra to the response of photovoltaic (PV) cells. Continuous uniform rare-earth oxide selective emitter fibers were successfully fabricated using a viscous solution made from metal organic precursors. Cylindrical- and planar configuration emitter structures were made by direct cross-winding or stacking of precursor fiber layers. The combustion and optical performance of the planar emitter structures were tested. The results indicates that both the designing of the fiber packing density and the thickness is critical for high photon and power output.

  14. Quantum memory and gates using a Λ -type quantum emitter coupled to a chiral waveguide

    NASA Astrophysics Data System (ADS)

    Li, Tao; Miranowicz, Adam; Hu, Xuedong; Xia, Keyu; Nori, Franco

    2018-06-01

    By coupling a Λ -type quantum emitter to a chiral waveguide, in which the polarization of a photon is locked to its propagation direction, we propose a controllable photon-emitter interface for quantum networks. We show that this chiral system enables the swap gate and a hybrid-entangling gate between the emitter and a flying single photon. It also allows deterministic storage and retrieval of single-photon states with high fidelities and efficiencies. In short, this chirally coupled emitter-photon interface can be a critical building block toward a large-scale quantum network.

  15. Novel molecular host materials based on carbazole/PO hybrids with wide bandgap via unique linkages for solution-processed blue phosphorescent OLEDs

    NASA Astrophysics Data System (ADS)

    Ye, Hua; Zhou, Kaifeng; Wu, Hongyu; Chen, Kai; Xie, Gaozhan; Hu, Jingang; Yan, Guobing; Ma, Songhua; Su, Shi-Jian; Cao, Yong

    2016-10-01

    A series of novel molecules with wide bandgap based on electron-withdrawing diphenyl phosphine oxide units and electron-donating carbazolyl moieties through insulated unique linkages of flexible chains terminated by oxygen or sulfur atoms as solution-processable host materials were successfully synthesized for the first time, and their thermal, photophysical, and electrochemical properties were studied thoroughly. These materials possess high triplet energy levels (ET, 2.76-2.77 eV) due to the introduction of alkyl chain to interrupt the conjugation between electron-donor and electron-acceptor. Such high ET could effectively curb the energy from phosphorescent emitter transfer to the host molecules and thus assuring the emission of devices was all from the blue phosphorescent emitter iridium (III) bis [(4,6-difluorophenyl)-pyridinate-N,C2‧]picolinate (FIrpic). Among them, the solution-processed device based on CBCR6OPO without extra vacuum thermal-deposited hole-blocking layer and electron-transporting layer showed the highest maximum current efficiency (CEmax) of 4.16 cd/A. Moreover, the device presented small efficiency roll-off with current efficiency (CE) of 4.05 cd/A at high brightness up to 100 cd/m2. Our work suggests the potential applications of the solution-processable materials with wide bandgap in full-color flat-panel displays and organic lighting.

  16. Development of reverse biased p-n junction electron emission

    NASA Technical Reports Server (NTRS)

    Fowler, P.; Muly, E. C.

    1971-01-01

    A cold cathode emitter of hot electrons for use as a source of electrons in vacuum gauges and mass spectrometers was developed using standard Norton electroluminescent silicon carbide p-n diodes operated under reverse bias conditions. Continued development including variations in the geometry of these emitters was carried out such that emitters with an emission efficiency (emitted current/junction current) as high as 3 x 10-0.00001 were obtained. Pulse measurements of the diode characteristics were made and showed that higher efficiency can be attained under pulse conditions probably due to the resulting lower temperatures resulting from such operation.

  17. On the use of photothermal techniques for the characterization of solar-selective coatings

    NASA Astrophysics Data System (ADS)

    Ramírez-Rincón, J. A.; Ares-Muzio, O.; Macias, J. D.; Estrella-Gutiérrez, M. A.; Lizama-Tzec, F. I.; Oskam, G.; Alvarado-Gil, J. J.

    2018-03-01

    The efficiency of the conversion of solar energy into thermal energy is determined by the optical and thermal properties of the selective coating, in particular, the solar absorptance and thermal emittance at the desired temperature of the specific application. Photothermal techniques are the most appropriate methods to explore these properties, however, a quantitative determination using photothermal radiometry, which is based on the measurement of emitted radiation caused by the heating generated by a modulated light source, has proven to be elusive. In this work, we present experimental results for selective coatings based on electrodeposited black nickel-nickel on both stainless steel and copper substrates, as well as for commercial TiNOX coatings on aluminum, illustrating that the radiation emitted by the surface depends on the optical absorption, thermal emissivity and on the light-into-heat energy conversion efficiency (quantum efficiency). We show that a combination of photothermal radiometry and photoacoustic spectroscopy can successfully account for these parameters, and provide values for the emissivity in agreement with values obtained by Fourier-transform infrared spectroscopy.

  18. Quantum optics with nanowires (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zwiller, Val

    2017-02-01

    Nanowires offer new opportunities for nanoscale quantum optics; the quantum dot geometry in semiconducting nanowires as well as the material composition and environment can be engineered with unprecedented freedom to improve the light extraction efficiency. Quantum dots in nanowires are shown to be efficient single photon sources, in addition because of the very small fine structure splitting, we demonstrate the generation of entangled pairs of photons from a nanowire. By doping a nanowire and making ohmic contacts on both sides, a nanowire light emitting diode can be obtained with a single quantum dot as the active region. Under forward bias, this will act as an electrically pumped source of single photons. Under reverse bias, an avalanche effect can multiply photocurrent and enables the detection of single photons. Another type of nanowire under study in our group is superconducting nanowires for single photon detection, reaching efficiencies, time resolution and dark counts beyond currently available detectors. We will discuss our first attempts at combining semiconducting nanowire based single photon emitters and superconducting nanowire single photon detectors on a chip to realize integrated quantum circuits.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jung-Bum; Lee, Jeong-Hwan; Moon, Chang-Ki

    We report a highly efficient phosphorescent green inverted top emitting organic light emitting diode with excellent color stability by using the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile/indium zinc oxide top electrode and bis(2-phenylpyridine)iridium(III) acetylacetonate as the emitter in an exciplex forming co-host system. The device shows a high external quantum efficiency of 23.4% at 1000 cd/m{sup 2} corresponding to a current efficiency of 110 cd/A, low efficiency roll-off with 21% at 10 000 cd/m{sup 2} and low turn on voltage of 2.4 V. Especially, the device showed very small color change with the variation of Δx = 0.02, Δy = 0.02 in the CIE 1931 coordinates as the viewing angle changes from 0° tomore » 60°. The performance of the device is superior to that of the metal/metal cavity structured device.« less

  20. Recent Progress in Silicon-Based MEMS Field Emission Thrusters

    NASA Astrophysics Data System (ADS)

    Lenard, Roger X.; Kravitz, Stanley H.; Tajmar, Martin

    2005-02-01

    The Indium Field Emission Thruster (In-FET) is a highly characterized and space-proven device based on space-qualified liquid metal ion sources. There is also extensive experience with liquid metal ion sources for high-brightness semiconductor fabrications and inspection Like gridded ion engines, In-FETs efficiently accelerate ions through a series of high voltage electrodes. Instead of a plasma discharge to generate ions, which generates a mixture of singly and doubly charged ions as well as neutrals, indium metal is melted (157°C) and fed to the tip of a capillary tube where very high local electric fields perform more-efficient field emission ionization, providing nearly 100% singly charged species. In-FETs do not have the associated losses or lifetime concerns of a magnetically confined discharge and hollow cathode in ion thrusters. For In-FETs, propellant efficiencies ˜100% stipulate single-emitter currents ⩽10μA, perhaps as low as 5μA of current. This low emitter current results in ⩽0.5 W/emitter. Consequently, if the In-FET is to be used for future Human and Robotic missions under President Bush's Exploration plan, a mechanism to generate very high power levels is necessary. Efficient high-power operation requires many emitter/extractor pairs. Conventional fabrication techniques allow 1-10 emitters in a single module, with pain-staking precision required. Properly designed and fabricated In-FETs possess electric-to-jet efficiency >90% and a specific mass <0.25 kg/kWe. MEMS techniques allow reliable batch processing with ˜160,000 emitters in a 10×10-cm array. Developing a 1.5kW 10×10-cm module is a necessary stepping-stone for >500 kWe systems where groups of 9 or 16 modules, with a single PPU/feed system, form the building blocks for even higher-power exploration systems. In 2003, SNL and ARCS produced a MEMS-based In-FET 5×5 emitter module with individually addressable emitter/extractor pairs on a 15×15mm wafer. The first MEMS thruster prototype has already been tested to demonstrate the proof-of-concept in laboratory-scale testing. In this paper we discuss progress that has been achieved in the past year on fabricating silicon-based MEMS In-FETs.

  1. Synthesis and optoelectronic properties of a heterobimetallic Pt(II)-Ir(III) complex used as a single-component emitter in white PLEDs.

    PubMed

    Li, Xiaoshuang; Liu, Yu; Luo, Jian; Zhang, Zhiyong; Shi, Danyan; Chen, Qing; Wang, Yafei; He, Juan; Li, Jianming; Lei, Gangtie; Zhu, Weiguo

    2012-03-14

    To tune aggregation/excimer emission and obtain a single active emitter for white polymer light-emitting devices (PLEDs), a heterobimetallic Pt(II)-Ir(III) complex of FIr(pic)-C(6)DBC(6)-(pic)PtF was designed and synthesized, in which C(6)DBC(6) is a di(phenyloxyhexyloxy) bridging group, FIr(pic) is an iridium(III) bis[(4,6-difluorophenyl)pyridinato-N,C(2)'] (picolinate) chromophore and FPt(pic) is a platinum(II) [(4,6-difluorophenyl)pyridinato-N,C(2)'] (picolinate) chromophore. Its physical and opto-electronic properties were investigated. Interestingly, the excimer emission was efficiently controlled by this heterobimetallic Pt(II)-Ir(III) complex compared to the PL profile of the mononuclear FPt(pic) complex in the solid state. Near-white emissions were obtained in the single emissive layer (SEL) PLEDs using this heterobimetallic Pt(II)-Ir(III) complex as a single dopant and poly(vinylcarbazole) as a host matrix at dopant concentrations from 0.5 wt% to 2 wt%. This work indicates that incorporating a non-planar iridium(III) complex into the planar platinum(II) complex can control aggregation/excimer emissions and a single phosphorescent emitter can be obtained to exhibit white emission in SEL devices.

  2. Control of the external photoluminescent quantum yield of emitters coupled to nanoantenna phased arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Ke; Verschuuren, Marc A.; Lozano, Gabriel

    2015-08-21

    Optical losses in metals represent the largest limitation to the external quantum yield of emitters coupled to plasmonic antennas. These losses can be at the emission wavelength, but they can be more important at shorter wavelengths, i.e., at the excitation wavelength of the emitters, where the conductivity of metals is usually lower. We present accurate measurements of the absolute external photoluminescent quantum yield of a thin layer of emitting material deposited over a periodic nanoantenna phased array. Emission and absorptance measurements of the sample are performed using a custom-made setup including an integrating sphere and variable angle excitation. The measurementsmore » reveal a strong dependence of the external quantum yield on the angle at which the optical field excites the sample. Such behavior is attributed to the coupling between far-field illumination and near-field excitation mediated by the collective resonances supported by the array. Numerical simulations confirm that the inherent losses associated with the metal can be greatly reduced by selecting an optimum angle of illumination, which boosts the light conversion efficiency in the emitting layer. This combined experimental and numerical characterization of the emission from plasmonic arrays reveals the need to carefully design the illumination to achieve the maximum external quantum yield.« less

  3. Phosphorescent Organic Light-Emitting Devices: Working Principle and Iridium Based Emitter Materials

    PubMed Central

    Kappaun, Stefan; Slugovc, Christian; List, Emil J. W.

    2008-01-01

    Even though organic light-emitting device (OLED) technology has evolved to a point where it is now an important competitor to liquid crystal displays (LCDs), further scientific efforts devoted to the design, engineering and fabrication of OLEDs are required for complete commercialization of this technology. Along these lines, the present work reviews the essentials of OLED technology putting special focus on the general working principle of single and multilayer OLEDs, fluorescent and phosphorescent emitter materials as well as transfer processes in host materials doped with phosphorescent dyes. Moreover, as a prototypical example of phosphorescent emitter materials, a brief discussion of homo- and heteroleptic iridium(III) complexes is enclosed concentrating on their synthesis, photophysical properties and approaches for realizing iridium based phosphorescent polymers. PMID:19325819

  4. Three-peak standard white organic light-emitting devices for solid-state lighting

    NASA Astrophysics Data System (ADS)

    Guo, Kunping; Wei, Bin

    2014-12-01

    Standard white organic light-emitting device (OLED) lighting provides a warm and comfortable atmosphere and shows mild effect on melatonin suppression. A high-efficiency red OLED employing phosphorescent dopant has been investigated. The device generates saturated red emission with Commission Internationale de l'Eclairage (CIE) coordinates of (0.66, 0.34), characterized by a low driving voltage of 3.5 V and high external quantum efficiency of 20.1% at 130 cd m-2. In addition, we have demonstrated a two-peak cold white OLED by combining with a pure blue emitter with the electroluminescent emission of 464 nm, 6, 12-bis{[N-(3,4-dimethylpheyl)-N-(2,4,5-trimethylphenyl)]} chrysene (BmPAC). It was found that the man-made lighting device capable of yielding a relatively stable color emission within the luminance range of 1000-5000 cd m-2. And the chromaticity coordinates, varying from (0.25, 0.21) to (0.23, 0.21). Furthermore, an ultrathin layer of green-light-emitting tris (2-phenylpyridinato)iridium(Ⅲ) Ir(ppy)3 in the host material was introduced to the emissive region for compensating light. By appropriately controlling the layer thickness, the white light OLED achieved good performance of 1280 cd m-2 at 5.0 V and 5150 cd m-2 at 7.0 V, respectively. The CIE coordinates of the emitted light are quite stable at current densities from 759 cd m-2 to 5150 cd m-2, ranging from (0.34, 0.37) to (0.33, 0.33).

  5. Improving the Sensitivity of Mass Spectrometry by Using a New Sheath Flow Electrospray Emitter Array at Subambient Pressures

    DOE PAGES

    Cox, Jonathan T.; Marginean, Ioan; Kelly, Ryan T.; ...

    2014-03-28

    Arrays of chemically etched emitters with individualized sheath gas capillaries have been developed to enhance electrospray ionization (ESI) at subambient pressures. By including an emitter array in a subambient pressure ionization with nanoelectrospray (SPIN) source, ionization and transmission efficiency can be maximized allowing for increased sensitivity in mass spectrometric analyses. The SPIN source eliminates the major ion losses at conventional ESI-mass spectrometry (MS) interface by placing the emitter in the first vacuum region of the instrument. To facilitate stable electrospray currents in such conditions we have developed an improved emitter array with individualized sheath gas around each emitter. The utilitymore » of the new emitter arrays for generating stable multi-electrosprays at subambient pressures was probed by coupling the emitter array/SPIN source with a time of flight (TOF) mass spectrometer. The instrument sensitivity was compared between single emitter/SPIN-MS and multi-emitter/SPIN-MS configurations using an equimolar solution of 9 peptides. An increase in sensitivity correlative to the number of emitters in the array was observed.« less

  6. Rare earth garnet selective emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approximately equal to 0.74, ((4)l(sub 15/2)) - ( (4)l(sub13/2)), for Er-YAG and epsilon(sub lambda) approximately equal to 0.65, ((5)l(sub 7))-((5)l(sub 8)) for Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.

  7. Improving the Sensitivity of Mass Spectrometry by Using a New Sheath Flow Electrospray Emitter Array at Subambient Pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Jonathan T.; Marginean, Ioan; Kelly, Ryan T.

    Arrays of chemically etched emitters with individualized sheath gas capillaries have been developed to enhance electrospray ionization (ESI) at subambient pressures. By including an emitter array in a subambient pressure ionization with nanoelectrospray (SPIN) source, ionization and transmission efficiency can be maximized allowing for increased sensitivity in mass spectrometric analyses. The SPIN source eliminates the major ion losses at conventional ESI-mass spectrometry (MS) interface by placing the emitter in the first vacuum region of the instrument. To facilitate stable electrospray currents in such conditions we have developed an improved emitter array with individualized sheath gas around each emitter. The utilitymore » of the new emitter arrays for generating stable multi-electrosprays at subambient pressures was probed by coupling the emitter array/SPIN source with a time of flight (TOF) mass spectrometer. The instrument sensitivity was compared between single emitter/SPIN-MS and multi-emitter/SPIN-MS configurations using an equimolar solution of 9 peptides. An increase in sensitivity correlative to the number of emitters in the array was observed.« less

  8. Versatile ruthenium(II) dye towards blue-light emitter and dye-sensitizer for solar cells

    NASA Astrophysics Data System (ADS)

    Zanoni, Kassio P. S.; Amaral, Ronaldo C.; Murakami Iha, Neyde Y.; Abreu, Felipe D.; de Carvalho, Idalina M. M.

    2018-06-01

    A versatile Ru(II) complex bearing an anthracene moiety was synthesized in our search for suitable compounds towards efficient molecular devices. The new engineered dye, cis‑[Ru(dcbH2)(NCS)2(mbpy‑anth)] (dcbH2 = 2,2‧‑bipyridyl‑4,4‧‑dicarboxylic acid, mbpy‑anth = 4‑[N‑(2‑anthryl)carbamoyl]‑4‧‑methyl‑2,2‧‑bipyridine), exhibits a blueish emission in a vibronically structured spectrum ascribed to the fluorescence of a 1LCAnth (ligand centered) excited state in the anthracene and has a potential to be exploited in the fields of smart lighting and displays. This complex was also employed in dye-sensitized solar cells with fairly efficient solar energy conversion with the use of self-assembled TiO2 compact layers beneath the TiO2 mesoporous film to prevent meso‑TiO2/dye back reactions. Further photoelectrochemical investigations through incident photon-to-current efficiency and electrochemical impedance spectra showed that the all-nano-TiO2 compact layer acts as contact layers that increase the electron harvesting in the external circuit, enhancing efficiencies up to 50%.

  9. Blocking Energy-Loss Pathways for Ideal Fluorescent Organic Light-Emitting Diodes with Thermally Activated Delayed Fluorescent Sensitizers.

    PubMed

    Zhang, Dongdong; Song, Xiaozeng; Cai, Minghan; Duan, Lian

    2018-02-01

    Organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence-sensitized fluorescence (TSF) offer the possibility of attaining an ultimate high efficiency with low roll-off utilizing noble-metal free, easy-to-synthesize, pure organic fluorescent emitters. However, the performances of TSF-OLEDs are still unsatisfactory. Here, TSF-OLEDs with breakthrough efficiencies even at high brightnesses by suppressing the competitive deactivation processes, including direct charge recombination on conventional fluorescent dopants (CFDs) and Dexter energy transfer from the host to the CFDs, are demonstrated. On the one hand, electronically inert terminal-substituents are introduced to protect the electronically active core of the CFDs; on the other hand, delicate device structures are designed to provide multiple energy-funneling paths. As a result, unprecedentedly high maximum external quantum efficiency/power efficiency of 24%/71.4 lm W -1 in a green TSF-OLED are demonstrated, which remain at 22.6%/52.3 lm W -1 even at a high luminance of 5000 cd m -2 . The work unlocks the potential of TSF-OLEDs, paving the way toward practical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Versatile ruthenium(II) dye towards blue-light emitter and dye-sensitizer for solar cells.

    PubMed

    Zanoni, Kassio P S; Amaral, Ronaldo C; Murakami Iha, Neyde Y; Abreu, Felipe D; de Carvalho, Idalina M M

    2018-06-05

    A versatile Ru(II) complex bearing an anthracene moiety was synthesized in our search for suitable compounds towards efficient molecular devices. The new engineered dye, cis‑[Ru(dcbH 2 )(NCS) 2 (mbpy‑anth)] (dcbH 2 =2,2'‑bipyridyl‑4,4'‑dicarboxylic acid, mbpy‑anth=4‑[N‑(2‑anthryl)carbamoyl]‑4'‑methyl‑2,2'‑bipyridine), exhibits a blueish emission in a vibronically structured spectrum ascribed to the fluorescence of a 1 LC Anth (ligand centered) excited state in the anthracene and has a potential to be exploited in the fields of smart lighting and displays. This complex was also employed in dye-sensitized solar cells with fairly efficient solar energy conversion with the use of self-assembled TiO 2 compact layers beneath the TiO 2 mesoporous film to prevent meso‑TiO 2 /dye back reactions. Further photoelectrochemical investigations through incident photon-to-current efficiency and electrochemical impedance spectra showed that the all-nano-TiO 2 compact layer acts as contact layers that increase the electron harvesting in the external circuit, enhancing efficiencies up to 50%. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity

    DOE PAGES

    Clayton, C. E.; Adli, E.; Allen, J.; ...

    2016-08-16

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.).more » Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m –1 to a similar degree of accuracy. Lastly, these results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.« less

  12. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity

    PubMed Central

    Clayton, C. E.; Adli, E.; Allen, J.; An, W.; Clarke, C. I.; Corde, S.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Xu, X.; Yakimenko, V.

    2016-01-01

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m−1 to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity. PMID:27527569

  13. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers

    NASA Astrophysics Data System (ADS)

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A.

    2017-03-01

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300-500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent.

  14. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers.

    PubMed

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A

    2017-03-24

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90 Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300-500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent.

  15. Increasing the effective absorption of Eu3+-doped luminescent materials towards practical light emitting diodes for illumination applications

    NASA Astrophysics Data System (ADS)

    van de Haar, Marie Anne; Werner, Jan; Kratz, Nadja; Hilgerink, Tom; Tachikirt, Mohamed; Honold, Jürgen; Krames, Michael R.

    2018-03-01

    White light emitting diodes (LEDs) composed of a blue LED and a green/yellow downconverter material (phosphor) can be very efficient, but the color is often not considered very pleasant. Although the color rendering can be improved by adding a second, red-emitting phosphor, this generally results in significantly reduced efficacy of the device due to the broad emission of available conventional red-emitting phosphors. Trivalent europium is well-known for its characteristic narrow-band emission in the red region, with little radiation outside the eye sensitivity area, making it an ideal candidate for enabling high color quality as well as a high lumen equivalent of radiation from a spectrum point of view. However, a thorough study of the practical potential and challenges of Eu3+ as a red emitter for white LEDs has remained elusive so far due to the low excitation probability in the blue spectral range which is often even considered a fundamental limitation. Here, we show that the absorption in the blue region can be brought into an interesting regime for white LEDs and show that it is possible to increase both the color rendering and efficacy simultaneously using Eu3+ as a red emitter, compared to warm white LEDs comprising conventional materials.

  16. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits.

    PubMed

    Elshaari, Ali W; Zadeh, Iman Esmaeil; Fognini, Andreas; Reimer, Michael E; Dalacu, Dan; Poole, Philip J; Zwiller, Val; Jöns, Klaus D

    2017-08-30

    Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III-V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression. Here we overcome all of these challenges with a hybrid and scalable approach, where single III-V quantum emitters are positioned and deterministically integrated in a complementary metal-oxide-semiconductor-compatible photonic circuit. We demonstrate reconfigurable on-chip single-photon filtering and wavelength division multiplexing with a foot print one million times smaller than similar table-top approaches, while offering excitation suppression of more than 95 dB and efficient routing of single photons over a bandwidth of 40 nm. Our work marks an important step to harvest quantum optical technologies' full potential.Combining different integration platforms on the same chip is currently one of the main challenges for quantum technologies. Here, Elshaari et al. show III-V Quantum Dots embedded in nanowires operating in a CMOS compatible circuit, with controlled on-chip filtering and tunable routing.

  17. Highly reliable 637-639 nm red high-power LDs for displays

    NASA Astrophysics Data System (ADS)

    Nishida, Takehiro; Shimada, Naoyuki; Ono, Kenichi; Yagi, Tetsuya; Shima, Akihiro

    2010-02-01

    Higher power laser diodes (LDs) with a wavelength of 637-639nm are strongly demanded as a light source of display applications because luminosity factor of laser light is relatively high. In order to realize reliable high power operation, we have optimized LD structure, focusing on improvement of power saturation and sudden degradation. As a result, 40μm-wide broad-area (BA) LDs with window-mirror structure have been designed. We fabricated two kinds of single emitter LDs of 1.0mm cavity and 1.5mm cavity. The single LD is installed in conventional φ5.6 mm TO-CAN package. The 1.0mm LD showed very high wall plug efficiency (WPE) of 33% at 25 ºC (23% at 45 ºC) in the power range of around 300mW (30 lm). High output power of 600mW (60 lm) is realized by the 1.5mm LD. Both LDs have operated for over 1,000 hours without any degradation. Estimated mean time to failure (MTTF) is 10,000 hours. In addition, we fabricated an array LD consisting of 20 emitters (BA-LD structure), which shows reliable CW operation of 8W (at junction temperature of 50 ºC) for 10,000 hours.

  18. A nanophotonic solar thermophotovoltaic device.

    PubMed

    Lenert, Andrej; Bierman, David M; Nam, Youngsuk; Chan, Walker R; Celanović, Ivan; Soljačić, Marin; Wang, Evelyn N

    2014-02-01

    The most common approaches to generating power from sunlight are either photovoltaic, in which sunlight directly excites electron-hole pairs in a semiconductor, or solar-thermal, in which sunlight drives a mechanical heat engine. Photovoltaic power generation is intermittent and typically only exploits a portion of the solar spectrum efficiently, whereas the intrinsic irreversibilities of small heat engines make the solar-thermal approach best suited for utility-scale power plants. There is, therefore, an increasing need for hybrid technologies for solar power generation. By converting sunlight into thermal emission tuned to energies directly above the photovoltaic bandgap using a hot absorber-emitter, solar thermophotovoltaics promise to leverage the benefits of both approaches: high efficiency, by harnessing the entire solar spectrum; scalability and compactness, because of their solid-state nature; and dispatchablility, owing to the ability to store energy using thermal or chemical means. However, efficient collection of sunlight in the absorber and spectral control in the emitter are particularly challenging at high operating temperatures. This drawback has limited previous experimental demonstrations of this approach to conversion efficiencies around or below 1% (refs 9, 10, 11). Here, we report on a full solar thermophotovoltaic device, which, thanks to the nanophotonic properties of the absorber-emitter surface, reaches experimental efficiencies of 3.2%. The device integrates a multiwalled carbon nanotube absorber and a one-dimensional Si/SiO2 photonic-crystal emitter on the same substrate, with the absorber-emitter areas optimized to tune the energy balance of the device. Our device is planar and compact and could become a viable option for high-performance solar thermophotovoltaic energy conversion.

  19. 1.54 micron Emission from Erbium implanted GaN for Photonic Applications

    NASA Technical Reports Server (NTRS)

    Thaik, Myo; Hommerich, U.; Schwartz, R. N.; Wilson, R. G.; Zavada, J. M.

    1998-01-01

    The development of efficient and compact light sources operating at 1.54 micron is of enormous importance for the advancement of new optical communication systems. Erbium (1%) doped fiber amplifiers (EDFA's) or semiconductor lasers are currently being employed as near infrared light sources. Both devices, however, have inherent limitations due to their mode of operation. EDFA's employ an elaborate optical pumping scheme, whereas diode lasers have a strongly temperature dependent lasing wavelength. Novel light emitters based on erbium doped III-V semiconductors could overcome these limitations. Er doped semiconductors combine the convenience of electrical excitation with the excellent luminescence properties of Er(3+) ions. Electrically pumped, compact, and temperature stable optoelectronic devices are envisioned from this new class of luminescent materials. In this paper we discuss the potential of Er doped GaN for optoelectronic applications based on temperature dependent photoluminescence excitation studies.

  20. White light-emitting nanocomposites based on an oxadiazole-carbazole copolymer (POC) and InP/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Bruno, Annalisa; Borriello, Carmela; Di Luccio, Tiziana; Nenna, Giuseppe; Sessa, Lucia; Concilio, Simona; Haque, Saif A.; Minarini, Carla

    2013-11-01

    In this work, we studied energetic and optical proprieties of a polyester-containing oxadiazole and carbazole units that we will indicate as POC. This polymer is characterized by high photoluminescence activity in the blue region of the visible spectrum, making it suitable for the development of efficient white-emitting organic light emission devices. Moreover, POC polymer has been combined with two red emitters InP/ZnS quantum dots (QDs) to obtain nanocomposites with wide emission spectra. The two types of QDs have different absorption wavelengths: 570 nm [InP/ZnS(570)] and 627 nm [InP/ZnS(627)] and were inserted in the polymer at different concentrations. The optical properties of the nanocomposites have been investigated and compared to the ones of the pure polymer. Both spectral and time resolved fluorescence measurements show an efficient energy transfer from the polymer to QDs, resulting in white-emitting nanocomposites.

  1. Microfabricated electrospray emitter arrays with integrated extractor and accelerator electrodes for the propulsion of small spacecraft

    NASA Astrophysics Data System (ADS)

    Dandavino, S.; Ataman, C.; Ryan, C. N.; Chakraborty, S.; Courtney, D.; Stark, J. P. W.; Shea, H.

    2014-07-01

    Microfabricated electrospray thrusters could revolutionize the spacecraft industry by providing efficient propulsion capabilities to micro and nano satellites (1-100 kg). We present the modeling, design, fabrication and characterization of a new generation of devices, for the first time integrating in the fabrication process individual accelerator electrodes capable of focusing and accelerating the emitted sprays. Integrating these electrodes is a key milestone in the development of this technology; in addition to increasing the critical performance metrics of thrust, specific impulse and propulsive efficiency, the accelerators enable a number of new system features such as power tuning and thrust vectoring and balancing. Through microfabrication, we produced high density arrays (213 emitters cm-2) of capillary emitters, assembling them at wafer-level with an extractor/accelerator electrode pair separated by micro-sandblasted glass. Through IV measurements, we could confirm that acceleration could be decoupled from the extraction of the spray—an important element towards the flexibility of this technology. We present the largest reported internally fed microfabricated arrays operation, with 127 emitters spraying in parallel, for a total beam of 10-30 µA composed by 95% of ions. Effective beam focusing was also demonstrated, with plume half-angles being reduced from approximately 30° to 15° with 2000 V acceleration. Based on these results, we predict, with 3000 V acceleration, thrust per emitter of 38.4 nN, specific impulse of 1103 s and a propulsive efficiency of 22% with <1 mW/emitter power consumption.

  2. Development and Industrialization of InGaN/GaN LEDs on Patterned Sapphire Substrates for Low Cost Emitter Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flemish, Joseph; Soer, Wouter

    2015-11-30

    Patterned sapphire substrate (PSS) technology has proven to be an effective approach to improve efficacy and reduce cost of light-emitting diodes (LEDs). The volume emission from the transparent substrate leads to high package efficiency, while the simple and robust architecture of PSS-based LEDs enables low cost. PSS substrates have gained wide use in mid-power LEDs over the past years. In this project, Lumileds has developed and industrialized PSS and epitaxy technology for high- power flip-chip LEDs to bring these benefits to a broader range of applications and accelerate the adoption of energy-efficient solid-state lighting (SSL). PSS geometries were designed formore » highly efficient light extraction in a flip-chip architecture and high-volume manufacturability, and corresponding sapphire patterning and epitaxy manufacturing processes were integrally developed. Concurrently, device and package architectures were developed to take advantage of the PSS flip-chip die in different types of products that meet application needs. The developed PSS and epitaxy technology has been fully implemented in manufacturing at Lumileds’ San Jose, CA location, and incorporated in illumination-grade LED products that have been successfully introduced to the market, including LUXEON Q and LUXEON FlipChip White.« less

  3. Synthesis, photophysical and electrochemical properties of a blue emitter with binaphthalene and carbazole units.

    PubMed

    Guo, Lixia; Wang, Xiaoju; Feng, Liheng

    2018-08-05

    A blue emitter, 3,3'-(2,2'-dimethoxy-[1,1'-binaphthalene]-6,6'-diyl)bis(9-benzyl-9H-carbazole), was synthesized by Suzuki coupling reaction. The photophysical properties of the emitter in solution were firstly investigated by UV-Vis absorption and fluorescence emission techniques. The results indicate that the emitter has excellent optical and electron transfer properties. The maximum absorption and emission peaks of the emitter are 302 nm and 406 nm with 67.4% fluorescence quantum yield in chloroform, respectively. Thermal stability study reveals that the emitter has a good thermal stability (Td > 330 °C, Tg > 160 °C). Electrochemical Redox properties of the emitters were measured by cyclic voltammetry, and the energy gaps of highest occupied molecular orbital and the lowest unoccupied molecular orbital levels are in good agreement with the results of theoretical calculation. Furthermore, the multilayer electrochemcial device with the emitter was fabricated and its properties were explored. The wavelength of electroluminescence for the device with this emitter locates at 428 nm. These results indicate the emitter as a deep blue-emitting material has promising application in organic light-emitting diode devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Laser Based Phosphor Converted Solid State White Light Emitters

    NASA Astrophysics Data System (ADS)

    Cantore, Michael

    Artificial lighting and as a consequence the ability to be productive when the sun does not shine may be a profound achievement in society that is largely taken for granted. As concerns arise due to our dependence on energy sources with finite lifespan or environmentally negative effects, efforts to reduce energy consumption and create clean renewable alternatives has become highly valued. In the scope of artificial lighting, the use of incandescent lamps has shifted to more efficient light sources. Fluorescent lighting made the first big gains in efficiency over incandescent lamps with peak efficiency for mature designs reaching luminous efficacy of approximately 90 lm/W; more than three times as efficient as an incandescent lamp. Lamps based on light emitting diodes (LEDs) which can produce light at even greater efficiency, color quality and without the potential for hazardous chemical release from lamp failure. There is a significant challenge with LED based light sources. Their peak efficiency occurs at low current densities and then droops as the current density increases. Laser diodes (LDs) do not suffer from decreasing efficiency due to increased current. An alternative solid state light source using LDs has potential to make further gains in efficiency as well as allow novel illuminant designs which may be impractical or even impossible even with LED or other conventional sources. While similar to LEDS, the use of LDs does present new challenges largely due to the increased optical power density which must be accommodated in optics and phosphor materials. Single crystal YAG:Ce has been shown to be capable of enduring this more extreme operating environment while retaining the optical and fluorescing qualities desired for use as a wavelength converter in phosphor converted LD based white emitting systems. The incorporation of this single crystal phosphor in a system with a commercial laser diode with peak wall plug efficiency of 31% resulted in emission of white light with a luminous efficacy of 86.7 lm/W at a current of 1.4A. A total luminous flux of 1100 lm with luminous efficacy of 76 lm/W at 3.0 A current was achieved. Simulations have been conducted which show that as the InGaN LD technology matures towards the efficiencies of about 75%, which has been observed in the GaAs material system, luminous efficacy of similar blue LD with single crystal YAG:Ce systems will exceed 200 lm/W.

  5. Device Engineering and Degradation Mechanism Study of All-Phosphorescent White Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Xu, Lisong

    As a possible next-generation solid-state lighting source, white organic light-emitting diodes (WOLEDs) have the advantages in high power efficiency, large area and flat panel form factor applications. Phosphorescent emitters and multiple emitting layer structures are typically used in high efficiency WOLEDs. However due to the complexity of the device structure comprising a stack of multiple layers of organic thin films, ten or more organic materials are usually required, and each of the layers in the stack has to be optimized to produce the desired electrical and optical functions such that collectively a WOLED of the highest possible efficiency can be achieved. Moreover, device degradation mechanisms are still unclear for most OLED systems, especially blue phosphorescent OLEDs. Such challenges require a deep understanding of the device operating principles and materials/device degradation mechanisms. This thesis will focus on achieving high-efficiency and color-stable all-phosphorescent WOLEDs through optimization of the device structures and material compositions. The operating principles and the degradation mechanisms specific to all-phosphorescent WOLED will be studied. First, we investigated a WOLED where a blue emitter was based on a doped mix-host system with the archetypal bis(4,6-difluorophenyl-pyridinato-N,C2) picolinate iridium(III), FIrpic, as the blue dopant. In forming the WOLED, the red and green components were incorporated in a single layer adjacent to the blue layer. The WOLED efficiency and color were optimized through variations of the mixed-host compositions to control the electron-hole recombination zone and the dopant concentrations of the green-red layers to achieve a balanced white emission. Second, a WOLED structure with two separate blue layers and an ultra-thin red and green co-doped layer was studied. Through a systematic investigation of the placement of the co-doped red and green layer between the blue layers and the material compositions of these layers, we were able to achieve high-efficiency WOLEDs with controllable white emission characteristics. We showed that we can use the ultra-thin co-doped layer and two blue emitting layers to manipulate exciton confinement to certain zones and energy transfer pathways between the various hosts and dopants. Third, a blue phosphorescent dopant tris[1-(2,6-diisopropylphenyl)-2-phenyl-1H-imidazole]iridium(III) (Ir(iprpmi)3) with a low ionization potential (HOMO 4.8 eV) and propensity for hole-trapping was studied in WOLEDs. In a bipolar host, 2,6-bis(3-(carbazol-9-yl)phenyl)-pyridine (DCzPPy), Ir(iprpmi)3 was found to trap holes at low concentrations but transport holes at higher concentrations. By adjusting the dopant concentration and thereby the location of the recombination zone, we were able to demonstrate blue and white OLEDs with external quantum efficiencies over 20%. The fabricated WOLEDs shows high color stability over a wide range of luminance. Moreover, the device lifetime has also been improved with Ir(iprpmi)3 as the emitter compared to FIrpic. Last, we analyzed OLED degradation using Laser Desorption Time-Of-Flight Mass Spectrometry (LDI-TOF-MS) technique. By carefully and systematically comparing the LDI-TOF patterns of electrically/optically stressed and controlled (unstressed) OLED devices, we were able to identify some prominent degradation byproducts and trace possible chemical pathways involving specific host and dopant materials.

  6. Single-molecule strong coupling at room temperature in plasmonic nanocavities

    NASA Astrophysics Data System (ADS)

    Chikkaraddy, Rohit; de Nijs, Bart; Benz, Felix; Barrow, Steven J.; Scherman, Oren A.; Rosta, Edina; Demetriadou, Angela; Fox, Peter; Hess, Ortwin; Baumberg, Jeremy J.

    2016-07-01

    Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host-guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light-matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.

  7. Opto-electronic pulsed THz systems

    NASA Astrophysics Data System (ADS)

    Planken, P. C. M.; van Rijmenam, C. E. W. M.; Schouten, R. N.

    2005-07-01

    We present an overview of pulsed THz emission and detection schemes and give results of a highly efficient, water-cooled, semi-large aperture THz emitter. Using electro-optic detection we obtain a dynamic range of more than 5000 in a total measurement time of 20 ms, which represents the highest dynamic range for THz emitters centred around femtosecond laser oscillators to date. We find that the detection sensitivity is completely determined by the photon shot-noise of the probe laser beam. As an application of our efficient THz emitter, we present the first measurement of a phonon resonance in a THz apertureless scanning near-field optical microscopy measurement.

  8. Radio Frequency Plasma Discharge Lamps for Use as Stable Calibration Light Sources

    NASA Technical Reports Server (NTRS)

    McAndrew, Brendan; Cooper, John; Arecchi, Angelo; McKee, Greg; Durell, Christopher

    2012-01-01

    Stable high radiance in visible and near-ultraviolet wavelengths is desirable for radiometric calibration sources. In this work, newly available electrodeless radio-frequency (RF) driven plasma light sources were combined with research grade, low-noise power supplies and coupled to an integrating sphere to produce a uniform radiance source. The stock light sources consist of a 28 VDC power supply, RF driver, and a resonant RF cavity. The RF cavity includes a small bulb with a fill gas that is ionized by the electric field and emits light. This assembly is known as the emitter. The RF driver supplies a source of RF energy to the emitter. In commercial form, embedded electronics within the RF driver perform a continual optimization routine to maximize energy transfer to the emitter. This optimization routine continually varies the light output sinusoidally by approximately 2% over a several-second period. Modifying to eliminate this optimization eliminates the sinusoidal variation but allows the output to slowly drift over time. This drift can be minimized by allowing sufficient warm-up time to achieve thermal equilibrium. It was also found that supplying the RF driver with a low-noise source of DC electrical power improves the stability of the lamp output. Finally, coupling the light into an integrating sphere reduces the effect of spatial fluctuations, and decreases noise at the output port of the sphere.

  9. Decoupling degradation in exciton formation and recombination during lifetime testing of organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Hershey, Kyle W.; Suddard-Bangsund, John; Qian, Gang; Holmes, Russell J.

    2017-09-01

    The analysis of organic light-emitting device degradation is typically restricted to fitting the overall luminance loss as a function of time or the characterization of fully degraded devices. To develop a more complete understanding of degradation, additional specific data are needed as a function of luminance loss. The overall degradation in luminance during testing can be decoupled into a loss in emitter photoluminescence efficiency and a reduction in the exciton formation efficiency. Here, we demonstrate a method that permits separation of these component efficiencies, yielding the time evolution of two additional specific device parameters that can be used in interpreting and modeling degradation without modification to the device architecture or introduction of any additional post-degradation characterization steps. Here, devices based on the phosphor tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3) are characterized as a function of initial luminance and emissive layer thickness. The overall loss in device luminance is found to originate primarily from a reduction in the exciton formation efficiency which is exacerbated in devices with thinner emissive layers. Interestingly, the contribution to overall degradation from a reduction in the efficiency of exciton recombination (i.e., photoluminescence) is unaffected by thickness, suggesting a fixed exciton recombination zone width and degradation at an interface.

  10. Optical and electronic processes in organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Myers, Jason David

    Organic photovoltaic devices (OPVs) have become a promising research field. OPVs have intrinsic advantages over conventional inorganic technologies: they can be produced from inexpensive source materials using high-throughput techniques on a variety of substrates, including glass and flexible plastics. However, organic semiconductors have radically different operation characteristics which present challenges to achieving high performance OPVs. To increase the efficiency of OPVs, knowledge of fundamental operation principles is crucial. Here, the photocurrent behavior of OPVs with different heterojunction architectures was studied using synchronous photocurrent detection. It was revealed that photocurrent is always negative in planar and planar-mixed heterojunction devices as it is dominated by photocarrier diffusion. In mixed layer devices, however, the drift current dominates except at biases where the internal electric field is negligible. At these biases, the diffusion current dominates, exhibiting behavior that is correlated to the optical interference patterns within the device active layer. Further, in an effort to increase OPV performance without redesigning the active layer, soft-lithographically stamped microlens arrays (MLAs) were developed and applied to a variety of devices. MLAs refract and reflect incident light, giving light a longer path length through the active layer compared to a device without a MLA; this increases absorption and photocurrent. The experimentally measured efficiency enhancements range from 10 to 60%, with the bulk of this value coming from increased photocurrent. Additionally, because the enhancement is dependent on the substrate/air interface and not the active layer, MLAs are applicable to all organic material systems. Finally, novel architectures for bifunctional organic optoelectronic devices (BFDs), which can function as either an OPV or an organic light emitting device (OLED), were investigated. Because OPVs and OLEDs have inherently opposing operation principles, BFDs suffer from poor performance. A new architecture was developed to incorporate the phosphorescent emitter platinum octaethylporphine (PtOEP) into a rubrene/C60 bilayer BFD to make more efficient use of injected carriers. While the emission was localized to a PtOEP emitter layer by an electron permeable exciton blocking layer of N, N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (NPB), total performance was not improved. From these experiments, a new understanding of the material requirements for BFDs was obtained.

  11. Fluorescence enhancement and nonreciprocal transmission of light waves by nanomaterial interfaces

    NASA Astrophysics Data System (ADS)

    Nyman, M.; Shevchenko, A.; Kaivola, M.

    2017-11-01

    In an optically absorbing or amplifying linear medium, the energy flow density of interfering optical waves is in general periodically modulated in space. This makes the wave transmission through a material boundary, as described by the Fresnel transmission coefficients, nonreciprocal and apparently violating the energy conservation law. The modulation has been previously described in connection to ordinary homogeneous nonmagnetic materials. In this work, we extend the description to nanomaterials with designed structural units that can be magnetic at optical frequencies. We find that in such a "metamaterial" the modulation in energy flow can be used to enhance optical far-field emission in spite of the fact that the material is highly absorbing. We also demonstrate a nanomaterial design that absorbs light, but simultaneously eliminates the power flow modulation and returns the reciprocity, which is impossible to achieve with a nonmagnetic material. We anticipate that these unusual optical effects can be used to increase the efficiency of nanostructured light emitters and absorbers, such as light-emitting diodes and solar cells.

  12. Multi-emitter laser multiplexer using a two-mirror beam shaper

    NASA Astrophysics Data System (ADS)

    Cobb, Joshua M.; Brennan, John; Bhatia, Vikram

    2014-12-01

    A system was designed and built to spatially multiplex four broad area laser diodes (BALD) and condense the light into a multi-mode fiber with a core diameter of 105 um and an NA of 0.15. The lasers were efficiently combined with an étendue aspect ratio scaler (EARS) optic. The EARS works under the principle of a two mirror beam shaper. We were able to successfully couple more than 87% of the optical energy into the fiber. The design of the optical system and the results of several built systems are discussed.

  13. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter.

    PubMed

    Zaske, Sebastian; Lenhard, Andreas; Keßler, Christian A; Kettler, Jan; Hepp, Christian; Arend, Carsten; Albrecht, Roland; Schulz, Wolfgang-Michael; Jetter, Michael; Michler, Peter; Becher, Christoph

    2012-10-05

    We demonstrate efficient (>30%) quantum frequency conversion of visible single photons (711 nm) emitted by a quantum dot to a telecom wavelength (1313 nm). Analysis of the first- and second-order coherence before and after wavelength conversion clearly proves that pivotal properties, such as the coherence time and photon antibunching, are fully conserved during the frequency translation process. Our findings underline the great potential of single photon sources on demand in combination with quantum frequency conversion as a promising technique that may pave the way for a number of new applications in quantum technology.

  14. Deterministic Integration of Quantum Dots into on-Chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography

    NASA Astrophysics Data System (ADS)

    Schnauber, Peter; Schall, Johannes; Bounouar, Samir; Höhne, Theresa; Park, Suk-In; Ryu, Geun-Hwan; Heindel, Tobias; Burger, Sven; Song, Jin-Dong; Rodt, Sven; Reitzenstein, Stephan

    2018-04-01

    The development of multi-node quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of pre-selected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multi-mode interference beamsplitter via in-situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with $g^{(2)}(0) = 0.13\\pm 0.02$. Due to its high patterning resolution as well as spectral and spatial control, in-situ electron beam lithography allows for integration of pre-selected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way towards multi-node, fully integrated quantum photonic chips.

  15. Regio- and conformational isomerization critical to design of efficient thermally-activated delayed fluorescence emitters

    PubMed Central

    Etherington, Marc K.; Franchello, Flavio; Gibson, Jamie; Northey, Thomas; Santos, Jose; Ward, Jonathan S.; Higginbotham, Heather F.; Data, Przemyslaw; Kurowska, Aleksandra; Dos Santos, Paloma Lays; Graves, David R.; Batsanov, Andrei S.; Dias, Fernando B.; Bryce, Martin R.; Penfold, Thomas J.; Monkman, Andrew P.

    2017-01-01

    Regio- and conformational isomerization are fundamental in chemistry, with profound effects upon physical properties, however their role in excited state properties is less developed. Here two regioisomers of bis(10H-phenothiazin-10-yl)dibenzo[b,d]thiophene-S,S-dioxide, a donor–acceptor–donor (D–A–D) thermally-activated delayed fluorescence (TADF) emitter, are studied. 2,8-bis(10H-phenothiazin-10-yl)dibenzo[b,d]thiophene-S,S-dioxide exhibits only one quasi-equatorial conformer on both donor sites, with charge-transfer (CT) emission close to the local triplet state leading to efficient TADF via spin-vibronic coupling. However, 3,7-bis(10H-phenothiazin-10-yl)dibenzo[b,d]thiophene-S,S-dioxide displays both a quasi-equatorial CT state and a higher-energy quasi-axial CT state. No TADF is observed in the quasi-axial CT emission. These two CT states link directly to the two folded conformers of phenothiazine. The presence of the low-lying local triplet state of the axial conformer also means that this quasi-axial CT is an effective loss pathway both photophysically and in devices. Importantly, donors or acceptors with more than one conformer have negative repercussions for TADF in organic light-emitting diodes. PMID:28406153

  16. Study on the near-field non-linearity (SMILE) of high power diode laser arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyou; Jia, Yangtao; Li, Changxuan; Zah, Chung-en; Liu, Xingsheng

    2018-02-01

    High power laser diodes have been found a wide range of industrial, space, medical applications, characterized by high conversion efficiency, small size, light weight and a long lifetime. However, due to thermal induced stress, each emitter in a semiconductor laser bar or array is displaced along p-n junction, resulting of each emitter is not in a line, called Near-field Non-linearity. Near-field Non-linearity along laser bar (also known as "SMILE") determines the outcome of optical coupling and beam shaping [1]. The SMILE of a laser array is the main obstacle to obtain good optical coupling efficiency and beam shaping from a laser array. Larger SMILE value causes a larger divergence angle and a wider line after collimation and focusing, respectively. In this letter, we simulate two different package structures based on MCC (Micro Channel Cooler) with Indium and AuSn solders, including the distribution of normal stress and the SMILE value. According to the theoretical results, we found the distribution of normal stress on laser bar shows the largest in the middle and drops rapidly near both ends. At last, we did another experiment to prove that the SMILE value of a laser bar was mainly affected by the die bonding process, rather than the operating condition.

  17. Thermionic converter

    DOEpatents

    Fitzpatrick, G.O.

    1987-05-19

    A thermionic converter is set forth which includes an envelope having an electron collector structure attached adjacent to a wall. An electron emitter structure is positioned adjacent the collector structure and spaced apart from opposite wall. The emitter and collector structures are in a common chamber. The emitter structure is heated substantially only by thermal radiation. Very small interelectrode gaps can be maintained utilizing the thermionic converter whereby increased efficiency results. 10 figs.

  18. Thermophotovoltaic energy conversion system having a heavily doped n-type region

    DOEpatents

    DePoy, David M.; Charache, Greg W.; Baldasaro, Paul F.

    2000-01-01

    A thermophotovoltaic (TPV) energy conversion semiconductor device is provided which incorporates a heavily doped n-type region and which, as a consequence, has improved TPV conversion efficiency. The thermophotovoltaic energy conversion device includes an emitter layer having first and second opposed sides and a base layer in contact with the first side of the emitter layer. A highly doped n-type cap layer is formed on the second side of the emitter layer or, in another embodiment, a heavily doped n-type emitter layer takes the place of the cap layer.

  19. Development of a pepper-pot device to determine the emittance of an ion beam generated by electron cyclotron resonance ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strohmeier, M.; University of Applied Sciences Karlsruhe, Moltkestr. 30, 76133 Karlsruhe; Benitez, J. Y.

    2010-02-15

    This paper describes the recent development and commissioning of a pepper-pot emittance meter at the Lawrence Berkeley National Laboratory (LBNL). It is based on a potassium bromide (KBr) scintillator screen in combination with a charged coupled device camera. Pepper-pot scanners record the full four-dimensional transverse phase space emittances which are particularly interesting for electron cyclotron resonance ion sources. The strengths and limitations of evaluating emittances using optical pepper-pot scanners are described and systematic errors induced by the optical data acquisition system will be presented. Light yield tests of KBr exposed to different ion species and first emittance measurement data usingmore » ion beams extracted from the 6.4 GHz LBNL electron cyclotron resonance ion source are presented and discussed.« less

  20. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting

    PubMed Central

    Kim, Hoon-sik; Brueckner, Eric; Song, Jizhou; Li, Yuhang; Kim, Seok; Lu, Chaofeng; Sulkin, Joshua; Choquette, Kent; Huang, Yonggang; Nuzzo, Ralph G.; Rogers, John A.

    2011-01-01

    Properties that can now be achieved with advanced, blue indium gallium nitride light emitting diodes (LEDs) lead to their potential as replacements for existing infrastructure in general illumination, with important implications for efficient use of energy. Further advances in this technology will benefit from reexamination of the modes for incorporating this materials technology into lighting modules that manage light conversion, extraction, and distribution, in ways that minimize adverse thermal effects associated with operation, with packages that exploit the unique aspects of these light sources. We present here ideas in anisotropic etching, microscale device assembly/integration, and module configuration that address these challenges in unconventional ways. Various device demonstrations provide examples of the capabilities, including thin, flexible lighting “tapes” based on patterned phosphors and large collections of small light emitters on plastic substrates. Quantitative modeling and experimental evaluation of heat flow in such structures illustrates one particular, important aspect of their operation: small, distributed LEDs can be passively cooled simply by direct thermal transport through thin-film metallization used for electrical interconnect, providing an enhanced and scalable means to integrate these devices in modules for white light generation. PMID:21666096

  1. Emission Testing Results of Thermally Stable, Metamaterial, Selective-Emitters for Thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Levinson, Katherine; Naka, Norihito; Pfiester, Nicole; Licht, Abigail; Vandervelde, Tom

    2015-03-01

    In thermophotovoltaics, the energy from a heated emitter is converted to electricity by a photovoltaic diode. A selective emitter can be used to emit a narrow band of wavelengths tailored to the bandgap of the photovoltaic diode. This spectral shaping improves the conversion efficiency of the diode and reduces undesirable diode heating. In our research, we study selective emitters based on metamaterials composed of repeating nanoscale structures. The emission characteristics of these materials vary based on the compositional structure, allowing the emitted spectrum to be tunable. Simulations were performed with CST Microwave Studio to design emitters with peak wavelengths ranging from 1-10 microns. The structures were then fabricated using physical vapor deposition and electron beam lithography on a sapphire substrate. Emitter materials studied include gold, platinum, and iridium. Here we report on the emission spectra of the selective emitters and the post-heating structural integrity.

  2. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices

    PubMed Central

    Pusch, Andreas; De Luca, Andrea; Oh, Sang S.; Wuestner, Sebastian; Roschuk, Tyler; Chen, Yiguo; Boual, Sophie; Ali, Zeeshan; Phillips, Chris C.; Hong, Minghui; Maier, Stefan A.; Udrea, Florin; Hopper, Richard H.; Hess, Ortwin

    2015-01-01

    The application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff’s law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal plasmon emission, we engineer a tungsten-based thermal emitter, fabricated in an industrial CMOS process, and demonstrate its markedly improved practical use in a prototype non-dispersive infrared (NDIR) gas-sensing device. We show that the emission intensity of the thermal emitter at the CO2 absorption wavelength is enhanced almost 4-fold compared to a standard non-plasmonic emitter, which enables a proportionate increase in the signal-to-noise ratio of the CO2 gas sensor. PMID:26639902

  3. Understanding and development of manufacturable screen-printed contacts on high sheet-resistance emitters for low-cost silicon solar cells

    NASA Astrophysics Data System (ADS)

    Hilali, Mohamed M.

    2005-11-01

    A simple cost-effective approach was proposed and successfully employed to fabricate high-quality screen-printed (SP) contacts to high sheet-resistance emitters (100 O/sq) to improve the Si solar cell efficiency. Device modeling was used to quantify the performance enhancement possible from the high sheet-resistance emitter for various cell designs. It was found that for performance enhancement from the high sheet-resistance emitter, certain cell design criteria must be satisfied. Model calculations showed that in order to achieve any performance enhancement over the conventional ˜40 O/sq emitter, the high sheet resistance emitter solar cell must have a reasonably good (<120,000 cm/s) or low front-surface recombination velocity (FSRV). Model calculations were also performed to establish requirements for high fill factors (FFs). The results showed that the series resistance should be less than 0.8 O-cm2, the shunt resistance should be greater than 1000 O-cm2, and the junction leakage current should be less than 25 nA/cm2. Analytical microscopy and surface analysis techniques were used to study the Ag-Si contact interface of different SP Ag pastes. Physical and electrical properties of SP Ag thick-film contacts were studied and correlated to understand and achieve good-quality ohmic contacts to high sheet-resistance emitters for solar cells. This information was then used to define the criteria for high-quality screen-printed contacts. The role of paste constituents and firing scheme on contact quality were investigated to tailor the high-quality screen-printed contact interface structure that results in high performance solar cells. Results indicated that small particle size, high glass transition temperature, rapid firing and less aggressive glass frit help in producing high-quality contacts. Based on these results high-quality SP contacts with high FFs > 0.78 on high sheet-resistance emitters were achieved for the first time using a simple single-step firing process. This technology was applied to different substrates (monocrystalline and multicrystalline) and surfaces (textured and planar). Cell efficiencies of ˜16.2% on low-cost EFG ribbon substrates were achieved on high sheet-resistance emitters with SP contacts. A record high-efficiency SP solar cell of 19% with textured high sheet-resistance emitter was also fabricated and modeled.

  4. High light-quality OLEDs with a wet-processed single emissive layer.

    PubMed

    Singh, Meenu; Jou, Jwo-Huei; Sahoo, Snehasis; S S, Sujith; He, Zhe-Kai; Krucaite, Gintare; Grigalevicius, Saulius; Wang, Ching-Wu

    2018-05-08

    High light-quality and low color temperature are crucial to justify a comfortable healthy illumination. Wet-process enables electronic devices cost-effective fabrication feasibility. We present herein low color temperature, blue-emission hazards free organic light emitting diodes (OLEDs) with very-high light-quality indices, that with a single emissive layer spin-coated with multiple blackbody-radiation complementary dyes, namely deep-red, yellow, green and sky-blue. Specifically, an OLED with a 1,854 K color temperature showed a color rendering index (CRI) of 90 and a spectrum resemblance index (SRI) of 88, whose melatonin suppression sensitivity is only 3% relative to a reference blue light of 480 nm. Its maximum retina permissible exposure limit is 3,454 seconds at 100 lx, 11, 10 and 6 times longer and safer than the counterparts of compact fluorescent lamp (5,920 K), light emitting diode (5,500 K) and OLED (5,000 K). By incorporating a co-host, tris(4-carbazoyl-9-ylphenyl)amine (TCTA), the resulting OLED showed a current efficiency of 24.9 cd/A and an external quantum efficiency of 24.5% at 100 cd/m 2 . It exhibited ultra-high light quality with a CRI of 93 and an SRI of 92. These prove blue-hazard free, high quality and healthy OLED to be fabrication feasible via the easy-to-apply wet-processed single emissive layer with multiple emitters.

  5. Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters

    PubMed Central

    Miura, R.; Imamura, S.; Ohta, R.; Ishii, A.; Liu, X.; Shimada, T.; Iwamoto, S.; Arakawa, Y.; Kato, Y. K.

    2014-01-01

    The unique emission properties of single-walled carbon nanotubes are attractive for achieving increased functionality in integrated photonics. In addition to being room-temperature telecom-band emitters that can be directly grown on silicon, they are ideal for coupling to nanoscale photonic structures. Here we report on high-efficiency coupling of individual air-suspended carbon nanotubes to silicon photonic crystal nanobeam cavities. Photoluminescence images of dielectric- and air-mode cavities reflect their distinctly different mode profiles and show that fields in the air are important for coupling. We find that the air-mode cavities couple more efficiently, and estimated spontaneous emission coupling factors reach a value as high as 0.85. Our results demonstrate advantages of ultralow mode-volumes in air-mode cavities for coupling to low-dimensional nanoscale emitters. PMID:25420679

  6. Improving the Stability of Metal Halide Perovskite Materials and Light-Emitting Diodes.

    PubMed

    Cho, Himchan; Kim, Young-Hoon; Wolf, Christoph; Lee, Hyeon-Dong; Lee, Tae-Woo

    2018-01-25

    Metal halide perovskites (MHPs) have numerous advantages as light emitters such as high photoluminescence quantum efficiency with a direct bandgap, very narrow emission linewidth, high charge-carrier mobility, low energetic disorder, solution processability, simple color tuning, and low material cost. Based on these advantages, MHPs have recently shown unprecedented radical progress (maximum current efficiency from 0.3 to 42.9 cd A -1 ) in the field of light-emitting diodes. However, perovskite light-emitting diodes (PeLEDs) suffer from intrinsic instability of MHP materials and instability arising from the operation of the PeLEDs. Recently, many researchers have devoted efforts to overcome these instabilities. Here, the origins of the instability in PeLEDs are reviewed by categorizing it into two types: instability of (i) the MHP materials and (ii) the constituent layers and interfaces in PeLED devices. Then, the strategies to improve the stability of MHP materials and PeLEDs are critically reviewed, such as A-site cation engineering, Ruddlesden-Popper phase, suppression of ion migration with additives and blocking layers, fabrication of uniform bulk polycrystalline MHP layers, and fabrication of stable MHP nanoparticles. Based on this review of recent advances, future research directions and an outlook of PeLEDs for display applications are suggested. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Emittance measurements in low energy ion storage rings

    NASA Astrophysics Data System (ADS)

    Hunt, J. R.; Carli, C.; Resta-López, J.; Welsch, C. P.

    2018-07-01

    The development of the next generation of ultra-low energy antiproton and ion facilities requires precise information about the beam emittance to guarantee optimum performance. In the Extra-Low ENergy Antiproton storage ring (ELENA) the transverse emittances will be measured by scraping. However, this diagnostic measurement faces several challenges: non-zero dispersion, non-Gaussian beam distributions due to effects of the electron cooler and various systematic errors such as closed orbit offsets and inaccurate rms momentum spread estimation. In addition, diffusion processes, such as intra-beam scattering might lead to emittance overestimates. Here, we present algorithms to efficiently address the emittance reconstruction in presence of the above effects, and present simulation results for the case of ELENA.

  8. Demonstrating the Light-Emitting Diode.

    ERIC Educational Resources Information Center

    Johnson, David A.

    1995-01-01

    Describes a simple inexpensive circuit which can be used to quickly demonstrate the basic function and versatility of the solid state diode. Can be used to demonstrate the light-emitting diode (LED) as a light emitter, temperature sensor, light detector with both a linear and logarithmic response, and charge storage device. (JRH)

  9. Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes.

    PubMed

    Wong, Michael Y; Zysman-Colman, Eli

    2017-06-01

    The design of thermally activated delayed fluorescence (TADF) materials both as emitters and as hosts is an exploding area of research. The replacement of phosphorescent metal complexes with inexpensive organic compounds in electroluminescent (EL) devices that demonstrate comparable performance metrics is paradigm shifting, as these new materials offer the possibility of developing low-cost lighting and displays. Here, a comprehensive review of TADF materials is presented, with a focus on linking their optoelectronic behavior with the performance of the organic light-emitting diode (OLED) and related EL devices. TADF emitters are cross-compared within specific color ranges, with a focus on blue, green-yellow, orange-red, and white OLEDs. Organic small-molecule, dendrimer, polymer, and exciplex emitters are all discussed within this review, as is their use as host materials. Correlations are provided between the structure of the TADF materials and their optoelectronic properties. The success of TADF materials has ushered in the next generation of OLEDs. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Heterojunction solar cell

    DOEpatents

    Olson, J.M.

    1994-08-30

    A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.

  11. Emission current formation in plasma electron emitters

    NASA Astrophysics Data System (ADS)

    Gruzdev, V. A.; Zalesski, V. G.

    2010-12-01

    A model of the plasma electron emitter is considered, in which the current redistribution over electrodes of the emitter gas-discharge structure and weak electric field formation in plasma are taken into account as functions of the emission current. The calculated and experimental dependences of the switching parameters, extraction efficiency, and strength of the electric field in plasma on the accelerating voltage and geometrical sizes of the emission channel are presented.

  12. Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device

    NASA Astrophysics Data System (ADS)

    Mesta, M.; van Eersel, H.; Coehoorn, R.; Bobbert, P. A.

    2016-03-01

    Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance as a function of J in a multilayer hybrid white OLED that combines fluorescent blue with phosphorescent green and red emission. We investigate two models for TTA and TPQ involving the phosphorescent green and red emitters: short-range nearest-neighbor quenching and long-range Förster-type quenching. Short-range quenching predicts roll-off to occur at much higher J than measured. Taking long-range quenching with Förster radii for TTA and TPQ equal to twice the Förster radii for exciton transfer leads to a fair description of the measured IQE-J curve, with the major contribution to the roll-off coming from TPQ. The measured decrease of the ratio of phosphorescent to fluorescent component of the emitted light with increasing J is correctly predicted. A proper description of the J-dependence of the ratio of red and green phosphorescent emission needs further model refinements.

  13. Design and fabrication of spectrally selective emitter for thermophotovoltaic system by using nano-imprint lithography

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Moo; Park, Keum-Hwan; Kim, Da-Som; Hwang, Bo-yeon; Kim, Sun-Kyung; Chae, Hee-Man; Ju, Byeong-Kwon; Kim, Young-Seok

    2018-01-01

    Thermophotovoltaic (TPV) systems have attracted attention as promising power generation systems that can directly convert the radiant energy produced by the combustion of fuel into electrical energy. However, there is a fundamental limit of their conversion efficiency due to the broadband distribution of the radiant spectrum. To overcome this problem, several spectrally selective thermal emitter technologies have been investigated, including the fabrication of photonic crystal (PhC) structures. In this paper, we present some design rules based on finite-a difference time-domain (FDTD) simulation results for tungsten (W) PhC emitter. The W 2D PhC was fabricated by a simple nano-imprint lithography (NIL) process, and inductive coupled plasma reactive ion etching (ICP-RIE) with an isotropic etching process, the benefits and parameters of which are presented. The fabricated W PhC emitter showed spectrally selective emission near the infrared wavelength range, and the optical properties varied depending on the size of the nano-patterns. The measured results of the fabricated prototype structure correspond well to the simulated values. Finally, compared with the performance of a flat W emitter, the total thermal emitter efficiency was almost 3.25 times better with the 2D W PhC structure.

  14. Developments of fast emittance monitors for ion sources at RCNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yorita, T., E-mail: yorita@rcnp.osaka-u.ac.jp; Hatanaka, K.; Fukuda, M.

    2016-02-15

    Recently, several developments of low energy beam transport line and its beam diagnostic systems have been performed to improve the injection efficiency of ion beam to azimuthally varying field cyclotron at Research Center for Nuclear Physics, Osaka University. One of those is the fast emittance monitor which can measure within several seconds for the efficient beam development and a Pepper-Pot Emittance Monitor (PPEM) has been developed. The PPEM consists of pepper-pot mask, multichannel plate, fluorescent screen, mirror, and CCD camera. The CCD image is taken via IEEE1394b to a personal computer and analyzed immediately and frequently, and then real timemore » measurement with about 2 Hz has been achieved.« less

  15. Efficient fluorescence/phosphorescence white organic light-emitting diodes with ultra high color stability and mild efficiency roll-off

    NASA Astrophysics Data System (ADS)

    Du, Xiaoyang; Tao, Silu; Huang, Yun; Yang, Xiaoxia; Ding, Xulin; Zhang, Xiaohong

    2015-11-01

    Efficient fluorescence/phosphorescence hybrid white organic light-emitting diodes (OLEDs) with single doped co-host structure have been fabricated. Device using 9-Naphthyl-10 -(4-triphenylamine)anthrancene as the fluorescent dopant and Ir(ppy)3 and Ir(2-phq)3 as the green and orange phosphorescent dopants show the luminous efficiency of 12.4% (17.6 lm/W, 27.5 cd/A) at 1000 cd/m2. Most important to note that the efficiency-brightness roll-off of the device was very mild. With the brightness rising up to 5000 and 10 000 cd/m2, the efficiency could be kept at 11.8% (14.0 lm/W, 26.5 cd/A) and 11.0% (11.8 lm/W, 25.0 cd/A). The Commission Internationale de L'Eclairage (CIE) coordinates and color rending index (CRI) were measured to be (0.45, 0.48) and 65, respectively, and remained the same in a large range of brightness (1000-10 000 cd/m2), which is scarce in the reported white OLEDs. The performance of the device at high luminance (5000 and 10 000 cd/m2) was among the best reported results including fluorescence/phosphorescence hybrid and all-phosphorescent white OLEDs. Moreover, the CRI of the white OLED can be improved to 83 by using a yellow-green emitter (Ir(ppy)2bop) in the device.

  16. Vertical pillar nanoantenna for emission enhancement and redirection

    NASA Astrophysics Data System (ADS)

    Paparone, J.; Laverdant, J.; Brucoli, G.; Symonds, C.; Crut, A.; Del Fatti, N.; Benoit, J. M.; Bellessa, J.

    2018-01-01

    Designing efficient metallic nanostructures can help in realizing bright single photon emission in the visible and near-infrared ranges. We propose a novel nanostructure design that combines the benefits of plasmonic hot spot generation in the near-field and the concept of antennas developed in the radio-frequency range. The antenna is formed by a vertical stack of metallic and dielectric nanocylinders. When used for controlling the far-field emission of a localized source, its key features are moderate losses in the metal, relatively large Purcell factors, as well as a low sensibility to the lateral position of the emitter. A redirection process necessary for these vertical structures is proposed, based on the versatility of the vertical geometry, and allows an efficient redirection of the emitted light even for antennas on dielectric substrates.

  17. High-efficiency nanostructured silicon solar cells on a large scale realized through the suppression of recombination channels.

    PubMed

    Zhong, Sihua; Huang, Zengguang; Lin, Xingxing; Zeng, Yang; Ma, Yechi; Shen, Wenzhong

    2015-01-21

    Nanostructured silicon solar cells show great potential for new-generation photovoltaics due to their ability to approach ideal light-trapping. However, the nanofeatured morphology that brings about the optical benefits also introduces new recombination channels, and severe deterioration in the electrical performance even outweighs the gain in optics in most attempts. This Research News article aims to review the recent progress in the suppression of carrier recombination in silicon nanostructures, with the emphasis on the optimization of surface morphology and controllable nanostructure height and emitter doping concentration, as well as application of dielectric passivation coatings, providing design rules to realize high-efficiency nanostructured silicon solar cells on a large scale. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band.

    PubMed

    Zaske, Sebastian; Lenhard, Andreas; Becher, Christoph

    2011-06-20

    We report on single photon frequency downconversion from the red part of the spectrum (738 nm) to the telecommunications C-band. By mixing attenuated laser pulses with an average photon number per pulse < 1 with a strong continuous light field at 1403 nm in a periodically poled Zn:LiNbO3 ridge waveguide an internal conversion efficiency of ∼ 73% is achieved. We further investigate the noise properties of the process by measuring the output spectrum. Our results indicate that by narrow spectral filtering a quantum interface should be feasible which bridges the wavelength gap between quantum emitters like color centers in diamond emitting in the red part of the spectrum and low-loss fiber-optic telecommunications wavelengths.

  19. Electrically excited hot-electron dominated fluorescent emitters using individual Ga-doped ZnO microwires via metal quasiparticle film decoration.

    PubMed

    Liu, Yang; Jiang, Mingming; Zhang, Zhenzhong; Li, Binghui; Zhao, Haifeng; Shan, Chongxin; Shen, Dezhen

    2018-03-28

    The generation of hot electrons from metal nanostructures through plasmon decay provided a direct interfacial charge transfer mechanism, which no longer suffers from the barrier height restrictions observed for metal/semiconductor interfaces. Metal plasmon-mediated energy conversion with higher efficiency has been proposed as a promising alternative to construct novel optoelectronic devices, such as photodetectors, photovoltaic and photocatalytic devices, etc. However, the realization of the electrically-driven generation of hot electrons, and the application in light-emitting devices remain big challenges. Here, hybrid architectures comprising individual Ga-doped ZnO (ZnO:Ga) microwires via metal quasiparticle film decoration were fabricated. The hottest spots could be formed towards the center of the wires, and the quasiparticle films were converted into physically isolated nanoparticles by applying a bias onto the wires. Thus, the hot electrons became spatially localized towards the hottest regions, leading to a release of energy in the form of emitting photons. By adjusting the sputtering times and appropriate alloys, such as Au and Ag, wavelength-tunable emissions could be achieved. To exploit the EL emission characteristics, metal plasmons could be used as active elements to mediate the generation of hot electrons from metal nanostructures, which are located in the light-emitting regions, followed by injection into ZnO:Ga microwire-channels; thus, the production of plasmon decay-induced hot-electrons could function as an efficient approach to dominate emission wavelengths. Therefore, by introducing metal nanostructure decoration, individual ZnO:Ga microwires can be used to construct wavelength-tunable fluorescent emitters. The hybrid architectures of metal-ZnO micro/nanostructures offer a fantastic candidate to broaden the potential applications of semiconducting optoelectronic devices, such as photovoltaic devices, photodetectors, optoelectronic sensors, etc.

  20. High brightness fiber laser pump sources based on single emitters and multiple single emitters

    NASA Astrophysics Data System (ADS)

    Scheller, Torsten; Wagner, Lars; Wolf, Jürgen; Bonati, Guido; Dörfel, Falk; Gabler, Thomas

    2008-02-01

    Driven by the potential of the fiber laser market, the development of high brightness pump sources has been pushed during the last years. The main approaches to reach the targets of this market had been the direct coupling of single emitters (SE) on the one hand and the beam shaping of bars and stacks on the other hand, which often causes higher cost per watt. Meanwhile the power of single emitters with 100μm emitter size for direct coupling increased dramatically, which also pushed a new generation of wide stripe emitters or multi emitters (ME) of up to 1000μm emitter size respectively "minibars" with apertures of 3 to 5mm. The advantage of this emitter type compared to traditional bars is it's scalability to power levels of 40W to 60W combined with a small aperture which gives advantages when coupling into a fiber. We show concepts using this multiple single emitters for fiber coupled systems of 25W up to 40W out of a 100μm fiber NA 0.22 with a reasonable optical efficiency. Taking into account a further efficiency optimization and an increase in power of these devices in the near future, the EUR/W ratio pushed by the fiber laser manufacturer will further decrease. Results will be shown as well for higher power pump sources. Additional state of the art tapered fiber bundles for photonic crystal fibers are used to combine 7 (19) pump sources to output powers of 100W (370W) out of a 130μm (250μm) fiber NA 0.6 with nominal 20W per port. Improving those TFB's in the near future and utilizing 40W per pump leg, an output power of even 750W out of 250μm fiber NA 0.6 will be possible. Combined Counter- and Co-Propagated pumping of the fiber will then lead to the first 1kW fiber laser oscillator.

  1. Green-emitting MADF complex for OLED applications

    NASA Astrophysics Data System (ADS)

    Klimes, Kody; Zhu, Zhi-Qiang; Holloway, Sean; Li, Jian

    2016-09-01

    In this article, we demonstrated an exceptional palladium complex that exhibits both phosphorescence and delayed fluorescence for use as an efficient emitter in OLEDs. Devices employing PdN3N achieved external quantum efficiencies in excess of 22% and remarkable device operational lifetime to 90% initial luminance estimated at over 30,000 h at a practical luminance of 100 cd/m2. Further tuning of the phosphorescent and delayed fluorescent emission should have a great impact in the development of efficient and stable emitters for deep blue or white OLEDs.

  2. Selective coating for collecting solar energy on aluminum

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1974-01-01

    Presently used coatings, which were originally developed for brass, copper, and steel substrates, yield relatively low absorptance/emittance ratios when applied to aluminum. Efficient, black-nickel plating applied to aluminum substrate enhances solar absorptance to 93% and reduces emittance to 6%.

  3. Wireless control system for two-axis linear oscillating motion applying CBR technology

    NASA Astrophysics Data System (ADS)

    Kuzyakov, O. N.; Andreeva, M. A.

    2018-03-01

    The paper presents the aspects of elaborating a movement control system. The system is to implement determination of movement characteristics of the object controlled, which performs an oscillating linear motion in a two-axis direction. The system has an electronic-optical principle of action: light receivers are attached to a controlled object, and a laser light emitter is attached to a static construction. While the object performs movement along the construction, the light emitter signal is registered by light receivers, based on which determination of the object position and characteristic of its movement are performed. An algorithm of system implementation is elaborated. Signal processing is performed on the basis of the case-based reasoning method. The system is to be used in machine-building industry in controlling relative displacement of the dynamic object or its assembly.

  4. Miniaturized High-Speed Modulated X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)

    2015-01-01

    A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.

  5. Emitters of N-photon bundles

    PubMed Central

    Muñoz, C. Sánchez; del Valle, E.; Tudela, A. González; Müller, K.; Lichtmannecker, S.; Kaniber, M.; Tejedor, C.; Finley, J.J.; Laussy, F.P.

    2014-01-01

    Controlling the ouput of a light emitter is one of the basic tasks of photonics, with landmarks such as the laser and single-photon sources. The development of quantum applications makes it increasingly important to diversify the available quantum sources. Here, we propose a cavity QED scheme to realize emitters that release their energy in groups, or “bundles” of N photons, for integer N. Close to 100% of two-photon emission and 90% of three-photon emission is shown to be within reach of state of the art samples. The emission can be tuned with system parameters so that the device behaves as a laser or as a N-photon gun. The theoretical formalism to characterize such emitters is developed, with the bundle statistics arising as an extension of the fundamental correlation functions of quantum optics. These emitters will be useful for quantum information processing and for medical applications. PMID:25013456

  6. Intracavity double diode structures with GaInP barrier layers for thermophotonic cooling

    NASA Astrophysics Data System (ADS)

    Tiira, Jonna; Radevici, Ivan; Haggren, Tuomas; Hakkarainen, Teemu; Kivisaari, Pyry; Lyytikäinen, Jari; Aho, Arto; Tukiainen, Antti; Guina, Mircea; Oksanen, Jani

    2017-02-01

    Optical cooling of semiconductors has recently been demonstrated both for optically pumped CdS nanobelts and for electrically injected GaInAsSb LEDs at very low powers. To enable cooling at larger power and to understand and overcome the main obstacles in optical cooling of conventional semiconductor structures, we study thermophotonic (TPX) heat transport in cavity coupled light emitters. Our structures consist of a double heterojunction (DHJ) LED with a GaAs active layer and a corresponding DHJ or a p-n-homojunction photodiode, enclosed within a single semiconductor cavity to eliminate the light extraction challenges. Our presently studied double diode structures (DDS) use GaInP barriers around the GaAs active layer instead of the AlGaAs barriers used in our previous structures. We characterize our updated double diode structures by four point probe IV- measurements and measure how the material modifications affect the recombination parameters and coupling quantum efficiencies in the structures. The coupling quantum efficiency of the new devices with InGaP barrier layers is found to be approximately 10 % larger than for the structures with AlGaAs barriers at the point of maximum efficiency.

  7. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli [El Cerrito, CA; Fabbri, Jason D [San Francisco, CA; Melosh, Nicholas A [Menlo Park, CA; Hussain, Zahid [Orinda, CA; Shen, Zhi-Xun [Stanford, CA

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  8. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli; Fabbri, Jason D.; Melosh, Nicholas A.; Hussain, Zahid; Shen, Zhi-Xun

    2013-10-29

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  9. High-efficiency/CRI/color stability warm white organic light-emitting diodes by incorporating ultrathin phosphorescence layers in a blue fluorescence layer

    NASA Astrophysics Data System (ADS)

    Miao, Yanqin; Wang, Kexiang; Zhao, Bo; Gao, Long; Tao, Peng; Liu, Xuguang; Hao, Yuying; Wang, Hua; Xu, Bingshe; Zhu, Furong

    2018-01-01

    By incorporating ultrathin (<0.1 nm) green, yellow, and red phosphorescence layers with different sequence arrangements in a blue fluorescence layer, four unique and simplified fluorescence/phosphorescence (F/P) hybrid, white organic light-emitting diodes (WOLEDs) were obtained. All four devices realize good warm white light emission, with high color rending index (CRI) of >80, low correlated color temperature of <3600 K, and high color stability at a wide voltage range of 5 V-9 V. These hybrid WOLEDs also reveal high forward-viewing external quantum efficiencies (EQE) of 17.82%-19.34%, which are close to the theoretical value of 20%, indicating an almost complete exciton harvesting. In addition, the electroluminescence spectra of the hybrid WOLEDs can be easily improved by only changing the incorporating sequence of the ultrathin phosphorescence layers without device efficiency loss. For example, the hybrid WOLED with an incorporation sequence of ultrathin red/yellow/green phosphorescence layers exhibits an ultra-high CRI of 96 and a high EQE of 19.34%. To the best of our knowledge, this is the first WOLED with good tradeoff among device efficiency, CRI, and color stability. The introduction of ultrathin (<0.1 nm) phosphorescence layers can also greatly reduce the consumption of phosphorescent emitters as well as simplify device structures and fabrication process, thus leading to low cost. Such a finding is very meaningful for the potential commercialization of hybrid WOLEDs.

  10. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers

    PubMed Central

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A.

    2017-01-01

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300–500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent. PMID:28338043

  11. Thermo-electronic solar power conversion with a parabolic concentrator

    NASA Astrophysics Data System (ADS)

    Olukunle, Olawole C.; De, Dilip K.

    2016-02-01

    We consider the energy dynamics of the power generation from the sun when the solar energy is concentrated on to the emitter of a thermo-electronic converter with the help of a parabolic mirror. We use the modified Richardson-Dushman equation. The emitter cross section is assumed to be exactly equal to the focused area at a height h from the base of the mirror to prevent loss of efficiency. We report the variation of output power with solar insolation, height h, reflectivity of the mirror, and anode temperature, initially assuming that there is no space charge effect. Our methodology allows us to predict the temperature at which the anode must be cooled in order to prevent loss of efficiency of power conversion. Novel ways of tackling the space charge problem have been discussed. The space charge effect is modeled through the introduction of a parameter f (0 < f < 1) in the thermos-electron emission equation. We find that the efficiency of the power conversion depends on solar insolation, height h, apart from radii R of the concentrator aperture and emitter, and the collector material properties. We have also considered solar thermos electronic power conversion by using single atom-layer graphene as an emitter.

  12. Hybrid Structure White Organic Light Emitting Diode for Enhanced Efficiency by Varied Doping Rate.

    PubMed

    Kim, Dong-Eun; Kang, Min-Jae; Park, Gwang-Ryeol; Kim, Nam-Kyu; Lee, Burm-Jong; Kwon, Young-Soo; Shin, Hoon-Kyu

    2016-03-01

    Novel materials based on Zn(HPB)2 and Ir-complexes were synthesized as blue or red emitters, respectively. White organic light emitting diodes were fabricated using the Zn(HPB)2 as a blue emitting layer, Ir-complexes as a red emitting layer and Alq3 as a green emitting layer. The obtained experimental results, were based on white OLEDs fabricated using double emission layers of Zn(HPB)2 and Alq3:Ir-complexes. The doping rate of the Ir-complexes was varied at 0.4%, 0.6%, 0.8% and 1.0%. When the doping rate of the Alq3:Ir-complexes was 0.6%, a white emission was achieved. The Commission Internationale de l'Eclairage coordinates of the device's white emission were (0.316, 0.331) at an applied voltage of 10.75 V.

  13. Coherent interaction of single molecules and plasmonic nanowires

    NASA Astrophysics Data System (ADS)

    Gerhardt, Ilja; Grotz, Bernhard; Siyushev, Petr; Wrachtrup, Jörg

    2017-09-01

    Quantum plasmonics opens the option to integrate complex quantum optical circuitry onto chip scale devices. In the past, often external light sources were used and nonclassical light was coupled in and out of plasmonic structures, such as hole arrays or waveguide structures. Another option to launch single plasmonic excitations is the coupling of single emitters in the direct proximity of, e.g., a silver or gold nanostructure. Here, we present our attempts to integrate the research of single emitters with wet-chemically grown silver nanowires. The emitters of choice are single organic dye molecules under cryogenic conditions, which are known to act as high-brightness and extremely narrow-band single photon sources. Another advantage is their high optical nonlinearity, such that they might mediate photon-photon interactions on the nanoscale. We report on the coupling of a single molecule fluorescence emission through the wire over the length of several wavelengths. The transmission of coherently emitted photons is proven by an extinction type experiment. As for influencing the spectral properties of a single emitter, we are able to show a remote change of the line-width of a single terrylene molecule, which is in close proximity to the nanowire.

  14. Organic emitters: Light-emitting fabrics

    NASA Astrophysics Data System (ADS)

    Ortí, Enrique; Bolink, Henk J.

    2015-04-01

    Light-emitting fibres that suit integration with textiles are prepared by dip-coating a steel wire with an electroluminescent material and then cleverly wrapping the structure with a carbon nanotube sheet that functions as a transparent electrode.

  15. Characterization of NiSi nanowires as field emitters and limitations of Fowler-Nordheim model at the nanoscale

    NASA Astrophysics Data System (ADS)

    Belkadi, Amina B.; Gale, E.; Isakovic, A. F.

    2015-03-01

    Nanoscale field emitters are of technological interest because of the anticipated faster turn-on time, better sustainability and compactness. This report focuses on NiSi nanowires as field emitters for two reasons: (a) possible enhancement of field emission in nanoscale field emitters over bulk, and (b) achieving the same field emission properties as in bulk, but at a lower energy cost. To this end, we have grown, fabricated and characterized NiSi nanowires as field emitters. Depending on the geometry of the NiSi nanowires (aspect ratio, shape etc.), the relevant major field emission parameters, such as (1) the turn-on field, (2) the work function, and (3) the field enhancement factor, can be comparable or even superior to other recently explored nanoscale field emitters, such as CdS and ZnO. We also report on a comparative performance of various nanoscale field emitters and on the difficulties in the performance comparison in the light of relatively poor applicability of the standard Folwer-Nordheim model for field emission analysis for the case of the nanoscale field emitters. Proposed modifications are discussed. This work is supported through SRC-ATIC Grant 2011-KJ-2190. We also acknoweldge BNL-CFN and Cornell CNF facilities and staff.

  16. Emitter/absorber interface of CdTe solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Tao; Kanevce, Ana; Sites, James R.

    The performance of CdTe solar cells can be very sensitive to their emitter/absorber interfaces, especially for high-efficiency cells with improved bulk properties. When interface defect states are located at efficient recombination energies, performance losses from acceptor-type interface defects can be significant. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e. defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV /= 0.4 eV), however, can impede electron transport and leadmore » to a reduction of photocurrent and fill-factor. In contrast to the spike, a 'cliff' (.delta..EC < 0 eV) is likely to allow many holes in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. In addition, a thin and highly-doped emitter can invert the absorber, form a large hole barrier, and decrease device performance losses due to high interface defect density. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. Other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ..delta..EC. These materials are predicted to yield higher voltages and would therefore be better candidates for the CdTe-cell emitter.« less

  17. High-brightness 9xxnm fiber coupled diode lasers

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Jiang, Xiaochen; Yang, Thomas; He, Xiaoguang; Gao, Yanyan; Zhu, Jing; Zhang, Tujia; Guo, Weirong; Wang, Baohua; Guo, Zhijie; Zhang, Luyan; Chen, Louisa

    2015-03-01

    We developed a high brightness fiber coupled diode laser module providing more than 140W output power from a 105μm NA 0.15 fiber at the wavelength of 915nm.The high brightness module has an electrical to optical efficiency better than 45% and power enclosure more than 90% within NA 0.13. It is based on multi-single emitters using optical and polarization beam combining and fiber coupling technique. With the similar technology, over 100W of optical power into a 105μm NA 0.15 fiber at 976nm is also achieved which can be compatible with the volume Bragg gratings to receive narrow and stabilized spectral linewidth. The light within NA 0.12 is approximately 92%. The reliability test data of single and multiple single emitter laser module under high optical load are also presented and analyzed using a reliability model with an emitting aperture optimized for coupling into 105μm core fiber. The total MTTF shows exceeding 100,000 hours within 60% confidence level. The packaging processes and optical design are ready for commercial volume production.

  18. Emitter utilization in heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Quach, T.; Jenkins, T.; Barrette, J.; Bozada, C.; Cerny, C.; Desalvo, G.; Dettmer, R.; Ebel, J.; Gillespie, J.; Havasy, C.; Ito, C.; Nakano, K.; Pettiford, C.; Sewell, J.; Via, D.; Anholt, R.

    1997-09-01

    We compare measured collector current densities, cutoff frequencies ( ft), and transducer gains for thermally shunted heterojunction bipolar transistors with 2-16 μm emitter dot diameters or 2-8 μm emitter bar widths with models of the emitter utilization factors. Models that do not take emitter resistance into account predict that the d.c. utilization factors are below 0.7 for collector current densities greater than 6 × 10 4 A cm -2 and emitter diameters or widths greater than 8 μm. However, because the current gains are compressed by the emitter resistances at those current densities, the measured utilization factors are close to 1, which agrees with models that include emitter resistance. A.c. utilization factors are evident in the transistor Y parameters. For example, Re|Y 21z.sfnc drops off at high frequencies more steeply in HBTs with large emitter diameters or widths than in small ones. However, measured data shows that the HBT a.c. current gains h21 or ft values are not influenced by the a.c. utilization factor. A.c. utilization effects on HBT performance parameters such as small signal and power gains, output power, and power added efficiency are also examined.

  19. Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor)

    1992-01-01

    This invention relates to a small particle selective emitter for converting thermal energy into narrow band radiation with high efficiency. The small particle selective emitter is used in combination with a photovoltaic array to provide a thermal to electrical energy conversion device. An energy conversion apparatus of this type is called a thermo-photovoltaic device. In the first embodiment, small diameter particles of a rare earth oxide are suspended in an inert gas enclosed between concentric cylinders. The rare earth oxides are used because they have the desired property of large emittance in a narrow wavelength band and small emittance outside the band. However, it should be emphasized that it is the smallness of the particles that enhances the radiation property. The small particle selective emitter is surrounded by a photovoltaic array. In an alternate embodiment, the small particle gas mixture is circulated through a thermal energy source. This thermal energy source can be a nuclear reactor, solar receiver, or combustor of a fossil fuel.

  20. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor

    PubMed Central

    Branny, Artur; Kumar, Santosh; Proux, Raphaël; Gerardot, Brian D

    2017-01-01

    An outstanding challenge in quantum photonics is scalability, which requires positioning of single quantum emitters in a deterministic fashion. Site positioning progress has been made in established platforms including defects in diamond and self-assembled quantum dots, albeit often with compromised coherence and optical quality. The emergence of single quantum emitters in layered transition metal dichalcogenide semiconductors offers new opportunities to construct a scalable quantum architecture. Here, using nanoscale strain engineering, we deterministically achieve a two-dimensional lattice of quantum emitters in an atomically thin semiconductor. We create point-like strain perturbations in mono- and bi-layer WSe2 which locally modify the band-gap, leading to efficient funnelling of excitons towards isolated strain-tuned quantum emitters that exhibit high-purity single photon emission. We achieve near unity emitter creation probability and a mean positioning accuracy of 120±32 nm, which may be improved with further optimization of the nanopillar dimensions. PMID:28530219

  1. Thermionic converter

    DOEpatents

    Fitzpatrick, Gary O.

    1987-05-19

    A thermionic converter (10) is set forth which includes an envelope (12) having an electron collector structure (22) attached adjacent to a wall (16). An electron emitter structure (24) is positioned adjacent the collector structure (22) and spaced apart from opposite wall (14). The emitter (24) and collector (22) structures are in a common chamber (20). The emitter structure (24) is heated substantially only by thermal radiation. Very small interelectrode gaps (28) can be maintained utilizing the thermionic converter (10) whereby increased efficiency results.

  2. Lattice and beam optics design for suppression of CSR-induced emittance growth at the KEK-ERL test facility

    NASA Astrophysics Data System (ADS)

    Shimada, M.; Yokoya, K.; Suwada, T.; Enomoto, A.

    2007-06-01

    The lattice and beam optics of the arc section of the KEK-ERL test facility, having an energy of 200 MeV, were optimized to efficiently suppress emittance growth based on a simulation using a particle-tracking method taking coherent synchrotron radiation effects into account. The lattice optimization in the arc section was performed under two conditions: a high-current mode with a bunch charge of 76.9 pC without bunch compression, and a short-bunch mode with bunch compression, producing a final bunch length of around 0.1 ps. The simulation results showed that, in the high-current mode, emittance growth was efficiently suppressed by keeping a root-mean-square (rms) bunch length of 1 ps at a bunch charge of 76.9 pC, and in the short-bunch mode, emittance growth was kept within permissible limits with a maximum allowable bunch charge of 23.1 pC at an rms bunch length of 0.1 ps.

  3. Selective Emitters for High Efficiency TPV Conversion: Materials Preparation and Characterisation

    NASA Astrophysics Data System (ADS)

    Diso, D.; Licciulli, A.; Bianco, A.; Leo, G.; Torsello, G.; Tundo, S.; De Risi, A.; Mazzer, M.

    2003-01-01

    Optimising the spectral emissivity of the IR radiation source in a TPV generator is one of the crucial steps towards high efficiency TPV conversion. In this paper we present different approaches to the preparation of selective emitters to be coupled to high efficiency photovoltaic cells. The emitters are designed to work at a temperature of about 1500K and they have been prepared to be used either as external coatings for the burner or as a structural material for the burner itself. Composite ceramics containing rare earth cations, prepared by slip-casting, with various concentration of rare earths were prepared by Slip Casting and Slurry Coating. Rare earth oxides have been incorporated into different oxide matrices, namely Silica, Alumina, Zirconia and their combination. The final aim was to find the material that exhibits the best performance in terms of both high selective power emission, good efficiency along with acceptable thermo-structural properties (high temperature thermal shock resistance, good strength, no creep). The power density emitted by samples as function of the temperature has been tested in the range 1000nm-5000nm. The high temperature emission measurements and the structural tests indicate that a good compromise between the functional and the thermo-structural properties may be reached. The results of the tests on the emitter coatings carried out in a TPV generator at the operating conditions are also presented in this paper.

  4. Development of a Highly Efficient Hybrid White Organic-Light-Emitting Diode with a Single Emission Layer by Solution Processing.

    PubMed

    Wu, Jun-Yi; Chen, Show-An

    2018-02-07

    We use a mixed host, 2,6-bis[3-(carbazol-9-yl)phenyl]pyridine blended with 20 wt % tris(4-carbazoyl-9-ylphenyl)amine, to lower the hole-injection barrier, along with the bipolar and high-photoluminescence-quantum-yield (Φ p = 84%), blue thermally activated delay fluorescence (TADF) material of 9,9-dimethyl-9,10-dihydroacridine-2,4,6-triphenyl-1,3,5-triazine (DMAC-TRZ) as a blue dopant to compose the emission layer for the fabrication of a TADF blue organic-light-emitting diode (BOLED). The device is highly efficient with the following performance parameters: maximum brightness (B max ) = 57586 cd/m 2 , maximum current efficiency (CE max ) = 35.3 cd/A, maximum power efficiency (PE max ) = 21.4 lm/W, maximum external quantum efficiency (EQE max ) = 14.1%, and CIE coordinates (0.18, 0.42). This device has the best performance recorded among the reported solution-processed TADF BOLEDs and has a low efficiency roll-off: at brightness values of 1000 and 5000 cd/m 2 , its CEs are close, being 35.1 and 30.1 cd/A, respectively. Upon further doping of the red phosphor Ir(dpm)PQ 2 (emission peak λ max = 595 nm) into the blue emission layer, we obtained a TADF-phosphor hybrid white organic-light-emitting diode (T-P hybrid WOLED) with high performance: B max = 43594 cd/m 2 , CE max = 28.8 cd/A, PE max = 18.1 lm/W, and CIE coordinates (0.38, 0.44). This B max = 43594 cd/m 2 is better than that of the vacuum-deposited WOLED with a blue TADF emitter, 10000 cd/m 2 . This is also the first report on a T-P hybrid WOLED with a solution-processed emitting layer.

  5. Diamond/diamond-like carbon coated nanotube structures for efficient electron field emission

    NASA Technical Reports Server (NTRS)

    Dimitrijevic, Steven (Inventor); Withers, James C. (Inventor); Loutfy, Raouf O. (Inventor)

    2005-01-01

    The present invention is directed to a nanotube coated with diamond or diamond-like carbon, a field emitter cathode comprising same, and a field emitter comprising the cathode. It is also directed to a method of preventing the evaporation of carbon from a field emitter comprising a cathode comprised of nanotubes by coating the nanotube with diamond or diamond-like carbon. In another aspect, the present invention is directed to a method of preventing the evaporation of carbon from an electron field emitter comprising a cathode comprised of nanotubes, which method comprises coating the nanotubes with diamond or diamond-like carbon.

  6. Plasmonic thermal IR emitters based on nanoamorphous carbon

    NASA Astrophysics Data System (ADS)

    Tay, Savaş; Kropachev, Aleksandr; Araci, Ismail Emre; Skotheim, Terje; Norwood, Robert A.; Peyghambarian, N.

    2009-02-01

    The development of plasmonic narrow-band thermal mid-IR emitters made from a conducting amorphous carbon composite is shown. These IR emitters have greatly improved thermal and mechanical stability compared to metallic emitters as they can be operated at 600 °C in air without any degradation in performance. The emitted thermal radiation has a bandwidth of 0.5 μm and can be set to the desired wavelength from 3 to 15 μm by changing the surface periodicity. The periodically patterned devices have in-band emissivities significantly exceeding that of the non-patterned devices, constituting simple yet efficient radiation sources at this important wavelength range.

  7. (11-22) semipolar InGaN emitters from green to amber on overgrown GaN on micro-rod templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, J., E-mail: j.bai@sheffield.ac.uk; Xu, B.; Guzman, F. G.

    2015-12-28

    We demonstrate semipolar InGaN single-quantum-well light emitting diodes (LEDs) in the green, yellow-green, yellow and amber spectral region. The LEDs are grown on our overgrown semipolar (11-22) GaN on micro-rod array templates, which are fabricated on (11-22) GaN grown on m-plane sapphire. Electroluminescence measurements on the (11-22) green LED show a reduced blue-shift in the emission wavelength with increasing driving current, compared to a reference commercial c-plane LED. The blue-shifts for the yellow-green and yellow LEDs are also significantly reduced. All these suggest an effective suppression in quantum confined Stark effect in our (11-22) LEDs. On-wafer measurements yield a linearmore » increase in the light output with the current, and external quantum efficiency demonstrates a significant improvement in the efficiency-droop compared to a commercial c-plane LED. Electro-luminescence polarization measurements show a polarization ratio of about 25% in our semipolar LEDs.« less

  8. Near band gap luminescence in hybrid organic-inorganic structures based on sputtered GaN nanorods.

    PubMed

    Forsberg, Mathias; Serban, Elena Alexandra; Hsiao, Ching-Lien; Junaid, Muhammad; Birch, Jens; Pozina, Galia

    2017-04-26

    Novel hybrid organic-inorganic nanostructures fabricated to utilize non-radiative resonant energy transfer mechanism are considered to be extremely attractive for a variety of light emitters for down converting of ultaviolet light and for photovoltaic applications since they can be much more efficient compared to devices grown with common design. Organic-inorganic hybrid structures based on green polyfluorene (F8BT) and GaN (0001) nanorods grown by magnetron sputtering on Si (111) substrates are studied. In such nanorods, stacking faults can form periodic polymorphic quantum wells characterized by bright luminescence. In difference to GaN exciton emission, the recombination rate for the stacking fault related emission increases in the presence of polyfluorene film, which can be understood in terms of Förster interaction mechanism. From comparison of dynamic properties of the stacking fault related luminescence in the hybrid structures and in the bare GaN nanorods, the pumping efficiency of non-radiative resonant energy transfer in hybrids was estimated to be as high as 35% at low temperatures.

  9. Research of green emitting rare-earth doped materials as potential quantum-cutter

    NASA Astrophysics Data System (ADS)

    Moine, Bernard; Beauzamy, Lena; Gredin, Patrick; Wallez, Gilles; Labeguerie, Jessica

    2008-03-01

    Because the energy of vacuum ultraviolet (VUV) photons emitted by xenon plasma discharge is more than twice that of visible photons, quantum cutting appears to be a promising process in rare-earth doped materials in order to obtain efficient phosphors for mercury free lighting devices as well as for plasma display panels. With an aim of application, it is important to take into account the emitting color of the developed new phosphors. Most of the time, this leads to use systems with at least two kinds of rare earth ions: one of them playing the role of energy sensitizer, and the other one being in charge of emitting the light of the suitable color. We focus our attention on green rare-earth doped materials. In order to get very efficient phosphors, it is not only necessary to get the highest possible quantum yield, but also to have a material characterized by a strong absorption in the VUV range. Borate and fluoride matrices doped with Dy 3+/Tb 3+ couples of ions are selected according to the position of the 5d band of dysprosium as green emitters.

  10. High brightness diode laser module development at nLIGHT Photonics

    NASA Astrophysics Data System (ADS)

    Price, Kirk; Karlsen, Scott; Brown, Aaron; Reynolds, Mitch; Mehl, Ron; Leisher, Paul; Patterson, Steve; Bell, Jake; Martinsen, Rob

    2009-05-01

    We report on the development of ultra-high brightness laser diode modules at nLIGHT Photonics. This paper demonstrates a laser diode module capable of coupling over 100W at 976 nm into a 105 μm, 0.15 NA fiber with fiber coupling efficiency greater than 85%. The high brightness module has an optical excitation under 0.13 NA, is virtually free of cladding modes, and has been wavelength stabilized with the use of volume holographic gratings for narrow-band operation. Utilizing nLIGHT's Pearl product architecture, these modules are based on hard soldered single emitters packaged into a compact and passively-cooled package. These modules are designed to be compatible with high power 7:1 fused fiber combiners, enabling over 500W power coupled into a 220 μm, 0.22 NA fiber. These modules address the need in the market for high brightness and wavelength stabilized diode lasers for pumping fiber lasers and solid-state laser systems.

  11. Linearly polarized light emission from InGaN/GaN quantum well structure with high indium composition.

    PubMed

    Song, Hooyoung; Kim, Eun Kyu; Han, Il Ki; Lee, Sung-Ho; Hwang, Sung-Min

    2011-10-01

    We fabricated yellow (575 nm) emitting a-plane InGaN/GaN light emitting diode (LED). Microstructure and stress relaxation of the InGaN well layer were observed from the images of dark field transmission electron microscopy. The LED chip was operated at 3.7 V, 20 mA, and the polarization-free characteristic in nonpolar InGaN layer was confirmed from a small blue-shift of approximaely 1.7 nm with increase of current density. The high photoluminescence (PL) efficiency of 30.4% showed that this non-polar InGaN layer has a potential of application to green-red long wavelength light emitters. The PL polarization ratio at 290 K was 0.25 and the energy difference between two subbands was estimated to be 40.2 meV. The low values of polarization and energy difference were due to the stress relaxation of InGaN well layer.

  12. On-Chip Waveguide Coupling of a Layered Semiconductor Single-Photon Source.

    PubMed

    Tonndorf, Philipp; Del Pozo-Zamudio, Osvaldo; Gruhler, Nico; Kern, Johannes; Schmidt, Robert; Dmitriev, Alexander I; Bakhtinov, Anatoly P; Tartakovskii, Alexander I; Pernice, Wolfram; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf

    2017-09-13

    Fully integrated quantum technology based on photons is in the focus of current research, because of its immense potential concerning performance and scalability. Ideally, the single-photon sources, the processing units, and the photon detectors are all combined on a single chip. Impressive progress has been made for on-chip quantum circuits and on-chip single-photon detection. In contrast, nonclassical light is commonly coupled onto the photonic chip from the outside, because presently only few integrated single-photon sources exist. Here, we present waveguide-coupled single-photon emitters in the layered semiconductor gallium selenide as promising on-chip sources. GaSe crystals with a thickness below 100 nm are placed on Si 3 N 4 rib or slot waveguides, resulting in a modified mode structure efficient for light coupling. Using optical excitation from within the Si 3 N 4 waveguide, we find nonclassicality of generated photons routed on the photonic chip. Thus, our work provides an easy-to-implement and robust light source for integrated quantum technology.

  13. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays.

    PubMed

    Yardimci, Nezih Tolga; Lu, Hong; Jarrahi, Mona

    2016-11-07

    We present a high-power and broadband photoconductive terahertz emitter operating at telecommunication optical wavelengths, at which compact and high-performance fiber lasers are commercially available. The presented terahertz emitter utilizes an ErAs:InGaAs substrate to achieve high resistivity and short carrier lifetime characteristics required for robust operation at telecommunication optical wavelengths. It also uses a two-dimensional array of plasmonic nano-antennas to offer significantly higher optical-to-terahertz conversion efficiencies compared to the conventional photoconductive emitters, while maintaining broad operation bandwidths. We experimentally demonstrate pulsed terahertz radiation over 0.1-5 THz frequency range with the power levels as high as 300  μ W. This is the highest-reported terahertz radiation power from a photoconductive emitter operating at telecommunication optical wavelengths.

  14. Current gain above 10 in sub-10 nm base III-Nitride tunneling hot electron transistors with GaN/AlN emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhichao, E-mail: zcyang.phys@gmail.com; Zhang, Yuewei; Krishnamoorthy, Sriram

    We report on a tunneling hot electron transistor amplifier with common-emitter current gain greater than 10 at a collector current density in excess of 40 kA/cm{sup 2}. The use of a wide-bandgap GaN/AlN (111 nm/2.5 nm) emitter was found to greatly improve injection efficiency of the emitter and reduce cold electron leakage. With an ultra-thin (8 nm) base, 93% of the injected hot electrons were collected, enabling a common-emitter current gain up to 14.5. This work improves understanding of the quasi-ballistic hot electron transport and may impact the development of high speed devices based on unipolar hot electron transport.

  15. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays

    PubMed Central

    Yardimci, Nezih Tolga; Lu, Hong; Jarrahi, Mona

    2016-01-01

    We present a high-power and broadband photoconductive terahertz emitter operating at telecommunication optical wavelengths, at which compact and high-performance fiber lasers are commercially available. The presented terahertz emitter utilizes an ErAs:InGaAs substrate to achieve high resistivity and short carrier lifetime characteristics required for robust operation at telecommunication optical wavelengths. It also uses a two-dimensional array of plasmonic nano-antennas to offer significantly higher optical-to-terahertz conversion efficiencies compared to the conventional photoconductive emitters, while maintaining broad operation bandwidths. We experimentally demonstrate pulsed terahertz radiation over 0.1–5 THz frequency range with the power levels as high as 300 μW. This is the highest-reported terahertz radiation power from a photoconductive emitter operating at telecommunication optical wavelengths. PMID:27916999

  16. Type-II GaAsSb/InP heterojunction bipolar light-emitting transistor

    NASA Astrophysics Data System (ADS)

    Feng, M.; Holonyak, N.; Chu-Kung, B.; Walter, G.; Chan, R.

    2004-06-01

    We report radiative recombination in the base layer of Type-II InP/GaAsSb/InP double heterojunction bipolar light-emitting transistors (HBLET) operating in the common-emitter configuration. The typical current gain, β, for a 120×120 μm2 emitter area of the HBLET is 38. The optical emission wavelength from a 30 nm GaAs0.51Sb0.49 base is centered at λpeak=1600 nm. Three-port operation of the Type-II HBLET with simultaneously an amplified electrical output and an optical output with signal modulation is demonstrated at 10 kHz.

  17. Rational and random mutagenesis of firefly luciferase to identify an efficient emitter of red bioluminescence

    NASA Astrophysics Data System (ADS)

    Branchini, Bruce R.; Southworth, Tara L.; Khattak, Neelum F.; Murtiashaw, Martha H.; Fleet, Sarah E.

    2004-06-01

    Firefly luciferase, which emits yellow-green (557 nm) light, and the corresponding cDNA have been used successfully as a bioluminescence reporter of gene expression. One particularly exciting application is in the area of in vivo bioluminescence imaging. Our interest is in developing improved reagents by identifying Photinus pyralis luciferase mutants that efficiently emit red bioluminescence. In this way, the proven advantages of the P. pyralis protein can be combined with the potential advantages of a red-shifted emitter. Using site-directed mutagenesis techniques, we have identified many mutants emitting red bioluminescence. Unfortunately, these enzymes generally have significantly decreased bioluminescence activity. Interestingly, we discovered a mutation, Ile351Ala, that produced a moderate 16 nm red-shift, while maintaining excellent bioluminescence activity. We then undertook a random mutagenesis approach to identify luciferase mutants that emit further red-shifted bioluminescence with minimal loss of activity. Libraries of mutants were created using an error-prone PCR method and the Ile351Ala luciferase mutant as the template DNA. The libraries were screened by in vivo bacterial assays and the promising mutants were purified to enable accurate determination of bioluminescence emission spectra and total bioluminescence activity. We will report the characterization results, including the identification of the randomly altered amino acids, of several mutants that catalyze bioluminescence with emission maxima of approximately 600 nm.

  18. Gamma-Ray Burst Prompt Emission Light Curves and Power Density Spectra in the ICMART Model

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhang, Bing

    2014-02-01

    In this paper, we simulate the prompt emission light curves of gamma-ray bursts (GRBs) within the framework of the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. This model applies to GRBs with a moderately high magnetization parameter σ in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately high σ flow. The runaway growth and subsequent depletion of these mini-emitters as a function of time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events that are fundamentally driven by the erratic GRB central engine activity. Allowing variations of the model parameters, one is able to reproduce a variety of light curves and the power density spectra as observed.

  19. Light-emitting Ga-oxide nanocrystals in glass: a new paradigm for low-cost and robust UV-to-visible solar-blind converters and UV emitters.

    PubMed

    Sigaev, Vladimir N; Golubev, Nikita V; Ignat'eva, Elena S; Paleari, Alberto; Lorenzi, Roberto

    2014-01-01

    Wide-bandgap nanocrystals are an inexhaustible source of tuneable functions potentially addressing most of the demand for new light emitting systems. However, the implementation of nanocrystal properties in real devices is not straightforward if a robust and stable optical component is required as a final result. The achievement of efficient light emission from dense dispersions of Ga-oxide nanocrystals in UV-grade glass can be a breakthrough in this regard. Such a result would permit the fabrication of low cost UV-to-visible converters for monitoring UV-emitting events on a large-scale - from invisible hydrogen flames to corona dispersions. From this perspective, γ-Ga₂O₃ nanocrystals are developed by phase separation in Ga-alkali-germanosilicate glasses, obtaining optical materials based on a UV transparent matrix. Band-to-band UV-excitation of light emission from donor-acceptor pair (DAP) recombination is investigated for the first time in embedded γ-Ga₂O₃. The analysis of the decay kinetics gives unprecedented evidence that nanosized confinement of DAP recombination can force a nanophase to the efficient response of exactly balanced DAPs. The results, including a proof of concept of UV-to-visible viewer, definitely demonstrate the feasibility of workable glass-based fully inorganic nanostructured materials with emission properties borrowed from Ga₂O₃ single-crystals and tailored by the nanocrystal size.

  20. High efficiency thermal to electric energy conversion using selective emitters and spectrally tuned solar cells

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1992-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1500 K. Depending on the nature of parasitic losses, overall thermal-to-electric conversion efficiencies greater than 20 percent are feasible.

  1. Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices

    DOEpatents

    Brandhorst, Jr., Henry W.; Chen, Zheng

    2000-01-01

    Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

  2. Non-contact pumping of light emitters via non-radiative energy transfer

    DOEpatents

    Klimov, Victor I.; Achermann, Marc

    2010-01-05

    A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

  3. A chip-scale, telecommunications-band frequency conversion interface for quantum emitters.

    PubMed

    Agha, Imad; Ates, Serkan; Davanço, Marcelo; Srinivasan, Kartik

    2013-09-09

    We describe a chip-scale, telecommunications-band frequency conversion interface designed for low-noise operation at wavelengths desirable for common single photon emitters. Four-wave-mixing Bragg scattering in silicon nitride waveguides is used to demonstrate frequency upconversion and downconversion between the 980 nm and 1550 nm wavelength regions, with signal-to-background levels > 10 and conversion efficiency of ≈ -60 dB at low continuous wave input pump powers (< 50 mW). Finite element simulations and the split-step Fourier method indicate that increased input powers of ≈ 10 W (produced by amplified nanosecond pulses, for example) will result in a conversion efficiency > 25 % in existing geometries. Finally, we present waveguide designs that can be used to connect shorter wavelength (637 nm to 852 nm) quantum emitters with 1550 nm.

  4. Room-Temperature Triple-Ligand Surface Engineering Synergistically Boosts Ink Stability, Recombination Dynamics, and Charge Injection toward EQE-11.6% Perovskite QLEDs.

    PubMed

    Song, Jizhong; Li, Jinhang; Xu, Leimeng; Li, Jianhai; Zhang, Fengjuan; Han, Boning; Shan, Qingsong; Zeng, Haibo

    2018-06-10

    Developing low-cost and high-quality quantum dots (QDs) or nanocrystals (NCs) and their corresponding efficient light-emitting diodes (LEDs) is crucial for the next-generation ultra-high-definition flexible displays. Here, there is a report on a room-temperature triple-ligand surface engineering strategy to play the synergistic role of short ligands of tetraoctylammonium bromide (TOAB), didodecyldimethylammonium bromide (DDAB), and octanoic acid (OTAc) toward "ideal" perovskite QDs with a high photoluminescence quantum yield (PLQY) of >90%, unity radiative decay in its intrinsic channel, stable ink characteristics, and effective charge injection and transportation in QD films, resulting in the highly efficient QD-based LEDs (QLEDs). Furthermore, the QD films with less nonradiative recombination centers exhibit improved PL properties with a PLQY of 61% through dopant engineering in A-site. The robustness of such properties is demonstrated by the fabrication of green electroluminescent LEDs based on CsPbBr 3 QDs with the peak external quantum efficiency (EQE) of 11.6%, and the corresponding peak internal quantum efficiency (IQE) and power efficiency are 52.2% and 44.65 lm W -1 , respectively, which are the most-efficient perovskite QLEDs with colloidal CsPbBr 3 QDs as emitters up to now. These results demonstrate that the as-obtained QD inks have a wide range application in future high-definition QD displays and high-quality lightings. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Increase of intrinsic emittance induced by multiphoton photoemission from copper cathodes illuminated by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    An, Chenjie; Zhu, Rui; Xu, Jun; Liu, Yaqi; Hu, Xiaopeng; Zhang, Jiasen; Yu, Dapeng

    2018-05-01

    Electron sources driven by femtosecond laser have important applications in many aspects, and the research about the intrinsic emittance is becoming more and more crucial. The intrinsic emittance of polycrystalline copper cathode, which was illuminated by femtosecond pulses (FWHM of the pulse duration was about 100 fs) with photon energies above and below the work function, was measured with an extremely low bunch charge (single-electron pulses) based on free expansion method. A minimum emittance was obtained at the photon energy very close to the effective work function of the cathode. When the photon energy decreased below the effective work function, emittance increased rather than decreased or flattened out to a constant. By investigating the dependence of photocurrent density on the incident laser intensity, we found the emission excited by pulsed photons with sub-work-function energies contained two-photon photoemission. In addition, the portion of two-photon photoemission current increased with the reduction of photon energy. We attributed the increase of emittance to the effect of two-photon photoemission. This work shows that conventional method of reducing the photon energy of excited light source to approach the room temperature limit of the intrinsic emittance may be infeasible for femtosecond laser. There would be an optimized photon energy value near the work function to obtain the lowest emittance for pulsed laser pumped photocathode.

  6. Collimated thermal radiation transfer via half Maxwell's fish-eye lens for thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Chung, Haejun; Zhou, Zhiguang; Bermel, Peter

    2017-05-01

    Thermophotovoltaics (TPV) convert heat into electricity by capturing thermal radiation with a photovoltaic (PV) cell, ideally at efficiencies of 50% or more. However, excess heating of the PV cell from close proximity to the emitter substantially reduces the system efficiency. In this work, we theoretically develop and numerically demonstrate an approach to fundamentally improving TPV systems that allow for a much greater separation of an emitter and a receiver. Thus, we solve the excess heating dilemma, required for achieving theoretically high efficiencies. It consists of a spherically graded index lens known as Maxwell's Fish-Eye (MFE) structure, capable of collimating hemispherical emission into a much narrower range of angles, close to the normal direction. To fully characterize the power radiation profile of the MFE, we perform finite-difference time-domain simulations for a quarter MFE and then map it onto a Gaussian beam approximation. The modeled beam properties are subsequently used to study a half MFE. In an optimized half MFE design, 90% of all thermal photons reach a receiver at a distance of 100 λ; by comparison, only 15.6% of a blackbody emitter reach a receiver in the same geometry. It is also shown that the emission achieved by a half MFE can lead to a photon recycling rate above 95% for below bandgap photons at an emitter-receiver separation of 100 λ. By applying a half MFE, the absolute TPV efficiency can be improved from 5.74% to 37.15%, which represents a significant step forward in realizing high-efficiency TPV systems.

  7. Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mesta, M.; Coehoorn, R.; Bobbert, P. A.

    2016-03-28

    Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance as a function of J in a multilayer hybrid white OLED that combines fluorescent blue with phosphorescent green and red emission. We investigate two models for TTA and TPQ involving the phosphorescent green and red emitters: short-range nearest-neighbor quenching and long-range Förster-type quenching. Short-range quenching predicts roll-off to occur at much higher J than measured. Taking long-rangemore » quenching with Förster radii for TTA and TPQ equal to twice the Förster radii for exciton transfer leads to a fair description of the measured IQE-J curve, with the major contribution to the roll-off coming from TPQ. The measured decrease of the ratio of phosphorescent to fluorescent component of the emitted light with increasing J is correctly predicted. A proper description of the J-dependence of the ratio of red and green phosphorescent emission needs further model refinements.« less

  8. Organic solution-processible electroluminescent molecular glasses for non-doped standard red OLEDs with electrically stable chromaticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi, Xiaoman; Zuo, Weiwei; Liu, Yingliang, E-mail: liuylxn@sohu.com

    Highlights: • The D–A–D electroluminescent molecular glasses are synthesized. • Non-doped red electroluminescent film is fabricated by spin-coating. • Red OLED shows stable wavelength, luminous efficiency and chromaticity. • CIE1931 coordinate is in accord with standard red light in PAL system. - Abstract: Organic light-emitting molecular glasses (OEMGs) are synthesized through the introduction of nonplanar donor and branched aliphatic chain into electroluminescent emitters. The target OEMGs are characterized by {sup 1}H NMR, {sup 13}C NMR, IR, UV–vis and fluorescent spectra as well as elemental analysis, TG and DSC. The results indicated that the optical, electrochemical and electroluminescent properties of OEMGsmore » are adjusted successfully by the replacement of electron-donating group. The non-doped OLED device with a standard red electroluminescent emission is achieved by spin-coating the THF solution of OEMG with a triphenylamine moiety. This non-doped red OLED device takes on an electrically stable electroluminescent performance, including the stable maximum electroluminescent wavelength of 640 nm, the stable luminous efficiency of 2.4 cd/A and the stable CIE1931 coordinate of (x, y) = (0.64, 0.35), which is basically in accord with the CIE1931 coordinate (x, y) = (0.64, 0.33) of standard red light in PAL system.« less

  9. A Systematic Approach to Achieving High Performance Hybrid Lighting Phosphors with Excellent Thermal- and Photostability

    DOE PAGES

    Fang, Yang; Liu, Wei; Teat, Simon J.; ...

    2016-12-07

    We have designed and synthesized a family of high-performance inorganic-organic hybrid phosphor materials composed of extended and robust networks of one-, two- and three-dimensions. Following a bottom-up solution-based synthetic approach, these structures are constructed by connecting highly emissive Cu 4I 4 cubic clusters via carefully selected ligands that form strong Cu-N bonds. They emit intensive yellow-orange light with high luminescence quantum efficiency, coupled with large Stokes shift which greatly reduces self-absorption. They also demonstrate exceptionally high framework- and photo-stability, comparable to those of commercial phosphors. The high stabilities are the result of significantly enhanced Cu-N bonds, as confirmed by themore » DFT binding energy and electron density calculations. Possible emission mechanisms are analyzed based on the results of theoretical calculations and optical experiments. Two-component white phosphors obtained by blending blue and yellow emitters reach an internal quantum yield (IQY) as high as 82% and correlated color temperature (CCT) as low as 2534 K. The performance level of this sub-family exceeds all other types of Cu-I based hybrid systems. The combined advantages make them excellent candidates as alternative rare-earth element (REE) free phosphors for possible use in energy-efficient lighting devices.« less

  10. High-temperature, high-power-density thermionic energy conversion for space

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1977-01-01

    Theoretic converter outputs and efficiencies indicate the need to consider thermionic energy conversion (TEC) with greater power densities and higher temperatures within reasonable limits for space missions. Converter-output power density, voltage, and efficiency as functions of current density were determined for 1400-to-2000 K emitters with 725-to-1000 K collectors. The results encourage utilization of TEC with hotter-than-1650 K emitters and greater-than-6W sq cm outputs to attain better efficiencies, greater voltages, and higher waste-heat-rejection temperatures for multihundred-kilowatt space-power applications. For example, 1800 K, 30 A sq cm TEC operation for NEP compared with the 1650 K, 5 A/sq cm case should allow much lower radiation weights, substantially fewer and/or smaller emitter heat pipes, significantly reduced reactor and shield-related weights, many fewer converters and associated current-collecting bus bars, less power conditioning, and lower transmission losses. Integration of these effects should yield considerably reduced NEP specific weights.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, J.; Walters, D. M.; Zhou, D.

    Vapor-deposited glasses can be anisotropic and molecular orientation is important for organic electronics applications. In organic light emitting diodes (OLEDs), for example, the orientation of dye molecules in two-component emitting layers significantly influences emission efficiency. Here we investigate how substrate temperature during vapor deposition influences the orientation of dye molecules in a model two-component system. We determine the average orientation of a linear blue light emitter 1,4-di-[4-( N,N-diphenyl)amino]styrylbenzene (DSA-Ph) in mixtures with aluminum-tris(8-hydroxyquinoline) (Alq 3) by spectroscopic ellipsometry and IR dichroism. We find that molecular orientation is controlled by the ratio of the substrate temperature during deposition and the glassmore » transition temperature of the mixture. Furthermore, these findings extend recent results for single component vapor-deposited glasses and suggest that, during vapor deposition, surface mobility allows partial equilibration towards orientations preferred at the free surface of the equilibrium liquid.« less

  12. Photoluminescence enhancement of monolayer tungsten disulfide in complicated plasmonic microstructures

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Hu, Xiaoyong; Gao, Wei; Song, Hanfa; Chu, Saisai; Yang, Hong; Gong, Qihuang

    2018-06-01

    Two-dimensional van der Waals materials are interesting for fundamental physics exploration and device applications because of their attractive physical properties. Here, we report a strategy to realize photoluminescence (PL) enhancement of two-dimensional transition-metal dichalcogenides (TMDCs) in the visible range using a plasmonic microstructure with patterned gold nanoantennas and a metal-insulator-semiconductor-insulator-metal structure. The PL intensity was enhanced by a factor of two under Y-polarization due to the increased radiative decay rate by the surface plasmon radiation channel in the gold nanoantennas and the decreased nonradiative decay rate by suppressing exciton quenching in the SiO2 isolation layer. The fluorescence lifetime of monolayer tungsten disulfide in this structure was shorter than that of a sample without patterned gold nanoantennas. Tailoring the light-matter interactions between two-dimensional TMDCs and plasmonic nanostructures may provide highly efficient optoelectronic devices such as TMDC-based light emitters.

  13. Recent progress of 638-nm high-power broad area laser diodes in Mitsubishi Electric

    NASA Astrophysics Data System (ADS)

    Kuramoto, Kyosuke; Abe, Shinji; Miyashita, Motoharu; Nishida, Takehiro; Yagi, Tetsuya

    2018-02-01

    Laser based displays have gathered much attention because only the displays can express full color gamut of Ultra-HDTV, ITU-R BT.2020. One of the displays uses the lasers under pulse such as a single spatial light modulator (SLM) projector, and the other does ones under CW such as a multiple SLM projector and a liquid crystal display. Both types require high-power lasers because brightness is the most important factor in the market. We developed two types of 638-nm multi-emitter high-power BA-LDs assembled on Φ9.0-TO, that is, triple emitter for pulse and dual emitter for CW. The triple emitter LD emitted exceeding 6.0 W peak power under 25°C, frequency of 120 Hz, and duty of 30%. At high temperature, 55°C, the peak power was approximately 2.9W. The dual emitter emitted exceeding 3.0W under 25°C, CW. It emitted up to 1.7 W at 55°C. WPE of the dual emitter reached 40.5% at Tc of 25°C, which is the world highest in 638-nm LD under CW to the best of our knowledge, although that of the triple emitter was 38.1%. Both LDs may be suitable for laser based display applications.

  14. Characterization of the heavily doped emitter and junction regions of silicon solar cells using an electron beam

    NASA Technical Reports Server (NTRS)

    Luke, K. L.; Cheng, L.-J.

    1986-01-01

    Heavily doped emitter and junction regions of silicon solar cells are investigated by means of the electron-beam-induced-current (EBIC) technique. Although the experimental EBIC data are collected under three-dimensional conditions, it is analytically demonstrated with two numerical examples that the solutions obtained with one-dimensional numerical modeling are adequate. EBIC data for bare and oxide-covered emitter surfaces are compared with theory. The improvement in collection efficiency when an emitter surface is covered with a 100-A SiO2 film varies with beam energy; for a cell with a junction depth of 0.35 microns, the improvement is about 54 percent at 2 keV.

  15. THE MONITORING OF EFFLUENT FOR ALPHA EMITTERS. PART II. METHODS FOR THE DETERMINATION OF URANIUM, POLONIUM AND OTHER ALPHA EMITTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smales, A.A.; Airey, L.; Woodward, J.

    1950-06-01

    Consideration has been given to the problem of separating and estimating uranium, polonium, and other alpha emitters (in order to provide analytical methods for their routine determination in conformily with the draft agreement on the Harwell effluent). Uranium may be ether extracted from solutions of ammonium nitrate as salting out agent at pHl with an efficiency of 98 to 99%. The deposition of polonium on silver foil is a specific method for this element and under prescribed conditions similar extraction efficiencies may be obtained. An adequate separation from all other alpha emitters'' is obtained and methods for the estimation ofmore » these are discussed. A comprehensive scheme involving a preliminary activity concentration step has been elaborated. Uranium, polonium, and the majority of the other alpha emitters'' are precipitated as their tannin complexes at pH8 using calcium hydroxide, the calcium-tannin complex acting as a carrier. That part of the activity remaining in solution is determined as in the total activity method, previously described. From the solution of the precipitate, polonium is first separated by electrodeposition, and then uranium by ether extraction in the presence of ammonium nitrate. The majority of the other alpha emitters'' still in the aqueous ammonium nitrate solution are collected on a second calcium-tannin precipitate, while the small part remaining in solution after this operation is obtained by direct evaporation. (auth)« less

  16. Effect of phonon-bath dimensionality on the spectral tuning of single-photon emitters in the Purcell regime

    NASA Astrophysics Data System (ADS)

    Chassagneux, Yannick; Jeantet, Adrien; Claude, Théo; Voisin, Christophe

    2018-05-01

    We develop a theoretical frame to investigate the spectral dependence of the brightness of a single-photon source made of a solid-state nanoemitter embedded in a high-quality factor microcavity. This study encompasses the cases of localized excitons embedded in a one-, two-, or three-dimensional matrix. The population evolution is calculated based on a spin-boson model, using the noninteracting blip approximation. We find that the spectral dependence of the single-photon source brightness (hereafter called spectral efficiency) can be expressed analytically through the free-space emission and absorption spectra of the emitter, the vacuum Rabi splitting, and the loss rates of the system. In other words, the free-space spectrum of the emitter encodes all the relevant information on the interaction between the exciton and the phonon bath to obtain the dynamics of the cavity-coupled system. We compute numerically the spectral efficiency for several types of localized emitters differing by the phonon bath dimensionality. In particular, in low-dimensional systems where this interaction is enhanced, a pronounced asymmetric energy exchange between the emitter and the cavity on the phonon sidebands yields a considerable extension of the tuning range of the source through phonon-assisted cavity feeding, possibly surpassing that of a purely resonant system.

  17. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Technical Reports Server (NTRS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-01-01

    A radioisotope thermophotovoltaic generator space power system (RTPV) is lightweight, low-cost alternative to the present radioisotope thermoelectric generator system (RTG). The fabrication of such an RTPV generator has recently become feasible as the result of the invention of the GaSb infrared sensitive photovoltaic cell. Herein, we present the results of a parametric study of emitters and optical filters in conjuction with existing data on gallium antimonide cells. We compare a polished tungsten emitter with an Erbia selective emitter for use in combination with a simple dielectric filter and a gallium antimonide cell array. We find that the polished tungsten emitter is by itself a very selective emitter with low emissivity beyond 4 microns. Given a gallium antimonide cell and a tungsten emitter, a simple dielectric filter can be designed to transmit radiant energy below 1.7 microns and to reflect radiant energy between 1.7 and 4 microns back to the emitter. Because of the low long wavelength emissivity associated with the polished tungsten emitter, this simple dielectric filter then yields very respectable system performance. Also as a result of the longer wavelength fall-off in the tungsten emissivity curve, the radiation energy peak for a polished tungsten emitter operating at 1300 K shifts to shorter wavelengths relative to the blackbody spectrum so that the radiated energy peak falls right at the gallium antimonide cell bandedge. The result is that the response of the gallium antimonide cell is well matched to a polished tungsten emitter. We propose, therefore, to fabricate an operating prototype of a near term radioisotope thermophotovoltaic generator design consisting of a polished tungsten emitter, standard gallium antimonide cells, and a near-term dielectric filter. The Jet Propulsion Laboratory will design and build the thermal cavity, and JX Crystals will fabricate the gallium antimonide cells, dielectric filters, and resultant receiver panels. With 250 Watts of heat input, we expect this prototype to produce over 300 Watts of electrical energy output for a system energy conversion efficiency of over 12%. This low risk, near term design provides advances relative to present radioisotope thermophotovoltaic generators and has the additional advantage of allowing component and system development and testing to begin immediately. Improved cells and filters can easily be incorporated in this baseline system if they should become available in the future.

  18. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Astrophysics Data System (ADS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-10-01

    A radioisotope thermophotovoltaic generator space power system (RTPV) is lightweight, low-cost alternative to the present radioisotope thermoelectric generator system (RTG). The fabrication of such an RTPV generator has recently become feasible as the result of the invention of the GaSb infrared sensitive photovoltaic cell. Herein, we present the results of a parametric study of emitters and optical filters in conjuction with existing data on gallium antimonide cells. We compare a polished tungsten emitter with an Erbia selective emitter for use in combination with a simple dielectric filter and a gallium antimonide cell array. We find that the polished tungsten emitter is by itself a very selective emitter with low emissivity beyond 4 microns. Given a gallium antimonide cell and a tungsten emitter, a simple dielectric filter can be designed to transmit radiant energy below 1.7 microns and to reflect radiant energy between 1.7 and 4 microns back to the emitter. Because of the low long wavelength emissivity associated with the polished tungsten emitter, this simple dielectric filter then yields very respectable system performance. Also as a result of the longer wavelength fall-off in the tungsten emissivity curve, the radiation energy peak for a polished tungsten emitter operating at 1300 K shifts to shorter wavelengths relative to the blackbody spectrum so that the radiated energy peak falls right at the gallium antimonide cell bandedge. The result is that the response of the gallium antimonide cell is well matched to a polished tungsten emitter. We propose, therefore, to fabricate an operating prototype of a near term radioisotope thermophotovoltaic generator design consisting of a polished tungsten emitter, standard gallium antimonide cells, and a near-term dielectric filter. The Jet Propulsion Laboratory will design and build the thermal cavity, and JX Crystals will fabricate the gallium antimonide cells, dielectric filters, and resultant receiver panels. With 250 Watts of heat input, we expect this prototype to produce over 300 Watts of electrical energy output for a system energy conversion efficiency of over 12%. This low risk, near term design provides advances relative to present radioisotope thermophotovoltaic generators and has the additional advantage of allowing component and system development and testing to begin immediately. Improved cells and filters can easily be incorporated in this baseline system if they should become available in the future.

  19. Electrical and Optical Performance Characteristics of 0.74-eV p/n InGaAs Monolithic Interconnected Modules

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Fatemi, Navid S.; Jenkins, Phillip P.; Weizer, Victor G.; Hoffman, Richard W., Jr.; Jain, Raj K.; Murray, Christopher S.; Riley, David R.

    1997-01-01

    There has been a traditional trade-off in thermophotovoltaic (TPV) energy conversion development between system efficiency and power density. This trade-off originates from the use of front surface spectral controls such as selective emitters and various types of filters. A monolithic interconnected module (MIM) structure has been developed which allows for both high power densities and high system efficiencies. The MIM device consists of many individual indium gallium arsenide (InGaAs) cells series-connected on a single semi-insulating indium phosphide (InP) substrate. The MIM is exposed to the entire emitter output, thereby maximizing output power density. An infrared (IR) reflector placed on the rear surface of the substrate returns the unused portion of the emitter output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Initial MIM development has focused on a 1 sq cm device consisting of eight (8) series interconnected cells. MIM devices, produced from 0.74-eV InGaAs, have demonstrated V(sub oc) = 3.2 volts, J(sub sc) = 70 mA/sq cm, and a fill factor of 66% under flashlamp testing. Infrared (IR) reflectance measurements (greater than 2 micron) of these devices indicate a reflectivity of greater than 82%. MIM devices produced from 0.55-eV InGaAs have also been demonstrated. In addition, conventional p/n InGaAs devices with record efficiencies (11.7% AM0) have been demonstrated.

  20. InGaAs/InP Monolithic Interconnected Modules (MIM) for Thermophotovoltaic Applications

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Fatemi, Navid S.; Jenkins, Phillip P.; Weizer, Victor G.; Hoffman, Richard W., Jr.; Scheiman, David A.; Murray, Christopher S.; Riley, David R.

    2004-01-01

    There has been a traditional trade-off in thermophotovoltaic (TPV) energy conversion development between systems efficiency and power density. This trade-off originates from the use of front surface spectral controls such as selective emitters and various types of filters. A monolithic interconnected module (MIM) structure has been developed which allows for both high power densities and high system efficiencies. The MIM device consists of many individual indium gallium arsenide (InGaAs) devices series -connected on a single semi-insulating indium phosphide (InP) substrate. The MIMs are exposed to the entire emitter output, thereby maximizing output power density. An infrared (IR) reflector placed on the rear surface of the substrate returns the unused portion of the emitter output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Initial MIM development has focused on a 1 sq cm device consisting of eight series interconnected cells. MIM devices, produced from 0,74 eV InGAAs, have demonstrated V(sub infinity) = 3.23 volts, J(sub sc) = 70 mA/sq cm and a fill factor of 66% under flashlamp testing. Infrared (IR) reflectance measurement (less than 2 microns) of these devices indicate a reflectivity of less than 82%. MIM devices produced from 0.55 eV InGaAs have also been den=monstrated. In addition, conventional p/n InGaAs devices with record efficiencies (11.7% AM1) have been demonstrated.

  1. Performance analysis of multi-primary color display based on OLEDs/PLEDs

    NASA Astrophysics Data System (ADS)

    Xiong, Yan; Deng, Fei; Xu, Shan; Gao, Shufang

    2017-09-01

    A multi-primary color display, such as the six-primary color format, is a solution in expanding the color gamut of a full-color flat panel display. The performance of a multi-primary color display based on organic/polymer light-emitting diodes was analyzed in this study using the fitting curves of the characteristics of devices (i.e., current density, voltage, luminance). A white emitter was introduced into a six-primary color format to form a seven-primary color format that contributes to energy saving, and the ratio of power efficiency of a seven-primary color display to that of a six-primary color display would increase from 1.027 to 1.061 by using emitting diodes with different electroluminescent efficiencies. Different color matching schemes of the seven-primary color format display were compared in a uniform color space, and the scheme of the color reproduction did not significantly affect the display performance. Although seven- and six-primary color format displays benefit a full-color display with higher quality, they are less efficient than three-primary (i.e., red (R), green (G), and blue (B), RGB) and four-primary (i.e., RGB+white, RGBW) color format displays. For the seven-primary color formats considered in this study, the advantages of white-primary-added display with efficiently developed light-emitting devices were more evident than the format without a white primary.

  2. Radiative engineering with refractory epsilon-near-zero metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dyachenko, Pavel N.; Molesky, Sean; Petrov, Alexander Y.; Störmer, Michael; Krekeler, Tobias; Lang, Slawa; Ritter, Martin; Jacob, Zubin; Eich, Manfred

    2016-04-01

    Improvement in high-temperature stable spectrally selective absorbers and emitters is integral for the further development of thermophotovoltaic (TPV), lighting and solar thermal applications. However, the high operational temperatures (T>1000oC) required for efficient energy conversion, along with application specific criteria such as the operational range of low bandgap semiconductors, greatly restrict what can be accomplished with natural materials. Motivated by this challenge, we demonstrate the first example of high temperature thermal radiation engineering with metamaterials. By employing the naturally selective thermal excitation of radiative modes that occurs near topological transitions, we show that thermally stable highly selective emissivity features are achieved for temperatures up to 1000°C with low angular dependence in a sub-micron thick refractory tungsten/hafnium dioxide epsilon-near-zero (ENZ) metamaterial. We also investigate the main mechanisms of thermal degradation of the fabricated refractory metamaterial both in terms of optical performance and structural stability using spectral analysis and energy-dispersive X-ray spectroscopy (EDS) techniques. Importantly, we observe chemical stability of the constituent materials for temperatures up to 1000°C and structural stability beyond 1100°C. The scalable fabrication, requiring magnetron sputtering, and thermally robust optical properties of this metamaterial approach are ideally suited to high temperature emitter applications such as lighting or TPV. Our findings provide a first concrete proof of radiative engineering with high temperature topological transition in ENZ metamaterials, and establish a clear path for implementation in TPV energy harvesting applications.

  3. Characterization of Novel Plasmonic, Photonic, and Semiconductor Microstructures

    NASA Astrophysics Data System (ADS)

    Sears, Jasmine Soria

    The fields of telecommunications and optoelectronics are under constant pressure to shrink devices and reduce power consumption. Micro-scale photonic and plasmonic structures can trap light and enhance the brightness of active emitters; thus, these types of structures are promising avenues to accomplishing the goals of miniaturization and efficiency. A deeper understanding of specific structures is important in order to gauge their suitability for specific applications. In this dissertation, two types of microstructures are explored: one-dimensional silicon photonic crystals and self-assembled indium islands. This dissertation will provide novel characterization of these structures and a description of how to utilize or compensate for the observed features. A photonic crystal can act as a tiny resonator for certain wavelengths, making it a promising structure for applications that require extremely small lasers. However, because of silicon’s indirect bandgap, a silicon photonic crystal cavity would require the addition of an active emitter to function as a light source. Attempts to incorporate erbium into these cavities, and the observation of an unusual coupling phenomenon, will be discussed. Self-assembled indium islands are plasmonic structures that can be grown via molecular beam epitaxy. In theory, these islands should be pure indium nanoantennas on top of a smooth gallium arsenide substrate. In practice, the component materials are less segregated than predicted, giving rise to unexpected hollow dome shapes and a sub-surface indium layer. Although these features were not an intended result of indium island growth, they provide information regarding the island formation process and potentially contribute additional applications.

  4. The effect of a charge control layer on the electroluminescent characteristic of blue and white organic light-emitting diodes.

    PubMed

    Lee, Dong Hyung; Lee, Seok Jae; Koo, Ja-Ryong; Lee, Ho Won; Shin, Hyun Su; Lee, Song Eun; Kim, Woo Young; Lee, Kum Hee; Yoon, Seung Soo; Kim, Young Kwan

    2014-08-01

    We investigated blue fluorescent organic light-emitting diode (OLED) with a charge control layer (CCL) to produce high efficiency and improve the half-decay lifetime. Three types of devices (device A, B, and C) were fabricated following the number of CCLs within the emitting layer (EML), maintaining the thickness of whole EML. The CCL and host material, 2-methyl-9,10-di(2-naphthyl)anthracene, which has a bipolar property, was able to control the carrier movement with ease inside the EML. Device B demonstrated a maximum luminous efficiency (LE) and external quantum efficiency (EQE) of 9.19 cd/A and 5.78%, respectively. It also showed that the enhancement of the half-decay lifetime, measured at an initial luminance of 1,000 cd/m2, was 1.5 times longer than that of the conventional structure. A hybrid white OLED (WOLED) was also fabricated using a phosphorescent red emitter, bis(2-phenylquinoline)-acetylacetonate iridium III doped in 4,4'-N,N'-dicarbazolyl-biphenyl. The property of the hybrid WOLED with CCL showed a maximum LE and an EQE of 13.46 cd/A and 8.32%, respectively. It also showed white emission with Commission International de L'Éclairage coordinates of (x = 0.41, y = 0.33) at 10 V.

  5. Tailored Emission Properties of ZnTe/ZnTe:O/ZnO Core-Shell Nanowires Coupled with an Al Plasmonic Bowtie Antenna Array.

    PubMed

    Nie, Kui-Ying; Tu, Xuecou; Li, Jing; Chen, Xuanhu; Ren, Fang-Fang; Zhang, Guo-Gang; Kang, Lin; Gu, Shulin; Zhang, Rong; Wu, Peiheng; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati; Ye, Jiandong

    2018-06-14

    The ability to manipulate light-matter interaction in semiconducting nanostructures is fascinating for implementing functionalities in advanced optoelectronic devices. Here, we report the tailoring of radiative emissions in a ZnTe/ZnTe:O/ZnO core-shell single nanowire coupled with a one-dimensional aluminum bowtie antenna array. The plasmonic antenna enables changes in the excitation and emission processes, leading to an obvious enhancement of near band edge emission (2.2 eV) and subgap excitonic emission (1.7 eV) bound to intermediate band states in a ZnTe/ZnTe:O/ZnO core-shell nanowire as well as surface-enhanced Raman scattering at room temperature. The increase of emission decay rate in the nanowire/antenna system, probed by time-resolved photoluminescence spectroscopy, yields an observable enhancement of quantum efficiency induced by local surface plasmon resonance. Electromagnetic simulations agree well with the experimental observations, revealing a combined effect of enhanced electric near-field intensity and the improvement of quantum efficiency in the ZnTe/ZnTe:O/ZnO nanowire/antenna system. The capability of tailoring light-matter interaction in low-efficient emitters may provide an alternative platform for designing advanced optoelectronic and sensing devices with precisely controlled response.

  6. A multiple-scattering polaritonic-operator method for hybrid arrays of metal nanoparticles and quantum emitters

    NASA Astrophysics Data System (ADS)

    Chatzidakis, Georgios D.; Yannopapas, Vassilios

    2018-05-01

    We present a new technique for the study of hybrid collections of quantum emitters (atoms, molecules, quantum dots) with nanoparticles. The technique is based on a multiple-scattering polaritonic-operator formalism in conjunction with an electromagnetic coupled dipole method. Apart from collections of quantum emitters and nanoparticles, the method can equally treat the interaction of a collection of quantum emitters with a single nano-object of arbitrary shape in which case the nano-object is treated as a finite three-dimensional lattice of point scatterers. We have applied our method to the case of linear array (chain) of dimers of quantum emitters and metallic nanoparticles wherein the corresponding (geometrical and physical) parameters of the dimers are chosen so as the interaction between the emitter and the nanoparticle lies in the strong-coupling regime in order to enable the formation of plexciton states in the dimer. In particular, for a linear chain of dimers, we show that the corresponding light spectra reveal a multitude of plexciton modes resulting from the hybridization of the plexciton resonances of each individual dimer in a manner similar to the tight-binding description of electrons in solids.

  7. Highly Efficient White Organic Light Emitting Diodes Using New Blue Fluorescence Emitter.

    PubMed

    Kim, Seungho; Kim, Beomjin; Lee, Jaehyun; Yu, Young-Jun; Park, Jongwook

    2015-07-01

    Two different emitting compounds, 1-[1,1';3',1"]Terphenyl-5'-yl-6-(10-[1,1';3',1"]terpheny-5'-yl- anthracen-9-yl)-pyrene (TP-AP-TP) and Poly-phenylene vinylene derivative (PDY 132) were used to white OLED device. By incorporating adjacent blue and yellow emitting layers in a multi-layered structure, highly efficient white emission has been attained. The device was fabricated with a hybrid configuration structure: ITO/PEDOT (40 nm)/PDY-132 (8-50 nm)/ NPB (10 nm)/TP-AP-TP (30 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (200 nm). After fixing TP-AP-TP thickness of 30 nm by evaporation, PDY-132 thickness varied with 8, 15, 35, and 50 nm by spin coating in device. The luminance efficiency of the white devices at 10 mA/cm2 were 2.93 cd/A-6.55 cd/A. One of white devices showed 6.55 cd/A and white color of (0.290, 0.331).

  8. Rubidium as an Alternative Cation for Efficient Perovskite Light-Emitting Diodes.

    PubMed

    Kanwat, Anil; Moyen, Eric; Cho, Sinyoung; Jang, Jin

    2018-05-16

    Incorporation of rubidium (Rb) into mixed lead halide perovskites has recently achieved record power conversion efficiency and excellent stability in perovskite solar cells. Inspired by these tremendous advances in photovoltaics, this study demonstrates the impact of Rb incorporation into MAPbBr 3 -based light emitters. Rb partially substitutes MA (methyl ammonium), resulting in a mixed cation perovskite with the formula MA (1- x) Rb x PbBr 3 . Pure MAPbBr 3 crystallizes into a polycrystalline layer with highly defective sub-micrometer grains. However, the addition of a small amount of Rb forms MA (1- x) Rb x PbBr 3 nanocrystals (10 nm) embedded in an amorphous matrix of MA/Rb Br. These nanocrystals grow into defect-free sub-micrometer-sized crystallites with further addition of Rb, resulting in a 3-fold increase in exciton lifetime when the molar ratio of MABr/RbBr is 1:1. A thin film fabricated with a 1:1 molar ratio of MABr/RbBr showed the best electroluminescent properties with a current efficiency (CE) of 9.45 cd/A and a luminance of 7694 cd/m 2 . These values of CE and luminance are, respectively, 19 and 10 times larger than those achieved by pure MAPbBr 3 devices (0.5 cd/A and 790 cd/m 2 ). We believe this work provides important information on the future compositional optimization of Rb + -based mixed cation perovskites for obtaining high-performance light-emitting diodes.

  9. Design of ultra-broadband terahertz polymer waveguide emitters for telecom wavelengths using coupled mode theory.

    PubMed

    Vallejo, Felipe A; Hayden, L Michael

    2013-03-11

    We use coupled mode theory, adequately incorporating optical losses, to model ultra-broadband terahertz (THz) waveguide emitters (0.1-20 THz) based on difference frequency generation of femtosecond infrared (IR) optical pulses. We apply the model to a generic, symmetric, five-layer, metal/cladding/core waveguide structure using transfer matrix theory. We provide a design strategy for an efficient ultra-broadband THz emitter and apply it to polymer waveguides with a nonlinear core composed of a poled guest-host electro-optic polymer composite and pumped by a pulsed fiber laser system operating at 1567 nm. The predicted bandwidths are greater than 15 THz and we find a high conversion efficiency of 1.2 × 10(-4) W(-1) by balancing both the modal phase-matching and effective mode attenuation.

  10. A versatile tunable microcavity for investigation of light-matter interaction

    NASA Astrophysics Data System (ADS)

    Mochalov, Konstantin E.; Vaskan, Ivan S.; Dovzhenko, Dmitriy S.; Rakovich, Yury P.; Nabiev, Igor

    2018-05-01

    Light-matter interaction between a molecular ensemble and a confined electromagnetic field is a promising area of research, as it allows light-control of the properties of coupled matter. The common way to achieve coupling is to place an ensemble of molecules or quantum emitters into a cavity. In this approach, light-matter coupling is evidenced by modification of the spectral response of the emitter, which depends on the strength of interaction between emitter and cavity modes. However, there is not yet a user-friendly approach that allows the study of a large number of different and replaceable samples in a wide optical range using the same resonator. Here, we present the design of such a device that can speed up and facilitate investigation of light-matter interaction ranging from weak to strong coupling regimes in ultraviolet-visible and infrared (IR) spectral regions. The device is based on a tunable unstable λ/2 Fabry-Pérot microcavity consisting of plane and convex mirrors that satisfy the plane-parallelism condition at least at one point of the curved mirror and minimize the mode volume. Fine tuning of the microcavity length is provided by a Z-piezopositioner in a range up to 10 μm with a step of several nm. This design makes a device a versatile instrument that ensures easy finding of optimal conditions for light-matter interaction for almost any sample in both visible and IR areas, enabling observation of both electronic and vibrational couplings with microcavity modes thus paving the way to investigation of various coupling effects including Raman scattering enhancement, modification of chemical reactivity rate, lasing, and long-distance nonradiative energy transfer.

  11. Thermal control/oxidation resistant coatings for titanium-based alloys

    NASA Technical Reports Server (NTRS)

    Clark, Ronald K.; Wallace, Terryl A.; Cunnington, George R.; Wiedemann, Karl E.

    1992-01-01

    Extensive research and development efforts have been expended toward development of thermal control and environmental protection coatings for NASP and generic hypersonic vehicle applications. The objective of the coatings development activities summarized here was to develop light-weight coatings for protecting advanced titanium alloys from oxidation in hypersonic vehicle applications. A number of new coating concepts have been evaluated. Coated samples were exposed to static oxidation tests at temperatures up to 1000 C using a thermogravimetric apparatus. Samples were also exposed to simulated hypersonic flight conditions for up to 10 hr to determine their thermal and chemical stability and catalytic efficiency. The emittance of samples was determined before and after exposure to simulated hypersonic flight conditions.

  12. Volume-scalable high-brightness three-dimensional visible light source

    DOEpatents

    Subramania, Ganapathi; Fischer, Arthur J; Wang, George T; Li, Qiming

    2014-02-18

    A volume-scalable, high-brightness, electrically driven visible light source comprises a three-dimensional photonic crystal (3DPC) comprising one or more direct bandgap semiconductors. The improved light emission performance of the invention is achieved based on the enhancement of radiative emission of light emitters placed inside a 3DPC due to the strong modification of the photonic density-of-states engendered by the 3DPC.

  13. Carbon nanotube emitters and field emission triode

    NASA Astrophysics Data System (ADS)

    Fan, Zhiqin; Zhang, Binglin; Yao, Ning; Zhang, Lan; Ma, Huizhong; Deng, Jicai

    2006-05-01

    Based on our study on field emission from multi-walled carbon nanotubes (MWNTs), we experimentally manufactured field emission display (FED) triode with a MWNTs cold cathode, and demonstrated an excellent performance of MWNTs as field emitters. The measured luminance of the phosphor screens was 1.8*10^(3) cd/m2 for green light. The emission is stable with a fluctuation of only 1.5% at an average current of 260 'mu'A.

  14. Flat panel ferroelectric electron emission display system

    DOEpatents

    Sampayan, Stephen E.; Orvis, William J.; Caporaso, George J.; Wieskamp, Ted F.

    1996-01-01

    A device which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density.

  15. High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter.

    PubMed

    Kim, Jeehwan; Hiroi, Homare; Todorov, Teodor K; Gunawan, Oki; Kuwahara, Masaru; Gokmen, Tayfun; Nair, Dhruv; Hopstaken, Marinus; Shin, Byungha; Lee, Yun Seog; Wang, Wei; Sugimoto, Hiroki; Mitzi, David B

    2014-11-26

    High-efficiency Cu2ZnSn(S,Se)4 solar cells are reported by applying In2S3/CdS double emitters. This new structure offers a high doping concentration within the Cu2ZnSn(S,Se)4 solar cells, resulting in a substantial enhancement in open-circuit voltage. The 12.4% device is obtained with a record open-circuit voltage deficit of 593 mV. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hybrid permeable metal-base transistor with large common-emitter current gain and low operational voltage.

    PubMed

    Feng, Chengang; Yi, Mingdong; Yu, Shunyang; Hümmelgen, Ivo A; Zhang, Tong; Ma, Dongge

    2008-04-01

    We demonstrate the suitability of N,N'-diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB), an organic semiconductor widely used in organic light-emitting diodes (OLEDs), for high-gain, low operational voltage nanostructured vertical-architecture transistors, which operate as permeable-base transistors. By introducing vanadium oxide (V2O5) between the injecting metal and NPB layer at the transistor emitter, we reduced the emitter operational voltage. The addition of two Ca layers, leading to a Ca/Ag/Ca base, allowed to obtain a large value of common-emitter current gain, but still retaining the permeable-base transistor character. This kind of vertical devices produced by simple technologies offer attractive new possibilities due to the large variety of available molecular semiconductors, opening the possibility of incorporating new functionalities in silicon-based devices.

  17. Current-horn suppression for reduced coherent-synchrotron-radiation-induced emittance growth in strong bunch compression

    NASA Astrophysics Data System (ADS)

    Charles, T. K.; Paganin, D. M.; Latina, A.; Boland, M. J.; Dowd, R. T.

    2017-03-01

    Control of coherent synchrotron radiation (CSR)-induced emittance growth is essential in linear accelerators designed to deliver very high brightness electron beams. Extreme current values at the head and tail of the electron bunch, resulting from strong bunch compression, are responsible for large CSR production leading to significant transverse projected emittance growth. The Linac Coherent Light Source (LCLS) truncates the head and tail current spikes which greatly improves free electron laser (FEL) performance. Here we consider the underlying dynamics that lead to formation of current spikes (also referred to as current horns), which has been identified as caustics forming in electron trajectories. We present a method to analytically determine conditions required to avoid the caustic formation and therefore prevent the current spikes from forming. These required conditions can be easily met, without increasing the transverse slice emittance, through inclusion of an octupole magnet in the middle of a bunch compressor.

  18. Parametric emittance measurements of electron beams produced by a laser plasma accelerator

    NASA Astrophysics Data System (ADS)

    Barber, S. K.; van Tilborg, J.; Schroeder, C. B.; Lehe, R.; Tsai, H.-E.; Swanson, K. K.; Steinke, S.; Nakamura, K.; Geddes, C. G. R.; Benedetti, C.; Esarey, E.; Leemans, W. P.

    2018-05-01

    Laser plasma accelerators (LPA) offer an exciting possibility to deliver high energy, high brightness electrons beams in drastically smaller distance scales than is typical for conventional accelerators. As such, LPAs draw considerable attention as potential drivers for next generation light sources and for a compact linear collider. In order to asses the viability of an LPA source for a particular application, the brightness of the source should be properly characterized. In this paper, we present charge dependent transverse emittance measurements of LPA sources using both ionization injection and shock induced density down ramp injection, with the latter delivering smaller transverse emittances by a factor of two when controlling for charge density. The single shot emittance method is described in detail with a discussion on limitations related to second order transport effects. The direct role of space charge is explored through a series of simulations and found to be consistent with experimental observations.

  19. High current gain transistor laser

    PubMed Central

    Liang, Song; Qiao, Lijun; Zhu, Hongliang; Wang, Wei

    2016-01-01

    A transistor laser (TL), having the structure of a transistor with multi-quantum wells near its base region, bridges the functionality gap between lasers and transistors. However, light emission is produced at the expense of current gain for all the TLs reported up to now, leading to a very low current gain. We propose a novel design of TLs, which have an n-doped InP layer inserted in the emitter ridge. Numerical studies show that a current flow aperture for only holes can be formed in the center of the emitter ridge. As a result, the common emitter current gain can be as large as 143.3, which is over 15 times larger than that of a TL without the aperture. Besides, the effects of nonradiative recombination defects can be reduced greatly because the flow of holes is confined in the center region of the emitter ridge. PMID:27282466

  20. Deterministic Placement of Quantum-Size Controlled Quantum Dots for Seamless Top-Down Integration

    DOE PAGES

    Fischer, Arthur J.; Anderson, P. Duke; Koleske, Daniel D.; ...

    2017-08-18

    We demonstrate a new route toward the integration and deterministic placement of quantum dots (QDs) within prepatterned nanostructures. Using standard electron-beam lithography (EBL) and inductively coupled plasma reactive-ion etching (ICP-RIE), we fabricate arrays of nanowires on a III-nitride platform. Next, we integrate QDs of controlled size within the prepatterned nanowires using a bandgap-selective, wet-etching technique: quantum-size-controlled photoelectrochemical (QSC-PEC) etching. Low-temperature microphotoluminescence (μ-PL) measurements of individual nanowires reveal sharp spectral signatures, indicative of QD formation. Further, internal quantum efficiency (IQE) measurements reveal a near order of magnitude improvement in emitter efficiency following QSC-PEC etching. Finally, second-order cross-correlation (g(2)(0)) measurements of individualmore » QDs directly confirm nonclassical, antibunching behavior. Lastly, our results illustrate an exciting approach toward the top-down integration of nonclassical light sources within nanophotonic platforms.« less

Top