Sample records for efficient light starts

  1. Energy Engineering Analysis Program. Lighting Survey of Selected Buildings, Pine Bluff Arsenal, Pine Bluff, Arkansas. Volume 2A: Appendices

    DTIC Science & Technology

    1995-06-01

    Energy efficient, 30 and 40 watt ballasts are Rapid Start, thermally protected, automatic resetting. Class P, high or low power factor as required...BALLASTS Energy efficient, 30 ana 40 watt Rapic Start, thermally protected, automatic resetting. Class P. high power factor, CEM, sound rated A. unless...BALLASTS Energy efficient, 40 Watt Rapid Start, thermally protected, automatic resetting, Class P, high power factor, CBM, sound rated A, unless

  2. To enhance light extraction of OLED devices by multi-optic layers including a micro lens array

    NASA Astrophysics Data System (ADS)

    Chiu, Chuang-Hung; Chien, Chao-Heng; Kuo, Yu-Xaong; Lee, Jen-Chi

    2014-10-01

    In recent years, OLED has advantages including that larger light area, thinner thickness, excellent light uniformity, and can be as a flexible light source. Many display panel and lighting have been started to use the OLED due to OLED without back light system, thus how to make and employ light extracting layer could be important issue to enhance OLED brightness. The purpose of this study is to enhance the light extraction efficiency and light emitting area of OLED, so the micro lens array and the prism reflection layer were provided to enhance the surface light extracting efficiency of OLD. Finally the prism layer and diffusing layer were used to increase the uniformity of emitting area of OLED, which the efficiency of 31% increasing to compare with the OLED without light extracting film.

  3. Discharge lamp technologies

    NASA Technical Reports Server (NTRS)

    Dakin, James

    1994-01-01

    This talk is an overview of discharge lamp technology commonly employed in general lighting, with emphasis on issues pertinent to lighting for plant growth. Since the audience is primarily from the plant growth community, and this begins the light source part of the program, we will start with a brief description of the discharge lamps. Challenges of economics and of thermal management make lamp efficiency a prime concern in controlled environment agriculture, so we will emphasize science considerations relating to discharge lamp efficiency. We will then look at the spectra and ratings of some representative lighting products, and conclude with a discussion of technological advances.

  4. White organic light-emitting diodes with fluorescent tube efficiency.

    PubMed

    Reineke, Sebastian; Lindner, Frank; Schwartz, Gregor; Seidler, Nico; Walzer, Karsten; Lüssem, Björn; Leo, Karl

    2009-05-14

    The development of white organic light-emitting diodes (OLEDs) holds great promise for the production of highly efficient large-area light sources. High internal quantum efficiencies for the conversion of electrical energy to light have been realized. Nevertheless, the overall device power efficiencies are still considerably below the 60-70 lumens per watt of fluorescent tubes, which is the current benchmark for novel light sources. Although some reports about highly power-efficient white OLEDs exist, details about structure and the measurement conditions of these structures have not been fully disclosed: the highest power efficiency reported in the scientific literature is 44 lm W(-1) (ref. 7). Here we report an improved OLED structure which reaches fluorescent tube efficiency. By combining a carefully chosen emitter layer with high-refractive-index substrates, and using a periodic outcoupling structure, we achieve a device power efficiency of 90 lm W(-1) at 1,000 candelas per square metre. This efficiency has the potential to be raised to 124 lm W(-1) if the light outcoupling can be further improved. Besides approaching internal quantum efficiency values of one, we have also focused on reducing energetic and ohmic losses that occur during electron-photon conversion. We anticipate that our results will be a starting point for further research, leading to white OLEDs having efficiencies beyond 100 lm W(-1). This could make white-light OLEDs, with their soft area light and high colour-rendering qualities, the light sources of choice for the future.

  5. Increased collection efficiency of LIFI high intensity electrodeless light source

    NASA Astrophysics Data System (ADS)

    Hafidi, Abdeslam; DeVincentis, Marc; Duelli, Markus; Gilliard, Richard

    2008-02-01

    Recently, RF driven electrodeless high intensity light sources have been implemented successfully in the projection display systems for HDTV and videowall applications. This paper presents advances made in the RF waveguide and electric field concentrator structures with the purpose of reducing effective arc size and increasing light collection. In addition, new optical designs are described that further improve system efficiency. The results of this work demonstrate that projection system light throughput is increased relative to previous implementations and performance is optimized for home theater and other front projector applications that maintain multi-year lifetime without re-lamping, complete spectral range, fast start times and high levels of dynamic contrast due to dimming flexibility in the light source system.

  6. On the retrieval efficiency of light storage in an EIT medium

    NASA Astrophysics Data System (ADS)

    Chough, Young-Tak

    2016-08-01

    We investigate the retrieval efficiency of light slowed and/or stored in a medium with electromagnetically-induced transparency (an EIT medium) by numerical simulations based on first principles. Starting from the master equation formulation, we derive the full dynamics of the system and then show how the approximations are applied to reduce the number of dynamical equations. While operating the system as an optical "retarder," a "reflector," and a "beam-splitter," we find that the total retrieval efficiency in the case of the "beam-splitter" operation is lower than that in either of the other two operations. Nevertheless, we find that (1) when an appropriate value of detuning is applied between the two counter-propagating " read"-fields, the retrieval efficiency in the latter case can be significantly improved, (2) storing the signal in the form of the atomic spin wave is more advantageous than storing it in the form of a stationary light pulse (SLP), and (3) the retrieval efficiency can be augmented by increasing the strengths of the " read"-fields.

  7. In search of the black swans

    NASA Astrophysics Data System (ADS)

    Buchanan, Mark

    2009-04-01

    In 1890 an electricity company enticed the German physicist Max Planck to help it in its efforts to make more efficient light bulbs. Planck, as a theorist, naturally started with the fundamentals and soon became enmeshed in the thorny problem of explaining the spectrum of black-body radiation, which he eventually did by introducing the idea - a "purely formal" assumption, as he then considered it - that electromagnetic energy can only be emitted or absorbed in discrete quanta. The rest is history. Electric light bulbs and mathematical necessity led Planck to discover quantum theory and to kick start the most significant scientific revolution of the 20th century.

  8. Monolithic translucent BaMgAl 10O 17:Eu 2+ phosphors for laser-driven solid state lighting

    DOE PAGES

    Cozzan, Clayton; Brady, Michael J.; O’Dea, Nicholas; ...

    2016-10-11

    With high power light emitting diodes and laser diodes being explored for white light generation and visible light communication, thermally robust encapsulation schemes for color-converting inorganic phosphors are essential. In the current work, the canonical blue-emitting phosphor, high purity Eu-doped BaMgAl 10O 17, has been prepared using microwave-assisted heating (25 min) and densified into translucent ceramic phosphor monoliths using spark plasma sintering (30 min). Lastly, the resulting translucent ceramic monoliths convert UV laser light to blue light with the same efficiency as the starting powder and provide superior thermal management in comparison with silicone encapsulation.

  9. Concepts for high efficient white OLEDs for lighting applications

    NASA Astrophysics Data System (ADS)

    Hunze, A.; Krause, R.; Seidel, S.; Weiss, O.; Kozlowski, F.; Schmid, G.; Meyer, J.; Kröger, M.; Johannes, H. H.; Kowalsky, W.; Dobbertin, T.

    2007-09-01

    Apart from usage of organic light emitting diodes for flat panel display applications OLEDs are a potential candidate for the next solid state lighting technology. One key parameter is the development of high efficient, stable white devices. To realize this goal there are different concepts. Especially by using highly efficient phosphorescent guest molecules doped into a suitable host material high efficiency values can be obtained. We started our investigations with a single dopant and extended this to a two phosphorescent emitter approach leading to a device with a high power efficiency of more than 25 lm/W @ 1000 cd/m2. The disadvantage of full phosphorescent device setups is that esp. blue phosphorescent emitters show an insufficient long-term stability. A possibility to overcome this problem is the usage of more stable fluorescent blue dopants, whereas, due to the fact that only singlet excitons can decay radiatively, the efficiency is lower. With a concept, proposed by Sun et al.1 in 2006, it is possible to manage the recombination zone and thus the contribution from the different dopants. With this approach stable white color coordinates with sufficient current efficiency values have been achieved.

  10. DIESEL ENGINE EFFICIENCY AND EMISSIONS IMPROVEMENT VIA PISTON TEMPERATURE CONTROL - PHASE I

    EPA Science Inventory

    Diesel engine manufacturers need a way to improve fuel economy as well as limit NOx and particulate emissions to meet upcoming federal, state and global regulations. A large percentage of emissions and fuel consumption occurs during cold start and light to medium load ope...

  11. Overcoming the Fundamental Bottlenecks to a new world-record silicon solar cell. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohatgi, Ajeet; Zimbardi, Francesco; Rounsaville, Brian

    The objective of the work performed within this contract is to reveal the materials and device physics that currently limit the experimental world record efficiency to 25% for single junction Si (2013), and to demonstrate 26.5% efficiency. The starting efficiency for this project was 23.9% in 2013. Four strategies are being combined throughout the project to achieve 26.5% cell efficiency: (1) passivated contacts via tunnel dielectrics, (2) emitter optimization and passivation through dopant profile engineering, (3) enhanced light trapping through development of photonic crystals and (4) base optimization.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dakin, J.

    This talk is an overview of discharge lamp technology commonly employed in general lighting, with emphasis on issues pertinent to lighting for plant growth. Since the audience is primarily from the plant growth community, and this begins the light source part of the program, we will start with a brief description of the discharge lamps. Challenges of economics and of thermal management make lamp efficiency a prime concern in controlled environment agriculture, so we will emphasize science considerations relating to discharge lamp efficiency. We will then look at the spectra and ratings of some representative lighting products, and conclude withmore » a discussion of technological advance. A general overview of discharge lighting technology can be found in the book of Waymouth (1971). A recent review of low pressure lighting discharge science is found in Dakin (1991). The pioneering paper of Reiling (1964) provides a good introduction to metal halide discharges. Particularly relevant to lighting for plant growth, a recent and thorough treatment of high pressure Na lamps is found in the book by deGroot and vanVliet (1986). Broad practical aspects of lighting application are thoroughly covered in the IES Lighting Handbook edited by Kaufman (1984).« less

  13. Light-efficient photography.

    PubMed

    Hasinoff, Samuel W; Kutulakos, Kiriakos N

    2011-11-01

    In this paper, we consider the problem of imaging a scene with a given depth of field at a given exposure level in the shortest amount of time possible. We show that by 1) collecting a sequence of photos and 2) controlling the aperture, focus, and exposure time of each photo individually, we can span the given depth of field in less total time than it takes to expose a single narrower-aperture photo. Using this as a starting point, we obtain two key results. First, for lenses with continuously variable apertures, we derive a closed-form solution for the globally optimal capture sequence, i.e., that collects light from the specified depth of field in the most efficient way possible. Second, for lenses with discrete apertures, we derive an integer programming problem whose solution is the optimal sequence. Our results are applicable to off-the-shelf cameras and typical photography conditions, and advocate the use of dense, wide-aperture photo sequences as a light-efficient alternative to single-shot, narrow-aperture photography.

  14. Optimal integration of daylighting and electric lighting systems using non-imaging optics

    NASA Astrophysics Data System (ADS)

    Scartezzini, J.-L.; Linhart, F.; Kaegi-Kolisnychenko, E.

    2007-09-01

    Electric lighting is responsible for a significant fraction of electricity consumption within non-residential buildings. Making daylight more available in office and commercial buildings can lead as a consequence to important electricity savings, as well as to the improvement of occupants' visual performance and wellbeing. Over the last decades, daylighting technologies have been developed for that purpose, some of them having proven to be highly efficient such as anidolic daylighting systems. Based on non-imaging optics these optical devices were designed to achieve an efficient collection and redistribution of daylight within deep office rooms. However in order to benefit from the substantial daylight provision obtained through these systems and convert it into effective electricity savings, novel electric lighting strategies are required. An optimal integration of high efficacy light sources and efficient luminaries based on non-imaging optics with anidolic daylighting systems can lead to such novel strategies. Starting from the experience gained through the development of an Anidolic Integrated Ceiling (AIC), this paper presents an optimal integrated daylighting and electric lighting system. Computer simulations based on ray-tracing techniques were used to achieve the integration of 36W fluorescent tubes and non-imaging reflectors with an advanced daylighting system. Lighting power densities lower than 4 W/m2 can be achieved in this way within the corresponding office room. On-site monitoring of an integrated daylighting and electric lighting system carried out on a solar experimental building confirmed the energy and visual performance of such a system: it showed that low lighting power densities can be achieved by combining an anidolic daylighting system with very efficient electric light sources and luminaries.

  15. Design and Fabrication of High-Efficiency CMOS/CCD Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2007-01-01

    An architecture for back-illuminated complementary metal oxide/semiconductor (CMOS) and charge-coupled-device (CCD) ultraviolet/visible/near infrared- light image sensors, and a method of fabrication to implement the architecture, are undergoing development. The architecture and method are expected to enable realization of the full potential of back-illuminated CMOS/CCD imagers to perform with high efficiency, high sensitivity, excellent angular response, and in-pixel signal processing. The architecture and method are compatible with next-generation CMOS dielectric-forming and metallization techniques, and the process flow of the method is compatible with process flows typical of the manufacture of very-large-scale integrated (VLSI) circuits. The architecture and method overcome all obstacles that have hitherto prevented high-yield, low-cost fabrication of back-illuminated CMOS/CCD imagers by use of standard VLSI fabrication tools and techniques. It is not possible to discuss the obstacles in detail within the space available for this article. Briefly, the obstacles are posed by the problems of generating light-absorbing layers having desired uniform and accurate thicknesses, passivation of surfaces, forming structures for efficient collection of charge carriers, and wafer-scale thinning (in contradistinction to diescale thinning). A basic element of the present architecture and method - the element that, more than any other, makes it possible to overcome the obstacles - is the use of an alternative starting material: Instead of starting with a conventional bulk-CMOS wafer that consists of a p-doped epitaxial silicon layer grown on a heavily-p-doped silicon substrate, one starts with a special silicon-on-insulator (SOI) wafer that consists of a thermal oxide buried between a lightly p- or n-doped, thick silicon layer and a device silicon layer of appropriate thickness and doping. The thick silicon layer is used as a handle: that is, as a mechanical support for the device silicon layer during micro-fabrication.

  16. Efficiency of photochemical stages of photosynthesis in purple bacteria (a critical survey).

    PubMed

    Borisov, A Yu

    2014-03-01

    Based on currently available data, the energy transfer efficiency in the successive photophysical and photochemical stages has been analyzed for purple bacteria. This analysis covers the stages starting from migration of the light-induced electronic excitations from the bulk antenna pigments to the reaction centers up to irreversible stage of the electron transport along the transmembrane chain of cofactors-carriers. Some natural factors are revealed that significantly increase the rates of efficient processes in these stages. The influence on their efficiency by the "bottleneck" in the energy migration chain is established. The overall quantum yield of photosynthesis in these stages is determined.

  17. Minimizing lighting power density in office rooms equipped with Anidolic Daylighting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linhart, Friedrich; Scartezzini, Jean-Louis

    2010-04-15

    Electric lighting is responsible for up to one third of an office building's electricity needs. Making daylight more available in office buildings can not only contribute to significant energy savings but also enhance the occupants' performance and wellbeing. Anidolic Daylighting Systems (ADS) are one type of very effective facade-integrated daylighting systems. All south-facing office rooms within the LESO solar experimental building in Lausanne (Switzerland) are equipped with a given type of ADS. A recent study has shown that these offices' occupants are highly satisfied with their lighting environment. The most energy-efficient south-facing offices have a lighting power density of lessmore » than 5W/m{sup 2}. The lighting situation within these ''best practice''-offices has been assessed using the lighting simulation software RELUX Vision. Because this lighting situation is very much appreciated by the occupants, it was used as a starting point for developing even more energy-efficient office lighting designs. Two new lighting designs, leading to lighting power densities of 3.9W/m{sup 2} and 3W/m{sup 2}, respectively, have been suggested and simulated with RELUX Vision. Simulation results have shown that the expected performances of these new systems are comparable to that of the current lighting installation within the ''best practice''-offices or even better. These simulation results have been confirmed during experiments on 20 human subjects in a test office room recently set up within the LESO building. This article gives engineers, architects and light planers valuable information and ideas on how to design energy-efficient and comfortable electric lighting systems in office rooms with abundant access to daylight. (author)« less

  18. Improved Starting Materials for Back-Illuminated Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2009-01-01

    An improved type of starting materials for the fabrication of silicon-based imaging integrated circuits that include back-illuminated photodetectors has been conceived, and a process for making these starting materials is undergoing development. These materials are intended to enable reductions in dark currents and increases in quantum efficiencies, relative to those of comparable imagers made from prior silicon-on-insulator (SOI) starting materials. Some background information is prerequisite to a meaningful description of the improved starting materials and process. A prior SOI starting material, depicted in the upper part the figure, includes: a) A device layer on the front side, typically between 2 and 20 m thick, made of p-doped silicon (that is, silicon lightly doped with an electron acceptor, which is typically boron); b) A buried oxide (BOX) layer (that is, a buried layer of oxidized silicon) between 0.2 and 0.5 m thick; and c) A silicon handle layer (also known as a handle wafer) on the back side, between about 600 and 650 m thick. After fabrication of the imager circuitry in and on the device layer, the handle wafer is etched away, the BOX layer acting as an etch stop. In subsequent operation of the imager, light enters from the back, through the BOX layer. The advantages of back illumination over front illumination have been discussed in prior NASA Tech Briefs articles.

  19. Broadband Light-Harvesting Molecular Triads with High FRET Efficiency Based on the Coumarin-Rhodamine-BODIPY Platform.

    PubMed

    He, Longwei; Zhu, Sasa; Liu, Yong; Xie, Yinan; Xu, Qiuyan; Wei, Haipeng; Lin, Weiying

    2015-08-17

    Broadband capturing and FRET-based light-harvesting molecular triads, CRBs, based on the coumarin-rhodamine-BODIPY platform were rationally designed and synthesized. The absorption band of CRBs starts from blue-green to yellow-orange regions (330-610 nm), covering the strong radiation scope of sunlight. The peripheral coumarin and BODIPY chromophore energy could transfer to the central acceptor rhodamine by a one-step direct way. The energy of the coumarin moiety could also transfer to the BODIPY unit, subsequently transferring to the rhodamine core by two-step sequential ways. Both the efficiencies of the coumarin moiety and the BODIPY unit to the rhodamine core in CRBs, determined by two different ways, are very high. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Lean Gasoline System Development for Fuel Efficient Small Cars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stuart R.

    2013-11-25

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economymore » of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.« less

  1. Photoperiod shift effects on yield characteristics of rice

    NASA Technical Reports Server (NTRS)

    Volk, G. M.; Mitchell, C. A.

    1995-01-01

    Edible yield must be maximized for each crop species selected for inclusion in the Controlled Ecological Life-Support System (CELSS) proposed by NASA to support long-term manned space missions. In a greenhouse study aimed at increasing biomass partitioning to rice (Oryza sativa L.) grain, plants of the high yielding semi-dwarf rice cultivar Ai-Nan-Tsao were started in pots under 8-h photoperiods at a density of 212 plants m-2. After different periods of time under 8-h photoperiods, pots were switched to continuous light for the remainder of the cropping cycle. Continuous light did not delay time to first panicle emergence (60 d) or time to harvest (83 d). There was a positive correlation between the length of continuous light treatments and nongrain biomass. Grain yield (1.6 +/- 0.2 g plant-1) did not increase in continuous light. Yield-efficiency rate (grain weight per length of cropping cycle, canopy volume, and weight of nongrain shoot biomass) was used to compare treatments. Small Ai-Nan-Tsao rice canopies grown under 8-h photoperiods were more efficient producers of grain than canopies grown under continuous light for a portion of the rice cropping cycle.

  2. Cd, Fe, and Light Sensitivity: Interrelationships in Cd-Treated Populus

    PubMed Central

    Gáspár, László; Vági, Pál; Záray, Gyula; Fodor, Ferenc; Sárvári, Éva

    2011-01-01

    Abstract Cadmium is a toxic heavy metal causing iron deficiency in the shoot and light sensitivity of photosynthetic tissues that leads to decreased photosynthetic performance and biomass production. Light intensity had strong impact on both photosynthetic activity and metal accumulation of cadmium-treated plants. At elevated irradiation, cadmium accumulation increased due to the higher dry mass of plants, but its allocation hardly changed. A considerable amount of iron accumulated in the roots, and iron concentration was higher in leaves developed at moderate rather than low irradiation. At the same time, the higher the irradiation the lower the maximal photochemical quantum efficiency. The decreased photochemical efficiency, however, started to recover after a week of Cd treatment at moderate light without substantial change in metal concentrations but following the accumulation of green fluorescent compounds. Both cadmium treatment and higher light caused the accumulation of flavonoids in leaf mesophyll vacuoles/chloroplasts, but accumulation of flavonols, fluorescing at 510 nm, was characteristic to cadmium stress. Therefore, flavonoids, which may act by scavenging reactive radicals, chelating Cd, and shielding against excess irradiation, play an important part in Cd stress tolerance of Populus, and may have special impact on its phytoremediation capacity. PMID:22011338

  3. LightAssembler: fast and memory-efficient assembly algorithm for high-throughput sequencing reads.

    PubMed

    El-Metwally, Sara; Zakaria, Magdi; Hamza, Taher

    2016-11-01

    The deluge of current sequenced data has exceeded Moore's Law, more than doubling every 2 years since the next-generation sequencing (NGS) technologies were invented. Accordingly, we will able to generate more and more data with high speed at fixed cost, but lack the computational resources to store, process and analyze it. With error prone high throughput NGS reads and genomic repeats, the assembly graph contains massive amount of redundant nodes and branching edges. Most assembly pipelines require this large graph to reside in memory to start their workflows, which is intractable for mammalian genomes. Resource-efficient genome assemblers combine both the power of advanced computing techniques and innovative data structures to encode the assembly graph efficiently in a computer memory. LightAssembler is a lightweight assembly algorithm designed to be executed on a desktop machine. It uses a pair of cache oblivious Bloom filters, one holding a uniform sample of [Formula: see text]-spaced sequenced [Formula: see text]-mers and the other holding [Formula: see text]-mers classified as likely correct, using a simple statistical test. LightAssembler contains a light implementation of the graph traversal and simplification modules that achieves comparable assembly accuracy and contiguity to other competing tools. Our method reduces the memory usage by [Formula: see text] compared to the resource-efficient assemblers using benchmark datasets from GAGE and Assemblathon projects. While LightAssembler can be considered as a gap-based sequence assembler, different gap sizes result in an almost constant assembly size and genome coverage. https://github.com/SaraEl-Metwally/LightAssembler CONTACT: sarah_almetwally4@mans.edu.egSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. High Quantum Efficiency OLED Lighting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiang, Joseph

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution processmore » on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.« less

  5. Significant reduction in energy for plant-growth lighting in space using targeted LED lighting and spectral manipulation

    NASA Astrophysics Data System (ADS)

    Poulet, L.; Massa, G. D.; Morrow, R. C.; Bourget, C. M.; Wheeler, R. M.; Mitchell, C. A.

    2014-07-01

    Bioregenerative life-support systems involving photoautotrophic organisms will be necessary to sustain long-duration crewed missions at distant space destinations. Since sufficient sunlight will not always be available for plant growth at many space destinations, efficient electric-lighting solutions are greatly needed. The present study demonstrated that targeted plant lighting with light-emitting diodes (LEDs) and optimizing spectral parameters for close-canopy overhead LED lighting allowed the model crop leaf lettuce (Lactuca sativa L. cv. 'Waldmann's Green') to be grown using significantly less electrical energy than using traditional electric-lighting sources. Lettuce stands were grown hydroponically in a growth chamber controlling temperature, relative humidity, and CO2 level. Several red:blue ratios were tested for growth rate during the lag phase of lettuce growth. In addition, start of the exponential growth phase was evaluated. Following establishment of a 95% red + 5% blue spectral balance giving the best growth response, the energy efficiency of a targeted lighting system was compared with that of two total coverage (untargeted) LED lighting systems throughout a crop-production cycle, one using the same proportion of red and blue LEDs and the other using white LEDs. At the end of each cropping cycle, whole-plant fresh and dry mass and leaf area were measured and correlated with the amount of electrical energy (kWh) consumed for crop lighting. Lettuce crops grown with targeted red + blue LED lighting used 50% less energy per unit dry biomass accumulated, and the total coverage white LEDs used 32% less energy per unit dry biomass accumulated than did the total coverage red + blue LEDs. An energy-conversion efficiency of less than 1 kWh/g dry biomass is possible using targeted close-canopy LED lighting with spectral optimization. This project was supported by NASA grant NNX09AL99G.

  6. Cost-benefit analysis and emission reduction of energy efficient lighting at the Universiti Tenaga Nasional.

    PubMed

    Ganandran, G S B; Mahlia, T M I; Ong, Hwai Chyuan; Rismanchi, B; Chong, W T

    2014-01-01

    This paper reports the result of an investigation on the potential energy saving of the lighting systems at selected buildings of the Universiti Tenaga Nasional. The scope of this project includes evaluation of the lighting system in the Library, Admin Building, College of Engineering, College of Information Technology, Apartments, and COE Food court of the university. The main objectives of this project are to design the proper retrofit scenario and to calculate the potential electricity saving, the payback period, and the potential environmental benefits. In this survey the policy for retrofitting the old lighting system with the new energy saving LEDs starts with 10% for the first year and continues constantly for 10 years until all the lighting systems have been replaced. The result of the life cycle analysis reveals that after four years, the selected buildings will bring profit for the investment.

  7. Cost-Benefit Analysis and Emission Reduction of Energy Efficient Lighting at the Universiti Tenaga Nasional

    PubMed Central

    Ganandran, G. S. B.; Mahlia, T. M. I.; Ong, Hwai Chyuan; Rismanchi, B.; Chong, W. T.

    2014-01-01

    This paper reports the result of an investigation on the potential energy saving of the lighting systems at selected buildings of the Universiti Tenaga Nasional. The scope of this project includes evaluation of the lighting system in the Library, Admin Building, College of Engineering, College of Information Technology, Apartments, and COE Food court of the university. The main objectives of this project are to design the proper retrofit scenario and to calculate the potential electricity saving, the payback period, and the potential environmental benefits. In this survey the policy for retrofitting the old lighting system with the new energy saving LEDs starts with 10% for the first year and continues constantly for 10 years until all the lighting systems have been replaced. The result of the life cycle analysis reveals that after four years, the selected buildings will bring profit for the investment. PMID:25133258

  8. Energy Efficiency Through Lighting Upgrades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berst, Kara; Howeth, Maria

    2013-02-26

    Lighting upgrades including neon to LED, incandescent to CFL's and T-12 to T-8 and T-5's were completed through this grant. A total of 16 Chickasaw nation facilities decreased their carbon footprint because of these grant funds. Calculations used were based on comparing the energy usage from the previous year's average and the current energy usage. For facilities without a full year's set of energy bills, the month after installation was compared to the same month from the previous year. Overall, the effect the lighting change-outs had for the gaming centers and casinos far exceeded expectations. For the Madill Gaming Center;more » both an interior and exterior upgrade was performed which resulted in a 31% decrease in energy consumption. This same reduction was seen in every facility that participated in the grant. Just by simply changing out light bulbs to newer energy efficient equivalents, a decrease in energy usage can be achieved and this was validated by the return on investment seen at Chickasaw Nation facilities. Along with the technical project tasks were awareness sessions presented at Chickasaw Head Starts. The positive message of environmental stewardship was passed down to head start students and passed along to Chickasaw employees. Excitement was created in those that learned what they could do to help reduce their energy bills and many followed through and took the idea home. For a fairy low cost, the general public can also use this technique to lower their energy consumption both at home and at work. Although the idea behind the project was somewhat simple, true benefits have been gained through environmental awareness and reductions of energy costs.« less

  9. Towards efficient next generation light sources: combined solution processed and evaporated layers for OLEDs

    NASA Astrophysics Data System (ADS)

    Hartmann, D.; Sarfert, W.; Meier, S.; Bolink, H.; García Santamaría, S.; Wecker, J.

    2010-05-01

    Typically high efficient OLED device structures are based on a multitude of stacked thin organic layers prepared by thermal evaporation. For lighting applications these efficient device stacks have to be up-scaled to large areas which is clearly challenging in terms of high through-put processing at low-cost. One promising approach to meet cost-efficiency, high through-put and high light output is the combination of solution and evaporation processing. Moreover, the objective is to substitute as many thermally evaporated layers as possible by solution processing without sacrificing the device performance. Hence, starting from the anode side, evaporated layers of an efficient white light emitting OLED stack are stepwise replaced by solution processable polymer and small molecule layers. In doing so different solutionprocessable hole injection layers (= polymer HILs) are integrated into small molecule devices and evaluated with regard to their electro-optical performance as well as to their planarizing properties, meaning the ability to cover ITO spikes, defects and dust particles. Thereby two approaches are followed whereas in case of the "single HIL" approach only one polymer HIL is coated and in case of the "combined HIL" concept the coated polymer HIL is combined with a thin evaporated HIL. These HIL architectures are studied in unipolar as well as bipolar devices. As a result the combined HIL approach facilitates a better control over the hole current, an improved device stability as well as an improved current and power efficiency compared to a single HIL as well as pure small molecule based OLED stacks. Furthermore, emitting layers based on guest/host small molecules are fabricated from solution and integrated into a white hybrid stack (WHS). Up to three evaporated layers were successfully replaced by solution-processing showing comparable white light emission spectra like an evaporated small molecule reference stack and lifetime values of several 100 h.

  10. Construction of a cost effective optical tweezers for manipulation of birefringent materials using circularly polarized light

    NASA Astrophysics Data System (ADS)

    McMahon, Allison; Sauncy, Toni

    2008-10-01

    Light manipulation is a very powerful tool in physics, biology, and chemistry. There are several physical principles underlying the apparatus known as the ``optical tweezers,'' the term given to using focused light to manipulate and control small objects. By carefully controlling the orientation and position of a focused laser beam, dielectric particles can be effectively trapped and manipulated. We have designed a cost efficient and effective undergraduate optical tweezers apparatus by using standard ``off the shelf'' components and starting with a standard undergraduate laboratory microscope. Images are recorded using a small CCD camera interfaced to a computer and controlled by LabVIEW^TM software. By using wave plates to produce circular polarized light, rotational motion can be induced in small particles of birefringent materials such as calcite and mica.

  11. A cascadable circular concentrator with parallel compressed structure for increasing the energy density

    NASA Astrophysics Data System (ADS)

    Ku, Nai-Lun; Chen, Yi-Yung; Hsieh, Wei-Che; Whang, Allen Jong-Woei

    2012-02-01

    Due to the energy crisis, the principle of green energy gains popularity. This leads the increasing interest in renewable energy such as solar energy. Thus, how to collect the sunlight for indoor illumination becomes our ultimate target. With the environmental awareness increasing, we use the nature light as the light source. Then we start to devote the development of solar collecting system. The Natural Light Guiding System includes three parts, collecting, transmitting and lighting part. The idea of our solar collecting system design is a concept for combining the buildings with a combination of collecting modules. Therefore, we can use it anyplace where the sunlight can directly impinges on buildings with collecting elements. In the meantime, while collecting the sunlight with high efficiency, we can transmit the sunlight into indoor through shorter distance zone by light pipe where we needs the light. We proposed a novel design including disk-type collective lens module. With the design, we can let the incident light and exit light be parallel and compressed. By the parallel and compressed design, we make every output light become compressed in the proposed optical structure. In this way, we can increase the ratio about light compression, get the better efficiency and let the energy distribution more uniform for indoor illumination. By the definition of "KPI" as an performance index about light density as following: lm/(mm)2, the simulation results show that the proposed Concentrator is 40,000,000 KPI much better than the 800,000 KPI measured from the traditional ones.

  12. Light absorption and excitation energy transfer calculations in primitive photosynthetic bacteria

    NASA Astrophysics Data System (ADS)

    Komatsu, Yu; Kayanuma, Megumi; Shoji, Mitsuo; Yabana, Kazuhiro; Shiraishi, Kenji; Umemura, Masayuki

    2015-06-01

    In photosynthetic organisms, light energy is converted into chemical energy through the light absorption and excitation energy transfer (EET) processes. These processes start in light-harvesting complexes, which contain special photosynthetic pigments. The exploration of unique mechanisms in light-harvesting complexes is directly related to studies, such as artificial photosynthesis or biosignatures in astrobiology. We examined, through ab initio calculations, the light absorption and EET processes using cluster models of light-harvesting complexes in purple bacteria (LH2). We evaluated absorption spectra and energy transfer rates using the LH2 monomer and dimer models to reproduce experimental results. After the calibration tests, a LH2 aggregation model, composed of 7 or 19 LH2s aligned in triangle lattice, was examined. We found that the light absorption is red shifted and the energy transfer becomes faster as the system size increases. We also found that EET is accelerated by exchanging the central pigments to lower energy excited pigments. As an astrobiological application, we calculated light absorptions efficiencies of the LH2 in different photoenvironments.

  13. Preparation of balanced trichromatic white phosphors for solid-state white lighting.

    PubMed

    Al-Waisawy, Sara; George, Anthony F; Jadwisienczak, Wojciech M; Rahman, Faiz

    2017-08-01

    High quality white light-emitting diodes (LEDs) employ multi-component phosphor mixtures to generate light of a high color rendering index (CRI). The number of distinct components in a typical phosphor mix usually ranges from two to four. Here we describe a systematic experimental technique for starting with phosphors of known chromatic properties and arriving at their respective proportions for creating a blended phosphor to produce light of the desired chromaticity. This method is applicable to both LED pumped and laser diode (LD) pumped white light sources. In this approach, the radiometric power in the down-converted luminescence of each phosphor is determined and that information is used to estimate the CIE chromaticity coordinate of light generated from the mixed phosphor. A suitable method for mixing multi-component phosphors is also described. This paper also examines the effect of light scattering particles in phosphors and their use for altering the spectral characteristics of LD- and LED-generated light. This is the only approach available for making high efficiency phosphor-converted single-color LEDs that emit light of wide spectral width. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Bacterial disinfection in a sunlight/visible-light-driven photocatalytic reactor by recyclable natural magnetic sphalerite.

    PubMed

    Peng, Xingxing; Ng, Tsz Wai; Huang, Guocheng; Wang, Wanjun; An, Taicheng; Wong, Po Keung

    2017-01-01

    A 5-L reactor was designed and used to enhance the sunlight/visible-light-driven (VLD) photocatalytic disinfection efficiency towards Gram-negative bacterium (Escherichia coli). Natural magnetic sphalerite (NMS) was used as the photocatalyst, which could be easily recycled by applying a magnetic field. Results showed that NMS with irradiation by the blue light emitting diode (LED) lamp could completely inactivate 1.5 × 10 5  cfu/mL of E. coli within 120 min in the first three runs. However, the inactivation efficiency of E. coli started to decrease in the 4th Run, while in the 5th run, the E. coli with the initial concentration of 5 logs was inactivated to 3.3 (blue-light) and 3.5 logs (sunlight), respectively. Moreover, the stability and deactivation mechanism of NMS during subsequent runs were also studied. The results showed that the decline of the photocatalytic activity was possibly attributed to adsorption of the bacterial decomposed compounds on the active sites. In addition, photocatalytic bactericidal mechanism of the NMS in the photocatalytic system was investigated by using multiple scavengers to remove the specific reactive species. Moreover, various Gram-positive bacteria including Staphylococcus aureus, Microbacterium barkeri, and Bacillus subtilis could also be efficiently inactivated in the photocatalytic system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Visible Light Induced Organic Transformations Using Metal-Organic-Frameworks (MOFs).

    PubMed

    Deng, Xiaoyu; Li, Zhaohui; García, Hermenegildo

    2017-08-22

    With the aim of developing renewable energy based processes, researchers are paying increasing interest to light induced organic transformations. Metal-organic frameworks (MOFs), a class of micro-/mesoporous hybrid materials, are recently emerging as a new type of photoactive materials for organic syntheses due to their unique structural characteristics. In this Review, we summarized the recent applications of MOFs as photocatalysts for light induced organic transformations, including (1) oxidation of alcohols, amines, alkene, alkanes and sulfides; (2) hydroxylation of aromatic compounds like benzene; (3) activation of the C-H bonds to construct new C-C or C-X bonds; (4) atom-transfer radical polymerization (ATRP). This Review starts with general background information of using MOFs in photocatalysis, followed by a description of light induced organic transformations promoted by photoactive inorganic nodes and photocatalytic active ligands in MOFs, respectively. Thereafter, the use of MOFs as multifunctional catalysts for light induced organic transformations via an efficient merge of the metal/ligand/guest based catalysis where the photocatalytic activity of MOFs plays a key role are discussed. Finally, the limitations, challenges and the future perspective of the application of MOFs for light induced organic transformations were addressed. The objective of this Review is to serve as a starting point for other researchers to get into this largely unexplored field. It is also our goal to stimulate intensive research in this field for rational designing of MOF materials to overcome their current limitations in photocatalysis, which can lead to more creative visible-light-induced organic transformations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Scattering of hydrogen, nitrogen and water ions from micro pore optic plates for application in spaceborne plasma instrumentation

    NASA Astrophysics Data System (ADS)

    Stude, Joan; Wieser, Martin; Barabash, Stas

    2016-10-01

    Time-of-flight mass spectrometers for upcoming space missions into enhanced radiation environments need to be small, light weight and energy efficient. Time-of-flight systems using surface interactions as start-event generation can be smaller than foil-type instruments. Start surfaces for such applications need to provide narrow angular scattering, high ionization yields and high secondary electron emissions to be effective. We measured the angular scattering, energy distribution and positive ionization yield of micro pore optics for incident hydrogen, nitrogen and water ions at 2 keV. Positive ionization yields of 2% for H+ , 0.5% for N+ and 0.2% for H2O+ were detected.

  17. Ultra High p-doping Material Research for GaN Based Light Emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vladimir Dmitriev

    2007-06-30

    The main goal of the Project is to investigate doping mechanisms in p-type GaN and AlGaN and controllably fabricate ultra high doped p-GaN materials and epitaxial structures. Highly doped p-type GaN-based materials with low electrical resistivity and abrupt doping profiles are of great importance for efficient light emitters for solid state lighting (SSL) applications. Cost-effective hydride vapor phase epitaxial (HVPE) technology was proposed to investigate and develop p-GaN materials for SSL. High p-type doping is required to improve (i) carrier injection efficiency in light emitting p-n junctions that will result in increasing of light emitting efficiency, (ii) current spreading inmore » light emitting structures that will improve external quantum efficiency, and (iii) parameters of Ohmic contacts to reduce operating voltage and tolerate higher forward currents needed for the high output power operation of light emitters. Highly doped p-type GaN layers and AlGaN/GaN heterostructures with low electrical resistivity will lead to novel device and contact metallization designs for high-power high efficiency GaN-based light emitters. Overall, highly doped p-GaN is a key element to develop light emitting devices for the DOE SSL program. The project was focused on material research for highly doped p-type GaN materials and device structures for applications in high performance light emitters for general illumination P-GaN and p-AlGaN layers and multi-layer structures were grown by HVPE and investigated in terms of surface morphology and structure, doping concentrations and profiles, optical, electrical, and structural properties. Tasks of the project were successfully accomplished. Highly doped GaN materials with p-type conductivity were fabricated. As-grown GaN layers had concentration N{sub a}-N{sub d} as high as 3 x 10{sup 19} cm{sup -3}. Mechanisms of doping were investigated and results of material studies were reported at several International conferences providing better understanding of p-type GaN formation for Solid State Lighting community. Grown p-type GaN layers were used as substrates for blue and green InGaN-based LEDs made by HVPE technology at TDI. These results proved proposed technical approach and facilitate fabrication of highly conductive p-GaN materials by low-cost HVPE technology for solid state lighting applications. TDI has started the commercialization of p-GaN epitaxial materials.« less

  18. Phase advancing human circadian rhythms with morning bright light, afternoon melatonin, and gradually shifted sleep: can we reduce morning bright light duration?

    PubMed Central

    Crowley, Stephanie J.; Eastman, Charmane I.

    2015-01-01

    OBJECTIVE Efficient treatments to phase advance human circadian rhythms are needed to attenuate circadian misalignment and the associated negative health outcomes that accompany early morning shift work, early school start times, jet lag, and delayed sleep phase disorder. This study compared three morning bright light exposure patterns from a single light box (to mimic home treatment) in combination with afternoon melatonin. METHODS Fifty adults (27 males) aged 25.9±5.1 years participated. Sleep/dark was advanced 1 hour/day for 3 treatment days. Participants took 0.5 mg melatonin 5 hours before baseline bedtime on treatment day 1, and an hour earlier each treatment day. They were exposed to one of three bright light (~5000 lux) patterns upon waking each morning: four 30-minute exposures separated by 30 minutes of room light (2 h group); four 15-minute exposures separated by 45 minutes of room light (1 h group), and one 30-minute exposure (0.5 h group). Dim light melatonin onsets (DLMOs) before and after treatment determined the phase advance. RESULTS Compared to the 2 h group (phase shift=2.4±0.8 h), smaller phase advance shifts were seen in the 1 h (1.7±0.7 h) and 0.5 h (1.8±0.8 h) groups. The 2-hour pattern produced the largest phase advance; however, the single 30-minute bright light exposure was as effective as 1 hour of bright light spread over 3.25 h, and produced 75% of the phase shift observed with 2 hours of bright light. CONCLUSIONS A 30-minute morning bright light exposure with afternoon melatonin is an efficient treatment to phase advance human circadian rhythms. PMID:25620199

  19. Phase advancing human circadian rhythms with morning bright light, afternoon melatonin, and gradually shifted sleep: can we reduce morning bright-light duration?

    PubMed

    Crowley, Stephanie J; Eastman, Charmane I

    2015-02-01

    Efficient treatments to phase-advance human circadian rhythms are needed to attenuate circadian misalignment and the associated negative health outcomes that accompany early-morning shift work, early school start times, jet lag, and delayed sleep phase disorder. This study compared three morning bright-light exposure patterns from a single light box (to mimic home treatment) in combination with afternoon melatonin. Fifty adults (27 males) aged 25.9 ± 5.1 years participated. Sleep/dark was advanced 1 h/day for three treatment days. Participants took 0.5 mg of melatonin 5 h before the baseline bedtime on treatment day 1, and an hour earlier each treatment day. They were exposed to one of three bright-light (~5000 lux) patterns upon waking each morning: four 30-min exposures separated by 30 min of room light (2-h group), four 15-min exposures separated by 45 min of room light (1-h group), and one 30-min exposure (0.5-h group). Dim-light melatonin onsets (DLMOs) before and after treatment determined the phase advance. Compared to the 2-h group (phase shift = 2.4 ± 0.8 h), smaller phase-advance shifts were seen in the 1-h (1.7 ± 0.7 h) and 0.5-h (1.8 ± 0.8 h) groups. The 2-h pattern produced the largest phase advance; however, the single 30-min bright-light exposure was as effective as 1 h of bright light spread over 3.25 h, and it produced 75% of the phase shift observed with 2 h of bright light. A 30-min morning bright-light exposure with afternoon melatonin is an efficient treatment to phase-advance human circadian rhythms. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Sugar apple-shaped TiO2 hierarchical spheres for highly efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lei, Bing-Xin; Zeng, Li-Li; Zhang, Ping; Qiao, He-Kang; Sun, Zhen-Fan

    2014-05-01

    The sugar apple-shaped TiO2 hierarchical spheres are prepared by a facile hydrothermal method using polyethylene glycol 600 as stabilized reagent, (NH4)2TiF6 and urea as starting materials at 180 °C. The characterizations show that the TiO2 hierarchical sphere has well-defined pyramid-shaped crystal facets. The as-prepared TiO2 hierarchical spheres are crystalline of the anatase phase, with a diameter of about 2-4 μm and a surface area of 36.846 m2 g-1. The optical investigation evidences that the sugar apple-shaped TiO2 hierarchical sphere film exhibits a prominent light scattering effect at a wavelength range of 600-800 nm due to the unique hierarchical morphology. Furthermore, the sugar apple-shaped TiO2 hierarchical spheres are deposited as the scattering layer to balance the dye adsorption and light scattering effect in DSSCs and a 7.20% solar energy conversion efficiency is demonstrated, indicating an improvement compared with the P25 cell (6.68%). Based on the optical and electrochemical investigations, the high conversion efficiency is mainly due to the effective suppression of the back reaction of the injected electron with the I3- in the electrolyte and excellent light scattering ability.

  1. A MultiAir®/MultiFuel Approach to Enhancing Engine System Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reese, Ronald

    2015-05-20

    FCA US LLC (formally known as Chrysler Group LLC, and hereinafter “Chrysler”) was awarded an American Recovery and Reinvestment Act (ARRA) funded project by the Department of Energy (DOE) titled “A MultiAir®/MultiFuel Approach to Enhancing Engine System Efficiency” (hereinafter “project”). This award was issued after Chrysler submitted a proposal for Funding Opportunity Announcement DE-FOA- 0000079, “Systems Level Technology Development, Integration, and Demonstration for Efficient Class 8 Trucks (SuperTruck) and Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD).” Chrysler started work on this project on June 01, 2010 and completed testing activities on August 30, 2014. Overall objectives of this project were;more » Demonstrate a 25% improvement in combined Federal Test Procedure (FTP) City and Highway fuel economy over a 2009 Chrysler minivan; Accelerate the development of highly efficient engine and powertrain systems for light-duty vehicles, while meeting future emissions standards; and Create and retain jobs in accordance with the American Recovery and Reinvestment Act of 2009« less

  2. Enhanced thermaly managed packaging for III-nitride light emitters

    NASA Astrophysics Data System (ADS)

    Kudsieh, Nicolas

    In this Dissertation our work on `enhanced thermally managed packaging of high power semiconductor light sources for solid state lighting (SSL)' is presented. The motivation of this research and development is to design thermally high stable cost-efficient packaging of single and multi-chip arrays of III-nitrides wide bandgap semiconductor light sources through mathematical modeling and simulations. Major issues linked with this technology are device overheating which causes serious degradation in their illumination intensity and decrease in the lifetime. In the introduction the basics of III-nitrides WBG semiconductor light emitters are presented along with necessary thermal management of high power cingulated and multi-chip LEDs and laser diodes. This work starts at chip level followed by its extension to fully packaged lighting modules and devices. Different III-nitride structures of multi-quantum well InGaN/GaN and AlGaN/GaN based LEDs and LDs were analyzed using advanced modeling and simulation for different packaging designs and high thermal conductivity materials. Study started with basic surface mounted devices using conventional packaging strategies and was concluded with the latest thermal management of chip-on-plate (COP) method. Newly discovered high thermal conductivity materials have also been incorporated for this work. Our study also presents the new approach of 2D heat spreaders using such materials for SSL and micro LED array packaging. Most of the work has been presented in international conferences proceedings and peer review journals. Some of the latest work has also been submitted to well reputed international journals which are currently been reviewed for publication. .

  3. Inverse design of near unity efficiency perfectly vertical grating couplers.

    PubMed

    Michaels, Andrew; Yablonovitch, Eli

    2018-02-19

    Efficient coupling between integrated optical waveguides and optical fibers is essential to the success of silicon photonics. While many solutions exist, perfectly vertical grating couplers that scatter light out of a waveguide in the direction normal to the waveguide's top surface are an ideal candidate due to their potential to reduce packaging complexity. Designing such couplers with high efficiencies, however, has proven difficult. In this paper, we use inverse electromagnetic design techniques to optimize a high efficiency two-layer perfectly vertical silicon grating coupler. Our base design achieves a chip-to-fiber coupling efficiency of 99.2% (-0.035 dB) at 1550 nm. Using this base design as a starting point, we run subsequent constrained optimizations to realize vertical couplers with coupling efficiencies over 96% and back reflections of less than -40 dB which can be fabricated using 65 nm-resolution lithography. These results demonstrate a new path forward for designing fabrication-tolerant ultra high efficiency grating couplers.

  4. Solar Water Splitting at λ=600 nm: A Step Closer to Sustainable Hydrogen Production.

    PubMed

    Zhang, Jinshui; Wang, Xinchen

    2015-06-15

    Overall water splitting with a semiconductor photocatalyst under visible-light irradiation is considered as a "dream reaction" in chemistry. The development of a 600 nm photocatalyst for solar water splitting highlighted here is not only an important milestone towards sustainable hydrogen production, but also a new starting point for artificial photosynthesis. STH=solar-to-hydrogen energy conversion efficiency. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Exhaust gas ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-04-01

    This article describes a system developed for rapid light-off of underbody catalysts that has shown potential to meet Euro Stage III emissions targets and to be more cost-effective than some alternatives. Future emissions legislation will require SI engine aftertreatment systems to approach full operating efficiency within the first few seconds after starting to reduce the high total-emissions fraction currently contributed by the cold phase of driving. A reduction of cold-start emissions during Phase 1 (Euro) or Bag 1 (FTP), which in many cases can be as much as 80% of the total for the cycle, has been achieved by electricalmore » heating of the catalytic converter. But electrically heated catalyst (EHC) systems require high currents (100--200 A) to heat the metallic substrate to light-off temperatures over the first 15--20 seconds. Other viable approaches to reducing cold-start emissions include use of a fuel-powered burner upstream of the catalyst. However, as with EHC, the complexity of parts and the introduction of raw fuel into the exhaust system make this device unsatisfactory. Still another approach, an exhaust gas ignition (EGI) system, was first demonstrated in 1991. The operation of a system developed by engineers at Ford Motor Co., Ltd., Cambustion Ltd., and Tickford Ltd. is described here.« less

  6. A perspective perception on the applications of light-emitting diodes.

    PubMed

    Nair, Govind B; Dhoble, S J

    2015-12-01

    Light-emitting diodes (LEDs) continue to penetrate the global market; their pervasiveness clearly being felt in such diverse fields as technological, socio-economic and commercial interests. The multi-billion dollar LED market is shared by various segments, including office and household lighting, street lighting, the automobile industry, traffic signals, backlighting for hand-held devices, indoor and outdoor signs and indicators, medicine, communication systems, crop cultivation using artificial light and many more. The technological development of LEDs has undergone many phases in different parts of the world. From the early discovery of luminescence to the invention of highly efficient organic LEDs, researchers have worked with the prime purpose of improving the performance of luminaires. The need to infuse the market with more efficient and cheaper products has been prevalent from the start. LEDs are a result of this uncontrolled desire of researchers to develop superior products that would displace existing products in the market. To understand what led to the current prominence of LEDs, we give a brief historical overview of the field followed by a thorough discussion of the positive features of LEDs. This work includes the basic requirements, advantages and disadvantages of LEDs in a variety of applications. A brief description of the diverse applications of LED in fields such as lighting, indicators and displays, farming, medicine and communication is given. Considerable importance is placed on discussing the possible difficulties that must be overcome before using LEDs in commercial applications. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry--functional relationships between short-term and long-term light quality acclimation in plants.

    PubMed

    Dietzel, Lars; Bräutigam, Katharina; Pfannschmidt, Thomas

    2008-03-01

    In dense plant populations, individuals shade each other resulting in a low-light habitat that is enriched in far-red light. This light quality gradient decreases the efficiency of the photosynthetic light reaction as a result of imbalanced excitation of the two photosystems. Plants counteract such conditions by performing acclimation reactions. Two major mechanisms are known to assure efficient photosynthesis: state transitions, which act on a short-term timescale; and a long-term response, which enables the plant to re-adjust photosystem stoichiometry in favour of the rate-limiting photosystem. Both processes start with the perception of the imbalanced photosystem excitation via reduction/oxidation (redox) signals from the photosynthetic electron transport chain. Recent data in Arabidopsis indicate that initialization of the molecular processes in both cases involve the activity of the thylakoid membrane-associated kinase, STN7. Thus, redox-controlled phosphorylation events may not only adjust photosystem antenna structure but may also affect plastid, as well as nuclear, gene expression. Both state transitions and the long-term response have been described mainly in molecular terms, while the physiological relevance concerning plant survival and reproduction has been poorly investigated. Recent studies have shed more light on this topic. Here, we give an overview on the long-term response, its physiological effects, possible mechanisms and its relationship to state transitions as well as to nonphotochemical quenching, another important short-term mechanism that mediates high-light acclimation. Special emphasis is given to the functional roles and potential interactions between the different light acclimation strategies. A working model displays the various responses as an integrated molecular system that helps plants to acclimate to the changing light environment.

  8. One-Shot Multiple Borylation toward BN-Doped Nanographenes.

    PubMed

    Matsui, Kohei; Oda, Susumu; Yoshiura, Kazuki; Nakajima, Kiichi; Yasuda, Nobuhiro; Hatakeyama, Takuji

    2018-01-31

    One-shot double, triple, and quadruple borylation reactions of triarylamines were developed through a judicious choice of boron source and Brønsted base. With the aid of borylation reactions, a variety of BN-doped nanographenes were synthesized in two steps from commercially available starting materials. An organic light-emitting diode device employing BN-doped nanographene as an emitter exhibited deep pure-blue emission at 460 nm, with CIE coordinates of (0.13, 0.11), and an external quantum efficiency of 18.3%.

  9. Integrated starting and running amalgam assembly for an electrodeless fluorescent lamp

    DOEpatents

    Borowiec, Joseph Christopher; Cocoma, John Paul; Roberts, Victor David

    1998-01-01

    An integrated starting and running amalgam assembly for an electrodeless SEF fluorescent lamp includes a wire mesh amalgam support constructed to jointly optimize positions of a starting amalgam and a running amalgam in the lamp, thereby optimizing mercury vapor pressure in the lamp during both starting and steady-state operation in order to rapidly achieve and maintain high light output. The wire mesh amalgam support is constructed to support the starting amalgam toward one end thereof and the running amalgam toward the other end thereof, and the wire mesh is rolled for friction-fitting within the exhaust tube of the lamp. The positions of the starting and running amalgams on the wire mesh are jointly optimized such that high light output is achieved quickly and maintained, while avoiding any significant reduction in light output between starting and running operation.

  10. Regulation of Photosynthetic Electron Transport and Photoinhibition

    PubMed Central

    Roach, Thomas; Krieger-Liszkay, Anja Krieger

    2014-01-01

    Photosynthetic organisms and isolated photosystems are of interest for technical applications. In nature, photosynthetic electron transport has to work efficiently in contrasting environments such as shade and full sunlight at noon. Photosynthetic electron transport is regulated on many levels, starting with the energy transfer processes in antenna and ending with how reducing power is ultimately partitioned. This review starts by explaining how light energy can be dissipated or distributed by the various mechanisms of non-photochemical quenching, including thermal dissipation and state transitions, and how these processes influence photoinhibition of photosystem II (PSII). Furthermore, we will highlight the importance of the various alternative electron transport pathways, including the use of oxygen as the terminal electron acceptor and cyclic flow around photosystem I (PSI), the latter which seem particularly relevant to preventing photoinhibition of photosystem I. The control of excitation pressure in combination with the partitioning of reducing power influences the light-dependent formation of reactive oxygen species in PSII and in PSI, which may be a very important consideration to any artificial photosynthetic system or technical device using photosynthetic organisms. PMID:24678670

  11. Is It Time for a Switch in Lighting?

    ERIC Educational Resources Information Center

    Bennorth, Greg

    1999-01-01

    Reviews new types of fluorescent lamp and electronic ballasts and their associated starting methods to explain the benefits of programmed start ballasts in today's lighting applications. Advice on when it is time to make a lighting retrofit is highlighted. (GR)

  12. EnergySavers: Tips on Saving Money & Energy at Home (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The U.S. Department of Energy's consumer guide to saving money and energy at home and on the road. It consists of the following articles: (1) Save Money and Energy Today - Get started with things you can do now, and use the whole-house approach to ensure that your investments are wisely made to save you money and energy; (2) Your Home's Energy Use - Find out how your home uses energy, and where it's losing the most energy so you can develop a plan to save in the short and long term; (3) Air Leaks and Insulation - Seal airmore » leaks and insulate your home properly so your energy dollars don't seep through the cracks; (4) Heating and Cooling - Use efficient systems to heat and cool your home, and save money and increase comfort by properly maintaining and upgrading equipment; (5) Water Heating - Use the right water heater for your home, insulate it and lower its temperature, and use less water to avoid paying too much; (6) Windows - Enjoy light and views while saving money by installing energy-efficient windows, and use strategies to keep your current windows from losing energy; (7) Lighting - Choose today's energy-efficient lighting for some of the easiest and cheapest ways to reduce your electric bill; (8) Appliances - Use efficient appliances through-out your home, and get greater performance with lower energy bills; (9) Home Office and Electronics - Find out how much energy your electronics use, reduce their out-put when you're not using them, and choose efficient electronics to save money; (10) Renewable Energy - Use renewable energy at home such as solar and wind to save energy dollars while reducing environmental impact; (11) Transportation - Choose efficient transportation options and drive more efficiently to save at the gas pump; and (12) References - Use our reference list to learn more about energy efficiency and renewable energy.« less

  13. Advance in Photosensitizers and Light Delivery for Photodynamic Therapy

    PubMed Central

    Yoon, Il; Li, Jia Zhu

    2013-01-01

    The brief history of photodynamic therapy (PDT) research has been focused on photosensitizers (PSs) and light delivery was introduced recently. The appropriate PSs were developed from the first generation PS Photofrin (QLT) to the second (chlorins or bacteriochlorins derivatives) and third (conjugated PSs on carrier) generations PSs to overcome undesired disadvantages, and to increase selective tumor accumulation and excellent targeting. For the synthesis of new chlorin PSs chlorophyll a is isolated from natural plants or algae, and converted to methyl pheophorbide a (MPa) as an important starting material for further synthesis. MPa has various active functional groups easily modified for the preparation of different kinds of PSs, such as methyl pyropheophorbide a, purpurin-18, purpurinimide, and chlorin e6 derivatives. Combination therapy, such as chemotherapy and photothermal therapy with PDT, is shortly described here. Advanced light delivery system is shown to establish successful clinical applications of PDT. Phtodynamic efficiency of the PSs with light delivery was investigated in vitro and/or in vivo. PMID:23423543

  14. Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors.

    PubMed

    Straathof, Natan J W; Su, Yuanhai; Hessel, Volker; Noël, Timothy

    2016-01-01

    In this protocol, we describe the construction and use of an operationally simple photochemical microreactor for gas-liquid photoredox catalysis using visible light. The general procedure includes details on how to set up the microreactor appropriately with inlets for gaseous reagents and organic starting materials, and it includes examples of how to use it to achieve continuous-flow preparation of disulfides or trifluoromethylated heterocycles and thiols. The reported photomicroreactors are modular, inexpensive and can be prepared rapidly from commercially available parts within 1 h even by nonspecialists. Interestingly, typical reaction times of gas-liquid visible light photocatalytic reactions performed in microflow are lower (in the minute range) than comparable reactions performed as a batch process (in the hour range). This can be attributed to the improved irradiation efficiency of the reaction mixture and the enhanced gas-liquid mass transfer in the segmented gas-liquid flow regime.

  15. LED solution for E14 candle lamp

    NASA Astrophysics Data System (ADS)

    Li, Yun; Liu, Ye; Boonekamp, Erik P.; Shi, Lei; Mei, Yi; Jiang, Tan; Guo, Qing; Wu, Huarong

    2009-08-01

    On a short to medium term, energy efficient retrofit LED products can offer an attractive solution for traditional lamps replacement in existing fixtures. To comply with user expectations, LED retrofit lamps should not only have the same mechanical interface to fit (socket and shape), but also have the similar light effect as the lamps they replace. The decorative lighting segment shows the best conditions to meet these requirements on short term. In 2008, Philips Lighting Shanghai started with the development of an LED candle lamp for the replacement of a 15W Candle shape (B35 E14) incandescent bulb, which is used in e.g. chandeliers. In this decorative application the main objective is not to generate as much light as possible, but the application requires the lamp to have a comparable look and, primarily, the same light effect as the incandescent candle lamp. This effect can be described as sparkling light, and it has to be directed sufficiently downwards (i.e., in the direction of the base of the lamp). These requirements leave very limited room for optics, electronics, mechanics and thermal design to play with in the small outline of this lamp. The main voltage AC LED concept is chosen to save the space for driver electronics. However the size of the AC LED is relatively big, which makes the optical design challenging. Several optical solutions to achieve the required light effect, to improve the optical efficiency, and to simplify the system are discussed. A novel prismatic lens has been developed which is capable of transforming the Lambertian light emission from typical high power LEDs into a butter-fly intensity distribution with the desired sparkling light effect. Thanks to this lens no reflecting chamber is needed, which improves the optical efficiency up to 70%, while maintaining the compact feature of the original optics. Together with advanced driver solution and thermal solution, the resulting LED candle lamp operates at 230V, consumes 1.8W, and delivers about 55 lm at 3000K with the requested radiation pattern and sparkle effect. Some field tests were done with positive feedback.

  16. Limitation of Optical Enhancement in Ultra-thin Solar Cells Imposed by Contact Selectivity.

    PubMed

    Islam, Raisul; Saraswat, Krishna

    2018-06-11

    Ultra-thin crystalline silicon (c-Si) solar cell suffers both from poor light absorption and minority carrier recombination at the contacts resulting in low contact selectivity. Yet most of the research focuses on improving the light absorption by introducing novel light trapping technique. Our work shows that for ultra-thin absorber, the benefit of optical enhancement is limited by low contact selectivity. Using simulation we observe that performance enhancement from light trapping starts to saturate as the absorber scales down because of the increase in probability of the photo-generated carriers to recombine at the metal contact. Therefore, improving the carrier selectivity of the contacts, which reduces the recombination at contacts, is important to improve the performance of the solar cell beyond what is possible by enhancing light absorption only. The impact of improving contact selectivity increases as the absorber thickness scales below 20 micrometer (μm). Light trapping provides better light management and improving contact selectivity provides better photo-generated carrier management. When better light management increases the number of photo-generated carriers, better carrier management is a useful optimization knob to achieve the efficiency close to the thermodynamic limit. Our work explores a design trade-off in detail which is often overlooked by the research community.

  17. Long-term stability of microcrystalline silicon p-i-n solar cells exposed to sun light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanguino, P.; Koynov, S.; Schwarz, R.

    1999-07-01

    The performance of an entirely microcrystalline p-i-n solar cell was monitored during a long-term outdoor test in Lisbon starting in September 1998. A small decrease of the short circuit current was observed after 5 months of operation. The open-circuit voltage remained stable around 400 mV. From the analysis of the I-V characteristic in dark and under illumination they could identify the weak points of the test structure, like large series resistance, high recombination rate, and intensity-dependent collection efficiency.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovel, Harold; Prettyman, Kevin

    A side-by-side analysis was done on then currently available technology, along with roadmaps to push each particular option forward. Variations in turnkey line processes can and do result in finished solar device performance. Together with variations in starting material quality, the result is a distribution of effciencies. Forensic analysis and characterization of each crystalline Si based technology will determine the most promising approach with respect to cost, efficiency and reliability. Forensic analysis will also shed light on the causes of binning variations. Si solar cells were forensically analyzed from each turn key supplier using a host of techniques

  19. Simulation and analysis of the absorption enhancement in p-i-n InGaN/GaN solar cell using photonic crystal light trapping structures

    NASA Astrophysics Data System (ADS)

    Gupta, Nikhil Deep; Janyani, Vijay

    2016-10-01

    The structure of p-i-n InGaN/GaN based solar cell having a photonic crystal (PhC)-based light trapping structure (LTS) at the top assisted by the planar metallic (aluminum) back reflector (BR) is proposed. We propose two different designs for efficiency enhancement: in one we keep the PhC structure etching depth extending from the top antireflective coating (ARC) of indium tin oxide (ITO) up to the p-GaN layer (which is beneath the ITO and above the active layer), whereas in the other design, the PhC LTS etching depth has been extended up to the InxGa1-xN absorbing layer, starting from the top ITO layer. The theoretical optical simulation studies and optimization of the required parameters of the structure, which help to investigate and demonstrate the effectiveness of the LTS in the efficiency enhancement of the structure, are presented. The work also demonstrates the Lambertian light trapping limits for the practical indium concentrations in a InxGa1-xN active layer cell. The paper also presents the comparison between the proposed designs and compares their results with that of a planar reference cell. The studies are carried out for various indium concentrations. The results indicate considerable enhancement in the efficiency due to the PhC LTS, mainly because of better coupling, low reflectance, and diffraction capability of the proposed LTS, although it is still under the Lambertian limits. The performance evaluation of the proposed structure with respect to the angle of incident light has also been done, indicating improved performance. The parameters have been optimized and calculated by means of rigorous coupled wave analysis (RCWA) method.

  20. Diffraction-Based Optical Switching with MEMS

    DOE PAGES

    Blanche, Pierre-Alexandre; LaComb, Lloyd; Wang, Youmin; ...

    2017-04-19

    In this article, we are presenting an overview of MEMS-based (Micro-Electro-Mechanical System) optical switch technology starting from the reflective two-dimensional (2D) and three-dimensional (3D) MEMS implementations. To further increase the speed of the MEMS from these devices, the mirror size needs to be reduced. Small mirror size prevents efficient reflection but favors a diffraction-based approach. Two implementations have been demonstrated, one using the Texas Instruments DLP (Digital Light Processing), and the other an LCoS-based (Liquid Crystal on Silicon) SLM (Spatial Light Modulator). These switches demonstrated the benefit of diffraction, by independently achieving high speed, efficiency, and high number of ports.more » We also demonstrated for the first time that PSK (Phase Shift Keying) modulation format can be used with diffraction-based devices. To be truly effective in diffraction mode, the MEMS pixels should modulate the phase of the incident light. We are presenting our past and current efforts to manufacture a new type of MEMS where the pixels are moving in the vertical direction. The original structure is a 32 x 32 phase modulator array with high contrast grating pixels, and we are introducing a new sub-wavelength linear array capable of a 310 kHz modulation rate« less

  1. Diffraction-Based Optical Switching with MEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanche, Pierre-Alexandre; LaComb, Lloyd; Wang, Youmin

    In this article, we are presenting an overview of MEMS-based (Micro-Electro-Mechanical System) optical switch technology starting from the reflective two-dimensional (2D) and three-dimensional (3D) MEMS implementations. To further increase the speed of the MEMS from these devices, the mirror size needs to be reduced. Small mirror size prevents efficient reflection but favors a diffraction-based approach. Two implementations have been demonstrated, one using the Texas Instruments DLP (Digital Light Processing), and the other an LCoS-based (Liquid Crystal on Silicon) SLM (Spatial Light Modulator). These switches demonstrated the benefit of diffraction, by independently achieving high speed, efficiency, and high number of ports.more » We also demonstrated for the first time that PSK (Phase Shift Keying) modulation format can be used with diffraction-based devices. To be truly effective in diffraction mode, the MEMS pixels should modulate the phase of the incident light. We are presenting our past and current efforts to manufacture a new type of MEMS where the pixels are moving in the vertical direction. The original structure is a 32 x 32 phase modulator array with high contrast grating pixels, and we are introducing a new sub-wavelength linear array capable of a 310 kHz modulation rate« less

  2. Research on characteristics of forward scattering light based on Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Ding, Kun; Jin, Wei-qi

    2008-03-01

    In ocean inspection, laser system has the advantages of high precision, high efficiency and being enacted on the temperature or salinity of seawater. It has been developed greatly in recent years. But it is not yet a mature inspection technique because of the complicacy of oceanic channel and water-scattering. There are many problems to be resolved. In this paper, the work principle and of general developing situation of ocean lidar techniques are introduced first. The author points out that the intense scattering and absorbing acting on light by water is the bottleneck to limit the development of ocean lidar. The Monet Carlo method is adopted finally to be a basal way of study in this paper after discussing several method of studying the light transmitting in seawater. Based on the theory of photon transmitted in the seawater and the particularity of underwater target detecting, we have studied the characters of laser scattering on underwater target surface and spatial and temporal characters of forward scattering. Starting from the particularity of underwater target detecting, a new model to describe the characters of laser scattering is presented. Based on this model, we developed the fast arithmetic, which enhanced the computation speed greatly and the precision was also assured. It made detecting real-time realizable. Basing on the Monte Carlo simulation and starting from the theory of photon transmitted in the seawater, we studied how the parameters of water quality and other systemic parameters affect the light forward scattering through seawater at spatial and temporal region and provided the theoretical sustentation of enhancing the SNR and operational distance.

  3. Micro-optics: enabling technology for illumination shaping in optical lithography

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard

    2014-03-01

    Optical lithography has been the engine that has empowered semiconductor industry to continually reduce the half-pitch for over 50 years. In early mask aligners a simple movie lamp was enough to illuminate the photomask. Illumination started to play a more decisive role when proximity mask aligners appeared in the mid-1970s. Off-axis illumination was introduced to reduce diffraction effects. For early projection lithography systems (wafer steppers), the only challenge was to collect the light efficiently to ensure short exposure time. When projection optics reached highest level of perfection, further improvement was achieved by optimizing illumination. Shaping the illumination light, also referred as pupil shaping, allows the optical path from reticle to wafer to be optimized and thus has a major impact on aberrations and diffraction effects. Highly-efficient micro-optical components are perfectly suited for this task. Micro-optics for illumination evolved from simple flat-top (fly's-eye) to annular, dipole, quadrupole, multipole and freeform illumination. Today, programmable micro-mirror arrays allow illumination to be changed on the fly. The impact of refractive, diffractive and reflective microoptics for photolithography will be discussed.

  4. Light yield and energy resolution studies for SoLid phase 1

    NASA Astrophysics Data System (ADS)

    Boursette, Delphine; SoLid Collaboration

    2017-09-01

    The SoLid experiment is searching for sterile neutrinos at a nuclear research reactor. It looks for inverse beta decays (producing a positron and a neutron in delayed coincidence) with a very segmented detector made of thousands of scintillating cubes. SoLid has a very innovative hybrid technology with two different scintillators which have different light emissions: polyvynil-toluene cubes (PVT) to detect the positrons and 6LiF:ZnS sheets on two faces of each PVT cube to detect the neutrons. It allows us to do an efficient pulse shape analysis to identify the signals from neutrons and positrons. The 288 kg detector prototype (SM1) took data in 2015. It demonstrated the detection principle and background rejection efficiency. The construction of SoLid phase I (˜ 1.5 t) has now started. To improve the energy resolution of SoLid phase I, we have tried to increase the light yield studying separately the two scintillators: PVT and ZnS. A test bench has been built to fully characterize and improve the neutron detection with the ZnS using an AmBe source. To study the positron light yield on the PVT, we have built another test bench with a 207Bi source. We have improved the design of the cubes, their wrapping or the type and the configuration of the fibers. We managed to increase the PVT light yield by about 66 % and improve the resolution of the positron energy on the test bench from 21 % to 16 % at 1 MeV.

  5. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curran, Scott; Briggs, Thomas E; Cho, Kukwon

    2011-01-01

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the usemore » of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.« less

  6. Indoor Lighting Facilities

    NASA Astrophysics Data System (ADS)

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics by the Ministry of Land, Infrastructure and Transport, the total floor space of all building construction started was 188.87 million m2 (1.5% increase y/y), marking the fourth straight year of increase. Many large-scale buildings under construction in central Tokyo become fully occupied by tenants before completion. As for office buildings, it is required to develop comfortable and functional office spaces as working styles are becoming more and more diversified, and lighting is also an element of such functionalities. The total floor space of construction started for exhibition pavilions, multipurpose halls, conference halls and religious architectures decreased 11.1% against the previous year. This marked a decline for 10 consecutive years and the downward trend continues. In exhibition pavilions, the light radiation is measured and adjusted throughout the year so as not to damage the artworks by lighting. Hospitals, while providing higher quality medical services and enhancing the dwelling environment of patients, are expected to meet various restrictions and requirements, including the respect for privacy. Meanwhile, lighting designs for school classrooms tend to be homogeneous, yet new ideas are being promoted to strike a balance between the economical and functional aspects. The severe economic environment continues to be hampering the growth of theaters and halls in both the private and public sectors. Contrary to the downsizing trend of such facilities, additional installations of lighting equipment were conspicuous, and the adoption of high efficacy lighting appliances and intelligent function control circuits are becoming popular. In the category of stores/commercial facilities, the construction of complex facilities is a continuing trend. Indirect lighting, high luminance discharge lamps with excellent color rendition and LEDs are being effectively used in these facilities, together with the introduction of lighting designs that take into account the traffic flow of shoppers. For hotels, restaurants and other service industries, lighting equipment that corresponds to the purpose of the facility is being employed. An innovative lighting design was observed for the bath space, while such idea was not so much emphasized in the past. As to residences, illumination positioning plans that cope with diversifying lifestyles in an innovative space expanding in a horizontal or vertical direction using high efficient light sources/appliances are being introduced.

  7. Individually tailored light intervention through closed eyelids to promote circadian alignment and sleep health

    PubMed Central

    Figueiro, Mariana G.

    2016-01-01

    Background Light is most effective at changing the timing of the circadian clock when applied close to the core body temperature minimum. The present study investigated, in a home setting, if individually tailored light treatment using flashing blue light delivered through closed eyelids during the early part of the sleep period delayed circadian phase and sleep in a population of healthy older adults and in those suffering from early awakening insomnia. Methods Twenty-eight participants (9 early awakening insomniacs) completed an 8-week, within-subjects study. Twice, participants collected data during two baseline weeks and one intervention week. During the intervention week, participants wore a flashing blue (active) or a flashing red (control) light mask during sleep. Light was expected to delay circadian phase. Saliva samples for dim light melatonin onset (DLMO) were collected at the end of each baseline and intervention week. Wrist actigraphy and Daysimeter, a calibrated light and activity meter, data were collected during the entire study. Results Compared to baseline, flashing blue light, but not flashing red light, significantly (p<0.05) delayed DLMO. The mean ± standard deviation phase shift (minutes) was 0:06 ± 0:30 for the flashing red light and 0:34 ± 0:30 for the flashing blue light. Compared to Day 1, sleep start times were significantly delayed (by approximately 46 minutes) at Day 7 after the flashing blue light. The light intervention did not affect sleep efficiency. Conclusions The present study demonstrated the feasibility of using light through closed eyelids during sleep for promoting circadian alignment and sleep health. PMID:26985450

  8. Visible light assisted degradation of organic dye using Ag{sub 3}PO{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhanabal, R.; Bose, A. Chandra, E-mail: acbose@nitt.edu; Velmathi, S.

    2015-06-24

    The study of visible light photodegradation of organic dye Methylene Blue (MB) have been investigated using silver phosphate (Ag{sub 3}PO{sub 4}) as a photocatalyst which is good efficient material for photocatalytic reaction. The simple ion-exchange method is used to prepare Ag{sub 3}PO{sub 4}. The structure of the material have been confirmed using X-ray diffraction which shows cubic structure of Ag{sub 3}PO{sub 4}. The functional group of the Ag{sub 3}PO{sub 4} has been verified by Fourier transform infrared spectroscopy. The bandgap of Ag{sub 3}PO{sub 4} is calculated using kubelka-munk function from the ultra violet-visible diffuse reflectance spectroscopy, the absorption of Ag{submore » 3}PO{sub 4} starts from 470 nm. Under simulated visible light irradiation, Ag{sub 3}PO{sub 4} catalyst exhibits good catalytic ability for degrading MB dye.« less

  9. Manipulating Ion Migration for Highly Stable Light-Emitting Diodes with Single-Crystalline Organometal Halide Perovskite Microplatelets.

    PubMed

    Chen, Mingming; Shan, Xin; Geske, Thomas; Li, Junqiang; Yu, Zhibin

    2017-06-27

    Ion migration has been commonly observed as a detrimental phenomenon in organometal halide perovskite semiconductors, causing the measurement hysteresis in solar cells and ultrashort operation lifetimes in light-emitting diodes. In this work, ion migration is utilized for the formation of a p-i-n junction at ambient temperature in single-crystalline organometal halide perovskites. The junction is subsequently stabilized by quenching the ionic movement at a low temperature. Such a strategy of manipulating the ion migration has led to efficient single-crystalline light-emitting diodes that emit 2.3 eV photons starting at 1.8 V and sustain a continuous operation for 54 h at ∼5000 cd m -2 without degradation of brightness. In addition, a whispering-gallery-mode cavity and exciton-exciton interaction in the perovskite microplatelets have both been observed that can be potentially useful for achieving electrically driven laser diodes based on single-crystalline organometal halide perovskite semiconductors.

  10. Low light and low ammonium are key factors for guayule leaf tissue shoot organogenesis and transformation.

    PubMed

    Dong, Niu; Montanez, Belen; Creelman, Robert A; Cornish, Katrina

    2006-02-01

    A new method has been developed for guayule tissue culture and transformation. Guayule leaf explants have a poor survival rate when placed on normal MS medium and under normal culture room light conditions. Low light and low ammonium treatment greatly improved shoot organogenesis and transformation from leaf tissues. Using this method, a 35S promoter driven BAR gene and an ubiquitin-3 promoter driven GUS gene (with intron) have been successfully introduced into guayule. These transgenic guayule plants were resistant to the herbicide ammonium-glufosinate and were positive to GUS staining. Molecular analysis showed the expected band and signal in all GUS positive transformants. The transformation efficiency with glufosinate selection ranged from 3 to 6%. Transformation with a pBIN19-based plasmid containing a NPTII gene and then selection with kanamycin also works well using this method. The ratio of kanamycin-resistant calli to total starting explants reached 50% in some experiments.

  11. 33 CFR 165.704 - Safety Zone; Tampa Bay, Florida.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... safety zone starts at Tampa Bay Cut “F” Channel from Lighted Buoys “3F” and “4F” and proceeds north ending at Gadsden Point Cut Lighted Buoys “3” and “4”. The safety zone starts again at Gadsden Point Cut Lighted Buoys “7” and “8” and proceeds north through Hillsborough Cut “C”, Port Sutton Entrance Channel...

  12. A Long-Term View on Perovskite Optoelectronics.

    PubMed

    Docampo, Pablo; Bein, Thomas

    2016-02-16

    Recently, metal halide perovskite materials have become an exciting topic of research for scientists of a wide variety of backgrounds. Perovskites have found application in many fields, starting from photovoltaics and now also making an impact in light-emitting applications. This new class of materials has proven so interesting since it can be easily solution processed while exhibiting materials properties approaching the best inorganic optoelectronic materials such as GaAs and Si. In photovoltaics, in only 3 years, efficiencies have rapidly increased from an initial value of 3.8% to over 20% in recent reports for the commonly employed methylammonium lead iodide (MAPI) perovskite. The first light emitting diodes and light-emitting electrochemical cells have been developed already exhibiting internal quantum efficiencies exceeding 15% for the former and tunable light emission spectra. Despite their processing advantages, perovskite optoelectronic materials suffer from several drawbacks that need to be overcome before the technology becomes industrially relevant and hence achieve long-term application. Chief among these are the sensitivity of the structure toward moisture and crystal phase transitions in the device operation regime, unreliable device performance dictated by the operation history of the device, that is, hysteresis, the inherent toxicity of the structure, and the high cost of the employed charge selective contacts. In this Account, we highlight recent advances toward the long-term viability of perovskite photovoltaics. We identify material decomposition routes and suggest strategies to prevent damage to the structure. In particular, we focus on the effect of moisture upon the structure and stabilization of the material to avoid phase transitions in the solar cell operating range. Furthermore, we show strategies to achieve low-cost chemistries for the development of hole transporters for perovskite solar cells, necessary to be able to compete with other established technologies. Additionally, we explore the application of perovskite materials in optoelectronic applications. We show that perovskite materials can function efficiently both as a film in light-emitting diodes and also in the form of nanoparticles in light-emitting electrochemical cells. Perovskite materials have indeed a very bright future.

  13. 78 FR 60275 - Alternative Method for Calculating Off-Cycle Credits for Mercedes-Benz Vehicles Under the Light...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ...., small/mid-size/large cars and light-duty trucks) (See Section II-III of Mercedes-Benz Application...-start effectiveness unless the vehicle possesses an electric heater circulation pump, or equivalent...-start system includes an electric [[Page 60278

  14. Indoor Lighting Facilities

    NASA Astrophysics Data System (ADS)

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics on building construction floor area from the Ministry of Land, Infrastructure, Transport and Tourism, the total floor area of building construction started in Japan in 2007 was 160,991 thousand square meters, or 14.8% less than the area of the previous year, and the reduction was the first reduction in the past five years. The office markets in Tokyo and Nagoya were active, as represented by the supplies of skyscrapers, and energy saving measures, such as the adoption of high efficiency lighting equipment, the control for initial stage illuminance, daylight harvesting, and the use of occupancy sensors, were well established. In the field of public construction, including museums, multi-purpose halls, and religious buildings, the total area of the new construction was 10.8% less than the total for the previous year, and this reduction was a continuation of an eleven-year trend. In spaces with high ceiling, the innovation for easy replacement of light sources used with reflection mirror systems and optical fibers was noted. Hospitals adapted to the expectation for improved services in their selection of lighting facilities to improve the residential environment for patients while taking into consideration the needs of the aging population, by their use of devices in corridors to help maintain a continuity of light. In libraries, a pendant system was developed to illuminate both ceilings and book shelves. In the field of theaters and halls, the time limit for repairing existing systems had come for the large facilities that were opened during the theater and hall construction boom of the 1960s through 1980s, and around 26 renovations were done. Almost all the renovations were conversions to intelligent dimming systems and lighting control desks. In the field of stores and commercial facilities, the atmosphere and glitter of the selling floor was produced by new light sources, such as ceramic metal halide lamps and LEDs, which have high efficiency, long life, and excellent color rendering properties. In the field of lodging, restaurants, and services, suitable atmospheres for the locations were produced by devices for controlling the light distribution of 12 V tungsten halogen equipment and by the use of indirect illumination in up-scale restaurants. In the field of residence, as was the case in the previous year, lighting distribution plans corresponding to diverse activities, such as island kitchens and home theaters, were adopted in horizontally or vertically arranged floor plans. Also, light sources, appliances, and controls with excellent efficiency were adopted for common spaces in order to correspond to the energy saving law.

  15. Correlation between light scattering signal and tissue reversibility in rat brain exposed to hypoxia

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2010-02-01

    Light scattering signal is a potential indicator of tissue viability in brain because cellular and subcellular structural integrity should be associated with cell viability in brain tissue. We previously performed multiwavelength diffuse reflectance measurement for a rat global ischemic brain model and observed a unique triphasic change in light scattering at a certain time after oxygen and glucose deprivation. This triphasic scattering change (TSC) was shown to precede cerebral ATP exhaustion, suggesting that loss of brain tissue viability can be predicted by detecting scattering signal. In the present study, we examined correlation between light scattering signal and tissue reversibility in rat brain in vivo. We performed transcranial diffuse reflectance measurement for rat brain; under spontaneous respiration, hypoxia was induced for the rat by nitrogen gas inhalation and reoxygenation was started at various time points. We observed a TSC, which started at 140 +/- 15 s after starting nitrogen gas inhalation (mean +/- SD, n=8). When reoxygenation was started before the TSC, all rats survived (n=7), while no rats survived when reoxygenation was started after the TSC (n=8). When reoxygenation was started during the TSC, rats survived probabilistically (n=31). Disability of motor function was not observed for the survived rats. These results indicate that TSC can be used as an indicator of loss of tissue reversibility in brains, providing useful information on the critical time zone for treatment to rescue the brain.

  16. Kinetic separation of phototropism from blue-light inhibition of stem elongation

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1985-01-01

    These experiments tested the hypothesis that phototropic bending arises when a light gradient across the stem differentially inhibits cell elongation because of direct inhibition of cell elongation by light (the Blaauw hypothesis). Continuous irradiation of dark-grown cucumber seedlings (Cucumis sativus L.) with unilateral blue light inhibited hypocotyl elongation within 30 s, but did not induce phototropic curvature until 4.5 h after the start of irradiation. Marking experiments showed that curvature began simultaneously at the top and bottom of the growing region. In situ measurements of the light gradient across the stem with a glass fiber optic indicated that a 5- to 6-fold difference in fluence rate was established on the two sides of the stem. The light gradient established at the start of irradiation was the same as that after 6 h of irradiation. Changes in gravitropic responsiveness during this period were also ruled out. Calculations show that the light gradient should have caused curvature which would be detectable within 30 to 60 min and which would extrapolate to the start of irradiation--if the Blaauw hypothesis were correct. The long lag for phototropism in this case indicates that rapid inhibition of cell elongation by blue light does not cause the asymmetrical growth of phototropism. Rather, phototropism is superimposed upon this separate light growth response.

  17. Recent Progress in CuInS2 Thin-Film Solar Cell Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Jin, M. H.-C.; Banger, K. K.; Kelly, C. V.; Scofield, J. H.; McNatt, J. S.; Dickman, J. E.; Hepp, A. F.

    2005-01-01

    The National Aeronautics and Space Administration (NASA) is interested in developing low-cost highly efficient solar cells on light-weight flexible substrates, which will ultimately lower the mass-specific power (W/kg) of the cell allowing extra payload for missions in space as well as cost reduction. In addition, thin film cells are anticipated to have greater resistance to radiation damage in space, prolonging their lifetime. The flexibility of the substrate has the added benefit of enabling roll-to-roll processing. The first major thin film solar cell was the "CdS solar cell" - a heterojunction between p-type CuxS and n-type CdS. The research on CdS cells started in the late 1950s and the efficiency in the laboratory was up to about 10 % in the 1980s. Today, three different thin film materials are leading the field. They include amorphous Si, CdTe, and Cu(In,Ga)Se2 (CIGS). The best thin film solar cell efficiency of 19.2 % was recently set by CIGS on glass. Typical module efficiencies, however, remain below 15 %.

  18. Step Transfer-Addition and Radical-Termination (START) Polymerization of α,ω-Unconjugated Dienes under Irradiation of Blue LED Light.

    PubMed

    Xu, Tianchi; Yin, Hongnan; Li, Xiaohong; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2017-07-01

    A new polymerization method, termed as step transfer-addition and radical-termination, is developed for the step-growth radical polymerization of α,ω-unconjugated dienes under irradiation of visible light at room temperature (25 °C) for the first time. α,ω-Diiodoperfluoroalkane monomers (signified as A) are added onto α,ω-unconjugated dienes (signified as B) alternatively and efficiently with the generation of perfluorocarbon-containing alternating copolymers (AB) n . Based on the combined analyses of polymerization kinetics and NMR spectra ( 1 H and 19 F), the mechanism of the novel polymerization method, including the side reaction, is proposed. This novel polymerization method provides a new strategy not only for the step-growth radical polymerization of α,ω-unconjugated dienes but also for the construction of high molecular weight perfluorocarbon-containing alternating copolymers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sidewall passivation for InGaN/GaN nanopillar light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Won Hyuck; Abraham, Michael; Yu, Shih-Ying

    2014-07-07

    We studied the effect of sidewall passivation on InGaN/GaN multiquantum well-based nanopillar light emitting diode (LED) performance. In this research, the effects of varying etch rate, KOH treatment, and sulfur passivation were studied for reducing nanopillar sidewall damage and improving device efficiency. Nanopillars prepared under optimal etching conditions showed higher photoluminescence intensity compared with starting planar epilayers. Furthermore, nanopillar LEDs with and without sulfur passivation were compared through electrical and optical characterization. Suppressed leakage current under reverse bias and four times higher electroluminescence (EL) intensity were observed for passivated nanopillar LEDs compared with unpassivated nanopillar LEDs. The suppressed leakage currentmore » and EL intensity enhancement reflect the reduction of non-radiative recombination at the nanopillar sidewalls. In addition, the effect of sulfur passivation was found to be very stable, and further insight into its mechanism was gained through transmission electron microscopy.« less

  20. High pressure neon arc lamp

    DOEpatents

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  1. Efficiency of photodynamic therapy using indocyanine green and infrared light on MCF-7 breast cancer cells in vitro

    NASA Astrophysics Data System (ADS)

    Ruhi, Mustafa K.; Ak, Ayşe.; Gülsoy, Murat

    2016-03-01

    Cancer is one of the main reasons of death in all around the world. The main treatments of cancer include surgical intervention, radiation therapy and chemotherapy. These treatments can be applied separately or in a combined manner. Another therapeutic method that is still being researched and recently has started to be used in clinical applications is Photodynamic Therapy (PDT). Most photosensitizers currently being investigated are sensitive to red light. However, it is known that infrared light has a better penetration into the skin or tissue. Indocyanine Green (ICG), which is used in this study, is sensitive to infrared light. The aim of this in vitro study is to investigate the effect of PDT on breast cancer cells by using different doses of ICG and infrared light irradiation. 25, 50 and 100 μM ICG concentrations and 25 and 50 J/cm2 laser energy doses were applied to MCF-7 cell lines. MTT analyses were performed on 24, 48 and 72 hours following the treatments. As a result, inhibition of cell viability was observed in a time and dose dependent manner. It can be concluded that ICG-PDT application is a good alternative to conventional radiation therapy and chemotherapy for breast cancer treatment.

  2. Reliable Top-Left Light Convention Starts With Early Renaissance: An Extensive Approach Comprising 10k Artworks

    PubMed Central

    Carbon, Claus-Christian; Pastukhov, Alexander

    2018-01-01

    Art history claims that Western art shows light from the top left, which has been repeatedly shown with narrow image sets and simplistic research methods. Here we employed a set of 10,000 pictures for which participants estimated the direction of light plus their confidence of estimation. From 1420 A.D., the onset of Early Renaissance, until 1900 A.D., we revealed a clear preference for painting light from the top left—within the same period, we observed the highest confidence in such estimations of the light source. One sentence summary This study demonstrates a robust preference for painting light from the top left for Western art history, starting from Early Renaissance until 1900. PMID:29686636

  3. Engine starting and stopping

    NASA Astrophysics Data System (ADS)

    Curnock, Barry

    Different starter systems for jet engines are discussed: electric, cartridge, iso-propyl-nitrate, air, gas turbine, and hydraulic. The fuel system, ignition system, air flow control system, and actual starting mechanism of an air starter motor system are considered. The variation of engine parameters throughout a typical starting sequence are described, with reference to examples for an RB211-535 engine. Physical constraints on engine starting are considered: rotating stall, light up, the window between hang and stall, hang, compressor stall, and the effects of ambient conditions. The following are also discussed: contractual and airworthiness requirements; windmilling; inflight relighting; afterburning light up; combustion stability; and broken shafts. Graphics illustrating the above are presented.

  4. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes

    NASA Astrophysics Data System (ADS)

    Li, Ning; Oida, Satoshi; Tulevski, George S.; Han, Shu-Jen; Hannon, James B.; Sadana, Devendra K.; Chen, Tze-Chiang

    2013-08-01

    Organic light-emitting diodes are emerging as leading technologies for both high quality display and lighting. However, the transparent conductive electrode used in the current organic light-emitting diode technologies increases the overall cost and has limited bendability for future flexible applications. Here we use single-layer graphene as an alternative flexible transparent conductor, yielding white organic light-emitting diodes with brightness and efficiency sufficient for general lighting. The performance improvement is attributed to the device structure, which allows direct hole injection from the single-layer graphene anode into the light-emitting layers, reducing carrier trapping induced efficiency roll-off. By employing a light out-coupling structure, phosphorescent green organic light-emitting diodes exhibit external quantum efficiency >60%, while phosphorescent white organic light-emitting diodes exhibit external quantum efficiency >45% at 10,000 cd m-2 with colour rendering index of 85. The power efficiency of white organic light-emitting diodes reaches 80 lm W-1 at 3,000 cd m-2, comparable to the most efficient lighting technologies.

  5. Visible light photocatalytic H2-production activity of wide band gap ZnS nanoparticles based on the photosensitization of graphene

    NASA Astrophysics Data System (ADS)

    Wang, Faze; Zheng, Maojun; Zhu, Changqing; Zhang, Bin; Chen, Wen; Ma, Li; Shen, Wenzhong

    2015-08-01

    Visible light photocatalytic H2 production from water splitting is considered an attractive way to solve the increasing global energy crisis in modern life. In this study, a series of zinc sulfide nanoparticles and graphene (GR) sheet composites were synthesized by a two-step hydrothermal method, which used zinc chloride, sodium sulfide, and graphite oxide (GO) as the starting materials. The as-prepared ZnS-GR showed highly efficient visible light photocatalytic activity in hydrogen generation. The morphology and structure of the composites obtained by transmission electron microscope and x-ray diffraction exhibited a small crystallite size and a good interfacial contact between the ZnS nanoparticles and the two-dimensional (2D) GR sheet, which were beneficial for the photocatalysis. When the content of the GR in the catalyst was 0.1%, the ZG0.1 sample exhibited the highest H2-production rate of 7.42 μmol h-1 g-1, eight times more than the pure ZnS sample. This high visible-light photocatalytic H2 production activity is attributed to the photosensitization of GR. Irradiated by visible light, the electrons photogenerated from GR transfer to the conduction band of ZnS to participate in the photocatalytic process. This study presents the visible-light photocatalytic activity of wide bandgap ZnS and its application in H2 evolution.

  6. Visible light photocatalytic H2-production activity of wide band gap ZnS nanoparticles based on the photosensitization of grapheme.

    PubMed

    Wang, Faze; Zheng, Maojun; Zhu, Changqing; Zhang, Bin; Chen, Wen; Ma, Li; Shen, Wenzhong

    2015-08-28

    Visible light photocatalytic H(2) production from water splitting is considered an attractive way to solve the increasing global energy crisis in modern life. In this study, a series of zinc sulfide nanoparticles and graphene (GR) sheet composites were synthesized by a two-step hydrothermal method, which used zinc chloride, sodium sulfide, and graphite oxide (GO) as the starting materials. The as-prepared ZnS-GR showed highly efficient visible light photocatalytic activity in hydrogen generation. The morphology and structure of the composites obtained by transmission electron microscope and x-ray diffraction exhibited a small crystallite size and a good interfacial contact between the ZnS nanoparticles and the two-dimensional (2D) GR sheet,which were beneficial for the photocatalysis. When the content of the GR in the catalyst was 0.1%, the ZG0.1 sample exhibited the highest H(2)-production rate of 7.42 μmol h(−1) g(−1), eight times more than the pure ZnS sample. This high visible-light photocatalytic H(2) production activity is attributed to the photosensitization of GR. Irradiated by visible light, the electrons photogenerated from GR transfer to the conduction band of ZnS to participate in the photocatalytic process. This study presents the visible-light photocatalytic activity of wide bandgap ZnS and its application in H(2) evolution.

  7. Online submicron particle sizing by dynamic light scattering using autodilution

    NASA Technical Reports Server (NTRS)

    Nicoli, David F.; Elings, V. B.

    1989-01-01

    Efficient production of a wide range of commercial products based on submicron colloidal dispersions would benefit from instrumentation for online particle sizing, permitting real time monitoring and control of the particle size distribution. Recent advances in the technology of dynamic light scattering (DLS), especially improvements in algorithms for inversion of the intensity autocorrelation function, have made it ideally suited to the measurement of simple particle size distributions in the difficult submicron region. Crucial to the success of an online DSL based instrument is a simple mechanism for automatically sampling and diluting the starting concentrated sample suspension, yielding a final concentration which is optimal for the light scattering measurement. A proprietary method and apparatus was developed for performing this function, designed to be used with a DLS based particle sizing instrument. A PC/AT computer is used as a smart controller for the valves in the sampler diluter, as well as an input-output communicator, video display and data storage device. Quantitative results are presented for a latex suspension and an oil-in-water emulsion.

  8. Progress in Piezo-Phototronic-Effect-Enhanced Light-Emitting Diodes and Pressure Imaging.

    PubMed

    Pan, Caofeng; Chen, Mengxiao; Yu, Ruomeng; Yang, Qing; Hu, Youfan; Zhang, Yan; Wang, Zhong Lin

    2016-02-24

    Wurtzite materials exhibit both semiconductor and piezoelectric properties under strains due to the non-central symmetric crystal structures. The three-way coupling of semiconductor properties, piezoelectric polarization and optical excitation in ZnO, GaN, CdS and other piezoelectric semiconductors leads to the emerging field of piezo-phototronics. This effect can efficiently manipulate the emission intensity of light-emitting diodes (LEDs) by utilizing the piezo-polarization charges created at the junction upon straining to modulate the energy band diagrams and the optoelectronic processes, such as generation, separation, recombination and/or transport of charge carriers. Starting from fundamental physics principles, recent progress in piezo-phototronic-effect-enhanced LEDs is reviewed; following their development from single-nanowire pressure-sensitive devices to high-resolution array matrices for pressure-distribution mapping applications. The piezo-phototronic effect provides a promising method to enhance the light emission of LEDs based on piezoelectric semiconductors through applying static strains, and may find perspective applications in various optoelectronic devices and integrated systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Opportunities and challenges for photonics in the automotive

    NASA Astrophysics Data System (ADS)

    Mounier, Eric; Eloy, Jean-Christophe; Jourdan, David

    2005-02-01

    In the future, photonics will enable the marketing of new functions in cars to make them more secure, more fuel-efficient with improved design. Today, there are already photonics devices used in cars such as HB LEDs for brake or interior lights, and optical rain sensors for automatic wipers. Moreover, optical multiplexing for multimedia applications and head-up displays are now starting to be implemented in high-end cars and some more complex devices are already at the prototyping level. This is the case for example for driver information flat panel displays or optical sensors for occupant sensing. This paper gives an overview of the current and future optical applications in cars. So far, applications of displays, lighting, security and datacom are driving the market for photonics in cars. Moreover, car design is also one of the most important market drivers in automobile. Then, photonics could also become a strategic imperative for a company in the design of new cars that will emphasize differentiation from existing competitors. Lighting could then become a signature of the car manufacturer thanks to photonics technology.

  10. Ultrafast Electron Dynamics in Solar Energy Conversion.

    PubMed

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  11. What determines the complex kinetics of stomatal conductance under blueless PAR in Festuca arundinacea? Subsequent effects on leaf transpiration.

    PubMed

    Barillot, Romain; Frak, Ela; Combes, Didier; Durand, Jean-Louis; Escobar-Gutiérrez, Abraham J

    2010-06-01

    Light quality and, in particular, its content of blue light is involved in plant functioning and morphogenesis. Blue light variation frequently occurs within a stand as shaded zones are characterized by a simultaneous decrease of PAR and blue light levels which both affect plant functioning, for example, gas exchange. However, little is known about the effects of low blue light itself on gas exchange. The aims of the present study were (i) to characterize stomatal behaviour in Festuca arundinacea leaves through leaf gas exchange measurements in response to a sudden reduction in blue light, and (ii) to test the putative role of Ci on blue light gas exchange responses. An infrared gas analyser (IRGA) was used with light transmission filters to study stomatal conductance (gs), transpiration (Tr), assimilation (A), and intercellular concentration of CO(2) (Ci) responses to blueless PAR (1.80 mumol m(-2) s(-1)). The results were compared with those obtained under a neutral filter supplying a similar photosynthetic efficiency to the blueless PAR filter. It was shown that the reduction of blue light triggered a drastic and instantaneous decrease of gs by 43.2% and of Tr by 40.0%, but a gradual stomatal reopening began 20 min after the start of the low blue light treatment, thus leading to new steady-states. This new stomatal equilibrium was supposed to be related to Ci. The results were confirmed in more developed plants although they exhibited delayed and less marked responses. It is concluded that stomatal responses to blue light could play a key role in photomorphogenetic mechanisms through their effect on transpiration.

  12. [Progress of light extraction enhancement in organic light-emitting devices].

    PubMed

    Liu, Mo; Li, Tong; Wang, Yan; Zhang, Tian-Yu; Xie, Wen-Fa

    2011-04-01

    Organic light emitting devices (OLEDs) have been used in flat-panel displays and lighting with a near-30-year development. OLEDs possess many advantages, such as full solid device, fast response, flexible display, and so on. As the application of phosphorescence material, the internal quantum efficiency of OLED has almost reached 100%, but its external quantum efficiency is still not very high due to the low light extraction efficiency. In this review the authors summarizes recent advances in light extraction techniques that have been developed to enhance the light extraction efficiency of OLEDs.

  13. Light directs zebrafish period2 expression via conserved D and E boxes.

    PubMed

    Vatine, Gad; Vallone, Daniela; Appelbaum, Lior; Mracek, Philipp; Ben-Moshe, Zohar; Lahiri, Kajori; Gothilf, Yoav; Foulkes, Nicholas S

    2009-10-01

    For most species, light represents the principal environmental signal for entraining the endogenous circadian clock. The zebrafish is a fascinating vertebrate model for studying this process since unlike mammals, direct exposure of most of its tissues to light leads to local clock entrainment. Importantly, light induces the expression of a set of genes including certain clock genes in most zebrafish cell types in vivo and in vitro. However, the mechanism linking light to gene expression remains poorly understood. To elucidate this key mechanism, here we focus on how light regulates transcription of the zebrafish period2 (per2) gene. Using transgenic fish and stably transfected cell line-based assays, we define a Light Responsive Module (LRM) within the per2 promoter. The LRM lies proximal to the transcription start site and is both necessary and sufficient for light-driven gene expression and also for a light-dependent circadian clock regulation. Curiously, the LRM sequence is strongly conserved in other vertebrate per2 genes, even in species lacking directly light-sensitive peripheral clocks. Furthermore, we reveal that the human LRM can substitute for the zebrafish LRM to confer light-regulated transcription in zebrafish cells. The LRM contains E- and D-box elements that are critical for its function. While the E-box directs circadian clock regulation by mediating BMAL/CLOCK activity, the D-box confers light-driven expression. The zebrafish homolog of the thyrotroph embryonic factor binds efficiently to the LRM D-box and transactivates expression. We demonstrate that tef mRNA levels are light inducible and that knock-down of tef expression attenuates light-driven transcription from the per2 promoter in vivo. Together, our results support a model where a light-dependent crosstalk between E- and D-box binding factors is a central determinant of per2 expression. These findings extend the general understanding of the mechanism whereby the clock is entrained by light and how the regulation of clock gene expression by light has evolved in vertebrates.

  14. Prediction and design of efficient exciplex emitters for high-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes.

    PubMed

    Liu, Xiao-Ke; Chen, Zhan; Zheng, Cai-Jun; Liu, Chuan-Lin; Lee, Chun-Sing; Li, Fan; Ou, Xue-Mei; Zhang, Xiao-Hong

    2015-04-08

    High-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes based on exciplex emitters are demonstrated. The best device, based on a TAPC:DPTPCz emitter, shows a high external quantum efficiency of 15.4%. Strategies for predicting and designing efficient exciplex emitters are also provided. This approach allow prediction and design of efficient exciplex emitters for achieving high-efficiency organic light-emitting diodes, for future use in displays and lighting applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Demonstration of a simplified optical mouse lighting module by integrating the non-Lambertian LED chip and the free-form surface.

    PubMed

    Pan, Jui-Wen; Tu, Sheng-Han

    2012-05-20

    A cost-effective, high-throughput, and high-yield method for the efficiency enhancement of an optical mouse lighting module is proposed. We integrated imprinting technology and free-form surface design to obtain a lighting module with high illumination efficiency and uniform intensity distribution. The imprinting technique can increase the light extraction efficiency and modulate the intensity distribution of light-emitting diodes. A modulated light source was utilized to add a compact free-form surface element to create a lighting module with 95% uniformity and 80% optical efficiency.

  16. Light-Emitting GaAs Nanowires on a Flexible Substrate.

    PubMed

    Valente, João; Godde, Tillmann; Zhang, Yunyan; Mowbray, David J; Liu, Huiyun

    2018-06-18

    Semiconductor nanowire-based devices are among the most promising structures used to meet the current challenges of electronics, optics and photonics. Due to their high surface-to-volume ratio and excellent optical and electrical properties, devices with low power, high efficiency and high density can be created. This is of major importance for environmental issues and economic impact. Semiconductor nanowires have been used to fabricate high performance devices, including detectors, solar cells and transistors. Here, we demonstrate a technique for transferring large-area nanowire arrays to flexible substrates while retaining their excellent quantum efficiency in emission. Starting with a defect-free self-catalyzed molecular beam epitaxy (MBE) sample grown on a Si substrate, GaAs core-shell nanowires are embedded in a dielectric, removed by reactive ion etching and transferred to a plastic substrate. The original structural and optical properties, including the vertical orientation, of the nanowires are retained in the final plastic substrate structure. Nanowire emission is observed for all stages of the fabrication process, with a higher emission intensity observed for the final transferred structure, consistent with a reduction in nonradiative recombination via the modification of surface states. This transfer process could form the first critical step in the development of flexible nanowire-based light-emitting devices.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Brien

    The Forest County Potawatomi Community (FCPC or Tribe) owns a six-story parking facility adjacent to its Potawatomi Bingo Casino (the Casino) in Milwaukee, Wisconsin, as well as a valet parking facility under the Casino (collectively, the Parking Facility). The Parking Facility contained 205-watt metal halide-type lights that, for security reasons, operated 24 hours per day, 7 days per week. Starting on August 30, 2010, the Tribe replaced these fixtures with 1,760 state-of-the-art, energy efficient 55-Watt LED lights. This project resulted in an immediate average reduction in monthly peak demand of 238 kW over the fourth quarter of 2010. The averagemore » reduction in monthly peak demand from October 1 through December 31, 2010 translates into a forecast annual electrical energy reduction of approximately 1,995,000 kWh or 47.3% of the pre-project demand. This project was technically effective, economically feasible, and beneficial to the public not only in terms of long term energy efficiency and associated emissions reductions, but also in the short-term jobs provided for the S.E. Wisconsin region. The project was implemented, from approval by U.S. Department of Energy (DOE) to completion, in less than 6 months. The project utilized off-the-shelf proven technologies that were fabricated locally and installed by local trade contractors.« less

  18. Evaluation of the Effects of Light Intensity and Time Interval After the Start of Scotophase on the Female Flight Propensity of Asian Gypsy Moth (Lepidoptera: Erebidae).

    PubMed

    Chen, Fang; Shi, Juan; Keena, Melody

    2016-04-01

    Asian gypsy moth, Lymantria dispar L. (Lepidoptera: Erebidae), females are capable of flight, but little is known about what causes the variation in flight propensity that has been observed. The female flight propensity and capability of Asian gypsy moth from seven geographic populations (three from China, two from Russia, one from Japan, and one from Korea) were compared under all combinations of three light intensities (0.05, 0.10, and 0.40 lux) and during three time intervals after the start of scotophase. A total of 567 females were flight tested. Female flight propensity, time to initiate walking, fanning, and flying, and duration of fanning differed significantly among geographic populations. Females were less likely to voluntarily fly during the 0-1-h time interval after the start of scotophase than during the later time intervals (1-2 and 2-3 h), suggesting that the light intensity cue has to occur at the correct time after the expected start of scotophase for flight initiation. Light intensity did not significantly affect the proportion of females that voluntarily flew, but did impact the timing of the walking and fanning preflight behaviors. The interaction between light intensity and time interval after the start of scotophase had a significant effect on the proportion of females that fanned. The proportion of females with sustained flight capability varied among the populations evaluated. These results may aid in determining the risk of Asian gypsy moth dispersal, but further work is needed to assess other factors that play a role in flight propensity. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  19. The rewritable effects of bonded magnet for large starting torque and high efficiency in the small power single-phase written pole motor

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Hak; Lee, Sung-Ho

    2009-04-01

    This paper presents a single-phase written pole motor using a bonded ring magnet for the small power home application. The motor has an exciter pole structure inside the stator and hybrid characteristics of an induction motor and permanent magnet motor. The design parameters and operating characteristics of the hybrid concept motor are investigated to increase starting torque and efficiency, which is most important for the small power home application. Larger starting torque and higher efficiency than those of the conventional induction motor could be obtained by using the rewritable characteristics of bonded magnet on the starting and running conditions.

  20. Light Extraction From Solution-Based Processable Electrophosphorescent Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Krummacher, Benjamin C.; Mathai, Mathew; So, Franky; Choulis, Stelios; Choong, And-En, Vi

    2007-06-01

    Molecular dye dispersed solution processable blue emitting organic light-emitting devices have been fabricated and the resulting devices exhibit efficiency as high as 25 cd/A. With down-conversion phosphors, white emitting devices have been demonstrated with peak efficiency of 38 cd/A and luminous efficiency of 25 lm/W. The high efficiencies have been a product of proper tuning of carrier transport, optimization of the location of the carrier recombination zone and, hence, microcavity effect, efficient down-conversion from blue to white light, and scattering/isotropic remission due to phosphor particles. An optical model has been developed to investigate all these effects. In contrast to the common misunderstanding that light out-coupling efficiency is about 22% and independent of device architecture, our device data and optical modeling results clearly demonstrated that the light out-coupling efficiency is strongly dependent on the exact location of the recombination zone. Estimating the device internal quantum efficiencies based on external quantum efficiencies without considering the device architecture could lead to erroneous conclusions.

  1. High extraction efficiency ultraviolet light-emitting diode

    DOEpatents

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  2. Side-emitting illuminators using LED sources

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Van Derlofske, John F.

    2003-11-01

    This study investigates illuminators composed of light emitting diode (LED) array sources and side-emitting light guides to provide efficient general illumination. Specifically, new geometries are explored to increase the efficiency of current systems while maintaining desired light distribution. LED technology is already successfully applied in many illumination applications, such as traffic signals and liquid crystal display (LCD) backlighting. It provides energy-efficient, small-package, long-life, and color-adjustable illumination. However, the use of LEDs in general illumination is still in its early stages. Current side-emitting systems typically use a light guide with light sources at one end, an end-cap surface at the other end, and light releasing sidewalls. This geometry introduces efficiency loss that can be as high as 40%. The illuminators analyzed in this study use LED array sources along the longitude of a light guide to increase the system efficiency. These new geometries also provide the freedom of elongating the system without sacrificing system efficiency. In addition, alternative geometries can be used to create white light with monochromatic LED sources. As concluded by this study, the side-emitting illuminators using LED sources gives the possibility of an efficient, distribution-controllable linear lighting system.

  3. 40 CFR 86.1869-12 - CO2 credits for off-cycle CO2-reducing technologies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... average over 5-cycle testing. (ii) High efficiency exterior lights. Credits may be accrued for high efficiency lighting as defined in paragraph (b)(4) of this section based on the lighting locations with such lighting installed. Credits for high efficiency lighting are the sum of the credits for the applicable...

  4. Start-to-end simulation of the shot-noise driven microbunching instability experiment at the Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiang, J.; Ding, Y.; Emma, P.

    The shot-noise driven microbunching instability can significantly degrade electron beam quality in x-ray free electron laser light sources. Experiments were carried out at the Linac Coherent Light Source (LCLS) to study this instability. Here in this paper, we present start-to-end simulations of the shot-noise driven microbunching instability experiment at the LCLS using the real number of electrons. The simulation results reproduce the measurements quite well. A microbunching self-heating mechanism is also illustrated in the simulation, which helps explain the experimental observation.

  5. Start-to-end simulation of the shot-noise driven microbunching instability experiment at the Linac Coherent Light Source

    DOE PAGES

    Qiang, J.; Ding, Y.; Emma, P.; ...

    2017-05-23

    The shot-noise driven microbunching instability can significantly degrade electron beam quality in x-ray free electron laser light sources. Experiments were carried out at the Linac Coherent Light Source (LCLS) to study this instability. Here in this paper, we present start-to-end simulations of the shot-noise driven microbunching instability experiment at the LCLS using the real number of electrons. The simulation results reproduce the measurements quite well. A microbunching self-heating mechanism is also illustrated in the simulation, which helps explain the experimental observation.

  6. Analysis of Minimum Efficiency Performance Standards for Residential General Service Lighting in Chile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letschert, Virginie E.; McNeil, Michael A.; Leiva Ibanez, Francisco Humberto

    2011-06-01

    Minimum Efficiency Performance Standards (MEPS) have been chosen as part of Chile's national energy efficiency action plan. As a first MEPS, the Ministry of Energy has decided to focus on a regulation for lighting that would ban the sale of inefficient bulbs, effectively phasing out the use of incandescent lamps. Following major economies such as the US (EISA, 2007) , the EU (Ecodesign, 2009) and Australia (AS/NZS, 2008) who planned a phase out based on minimum efficacy requirements, the Ministry of Energy has undertaken the impact analysis of a MEPS on the residential lighting sector. Fundacion Chile (FC) and Lawrencemore » Berkeley National Laboratory (LBNL) collaborated with the Ministry of Energy and the National Energy Efficiency Program (Programa Pais de Eficiencia Energetica, or PPEE) in order to produce a techno-economic analysis of this future policy measure. LBNL has developed for CLASP (CLASP, 2007) a spreadsheet tool called the Policy Analysis Modeling System (PAMS) that allows for evaluation of costs and benefits at the consumer level but also a wide range of impacts at the national level, such as energy savings, net present value of savings, greenhouse gas (CO2) emission reductions and avoided capacity generation due to a specific policy. Because historically Chile has followed European schemes in energy efficiency programs (test procedures, labelling program definitions), we take the Ecodesign commission regulation No 244/2009 as a starting point when defining our phase out program, which means a tiered phase out based on minimum efficacy per lumen category. The following data were collected in order to perform the techno-economic analysis: (1) Retail prices, efficiency and wattage category in the current market, (2) Usage data (hours of lamp use per day), and (3) Stock data, penetration of efficient lamps in the market. Using these data, PAMS calculates the costs and benefits of efficiency standards from two distinct but related perspectives: (1) The Life-Cycle Cost (LCC) calculation examines costs and benefits from the perspective of the individual household; and (2) The National Perspective projects the total national costs and benefits including both financial benefits, and energy savings and environmental benefits. The national perspective calculations are called the National Energy Savings (NES) and the Net Present Value (NPV) calculations. PAMS also calculate total emission mitigation and avoided generation capacity. This paper describes the data and methodology used in PAMS and presents the results of the proposed phase out of incandescent bulbs in Chile.« less

  7. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century.

    PubMed

    O'Sullivan, M; Rap, A; Reddington, C L; Spracklen, D V; Gloor, M; Buermann, W

    2016-08-16

    The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998-2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbon uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.

  8. Efficient Light Extraction of Organic Light-Emitting Diodes on a Fully Solution-Processed Flexible Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Kwing; Liu, Xiaofeng; Zhao, Fangchao

    A flexible, nanocomposite substrate for maximizing light outcoupling efficiencies of organic light-emitting diodes (OLEDs) is introduced. In depth investigation is performed on designing the integrated strategy based on considerations of surface conductivity, microcavity tuning, and internal light scattering. The resulting nanocomposite substrate consists of silver nanowires as the electrode and a high-index polymer layer and a light-scattering layer for light extraction. It is able to outcouple both the waveguide and the substrate modes, two modes accounting for significant losses in OLED device efficiency. With enhanced light outcoupling, white OLEDs subsequently fabricated on the nanocomposite substrates demonstrate performance metrics of 107more » lm W -1 power efficiency and 49% external quantum efficiency at 1000 cd m -2. Thus, the nanocomposite substrate is fabricated by solution processes at low temperatures for potentially low manufacturing cost.« less

  9. Efficient Light Extraction of Organic Light-Emitting Diodes on a Fully Solution-Processed Flexible Substrate

    DOE PAGES

    Tong, Kwing; Liu, Xiaofeng; Zhao, Fangchao; ...

    2017-07-18

    A flexible, nanocomposite substrate for maximizing light outcoupling efficiencies of organic light-emitting diodes (OLEDs) is introduced. In depth investigation is performed on designing the integrated strategy based on considerations of surface conductivity, microcavity tuning, and internal light scattering. The resulting nanocomposite substrate consists of silver nanowires as the electrode and a high-index polymer layer and a light-scattering layer for light extraction. It is able to outcouple both the waveguide and the substrate modes, two modes accounting for significant losses in OLED device efficiency. With enhanced light outcoupling, white OLEDs subsequently fabricated on the nanocomposite substrates demonstrate performance metrics of 107more » lm W -1 power efficiency and 49% external quantum efficiency at 1000 cd m -2. Thus, the nanocomposite substrate is fabricated by solution processes at low temperatures for potentially low manufacturing cost.« less

  10. An integrated general purpose SiPM based optical module with a high dynamic range

    NASA Astrophysics Data System (ADS)

    Bretz, T.; Engel, R.; Hebbeker, T.; Kemp, J.; Middendorf, L.; Peters, C.; Schumacher, J.; Šmída, R.; Veberič, D.

    2018-06-01

    Silicon photomultipliers (SiPMs) are semiconductor-based light-sensors offering a high gain, a mechanically and optically robust design and high photon detection efficiency. Due to these characteristics, they started to replace conventional photomultiplier tubes in many applications in recent years. This paper presents an optical module based on SiPMs designed for the application in scintillators as well as lab measurements. The module hosts the SiPM bias voltage supply and three pre-amplifiers with different gain levels to exploit the full dynamic range of the SiPMs. Two SiPMs, read-out in parallel, are equipped with light guides to increase the sensitive area. The light guides are optimized for the read-out of wavelength shifting fibers as used in many plastic scintillator detectors. The optical and electrical performance of the module is characterized in detail in laboratory measurements. Prototypes have been installed and tested in a modified version of the Scintillator Surface Detector developed for AugerPrime, the upgrade of the Pierre Auger Observatory. The SiPM module is operated in the Argentinian Pampas and first data proves its usability in such harsh environments.

  11. Highly Flexible and Efficient Fabric-Based Organic Light-Emitting Devices for Clothing-Shaped Wearable Displays.

    PubMed

    Choi, Seungyeop; Kwon, Seonil; Kim, Hyuncheol; Kim, Woohyun; Kwon, Jung Hyun; Lim, Myung Sub; Lee, Ho Seung; Choi, Kyung Cheol

    2017-07-25

    Recently, the role of clothing has evolved from merely body protection, maintaining the body temperature, and fashion, to advanced functions such as various types of information delivery, communication, and even augmented reality. With a wireless internet connection, the integration of circuits and sensors, and a portable power supply, clothes become a novel electronic device. Currently, the information display is the most intuitive interface using visualized communication methods and the simultaneous concurrent processing of inputs and outputs between a wearer and functional clothes. The important aspect in this case is to maintain the characteristic softness of the fabrics even when electronic devices are added to the flexible clothes. Silicone-based light-emitting diode (LED) jackets, shirts, and stage costumes have started to appear, but the intrinsic stiffness of inorganic semiconductors causes wearers to feel discomfort; thus, it is difficult to use such devices for everyday purposes. To address this problem, a method of fabricating a thin and flexible emitting fabric utilizing organic light-emitting diodes (OLEDs) was developed in this work. Its flexibility was evaluated, and an analysis of its mechanical bending characteristics and tests of its long-term reliability were carried out.

  12. Synchrotron Light Sources in Developing Countries

    NASA Astrophysics Data System (ADS)

    Winick, Herman; Pianetta, Piero

    The more than 50 light sources in operation include facilities in Brazil, Korea, and Taiwan which started in the 1980's when they were developing countries. They came on line in the 1990's and have since trained hundreds of graduate students. They have attracted mid-career diaspora scientists to return. Growing user communities have demanded more advanced facilities, leading to higher performance new light sources that are now coming into operation. Light sources in the developing world now include the following: ∖textbf{SESAME}in the Middle East which is scheduled to start research in 2017 (∖underline {www.sesame.org}); ∖textbf{The African Light Source}, in the planning stage (∖underline {www.safricanlightsource.org}); and ∖textbf{The Mexican Light Source}, in the planning stage (∖underline {http://www.aps.org/units/fip/newsletters/201509/mexico.cfm}). See: http://wpj.sagepub.com/content/32/4/92.full.pdf +html; http://www.lightsources.org/press-release/2015/11/20/grenoble-resolutions-mark-historical-step-towards-african-light-source..

  13. Final review of the Campbell Creek demonstrations showcased by Tennessee Valley Authority

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehl, Anthony C.; Munk, Jeffrey D.; Jackson, Roderick K.

    The Tennessee Valley Authority (TVA) Technology Innovation, Energy Efficiency, Power Delivery and Utilization Office funded and managed a showcase demonstration located in the suburbs of west Knox county, Tennessee. Work started March 2008 with the goal of documenting best practices for retrofitting existing homes and for building new high-efficiency homes. The Oak Ridge National Laboratory and the Electric Power Research Institute (EPRI) provided technical support. An analytical base was developed for helping homeowners, homebuyers, builders, practitioners and the TVA make informed economic decisions for the materials and incentives necessary to build a new high-efficiency home or retrofit an existing home.more » New approaches to more efficiently control active energy subsystems and information for selecting or upgrading to Energy Star appliances, changing all lights to 100% CFL s and upgrading windows to low-E gas filled glazing yields a 40% energy savings with neutral cash flow for the homeowner. Passive designs were reviewed and recommendations made for envelope construction that is durable and energy efficient. The Campbell Creek project complements the DOE Building Technologies Program strategic goal. Results of the project created technologies and design approaches that will yield affordable energy efficient homes. The 2010 DOE retrofit goals are to find retrofit packages that attain 30% whole house energy savings as documented by pre and post Home Energy rating scores (HERS). Campbell Creek met these goals.« less

  14. 46 CFR 112.50-5 - Electric starting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Electric starting. 112.50-5 Section 112.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-5 Electric starting...

  15. 46 CFR 112.50-5 - Electric starting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Electric starting. 112.50-5 Section 112.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-5 Electric starting...

  16. 46 CFR 112.50-5 - Electric starting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Electric starting. 112.50-5 Section 112.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-5 Electric starting...

  17. 46 CFR 112.50-5 - Electric starting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Electric starting. 112.50-5 Section 112.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-5 Electric starting...

  18. 46 CFR 112.50-5 - Electric starting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electric starting. 112.50-5 Section 112.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-5 Electric starting...

  19. Limits on the maximum attainable efficiency for solid-state lighting

    NASA Astrophysics Data System (ADS)

    Coltrin, Michael E.; Tsao, Jeffrey Y.; Ohno, Yoshi

    2008-03-01

    Artificial lighting for general illumination purposes accounts for over 8% of global primary energy consumption. However, the traditional lighting technologies in use today, i.e., incandescent, fluorescent, and high-intensity discharge lamps, are not very efficient, with less than about 25% of the input power being converted to useful light. Solid-state lighting is a rapidly evolving, emerging technology whose efficiency of conversion of electricity to visible white light is likely to approach 50% within the next years. This efficiency is significantly higher than that of traditional lighting technologies, with the potential to enable a marked reduction in the rate of world energy consumption. There is no fundamental physical reason why efficiencies well beyond 50% could not be achieved, which could enable even greater world energy savings. The maximum achievable luminous efficacy for a solid-state lighting source depends on many different physical parameters, for example the color rendering quality that is required, the architecture employed to produce the component light colors that are mixed to produce white, and the efficiency of light sources producing each color component. In this article, we discuss in some detail several approaches to solid-state lighting and the maximum luminous efficacy that could be attained, given various constraints such as those listed above.

  20. Analysis of light extraction efficiency enhancement for thin-film-flip-chip InGaN quantum wells light-emitting diodes with GaN micro-domes.

    PubMed

    Zhao, Peng; Zhao, Hongping

    2012-09-10

    The enhancement of light extraction efficiency for thin-film flip-chip (TFFC) InGaN quantum wells (QWs) light-emitting diodes (LEDs) with GaN micro-domes on n-GaN layer was studied. The light extraction efficiency of TFFC InGaN QWs LEDs with GaN micro-domes were calculated and compared to that of the conventional TFFC InGaN QWs LEDs with flat surface. The three dimensional finite difference time domain (3D-FDTD) method was used to calculate the light extraction efficiency for the InGaN QWs LEDs emitting at 460nm and 550 nm, respectively. The effects of the GaN micro-dome feature size and the p-GaN layer thickness on the light extraction efficiency were studied systematically. Studies indicate that the p-GaN layer thickness is critical for optimizing the TFFC LED light extraction efficiency. Significant enhancement of the light extraction efficiency (2.5-2.7 times for λ(peak) = 460nm and 2.7-2.8 times for λ(peak) = 550nm) is achievable from TFFC InGaN QWs LEDs with optimized GaN micro-dome diameter and height.

  1. Lighting for Tomorrow: What have we learned and what about the day after tomorrow?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Kelly L.; Foster, Rebecca; McGowan, Terry

    2006-08-22

    This paper describes Lighting for Tomorrow, a program sponsored by the US Department of Energy Emerging Technologies Program, the American Lighting Association, and the Consortium for Energy Efficiency. The program has conducted a design competition for residential decorative lighting fixtures using energy-efficient light sources. The paper discusses the reasons for development of the design competition, and the intended outcomes of the effort. The two competitive rounds completed to date are described in terms of their specific messaging and rules, direct results, and lessons learned. Experience to date is synthesized relative to the intended outcomes, including new product introductions, increased awarenessmore » of energy efficiency within the lighting industry, and increased participation by lighting showrooms in marketing and selling energy-efficient light fixtures. The paper also highlights the emergence of Lighting for Tomorrow as a forum for addressing market and technical barriers impeding use of energy-efficient lighting in the residential sector. Finally, it describes how Lighting for Tomorrow's current year (2006) program has been designed to respond to lessons from the previous competitions, feedback from the industry, and changes in lighting technology.« less

  2. Energy and economic efficiency alternatives for electric lighting in commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, C L; Hunter, K C; Carlisle, N

    1985-10-01

    This report investigates current efficient alternatives for replacing or supplementing electric lighting systems in commercial buildings. Criteria for establishing the economic attractiveness of various lighting alternatives are defined and the effect of future changes in building lighting on utility capacity. The report focuses on the energy savings potential, economic efficiency, and energy demand reduction of three categories of lighting alternatives: (1) use of a renewable resource (daylighting) to replace or supplement electric lighting; (2) use of task/ambient lighting in lieu of overhead task lighting; and (3) equipment changes to improve lighting energy efficiency. The results indicate that all three categoriesmore » offer opportunities to reduce lighting energy use in commercial buildings. Further, reducing lighting energy causes a reduction in cooling energy use and cooling capacity while increasing heating energy use. It does not typically increase heating capacity because the use of lighting in the building does not offset the need for peak heating at night.« less

  3. Light manipulation for organic optoelectronics using bio-inspired moth's eye nanostructures.

    PubMed

    Zhou, Lei; Ou, Qing-Dong; Chen, Jing-De; Shen, Su; Tang, Jian-Xin; Li, Yan-Qing; Lee, Shuit-Tong

    2014-02-10

    Organic-based optoelectronic devices, including light-emitting diodes (OLEDs) and solar cells (OSCs) hold great promise as low-cost and large-area electro-optical devices and renewable energy sources. However, further improvement in efficiency remains a daunting challenge due to limited light extraction or absorption in conventional device architectures. Here we report a universal method of optical manipulation of light by integrating a dual-side bio-inspired moth's eye nanostructure with broadband anti-reflective and quasi-omnidirectional properties. Light out-coupling efficiency of OLEDs with stacked triple emission units is over 2 times that of a conventional device, resulting in drastic increase in external quantum efficiency and current efficiency to 119.7% and 366 cd A(-1) without introducing spectral distortion and directionality. Similarly, the light in-coupling efficiency of OSCs is increased 20%, yielding an enhanced power conversion efficiency of 9.33%. We anticipate this method would offer a convenient and scalable way for inexpensive and high-efficiency organic optoelectronic designs.

  4. Far-red light is needed for efficient photochemistry and photosynthesis.

    PubMed

    Zhen, Shuyang; van Iersel, Marc W

    2017-02-01

    The efficiency of monochromatic light to drive photosynthesis drops rapidly at wavelengths longer than 685nm. The photosynthetic efficiency of these longer wavelengths can be improved by adding shorter wavelength light, a phenomenon known as the Emerson enhancement effect. The reverse effect, the enhancement of photosynthesis under shorter wavelength light by longer wavelengths, however, has not been well studied and is often thought to be insignificant. We quantified the effect of adding far-red light (peak at 735nm) to red/blue or warm-white light on the photosynthetic efficiency of lettuce (Lactuca sativa). Adding far-red light immediately increased quantum yield of photosystem II (Φ PSII ) of lettuce by an average of 6.5 and 3.6% under red/blue and warm-white light, respectively. Similar or greater increases in Φ PSII were observed after 20min of exposure to far-red light. This longer-term effect of far-red light on Φ PSII was accompanied by a reduction in non-photochemical quenching of fluorescence (NPQ), indicating that far-red light reduced the dissipation of absorbed light as heat. The increase in Φ PSII and complementary decrease in NPQ is presumably due to preferential excitation of photosystem I (PSI) by far-red light, which leads to faster re-oxidization of the plastoquinone pool. This facilitates reopening of PSII reaction centers, enabling them to use absorbed photons more efficiently. The increase in Φ PSII by far-red light was associated with an increase in net photosynthesis (P n ). The stimulatory effect of far-red light increased asymptotically with increasing amounts of far-red. Overall, our results show that far-red light can increase the photosynthetic efficiency of shorter wavelength light that over-excites PSII. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Biological optimization systems for enhancing photosynthetic efficiency and methods of use

    DOEpatents

    Hunt, Ryan W.; Chinnasamy, Senthil; Das, Keshav C.; de Mattos, Erico Rolim

    2012-11-06

    Biological optimization systems for enhancing photosynthetic efficiency and methods of use. Specifically, methods for enhancing photosynthetic efficiency including applying pulsed light to a photosynthetic organism, using a chlorophyll fluorescence feedback control system to determine one or more photosynthetic efficiency parameters, and adjusting one or more of the photosynthetic efficiency parameters to drive the photosynthesis by the delivery of an amount of light to optimize light absorption of the photosynthetic organism while providing enough dark time between light pulses to prevent oversaturation of the chlorophyll reaction centers are disclosed.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, L. B.; Donohoe, S. P.; Jones, M. H.

    This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore » better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less

  7. Evaluation of Metal Halide, Plasma, and LED Lighting Technologies for a Hydrogen Fuel Cell Mobile Light (H 2 LT)

    DOE PAGES

    Miller, L. B.; Donohoe, S. P.; Jones, M. H.; ...

    2015-04-22

    This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore » better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less

  8. Stop/Start: Overview

    Science.gov Websites

    /Start technology conserves energy by shutting off the gasoline engine when the vehicle is at rest, such as at a traffic light, and automatically re-starting it when the driver pushes the gas pedal to go engine when pulling out from a stop and generating electricity which is stored in the battery. Main stage

  9. Resource efficiency and culture--workplace training for small and medium-sized enterprises.

    PubMed

    Bliesner, Anna; Liedtke, Christa; Rohn, Holger

    2014-05-15

    Although there are already some qualification offers available for enterprises to support resource efficiency innovations, the high potentials that can be identified especially for small and medium sized enterprises (SMEs) have not been activated until now. As successful change lies in the hands of humans, the main aim of vocational education has to be the promotion of organisational and cultural changes in the enterprises. As there is already a small but increasing number of enterprises that perform very well in resource efficiency innovations one question arises: What are typical characteristics of those enterprises? Leaning on a good-practice approach, the project "ResourceCulture" is going to prove or falsify the hypothesis that enterprises being successful with resource efficiency innovations have a specific culture of trust, which substantially contributes to innovation processes, or even initially enables them. Detailed empirical field research will light up which correlations between resource efficiency, innovation and cultures of trust can be found and will offer important aspects for the improvement of management instruments and qualification concepts for workplace training. The project seizes qualification needs that were likewise mentioned by enterprises and consultants, regarding the implementation of resource efficiency. This article - based on first empirical field research results - derives preliminary indications for the design of the qualification module for the target groups resource efficiency consultants and managers. On this basis and in order to implement "ResourceCulture" conceptual and methodological starting points for workplace training are outlined. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. VLED for Si wafer-level packaging

    NASA Astrophysics Data System (ADS)

    Chu, Chen-Fu; Chen, Chiming; Yen, Jui-Kang; Chen, Yung-Wei; Tsou, Chingfu; Chang, Chunming; Doan, Trung; Tran, Chuong Anh

    2012-03-01

    In this paper, we introduced the advantages of Vertical Light emitting diode (VLED) on copper alloy with Si-wafer level packaging technologies. The silicon-based packaging substrate starts with a <100> dou-ble-side polished p-type silicon wafer, then anisotropic wet etching technology is done to construct the re-flector depression and micro through-holes on the silicon substrate. The operating voltage, at a typical cur-rent of 350 milli-ampere (mA), is 3.2V. The operation voltage is less than 3.7V under higher current driving conditions of 1A. The VLED chip on Si package has excellent heat dissipation and can be operated at high currents up to 1A without efficiency degradation. The typical spatial radiation pattern emits a uniform light lambertian distribution from -65° to 65° which can be easily fit for secondary optics. The correlated color temperature (CCT) has only 5% variation for daylight and less than 2% variation for warm white, when the junction temperature is increased from 25°C to 110°C, suggesting a stable CCT during operation for general lighting application. Coupled with aspheric lens and micro lens array in a wafer level process, it has almost the same light distribution intensity for special secondary optics lighting applications. In addition, the ul-tra-violet (UV) VLED, featuring a silicon substrate and hard glass cover, manufactured by wafer level pack-aging emits high power UV wavelengths appropriate for curing, currency, document verification, tanning, medical, and sterilization applications.

  11. Freeform lens generation for quasi-far-field successive illumination targets

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhenfeng; Thibault, Simon

    2018-07-01

    A predefined mapping to tailor one or more freeform surfaces is employed to build a freeform illumination system. The emergent rays from the light source corresponding to the prescribed target mesh for a pre-determined lighting distance are mapped by a point-to-point algorithm with respect to the freeform optics, which involves limiting design flexibility. To tackle the problem of design limitation and find the optimum design results, a freeform lens is exploited to produce the desired rectangular illumination distribution at successive target planes at quasi-far-field lighting distances. It is generated using numerical solutions to find out an initial starting point, and an appropriate approach to obtain variables for parameterization of the freeform surface is introduced. The relative standard deviation, which is a useful figure of merit for the analysis, is set up as merit function with respect to illumination non-uniformity at the successive sampled target planes. Therefore, the irradiance distribution in terms of the specific lighting distance range can be ensured by the proposed scheme. A design example of a freeform illumination system, composed of a spherical surface and a freeform surface, is given to produce desired irradiance distribution within the lighting distance range. An optical performance with low non-uniformity and high efficiency is achieved. Compared with the conventional approach, the uniformity of the sampled targets is dramatically enhanced; meanwhile, a design result with a large tolerance of LED size is offered.

  12. 24 CFR 3285.904 - Utility system connections.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... come loose during transit. (4) Gas appliance start-up procedures. The LAHJ should be consulted... valves, lighting pilot lights when provided, and adjusting burners and spark igniters for automatic...

  13. Verteporfin Injection

    MedlinePlus

    ... Fifteen minutes after the start of the verteporfin infusion, your doctor will administer a special laser light ... second eye 1 week later with another verteporfin infusion and laser light treatment.Your doctor will examine ...

  14. A SPAD-based 3D imager with in-pixel TDC for 145ps-accuracy ToF measurement

    NASA Astrophysics Data System (ADS)

    Vornicu, I.; Carmona-Galán, R.; Rodríguez-Vázquez, Á.

    2015-03-01

    The design and measurements of a CMOS 64 × 64 Single-Photon Avalanche-Diode (SPAD) array with in-pixel Time-to-Digital Converter (TDC) are presented. This paper thoroughly describes the imager at architectural and circuit level with particular emphasis on the characterization of the SPAD-detector ensemble. It is aimed to 2D imaging and 3D image reconstruction in low light environments. It has been fabricated in a standard 0.18μm CMOS process, i. e. without high voltage or low noise features. In these circumstances, we are facing a high number of dark counts and low photon detection efficiency. Several techniques have been applied to ensure proper functionality, namely: i) time-gated SPAD front-end with fast active-quenching/recharge circuit featuring tunable dead-time, ii) reverse start-stop scheme, iii) programmable time resolution of the TDC based on a novel pseudo-differential voltage controlled ring oscillator with fast start-up, iv) a global calibration scheme against temperature and process variation. Measurements results of individual SPAD-TDC ensemble jitter, array uniformity and time resolution programmability are also provided.

  15. De Quervain tendinitis

    MedlinePlus

    ... your wrist without pain, you can start light stretching to increase strength and movement. Your doctor may ... possible. To increase strength and flexibility, do light stretching exercises. One exercise is squeezing a tennis ball. ...

  16. High-output LED-based light engine for profile lighting fixtures with high color uniformity using freeform reflectors.

    PubMed

    Gadegaard, Jesper; Jensen, Thøger Kari; Jørgensen, Dennis Thykjær; Kristensen, Peter Kjær; Søndergaard, Thomas; Pedersen, Thomas Garm; Pedersen, Kjeld

    2016-02-20

    In the stage lighting and entertainment market, light engines (LEs) for lighting fixtures are often based on high-intensity discharge (HID) bulbs. Switching to LED-based light engines gives possibilities for fast switching, additive color mixing, a longer lifetime, and potentially, more energy-efficient systems. The lumen output of a single LED is still not sufficient to replace an HID source in high-output profile fixtures, but combining multiple LEDs can create an LE with a similar output, but with added complexity. This paper presents the results of modeling and testing such a light engine. Custom ray-tracing software was used to design a high-output red, green and blue LED-based light engine with twelve CBT-90 LEDs using a dual-reflector principle. The simulated optical system efficiency was 0.626 with a perfect (R=1) reflector coating for light delivered on a target surface through the entire optical system. A profile lighting fixture prototype was created, and provided an output of 6744 lumen and an efficiency of 0.412. The lower efficiency was mainly due to a non-optimal reflector coating, and the optimized design is expected to reach a significantly higher efficiency.

  17. Power electronics for low power arcjets

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.

    1991-01-01

    In anticipation of the needs of future light-weight, low-power spacecraft, arcjet power electronics in the 100 to 400 W operating range were developed. Limited spacecraft power and thermal control capacity of these small spacecraft emphasized the need for high efficiency. Power topologies similar to those in the higher 2 kW and 5 to 30 kW power range were implemented, including a four transistor bridge switching circuit, current mode pulse-width modulated control, and an output current averaging inductor with an integral pulse generation winding. Reduction of switching transients was accomplished using a low inductance power distribution network, and no passive snubber circuits were necessary for power switch protection. Phase shift control of the power bridge was accomplished using an improved pulse width modulation to phase shift converter circuit. These features, along with conservative magnetics designs allowed power conversion efficiencies of greater than 92.5 percent to be achieved into resistive loads over the entire operating range of the converter. Electromagnetic compatibility requirements were not considered in this work, and control power for the converter was derived from AC mains. Addition of input filters and control power converters would result in an efficiency of on the order of 90 percent for a flight unit. Due to the developmental nature of arcjet systems at this power level, the exact nature of the thruster/power processor interface was not quantified. Output regulation and current ripple requirements of 1 and 20 percent respectively, as well as starting techniques, were derived from the characteristics of the 2 kW system but an open circuit voltage in excess of 175 V was specified. Arcjet integration tests were performed, resulting in successful starts and stable arcjet operation at power levels as low as 240 W with simulated hydrazine propellants.

  18. Simultaneously Enhancing Light Emission and Suppressing Efficiency Droop in GaN Microwire-Based Ultraviolet Light-Emitting Diode by the Piezo-Phototronic Effect.

    PubMed

    Wang, Xingfu; Peng, Wenbo; Yu, Ruomeng; Zou, Haiyang; Dai, Yejing; Zi, Yunlong; Wu, Changsheng; Li, Shuti; Wang, Zhong Lin

    2017-06-14

    Achievement of p-n homojuncted GaN enables the birth of III-nitride light emitters. Owing to the wurtzite-structure of GaN, piezoelectric polarization charges present at the interface can effectively control/tune the optoelectric behaviors of local charge-carriers (i.e., the piezo-phototronic effect). Here, we demonstrate the significantly enhanced light-output efficiency and suppressed efficiency droop in GaN microwire (MW)-based p-n junction ultraviolet light-emitting diode (UV LED) by the piezo-phototronic effect. By applying a -0.12% static compressive strain perpendicular to the p-n junction interface, the relative external quantum efficiency of the LED is enhanced by over 600%. Furthermore, efficiency droop is markedly reduced from 46.6% to 7.5% and corresponding droop onset current density shifts from 10 to 26.7 A cm -2 . Enhanced electrons confinement and improved holes injection efficiency by the piezo-phototronic effect are revealed and theoretically confirmed as the physical mechanisms. This study offers an unconventional path to develop high efficiency, strong brightness and high power III-nitride light sources.

  19. LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae.

    PubMed

    Ma, Ruijuan; Thomas-Hall, Skye R; Chua, Elvis T; Eltanahy, Eladl; Netzel, Michael E; Netzel, Gabriele; Lu, Yinghua; Schenk, Peer M

    2018-03-01

    The microalga Nannochloropsis produces high-value omega-3-rich fatty acids and carotenoids. In this study the effects of light intensity and wavelength on biomass, fatty acid, and carotenoid production with respect to light output efficiency were investigated. Similar biomass and fatty acid yields were obtained at high light intensity (150 μmol m -2  s -1 ) LEDs on day 7 and low light intensity (50 μmol m -2  s -1 ) LEDs on day 11 during cultivation, but the power efficiencies of biomass and fatty acid (specifically eicosapentaenoic acid) production were higher for low light intensity. Interestingly, low light intensity enhanced both, carotenoid power efficiency of carotenoid biosynthesis and yield. White LEDs were neither advantageous for biomass and fatty acid yields, nor the power efficiency of biomass, fatty acid, and carotenoid production. Noticeably, red LED resulted in the highest biomass and fatty acid power efficiency, suggesting that LEDs can be fine-tuned to grow Nannochloropsis algae more energy-efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Radiative Energy Budgets of Phototrophic Surface-Associated Microbial Communities and their Photosynthetic Efficiency Under Diffuse and Collimated Light

    PubMed Central

    Lichtenberg, Mads; Brodersen, Kasper E.; Kühl, Michael

    2017-01-01

    We investigated the radiative energy budgets of a heterogeneous photosynthetic coral reef sediment and a compact uniform cyanobacterial biofilm on top of coastal sediment. By combining electrochemical, thermocouple and fiber-optic microsensor measurements of O2, temperature and light, we could calculate the proportion of the absorbed light energy that was either dissipated as heat or conserved by photosynthesis. We show, across a range of different incident light regimes, that such radiative energy budgets are highly dominated by heat dissipation constituting up to 99.5% of the absorbed light energy. Highest photosynthetic energy conservation efficiency was found in the coral sediment under low light conditions and amounted to 18.1% of the absorbed light energy. Additionally, the effect of light directionality, i.e., diffuse or collimated light, on energy conversion efficiency was tested on the two surface-associated systems. The effects of light directionality on the radiative energy budgets of these phototrophic communities were not unanimous but, resulted in local spatial differences in heat-transfer, gross photosynthesis, and light distribution. The light acclimation index, Ek, i.e., the irradiance at the onset of saturation of photosynthesis, was >2 times higher in the coral sediment compared to the biofilm and changed the pattern of photosynthetic energy conservation under light-limiting conditions. At moderate to high incident irradiances, the photosynthetic conservation of absorbed energy was highest in collimated light; a tendency that changed in the biofilm under sub-saturating incident irradiances, where higher photosynthetic efficiencies were observed under diffuse light. The aim was to investigate how the physical structure and light propagation affected energy budgets and light utilization efficiencies in loosely organized vs. compact phototrophic sediment under diffuse and collimated light. Our results suggest that the optical properties and the structural organization of phytoelements are important traits affecting the photosynthetic efficiency of biofilms and sediments. PMID:28400749

  1. Radiative Energy Budgets of Phototrophic Surface-Associated Microbial Communities and their Photosynthetic Efficiency Under Diffuse and Collimated Light.

    PubMed

    Lichtenberg, Mads; Brodersen, Kasper E; Kühl, Michael

    2017-01-01

    We investigated the radiative energy budgets of a heterogeneous photosynthetic coral reef sediment and a compact uniform cyanobacterial biofilm on top of coastal sediment. By combining electrochemical, thermocouple and fiber-optic microsensor measurements of O 2 , temperature and light, we could calculate the proportion of the absorbed light energy that was either dissipated as heat or conserved by photosynthesis. We show, across a range of different incident light regimes, that such radiative energy budgets are highly dominated by heat dissipation constituting up to 99.5% of the absorbed light energy. Highest photosynthetic energy conservation efficiency was found in the coral sediment under low light conditions and amounted to 18.1% of the absorbed light energy. Additionally, the effect of light directionality, i.e., diffuse or collimated light, on energy conversion efficiency was tested on the two surface-associated systems. The effects of light directionality on the radiative energy budgets of these phototrophic communities were not unanimous but, resulted in local spatial differences in heat-transfer, gross photosynthesis, and light distribution. The light acclimation index, E k , i.e., the irradiance at the onset of saturation of photosynthesis, was >2 times higher in the coral sediment compared to the biofilm and changed the pattern of photosynthetic energy conservation under light-limiting conditions. At moderate to high incident irradiances, the photosynthetic conservation of absorbed energy was highest in collimated light; a tendency that changed in the biofilm under sub-saturating incident irradiances, where higher photosynthetic efficiencies were observed under diffuse light. The aim was to investigate how the physical structure and light propagation affected energy budgets and light utilization efficiencies in loosely organized vs. compact phototrophic sediment under diffuse and collimated light. Our results suggest that the optical properties and the structural organization of phytoelements are important traits affecting the photosynthetic efficiency of biofilms and sediments.

  2. Synchronizing Education to Adolescent Biology: "Let Teens Sleep, Start School Later"

    ERIC Educational Resources Information Center

    Kelley, Paul; Lockley, Steven W.; Foster, Russell G.; Kelley, Jonathan

    2015-01-01

    Arne Duncan, US Secretary of State for Education, tweeted in 2013: "let teens sleep, start school later". This paper examines early starts and their negative consequences in the light of key research in the last 30 years in sleep medicine and circadian neuroscience. An overview of the circadian timing system in adolescence leading to…

  3. Leaf area and light use efficiency patterns of Norway spruce under different thinning regimes and age classes

    PubMed Central

    Gspaltl, Martin; Bauerle, William; Binkley, Dan; Sterba, Hubert

    2013-01-01

    Silviculture focuses on establishing forest stand conditions that improve the stand increment. Knowledge about the efficiency of an individual tree is essential to be able to establish stand structures that increase tree resource use efficiency and stand level production. Efficiency is often expressed as stem growth per unit leaf area (leaf area efficiency), or per unit of light absorbed (light use efficiency). We tested the hypotheses that: (1) volume increment relates more closely with crown light absorption than leaf area, since one unit of leaf area can receive different amounts of light due to competition with neighboring trees and self-shading, (2) dominant trees use light more efficiently than suppressed trees and (3) thinning increases the efficiency of light use by residual trees, partially accounting for commonly observed increases in post-thinning growth. We investigated eight even-aged Norway spruce (Picea abies (L.) Karst.) stands at Bärnkopf, Austria, spanning three age classes (mature, immature and pole-stage) and two thinning regimes (thinned and unthinned). Individual leaf area was calculated with allometric equations and absorbed photosynthetically active radiation was estimated for each tree using the three-dimensional crown model Maestra. Absorbed photosynthetically active radiation was only a slightly better predictor of volume increment than leaf area. Light use efficiency increased with increasing tree size in all stands, supporting the second hypothesis. At a given tree size, trees from the unthinned plots were more efficient, however, due to generally larger tree sizes in the thinned stands, an average tree from the thinned treatment was superior (not congruent in all plots, thus only partly supporting the third hypothesis). PMID:25540477

  4. Single-Crystalline InGaAs/InP Dense Micro-Pillar Forest on Poly-Silicon Substrates for Low-Cost High-Efficiency Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang-Hasnain, Constance

    2015-05-04

    The ultimate goal of this project is to develop a photovoltaic system high conversion efficiency (>20%) using high quality III-V compound-based three-dimensional micro-structures on silicon and poly-silicon. Such a PV-system could be of very low cost due to minimum usages of III-V materials. This project will address the barriers that currently hamper the performance of solar cells based on three-dimensional micro-structures. To accomplish this goal the project is divided into 4 tasks, each dealing with a different aspect of the project: materials quality, micropillar growth control, light management, and pillar based solar cells. Materials Quality: the internal quantum efficiency (IQE)more » - by which is meant here the internal fluorescence yield - of the micro-pillars has to be increased. We aim at achieving an IQE of 45% by the end of the first year. By the end of the second year there will be a go-no-go milestone of 65% IQE. By the end of year 3 and 4 we aim to achieve 75% and 90% IQE, respectively. Micropillar growth control: dense forests of micropillars with high fill ratios need to be grown. Pillars within forests should show minimum variations in size. We aim at achieving fill ratios of 2%, 10%, >15%, >20% in years 1, 2, 3, and 4, respectively. Variations in dimension should be minimized by site-controlled growth of pillars. By the end of year 1 we will aim at achieving site-controlled growth with > 15% yield. By end of year 2 the variation of critical pillar dimensions should be less than 25%. Light management: high light absorption in the spectral range of the sun has been to be demonstrated for the micropillar forests. By the end of year 1 we will employ FDTD simulation techniques to demonstrate that pillar forests with fill ratios <20% can achieve 99% light absorption. By end of year 2 our original goal was to demonstrate >85% absorption. By end of year 3 > 90% absorption should be demonstrated. Pillar based solar cells: devices will be studied to explore ways to achieve high open-circuit voltages which will lead to high efficiency micropillar-based solar cells. We will start on single pillar devices and the findings in these studies should pave the way for devices based on forests/ arrays of pillars. By the end of the second year we aim to demonstrate a single pillar device with an open-circuit voltage of 0.7 V, as well as a pillar-forest based device with 8% conversion efficiency. By the end of year 3 these numbers should be improved to 0.9 V open-circuit voltage for single pillar devices and >15% efficiency for forest/array-based devices. We will aim to realize a device with 20% efficiency by the end of the project period.« less

  5. 10 CFR 431.446 - Small electric motors energy conservation standards and their effective dates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... full load efficiency Capacitor-start capacitor-run and capacitor-start induction-run Open motors... 10 Energy 3 2014-01-01 2014-01-01 false Small electric motors energy conservation standards and... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Energy Conservation...

  6. 10 CFR 431.446 - Small electric motors energy conservation standards and their effective dates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... full load efficiency Capacitor-start capacitor-run and capacitor-start induction-run Open motors... 10 Energy 3 2012-01-01 2012-01-01 false Small electric motors energy conservation standards and... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Energy Conservation...

  7. 10 CFR 431.446 - Small electric motors energy conservation standards and their effective dates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... full load efficiency Capacitor-start capacitor-run and capacitor-start induction-run Open motors... 10 Energy 3 2013-01-01 2013-01-01 false Small electric motors energy conservation standards and... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Energy Conservation...

  8. Reshaping Light-Emitting Diodes To Increase External Efficiency

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert; Egalon, Claudio

    1995-01-01

    Light-emitting diodes (LEDs) reshaped, according to proposal, increasing amount of light emitted by decreasing fraction of light trapped via total internal reflection. Results in greater luminous output power for same electrical input power; greater external efficiency. Furthermore, light emitted by reshaped LEDs more nearly collimated (less diffuse). Concept potentially advantageous for conventional red-emitting LEDs. More advantageous for new "blue" LEDs, because luminous outputs and efficiencies of these devices very low. Another advantage, proposed conical shapes achieved relatively easily by chemical etching of semiconductor surfaces.

  9. Light quality and efficiency of consumer grade solid state lighting products

    NASA Astrophysics Data System (ADS)

    Dam-Hansen, Carsten; Corell, Dennis Dan; Thorseth, Anders; Poulsen, Peter Behrensdorff

    2013-03-01

    The rapid development in flux and efficiency of Light Emitting Diodes (LED) has resulted in a flooding of the lighting market with Solid State Lighting (SSL) products. Many traditional light sources can advantageously be replaced by SSL products. There are, however, large variations in the quality of these products, and some are not better than the ones they are supposed to replace. A lack of quality demands and standards makes it difficult for consumers to get an overview of the SSL products. Here the results of a two year study investigating SSL products on the Danish market are presented. Focus has been on SSL products for replacement of incandescent lamps and halogen spotlights. The warm white light and good color rendering properties of these traditional light sources are a must for lighting in Denmark and the Nordic countries. 266 SSL replacement lamps have been tested for efficiency and light quality with respect to correlated color temperature and color rendering properties. This shows a trade-off between high color rendering warm white light and energy efficiency. The lumen and color maintenance over time has been investigated and results for products running over 11000 h will be presented. A new internet based SSL product selection tool will be shown. Here the products can be compared on efficiency, light quality parameters, thus providing a better basis for the selection of SSL products for consumers.

  10. Light emitting diodes (LED): applications in forest and native plant nurseries

    Treesearch

    Thomas D. Landis; Jeremiah R. Pinto; R. Kasten Dumroese

    2013-01-01

    It was quotes like this that made us want to learn more about light emitting diodes (LED). Other than knowing that LEDs were the latest innovation in artificial lighting, we knew that we had a lot to learn. So we started by reviewing some of the basics. The following review is a brief synopsis of how light affects plants and some discussion about LED lighting. If you...

  11. B and V photometry and analysis of the eclipsing binary RZ CAS

    NASA Astrophysics Data System (ADS)

    Riazi, N.; Bagheri, M. R.; Faghihi, F.

    1994-01-01

    Photoelectric light curves of the eclipsing binary RZ Cas are presented for B and V filters. The light curves are analyzed for light and geometrical elements, starting with a previously suggested preliminary method. The approximate results thus obtained are then optimised through the Wilson-Devinney computer programs.

  12. Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; May, A. A.; Nguyen, N. T.; Lipsky, E. M.; Donahue, N. M.; Gutierrez, A.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2014-05-01

    The effects of photochemical aging on emissions from 15 light-duty gasoline vehicles were investigated using a smog chamber to probe the critical link between the tailpipe and ambient atmosphere. The vehicles were recruited from the California in-use fleet; they represent a wide range of model years (1987 to 2011), vehicle types and emission control technologies. Each vehicle was tested on a chassis dynamometer using the unified cycle. Dilute emissions were sampled into a portable smog chamber and then photochemically aged under urban-like conditions. For every vehicle, substantial secondary organic aerosol (SOA) formation occurred during cold-start tests, with the emissions from some vehicles generating as much as 6 times the amount of SOA as primary particulate matter (PM) after 3 h of oxidation inside the chamber at typical atmospheric oxidant levels (and 5 times the amount of SOA as primary PM after 5 × 106 molecules cm-3 h of OH exposure). Therefore, the contribution of light-duty gasoline vehicle exhaust to ambient PM levels is likely dominated by secondary PM production (SOA and nitrate). Emissions from hot-start tests formed about a factor of 3-7 less SOA than cold-start tests. Therefore, catalyst warm-up appears to be an important factor in controlling SOA precursor emissions. The mass of SOA generated by photooxidizing exhaust from newer (LEV2) vehicles was a factor of 3 lower than that formed from exhaust emitted by older (pre-LEV) vehicles, despite much larger reductions (a factor of 11-15) in nonmethane organic gas emissions. These data suggest that a complex and nonlinear relationship exists between organic gas emissions and SOA formation, which is not surprising since SOA precursors are only one component of the exhaust. Except for the oldest (pre-LEV) vehicles, the SOA production could not be fully explained by the measured oxidation of speciated (traditional) SOA precursors. Over the timescale of these experiments, the mixture of organic vapors emitted by newer vehicles appears to be more efficient (higher yielding) in producing SOA than the emissions from older vehicles. About 30% of the nonmethane organic gas emissions from the newer (LEV1 and LEV2) vehicles could not be speciated, and the majority of the SOA formed from these vehicles appears to be associated with these unspeciated organics. By comparing this study with a companion study of diesel trucks, we conclude that both primary PM emissions and SOA production for light-duty gasoline vehicles are much greater than for late-model (2007 and later) on-road heavy-duty diesel trucks.

  13. Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; May, A. A.; Nguyen, N. T.; Lipsky, E. M.; Donahue, N. M.; Gutierrez, A.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2013-09-01

    The effects of photochemical aging on emissions from 15 light-duty gasoline vehicles were investigated using a smog chamber to probe the critical link between the tailpipe and ambient atmosphere. The vehicles were recruited from the California in-use fleet; they represent a wide range of model years (1987 to 2011), vehicle types and emission control technologies. Each vehicle was tested on a chassis dynamometer using the unified cycle. Dilute emissions were sampled into a portable smog chamber and then photochemically aged under urban-like conditions. For every vehicle, substantial secondary organic aerosol (SOA) formation occurred during cold-start tests, with the emissions from some vehicles generating as much as 6 times the amount of SOA as primary particulate matter after three hours of oxidation inside the chamber at typical atmospheric oxidant levels. Therefore, the contribution of light duty gasoline vehicle exhaust to ambient PM levels is likely dominated by secondary PM production (SOA and nitrate). Emissions from hot-start tests formed about a factor of 3-7 less SOA than cold-start tests. Therefore, catalyst warm-up appears to be an important factor in controlling SOA precursor emissions. The mass of SOA generated by photo-oxidizing exhaust from newer (LEV1 and LEV2) vehicles was only modestly lower (38%) than that formed from exhaust emitted by older (pre-LEV) vehicles, despite much larger reductions in non-methane organic gas emissions. These data suggest that a complex and non-linear relationship exists between organic gas emissions and SOA formation, which is not surprising since SOA precursors are only one component of the exhaust. Except for the oldest (pre-LEV) vehicles, the SOA production could not be fully explained by the measured oxidation of speciated (traditional) SOA precursors. Over the time scale of these experiments, the mixture of organic vapors emitted by newer vehicles appear to be more efficient (higher yielding) in producing SOA than the emissions from older vehicles. About 30% of the non-methane organic gas emissions from the newer (LEV1 and LEV2) vehicles could not be speciated, and the majority of the SOA formed from these vehicles appears to be associated with these unspeciated organics. These results for light-duty gasoline vehicles contrast with the results from a companion study of on-road heavy-duty diesel trucks; in that study late model (2007 and later) diesel trucks equipped with catalyzed diesel particulate filters emitted very little primary PM, and the photo-oxidized emissions produced negligible amounts of SOA.

  14. Anthropogenic noise, but not artificial light levels predicts song behaviour in an equatorial bird.

    PubMed

    Dorado-Correa, Adriana M; Rodríguez-Rocha, Manuel; Brumm, Henrik

    2016-07-01

    Birds in cities start singing earlier in the morning than in rural areas; commonly this shift is attributed to light pollution. Some studies have suggested that traffic noise has a stronger influence on singing activity than artificial light does. Changes in the timing of singing behaviour in relation to noise and light pollution have only been investigated in the temperate zones. Tropical birds, however, experience little seasonal variation in day length and may be less dependent on light intensity as a modifier for reproductive behaviours such as song. To test whether noise or light pollution has a stronger impact on the dawn chorus of a tropical bird, we investigated the singing behaviour of rufous-collared sparrows (Zonotrichia capensis) in Bogota, Colombia at two times during the year. We found that birds in places with high noise levels started to sing earlier. Light pollution did not have a significant effect. Birds may begin to sing earlier in noisy areas to avoid acoustic masking by traffic later in the morning. Our results also suggest that some tropical birds may be less sensitive to variations in day length and thus less sensitive to light pollution.

  15. Advanced lighting guidelines: 1993. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eley, C.; Tolen, T.M.; Benya, J.R.

    1993-12-31

    The 1993 Advanced Lighting Guidelines document consists of twelve guidelines that provide an overview of specific lighting technologies and design application techniques utilizing energy-efficient lighting practice. Lighting Design Practice assesses energy-efficient lighting strategies, discusses lighting issues, and explains how to obtain quality lighting design and consulting services. Luminaires and Lighting Systems surveys luminaire equipment designed to take advantage of advanced technology lamp products and includes performance tables that allow for accurate estimation of luminaire light output and power input. The additional ten guidelines -- Computer-Aided Lighting Design, Energy-Efficient Fluorescent Ballasts, Full-Size Fluorescent Lamps, Compact Fluorescent Lamps, Tungsten-Halogen Lamps, Metal Halidemore » and HPS Lamps, Daylighting and Lumen Maintenance, Occupant Sensors, Time Scheduling Systems, and Retrofit Control Technologies -- each provide a product technology overview, discuss current products on the lighting equipment market, and provide application techniques. This document is intended for use by electric utility personnel involved in lighting programs, lighting designers, electrical engineers, architects, lighting manufacturers` representatives, and other lighting professionals.« less

  16. White organic light emitting diodes with enhanced internal and external outcoupling for ultra-efficient light extraction and Lambertian emission.

    PubMed

    Bocksrocker, Tobias; Preinfalk, Jan Benedikt; Asche-Tauscher, Julian; Pargner, Andreas; Eschenbaum, Carsten; Maier-Flaig, Florian; Lemme, Uli

    2012-11-05

    White organic light emitting diodes (WOLEDs) suffer from poor outcoupling efficiencies. The use of Bragg-gratings to enhance the outcoupling efficiency is very promising for light extraction in OLEDs, but such periodic structures can lead to angular or spectral dependencies in the devices. Here we present a method which combines highly efficient outcoupling by a TiO(2)-Bragg-grating leading to a 104% efficiency enhancement and an additional high quality microlens diffusor at the substrate/air interface. With the addition of this diffusor, we achieved not only a uniform white emission, but also further increased the already improved device efficiency by another 94% leading to an overall enhancement factor of about 4.

  17. Connected Lighting Systems Efficiency Study$-$ PoE Cable Energy Losses, Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuenge, Jason; Kelly, Karsten; Poplawski, Michael

    First report in a study of the efficiency of connected lighting systems. The report summarizes the results of an exploratory study investigating power losses in Ethernet cables used between PoE switches and luminaires in PoE connected lighting systems. Testing was conducted at the Pacific Northwest National Laboratory (PNNL) Connected Lighting Test Bed in September 2017. The results were analyzed to explore the impact of cable selection on PoE lighting system energy efficiency, as well as the effectiveness of guidelines recently introduced by the American National Standards Institute (ANSI) C137 Lighting Systems Committee.

  18. Increased photosynthesis compensates for shorter growing season in subarctic tundra - seven years of snow accumulation manipulations

    NASA Astrophysics Data System (ADS)

    Bosiö, Julia; Johansson, Margareta; Njuabe, Herbert; Christensen, Torben R.

    2013-04-01

    This study was initiated to analyze the effect of snow cover on photosynthesis and plant growth in subarctic mires underlain by permafrost. Due to their narrow environmental window these raised bogs, often referred to as palsa mires, are highly sensitive to climatic changes. In Fennoscandia palsa mires are currently subjected to climate related thawing and shift in vegetational and hydrological patterns. Yet, we know little of how these subarctic permafrost mires react and feed back to such changes. By using snow fences to hinder snow drift the accumulation of snow was increased in six plots (10x20 m) in a snow manipulation experiment on a subarctic permafrost mire in northern Sweden. The thicker snow pack prolongs the duration of the snow cover in spring, causing a delay in the onset, as well as an overall shortening of the growing season. By measuring incoming and reflected photosynthetic active radiation (PAR) we wanted to address the question whether the increased snow thickness and associated delay of the growing season start affected the absorbed PAR and the accumulated gross primary production (GPP) over the season. The reflected PAR was measured at twelve plots where six of the plots experienced increased snow accumulation (treatment), and remaining six plots were untreated (control). Minikin QT sensors with integrated data loggers logged incoming and reflected PAR hourly throughout the growing seasons of 2011 and 2012. In July - September 2010 PAR measurements were coupled with flux chamber measurements to assess GPP and light use efficiency of the plots. The increased accumulation of snow prolonged the duration of the snow cover in spring, causing a delay in the onset, as well as an overall shortening of the growing season in the treated plots. The end of the growing season was not affected by the snow manipulation. The delay of the growing season start and hence overall shortening of the growing season in the treatment plots was 18 days in 2011 and 3 days in 2012 in relation to control plots. Results show higher PAR absorption together with almost 50% higher light use efficiency in treatment plots compared with control plots. Estimations of GPP suggest that the loss in early season photosynthesis due to the shortening of the growing season in the treatment plots is well compensated for by the increased absorption of PAR and higher light use efficiency throughout the whole growing seasons. This compensation is likely to be explained by increased soil moisture and nutrient availability together with a shift in vegetation composition associated with the accelerated permafrost thaw in the treatment plots. In our presentation implications and possible feedbacks of the increased absorbed PAR and estimated change in GPP will be discussed.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Kelly L.; Foster, Rebecca; McGowan, Terry

    This article for a building trade magazine describes a national design competition for energy efficient lighting sponsored by the U.S. Department of Energy, the American Lighting Association, and the Consortium for Energy Efficiency, with winners announced at ALA's Annual Conference May 14, 2004, in Tucson. The Lighting for Tomorrow competition was the first national lighting fixture design competition focusing on energy-efficient residential lighting. The competition invited fixture manufacturers and designers to come up with beautiful, functional lighting fixtures that also happen to be energy efficient. Fixtures were required to use a ''dedicated'' energy-efficient light source, such as a pin-based fluorescentmore » lamp that cannot be replaced with a screw-in incandescent bulb. Fixtures also had to meet a minimum energy efficiency level that eliminated use of incandescent and halogen lamps, leaving the door open only to fluorescent sources and LEDs. More than 150 paper designs were submitted in the first phase of the competition, in 2003. Of those, 24 finalists were invited to submit working prototypes in 2004, and the winners were announced in May. The Grand Prize of $10,000 went to American Fluorescent of Waukegan, Illinois, for its ''Salem'' chandelier. Some winning fixtures are already available through Lowe's Home Improvement Centers.« less

  20. Performance of a two-leaf light use efficiency model for mapping gross primary productivity against remotely sensed sun-induced chlorophyll fluorescence data.

    PubMed

    Zan, Mei; Zhou, Yanlian; Ju, Weimin; Zhang, Yongguang; Zhang, Leiming; Liu, Yibo

    2018-02-01

    Estimating terrestrial gross primary production is an important task when studying the carbon cycle. In this study, the ability of a two-leaf light use efficiency model to simulate regional gross primary production in China was validated using satellite Global Ozone Monitoring Instrument - 2 sun-induced chlorophyll fluorescence data. The two-leaf light use efficiency model was used to estimate daily gross primary production in China's terrestrial ecosystems with 500-m resolution for the period from 2007 to 2014. Gross primary production simulated with the two-leaf light use efficiency model was resampled to a spatial resolution of 0.5° and then compared with sun-induced chlorophyll fluorescence. During the study period, sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model exhibited similar spatial and temporal patterns in China. The correlation coefficient between sun-induced chlorophyll fluorescence and monthly gross primary production simulated by the two-leaf light use efficiency model was significant (p<0.05, n=96) in 88.9% of vegetated areas in China (average value 0.78) and varied among vegetation types. The interannual variations in monthly sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model were similar in spring and autumn in most vegetated regions, but dissimilar in winter and summer. The spatial variability of sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model was similar in spring, summer, and autumn. The proportion of spatial variations of sun-induced chlorophyll fluorescence and annual gross primary production simulated by the two-leaf light use efficiency model explained by ranged from 0.76 (2011) to 0.80 (2013) during the study period. Overall, the two-leaf light use efficiency model was capable of capturing spatial and temporal variations in gross primary production in China. However, the model needs further improvement to better simulate gross primary production in summer. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Light and Heavy Tactical Wheeled Vehicle Fuel Consumption Evaluations Using Fuel Efficient Gear Oils (FEGO)

    DTIC Science & Technology

    2016-05-01

    UNCLASSIFIED LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL... HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL REPORT TFLRF No. 477 by Adam C...August 2014 – March 2016 4. TITLE AND SUBTITLE LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FEUL EFFICIENT GEAR OILS

  2. Reduced graphene oxide enwrapped phosphors for long-term thermally stable phosphor converted white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Anoop, Gopinathan; Rani, Janardhanan R.; Lim, Juhwan; Jang, Myoung Soo; Suh, Dong Wook; Kang, Shinill; Jun, Seong Chan; Yoo, Jae Soo

    2016-09-01

    The long-term instability of the presently available best commercial phosphor-converted light-emitting diodes (pcLEDs) is the most serious obstacle for the realization of low-cost and energy-saving lighting applications. Emission from pcLEDs starts to degrade after approximately 200 h of operation because of thermal degradation of the phosphors. We propose a new strategy to overcome this thermal degradation problem of phosphors by wrapping the phosphor particles with reduced graphene oxide (rGO). Through the rGO wrapping, we have succeeded in controlling the thermal degradation of phosphors and improving the stability of fabricated pcLEDs. We have fabricated pcLEDs with long-term stability that maintain nearly 98% of their initial luminescence emission intensity even after 800 h of continuous operation at 85 °C and 85% relative humidity. The pcLEDs fabricated using SrBaSi2O2N2:Eu2+ phosphor particles wrapped with reduced graphene oxide are thermally stable because of enhanced heat dissipation that prevents the ionization of Eu2+ to Eu3+. We believe that this technique can be applied to other rare-earth doped phosphors for the realization of highly efficient and stable white LEDs.

  3. Diagnostic Systems Plan for the Advanced Light Source Top-OffUpgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barry, Walter; Chin, Mike; Robin, David

    2005-05-10

    The Advanced Light Source (ALS) will soon be upgraded to enable top-off operations [1], in which electrons are quasi-continuously injected to produce constant stored beam current. The upgrade is structured in two phases. First, we will upgrade our injector from 1.5 GeV to 1.9 GeV to allow full energy injection and will start top-off operations. In the second phase, we will upgrade the Booster Ring (BR) with a bunch cleaning system to allow high bunch purity top-off injection. A diagnostics upgrade will be crucial for success in both phases of the top-off project, and our plan for it is describedmore » in this paper. New booster ring diagnostics will include updated beam position monitor (BPM) electronics, a tune monitoring system, and a new scraper. Two new synchrotron light monitors and a beam stop will be added to the booster-to-storage ring transfer line (BTS), and all the existing beam current monitors along the accelerator chain will be integrated into a single injection efficiency monitoring application. A dedicated bunch purity monitor will be installed in the storage ring (SR). Together, these diagnostic upgrades will enable smooth commissioning of the full energy injector and a quick transition to high quality top-off operation at the ALS.« less

  4. Influence of supplementary lighting during artificial scab inoculation tests in an apple breeding programm focused on partial resistance.

    PubMed

    Lefrancq, B; Lateur, M

    2006-01-01

    In 1988, the Department of Biological Control and Plant Genetic Resources at the Walloon Agricultural Research Centre started an apple-breeding programme using local genetic resources and modern varieties. Our objective is to create high quality commercial cultivars with durable resistance to scab (Venturia inaequalis), powdery mildew (Podosphaera leucotricha) and canker (Nectria galligena). The breeding strategy is based on crossing old apple cultivars and landraces selected as parents for low disease susceptibility and possessing other desirable horticultural characteristics. The programme aims to develop an early and efficient selection methodology adapted to partial disease resistance. One of the objectives is to define the optimal screening limit for discarding individuals after artificial scab inoculation tests. Working with large populations of seedlings entails spacing the seedling scab tests throughout the year. In order to work during winter, seedlings were grown in controlled cabinet conditions and in a glasshouse with supplementary lighting. To assess the bias introduced by these conditions, two trials were conducted: the first one to compare the influence of both environments on the results of scab inoculation tests, and the second one to assess the influence of the duration of supplementary lighting. The results enabled us to evaluate the limits of artificial cultural systems.

  5. Lighting for Tomorrow: Building on the results of the first national energy-efficient lighting fixture design competition in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Kelly L.; Foster, Rebecca; McGowan, Terry

    2005-05-09

    Lighting for Tomorrow was the first residential lighting fixture design competition conducted in the United States to focus on energy-efficient light sources. Sponsored by the American Lighting Association, the Consortium for Energy Efficiency, and the U.S. Department of Energy, the competition was carried out in two phases between 2002 and 2004. Five winning fixture designs were selected from a field of 24 finalists. The paper describes the competition in detail, including its origins, sponsors, structure and rules, timeline, prizes, selection criteria, and judges. The paper describes the results of the competition, including industry response, promotion and publicity efforts, technical andmore » design innovations demonstrated by the winners, and retail placements to date. Finally, the paper offers several lessons learned that are instructive for future efforts to promote high-efficiency lighting through the design competition approach.« less

  6. Climbing plants in a temperate rainforest understorey: searching for high light or coping with deep shade?

    PubMed

    Valladares, Fernando; Gianoli, Ernesto; Saldaña, Alfredo

    2011-08-01

    While the climbing habit allows vines to reach well-lit canopy areas with a minimum investment in support biomass, many of them have to survive under the dim understorey light during certain stages of their life cycle. But, if the growth/survival trade-off widely reported for trees hold for climbing plants, they cannot maximize both light-interception efficiency and shade avoidance (i.e. escaping from the understorey). The seven most important woody climbers occurring in a Chilean temperate evergreen rainforest were studied with the hypothesis that light-capture efficiency of climbers would be positively associated with their abundance in the understorey. Species abundance in the understorey was quantified from their relative frequency and density in field plots, the light environment was quantified by hemispherical photography, the photosynthetic response to light was measured with portable gas-exchange analyser, and the whole shoot light-interception efficiency and carbon gain was estimated with the 3-D computer model Y-plant. Species differed in specific leaf area, leaf mass fraction, above ground leaf area ratio, light-interception efficiency and potential carbon gain. Abundance of species in the understorey was related to whole shoot features but not to leaf level features such as specific leaf area. Potential carbon gain was inversely related to light-interception efficiency. Mutual shading among leaves within a shoot was very low (<20 %). The abundance of climbing plants in this southern rainforest understorey was directly related to their capacity to intercept light efficiently but not to their potential carbon gain. The most abundant climbers in this ecosystem match well with a shade-tolerance syndrome in contrast to the pioneer-like nature of climbers observed in tropical studies. The climbers studied seem to sacrifice high-light searching for coping with the dim understorey light.

  7. Lighting recommendations for the Social Security Administration Frank Hagel Federal Building in Richmond CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinstein, Francis M.

    Specific recommendations are made to improve the lighting quality and energy efficiency of the lighting system at the Social Security Administration Frank Hagel Building in Richmond, CA. The main recommendation is to replace the recessed fluorescent lighting system in the general office area with indirect lighting. Indirect lighting will improve lighting quality, will provide an energy efficient solution and will be about the same cost as the direct lighting system originally proposed.

  8. The light output and the detection efficiency of the liquid scintillator EJ-309.

    PubMed

    Pino, F; Stevanato, L; Cester, D; Nebbia, G; Sajo-Bohus, L; Viesti, G

    2014-07-01

    The light output response and the neutron and gamma-ray detection efficiency are determined for liquid scintillator EJ-309. The light output function is compared to those of previous studies. Experimental efficiency results are compared to predictions from GEANT4, MCNPX and PENELOPE Monte Carlo simulations. The differences associated with the use of different light output functions are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century

    DOE PAGES

    O'Sullivan, M.; Rap, A.; Reddington, C. L.; ...

    2016-07-29

    The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998–2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbonmore » uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.« less

  10. Effect of variable cerium concentration on photoluminescence behaviour in ZrO2 phosphor synthesized by combustion synthesis method

    NASA Astrophysics Data System (ADS)

    Dubey, Vikas; Kaur, Jagjeet

    2016-05-01

    Present paper reports synthesis and characterization of trivalent cerium (Ce3+) doped zirconium dioxide (ZrO2) phosphors. Effect of variable concentration of cerium on photoluminescence (PL) is studied. Samples were prepared by combustion synthesis technique which is suitable for less time taking techniques also for large scale production for phosphors. Starting material used for sample preparation are Zr(NO3)3 and Ce(NO3)3 and urea used as a fuel. All prepared phosphor with variable concentration of Ce3+ (0.1 to 2mol%) was studied by photoluminescence analysis it is found that the excitation spectra of prepared phosphor shows broad excitation centred at 390nm. The excitation spectra with variable concentration of Ce3+ show strong peaks at 447nm. Spectrophotometric determinations of peaks are evaluated by Commission Internationale de I'Eclairage technique. Using this phosphor, the desired CIE values including emissions throughout the violet (390 nm) and blue (427 nm) of the spectra were achieved. Efficient blue light emitting diodes were fabricated using Ce3+ doped phosphor based on near ultraviolet (NUV) excited LED lights.

  11. Ignition and combustion characteristics of metallized propellants

    NASA Technical Reports Server (NTRS)

    Turns, S. R.; Mueller, D. C.; Scott, M. J.

    1990-01-01

    Research designed to develop detailed knowledge of the secondary atomization and ignition characteristics of aluminum slurry propellants was started. These processes are studied because they are the controlling factors limiting the combustion efficiency of aluminum slurry propellants in rocket applications. A burner and spray rig system allowing the study of individual slurry droplets having diameters from about 10 to 100 microns was designed and fabricated. The burner generates a near uniform high temperature environment from the merging of 72 small laminar diffusion flames above a honeycomb matrix. This design permits essentially adiabatic operation over a wide range of stoichiometries without danger of flashback. A single particle sizing system and velocimeter also were designed and assembled. Light scattered from a focused laser beam is related to the particle (droplet) size, while the particle velocity is determined by its transit time through the focal volume. Light from the combustion of aluminum is also sensed to determine if ignition was achieved. These size and velocity measurements will allow the determination of disruption and ignition times as functions of drop sizes and ambient conditions.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubey, Vikas, E-mail: jsvikasdubey@gmail.com; Kaur, Jagjeet

    Present paper reports synthesis and characterization of trivalent cerium (Ce{sup 3+}) doped zirconium dioxide (ZrO{sub 2}) phosphors. Effect of variable concentration of cerium on photoluminescence (PL) is studied. Samples were prepared by combustion synthesis technique which is suitable for less time taking techniques also for large scale production for phosphors. Starting material used for sample preparation are Zr(NO{sub 3}){sub 3} and Ce(NO{sub 3}){sub 3} and urea used as a fuel. All prepared phosphor with variable concentration of Ce{sup 3+} (0.1 to 2mol%) was studied by photoluminescence analysis it is found that the excitation spectra of prepared phosphor shows broad excitationmore » centred at 390nm. The excitation spectra with variable concentration of Ce{sup 3+} show strong peaks at 447nm. Spectrophotometric determinations of peaks are evaluated by Commission Internationale de I’Eclairage technique. Using this phosphor, the desired CIE values including emissions throughout the violet (390 nm) and blue (427 nm) of the spectra were achieved. Efficient blue light emitting diodes were fabricated using Ce{sup 3+} doped phosphor based on near ultraviolet (NUV) excited LED lights.« less

  13. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Sullivan, M.; Rap, A.; Reddington, C. L.

    The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998–2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbonmore » uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.« less

  14. NREL Paves the Way to Commercialization of Silicon Ink (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In 2008, Innovalight, a start-up company in Sunnyvale, California, invented a liquid form of silicon, called Silicon Ink. It contains silicon nanoparticles that are suspended evenly within the solution. Those nanoparticles contain dopant atoms that can be driven into silicon solar cells, which changes the conductivity of the silicon and creates the internal electric fields that are needed to turn photons into electrons -- and thus into electricity. The ink is applied with a standard screen printer, already commonly used in the solar industry. The distinguishing feature of Silicon Ink is that it can be distributed in exact concentrations inmore » precisely the correct locations on the surface of the solar cell. This allows most of the surface to be lightly doped, enhancing its response to blue light, while heavily doping the area around the electrical contacts, raising the conductivity in that area to allow the contact to work more efficiently. The accuracy and uniformity of the ink distribution allows the production of solar cells that achieve higher power production at a minimal additional cost.« less

  15. Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons

    PubMed Central

    Yao, Yung-Chi; Hwang, Jung-Min; Yang, Zu-Po; Haung, Jing-Yu; Lin, Chia-Ching; Shen, Wei-Chen; Chou, Chun-Yang; Wang, Mei-Tan; Huang, Chun-Ying; Chen, Ching-Yu; Tsai, Meng-Tsan; Lin, Tzu-Neng; Shen, Ji-Lin; Lee, Ya-Ju

    2016-01-01

    Enhancement of the external quantum efficiency of a GaN-based vertical-type light emitting diode (VLED) through the coupling of localized surface plasmon (LSP) resonance with the wave-guided mode light is studied. To achieve this experimentally, Ag nanoparticles (NPs), as the LSP resonant source, are drop-casted on the most top layer of waveguide channel, which is composed of hydrothermally synthesized ZnO nanorods capped on the top of GaN-based VLED. Enhanced light-output power and external quantum efficiency are observed, and the amount of enhancement remains steady with the increase of the injected currents. To understand the observations theoretically, the absorption spectra and the electric field distributions of the VLED with and without Ag NPs decorated on ZnO NRs are determined using the finite-difference time-domain (FDTD) method. The results prove that the observation of enhancement of the external quantum efficiency can be attributed to the creation of an extra escape channel for trapped light due to the coupling of the LSP with wave-guided mode light, by which the energy of wave-guided mode light can be transferred to the efficient light scattering center of the LSP. PMID:26935648

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wierer, Jonathan J.; Tsao, Jeffrey Y.; Sizov, Dmitry S.

    Solid-state lighting (SSL) is now the most efficient source of high color quality white light ever created. Nevertheless, the blue InGaN light-emitting diodes (LEDs) that are the light engine of SSL still have significant performance limitations. Foremost among these is the decrease in efficiency at high input current densities widely known as “efficiency droop.” Efficiency droop limits input power densities, contrary to the desire to produce more photons per unit LED chip area and to make SSL more affordable. Pending a solution to efficiency droop, an alternative device could be a blue laser diode (LD). LDs, operated in stimulated emission,more » can have high efficiencies at much higher input power densities than LEDs can. In this article, LEDs and LDs for future SSL are explored by comparing: their current state-of-the-art input-power-density-dependent power-conversion efficiencies; potential improvements both in their peak power-conversion efficiencies and in the input power densities at which those efficiencies peak; and their economics for practical SSL.« less

  17. Distributing and storing data efficiently by means of special datasets in the ATLAS collaboration

    NASA Astrophysics Data System (ADS)

    Köneke, Karsten; ATLAS Collaboration

    2011-12-01

    With the start of the LHC physics program, the ATLAS experiment started to record vast amounts of data. This data has to be distributed and stored on the world-wide computing grid in a smart way in order to enable an effective and efficient analysis by physicists. This article describes how the ATLAS collaboration chose to create specialized reduced datasets in order to efficiently use computing resources and facilitate physics analyses.

  18. Thick Film Interference.

    ERIC Educational Resources Information Center

    Trefil, James

    1983-01-01

    Discusses why interference effects cannot be seen with a thick film, starting with a review of the origin of interference patterns in thin films. Considers properties of materials in films, properties of the light source, and the nature of light. (JN)

  19. An Efficient Composition for Bengal Lights.

    ERIC Educational Resources Information Center

    Comet, M.; Schreyeck, L.; Fuzellier, H.

    2002-01-01

    Reports the discovery of an efficient base composition for making bengal lights that is obtained with potassium chlorate and thiourea. Combining this mixture with appropriate flame coloring can produce several impressive bengal lights. (DDR)

  20. High efficiency III-nitride light-emitting diodes

    DOEpatents

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  1. Analyzing Real-World Light Duty Vehicle Efficiency Benefits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonder, Jeffrey; Wood, Eric; Chaney, Larry

    Off-cycle technologies represent an important pathway to achieve real-world fuel savings, through which OEMs can potentially receive credit toward CAFE compliance. DOE national labs such as NREL are well positioned to provide objective input on these technologies using large, national data sets in conjunction with OEM- and technology-specific testing. This project demonstrates an approach that combines vehicle testing (dynamometer and on-road) with powertrain modeling and simulation over large, representative datasets to quantify real-world fuel economy. The approach can be applied to specific off-cycle technologies (engine encapsulation, start/stop, connected vehicle, etc.) in A/B comparisons to support calculation of realistic real-world impacts.more » Future work will focus on testing-based A/B technology comparisons that demonstrate the significance of this approach.« less

  2. Photodetectors based on carbon nanotubes deposited by using a spray technique on semi-insulating gallium arsenide

    PubMed Central

    Nitti, Maria Angela; Valentini, Marco; Valentini, Antonio; Ligonzo, Teresa; De Pascali, Giuseppe; Ambrico, Marianna

    2014-01-01

    Summary In this paper, a spray technique is used to perform low temperature deposition of multi-wall carbon nanotubes on semi-insulating gallium arsenide in order to obtain photodectors. A dispersion of nanotube powder in non-polar 1,2-dichloroethane is used as starting material. The morphological properties of the deposited films has been analysed by means of electron microscopy, in scanning and transmission mode. Detectors with different layouts have been prepared and current–voltage characteristics have been recorded in the dark and under irradiation with light in the range from ultraviolet to near infrared. The device spectral efficiency obtained from the electrical characterization is finally reported and an improvement of the photodetector behavior due to the nanotubes is presented and discussed. PMID:25383309

  3. III-nitride quantum dots for ultra-efficient solid-state lighting

    DOE PAGES

    Wierer, Jr., Jonathan J.; Tansu, Nelson; Fischer, Arthur J.; ...

    2016-05-23

    III-nitride light-emitting diodes (LEDs) and laser diodes (LDs) are ultimately limited in performance due to parasitic Auger recombination. For LEDs, the consequences are poor efficiencies at high current densities; for LDs, the consequences are high thresholds and limited efficiencies. Here, we present arguments for III-nitride quantum dots (QDs) as active regions for both LEDs and LDs, to circumvent Auger recombination and achieve efficiencies at higher current densities that are not possible with quantum wells. QD-based LDs achieve gain and thresholds at lower carrier densities before Auger recombination becomes appreciable. QD-based LEDs achieve higher efficiencies at higher currents because of highermore » spontaneous emission rates and reduced Auger recombination. The technical challenge is to control the size distribution and volume of the QDs to realize these benefits. In conclusion, if constructed properly, III-nitride light-emitting devices with QD active regions have the potential to outperform quantum well light-emitting devices, and enable an era of ultra-efficient solidstate lighting.« less

  4. TM-30 Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Royer, Michael P.

    Minimum color quality standards are necessary, because the light sources most efficient at producing lumens are impractical for use in architectural lighting due to poor color rendition. Thus, accurate measures of color rendition and accompanying performance criteria are essential for helping technology developers and users balance tradeoffs between energy efficiency and lighting quality. Setting higher color-rendition criteria while maintaining use of CRI (e.g., CRI ≥ 90) may filter out some unacceptable light sources, but also filters out many highly desirable light sources and requires a greater tradeoff with energy efficiency. In contrast, specifying color rendition using TM-30 Rf, Rg, andmore » Rcs,h1 has been shown to be effective for differentiating desirable sources while maintaining flexibility for technology development and energy efficiency.« less

  5. Light use efficiency for vegetables production in protected and indoor environments

    NASA Astrophysics Data System (ADS)

    Cocetta, Giacomo; Casciani, Daria; Bulgari, Roberta; Musante, Fulvio; Kołton, Anna; Rossi, Maurizio; Ferrante, Antonio

    2017-01-01

    In recent years, there is a growing interest for vegetables production in indoor or disadvantaged climatic zones by using greenhouses. The main problem of crop growing indoor or in environment with limited light availability is the correct choice of light source and the quality of lighting spectrum. In greenhouse and indoor cultivations, plant density is higher than in the open field and plants have to compete for light and nutrients. Nowadays, advanced systems for indoor horticulture use light emitting diodes (LED) for improving crop growth, enhancing the plant productivity and favouring the best nutritional quality formation. In closed environments, as indoor growing modules, the lighting system represents the only source of light and its features are fundamental for obtaining the best lighting performances for plant and the most efficient solution. LED lighting engines are more efficient compared to the lighting sources used traditionally in horticulture and allow light spectrum and intensity modulations to enhance the light use efficiency for plants. The lighting distribution and the digital controls are fundamental for tailoring the spectral distribution on each plant in specific moments of its growth and play an important role for optimizing growth and produce high-quality vegetables. LED lights can increase plant growth and yield, but also nutraceutical quality, since some light intensities increase pigments biosynthesis and enhance the antioxidants content of leaves or fruits: in this regards the selection of LED primary light sources in relation to the peaks of the absorbance curve of the plants is important.

  6. Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting

    PubMed Central

    Wen, Long; Chen, Qin; Sun, Fuhe; Song, Shichao; Jin, Lin; Yu, Yan

    2014-01-01

    Solar cells incorporated with multi-coloring capability not only offer an aesthetic solution to bridge the gap between solar modules and building decorations but also open up the possibility for self-powered colorful display. In this paper, we proposed a multi-colored semi-transparent organic solar cells (TOSCs) design containing metallic nanostructures with the both high color purity and efficiency based on theoretical considerations. By employing guided mode resonance effect, the multi-colored TOSC behave like an efficient color filter that selectively transmits light with the desired wavelengths and generates electricity with light of other wavelengths. Broad range of coloring and luminosity adjusting for the transmission light can be achieved by simply tuning the period and the duty cycle of the metallic nanostructures. Furthermore, accompanying with the efficient color filtering characteristics, the optical absorption of TOSCs was improved due to the marked suppression of transmission loss at the off-resonance wavelengths and the increased light trapping in TOSCs. The mechanisms of the light guiding in photoactive layer and broadband backward scattering from the metallic nanostructures were identified to make an essential contribution to the improved light-harvesting. By enabling efficient color control and high efficiency simultaneously, this approach holds great promise for future versatile photovoltaic energy utilization. PMID:25391756

  7. Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting.

    PubMed

    Wen, Long; Chen, Qin; Sun, Fuhe; Song, Shichao; Jin, Lin; Yu, Yan

    2014-11-13

    Solar cells incorporated with multi-coloring capability not only offer an aesthetic solution to bridge the gap between solar modules and building decorations but also open up the possibility for self-powered colorful display. In this paper, we proposed a multi-colored semi-transparent organic solar cells (TOSCs) design containing metallic nanostructures with the both high color purity and efficiency based on theoretical considerations. By employing guided mode resonance effect, the multi-colored TOSC behave like an efficient color filter that selectively transmits light with the desired wavelengths and generates electricity with light of other wavelengths. Broad range of coloring and luminosity adjusting for the transmission light can be achieved by simply tuning the period and the duty cycle of the metallic nanostructures. Furthermore, accompanying with the efficient color filtering characteristics, the optical absorption of TOSCs was improved due to the marked suppression of transmission loss at the off-resonance wavelengths and the increased light trapping in TOSCs. The mechanisms of the light guiding in photoactive layer and broadband backward scattering from the metallic nanostructures were identified to make an essential contribution to the improved light-harvesting. By enabling efficient color control and high efficiency simultaneously, this approach holds great promise for future versatile photovoltaic energy utilization.

  8. Human Adolescent Phase Response Curves to Bright White Light.

    PubMed

    Crowley, Stephanie J; Eastman, Charmane I

    2017-08-01

    Older adolescents are particularly vulnerable to circadian misalignment and sleep restriction, primarily due to early school start times. Light can shift the circadian system and could help attenuate circadian misalignment; however, a phase response curve (PRC) to determine the optimal time for receiving light and avoiding light is not available for adolescents. We constructed light PRCs for late pubertal to postpubertal adolescents aged 14 to 17 years. Participants completed 2 counterbalanced 5-day laboratory sessions after 8 or 9 days of scheduled sleep at home. Each session included phase assessments to measure the dim light melatonin onset (DLMO) before and after 3 days of free-running through an ultradian light-dark (wake-sleep) cycle (2 h dim [~20 lux] light, 2 h dark). In one session, intermittent bright white light (~5000 lux; four 20-min exposures) was alternated with 10 min of dim room light once per day for 3 consecutive days. The time of light varied among participants to cover the 24-h day. For each individual, the phase shift to bright light was corrected for the free-run derived from the other laboratory session with no bright light. One PRC showed phase shifts in response to light start time relative to the DLMO and another relative to home sleep. Phase delay shifts occurred around the hours corresponding to home bedtime. Phase advances occurred during the hours surrounding wake time and later in the afternoon. The transition from delays to advances occurred at the midpoint of home sleep. The adolescent PRCs presented here provide a valuable tool to time bright light in adolescents.

  9. Photonic crystal light emitting diode based on Er and Si nanoclusters co-doped slot waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo Savio, R.; Galli, M.; Liscidini, M.

    We report on the design, fabrication, and electro-optical characterization of a light emitting device operating at 1.54 μm, whose active layer consists of silicon oxide containing Er-doped Si nanoclusters. A photonic crystal (PhC) is fabricated on the top-electrode to enhance the light extraction in the vertical direction, and thus the external efficiency of the device. This occurs if a photonic mode of the PhC slab is resonant with the Er emission energy, as confirmed by theoretical calculations and experimental analyses. We measure an increase of the extraction efficiency by a factor of 3 with a high directionality of light emission inmore » a narrow vertical cone. External quantum efficiency and power efficiency are among the highest reported for this kind of material. These results are important for the realization of CMOS-compatible efficient light emitters at telecom wavelengths.« less

  10. Relationship between light scattering and absorption due to cytochrome c oxidase reduction during loss of tissue viability in brains of rats

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2008-02-01

    We performed simultaneous measurement of light scattering and absorption due to reduction of cytochrome c oxidase as intrinsic optical signals that are related to morphological characteristics and energy metabolism, respectively, for rat brains after oxygen/glucose deprivation by saline infusion. To detect change in light scattering, we determined the wavelength that was the most insensitive to change in light absorption due to the reduction of cytochrome c oxidase on the basis of multiwavelength analysis of diffuse reflectance data set for each rat. Then the relationships between scattering signal and absorption signals related to the reductions of heme aa 3 (605 nm) and CuA (830 nm) in cytochrome c oxidase were examined. Measurements showed that after starting saline infusion, the reduction of heme aa 3 started first; thereafter triphasic, large scattering change occurred (200-300 s), during which the reduction of CuA started. Despite such complex behaviors of IOSs, almost linear correlations were seen between the scattering signal and the heme aa 3-related absorption signal, while a relatively large animal-to-animal variation was observed in the correlation between the scattering signal and CuA-related absorption signal. Transmission electron microscopic observation revealed that dendritic swelling and mitochondrial deformation occurred in the cortical surface tissue after the triphasic scattering change. These results suggest that mitochondrial energy failure accompanies morphological alteration in the brain tissue and results in change in light scattering; light scattering will become an important indicator of tissue viability in brain.

  11. Novel technique for solar power illumination using plastic optical fibres

    NASA Astrophysics Data System (ADS)

    Munisami, J.; Kalymnios, D.

    2008-09-01

    Plastic Optical Fibres (POF) were developed almost 3 decades ago. They are mainly used for short haul data communications (up to 1 km with data rates up to 1 Gbps). Over the years, POF has found applications in many other areas including solar energy transport for illumination. In such an application, light is collected from the sun and is directed into a space which needs to be illuminated. The use of fibres and more specifically POF, in daylighting systems, started only a few years ago. Several approaches have been investigated and we have seen the development of a few commercial products. The market however, has not really taken off for these technologies simply because of their enormous price tags. It is important to note that the use of POF in these designs has been limited to the function of POF as the transmission medium only. We propose a novel solar illumination technique using POF as both the light collecting/concentrating mechanism and the transmission medium. By modifying the structure of the fibre, solar light can be directed into the fibre by using an analogous process to fibre side emission but, in the reverse. We shall report on the solar light capturing efficiency of POF as modified by several types of external imperfections introduced onto the fibre. One major advantage of our proposed approach lies in the fact that we aim to eliminate at least one of the two axes of sun tracking that is currently used in existing solar illumination systems.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djavid, Mehrdad; Mi, Zetian, E-mail: zetian.mi@mcgill.ca

    The performance of conventional AlGaN deep ultraviolet light emitting diodes has been limited by the extremely low light extraction efficiency (<10%), due to the unique transverse magnetic (TM) polarized light emission. Here, we show that, by exploiting the lateral side emission, the extraction efficiency of TM polarized light can be significantly enhanced in AlGaN nanowire structures. Using the three-dimensional finite-difference time domain simulation, we demonstrate that the nanowire structures can be designed to inhibit the emission of guided modes and redirect trapped light into radiated modes. A light extraction efficiency of more than 70% can, in principle, be achieved bymore » carefully optimizing the nanowire size, nanowire spacing, and p-GaN thickness.« less

  13. High convergence efficiency design of flat Fresnel lens with large aperture

    NASA Astrophysics Data System (ADS)

    Ke, Jieyao; Zhao, Changming; Guan, Zhe

    2018-01-01

    This paper designed a circle-shaped Fresnel lens with large aperture as part of the solar pumped laser design project. The Fresnel lens designed in this paper simulate in size 1000mm×1000mm, focus length 1200mm and polymethyl methacrylate (PMMA) material in order to conduct high convergence efficiency. In the light of design requirement of concentric ring with same width of 0.3mm, this paper proposed an optimized Fresnel lens design based on previous sphere design and conduct light tracing simulation in Matlab. This paper also analyzed the effect of light spot size, light intensity distribution, optical efficiency under four conditions, monochromatic parallel light, parallel spectrum light, divergent monochromatic light and sunlight. Design by 550nm wavelength and under the condition of Fresnel reflection, the results indicated that the designed lens could convergent sunlight in diffraction limit of 11.8mm with a 78.7% optical efficiency, better than the sphere cutting design results of 30.4%.

  14. Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres

    PubMed Central

    Kim, Jonghak; Woo, Heeje; Joo, Kisu; Tae, Sungwon; Park, Jinsub; Moon, Daeyoung; Park, Sung Hyun; Jang, Junghwan; Cho, Yigil; Park, Jucheol; Yuh, Hwankuk; Lee, Gun-Do; Choi, In-Suk; Nanishi, Yasushi; Han, Heung Nam; Char, Kookheon; Yoon, Euijoon

    2013-01-01

    Light-emitting diodes (LEDs) become an attractive alternative to conventional light sources due to high efficiency and long lifetime. However, different material properties between GaN and sapphire cause several problems such as high defect density in GaN, serious wafer bowing, particularly in large-area wafers, and poor light extraction of GaN-based LEDs. Here, we suggest a new growth strategy for high efficiency LEDs by incorporating silica hollow nanospheres (S-HNS). In this strategy, S-HNSs were introduced as a monolayer on a sapphire substrate and the subsequent growth of GaN by metalorganic chemical vapor deposition results in improved crystal quality due to nano-scale lateral epitaxial overgrowth. Moreover, well-defined voids embedded at the GaN/sapphire interface help scatter lights effectively for improved light extraction, and reduce wafer bowing due to partial alleviation of compressive stress in GaN. The incorporation of S-HNS into LEDs is thus quite advantageous in achieving high efficiency LEDs for solid-state lighting. PMID:24220259

  15. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    PubMed Central

    Chen, Lei; Lin, Chun-Che; Yeh, Chiao-Wen; Liu, Ru-Shi

    2010-01-01

    White light-emitting diodes (WLEDs) have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV) LEDs) and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED) or polymer light-emitting diode (PLED), have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450−480 nm) and nUV (380−400 nm) LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+) is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  16. Light distribution in diffractive multifocal optics and its optimization.

    PubMed

    Portney, Valdemar

    2011-11-01

    To expand a geometrical model of diffraction efficiency and its interpretation to the multifocal optic and to introduce formulas for analysis of far and near light distribution and their application to multifocal intraocular lenses (IOLs) and to diffraction efficiency optimization. Medical device consulting firm, Newport Coast, California, USA. Experimental study. Application of a geometrical model to the kinoform (single focus diffractive optical element) was expanded to a multifocal optic to produce analytical definitions of light split between far and near images and light loss to other diffraction orders. The geometrical model gave a simple interpretation of light split in a diffractive multifocal IOL. An analytical definition of light split between far, near, and light loss was introduced as curve fitting formulas. Several examples of application to common multifocal diffractive IOLs were developed; for example, to light-split change with wavelength. The analytical definition of diffraction efficiency may assist in optimization of multifocal diffractive optics that minimize light loss. Formulas for analysis of light split between different foci of multifocal diffractive IOLs are useful in interpreting diffraction efficiency dependence on physical characteristics, such as blaze heights of the diffractive grooves and wavelength of light, as well as for optimizing multifocal diffractive optics. Disclosure is found in the footnotes. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  17. Key functional role of the optical properties of coral skeletons in coral ecology and evolution.

    PubMed

    Enríquez, Susana; Méndez, Eugenio R; Hoegh-Guldberg, Ove; Iglesias-Prieto, Roberto

    2017-04-26

    Multiple scattering of light on coral skeleton enhances light absorption efficiency of coral symbionts and plays a key role in the regulation of their internal diffuse light field. To understand the dependence of this enhancement on skeleton meso- and macrostructure, we analysed the scattering abilities of naked coral skeletons for 74 Indo-Pacific species. Sensitive morphotypes to thermal and light stress, flat-extraplanate and branching corals, showed the most efficient structures, while massive-robust species were less efficient. The lowest light-enhancing scattering abilities were found for the most primitive colonial growth form: phaceloid. Accordingly, the development of highly efficient light-collecting structures versus the selection of less efficient but more robust holobionts to cope with light stress may constitute a trade-off in the evolution of modern symbiotic scleractinian corals, characterizing two successful adaptive solutions. The coincidence of the most important structural modifications with epitheca decline supports the importance of the enhancement of light transmission across coral skeleton in modern scleractinian diversification, and the central role of these symbioses in the design and optimization of coral skeleton. Furthermore, the same ability that lies at the heart of the success of symbiotic corals as coral-reef-builders can also explain the 'Achilles's heel' of these symbioses in a warming ocean. © 2017 The Author(s).

  18. Influence of light-induced conical intersection on the photodissociation dynamics of D2(+) starting from individual vibrational levels.

    PubMed

    Halász, Gábor J; Csehi, András; Vibók, Ágnes; Cederbaum, Lorenz S

    2014-12-26

    Previous works have shown that dressing of diatomic molecules by standing or by running laser waves gives rise to the appearance of so-called light-induced conical intersections (LICIs). Because of the strong nonadiabatic couplings, the existence of such LICIs may significantly change the dynamical properties of a molecular system. In our former paper (J. Phys. Chem. A 2013, 117, 8528), the photodissociation dynamics of the D(2)(+) molecule were studied in the LICI framework starting the initial vibrational nuclear wave packet from the superposition of all the vibrational states initially produced by ionizing D(2). The present work complements our previous investigation by letting the initial nuclear wave packets start from different individual vibrational levels of D(2)(+), in particular, above the energy of the LICI. The kinetic energy release spectra, the total dissociation probabilities, and the angular distributions of the photofragments are calculated and discussed. An interesting phenomenon has been found in the spectra of the photofragments. Applying the light-induced adiabatic picture supported by LICI, explanations are given for the unexpected structure of the spectra.

  19. Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency.

    PubMed

    Jin, Honglei; Li, Mengshu; Duan, Sujuan; Fu, Mei; Dong, Xiaoxiao; Liu, Bing; Feng, Dongru; Wang, Jinfa; Wang, Hong-Bin

    2016-11-01

    Maximizing light capture by light-harvesting pigment optimization represents an attractive but challenging strategy to improve photosynthetic efficiency. Here, we report that loss of a previously uncharacterized gene, HIGH PHOTOSYNTHETIC EFFICIENCY1 (HPE1), optimizes light-harvesting pigments, leading to improved photosynthetic efficiency and biomass production. Arabidopsis (Arabidopsis thaliana) hpe1 mutants show faster electron transport and increased contents of carbohydrates. HPE1 encodes a chloroplast protein containing an RNA recognition motif that directly associates with and regulates the splicing of target RNAs of plastid genes. HPE1 also interacts with other plastid RNA-splicing factors, including CAF1 and OTP51, which share common targets with HPE1. Deficiency of HPE1 alters the expression of nucleus-encoded chlorophyll-related genes, probably through plastid-to-nucleus signaling, causing decreased total content of chlorophyll (a+b) in a limited range but increased chlorophyll a/b ratio. Interestingly, this adjustment of light-harvesting pigment reduces antenna size, improves light capture, decreases energy loss, mitigates photodamage, and enhances photosynthetic quantum yield during photosynthesis. Our findings suggest a novel strategy to optimize light-harvesting pigments that improves photosynthetic efficiency and biomass production in higher plants. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency1[OPEN

    PubMed Central

    Jin, Honglei; Li, Mengshu; Duan, Sujuan; Fu, Mei; Dong, Xiaoxiao; Feng, Dongru; Wang, Jinfa

    2016-01-01

    Maximizing light capture by light-harvesting pigment optimization represents an attractive but challenging strategy to improve photosynthetic efficiency. Here, we report that loss of a previously uncharacterized gene, HIGH PHOTOSYNTHETIC EFFICIENCY1 (HPE1), optimizes light-harvesting pigments, leading to improved photosynthetic efficiency and biomass production. Arabidopsis (Arabidopsis thaliana) hpe1 mutants show faster electron transport and increased contents of carbohydrates. HPE1 encodes a chloroplast protein containing an RNA recognition motif that directly associates with and regulates the splicing of target RNAs of plastid genes. HPE1 also interacts with other plastid RNA-splicing factors, including CAF1 and OTP51, which share common targets with HPE1. Deficiency of HPE1 alters the expression of nucleus-encoded chlorophyll-related genes, probably through plastid-to-nucleus signaling, causing decreased total content of chlorophyll (a+b) in a limited range but increased chlorophyll a/b ratio. Interestingly, this adjustment of light-harvesting pigment reduces antenna size, improves light capture, decreases energy loss, mitigates photodamage, and enhances photosynthetic quantum yield during photosynthesis. Our findings suggest a novel strategy to optimize light-harvesting pigments that improves photosynthetic efficiency and biomass production in higher plants. PMID:27609860

  1. Perovskite Materials for Light-Emitting Diodes and Lasers.

    PubMed

    Veldhuis, Sjoerd A; Boix, Pablo P; Yantara, Natalia; Li, Mingjie; Sum, Tze Chien; Mathews, Nripan; Mhaisalkar, Subodh G

    2016-08-01

    Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Light collection optimization for composite photoanode in dye-sensitized solar cells: Towards higher efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, X. Z.; Shen, W. Z., E-mail: wzshen@sjtu.edu.cn; Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, and Key Laboratory of Artificial Structures and Quantum Control

    2015-06-14

    Composite photoanode comprising nanoparticles and one-dimensional (1D) nanostructure is a promising alternative to conventional photoanode for dye-sensitized solar cells (DSCs). Besides fast electron transport channels, the 1D nanostructure also plays as light scattering centers. Here, we theoretically investigate the light scattering properties of capsule-shaped 1D nanostructure and their influence on the light collection of DSCs. It is found that the far-field light scattering of a single capsule depends on its volume, shape, and orientation: capsules with bigger equivalent spherical diameter, smaller aspect ratio, and horizontal orientation demonstrate stronger light scattering especially at large scattering angle. Using Monte Carlo approach, wemore » simulated and optimized the light harvesting efficiency of the cell. Two multilayer composite photoanodes containing orderly or randomly oriented capsules are proposed. DSCs composed of these two photoanodes are promising for higher efficiencies because of their efficient light collection and superior electron collection. These results will provide practical guidance to the design and optimization of the photoanodes for DSCs.« less

  3. Electronic Two-Transition-Induced Enhancement of Emission Efficiency in Polymer Light-Emitting Diodes

    PubMed Central

    Chen, Ren-Ai; Wang, Cong; Li, Sheng; George, Thomas F.

    2013-01-01

    With the development of experimental techniques, effective injection and transportation of electrons is proven as a way to obtain polymer light-emitting diodes (PLEDs) with high quantum efficiency. This paper reveals a valid mechanism for the enhancement of quantum efficiency in PLEDs. When an external electric field is applied, the interaction between a negative polaron and triplet exciton leads to an electronic two-transition process, which induces the exciton to emit light and thus improve the emission efficiency of PLEDs. PMID:28809346

  4. Solid State Lighting: A Nanoenabled Case Study in Sustainability

    NASA Astrophysics Data System (ADS)

    Hicks, Andrea L.

    This work uses three household lighting technology options (incandescent, compact fluorescent (CFL), and light emitting diode (LED)) in a nanoenabled case study of artificial lighting. Life cycle assessment (LCA) is used to analyze the environmental impact of three lighting types across all four lifecycle phases: raw materials acquisition, manufacturing, use, and end of life. Using the average United States electricity profile, the use phase is found to have the greatest impact in all nine impact categories defined by TRACI (Tool for the Reduction and Assessment of Chemical and other environmental Impacts). Agent based modeling (ABM) is used to further investigate the use phase with respect to the adoption of energy efficient lighting and the rebound effect. Survey data on the consumer adoption and use of energy efficient lighting technology yields insight into consumer actions and the potential for rebound to occur, and is used to inform the ABM. Based on the results of the ABM analysis it is suggested that regardless of the type of energy efficient lighting, as long as the consumption of light continues to increase, efficiency alone will not reduce energy consumption. Over extended periods of time (~70 years), energy consumption rebounds to levels of pre-efficiency periods. There is a need for policy measures that are coupled with efficiency increases in such a way that energy savings are sustainable. Geographical and temporal variations in electricity profiles and their associated impacts are explored using LCA. It is found that there is the potential for significant variation in the lifetime environmental impact of lighting options based on shifts in the electricity profile. These results suggest the need for effective local policy in coordination with flexible national policy.

  5. Parameterizing ecosystem light use efficiency and water use efficiency to estimate maize gross primary production and evapotranspiration using MODIS EVI

    USDA-ARS?s Scientific Manuscript database

    Quantifying global carbon and water balances requires accurate estimation of gross primary production (GPP) and evapotranspiration (ET), respectively, across space and time. Models that are based on the theory of light use efficiency (LUE) and water use efficiency (WUE) have emerged as efficient met...

  6. Integrating light rail transit into traditional bus systems

    DOT National Transportation Integrated Search

    2007-07-01

    This document identifies those dynamics that facilitate a citys addition of light rail as a successful component of its urban system, with success deemed to be opening on schedule with minimal start-up issues. The study examines several new system...

  7. Climbing plants in a temperate rainforest understorey: searching for high light or coping with deep shade?

    PubMed Central

    Valladares, Fernando; Gianoli, Ernesto; Saldaña, Alfredo

    2011-01-01

    Background and Aims While the climbing habit allows vines to reach well-lit canopy areas with a minimum investment in support biomass, many of them have to survive under the dim understorey light during certain stages of their life cycle. But, if the growth/survival trade-off widely reported for trees hold for climbing plants, they cannot maximize both light-interception efficiency and shade avoidance (i.e. escaping from the understorey). The seven most important woody climbers occurring in a Chilean temperate evergreen rainforest were studied with the hypothesis that light-capture efficiency of climbers would be positively associated with their abundance in the understorey. Methods Species abundance in the understorey was quantified from their relative frequency and density in field plots, the light environment was quantified by hemispherical photography, the photosynthetic response to light was measured with portable gas-exchange analyser, and the whole shoot light-interception efficiency and carbon gain was estimated with the 3-D computer model Y-plant. Key Results Species differed in specific leaf area, leaf mass fraction, above ground leaf area ratio, light-interception efficiency and potential carbon gain. Abundance of species in the understorey was related to whole shoot features but not to leaf level features such as specific leaf area. Potential carbon gain was inversely related to light-interception efficiency. Mutual shading among leaves within a shoot was very low (<20 %). Conclusions The abundance of climbing plants in this southern rainforest understorey was directly related to their capacity to intercept light efficiently but not to their potential carbon gain. The most abundant climbers in this ecosystem match well with a shade-tolerance syndrome in contrast to the pioneer-like nature of climbers observed in tropical studies. The climbers studied seem to sacrifice high-light searching for coping with the dim understorey light. PMID:21685433

  8. The evolution of eyes and visually guided behaviour

    PubMed Central

    Nilsson, Dan-Eric

    2009-01-01

    The morphology and molecular mechanisms of animal photoreceptor cells and eyes reveal a complex pattern of duplications and co-option of genetic modules, leading to a number of different light-sensitive systems that share many components, in which clear-cut homologies are rare. On the basis of molecular and morphological findings, I discuss the functional requirements for vision and how these have constrained the evolution of eyes. The fact that natural selection on eyes acts through the consequences of visually guided behaviour leads to a concept of task-punctuated evolution, where sensory systems evolve by a sequential acquisition of sensory tasks. I identify four key innovations that, one after the other, paved the way for the evolution of efficient eyes. These innovations are (i) efficient photopigments, (ii) directionality through screening pigment, (iii) photoreceptor membrane folding, and (iv) focusing optics. A corresponding evolutionary sequence is suggested, starting at non-directional monitoring of ambient luminance and leading to comparisons of luminances within a scene, first by a scanning mode and later by parallel spatial channels in imaging eyes. PMID:19720648

  9. 46 CFR 112.50-3 - Hydraulic starting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hydraulic starting. 112.50-3 Section 112.50-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-3 Hydraulic...

  10. 46 CFR 112.50-3 - Hydraulic starting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Hydraulic starting. 112.50-3 Section 112.50-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-3 Hydraulic...

  11. How Much Weight to Use During Strength Training Activities

    Cancer.gov

    Many women want to start a strength training routine but aren’t sure how much weight to use. Start with resistance bands, soup cans, or light weights (1 to 3 pounds) and build up to tighter bands or heavier weights as you feel and become stronger.

  12. Comparing colour discrimination and proofreading performance under compact fluorescent and halogen lamp lighting.

    PubMed

    Mayr, Susanne; Köpper, Maja; Buchner, Axel

    2013-01-01

    Legislation in many countries has banned inefficient household lighting. Consequently, classic incandescent lamps have to be replaced by more efficient alternatives such as halogen and compact fluorescent lamps (CFL). Alternatives differ in their spectral power distributions, implying colour-rendering differences. Participants performed a colour discrimination task - the Farnsworth-Munsell 100 Hue Test--and a proofreading task under CFL or halogen lighting of comparable correlated colour temperatures at low (70 lx) or high (800 lx) illuminance. Illuminance positively affected colour discrimination and proofreading performance, whereas the light source was only relevant for colour discrimination. Discrimination was impaired with CFL lighting. There were no differences between light sources in terms of self-reported physical discomfort and mood state, but the majority of the participants correctly judged halogen lighting to be more appropriate for discriminating colours. The findings hint at the colour-rendering deficiencies associated with energy-efficient CFLs. In order to compare performance under energy-efficient alternatives of classic incandescent lighting, colour discrimination and proofreading performance was compared under CFL and halogen lighting. Colour discrimination was impaired under CFLs, which hints at the practical drawbacks associated with the reduced colour-rendering properties of energy-efficient CFLs.

  13. Engine management during NTRE start up

    NASA Technical Reports Server (NTRS)

    Bulman, Mel; Saltzman, Dave

    1993-01-01

    The topics are presented in viewgraph form and include the following: total engine system management critical to successful nuclear thermal rocket engine (NTRE) start up; NERVA type engine start windows; reactor power control; heterogeneous reactor cooling; propellant feed system dynamics; integrated NTRE start sequence; moderator cooling loop and efficient NTRE starting; analytical simulation and low risk engine development; accurate simulation through dynamic coupling of physical processes; and integrated NTRE and mission performance.

  14. Lock-in thermography approach for imaging the efficiency of light emitters and optical coolers

    NASA Astrophysics Data System (ADS)

    Radevici, Ivan; Tiira, Jonna; Oksanen, Jani

    2017-02-01

    Developing optical cooling technologies requires access to reliable efficiency measurement techniques and ability to detect spatial variations in the efficiency and light emission of the devices. We investigate the possibility to combine the calorimetric efficiency measurement principles with lock-in thermography (LIT) and conventional luminescence microscopy to enable spatially resolved measurement of the efficiency, current spreading and local device heating of double diode structures (DDS) serving as test vessels for developing thermophotonic cooling devices. Our approach enables spatially resolved characterization and localization of the losses of the double diode structures as well as other light emitting semiconductor devices. In particular, the approach may allow directly observing effects like current crowding and surface recombination on the light emission and heating of the DDS devices.

  15. Explaining growth of individual trees: Light interception and efficiency of light use by Eucalyptus at four sites in Brazil

    Treesearch

    Dan Binkley; Jose Luiz Stape; William L. Bauerle; Michael G. Ryan

    2010-01-01

    The growth of wood in trees and forests depends on the acquisition of resources (light, water, and nutrients), the efficiency of using resources for photosynthesis, and subsequent partitioning to woody tissues. Patterns of efficiency over time for individual trees, or between trees at one time, result from changes in rates photosynthesis and shifts in...

  16. A Solution Processed Flexible Nanocomposite Electrode with Efficient Light Extraction for Organic Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; Zhibinyu; Pei, Qibing

    2014-03-01

    Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m2 with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost.

  17. A solution processed flexible nanocomposite electrode with efficient light extraction for organic light emitting diodes.

    PubMed

    Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; ZhibinYu; Pei, Qibing

    2014-03-17

    Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m(2) with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost.

  18. A Solution Processed Flexible Nanocomposite Electrode with Efficient Light Extraction for Organic Light Emitting Diodes

    PubMed Central

    Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; ZhibinYu; Pei, Qibing

    2014-01-01

    Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m2 with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost. PMID:24632742

  19. [Design of high-efficiency double compound parabolic concentrator system in near infrared noninvasive biochemical analysis].

    PubMed

    Gao, Jing; Lu, Qi-Peng; Peng, Zhong-Qi; Ding, Hai-Quan; Gao, Hong-Zhi

    2013-05-01

    High signal-to-noise ratio (SNR) of system is necessary to obtain accurate blood components in near infrared noninvasive biochemical analysis. In order to improve SNR of analytical system, high-efficiency double compound parabolic concentrator (DCPC) system was researched, which was aimed at increasing light utilization efficiency. Firstly, with the request of collection efficiency in near infrared noninvasive biochemical analysis, the characteristic of emergent rays through compound parabolic concentrator (CPC) was analyzed. Then the maximum focusing angle range of the first stage CPC was determined. Secondly, the light utilization efficiency of truncated type was compared with standard DCPC, thus the best structure parameters of DCPC system were optimized. Lastly, combined with optical parameters of skin tissue, calculations were operated when incident wavelength is 1 000 nm. The light utilization efficiency of DCPC system, CPC-focusing mirror system, and non-optical collecting system was calculated. The results show that the light utilization efficiency of the three optical systems is 1.46%, 0.84% and 0.26% respectively. So DCPC system enhances collecting ability for human diffuse reflection light, and helps improve SNR of noninvasive biochemical analysis system and overall analysis accuracy effectively.

  20. Improving Operating Room Efficiency: First Case On-Time Start Project.

    PubMed

    Phieffer, Laura; Hefner, Jennifer L; Rahmanian, Armin; Swartz, Jason; Ellison, Christopher E; Harter, Ronald; Lumbley, Joshua; Moffatt-Bruce, Susan D

    Operating rooms (ORs) are costly to run, and multiple factors influence efficiency. The first case on-time start (FCOS) of an OR is viewed as a harbinger of efficiency for the daily schedule. Across 26 ORs of a large, academic medical center, only 49% of cases started on time in October 2011. The Perioperative Services Department engaged an interdisciplinary Operating Room Committee to apply Six Sigma tools to this problem. The steps of this project included (1) problem mapping, (2) process improvements to preoperative readiness, (3) informatics support improvements, and (4) continuous measurement and feedback. By June 2013, there was a peak of 92% first case on-time starts across service lines, decreasing to 78% through 2014, still significantly above the preintervention level of 49% (p = .000). Delay minutes also significantly decreased through the study period (p = .000). Across 2013, the most common delay owners were the patient, the surgeon, the facility, and the anesthesia department. Continuous and sustained improvement of first case on-time starts is attributed to tracking the FCOS metric, establishing embedded process improvement resources and creating transparency of data. This article highlights success factors and barriers to program success and sustainability.

  1. 2 W quasi-white-light based on idler-resonant optical parametric oscillation cascading sum-frequency generation with PPSLT

    NASA Astrophysics Data System (ADS)

    Zhao, L. N.; Liu, J.; Yuan, Y.; Hu, X. P.; Zhao, G.; Gao, Z. D.; Zhu, S. N.

    2012-03-01

    We present a high power red-green-blue (RGB) laser light source based on cascaded quasi-phasematched wavelength conversions in a single stoichiometric lithium tantalate. The superiority of the experimental setup is: the facula of the incident beam is elliptical to increase interaction volume, and the cavity was an idler resonant configuration for realizing more efficient red and blue light output. An average power of 2 W of quasi-white-light was obtained by proper combination of the RGB three colors. The conversion efficiency for the power of the quasi-white-light over pump power reached 36%. This efficiency and powerful RGB laser light source has potential applications in laser-based projection display et al.

  2. Electrical and Optical Enhancement in Internally Nanopatterned Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Fina, Michael Dane

    Organic light-emitting diodes (OLEDs) have made tremendous technological progress in the past two decades and have emerged as a top competitor for next generation light-emitting displays and lighting. State-of-the-art OLEDs have been reported in literature to approach, and even surpass, white fluorescent tube efficiency. However, despite rapid technological progress, efficiency metrics must be improved to compete with traditional inorganic light-emitting diode (LED) technology. Organic materials possess specialized traits that permit manipulations to the light-emitting cavity. Overall, as demonstrated within, these modifications can be used to improve electrical and optical device efficiencies. This work is focused at analyzing the effects that nanopatterned geometric modifications to the organic active layers play on device efficiency. In general, OLED efficiency is complicated by the complex, coupled processes which contribute to spontaneous dipole emission. A composite of three sub-systems (electrical, exciton and optical) ultimately dictate the OLED device efficiency. OLED electrical operation is believed to take place via a low-mobility-modified Schottky injection process. In the injection-limited regime, geometric effects are expected to modify the local electric field leading to device current enhancement. It is shown that the patterning effect can be used to enhance charge carrier parity, thereby enhancing overall recombination. Current density and luminance characteristics are shown to be improved by OLED nanopatterning from both the model developed within and experimental techniques. Next, the optical enhancement effects produced by the nanopatterned array are considered. Finite-difference time-domain (FDTD) simulations are used to determine positional, spectral optical enhancement for the nanopatterned device. The results show beneficial effects to the device performance. The optical enhancements are related to the reduction in internal radiative quenching (improved internal quantum efficiency) and improvement in light extraction (improved outcoupling efficiency). Furthermore, the electrical model is used to construct a positional radiative efficiency map that when combined with the optical enhancement reveals the overall external quantum efficiency enhancement.

  3. Assessment of emissions and removal of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) at start-up periods in a hazardous waste incinerator.

    PubMed

    Karademir, Aykan; Korucu, M Kemal

    2013-07-01

    A study was conducted to observe the changes in polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F) levels and congener profiles in the flue gas of a hazardous waste incinerator during two start-up periods. Flue gas samplings were performed simultaneously through Air Pollution Control Devices (APCDs) (including boiler outlet, electrostatic precipitator (ESP) outlet, wet scrubbers (WS) outlet, and activated carbon (AC) filter outlet) in different combustion temperatures during a planned cold (long) start-up and an unplanned warm (short) start-up. The results showed that PCDD/F concentrations could be elevated during the start-up periods up to levels 3-4 times higher than those observed in the normal operation. Especially lower combustion temperatures in the short start-ups may cause high PCDD/F concentrations in the raw flue gas. Assessment of combustion temperatures and Furans/Dioxins values indicated that surface-catalyzed de novo synthesis was the dominant pathway in the formation of PCDD/Fs in the combustion units. PCDD/F removal efficiencies of Air Pollution Control Devices suggested that formation by de novo synthesis existed in ESP also when in operation, leading to increase of gaseous phase PCDD/Fs in ESP Particle-bound PCDD/Fs were removed mainly by ESP and WS, while gaseous phase PCDD/Fs were removed by WS, and more efficiently by AC filter. This paper evaluates PCDD/F emissions and removal performances of APCDs (ESP, wet scrubbers, and activated carbon) during two start-up periods in an incinerator. The main implications are the following: (1) start-up periods increase PCDD/F emissions up to 2-3 times in the incinerator; (2) low combustion temperatures in start-ups cause high PCDD/F emissions in raw gas; (3) formation of PCDD/Fs by de novo synthesis occurs in ESP; (4) AC is efficient in removing gaseous PCDD/Fs, but may increase particle-bound ones; and (5) scrubbers remove both gaseous and particle-bound PCDD/Fs efficiently.

  4. Lightweight, Light-Trapped, Thin GaAs Solar Cells for Spacecraft Applications.

    DTIC Science & Technology

    1995-10-05

    improve the efficiency of this type of cell. 2 The high efficiency and light weight of the cover glass supported GaAs solar cell can have a significant...is a 3-mil cover glass and 1-mil silicone adhesive on the front surface of the GaAs solar cell. Power Output 3000 400 -{ 2400 { N 300 S18200 W/m2...the ultra-thin, light-trapped GaAs solar ceill 3. Incorporate light trapping. 0 external quantum efficiency at 850 nm increased by 5.2% 4. Develop

  5. Human phase response curve to intermittent blue light using a commercially available device

    PubMed Central

    Revell, Victoria L; Molina, Thomas A; Eastman, Charmane I

    2012-01-01

    Light shifts the timing of the circadian clock according to a phase response curve (PRC). To date, all human light PRCs have been to long durations of bright white light. However, melanopsin, the primary photopigment for the circadian system, is most sensitive to short wavelength blue light. Therefore, to optimise light treatment it is important to generate a blue light PRC. We used a small, commercially available blue LED light box, screen size 11.2 × 6.6 cm at ∼50 cm, ∼200 μW cm−2, ∼185 lux. Subjects participated in two 5 day laboratory sessions 1 week apart. Each session consisted of circadian phase assessments to obtain melatonin profiles before and after 3 days of free-running through an ultradian light–dark cycle (2.5 h wake in dim light, 1.5 h sleep in the dark), forced desynchrony protocol. During one session subjects received intermittent blue light (three 30 min pulses over 2 h) once a day for the 3 days of free-running, and in the other session (control) they remained in dim room light, counterbalanced. The time of blue light was varied among subjects to cover the entire 24 h day. For each individual, the phase shift to blue light was corrected for the free-run determined during the control session. The blue light PRC had a broad advance region starting in the morning and extending through the afternoon. The delay region started a few hours before bedtime and extended through the night. This is the first PRC to be constructed to blue light and to a stimulus that could be used in the real world. PMID:22753544

  6. Human phase response curve to intermittent blue light using a commercially available device.

    PubMed

    Revell, Victoria L; Molina, Thomas A; Eastman, Charmane I

    2012-10-01

    Light shifts the timing of the circadian clock according to a phase response curve (PRC). To date, all human light PRCs have been to long durations of bright white light. However, melanopsin, the primary photopigment for the circadian system, is most sensitive to short wavelength blue light. Therefore, to optimise light treatment it is important to generate a blue light PRC.We used a small, commercially available blue LED light box, screen size 11.2 × 6.6 cm at ∼50 cm, ∼200 μW cm(−2), ∼185 lux. Subjects participated in two 5 day laboratory sessions 1 week apart. Each session consisted of circadian phase assessments to obtain melatonin profiles before and after 3 days of free-running through an ultradian light–dark cycle (2.5 h wake in dim light, 1.5 h sleep in the dark), forced desynchrony protocol. During one session subjects received intermittent blue light (three 30 min pulses over 2 h) once a day for the 3 days of free-running, and in the other session (control) they remained in dim room light, counterbalanced. The time of blue light was varied among subjects to cover the entire 24 h day. For each individual, the phase shift to blue light was corrected for the free-run determined during the control session. The blue light PRC had a broad advance region starting in the morning and extending through the afternoon. The delay region started a few hours before bedtime and extended through the night. This is the first PRC to be constructed to blue light and to a stimulus that could be used in the real world.

  7. 78 FR 34664 - Prospective Grant of Start-up Exclusive Evaluation License: Portable Device and Method for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Prospective Grant of Start-up Exclusive Evaluation License: Portable Device and Method for Detecting Hematomas AGENCY: National... device and method for detecting hematomas based on near infrared light emitted perpendicularly into a...

  8. Collection efficiency of a single optical fiber in turbid media.

    PubMed

    Bargo, Paulo R; Prahl, Scott A; Jacques, Steven L

    2003-06-01

    If a single optical fiber is used for both delivery and collection of light, two major factors affect the measurement of collected light: (1) the light transport in the medium that describes the amount of light that returns to the fiber and (2) the light coupling to the optical fiber that depends on the angular distribution of photons entering the fiber. We focus on the importance of the latter factor and describe how the efficiency of the coupling depends on the optical properties of the medium. For highly scattering tissues, the efficiency is well predicted by the numerical aperture (NA) of the fiber. For lower scattering, such as in soft tissues, photons arrive at the fiber from deeper depths, and the coupling efficiency could increase twofold to threefold above that predicted by the NA.

  9. Voltage Controller Saves Energy, Prolongs Life of Motors

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In 1985, Power Efficiency Corporation of Las Vegas licensed NASA voltage controller technology from Marshall Space Flight Center. In the following years, Power Efficiency made patented improvements to the technology and marketed the resulting products throughout the world as the Performance Controller and the Power Efficiency energy-saving soft start. Soft start gradually introduces power to an electric motor, thus eliminating the harsh, violent mechanical stresses of having the device go from a dormant state to one of full activity; prevents it from running too hot; and increases the motor's lifetime. The product can pay for itself through the reduction in electricity consumed (according to Power Efficiency, within 3 years), depending on the duty cycle of the motor and the prevailing power rates. In many instances, the purchaser is eligible for special utility rebates for the environmental protection it provides. Common applications of Power Efficiency's soft start include mixers, grinders, granulators, conveyors, crushers, stamping presses, injection molders, elevators with MG sets, and escalators. The device has been retrofitted onto equipment at major department store chains, hotels, airports, universities, and for various manufacturers

  10. Flexible organic light-emitting diodes with enhanced light out-coupling efficiency fabricated on a double-sided nanotextured substrate.

    PubMed

    Luo, Yu; Wang, Chunhui; Wang, Li; Ding, Yucheng; Li, Long; Wei, Bin; Zhang, Jianhua

    2014-07-09

    High-efficiency organic light-emitting diodes (OLEDs) have generated tremendous research interest. One of the exciting possibilities of OLEDs is the use of flexible plastic substrates, which unfortunately have a mismatching refractive index compared with the conventional ITO anode and the air. To unlock the light loss on flexible plastic, we report a high-efficiency flexible OLED directly fabricated on a double-sided nanotextured polycarbonate substrate by thermal nanoimprint lithography. The template for the nanoimprint process is a replicate from a silica arrayed with nanopillars and fabricated by ICP etching through a SiO2 colloidal spheres mask. It has been shown that with the internal quasi-periodical scattering gratings the efficiency enhancement can reach 50% for a green light OLED, and with an external antireflection structure, the normal transmittance is increased from 89% to 94% for paraboloid-like pillars. The OLED directly fabricated on the double-sided nanotextured polycarbonate substrate has reached an enhancing factor of ∼2.8 for the current efficiency.

  11. Recycled Thermal Energy from High Power Light Emitting Diode Light Source.

    PubMed

    Ji, Jae-Hoon; Jo, GaeHun; Ha, Jae-Geun; Koo, Sang-Mo; Kamiko, Masao; Hong, JunHee; Koh, Jung-Hyuk

    2018-09-01

    In this research, the recycled electrical energy from wasted thermal energy in high power Light Emitting Diode (LED) system will be investigated. The luminous efficiency of lights has been improved in recent years by employing the high power LED system, therefore energy efficiency was improved compared with that of typical lighting sources. To increase energy efficiency of high power LED system further, wasted thermal energy should be re-considered. Therefore, wasted thermal energy was collected and re-used them as electrical energy. The increased electrical efficiency of high power LED devices was accomplished by considering the recycled heat energy, which is wasted thermal energy from the LED. In this work, increased electrical efficiency will be considered and investigated by employing the high power LED system, which has high thermal loss during the operating time. For this research, well designed thermoelement with heat radiation system was employed to enhance the collecting thermal energy from the LED system, and then convert it as recycled electrical energy.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, R.A.

    This paper reports that properly applied, light sources and lighting systems not only enhance a building's attractiveness and usability, they also create a secure environment. An effectively lighted area can minimize pedestrian hazards and auto accidents. Good security lighting also eliminates the darkness that vandals, thieves, and felons thrive on. Unfortunately, lighting quality has sometimes been sacrificed for the sake of energy efficiency, and resulting savings offset by poor aesthetics and user dissatisfaction. However, trade-offs in quality and efficiency are not necessary, thanks to recent developments in light source technology.

  13. Low-power secure body area network for vital sensors toward IEEE802.15.6.

    PubMed

    Kuroda, Masahiro; Qiu, Shuye; Tochikubo, Osamu

    2009-01-01

    Many healthcare/medical services have started using personal area networks, such as Bluetooth and ZigBee; these networks consist of various types of vital sensors. These works focus on generalized functions for sensor networks that expect enough battery capacity and low-power CPU/RF (Radio Frequency) modules, but less attention to easy-to-use privacy protection. In this paper, we propose a commercially-deployable secure body area network (S-BAN) with reduced computational burden on a real sensor that has limited RAM/ROM sizes and CPU/RF power consumption under a light-weight battery. Our proposed S-BAN provides vital data ordering among sensors that are involved in an S-BAN and also provides low-power networking with zero-administration security by automatic private key generation. We design and implement the power-efficient media access control (MAC) with resource-constraint security in sensors. Then, we evaluate the power efficiency of the S-BAN consisting of small sensors, such as an accessory type ECG and ring-type SpO2. The evaluation of power efficiency of the S-BAN using real sensors convinces us in deploying S-BAN and will also help us in providing feedbacks to the IEEE802.15.6 MAC, which will be the standard for BANs.

  14. Strategy and Grand Strategy: What Students and Practitioners Need to Know

    DTIC Science & Technology

    2015-12-01

    available, acceptable, and well-suited to the purpose for which they will be used. These questions, though crucial, are only a starting place... starting point (rarely an ideal one) and then constantly reassessing the situation in light of changing conditions. This requires an ongoing...him.87 In the end, Britain and France reluctantly decided that they had to stand up to Hitler’s challenge to the international system. At the start

  15. Synchrotron Light Sources in Developing Countries

    NASA Astrophysics Data System (ADS)

    Winick, Herman; Pianetta, Piero

    2017-01-01

    The more than 50 light sources now in operation around the world include facilities in Brazil, Korea, and Taiwan which started their programs in the 1980's when they were developing countries. They came on line in the 1990's and have since trained hundreds of graduate students locally, without sending them abroad and losing many of them. They have also attracted dozens of mid-career diaspora scientists to return. Their growing user communities have demanded more advanced facilities, leading to the funding of higher performance new light sources that are now coming into operation. Light sources in the developing world now include the following: SESAME in the Middle East which is scheduled to start research in 2017 (www.sesame.org); The African Light Source, in the planning stage (www.africanlightsource.org); and The Mexican Light Source, in the planning stage (http://www.aps.org/units/fip/newsletters/201509/mexico.cfm). See: http://wpj.sagepub.com/content/32/4/92.full.pdf +html; http://www.lightsources.org/press-release/2015/11/20/grenoble-resolutions-mark-historical-step-towards-african-light-source. SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

  16. Fiber optical cable and connector system (FOCCoS) for PFS/ Subaru

    NASA Astrophysics Data System (ADS)

    de Oliveira, Antonio Cesar; de Oliveira, Lígia Souza; de Arruda, Marcio V.; Souza Marrara, Lucas; dos Santos, Leandro H.; Ferreira, Décio; dos Santos, Jesulino B.; Rosa, Josimar A.; Junior, Orlando V.; Pereira, Jeferson M.; Castilho, Bruno; Gneiding, Clemens; Junior, Laerte S.; de Oliveira, Claudia M.; Gunn, James; Ueda, Akitoshi; Takato, Naruhisa; Shimono, Atsushi; Sugai, Hajime; Karoji, Hiroshi; Kimura, Masahiko; Tamura, Naoyuki; Wang, Shiang-Yu; Murray, Graham; Le Mignant, David; Madec, Fabrice; Jaquet, Marc; Vives, Sebastien; Fisher, Charlie; Braun, David; Schwochert, Mark; Reiley, Daniel J.

    2014-07-01

    FOCCoS, "Fiber Optical Cable and Connector System" has the main function of capturing the direct light from the focal plane of Subaru Telescope using optical fibers, each one with a microlens in its tip, and conducting this light through a route containing connectors to a set of four spectrographs. The optical fiber cable is divided in 3 different segments called Cable A, Cable B and Cable C. Multi-fibers connectors assure precise connection among all optical fibers of the segments, providing flexibility for instrument changes. To assure strong and accurate connection, these sets are arranged inside two types of assemblies: the Tower Connector, for connection between Cable C and Cable B; and the Gang Connector, for connection between Cable B and Cable A. Throughput tests were made to evaluate the efficiency of the connections. A lifetime test connection is in progress. Cable C is installed inside the PFI, Prime Focus Instrument, where each fiber tip with a microlens is bonded to the end of the shaft of a 2-stage piezo-electric rotatory motor positioner; this assembly allows each fiber to be placed anywhere within its patrol region, which is 9.5mm diameter.. Each positioner uses a fiber arm to support the ferrule, the microlens, and the optical fiber. 2400 of these assemblies are arranged on a motor bench plate in a hexagonal-closed-packed disposition. All optical fibers from Cable C, protected by tubes, pass through the motors' bench plate, three modular plates and a strain relief box, terminating at the Tower Connector. Cable B is permanently installed at Subaru Telescope structure, as a link between Cable C and Cable A. This cable B starts at the Tower Connector device, placed on a lateral structure of the telescope, and terminates at the Gang Connector device. Cable B will be routed to minimize the compression, torsion and bending caused by the cable weight and telescope motion. In the spectrograph room, Cable A starts at the Gang Connector, crosses a distribution box and terminates in a slit device. Each slit device receives approximately 600 optical fibers, linearly arrayed in a curve for better orientation of the light to the spectrograph collimator mirror. Four sets of Gang Connectors, distribution boxes and Slit devices complete one Cable A. This paper will review the general design of the FOCCoS subsystem, methods used to manufacture the involved devices, and the needed tests results to evaluate the total efficiency of the set.

  17. Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells

    NASA Astrophysics Data System (ADS)

    Chang, Hong-Wei; Lee, Jonghee; Hofmann, Simone; Hyun Kim, Yong; Müller-Meskamp, Lars; Lüssem, Björn; Wu, Chung-Chih; Leo, Karl; Gather, Malte C.

    2013-05-01

    The performance of both organic light-emitting diodes (OLEDs) and organic solar cells (OSC) depends on efficient coupling between optical far field modes and the emitting/absorbing region of the device. Current approaches towards OLEDs with efficient light-extraction often are limited to single-color emission or require expensive, non-standard substrates or top-down structuring, which reduces compatibility with large-area light sources. Here, we report on integrating solution-processed nano-particle based light-scattering films close to the active region of organic semiconductor devices. In OLEDs, these films efficiently extract light that would otherwise remain trapped in the device. Without additional external outcoupling structures, translucent white OLEDs containing these scattering films achieve luminous efficacies of 46 lm W-1 and external quantum efficiencies of 33% (both at 1000 cd m-2). These are by far the highest numbers ever reported for translucent white OLEDs and the best values in the open literature for any white device on a conventional substrate. By applying additional light-extraction structures, 62 lm W-1 and 46% EQE are reached. Besides universally enhancing light-extraction in various OLED configurations, including flexible, translucent, single-color, and white OLEDs, the nano-particle scattering film boosts the short-circuit current density in translucent organic solar cells by up to 70%.

  18. Crystal growth of ZnSe and related ternary compound semiconductors by physical vapor transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    1993-01-01

    The materials to be investigated are ZnSe and related ternary semiconducting alloys (e.g., ZnS(x)Se(1-x), ZnTe(x)Se(1-x), and Zn(1-x)Cd(x)Se). These materials are useful for opto-electronic applications such as high efficient light emitting diodes and low power threshold and high temperature lasers in the blue-green region of the visible spectrum. The recent demonstration of its optical bistable properties also makes ZnSe a possible candidate material for digital optical computers. The investigation consists of an extensive ground-based study followed by flight experimentation, and involves both experimental and theoretical work. The objectives of the ground-based work are to establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low gravity environment and to obtain the experimental data and perform the analyses required to define the optimum parameters for the flight experiments. During the six months of the Preliminary Definition Phase, the research efforts were concentrated on the binary compound ZnSe - the purification of starting materials of Se by zone refining, the synthesis of ZnSe starting materials, the heat treatments of the starting materials, the vapor transport rate measurements, the vapor partial pressure measurements of ZnSe, the crystal growth of ZnSe by physical vapor transport, and various characterization on the grown ZnSe crystals.

  19. Strategies to enhance the excitation energy-transfer efficiency in a light-harvesting system using the intra-molecular charge transfer character of carotenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yukihira, Nao; Sugai, Yuko; Fujiwara, Masazumi

    Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (~95%) energy-transfer from fucoxanthin to chlorophyllain the light-harvesting complexes from brown algae. In purple bacterial light-harvesting systems the efficiency of excitation energy-transfer from carotenoids to bacteriochlorophylls depends on the extent of conjugation of the carotenoids. In this study we were successful, for the first time, in incorporating fucoxanthin intomore » a light-harvesting complex 1 from the purple photosynthetic bacterium,Rhodospirillum rubrumG9+ (a carotenoidless strain). Femtosecond pump-probe spectroscopy was applied to this reconstituted light-harvesting complex in order to determine the efficiency of excitation energy-transfer from fucoxanthin to bacteriochlorophyllawhen they are bound to the light-harvesting 1 apo-proteins.« less

  20. Laser Based Phosphor Converted Solid State White Light Emitters

    NASA Astrophysics Data System (ADS)

    Cantore, Michael

    Artificial lighting and as a consequence the ability to be productive when the sun does not shine may be a profound achievement in society that is largely taken for granted. As concerns arise due to our dependence on energy sources with finite lifespan or environmentally negative effects, efforts to reduce energy consumption and create clean renewable alternatives has become highly valued. In the scope of artificial lighting, the use of incandescent lamps has shifted to more efficient light sources. Fluorescent lighting made the first big gains in efficiency over incandescent lamps with peak efficiency for mature designs reaching luminous efficacy of approximately 90 lm/W; more than three times as efficient as an incandescent lamp. Lamps based on light emitting diodes (LEDs) which can produce light at even greater efficiency, color quality and without the potential for hazardous chemical release from lamp failure. There is a significant challenge with LED based light sources. Their peak efficiency occurs at low current densities and then droops as the current density increases. Laser diodes (LDs) do not suffer from decreasing efficiency due to increased current. An alternative solid state light source using LDs has potential to make further gains in efficiency as well as allow novel illuminant designs which may be impractical or even impossible even with LED or other conventional sources. While similar to LEDS, the use of LDs does present new challenges largely due to the increased optical power density which must be accommodated in optics and phosphor materials. Single crystal YAG:Ce has been shown to be capable of enduring this more extreme operating environment while retaining the optical and fluorescing qualities desired for use as a wavelength converter in phosphor converted LD based white emitting systems. The incorporation of this single crystal phosphor in a system with a commercial laser diode with peak wall plug efficiency of 31% resulted in emission of white light with a luminous efficacy of 86.7 lm/W at a current of 1.4A. A total luminous flux of 1100 lm with luminous efficacy of 76 lm/W at 3.0 A current was achieved. Simulations have been conducted which show that as the InGaN LD technology matures towards the efficiencies of about 75%, which has been observed in the GaAs material system, luminous efficacy of similar blue LD with single crystal YAG:Ce systems will exceed 200 lm/W.

  1. Beyond conventional c-plane GaN-based light emitting diodes: A systematic exploration of LEDs on semi-polar orientations

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza

    Despite enormous efforts and investments, the efficiency of InGaN-based green and yellow-green light emitters remains relatively low, and that limits progress in developing full color display, laser diodes, and bright light sources for general lighting. The low efficiency of light emitting devices in the green-to-yellow spectral range, also known as the "Green Gap", is considered a global concern in the LED industry. The polar c-plane orientation of GaN, which is the mainstay in the LED industry, suffers from polarization-induced separation of electrons and hole wavefunctions (also known as the "quantum confined Stark effect") and low indium incorporation efficiency that are the two main factors that contribute to the Green Gap phenomenon. One possible approach that holds promise for a new generation of green and yellow light emitting devices with higher efficiency is the deployment of nonpolar and semi-polar crystallographic orientations of GaN to eliminate or mitigate polarization fields. In theory, the use of other GaN planes for light emitters could also enhance the efficiency of indium incorporation compared to c-plane. In this thesis, I present a systematic exploration of the suitable GaN orientation for future lighting technologies. First, in order to lay the groundwork for further studies, it is important to discuss the analysis of processes limiting LED efficiency and some novel designs of active regions to overcome these limitations. Afterwards, the choice of nonpolar orientations as an alternative is discussed. For nonpolar orientation, the (1100)-oriented (mo-plane) structures on patterned Si (112) and freestanding m-GaN are studied. The semi-polar orientations having substantially reduced polarization field are found to be more promising for light-emitting diodes (LEDs) owing to high indium incorporation efficiency predicted by theoretical studies. Thus, the semi-polar orientations are given close attention as alternatives for future LED technology. (Abstract shortened by ProQuest.).

  2. Low efficiency upconversion nanoparticles for high-resolution coalignment of near-infrared and visible light paths on a light microscope

    PubMed Central

    Sundaramoorthy, Sriramkumar; Badaracco, Adrian Garcia; Hirsch, Sophia M.; Park, Jun Hong; Davies, Tim; Dumont, Julien; Shirasu-Hiza, Mimi; Kummel, Andrew C.; Canman, Julie C.

    2017-01-01

    The combination of near infrared (NIR) and visible wavelengths in light microscopy for biological studies is increasingly common. For example, many fields of biology are developing the use of NIR for optogenetics, in which an NIR laser induces a change in gene expression and/or protein function. One major technical barrier in working with both NIR and visible light on an optical microscope is obtaining their precise coalignment at the imaging plane position. Photon upconverting particles (UCPs) can bridge this gap as they are excited by NIR light but emit in the visible range via an anti-Stokes luminescence mechanism. Here, two different UCPs have been identified, high-efficiency micro540-UCPs and lower efficiency nano545-UCPs, that respond to NIR light and emit visible light with high photostability even at very high NIR power densities (>25,000 Suns). Both of these UCPs can be rapidly and reversibly excited by visible and NIR light and emit light at visible wavelengths detectable with standard emission settings used for Green Fluorescent Protein (GFP), a commonly used genetically-encoded fluorophore. However, the high efficiency micro540-UCPs were suboptimal for NIR and visible light coalignment, due to their larger size and spatial broadening from particle-to-particle energy transfer consistent with a long lived excited state and saturated power dependence. In contrast, the lower efficiency nano-UCPs were superior for precise coalignment of the NIR beam with the visible light path (~2 µm versus ~8 µm beam broadening respectively) consistent with limited particle-to-particle energy transfer, superlinear power dependence for emission, and much smaller particle size. Furthermore, the nano-UCPs were superior to a traditional two-camera method for NIR and visible light path alignment in an in vivo Infrared-Laser-Evoked Gene Operator (IR-LEGO) optogenetics assay in the budding yeast S. cerevisiae. In summary, nano-UCPs are powerful new tools for coaligning NIR and visible light paths on a light microscope. PMID:28221018

  3. Efficiency Goals

    ERIC Educational Resources Information Center

    Graham, Donald

    2009-01-01

    The lighting of learning environments is an important focus in designing new schools and renovating older schools. Studies long have shown that appropriate lighting levels and daylighting improve learning; now, climbing energy budgets have spurred school administrators to seek more efficient use of lighting. Electricity rates are expected to rise…

  4. Biomimetic light-harvesting funnels for re-directioning of diffuse light.

    PubMed

    Pieper, Alexander; Hohgardt, Manuel; Willich, Maximilian; Gacek, Daniel Alexander; Hafi, Nour; Pfennig, Dominik; Albrecht, Andreas; Walla, Peter Jomo

    2018-02-14

    Efficient sunlight harvesting and re-directioning onto small areas has great potential for more widespread use of precious high-performance photovoltaics but so far intrinsic solar concentrator loss mechanisms outweighed the benefits. Here we present an antenna concept allowing high light absorption without high reabsorption or escape-cone losses. An excess of randomly oriented pigments collects light from any direction and funnels the energy to individual acceptors all having identical orientations and emitting ~90% of photons into angles suitable for total internal reflection waveguiding to desired energy converters (funneling diffuse-light re-directioning, FunDiLight). This is achieved using distinct molecules that align efficiently within stretched polymers together with others staying randomly orientated. Emission quantum efficiencies can be >80% and single-foil reabsorption <0.5%. Efficient donor-pool energy funneling, dipole re-orientation, and ~1.5-2 nm nearest donor-acceptor transfer occurs within hundreds to ~20 ps. Single-molecule 3D-polarization experiments confirm nearly parallel emitters. Stacked pigment selection may allow coverage of the entire solar spectrum.

  5. Ultra-thin, light-trapping silicon solar cells

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1989-01-01

    Design concepts for ultra-thin (2 to 10 microns) high efficiency single-crystal silicon cells are discussed. Light trapping allows more light to be absorbed at a given thickness, or allows thinner cells of a given Jsc. Extremely thin cells require low surface recombination velocity at both surfaces, including the ohmic contacts. Reduction of surface recombination by growth of heterojunctions of ZnS and GaP on Si has been demonstrated. The effects of these improvements on AM0 efficiency is shown. The peak efficiency increases, and the optimum thickness decreases. Cells under 10 microns thickness can retain almost optimum power. The increase of absorptance due to light trapping is considered. This is not a problem if the light-trapping cells are sufficiently thin. Ultra-thin cells have high radiation tolerance. A 2 microns thick light-trapping cell remains over 18 percent efficient after the equivalent of 20 years in geosynchronous orbit. Including a 50 microns thick coverglass, the thin cells had specific power after irradiation over ten times higher than the baseline design.

  6. High efficiency incandescent lighting

    DOEpatents

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  7. Long-Term Effects of Red- and Blue-Light Emitting Diodes on Leaf Anatomy and Photosynthetic Efficiency of Three Ornamental Pot Plants

    PubMed Central

    Zheng, Liang; Van Labeke, Marie-Christine

    2017-01-01

    Light quality critically affects plant development and growth. Development of light-emitting diodes (LEDs) enables the use of narrow band red and/or blue wavelengths as supplementary lighting in ornamental production. Yet, long periods under these wavelengths will affect leaf morphology and physiology. Leaf anatomy, stomatal traits, and stomatal conductance, leaf hydraulic conductance (Kleaf), and photosynthetic efficiency were investigated in three ornamental pot plants, namely Cordyline australis (monocot), Ficus benjamina (dicot, evergreen leaves), and Sinningia speciosa (dicot, deciduous leaves) after 8 weeks under LED light. Four light treatments were applied at 100 μmol m−2 s−1 and a photoperiod of 16 h using 100% red (R), 100% blue (B), 75% red with 25% blue (RB), and full spectrum white light (W), respectively. B and RB resulted in a greater maximum quantum yield (Fv/Fm) and quantum efficiency (ΦPSII) in all species compared to R and W and this correlated with a lower biomass under R. B increased the stomatal conductance compared with R. This increase was linked to an increasing stomatal index and/or stomatal density but the stomatal aperture area was unaffected by the applied light quality. Leaf hydraulic conductance (Kleaf) was not significantly affected by the applied light qualities. Blue light increased the leaf thickness of F. benjamina, and a relative higher increase in palisade parenchyma was observed. Also in S. speciosa, increase in palisade parenchyma was found under B and RB, though total leaf thickness was not affected. Palisade parenchyma tissue thickness was correlated to the leaf photosynthetic quantum efficiency (ΦPSII). In conclusion, the role of blue light addition in the spectrum is essential for the normal anatomical leaf development which also impacts the photosynthetic efficiency in the three studied species. PMID:28611818

  8. Printing Smart Designs of Light Emitting Devices with Maintained Textile Properties.

    PubMed

    Verboven, Inge; Stryckers, Jeroen; Mecnika, Viktorija; Vandevenne, Glen; Jose, Manoj; Deferme, Wim

    2018-02-13

    To maintain typical textile properties, smart designs of light emitting devices are printed directly onto textile substrates. A first approach shows improved designs for alternating current powder electroluminescence (ACPEL) devices. A configuration with the following build-up, starting from the textile substrate, was applied using the screen printing technique: silver (10 µm)/barium titanate (10 µm)/zinc-oxide (10 µm) and poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (10 µm). Textile properties such as flexibility, drapability and air permeability are preserved by implementing a pixel-like design of the printed layers. Another route is the application of organic light emitting devices (OLEDs) fabricated out of following layers, also starting from the textile substrate: polyurethane or acrylate (10-20 µm) as smoothing layer/silver (200 nm)/poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (35 nm)/super yellow (80 nm)/calcium/aluminum (12/17 nm). Their very thin nm-range layer thickness, preserving the flexibility and drapability of the substrate, and their low working voltage, makes these devices the possible future in light-emitting wearables.

  9. Visible light optical coherence microscopy imaging of the mouse cortex with femtoliter volume resolution

    NASA Astrophysics Data System (ADS)

    Merkle, Conrad W.; Chong, Shau Poh; Kho, Aaron M.; Zhu, Jun; Kholiqov, Oybek; Dubra, Alfredo; Srinivasan, Vivek J.

    2018-02-01

    Most flying-spot Optical Coherence Tomography (OCT) and Optical Coherence Microscopy (OCM) systems use a symmetric confocal geometry, where the detection path retraces the illumination path starting from and ending with the spatial mode of a single mode optical fiber. Here, we describe a visible light OCM instrument that breaks this symmetry to improve transverse resolution without sacrificing collection efficiency in scattering tissue. This was achieved by overfilling a 0.3 numerical aperture (NA) water immersion objective on the illumination path, while maintaining a conventional Gaussian mode detection path (1/e2 intensity diameter 0.82 Airy disks), enabling 1.1 μm full-width at half-maximum (FWHM) transverse resolution. At the same time, a 0.9 μm FWHM axial resolution in tissue, achieved by a broadband visible light source, enabled femtoliter volume resolution. We characterized this instrument according to paraxial coherent microscopy theory, and then used it to image the meningeal layers, intravascular red blood cell-free layer, and myelinated axons in the mouse neocortex in vivo through the thinned skull. Finally, by introducing a 0.8 NA water immersion objective, we improved the lateral resolution to 0.44 μm FWHM, which provided a volumetric resolution of 0.2 fL, revealing cell bodies in cortical layer I of the mouse brain with OCM for the first time.

  10. Infrared imaging-based combat casualty care system

    NASA Astrophysics Data System (ADS)

    Davidson, James E., Sr.

    1997-08-01

    A Small Business Innovative Research (SBIR) contract was recently awarded to a start up company for the development of an infrared (IR) image based combat casualty care system. The company, Medical Thermal Diagnostics, or MTD, is developing a light weight, hands free, energy efficient uncooled IR imaging system based upon a Texas Instruments design which will allow emergency medical treatment of wounded soldiers in complete darkness without any type of light enhancement equipment. The principal investigator for this effort, Dr. Gene Luther, DVM, Ph.D., Professor Emeritus, LSU School of Veterinary Medicine, will conduct the development and testing of this system with support from Thermalscan, Inc., a nondestructive testing company experienced in IR thermography applications. Initial research has been done with surgery on a cat for feasibility of the concept as well as forensic research on pigs as a close representation of human physiology to determine time of death. Further such studies will be done later as well as trauma studies. IR images of trauma injuries will be acquired by imaging emergency room patients to create an archive of emergency medical situations seen with an infrared imaging camera. This archived data will then be used to develop training material for medical personnel using the system. This system has potential beyond military applications. Firefighters and emergency medical technicians could directly benefit from the capability to triage and administer medical care to trauma victims in low or no light conditions.

  11. Facile synthesis and characterization of N-doped TiO2/C nanocomposites with enhanced visible-light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Jia, Tiekun; Fu, Fang; Yu, Dongsheng; Cao, Jianliang; Sun, Guang

    2018-02-01

    Ultrafine anatase N-doped TiO2 nanocrystals modified with carbon (denoted as N-doped TiO2/C) were successfully prepared via a facile and low-cost approach, using titanium tetrachloride, aqueous ammonia and urea as starting materials. The phase composition, surface chemical composition, morphological structure, electronic and optical properties of the as-prepared photocatalysts were well characterized and analyzed. On the basis of Raman spectral characterization combining with the results of X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM), it could be concluded that N dopant ions were successfully introduced into TiO2 crystal lattice and carbon species were modified on the surface or between the nanoparticles to form N-doped TiO2/C nanocomposites. Compared with that of bare TiO2, the adsorption band edge of N-doped TiO2/C nanocomposites were found to have an evident red-shift toward visible light region, implying that the bandgap of N-doped TiO2/C nanocomposites is narrowed and the visible light absorption capacity is significantly enhanced due to N doping and carbon modification. The photoactivity of the as-prepared photocatalytsts was tested by the degradation of Rhodamine B (RhB) under visible light (λ > 420 nm), and the results showed that the N-doped TiO2/C nanocomposites exhibited much higher photodegradation rate than pure TiO2 and N-doped TiO2, which was mainly attributed to the synergistic effect of the enhanced light harvesting, augmented catalytic active sites and efficient separation of photogenerated electron-hole pairs.

  12. Assessment of the actual light dose in photodynamic therapy.

    PubMed

    Schaberle, Fabio A

    2018-06-09

    Photodynamic therapy (PDT) initiates with the absorption of light, which depends on the spectral overlap between the light source emission and the photosensitizer absorption, resulting in the number of photons absorbed, the key parameter starting PDT processes. Most papers report light doses regardless if the light is only partially absorbed or shifted relatively to the absorption peak, misleading the actual light dose value and not allowing quantitative comparisons between photosensitizers and light sources. In this manuscript a method is presented to calculate the actual light dose delivered by any light source for a given photosensitizer. This method allows comparing light doses delivered for any combination of light source (broad or narrow band or daylight) and photosensitizer. Copyright © 2018. Published by Elsevier B.V.

  13. Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis.

    PubMed

    Gotoh, Eiji; Suetsugu, Noriyuki; Higa, Takeshi; Matsushita, Tomonao; Tsukaya, Hirokazu; Wada, Masamitsu

    2018-01-24

    Leaf photosynthesis is regulated by multiple factors that help the plant to adapt to fluctuating light conditions. Leaves of sun-light-grown plants are thicker and contain more columnar palisade cells than those of shade-grown plants. Light-induced chloroplast movements are also essential for efficient leaf photosynthesis and facilitate efficient light utilization in leaf cells. Previous studies have demonstrated that leaves of most of the sun-grown plants exhibited no or very weak chloroplast movements and could accomplish efficient photosynthesis under strong light. To examine the relationship between palisade cell shape, chloroplast movement and distribution, and leaf photosynthesis, we used an Arabidopsis thaliana mutant, angustifolia (an), which has thick leaves that contain columnar palisade cells similar to those in the sun-grown plants. In the highly columnar cells of an mutant leaves, chloroplast movements were restricted. Nevertheless, under white light condition (at 120 µmol m -2 s -1 ), the an mutant plants showed higher chlorophyll content per unit leaf area and, thus, higher light absorption by the leaves than the wild type, which resulted in enhanced photosynthesis per unit leaf area. Our findings indicate that coordinated regulation of leaf cell shape and chloroplast movement according to the light conditions is pivotal for efficient leaf photosynthesis.

  14. Regional impacts of iron-light colimitation in a global biogeochemical model

    NASA Astrophysics Data System (ADS)

    Galbraith, E. D.; Gnanadesikan, A.; Dunne, J. P.; Hiscock, M. R.

    2010-03-01

    Laboratory and field studies have revealed that iron has multiple roles in phytoplankton physiology, with particular importance for light-harvesting cellular machinery. However, although iron-limitation is explicitly included in numerous biogeochemical/ecosystem models, its implementation varies, and its effect on the efficiency of light harvesting is often ignored. Given the complexity of the ocean environment, it is difficult to predict the consequences of applying different iron limitation schemes. Here we explore the interaction of iron and nutrient cycles in an ocean general circulation model using a new, streamlined model of ocean biogeochemistry. Building on previously published parameterizations of photoadaptation and export production, the Biogeochemistry with Light Iron Nutrients and Gasses (BLING) model is constructed with only four explicit tracers but including macronutrient and micronutrient limitation, light limitation, and an implicit treatment of community structure. The structural simplicity of this computationally-inexpensive model allows us to clearly isolate the global effect that iron availability has on maximum light-saturated photosynthesis rates vs. the effect iron has on photosynthetic efficiency. We find that the effect on light-saturated photosynthesis rates is dominant, negating the importance of photosynthetic efficiency in most regions, especially the cold waters of the Southern Ocean. The primary exceptions to this occur in iron-rich regions of the Northern Hemisphere, where high light-saturated photosynthesis rates allow photosynthetic efficiency to play a more important role. In other words, the ability to efficiently harvest photons has little effect in regions where light-saturated growth rates are low. Additionally, we speculate that the phytoplankton cells dominating iron-limited regions tend to have relatively high photosynthetic efficiency, due to reduced packaging effects. If this speculation is correct, it would imply that natural communities of iron-stressed phytoplankton may tend to harvest photons more efficiently than would be inferred from iron-limitation experiments with other phytoplankton. We suggest that iron limitation of photosynthetic efficiency has a relatively small impact on global biogeochemistry, though it is expected to impact the seasonal cycle of plankton as well as the vertical structure of primary production.

  15. Optical devices featuring nonpolar textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D; Moldawer, Adam; Bhattacharyya, Anirban; Abell, Joshua

    2013-11-26

    A semiconductor emitter, or precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate in a nonpolar orientation. The textured layers enhance light extraction, and the use of nonpolar orientation greatly enhances internal quantum efficiency compared to conventional devices. Both the internal and external quantum efficiencies of emitters of the invention can be 70-80% or higher. The invention provides highly efficient light emitting diodes suitable for solid state lighting.

  16. Highly efficient white OLEDs for lighting applications

    NASA Astrophysics Data System (ADS)

    Murano, Sven; Burghart, Markus; Birnstock, Jan; Wellmann, Philipp; Vehse, Martin; Werner, Ansgar; Canzler, Tobias; Stübinger, Thomas; He, Gufeng; Pfeiffer, Martin; Boerner, Herbert

    2005-10-01

    The use of organic light-emitting diodes (OLEDs) for large area general lighting purposes is gaining increasing interest during the recent years. Especially small molecule based OLEDs have already shown their potential for future applications. For white light emission OLEDs, power efficiencies exceeding that of incandescent bulbs could already be demonstrated, however additional improvements are needed to further mature the technology allowing for commercial applications as general purpose illuminating sources. Ultimately the efficiencies of fluorescent tubes should be reached or even excelled, a goal which could already be achieved in the past for green OLEDs.1 In this publication the authors will present highly efficient white OLEDs based on an intentional doping of the charge carrier transport layers and the usage of different state of the art emission principles. This presentation will compare white PIN-OLEDs based on phosphorescent emitters, fluorescent emitters and stacked OLEDs. It will be demonstrated that the reduction of the operating voltage by the use of intentionally doped transport layers leads to very high power efficiencies for white OLEDs, demonstrating power efficiencies of well above 20 lm/W @ 1000 cd/m2. The color rendering properties of the emitted light is very high and CRIs between 85 and 95 are achieved, therefore the requirements for standard applications in the field of lighting applications could be clearly fulfilled. The color coordinates of the light emission can be tuned within a wide range through the implementation of minor structural changes.

  17. Highly efficient light management for perovskite solar cells

    PubMed Central

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells. PMID:26733112

  18. Highly efficient light management for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  19. Very low color-temperature organic light-emitting diodes for lighting at night

    NASA Astrophysics Data System (ADS)

    Jou, Jwo-Huei; Tang, Ming-Chun; Chen, Pin-Chu; Chen, Szu-Hao; Shen, Shih-Ming; Chen, Chien-Chih; Wang, Ching-Chiun; Chen, Chien-Tien

    2011-12-01

    Light sources with low color temperature (CT) are essential for their markedly less suppression effect on the secretion of melatonin, and high power efficiency is crucial for energy-saving. To provide visual comfort, the light source should also have a reasonably high color rendering index (CRI). In this report, we demonstrate the design and fabrication of low CT and high efficiency organic light-emitting diodes. The best resultant device exhibits a CT of 1,880 K, much lower than that of incandescent bulbs (2,000-2,500 K) and even as low as that of candles, (1,800-2,000 K), a beyond theoretical limit external quantum efficiency 22.7 %, and 36.0 lm/W at 100 cd/m 2. The high efficiency of the proposed device may be attributed to its interlayer, which helps effectively distribute the entering carriers into the available recombination zones.

  20. Light-induced lattice expansion leads to high-efficiency perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C.; Durand, Olivier; Strzalka, Joseph W.; Chen, Bo; Verduzco, Rafael; Ajayan, Pulickel M.; Tretiak, Sergei; Even, Jacky; Alam, Muhammad Ashraf; Kanatzidis, Mercouri G.; Nie, Wanyi; Mohite, Aditya D.

    2018-04-01

    Light-induced structural dynamics plays a vital role in the physical properties, device performance, and stability of hybrid perovskite–based optoelectronic devices. We report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in situ structural and device characterizations reveal that light-induced lattice expansion benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5 to 20.5%. The lattice expansion leads to the relaxation of local lattice strain, which lowers the energetic barriers at the perovskite-contact interfaces, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion did not compromise the stability of these high-efficiency photovoltaic devices under continuous operation at full-spectrum 1-sun (100 milliwatts per square centimeter) illumination for more than 1500 hours.

  1. Highly efficient light management for perovskite solar cells.

    PubMed

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-06

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  2. Opportunities for Improved Management Efficiency of the Head Start Program: Performance Evaluation and High Risk Determination.

    ERIC Educational Resources Information Center

    Gall, Mary Sheila

    This report provides results of a review of the methodology used by the Office of Human Development Services (HDS) to measure Head Start performance and to control high risk Head Start agencies. The review was performed at HDS headquarters and regional locations nationwide. The review was based on a sample of 200 Head Start agencies and focused on…

  3. Status of Solid State Lighting Product Development and Future Trends for General Illumination.

    PubMed

    Katona, Thomas M; Pattison, P Morgan; Paolini, Steve

    2016-06-07

    After decades of research and development on fabrication of efficient light-emitting diodes (LEDs) throughout the visible spectrum, LED-based lighting has reached unparalleled performance with respect to energy efficiency and has become the light source for virtually all new lighting products being designed today. The development of the core light sources and their subsequent integration into lighting systems continue to present unique challenges and opportunities for product designers. We review these systems and the current development status, as well as provide context for the trends in solid state lighting that are leading to the development of value-added lighting solutions that extend the domain of lighting beyond light generation, into fields as diverse as communications, healthcare, and agricultural production.

  4. Incident light adjustable solar cell by periodic nanolens architecture

    PubMed Central

    Yun, Ju-Hyung; Lee, Eunsongyi; Park, Hyeong-Ho; Kim, Dong-Wook; Anderson, Wayne A.; Kim, Joondong; Litchinitser, Natalia M.; Zeng, Jinwei; Yi, Junsin; Kumar, M. Melvin David; Sun, Jingbo

    2014-01-01

    Could nanostructures act as lenses to focus incident light for efficient utilization of photovoltaics? Is it possible, in order to avoid serious recombination loss, to realize periodic nanostructures in solar cells without direct etching in a light absorbing semiconductor? Here we propose and demonstrate a promising architecture to shape nanolenses on a planar semiconductor. Optically transparent and electrically conductive nanolenses simultaneously provide the optical benefit of modulating the incident light and the electrical advantage of supporting carrier transportation. A transparent indium-tin-oxide (ITO) nanolens was designed to focus the incident light-spectrum in focal lengths overlapping to a strong electric field region for high carrier collection efficiency. The ITO nanolens effectively broadens near-zero reflection and provides high tolerance to the incident light angles. We present a record high light-conversion efficiency of 16.0% for a periodic nanostructured Si solar cell. PMID:25371099

  5. 76 FR 47178 - Energy Efficiency Program: Test Procedure for Lighting Systems (Luminaires)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ...: Test Procedure for Lighting Systems (Luminaires) AGENCY: Office of Energy Efficiency and Renewable... (``DOE'' or the ``Department'') is currently evaluating energy efficiency test procedures for luminaires... products. DOE recognizes that well-designed test procedures are important to produce reliable, repeatable...

  6. Efficient Sky-Blue Perovskite Light-Emitting Devices Based on Ethylammonium Bromide Induced Layered Perovskites.

    PubMed

    Wang, Qi; Ren, Jie; Peng, Xue-Feng; Ji, Xia-Xia; Yang, Xiao-Hui

    2017-09-06

    Low-dimensional organometallic halide perovskites are actively studied for the light-emitting applications due to their properties such as solution processability, high luminescence quantum yield, large exciton binding energy, and tunable band gap. Introduction of large-group ammonium halides not only serves as a convenient and versatile method to obtain layered perovskites but also allows the exploitation of the energy-funneling process to achieve a high-efficiency light emission. Herein, we investigate the influence of the addition of ethylammonium bromide on the morphology, crystallite structure, and optical properties of the resultant perovskite materials and report that the phase transition from bulk to layered perovskite occurs in the presence of excess ethylammonium bromide. On the basis of this strategy, we report green perovskite light-emitting devices with the maximum external quantum efficiency of ca. 3% and power efficiency of 9.3 lm/W. Notably, blue layered perovskite light-emitting devices with the Commission Internationale de I'Eclairage coordinates of (0.16, 0.23) exhibit the maximum external quantum efficiency of 2.6% and power efficiency of 1 lm/W at 100 cd/m 2 , representing a large improvement over the previously reported analogous devices.

  7. Enhancement of efficiencies for tandem green phosphorescent organic light-emitting devices with a p-type charge generation layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Byung Soo; Jeon, Young Pyo; Lee, Dae Uk

    2014-10-15

    The operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the organic light-emitting device with a molybdenum trioxide layer. The maximum brightness of the tandem green phosphorescent organic light-emitting device at 21.9 V was 26,540 cd/m{sup 2}. The dominant peak of the electroluminescence spectra for the devices was related to the fac-tris(2-phenylpyridine) iridium emission. - Highlights: • Tandem OLEDs with CGL were fabricated to enhance their efficiency. • The operating voltage of the tandem OLED with a HAT-CN layer was improved by 3%. • The efficiency and brightnessmore » of the tandem OLED were 13.9 cd/A and 26,540 cd/m{sup 2}. • Efficiency of the OLED with a HAT-CN layer was lower than that with a MoO{sub 3} layer. - Abstract: Tandem green phosphorescent organic light-emitting devices with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile or a molybdenum trioxide charge generation layer were fabricated to enhance their efficiency. Current density–voltage curves showed that the operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the corresponding organic light-emitting device with a molybdenum trioxide layer. The efficiency and the brightness of the tandem green phosphorescent organic light-emitting device were 13.9 cd/A and 26,540 cd/m{sup 2}, respectively. The current efficiency of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was lower by 1.1 times compared to that of the corresponding organic light-emitting device with molybdenum trioxide layer due to the decreased charge generation and transport in the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer resulting from triplet–triplet exciton annihilation.« less

  8. Apparatus For Making Glass Fibers Without The Aid Of Gravity

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis; Smith, Guy A.; Workman, Gary

    1995-01-01

    Report describes apparatus for making optical fibers in microgravity. Includes sting that makes initial contact with softened glass to start drawing fiber. Absence of gravity helps to suppress nucleation of crystallites, which increase scattering of light and thus reduce transmission of light along fiber.

  9. New life of recycled rare earth-oxides powders for lighting applications.

    NASA Astrophysics Data System (ADS)

    Carlo Ricci, Pier; Murgia, Massimiliano; Carbonaro, Carlo Maria; Sgariotto, Serena; Stagi, Luigi; Corpino, Riccardo; Chiriu, Daniele; Grilli, Maria Luisa

    2018-03-01

    In this work we analysed the optical and structural properties of Ce:YAG regenerated phosphors. The concentrate resulted as the final product of an industrial recycling process of waste electrical and electronic equipment (WEEE), and in particular fluorescent powders coming from spent lamps treatment plant. The waste pristine materials were re-utilized without any further purification and or separation process as starting materials to obtain a YAG matrix (Y2Al5O12) doped with Cerium ions. We tested out the recovered concentrate against commercial Ce:YAG phosphors comparing their structural and optical properties by means of XRD measurements and steady time and time resolved luminescence. The analysis reveals that the new phosphors obtained by scrap powder have the same crystal structure as the commercial reference sample and comparable optical properties. In particular, the Ce-related emission efficiency has a quantum yield of about 0.75 when excited at 450 nm, in good agreement with our reference sample and with the one of commercial powder presently exploited in white LED. This achievement strongly suggests the possibility of a new life for the exhausted phosphors and a possible step forward to a complete circular process for lighting equipment.

  10. Single-Step Syngas-to-Distillates (S2D) Process Based on Biomass-Derived Syngas – A Techno-Economic Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yunhua; Jones, Susanne B.; Biddy, Mary J.

    2012-08-01

    This study reports the comparison of biomass gasification based syngas-to-distillate (S2D) systems using techno-economic analysis (TEA). Three cases, state of technology (SOT) case, goal case, and conventional case, were compared in terms of performance and cost. The SOT case and goal case represent technology being developed at Pacific Northwest National Laboratory for a process starting with syngas using a single-step dual-catalyst reactor for distillate generation (S2D process). The conventional case mirrors the two-step S2D process previously utilized and reported by Mobil using natural gas feedstock and consisting of separate syngas-to-methanol and methanol-to-gasoline (MTG) processes. Analysis of the three cases revealedmore » that the goal case could indeed reduce fuel production cost over the conventional case, but that the SOT was still more expensive than the conventional. The SOT case suffers from low one-pass yield and high selectivity to light hydrocarbons, both of which drive up production cost. Sensitivity analysis indicated that light hydrocarbon yield, single pass conversion efficiency, and reactor space velocity are the key factors driving the high cost for the SOT case.« less

  11. Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Chen; Huang, Chun-Ying; Sanehira, Erin M.

    Recently, all-inorganic perovskites such as CsPbBr3 and CsPbI3, have emerged as promising materials for light-emitting applications. While encouraging performance has been demonstrated, the stability issue of the red-emitting CsPbI3 is still a major concern due to its small tolerance factor. Here we report a highly stable CsPbI3 quantum dot LED with red emission fabricated using an improved purification approach. The device achieved decent external quantum efficiency (EQE) of 0.21 % at a bias of 6 V and outstanding operational stability, with a L70 lifetime (EL intensity decreases to 70% of starting value) of 16 h and 1.5 h under amore » constant driving voltage of 5 V and 6 V (maximum EQE operation) respectively. Furthermore, the device can work under a higher voltage of 7 V (maximum luminance operation) and retain 50% of its initial EL intensity after 500 s. These findings demonstrate the promise of CsPbI3 quantum dots for stable red LEDs, and suggest the feasibility for electrically pumped perovskite lasers with further device optimizations.« less

  12. Plastids of Marine Phytoplankton Produce Bioactive Pigments and Lipids

    PubMed Central

    Heydarizadeh, Parisa; Poirier, Isabelle; Loizeau, Damien; Ulmann, Lionel; Mimouni, Virginie; Schoefs, Benoît; Bertrand, Martine

    2013-01-01

    Phytoplankton is acknowledged to be a very diverse source of bioactive molecules. These compounds play physiological roles that allow cells to deal with changes of the environmental constrains. For example, the diversity of light harvesting pigments allows efficient photosynthesis at different depths in the seawater column. Identically, lipid composition of cell membranes can vary according to environmental factors. This, together with the heterogenous evolutionary origin of taxa, makes the chemical diversity of phytoplankton compounds much larger than in terrestrial plants. This contribution is dedicated to pigments and lipids synthesized within or from plastids/photosynthetic membranes. It starts with a short review of cyanobacteria and microalgae phylogeny. Then the bioactivity of pigments and lipids (anti-oxidant, anti-inflammatory, anti-mutagenic, anti-cancer, anti-obesity, anti-allergic activities, and cardio- neuro-, hepato- and photoprotective effects), alone or in combination, is detailed. To increase the cellular production of bioactive compounds, specific culture conditions may be applied (e.g., high light intensity, nitrogen starvation). Regardless of the progress made in blue biotechnologies, the production of bioactive compounds is still limited. However, some examples of large scale production are given, and perspectives are suggested in the final section. PMID:24022731

  13. Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes

    DOE PAGES

    Zou, Chen; Huang, Chun-Ying; Sanehira, Erin M.; ...

    2017-09-11

    Recently, all-inorganic perovskites such as CsPbBr3 and CsPbI3, have emerged as promising materials for light-emitting applications. While encouraging performance has been demonstrated, the stability issue of the red-emitting CsPbI3 is still a major concern due to its small tolerance factor. Here we report a highly stable CsPbI3 quantum dot LED with red emission fabricated using an improved purification approach. The device achieved decent external quantum efficiency (EQE) of 0.21 % at a bias of 6 V and outstanding operational stability, with a L70 lifetime (EL intensity decreases to 70% of starting value) of 16 h and 1.5 h under amore » constant driving voltage of 5 V and 6 V (maximum EQE operation) respectively. Furthermore, the device can work under a higher voltage of 7 V (maximum luminance operation) and retain 50% of its initial EL intensity after 500 s. These findings demonstrate the promise of CsPbI3 quantum dots for stable red LEDs, and suggest the feasibility for electrically pumped perovskite lasers with further device optimizations.« less

  14. Sulphur responsiveness of the Chlamydomonas reinhardtii LHCBM9 promoter.

    PubMed

    Sawyer, Anne L; Hankamer, Ben D; Ross, Ian L

    2015-05-01

    A 44-base-pair region in the Chlamydomonas reinhardtii LHCBM9 promoter is essential for sulphur responsiveness. The photosynthetic light-harvesting complex (LHC) proteins play essential roles both in light capture, the first step of photosynthesis, and in photoprotective mechanisms. In contrast to the other LHC proteins and the majority of photosynthesis proteins, the Chlamydomonas reinhardtii photosystem II-associated LHC protein, LHCBM9, was recently reported to be up-regulated under sulphur deprivation conditions, which also induce hydrogen production. Here, we examined the sulphur responsiveness of the LHCBM9 gene at the transcriptional level, through promoter deletion analysis. The LHCBM9 promoter was found to be responsive to sulphur deprivation, with a 44-base-pair region between nucleotide positions -136 and -180 relative to the translation start site identified as essential for this response. Anaerobiosis was found to enhance promoter activity under sulphur deprivation conditions, however, alone was unable to induce promoter activity. The study of LHCBM9 is of biological and biotechnological importance, as its expression is linked to photobiological hydrogen production, theoretically the most efficient process for biofuel production, while the simplicity of using an S-deprivation trigger enables the development of a novel C. reinhardtii-inducible promoter system based on LHCBM9.

  15. Liquid xenon calorimeter for MEG II experiment with VUV-sensitive MPPCs

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinji; MEG II Collaboration

    2017-02-01

    The MEG II experiment is an upgrade of the MEG experiment to search for the charged lepton flavor violating decay of muon, μ+ →e+ γ . The MEG II experiment is expected to reach a branching ratio sensitivity of 4 ×10-14 , which is one order of magnitude better than the sensitivity of the current MEG experiment. The performance of the liquid xenon (LXe) γ-ray detector will be greatly improved with a highly granular scintillation readout realized by replacing 216 photomultiplier tubes (PMTs) on the γ-ray entrance face with 4092 Multi-Pixel Photon Counters (MPPCs). For this purpose, we have developed a new type of MPPC which is sensitive to the LXe scintillation light in vacuum ultraviolet (VUV) range, in collaboration with Hamamatsu Photonics K.K. We have measured the performance of the MPPC in LXe, and an excellent performance has been confirmed including high photon detection efficiency (> 15 %) for LXe scintillation light. An excellent performance of the LXe detector has been confirmed by Monte Carlo simulations based on the measured properties of the MPPC. The construction of the detector is in progress, aiming to start physics data taking in 2017.

  16. Mutagenesis of the three bases preceding the start codon of the beta-galactosidase mRNA and its effect on translation in Escherichia coli.

    PubMed Central

    Hui, A; Hayflick, J; Dinkelspiel, K; de Boer, H A

    1984-01-01

    The effect on the translation efficiency of various mutations in the three bases (the -1 triplet) that precede the AUG start codon of the beta-galactosidase mRNA in Escherichia coli was studied. Of the 39 mutants examined, the level of expression varies over a 20-fold range. The most favorable combinations of bases in the -1 triplet are UAU and CUU. The expression levels in the mutants with UUC, UCA or AGG as the -1 triplet are 20-fold lower than those with UAU or CUU. In general, a U residue immediately preceding the start codon is more favorable for expression than any other base; furthermore, an A residue at the -2 position enhances the translation efficiency in most instances. In both cases, however, the degree of enhancement depends on its context, i.e. the neighboring bases. Although the rules derived from this study are complex, the results show that mutations in any of the three bases preceding the start codon can strongly affect the translational efficiency of the beta-galactosidase mRNA. PMID:6425057

  17. Performance of the mixed LED light quality on the growth and energy efficiency of Arthrospira platensis.

    PubMed

    Mao, Ruixin; Guo, Shuangsheng

    2018-06-01

    The effect of mixed light quality with red, blue, and green LED lamps on the growth of Arthrospira platensis was studied, so as to lay the theoretical and technical basis for establishing a photo-bioreactor lighting system for application in space. Meanwhile, indexes, like morphology, growth rate, photosynthetic pigment compositions, energy efficiency, and main nutritional components, were measured respectively. The results showed that the blue light combined with red light could decrease the tightness of filament, and the effect of green light was opposite. The combination of blue light or green light with red light induced the filaments to get shorter in length. The 8R2B treatment could promote the growth of Arthrospira platensis significantly, and its dry weight reached 1.36 g L -1 , which was 25.93% higher than the control. What's more, 8R2B treatment had the highest contents of carbohydrate and lipid, while 8R2G was rich in protein. 8R0.5G1.5B had the highest efficiency of biomass production, which was 161.53 mg L -1  kW -1  h -1 . Therefore, the combination of red and blue light is more conducive to the growth of Arthrospira platensis, and a higher biomass production and energy utilization efficiency can be achieved simultaneously under the mixed light quality with the ratio of 8R0.5G1.5B.

  18. Effects of Cavity on the Performance of Dual Throat Nozzle During the Thrust-Vectoring Starting Transient Process.

    PubMed

    Gu, Rui; Xu, Jinglei

    2014-01-01

    The dual throat nozzle (DTN) technique is capable to achieve higher thrust-vectoring efficiencies than other fluidic techniques, without compromising thrust efficiency significantly during vectoring operation. The excellent performance of the DTN is mainly due to the concaved cavity. In this paper, two DTNs of different scales have been investigated by unsteady numerical simulations to compare the parameter variations and study the effects of cavity during the vector starting process. The results remind us that during the vector starting process, dynamic loads may be generated, which is a potentially challenging problem for the aircraft trim and control.

  19. Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport

    NASA Astrophysics Data System (ADS)

    Anthopoulos, Thomas D.; Markham, Jonathan P. J.; Namdas, Ebinazar B.; Samuel, Ifor D. W.; Lo, Shih-Chun; Burn, Paul L.

    2003-06-01

    High-efficiency single-layer-solution-processed green light-emitting diodes based on a phosphorescent dendrimer are demonstrated. A peak external quantum efficiency of 10.4% (35 cd/A) was measured for a first generation fac-tris(2-phenylpyridine) iridium cored dendrimer when blended with 4,4'-bis(N-carbazolyl)biphenyl and electron transporting 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene at 8.1 V. A maximum power efficiency of 12.8 lm/W was measured also at 8.1 V and 550 cd/m2. These results indicate that, by simple blending of bipolar and electron-transporting molecules, highly efficient light-emitting diodes can be made employing a very simple device structure.

  20. Concentrating light in Cu(In,Ga)Se2 solar cells

    NASA Astrophysics Data System (ADS)

    Schmid, M.; Yin, G.; Song, M.; Duan, S.; Heidmann, B.; Sancho-Martinez, D.; Kämmer, S.; Köhler, T.; Manley, P.; Lux-Steiner, M. Ch.

    2016-09-01

    Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here we investigate light concentration for cost efficient thinfilm solar cells which show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe) which has a proven stabilized record efficiency of 22.6% and which - despite being a polycrystalline thin-film material - is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscale approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared to the large scale concentrators and promise compact high efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultra-thin absorbers for dielectric nanostructures) or horizontally (micro absorbers for concentrating lenses) and have significant potential for efficiency enhancement.

  1. Concentrating light in Cu(In,Ga)Se2 solar cells

    NASA Astrophysics Data System (ADS)

    Schmid, Martina; Yin, Guanchao; Song, Min; Duan, Shengkai; Heidmann, Berit; Sancho-Martinez, Diego; Kämmer, Steven; Köhler, Tristan; Manley, Phillip; Lux-Steiner, Martha Ch.

    2017-01-01

    Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here, we investigate the light concentration for cost-efficient thin-film solar cells that show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe), which has a proven stabilized record efficiency of 22.6% and which-despite being a polycrystalline thin-film material-is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus, when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscaled approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared with the large scale concentrators and promise compact high-efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultrathin absorbers for dielectric nanostructures) or horizontally (microabsorbers for concentrating lenses) and have significant potential for efficiency enhancement.

  2. The Light criteria: the beginning and why they are useful 40 years later.

    PubMed

    Light, Richard W

    2013-03-01

    The Light criteria serve as a good starting point in the separation of transudates from exudates. The Light criteria misclassify about 25% of transudates as exudates, and most of these patients are on diuretics. If a patient is thought likely to have a disease that produces a transudative pleural effusion but the Light criteria suggest an exudate by only a small margin, the serum-pleural fluid protein gradient should be examined. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Numerical analysis of light extraction enhancement of GaN-based thin-film flip-chip light-emitting diodes with high-refractive-index buckling nanostructures

    NASA Astrophysics Data System (ADS)

    Yue, Qing-Yang; Yang, Yang; Cheng, Zhen-Jia; Guo, Cheng-Shan

    2018-06-01

    In this work, the light extraction efficiency enhancement of GaN-based thin-film flip-chip (TFFC) light-emitting diodes (LEDs) with high-refractive-index (TiO2) buckling nanostructures was studied using the three-dimensional finite difference time domain method. Compared with 2-D photonic crystals, the buckling structures have the advantages of a random directionality and a broad distribution in periodicity, which can effectively extract the guided light propagating in all azimuthal directions over a wide spectrum. Numerical studies revealed that the light extraction efficiency of buckling-structured LEDs reaches 1.1 times that of triangular lattice photonic crystals. The effects of the buckling structure feature sizes and the thickness of the N-GaN layer on the light extraction efficiency for TFFC LEDs were also investigated systematically. With optimized structural parameters, a significant light extraction enhancement of about 2.6 times was achieved for TiO2 buckling-structured TFFC LEDs compared with planar LEDs.

  4. AVERT Main Module Quick Start Guide

    EPA Pesticide Factsheets

    Learn how to get started with the AVERT tool, which guides non-experts in evaluating county-level emissions displaced at electric power plants by energy efficiency and renewable energy policies and programs.

  5. Scalable Light Module for Low-Cost, High-Efficiency Light- Emitting Diode Luminaires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarsa, Eric

    2015-08-31

    During this two-year program Cree developed a scalable, modular optical architecture for low-cost, high-efficacy light emitting diode (LED) luminaires. Stated simply, the goal of this architecture was to efficiently and cost-effectively convey light from LEDs (point sources) to broad luminaire surfaces (area sources). By simultaneously developing warm-white LED components and low-cost, scalable optical elements, a high system optical efficiency resulted. To meet program goals, Cree evaluated novel approaches to improve LED component efficacy at high color quality while not sacrificing LED optical efficiency relative to conventional packages. Meanwhile, efficiently coupling light from LEDs into modular optical elements, followed by optimallymore » distributing and extracting this light, were challenges that were addressed via novel optical design coupled with frequent experimental evaluations. Minimizing luminaire bill of materials and assembly costs were two guiding principles for all design work, in the effort to achieve luminaires with significantly lower normalized cost ($/klm) than existing LED fixtures. Chief project accomplishments included the achievement of >150 lm/W warm-white LEDs having primary optics compatible with low-cost modular optical elements. In addition, a prototype Light Module optical efficiency of over 90% was measured, demonstrating the potential of this scalable architecture for ultra-high-efficacy LED luminaires. Since the project ended, Cree has continued to evaluate optical element fabrication and assembly methods in an effort to rapidly transfer this scalable, cost-effective technology to Cree production development groups. The Light Module concept is likely to make a strong contribution to the development of new cost-effective, high-efficacy luminaries, thereby accelerating widespread adoption of energy-saving SSL in the U.S.« less

  6. High performance incandescent lighting using a selective emitter and nanophotonic filters

    NASA Astrophysics Data System (ADS)

    Leroy, Arny; Bhatia, Bikram; Wilke, Kyle; Ilic, Ognjen; Soljačić, Marin; Wang, Evelyn N.

    2017-09-01

    Previous approaches for improving the efficiency of incandescent light bulbs (ILBs) have relied on tailoring the emitted spectrum using cold-side interference filters that reflect the infrared energy back to the emitter while transmitting the visible light. While this approach has, in theory, potential to surpass light-emitting diodes (LEDs) in terms of luminous efficiency while conserving the excellent color rendering index (CRI) inherent to ILBs, challenges such as low view factor between the emitter and filter, high emitter (>2800 K) and filter temperatures and emitter evaporation have significantly limited the maximum efficiency. In this work, we first analyze the effect of non-idealities in the cold-side filter, the emitter and the view factor on the luminous efficiency. Second, we theoretically and experimentally demonstrate that the loss in efficiency associated with low view factors can be minimized by using a selective emitter (e.g., high emissivity in the visible and low emissivity in the infrared) with a filter. Finally, we discuss the challenges in achieving a high performance and long-lasting incandescent light source including the emitter and filter thermal stability as well as emitter evaporation.

  7. Evaluation of the Nutraceutical and Cosmeceutical Potential of Two Cultivars of Rubus fruticosus L. under Different Cultivation Conditions.

    PubMed

    Papaioanou, Maria; Chronopoulou, Evangelia G; Ciobotari, Gheorghii; Efrose, Rodica C; Sfichi-Duke, Liliana; Chatzikonstantinou, Marianna; Pappa, Evangelia; Ganopoulos, Ioannis; Madesis, Panagiotis; Nianiou-Obeidat, Irini; Zeng, Taofen; Labrou, Nikolaos E

    2017-01-01

    The starting point for the development of new, functional products derived from Rubus fruticosus L. is to determine the optimal cultivation conditions that produce maximal yield of fruits containing desirable bioactive properties. Towards that goal, the effect of soil, soil/peat mixture and light intensity on the nutraceutical and cosmeceutical potential of two cultivars ('Thornfree' and 'Loch Ness') of Rubus fruticosus L. were evaluated. The assessment was carried out employing a range of methods for evaluating fruit properties associated with promoting good health such as total antioxidant capacity, secondary metabolites content (vitamin C, polyphenols, flavonoids and anthocyanins) and inhibition analysis of skin-regulating enzymes. 'Thornfree' cultivar produced fruits in all light conditions, while 'Loch Ness' did not produce fruits in low light conditions. The results showed that in Rubus fruticosus L. fruit, the chemical composition and bioactivity are strongly affected by both genetics factors and growing conditions. Extract from 'Thornfree' fruits obtained under low light and soil/peat conditions displayed superior properties such as high antioxidant capacity, high concentrations of phenolics, flavonoids and anthocyanins and high inhibitory potency towards the enzymes tyrosinase and elastase. This extract was used for the development of a topical skin care cream with excellent compatibility and stability. Our findings conclude that Rubus fruticosus L. cultivation may be efficiently and effectively manipulated through conventional cultivation techniques to produce promising bioactive ingredients with potential use in commercial cosmetics and pharmaceuticals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. The synergistic effect of phase heterojunction and surface heterojunction to improve photocatalytic activity of VO •-TiO2: the co-catalytic effect of H3PW12O40

    NASA Astrophysics Data System (ADS)

    Li, Haiyan; Cai, Shengnan; Yang, Pengfei; Bai, Yan; Dang, Dongbin

    2018-06-01

    With nanotube titanic acid (abbreviated as NTA) and the 12-tungstophosphoric acid (H3PW12O40• xH2O, denoted as HPW) as start materials, respectively, according to a simple hydrothermal process in acid medium, we successfully prepared HPW modified VO •-TiO2 composite photocatalysts. During heat treatment companied by the transformation of NTA to TiO2, a kind of single-electron-trapped oxygen vacancy (VO •) could be formed contributing to the visible light absorption of catalysts. The morphology, phase and chemical structure, optical and electronic properties, and so on of the produced catalysts with various HPW loadings are characterized. The size range of synthesized photocatalyst nanoparticles are about 10 50 nm. Taking aqueous rhodamine B (RhB) dye as model pollutant, we carried out photocatalytic activity test of the achieved catalysts, revealing that the hybrid photocatalysts display significantly enhanced visible light-driven ( λ ≥ 420 nm) photocatalytic activity for degradation of RhB. Among various catalysts, HPWN-0.1-120 composite with nominal loading of 0.1 g HPW and heat treatment temperature of 120 °C possesses the highest photocatalytic performance in visible light, which is closely related to the co-effect of phase heterojunction of rutile/anatase, surface heterojunction of anatase/HPW, and oxygen vacancy (VO •). The two types of heterojunction promote greatly the separation efficiency of photoelectrons and photoholes and oxygen vacancy lures response of catalysts to visible light.

  9. Smart management of sample dilution using an artificial neural network to achieve streamlined processes and saving resources: the automated nephelometric testing of serum free light chain as case study.

    PubMed

    Ialongo, Cristiano; Pieri, Massimo; Bernardini, Sergio

    2017-02-01

    Saving resources is a paramount issue for the modern laboratory, and new trainable as well as smart technologies can be used to allow the automated instrumentation to manage samples more efficiently in order to achieve streamlined processes. In this regard the serum free light chain (sFLC) testing represents an interesting challenge, as it usually causes using a number of assays before achieving an acceptable result within the analytical range. An artificial neural network based on the multi-layer perceptron (MLP-ANN) was used to infer the starting dilution status of sFLC samples based on the information available through the laboratory information system (LIS). After the learning phase, the MLP-ANN simulation was applied to the nephelometric testing routinely performed in our laboratory on a BN ProSpec® System analyzer (Siemens Helathcare) using the N Latex FLC kit. The MLP-ANN reduced the serum kappa free light chain (κ-FLC) and serum lambda free light chain (λ-FLC) wasted tests by 69.4% and 70.8% with respect to the naïve stepwise dilution scheme used by the automated analyzer, and by 64.9% and 66.9% compared to a "rational" dilution scheme based on a 4-step dilution. Although it was restricted to follow-up samples, the MLP-ANN showed good predictive performance, which alongside the possibility to implement it in any automated system, made it a suitable solution for achieving streamlined laboratory processes and saving resources.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodwin, Malik

    Reliable public lighting remains a critically important and valuable public service in Detroit, Michigan. The Downtown Detroit Energy Efficiency Lighting Program (the, “Program”) was designed and implemented to bring the latest advancements in lighting technology, energy efficiency, public safety and reliability to Detroit’s Central Business District, and the Program accomplished those goals successfully. Downtown’s nighttime atmosphere has been upgraded as a result of the installation of over 1000 new LED roadway lighting fixtures that were installed as part of the Program. The reliability of the lighting system has also improved.

  11. Improving first case start times using Lean in an academic medical center.

    PubMed

    Deldar, Romina; Soleimani, Tahereh; Harmon, Carol; Stevens, Larry H; Sood, Rajiv; Tholpady, Sunil S; Chu, Michael W

    2017-06-01

    Lean is a process improvement strategy that can improve efficiency of the perioperative process. The purpose of this study was to identify etiologies of late surgery start times, implement Lean interventions, and analyze their effects. A retrospective review of all first-start surgery cases was performed. Lean was implemented in May 2015, and cases 7 months before and after implementation were analyzed. A total of 4,492 first-start cases were included; 2,181 were pre-Lean and 2,311 were post-Lean. The post-Lean group had significantly higher on-time starts than the pre-Lean group (69.0% vs 57.0%, P < .01). The most common delay etiology was surgeon-related for both groups. Delayed post-Lean cases were significantly less likely to be due to preoperative assessment (14.9% vs 9.9%, P < .01) and more likely due to patient-related (16.5% vs 22.3%, P < .01) or chaplain (1.8% vs 4.0%, P < .01) factors. Delayed starts occurred more often on snowy and cold days, and less often on didactic days (P < .01). Modifying preoperative tasks using Lean methods can improve operating room efficiency and increase on-time starts. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Thioredoxins Play a Crucial Role in Dynamic Acclimation of Photosynthesis in Fluctuating Light.

    PubMed

    Thormählen, Ina; Zupok, Arkadiusz; Rescher, Josephin; Leger, Jochen; Weissenberger, Stefan; Groysman, Julia; Orwat, Anne; Chatel-Innocenti, Gilles; Issakidis-Bourguet, Emmanuelle; Armbruster, Ute; Geigenberger, Peter

    2017-01-09

    Sunlight represents the energy source for photosynthesis and plant growth. When growing in the field, plant photosynthesis has to manage strong fluctuations in light intensities. Regulation based on the thioredoxin (Trx) system is believed to ensure light-responsive control of photosynthetic reactions in the chloroplast. However, direct evidence for a role of this system in regulating dynamic acclimation of photosynthesis in fluctuating conditions is largely lacking. In this report we show that the ferredoxin-dependent Trxs m1 and m2 as well as the NADPH-dependent NTRC are both indispensable for photosynthetic acclimation in fluctuating light intensities. Arabidopsis mutants with combined deficiency in Trxs m1 and m2 show wild-type growth and photosynthesis under constant light condition, while photosynthetic parameters are strongly modified in rapidly alternating high and low light. Two independent trxm1m2 mutants show lower photosynthetic efficiency in high light, but surprisingly significantly higher photosynthetic efficiency in low light. Our data suggest that a main target of Trx m1 and m2 is the NADP-malate dehydrogenase involved in export of excess reductive power from the chloroplast. The decreased photosynthetic efficiency in the high-light peaks may thus be explained by a reduced capacity of the trxm1m2 mutants in the rapid light activation of this enzyme. In the ntrc mutant, dynamic responses of non-photochemical quenching of excitation energy and plastoquinone reduction state both were strongly attenuated in fluctuating light intensities, leading to a massive decrease in PSII quantum efficiency and a specific decrease in plant growth under these conditions. This is likely due to the decreased ability of the ntrc mutant to control the stromal NADP(H) redox poise. Taken together, our results indicate that NTRC is indispensable in ensuring the full range of dynamic responses of photosynthesis to optimize photosynthesis and maintain growth in fluctuating light, while Trxs m1 and m2 are indispensable for full activation of photosynthesis in the high-light periods but negatively affect photosynthetic efficiency in the low-light periods of fluctuating light. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  13. Design and construction evaluation of a photovoltaic DC LED lighting system

    NASA Astrophysics Data System (ADS)

    Bhamidipati, Jyotsna

    2008-08-01

    The market demand for commercialization of Photovoltaic (PV) systems depends a lot on the reliability, efficiency and performance of various components within the system. PV panels produce DC power when exposed to sunlight, and an inverter converts this to AC power in a typical solar powered building. Though, PV lighting has existed for a long time it hasn't been very effective, as incandescent light sources were commonly used which are inefficient. Today fluorescent fixtures are mostly used with PV's due to its high efficacy. Light-emitting diodes present a new vision to energy efficiency in lighting design with their low energy consumption. Current research predicts improved efficiencies of LED light fixtures and their commercial use is a few years away. LEDs which operate on DC voltages when coupled with photovoltaics can be a simple PV lighting application and a sustainable solution with potential for payback. This research evaluates the design and construction of a photovoltaic DC LED lighting system for a solar house at Pennsylvania State University. A detailed cost and payback analysis of a PV DC LED lighting system is presented in this research. PV output simulations for the solar house are presented. Results presented in this research indicate that the Solid state lighting market is evolving rapidly and that LED's are a choice in stand-alone photovoltaic DC lighting systems. The efficiency and the cost-effectiveness of such systems would however improve in the coming years with research and development now focused on PV systems and on Solid state lighting technologies.

  14. 77 FR 29897 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... Portland, OR. This deviation is necessary to accommodate the efficient movement of light rail and roadway... the Steel Bridge to remain in the closed position to facilitate efficient movement of event patrons... Steel Bridge remain closed to vessel traffic to facilitate safe efficient movement of light rail and...

  15. Smooth light extraction in lighting optical fibre

    NASA Astrophysics Data System (ADS)

    Fernandez-Balbuena, A. A.; Vazquez-Molini, D.; Garcia-Botella, A.; Martinez-Anton, J. C.; Bernabeu, E.

    2011-10-01

    Recent advances in LED technology have relegated the use of optical fibre for general lighting, but there are several applications where it can be used as scanners lighting systems, daylight, cultural heritage lighting, sensors, explosion risky spaces, etc. Nowadays the use of high intensity LED to inject light in optical fibre increases the possibility of conjugate fibre + LED for lighting applications. New optical fibres of plastic materials, high core diameter up to 12.6 mm transmit light with little attenuation in the visible spectrum but there is no an efficient and controlled way to extract the light during the fibre path. Side extracting fibres extracts all the light on 2π angle so is not well suited for controlled lighting. In this paper we present an extraction system for mono-filament optical fibre which provides efficient and controlled light distribution. These lighting parameters can be controlled with an algorithm that set the position, depth and shape of the optical extraction system. The extraction system works by total internal reflection in the core of the fibre with high efficiency and low cost. A 10 m length prototype is made with 45° sectional cuts in the fibre core as extraction system. The system is tested with a 1W white LED illuminator in one side.

  16. Materials and systems for unassisted photoelectrochemical solar fuels production (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Jae Sung

    2016-10-01

    About 400 semiconductor solids are known to have photocatalytic activity for water splitting. Yet there is no single material that could satisfy all the requirements for desired photocatalysts: i) suitable band gap energy (1.7 eV< Eg < 2.3 eV) for high efficiency, ii) proper band position for reduction and/or oxidation of water, iii) long-term stability in aqueous solutions, iv) low cost, v) high crystallinity, and vi) high conductivity. Hence, in the selection of photocatalytic materials, we better start from intrinsically stable materials made of earth-abundant elements. The band bap energy is also the primary consideration to absorb ample amount of solar energy of wide wavelength spectrum. It sets the limit of theoretically maximum efficiency and it could also be extended by band engineering techniques. Upon selection of the candidate materials, we can also modify the materials for full utilization their potentials. The main path of efficiency loss in PEC water splitting process is recombination of photoelectrons and holes. We discuss the material designs including i) p-n heterojunction photoanodes for effective electron-hole separation, ii) electron highway to facilitate interparticle electron transfer, iii) metal or anion doping to improve conductivity of the semiconductor and to extend the range of light absorption, iv) one-dimensional nanomaterials to secure a short hole diffusion distance and vectoral electron transfer, and v) loading co-catalysts for facile charge separation. High efficiency has been demonstrated for all these examples due to efficient electron-hole separation. Finally, total systems for unassisted solar fuel production are demonstrated.

  17. The EX-SHADWELL-Full Scale Fire Research and Test Ship

    DTIC Science & Technology

    1988-01-20

    If shipboard testing is necessary after the large scale land tests at China Lake, the EX-SHADWELL has a helo pad and well deck available which makes...8217 *,~. *c ’q.. ~ I b. Data acquistion system started. c. Fire started d. Data is recorded until all fire activity has ceased. 3.0 THE TEST AREA 3.1 Test...timing clocks will be started at the instant the fuel is lighted. That instant will be time zero . The time the cables become involved will be recorded

  18. 41 CFR 109-38.104 - Fuel efficient passenger automobiles and light trucks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... automobiles and light trucks. 109-38.104 Section 109-38.104 Public Contracts and Property Management Federal... Vehicles § 109-38.104 Fuel efficient passenger automobiles and light trucks. (a) [Reserved] (b) All requests to purchase passenger automobiles larger than class IA, IB, or II (small, subcompact, or compact...

  19. 41 CFR 109-38.104 - Fuel efficient passenger automobiles and light trucks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... automobiles and light trucks. 109-38.104 Section 109-38.104 Public Contracts and Property Management Federal... Vehicles § 109-38.104 Fuel efficient passenger automobiles and light trucks. (a) [Reserved] (b) All requests to purchase passenger automobiles larger than class IA, IB, or II (small, subcompact, or compact...

  20. 41 CFR 109-38.104 - Fuel efficient passenger automobiles and light trucks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... automobiles and light trucks. 109-38.104 Section 109-38.104 Public Contracts and Property Management Federal... Vehicles § 109-38.104 Fuel efficient passenger automobiles and light trucks. (a) [Reserved] (b) All requests to purchase passenger automobiles larger than class IA, IB, or II (small, subcompact, or compact...

  1. 41 CFR 109-38.104 - Fuel efficient passenger automobiles and light trucks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... automobiles and light trucks. 109-38.104 Section 109-38.104 Public Contracts and Property Management Federal... Vehicles § 109-38.104 Fuel efficient passenger automobiles and light trucks. (a) [Reserved] (b) All requests to purchase passenger automobiles larger than class IA, IB, or II (small, subcompact, or compact...

  2. 41 CFR 109-38.104 - Fuel efficient passenger automobiles and light trucks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... automobiles and light trucks. 109-38.104 Section 109-38.104 Public Contracts and Property Management Federal... Vehicles § 109-38.104 Fuel efficient passenger automobiles and light trucks. (a) [Reserved] (b) All requests to purchase passenger automobiles larger than class IA, IB, or II (small, subcompact, or compact...

  3. Determination of the Quantum Efficiency of a Light Detector

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2008-01-01

    The "quantum efficiency" (QE) is an important property of a light detector. This quantity can be determined in the undergraduate physics laboratory. The experimentally determined QE of a silicon photodiode appeared to be in reasonable agreement with expected values. The experiment confirms the quantum properties of light and seems to be a useful…

  4. Light-induced lattice expansion leads to high-efficiency perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe

    Hybrid-perovskite based high-performance optoelectronic devices and clues from their operation has led to the realization that light-induced structural dynamics play a vital role on their physical properties, device performance and stability. Here, we report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin-films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in-situ structural and device characterizations reveal that light-induced lattice expansion significantly benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5% to 20.5%. This is a direct consequence of the relaxation of local lattice strains during latticemore » expansion, which results in the reduction of the energetic barriers at the perovskite/contact interfaces in devices, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion stabilizes these high-efficiency photovoltaic devices under continuous operation of full-spectrum 1-Sun illumination for over 1500 hours. One Sentence Summary: Light-induced lattice expansion improves crystallinity, relaxes lattice strain, which enhances photovoltaic performance in hybrid perovskite device.« less

  5. A Hybrid Converter for Improving Light Load Efficiency

    NASA Astrophysics Data System (ADS)

    Takahashi, Masaya; Nishijima, Kimihiro; Nagao, Michihiko; Sato, Terukazu; Nabeshima, Takashi

    In order to reduce power consumption of electronic equipment in stand-by mode, idle-mode and sleep-mode, a simple efficiency improvement technique for switching regulator in light load region is proposed. In this technique, under the light load, the small switching elements in a MOSFET driver circuit are used instead of the switching elements in a main regulator circuit to reduce driving losses. Of course, under the load heavier than light load, the MOSFET driver drives the switching elements in the main regulator circuit. The efficiency of a 2.5V/5A prototype buck converter is improved from 47.1% to 72.7% by using the proposed technique.

  6. The impact of the rising colorectal cancer incidence in young adults on the optimal age to start screening: Microsimulation analysis I to inform the American Cancer Society colorectal cancer screening guideline.

    PubMed

    Peterse, Elisabeth F P; Meester, Reinier G S; Siegel, Rebecca L; Chen, Jennifer C; Dwyer, Andrea; Ahnen, Dennis J; Smith, Robert A; Zauber, Ann G; Lansdorp-Vogelaar, Iris

    2018-05-30

    In 2016, the Microsimulation Screening Analysis-Colon (MISCAN-Colon) model was used to inform the US Preventive Services Task Force colorectal cancer (CRC) screening guidelines. In this study, 1 of 2 microsimulation analyses to inform the update of the American Cancer Society CRC screening guideline, the authors re-evaluated the optimal screening strategies in light of the increase in CRC diagnosed in young adults. The authors adjusted the MISCAN-Colon model to reflect the higher CRC incidence in young adults, who were assumed to carry forward escalated disease risk as they age. Life-years gained (LYG; benefit), the number of colonoscopies (COL; burden) and the ratios of incremental burden to benefit (efficiency ratio [ER] = ΔCOL/ΔLYG) were projected for different screening strategies. Strategies differed with respect to test modality, ages to start (40 years, 45 years, and 50 years) and ages to stop (75 years, 80 years, and 85 years) screening, and screening intervals (depending on screening modality). The authors then determined the model-recommended strategies in a similar way as was done for the US Preventive Services Task Force, using ER thresholds in accordance with the previously accepted ER of 39. Because of the higher CRC incidence, model-predicted LYG from screening increased compared with the previous analyses. Consequently, the balance of burden to benefit of screening improved and now 10-yearly colonoscopy screening starting at age 45 years resulted in an ER of 32. Other recommended strategies included fecal immunochemical testing annually, flexible sigmoidoscopy screening every 5 years, and computed tomographic colonography every 5 years. This decision-analysis suggests that in light of the increase in CRC incidence among young adults, screening may be offered earlier than has previously been recommended. Cancer 2018. © 2018 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. © 2018 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society.

  7. Simulation and comparison of the illuminance, uniformity, and efficiency of different forms of lighting used in basketball court illumination.

    PubMed

    Sun, Wen-Shing; Tien, Chuen-Lin; Tsuei, Chih-Hsuan; Pan, Jui-Wen

    2014-10-10

    We simulate and compare the illuminance, uniformity, and efficiency of metal-halide lamps, white LED light sources, and hybrid light box designs combining sunlight and white LED lighting used for indoor basketball court illumination. According to the optical simulation results and our examination of real situations, we find that hybrid light box designs combining sunlight and white LEDs do perform better than either metal-halide lamps or white LED lights. An evaluation of the sunlight concentrator system used in our inverted solar cell shows that the energy consumption of stadium lighting can be reduced significantly.

  8. Energy efficiency for the removal of non-polar pollutants during ultraviolet irradiation, visible light photocatalysis and ozonation of a wastewater effluent.

    PubMed

    Santiago-Morales, Javier; Gómez, María José; Herrera-López, Sonia; Fernández-Alba, Amadeo R; García-Calvo, Eloy; Rosal, Roberto

    2013-10-01

    This study aims to assess the removal of a set of non-polar pollutants in biologically treated wastewater using ozonation, ultraviolet (UV 254 nm low pressure mercury lamp) and visible light (Xe-arc lamp) irradiation as well as visible light photocatalysis using Ce-doped TiO2. The compounds tracked include UV filters, synthetic musks, herbicides, insecticides, antiseptics and polyaromatic hydrocarbons. Raw wastewater and treated samples were analyzed using stir-bar sorptive extraction coupled with comprehensive two-dimensional gas chromatography (SBSE-CG × GC-TOF-MS). Ozone treatment could remove most pollutants with a global efficiency of over 95% for 209 μM ozone dosage. UV irradiation reduced the total concentration of the sixteen pollutants tested by an average of 63% with high removal of the sunscreen 2-ethylhexyl trans-4-methoxycinnamate (EHMC), the synthetic musk 7-acetyl-1,1,3,4,4,6-hexamethyltetrahydronaphthalene (tonalide, AHTN) and several herbicides. Visible light Ce-TiO2 photocatalysis reached ~70% overall removal with particularly high efficiency for synthetic musks. In terms of power usage efficiency expressed as nmol kJ(-1), the results showed that ozonation was by far the most efficient process, ten-fold over Xe/Ce-TiO2 visible light photocatalysis, the latter being in turn considerably more efficient than UV irradiation. In all cases the efficiency decreased along the treatments due to the lower reaction rate at lower pollutant concentration. The use of photocatalysis greatly improved the efficiency of visible light irradiation. The collector area per order decreased from 9.14 ± 5.11 m(2) m(-3) order(-1) for visible light irradiation to 0.16 ± 0.03 m(2) m(-3) order(-1) for Ce-TiO2 photocatalysis. The toxicity of treated wastewater was assessed using the green alga Pseudokirchneriella subcapitata. Ozonation reduced the toxicity of treated wastewater, while UV irradiation and visible light photocatalysis limited by 20-25% the algal growth due to the accumulation of reaction by-products. Three transformation products were identified and tracked along the treatments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Energy efficiency in the U.S. residential sector: An engineering and economic assessment of opportunities for large energy savings and greenhouse gas emissions reductions

    NASA Astrophysics Data System (ADS)

    Lima de Azevedo, Ines Margarida

    Energy efficiency and conservation is a very promising part of a portfolio of the needed strategies to mitigate climate change. Several technologies and energy efficiency measures in the residential sector offer potential for large energy savings. However, while energy efficiency options are currently considered as a means of reducing carbon emissions, there is still large uncertainty about the effect of such measures on overall carbon savings. The first part of this thesis provides a national assessment of the energy efficiency potential in the residential sector under several different scenarios, which include the perspectives of different economic agents (consumers, utilities, ESCOs, and a society). The scenarios also include maximizing energy, electricity or carbon dioxide savings. The second part of this thesis deals with a detailed assessment of the potential for white-light LEDs for energy and carbon dioxide savings in the U.S. commercial and residential sectors. Solid-state lighting shows great promise as a source of efficient, affordable, color-balanced white light. Indeed, assuming market discount rates, the present work demonstrates that white solid-state lighting already has a lower levelized annual cost (LAC) than incandescent bulbs and that it will be lower than that of the most efficient fluorescent bulbs by the end of this decade. However, a large literature indicates that households do not make their decisions in terms of simple expected economic value. The present analysis shows that incorporating the findings from literature on high implicit discount rates from households when performing decisions towards efficient technologies delays the adoption of white LEDs by a couple of years. After a review of the technology, the present work compares the electricity consumption, carbon emissions and cost-effectiveness of current lighting technologies, when accounting for expected performance evolution through 2015. Simulations of lighting electricity consumption and implicit greenhouse gases emissions for the U.S. residential and commercial sectors through 2015 under different policy scenarios (voluntary solid-state lighting adoption, implementation of lighting standards in new construction and rebate programs or equivalent subsidies) are also included.

  10. Highly efficient deep-blue organic light emitting diode with a carbazole based fluorescent emitter

    NASA Astrophysics Data System (ADS)

    Sahoo, Snehasis; Dubey, Deepak Kumar; Singh, Meenu; Joseph, Vellaichamy; Thomas, K. R. Justin; Jou, Jwo-Huei

    2018-04-01

    High efficiency deep-blue emission is essential to realize energy-saving, high-quality display and lighting applications. We demonstrate here a deep-blue organic light emitting diode using a novel carbazole based fluorescent emitter 7-[4-(diphenylamino)phenyl]-9-(2-ethylhexyl)-9H-carbazole-2-carbonitrile (JV234). The solution processed resultant device shows a maximum luminance above 1,750 cd m-2 and CIE coordinates (0.15,0.06) with a 1.3 lm W-1 power efficiency, 2.0 cd A-1 current efficiency, and 4.1% external quantum efficiency at 100 cd m-2. The resulting deep-blue emission enables a greater than 100% color saturation. The high efficiency may be attributed to the effective host-to-guest energy transfer, suitable device architecture facilitating balanced carrier injection and low doping concentration preventing efficiency roll-off caused by concentration quenching.

  11. Enhanced light extraction in tunnel junction-enabled top emitting UV LEDs

    DOE PAGES

    Zhang, Yuewei; Allerman, Andrew A.; Krishnamoorthy, Sriram; ...

    2016-04-11

    The efficiency of ultra violet LEDs has been critically limited by the absorption losses in p-type and metal layers. In this work, surface roughening based light extraction structures are combined with tunneling based p-contacts to realize highly efficient top-side light extraction efficiency in UV LEDs. Surface roughening of the top n-type AlGaN contact layer is demonstrated using self-assembled Ni nano-clusters as etch mask. The top surface roughened LEDs were found to enhance external quantum efficiency by over 40% for UV LEDs with a peak emission wavelength of 326 nm. The method described here can enable highly efficient UV LEDs withoutmore » the need for complex manufacturing methods such as flip chip bonding.« less

  12. Laterally injected light-emitting diode and laser diode

    DOEpatents

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  13. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light.

    PubMed

    Qin, Fei; Ding, Lu; Zhang, Lei; Monticone, Francesco; Chum, Chan Choy; Deng, Jie; Mei, Shengtao; Li, Ying; Teng, Jinghua; Hong, Minghui; Zhang, Shuang; Alù, Andrea; Qiu, Cheng-Wei

    2016-01-01

    Metasurfaces operating in the cross-polarization scheme have shown an interesting degree of control over the wavefront of transmitted light. Nevertheless, their inherently low efficiency in visible light raises certain concerns for practical applications. Without sacrificing the ultrathin flat design, we propose a bilayer plasmonic metasurface operating at visible frequencies, obtained by coupling a nanoantenna-based metasurface with its complementary Babinet-inverted copy. By breaking the radiation symmetry because of the finite, yet small, thickness of the proposed structure and benefitting from properly tailored intra- and interlayer couplings, such coupled bilayer metasurface experimentally yields a conversion efficiency of 17%, significantly larger than that of earlier single-layer designs, as well as an extinction ratio larger than 0 dB, meaning that anomalous refraction dominates the transmission response. Our finding shows that metallic metasurface can counterintuitively manipulate the visible light as efficiently as dielectric metasurface (~20% in conversion efficiency in Lin et al.'s study), although the metal's ohmic loss is much higher than dielectrics. Our hybrid bilayer design, still being ultrathin (~λ/6), is found to obey generalized Snell's law even in the presence of strong couplings. It is capable of efficiently manipulating visible light over a broad bandwidth and can be realized with a facile one-step nanofabrication process.

  14. Combining light-harvesting with detachability in high-efficiency thin-film silicon solar cells.

    PubMed

    Ram, Sanjay K; Desta, Derese; Rizzoli, Rita; Bellettato, Michele; Lyckegaard, Folmer; Jensen, Pia B; Jeppesen, Bjarke R; Chevallier, Jacques; Summonte, Caterina; Larsen, Arne Nylandsted; Balling, Peter

    2017-06-01

    Efforts to realize thin-film solar cells on unconventional substrates face several obstacles in achieving good energy-conversion efficiency and integrating light-management into the solar cell design. In this report a technique to circumvent these obstacles is presented: transferability and an efficient light-harvesting scheme are combined for thin-film silicon solar cells by the incorporation of a NaCl layer. Amorphous silicon solar cells in p-i-n configuration are fabricated on reusable glass substrates coated with an interlayer of NaCl. Subsequently, the solar cells are detached from the substrate by dissolution of the sacrificial NaCl layer in water and then transferred onto a plastic sheet, with a resultant post-transfer efficiency of 9%. The light-trapping effect of the surface nanotextures originating from the NaCl layer on the overlying solar cell is studied theoretically and experimentally. The enhanced light absorption in the solar cells on NaCl-coated substrates leads to significant improvement in the photocurrent and energy-conversion efficiency in solar cells with both 350 and 100 nm thick absorber layers, compared to flat-substrate solar cells. Efficient transferable thin-film solar cells hold a vast potential for widespread deployment of off-grid photovoltaics and cost reduction.

  15. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light

    PubMed Central

    Qin, Fei; Ding, Lu; Zhang, Lei; Monticone, Francesco; Chum, Chan Choy; Deng, Jie; Mei, Shengtao; Li, Ying; Teng, Jinghua; Hong, Minghui; Zhang, Shuang; Alù, Andrea; Qiu, Cheng-Wei

    2016-01-01

    Metasurfaces operating in the cross-polarization scheme have shown an interesting degree of control over the wavefront of transmitted light. Nevertheless, their inherently low efficiency in visible light raises certain concerns for practical applications. Without sacrificing the ultrathin flat design, we propose a bilayer plasmonic metasurface operating at visible frequencies, obtained by coupling a nanoantenna-based metasurface with its complementary Babinet-inverted copy. By breaking the radiation symmetry because of the finite, yet small, thickness of the proposed structure and benefitting from properly tailored intra- and interlayer couplings, such coupled bilayer metasurface experimentally yields a conversion efficiency of 17%, significantly larger than that of earlier single-layer designs, as well as an extinction ratio larger than 0 dB, meaning that anomalous refraction dominates the transmission response. Our finding shows that metallic metasurface can counterintuitively manipulate the visible light as efficiently as dielectric metasurface (~20% in conversion efficiency in Lin et al.’s study), although the metal’s ohmic loss is much higher than dielectrics. Our hybrid bilayer design, still being ultrathin (~λ/6), is found to obey generalized Snell’s law even in the presence of strong couplings. It is capable of efficiently manipulating visible light over a broad bandwidth and can be realized with a facile one-step nanofabrication process. PMID:26767195

  16. NEUROSCIENCE. Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics.

    PubMed

    Govorunova, Elena G; Sineshchekov, Oleg A; Janz, Roger; Liu, Xiaoqin; Spudich, John L

    2015-08-07

    Light-gated rhodopsin cation channels from chlorophyte algae have transformed neuroscience research through their use as membrane-depolarizing optogenetic tools for targeted photoactivation of neuron firing. Photosuppression of neuronal action potentials has been limited by the lack of equally efficient tools for membrane hyperpolarization. We describe anion channel rhodopsins (ACRs), a family of light-gated anion channels from cryptophyte algae that provide highly sensitive and efficient membrane hyperpolarization and neuronal silencing through light-gated chloride conduction. ACRs strictly conducted anions, completely excluding protons and larger cations, and hyperpolarized the membrane of cultured animal cells with much faster kinetics at less than one-thousandth of the light intensity required by the most efficient currently available optogenetic proteins. Natural ACRs provide optogenetic inhibition tools with unprecedented light sensitivity and temporal precision. Copyright © 2015, American Association for the Advancement of Science.

  17. Way Beyond Widgets: Delivering Integrated Lighting Design in Actionable Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myer, Michael; Richman, Eric E.; Jones, Carol C.

    2008-08-17

    Previously, energy-efficiency strategies for commercial spaces have focused on using efficient equipment without providing specific detailed instructions. Designs by experts in their fields are an energy-efficiency product in its own right. A new national program has developed interactive application-specific lighting designs for widespread use in four major commercial sectors. This paper will describe the technical basis for the solutions, energy efficiency and cost-savings methodology, and installations and measurement/verification to-date. Lighting designs have been developed for five types of retail stores (big box, small box, grocery, specialty market, and pharmacy) and are planned for the office, healthcare, and education sectors asmore » well. Nationally known sustainable lighting designers developed the designs using high-performance commercially available products, daylighting, and lighting controls. Input and peer review was received by stakeholders, including manufacturers, architects, utilities, energy-efficiency program sponsors (EEPS), and end-users (i.e., retailers). An interactive web tool delivers the lighting solutions and analyzes anticipated energy savings using project-specific inputs. The lighting solutions were analyzed against a reference building using the space-by-space method as allowed in the Energy Standard for Buildings Except Low-Rise Residential Buildings (ASHRAE 2004) co-sponsored by the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) and the Illuminating Engineering Society of North America (IESNA). The results showed that the design vignettes ranged from a 9% to 28% reduction in the allowed lighting power density. Detailed control strategies are offered to further reduce the actual kilowatt-hour power consumption. When used together, the lighting design vignettes and control strategies show a modeled decrease in energy consumption (kWh) by 33% to 50% below the baseline design.« less

  18. Measurement and removal of cladding light in high power fiber systems

    NASA Astrophysics Data System (ADS)

    Walbaum, Till; Liem, Andreas; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas

    2018-02-01

    The amount of cladding light is important to ensure longevity of high power fiber components. However, it is usually measured either by adding a cladding light stripper (and thus permanently modifying the fiber) or by using a pinhole to only transmit the core light (ignoring that there may be cladding mode content in the core area). We present a novel noninvasive method to measure the cladding light content in double-clad fibers based on extrapolation from a cladding region of constant average intensity. The method can be extended to general multi-layer radially symmetric fibers, e.g. to evaluate light content in refractive index pedestal structures. To effectively remove cladding light in high power systems, cladding light strippers are used. We show that the stripping efficiency can be significantly improved by bending the fiber in such a device and present respective experimental data. Measurements were performed with respect to the numerical aperture as well, showing the dependency of the CLS efficiency on the NA of the cladding light and implying that efficiency data cannot reliably be given for a certain fiber in general without regard to the properties of the guided light.

  19. Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light.

    PubMed

    Shown, Indrajit; Samireddi, Satyanarayana; Chang, Yu-Chung; Putikam, Raghunath; Chang, Po-Han; Sabbah, Amr; Fu, Fang-Yu; Chen, Wei-Fu; Wu, Chih-I; Yu, Tsyr-Yan; Chung, Po-Wen; Lin, M C; Chen, Li-Chyong; Chen, Kuei-Hsien

    2018-01-12

    Photocatalytic formation of hydrocarbons using solar energy via artificial photosynthesis is a highly desirable renewable-energy source for replacing conventional fossil fuels. Using an L-cysteine-based hydrothermal process, here we synthesize a carbon-doped SnS 2 (SnS 2 -C) metal dichalcogenide nanostructure, which exhibits a highly active and selective photocatalytic conversion of CO 2 to hydrocarbons under visible-light. The interstitial carbon doping induced microstrain in the SnS 2 lattice, resulting in different photophysical properties as compared with undoped SnS 2 . This SnS 2 -C photocatalyst significantly enhances the CO 2 reduction activity under visible light, attaining a photochemical quantum efficiency of above 0.7%. The SnS 2 -C photocatalyst represents an important contribution towards high quantum efficiency artificial photosynthesis based on gas phase photocatalytic CO 2 reduction under visible light, where the in situ carbon-doped SnS 2 nanostructure improves the stability and the light harvesting and charge separation efficiency, and significantly enhances the photocatalytic activity.

  20. Multiscale Modeling of Plasmon-Enhanced Power Conversion Efficiency in Nanostructured Solar Cells.

    PubMed

    Meng, Lingyi; Yam, ChiYung; Zhang, Yu; Wang, Rulin; Chen, GuanHua

    2015-11-05

    The unique optical properties of nanometallic structures can be exploited to confine light at subwavelength scales. This excellent light trapping is critical to improve light absorption efficiency in nanoscale photovoltaic devices. Here, we apply a multiscale quantum mechanics/electromagnetics (QM/EM) method to model the current-voltage characteristics and optical properties of plasmonic nanowire-based solar cells. The QM/EM method features a combination of first-principles quantum mechanical treatment of the photoactive component and classical description of electromagnetic environment. The coupled optical-electrical QM/EM simulations demonstrate a dramatic enhancement for power conversion efficiency of nanowire solar cells due to the surface plasmon effect of nanometallic structures. The improvement is attributed to the enhanced scattering of light into the photoactive layer. We further investigate the optimal configuration of the nanostructured solar cell. Our QM/EM simulation result demonstrates that a further increase of internal quantum efficiency can be achieved by scattering light into the n-doped region of the device.

  1. Enhancing the Photovoltaic Performance of Perovskite Solar Cells with a Down-Conversion Eu-Complex.

    PubMed

    Jiang, Ling; Chen, Wangchao; Zheng, Jiawei; Zhu, Liangzheng; Mo, Li'e; Li, Zhaoqian; Hu, Linhua; Hayat, Tasawar; Alsaedi, Ahmed; Zhang, Changneng; Dai, Songyuan

    2017-08-16

    Organometal halide perovskite solar cells (PSCs) have shown high photovoltaic performance but poor utilization of ultraviolet (UV) irradiation. Lanthanide complexes have a wide absorption range in the UV region and they can down-convert the absorbed UV light into visible light, which provides a possibility for PSCs to utilize UV light for higher photocurrent, efficiency, and stability. In this study, we use a transparent luminescent down-converting layer (LDL) of Eu-4,7-diphenyl-1,10-phenanthroline (Eu-complex) to improve the light utilization efficiency of PSCs. Compared with the uncoated PSC, the PSC coated with Eu-complex LDL on the reverse of the fluorine-doped tin oxide glass displayed an enhancement of 11.8% in short-circuit current density (J sc ) and 15.3% in efficiency due to the Eu-complex LDL re-emitting UV light (300-380 nm) in the visible range. It is indicated that the Eu-complex LDL plays the role of enhancing the power conversion efficiency as well as reducing UV degradation for PSCs.

  2. Long-Term Effects of Red- and Blue-Light Emitting Diodes on Leaf Anatomy and Photosynthetic Efficiency of Three Ornamental Pot Plants.

    PubMed

    Zheng, Liang; Van Labeke, Marie-Christine

    2017-01-01

    Light quality critically affects plant development and growth. Development of light-emitting diodes (LEDs) enables the use of narrow band red and/or blue wavelengths as supplementary lighting in ornamental production. Yet, long periods under these wavelengths will affect leaf morphology and physiology. Leaf anatomy, stomatal traits, and stomatal conductance, leaf hydraulic conductance (K leaf ), and photosynthetic efficiency were investigated in three ornamental pot plants, namely Cordyline australis (monocot), Ficus benjamina (dicot, evergreen leaves), and Sinningia speciosa (dicot, deciduous leaves) after 8 weeks under LED light. Four light treatments were applied at 100 μmol m -2 s -1 and a photoperiod of 16 h using 100% red (R), 100% blue (B), 75% red with 25% blue (RB), and full spectrum white light (W), respectively. B and RB resulted in a greater maximum quantum yield (F v /F m ) and quantum efficiency (Φ PSII ) in all species compared to R and W and this correlated with a lower biomass under R. B increased the stomatal conductance compared with R. This increase was linked to an increasing stomatal index and/or stomatal density but the stomatal aperture area was unaffected by the applied light quality. Leaf hydraulic conductance (K leaf ) was not significantly affected by the applied light qualities. Blue light increased the leaf thickness of F. benjamina , and a relative higher increase in palisade parenchyma was observed. Also in S. speciosa , increase in palisade parenchyma was found under B and RB, though total leaf thickness was not affected. Palisade parenchyma tissue thickness was correlated to the leaf photosynthetic quantum efficiency (Φ PSII ). In conclusion, the role of blue light addition in the spectrum is essential for the normal anatomical leaf development which also impacts the photosynthetic efficiency in the three studied species.

  3. Diffractive intermediate layer enables broadband light trapping for high efficiency ultrathin c-Si tandem cells

    NASA Astrophysics Data System (ADS)

    Li, Guijun; Ho, Jacob Y. L.; Li, He; Kwok, Hoi-Sing

    2014-06-01

    Light management through the intermediate reflector in the tandem cell configuration is of great practical importance for achieving high stable efficiency and also low cost production. So far, however, the intermediate reflectors employed currently are mainly focused on the light absorption enhancement of the top cell. Here, we present a diffractive intermediate layer that allows for light trapping over a broadband wavelength for the ultrathin c-Si tandem solar cell. Compared with the standard intermediate reflector, this nanoscale architectural intermediate layer results in a 35% and 21% remarkable enhancement of the light absorption in the top (400-800 nm) and bottom (800-1100 nm) cells simultaneously, and ultrathin c-Si tandem cells with impressive conversion efficiency of 13.3% are made on the glass substrate.

  4. High-fidelity phase and amplitude control of phase-only computer generated holograms using conjugate gradient minimisation.

    PubMed

    Bowman, D; Harte, T L; Chardonnet, V; De Groot, C; Denny, S J; Le Goc, G; Anderson, M; Ireland, P; Cassettari, D; Bruce, G D

    2017-05-15

    We demonstrate simultaneous control of both the phase and amplitude of light using a conjugate gradient minimisation-based hologram calculation technique and a single phase-only spatial light modulator (SLM). A cost function, which incorporates the inner product of the light field with a chosen target field within a defined measure region, is efficiently minimised to create high fidelity patterns in the Fourier plane of the SLM. A fidelity of F = 0.999997 is achieved for a pattern resembling an LG10 mode with a calculated light-usage efficiency of 41.5%. Possible applications of our method in optical trapping and ultracold atoms are presented and we show uncorrected experimental realisation of our patterns with F = 0.97 and 7.8% light efficiency.

  5. Regional impacts of iron-light colimitation in a global biogeochemical model

    NASA Astrophysics Data System (ADS)

    Galbraith, E. D.; Gnanadesikan, A.; Dunne, J. P.; Hiscock, M. R.

    2009-07-01

    Laboratory and field studies have revealed that iron has multiple roles in phytoplankton physiology, with particular importance for light-harvesting cellular machinery. However, although iron-limitation is explicitly included in numerous biogeochemical/ecosystem models, its implementation varies, and its effect on the efficiency of light harvesting is often ignored. Given the complexity of the ocean environment, it is difficult to predict the consequences of applying different iron limitation schemes. Here we explore the interaction of iron and nutrient cycles using a new, streamlined model of ocean biogeochemistry. Building on previously published parameterizations of photoadaptation and export production, the Biogeochemistry with Light Iron Nutrients and Gasses (BLING) model is constructed with only three explicit tracers but including macronutrient and micronutrient limitation, light limitation, and an implicit treatment of community structure. The structural simplicity of this computationally inexpensive model allows us to clearly isolate the global effects of iron availability on maximum light-saturated photosynthesis rates from those of photosynthetic efficiency. We find that the effect on light-saturated photosynthesis rates is dominant, negating the importance of photosynthetic efficiency in most regions, especially the cold waters of the Southern Ocean. The primary exceptions to this occur in iron-rich regions of the Northern Hemisphere, where high light-saturated photosynthesis rates cause photosynthetic efficiency to play a more important role. Additionally, we speculate that the small phytoplankton dominating iron-limited regions tend to have relatively high photosynthetic efficiency, such that iron-limitation has less of a deleterious effect on growth rates than would be expected from short-term iron addition experiments.

  6. Efficient conceptual design for LED-based pixel light vehicle headlamps

    NASA Astrophysics Data System (ADS)

    Held, Marcel Philipp; Lachmayer, Roland

    2017-12-01

    High-resolution vehicle headlamps represent a future-oriented technology that can be used to increase traffic safety and driving comfort. As a further development to the current Matrix Beam headlamps, LED-based pixel light systems enable ideal lighting functions (e.g. projection of navigation information onto the road) to be activated in any given driving scenario. Moreover, compared to other light-modulating elements such as DMDs and LCDs, instantaneous LED on-off toggling provides a decisive advantage in efficiency. To generate highly individualized light distributions for automotive applications, a number of approaches using an LED array may be pursued. One approach is to vary the LED density in the array so as to output the desired light distribution. Another notable approach makes use of an equidistant arrangement of the individual LEDs together with distortion optics to formulate the desired light distribution. The optical system adjusts the light distribution in a manner that improves resolution and increases luminous intensity of the desired area. An efficient setup for pixel generation calls for one lens per LED. Taking into consideration the limited space requirements of the system, this implies that the luminous flux, efficiency and resolution image parameters are primarily controlled by the lens dimensions. In this paper a concept for an equidistant LED array arrangement utilizing distortion optics is presented. The paper is divided into two parts. The first part discusses the influence of lens geometry on the system efficiency whereas the second part investigates the correlation between resolution and luminous flux based on the lens dimensions.

  7. Biophysics of Euglena phototaxis

    NASA Astrophysics Data System (ADS)

    Tsang, Alan Cheng Hou; Riedel-Kruse, Ingmar H.

    Phototactic microorganisms usually respond to light stimuli via phototaxis to optimize the process of photosynthesis and avoid photodamage by excessive amount of light. Unicellular phototactic microorganisms such as Euglena gracilis only possesses a single photoreceptor, which highly limits its access to the light in three-dimensional world. However, experiments demonstrated that Euglena responds to light stimuli sensitively and exhibits phototaxis quickly, and it's not well understood how it performs so efficiently. We propose a mathematical model of Euglena's phototaxis that couples the dynamics of Euglena and its phototactic response. This model shows that Euglena exhibits wobbling path under weak ambient light, which is consistent to experimental observation. We show that this wobbling motion can enhance the sensitivity of photoreceptor to signals of small light intensity and provide an efficient mechanism for Euglena to sample light in different directions. We further investigate the optimization of Euglena's phototaxis using different performance metrics, including reorientation time, energy consumption, and swimming efficiency. We characterize the tradeoff among these performance metrics and the best strategy for phototaxis.

  8. ELiXIR—Solid-State Luminaire With Enhanced Light Extraction by Internal Reflection

    NASA Astrophysics Data System (ADS)

    Allen, Steven C.; Steckl, Andrew J.

    2007-06-01

    A phosphor-converted light-emitting diode (pcLED) luminaire featuring enhanced light extraction by internal reflection (ELiXIR) with efficacy of 60 lm/W producing 18 lumens of yellowish green light at 100 mA is presented. The luminaire consists of a commercial blue high power LED, a polymer hemispherical shell lens with interior phosphor coating, and planar aluminized reflector. High extraction efficiency of the phosphor-converted light is achieved by separating the phosphor from the LED and using internal reflection to steer the light away from lossy reflectors and the LED package and out of the device. At 10 and 500 mA, the luminaire produces 2.1 and 66 lumens with efficacies of 80 and 37 lm/W, respectively. Technological improvements over existing commercial LEDs, such as more efficient pcLED packages or, alternatively, higher efficiency green or yellow for color mixing, will be essential to achieving 150 200 lm/W solid-state lighting. Advances in both areas are demonstrated.

  9. Economic photoprotection in photosystem II that retains a complete light-harvesting system with slow energy traps

    NASA Astrophysics Data System (ADS)

    Belgio, Erica; Kapitonova, Ekaterina; Chmeliov, Jevgenij; Duffy, Christopher D. P.; Ungerer, Petra; Valkunas, Leonas; Ruban, Alexander V.

    2014-07-01

    The light-harvesting antenna of higher plant photosystem II has an intrinsic capability for self-defence against intense sunlight. The thermal dissipation of excess energy can be measured as the non-photochemical quenching of chlorophyll fluorescence. It has recently been proposed that the transition between the light-harvesting and self-defensive modes is associated with a reorganization of light-harvesting complexes. Here we show that despite structural changes, the photosystem II cross-section does not decrease. Our study reveals that the efficiency of energy trapping by the non-photochemical quencher(s) is lower than the efficiency of energy capture by the reaction centres. Consequently, the photoprotective mechanism works effectively for closed rather than open centres. This type of defence preserves the exceptional efficiency of electron transport in a broad range of light intensities, simultaneously ensuring high photosynthetic productivity and, under hazardous light conditions, sufficient photoprotection for both the reaction centre and the light-harvesting pigments of the antenna.

  10. Nonuniform Effect of Carrier Separation Efficiency and Light Absorption in Type-II Perovskite Nanowire Solar Cells

    NASA Astrophysics Data System (ADS)

    Wang, Weiping; He, Jialun; Cao, Yiyan; Kong, Lijing; Zheng, Xuanli; Wu, Yaping; Chen, Xiaohong; Li, Shuping; Wu, Zhiming; Kang, Junyong

    2017-03-01

    Coaxial structures exhibit great potential for the application of high-efficiency solar cells due to the novel mechanism of radial charge separation. Here, we intensively investigate the nonuniform effect of carrier separation efficiency (CSE) and light absorption in perovskite-based type-II coaxial nanowire solar cells (ZnO/CH3NH3PbI3). Results show that the CSE rapidly decreases along the radial direction in the shell, and the value at the outer side becomes extremely low for the thick shell. Besides, the position of the main light absorption gradually moves to the outer side with the increase of the shell thickness. As a result, the external quantum efficiency shows a positional dependence with a maximal value close to the border of the nanowire. Eventually, in our case, it is found that the maximal power conversion efficiency of the solar cells reduces from 19.5 to 17.9% under the effect of the nonuniformity of CSE and light absorption. This work provides a basis for the design of high-efficiency solar cells, especially type-II nanowire solar cells.

  11. Nonuniform Effect of Carrier Separation Efficiency and Light Absorption in Type-II Perovskite Nanowire Solar Cells.

    PubMed

    Wang, Weiping; He, Jialun; Cao, Yiyan; Kong, Lijing; Zheng, Xuanli; Wu, Yaping; Chen, Xiaohong; Li, Shuping; Wu, Zhiming; Kang, Junyong

    2017-12-01

    Coaxial structures exhibit great potential for the application of high-efficiency solar cells due to the novel mechanism of radial charge separation. Here, we intensively investigate the nonuniform effect of carrier separation efficiency (CSE) and light absorption in perovskite-based type-II coaxial nanowire solar cells (ZnO/CH 3 NH 3 PbI 3 ). Results show that the CSE rapidly decreases along the radial direction in the shell, and the value at the outer side becomes extremely low for the thick shell. Besides, the position of the main light absorption gradually moves to the outer side with the increase of the shell thickness. As a result, the external quantum efficiency shows a positional dependence with a maximal value close to the border of the nanowire. Eventually, in our case, it is found that the maximal power conversion efficiency of the solar cells reduces from 19.5 to 17.9% under the effect of the nonuniformity of CSE and light absorption. This work provides a basis for the design of high-efficiency solar cells, especially type-II nanowire solar cells.

  12. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes

    PubMed Central

    Zhang, Liuqi; Yang, Xiaolei; Jiang, Qi; Wang, Pengyang; Yin, Zhigang; Zhang, Xingwang; Tan, Hairen; Yang, Yang (Michael); Wei, Mingyang; Sutherland, Brandon R.; Sargent, Edward H.; You, Jingbi

    2017-01-01

    Inorganic perovskites such as CsPbX3 (X=Cl, Br, I) have attracted attention due to their excellent thermal stability and high photoluminescence quantum efficiency. However, the electroluminescence quantum efficiency of their light-emitting diodes was <1%. We posited that this low efficiency was a result of high leakage current caused by poor perovskite morphology, high non-radiative recombination at interfaces and perovskite grain boundaries, and also charge injection imbalance. Here, we incorporated a small amount of methylammonium organic cation into the CsPbBr3 lattice and by depositing a hydrophilic and insulating polyvinyl pyrrolidine polymer atop the ZnO electron-injection layer to overcome these issues. As a result, we obtained light-emitting diodes exhibiting a high brightness of 91,000 cd m−2 and a high external quantum efficiency of 10.4% using a mixed-cation perovskite Cs0.87MA0.13PbBr3 as the emitting layer. To the best of our knowledge, this is the brightest and most-efficient green perovskite light-emitting diodes reported to date. PMID:28589960

  13. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Liuqi; Yang, Xiaolei; Jiang, Qi; Wang, Pengyang; Yin, Zhigang; Zhang, Xingwang; Tan, Hairen; Yang, Yang (Michael); Wei, Mingyang; Sutherland, Brandon R.; Sargent, Edward H.; You, Jingbi

    2017-06-01

    Inorganic perovskites such as CsPbX3 (X=Cl, Br, I) have attracted attention due to their excellent thermal stability and high photoluminescence quantum efficiency. However, the electroluminescence quantum efficiency of their light-emitting diodes was <1%. We posited that this low efficiency was a result of high leakage current caused by poor perovskite morphology, high non-radiative recombination at interfaces and perovskite grain boundaries, and also charge injection imbalance. Here, we incorporated a small amount of methylammonium organic cation into the CsPbBr3 lattice and by depositing a hydrophilic and insulating polyvinyl pyrrolidine polymer atop the ZnO electron-injection layer to overcome these issues. As a result, we obtained light-emitting diodes exhibiting a high brightness of 91,000 cd m-2 and a high external quantum efficiency of 10.4% using a mixed-cation perovskite Cs0.87MA0.13PbBr3 as the emitting layer. To the best of our knowledge, this is the brightest and most-efficient green perovskite light-emitting diodes reported to date.

  14. 46th Street pilot street lighting project.

    DOT National Transportation Integrated Search

    2013-01-01

    Street lighting improvements provide an opportunity for governments to save money and to reduce their : environmental footprint. New energy-efficient technologies are being perfected that are more efficient than : standard high-pressure sodium street...

  15. Textured micrometer scale templates as light managing fabrication platform for organic solar cells

    DOEpatents

    Chaudhary, Sumit; Ho, Kai-Ming; Park, Joong-Mok; Nalwa, Kanwar Singh; Leung, Wai Y.

    2016-07-26

    A three-dimensional, microscale-textured, grating-shaped organic solar cell geometry. The solar cells are fabricated on gratings to give them a three-dimensional texture that provides enhanced light absorption. Introduction of microscale texturing has a positive effect on the overall power conversion efficiency of the devices. This grating-based solar cell having a grating of pre-determined pitch and height has shown improved power-conversion efficiency over a conventional flat solar cell. The improvement in efficiency is accomplished by homogeneous coverage of the grating with uniform thickness of the active layer, which is attributed to a sufficiently high pitch and low height of the underlying gratings. Also the microscale texturing leads to suppressed reflection of incident light due to the efficient coupling of the incident light into modes that are guided in the active layer.

  16. Integration of non-Lambertian LED and reflective optical element as efficient street lamp.

    PubMed

    Pan, Jui-Wen; Tu, Sheng-Han; Sun, Wen-Shing; Wang, Chih-Ming; Chang, Jenq-Yang

    2010-06-21

    A cost effective, high throughput, and high yield method for the increase of street lamp potency was proposed in this paper. We integrated the imprinting technology and the reflective optical element to obtain a street lamp with high illumination efficiency and without glare effect. The imprinting technique can increase the light extraction efficiency and modulate the intensity distribution in the chip level. The non-Lambertian light source was achieved by using imprinting technique. The compact reflective optical element was added to efficiently suppress the emitting light intensity with small emitting angle for the uniform of illumination intensity and excluded the light with high emitting angle for the prevention of glare. Compared to the conventional street lamp, the novel design has 40% enhancement in illumination intensity, the uniform illumination and the glare effect elimination.

  17. On the Properties and Design of Organic Light-Emitting Devices

    NASA Astrophysics Data System (ADS)

    Erickson, Nicholas C.

    Organic light-emitting devices (OLEDs) are attractive for use in next-generation display and lighting technologies. In display applications, OLEDs offer a wide emission color gamut, compatibility with flexible substrates, and high power efficiencies. In lighting applications, OLEDs offer attractive features such as broadband emission, high-performance, and potential compatibility with low-cost manufacturing methods. Despite recent demonstrations of near unity internal quantum efficiencies (photons out per electron in), OLED adoption lags conventional technologies, particularly in large-area displays and general lighting applications. This thesis seeks to understand the optical and electronic properties of OLED materials and device architectures which lead to not only high peak efficiency, but also reduced device complexity, high efficiency under high excitation, and optimal white-light emission. This is accomplished through the careful manipulation of organic thin film compositions fabricated via vacuum thermal evaporation, and the introduction of a novel device architecture, the graded-emissive layer (G-EML). This device architecture offers a unique platform to study the electronic properties of varying compositions of organic semiconductors and the resulting device performance. This thesis also introduces an experimental technique to measure the spatial overlap of electrons and holes within an OLED's emissive layer. This overlap is an important parameter which is affected by the choice of materials and device design, and greatly impacts the operation of the OLED at high excitation densities. Using the G-EML device architecture, OLEDs with improved efficiency characteristics are demonstrated, achieving simultaneously high brightness and high efficiency.

  18. Thermophotonics for ultra-high efficiency visible LEDs

    NASA Astrophysics Data System (ADS)

    Ram, Rajeev J.

    2017-02-01

    The wall-plug efficiency of modern light-emitting diodes (LEDs) has far surpassed all other forms of lighting and is expected to improve further as the lifetime cost of a luminaire is today dominated by the cost of energy. The drive towards higher efficiency inevitably opens the question about the limits of future enhancement. Here, we investigate thermoelectric pumping as a means for improving efficiency in wide-bandgap GaN based LEDs. A forward biased diode can work as a heat pump, which pumps lattice heat into the electrons injected into the active region via the Peltier effect. We experimentally demonstrate a thermally enhanced 450 nm GaN LED, in which nearly fourfold light output power is achieved at 615 K (compared to 295 K room temperature operation), with virtually no reduction in the wall-plug efficiency at bias V < ℏω/q. This result suggests the possibility of removing bulky heat sinks in high power LED products. A review of recent high-efficiency GaN LEDs suggests that Peltier thermal pumping plays a more important role in a wide range of modern LED structures that previously thought - opening a path to even higher efficiencies and lower lifetime costs for future lighting.

  19. Polymer Solar Cells with 90% External Quantum Efficiency Featuring an Ideal Light- and Charge-Manipulation Layer.

    PubMed

    Chen, Jing-De; Li, Yan-Qing; Zhu, Jingshuai; Zhang, Qianqian; Xu, Rui-Peng; Li, Chi; Zhang, Yue-Xing; Huang, Jing-Sheng; Zhan, Xiaowei; You, Wei; Tang, Jian-Xin

    2018-03-01

    Rapid progress in the power conversion efficiency (PCE) of polymer solar cells (PSEs) is beneficial from the factors that match the irradiated solar spectrum, maximize incident light absorption, and reduce photogenerated charge recombination. To optimize the device efficiency, a nanopatterned ZnO:Al 2 O 3 composite film is presented as an efficient light- and charge-manipulation layer (LCML). The Al 2 O 3 shells on the ZnO nanoparticles offer the passivation effect that allows optimal electron collection by suppressing charge-recombination loss. Both the increased refractive index and the patterned deterministic aperiodic nanostructure in the ZnO:Al 2 O 3 LCML cause broadband light harvesting. Highly efficient single-junction PSCs for different binary blends are obtained with a peak external quantum efficiency of up to 90%, showing certified PCEs of 9.69% and 13.03% for a fullerene blend of PTB7:PC 71 BM and a nonfullerene blend, FTAZ:IDIC, respectively. Because of the substantial increase in efficiency, this method unlocks the full potential of the ZnO:Al 2 O 3 LCML toward future photovoltaic applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Comprehensive Approach to Dark Skies Research and Education at NOAO

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Pompea, S. M.; Sparks, R. T.

    2013-01-01

    NOAO and its Education and Public Outreach group play an important role locally, nationally, and internationally in raising dark skies awareness. For the past 3 years NOAO has co-hosted the international “Earth and Sky” photo contest. In 2012 there were over 600 entries contributed within 3 weeks. NOAO also created a series of audio podcasts based on serial-type skits featuring a caped dark-skies hero who typically “saves the night” by mitigating upward directed lights with shields, thereby saving sea turtles, minimizing health effects, conserving energy, or keeping the public safe. To help understand the effects of light pollution, a citizen-science campaign called GLOBE at Night was started seven years ago. The worldwide campaign involves the public in recording night sky brightness data by matching the view of a constellation like Orion with maps of progressively fainter stars. Every year, NOAO adds more opportunities for participation: more campaigns during the year, Web applications for smart phones, objective measurements with sky brightness meters, and a GLOBE at Night Facebook page. Campaigns will run roughly the first 10 days of January through May in 2013. The EPO group created “Dark Skies Rangers”, a suite of well-tested and evaluated hands-on, minds-on activities that have children building star-brightness “readers,” creating glow-in-the-dark tracings to visualize constellations, and role-playing confused sea turtles. They also created a model city with shielded lights to stop upward light, examine different kinds of bulbs for energy efficiency, and perform an outdoor lighting audit of their school or neighborhood to determine ways to save energy. In the REU program at NOAO North, the undergraduate students have been doing research over the last 3 summers on effect of light pollution on endangered bats and characterizing the behavior of sky brightness over time across Tucson and on nearby astronomical mountaintops. For more information, come to our talk.

  1. Design and validation of a portable, inexpensive and multi-beam timing light system using the Nintendo Wii hand controllers.

    PubMed

    Clark, Ross A; Paterson, Kade; Ritchie, Callan; Blundell, Simon; Bryant, Adam L

    2011-03-01

    Commercial timing light systems (CTLS) provide precise measurement of athletes running velocity, however they are often expensive and difficult to transport. In this study an inexpensive, wireless and portable timing light system was created using the infrared camera in Nintendo Wii hand controllers (NWHC). System creation with gold-standard validation. A Windows-based software program using NWHC to replicate a dual-beam timing gate was created. Firstly, data collected during 2m walking and running trials were validated against a 3D kinematic system. Secondly, data recorded during 5m running trials at various intensities from standing or flying starts were compared to a single beam CTLS and the independent and average scores of three handheld stopwatch (HS) operators. Intraclass correlation coefficient and Bland-Altman plots were used to assess validity. Absolute error quartiles and percentage of trials in absolute error threshold ranges were used to determine accuracy. The NWHC system was valid when compared against the 3D kinematic system (ICC=0.99, median absolute error (MAR)=2.95%). For the flying 5m trials the NWHC system possessed excellent validity and precision (ICC=0.97, MAR<3%) when compared with the CTLS. In contrast, the NWHC system and the HS values during standing start trials possessed only modest validity (ICC<0.75) and accuracy (MAR>8%). A NWHC timing light system is inexpensive, portable and valid for assessing running velocity. Errors in the 5m standing start trials may have been due to erroneous event detection by either the commercial or NWHC-based timing light systems. Copyright © 2010 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  2. Progress in wet-coated organic light-emitting devices for lighting

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Ye, Qing; Lewis, Larry N.; Duggal, Anil R.

    2007-09-01

    Here we present recent progress in developing efficient wet-coated organic light-emitting devices (OLEDs) for lighting applications. In particular, we describe a novel approach for building efficient wet-coated dye-doped blue phosphorescent devices. Further, a novel approach for achieving arbitrary emission patterning for OLEDs is discussed. This approach utilizes a photo-induced chemical doping strategy for selectively activating charge injection materials, thus enabling devices with arbitrary emission patterning. This approach may provide a simple, low cost path towards specialty lighting and signage applications for OLED technology.

  3. Lean principles optimize on-time vascular surgery operating room starts and decrease resident work hours.

    PubMed

    Warner, Courtney J; Walsh, Daniel B; Horvath, Alexander J; Walsh, Teri R; Herrick, Daniel P; Prentiss, Steven J; Powell, Richard J

    2013-11-01

    Lean process improvement techniques are used in industry to improve efficiency and quality while controlling costs. These techniques are less commonly applied in health care. This study assessed the effectiveness of Lean principles on first case on-time operating room starts and quantified effects on resident work hours. Standard process improvement techniques (DMAIC methodology: define, measure, analyze, improve, control) were used to identify causes of delayed vascular surgery first case starts. Value stream maps and process flow diagrams were created. Process data were analyzed with Pareto and control charts. High-yield changes were identified and simulated in computer and live settings prior to implementation. The primary outcome measure was the proportion of on-time first case starts; secondary outcomes included hospital costs, resident rounding time, and work hours. Data were compared with existing benchmarks. Prior to implementation, 39% of first cases started on time. Process mapping identified late resident arrival in preoperative holding as a cause of delayed first case starts. Resident rounding process inefficiencies were identified and changed through the use of checklists, standardization, and elimination of nonvalue-added activity. Following implementation of process improvements, first case on-time starts improved to 71% at 6 weeks (P = .002). Improvement was sustained with an 86% on-time rate at 1 year (P < .001). Resident rounding time was reduced by 33% (from 70 to 47 minutes). At 9 weeks following implementation, these changes generated an opportunity cost potential of $12,582. Use of Lean principles allowed rapid identification and implementation of perioperative process changes that improved efficiency and resulted in significant cost savings. This improvement was sustained at 1 year. Downstream effects included improved resident efficiency with decreased work hours. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  4. Efficiency of True-Green Light Emitting Diodes: Non-Uniformity and Temperature Effects

    PubMed Central

    Titkov, Ilya E.; Karpov, Sergey Yu.; Yadav, Amit; Mamedov, Denis; Zerova, Vera L.

    2017-01-01

    External quantum efficiency of industrial-grade green InGaN light-emitting diodes (LEDs) has been measured in a wide range of operating currents at various temperatures from 13 K to 300 K. Unlike blue LEDs, the efficiency as a function of current is found to have a multi-peak character, which could not be fitted by a simple ABC-model. This observation correlated with splitting of LED emission spectra into two peaks at certain currents. The characterization data are interpreted in terms of non-uniformity of the LED active region, which is tentatively attributed to extended defects like V-pits. We suggest a new approach to evaluation of temperature-dependent light extraction and internal quantum efficiencies taking into account the active region non-uniformity. As a result, the temperature dependence of light extraction and internal quantum efficiencies have been evaluated in the temperature range mentioned above and compared with those of blue LEDs. PMID:29156543

  5. Low-Cost, High Efficiency, Silicon Based Photovoltaic Devices

    DTIC Science & Technology

    2015-08-27

    for photovoltaic applications. Figure 14: (a) Absorption and scattering efficiencies versus sizes of Au nanoparticle at 550 nm, (b) scattering...efficiency as a function of wavelength for different Au nanoparticles sizes . 32 Review of plasmonics light trapping for photovoltaic application...ensure that the irradiation variation was within 3%. The external quantum efficiency (EQE) system used a 300W Xenon light source with a spot size of 1mm

  6. "Lighting the Fire" of Design Conversation.

    ERIC Educational Resources Information Center

    Rowland, Gordon

    1996-01-01

    A design group needs to sift through confusion, come together, and converse as a team before it can be productive in design tasks. At the 1994 Fuschl Conversation on Systems Design, the metaphor of lighting a fire was used to symbolize this coming together; three tables examine the relationships between the metaphor and starting a design…

  7. Tunnel-injected sub 290 nm ultra-violet light emitting diodes with 2.8% external quantum efficiency

    NASA Astrophysics Data System (ADS)

    Zhang, Yuewei; Jamal-Eddine, Zane; Akyol, Fatih; Bajaj, Sanyam; Johnson, Jared M.; Calderon, Gabriel; Allerman, Andrew A.; Moseley, Michael W.; Armstrong, Andrew M.; Hwang, Jinwoo; Rajan, Siddharth

    2018-02-01

    We report on the high efficiency tunnel-injected ultraviolet light emitting diodes (UV LEDs) emitting at 287 nm. Deep UV LED performance has been limited by the severe internal light absorption in the p-type contact layers and low electrical injection efficiency due to poor p-type conduction. In this work, a polarization engineered Al0.65Ga0.35N/In0.2Ga0.8N tunnel junction layer is adopted for non-equilibrium hole injection to replace the conventionally used direct p-type contact. A reverse-graded AlGaN contact layer is further introduced to realize a low resistance contact to the top n-AlGaN layer. This led to the demonstration of a low tunnel junction resistance of 1.9 × 10-3 Ω cm2 obtained at 1 kA/cm2. Light emission at 287 nm with an on-wafer peak external quantum efficiency of 2.8% and a wall-plug efficiency of 1.1% was achieved. The measured power density at 1 kA/cm2 was 54.4 W/cm2, confirming the efficient hole injection through interband tunneling. With the benefits of the minimized internal absorption and efficient hole injection, a tunnel-injected UV LED structure could enable future high efficiency UV emitters.

  8. OLEDs for lighting

    NASA Astrophysics Data System (ADS)

    Boerner, Herbert

    2006-04-01

    Today, organic light emitting diodes are used in small to medium displays in portable electronic equipment like MP3 players and mobile phones. Their thin form factor, together with good readability due to low angular dependence of the emission makes them attractive for these applications. The rapid progress in the last years has lifted the performance of OLEDs to a level where one can seriously start to consider applications in lighting markets. Whereas it is obvious that first applications will be in less demanding niche markets, clearly the most interesting target is the general illumination market. In this report, first applications requirements will be described, followed by a brief review of state of the art monochrome OLEDs. The main part deals with the various ways in which monochrome devices can be combined into white ones, giving examples of existing solutions. The conclusion is that for the white OLED design, there no clear winner yet. Given the rapid progress in material and device development, one can expect that within a few years white OLEDs will be available which can start to penetrate the general lighting market.

  9. Printing Smart Designs of Light Emitting Devices with Maintained Textile Properties †

    PubMed Central

    Verboven, Inge; Stryckers, Jeroen; Mecnika, Viktorija; Vandevenne, Glen; Jose, Manoj

    2018-01-01

    To maintain typical textile properties, smart designs of light emitting devices are printed directly onto textile substrates. A first approach shows improved designs for alternating current powder electroluminescence (ACPEL) devices. A configuration with the following build-up, starting from the textile substrate, was applied using the screen printing technique: silver (10 µm)/barium titanate (10 µm)/zinc-oxide (10 µm) and poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (10 µm). Textile properties such as flexibility, drapability and air permeability are preserved by implementing a pixel-like design of the printed layers. Another route is the application of organic light emitting devices (OLEDs) fabricated out of following layers, also starting from the textile substrate: polyurethane or acrylate (10–20 µm) as smoothing layer/silver (200 nm)/poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (35 nm)/super yellow (80 nm)/calcium/aluminum (12/17 nm). Their very thin nm-range layer thickness, preserving the flexibility and drapability of the substrate, and their low working voltage, makes these devices the possible future in light-emitting wearables. PMID:29438276

  10. Solar Power for Near Sun, High-Temperature Missions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2008-01-01

    Existing solar cells lose performance at the high temperatures encountered in Mercury orbit and inward toward the sun. For future missions designed to probe environments close to the sun, it is desirable to develop array technologies for high temperature and high light intensity. Approaches to solar array design for near-sun missions include modifying the terms governing temperature of the cell and the efficiency at elevated temperature, or use of techniques to reduce the incident solar energy to limit operating temperature. An additional problem is found in missions that involve a range of intensities, such as the Solar Probe + mission, which ranges from a starting distance of 1 AU from the sun to a minimum distance of 9.5 solar radii, or 0.044 AU. During the mission, the solar intensity ranges from one to about 500 times AM0. This requires a power system to operate over nearly three orders of magnitude of incident intensity.

  11. [Exploration and construction of the full-text database of acupuncture literature in the Republic of China].

    PubMed

    Fei, Lin; Zhao, Jing; Leng, Jiahao; Zhang, Shujian

    2017-10-12

    The ALIPORC full-text database is targeted at a specific full-text database of acupuncture literature in the Republic of China. Starting in 2015, till now, the database has been getting completed, focusing on books relevant with acupuncture, articles and advertising documents, accomplished or published in the Republic of China. The construction of this database aims to achieve the source sharing of acupuncture medical literature in the Republic of China through the retrieval approaches to diversity and accurate content presentation, contributes to the exchange of scholars, reduces the paper damage caused by paging and simplify the retrieval of the rare literature. The writers have made the explanation of the database in light of sources, characteristics and current situation of construction; and have discussed on improving the efficiency and integrity of the database and deepening the development of acupuncture literature in the Republic of China.

  12. [LEAFY, a master regulator of flower development].

    PubMed

    Vachon, Gilles; Tichtinsky, Gabrielle; Parcy, François

    2012-01-01

    Flowering plants or angiosperms constitute the vast majority of plant species. Their evolutionary success is largely due to the efficiency of the flower as reproductive structure. Work performed on model plant species in the last 20 years has identified the LEAFY gene as a key regulator of flower development. LEAFY is a unique plant transcription factor responsible for the formation of the earliest floral stage as well as for the induction of homeotic genes triggering floral organ determination. But LEAFY is also present in non-flowering plants such as mosses, ferns and gymnosperms. Recent studies suggest that LEAFY might play a role in cell division and meristem development in basal plants, a function that is probably more ancestral than the later acquired floral function. Analyzing the evolution of the role and the biochemical properties of this peculiar regulator starts to shade light on the mysterious origin of flowering plants. © Société de Biologie, 2012.

  13. VizieR Online Data Catalog: VEGAS: A VST Early-type GAlaxy Survey (Capaccioli+, 2015)

    NASA Astrophysics Data System (ADS)

    Capaccioli, M.; Spavone, M.; Grado, A.; Iodice, E.; Limatola, L.; Napolitano, N. R.; Cantiello, M.; Paolillo, M.; Romanowsky, A. J.; Forbes, D. A.; Puzia, T. H.; Raimondo, G.; Schipani, P.

    2015-11-01

    The VST Elliptical GAlaxies Survey (VEGAS) is a deep multiband (g,r,i) imaging survey of early-type galaxies in the southern hemisphere carried out with VST at the ESO Cerro Paranal Observatory (Chile). The large field of view (FOV) of the OmegaCAM mounted on VST (one square degree matched by pixels 0.21-arcsec wide), together with its high efficiency and spatial resolution (typically better than 1-arcsec; Kuijken, 2011Msngr.146....8K) allows us to map with a reasonable integration time the surface brightness of a galaxy out to isophotes encircling about 95% of the total light. Observations started in October 2011 (ESO Period 88), and since then, the survey has acquired exposures for about 20 bright galaxies (and for a wealth of companion objects in the field), for a totality of ~80h (up to Period 93). (1 data file).

  14. The Exomet Project: EU/ESA Research on High-Performance Light-Metal Alloys and Nanocomposites

    NASA Astrophysics Data System (ADS)

    Sillekens, W. H.

    The performance of structural materials is commonly associated with such design parameters as strength and stiffness relative to their density; a recognized means to further enhance the weight-saving potential of low-density materials is thus to improve on their mechanical attributes. The European Community research project ExoMet that started in mid-2012 targets such high-performance aluminum- and magnesium-based materials by exploring novel grain-refining and nanoparticle additions in conjunction with melt treatment by means of external fields (electromagnetic, ultrasonic, mechanical). These external fields are to provide for an effective and efficient dispersion of the additions in the melt and their uniform distribution in the as-cast material. The consortium of 27 companies, universities and research organizations from eleven countries integrates various scientific and technological disciplines as well as application areas — including automotive and (aero)-space.

  15. Silicon Photo-Multiplier Readouts for Scintillators in High-Energy Astronomy

    NASA Technical Reports Server (NTRS)

    Bloser, Peter F.; Legere, Jason S.; Bancroft, Christopher M.; McConnell, Mark L.; Ryan, James M.

    2008-01-01

    New scintillator materials have recently been shown to hold great potential for low-cost, reliable gamma-ray detectors in high-energy astronomy. New devices for the detection of scintillation light promise to make scintillator-based instruments even more attractive by reducing mass and power requirements,in particular, silicon photo-multipliers (SiPMs) are starting to become commercially available that offer gains and quantum efficiencies similar to those of photo-multiplier tubes (PMTs), but with greatly reduced mass, high ruggedness, low voltage requirements, and no sensitivity to magnetic fields. We have conducted laboratory tests of a sample of commercially available SiPMs coupled to LaBr3;Ce, a scintillator of relevance to to future high-energy astrophysics missions. We present results for gamma-ray spectroscopy. compare the SiPM performance to that of a PMT, and discuss the extent to which SiPMs offer significant advantages for scintillator-based space missions.

  16. RGB-Stack Light Emitting Diode Modules with Transparent Glass Circuit Board and Oil Encapsulation

    PubMed Central

    Li, Ying-Chang; Chang, Yuan-Hsiao; Singh, Preetpal; Chang, Liann-Be; Yeh, Der-Hwa; Chao, Ting-Yu; Jian, Si-Yun; Li, Yu-Chi; Lai, Chao-Sung; Ying, Shang-Ping

    2018-01-01

    The light emitting diode (LED) is widely used in modern solid-state lighting applications, and its output efficiency is closely related to the submounts’ material properties. Most submounts used today, such as low-power printed circuit boards (PCBs) or high-power metal core printed circuit boards (MCPCBs), are not transparent and seriously decrease the output light extraction. To meet the requirements of high light output and better color mixing, a three-dimensional (3-D) stacked flip-chip (FC) LED module is proposed and demonstrated. To realize light penetration and mixing, the mentioned 3-D vertically stacking RGB LEDs use transparent glass as FC package submounts called glass circuit boards (GCB). Light emitted from each GCB stacked LEDs passes through each other and thus exhibits good output efficiency and homogeneous light-mixing characteristics. In this work, the parasitic problem of heat accumulation, which caused by the poor thermal conductivity of GCB and leads to a serious decrease in output efficiency, is solved by a proposed transparent cooling oil encapsulation (OCP) method. PMID:29494534

  17. RGB-Stack Light Emitting Diode Modules with Transparent Glass Circuit Board and Oil Encapsulation.

    PubMed

    Li, Ying-Chang; Chang, Yuan-Hsiao; Singh, Preetpal; Chang, Liann-Be; Yeh, Der-Hwa; Chao, Ting-Yu; Jian, Si-Yun; Li, Yu-Chi; Tan, Cher Ming; Lai, Chao-Sung; Chow, Lee; Ying, Shang-Ping

    2018-03-01

    The light emitting diode (LED) is widely used in modern solid-state lighting applications, and its output efficiency is closely related to the submounts' material properties. Most submounts used today, such as low-power printed circuit boards (PCBs) or high-power metal core printed circuit boards (MCPCBs), are not transparent and seriously decrease the output light extraction. To meet the requirements of high light output and better color mixing, a three-dimensional (3-D) stacked flip-chip (FC) LED module is proposed and demonstrated. To realize light penetration and mixing, the mentioned 3-D vertically stacking RGB LEDs use transparent glass as FC package submounts called glass circuit boards (GCB). Light emitted from each GCB stacked LEDs passes through each other and thus exhibits good output efficiency and homogeneous light-mixing characteristics. In this work, the parasitic problem of heat accumulation, which caused by the poor thermal conductivity of GCB and leads to a serious decrease in output efficiency, is solved by a proposed transparent cooling oil encapsulation (OCP) method.

  18. Light coupling for on-chip optical interconnects

    NASA Astrophysics Data System (ADS)

    Gao, Xumin; Yuan, Jialei; Yang, Yongchao; Li, Yuanhang; Cai, Wei; Li, Xin; Wang, Yongjin

    2017-12-01

    An on-chip optical interconnect of a light emitter, waveguide and photodetector based on p-n junction InGaN/GaN multiple quantum wells (MQWs) is fabricated to investigate the light coupling efficiency of suspended waveguides connecting the light emitter and photodetector. Optical characterizations indicate that the photocurrent of the photodetector is mainly induced by the emitted light that is transmitted through the waveguides. Suspended waveguides with and without air gaps are reported in this paper. A 1 mA current injection into the light emitter induces a photocurrent of 17.3 nA and 205.5 nA for the photodetector connected to the waveguides that with 10 μm air gaps and without air gaps, respectively. Finite-difference time-domain simulations are performed to analyze the gap effect on the coupling efficiency of the light transmission. Both the gap distance and the index variation of the gap materials are analyzed to verify the potential optical sensing functions of the on-chip optical interconnect. A possible strategy for increasing the light coupling efficiency is proven by simulations.

  19. Enhanced light extraction from a GaN-based green light-emitting diode with hemicylindrical linear grating structure.

    PubMed

    Jin, Yuanhao; Yang, Fenglei; Li, Qunqing; Zhu, Zhendong; Zhu, Jun; Fan, Shoushan

    2012-07-02

    Significant enhancement in the light output from GaN-based green light-emitting diodes (LEDs) was achieved with a hemicylindrical grating structure on the top layer of the diodes. The grating structure was first optimized by the finite-difference time-domain (FDTD) method, which showed that the profile of the grating structure was critical for light extraction efficiency. It was found that the transmission efficiency of the 530 nm light emitted from the inside of the GaN LED increased for incidence angles between 23.58° and 60°. Such a structure was fabricated by electron-beam lithography and an etching method. The light output power from the LED was increased approximately 4.7 times compared with that from a conventional LED. The structure optimization is the key to the great increase in transmission efficiency. Furthermore, the light emitted from the edge of the LED units could be collected and extracted by the grating structures in adjacent LED units, thus enhancing the performance of the whole LED chip.

  20. The role of energy losses in photosynthetic light harvesting

    NASA Astrophysics Data System (ADS)

    Krüger, T. P. J.; van Grondelle, R.

    2017-07-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example.

  1. Quantum efficiency harmonic analysis of exciton annihilation in organic light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, J. S.; Giebink, N. C., E-mail: ncg2@psu.edu

    2015-06-29

    Various exciton annihilation processes are known to impact the efficiency roll-off of organic light emitting diodes (OLEDs); however, isolating and quantifying their contribution in the presence of other factors such as changing charge balance continue to be a challenge for routine device characterization. Here, we analyze OLED electroluminescence resulting from a sinusoidal dither superimposed on the device bias and show that nonlinearity between recombination current and light output arising from annihilation mixes the quantum efficiency measured at different dither harmonics in a manner that depends uniquely on the type and magnitude of the annihilation process. We derive a series ofmore » analytical relations involving the DC and first harmonic external quantum efficiency that enable annihilation rates to be quantified through linear regression independent of changing charge balance and evaluate them for prototypical fluorescent and phosphorescent OLEDs based on the emitters 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran and platinum octaethylporphyrin, respectively. We go on to show that, in most cases, it is sufficient to calculate the needed quantum efficiency harmonics directly from derivatives of the DC light versus current curve, thus enabling this analysis to be conducted solely from standard light-current-voltage measurement data.« less

  2. AgBr/diatomite for the efficient visible-light-driven photocatalytic degradation of Rhodamine B

    NASA Astrophysics Data System (ADS)

    Fang, Jing; Zhao, Huamei; Liu, Qinglei; Zhang, Wang; Gu, Jiajun; Su, Yishi; Abbas, Waseem; Su, Huilan; You, Zhengwei; Zhang, Di

    2018-03-01

    The treatment of organic pollution via photocatalysis has been investigated for a few decades. However, earth-abundant, cheap, stable, and efficient substrates are still to be developed. Here, we prepare an efficient visible-light-driven photocatalyst via the deposition of Ag nanoparticles (< 60 nm) on diatomite and the conversion of Ag to AgBr nanoparticles (< 600 nm). Experimental results show that 95% of Rhodamine B could be removed within 20 min, and the degradation rate constant ( κ) is 0.11 min-1 under 100 mW/cm2 light intensity. For comparison, AgBr/SiO2 ( κ = 0.04 min-1) and commercial AgBr nanoparticles ( κ = 0.05 min-1) were measured as well. The experimental results reveal that diatomite acted more than a substrate benefiting the dispersion of AgBr nanoparticles, as well as a cooperator to help harvest visible light and adsorb dye molecules, leading to the efficient visible-light-driven photocatalytic performance of AgBr/diatomite. Considering the low cost (10 per ton) and large-scale availability of diatomite, our study provides the possibility to prepare other types of diatomite-based efficient photocatalytic composites with low-cost but excellent photocatalytic performance.

  3. Recent developments in white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Lohe, P. P.; Nandanwar, D. V.; Belsare, P. D.; Moharil, S. V.

    2018-05-01

    In the recent years solid state lighting based on LEDs has revolutionized lighting technology. LEDs have many advantages over the conventional lighting based on fluorescent and incandescent lamps such as mercury free, high conversion efficiency of electrical energy into light, long lifetime reliability and ability to use with many types of devices. LEDs have emerged as a new potentially revolutionary technology that could save up to half of energy used for lighting applications. White LEDs would be the most important light source in the future, so much so that this aspect had been highlighted by the Nobel committee during the award of 2014 Nobel Prize for Physics. Recent advancement in the fabrication of GaN chip capable of emitting in blue and near UV region paved way for fabrication of white LED lamps. Mainly there are two approaches used for preparing white emitting solid state lamp. In the first approach blue light (λ=450 nm) emitted from the InGaN LED chip is partially absorbed by the YAG:Ce3+ phosphor coated on it and re-emitted as yellow fluorescence. A white light can be generated by the combination of blue + yellow emission bands. These lamps are already available. But they are suffering from major drawback that their Colour Rendering Index (CRI) is low. In the second approach, white LEDs are made by coating near ultraviolet emitting (360 to 410nm) LED with a mixture of high efficiency red, green and blue emitting phosphors, analogous to the fluorescent lamp. This method yields lamps with better color rendition. Addition of a yellow emitting phosphor improves CRI further. However conversion efficiency is compromised to some extent. Further the cost of near UV emitting chip is very high compared to blue emitting chips. Thus cost and light output wise, near UV chips are much inferior to blue chips. Recently some rare earth activated oxynitrides, silicates, fluorides have emerged as an important family of luminescent materials for white LED application because they can emit visible light strongly under blue light irradiation. These are chemically, thermally and mechanically stable materials with high efficiency to down convert blue radiation into green and red. Efficient white light can be generated by coating these phosphors on blue LED.CRI of white emitting LED lamp can be improved significantly if green and red emitting phosphors are coated on efficient blue emitting LED chips. In this approach CRI will be maintained if appropriate combination of red, green along with blue emission is used. This article reviews some recent developments in phosphors for white light emitting diodes.

  4. Transparent organic light-emitting diodes with balanced white emission by minimizing waveguide and surface plasmonic loss.

    PubMed

    Zhang, Yi-Bo; Ou, Qing-Dong; Li, Yan-Qing; Chen, Jing-De; Zhao, Xin-Dong; Wei, Jian; Xie, Zhong-Zhi; Tang, Jian-Xin

    2017-07-10

    It is challenging in realizing high-performance transparent organic light-emitting diodes (OLEDs) with symmetrical light emission to both sides. Herein, an efficient transparent OLED with highly balanced white emission to both sides is demonstrated by integrating quasi-periodic nanostructures into the organic emitter and the metal-dielectric composite top electrode, which can simultaneously suppressing waveguide and surface plasmonic loss. The power efficiency and external quantum efficiency are raised to 83.5 lm W -1 and 38.8%, respectively, along with a bi-directional luminance ratio of 1.26. The proposed scheme provides a facile route for extending application scope of transparent OLEDs for future transparent displays and lightings.

  5. The influence of leaf anatomy on the internal light environment and photosynthetic electron transport rate: exploration with a new leaf ray tracing model

    PubMed Central

    Xiao, Yi; Tholen, Danny; Zhu, Xin-Guang

    2016-01-01

    Leaf photosynthesis is determined by biochemical properties and anatomical features. Here we developed a three-dimensional leaf model that can be used to evaluate the internal light environment of a leaf and its implications for whole-leaf electron transport rates (J). This model includes (i) the basic components of a leaf, such as the epidermis, palisade and spongy tissues, as well as the physical dimensions and arrangements of cell walls, vacuoles and chloroplasts; and (ii) an efficient forward ray-tracing algorithm, predicting the internal light environment for light of wavelengths between 400 and 2500nm. We studied the influence of leaf anatomy and ambient light on internal light conditions and J. The results show that (i) different chloroplasts can experience drastically different light conditions, even when they are located at the same distance from the leaf surface; (ii) bundle sheath extensions, which are strips of parenchyma, collenchyma or sclerenchyma cells connecting the vascular bundles with the epidermis, can influence photosynthetic light-use efficiency of leaves; and (iii) chloroplast positioning can also influence the light-use efficiency of leaves. Mechanisms underlying leaf internal light heterogeneity and implications of the heterogeneity for photoprotection and for the convexity of the light response curves are discussed. PMID:27702991

  6. Strategies to Save 50% Site Energy in Grocery and General Merchandise Stores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, A.; Hale, E.; Leach, M.

    2011-03-01

    This paper summarizes the methodology and main results of two recently published Technical Support Documents. These reports explore the feasibility of designing general merchandise and grocery stores that use half the energy of a minimally code-compliant building, as measured on a whole-building basis. We used an optimization algorithm to trace out a minimum cost curve and identify designs that satisfy the 50% energy savings goal. We started from baseline building energy use and progressed to more energy-efficient designs by sequentially adding energy design measures (EDMs). Certain EDMs figured prominently in reaching the 50% energy savings goal for both building types:more » (1) reduced lighting power density; (2) optimized area fraction and construction of view glass or skylights, or both, as part of a daylighting system tuned to 46.5 fc (500 lux); (3) reduced infiltration with a main entrance vestibule or an envelope air barrier, or both; and (4) energy recovery ventilators, especially in humid and cold climates. In grocery stores, the most effective EDM, which was chosen for all climates, was replacing baseline medium-temperature refrigerated cases with high-efficiency models that have doors.« less

  7. Olive mill wastewater triggered changes in physiology and nutritional quality of tomato (Lycopersicon esculentum mill) depending on growth substrate.

    PubMed

    Ouzounidou, G; Asfi, M; Sotirakis, N; Papadopoulou, P; Gaitis, F

    2008-10-30

    We have studied the changes in the physiology and nutritional quality of Lycopersicon esculentum exposed to olive mill wastewater (OMW) with regard to cultivation in sand and soil. Tomato plant performance decreased with increasing concentration of OMW to both substrates. Root was more sensitive to OMW than the upper parts of the plants, grown either in sand or in soil for 10 days and 3 months, respectively, probably due to the direct OMW toxicity on roots as compared to other parts. Significant restriction on uptake and translocation of nutrients (K, Na, Fe, Ca and Mg) under OMW application was found. The decrease in the photochemical efficiency of PSII photochemistry in the light adapted state and the big decrease in photochemical quenching, indicate that OMW resulted in diminished reoxidation of Q(A)(-) and started to inactivate the reaction centers of PSII. The OMW supply on soil and sand, resulted in leaf water stress and lesser water use efficiency. Plants treated with high OMW concentration, produced fewer but bigger tomatoes as compared to plants treated with lower OMW concentration. Generally, fruit yield and nutritional value was inhibited under OMW application.

  8. 760nm: a new laser diode wavelength for hair removal modules

    NASA Astrophysics Data System (ADS)

    Wölz, Martin; Zorn, Martin; Pietrzak, Agnieszka; Kindsvater, Alex; Meusel, Jens; Hülsewede, Ralf; Sebastian, Jürgen

    2015-02-01

    A new high-power semiconductor laser diode module, emitting at 760 nm is introduced. This wavelength permits optimum treatment results for fair skin individuals, as demonstrated by the use of Alexandrite lasers in dermatology. Hair removal applications benefit from the industry-standard diode laser design utilizing highly efficient, portable and light-weight construction. We show the performance of a tap-water-cooled encapsulated laser diode stack with a window for use in dermatological hand-pieces. The stack design takes into account the pulse lengths required for selectivity in heating the hair follicle vs. the skin. Super-long pulse durations place the hair removal laser between industry-standard CW and QCW applications. The new 760 nm laser diode bars are 30% fill factor devices with 1.5 mm long resonator cavities. At CW operation, these units provide 40 W of optical power at 43 A with wall-plug-efficiency greater than 50%. The maximum output power before COMD is 90 W. Lifetime measurements starting at 40 W show an optical power loss of 20% after about 3000 h. The hair removal modules are available in 1x3, 1x8 and 2x8 bar configurations.

  9. Demonstration of the First 4H-SiC EUV Detector with Large Detection Area

    NASA Technical Reports Server (NTRS)

    Xin, Xiaobin; Yan, Feng; Koeth, Timothy W.; Hu, Jun; Zhao, Jian H.

    2005-01-01

    Ultraviolet (UV) and Extreme Ultraviolet (EUV) detectors are very attractive in astronomy, photolithography and biochemical applications. For EUV applications, most of the semiconductor detectors based on PN or PIN structures suffer from the very short penetration depth. Most of the carries are absorbed at the surface and recombined there due to the high surface recombination before reach the depletion region, resulting very low quantum efficiency. On the other hand, for Schottky structures, the active region starts from the surface and carriers generated from the surface can be efficiently collected. 4H-Sic has a bandgap of 3.26eV and is immune to visible light background noise. Also, 4H-Sic detectors usually have very good radiation hardness and very low noise, which is very important for space applications where the signal is very weak. The E W photodiodes presented in this paper are based on Schottky structures. Platinum (Pt) and Nickel (Ni) are selected as the Schottky contact metals, which have the highest electron work functions (5.65eV and 5.15eV, respectively) among all the known metals on 4H-Sic.

  10. High power diode lasers emitting from 639 nm to 690 nm

    NASA Astrophysics Data System (ADS)

    Bao, L.; Grimshaw, M.; DeVito, M.; Kanskar, M.; Dong, W.; Guan, X.; Zhang, S.; Patterson, J.; Dickerson, P.; Kennedy, K.; Li, S.; Haden, J.; Martinsen, R.

    2014-03-01

    There is increasing market demand for high power reliable red lasers for display and cinema applications. Due to the fundamental material system limit at this wavelength range, red diode lasers have lower efficiency and are more temperature sensitive, compared to 790-980 nm diode lasers. In terms of reliability, red lasers are also more sensitive to catastrophic optical mirror damage (COMD) due to the higher photon energy. Thus developing higher power-reliable red lasers is very challenging. This paper will present nLIGHT's released red products from 639 nm to 690nm, with established high performance and long-term reliability. These single emitter diode lasers can work as stand-alone singleemitter units or efficiently integrate into our compact, passively-cooled Pearl™ fiber-coupled module architectures for higher output power and improved reliability. In order to further improve power and reliability, new chip optimizations have been focused on improving epitaxial design/growth, chip configuration/processing and optical facet passivation. Initial optimization has demonstrated promising results for 639 nm diode lasers to be reliably rated at 1.5 W and 690nm diode lasers to be reliably rated at 4.0 W. Accelerated life-test has started and further design optimization are underway.

  11. Bright, Light and Energy Efficient.

    ERIC Educational Resources Information Center

    American School and University, 1981

    1981-01-01

    The new Sharon Elementary School in Newburgh (Indiana) has a three-fuel plan that will allow selection of the most economical energy source for each heating season with an energy-efficient lighting system that includes skylights. (Author/MLF)

  12. System responses to equal doses of photosynthetically usable radiation of blue, green, and red light in the marine diatom Phaeodactylum tricornutum.

    PubMed

    Valle, Kristin Collier; Nymark, Marianne; Aamot, Inga; Hancke, Kasper; Winge, Per; Andresen, Kjersti; Johnsen, Geir; Brembu, Tore; Bones, Atle M

    2014-01-01

    Due to the selective attenuation of solar light and the absorption properties of seawater and seawater constituents, free-floating photosynthetic organisms have to cope with rapid and unpredictable changes in both intensity and spectral quality. We have studied the transcriptional, metabolic and photo-physiological responses to light of different spectral quality in the marine diatom Phaeodactylum tricornutum through time-series studies of cultures exposed to equal doses of photosynthetically usable radiation of blue, green and red light. The experiments showed that short-term differences in gene expression and profiles are mainly light quality-dependent. Transcription of photosynthesis-associated nuclear genes was activated mainly through a light quality-independent mechanism likely to rely on chloroplast-to-nucleus signaling. In contrast, genes encoding proteins important for photoprotection and PSII repair were highly dependent on a blue light receptor-mediated signal. Changes in energy transfer efficiency by light-harvesting pigments were spectrally dependent; furthermore, a declining trend in photosynthetic efficiency was observed in red light. The combined results suggest that diatoms possess a light quality-dependent ability to activate photoprotection and efficient repair of photodamaged PSII. In spite of approximately equal numbers of PSII-absorbed quanta in blue, green and red light, the spectral quality of light is important for diatom responses to ambient light conditions.

  13. Efficient semiconductor light-emitting device and method

    DOEpatents

    Choquette, Kent D.; Lear, Kevin L.; Schneider, Jr., Richard P.

    1996-01-01

    A semiconductor light-emitting device and method. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL).

  14. Efficient semiconductor light-emitting device and method

    DOEpatents

    Choquette, K.D.; Lear, K.L.; Schneider, R.P. Jr.

    1996-02-20

    A semiconductor light-emitting device and method are disclosed. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL). 12 figs.

  15. Aluminum-nanodisc-induced collective lattice resonances: Controlling the light extraction in organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Auer-Berger, Manuel; Tretnak, Veronika; Wenzl, Franz-Peter; Krenn, Joachim R.; List-Kratochvil, Emil J. W.

    2017-10-01

    We examine aluminum-nanodisc-induced collective lattice resonances as a means to enhance the efficiency of organic light emitting diodes. Thus, nanodisc arrays were embedded in the hole transporting layer of a solution-processed phosphorescent organic blue-light emitting diode. Through extinction spectroscopy, we confirm the emergence of array-induced collective lattice resonances within the organic light emitting diode. Through finite-difference time domain simulations, we show that the collective lattice resonances yield an enhancement of the electric field intensity within the emissive layer. The effectiveness for improving the light generation and light outcoupling is demonstrated by electro-optical characterization, realizing a gain in a current efficiency of 35%.

  16. Purifying synthetic high-strength wastewater by microalgae chlorella vulgaris under various light emitting diode wavelengths and intensities

    PubMed Central

    2013-01-01

    The high-strength wastewater is now well known as a threat to the natural water since it is highly possible to arouse water eutrophication or algal blooms. The effects of various light emitting diode wavelengths and intensities on the microalgae biological wastewater treatment system was studied in this research. The various nutrient removals and economic efficiencies represented similar variation trends, and these variations under both high C and N loading treatments were similar too. The order for microalgae C. vulgaris reproduction in terms of dry weight and nutrient removal efficiency both were red > white > yellow > blue, under high carbon and nitrogen loading treatments, indicating that the red light was the optimum light wavelength. Furthermore, considering the optimal light intensity in terms of nutrient removal efficiency was 2500 and 2000 μmol/m2•s, while in terms of economic efficiency was 1000, 1500 and 2000 μmol/m2•s. Therefore, the optimum light intensity was found to be 2000 μmol/m2•s. In addition, the optimal experimental illumination time was determined as 120 h. The Chlorella vulgaris microalgae biological wastewater treatment system utilized in this research was able to purify the high-strength carbon and nitrogen wastewater effectively under optimum light wavelength and intensity. PMID:24499586

  17. Fabrication and photocatalytic properties of free-standing TiO{sub 2} nanotube membranes with through-hole morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao Jianjun; Lin Shiwei, E-mail: linsw@hainu.edu.cn; Pan Nengqian

    2012-04-15

    Anodic growth of TiO{sub 2} nanotubes has recently attracted intensive interests. However, the insulating, closed barrier layer has restricted their feasibility for the applications such as flow-through photocatalytic reactions, biofiltration, and diffusion controlling. In the present work, we fabricated free-standing TiO{sub 2} membranes with through-hole morphology by elevating the anodizing voltage at the end of anodization process. Characterization of the samples was carried out by means of scanning electron microscope, X-ray diffraction and thermogravimetry-differential scanning calorimetry. The experimental results show that the TiO{sub 2} membranes start to transform from amorphous phase to anatase at 300 Degree-Sign C, and the phasemore » transformation from anatase to rutile starts at 650 Degree-Sign C. In addition, photocatalytic degradation of rhodamine B by the TiO{sub 2} membranes with closed bottoms and opened bottoms has also been systematically investigated. As compared to TiO{sub 2} membranes with closed bottoms, TiO{sub 2} membranes with opened bottoms exhibited superior photocatalytic activity due to its better access for rhodamine B molecules as well as the enhanced light harvesting and electron collection efficiencies. Highlights: Black-Right-Pointing-Pointer The closed bottoms were opened by elevating the anodizing voltage. Black-Right-Pointing-Pointer Phase transformation from anatase to rutile starts at 650 Degree-Sign C. Black-Right-Pointing-Pointer TiO{sub 2} membranes in the anatase form have a better catalytic performance. Black-Right-Pointing-Pointer Opened-bottom TiO{sub 2} membranes with exhibited superior photocatalytic activity.« less

  18. Efficient ECH-assisted plasma start-up using trapped particle configuration in the versatile experiment spherical torus

    NASA Astrophysics Data System (ADS)

    An, YoungHwa; Lee, Jeongwon; Jo, JongGab; Jung, Bong-Ki; Lee, HyunYeong; Chung, Kyoung-Jae; Na, Yong-Su; Hahm, T. S.; Hwang, Y. S.

    2017-01-01

    An efficient and robust ECH (electron cyclotron heating)-assisted plasma start-up scheme with a low loop voltage and low volt-second consumption utilizing the trapped particle configuration (TPC) has been developed in the versatile experiment spherical torus (VEST). The TPC is a mirror-like magnetic field configuration providing a vertical magnetic field in the same direction as the equilibrium field. It significantly enhances ECH pre-ionization with enhanced particle confinement due to its mirror effect, and intrinsically provides an equilibrium field with a stable decay index enabling prompt plasma current initiation. Consequently, the formation of TPC before the onset of the loop voltage allows the plasma to start up with a lower loop voltage and lower volt-second consumption as well as a wider operation range in terms of ECH pre-ionization power and H2 filling pressure. The TPC can improve the widely-used field null configuration significantly for more efficient start-up when ECH pre-ionization is used. This can then be utilized in superconducting tokamaks requiring a low loop voltage start-up, such as ITER, or in spherical tori with limited volt-seconds. The TPC can be particularly useful in superconducting tokamaks with a limited current slew-rate of superconducting PF coils, as it can save volt-second consumption before plasma current initiation by providing prompt initiation with an intrinsic stable equilibrium field.

  19. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green.

    PubMed

    Terashima, Ichiro; Fujita, Takashi; Inoue, Takeshi; Chow, Wah Soon; Oguchi, Riichi

    2009-04-01

    The literature and our present examinations indicate that the intra-leaf light absorption profile is in most cases steeper than the photosynthetic capacity profile. In strong white light, therefore, the quantum yield of photosynthesis would be lower in the upper chloroplasts, located near the illuminated surface, than that in the lower chloroplasts. Because green light can penetrate further into the leaf than red or blue light, in strong white light, any additional green light absorbed by the lower chloroplasts would increase leaf photosynthesis to a greater extent than would additional red or blue light. Based on the assessment of effects of the additional monochromatic light on leaf photosynthesis, we developed the differential quantum yield method that quantifies efficiency of any monochromatic light in white light. Application of this method to sunflower leaves clearly showed that, in moderate to strong white light, green light drove photosynthesis more effectively than red light. The green leaf should have a considerable volume of chloroplasts to accommodate the inefficient carboxylation enzyme, Rubisco, and deliver appropriate light to all the chloroplasts. By using chlorophylls that absorb green light weakly, modifying mesophyll structure and adjusting the Rubisco/chlorophyll ratio, the leaf appears to satisfy two somewhat conflicting requirements: to increase the absorptance of photosynthetically active radiation, and to drive photosynthesis efficiently in all the chloroplasts. We also discuss some serious problems that are caused by neglecting these intra-leaf profiles when estimating whole leaf electron transport rates and assessing photoinhibition by fluorescence techniques.

  20. A Fast-Starting Robotic Fish

    NASA Astrophysics Data System (ADS)

    Modarres-Sadeghi, Yahya; Watts, Matthew; Conte, Joe; Hover, Franz; Triantafyllou, Michael

    2009-11-01

    We have built a simple mechanical system to emulate the fast-start performance of fish. The system consisted of a thin metal beam covered by a urethane rubber fish body. The body form of the mechanical fish in this work was modeled from a pike species, which is the most successfully studied fast-start specialist species. The mechanical fish was held in curvature and hung in water by two restraining lines, which were simultaneously released by pneumatic cutting mechanisms. The potential energy in the beam was transferred into the fluid, thereby accelerating the fish, similar to a pike. We measured the resulting velocity and acceleration, as well as the efficiency of propulsion for the mechanical fish model and also ran a series of flow visualization tests to observe the resulting flow pattern. We also studied the influence of stiffness and geometry of the tail on the efficiency of propulsion and flow pattern. The hydrodynamic efficiency of the fish, calculated by the transfer of energy, was around 10%. Flow visualization of the mechanical fast-start wake was also analyzed, showing that the acceleration is associated with the fast movement of an intense vortex in a near-lateral direction.

  1. Adaptation to shift work: physiologically based modeling of the effects of lighting and shifts' start time.

    PubMed

    Postnova, Svetlana; Robinson, Peter A; Postnov, Dmitry D

    2013-01-01

    Shift work has become an integral part of our life with almost 20% of the population being involved in different shift schedules in developed countries. However, the atypical work times, especially the night shifts, are associated with reduced quality and quantity of sleep that leads to increase of sleepiness often culminating in accidents. It has been demonstrated that shift workers' sleepiness can be improved by a proper scheduling of light exposure and optimizing shifts timing. Here, an integrated physiologically-based model of sleep-wake cycles is used to predict adaptation to shift work in different light conditions and for different shift start times for a schedule of four consecutive days of work. The integrated model combines a model of the ascending arousal system in the brain that controls the sleep-wake switch and a human circadian pacemaker model. To validate the application of the integrated model and demonstrate its utility, its dynamics are adjusted to achieve a fit to published experimental results showing adaptation of night shift workers (n = 8) in conditions of either bright or regular lighting. Further, the model is used to predict the shift workers' adaptation to the same shift schedule, but for conditions not considered in the experiment. The model demonstrates that the intensity of shift light can be reduced fourfold from that used in the experiment and still produce good adaptation to night work. The model predicts that sleepiness of the workers during night shifts on a protocol with either bright or regular lighting can be significantly improved by starting the shift earlier in the night, e.g.; at 21:00 instead of 00:00. Finally, the study predicts that people of the same chronotype, i.e. with identical sleep times in normal conditions, can have drastically different responses to shift work depending on their intrinsic circadian and homeostatic parameters.

  2. Adaptation to Shift Work: Physiologically Based Modeling of the Effects of Lighting and Shifts’ Start Time

    PubMed Central

    Postnova, Svetlana; Robinson, Peter A.; Postnov, Dmitry D.

    2013-01-01

    Shift work has become an integral part of our life with almost 20% of the population being involved in different shift schedules in developed countries. However, the atypical work times, especially the night shifts, are associated with reduced quality and quantity of sleep that leads to increase of sleepiness often culminating in accidents. It has been demonstrated that shift workers’ sleepiness can be improved by a proper scheduling of light exposure and optimizing shifts timing. Here, an integrated physiologically-based model of sleep-wake cycles is used to predict adaptation to shift work in different light conditions and for different shift start times for a schedule of four consecutive days of work. The integrated model combines a model of the ascending arousal system in the brain that controls the sleep-wake switch and a human circadian pacemaker model. To validate the application of the integrated model and demonstrate its utility, its dynamics are adjusted to achieve a fit to published experimental results showing adaptation of night shift workers (n = 8) in conditions of either bright or regular lighting. Further, the model is used to predict the shift workers’ adaptation to the same shift schedule, but for conditions not considered in the experiment. The model demonstrates that the intensity of shift light can be reduced fourfold from that used in the experiment and still produce good adaptation to night work. The model predicts that sleepiness of the workers during night shifts on a protocol with either bright or regular lighting can be significantly improved by starting the shift earlier in the night, e.g.; at 21∶00 instead of 00∶00. Finally, the study predicts that people of the same chronotype, i.e. with identical sleep times in normal conditions, can have drastically different responses to shift work depending on their intrinsic circadian and homeostatic parameters. PMID:23308206

  3. Evaluation of novel PMTs of worldwide best parameters for the CTA project

    NASA Astrophysics Data System (ADS)

    Mirzoyan, R.; Müller, D.; Hose, J.; Menzel, U.; Nakajima, D.; Takahashi, M.; Teshima, M.; Toyama, T.; Yamamoto, T.

    2017-02-01

    Photomultiplier Tubes (PMT) are the most widespread detectors for measuring fast and faint light signals. About six years ago, we started an improvement program for the PMT candidates for the Cherenkov Telescope Array (CTA) project in cooperation with the companies Hamamatsu Photonics K.K. (Japan) and Electron Tubes Enterprises Ltd. (England). CTA is the next major Imaging Atmospheric Cherenkov Telescopes array for ground-based high energy gamma-ray astrophysics. A total of ∼ 100 telescopes of sizes of 23 m, 12 m and 4 m in diameter will be built in northern and southern hemispheres. For CTA we need PMTs with the highest quantum efficiency and photoelectron collection efficiency, short pulse width of a few ns, low transit time spread and very low afterpulsing. The manufacturers were able to produce 1.5‧ PMTs of enhanced peak quantum efficiency of ∼ 40 % . These collect up to 95-98% of photoelectrons onto the first dynode for the wavelengths ≥ 400 nm . A pulse width of ≤ 3 ns has been achieved at the selected operational gain of 40k. The afterpulsing for a threshold of ≥ 4 photoelectrons is dramatically reduced, down to the level of 0.02%. We will report on the measurements of 1.5‧ PMTs from Hamamatsu and Electron Tubes Enterprises as candidate PMTs for the CTA project. The novel 1.5‧ PMTs have the worldwide best parameters.

  4. 77 FR 55186 - Light-Walled Rectangular Pipe and Tube From Mexico: Preliminary Results and Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ... HTSUS subheadings are provided for convenience and customs purposes, our written description of the.... The normal-value level of trade is based on the starting prices of sales in the home market or, when... level of trade is based on the starting price, which is usually the price from the exporter to the...

  5. Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes.

    PubMed

    Chen, Jiun-Ting; Lai, Wei-Chih; Kao, Yu-Jui; Yang, Ya-Yu; Sheu, Jinn-Kong

    2012-02-27

    The laser-induced periodic surface structure technique was used to form simultaneously dual-scale rough structures (DSRS) with spiral-shaped nanoscale structure inside semi-spherical microscale holes on p-GaN surface to improve the light-extraction efficiency of light-emitting diodes (LEDs). The light output power of DSRS-LEDs was 30% higher than that of conventional LEDs at an injection current of 20 mA. The enhancement in the light output power could be attributed to the increase in the probability of photons to escape from the increased surface area of textured p-GaN surface.

  6. Lawrence Berkeley Laboratory/University of California lighting program overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, S.

    1981-12-01

    The objective of the Lighting Program is to assist and work in concert with the lighting community (composed of manufacturers, designers, and users) to achieve a more efficient lighting economy. To implement its objectives, the Lighting Program has been divided into three major categories: technical engineering, buildings applications, and human impacts (impacts on health and vision). The technical program aims to undertake research and development projects that are both long-range and high-risk and which the lighting industry has little interest in pursuing on its own, but from which significant benefits could accrue to both the public and the industry. Themore » building applications program studies the effects that introducing daylighting in commercial buildings has on lighting and cooling electrical energy requirements as well as on peak demand. This program also examines optimization strategies for integrating energy-efficient design, lighting hardware, daylighting, and overall building energy requirements. The impacts program examines relationships between the user and the physical lighting environment, in particular how new energy-efficient technologies relate to human productivity and health. These efforts are interdisciplinary, involving engineering, optometry, and medicine. The program facilities are described and the personnel in the program is identified.« less

  7. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels

    PubMed Central

    Dickman, Elizabeth M.; Newell, Jennifer M.; González, María J.; Vanni, Michael J.

    2008-01-01

    The efficiency of energy transfer through food chains [food chain efficiency (FCE)] is an important ecosystem function. It has been hypothesized that FCE across multiple trophic levels is constrained by the efficiency at which herbivores use plant energy, which depends on plant nutritional quality. Furthermore, the number of trophic levels may also constrain FCE, because herbivores are less efficient in using plant production when they are constrained by carnivores. These hypotheses have not been tested experimentally in food chains with 3 or more trophic levels. In a field experiment manipulating light, nutrients, and food-chain length, we show that FCE is constrained by algal food quality and food-chain length. FCE across 3 trophic levels (phytoplankton to carnivorous fish) was highest under low light and high nutrients, where algal quality was best as indicated by taxonomic composition and nutrient stoichiometry. In 3-level systems, FCE was constrained by the efficiency at which both herbivores and carnivores converted food into production; a strong nutrient effect on carnivore efficiency suggests a carryover effect of algal quality across 3 trophic levels. Energy transfer efficiency from algae to herbivores was also higher in 2-level systems (without carnivores) than in 3-level systems. Our results support the hypothesis that FCE is strongly constrained by light, nutrients, and food-chain length and suggest that carryover effects across multiple trophic levels are important. Because many environmental perturbations affect light, nutrients, and food-chain length, and many ecological services are mediated by FCE, it will be important to apply these findings to various ecosystem types. PMID:19011082

  8. The effects of starting materials in the synthesis of (Ga(1-x)Znx)(N(1-x)O(x)) solid solution on its photocatalytic activity for overall water splitting under visible light.

    PubMed

    Hisatomi, Takashi; Maeda, Kazuhiko; Lu, Daling; Domen, Kazunari

    2009-01-01

    The influence of starting materials on the physicochemical and photocatalytic properties of (Ga(1-x)Zn(x))(N(1-x)O(x)) were investigated in an attempt to optimize the preparation conditions. The catalyst was successfully prepared by nitriding a starting mixture of ZnO and Ga2O3. A mixture of metallic zinc and GaN, however, did not afford the desired compound. The crystallinity, surface area, composition, and absorption characteristics of the resultant (Ga(1-x)Zn(x))(N(1-x)O(x)) solid solution are found to be dependent on the morphology of ZnO but largely insensitive to the choice of Ga2O3 polymorph. The use of coarser-grained ZnO results in a coarser-grained catalyst with elevated zinc and oxygen content and reduced uniformity in composition and crystallinity. The results demonstrate the importance of selecting appropriate ZnO and Ga2O3 starting materials for maximizing the photocatalytic activity of (Ga(1-x)Zn(x))(N(1-x)O(x)) for overall water splitting under visible light.

  9. Cost and energy-efficient (LED, induction and plasma) roadway lighting.

    DOT National Transportation Integrated Search

    2013-11-01

    There is an increasing interest in using new lighting technologies such as light emitting diode (LED), Induction, and Plasma light sources : in roadway lighting. The most commonly claimed benefits of the new lighting systems include increased reliabi...

  10. Highly efficient exciplex organic light-emitting diodes incorporating a heptazine derivative as an electron acceptor.

    PubMed

    Li, Jie; Nomura, Hiroko; Miyazaki, Hiroshi; Adachi, Chihaya

    2014-06-11

    Highly efficient exciplex systems incorporating a heptazine derivative () as an electron acceptor and 1,3-di(9H-carbazol-9-yl)benzene () as an electron donor are developed. An organic light-emitting diode containing 8 wt% : as an emitting layer exhibits a maximum external quantum efficiency of 11.3%.

  11. Ultra-Efficient and Power Dense Electric Motors for U. S. Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melfi, Michael J.; Schiferl, Richard F.; Umans, Stephen D.

    2013-03-12

    The primary purpose of this project was to combine the ease-of-installation and ease-of-use attributes of industrial induction motors with the low-loss and small size and weight advantages of PM motors to create an ultra-efficient, high power density industrial motor that can be started across-the-line or operated from a standard, Volts/Hertz drive without the need for a rotor position feedback device. PM motor products that are currently available are largely variable speed motors that require a special adjustable speed drive with rotor position feedback. The reduced size and weight helps to offset the magnet cost in order make these motors commerciallymore » viable. The scope of this project covers horsepower ratings from 20 ? 500. Prototypes were built and tested at ratings ranging from 30 to 250 HP. Since fans, pumps and compressors make up a large portion of industrial motor applications, the motor characteristics are tailored to those applications. Also, since there is extensive use of adjustable frequency inverters in these applications, there is the opportunity to design for an optimal pole number and operate at other than 60 Hz frequency when inverters are utilized. Designs with four and eight pole configurations were prototyped as part of this work. Four pole motors are the most commonly used configuration in induction motors today. The results of the prototype design, fabrication, and testing were quite successful. The 50 HP rating met all of the design goals including efficiency and power density. Tested values of motor losses at 50 HP were 30% lower than energy efficient induction motors and the motor weight is 35% lower than the energy efficient induction motor of the same rating. Further, when tested at the 30 HP rating that is normally built in this 286T frame size, the efficiency far exceeds the project design goals with 30 HP efficiency levels indicating a 55% reduction in loss compared to energy efficient motors with a motor weight that is a few percentage points lower than the energy efficient motor. This 30 HP rating full load efficiency corresponds to a 46% reduction in loss compared to a 30 HP NEMA Premium? efficient motor. The cost goals were to provide a two year or shorter efficiency-based payback of a price premium associated with the magnet cost in these motors. That goal is based on 24/7 operation with a cost of electricity of 10 cents per kW-hr. Similarly, the 250 HP prototype efficiency testing was quite successful. In this case, the efficiency was maximized with a slightly less aggressive reduction in active material. The measured full load efficiency of 97.6% represents in excess of a 50% loss reduction compared to the equivalent NEMA Premium Efficiency induction motor. The active material weight reduction was a respectable 14.5% figure. This larger rating demonstrated both the scalability of this technology and also the ability to flexibly trade off power density and efficiency. In terms of starting performance, the 30 ? 50 HP prototypes were very extensively tested. The demonstrated capability included the ability to successfully start a load with an inertia of 25 times the motor?s own inertia while accelerating against a load torque following a fan profile at the motor?s full nameplate power rating. This capability will provide very wide applicability of this motor technology. The 250 HP prototype was also tested for starting characteristics, though without a coupled inertia and load torque. As a result it was not definitively proven that the same 25 times the motor?s own inertia could be started and synchronized successfully at 250 HP. Finite element modeling implies that this load could be successfully started, but it has not yet been confirmed by a test.« less

  12. Light-scattering signal may indicate critical time zone to rescue brain tissue after hypoxia

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2011-02-01

    A light-scattering signal, which is sensitive to cellular/subcellular structural integrity, is a potential indicator of brain tissue viability because metabolic energy is used in part to maintain the structure of cells. We previously observed a unique triphasic scattering change (TSC) at a certain time after oxygen/glucose deprivation for blood-free rat brains; TSC almost coincided with the cerebral adenosine triphosphate (ATP) depletion. We examine whether such TSC can be observed in the presence of blood in vivo, for which transcranial diffuse reflectance measurement is performed for rat brains during hypoxia induced by nitrogen gas inhalation. At a certain time after hypoxia, diffuse reflectance intensity in the near-infrared region changes in three phases, which is shown by spectroscopic analysis to be due to scattering change in the tissue. During hypoxia, rats are reoxygenated at various time points. When the oxygen supply is started before TSC, all rats survive, whereas no rats survive when the oxygen supply is started after TSC. Survival is probabilistic when the oxygen supply is started during TSC, indicating that the period of TSC can be regarded as a critical time zone for rescuing the brain. The results demonstrate that light scattering signal can be an indicator of brain tissue reversibility.

  13. What Is the Real Efficiency of Bulbs?

    ERIC Educational Resources Information Center

    Polacek, Lubos

    2012-01-01

    Bulbs are considered to be very inefficient sources of light. Bulbs give light and heat. As we use them for a long time, especially in winter, a large part of the heat produced by bulbs lowers the power consumption of the heating system. In this paper the problem of the real efficiency of a bulb is solved when both the lighting and heating effects…

  14. Understanding moisture stress on light use efficiency across terrestrial ecosystems based on global flux and remote-sensing data

    Treesearch

    Yulong Zhang; Conghe Song; Ge Sun; Lawrence E. Band; Asko Noormets; Quanfa Zhang

    2015-01-01

    Light use efficiency (LUE) is a key biophysical parameter characterizing the ability of plants to convert absorbed light to carbohydrate. However, the environmental regulations on LUE, especially moisture stress, are poorly understood, leading to large uncertainties in primary productivity estimated by LUE models. The objective of this study is to investigate the...

  15. Efficient light absorption by plasmonic metallic nanostructures in photovoltaic application

    NASA Astrophysics Data System (ADS)

    Roy, Rhombik; Datta, Debasish

    2018-04-01

    This article reports the way to trap light efficiently inside a tri-layered Cu(Zn,Sn)S2 (CZTS) and Zinc Oxide (ZnO) based solar cell module using Ag nanoparticles as light concentrators by virtue of their plasmonic property. The passage of E. M. radiation within the cell has been simulated using finite difference time domain (FDTD) method.

  16. Enhanced light out-coupling efficiency of organic light-emitting diodes with an extremely low haze by plasma treated nanoscale corrugation.

    PubMed

    Hwang, Ju Hyun; Lee, Hyun Jun; Shim, Yong Sub; Park, Cheol Hwee; Jung, Sun-Gyu; Kim, Kyu Nyun; Park, Young Wook; Ju, Byeong-Kwon

    2015-02-14

    Extremely low-haze light extraction from organic light-emitting diodes (OLEDs) was achieved by utilizing nanoscale corrugation, which was simply fabricated with plasma treatment and sonication. The haze of the nanoscale corrugation for light extraction (NCLE) corresponds to 0.21% for visible wavelengths, which is comparable to that of bare glass. The OLEDs with NCLE showed enhancements of 34.19% in current efficiency and 35.75% in power efficiency. Furthermore, the OLEDs with NCLE exhibited angle-stable electroluminescence (EL) spectra for different viewing angles, with no change in the full width at half maximum (FWHM) and peak wavelength. The flexibility of the polymer used for the NCLE and plasma treatment process indicates that the NCLE can be applied to large and flexible OLED displays.

  17. New rules of thumb maximizing energy efficiency in street lighting with discharge lamps: The general equations for lighting design

    NASA Astrophysics Data System (ADS)

    Peña-García, A.; Gómez-Lorente, D.; Espín, A.; Rabaza, O.

    2016-06-01

    New relationships between energy efficiency, illuminance uniformity, spacing and mounting height in public lighting installations were derived from the analysis of a large sample of outputs generated with a widely used software application for lighting design. These new relationships greatly facilitate the calculation of basic lighting installation parameters. The results obtained are also based on maximal energy efficiency and illuminance uniformity as a premise, which are not included in more conventional methods. However, these factors are crucial since they ensure the sustainability of the installations. This research formulated, applied and analysed these new equations. The results of this study highlight their usefulness in rapid planning and urban planning in developing countries or areas affected by natural disasters where engineering facilities and computer applications for this purpose are often unavailable.

  18. Hybrid daylight/light-emitting diode illumination system for indoor lighting.

    PubMed

    Ge, Aiming; Qiu, Peng; Cai, Jinlin; Wang, Wei; Wang, Junwei

    2014-03-20

    A hybrid illumination method using both daylight and light-emitting diodes (LEDs) for indoor lighting is presented in this study. The daylight can be introduced into the indoor space by a panel-integration system. The daylight part and LEDs are combined within a specific luminaire that can provide uniform illumination. The LEDs can be turned on and dimmed through closed-loop control when the daylight illuminance is inadequate. We simulated the illumination and calculated the indoor lighting efficiency of our hybrid daylight and LED lighting system, and compared this with that of LED and fluorescent lighting systems. Simulation results show that the efficiency of the hybrid daylight/LED illumination method is better than that of LED and traditional lighting systems, under the same lighting conditions and lighting time; the method has hybrid lighting average energy savings of T5 66.28%, and that of the LEDs is 41.62%.

  19. LED Provides Effective and Efficient Parking Area Lighting at the NAVFAC Engineering Service Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-08-12

    U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) emerging technology case study showcasing LED lighting to improve energy efficiency in parking areas at the NAVFAC Engineering Services Center.

  20. Incident-angle-controlled semitransparent colored perovskite solar cells with improved efficiency exploiting a multilayer dielectric mirror.

    PubMed

    Lee, Kyu-Tae; Jang, Ji-Yun; Park, Sang Jin; Ok, Song Ah; Park, Hui Joon

    2017-09-28

    See-through perovskite solar cells with high efficiency and iridescent colors are demonstrated by employing a multilayer dielectric mirror. A certain amount of visible light is used for wide color gamut semitransparent color generation, which can be easily tuned by changing an angle of incidence, and a wide range of visible light is efficiently reflected back toward a photoactive layer of the perovskite solar cells by the dielectric mirror for highly efficient light-harvesting performance, thus achieving 10.12% power conversion efficiency. We also rigorously examine how the number of pairs in the multilayer dielectric mirror affects optical properties of the colored semitransparent perovskite solar cells. The described approach can open the door to a large number of applications such as building-integrated photovoltaics, self-powered wearable electronics and power-generating color filters for energy-efficient display systems.

  1. Analysis of lasers as a solution to efficiency droop in solid-state lighting

    DOE PAGES

    Chow, Weng W.; Crawford, Mary H.

    2015-10-06

    This letter analyzes the proposal to mitigate the efficiency droop in solid-state light emitters by replacing InGaN light-emitting diodes (LEDs) with lasers. The argument in favor of this approach is that carrier-population clamping after the onset of lasing limits carrier loss to that at threshold, while stimulated emission continues to grow with injection current. A fully quantized (carriers and light) theory that is applicable to LEDs and lasers (above and below threshold) is used to obtain a quantitative evaluation. The results confirm the potential advantage of higher laser output power and efficiency above lasing threshold, while also indicating disadvantages includingmore » low efficiency prior to lasing onset, sensitivity of lasing threshold to temperature, and the effects of catastrophic laser failure. As a result, a solution to some of these concerns is suggested that takes advantage of recent developments in nanolasers.« less

  2. Perfect absorption in nanotextured thin films via Anderson-localized photon modes

    NASA Astrophysics Data System (ADS)

    Aeschlimann, Martin; Brixner, Tobias; Differt, Dominik; Heinzmann, Ulrich; Hensen, Matthias; Kramer, Christian; Lükermann, Florian; Melchior, Pascal; Pfeiffer, Walter; Piecuch, Martin; Schneider, Christian; Stiebig, Helmut; Strüber, Christian; Thielen, Philip

    2015-10-01

    The enhancement of light absorption in absorber layers is crucial in a number of applications, including photovoltaics and thermoelectrics. The efficient use of natural resources and physical constraints such as limited charge extraction in photovoltaic devices require thin but efficient absorbers. Among the many different strategies used, light diffraction and light localization at randomly nanotextured interfaces have been proposed to improve absorption. Although already exploited in commercial devices, the enhancement mechanism for devices with nanotextured interfaces is still subject to debate. Using coherent two-dimensional nanoscopy and coherent light scattering, we demonstrate the existence of localized photonic states in nanotextured amorphous silicon layers as used in commercial thin-film solar cells. Resonant absorption in these states accounts for the enhanced absorption in the long-wavelength cutoff region. Our observations establish that Anderson localization—that is, strong localization—is a highly efficient resonant absorption enhancement mechanism offering interesting opportunities for the design of efficient future absorber layers.

  3. LightForce Photon-Pressure Collision Avoidance: Updated Efficiency Analysis Utilizing a Highly Parallel Simulation Approach

    NASA Technical Reports Server (NTRS)

    Stupl, Jan; Faber, Nicolas; Foster, Cyrus; Yang, Fan Yang; Nelson, Bron; Aziz, Jonathan; Nuttall, Andrew; Henze, Chris; Levit, Creon

    2014-01-01

    This paper provides an updated efficiency analysis of the LightForce space debris collision avoidance scheme. LightForce aims to prevent collisions on warning by utilizing photon pressure from ground based, commercial off the shelf lasers. Past research has shown that a few ground-based systems consisting of 10 kilowatt class lasers directed by 1.5 meter telescopes with adaptive optics could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. Our simulation approach utilizes the entire Two Line Element (TLE) catalogue in LEO for a given day as initial input. Least-squares fitting of a TLE time series is used for an improved orbit estimate. We then calculate the probability of collision for all LEO objects in the catalogue for a time step of the simulation. The conjunctions that exceed a threshold probability of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the probability of collision and evaluate the efficiency of the system. This paper describes new simulations with three updated aspects: 1) By utilizing a highly parallel simulation approach employing hundreds of processors, we have extended our analysis to a much broader dataset. The simulation time is extended to one year. 2) We analyze not only the efficiency of LightForce on conjunctions that naturally occur, but also take into account conjunctions caused by orbit perturbations due to LightForce engagements. 3) We use a new simulation approach that is regularly updating the LightForce engagement strategy, as it would be during actual operations. In this paper we present our simulation approach to parallelize the efficiency analysis, its computational performance and the resulting expected efficiency of the LightForce collision avoidance system. Results indicate that utilizing a network of four LightForce stations with 20 kilowatt lasers, 85% of all conjunctions with a probability of collision Pc > 10 (sup -6) can be mitigated.

  4. Use of prismatic films to control light distribution

    NASA Technical Reports Server (NTRS)

    Kneipp, K. G.

    1994-01-01

    Piping light for illumination purposes is a concept which has been around for a long time. In fact, it was the subject of an 1881 United States patent which proposed the use of mirrors inside a tube to reflect light from wall to wall down the tube. The use of conventional mirrors for this purpose, however, has not worked because mirrors do not reflect well enough. On the other hand, optical fibers composed of certain glasses or plastics are known to transport light much more efficiently. The light that enters is reflected back and forth within the walls of the fiber until it reaches the other end. This is possible by means of a principle known as 'total internal reflection'. No light escapes through the walls and very little is absorbed in the bulk of the fiber. However, while optical fibers are very efficient in transporting light, they are impractical for transporting large quantities of light. Lorne Whitehead, as a student at the University of British Columbia, recognized that prismatic materials could be used to create a 'prism light guide', a hollow structure that can efficiently transport large quantities of light. This invention is a pipe whose transparent walls are formed on the outside into precise prismatic facets. The facets are efficient total internal reflection mirrors which prevent light travelling down the guide from escaping. Very little light is absorbed by the pipe because light travels primarily in the air space within the hollow guide. And, because the guide is hollow, weight and cost factors are much more favorable than would be the case with very large solid fibers. Recent advances in precision micromachining, polymer processing, and certain other manufacturing technologies have made the development of OLF (Optical Lighting Film) possible. The process is referred to as 'microreplication' and has been found to have broad applicability in a number of diverse product areas.

  5. The effect of dissolve gas concentration in the initial growth stage of multi cavitation bubbles. Differences between vacuum degassing and ultrasound degassing.

    PubMed

    Yanagida, Hirotaka

    2008-04-01

    The sonochemical luminescence intensity from luminol was measured at a sampling rate of several kilohertz. This was noted at three different periods: first, the latent period in which no light emission occurs at all; second, the increased emission period from the start of light emission to the time when a steady state is reached; and third, the steady state period in which light emission occurs at the steady state value. When irradiated with ultrasound of different intensities, the times of the latent period and increased emission period are shorter for higher ultrasound intensities. To know how the dissolved oxygen content is involved in early-stage cavitation growth, an experiment was conducted using solutions with varying dissolved oxygen contents from 100% to 37%. For dissolved air content of 50% or less, it was found that the latent period was 30 times longer in a saturated condition. It was also found that the increased emission period was 10 times longer. However, the emission intensity in the steady state did not change at all even when the initial dissolved gas concentration of the sample was changed. From this, it was found that the reuse of collapsed bubbles takes place efficiently in the steady state. Dissolved oxygen was reduced by the use of a vacuum pump and by the degassing action of ultrasound, and it was discovered that the behavior of transient emission differed for the two ways of degassing.

  6. Tuning charge balance in PHOLEDs with ambipolar host materials to achieve high efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padmaperuma, Asanga B.; Koech, Phillip K.; Cosimbescu, Lelia

    2009-08-27

    The efficiency and stability of blue organic light emitting devices (OLEDs) continue to be a primary roadblock to developing organic solid state white lighting. For OLEDs to meet the high power conversion efficiency goal, they will require both close to 100% internal quantum efficiency and low operating voltage in a white light emitting device.1 It is generally accepted that such high quantum efficiency, can only be achieved with the use of organometallic phosphor doped OLEDs. Blue OLEDs are particularly important for solid state lighting. The simplest (and therefore likely the lowest cost) method of generating white light is to downmore » convert part of the emission from a blue light source with a system of external phosphors.2 A second method of generating white light requires the superposition of the light from red, green and blue OLEDs in the correct ratio. Either of these two methods (and indeed any method of generating white light with a high color rendering index) critically depends on a high efficiency blue light component.3 A simple OLED generally consists of a hole-injecting anode, a preferentially hole transporting organic layer (HTL), an emissive layer that contains the recombination zone and ideally transports both holes and electrons, a preferentially electron-transporting layer (ETL) and an electron-injecting cathode. Color in state-of-the-art OLEDs is generated by an organometallic phosphor incorporated by co-sublimation into the emissive layer (EML).4 New materials functioning as hosts, emitters, charge transporting, and charge blocking layers have been developed along with device architectures leading to electrophosphorescent based OLEDs with high quantum efficiencies near the theoretical limit. However, the layers added to the device architecture to enable high quantum efficiencies lead to higher operating voltages and correspondingly lower power efficiencies. Achievement of target luminance power efficiencies will require new strategies for lowering operating voltages, particularly if this is to be achieved in a device that can be manufactured at low cost. To avoid the efficiency losses associated with phosphorescence quenching by back-energy transfer from the dopant onto the host, the triplet excited states of the host material must be higher in energy than the triplet excited state of the dopant.5 This must be accomplished without sacrificing the charge transporting properties of the composite.6 Similar problems limit the efficiency of OLED-based displays, where blue light emitters are the least efficient and least stable. We previously demonstrated the utility of organic phosphine oxide (PO) materials as electron transporting HMs for FIrpic in blue OLEDs.7 However, the high reluctance of PO materials to oxidation and thus, hole injection limits the ability to balance charge injection and transport in the EML without relying on charge transport by the phosphorescent dopant. PO host materials were engineered to transport both electrons and holes in the EML and still maintain high triplet exciton energy to ensure efficient energy transfer to the dopant (Figure 1). There are examples of combining hole transporting moieties (mainly aromatic amines) with electron transport moieties (e.g., oxadiazoles, triazines, boranes)8 to develop new emitter and host materials for small molecule and polymer9 OLEDs. The challenge is to combine the two moieties without lowering the triplet energy of the target molecule. For example, coupling of a dimesitylphenylboryl moiety with a tertiary aromatic amine (FIAMBOT) results in intramolecular electron transfer from the amine to the boron atom through the bridging phenyl. The mesomeric effect of the dimesitylphenylboryl unit acts to extend conjugation and lowers triplet exciton energies (< 2.8 eV) rendering such systems inadequate as ambipolar hosts for blue phosphors.« less

  7. Promises and challenges in solid-state lighting

    NASA Astrophysics Data System (ADS)

    Schubert, Fred

    2010-03-01

    Lighting technologies based on semiconductor light-emitting diodes (LEDs) offer unprecedented promises that include three major benefits: (i) Gigantic energy savings enabled by efficient conversion of electrical energy to optical energy; (ii) Substantial positive contributions to sustainability through reduced emissions of global-warming gases, acid-rain gases, and toxic substances such as mercury; and (iii) The creation of new paradigms in lighting driven by the unique controllability of solid-state lighting sources. Due to the powerful nature of these benefits, the transition from conventional lighting sources to solid-state lighting is virtually assured. This presentation will illustrate the new world of lighting and illustrate the pervasive changes to be expected in lighting, displays, communications, and biotechnology. The presentation will also address the formidable challenges that must be addressed to continue the further advancement of solid-state lighting technology. These challenges offer opportunities for research and innovation. Specific challenges include light management, carrier transport, and optical design. We will present some innovative approaches in order to solve known technical challenges faced by solid-state lighting. These approaches include the demonstration and use of new optical thin-film materials with a continuously tunable refractive index. These approaches also include the use of polarization-matched structures that reduce the polarization fields in GaInN LEDs and the hotly debated efficiency droop, that is, the decreasing LED efficiency at high currents.

  8. Analysis of energy efficient highway lighting retrofits.

    DOT National Transportation Integrated Search

    2015-06-01

    Solid state lighting technology is advancing rapidly to a point where light emitting diode (LED) lighting : systems can be viable replacements for existing lighting systems using high pressure sodium (HPS). The : present report summarizes analyses co...

  9. Lighting the Learning Environment.

    ERIC Educational Resources Information Center

    Fielding, Randall

    2000-01-01

    Explores the benefits and pitfalls of day lighting, indirect light, and full-spectrum lamps for general illumination and accent lighting in classrooms. Discussions include lighting considerations in areas where computers are used and fixture cost factors versus efficiency. (GR)

  10. Resonant-cavity light-emitting diodes for optical interconnects

    NASA Astrophysics Data System (ADS)

    Jin, Xu

    This dissertation addresses the issues related to external quantum efficiencies and light coupling efficiency of novel 1.3 mum Resonant-cavity light-emitting diodes (RCLEDs) on GaAs substrates. External quantum efficiency (QE) is defined as the number of extracted photons per injected electrons, i.e., the product of injection efficiency, internal QE, and light extraction efficiency. This study focuses on the latter two terms. Internal QE mainly depends on the properties of the active region quantum wells (QWs) used in the RCLEDs, such as composition, thickness, and strain compensation. GaAsSb/GaAs QW edge-emitting (EE) lasers are characterized experimentally to extract key parameters, such as internal QE and internal loss. With optimized QWs and a novel self-aligned EE lasers process, room temperature continuous wave (CW) operation of GaAsSb EE lasers has been demonstrated for the first time. The highest operational temperature for the EE lasers is 48°C at a wavelength as long as 1260 nm. This result is the best ever reported by a university group. In conventional LEDs, very little light generated by the active region, succeeds in escaping from the semiconductor material due to the small critical angle of total internal reflection. With the use of a resonant cavity, the light extraction efficiency of RCLEDs is significantly improved. Front and back reflectivities, detuning (offset) between resonant-cavity peak and electroluminescence, and electroluminescence linewidth have been identified as key factors influencing light extraction efficiency. Numerical simulations indicate that the fraction of luminescence transmitted through the top mirror of an optimized RCLED is around 9%, which is more than double that of conventional LEDs. This number will be larger when multiple reflections and photon recycling are considered; which are not included in the current model since they are structure dependent. The best GaAsSb/GaAs QW RCLEDs demonstrated in this work have shown narrow spectral linewidths of 7-10 nm, extracted light output power in the range of 200-300 muW, and modulation speed up to 300 MHz. This is the first demonstration of 1.3 muRCLEDs on GaAs substrates with performance comparable to InP based surface-emitting LEDs.

  11. Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching

    PubMed Central

    Wientjes, Emilie; Renger, Jan; Curto, Alberto G.; Cogdell, Richard; van Hulst, Niek F.

    2014-01-01

    The nature of the highly efficient energy transfer in photosynthetic light-harvesting complexes is a subject of intense research. Unfortunately, the low fluorescence efficiency and limited photostability hampers the study of individual light-harvesting complexes at ambient conditions. Here we demonstrate an over 500-fold fluorescence enhancement of light-harvesting complex 2 (LH2) at the single-molecule level by coupling to a gold nanoantenna. The resonant antenna produces an excitation enhancement of circa 100 times and a fluorescence lifetime shortening to ~\

  12. Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching

    NASA Astrophysics Data System (ADS)

    Wientjes, Emilie; Renger, Jan; Curto, Alberto G.; Cogdell, Richard; van Hulst, Niek F.

    2014-06-01

    The nature of the highly efficient energy transfer in photosynthetic light-harvesting complexes is a subject of intense research. Unfortunately, the low fluorescence efficiency and limited photostability hampers the study of individual light-harvesting complexes at ambient conditions. Here we demonstrate an over 500-fold fluorescence enhancement of light-harvesting complex 2 (LH2) at the single-molecule level by coupling to a gold nanoantenna. The resonant antenna produces an excitation enhancement of circa 100 times and a fluorescence lifetime shortening to ~\

  13. Achromatic phase-matching second harmonic generation for a tunable laser

    DOEpatents

    Jacobson, A.G.; Bisson, S.; Trebino, R.

    1998-01-20

    An optical system uses a nonlinear optical medium to alter the frequency of a relatively narrow band light source tunable over a plurality of different frequencies using an optical system for passively directing light to the nonlinear medium at a correct phase matching angle. In this manner, the light from the tunable light source can be efficiently frequency-doubled or frequency-tripled without the need of moving parts. An all prism design provides a system of optimal efficiency. 6 figs.

  14. Achromatic phase-matching second harmonic generation for a tunable laser

    DOEpatents

    Jacobson, Alexander Gerson; Bisson, Scott; Trebino, Rick

    1998-01-01

    An optical system uses a nonlinear optical medium to alter the frequency of a relatively narrow band light source tunable over a plurality of different frequencies using an optical system for passively directing light to the nonlinear medium at a correct phase matching angle. In this manner, the light from the tunable light source can be efficiently frequency-doubled or frequency-tripled without the need of moving parts. An all prism design provides a system of optimal efficiency.

  15. New Trends in Educational Lighting Systems.

    ERIC Educational Resources Information Center

    Murphy, Peter

    2001-01-01

    Explores technological trends for improving campus lighting, including the use of direct-indirect suspended fluorescent lighting, suspended linear lighting, high-efficiency optical systems, and occupancy and daylight sensors. (GR)

  16. Enhanced light out-coupling efficiency of organic light-emitting diodes with an extremely low haze by plasma treated nanoscale corrugation

    NASA Astrophysics Data System (ADS)

    Hwang, Ju Hyun; Lee, Hyun Jun; Shim, Yong Sub; Park, Cheol Hwee; Jung, Sun-Gyu; Kim, Kyu Nyun; Park, Young Wook; Ju, Byeong-Kwon

    2015-01-01

    Extremely low-haze light extraction from organic light-emitting diodes (OLEDs) was achieved by utilizing nanoscale corrugation, which was simply fabricated with plasma treatment and sonication. The haze of the nanoscale corrugation for light extraction (NCLE) corresponds to 0.21% for visible wavelengths, which is comparable to that of bare glass. The OLEDs with NCLE showed enhancements of 34.19% in current efficiency and 35.75% in power efficiency. Furthermore, the OLEDs with NCLE exhibited angle-stable electroluminescence (EL) spectra for different viewing angles, with no change in the full width at half maximum (FWHM) and peak wavelength. The flexibility of the polymer used for the NCLE and plasma treatment process indicates that the NCLE can be applied to large and flexible OLED displays.Extremely low-haze light extraction from organic light-emitting diodes (OLEDs) was achieved by utilizing nanoscale corrugation, which was simply fabricated with plasma treatment and sonication. The haze of the nanoscale corrugation for light extraction (NCLE) corresponds to 0.21% for visible wavelengths, which is comparable to that of bare glass. The OLEDs with NCLE showed enhancements of 34.19% in current efficiency and 35.75% in power efficiency. Furthermore, the OLEDs with NCLE exhibited angle-stable electroluminescence (EL) spectra for different viewing angles, with no change in the full width at half maximum (FWHM) and peak wavelength. The flexibility of the polymer used for the NCLE and plasma treatment process indicates that the NCLE can be applied to large and flexible OLED displays. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06547f

  17. Public transportation : New Starts program challenges and preliminary observations on expediting project development.

    DOT National Transportation Integrated Search

    2009-06-01

    The New Starts program is an : important source of new capital : investment in mass transportation. : As required by the Safe, : Accountable, Flexible, Efficient : Transportation Equity Act: A : Legacy for Users, the Federal : Transit Administration ...

  18. Efficient solar-pumped Nd:YAG laser by a double-stage light-guide/V-groove cavity

    NASA Astrophysics Data System (ADS)

    Almeida, Joana; Liang, Dawei

    2011-05-01

    Since the first reported Nd:YAG solar laser, researchers have been exploiting parabolic mirrors and heliostats for enhancing laser output performance. We are now investigating the production of an efficient solar-pumped laser for the reduction of magnesium from magnesium oxide, which could be an alternative solution to fossil fuel. Therefore both high conversion efficiency and excellent beam quality are imperative. By using a single fused silica light guide of rectangular cross section, highly concentrated solar radiation at the focal spot of a stationary parabolic mirror is efficiently transferred to a water-flooded V-groove pump cavity. It allows for the double-pass absorption of pump light along a 4mm diameter, 30mm length, 1.1at% Nd:YAG rod. Optimum pumping parameters and solar laser output power are found through ZEMAXTM non-sequential ray-tracing and LASCADTM laser cavity analysis. 11.0 W of multimode laser output power with excellent beam profile is numerically calculated, corresponding to 6.1W/m2 collection efficiency. To validate the proposed pumping scheme, an experimental setup of the double-stage light-guide/V-groove cavity was built. 78% of highly concentrated solar radiation was efficiently transmitted by the fused silica light guide. The proposed pumping scheme can be an effective solution for enhancing solar laser performances when compared to other side-pump configurations.

  19. High-efficiency Light-emitting Devices based on Semipolar III-Nitrides

    NASA Astrophysics Data System (ADS)

    Oh, Sang Ho

    In the future, the light-emitting diodes (LEDs) are expected to fully penetrate into the lighting market. A tremendous amount of energy will be saved through the LED-based lighting. Apparently, the amount of the energy saving strongly depends on the efficiency of the LEDs: this dissertation is all about the efficiency. First, the III-nitride LEDs grown on free-standing semipolar (202¯1¯) GaN substrates will be discussed. In many studies, LEDs grown on semipolar III-nitride substrates exhibited high efficiency at high current density. In this dissertation, "droop-free" (202¯1¯) blue LEDs will be demonstrated, especially for the standard industrial chip size. In addition, contact optimization process for (202¯1¯) LEDs will be discussed. Series resistance of the (202¯1¯) LED devices has been improved through the contact optimization. As a result, the wall-plug efficiency (WPE) of the device was boosted by ˜50%, compared to that of the previously reported (202¯1¯) LEDs. Also, chip shaping for the semipolar LEDs to enhance the extraction efficiency will be covered as well. A new mesa design will be introduced, and the cleaving scheme for semipolar LED wafers will be thoroughly discussed. Lastly, as a future work, selective area growth of ZnO light extraction features will be introduced and its preliminary result will be demonstrated.

  20. Max Tech and Beyond: High-Intensity Discharge Lamps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholand, Michael

    High-intensity discharge (HID) lamps are most often found in industrial and commercial applications, and are the light source of choice in street and area lighting, and sports stadium illumination. HID lamps are produced in three types - mercury vapor (MV), high pressure sodium (HPS) and metal halide (MH). Of these, MV and MH are considered white-light sources (although the MV exhibits poor color rendering) and HPS produces a yellow-orange color light. A fourth lamp, low-pressure sodium (LPS), is not a HID lamp by definition, but it is used in similar applications and thus is often grouped with HID lamps. Withmore » the notable exception of MV which is comparatively inefficient and in decline in the US from both a sales and installed stock point of view; HPS, LPS and MH all have efficacies over 100 lumens per watt. The figure below presents the efficacy trends over time for commercially available HID lamps and LPS, starting with MV and LPS in 1930's followed by the development of HPS and MH in the 1960's. In HID lamps, light is generated by creating an electric arc between two electrodes in an arc tube. The particles in the arc are partially ionized, making them electrically conductive, and a light-emitting 'plasma' is created. This arc occurs within the arc tube, which for most HID lamps is enclosed within an evacuated outer bulb that thermally isolates and protects the hot arc tube from the surroundings. Unlike a fluorescent lamp that produces visible light through down-converting UV light with phosphors, the arc itself is the light source in an HID lamp, emitting visible radiation that is characteristic of the elements present in the plasma. Thus, the mixture of elements included in the arc tube is one critical factor determining the quality of the light emitted from the lamp, including its correlated color temperature (CCT) and color rendering index (CRI). Similar to fluorescent lamps, HID lamps require a ballast to start and maintain stable operating conditions, and this necessitates additional power beyond that used by the lamp itself. HID lamps offer important advantages compared to other lighting technologies, making them well suited for certain applications. HID lamps can be very efficient, have long operating lives, are relatively temperature-insensitive and produce a large quantity of light from a small package. For these reasons, HID lamps are often used when high levels of illumination are required over large areas and where operating and maintenance costs must be kept to a minimum. Furthermore, if the installation has a significant mounting height, high-power HID lamps can offer superior optical performance luminaires, reducing the number of lamps required to illuminate a given area. The indoor environments best suited to HID lamps are those with high ceilings, such as those commonly found in industrial spaces, warehouses, large retail spaces, sports halls and large public areas. Research into efficacy improvements for HID lighting technologies has generally followed market demand for these lamps, which is in decline for MV and LPS, has reached a plateau for HPS and is growing for MH. Several manufacturers interviewed for this study indicated that although solid-state lighting was now receiving the bulk of their company's R&D investment, there are still strong HID lamp research programs, which concentrate on MH technologies, with some limited amount of investment in HPS for specific niche applications (e.g., agricultural greenhouses). LPS and MV lamps are no longer being researched or improved in terms of efficacy or other performance attributes, although some consider MH HID lamps to be the next-generation MV lamp. Thus, the efficacy values of commercially available MV, LPS and HPS lamps are not expected to increase in the next 5 to 10 years. MH lamps, and more specifically, ceramic MH lamps are continuing to improve in efficacy as well as light quality, manufacturability and lamp life. Within an HID lamp, the light-producing plasma must be heated to sufficiently high temperatures to achieve high efficiencies, without melting the electrodes or altering the operating conditions of the lamp. The research in ceramic MH has focused on the arc tube, the electrodes and the plasma, resulting in an innovation announced by Philips Lighting in 2009 called the 'unsaturated lamp.' The unsaturated lamp addresses a problem experienced by standard ceramic MH lamps where a pool of liquid salt develops in the arc tube while the lamp is operating. This pool of liquid salt limits the light characteristics of the lamp such as the efficacy and color quality, and reduces lamp lifetime. By making modifications to the arc tube, the pressure and the operating temperature, the unsaturated ceramic MH lamp resolves this issue by keeping all the halide salts in the gaseous phase, even while the lamp is dimming (down to 50%).« less

  1. Analysis of the external and internal quantum efficiency of multi-emitter, white organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Furno, Mauro; Rosenow, Thomas C.; Gather, Malte C.; Lüssem, Björn; Leo, Karl

    2012-10-01

    We report on a theoretical framework for the efficiency analysis of complex, multi-emitter organic light emitting diodes (OLEDs). The calculation approach makes use of electromagnetic modeling to quantify the overall OLED photon outcoupling efficiency and a phenomenological description for electrical and excitonic processes. From the comparison of optical modeling results and measurements of the total external quantum efficiency, we obtain reliable estimates of internal quantum yield. As application of the model, we analyze high-efficiency stacked white OLEDs and comment on the various efficiency loss channels present in the devices.

  2. Can There Be Massive Photons? A Pedagogical Glance at the Origin of Mass

    ERIC Educational Resources Information Center

    Robles, P.; Claro, F.

    2012-01-01

    Among the most startling experiences a student encounters is learning that, unlike electrons and other elementary particles, photons have no mass. Under certain circumstances, however, the light quantum behaves as if it did have a finite mass. Starting from Maxwell's equations, we discuss how this arises when light interacts with a charged plasma,…

  3. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOEpatents

    Neil, George R.

    1996-01-01

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  4. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOEpatents

    Neil, G.R.

    1996-07-30

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  5. Eastern Kodak Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y.S. Tyan

    2009-06-30

    Lighting consumes more than 20% of electricity generated in the United States. Solid state lighting relies upon either inorganic or organic light-emitting diodes (OLEDs). OLED devices because of their thinness, fast response, excellent color, and efficiency could become the technology of choice for future lighting applications, provided progress is made to increase power efficiency and device lifetime and to develop cost-effective manufacturing processes. As a first step in this process, Eastman Kodak Company has demonstrated an OLED device architecture having an efficacy over 50 lm/W that exceeds the specifications of DOE Energy Star Program Requirements for Solid State Lighting. Themore » project included work designed to optimize an OLED device, based on a stacked-OLED structure, with performance parameters of: low voltage; improved light extraction efficiency; improved internal quantum efficiency; and acceptable lifetime. The stated goal for the end of the project was delivery of an OLED device architecture, suitable for development into successful commercial products, having over 50 lum/W power efficiency and 10,000 hours lifetime at 1000 cd/m{sup 2}. During the project, Kodak developed and tested a tandem hybrid IES device made with a fluorescent blue emitter, a phosphorescent yellow emitter, and a phosphorescent red emitter in a stacked structure. The challenge was to find low voltage materials that do not absorb excessive amounts of emitted light when the extraction enhancement structure is applied. Because an extraction enhancement structure forces the emitted light to travel several times through the OLED layers before it is emitted, it exacerbates the absorption loss. A variety of ETL and HTL materials was investigated for application in the low voltage SSL device structure. Several of the materials were found to successfully yield low operating device voltages without incurring excessive absorption loss when the extraction enhancement structure was applied. An internal extraction layer comprises two essential components: a light extraction element (LEE) that does the actual extraction of emitted light and a light coupling layer (LCL) that allows the emitted light to interact with the extraction element. Modeling results show that the optical index of the LCL needs to be high, preferably higher than that of the organic layers with an n value of {approx}1.8. In addition, since the OLED structure needs to be built on top of it the LCL needs to be physically and chemically benign. As the project concluded, our focus was on the tandem hybrid device, which proved to be the more efficient architecture. Cost-efficient device fabrication will provide the next challenges with this device architecture in order to allow this architecture to be commercialized.« less

  6. Efficient resource allocation scheme for visible-light communication system

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Chan; Bae, Chi-Sung; Cho, Dong-Ho; Shin, Hong-Seok; Jung, D. K.; Oh, Y. J.

    2009-01-01

    A visible-light communication utilizing LED has many advantagies such as visibility of information, high SNR (Signal to Noise Ratio), low installation cost, usage of existing illuminators, and high security. Furthermore, exponentially increasing needs and quality of LED have helped the development of visible-light communication. The visibility is the most attractive property in visible-light communication system, but it is difficult to ensure visibility and transmission efficiency simultaneously during initial access because of the small amount of initial access process signals. In this paper, we propose an efficient resource allocation scheme at initial access for ensuring visibility with high resource utilization rate and low data transmission failure rate. The performance has been evaluated through the numerical analysis and simulation results.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Wei, E-mail: wguo2@ncsu.edu; Kirste, Ronny; Bryan, Zachary

    Enhanced light extraction efficiency was demonstrated on nanostructure patterned GaN and AlGaN/AlN Multiple-Quantum-Well (MQW) structures using mass production techniques including natural lithography and interference lithography with feature size as small as 100 nm. Periodic nanostructures showed higher light extraction efficiency and modified emission profile compared to non-periodic structures based on integral reflection and angular-resolved transmission measurement. Light extraction mechanism of macroscopic and microscopic nanopatterning is discussed, and the advantage of using periodic nanostructure patterning is provided. An enhanced photoluminescence emission intensity was observed on nanostructure patterned AlGaN/AlN MQW compared to as-grown structure, demonstrating a large-scale and mass-producible pathway to higher lightmore » extraction efficiency in deep-ultra-violet light-emitting diodes.« less

  8. Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory

    PubMed Central

    KOZAI, Toyoki

    2013-01-01

    Extensive research has recently been conducted on plant factory with artificial light, which is one type of closed plant production system (CPPS) consisting of a thermally insulated and airtight structure, a multi-tier system with lighting devices, air conditioners and fans, a CO2 supply unit, a nutrient solution supply unit, and an environment control unit. One of the research outcomes is the concept of resource use efficiency (RUE) of CPPS. This paper reviews the characteristics of the CPPS compared with those of the greenhouse, mainly from the viewpoint of RUE, which is defined as the ratio of the amount of the resource fixed or held in plants to the amount of the resource supplied to the CPPS. It is shown that the use efficiencies of water, CO2 and light energy are considerably higher in the CPPS than those in the greenhouse. On the other hand, there is much more room for improving the light and electric energy use efficiencies of CPPS. Challenging issues for CPPS and RUE are also discussed. PMID:24334509

  9. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    NASA Astrophysics Data System (ADS)

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application.

  10. Light-induced lattice expansion leads to high-efficiency perovskite solar cells.

    PubMed

    Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C; Durand, Olivier; Strzalka, Joseph W; Chen, Bo; Verduzco, Rafael; Ajayan, Pulickel M; Tretiak, Sergei; Even, Jacky; Alam, Muhammad Ashraf; Kanatzidis, Mercouri G; Nie, Wanyi; Mohite, Aditya D

    2018-04-06

    Light-induced structural dynamics plays a vital role in the physical properties, device performance, and stability of hybrid perovskite-based optoelectronic devices. We report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in situ structural and device characterizations reveal that light-induced lattice expansion benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5 to 20.5%. The lattice expansion leads to the relaxation of local lattice strain, which lowers the energetic barriers at the perovskite-contact interfaces, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion did not compromise the stability of these high-efficiency photovoltaic devices under continuous operation at full-spectrum 1-sun (100 milliwatts per square centimeter) illumination for more than 1500 hours. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. Resource use efficiency of closed plant production system with artificial light: concept, estimation and application to plant factory.

    PubMed

    Kozai, Toyoki

    2013-01-01

    Extensive research has recently been conducted on plant factory with artificial light, which is one type of closed plant production system (CPPS) consisting of a thermally insulated and airtight structure, a multi-tier system with lighting devices, air conditioners and fans, a CO2 supply unit, a nutrient solution supply unit, and an environment control unit. One of the research outcomes is the concept of resource use efficiency (RUE) of CPPS.This paper reviews the characteristics of the CPPS compared with those of the greenhouse, mainly from the viewpoint of RUE, which is defined as the ratio of the amount of the resource fixed or held in plants to the amount of the resource supplied to the CPPS.It is shown that the use efficiencies of water, CO2 and light energy are considerably higher in the CPPS than those in the greenhouse. On the other hand, there is much more room for improving the light and electric energy use efficiencies of CPPS. Challenging issues for CPPS and RUE are also discussed.

  12. Phosphor chessboard packaging for white LEDs in high efficiency and high color performance

    NASA Astrophysics Data System (ADS)

    Nguyen, Quang-Khoi; Chang, Yu-Yu; Lu, Chun-Yan; Yang, Tsung-Hsun; Chung, Te-Yuan; Sun, Ching-Cherng

    2016-09-01

    We performed the simulation of white LEDs packaging with different chessboard structures of white light converting phosphor layer covered on GaN die chip. Three different types of chessboard structures are called type 1, type 2 and type 3, respectively. The result of investigation according to the phosphor thickness show the increasing of thickness of phosphor layer are, the decreasing of output blue light power are. Meanwhile, the changes of yellow light are neglect. Type 3 shows highest packaging efficiency of 74.3 % compares with packaging efficiency of type 2 and type 1 (72.5 % and 71.3 %, respectively). Type 3 also shows the most effect of forward light. Attention that the type 3 chessboard structure gets packaging efficiency of 74.3 % at color temperature of daylight as well as high saving of phosphor amount. The color temperatures of three types of chessboard structure are higher than 5000 K, so they are suitable for lighting purpose. The angular correlate color temperature deviation (ACCTD) of type 1, type 2 and type 3 are 6500K, 11500K and 17000K, respectively.

  13. Multi-Year Program Plan FY'09-FY'15 Solid-State Lighting Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-03-01

    President Obama's energy and environment agenda calls for deployment of 'the Cheapest, Cleanest, Fastest Energy Source - Energy Efficiency.' The Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) plays a critical role in advancing the President's agenda by helping the United States advance toward an energy-efficient future. Lighting in the United States is projected to consume nearly 10 quads of primary energy by 2012.3 A nation-wide move toward solid-state lighting (SSL) for general illumination could save a total of 32.5 quads of primary energy between 2012 and 2027. No other lighting technology offers the DOE andmore » our nation so much potential to save energy and enhance the quality of our built environment. The DOE has set forth the following mission statement for the SSL R&D Portfolio: Guided by a Government-industry partnership, the mission is to create a new, U.S.-led market for high-efficiency, general illumination products through the advancement of semiconductor technologies, to save energy, reduce costs and enhance the quality of the lighted environment.« less

  14. Broadband Light Collection Efficiency Enhancement of Carbon Nanotube Excitons Coupled to Metallo-Dielectric Antenna Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shayan, Kamran; Rabut, Claire; Kong, Xiaoqing

    The realization of on-chip quantum networks ideally requires lossless interfaces between photons and solid-state quantum emitters. We propose and demonstrate on-chip arrays of metallo-dielectric antennas (MDA) that are tailored toward efficient and broadband light collection from individual embedded carbon nanotube quantum emitters by trapping air gaps on chip that form cavity modes. Scalable implementation is realized by employing polymer layer dry-transfer techniques that avoid solvent incompatibility issues, as well as a planar design that avoids solid-immersion lenses. Cryogenic measurements demonstrate 7-fold enhanced exciton intensity when compared to emitters located on bare wafers, corresponding to a light collection efficiency (LCE) upmore » to 92% in the best case (average LCE of 69%) into a narrow output cone of +/-15 degrees that enables a priori fiber-to-chip butt coupling. The demonstrated MDA arrays are directly compatible with other quantum systems, particularly 2D materials, toward enabling efficient on-chip quantum light sources or spin-photon interfaces requiring unity light collection, both at cryogenic or room temperature.« less

  15. FDTD analysis of the light extraction efficiency of OLEDs with a random scattering layer.

    PubMed

    Kim, Jun-Whee; Jang, Ji-Hyang; Oh, Min-Cheol; Shin, Jin-Wook; Cho, Doo-Hee; Moon, Jae-Hyun; Lee, Jeong-Ik

    2014-01-13

    The light extraction efficiency of OLEDs with a nano-sized random scattering layer (RSL-OLEDs) was analyzed using the Finite Difference Time Domain (FDTD) method. In contrast to periodic diffraction patterns, the presence of an RSL suppresses the spectral shift with respect to the viewing angle. For FDTD simulation of RSL-OLEDs, a planar light source with a certain spatial and temporal coherence was incorporated, and the light extraction efficiency with respect to the fill factor of the RSL and the absorption coefficient of the material was investigated. The design results were compared to the experimental results of the RSL-OLEDs in order to confirm the usefulness of FDTD in predicting experimental results. According to our FDTD simulations, the light confined within the ITO-organic waveguide was quickly absorbed, and the absorption coefficients of ITO and RSL materials should be reduced in order to obtain significant improvement in the external quantum efficiency (EQE). When the extinction coefficient of ITO was 0.01, the EQE in the RSL-OLED was simulated to be enhanced by a factor of 1.8.

  16. Light Emitting Diodes and Astronomical Environments: Results from in situ Field Measurements

    NASA Astrophysics Data System (ADS)

    Craine, Brian L.; Craine, Eric R.

    2015-05-01

    Light emitting diode (LED) light fixtures are rapidly becoming industry standards for outdoor lighting. They are promoted on the strength of long lifetimes (hence economic efficiencies), low power requirements, directability, active brightness controls, and energy efficiency. They also tend to produce spectral shifts that are undesirable in astronomical settings, but which can be moderated by filters. LED lighting for continuous roadway and parking lot lighting is particularly popular, and many communities are in the process of retrofitting Low Pressure Sodium (LPS) and other lights by tens of thousands of new LED fixtures at a time. What is the impact of this process on astronomical observatories and on dark skies upon which amateur astronomers rely? We bypass modeling and predictions to make actual measurements of these lights in the field. We report on original ground, airborne, and satellite observations of LED lights and discuss their light budgets, zenith angle functions, and impacts on observatory environs.

  17. Efficient Color-Stable Inverted White Organic Light-Emitting Diodes with Outcoupling-Enhanced ZnO Layer.

    PubMed

    Zhao, Xin-Dong; Li, Yan-Qing; Xiang, Heng-Yang; Zhang, Yi-Bo; Chen, Jing-De; Xu, Lu-Hai; Tang, Jian-Xin

    2017-01-25

    Inverted organic light-emitting diode (OLED) has attracted extensive attention due to the demand in active-matrix OLED display panels as its geometry enables the direct connection with n-channel transistor backplane on the substrate. One key challenge of high-performance inverted OLED is an efficient electron-injection layer with superior electrical and optical properties to match the indium tin oxide cathode on substrate. We here propose a synergistic electron-injection architecture using surface modification of ZnO layer to simultaneously promote electron injection into organic emitter and enhance out-coupling of waveguided light. An efficient inverted white OLED is realized by introducing the nanoimprinted aperiodic nanostructure of ZnO for broadband and angle-independent light out-coupling and inserting an n-type doped interlayer for energy level tuning and injection barrier lowering. As a result, the optimized inverted white OLEDs have an external quantum efficiency of 42.4% and a power efficiency of 85.4 lm W 1- , which are accompanied by the superiority of angular color stability over the visible wavelength range. Our results may inspire a promising approach to fabricate high-efficiency inverted OLEDs for large-scale display panels.

  18. Combined selective emitter and filter for high performance incandescent lighting

    NASA Astrophysics Data System (ADS)

    Leroy, Arny; Bhatia, Bikram; Wilke, Kyle; Ilic, Ognjen; Soljačić, Marin; Wang, Evelyn N.

    2017-08-01

    The efficiency of incandescent light bulbs (ILBs) is inherently low due to the dominant emission at infrared wavelengths, diminishing its popularity today. ILBs with cold-side filters that transmit visible light but reflect infrared radiation back to the filament can surpass the efficiency of state-of-the-art light-emitting diodes (LEDs). However, practical challenges such as imperfect geometrical alignment (view factor) between the filament and cold-side filters can limit the maximum achievable efficiency and make the use of cold-side filters ineffective. In this work, we show that by combining a cold-side optical filter with a selective emitter, the effect of the imperfect view factor between the filament and filter on the system efficiency can be minimized. We experimentally and theoretically demonstrate energy savings of up to 67% compared to a bare tungsten emitter at 2000 K, representing a 34% improvement over a bare tungsten filament with a filter. Our work suggests that this approach can be competitive with LEDs in both luminous efficiency and color rendering index (CRI) when using selective emitters and filters already demonstrated in the literature, thus paving the way for next-generation high-efficiency ILBs.

  19. Combined selective emitter and filter for high performance incandescent lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroy, Arny; Bhatia, Bikram; Wilke, Kyle

    The efficiency of incandescent light bulbs (ILBs) is inherently low due to the dominant emission at infrared wavelengths, diminishing its popularity today. ILBs with cold-side filters that transmit visible light but reflect infrared radiation back to the filament can surpass the efficiency of state-of-the- art light-emitting diodes (LEDs). However, practical challenges such as imperfect geometrical alignment (view factor) between the filament and cold-side filters can limit the maximum achievable efficiency and make the use of cold-side filters ineffective. Here in this work, we show that by combining a cold-side optical filter with a selective emitter, the effect of the imperfectmore » view factor between the filament and filter on the system efficiency can be minimized. We experimentally and theoretically demonstrate energy savings of up to 67% compared to a bare tungsten emitter at 2000 K, representing a 34% improvement over a bare tungsten filament with a filter. Our work suggests that this approach can be competitive with LEDs in both luminous efficiency and color rendering index (CRI) when using selective emitters and filters already demonstrated in the literature, thus paving the way for next-generation high-efficiency ILBs.« less

  20. Combined selective emitter and filter for high performance incandescent lighting

    DOE PAGES

    Leroy, Arny; Bhatia, Bikram; Wilke, Kyle; ...

    2017-09-01

    The efficiency of incandescent light bulbs (ILBs) is inherently low due to the dominant emission at infrared wavelengths, diminishing its popularity today. ILBs with cold-side filters that transmit visible light but reflect infrared radiation back to the filament can surpass the efficiency of state-of-the- art light-emitting diodes (LEDs). However, practical challenges such as imperfect geometrical alignment (view factor) between the filament and cold-side filters can limit the maximum achievable efficiency and make the use of cold-side filters ineffective. Here in this work, we show that by combining a cold-side optical filter with a selective emitter, the effect of the imperfectmore » view factor between the filament and filter on the system efficiency can be minimized. We experimentally and theoretically demonstrate energy savings of up to 67% compared to a bare tungsten emitter at 2000 K, representing a 34% improvement over a bare tungsten filament with a filter. Our work suggests that this approach can be competitive with LEDs in both luminous efficiency and color rendering index (CRI) when using selective emitters and filters already demonstrated in the literature, thus paving the way for next-generation high-efficiency ILBs.« less

  1. The quantum efficiency of HgCdTe photodiodes in relation to the direction of illumination and to their geometry

    NASA Technical Reports Server (NTRS)

    Rosenfeld, D.; Bahir, G.

    1993-01-01

    A theoretical study of the effect of the direction of the incident light on the quantum efficiency of homogeneous HgCdTe photodiodes suitable for sensing infrared radiation in the 8-12 microns atmospheric window is presented. The probability of an excess minority carrier to reach the junction is derived as a function of its distance from the edge of the depletion region. Accordingly, the quantum efficiency of photodiodes is presented for two geometries. In the first, the light is introduced directly to the area in which it is absorbed (opaque region), while in the second, the light passes through a transparent region before it reaches the opaque region. Finally, the performance of the two types of diodes is analyzed with the objective of finding the optimal width of the absorption area. The quantum efficiency depends strongly on the way in which the light is introduced. The structure in which the radiation is absorbed following its crossing the transparent region is associated with both higher quantum efficiency and homogeneity. In addition, for absorption region widths higher than a certain minimum, the quantum efficiency in this case is insensitive to the width of the absorption region.

  2. Improving School Lighting for Video Display Units.

    ERIC Educational Resources Information Center

    Parker-Jenkins, Marie; Parker-Jenkins, William

    1985-01-01

    Provides information to identify and implement the key characteristics which contribute to an efficient and comfortable visual display unit (VDU) lighting installation. Areas addressed include VDU lighting requirements, glare, lighting controls, VDU environment, lighting retrofit, optical filters, and lighting recommendations. A checklist to…

  3. Facile synthesis of thermal- and photostable titania with paramagnetic oxygen vacancies for visible-light photocatalysis.

    PubMed

    Zou, Xiaoxin; Liu, Jikai; Su, Juan; Zuo, Fan; Chen, Jiesheng; Feng, Pingyun

    2013-02-18

    A novel dopant-free TiO(2) photocatalyst (V(o)(.)-TiO(2)), which is self-modified by a large number of paramagnetic (single-electron-trapped) oxygen vacancies, was prepared by calcining a mixture of a porous amorphous TiO(2) precursor, imidazole, and hydrochloric acid at elevated temperature (450 °C) in air. Control experiments demonstrate that the porous TiO(2) precursor, imidazole, and hydrochloric acid are all necessary for the formation of V(o)(.)-TiO(2). Although the synthesis of V(o)(.)-TiO(2) originates from such a multicomponent system, this synthetic approach is facile, controllable, and reproducible. X-ray diffraction, XPS, and EPR spectroscopy reveal that the V(o)(.)-TiO(2) material with a high crystallinity embodies a mass of paramagnetic oxygen vacancies, and is free of other dopant species such as nitrogen and carbon. UV/Vis diffuse-reflectance spectroscopy and photoelectrochemical measurement demonstrate that V(o)(.)-TiO(2) is a stable visible-light-responsive material with photogenerated charge separation efficiency higher than N-TiO(2) and P25 under visible-light irradiation. The V(o)(.)-TiO(2) material exhibits not only satisfactory thermal- and photostability, but also superior photocatalytic activity for H(2) evolution (115 μmol h(-1) g(-1)) from water with methanol as sacrificial reagent under visible light (λ>400 nm) irradiation. Furthermore, the effects of reaction temperature, ratio of starting materials (imidazole:TiO(2) precursor) and calcination time on the photocatalytic activity and the microstructure of V(o)(.)-TiO(2) were elucidated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. CEEM Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowers, John

    The mission of the Center for Energy Efficient Materials (CEEM) was to serve the Department of Energy and the nation as a center of excellence dedicated to advancing basic research in nano-structured materials and devices for applications to solar electricity, thermoelectric conversion of waste heat to electricity, and solidstate lighting. The foundation of CEEM was based on the unique capabilities of UCSB and its partner institutions to control, synthesize, characterize, model, and apply materials at the nanoscale for more efficient sustainable energy resources. This unique expertise was a key source of the synergy that unified the research of the Center.more » Although the Center’s focus was basic research, It’s longer-term objective has been to transfer new materials and devices into the commercial sector where they will have a substantial impact on the nation’s need for efficient sustainable energy resources. As one measure of the impact of the Center, two start-up companies were formed based on its research. In addition, Center participants published a total of 210 archival journal articles, of which 51 were exclusively sponsored by the DOE grant. The work of the Center was structured around four specific tasks: Organic Solar Cells, Solid-State Lighting, Thermoelectrics, and High Efficiency Multi-junction Photovoltaic devices. A brief summary of each follows – detailed descriptions are in Sections 4 & 5 of this report. Research supported through CEEM led to an important shift with respect to the choice of materials used for the fabrication of solution deposited organic solar cells. Solution deposition opens the opportunity to manufacture solar cells via economically-viable high throughput tools, such as roll to roll printing. Prior to CEEM, most organic semiconductors utilized for this purpose involved polymeric materials, which, although they can form thin films reliably, suffer from batch to batch variations due to the statistical nature of the chemical reactions that produce them. In response, the CEEM team developed well-defined molecular semiconductors that produce active layers with very high power conversion efficiencies, in other words they can convert a very high fraction of sunlight into useful electrical power. The fact that the semiconductor is formed from molecular species provides the basis for circumventing the unreliability of polymer counterparts and, as an additional bonus, allows one to attain much grater insight into the structure of the active layer. The latter is particularly important because efficient conversion is the result of a complex arrangement of two semiconductors that need to phase separate in a way akin to oil and water, but with domains that are described by nanoscale dimensions. CEEM was therefore able to provide deep insight into the influence of nanostructure, through the application of structural characterization tools and theoretical methods that describe how electrical charges migrate through the organic layer. Our research in light emitting diode (LED)-based solid state lighting (SSL) was directed at improving efficiency and reducing costs to enable the widespread deployment of economically-viable replacements for inefficient incandescent, halogen, and fluorescent-based lighting. Our specific focus was to advance the fundamental science and technology of light emitting diodes to both understand factors that limit efficiencies and to provide innovative and viable solutions to the current impediments. One of the main challenges we faced is the decrease in efficiency when LEDs are driven harder to increase light output---the so called “droop” effect. It requires large emitting surfaces to reach a desired optical output, and necessitates the use of costly heat sinks, both of which increase the cost. We successfully reduced droop by growing LED crystals having non-conventional orientations. As recognized by the award of the 2014 Nobel prize to the inventors of the nitride LEDs (one of whom was a member of CEEM), LEDs already have a large societal impact in both developed (leading to large energy savings) and developing countries (bringing light where there is no electrical grid). The improvements in efficiency sought after in the CEEM project are key to a further impact of solid state lighting by LEDs with a projected doubling in efficiency by year 2020. Direct generation of electricity from heat has enormous promise for beneficial use of waste heat. But practical power generation directly from heat requires understanding and development of new and improved materials that will be more efficient and rugged than today’s thermoelectric materials. To accomplish this goal CEEM has synthesized five distinct and promising new classes of thermoelectric materials: (a) nanoparticle arrays that are effective in maximizing electric power generation and reducing detrimental loss of heat; (b) nitride and (c) oxide thermal electric materials that are effective at high temperatures where much beneficial heat is available; (d) arrays of silicon nano-wires that integrate thermal electricity generation into silicon-based electronics and materials; and (e) chemically synthesized nanostructured compounds that are cost effective, earth abundant, and environmentally friendly. The further development of these thermoelectric sources of electricity could have revolutionary impact for society in the recovery of waste heat from sources such as power plants and automobile exhaust, where there could be significant associated energy saving. It could even, in the future, provide disruptive alternatives and replacements for today’s internal combustion engines and could enable improved all-electric propulsion by the heat from shipboard nuclear reactors. The High Efficiency Multi-junction Photovoltaics task was a UCSB/NREL collaboration which bonded sub-cells from two different compound semiconductors material systems to make high efficiency multijunction solar cells for concentrating photovoltaic applications thathave substantially higher efficiency than single substrate cells made of elemental semiconductors such as silicon. This task required the development of new cell bonding methods with excellent coupling of both photons and electrons between the sub-cells. To accomplish this, we developed (1) GaInN solar cells with enhanced performance by using quantum-well absorbers and front-surface optical texturing, (2) a hybrid "pillar-array" bond which uses an array of metal pillars for electrical coupling, and (3) a "hybrid moth-eye" optical coating which combines the benefits of nano-imprinted moth-eye coatings and traditional multilayer coatings. The technical effectiveness was assessed by measurement of the photovoltaic efficiency of solar cells made using these techniques; the ultrahigh efficiencies targeted by this work are of compelling economic value for concentrating photovoltaics.« less

  5. Towards an understanding of coupled physical and biological processes in the cultivated Sahel - 2. Vegetation and carbon dynamics

    NASA Astrophysics Data System (ADS)

    Boulain, N.; Cappelaere, B.; Ramier, D.; Issoufou, H. B. A.; Halilou, O.; Seghieri, J.; Guillemin, F.; Oï, M.; Gignoux, J.; Timouk, F.

    2009-08-01

    SummaryThis paper analyses the dynamics of vegetation and carbon during the West African monsoon season, for millet crop and fallow vegetation covers in the cultivated area of the Sahel. Comparing these two dominant land cover types informs on the impact of cultivation on productivity and carbon fluxes. Biomass, leaf area index (LAI) and carbon fluxes were monitored over a 2-year period for these two vegetation systems in the Wankama catchment of the AMMA (African monsoon multidisciplinary analyses) experimental super-site in West Niger. Carbon fluxes and water use efficiency observed at the field scale are confronted with ecophysiological measurements (photosynthetic response to light, and relation of water use efficiency to air humidity) made at the leaf scale for the dominant plant species in the two vegetation systems. The two rainy seasons monitored were dissimilar with respect to rain patterns, reflecting some of the interannual variability. Distinct responses in vegetation development and in carbon dynamics were observed between the two vegetation systems. Vegetation development in the fallow was found to depend more on rainfall distribution along the season than on its starting date. A quite opposite behaviour was observed for the crop vegetation: the date of first rain appears as a principal factor of millet growth. Carbon flux exchanges were well correlated to vegetation development. High responses of photosynthesis to light were observed for the dominant herbaceous and shrub species of the fallow at the leaf and field scales. Millet showed high response at the leaf scale, but a much lesser response at the field scale. This pattern, also observed for water use efficiency, is to be related to the low density of the millet cover. A simple LAI-based model for scaling up the photosynthetic response from leaf to field scale was found quite successful for the fallow, but was less conclusive for the crop, due to spatial variability of LAI. Time/space variations in leaf distribution for the dominant species are key to scale transition of carbon dynamics. Results obtained for the two vegetation covers are important in light of the major land use/cover change experienced in the Sahel region due to extensive savanna clearing for food production.

  6. Fused Methoxynaphthyl Phenanthrimidazole Semiconductors as Functional Layer in High Efficient OLEDs.

    PubMed

    Jayabharathi, Jayaraman; Ramanathan, Periyasamy; Karunakaran, Chockalingam; Thanikachalam, Venugopal

    2016-01-01

    Efficient hole transport materials based on novel fused methoxynaphthyl phenanthrimidazole core structure were synthesised and characterized. Their device performances in phosphorescent organic light emitting diodes were investigated. The high thermal stability in combination with the reversible oxidation process made promising candidates as hole-transporting materials for organic light-emitting devices. Highly efficient Alq3-based organic light emitting devices have been developed using phenanthrimidazoles as functional layers between NPB [4,4-bis(N-(1-naphthyl)-N-phenylamino)biphenyl] and Alq3 [tris(8-hydroxyquinoline)aluminium] layers. Using the device of ITO/NPB/4/Alq3/LiF/Al, a maximum luminous efficiency of 5.99 cd A(-1) was obtained with a maximum brightness of 40,623 cd m(-2) and a power efficiency of 5.25 lm W(-1).

  7. Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off

    NASA Astrophysics Data System (ADS)

    Wu, Tien-Lin; Huang, Min-Jie; Lin, Chih-Chun; Huang, Pei-Yun; Chou, Tsu-Yu; Chen-Cheng, Ren-Wu; Lin, Hao-Wu; Liu, Rai-Shung; Cheng, Chien-Hong

    2018-04-01

    Organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) materials are promising for the realization of highly efficient light emitters. However, such devices have so far suffered from efficiency roll-off at high luminance. Here, we report the design and synthesis of two diboron-based molecules, CzDBA and tBuCzDBA, which show excellent TADF properties and yield efficient OLEDs with very low efficiency roll-off. These donor-acceptor-donor (D-A-D) type and rod-like compounds concurrently generate TADF with a photoluminescence quantum yield of 100% and an 84% horizontal dipole ratio in the thin film. A green OLED based on CzDBA exhibits a high external quantum efficiency of 37.8 ± 0.6%, a current efficiency of 139.6 ± 2.8 cd A-1 and a power efficiency of 121.6 ± 3.1 lm W-1 with an efficiency roll-off of only 0.3% at 1,000 cd m-2. The device has a peak emission wavelength of 528 nm and colour coordinates of the Commission International de ĺEclairage (CIE) of (0.31, 0.61), making it attractive for colour-display applications.

  8. The influence of leaf anatomy on the internal light environment and photosynthetic electron transport rate: exploration with a new leaf ray tracing model.

    PubMed

    Xiao, Yi; Tholen, Danny; Zhu, Xin-Guang

    2016-11-01

    Leaf photosynthesis is determined by biochemical properties and anatomical features. Here we developed a three-dimensional leaf model that can be used to evaluate the internal light environment of a leaf and its implications for whole-leaf electron transport rates (J). This model includes (i) the basic components of a leaf, such as the epidermis, palisade and spongy tissues, as well as the physical dimensions and arrangements of cell walls, vacuoles and chloroplasts; and (ii) an efficient forward ray-tracing algorithm, predicting the internal light environment for light of wavelengths between 400 and 2500nm. We studied the influence of leaf anatomy and ambient light on internal light conditions and J The results show that (i) different chloroplasts can experience drastically different light conditions, even when they are located at the same distance from the leaf surface; (ii) bundle sheath extensions, which are strips of parenchyma, collenchyma or sclerenchyma cells connecting the vascular bundles with the epidermis, can influence photosynthetic light-use efficiency of leaves; and (iii) chloroplast positioning can also influence the light-use efficiency of leaves. Mechanisms underlying leaf internal light heterogeneity and implications of the heterogeneity for photoprotection and for the convexity of the light response curves are discussed. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. White Light Emission from Cucurbituril-Based Host-Guest Interaction in the Solid State: New Function of the Macrocyclic Host.

    PubMed

    Xia, Yu; Chen, Shiyan; Ni, Xin-Long

    2018-04-18

    Energy transfer and interchange are central for fabricating white light-emitting organic materials. However, increasing the efficiency of light energy transfer remains a considerable challenge because of the occurrence of "cross talk". In this work, by exploiting the unique photophysical properties of cucurbituril-triggered host-guest interactions, the two complementary luminescent colors blue and yellow for white light emission were independently obtained from a single fluorophore dye rather than energy transfer. Further study suggested that the rigid cavity of cucurbiturils efficiently prevented the aggregation of the dye and improved its thermal stability in the solid state by providing a regular nanosized fence for each encapsulated dye molecule. As a result, a novel macrocycle-assisted supramolecular approach for obtaining solid, white light-emitting organic materials with low cost, high efficiency, and easy scale-up was successfully demonstrated.

  10. Optical design of an in vivo laparoscopic lighting system

    NASA Astrophysics Data System (ADS)

    Liu, Xiaolong; Abdolmalaki, Reza Yazdanpanah; Mancini, Gregory J.; Tan, Jindong

    2017-12-01

    This paper proposes an in vivo laparoscopic lighting system design to address the illumination issues, namely poor lighting uniformity and low optical efficiency, existing in the state-of-the-art in vivo laparoscopic cameras. The transformable design of the laparoscopic lighting system is capable of carrying purposefully designed freeform optical lenses for achieving lighting performance with high illuminance uniformity and high optical efficiency in a desired target region. To design freeform optical lenses for extended light sources such as LEDs with Lambertian light intensity distributions, we present an effective and complete freeform optical design method. The procedures include (1) ray map computation by numerically solving a standard Monge-Ampere equation; (2) initial freeform optical surface construction by using Snell's law and a lens volume restriction; (3) correction of surface normal vectors due to accumulated errors from the initially constructed surfaces; and (4) feedback modification of the solution to deal with degraded illuminance uniformity caused by the extended sizes of the LEDs. We employed an optical design software package to evaluate the performance of our laparoscopic lighting system design. The simulation results show that our design achieves greater than 95% illuminance uniformity and greater than 89% optical efficiency (considering Fresnel losses) for illuminating the target surgical region.

  11. Printing method for organic light emitting device lighting

    NASA Astrophysics Data System (ADS)

    Ki, Hyun Chul; Kim, Seon Hoon; Kim, Doo-Gun; Kim, Tae-Un; Kim, Snag-Gi; Hong, Kyung-Jin; So, Soon-Yeol

    2013-03-01

    Organic Light Emitting Device (OLED) has a characteristic to change the electric energy into the light when the electric field is applied to the organic material. OLED is currently employed as a light source for the lighting tools because research has extensively progressed in the improvement of luminance, efficiency, and life time. OLED is widely used in the plate display device because of a simple manufacture process and high emitting efficiency. But most of OLED lighting projects were used the vacuum evaporator (thermal evaporator) with low molecular. Although printing method has lower efficiency and life time of OLED than vacuum evaporator method, projects of printing OLED actively are progressed because was possible to combine with flexible substrate and printing technology. Printing technology is ink-jet, screen printing and slot coating. This printing method allows for low cost and mass production techniques and large substrates. In this research, we have proposed inkjet printing for organic light-emitting devices has the dominant method of thick film deposition because of its low cost and simple processing. In this research, the fabrication of the passive matrix OLED is achieved by inkjet printing, using a polymer phosphorescent ink. We are measured optical and electrical characteristics of OLED.

  12. Effect of light polarization on the efficiency of photodynamic therapy of basal cell carcinomas: an in vitro cellular study.

    PubMed

    JalalKamali, M; Nematollahi-Mahani, S N; Shojaei, M; Shamsoddini, A; Arabpour, N

    2018-02-01

    In an in vitro study, the effect of light polarization on the efficiency of 5-aminolaevulinic acid (ALA) photodynamic therapy (PDT) of basal cell carcinoma (BCC) was investigated. Three states of light polarization (non-polarized, linearly polarized, and circularly polarized) were considered. Cells were exposed to green (532 pm 20 nm) irradiation from light emitting diodes. Cell survival was measured by the colorimetric assay (WST-1) and Trypan blue staining. The colorimetric assay showed a pronounced decrease in the cell viability (up to 30%) using polarized light compared to the non-polarized one in the wavelength region used. Similar results were obtained by the cell counting method (20-30% increase in cell death). The observed effect was dependent on the concentration of photosensitizer. The effect is more expressed in the case of linearly polarized light compared to the circularly polarized one. Results show that the use of polarized light increases the efficiency of in vitro ALA-PDT of BCC. Utilizing polarized light, it is possible to obtain the same effect from PDT by lower concentrations of photosensitizer. Additionally, the concentration dependency of PDT response and photo-bleaching is also reduced.

  13. Enhanced light extraction efficiency of GaN-based light-emittng diodes by nitrogen implanted current blocking layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yong Deok; Oh, Seung Kyu; Park, Min Joo

    Highlights: • A nitrogen implanted current-blocking layer was successfully demonstrated. • Light-extraction efficiency and radiant intensity was increased by more than 20%. • Ion implantation was successfully implemented in GaN based light-emitting diodes. - Abstract: GaN-based light emitting diodes (LEDs) with a nitrogen implanted current-blocking layer (CBL) were successfully demonstrated for improving the light extraction efficiency (LEE) and radiant intensity. The LEE and radiant intensity of the LEDs with a shallow implanted CBL with nitrogen was greatly increased by more than 20% compared to that of a conventional LED without the CBL due to an increase in the effective currentmore » path, which reduces light absorption at the thick p-pad electrode. Meanwhile, deep implanted CBL with a nitrogen resulted in deterioration of the LEE and radiant intensity because of formation of crystal damage, followed by absorption of the light generated at the multi-quantum well(MQW). These results clearly suggest that ion implantation method, which is widely applied in the fabrication of Si based devices, can be successfully implemented in the fabrication of GaN based LEDs by optimization of implanted depth.« less

  14. New Triplet Sensitization Routes for Photon Upconversion: Thermally Activated Delayed Fluorescence Molecules, Inorganic Nanocrystals, and Singlet-to-Triplet Absorption.

    PubMed

    Yanai, Nobuhiro; Kimizuka, Nobuo

    2017-10-17

    Photon upconversion based on triplet-triplet annihilation (TTA-UC) has attracted much interest because of its possible applications to renewable energy production and biological fields. In particular, the UC of near-infrared (NIR) light to visible (vis) light is imperative to overcome the Shockley-Queisser limit of single-junction photovoltaic cells, and the efficiency of photocatalytic hydrogen production from water can also be improved with the aid of vis-to-ultraviolet (UV) UC. However, both processes have met limitations in the wavelength range, efficiency, and sensitivity for weak incident light. This Account describes recent breakthroughs that solve these major problems, new triplet sensitization routes to significantly enlarge the range of conversion wavelength by minimizing the energy loss during intersystem crossing (ISC) of triplet sensitizers or bypassing the ISC process. The photochemical processes of TTA-UC in general start with the absorption of longer wavelength incident light by triplet sensitizers, which generate the triplet states via ISC. This ISC inevitably accompanies the energy loss of hundreds of millielectronvolts, which significantly limits the TTA-UC with large anti-Stokes shifts. The small S 1 -T 1 gap of molecules showing thermally activated delayed fluorescence (TADF) allows the sensitization of emitters with the highest T 1 and S 1 energy levels ever employed in TTA-UC, which results in efficient vis-to-UV UC. As alternatives to molecular sensitizers in the NIR region, inorganic nanocrystals with broad NIR absorption bands have recently been shown to work as effective sensitizers for NIR-to-vis TTA-UC. Their small exchange splitting minimizes the energy loss during triplet sensitization. The modification of nanocrystal surfaces with organic acceptors via coordination bonds allows efficient energy transfer between the components and succeeding TTA processes. To remove restrictions on the energy loss during ISC, molecules with direct singlet-to-triplet (S-T) excitation are employed as triplet sensitizers. Although the S-T absorption is spin forbidden, large spin-orbital coupling occurs for appropriately designed metal complexes, which allow S-T absorption in the NIR region with large absorption coefficients. While the triplet lifetime of such S-T absorption sensitizers is often short (less than microsecond), the integration of the molecular sensitizers with emitter assemblies allows facile Dexter energy transfer to the surrounding emitter molecules, leading to efficient NIR-to-vis UC emission through triplet energy migration (TEM) in the condensed state. By judicious modification of the chromophore structures, the first example of NIR-to-blue UC has also been achieved. It is essential to combine these new triplet sensitization routes with an upconverted energy collection (UPCON) approach in molecular assemblies to effectively populate emitter triplets and to overcome remaining issues including back energy transfer. We propose two overall materials designs for the TEM-UPCON strategy, core-shell-shell structures and trilayer structures composed of triplet donor, acceptor, and energy collector. The fusion between triplet science and chemistry of self-assembly would overcome previous difficulties of NIR-to-vis and vis-to-UV TTA-UC toward real-world applications ranging from energy to biology.

  15. 76 FR 55352 - Light-Walled Rectangular Pipe and Tube From Mexico: Preliminary Results and Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... convenience and Customs purposes, our written description of the scope of this order is dispositive... is based on the starting prices of sales in the home market or, when normal value is based on... profit. See also 19 CFR 351.412(c)(1)(iii). For EP, the level of trade is based on the starting price...

  16. High efficiency blue and white phosphorescent organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Eom, Sang-Hyun

    Organic light-emitting devices (OLEDs) have important applications in full-color flat-panel displays and as solid-state lighting sources. Achieving high efficiency deep-blue phosphorescent OLEDs (PHOLEDs) is necessary for high performance full-color displays and white light sources with a high color rendering index (CRI); however it is more challenging compared to the longer wavelength light emissions such as green and red due to the higher energy excitations for the deep-blue emitter as well as the weak photopic response of deep-blue emission. This thesis details several effective strategies to enhancing efficiencies of deep-blue PHOLEDs based on iridium(III) bis(4',6'-difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6), which are further employed to demonstrate high efficiency white OLEDs by combining the deep-blue emitter with green and red emitters. First, we have employed 1,1-bis-(di-4-tolylaminophenyl) cyclohexane (TAPC) as the hole transporting material to enhance electron and triplet exciton confinement in Fir6-based PHOLEDs, which increased external quantum efficiency up to 18 %. Second, dual-emissive-layer (D-EML) structures consisting of an N,N -dicarbazolyl-3,5-benzene (mCP) layer doped with 4 wt % FIr6 and a p-bis (triphenylsilyly)benzene (UGH2) layer doped with 25 wt % FIr6 was employed to maximize exciton generation in the emissive layer. Combined with the p-i-n device structure, high power efficiencies of (25 +/- 2) lm/W at 100 cd/m2 and (20 +/- 2) lm/W at 1000 cd/m 2 were achieved. Moreover, the peak external quantum efficiency of (20 +/- 1) % was achieved by employing tris[3-(3-pyridyl)mesityl]borane (3TPYMB) as the electron transporting material, which further improves the exciton confinement in the emissive layer. With Cs2CO3 doping in the 3TPYMB layer to greatly increase its electrical conductivity, a peak power efficiency up to (36 +/- 2) lm/W from the deep-blue PHOLED was achieved, which also maintains Commission Internationale de L'Eclairage (CIE) coordinates of (0.16, 0.28). High efficiency white PHOLEDs are also demonstrated by incorporating green and red phosphorescent emitters together with the deep-blue emitter FIr6. Similar to the FIr6-only devices, the D-EML structure with high triplet energy charge transport materials leads to a maximum external quantum efficiency of (19 +/- 1) %. Using the p-i-n device structure, a peak power efficiency of (40 +/- 2) lm/W and (36 +/- 2) lm/W at 100 cd/m2 were achieved, and the white PHOLED possesses a CRI of 79 and CIE coordinates of (0.37, 0.40). The limited light extraction from the planar-type OLEDs is also one of the remaining challenges to the OLED efficiency. Here we have developed a simple soft lithography technique to fabricate a transparent, close-packed hemispherical microlens arrays. The application of such microlens arrays to the glass surface of the large-area fluorescent OLEDs enhanced the light extraction efficiency up to (70 +/- 7)%. It is also shown that the light extraction efficiency of the OLEDs is affected by microlens contact angle, OLEDs size, and detailed layer structure of the OLEDs.

  17. Highly Efficient Visible Colloidal Lead-Halide Perovskite Nanocrystal Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Xing, Jun; Xing, Guichuan; Quan, Lina; Tan, Swee Tiam; Zhao, Jiaxin; Su, Rui; Zhang, Lulu; Chen, Shi; Zhao, Yawen; Huan, Alfred; Sargent, Edward H.; Xiong, Qihua; Demir, Hilmi Volkan

    2018-05-01

    Lead-halide perovskites have been attracting attention for potential use in solid-state lighting. Following the footsteps of solar cells, the field of perovskite light-emitting diodes (PeLEDs) has been growing rapidly. Their application prospects in lighting, however, remain still uncertain due to a variety of shortcomings in device performance including their limited levels of luminous efficiency achievable thus far. Here we show high-efficiency PeLEDs based on colloidal perovskite nanocrystals (PeNCs) synthesized at room temperature possessing dominant first-order excitonic radiation (enabling a photoluminescence quantum yield of 71% in solid film), unlike in the case of bulk perovskites with slow electron-hole bimolecular radiative recombination (a second-order process). In these PeLEDs, by reaching charge balance in the recombination zone, we find that the Auger nonradiative recombination, with its significant role in emission quenching, is effectively suppressed in low driving current density range. In consequence, these devices reach a record high maximum external quantum efficiency of 12.9% reported to date and an unprecedentedly high power efficiency of 30.3 lm W-1 at luminance levels above 1000 cd m-2 as required for various applications. These findings suggest that, with feasible levels of device performance, the PeNCs hold great promise for their use in LED lighting and displays.

  18. Zinc oxide nanostructures and its nano-compounds for efficient visible light photo-catalytic processes

    NASA Astrophysics Data System (ADS)

    Adam, Rania E.; Alnoor, Hatim; Elhag, Sami; Nur, Omer; Willander, Magnus

    2017-02-01

    Zinc oxide (ZnO) in its nanostructure form is a promising material for visible light emission/absorption and utilization in different energy efficient photocatalytic processes. We will first present our recent results on the effect of varying the molar ratio of the synthesis nutrients on visible light emission. Further we will use the optimized conditions from the molar ration experiments to vary the synthesis processing parameters like stirring time etc. and the effect of all these parameters in order to optimize the efficiency and control the emission spectrum are investigated using different complementary techniques. Cathodoluminescence (CL) is combined with photoluminescence (PL) and electroluminescence (EL) as the techniques to investigate and optimizes visible light emission from ZnO/GaN light emitting diodes. We will then show and discuss our recent finding of the use of high quality ZnO nanoparticles (NPs) for efficient photo-degradation of toxic dyes using the visible spectra, namely with a wavelength up to 800 nm. In the end, we show how ZnO nanorods (NRs) are used as the first template to be transferred to bismuth zinc vanadate (BiZn2VO6). The BiZn2VO6 is then used to demonstrate efficient and cost effective hydrogen production through photoelectrochemical water splitting using solar radiation.

  19. Optoelectronic engineering of colloidal quantum-dot solar cells beyond the efficiency black hole: a modeling approach

    NASA Astrophysics Data System (ADS)

    Mahpeykar, Seyed Milad; Wang, Xihua

    2017-02-01

    Colloidal quantum dot (CQD) solar cells have been under the spotlight in recent years mainly due to their potential for low-cost solution-processed fabrication and efficient light harvesting through multiple exciton generation (MEG) and tunable absorption spectrum via the quantum size effect. Despite the impressive advances achieved in charge carrier mobility of quantum dot solids and the cells' light trapping capabilities, the recent progress in CQD solar cell efficiencies has been slow, leaving them behind other competing solar cell technologies. In this work, using comprehensive optoelectronic modeling and simulation, we demonstrate the presence of a strong efficiency loss mechanism, here called the "efficiency black hole", that can significantly hold back the improvements achieved by any efficiency enhancement strategy. We prove that this efficiency black hole is the result of sole focus on enhancement of either light absorption or charge extraction capabilities of CQD solar cells. This means that for a given thickness of CQD layer, improvements accomplished exclusively in optic or electronic aspect of CQD solar cells do not necessarily translate into tangible enhancement in their efficiency. The results suggest that in order for CQD solar cells to come out of the mentioned black hole, incorporation of an effective light trapping strategy and a high quality CQD film at the same time is an essential necessity. Using the developed optoelectronic model, the requirements for this incorporation approach and the expected efficiencies after its implementation are predicted as a roadmap for CQD solar cell research community.

  20. Does Long-Term Elevation of CO2 Concentration Increase Photosynthesis in Forest Floor Vegetation? (Indiana Strawberry in a Maryland Forest).

    PubMed

    Osborne, C. P.; Drake, B. G.; LaRoche, J.; Long, S. P.

    1997-05-01

    As the partial pressure of CO2 (pCO2) in the atmosphere rises, photorespiratory loss of carbon in C3 photosynthesis will diminish and the net efficiency of light-limited photosynthetic carbon uptake should rise. We tested this expectation for Indiana strawberry (Duchesnea indica) growing on a Maryland forest floor. Open-top chambers were used to elevate the pCO2 of a forest floor habitat to 67 Pa and were paired with control chambers providing an ambient pCO2 of 38 Pa. After 3.5 years, D. indica leaves grown and measured in the elevated pCO2 showed a significantly greater maximum quantum efficiency of net photosynthesis (by 22%) and a lower light compensation point (by 42%) than leaves grown and measured in the control chambers. The quantum efficiency to minimize photorespiration, measured in 1% O2, was the same for controls and plants grown at elevated pCO2. This showed that the maximum efficiency of light-energy transduction into assimilated carbon was not altered by acclimation and that the increase in light-limited photosynthesis at elevated pCO2 was simply a function of the decrease in photorespiration. Acclimation did decrease the ribulose-1,5-bisphosphate carboxylase/oxygenase and light-harvesting chlorophyll protein content of the leaf by more than 30%. These changes were associated with a decreased capacity for light-saturated, but not light-limited, photosynthesis. Even so, leaves of D. indica grown and measured at elevated pCO2 showed greater light-saturated photosynthetic rates than leaves grown and measured at the current atmospheric pCO2. In situ measurements under natural forest floor lighting showed large increases in leaf photosynthesis at elevated pCO2, relative to controls, in both summer and fall. The increase in efficiency of light-limited photosynthesis with elevated pCO2 allowed positive net photosynthetic carbon uptake on days and at locations on the forest floor that light fluxes were insufficient for positive net photosynthesis in the current atmospheric pCO2.

  1. Does long-term elevation of CO{sub 2} concentration increase photosynthesis in forest floor vegetation? Indiana strawberry in a Maryland forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborne, C.P.; Long, S.P.; Drake, B.G.

    1997-05-01

    As the partial pressure of CO{sub 2} (pCO{sub 2}) in the atmosphere rises, photorespiratory loss of carbon in C, photosynthesis will diminish and the net efficiency of light-limited photosynthetic carbon uptake should rise. Indiana strawberry (Duchesnea indica) growing on a Maryland forest floor was tested. Open-top chambers were used to elevate the pCO{sub 2} of a forest floor habitat to 67 Pa and were paired with control chambers with an ambient pCO{sub 2} of 38 Pa. After 3.5 years, D. indica leaves in the elevated pCO{sub 2} showed a significantly greater maximum quantum efficiency of net photosynthesis (by 22%) andmore » a lower light compensation point (by 42%) than leaves in the control chambers. The quantum efficiency to minimize photorespiration was the same for controls and plants grown at elevated pCO{sub 2}, showing the maximum efficiency of light-energy transduction into assimilated carbon was not altered by acclimation and the increase in light-limited photosynthesis at elevated pCO{sub 2} was a function of the decrease in photorespiration. Acclimation did decrease the ribulose-1,5-bisphosphate carboxylase/oxygenase and light-harvesting chlorophyll protein content of the leaf by more than 30%. These changes were associated with a decreased capacity for light-saturated, but not light-limited, photosynthesis. Leaves of D. indica grown and measured at elevated pCO{sub 2} showed greater light-saturated photosynthetic rates than leaves grown and measured at the current atmospheric pCO{sub 2}. In situ measurements under natural lighting showed large increases in leaf photosynthesis at elevated pCO{sub 2}, relative to controls, in both summer and fall. The increase in efficiency of light-limited photosynthesis with elevated pCO{sub 2} allowed positive net photosynthetic carbon uptake on days and at locations on the forest floor that light fluxes were insufficient for positive net photosynthesis in the current atmospheric pCO{sub 2}. 33 refs., 3 figs., 3 tabs.« less

  2. Light energy partitioning, photosynthetic efficiency and biomass allocation in invasive Prunus serotina and native Quercus petraea in relation to light environment, competition and allelopathy.

    PubMed

    Robakowski, Piotr; Bielinis, Ernest; Sendall, Kerrie

    2018-05-01

    This study addressed whether competition under different light environments was reflected by changes in leaf absorbed light energy partitioning, photosynthetic efficiency, relative growth rate and biomass allocation in invasive and native competitors. Additionally, a potential allelopathic effect of mulching with invasive Prunus serotina leaves on native Quercus petraea growth and photosynthesis was tested. The effect of light environment on leaf absorbed light energy partitioning and photosynthetic characteristics was more pronounced than the effects of interspecific competition and allelopathy. The quantum yield of PSII of invasive P. serotina increased in the presence of a competitor, indicating a higher plasticity in energy partitioning for the invasive over the native Q. petraea, giving it a competitive advantage. The most striking difference between the two study species was the higher crown-level net CO 2 assimilation rates (A crown ) of P. serotina compared with Q. petraea. At the juvenile life stage, higher relative growth rate and higher biomass allocation to foliage allowed P. serotina to absorb and use light energy for photosynthesis more efficiently than Q. petraea. Species-specific strategies of growth, biomass allocation, light energy partitioning and photosynthetic efficiency varied with the light environment and gave an advantage to the invader over its native competitor in competition for light. However, higher biomass allocation to roots in Q. petraea allows for greater belowground competition for water and nutrients as compared to P. serotina. This niche differentiation may compensate for the lower aboveground competitiveness of the native species and explain its ability to co-occur with the invasive competitor in natural forest settings.

  3. High-efficiency directional backlight design for an automotive display.

    PubMed

    Chen, Bo-Tsuen; Pan, Jui-Wen

    2018-06-01

    We propose a high-efficiency directional backlight module (DBM) for automotive display applications. The DBM is composed of light sources, a light guide plate (LGP), and an optically patterned plate (OPP). The LGP has a collimator on the input surface that serves to control the angle of the light emitted to be in the horizontal direction. The OPP has an inverse prism to adjust the light emission angle in the vertical direction. The DBM has a simple structure and high optical efficiency. Compared with conventional backlight systems, the DBM has higher optical efficiency and a suitable viewing angle. This is an improvement in normalized on-axis luminous intensity of 2.6 times and a twofold improvement in optical efficiency. The viewing angles are 100° in the horizontal direction and 35° in the vertical direction. The angle of the half-luminous intensity is 72° in the horizontal direction and 20° in the vertical direction. The uniformity of the illuminance reaches 82%. The DBM is suitable for use in the center information displays of automobiles.

  4. Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures.

    PubMed

    Nelson, Jacob A; Bugbee, Bruce

    2014-01-01

    Lighting technologies for plant growth are improving rapidly, providing numerous options for supplemental lighting in greenhouses. Here we report the photosynthetic (400-700 nm) photon efficiency and photon distribution pattern of two double-ended HPS fixtures, five mogul-base HPS fixtures, ten LED fixtures, three ceramic metal halide fixtures, and two fluorescent fixtures. The two most efficient LED and the two most efficient double-ended HPS fixtures had nearly identical efficiencies at 1.66 to 1.70 micromoles per joule. These four fixtures represent a dramatic improvement over the 1.02 micromoles per joule efficiency of the mogul-base HPS fixtures that are in common use. The best ceramic metal halide and fluorescent fixtures had efficiencies of 1.46 and 0.95 micromoles per joule, respectively. We also calculated the initial capital cost of fixtures per photon delivered and determined that LED fixtures cost five to ten times more than HPS fixtures. The five-year electric plus fixture cost per mole of photons is thus 2.3 times higher for LED fixtures, due to high capital costs. Compared to electric costs, our analysis indicates that the long-term maintenance costs are small for both technologies. If widely spaced benches are a necessary part of a production system, the unique ability of LED fixtures to efficiently focus photons on specific areas can be used to improve the photon capture by plant canopies. Our analysis demonstrates, however, that the cost per photon delivered is higher in these systems, regardless of fixture category. The lowest lighting system costs are realized when an efficient fixture is coupled with effective canopy photon capture.

  5. Optical designs for improved solar cell performance

    NASA Astrophysics Data System (ADS)

    Kosten, Emily Dell

    The solar resource is the most abundant renewable resource on earth, yet it is currently exploited with relatively low efficiencies. To make solar energy more affordable, we can either reduce the cost of the cell or increase the efficiency with a similar cost cell. In this thesis, we consider several different optical approaches to achieve these goals. First, we consider a ray optical model for light trapping in silicon microwires. With this approach, much less material can be used, allowing for a cost savings. We next focus on reducing the escape of radiatively emitted and scattered light from the solar cell. With this angle restriction approach, light can only enter and escape the cell near normal incidence, allowing for thinner cells and higher efficiencies. In Auger-limited GaAs, we find that efficiencies greater than 38% may be achievable, a significant improvement over the current world record. To experimentally validate these results, we use a Bragg stack to restrict the angles of emitted light. Our measurements show an increase in voltage and a decrease in dark current, as less radiatively emitted light escapes. While the results in GaAs are interesting as a proof of concept, GaAs solar cells are not currently made on the production scale for terrestrial photovoltaic applications. We therefore explore the application of angle restriction to silicon solar cells. While our calculations show that Auger-limited cells give efficiency increases of up to 3% absolute, we also find that current amorphous silicion-crystalline silicon heterojunction with intrinsic thin layer (HIT) cells give significant efficiency gains with angle restriction of up to 1% absolute. Thus, angle restriction has the potential for unprecedented one sun efficiencies in GaAs, but also may be applicable to current silicon solar cell technology. Finally, we consider spectrum splitting, where optics direct light in different wavelength bands to solar cells with band gaps tuned to those wavelengths. This approach has the potential for very high efficiencies, and excellent annual power production. Using a light-trapping filtered concentrator approach, we design filter elements and find an optimal design. Thus, this thesis explores silicon microwires, angle restriction, and spectral splitting as different optical approaches for improving the cost and efficiency of solar cells.

  6. Efficient simulation of intensity profile of light through subpixel-matched lenticular lens array for two- and four-view auto-stereoscopic liquid-crystal display.

    PubMed

    Chang, Yia-Chung; Tang, Li-Chuan; Yin, Chun-Yi

    2013-01-01

    Both an analytical formula and an efficient numerical method for simulation of the accumulated intensity profile of light that is refracted through a lenticular lens array placed on top of a liquid-crystal display (LCD) are presented. The influence due to light refracted through adjacent lens is examined in the two-view and four-view systems. Our simulation results are in good agreement with those obtained by a piece of commercial software, ASAP, but our method is much more efficient. This proposed method allows one to adjust the design parameters and carry out simulation for the performance of a subpixel-matched auto-stereoscopic LCD more efficiently and easily.

  7. Recent developments in luminescent solar concentrators

    NASA Astrophysics Data System (ADS)

    van Sark, W. G. J. H. M.

    2014-10-01

    High efficiency photovoltaic devices combine full solar spectrum absorption and effective generation and collection of charge carriers, while commercial success depends on cost effectiveness in manufacturing. Spectrum modification using down shifting has been demonstrated in luminescent solar concentrators (LSCs) since the 1970s, as a cheap alternative for standard c-Si technology. LSCs consist of a highly transparent plastic plate, in which luminescent species are dispersed, which absorb incident light and emit light at a red-shifted wavelength, with high quantum efficiency. Material issues have hampered efficiency improvements, in particular re-absorption of light emitted by luminescent species and stability of these species. In this contribution, approaches are reviewed on minimizing re-absorption, which should allow surpassing the 10% luminescent solar concentrator efficiency barrier.

  8. Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light.

    PubMed

    Ooi, Amanda; Wong, Aloysius; Ng, Tien Khee; Marondedze, Claudius; Gehring, Christoph; Ooi, Boon S

    2016-09-23

    Indoor horticulture offers a sensible solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available horticultural lighting is suboptimal, and therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. They are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Furthermore, laser beams can be tailored to match the absorption profiles of different plant species. We have developed a prototype laser growth chamber and demonstrate that plants grown under laser illumination can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs reported previously. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteome data show that the single-wavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture.

  9. Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light

    PubMed Central

    Ooi, Amanda; Wong, Aloysius; Ng, Tien Khee; Marondedze, Claudius; Gehring, Christoph; Ooi, Boon S.

    2016-01-01

    Indoor horticulture offers a sensible solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available horticultural lighting is suboptimal, and therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. They are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Furthermore, laser beams can be tailored to match the absorption profiles of different plant species. We have developed a prototype laser growth chamber and demonstrate that plants grown under laser illumination can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs reported previously. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteome data show that the single-wavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture. PMID:27659906

  10. The limited importance of size-asymmetric light competition and growth of pioneer species in early secondary forest succession in Vietnam.

    PubMed

    van Kuijk, Marijke; Anten, N P R; Oomen, R J; van Bentum, D W; Werger, M J A

    2008-08-01

    It is generally believed that asymmetric competition for light plays a predominant role in determining the course of succession by increasing size inequalities between plants. Size-related growth is the product of size-related light capture and light-use efficiency (LUE). We have used a canopy model to calculate light capture and photosynthetic rates of pioneer species in sequential vegetation stages of a young secondary forest stand. Growth of the same saplings was followed in time as succession proceeded. Photosynthetic rate per unit plant mass (P(mass): mol C g(-1) day(-1)), a proxy for plant growth, was calculated as the product of light capture efficiency [Phi(mass): mol photosynthetic photon flux density (PPFD) g(-1) day(-1)] and LUE (mol C mol PPFD(-1)). Species showed different morphologies and photosynthetic characteristics, but their light-capturing and light-use efficiencies, and thus P (mass), did not differ much. This was also observed in the field: plant growth was not size-asymmetric. The size hierarchy that was present from the very early beginning of succession remained for at least the first 5 years. We conclude, therefore, that in slow-growing regenerating vegetation stands, the importance of asymmetric competition for light and growth can be much less than is often assumed.

  11. Investigating and Optimizing Carrier Transport, Carrier Distribution, and Efficiency Droop in GaN-based Light-emitting Diodes

    NASA Astrophysics Data System (ADS)

    Zhu, Di

    2011-12-01

    The recent tremendous boost in the number and diversity of applications for light-emitting diodes (LEDs) indicates the emergence of the next-generation lighting and illumination technology. The rapidly improving LED technology is becoming increasingly viable especially for high-power applications. However, the greatest roadblock before finally breaching the main defensive position of conventional fluorescent and incandescent lamps still remains: GaN-based LEDs encounter a significant decrease in efficiency as the drive current increases, and this phenomenon is known as the efficiency droop. This dissertation focuses on uncovering the physical cause of efficiency droop in GaN-based LEDs and looks for solutions to it. GaN-based multiple-quantum-well (MQW) LEDs usually have abnormally high diode-ideality factors. Investigating the origin of the high diode-ideality factors could help to better understand the carrier transport in the LED MQW active region. We investigate the ideality factors of GaInN LEDs with different numbers of doped quantum barriers (QBs). Consistent with the theory, a decrease of the ideality factor as well as a reduction in forward voltage is found with increasing number of doped QBs. Experimental and simulation results indicate that the band profiles of QBs in the active region have a significant impact on the carrier transport mechanism, and the unipolar heterojunctions inside the active region play an important role in determining the diode-ideality factor. This dissertation will discuss several mechanisms leading to electron leakage which could be responsible for the efficiency droop. We show that the inefficient electron capture, the electron-attracting properties of polarized EBL, the inherent asymmetry in electron and hole transport and the inefficient EBL p-doping at high Al contents severely limit the ability to confine electrons to the MQWs. We demonstrate GaInN LEDs employing tailored Si doping in the QBs with strongly enhanced high-current efficiency and reduced efficiency droop. Compared with 4-QB-doped LEDs, 1-QB-doped LEDs show a 37.5% increase in light-output power at high currents. Consistent with the measurements, simulation shows a shift of radiative recombination among the MQWs and a reduced electron leakage current into the p-type GaN when fewer QBs are doped. The results can be attributed to a more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop. In this dissertation, artificial evolution is introduced to the LED optimization process which combines a genetic algorithm (GA) and device-simulation software. We show that this approach is capable of generating novel concepts in designing and optimizing LED devices. Application of the GA to the QB-doping in the MQWs yields optimized structures which is consistent with the tailored QB doping experiments. Application of the GA to the EBL region suggests a novel structure with an inverted sheet charge at the spacer-EBL interface. The resulting repulsion of electrons can significantly reduce electron leakage and enhance the efficiency. Finally, dual-wavelength LEDs, which have two types of quantum wells (QWs) emitting at two different wavelengths, are experimentally characterized and compared with numerical simulations. These dual-wavelength LEDs allow us to determine which QW emits most of the light. An experimental observation and a quantitative analysis of the radiative recombination shift within the MQW active region are obtained. In addition, an injection-current dependence of the radiative recombination shift is predicted by numerical simulations and indeed observed in dual-wavelength LEDs. This injection-current dependence of the radiative recombination distribution can be explained very well by incorporating quantum-mechanical tunneling of carriers into and through the QBs into to the classical drift-diffusion model. In summary, using the LEDs with tailored QB doping and dual-wavelength LEDs, we investigate the origin of the high diode-ideality factor of LEDs and gain insight on the control of carrier transport, carrier distribution, and radiative recombination in the LED MQW active region. Our results provide solid evidence on the effectiveness of the GA in the LED device optimization process. In addition, the innovative EBL structure optimized by the GA sheds light on further paths for the optimization of LED design. Our results are the starting point of applying artificial evolution to practical semiconductor devices, opening new perspectives for complex semiconductor device optimization and enabling breakthroughs in high-performance LED design.

  12. Synthesis of visible-light responsive graphene oxide/TiO(2) composites with p/n heterojunction.

    PubMed

    Chen, Chao; Cai, Weimin; Long, Mingce; Zhou, Baoxue; Wu, Yahui; Wu, Deyong; Feng, Yujie

    2010-11-23

    Graphene oxide/TiO(2) composites were prepared by using TiCl(3) and graphene oxide as reactants. The concentration of graphene oxide in starting solution played an important role in photoelectronic and photocatalytic performance of graphene oxide/TiO(2) composites. Either a p-type or n-type semiconductor was formed by graphene oxide in graphene oxide/TiO(2) composites. These semiconductors could be excited by visible light with wavelengths longer than 510 nm and acted as sensitizer in graphene oxide/TiO(2) composites. Visible-light driven photocatalytic performance of graphene oxide/TiO(2) composites in degradation of methyl orange was also studied. Crystalline quality and chemical states of carbon elements from graphene oxide in graphene oxide/TiO(2) composites depended on the concentration of graphene oxide in the starting solution. This study shows a possible way to fabricate graphene oxide/semiconductor composites with different properties by using a tunable semiconductor conductivity type of graphene oxide.

  13. The Impact of Graphene on the Fabrication of Thin Film Solar Cells: Current Status and Future Prospects.

    PubMed

    Shi, Zhengqi; Jayatissa, Ahalapitiya H

    2017-12-27

    Commercial solar cells have a power conversion efficiency (PCE) in the range of 10-22% with different light absorbers. Graphene, with demonstrated unique structural, physical, and electrical properties, is expected to bring the positive effects on the development of thin film solar cells. Investigations have been carried out to understand whether graphene can be used as a front and back contacts and active interfacial layer in solar cell fabrication. In this review, the current progress of this research is analyzed, starting from the graphene and graphene-based Schottky diode. Also, the discussion was focused on the progress of graphene-incorporated thin film solar cells that were fabricated with different light absorbers, in particular, the synthesis, fabrication, and characterization of devices. The effect of doping and layer thickness of graphene on PCE was also included. Currently, the PCE of graphene-incorporated bulk-heterojunction devices have enhanced in the range of 0.5-3%. However, device durability and cost-effectiveness are also the challenging factors for commercial production of graphene-incorporated solar cells. In addition to the application of graphene, graphene oxides have been also used in perovskite solar cells. The current needs and likely future investigations for graphene-incorporated solar cells are also discussed.

  14. Non-parametric identification of multivariable systems: A local rational modeling approach with application to a vibration isolation benchmark

    NASA Astrophysics Data System (ADS)

    Voorhoeve, Robbert; van der Maas, Annemiek; Oomen, Tom

    2018-05-01

    Frequency response function (FRF) identification is often used as a basis for control systems design and as a starting point for subsequent parametric system identification. The aim of this paper is to develop a multiple-input multiple-output (MIMO) local parametric modeling approach for FRF identification of lightly damped mechanical systems with improved speed and accuracy. The proposed method is based on local rational models, which can efficiently handle the lightly-damped resonant dynamics. A key aspect herein is the freedom in the multivariable rational model parametrizations. Several choices for such multivariable rational model parametrizations are proposed and investigated. For systems with many inputs and outputs the required number of model parameters can rapidly increase, adversely affecting the performance of the local modeling approach. Therefore, low-order model structures are investigated. The structure of these low-order parametrizations leads to an undesired directionality in the identification problem. To address this, an iterative local rational modeling algorithm is proposed. As a special case recently developed SISO algorithms are recovered. The proposed approach is successfully demonstrated on simulations and on an active vibration isolation system benchmark, confirming good performance of the method using significantly less parameters compared with alternative approaches.

  15. The Impact of Graphene on the Fabrication of Thin Film Solar Cells: Current Status and Future Prospects

    PubMed Central

    Shi, Zhengqi; Jayatissa, Ahalapitiya H.

    2017-01-01

    Commercial solar cells have a power conversion efficiency (PCE) in the range of 10–22% with different light absorbers. Graphene, with demonstrated unique structural, physical, and electrical properties, is expected to bring the positive effects on the development of thin film solar cells. Investigations have been carried out to understand whether graphene can be used as a front and back contacts and active interfacial layer in solar cell fabrication. In this review, the current progress of this research is analyzed, starting from the graphene and graphene-based Schottky diode. Also, the discussion was focused on the progress of graphene-incorporated thin film solar cells that were fabricated with different light absorbers, in particular, the synthesis, fabrication, and characterization of devices. The effect of doping and layer thickness of graphene on PCE was also included. Currently, the PCE of graphene-incorporated bulk-heterojunction devices have enhanced in the range of 0.5–3%. However, device durability and cost-effectiveness are also the challenging factors for commercial production of graphene-incorporated solar cells. In addition to the application of graphene, graphene oxides have been also used in perovskite solar cells. The current needs and likely future investigations for graphene-incorporated solar cells are also discussed. PMID:29280964

  16. New configuration factors for curved surfaces

    NASA Astrophysics Data System (ADS)

    Cabeza-Lainez, Jose M.; Pulido-Arcas, Jesus A.

    2013-03-01

    Curved surfaces have not been thoroughly considered in radiative transfer analysis mainly due to the difficulties arisen in the integration process and perhaps because of the lack of spatial vision of the researchers. It is a fact, especially for architectural lighting, that when concave geometries appear inside a curved space, they are mostly avoided. In this way, a vast repertoire of significant forms is neglected and energy waste is evident. Starting from the properties of volumes enclosed by the minimum number of surfaces, the authors formulate, with little calculus, new simple laws, which enable them to discover a set of configuration factors for caps and various segments of the sphere. The procedure is subsequently extended to previously unimagined surfaces as the paraboloid, the ellipsoid or the cone. Appropriate combination of the said forms with right truncated cones produces several complex volumes, often used in architectural and engineering creations and whose radiative performance could not be accurately predicted for decades. To complete the research, a new method for determining interreflections in curved volumes is also presented. Radiative transfer simulation benefits from these findings, as the simplicity of the results has led the authors to create innovative software more efficient for design and evaluation and applicable to emerging fields like LED lighting.

  17. An improved stable isotope N-terminal labeling approach with light/heavy TMPP to automate proteogenomics data validation: dN-TOP.

    PubMed

    Bertaccini, Diego; Vaca, Sebastian; Carapito, Christine; Arsène-Ploetze, Florence; Van Dorsselaer, Alain; Schaeffer-Reiss, Christine

    2013-06-07

    In silico gene prediction has proven to be prone to errors, especially regarding precise localization of start codons that spread in subsequent biological studies. Therefore, the high throughput characterization of protein N-termini is becoming an emerging challenge in the proteomics and especially proteogenomics fields. The trimethoxyphenyl phosphonium (TMPP) labeling approach (N-TOP) is an efficient N-terminomic approach that allows the characterization of both N-terminal and internal peptides in a single experiment. Due to its permanent positive charge, TMPP labeling strongly affects MS/MS fragmentation resulting in unadapted scoring of TMPP-derivatized peptide spectra by classical search engines. This behavior has led to difficulties in validating TMPP-derivatized peptide identifications with usual score filtering and thus to low/underestimated numbers of identified N-termini. We present herein a new strategy (dN-TOP) that overwhelmed the previous limitation allowing a confident and automated N-terminal peptide validation thanks to a combined labeling with light and heavy TMPP reagents. We show how this double labeling allows increasing the number of validated N-terminal peptides. This strategy represents a considerable improvement to the well-established N-TOP method with an enhanced and accelerated data processing making it now fully compatible with high-throughput proteogenomics studies.

  18. Investigation of the Comparative Effects of Red and Infrared Laser Therapy on Skeletal Muscle Repair in Diabetic Rats.

    PubMed

    Assis, Lívia; Manis, Camila; Fernandes, Kelly Rossetti; Cabral, Daniel; Magri, Angela; Veronez, Suellen; Renno, Ana Claudia Muniz

    2016-07-01

    The aim of this study was to evaluate the in vivo response of 2 different laser wavelengths (red and infrared) on skeletal muscle repair process in diabetic rats. Forty Wistar rats were randomly divided into 4 experimental groups: basal control-nondiabetic and muscle-injured animals without treatment (BC); diabetic muscle-injured without treatment (DC); diabetic muscle-injured, treated with red laser (DCR) and infrared laser (DCIR). The injured region was irradiated daily for 7 consecutive days, starting immediately after the injury using a red (660 nm) and an infrared (808 nm) laser. The histological results demonstrated in both treated groups (red and infrared wavelengths) a modulation of the inflammatory process and a better tissue organization located in the site of the injury. However, only infrared light significantly reduced the injured area and increased MyoD and myogenin protein expression. Moreover, both red and infrared light increased the expression of the proangiogenic vascular endothelial growth factor and reduced the cyclooxygenase 2 protein expression. These results suggest that low-level laser therapy was efficient in promoting skeletal muscle repair in diabetic rats. However, the effect of infrared wavelength was more pronounced by reducing the area of the injury and modulating the expression proteins related to the repair.

  19. Bright Ideas.

    ERIC Educational Resources Information Center

    Armstrong, Phil

    1999-01-01

    Discusses how to upgrade lighting technology in schools to reduce energy consumption and cut operating costs. Explores fixture efficiency using ballast and lamp upgrades and compact fluorescent lights. Other ideas include changing exit signs to ones that use less wattage, improving luminary efficiency through use of reflectors and shielding…

  20. Light valve based on nonimaging optics with potential application in cold climate greenhouses

    NASA Astrophysics Data System (ADS)

    Valerio, Angel A.; Mossman, Michele A.; Whitehead, Lorne A.

    2014-09-01

    We have evaluated a new concept for a variable light valve and thermal insulation system based on nonimaging optics. The system incorporates compound parabolic concentrators and can readily be switched between an open highly light transmissive state and a closed highly thermally insulating state. This variable light valve makes the transition between high thermal insulation and efficient light transmittance practical and may be useful in plant growth environments to provide both adequate sunlight illumination and thermal insulation as needed. We have measured light transmittance values exceeding 80% for the light valve design and achieved thermal insulation values substantially exceeding those of traditional energy efficient windows. The light valve system presented in this paper represents a potential solution for greenhouse food production in locations where greenhouses are not feasible economically due to high heating cost.

  1. Essentials for Successful and Widespread LED Lighting Adoption

    NASA Astrophysics Data System (ADS)

    Khan, Nisa

    2011-03-01

    Solid-state lighting (SSL), with light-emitting diodes (LEDs) as the light source, is a growing and essential field, particularly in regard to the heightened need for global energy efficiency. In recent years, SSL has experienced remarkable advances in efficiency, light output magnitude and quality. Thus such diverse applications as signage, message centers, displays, and special lighting are now adopting LEDs, taking 2010's market to 9.1 billion - 68% growth from the previous year! While this is promising, future growth in both display and lighting applications will rely upon unveiling deeper understanding and key innovations in LED lighting science and technologies. In this presentation, some LED lighting fundamentals, engineering challenges and novel solutions will be discussed to address reduction in efficiency (a.k.a. droop) at high currents, and to obtain uniform light distribution for overcoming LEDs' directional nature. The droop phenomenon has been a subject of much controversy in the industry and despite several studies and claims, a widely-accepted explanation still lacks because of counter arguments and experiments. Recently several research studies have identified that the droop behavior in nitride-based LEDs beyond certain current density ranges can only be comprehensively explained if the current leaking beyond the LED active region is included. Although such studies have identified a few useful current leakage mechanisms outside the active region, no one has included current leakage, due to non-ideal, 3-D device structures that create undesirable current distribution inside and outside the active region. This talk will address achieving desirable current distributions from optimized 3-D device structures that should reduce current leakage and hence the droop behavior. In addition to novel LED design solutions for droop reduction and uniform light distribution, the talk will address cost and yield concerns as they pertain to core material scarcity. Such solutions are expected to make LED lights more energy efficient, pleasant in appearance, longer-lasting, affordable, and thus suitable for green living.

  2. Mesoporous multi-shelled ZnO microspheres for the scattering layer of dye sensitized solar cell with a high efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Weiwei; Mei, Chao; Zeng, Xianghua, E-mail: xhzeng@yzu.edu.cn

    2016-03-14

    Both light scattering and dye adsorbing are important for the power conversion efficiency PCE performance of dye sensitized solar cell (DSSC). Nanostructured scattering layers with a large specific surface area are regarded as an efficient way to improve the PCE by increasing dye adsorbing, but excess adsorbed dye will hinder light scattering and light penetration. Thus, how to balance the dye adsorbing and light penetration is a key problem to improve the PCE performance. Here, multiple-shelled ZnO microspheres with a mesoporous surface are fabricated by a hydrothermal method and are used as scattering layers on the TiO{sub 2} photoanode ofmore » the DSSC in the presence of N719 dye and iodine–based electrolyte, and the results reveal that the DSSCs based on triple shelled ZnO microsphere with a mesoporous surface exhibit an enhanced PCE of 7.66%, which is 13.0% higher than those without the scattering layers (6.78%), indicating that multiple-shelled microspheres with a mesoporous surface can ensure enough light scattering between the shells, and a favorable concentration of the adsorbed dye can improve the light penetration. These results may provide a promising pathway to obtain the high efficient DSSCs.« less

  3. Recent advances in light outcoupling from white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gather, Malte C.; Reineke, Sebastian

    2015-01-01

    Organic light-emitting diodes (OLEDs) have been successfully introduced to the smartphone display market and have geared up to become contenders for applications in general illumination where they promise to combine efficient generation of white light with excellent color quality, glare-free illumination, and highly attractive designs. Device efficiency is the key requirement for such white OLEDs, not only from a sustainability perspective, but also because at the high brightness required for general illumination, losses lead to heating and may, thus, cause rapid device degradation. The efficiency of white OLEDs increased tremendously over the past two decades, and internal charge-to-photon conversion can now be achieved at ˜100% yield. However, the extraction of photons remains rather inefficient (typically <30%). Here, we provide an introduction to the underlying physics of outcoupling in white OLEDs and review recent progress toward making light extraction more efficient. We describe how structures that scatter, refract, or diffract light can be attached to the outside of white OLEDs (external outcoupling) or can be integrated close to the active layers of the device (internal outcoupling). Moreover, the prospects of using top-emitting metal-metal microcavity designs for white OLEDs and of tuning the average orientation of the emissive molecules within the OLED are discussed.

  4. Evaluating Different Green School Building Designs for Albania: Indoor Thermal Comfort, Energy Use Analysis with Solar Systems

    NASA Astrophysics Data System (ADS)

    Dalvi, Ambalika Rajendra

    Improving the conditions of schools in many parts of the world is gradually acquiring importance. The Green School movement is an integral part of this effort since it aims at improving indoor environmental conditions. This would in turn, enhance student- learning while minimizing adverse environmental impact through energy efficiency of comfort-related HVAC and lighting systems. This research, which is a part of a larger research project, aims at evaluating different school building designs in Albania in terms of energy use and indoor thermal comfort, and identify energy efficient options of existing schools. We start by identifying three different climate zones in Albania; Coastal (Durres), Hill/Pre-mountainous (Tirana), mountainous (Korca). Next, two prototypical school building designs are identified from the existing stock. Numerous scenarios are then identified for analysis which consists of combinations of climate zone, building type, building orientation, building upgrade levels, presence of renewable energy systems (solar photovoltaic and solar water heater). The existing building layouts, initially outlined in CAD software and then imported into a detailed building energy software program (eQuest) to perform annual simulations for all scenarios. The research also predicted indoor thermal comfort conditions of the various scenarios on the premise that windows could be opened to provide natural ventilation cooling when appropriate. This study also estimated the energy generated from solar photovoltaic systems and solar water heater systems when placed on the available roof area to determine the extent to which they are able to meet the required electric loads (plug and lights) and building heating loads respectively. The results showed that there is adequate indoor comfort without the need for mechanical cooling for the three climate zones, and that only heating is needed during the winter months.

  5. LED Systems Target Plant Growth

    NASA Technical Reports Server (NTRS)

    2010-01-01

    To help develop technologies for growing edible biomass (food crops) in space, Kennedy Space Center partnered with Orbital Technologies Corporation (ORBITEC), of Madison, Wisconsin, through the Small Business Innovation Research (SBIR) program. One result of this research was the High Efficiency Lighting with Integrated Adaptive Control (HELIAC) system, components of which have been incorporated into a variety of agricultural greenhouse and consumer aquarium lighting features. The new lighting systems can be adapted to a specific plant species during a specific growth stage, allowing maximum efficiency in light absorption by all available photosynthetic tissues.

  6. Approach to Low-Cost High-Efficiency OLED Lighting. Building Technologies Solid State Lighting (SSL) Program Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Qibing

    2017-10-06

    This project developed an integrated substrate which organic light emitting diode (OLED) panel developers could employ the integrated substrate to fabricate OLED devices with performance and projected cost meeting the MYPP targets of the Solid State Lighting Program of the Department of Energy. The project optimized the composition and processing conditions of the integrated substrate for OLED light extraction efficiency and overall performance. The process was further developed for scale up to a low-cost process and fabrication of prototype samples. The encapsulation of flexible OLEDs based on this integrated substrate was also investigated using commercial flexible barrier films.

  7. Chapter 2: Commercial and Industrial Lighting Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W; Gowans, Dakers; Telarico, Chad

    The Commercial and Industrial Lighting Evaluation Protocol (the protocol) describes methods to account for gross energy savings resulting from the programmatic installation of efficient lighting equipment in large populations of commercial, industrial, and other nonresidential facilities. This protocol does not address savings resulting from changes in codes and standards, or from education and training activities. A separate Uniform Methods Project (UMP) protocol, Chapter 3: Commercial and Industrial Lighting Controls Evaluation Protocol, addresses methods for evaluating savings resulting from lighting control measures such as adding time clocks, tuning energy management system commands, and adding occupancy sensors.

  8. Fiber optic light collection system for scanning-tunneling-microscope-induced light emission.

    PubMed

    Watkins, Neil J; Long, James P; Kafafi, Zakya H; Mäkinen, Antti J

    2007-05-01

    We report a compact light collection scheme suitable for retrofitting a scanning tunneling microscope (STM) for STM-induced light emission experiments. The approach uses a pair of optical fibers with large core diameters and high numerical apertures to maximize light collection efficiency and to moderate the mechanical precision required for alignment. Bench tests indicate that efficiency reduction is almost entirely due to reflective losses at the fiber ends, while losses due to fiber misalignment have virtually been eliminated. Photon-map imaging with nanometer features is demonstrated on a stepped Au(111) surface with signal rates exceeding 10(4) counts/s.

  9. Evaluation of light energy to H 2 energy conversion efficiency in thin films of cyanobacteria and green alga under photoautotrophic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosourov, Sergey; Murukesan, Gayathri; Seibert, Michael

    Cyanobacteria and green algae harness solar energy to split water and to fix CO 2. Under specific conditions, they are capable of photoproduction of molecular hydrogen (H 2). This study compares the light-energy-to-hydrogen-energy conversion efficiency (LHCE) in two heterocystous, N 2-fixing cyanobacteria (wild-type Calothrix sp. strain 336/3 and the ΔhupL mutant of Anabaena sp. strain PCC 7120) and in the sulfur-deprived green alga, Chlamydomonas reinhardtii strain CC-124, after entrapment of the cells in thin Ca 2+-alginate films. The experiments, performed under photoautotrophic conditions, showed higher LHCEs in the cyanobacteria as compared to the green alga. The highest efficiency of ca.more » 2.5% was obtained in films of the entrapped ΔhupL strain under low light condition (2.9 W m -2). Calothrix sp. 336/3 films produced H 2 with a maximum efficiency of 0.6% under 2.9 W m -2, while C. reinhardtii films produced H 2 most efficiently under moderate light (0.14% at 12.1 W m -2). Exposure of the films to light above 16 W m -2 led to noticeable oxidative stress in all three strains, which increased with light intensity. The presence of oxidative stress was confirmed by increased (i) degradation of chlorophylls and some structural carotenoids (such as β-carotene), (ii) production of hydroxylated carotenoids (such as zeaxanthin), and (iii) carbonylation of proteins. We conclude that the H 2 photoproduction efficiency in immobilized algae and cyanobacteria can be further improved by entrapping cultures in immobilization matrices with increased permeability for gases, especially oxygen, while matrices with low porosity produced increased amounts of xanthophylls and other antioxidant compounds.« less

  10. Evaluation of light energy to H 2 energy conversion efficiency in thin films of cyanobacteria and green alga under photoautotrophic conditions

    DOE PAGES

    Kosourov, Sergey; Murukesan, Gayathri; Seibert, Michael; ...

    2017-10-14

    Cyanobacteria and green algae harness solar energy to split water and to fix CO 2. Under specific conditions, they are capable of photoproduction of molecular hydrogen (H 2). This study compares the light-energy-to-hydrogen-energy conversion efficiency (LHCE) in two heterocystous, N 2-fixing cyanobacteria (wild-type Calothrix sp. strain 336/3 and the ΔhupL mutant of Anabaena sp. strain PCC 7120) and in the sulfur-deprived green alga, Chlamydomonas reinhardtii strain CC-124, after entrapment of the cells in thin Ca 2+-alginate films. The experiments, performed under photoautotrophic conditions, showed higher LHCEs in the cyanobacteria as compared to the green alga. The highest efficiency of ca.more » 2.5% was obtained in films of the entrapped ΔhupL strain under low light condition (2.9 W m -2). Calothrix sp. 336/3 films produced H 2 with a maximum efficiency of 0.6% under 2.9 W m -2, while C. reinhardtii films produced H 2 most efficiently under moderate light (0.14% at 12.1 W m -2). Exposure of the films to light above 16 W m -2 led to noticeable oxidative stress in all three strains, which increased with light intensity. The presence of oxidative stress was confirmed by increased (i) degradation of chlorophylls and some structural carotenoids (such as β-carotene), (ii) production of hydroxylated carotenoids (such as zeaxanthin), and (iii) carbonylation of proteins. We conclude that the H 2 photoproduction efficiency in immobilized algae and cyanobacteria can be further improved by entrapping cultures in immobilization matrices with increased permeability for gases, especially oxygen, while matrices with low porosity produced increased amounts of xanthophylls and other antioxidant compounds.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevik, James; Pamminger, Michael; Wallner, Thomas

    Interest in natural gas as an alternative fuel source to petroleum fuels for light-duty vehicle applications has increased due to its domestic availability and stable price compared to gasoline. With its higher hydrogen-to-carbon ratio, natural gas has the potential to reduce engine out carbon dioxide emissions, which has shown to be a strong greenhouse gas contributor. For part-load conditions, the lower flame speeds of natural gas can lead to an increased duration in the inflammation process with traditional port-injection. Direct-injection of natural gas can increase in-cylinder turbulence and has the potential to reduce problems typically associated with port-injection of naturalmore » gas, such as lower flame speeds and poor dilution tolerance. A study was designed and executed to investigate the effects of direct-injection of natural gas at part-load conditions. Steady-state tests were performed on a single-cylinder research engine representative of current gasoline direct-injection engines. Tests were performed with direct-injection in the central and side location. The start of injection was varied under stoichiometric conditions in order to study the effects on the mixture formation process. In addition, exhaust gas recirculation was introduced at select conditions in order to investigate the dilution tolerance. Relevant combustion metrics were then analyzed for each scenario. Experimental results suggest that regardless of the injector location, varying the start of injection has a strong impact on the mixture formation process. Delaying the start of injection from 300 to 120°CA BTDC can reduce the early flame development process by nearly 15°CA. While injecting into the cylinder after the intake valves have closed has shown to produce the fastest combustion process, this does not necessarily lead to the highest efficiency, due to increases in pumping and wall heat losses. When comparing the two injection configurations, the side location shows the best performance in terms of combustion metrics and efficiencies. For both systems, part-load dilution tolerance is affected by the injection timing, due to the induced turbulence from the gaseous injection event. CFD simulation results have shown that there is a fundamental difference in how the two injection locations affect the mixture formation process. Delayed injection timing increases the turbulence level in the cylinder at the time of the spark, but reduces the available time for proper mixing. Side injection delivers a gaseous jet that interacts more effectively with the intake induced flow field, and this improves the engine performance in terms of efficiency.« less

  12. Energy-saving quality road lighting with colloidal quantum dot nanophosphors

    NASA Astrophysics Data System (ADS)

    Erdem, Talha; Kelestemur, Yusuf; Soran-Erdem, Zeliha; Ji, Yun; Demir, Hilmi Volkan

    2014-12-01

    Here the first photometric study of road-lighting white light-emitting diodes (WLEDs) integrated with semiconductor colloidal quantum dots (QDs) is reported enabling higher luminance than conventional light sources, specifically in mesopic vision regimes essential to street lighting. Investigating over 100 million designs uncovers that quality road-lighting QD-WLEDs, with a color quality scale and color rendering index ≥85, enables 13-35% higher mesopic luminance than the sources commonly used in street lighting. Furthermore, these QD-WLEDs were shown to be electrically more efficient than conventional sources with power conversion efficiencies ≥16-29%. Considering this fact, an experimental proof-of-concept QD-WLED was demonstrated, which is the first account of QD based color conversion custom designed for street lighting applications. The obtained white LED achieved the targeted mesopic luminance levels in accordance with the road lighting standards of the USA and the UK. These results indicate that road-lighting QD-WLEDs are strongly promising for energy-saving quality road lighting.

  13. Phototropism: translating light into directional growth.

    PubMed

    Hohm, Tim; Preuten, Tobias; Fankhauser, Christian

    2013-01-01

    Phototropism allows plants to align their photosynthetic tissues with incoming light. The direction of incident light is sensed by the phototropin family of blue light photoreceptors (phot1 and phot2 in Arabidopsis), which are light-activated protein kinases. The kinase activity of phototropins and phosphorylation of residues in the activation loop of their kinase domains are essential for the phototropic response. These initial steps trigger the formation of the auxin gradient across the hypocotyl that leads to asymmetric growth. The molecular events between photoreceptor activation and the growth response are only starting to be elucidated. In this review, we discuss the major steps leading from light perception to directional growth concentrating on Arabidopsis. In addition, we highlight links that connect these different steps enabling the phototropic response.

  14. 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Dong, Peng; Yan, Jianchang; Wang, Junxi; Zhang, Yun; Geng, Chong; Wei, Tongbo; Cong, Peipei; Zhang, Yiyun; Zeng, Jianping; Tian, Yingdong; Sun, Lili; Yan, Qingfeng; Li, Jinmin; Fan, Shunfei; Qin, Zhixin

    2013-06-01

    We first report AlGaN-based deep ultraviolet light-emitting diodes (UV-LEDs) grown on nano-patterned sapphire substrates (NPSS) prepared through a nanosphere lithography technique. The AlN coalescence thickness on NPSS is only 3 μm due to AlN's nano-scaled lateral growth, which also leads to low dislocation densities in AlN and epi-layers above. On NPSS, the light-output power of a 282-nm UV-LED reaches 3.03 mW at 20 mA with external quantum efficiency of 3.45%, exhibiting 98% better performance than that on flat sapphire. Temperature-dependent photoluminescence reveals this significant enhancement to be a combination of higher internal quantum efficiency and higher light extraction efficiency.

  15. The role of low light intensity: A step towards understanding the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Lojpur, Vesna; Mitrić, Miodrag; Validžić, Ivana Lj

    2018-05-01

    We report here an optic/lens system that we used so far, for cooling the surface of solar cells, the reduction of light intensity and the change of light distribution that reaches the surface of the solar cell. The objective was to improve photovoltaic characteristics under very low light illumination, as well as to understand the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells. It was found that for all so far designed thin-film solar cells made and based on the synthesized Sb2S3, optics/lens system causes an increase in open circuit voltage (VOC) and short circuit current (ISC) and thus the efficiencies of made solar devices. Values of energy gaps for the thin-films made devices were in the range from 1.4 to 2 eV. Improvements of the photovoltaic response of the designed devices are found to be better at the lower light intensity (5% sun), than at higher intensities of light. For the same intensity of light used optic/lens improves the efficiency of the devices, by changing the light distribution. Other processes that are related to the optics/lens system, leading to an increase in ISC and VOC and consequently to an increase in efficiencies of the designed devices, are investigated.

  16. The effect of handover location on trauma theatre start time: An estimated cost saving of £131 000 per year.

    PubMed

    Nahas, Sam; Ali, Adam; Majid, Kiran; Joseph, Roshan; Huber, Chris; Babu, Victor

    2018-02-08

    The National Health Service was estimated to be in £2.45 billion deficit in 2015 to 2016. Trauma theatre utilization and efficiency has never been so important as it is estimated to cost £15/minute. Structured questionnaires were given to 23 members of staff at our Trust who are actively involved in the organization or delivery of orthopaedic trauma lists at least once per week. This was used to identify key factors that may improve theatre efficiency. Following focus group evaluation, the location of the preoperative theatre meeting was changed, with all staff involved being required to attend this. Our primary outcome measure was mean theatre start time (time of arrival in the anaesthetic room) during the 1 month immediately preceding the change and the month following the change. Theatre start time was improved on average 24 minutes (1 month premeeting and postmeeting change). This equates to a saving of £360 per day, or £131 040 per year. Changing the trauma meeting location to a venue adjacent to the trauma theatre can improve theatre start times, theatre efficiency, and therefore result in significant cost savings. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Novel high-efficiency visible-light responsive Ag 4(GeO 4) photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xianglin; Wang, Peng; Li, Mengmeng

    A novel high-efficiency visible-light responsive Ag 4(GeO 4) photocatalyst was prepared by a facile hydrothermal method. The photocatalytic activity of as-prepared Ag 4(GeO 4) was evaluated by photodegradation of methylene blue (MB) dye and water splitting experiments. The photodegradation efficiency and oxygen production efficiency of Ag 4(GeO 4) were detected to be 2.9 and 1.9 times higher than those of Ag 2O. UVvis diffuse reflectance spectroscopy (DRS), photoluminescence experiment and photoelectric effect experiments prove that the good light response and high carrier separation efficiency facilitated by the internal electric field are the main reasons for Ag 4(GeO 4)'s excellent catalyticmore » activity. Radical-trapping experiments reveal that the photogenerated holes are the main active species. Lastly, first-principles theoretical calculations provide more insight into understanding the photocatalytic mechanism of the Ag 4(GeO 4) catalyst.« less

  18. Manufacturing polymer light emitting diode with high luminance efficiency by solution process

    NASA Astrophysics Data System (ADS)

    Kim, Miyoung; Jo, SongJin; Yang, Ho Chang; Yoon, Dang Mo; Kwon, Jae-Taek; Lee, Seung-Hyun; Choi, Ju Hwan; Lee, Bum-Joo; Shin, Jin-Koog

    2012-06-01

    While investigating polymer light emitting diodes (polymer-LEDs) fabricated by solution process, surface roughness influences electro-optical (E-O) characteristics. We expect that E-O characteristics such as luminance and power efficiency related to surface roughness and layer thickness of emitting layer with poly-9-Vinylcarbazole. In this study, we fabricated polymer organic light emitting diodes by solution process which guarantees easy, eco-friendly and low cost manufacturing for flexible display applications. In order to obtain high luminescence efficiency, E-O characteristics of these devices by varying parameters for printing process have been investigated. Therefore, we optimized process condition for polymer-LEDs by adjusting annealing temperatures of emission, thickness of emission layer showing efficiency (10.8 cd/A) at 10 mA/cm2. We also checked wavelength dependent electroluminescence spectrum in order to find the correlation between the variation of efficiency and the thickness of the layer.

  19. Novel high-efficiency visible-light responsive Ag 4(GeO 4) photocatalyst

    DOE PAGES

    Zhu, Xianglin; Wang, Peng; Li, Mengmeng; ...

    2017-04-25

    A novel high-efficiency visible-light responsive Ag 4(GeO 4) photocatalyst was prepared by a facile hydrothermal method. The photocatalytic activity of as-prepared Ag 4(GeO 4) was evaluated by photodegradation of methylene blue (MB) dye and water splitting experiments. The photodegradation efficiency and oxygen production efficiency of Ag 4(GeO 4) were detected to be 2.9 and 1.9 times higher than those of Ag 2O. UVvis diffuse reflectance spectroscopy (DRS), photoluminescence experiment and photoelectric effect experiments prove that the good light response and high carrier separation efficiency facilitated by the internal electric field are the main reasons for Ag 4(GeO 4)'s excellent catalyticmore » activity. Radical-trapping experiments reveal that the photogenerated holes are the main active species. Lastly, first-principles theoretical calculations provide more insight into understanding the photocatalytic mechanism of the Ag 4(GeO 4) catalyst.« less

  20. WE-FG-BRA-12: Research Work of the Radio-Dynamic Treatment Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Quanshi; Sun, Q.Y; Xiao, G.P.

    2016-06-15

    Purpose: The finite penetration depth of Laser light has limited clinical applications for PDT. This present work investigates the activation of photosensitizers using Cerenkov light emission from 45MV photon beams produced in an LA45 cancer therapy accelerator. We have named this new treatment technique Radio-Dynamic Therapy (RDT). Methods: Monte Carlo simulations were made on various Cerenkov emission energies and their spectroscopy in excited target areas in order to estimate their photosensitizer inner activation efficiency. The Cerenkov light excitation efficiency used in RDT has been theoretically compared with the exotic excitation efficiency of external Laser light used in PDT. In addition,more » laboratory tests showed the differences of the excitation efficiencies between a patented catalyst coenzyme added as a substrate, and then without the coenzyme. A specific probe of DMA (Singlet Oxygen fluorescent probe-9, 10-dimethylanthracene) was also used to detect singlet oxygen. Finally, we also compared our results with similar previous experimental work reported in the scientific literature. Results: Our Monte Carlo results showed that the Cerenkov light intensity induced with 45MV beams from an LA45 is 8 – 10 times the Cerenkov light intensity induced with 6MV beams from conventional accelerators. Furthermore, the patented catalyst coenzyme enhanced the excitation efficiency of photosensitizers by 3–6 times under different conditions. In clinical situations, the new RDT technique also showed favorable outcomes for early and late stages of specific cancers and it is also good at metastatic cancer treatment. Conclusion: Our results indicated that the process of using the Cerenkov light emission to excite photosensitizers from 45MV photons has a similar process and efficiency as the conventional laser in PDT. Comparing the advantages of RDT with a conventional PDT, the RDT may be developed into a potential treatment modality for a wider range of cancers stages as well as for other diseases.« less

Top