Zou, Zhaoyong; Lin, Kaili; Chen, Lei; Chang, Jiang
2012-11-01
Herein, carbonated hydroxyapatite (CHAp) nanopowders were synthesized via sonochemistry-assisted microwave process. The influences of microwave and ultrasonic irradiation on the crystallinity, morphology, yield, Ca/P molar ratio, specific surface area and dispersibility were investigated and compared with the conventional precipitation method. The results showed that sonochemistry-assisted microwave process significantly increased the synthetic efficiency. The well-crystallized nanopowders could be obtained at high yield of 98.8% in ultra-short-period of 5min. In addition, the crystallization process was promoted with the increase of ultrasonic and microwave power and the reaction time during the sonochemistry-assisted microwave process. The sonochemistry assistance also remarkably increased the specific surface area and dispersibility of the as-obtained products. These results suggest that the sonochemistry-assisted microwave process is an effective approach to synthesize CHAp with high efficiency. Copyright © 2012 Elsevier B.V. All rights reserved.
Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency
NASA Astrophysics Data System (ADS)
DeFilippo, Anthony Cesar
The ever-present need for reducing greenhouse gas emissions associated with transportation motivates this investigation of a novel ignition technology for internal combustion engine applications. Advanced engines can achieve higher efficiencies and reduced emissions by operating in regimes with diluted fuel-air mixtures and higher compression ratios, but the range of stable engine operation is constrained by combustion initiation and flame propagation when dilution levels are high. An advanced ignition technology that reliably extends the operating range of internal combustion engines will aid practical implementation of the next generation of high-efficiency engines. This dissertation contributes to next-generation ignition technology advancement by experimentally analyzing a prototype technology as well as developing a numerical model for the chemical processes governing microwave-assisted ignition. The microwave-assisted spark plug under development by Imagineering, Inc. of Japan has previously been shown to expand the stable operating range of gasoline-fueled engines through plasma-assisted combustion, but the factors limiting its operation were not well characterized. The present experimental study has two main goals. The first goal is to investigate the capability of the microwave-assisted spark plug towards expanding the stable operating range of wet-ethanol-fueled engines. The stability range is investigated by examining the coefficient of variation of indicated mean effective pressure as a metric for instability, and indicated specific ethanol consumption as a metric for efficiency. The second goal is to examine the factors affecting the extent to which microwaves enhance ignition processes. The factors impacting microwave enhancement of ignition processes are individually examined, using flame development behavior as a key metric in determining microwave effectiveness. Further development of practical combustion applications implementing microwave-assisted spark technology will benefit from predictive models which include the plasma processes governing the observed combustion enhancement. This dissertation documents the development of a chemical kinetic mechanism for the plasma-assisted combustion processes relevant to microwave-assisted spark ignition. The mechanism includes an existing mechanism for gas-phase methane oxidation, supplemented with electron impact reactions, cation and anion chemical reactions, and reactions involving vibrationally-excited and electronically-excited species. Calculations using the presently-developed numerical model explain experimentally-observed trends, highlighting the relative importance of pressure, temperature, and mixture composition in determining the effectiveness of microwave-assisted ignition enhancement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nad, Shreya; Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824; Gu, Yajun
2015-07-15
The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficienciesmore » (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.« less
1-Butyl-3-methylimidazolium tetrachlorogallate, [bmim][GaCl4], prepared via microwave-assisted protocol, is found to be an active catalyst for the efficient acetalization of aldehydes under mild conditions.
Microwave-assisted maleation of tung oil for bio-based products
USDA-ARS?s Scientific Manuscript database
In this work, a simple, “green” and convenient chemical modification of tung oil for maleinized tung oil (TOMA) was developed via microwave-assisted one-step maleation. This modifying process did not involve any solvent, catalyst, or initiator, but demonstrated the most efficiency of functionalizing...
Microwave-assisted maleation of tung oil for bio-based products with versatile applications
USDA-ARS?s Scientific Manuscript database
In this work, a simple, “green” and convenient chemical modification of tung oil for maleinized tung oil (TOMA) was developed via microwave-assisted one-step maleation. This modifying process did not involve any solvent, catalyst, or initiator, but demonstrated the most efficiency of functionalizing...
Microwave-assisted preparation of dialkylimidazolium tetrachloroaluminates and their application as recyclable catalysts for the efficient and eco-friendly protection of alcohols as tetrahydropyranyl (THP) ethers are described; the same catalyst can also be utilized for the depro...
Liu, Wei; Zhou, Chun-Li; Zhao, Jing; Chen, Dong; Li, Quan-Hong
2014-01-01
6-Gingerol is one of the most pharmacologically active and abundant components in ginger, which has a wide array of biochemical and pharmacologic activities. In recent years, the application of microwave-assisted extraction (MAE) for obtaining bioactive compounds from plant materials has shown tremendous research interest and potential. In this study, an efficient microwave-assisted extraction (MAE) technique was developed to extract 6-gingerol from ginger. The extraction efficiency of MAE was also compared with conventional extraction techniques. Fresh gingers (Zingiber officinale Rose.) were harvested at commercial maturity (originally from Shandong, laiwu, China). In single-factor experiments for the recovery of 6-gingerol, proper ranges of ratio of liquid to solid, ethanol proportion, microwave power, extraction time were determined. Based on the values obtained in single-factor experiments, a Box-Behnken design (BBD) was applied to determine the best combination of extraction variables on the yield of 6-gingerol. The optimum extraction conditions were as follows: microwave power 528 W, ratio of liquid to solid 26 mL·g(-1), extraction time 31 s and ethanol proportion 78%. Furthermore, more 6-gingerol and total polyphenols contents were extracted by MAE than conventional methods including Maceration (MAC), Stirring Extraction (SE), Heat reflux extraction (HRE), Ultrasound-assisted extraction (UAE), as well as the antioxidant capacity. Microwave-assisted extraction showed obvious advantages in terms of high extraction efficiency and antioxidant activity of extract within shortest extraction time. Scanning electron microscopy (SEM) images of ginger powder materials after different extractions were obtained to provide visual evidence of the disruption effect. To our best knowledge, this is the first report about usage of MAE of 6-gingerol extraction from ginger, which could be referenced for the extraction of other active compounds from herbal plants.
N-aryl azacycloalkanes, an important class of building blocks in natural product and pharmaceuticals, are synthesized via an efficient and simple eco-friendly protocol that involves double N-alkylation of aniline derivatives. The reaction is accelerated by exposure to microwaves ...
A facile microwave-assisted Diels-Alder reaction of vinylboronates.
Sarotti, Ariel M; Pisano, Pablo L; Pellegrinet, Silvina C
2010-11-21
The Diels-Alder reaction of vinylboronates can be easily performed using microwave irradiation giving excellent yields of the cycloadducts. Pinacol vinylboronate was the reagent of choice due to its stability towards hydrolysis, operational simplicity and yields of Diels-Alder products. To the best of our knowledge, this is the first example of microwave-assisted Diels-Alder reaction of boron-substituted dienophiles. Subsequent in situ oxidation of the cycloadducts with alkaline hydrogen peroxide afforded the alcohols efficiently.
Microwave-assisted Maillard reactions for the preparation of advanced glycation end products (AGEs).
Visentin, Sonja; Medana, Claudio; Barge, Alessandro; Giancotti, Valeria; Cravotto, Giancarlo
2010-05-21
The application of microwaves as an efficient form of volumetric heating to promote organic reactions was recognized in the mid-1980 s. It has a much longer history in the food research and industry where microwave irradiation was studied in depth to optimize food browning and the development of desirable flavours from Maillard reactions. The microwave-promoted Maillard reaction is a challenging synthetic method to generate molecular diversity in a straightforward way. In this paper we present a new rapid and efficient one-pot procedure for the preparation of pentosidine and other AGEs under microwave irradiation.
Lu, Chunxia; Wang, Hongxin; Lv, Wenping; Ma, Chaoyang; Lou, Zaixiang; Xie, Jun; Liu, Bo
2012-01-01
Ionic liquid was used as extraction solvents and applied to the extraction of tannins from Galla chinensis in the simultaneous ultrasonic- and microwave-assisted extraction (UMAE) technique. Several parameters of UMAE were optimised, and the results were compared with of the conventional extraction techniques. Under optimal conditions, the content of tannins was 630.2 ± 12.1 mg g⁻¹. Compared with the conventional heat-reflux extraction, maceration extraction, regular ultrasound- and microwave-assisted extraction, the proposed approach exhibited higher efficiency (11.7-22.0% enhanced) and shorter extraction time (from 6 h to 1 min). The tannins were then identified by ultraperformance liquid chromatography tandem mass spectrometry. This study suggests that ionic liquid-based UMAE is an efficient, rapid, simple and green sample preparation technique.
Microwave-Assisted Extraction of Oleanolic Acid and Ursolic Acid from Ligustrum lucidum Ait
Xia, En-Qin; Wang, Bo-Wei; Xu, Xiang-Rong; Zhu, Li; Song, Yang; Li, Hua-Bin
2011-01-01
Oleanolic acid and ursolic acid are the main active components in fruit of Ligustrum lucidum Ait, and possess anticancer, antimutagenic, anti-inflammatory, antioxidative and antiprotozoal activities. In this study, microwave-assisted extraction of oleanolic acid and ursolic acid from Ligustrum lucidum was investigated with HPLC-photodiode array detection. Effects of several experimental parameters, such as type and concentration of extraction solvent, ratio of liquid to material, microwave power, extraction temperature and microwave time, on the extraction efficiencies of oleanolic acid and ursolic acid from Ligustrum lucidum were evaluated. The influence of experimental parameters on the extraction efficiency of ursolic acid was more significant than that of oleanolic acid (p < 0.05). The optimal extraction conditions were 80% ethanol aqueous solution, the ratio of material to liquid was 1:15, and extraction for 30 min at 70 °C under microwave irradiation of 500 W. Under optimal conditions, the yields of oleanolic acid and ursolic acid were 4.4 ± 0.20 mg/g and 5.8 ± 0.15 mg/g, respectively. The results obtained are helpful for the full utilization of Ligustrum lucidum, which also indicated that microwave-assisted extraction is a very useful method for extraction of oleanolic acid and ursolic acid from plant materials. PMID:21954361
Optimization of microwave-assisted extraction of flavonoids from young barley leaves
NASA Astrophysics Data System (ADS)
Gao, Tian; Zhang, Min; Fang, Zhongxiang; Zhong, Qifeng
2017-01-01
A central composite design combined with response surface methodology was utilized to optimise microwave-assisted extraction of flavonoids from young barley leaves. The results showed that using water as solvent, the optimum conditions of microwave-assisted extraction were extracted twice at 1.27 W g-1 microwave power and liquid-solid ratio 34.02 ml g-1 for 11.12 min. The maximum extraction yield of flavonoids (rutin equivalents) was 80.78±0.52%. Compared with conventional extraction method, the microwave-assisted extraction was more efficient as the extraction time was only 6.18% of conventional extraction, but the extraction yield of flavonoids was increased by 5.47%. The main flavonoid components from the young barley leaf extract were probably 33.36% of isoorientin-7-O-glueoside and 54.17% of isovitexin-7-O-glucoside, based on the HPLC-MS analysis. The barley leaf extract exhibited strong reducing power as well as the DPPH radical scavenging capacity.
[Determination of benzo(alpha)pyrene in food with microwave-assisted extraction].
Zhou, Na; Luo, He-Dong; Li, Na; Li, Yao-Qun
2014-03-01
Coupling derivative technique and constant-energy synchronous fluorescence scanning technique, a method of determining benzo[alpha] pyrene in foods by second derivative constant-energy synchronous spectrofluorimetry after microwave-assisted treatment of samples was established using domestic microwave oven. The main factors of influencing the efficiency of microwave extraction were discussed, including the extraction solvent types and amounts, the microwave extraction time, microwave radiation power and cooling time. And the comparison with ultrasonic extraction was made. Low-fat food samples, which were just microwave-extracted with mixed-solvents, could be analyzed immediately by the spectrofluorimetric technique. For high-fat food samples, microwave-assisted saponification and extraction were made at the same time, thus simplifying operation steps and reducing sample analysis time. So the whole sample analysis process could be completed within one hour. This method was simple, rapid and inexpensive. In consequence, it was applied to determine benzo(a)pyrene in food with good reproducibility and the recoveries of benzo(alpha) pyrene ranged from 90.0% to 105.0% for the low fat samples and 83.3% to 94.6% for high-fat samples.
Atkins, Tonya M; Louie, Angelique Y; Kauzlarich, Susan M
2012-07-27
Silicon nanoparticles can be considered a green material, especially when prepared via a microwave-assisted method without the use of highly reactive reducing agents or hydrofluoric acid. A simple solution synthesis of hydrogen-terminated Si- and Mn-doped Si nanoparticles via microwave-assisted synthesis is demonstrated. The reaction of the Zintl salt, Na(4)Si(4), or Mn-doped Na(4)Si(4), Na(4)Si(4(Mn)), with ammonium bromide, NH(4)Br, produces small dispersible nanoparticles along with larger particles that precipitate. Allylamine and 1-amino-10-undecene were reacted with the hydrogen-terminated Si nanoparticles to provide water solubility and stability. A one-pot, single-reaction process and a one-pot, two-step reaction process were investigated. Details of the microwave-assisted process are provided, with the optimal synthesis being the one-pot, two-step reaction procedure and a total time of about 15 min. The nanoparticles were characterized by transmission electron microscopy (TEM), x-ray diffraction, and fluorescence spectroscopies. The microwave-assisted method reliably produces a narrow size distribution of Si nanoparticles in solution.
Microwave-assisted efficient conjugation of nanodiamond and paclitaxel.
Hsieh, Yi-Han; Liu, Kuang-Kai; Sulake, Rohidas S; Chao, Jui-I; Chen, Chinpiao
2015-01-01
Nanodiamond has recently received considerable attention due to the various possible applications in medical field such as drug delivery and bio-labeling. For this purpose suitable and effective surface functionalization of the diamond material are required. A versatile and reproducible surface modification method of nanoscale diamond is essential for functionalization. We introduce the input of microwave energy to assist the functionalization of nanodiamond surface. The feasibility of such a process is illustrated by comparing the biological assay of ND-paclitaxel synthesized by conventional and microwave irradiating. Using a microwave we manage to have approximately doubled grafted molecules per nanoparticle of nanodiamond. Copyright © 2015 Elsevier Ltd. All rights reserved.
Presset, Marc; Coquerel, Yoann; Rodriguez, Jean
2009-12-17
The microwave-assisted Wolff rearrangement of cyclic 2-diazo-1,3-diketones in the presence of aldehydes and primary amines provides a straightforward access to functionalized bi- and pentacyclic oxazinones following an unprecedented three-component domino reaction. Alternatively, in the presence of acyl azides, an efficient Curtius/Wolff/hetero-Diels-Alder sequence allows the direct synthesis of oxazindiones.
Dynamic dielectric properties of a wood liquefaction system using polyethylene glycol and glycerol
Mengchao Zhou; Thomas L. Eberhardt; Bo Cai; Chung-Yun Hse; Hui Pan
2017-01-01
Microwave-assisted liquefaction has shown potential for rapid thermal processing of lignocellulosic biomass. The efficiency of microwave heating depends largely on the dielectric properties of the materials being heated. The objective of this study was to investigate the dynamic interactions between microwave energy and the reaction system during the liquefaction of a...
Hui Pan; Zhifeng Zheng; Chung Y. Hse
2011-01-01
Microwave radiation was used as the heating source in southern pine wood liquefaction with PEG/glycerin binary solvent. It was found that microwave heating was more efficient than conventional oil bath heating for wood liquefaction. The wood residue content of the H2SO4 catalyzed liquefied wood dropped to zero within 5 min with microwave heating. The resulting...
Hui Pan; Zhifeng Zheng; Chung-Yun Hse
2012-01-01
Microwave radiation was used as the heating source in southern pine wood liquefaction with PEG/ glycerin binary solvent. It was found that microwave heating was more efficient than conventional oil bath heating for wood liquefaction. The wood residue content of the H2SO4 catalyzed liquefied wood dropped to zero within 5 min with microwave heating. The resulting...
AN EXPEDITIOUS SOLVENT-FREE ROUTE TO IONIC LIQUIDS USING MICROWAVES
A microwave-assisted preparation of a series of ambient temperature ionic liquids, 1-alkyl-3-methyl imidazolium (IMIM) halides, that proceeds via efficient raction of 1-methyl imidazole with alkylhalides/terminal dihalides under solvent-free conditions, is described.
Shah, Rohan M; Eldridge, Daniel S; Palombo, Enzo A; Harding, Ian H
2017-08-01
The microwave-assisted production of solid lipid nanoparticles (SLNs) is a novel technique reported recently by our group. The small particle size, solid nature and use of physiologically well-tolerated lipid materials make SLNs an interesting and potentially efficacious drug carrier. The main purpose of this research work was to investigate the suitability of microwave-assisted microemulsion technique to encapsulate selected ionic drug substances such as miconazole nitrate and econazole nitrate. The microwave-produced SLNs had a small size (250-300nm), low polydispersity (<0.20), high encapsulation efficiency (72-87%) and loading capacity (3.6-4.3%). Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies suggested reduced crystallinity of stearic acid in SLNs. The release studies demonstrated a slow, sustained but incomplete release of drugs (<60% after 24h) from microwave-produced SLNs. Data fitting of drug release data revealed that the release of both drugs from microwave-produced SLNs was governed by non-Fickian diffusion indicating that drug release was both diffusion- and dissolution- controlled. Anti-fungal efficacy of drug-loaded SLNs was evaluated on C. albicans. The cell viability studies showed that cytotoxicity of SLNs was concentration-dependent. These encouraging results suggest that the microwave-assisted procedure is suitable for encapsulation of ionic drugs and that microwave-produced SLNs can act as potential carriers of antifungal drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
Selective leaching of Zn from spent alkaline batteries using environmentally friendly approaches.
Maryam Sadeghi, S; Vanpeteghem, Guillaumme; Neto, Isabel F F; Soares, Helena M V M
2017-02-01
The main aim of this work was to evaluate the possibility of using microwave or ultrasound to assist the efficient and selective leaching of Zn from spent alkaline batteries and compare the results with those obtained using the conventional method. Two different strategies were applied: acid leaching of a washed residue and alkaline leaching of the original residue. In both (acid and alkaline) approaches, the use of microwave- or ultrasound-assisted leaching increased the extraction of Zn compared with the best results obtained using conventional leaching [acid leaching (1.5mol/L H 2 SO 4 , 3h, 80°C), 90% of Zn extracted; alkaline leaching (6mol/L NaOH, 3h, 80°C), 42% of Zn extracted]. With acid leaching, 94% of the Zn was extracted using microwave-assisted leaching (1 cycle, 30s, 1mol/L H 2 SO 4 ), and 92% of the Zn was extracted using ultrasound-assisted leaching (2min, 0.1p, 20% amplitude, 1mol/L H 2 SO 4 ). Ultrasound-assisted leaching resulted in a more selective (Zn/Mn ratio of 5.1) Zn extraction than microwave-assisted leaching (Zn/Mn ratio of 3.5); both processes generated a concentrated Zn solution (⩾18.7g/L) with a purity (83.3% and 77.7%, respectively) that was suitable for electrowinning. With alkaline leaching, microwave- (1 cycle, 3 min, 4mol/L NaOH) and ultrasound-assisted (14min, 0.1p, 20% amplitude, 4mol/L NaOH) leaching extracted about 80% of the Zn and less than 0.01% of the Mn, which resulted in lesser concentrated Zn solutions (approximately 16.5g/L) but with high purity (>99.5%) that was suitable for the recovery of Zn by precipitation. The microwave- and ultrasound-assisted leaching strategies used in this work proved to be efficient and environmentally-friendly approaches for the extraction of Zn from spent alkaline residues since a concentrated Zn solution with adequate purity for subsequent Zn recovery was obtained using significantly decreased leaching times and concentrations of chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Analysis of triterpenoids in Ganoderma lucidum by microwave-assisted continuous extraction].
Lu, Yan-fang; An, Jing; Jiang, Ye
2015-04-01
For further improving the extraction efficiency of microwave extraction, a microwave-assisted contijuous extraction (MACE) device has been designed and utilized. By contrasting with the traditional methods, the characteristics and extraction efficiency of MACE has also been studied. The method was validated by the analysis of the triterpenoids in Ganoderma lucidum. The extraction conditions of MACE were: using 95% ethanol as solvent, microwave power 200 W and radiation time 14.5 min (5 cycles). The extraction results were subsequently compared with traditional heat reflux extraction ( HRE) , soxhlet extraction (SE), ultrasonic extraction ( UE) as well as the conventional microwave extraction (ME). For triterpenoids, the two methods based on the microwaves (ME and MACE) were in general capable of finishing the extraction in 10, 14.5 min, respectively, while other methods should consume 60 min and even more than 100 min. Additionally, ME can produce comparable extraction results as the classical HRE and higher extraction yield than both SE and UE, however, notably lower extraction yield than MASE. More importantly, the purity of the crud extract by MACE is far better than the other methods. MACE can effectively combine the advantages of microwave extraction and soxhlet extraction, thus enabling a more complete extraction of the analytes of TCMs in comparison with ME. And therefore makes the analytic result more accurate. It provides a novel, high efficient, rapid and reliable pretreatment technique for the analysis of TCMs, and it could potentially be extended to ingredient preparation or extracting techniques of TCMs.
Guo, Yufei; Li, Jing; Yuan, Yupeng; Li, Lu; Zhang, Mingyi; Zhou, Chenyan; Lin, Zhiqun
2016-11-14
Highly crystalline graphitic carbon nitride (g-C 3 N 4 ) with decreased structural imperfections benefits from the suppression of electron-hole recombination, which enhances its hydrogen generation activity. However, producing such g-C 3 N 4 materials by conventional heating in an electric furnace has proven challenging. Herein, we report on the synthesis of high-quality g-C 3 N 4 with reduced structural defects by judiciously combining the implementation of melamine-cyanuric acid (MCA) supramolecular aggregates and microwave-assisted thermolysis. The g-C 3 N 4 material produced after optimizing the microwave reaction time can effectively generate H 2 under visible-light irradiation. The highest H 2 evolution rate achieved was 40.5 μmol h -1 , which is two times higher than that of a g-C 3 N 4 sample prepared by thermal polycondensation of the same supramolecular aggregates in an electric furnace. The microwave-assisted thermolysis strategy is simple, rapid, and robust, thereby providing a promising route for the synthesis of high-efficiency g-C 3 N 4 photocatalysts. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A practical, rapid and efficient microwave (MW) promoted synthesis of various azides, thiocyanates and sulfones, is described in aqueous medium. This general and expeditious MW-enhanced nucleophilic substitution approach uses easily accessible starting materials such as halides o...
Bagley, Mark C; Baashen, Mohammed; Chuckowree, Irina; Dwyer, Jessica E; Kipling, David; Davis, Terence
2015-06-03
Microwave-assisted Suzuki-Miyaura cross-coupling reactions have been employed towards the synthesis of three different MAPKAPK2 (MK2) inhibitors to study accelerated aging in Werner syndrome (WS) cells, including the cross-coupling of a 2-chloroquinoline with a 3-pyridinylboronic acid, the coupling of an aryl bromide with an indolylboronic acid and the reaction of a 3-amino-4-bromopyrazole with 4-carbamoylphenylboronic acid. In all of these processes, the Suzuki-Miyaura reaction was fast and relatively efficient using a palladium catalyst under microwave irradiation. The process was incorporated into a rapid 3-step microwave-assisted method for the synthesis of a MK2 inhibitor involving 3-aminopyrazole formation, pyrazole C-4 bromination using N-bromosuccinimide (NBS), and Suzuki-Miyaura cross-coupling of the pyrazolyl bromide with 4-carbamoylphenylboronic acid to give the target 4-arylpyrazole in 35% overall yield, suitable for study in WS cells.
An atom-economic solvent-free synthesis of amides by the Ritter reaction of alcohols and nitriles under microwave irradiation is reported. This green protocol is catalyzed by solid supported Nafion®NR50 with improved efficiency and reduced waste production.
An efficient and clean synthesis of alkyl azides using microwave (MW) radiation is described in aqueous medium by reacting alkyl halides or tosylates with alkali azides. This general and expeditious MW-enhanced approach to nucleophilic substitution reactions is applicable to the ...
NASA Astrophysics Data System (ADS)
Makama, A. B.; Salmiaton, A.; Saion, E. B.; Choong, T. S. Y.; Abdullah, N.
2016-07-01
Porous ZnO/SnS heterojunctions were successfully synthesized via microwave-assisted heating of aqueous solutions containing different amounts of SnS precursors (SnCl2 and Na2S) in the presence of fixed amount of ZnCO3 nanoparticles. The experimental results revealed that the heterojunctions exhibited much higher visible light-driven photocatalytic activity for the degradation of the ciprofloxacin than pure SnS nanocrystals. The photocatalytic degradation efficiency (1-Ct/C0) of the pollutant for the most active heterogeneous nanostructure is about four times more efficient than pure SnS. The enhanced photocatalytic efficiency is ascribed to the synergic effect of high photon absorption and reduction in the recombination of electrons and holes because of efficient separation and electron transfer from the SnS to ZnO nanoparticles.
Biodiesel Production from Chlorella protothecoides Oil by Microwave-Assisted Transesterification
Gülyurt, Mustafa Ömer; Özçimen, Didem; İnan, Benan
2016-01-01
In this study, biodiesel production from microalgal oil by microwave-assisted transesterification was carried out to investigate its efficiency. Transesterification reactions were performed by using Chlorella protothecoides oil as feedstock, methanol, and potassium hydroxide as the catalyst. Methanol:oil ratio, reaction time and catalyst:oil ratio were investigated as process parameters affected methyl ester yield. 9:1 methanol/oil molar ratio, 1.5% KOH catalyst/oil ratio and 10 min were optimum values for the highest fatty acid methyl ester yield. PMID:27110772
Biodiesel Production from Chlorella protothecoides Oil by Microwave-Assisted Transesterification.
Gülyurt, Mustafa Ömer; Özçimen, Didem; İnan, Benan
2016-04-22
In this study, biodiesel production from microalgal oil by microwave-assisted transesterification was carried out to investigate its efficiency. Transesterification reactions were performed by using Chlorella protothecoides oil as feedstock, methanol, and potassium hydroxide as the catalyst. Methanol:oil ratio, reaction time and catalyst:oil ratio were investigated as process parameters affected methyl ester yield. 9:1 methanol/oil molar ratio, 1.5% KOH catalyst/oil ratio and 10 min were optimum values for the highest fatty acid methyl ester yield.
NASA Astrophysics Data System (ADS)
Akashi, Haruaki; Sasaki, K.; Yoshinaga, T.
2011-10-01
Recently, plasma-assisted combustion has been focused on for achieving more efficient combustion way of fossil fuels, reducing pollutants and so on. Shinohara et al has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power without increase of gas temperature. This suggests that electrons heated by microwave electric field assist the combustion. They also measured emission from 2nd Positive Band System (2nd PBS) of nitrogen during the irradiation. To clarify this mechanism, electron behavior under microwave power should be examined. To obtain electron transport parameters, electron Monte Carlo simulations in methane and air mixture gas have been done. A simple model has been developed to simulate inside the flame. To make this model simple, some assumptions are made. The electrons diffuse from the combustion plasma region. And the electrons quickly reach their equilibrium state. And it is found that the simulated emission from 2nd PBS agrees with the experimental result. Recently, plasma-assisted combustion has been focused on for achieving more efficient combustion way of fossil fuels, reducing pollutants and so on. Shinohara et al has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power without increase of gas temperature. This suggests that electrons heated by microwave electric field assist the combustion. They also measured emission from 2nd Positive Band System (2nd PBS) of nitrogen during the irradiation. To clarify this mechanism, electron behavior under microwave power should be examined. To obtain electron transport parameters, electron Monte Carlo simulations in methane and air mixture gas have been done. A simple model has been developed to simulate inside the flame. To make this model simple, some assumptions are made. The electrons diffuse from the combustion plasma region. And the electrons quickly reach their equilibrium state. And it is found that the simulated emission from 2nd PBS agrees with the experimental result. This work was supported by KAKENHI (22340170).
Choi, Yujin; Jo, Seongho; Chae, Ari; Kim, Young Kwang; Park, Jeong Eun; Lim, Donggun; Park, Sung Young; In, Insik
2017-08-23
Highly fluorescent and amphiphilic carbon quantum dots (CQDs) were prepared by microwave-assisted pyrolysis of citric acid and 4,7,10-trioxa-1,13-tridecanediamine (TTDDA), which functioned as an A 3 and B 2 polyamidation type monomer set. Gram quantities of fluorescent CQDs were easily obtained within 5 min of microwave heating using a household microwave oven. Because of the dual role of TTDDA, both as a constituting monomer and as a surface passivation agent, TTDDA-based CQDs showed a high fluorescence quantum yield of 29% and amphiphilic solubility in various polar and nonpolar solvents. These properties enable the wide application of TTDDA-based CQDs as nontoxic bioimaging agents, nanofillers for polymer composites, and down-converting layers for enhancing the efficiency of Si solar cells.
Lautié, Emmanuelle; Rasse, Catherine; Rozet, Eric; Mourgues, Claire; Vanhelleputte, Jean-Paul; Quetin-Leclercq, Joëlle
2013-02-01
The aim of this study was to find if fast microwave-assisted extraction could be an alternative to the conventional Soxhlet extraction for the quantification of rotenone in yam bean seeds by SPE and HPLC-UV. For this purpose, an experimental design was used to determine the optimal conditions of the microwave extraction. Then the values of the quantification on three accessions from two different species of yam bean seeds were compared using the two different kinds of extraction. A microwave extraction of 11 min at 55°C using methanol/dichloromethane (50:50) allowed rotenone extraction either equivalently or more efficiently than the 8-h-Soxhlet extraction method and was less sensitive to moisture content. The selectivity, precision, trueness, accuracy, and limit of quantification of the method with microwave extraction were also demonstrated. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter
Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian
2017-01-01
Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment. PMID:28067332
Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter
NASA Astrophysics Data System (ADS)
Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian
2017-01-01
Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.
Moradi, Sara; Fazlali, Alireza; Hamedi, Hamid
Background: Hydro-distillation (HD) method is a traditional technique which is used in most industrial companies. Microwave-assisted Hydro-distillation (MAHD) is an advanced HD technique utilizing a microwave oven in the extraction process. Methods: In this research, MAHD of essential oils from the aerial parts (leaves) of rosemary (Rosmarinus officinalis L.) was studied and the results were compared with those of the conventional HD in terms of extraction time, extraction efficiency, chemical composition, quality of the essential oils and cost of the operation. Results: Microwave hydro-distillation was superior in terms of saving energy and extraction time (30 min, compared to 90 min in HD). Chromatography was used for quantity analysis of the essential oils composition. Quality of essential oil improved in MAHD method due to an increase of 17% in oxygenated compounds. Conclusion: Consequently, microwave hydro-distillation can be used as a substitute of traditional hydro-distillation. PMID:29296263
Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter.
Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian
2017-01-09
Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.
Moradi, Sara; Fazlali, Alireza; Hamedi, Hamid
2018-01-01
Hydro-distillation (HD) method is a traditional technique which is used in most industrial companies. Microwave-assisted Hydro-distillation (MAHD) is an advanced HD technique utilizing a microwave oven in the extraction process. In this research, MAHD of essential oils from the aerial parts (leaves) of rosemary ( Rosmarinus officinalis L. ) was studied and the results were compared with those of the conventional HD in terms of extraction time, extraction efficiency, chemical composition, quality of the essential oils and cost of the operation. Microwave hydro-distillation was superior in terms of saving energy and extraction time (30 min , compared to 90 min in HD). Chromatography was used for quantity analysis of the essential oils composition. Quality of essential oil improved in MAHD method due to an increase of 17% in oxygenated compounds. Consequently, microwave hydro-distillation can be used as a substitute of traditional hydro-distillation.
Ai, Zhi-hui; Jiang, Jun-qing; Yang, Peng; Zhou, Tao; Lu, Xiao-hua
2004-07-01
A microwave assisted UV electrodeless discharge lamp system (MW/UV) was used for photo-degradation of 4CP simulated wastewater. In order to evaluate the degradation efficiency of 4CP, UV spectrophotometry and ion chromatography were used for determination of 4CP and Cl- respectively. The degradation rate in MW/UV system was higher than that in the UV system within 120min, which were 52.40% and 21.56% respectively. The degradation efficiency was improved by increasing pH value of the solution, aerating O2 gas, enhancing light intensity, or adding H2O2 oxidant. The degradation of 4CP under MW/UV accords with the first order kinetics equation.
Akhbari, Maryam; Masoum, Saeed; Aghababaei, Fahimeh; Hamedi, Sepideh
2018-06-01
In this study, the efficiencies of conventional hydro-distillation and novel microwave hydro-distillation methods in extraction of essential oil from Rosemary officinalis leaves have been compared. In order to attain the best yield and also highest quality of the essential oil in the microwave assisted method, the optimal values of operating parameters such as extraction time, microwave irradiation power and water volume to plant mass ratio were investigated using central composite design under response surface methodology. Optimal conditions for obtaining the maximum extraction yield in the microwave assisted method were predicted as follows: extraction time of 85 min, microwave power of 888 W, and water volume to plant mass ratio of 0.5 ml/g. The extraction yield at these predicted conditions was computed as 0.7756%. The qualities of the obtained essential oils under designed experiments were optimized based on total contents of four major compounds (α-pinene, 1,8-cineole, camphor and verbenone) which determined by gas chromatography equipped with mass spectroscopy (GC-MS). The highest essential oil quality (55.87%) was obtained at extraction time of 68 min; microwave irradiation power of 700 W; and water volume to plant mass ratio of zero.
Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; ...
2012-01-01
Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ , microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less
Microwave assisted synthesis of bridgehead alkenes.
Cleary, Leah; Yoo, Hoseong; Shea, Kenneth J
2011-04-01
A new, concise method to synthesize triene precursors for the type 2 intramolecular Diels-Alder reaction has been developed. Microwave irradiation of the trienes provides a convenient method for the synthesis of bridgehead alkenes. Higher yields, shorter reaction times, and lower reaction temperatures provide a general and efficient route to this interesting class of molecules.
Microwave Assisted Synthesis of Bridgehead Alkenes
Cleary, Leah; Yoo, Hoseong; Shea, Kenneth J.
2011-01-01
A new, concise method to synthesize triene precursors for the type 2 intramolecular Diels–Alder reaction has been developed. Microwave irradiation of the trienes provides a convenient method for the synthesis of bridgehead alkenes. Higher yields, shorter reaction times and lower reaction temperatures provide a general and efficient route to this interesting class of molecules. PMID:21384818
Bagley, Mark C.; Baashen, Mohammed; Chuckowree, Irina; Dwyer, Jessica E.; Kipling, David; Davis, Terence
2015-01-01
Microwave-assisted Suzuki-Miyaura cross-coupling reactions have been employed towards the synthesis of three different MAPKAPK2 (MK2) inhibitors to study accelerated aging in Werner syndrome (WS) cells, including the cross-coupling of a 2-chloroquinoline with a 3-pyridinylboronic acid, the coupling of an aryl bromide with an indolylboronic acid and the reaction of a 3-amino-4-bromopyrazole with 4-carbamoylphenylboronic acid. In all of these processes, the Suzuki-Miyaura reaction was fast and relatively efficient using a palladium catalyst under microwave irradiation. The process was incorporated into a rapid 3-step microwave-assisted method for the synthesis of a MK2 inhibitor involving 3-aminopyrazole formation, pyrazole C-4 bromination using N-bromosuccinimide (NBS), and Suzuki-Miyaura cross-coupling of the pyrazolyl bromide with 4-carbamoylphenylboronic acid to give the target 4-arylpyrazole in 35% overall yield, suitable for study in WS cells. PMID:26046488
Morgan, Hervan Marion; Bu, Quan; Liang, Jianghui; Liu, Yujing; Mao, Hanping; Shi, Aiping; Lei, Hanwu; Ruan, Roger
2017-04-01
Lignocellulosic biomass is an abundant renewable resource and can be efficiently converted into bio-energy by a bio-refinery. From the various techniques available for biomass thermo-chemical conversion; microwave assisted pyrolysis (MAP) seems to be the very promising. The principles of microwave technology were reviewed and the parameters for the efficient production of bio-oil using microwave technology were summarized. Microwave technology by itself cannot efficiently produce high quality bio-oil products, catalysts are used to improve the reaction conditions and selectivity for valued products during MAP. The catalysts used to optimize MAP are revised in the development of this article. The origins for bio-oils that are phenol rich or hydrocarbon rich are reviewed and their experimental results were summarized. The kinetics of MAP is discussed briefly in the development of the article. Future prospects and scientific development of MAP are also considered in the development of this article. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mishra, Shikha; Aeri, Vidhu
2016-07-01
Lyoniside is the major constituent of Saraca asoca Linn. (Caesalpiniaceae) bark. There is an immediate need to develop an efficient method to isolate its chemical constituents, since it is a therapeutically important plant. A rapid extraction method for lyoniside based on microwave-assisted extraction of S. asoca bark was developed and optimized using response surface methodology (RSM). Lyoniside was analyzed and quantified by high-performance liquid chromatography coupled with ultraviolet detection (HPLC-UV). The extraction solvent ratio (%), material solvent ratio (g/ml) and extraction time (min) were optimized using Box-Behnken design (BBD) to obtain the highest extraction efficiency. The optimal conditions were the use of 1:30 material solvent ratio with 70:30 mixture of methanol:water for 10 min duration. The optimized microwave-assisted extraction yielded 9.4 mg/g of lyoniside content in comparison to reflux extraction under identical conditions which yielded 4.2 mg/g of lyoniside content. Under optimum conditions, the experimental values agreed closely with the predicted values. The analysis of variance (ANOVA) indicated a high goodness-of-fit model and the success of the RSM method for optimizing lyoniside extraction from the bark of S. asoca. All the three variables significantly affected the lyoniside content. Increased polarity of solvent medium enhances the lyoniside yield. The present study shows the applicability of microwave-assisted extraction in extraction of lyoniside from S. asoca bark.
Preparation of cashew gum-based flocculants by microwave- and ultrasound-assisted methods.
Klein, Jalma Maria; de Lima, Vanessa Silva; da Feira, José Manoel Couto; Camassola, Marli; Brandalise, Rosmary Nichele; Forte, Maria Madalena de Camargo
2018-02-01
In this work, copolymers based on cashew gum (CG) grafted with polyacrylamide (PAM) were synthesized by microwave- and ultrasound-assisted methods, using potassium persulfate as an initiator in aqueous medium. The graft copolymers were characterized by Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and thermogravimetric analysis. The efficiency of the graft copolymers (CG-g-PAM) in flocculation of a kaolin suspension was studied. Results indicated that the graft copolymers synthesized by ultrasound energy had better flocculation properties than the ones synthesized by the microwave-assisted method. The biodegradability of the graft copolymers was tested by inoculation with the basidiomycete Trametes villosa in liquid medium. The higher formation of biomass than that observed with the commercial flocculant Flonex-9045 indicated that the graft copolymer was accessible to enzymatic attack. Copyright © 2017 Elsevier B.V. All rights reserved.
Fast Microwave-assisted Pretreatment for Bioconversion of Sawdust Lignocellulose to Glucose
NASA Astrophysics Data System (ADS)
Nyoman Sudiana, I.; Mitsudo, Seitaro; Endang Susilowati, Prima; Ketut Sutiari, Desak; Widana Arsana, Made; Zamrun Firihu, Muhammad; Ode Ngkoimani, La; Aba, La; Sahaluddin Hasan, Erzam; Cahyono, Edi; Sabchevski, Svilen; Aripin, Haji; Gde Suastika, Komang
2017-05-01
A preliminary study of application microwave energy for bioconversion of cellulosic sawdust to glucose was performed. The effects of the microwave were compared to those of the conventional method for each solvent. It was expected that a broader mechanism responsible for the microwave effects on the chemical processes, especially the pretreatment on the hydrolysis of cellulose can be explained. Reagents used were an acid (HCl), an alkali (NaOH), and distilled water (H2O). The experimental results showed that the microwave-assisted pretreatment on the lignocellulosic sawdust faster than by using conventional heating (hotplate). Moreover by using microwave a higher glucose content compared to the conventional method was found. With microwave during hydrolisis, high temperatures and high reagent concentrations were not required. Pretreatment with a microwave at 800 Watt and solvent NaOH 22,50 mg/mL at a temperature of 120°c appeared to be most efficient found in this experiment. These results indicate that microwave effective for bioconversion of cellulosic sawdust to glucose. The microstructure evaluation by using SEM and XRD should be performed to understand more detail the effect especially on their cellulosic structural evolution.
Ding, Xueqin; Li, Li; Wang, Yuzhi; Chen, Jing; Huang, Yanhua; Xu, Kaijia
2014-12-01
A series of novel tetramethylguanidinium ionic liquids and hexaalkylguanidinium ionic liquids have been synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids were confirmed by (1)H NMR spectroscopy and mass spectrometry. A green guanidinium ionic liquid based microwave-assisted extraction method has been developed with these guanidinium ionic liquids for the effective extraction of Praeruptorin A from Radix peucedani. After extraction, reversed-phase high-performance liquid chromatography with UV detection was employed for the analysis of Praeruptorin A. Several significant operating parameters were systematically optimized by single-factor and L9 (3(4)) orthogonal array experiments. The amount of Praeruptorin A extracted by [1,1,3,3-tetramethylguanidine]CH2CH(OH)COOH is the highest, reaching 11.05 ± 0.13 mg/g. Guanidinium ionic liquid based microwave-assisted extraction presents unique advantages in Praeruptorin A extraction compared with guanidinium ionic liquid based maceration extraction, guanidinium ionic liquid based heat reflux extraction and guanidinium ionic liquid based ultrasound-assisted extraction. The precision, stability, and repeatability of the process were investigated. The mechanisms of guanidinium ionic liquid based microwave-assisted extraction were researched by scanning electron microscopy and IR spectroscopy. All the results show that guanidinium ionic liquid based microwave-assisted extraction has a huge potential in the extraction of bioactive compounds from complex samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microwave-Assisted Extraction of Fucoidan from Marine Algae.
Mussatto, Solange I
2015-01-01
Microwave-assisted extraction (MAE) is a technique that can be applied to extract compounds from different natural resources. In this chapter, the use of this technique to extract fucoidan from marine algae is described. The method involves a closed MAE system, ultrapure water as extraction solvent, and suitable conditions of time, pressure, and algal biomass/water ratio. By using this procedure under the specified conditions, the penetration of the electromagnetic waves into the material structure occurs in an efficient manner, generating a distributed heat source that promotes the fucoidan extraction from the algal biomass.
Li, Chunying; Lu, Zhicheng; Zhao, Chunjian; Yang, Lei; Fu, Yujie; Shi, Kunming; He, Xin; Li, Zhao; Zu, Yuangang
2015-01-01
We evaluated an ionic-liquid-based ultrasound/microwave-assisted extraction method for the extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from etiolated maize seedlings. We performed single-factor and central composite rotatable design experiments to optimize the most important parameters influencing this technique. The best results were obtained using 1.00 M 1-octyl-3-methylimidazolium bromide as the extraction solvent, a 50°C extraction temperature, a 20:1 liquid/solid ratio (mL/g), a 21 min treatment time, 590 W microwave power, and 50 W fixed ultrasonic power. We performed a comparison between ionic-liquid-based ultrasound/microwave-assisted extraction and conventional homogenized extraction. Extraction yields of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one by the ionic-liquid-based ultrasound/microwave-assisted extraction method were 1.392 ± 0.051 and 0.205 ± 0.008 mg/g, respectively, which were correspondingly 1.46- and 1.32-fold higher than those obtained by conventional homogenized extraction. All the results show that the ionic-liquid-based ultrasound/microwave-assisted extraction method is therefore an efficient and credible method for the extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from maize seedlings. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Samavati, Vahid
2013-10-01
Microwave-assisted extraction (MAE) technique was employed to extract the hydrocolloid from okra pods (OPH). The optimal conditions for microwave-assisted extraction of OPH were determined by response surface methodology. A central composite rotatable design (CCRD) was applied to evaluate the effects of three independent variables (microwave power (X1: 100-500 W), extraction time (X2: 30-90 min), and extraction temperature (X3: 40-90 °C)) on the extraction yield of OPH. The correlation analysis of the mathematical-regression model indicated that quadratic polynomial model could be employed to optimize the microwave extraction of OPH. The optimal conditions to obtain the highest recovery of OPH (14.911±0.27%) were as follows: microwave power, 395.56 W; extraction time, 67.11 min and extraction temperature, 73.33 °C. Under these optimal conditions, the experimental values agreed with the predicted ones by analysis of variance. It indicated high fitness of the model used and the success of response surface methodology for optimizing OPH extraction. After method development, the DPPH radical scavenging activity of the OPH was evaluated. MAE showed obvious advantages in terms of high extraction efficiency and radical scavenging activity of extract within the shorter extraction time. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, Wang; Qiu, Ling-Guang; Yuan, Yu-Peng; Xie, An-Jian; Shen, Yu-Hua; Zhu, Jun-Fa
2012-06-30
Covalent organic frameworks (COFs) are a new generation of porous materials constructed from light elements linked by strong covalent bonds. Herein we present rapid preparation of highly fluorescent nanoparticles of a new type of COF, i.e. melamine-based porous polymeric network SNW-1, by a microwave-assisted synthesis route. Although the synthesis of SNW-1 has to be carried out at 180°C for 3d under conventional reflux conditions, SNW-1 nanoparticles could be obtained in 6h by using such a microwave-assisted method. The results obtained have clearly demonstrated that microwave-assisted synthesis is a simple yet highly efficient approach to nanoscale COFs or other porous polymeric materials. Remarkably, the as-synthesized SNW-1 nanoparticles exhibit extremely high sensitivity and selectivity, as well as fast response to nitroaromatic explosives such as 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitrophenylmethylnitramine (Tetryl) and picric acid (PA) without interference by common organic solvents, which is due to the nanoscaled size and unique hierarchical porosity of such fluorescence-based sensing material. Copyright © 2012 Elsevier B.V. All rights reserved.
Fajar, N M; Carro, A M; Lorenzo, R A; Fernandez, F; Cela, R
2008-08-01
The efficiency of microwave-assisted extraction with saponification (MAES) for the determination of seven polybrominated flame retardants (polybrominated biphenyls, PBBs; and polybrominated diphenyl ethers, PBDEs) in aquaculture samples is described and compared with microwave-assisted extraction (MAE). Chemometric techniques based on experimental designs and desirability functions were used for simultaneous optimization of the operational parameters used in both MAES and MAE processes. Application of MAES to this group of contaminants in aquaculture samples, which had not been previously applied to this type of analytes, was shown to be superior to MAE in terms of extraction efficiency, extraction time and lipid content extracted from complex matrices (0.7% as against 18.0% for MAE extracts). PBBs and PBDEs were determined by gas chromatography with micro-electron capture detection (GC-muECD). The quantification limits for the analytes were 40-750 pg g(-1) (except for BB-15, which was 1.43 ng g(-1)). Precision for MAES-GC-muECD (%RSD < 11%) was significantly better than for MAE-GC-muECD (%RSD < 20%). The accuracy of both optimized methods was satisfactorily demonstrated by analysis of appropriate certified reference material (CRM), WMF-01.
Microwave-induced biomimetic approach for hydroxyapatite coatings of chitosan scaffolds.
Kaynak Bayrak, Gökçe; Demirtaş, T Tolga; Gümüşderelioğlu, Menemşe
2017-02-10
Simulated body fluid (SBF) can form calcium phosphates on osteoinductive materials, so it is widely used for coating of bone scaffolds to mimic natural extracellular matrix (ECM). However, difficulties of bulk coating in 3D scaffolds and the necessity of long process times are the common problems for coating with SBF. In the present study, a microwave-assisted process was developed for rapid and internal coating of chitosan scaffolds. The scaffolds were fabricated as superporous hydrogel (SPH) by combining microwave irradiation and gas foaming methods. Then, they were immersed into 10x SBF-like solution and homogenous bone-like hydroxyapatite (HA) coating was achieved by microwave treatment at 600W without the need of any nucleating agent. Cell culture studies with MC3T3-E1 preosteoblasts showed that microwave-assisted biomimetic HA coating process could be evaluated as an efficient and rapid method to obtain composite scaffolds for bone tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.
Microwave-assisted routes for rapid and efficient modification of layered perovskites.
Akbarian-Tefaghi, S; Wiley, J B
2018-02-27
Recent advances in exploiting microwave radiation in the topochemical modification of layered oxide perovskites are presented. Such methods work well for rapid bulk synthetic steps used in the production of novel inorganic-organic hybrids (protonation, grafting, intercalation, and in situ click reactions), exfoliation to produce dispersed nanosheets, and post-exfoliation processing to rapidly vary nanosheet surface groups. Compared to traditional methods that often take days, microwave methods can produce quality products in as little as 1-2 h.
Microwave-assisted extraction of oxymatrine from Sophora flavescens.
Xia, En-Qin; Cui, Bo; Xu, Xiang-Rong; Song, Yang; Ai, Xu-Xia; Li, Hua-Bin
2011-08-30
In this paper, microwave-assisted extraction (MAE) of oxymatrine from Sophora flavescens were studied by HPLC-photodiode array detection. Effects of several experimental parameters, such as concentration of extraction solvent, ratio of liquid to material, microwave power, extraction temperature, and extraction time on the extraction efficiencies of oxymatrine were evaluated. The optimal extraction conditions were 60% ethanol, a 20:1 (v/v) ratio of liquid to material and extraction for 10 min at 50 °C under 500 W microwave irradiation. Under the optimum conditions, the yield of oxymatrine was 14.37 mg/g. The crude extract obtained could be used as either a component of some complex traditional medicines or for further isolation and purification of bioactive compounds. The results, which indicated that MAE is a very useful tool for the extraction of important phytochemicals from plant materials, should prove helpful for the full utilization of Sophora flavescens.
Wang, Xiao-Yan; Ren, Hui
2018-03-21
Ginseng stems and leaves (GSAL) are abundant in ginsenosides compounds. For efficient utilization of GSAL and the enhancement of total ginsenosides (TG) compound yields in GSAL, TG from GSAL were extracted, using dynamic-microwave assisted extraction coupled with enzymatic hydrolysis (DMAE-EH) method. The extraction process has been simulated and its main influencing factors such as ethanol concentration, microwave temperature, microwave time and pump flow rate have been optimized by response surface methodology coupled with a Box-Behnken design(BBD). The experimental results indicated that optimal extraction conditions of TG from GSAL were as follows: ethanol concentration of 75%, microwave temperature of 60°C, microwave time of 20 min and pump flow rate of 38 r/min. After experimental verification, the experimental yields of TG was 60.62 ± 0.85 mg g -1 , which were well agreement with the predicted by the model. In general, the present results demonstrated that DMAE-EH method was successfully used to extract total ginsenosides in GSAL.
Karami, Zohreh; Emam-Djomeh, Zahra; Mirzaee, Habib Allah; Khomeiri, Morteza; Mahoonak, Alireza Sadeghi; Aydani, Emad
2015-06-01
In present study, response surface methodology was used to optimize extraction condition of phenolic compounds from licorice root by microwave application. Investigated factors were solvent (ethanol 80 %, methanol 80 % and water), liquid/solid ratio (10:1-25:1) and time (2-6 min). Experiments were designed according to the central composite rotatable design. The results showed that extraction conditions had significant effect on the extraction yield of phenolic compounds and antioxidant capacities. Optimal condition in microwave assisted method were ethanol 80 % as solvent, extraction time of 5-6 min and liquid/solid ratio of 12.7/1. Results were compared with those obtained by soxhlet extraction. In soxhlet extraction, Optimum conditions were extraction time of 6 h for ethanol 80 % as solvent. Value of phenolic compounds and extraction yield of licorice root in microwave assisted (MAE), and soxhlet were 47.47 mg/g and 16.38 %, 41.709 mg/g and 14.49 %, respectively. These results implied that MAE was more efficient extracting method than soxhlet.
Bartosiak, Magdalena; Jankowski, Krzysztof; Giersz, Jacek
2018-06-05
Cobalt content (as vitamin B 12 and inorganic cobalt) in two nutritional supplements, namely Spirulina platensis and Saccharomyces cerevisiae known as a "superfood", has been determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Several sample pre-treatment protocols have been applied and compared. Microwave-assisted acid digestion efficiently decomposed all cobalt-containing compounds, thus allowed obtaining total cobalt content in supplements examined. Vitamin B 12 was extracted from the samples with acetate buffer and potassium cyanide solution exposed to mild microwave radiation for 30 min, and cyanocobalamin was separated from the extract by on-column solid phase extraction using C-18 modified silica bed. About 100% of cobalt species was extracted using the triple microwave-assisted extraction procedure. Total cobalt content was 20-fold greater in Spirulina tablets than the declared cobalamin content (as Co). The ICP-OES method precision was about 3% and detection limit was 1.9 and 2.7 ng Co mL -1 for inorganic cobalt or cyanocobalamin, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Ziming; Zhao, Xin; Xu, Xu; Wu, Lijie; Su, Rui; Zhao, Yajing; Jiang, Chengfei; Zhang, Hanqi; Ma, Qiang; Lu, Chunmei; Dong, Deming
2013-01-14
A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60°C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%. Copyright © 2012 Elsevier B.V. All rights reserved.
Martino, Emanuela; Ramaiola, Ilaria; Urbano, Mariangela; Bracco, Francesco; Collina, Simona
2006-09-01
Soxhlet extraction, ultrasound-assisted extraction (USAE) and microwaves-assisted extraction (MAE) in closed system have been investigated to determine the content of coumarin, o-coumaric and melilotic acids in flowering tops of Melilotus officinalis. The extracts were analyzed with an appropriate HPLC procedure. The reproducibility of extraction and of chromatographic analysis was proved. Taking into account the extraction yield, the cost and the time, we studied the effects of extraction variables on the yield of the above-mentioned compounds. Better results were obtained with MAE (50% v/v aqueous ethanol, two heating cycles of 5 min, 50 degrees C). On the basis of the ratio extraction yield/extraction time, we therefore propose MAE as the most efficient method.
Poojary, Mahesha M; Passamonti, Paolo
2016-12-09
This paper reports on improved conventional thermal silylation (CTS) and microwave-assisted silylation (MAS) methods for simultaneous determination of tocopherols and sterols by gas chromatography. Reaction parameters in each of the methods developed were systematically optimized using a full factorial design followed by a central composite design. Initially, experimental conditions for CTS were optimized using a block heater. Further, a rapid MAS was developed and optimized. To understand microwave heating mechanisms, MAS was optimized by two distinct modes of microwave heating: temperature-controlled MAS and power-controlled MAS, using dedicated instruments where reaction temperature and microwave power level were controlled and monitored online. Developed methods: were compared with routine overnight derivatization. On a comprehensive level, while both CTS and MAS were found to be efficient derivatization techniques, MAS significantly reduced the reaction time. The optimal derivatization temperature and time for CTS found to be 55°C and 54min, while it was 87°C and 1.2min for temperature-controlled MAS. Further, a microwave power of 300W and a derivatization time 0.5min found to be optimal for power-controlled MAS. The use of an appropriate derivatization solvent, such as pyridine, was found to be critical for the successful determination. Catalysts, like potassium acetate and 4-dimethylaminopyridine, enhanced the efficiency slightly. The developed methods showed excellent analytical performance in terms of linearity, accuracy and precision. Copyright © 2016 Elsevier B.V. All rights reserved.
Segmented media and medium damping in microwave assisted magnetic recording
NASA Astrophysics Data System (ADS)
Bai, Xiaoyu; Zhu, Jian-Gang
2018-05-01
In this paper, we present a methodology of segmented media stack design for microwave assisted magnetic recording. Through micro-magnetic modeling, it is demonstrated that an optimized media segmentation is able to yield high signal-to-noise ratio even with limited ac field power. With proper segmentation, the ac field power could be utilized more efficiently and this can alleviate the requirement for medium damping which has been previously considered a critical limitation. The micro-magnetic modeling also shows that with segmentation optimization, recording signal-to-noise ratio can have very little dependence on damping for different recording linear densities.
Zhang, Fan; Yang, Yi; Su, Ping; Guo, Zhenku
2009-01-01
Euonymus alatus (Thunb.) has been used as one of traditional Chinese medicines for several thousand years. Conventional methods for the extraction of rutin and quercetin from E. alatus, including solvent extraction, Soxhlet extraction and heat reflux extraction are characterised by long extraction times and consumption of large amounts of solvents. To develop a simple and rapid method for the extraction of rutin and quercetin from the stalks of Euonymus alatus (Thunb.) Sieb using microwave-assisted extraction (MAE) technique. MAE experiments were performed with a multimode microwave extraction system. The experimental variables that affect the MAE process, such as the concentration of ethanol solution, extractant volume, microwave power and extraction time were optimised. Yields were determined by HPLC. The results were compared with that obtained by classical Soxhlet and ultrasonic-assisted extraction (UAE). From the optimised conditions for MAE of rutin and quercetin it can be concluded that the solvent is 50% ethanol (v/v) solution, the extractant volume is 40 mL, microwave power is 170 W and irradiation time is 6 min. Compared with Soxhlet extraction and ultrasonic extraction, microwave extraction is a rapid method with a higher yield and lower solvent consumption. The results showed that MAE can be used as an efficient and rapid method for the extraction of the active components from plants.
Gu, Huiyan; Chen, Fengli; Zhang, Qiang; Zang, Jing
2016-03-01
Rutin, hyperoside and hesperidin were effectively extracted from Sorbus tianschanica leaves by an ionic liquid vacuum microwave-assisted method. A series of ionic liquids with various anions and alkyl chain length of the cations were studied and the extraction was performed in [C6mim][BF4] aqueous solution. After optimization by a factorial design and response surface methodology, total extraction yield of 2.37mg/g with an error of 0.12mg/g (0.71±0.04mg/g, 1.18±0.06mg/g and 0.48±0.02 for rutin, hyperoside and hesperidin, respectively) was achieved under -0.08MPa for vacuum, 19min and 420W for microwave irradiation time and power, and 15mL/g for liquid-solid ratio. The proposed method here is more efficient and needs a shorter extraction time for rutin, hyperoside and hesperidin from S. tianschanica leaves than reference extraction techniques. In stability studies performed with standard rutin, hyperoside and hesperidin, the target analytes were stable under the optimum conditions. The proposed method had a high reproducibility and precision. In addition, separation of rutin, hyperoside and hesperidin from [C6mim][BF4] extraction solution was completed effectively by AB-8 macroporous resin adsorption and desorption process. Ionic liquid vacuum microwave-assisted extraction is a simple, rapid and efficient sample extraction technique. Copyright © 2016 Elsevier B.V. All rights reserved.
Self-assembly of silica nanoparticles into hollow spheres via a microwave-assisted aerosol process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shan; Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164; Wang, Fei
2016-02-15
Highlights: • The silica hollow spheres were fabricated via a microwave-assisted aerosol process. • The formation of the hollow spheres was obtained through a one-step process. • The spheres indicated the remarkable sustained release of potassium persulfate. - Abstract: In this work, a simple and efficient strategy for fabrication of silica hollow spheres (SHSs) has been successfully introduced with a one-step microwave-assisted aerosol process using silica nanoparticles (SiO{sub 2}, 12–50 nm) and NH{sub 4}HCO{sub 3} as precursor materials. This approach combines the merits of microwave radiation and the aerosol technique. And the formation of SHSs is ascribed to solvent evaporationmore » and the as-generated gas from NH{sub 4}HCO{sub 3} decomposition in the microwave reactor. The morphology of the SHSs can be easily tuned by varying the residence time, amount of NH{sub 4}HCO{sub 3} and silica sources. The formation mechanism of SHSs was also investigated by structure analysis. In addition, the hollow spheres exhibited remarkable sustained release of potassium persulfate, by loading it into the porous structures. The results provide new sights into the fabrication of inorganic hollow spheres via a one-step process.« less
Cheng, Zhenyu; Song, Haiyan; Yang, Yingjie; Liu, Yan; Liu, Zhigang; Hu, Haobin; Zhang, Yang
2015-05-01
A microwave-assisted enzymatic extraction (MAEE) method had been developed, which was optimized by response surface methodology (RSM) and orthogonal test design, to enhance the extraction of crude polysaccharides (CPS) from the fruit of Schisandra chinensis Baill. The optimum conditions were as follows: microwave irradiation time of 10 min, extraction pH of 4.21, extraction temperature of 47.58°C, extraction time of 3h and enzyme concentration of 1.5% (wt% of S. chinensis powder) for cellulase, papain and pectinase, respectively. Under these conditions, the extraction yield of CPS was 7.38 ± 0.21%, which was well in close agreement with the value predicted by the model. The three methods including heat-refluxing extraction (HRE), ultrasonic-assisted extraction (UAE) and enzyme-assisted extraction (EAE) for extracting CPS by RSM were further compared. Results indicated MAEE method had the highest extraction yields of CPS at lower temperature. It was indicated that the proposed approach in this study was a simple and efficient technique for extraction of CPS in S. chinensis Baill. Copyright © 2015 Elsevier B.V. All rights reserved.
Hohenforst-Schmidt, Wolfgang; Zarogoulidis, Paul; Stopek, Joshua; Kosmidis, Efstratios; Vogl, Thomas; Linsmeier, Bernd; Tsakiridis, Kosmas; Lampaki, Sofia; Lazaridis, George; Mpakas, Andreas; Browning, Robert; Papaiwannou, Antonis; Drevelegas, Antonis; Baka, Sofia; Karavasilis, Vasilis; Mpoukovinas, Ioannis; Turner, J Francis; Zarogoulidis, Konstantinos; Brachmann, Johannes
2015-01-01
Novel therapies for lung cancer are being explored nowadays with local therapies being the tip of the arrow. Intratumoral chemotherapy administration and local microwave ablation have been investigated in several studies. It has been previously proposed that lipiodol has the ability to modify the microenvironment matrix. In our current study we investigated this theory in BALBC mice. In total 160 BALBC mice were divided in eight groups: a) control, b) cisplatin, c) microwave, d) microwave and lipiodol, e) cisplatin and lipiodol, f) microwave and cisplatin, g) lipiodol and h) lipiodol, cisplatin and microwave. Lewis lung carcinoma cell lines (10(6)) were injected into the right back leg of each mouse. After the 8th day, when the tumor volume was about 100mm(3) the therapy application was initiated, once per week for four weeks. Magnetic resonance imaging was performed for each tumor when a mouse died or when sacrificed if they were still alive by the end of the experiment (8-Canal multifunctional spool; NORAS MRI products, Gmbh, Germany). Imaging and survival revealed efficient tumor apoptosis for the groups b,c,d,e and f. However; severe toxicity was observed in group h and no follow up was available for this group after the second week of therapy administration. Lipiodol in its current form does assist in a more efficient way the distribution of cisplatin, as the microwave apoptotic effect. Future modification of lipiodol might provide a more efficient method of therapy enhancement. Combination of drug and microwave ablation is possible and has an efficient apoptotic effect.
Zou, Lili; Shen, Kaini; Zhong, Dingrong; Zhou, Daobin; Sun, Wei; Li, Jian
2015-01-01
Laser microdissection followed by mass spectrometry has been successfully used for amyloid typing. However, sample contamination can interfere with proteomic analysis, and overnight digestion limits the analytical throughput. Moreover, current quantitative analysis methods are based on the spectrum count, which ignores differences in protein length and may lead to misdiagnoses. Here, we developed a microwave-assisted filter-aided sample preparation (maFASP) method that can efficiently remove contaminants with a 10-kDa cutoff ultrafiltration unit and can accelerate the digestion process with the assistance of a microwave. Additionally, two parameters (P- and D-scores) based on the exponentially modified protein abundance index were developed to define the existence of amyloid deposits and those causative proteins with the greatest abundance. Using our protocol, twenty cases of systemic amyloidosis that were well-typed according to clinical diagnostic standards (training group) and another twenty-four cases without subtype diagnoses (validation group) were analyzed. Using this approach, sample preparation could be completed within four hours. We successfully subtyped 100% of the cases in the training group, and the diagnostic success rate in the validation group was 91.7%. This maFASP-aided proteomic protocol represents an efficient approach for amyloid diagnosis and subtyping, particularly for serum-contaminated samples. PMID:25984759
Taamalli, Amani; Arráez-Román, David; Ibañez, Elena; Zarrouk, Mokhtar; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2012-01-25
In the present work, a simple and rapid method for the extraction of phenolic compounds from olive leaves, using microwave-assisted extraction (MAE) technique, has been developed. The experimental variables that affect the MAE process, such as the solvent type and composition, microwave temperature, and extraction time, were optimized using a univariate method. The obtained extracts were analyzed by using high-performance liquid chromatography (HPLC) coupled to electrospray time-of-flight mass spectrometry (ESI-TOF-MS) and electrospray ion trap tandem mass spectrometry (ESI-IT-MS(2)) to prove the MAE extraction efficiency. The optimal MAE conditions were methanol:water (80:20, v/v) as extracting solvent, at a temperature equal to 80 °C for 6 min. Under these conditions, several phenolic compounds could be characterized by HPLC-ESI-MS/MS(2). As compared to the conventional method, MAE can be used as an alternative extraction method for the characterization of phenolic compounds from olive leaves due to its efficiency and speed.
Yang, Lei; Sun, Xiaowei; Yang, Fengjian; Zhao, Chunjian; Zhang, Lin; Zu, Yuangang
2012-01-01
Ionic liquid based, microwave-assisted extraction (ILMAE) was successfully applied to the extraction of proanthocyanidins from Larix gmelini bark. In this work, in order to evaluate the performance of ionic liquids in the microwave-assisted extraction process, a series of 1-alkyl-3-methylimidazolium ionic liquids with different cations and anions were evaluated for extraction yield, and 1-butyl-3-methylimidazolium bromide was selected as the optimal solvent. In addition, the ILMAE procedure for the proanthocyanidins was optimized and compared with other conventional extraction techniques. Under the optimized conditions, satisfactory extraction yield of the proanthocyanidins was obtained. Relative to other methods, the proposed approach provided higher extraction yield and lower energy consumption. The Larix gmelini bark samples before and after extraction were analyzed by Thermal gravimetric analysis, Fourier-transform infrared spectroscopy and characterized by scanning electron microscopy. The results showed that the ILMAE method is a simple and efficient technique for sample preparation. PMID:22606036
Hu, Bin; Li, Cheng; Zhang, Zhiqing; Zhao, Qing; Zhu, Yadong; Su, Zhao; Chen, Yizi
2017-09-15
Microwave-assisted extraction (MAE) of oil from silkworm pupae was firstly performed in the present research. The response surface methodology was applied to optimize the parameters for MAE. The yield of oil by MAE was 30.16% under optimal conditions of a mixed solvent consisting of ethanol and n-hexane (1:1, v/v), microwave power (360W), liquid to solid ratio (7.5/1mL/g), microwave time (29min). Moreover, oil extracted by MAE was quantitatively (yield) and qualitatively (fatty acid profile) similar to those obtained using Soxhlet extraction (SE), but oil extracted by MAE exhibited favourable physicochemical properties and oxidation stability. Additionally, oil extracted by MAE had a higher content of total phenolic, and it showed stronger antioxidant activities. Scanning electron microscopy revealed that microwave technique efficiently promoted the release of oil by breaking down the cell structure of silkworm pupae. Therefore, MAE can be an effective method for the silkworm pupal oil extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bi, Xiaoyi; Wang, Peng; Jiang, Hong
2008-06-15
In order to develop a catalyst with high activity and stability for microwave assisted ClO2 catalytic oxidation, we prepared CuOn-La2O3/gamma-Al2O3 by impregnation-deposition method, and determined its properties using BET, XRF, XPS and chemical analysis techniques. The test results show that, better thermal ability of gamma-Al2O3 and high loading of Cu in the catalyst can be achieved by adding La2O3. The microwave assisted ClO2 catalytic oxidation process with CuOn-La2O3/gamma-Al2O3 used as catalyst was also investigated, and the results show that the catalyst has an excellent catalytic activity in treating synthetic wastewater containing 100 mg/L phenol, and 91.66% of phenol and 50.35% of total organic carbon (TOC) can be removed under the optimum process conditions. Compared with no catalyst process, CuOn-La2O3/gamma-Al2O3 can effectively degrade contaminants in short reaction time and with low oxidant dosage, extensive pH range. The comparison of phenol removal efficiency in the different process indicates that microwave irradiation and catalyst work together to oxidize phenol effectively. It can therefore be concluded from results and discussion that CuOn-La2O3/gamma-Al2O3 is a suitable catalyst in microwave assisted ClO2 catalytic oxidation process.
Microwave-assisted regeneration of activated carbons loaded with pharmaceuticals.
Ania, C O; Parra, J B; Menéndez, J A; Pis, J J
2007-08-01
The purpose of this work was to explore the application of microwaves for the regeneration of activated carbons spent with salicylic acid, a metabolite of a common analgesic frequently found in wastewater from the pharmaceutical industry. The exhausted carbon was treated in a quartz reactor by microwave irradiation at 2450 MHz at different temperatures and atmospheres, the regeneration efficiency being highly dependent on the operating conditions. Quantitative desorption of the pollutant was achieved at high temperature and oxidizing atmosphere, with regeneration efficiencies as high as 99% after six cycles. The stripping efficiency was superior to 95% at high temperatures and decreased at 450 degrees C. The incomplete desorption of the adsorbate at low temperature was further confirmed by the changes in the porosity observed by N2 and CO2 adsorption isotherms. Hence, micropores remain blocked which results in a reduction in loading capacities in successive cycles.
Aylin Alagöz, B; Yenigün, Orhan; Erdinçler, Ayşen
2018-01-01
This study investigates the effect of ultrasonication and microwave sludge disintegration/pre-treatment techniques on the anaerobic co-digestion efficiency of wastewater sludges with olive and grape pomaces. The effects of both co-digestion and sludge pre-treatment techniques were evaluated in terms of the organic removal efficiency and the biogas production. The "co-digestion" of wastewater sludge with both types of pomaces was revealed to be a much more efficient way for the biogas production compared to the single (mono) sludge digestion. The ultrasonication and microwave pre-treatments applied to the sludge samples caused to a further increase in biogas and methane yields. Based on applied specific energies, ultrasonication pre-treatment was found much more effective than microwave irradiation. The specific energy applied in microwave pre-treatment (87,000kj/kgTS) was almost 9 times higher than that of used in ultrasonication (10,000kj/kgTS), resulting only 10-15% increases in biogas/methane yield. Co-digestion of winery and olive industry residues with pre-treated wastewater sludges appears to be a suitable technique for waste management and energy production. Copyright © 2017 Elsevier B.V. All rights reserved.
Zheng, Shuilian; Wu, Huizhen; Li, Zuguang; Wang, Jianmei; Zhang, Hu; Qian, Mingrong
2015-01-01
A one-step ultrasound/microwave-assisted solid-liquid-solid dispersive extraction procedure was used for the simultaneous determination of eight neonicotinoids (dinotefuran, nitenpyram, thiamethoxam, clothianidin, imidacloprid, acetamiprid, thiacloprid, imidaclothiz) in dried Dendrobium officinale by liquid chromatography combined with electrospray ionization triple quadrupole tandem mass spectrometry in multiple reaction monitoring mode. The samples were quickly extracted by acetonitrile and cleaned up by the mixed dispersing sorbents including primary secondary amine, C18 , and carbon-GCB. Parameters that could influence the ultrasound/microwave-assisted extraction efficiency such as microwave irradiation power, ultrasound irradiation power, temperature, and solvent were investigated. Recovery studies were performing well (70.4-113.7%) at three examined spiking levels (10, 50, and 100 μg/kg). Meanwhile, the limits of quantification for the neonicotinoids ranged from 0.87 to 1.92 μg/kg. The method showed good linearity in the concentration range of 1-100 μg/L with correlation coefficients >0.99. This quick and useful analytical method could provide a basis for monitoring neonicotinoid insecticide residues in herbs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yüksel, Sezin; Schwenke, Almut M; Soliveri, Guido; Ardizzone, Silvia; Weber, Karina; Cialla-May, Dana; Hoeppener, Stephanie; Schubert, Ulrich S; Popp, Jürgen
2016-10-05
In the present study, an ultra-sensitive and highly reproducible novel SERS-based capillary platform was developed and utilized for the trace detection of tetrahydrocannabinol (THC). The approach combines the advantages of microwave-assisted nanoparticle synthesis, plasmonics and capillary forces. By employing a microwave-assisted preparation method, glass capillaries were reproducibly coated with silver nanoparticles in a batch fabrication process that required a processing time of 3 min without needing to use any pre-surface modifications or add surfactants. The coated capillaries exhibited an excellent SERS activity with a high reproducibility and enabled the detection of low concentrations of target molecules. At the same time, only a small amount of analyte and a short and simple incubation process was required. The developed platform was applied to the spectroscopic characterization of tetrahydrocannabinol (THC) and its identification at concentration levels down to 1 nM. Thus, a highly efficient detection system for practical applications, e.g., in drug monitoring/detection, is introduced, which can be fabricated at low cost by using microwave-assisted batch synthesis techniques. Copyright © 2016 Elsevier B.V. All rights reserved.
Kavitha, S; Rajesh Banu, J; Kumar, Gopalakrishnan; Kaliappan, S; Yeom, Ick Tae
2018-04-01
In this study, microwave irradiation has been employed to disintegrate the sludge biomass profitably by deagglomerating the sludge using a mechanical device, ultrasonicator. The outcomes of the study revealed that a specific energy input of 3.5 kJ/kg TS was found to be optimum for deagglomeration with limited cell lysis. A higher suspended solids (SS) reduction and biomass lysis efficiency of about 22.5% and 33.2% was achieved through ultrasonic assisted microwave disintegration (UMWD) when compared to microwave disintegration - MWD (15% and 20.9%). The results of biochemical methane potential (BMP) test were used to estimate biodegradability of samples. Among the samples subjected to BMP, UMWD showed better amenability towards anaerobic digestion with higher methane production potential of 0.3 L/g COD representing enhanced liquefaction potential of disaggregated sludge biomass. Economic analysis of the proposed method of sludge biomass pretreatment showed a net profit of 2.67 USD/Ton respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sivakumar, Kullampalayam Krishnasamy; Rajasekaran, Aiyalu; Senthilkumar, Palaniappan; Wattamwar, Prasad P
2014-07-01
In the present study, an efficient synthesis of some Mannich base of 5-methyl-2-[(2-oxo-2H-chromen-3-yl)carbonyl]-2,4-dihydro-3H-pyrazol-3-one (4a-j) have been described by using conventional and non-conventional (microwave) techniques. Microwave assisted reactions showed that require shorter reaction time and good yield. The newly synthesized compounds were screened for their anti-inflammatory, analgesic activity, antioxidant, and antibacterial effects were compared with standard drug. Among the compounds studied, compound (4f) showing nearly equipotent anti-inflammatory and analgesic activity than the standard drug (indomethacin), along with minimum ulcerogenic index. Compounds (4b and 4i) showing 1.06 times more active than ciprofloxacin against tested Gram-negative bacteria. Copyright © 2014 Elsevier Ltd. All rights reserved.
Use of the 2-chlorotrityl chloride resin for microwave-assisted solid phase peptide synthesis.
Ieronymaki, Matthaia; Androutsou, Maria Eleni; Pantelia, Anna; Friligou, Irene; Crisp, Molly; High, Kirsty; Penkman, Kirsty; Gatos, Dimitrios; Tselios, Theodore
2015-09-01
A fast and efficient microwave (MW)-assisted solid-phase peptide synthesis protocol using the 2-chlorotrityl chloride resin and the Fmoc/tBu methodology, has been developed. The established protocol combines the advantages of MW irradiation and the acid labile 2-chlorotrityl chloride resin. The effect of temperature during the MW irradiation, the degree of resin substitution during the coupling of the first amino acids and the rate of racemization for each amino acid were evaluated. The suggested solid phase methodology is applicable for orthogonal peptide synthesis and for the synthesis of cyclic peptides. © 2015 Wiley Periodicals, Inc.
Plasma-assisted CO2 conversion: optimizing performance via microwave power modulation
NASA Astrophysics Data System (ADS)
Britun, Nikolay; Silva, Tiago; Chen, Guoxing; Godfroid, Thomas; van der Mullen, Joost; Snyders, Rony
2018-04-01
Significant improvement in the energy efficiency of plasma-assisted CO2 conversion is achieved with applied power modulation in a surfaguide microwave discharge. The obtained values of CO2 conversion and energy efficiency are, respectively, 0.23 and 0.33 for a 0.95 CO2 + 0.05 N2 gas mixture. Analysis of the energy relaxation mechanisms shows that power modulation can potentially affect the vibrational-translational energy exchange in plasma. In our case, however, this mechanism does not play a major role, likely due to the low degree of plasma non-equilibrium in the considered pressure range. Instead, the gas residence time in the discharge active zone together with plasma pulse duration are found to be the main factors affecting the CO2 conversion efficiency at low plasma pulse repetition rates. This effect is confirmed experimentally by the in situ time-resolved two-photon absorption laser-induced fluorescence measurements of CO molecular density produced in the discharge as a result of CO2 decomposition.
The transformation of CO2 an abundant greenhouse gas, into cyclic carbonates by coupling reaction with epoxides is receiving well-deserved attention. A series of imidazolium-based indium tetrahalides, prepared efficiently via microwave assisted reaction of InX3 with [1-R-3-metht...
Chen, Li-Hsun; Hsiao, Ya-Shan; Yellol, Gorakh S; Sun, Chung-Ming
2011-03-14
An efficient microwave-assisted and soluble polymer-supported synthesis of medicinally important imidazole-fused benzimidazoles has been developed. The protocol involves the rapid condensation of polymer-bound amino benzimidazoles with various α-bromoketones and subsequent in situ intramolecular cyclization under microwave irradiation resulting in a one pot synthesis of imidazole interlacing benzimidazole polymer conjugates. The condensed product was obtained with excellent regioselectivity. The biologically interesting imidazo[1,2-a]benzimidazoles was released from polymer support at ambient temperature. Diversity in the triheterocyclic nucleus was achieved by the different substitutions at its 2, 3, and 9 positions. The new protocol has the advantages of short reaction time, easy workup process, excellent yields, reduced environmental impact, wide substrate scope and convenient procedure.
A microwave plasma torch and its applications
NASA Astrophysics Data System (ADS)
Uhm, H. S.; Hong, Y. C.; Shin, D. H.
2006-05-01
A portable microwave plasma torch at atmospheric pressure by making use of magnetrons operated at 2.45 GHz and used in a home microwave oven has been developed. This electrodeless torch can be used in various areas including commercial, environmental and military applications. For example, perfluorocompounds (PFCs), which have long lifetimes and serious global warming implications, are widely used during plasma etching and plasma-assisted chamber cleaning processes in chemical vapour deposition systems. The microwave torch effectively eliminates PFCs. Efficient decomposition of toluene gas indicates the effectiveness of volatile organic compound eliminations from industrial emission and the elimination of airborne chemical and biological warfare agents. The microwave torch has been used to synthesize carbon nanotubes in an on-line system, thereby providing the opportunity of mass production of the nanotubes. There are other applications of the microwave plasma torch.
Apparatus and method for investigation of energy consumption of microwave assisted drying systems.
Göllei, Attila; Vass, András; Magyar, Attila; Pallai, Elisabeth
2009-10-01
Convective, hot air drying by itself is relatively efficient for removing water from the surface environment of agricultural seed products. However, moving internal moisture to the surface needs rather a long time, as a rule. The major research aim of the authors was to decrease the processing time and processing costs, to improve the quality of the dried product, and to increase drying efficiency. For this reason their research activities focused on the development of a special drying apparatus and a method suitable for measuring of energy conditions in a hybrid (microwave and convective) dryer. Experimental investigations were made with moistened wheat as model material. Experiments were carried out in microwave, convective and hybrid drying systems. The microwave drying alone was more efficient than the convective method. The lowest energy consumption and shortest drying time were obtained by the use of a hybrid method in which the waste energy of magnetron was utilized and the temperature was controlled. In this way, it was possible to keep the temperature of the dried product at a constant and safe value and to considerably decrease the energy consumption.
Chen, Feifei; Zhang, Fangkai; Du, Fangchuan; Wang, Anming; Gao, Weifang; Wang, Qiuyan; Yin, Xiaopu; Xie, Tian
2012-07-01
Sodium chloride salting-in and microwave irradiation were combined to drive thermolysin molecules into mesoporous support to obtain efficiently immobilized enzyme. When the concentration of sodium chloride was 3 M and microwave power was 40 W, 93.2% of the enzyme was coupled to the support by 3 min, and the maximum specific activity of the immobilized enzyme was 17,925.1 U mg(-1). This was a 4.5-fold increase in activity versus enzyme immobilized using conventional techniques, and a 1.6-fold increase versus free enzyme. Additionally, the thermal stability of the immobilized thermolysin was significantly improved. When incubated at 70°C, there was no reduction in activity by 3.5h, whereas free thermolysin lost most of its activity by 3h. Immobilization also protected the thermolysin against organic solvent denaturation. The microwave-assisted immobilization technique, combined with sodium chloride salting-in, could be applied to other sparsely soluble enzymes immobilization because of its simplicity and high efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hohenforst-Schmidt, Wolfgang; Zarogoulidis, Paul; Stopek, Joshua; Kosmidis, Efstratios; Vogl, Thomas; Linsmeier, Bernd; Tsakiridis, Kosmas; Lampaki, Sofia; Lazaridis, George; Mpakas, Andreas; Browning, Robert; Papaiwannou, Antonis; Drevelegas, Antonis; Baka, Sofia; Karavasilis, Vasilis; Mpoukovinas, Ioannis; Turner, J Francis; Zarogoulidis, Konstantinos; Brachmann, Johannes
2015-01-01
Novel therapies for lung cancer are being explored nowadays with local therapies being the tip of the arrow. Intratumoral chemotherapy administration and local microwave ablation have been investigated in several studies. It has been previously proposed that lipiodol has the ability to modify the microenvironment matrix. In our current study we investigated this theory in BALBC mice. In total 160 BALBC mice were divided in eight groups: a) control, b) cisplatin, c) microwave, d) microwave and lipiodol, e) cisplatin and lipiodol, f) microwave and cisplatin, g) lipiodol and h) lipiodol, cisplatin and microwave. Lewis lung carcinoma cell lines (106) were injected into the right back leg of each mouse. After the 8th day, when the tumor volume was about 100mm3 the therapy application was initiated, once per week for four weeks. Magnetic resonance imaging was performed for each tumor when a mouse died or when sacrificed if they were still alive by the end of the experiment (8-Canal multifunctional spool; NORAS MRI products, Gmbh, Germany). Imaging and survival revealed efficient tumor apoptosis for the groups b,c,d,e and f. However; severe toxicity was observed in group h and no follow up was available for this group after the second week of therapy administration. Lipiodol in its current form does assist in a more efficient way the distribution of cisplatin, as the microwave apoptotic effect. Future modification of lipiodol might provide a more efficient method of therapy enhancement. Combination of drug and microwave ablation is possible and has an efficient apoptotic effect. PMID:25663938
Chen, Jue; Liu, Mengjun; Wang, Qi; Du, Huizhi; Zhang, Liwei
2016-10-17
Deep eutectic solvents (DESs) have attracted significant attention as a promising green media. In this work, twenty-five kinds of benign choline chloride-based DESs with microwave-assisted methods were applied to quickly extract active components from Radix Salviae miltiorrhizae . The extraction factors, including temperature, time, power of microwave, and solid/liquid ratio, were investigated systematically by response surface methodology. The hydrophilic and hydrophobic ingredients were extracted simultaneously under the optimized conditions: 20 vol% of water in choline chloride/1,2-propanediol (1:1, molar ratio) as solvent, microwave power of 800 W, temperature at 70 °C, time at 11.11 min, and solid/liquid ratio of 0.007 g·mL -1 . The extraction yield was comparable to, or even better than, conventional methods with organic solvents. The microstructure alteration of samples before and after extraction was also investigated. The method validation was tested as the linearity of analytes ( r ² > 0.9997 over two orders of magnitude), precision (intra-day relative standard deviation (RSD) < 2.49 and inter-day RSD < 2.96), and accuracy (recoveries ranging from 95.04% to 99.93%). The proposed DESs combined with the microwave-assisted method provided a prominent advantage for fast and efficient extraction of active components, and DESs could be extended as solvents to extract and analyze complex environmental and pharmaceutical samples.
Microwave Assisted Grafting of Gums and Extraction of Natural Materials.
Singh, Inderbir; Rani, Priya; Kumar, Pradeep
2017-01-01
Microwave assisted modification of polymers has become an established technique for modifying the functionality of polymers. Microwave irradiation reduces reaction time as well as the use of toxic solvents with enhanced sensitivity and yields of quality products. In this review article instrumentation and basic principles of microwave activation have been discussed. Microwave assisted grafting of natural gums, characterization of grafted polymers and their toxicological parameters have also been listed. Pharmaceutical applications viz. drug release retardant, mucoahesion and tablet superdisintegrant potential of microwave assisted gums has also been discussed. An overview of microwave assisted extraction of plant based natural materials has also been presented. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Madakkaruppan, V; Pius, Anitha; T, Sreenivas; Giri, Nitai; Sarbajna, Chanchal
2016-08-05
This paper describes a study on microwave assisted leaching of uranium from a low-grade ore of Indian origin. The host rock for uranium mineralization is chlorite-biotite-muscovite-quartzo-feldspathic schist. The dominant presence of siliceous minerals determined leaching of uranium values in sulfuric acid medium under oxidizing conditions. Process parametric studies like the effect of sulfuric acid concentration (0.12-0.50M), redox potential (400-500mV), particle size (600-300μm) and temperature (35°-95°C) indicated that microwave assisted leaching is more efficient in terms of overall uranium dissolution, kinetics and provide relatively less impurities (Si, Al, Mg and Fe) in the leach liquor compared to conventional conductive leaching. The kinetics of leaching followed shrinking core model with product layer diffusion as controlling mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.
Microwave-assisted generation of standard gas mixtures.
Xiong, Guohua; Pawliszyn, Janusz
2002-05-15
Microwave heating was employed for preparation of the standard gas of volatile organic compounds (VOCs) and semivolatile organic compounds (semi-VOCs) by using a 1000 W commercial domestic microwave oven and 1 L gas-sampling bulbs. The VOCs investigated were benzene, chloroform, 1,3-dichlorobenzene, tetrachloroethylene, toluene, and 1,1,2-trichloroethane, and the semi-VOCs used were the polychlorinated biphenyls (PCBs) PCB 1016 and PCB 1248. Since these weakly or nonpolar molecules are very poor absorbers of microwave energy, an appropriate amount of water was introduced to accept microwave radiation and act as the thermal source to accelerate their evaporation. The glass bulb may also contribute thermal energy to the VOCs/semi-VOCs by accepting microwave energy to a small degree. For 0.5 microL of liquid VOCs on 10 mg of glass wool, it was shown that 15 microL of H2O and 60 s of microwave heating yielded a very efficient evaporation [97.2-106.4%, compared with a classic method (Muller, L; Gorecki, T.; Pawliszyn, J. Fresenius' J. Anal. Chem. 1999, 364, 610-616)]. For 1 microL of PCB solution (1000 microg/mL in hexane), 15 microL of H2O and 90 s of microwave heating also provided a complete evaporation. The addition of water was particularly significant for microwave-assisted evaporation of PCBs because semi-VOCs are much more difficult to evaporate than VOCs. This developed microwave technique proved to be quite simple, powerful, rapid, accurate, and safe for the preparation of VOC/semi-VOC standard gas. Solid- phase microextraction combined with gas chromatography was used for the gas analysis.
Portable microwave assisted extraction: An original concept for green analytical chemistry.
Perino, Sandrine; Petitcolas, Emmanuel; de la Guardia, Miguel; Chemat, Farid
2013-11-08
This paper describes a portable microwave assisted extraction apparatus (PMAE) for extraction of bioactive compounds especially essential oils and aromas directly in a crop or in a forest. The developed procedure, based on the concept of green analytical chemistry, is appropriate to obtain direct in-field information about the level of essential oils in natural samples and to illustrate green chemical lesson and research. The efficiency of this experiment was validated for the extraction of essential oil of rosemary directly in a crop and allows obtaining a quantitative information on the content of essential oil, which was similar to that obtained by conventional methods in the laboratory. Copyright © 2013 Elsevier B.V. All rights reserved.
Calce, Enrica; Mercurio, Flavia Anna; Leone, Marilisa; Saviano, Michele; De Luca, Stefania
2016-06-05
An environmentally sustainable and energy-efficient synthetic process has been developed to prepare hyaluronan-based nano-sized material. It consists in a microwave-promoted acylation of the hydroxyl function of the polysaccharide with natural fatty acids, performed under solvent-free conditions. The efficient interaction of the solid reagents with the MW radiation accounts for the obtained high yielded products. The self-assembly process of the obtained compounds very fast occurred in an aqueous medium under MW-radiation, thus allowing the development of a green protocol for the nano-particles preparation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ultrafast Microwave Nano-manufacturing of Fullerene-Like Metal Chalcogenides
Liu, Zhen; Zhang, Lin; Wang, Ruigang; Poyraz, Selcuk; Cook, Jonathan; Bozack, Michael J.; Das, Siddhartha; Zhang, Xinyu; Hu, Liangbing
2016-01-01
Metal Chalcogenides (MCs) have emerged as an extremely important class of nanomaterials with applications ranging from lubrication to energy storage devices. Here we report our discovery of a universal, ultrafast (60 seconds), energy-efficient, and facile technique of synthesizing MC nanoparticles and nanostructures, using microwave-assisted heating. A suitable combination of chemicals was selected for reactions on Polypyrrole nanofibers (PPy-NF) in presence of microwave irradiation. The PPy-NF serves as the conducting medium to absorb microwave energy to heat the chemicals that provide the metal and the chalcogenide constituents separately. The MCs are formed as nanoparticles that eventually undergo a size-dependent, multi-stage aggregation process to yield different kinds of MC nanostructures. Most importantly, this is a single-step metal chalcogenide formation process that is much faster and much more energy-efficient than all the other existing methods and can be universally employed to produce different kinds of MCs (e.g., MoS2, and WS2). PMID:26931353
Ultrafast Microwave Nano-manufacturing of Fullerene-Like Metal Chalcogenides
NASA Astrophysics Data System (ADS)
Liu, Zhen; Zhang, Lin; Wang, Ruigang; Poyraz, Selcuk; Cook, Jonathan; Bozack, Michael J.; Das, Siddhartha; Zhang, Xinyu; Hu, Liangbing
2016-03-01
Metal Chalcogenides (MCs) have emerged as an extremely important class of nanomaterials with applications ranging from lubrication to energy storage devices. Here we report our discovery of a universal, ultrafast (60 seconds), energy-efficient, and facile technique of synthesizing MC nanoparticles and nanostructures, using microwave-assisted heating. A suitable combination of chemicals was selected for reactions on Polypyrrole nanofibers (PPy-NF) in presence of microwave irradiation. The PPy-NF serves as the conducting medium to absorb microwave energy to heat the chemicals that provide the metal and the chalcogenide constituents separately. The MCs are formed as nanoparticles that eventually undergo a size-dependent, multi-stage aggregation process to yield different kinds of MC nanostructures. Most importantly, this is a single-step metal chalcogenide formation process that is much faster and much more energy-efficient than all the other existing methods and can be universally employed to produce different kinds of MCs (e.g., MoS2, and WS2).
Ultrafast Microwave Nano-manufacturing of Fullerene-Like Metal Chalcogenides.
Liu, Zhen; Zhang, Lin; Wang, Ruigang; Poyraz, Selcuk; Cook, Jonathan; Bozack, Michael J; Das, Siddhartha; Zhang, Xinyu; Hu, Liangbing
2016-03-02
Metal Chalcogenides (MCs) have emerged as an extremely important class of nanomaterials with applications ranging from lubrication to energy storage devices. Here we report our discovery of a universal, ultrafast (60 seconds), energy-efficient, and facile technique of synthesizing MC nanoparticles and nanostructures, using microwave-assisted heating. A suitable combination of chemicals was selected for reactions on Polypyrrole nanofibers (PPy-NF) in presence of microwave irradiation. The PPy-NF serves as the conducting medium to absorb microwave energy to heat the chemicals that provide the metal and the chalcogenide constituents separately. The MCs are formed as nanoparticles that eventually undergo a size-dependent, multi-stage aggregation process to yield different kinds of MC nanostructures. Most importantly, this is a single-step metal chalcogenide formation process that is much faster and much more energy-efficient than all the other existing methods and can be universally employed to produce different kinds of MCs (e.g., MoS2, and WS2).
Hammouda, Faiza M; Saleh, Mahmoud A; Abdel-Azim, Nahla S; Shams, Khaled A; Ismail, Shams I; Shahat, Abdelaaty A; Saleh, Ibrahim A
2014-01-01
Hydrodistillation (HD) and steam-distillation, or solvent extraction methods of essential oils have some disadvantages like thermal decomposition of extracts, its contamination with solvent or solvent residues and the pollution of residual vegetal material with solvent which can be also an environmental problem. Thus, new green techniques, such as supercritical fluid extraction and microwave assisted techniques, are potential solutions to overcome these disadvantages. The aim of this study was to evaluate the essential oil of Foeniculum vulgare subsp. Piperitum fruits extracted by three different extraction methods viz. Supercritical fluid extraction (SFE) using CO2, microwave-assisted extraction (MAE) and hydro-distillation (HD) using gas chromatography-mass spectrometry (GC/MS). The results revealed that both MAE and SFE enhanced the extraction efficiency of the interested components. MAE gave the highest yield of oil as well as higher percentage of Fenchone (28%), whereas SFE gave the highest percentage of anethol (72%). Microwave-assisted extraction (MAE) and supercritical fluid extraction (SFE) not only enhanced the essential oil extraction but also saved time, reduced the solvents use and produced, ecologically, green technologies.
Preparation of κ-carra-oligosaccharides with microwave assisted acid hydrolysis method
NASA Astrophysics Data System (ADS)
Li, Guangsheng; Zhao, Xia; Lv, Youjing; Li, Miaomiao; Yu, Guangli
2015-04-01
A rapid method of microwave assisted acid hydrolysis was established to prepare κ-carra-oligosaccharides. The optimal hydrolysis condition was determined by an orthogonal test. The degree of polymerization (DP) of oligosaccharides was detected by high performance thin layer chromatography (HPTLC) and polyacrylamide gel electrophoresis (PAGE). Considering the results of HPTLC and PAGE, the optimum condition of microwave assisted acid hydrolysis was determined. The concentration of κ-carrageenan was 5 mg mL-1; the reaction solution was adjusted to pH 3 with diluted hydrochloric acid; the solution was hydrolyzed under microwave irradiation at 100 for 15 °C min. Oligosaccharides were separated by a Superdex 30 column (2.6 cm × 90 cm) using AKTA Purifier UPC100 and detected with an online refractive index detector. Each fraction was characterized by electrospray ionization mass spectrometry (ESI-MS). The data showed that odd-numbered κ-carra-oligosaccharides with DP ranging from 3 to 21 could be obtained with this method, and the structures of the oligosaccharides were consistent with those obtained by traditional mild acid hydrolysis. The new method was more convenient, efficient and environment-friendly than traditional mild acid hydrolysis. Our results provided a useful reference for the preparation of oligosaccharides from other polysaccharides.
Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming
2015-03-01
A simple and efficient integrated microwave processing system (IMPS) was firstly assembled and validated for the extraction of organophosphorus pesticides in fresh vegetables. Two processes under microwave irradiation, dynamic microwave-assisted extraction (DMAE) and microwave-accelerated solvent elution (MASE), were integrated for simplifying the pretreatment of the sample. Extraction, separation, enrichment and elution were finished in a simple step. The organophosphorus pesticides were extracted from the fresh vegetables into hexane with DMAE, and then the extract was directly introduced into the enrichment column packed with active carbon fiber (ACF). Subsequently, the organophosphorus pesticides trapped on the ACF were eluted with ethyl acetate under microwave irradiation. No further filtration or cleanup was required before analysis of the eluate by gas chromatography-mass spectrometry. Some experimental parameters affecting extraction efficiency were investigated and optimized, such as microwave output power, kind and volume of extraction solvent, extraction time, amount of sorbent, elution microwave power, kind and volume of elution solvent, elution solvent flow rate. Under the optimized conditions, the recoveries were in the range of 71.5-105.2%, and the relative standard deviations were lower than 11.6%. The experiment results prove that the present method is a simple and effective sample preparation method for the determination of pesticides in solid samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery
Pandhal, Jagroop
2018-01-01
The commercial reality of bioactive compounds and oil production from microalgal species is constrained by the high cost of production. Downstream processing, which includes harvesting and extraction, can account for 70–80% of the total cost of production. Consequently, from an economic perspective extraction technologies need to be improved. Microalgal cells are difficult to disrupt due to polymers within their cell wall such as algaenan and sporopollenin. Consequently, solvents and disruption devices are required to obtain products of interest from within the cells. Conventional techniques used for cell disruption and extraction are expensive and are often hindered by low efficiencies. Microwave-assisted extraction offers a possibility for extraction of biochemical components including lipids, pigments, carbohydrates, vitamins and proteins, individually and as part of a biorefinery. Microwave technology has advanced since its use in the 1970s. It can cut down working times and result in higher yields and purity of products. In this review, the ability and challenges in using microwave technology are discussed for the extraction of bioactive products individually and as part of a biorefinery approach. PMID:29462888
Gonzalez-Cortes, S.; Slocombe, D. R.; Xiao, T.; Aldawsari, A.; Yao, B.; Kuznetsov, V. L.; Liberti, E.; Kirkland, A. I.; Alkinani, M. S.; Al-Megren, H. A.; Thomas, J. M.; Edwards, P. P.
2016-01-01
Hydrogen is often described as the fuel of the future, especially for application in hydrogen powered fuel-cell vehicles (HFCV’s). However, its widespread implementation in this role has been thwarted by the lack of a lightweight, safe, on-board hydrogen storage material. Here we show that benign, readily-available hydrocarbon wax is capable of rapidly releasing large amounts of hydrogen through microwave-assisted catalytic decomposition. This discovery offers a new material and system for safe and efficient hydrogen storage and could facilitate its application in a HFCV. Importantly, hydrogen storage materials made of wax can be manufactured through completely sustainable processes utilizing biomass or other renewable feedstocks. PMID:27759014
Synthesis of C-glycosyl-bis-1,2,3-triazole derivatives from 3,4,6-tri-O-acetyl-D-glucal.
Shamim, Anwar; Souza, Frederico B; Trossini, Gustavo H G; Gatti, Fernando M; Stefani, Hélio A
2015-08-01
We have developed an efficient, CuI-catalyzed, microwave-assisted method for the synthesis of bis-1,2,3-triazole derivatives starting from a 3,4,6-tri-O-acetyl-D-glucal-derived mesylate. This mesylate was obtained from 3,4,6-tri-O-acetyl-D-glucal through C-glycosidation, deprotection of acetate groups to alcohols, and selective mesylation of the primary alcohol. This mesylate moiety was then converted to an azide through a microwave-assisted method with good yield. The azide, once synthesized, was then treated with different terminal alkynes in the presence of CuI to synthesize various bis-triazoles in high yields and short reaction times.
Effects of feedstock characteristics on microwave-assisted pyrolysis - A review.
Zhang, Yaning; Chen, Paul; Liu, Shiyu; Peng, Peng; Min, Min; Cheng, Yanling; Anderson, Erik; Zhou, Nan; Fan, Liangliang; Liu, Chenghui; Chen, Guo; Liu, Yuhuan; Lei, Hanwu; Li, Bingxi; Ruan, Roger
2017-04-01
Microwave-assisted pyrolysis is an important approach to obtain bio-oil from biomass. Similar to conventional electrical heating pyrolysis, microwave-assisted pyrolysis is significantly affected by feedstock characteristics. However, microwave heating has its unique features which strongly depend on the physical and chemical properties of biomass feedstock. In this review, the relationships among heating, bio-oil yield, and feedstock particle size, moisture content, inorganics, and organics in microwave-assisted pyrolysis are discussed and compared with those in conventional electrical heating pyrolysis. The quantitative analysis of data reported in the literature showed a strong contrast between the conventional processes and microwave based processes. Microwave-assisted pyrolysis is a relatively new process with limited research compared with conventional electrical heating pyrolysis. The lack of understanding of some observed results warrant more and in-depth fundamental research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Carballo, Silvia; Prats, Soledad; Maestre, Salvador; Todolí, José-Luis
2015-04-01
In this manuscript, a study of the effect of microwave radiation on the high-performance liquid chromatography separation of tocopherols and vitamin K1 was conducted. The novelty of the application was the use of a relatively low polarity mobile phase in which the dielectric heating effect was minimized to evaluate the nonthermal effect of the microwave radiation over the separation process. Results obtained show that microwave-assisted high-performance liquid chromatography had a shorter analysis time from 31.5 to 13.3 min when the lowest microwave power was used. Moreover, narrower peaks were obtained; hence the separation was more efficient maintaining or even increasing the resolution between the peaks. This result confirms that the increase in mobile phase temperature is not the only variable for improving the separation process but also other nonthermal processes must intervene. Fluorescence detection demonstrated better signal-to-noise compared to photodiode arrayed detection mainly due to the independent effect of microwave pulses on the baseline noise, but photodiode array detection was finally chosen as it allowed a simultaneous detection of nonfluorescent compounds. Finally, a determination of the content of the vitamin E homologs was carried out in different vegetable oils. Results were coherent with those found in the literature. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bo, Longli; Quan, Xie; Wang, Xiaochang; Chen, Shuo
2008-08-30
Granular activated carbon-supported platinum (Pt/GAC) catalysts were prepared by microwave irradiation and characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Pt particles dispersing onto the surface of GAC could be penetrated by microwave and acted as "reaction centre" in the degradations of p-nitrophenol (PNP) and pentachlorophenol (PCP) in aqueous solution by microwave-assisted catalytic oxidation. The reaction was carried out through a packed bed reactor under ambient pressure and continuous flow mode. Under the conditions of microwave power 400 W, influent flow 6.4 mL min(-1) and air flow 120 mL min(-1), phenolic solutions with high concentration (initial concentrations of PNP and PCP solutions were 1469 and 1,454 mg L(-1), respectively) were treated effectively by Pt/GAC, 86% PNP and 90% PCP were degraded and total organic carbon (TOC) removal reached 85% and 71%, respectively. Compared with GAC, loaded Pt apparently accelerated oxidative reaction so that Pt/GAC had a better degrading and mineralizing efficiencies for PNP. Hydraulic retention time was only 16 min in experiment, which was shortened greatly compared with catalytic wet air oxidation. Pyrolysis and oxidation of phenolic pollutants occurred simultaneously on the surface of Pt/GAC by microwave irradiation.
NASA Astrophysics Data System (ADS)
Xu, Wei-Ping; Zhang, Yu-Ying; Li, Zhi-Jian; Nie, Yi-Hang
2017-08-01
We investigate the thermoelectric properties of a ferromagnet-quantum dot-superconductor hybrid system with the intradot spin-flip scattering and the external microwave field. The results indicate that the increase of figure of merit in the gap is very slight when the spin-flip scattering strength increases, but outside the gap it significantly increases with enhancing spin-flip scattering strength. The presence of microwave field results in photon-assisted Andreev reflection and induces the satellite peaks in conductance spectrum. The appropriate match of spin-flip scattering strength, microwave field strength and frequency can significantly enhances the figure of merit of thermoelectric conversion of the device, which can be used as a scheme improving thermoelectric efficiency using microwave frequency.
Microwave and continuous flow technologies in drug discovery.
Sadler, Sara; Moeller, Alexander R; Jones, Graham B
2012-12-01
Microwave and continuous flow microreactors have become mainstream heating sources in contemporary pharmaceutical company laboratories. Such technologies will continue to benefit from design and engineering improvements, and now play a key role in the drug discovery process. The authors review the applications of flow- and microwave-mediated heating in library, combinatorial, solid-phase, metal-assisted, and protein chemistries. Additionally, the authors provide a description of the combination of microwave and continuous flow platforms, with applications in the preparation of radiopharmaceuticals and in drug candidate development. Literature reviewed is chiefly 2000 - 2012, plus key citations from earlier reports. With the advent of microwave irradiation, reactions that normally took days to complete can now be performed in a matter of minutes. Coupled with the introduction of continuous flow microreactors, pharmaceutical companies have an easy way to improve the greenness and efficiency of many synthetic operations. The combined force of these technologies offers the potential to revolutionize discovery and manufacturing processes.
MICROWAVE-ASSISTED SYNTHESIS OF NITROGEN AND OXYGEN CONTAINING HETEROCYCLES IN AQUEOUS MEDIUM
Pharmaceutical scientists are required to generate diverse arrays of complex targets in short periods of time. A primary driver of organic chemistry is, therefore, the development of efficient and environmentally benign synthetic protocols. This can be achieved via the selection ...
Liu, Mengge; Chen, Guang; Guo, Hailong; Fan, Baolei; Liu, Jianjun; Fu, Qiang; Li, Xiu; Lu, Xiaomin; Zhao, Xianen; Li, Guoliang; Sun, Zhiwei; Xia, Lian; Zhu, Shuyun; Yang, Daoshan; Cao, Ziping; Wang, Hua; Suo, Yourui; You, Jinmao
2015-09-16
Determination of plant growth regulators (PGRs) in a signal transduction system (STS) is significant for transgenic food safety, but may be challenged by poor accuracy and analyte instability. In this work, a microwave-assisted extraction-derivatization (MAED) method is developed for six acidic PGRs in oil samples, allowing an efficient (<1.5 h) and facile (one step) pretreatment. Accuracies are greatly improved, particularly for gibberellin A3 (-2.72 to -0.65%) as compared with those reported (-22 to -2%). Excellent selectivity and quite low detection limits (0.37-1.36 ng mL(-1)) are enabled by fluorescence detection-mass spectrum monitoring. Results show the significant differences in acidic PGRs between transgenic and nontransgenic oils, particularly 1-naphthaleneacetic acid (1-NAA), implying the PGRs induced variations of components and genes. This study provides, for the first time, an accurate and efficient determination for labile PGRs involved in STS and a promising concept for objectively evaluating the safety of transgenic foods.
Kim, Jong Min; Ko, Dongjin; Oh, Jiseop; Lee, Jeongyeon; Hwang, Taejin; Jeon, Youngmoo; Hooch Antink, Wytse; Piao, Yuanzhe
2017-10-19
Graphene nanocomposites have attracted much attention in many applications due to their superior properties. However, preparing graphene nanocomposites requires a time-consuming thermal treatment to reduce the graphene or synthesize nanomaterials, in most cases. We present an ultrafast synthesis of a carbon-coated silicon-graphene nanocomposite using a commercial microwave system. Electrochemically exfoliated graphene is used as a novel microwave susceptor to deliver efficient microwave energy conversion. Unlike graphene oxide, it does not require a time-consuming pre-thermal reduction or toxic chemical reduction to absorb microwave radiation efficiently. A carbon-coated silicon nanoparticle-electrochemically exfoliated graphene nanocomposite film was prepared by a few seconds' microwave irradiation. The sp 2 domains of graphene absorb microwave radiation and generate heat to simultaneously reduce the graphene and carbonize the polydopamine carbon precursor. The as-prepared N-doped carbon-coated silicon-graphene film was used as a lithium-ion battery anode. The N-doped carbon coating decreases the contact resistance between silicon nanoparticles and graphene provides a wide range conductive network. Consequently, it exhibited a reversible capacity of 1744 mA h g -1 at a current density of 0.1 A g -1 and 662 mA h g -1 at 1.0 A g -1 after 200 cycles. This method can potentially be a general approach to prepare various graphene nanocomposites in an extremely short time.
Microwave assisted extraction for trace element analysis of plant materials by ICP-AES.
Borkowska-Burnecka, J
2000-11-01
Application of microwave assisted extraction for the decomposition and dissolution of plant samples for trace metal determination by ICP-AES was examined. Dried onion, leaves of spinach beet and three reference materials CTA-OTL-1, CTA-VTL-2 and CL-1 were analyzed. Water, EDTA and hydrochloric acid (0.01, 0.10 and 1.0 M, respectively) were used as leaching solutions. The extraction efficiency was investigated by comparison of the results with those obtained after microwave wet digestion. HCl was found to be very suitable for quantitative extraction of B, Ba, Cd, Cu, Mn, Ni, Pb, Sr and Zn from the samples. For reference materials, the measured concentrations are well consistent with the certified values. The use of EDTA led to a complete extraction of B, Cd, Ni, Pb, Sr and Zn. Water was found to be a good leaching solution for boron. For extraction with HCl and EDTA, the RSD values for the concentrations measured were below 8% for most of the elements.
Lee, Ji-Hyeok; Kim, Hyung-Ho; Ko, Ju-Young; Jang, Jun-Ho; Kim, Gwang-Hoon; Lee, Jung-Suck; Nah, Jae-Woon; Jeon, You-Jin
2016-11-20
This study describes a simple preparation of functional polysaccharides from Pyropia yezoensis using a microwave-assistant rapid enzyme digest system (MAREDS) with various carbohydrases, and evaluates their antioxidative effects. Polysaccharide hydrolysates were prepared using MAREDS under different hydrolytic conditions of the carbohydrases and microwave powers. Polysaccharides less than 10kDa (Low molecular weight polysaccharides, LMWP, ≤10kDa) were efficiently obtained using an ultrafiltration (molecular weight cut-off of 10kDa). MAREDS increases AMG activation via an increased degree of hydrolysis; the best AMG hydrolysate was prepared using a 10:1 ratio of substrate to enzyme for 2h in MAREDS with 400W. LMWP consisted of galactose (27.3%), glucose (64.5%), and mannose (8.3%) from the AMG hydrolysate had stronger antioxidant effects than the high molecular weight polysaccharides (>10kDa). We rapidly prepared functional LMWPs by using MAREDS with carbohydrases, and suggest that LMWP might be potentially a valuable algal polysaccharide antioxidant. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gain assisted coherent control of microwave pulse in a one dimensional array of artificial atoms
NASA Astrophysics Data System (ADS)
Waqas, Mohsin; Ayaz, M. Q.; Waseem, M.; Qamar, Sajid; Qamar, Shahid
2018-06-01
We study the coherent propagation of a microwave pulse through a one-dimensional array of artificial atoms. The scheme is based upon gain assisted propagation of the pulse using two-photon Raman transition in a three-level superconducting artificial atoms (SAAs) coupled to a microwave transmission line. Our results show that the group velocity can be significantly reduced by increasing the Rabi frequency of the pump fields which in turn can lead to an efficient storage of the pulse inside a 1D array of SAAs. Further, the intensity of the transmitted pulse increases with the number of artificial atoms owing to the gain associated with the two-photon Raman transition. Our results also show that the window width decreases for both scattering and negligible scattering cases with the increase in the number of SAAs. The fidelity of the system also remains high even after the passage of the pulse through a large number of SAAs.
Microwave-assisted Chemical Transformations
In recent years, there has been a considerable interest in developing sustainable chemistries utilizing green chemistry principles. Since the first published report in 1986 by Gedye and Giguere on microwave assisted synthesis in household microwave ovens, the use of microwaves as...
Ng, Lay-Keow; Hupé, Michel
2003-09-05
The effects of tobacco moisture on nicotine yield were investigated in this study. Soxhlet and microwave-assisted techniques were used to extract nicotine from cigar fillers of varying moisture contents (5-20%), using a polar (methanol) and a non-polar (isooctane) solvent. The extracts were analyzed by a gas chromatograph equipped with a flame-ionization detector. For both extraction techniques, higher nicotine yields were consistently obtained with methanol than with isooctane from the same samples. Solubility of nicotine salts in methanol but not in isooctane is the major cause of this observation. Moreover, pronounced effects of the tobacco moisture content on extraction efficiency were observed with isooctane but not with methanol. For microwave assisted extraction (MAE) with isooctane, nicotine yield increased from 3 to 70% as the moisture level in tobacco was raised from 3 to 13%, and leveled off thereafter. Similar observations were made with Soxhlet extraction. While MAE results were rationalized by the known cell-rupture process, a mechanism based on the interaction between the solvents and the structural components of the plant cells has been proposed to account for the observations made with Soxhlet extraction.
Rapid microwave-assisted synthesis of polydextrose and identification of structure and function.
Wang, Haisong; Shi, Yonghui; Le, Guowei
2014-11-26
Microwave irradiation is a rapid and efficient method to synthesize oligomers and can be employed in polysaccharides production. As an artificial polysaccharide, polydextrose is known for its solid performance in food processing and its additional health benefits. This study was aimed at producing polydextrose by microwave irradiation using glucose and sorbitol as substrates; water and phosphoric acid as initiator and catalyst. The actual maximum yield was 99%. Synthetic polydextrose were purified by ethanol elution and Sepherdex G-25 column chromatography. Its purity was demonstrated by the high-performance gel-permeation chromatography as a single symmetrical sharp peak, additionally the average molecular weight was calculated to be 2.131 kDa. FT-IR spectra showed that the synthesized polydextrose has the structural feature similar to Polydextrose-Litesse(®). In vitro fermentation revealed that polydextrose possesses the biological function similar to Polydextrose-Litesse(®) in increasing the concentration of short chain fatty acid and decreasing pH. This research demonstrated the feasibility of a rapid and efficient microwave mediated method to synthesize polydextrose and potentially other value added carbohydrate polymers. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panigrahi, Pravas Kumar, E-mail: pravas.iit@gmail.com; Pathak, Amita, E-mail: ami@chem.iitkgp.ernet.in
Graphical abstract: Nanotubes and fullerene-like nanostructures of MoS{sub 2} were synthesized via a microwave-assisted route in solution phase. Highlights: Black-Right-Pointing-Pointer Microwave-assisted route for synthesis of nanotube and fullerene-like nanostructures of MoS{sub 2}. Black-Right-Pointing-Pointer Morphological analysis of the synthesized products. Black-Right-Pointing-Pointer Solvent plays important role in the modification of morphology of MoS{sub 2}. -- Abstract: The paper described the synthesis of nanotubes and fullerene-like nanostructures of MoS{sub 2} through a technically simple, rapid, and energy-efficient microwave-assisted synthesis technique, which involved the use of elemental sulfur dissolved in a mixture of monoethanolamine and hydrazine hydrate as the sulfide source. The microwave inducedmore » reaction between the molybdate with sulfide ions, in the presence of hydrazine hydrate in the reaction medium, resulted in the formation of gray colored powders of amorphous MoS{sub 2}. The as-obtained powders were calcined at 600 Degree-Sign C for 2 h and characterized by different techniques. HRTEM analysis of the calcined samples indicated the formation of fullerene-like MoS{sub 2} structures when the starting solution mixture was irradiated with microwave for a period of 200 s, while on 600 s of irradiation of the same revealed the formation of folded sheets like MoS{sub 2} nanotubes. BET surface areas of the calcined samples have been measured and a plausible reaction mechanism for the formation of nanotubes and fullerene-like nanostructures of MoS{sub 2} has been proposed.« less
Li, Dongrui; Cheng, Zhigang; Chen, Gang; Liu, Fangyi; Wu, Wenbo; Yu, Jie; Gu, Ying; Liu, Fengyong; Ren, Chao; Liang, Ping
2018-04-03
To test the accuracy and efficacy of the multimodality imaging-compatible insertion robot with a respiratory motion calibration module designed for ablation of liver tumors in phantom and animal models. To evaluate and compare the influences of intervention experience on robot-assisted and ultrasound-controlled ablation procedures. Accuracy tests on rigid body/phantom model with a respiratory movement simulation device and microwave ablation tests on porcine liver tumor/rabbit liver cancer were performed with the robot we designed or with the traditional ultrasound-guidance by physicians with or without intervention experience. In the accuracy tests performed by the physicians without intervention experience, the insertion accuracy and efficiency of robot-assisted group was higher than those of ultrasound-guided group with statistically significant differences. In the microwave ablation tests performed by the physicians without intervention experience, better complete ablation rate was achieved when applying the robot. In the microwave ablation tests performed by the physicians with intervention experience, there was no statistically significant difference of the insertion number and total ablation time between the robot-assisted group and the ultrasound-controlled group. The evaluation by the NASA-TLX suggested that the robot-assisted insertion and microwave ablation process performed by physicians with or without experience were more comfortable. The multimodality imaging-compatible insertion robot with a respiratory motion calibration module designed for ablation of liver tumors could increase the insertion accuracy and ablation efficacy, and minimize the influence of the physicians' experience. The ablation procedure could be more comfortable with less stress with the application of the robot.
Fan, Kai; Zhang, Min; Mujumdar, Arun S
2018-01-10
Microwave heating has been applied in the drying of high-value solids as it affords a number of advantages, including shorter drying time and better product quality. Freeze-drying at cryogenic temperature and extremely low pressure provides the advantage of high product quality, but at very high capital and operating costs due partly to very long drying time. Freeze-drying coupled with a microwave heat source speeds up the drying rate and yields good quality products provided the operating unit is designed and operated to achieve the potential for an absence of hot spot developments. This review is a survey of recent developments in the modeling and experimental results on microwave-assisted freeze-drying (MFD) over the past decade. Owing to the high costs involved, so far all applications are limited to small-scale operations for the drying of high-value foods such as fruits and vegetables. In order to promote industrial-scale applications for a broader range of products further research and development efforts are needed to offset the current limitations of the process. The needs and opportunities for future research and developments are outlined.
Peng, Pai; Xiong, Jin-Feng; Mo, Guang-Zhen; Zheng, Jia-Li; Chen, Ren-Hong; Chen, Xiao-Yun; Wang, Zhao-Yang
2014-10-01
An efficient method for the synthesis of aminomethyl benzimidazoles is developed by using a one-pot batch reaction between amino acids and o-phenylenediamines. This reaction proceeds smoothly in an unmodified household microwave oven, even though scale-up is to 10 g. A desirable method for the quick synthesis of benzimidazoles, which are used as a kind of important intermediates in drug synthesis, is provided by the scale-up utilization of amino acid resource.
Ultrasound and microwave assisted synthesis of isoindolo-1,2-diazine: a comparative study.
Bejan, Vasilichia; Mantu, Dorina; Mangalagiu, Ionel I
2012-09-01
A comparative study, ultrasound (US) versus microwave (MW) versus conventional thermal heating (TH), for synthesis of isoindolo-1,2-diazine is described. The reaction pathway is fast, efficient and straight applicable, involving a Huisgen [3+2] dipolar cycloaddition of cycloimmonium ylides to 1,4-naphthoquinone. A feasible reaction mechanism for the obtaining of the fully aromatized tetra- and penta- cyclic isoindolo-1,2-diazine is presented. Under US irradiation the yields are much higher (sometimes substantially, by almost double), the reaction time decreases substantially, the reaction conditions are milder. The use of a generator with a higher nominal power induces higher yields and short reaction times. Overall the use of US it proved to be more efficient than MW or TH. A feasible explication for US efficiency is presented. Copyright © 2012 Elsevier B.V. All rights reserved.
Mi, Cong-Cong; Tian, Zhen-huang; Han, Bao-fu; Mao, Chuan-bin; Xu, Shu-kun
2012-01-01
Polyethyleneimine (PEI) functionalized multicolor luminescent LaF3 nanoparticles were synthesized via a novel microwave-assisted method, which can achieve fast and uniform heating under eco-friendly and energy efficient conditions. The as-prepared nanoparticles possess a pure hexagonal structure with an average size of about 12 nm. When doped with different ions (Tb3+ and Eu3+), the morphology and structure of the nanoparticles were not changed, whereas the optical properties varied with doped ions and their molar ratio, and as a result emission of four different colors (green, yellow, orange and red) were achieved by simply switching the types of doping ions (Eu3+ versus Tb3 +) and the molar ratio of the two doping ions. PMID:22879690
TANDEM BIS-ALDOL REACTION OF KETONES: A FACILE ONE-POT SYNTHESIS OF 1,3-DIOXANES IN AQUEOUS MEDIUM
A novel tandem bis-aldol reaction of ketone with paraformaldehyde catalyzed by polystyrenesulfonic acid in aqueous medium delivers 1,3-dioxanes in high yield. This one pot, operationally simple microwave-assisted synthetic protocol proceeds efficiently in water in the absence of ...
Wang, Wentao; Meng, Bingjun; Lu, Xiaoxia; Liu, Yu; Tao, Shu
2007-10-29
The methods of simultaneous extraction of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) from soils using Soxhlet extraction, microwave-assisted extraction (MAE) and accelerated solvent extraction (ASE) were established, and the extraction efficiencies using the three methods were systemically compared from procedural blank, limits of detection and quantification, method recovery and reproducibility, method chromatogram and other factors. In addition, soils with different total organic carbon contents were used to test the extraction efficiencies of the three methods. The results showed that the values obtained in this study were comparable with the values reported by other studies. In some respects such as method recovery and reproducibility, there were no significant differences among the three methods for the extraction of PAHs and OCPs. In some respects such as procedural blank and limits of detection and quantification, there were significant differences among the three methods. Overall, ASE had the best extraction efficiency compared to MAE and Soxhlet extraction, and the extraction efficiencies of MAE and Soxhlet extraction were comparable to each other depending on the property such as TOC content of the studied soil. Considering other factors such as solvent consumption and extraction time, ASE and MAE are preferable to Soxhlet extraction.
Bio-based products via microwave-assisted maleation of tung oil
USDA-ARS?s Scientific Manuscript database
A simple “green” and convenient chemical modification of tung oil for maleinized tung oil (TOMA) was developed via microwave-assisted one-step maleation. The mechanism of this microwave-assisted maleation was investigated by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). T...
Preparation of Silica Nanoparticles Through Microwave-assisted Acid-catalysis
Lovingood, Derek D.; Owens, Jeffrey R.; Seeber, Michael; Kornev, Konstantin G.; Luzinov, Igor
2013-01-01
Microwave-assisted synthetic techniques were used to quickly and reproducibly produce silica nanoparticle sols using an acid catalyst with nanoparticle diameters ranging from 30-250 nm by varying the reaction conditions. Through the selection of a microwave compatible solvent, silicic acid precursor, catalyst, and microwave irradiation time, these microwave-assisted methods were capable of overcoming the previously reported shortcomings associated with synthesis of silica nanoparticles using microwave reactors. The siloxane precursor was hydrolyzed using the acid catalyst, HCl. Acetone, a low-tan δ solvent, mediates the condensation reactions and has minimal interaction with the electromagnetic field. Condensation reactions begin when the silicic acid precursor couples with the microwave radiation, leading to silica nanoparticle sol formation. The silica nanoparticles were characterized by dynamic light scattering data and scanning electron microscopy, which show the materials' morphology and size to be dependent on the reaction conditions. Microwave-assisted reactions produce silica nanoparticles with roughened textured surfaces that are atypical for silica sols produced by Stöber's methods, which have smooth surfaces. PMID:24379052
Duan, Dengle; Ruan, Roger; Wang, Yunpu; Liu, Yuhuan; Dai, Leilei; Zhao, Yunfeng; Zhou, Yue; Wu, Qiuhao
2018-03-01
This study performed microwave-assisted acid pretreatment on pure lignin. The effects of microwave temperature, microwave time, and hydrochloric acid concentration on characteristics and pyrolysis behavior of lignin were examined. Results of ultimate analysis revealed better properties of all pretreated samples than those of raw lignin. Fourier transform infrared spectroscopy analysis showed breakage of βO4 bond and aliphatic side chain, decrease in OH groups, and formation of CO groups in pretreatment. Microwave temperature exerted more significant influence on lignin structure. Thermal stability of treated lignin was improved and insensitive to short microwave time and acid concentration under mild conditions. Resulting from improved alkyl-phenols and decreased alkoxy-phenols, microwave-assisted acid pretreatment of lignin yielded bio-oil with excellent quality. Total yield of phenols in pyrolysis vapors (200 °C) improved to 14.15%, whereas that of guaiacols decreased to 22.36%. This study shows that microwave-assisted acid pretreatment is a promising technology for lignin conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Fangfang; Wang, Jiayu; Chen, Huiru; Lu, Ruicong; Xie, Xiaoyu
2018-03-01
Magnetic nanoparticles have been widely used as support core for fast separation, which could be directly separated from complicated matrices using an external magnet in few minutes. Surface imprinting based on magnetic core has shown favorable adsorption and separation performance, including good adsorption capacity, fast adsorption kinetics and special selectivity adsorption. Reversible addition-fragmentation chain transfer (RAFT) is an ideal choice for producing well-defined complex architecture with mild reaction conditions. We herein describe the preparation of well-constructed magnetic molecularly imprinted polymers (MMIPs) for the recognition of benzimidazole (BMZ) residues via the microwave-assisted RAFT polymerization. The merits of RAFT polymerization assisting with microwave heating allowed successful and more efficient preparation of well-constructed imprinted coats. Moreover, the polymerization time dramatically shortened and was just 1/24th of the time taken by conventional heating. The results indicated that a uniform nanoscale imprinted layer was formed on the Fe3O4 core successfully, and enough saturation magnetization of MMIPs (16.53 emu g-1) was got for magnetic separation. The desirable adsorption capacity (30.18 μmol g-1) and high selectivity toward template molecule with a selectivity coefficient (k) of 13.85 of MMIPs were exhibited by the adsorption isothermal assay and competitive binding assay, respectively. A solid phase extraction enrichment approach was successfully established for the determination of four BMZ residues from apple samples using MMIPs coupled to HPLC. Overall, this study provides a versatile approach for highly efficient fabrication of well-constructed MMIPs for enrichment and determination of target molecules from complicated samples.
Phase Transformation of VO2 Nanoparticles Assisted by Microwave Heating
Sikong, Lek.
2014-01-01
The microwave assisted synthesis nowadays attracts a great deal of attention. Monoclinic phase VO2 (M) was prepared from NH4VO3 and H2C2O4 · 2H2O by a rapid microwave assisted technique. The synthesis parameters, microwave irradiation time, microwave power, and calcinations temperature were systematically varied and their influences on the structure and morphology were evaluated. The microwave power level has been carried out in range 180–600 W. TEM analysis demonstrated nanosized samples. The structural and morphological properties were measured using XRD, TEM, and thermal analyses. The variations of vanadium phase led to thermochromic properties. PMID:24688438
NASA Astrophysics Data System (ADS)
Wang, Yao; Zhang, Qingtao; Sun, Yuan; Yang, Chengjia
2018-01-01
As a new generation biodiesel feedstock, microalgae have most potential to replace fossil fuel. However, the limited scale and high cost are two bottleneck problems. Efficient microwave-assisted lipid extraction technologies and suitable light conditions for Chlorella Sorokiniana need further study for lowering the cost. In this study, three photoperiod groups(24L:0D, 12L:12D, 0L:24D), three illumination intensity groups (1800 lux, 3600 lux, 5400 lux)and four light spectrum groups (Red, green, blue, and white) were used to culture Chlorella Sorokiniana to investigate those effects on algae growth rate and biomass accumulation. The suitable microwave treatment was also studied to achieve an optimizing quantum fracturing technology. 400 w, 750 w and 1000 w microwave power were set and 60 °C, 75 °C, 90 °C microwave conditions were investigated. The results showed that Chlorella Sorokiniana under 24L:0D photoperiod with 5400 lux white light can achieve better growth rate. The 90 °C / 1000w microwave treatment was identified as the most simple, easy, and effective way for lipid extraction from Chlorella Sorokiniana. As the raw material of biodiesel production, C18:1, C18:2 and C18:3 have accounted for important components of fatty acid in Chlorella Sorokiniana. Therefore, Chlorella Sorokiniana is a good raw material for the production of good quality biodiesel under suitable and efficient technologies.
Microwave-Assisted Synthesis of Phenothiazine and Quinoline Derivatives
Găină, Luiza; Cristea, Castelia; Moldovan, Claudia; Porumb, Dan; Surducan, Emanoil; Deleanu, Călin; Mahamoud, Abdalah; Barbe, Jacques; Silberg, Ioan A.
2007-01-01
Application of a dynamic microwave power system in the chemical synthesis of some phenothiazine and quinoline derivatives is described. Heterocyclic ring formation, aromatic nucleophilic substitution and heterocyclic aldehydes/ketones condensation reactions were performed on solid support, or under solvent free reaction conditions. The microwave-assisted Duff formylation of phenothiazine was achieved. Comparison of microwave-assisted synthesis with the conventional synthetic methods demonstrates advantages related to shorter reaction times and in some cases better reaction yields.
Microwave-Irradiation-Assisted HVAC Filtration for Inactivation of Viral Aerosols (Postprint)
2012-02-01
Baggiani, A. and Senesi, S. (2004). Effect of Microwave Radiation on Bacillus subtilis Spores . J. Appl. Microbiol. 97: 1220–1227. Damit, B., Lee, C.N...AFRL-RX-TY-TP-2012-0020 MICROWAVE-IRRADIATION-ASSISTED HVAC FILTRATION FOR INACTIVATION OF VIRAL AEROSOLS POSTPRINT Myung-Heui Woo and...12-APR-2011 -- 11-DEC-2011 Microwave Irradiation-Assisted HVAC Filtration for Inactivation of Viral Aerosols (POSTPRINT) FA8650-06-C-5913 0602102F
Martino, Emanuela; Collina, Simona; Rossi, Daniela; Bazzoni, Deborah; Gaggeri, Raffaella; Bracco, Francesco; Azzolina, Ornella
2008-01-01
The extract of Crataegus monogyna shows sedative, hypotensive, vasodilator and cardio-tonic actions. Although several papers dealing with the extraction of metabolites from Crataegus have been published, the plant productivity in terms of bioactive compounds is not easily understandable as yet. To investigate the influence of the extraction mode on the yield of bioactive compounds from Crataegus monogyna Jacq. in order to evaluate plant productivity. Samples were prepared by extraction of powdered material obtained from top branches, flowers and leaves. Soxhlet extraction, maceration and ultrasound- and microwave-assisted extraction at different experimental conditions were investigated for the exhaustive extraction of hyperoside, vitexin and vitexin-2''-O-rhamnoside. The phytocomponents were identified and quantified by HPLC-UV/PAD, comparing HPLC retention times and UV spectra of individual peaks with those of the standards analysed under the same conditions. An easy-to-use HPLC isocratic method suitable for the quantification of hyperoside, vitexin and vitexin-2''-O-rhamnoside in raw plant extracts was developed. The optimised HPLC methodology was applied to evaluate different extraction procedures. The ultrasound and microwave-assisted extraction protocols showed higher extraction efficiency than the others. In particular, the optimised microwave protocol gave rise to the highest extraction efficiency with high reproducibility. A microwave protocol combined with isocratic HPLC analysis is proposed for the rapid screening of plant materials collected in different environmental conditions in order to evaluate the productivity of Crataegus monogyna Jacq. and to find out the best ecological conditions to cultivate hawthorn in Northern Italy.
A Review of Microwave-Assisted Reactions for Biodiesel Production
Nomanbhay, Saifuddin; Ong, Mei Yin
2017-01-01
The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society’s increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective. PMID:28952536
A Review of Microwave-Assisted Reactions for Biodiesel Production.
Nomanbhay, Saifuddin; Ong, Mei Yin
2017-06-15
The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society's increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective.
Bagley, Mark C; Davis, Terence; Dix, Matthew C; Fusillo, Vincenzo; Pigeaux, Morgane; Rokicki, Michal J; Kipling, David
2009-11-06
Microwave irradiation promotes the rapid and efficient reaction of a thiophenol and aryl or heteroaryl halide using a copper or palladium catalyst and a range of ligands, depending upon substrate. Of particular utility is the use of copper(I) iodide (5 mol %) and trans-cyclohexane-1,2-diol as ligand under basic conditions and microwave irradiation to give the corresponding sulfide in high yield. This method for C-S bond formation is applied in the four-step synthesis of the clinical candidate VX-745 in 38% overall yield. The inhibitory activity of VX-745 against p38alpha MAPK is confirmed in Werner syndrome dermal fibroblasts at 1.0 microM concentration by immunoblot assay.
NASA Astrophysics Data System (ADS)
Xie, Hanjie; Zhu, Lianjie; Zheng, Wenjun; Zhang, Jing; Gao, Fubo; Wang, Yan
2016-11-01
An energy-efficient and environmentally friendly microwave-assisted method was adopted for synthesis of butterfly-like CuO assembled by nanosheets through a Cu2Cl(OH)3 precursor, using no template. Formation mechanism of the butterfly-like CuO was explored and discussed systematically for the first time on the basis of both experimental results and crystal structure transformations in atomic level. The electrochemical sensing properties of the butterfly-like CuO modified electrode to ascorbic acid (AA) were studied for the first time. The results reveal that Cu(OH)2 nanowires were formed once the Cu2+ ions, located in between two CuO4 parallelogram chains of a Cu2Cl(OH)3 precursor, dissolve into the solution as Cu(OH)42- complex ions after ion exchange reactions and simultaneous assemble along a axis. Upon microwave irradiation, the adjacent CuO4 parallelogram chains of the Cu(OH)2 nanowires dehydrate and assemble along c axis, forming CuO nanosheets with (002) as the main exposed facet, which were further assembled to butterfly-like CuO under the action of microwave field, suggesting that microwave field functions like a 'directing agent'. The butterfly-like CuO modified electrode shows good electrochemical sensing properties to AA with a low detecting limit, short response time and wide linear response range.
NASA Astrophysics Data System (ADS)
Fadzilah, R. Hanum; Sobhana, B. Arianto; Mahfud, M.
2015-12-01
Microwave-assisted extraction technique was employed to extract essential oil from ginger. The optimal condition for microwave assisted extraction of ginger were determined by resposnse surface methodology. A central composite rotatable design was applied to evaluate the effects of three independent variables. The variables is were microwave power 400 - 800W as X1, feed solvent ratio of 0.33 -0.467 as X2 and feed size 1 cm, 0.25 cm and less than 0.2 cm as X3. The correlation analysis of mathematical modelling indicated that quadratic polynomial could be employed to optimize microwave assisted extraction of ginger. The optimal conditions to obtain highest yield of essential oil were : microwave power 597,163 W : feed solvent ratio and size of feed less than 0.2 cm.
Marques, Thiago L; Wiltsche, Helmar; Nóbrega, Joaquim A; Winkler, Monika; Knapp, Günter
2017-07-01
Acid digestion is usually required for metal determination in food samples. However, this step is usually performed in batch mode which is time consuming, labor intensive, and may lead to sample contamination. Flow digestion can overcome these limitations. In this work, the performance of a high-pressure microwave-assisted flow digestion system with a large volume reactor was evaluated for liquid samples high in sugar and fat (fruit juice and milk). The digestions were carried out in a coiled perfluoroalkoxy (PFA) tube reactor (13.5 mL) installed inside an autoclave pressurized with 40 bar nitrogen. The system was operated at 500 W microwave power and 5.0 mL min -1 carrier flow rate. Digestion conditions were optimized with phenylalanine, as this substance is known to be difficult to digest completely. The combinations of HCl or H 2 O 2 with HNO 3 increased the digestion efficiency of phenylalanine, and the residual carbon content (RCC) was around 50% when 6.0% V/V HCl or H 2 O 2 was used in combination with 32% V/V HNO 3 . Juice samples were digested with 3.7 mol L -1 HNO 3 and 0.3 mol L -1 HCl, and the RCC was 16 and 29% for apple and mango juices, respectively. Concentrated HNO 3 (10.5 mol L -1 ) was successfully applied for digesting milk samples, and the RCCs were 23 and 25% for partially skimmed and whole milk, respectively. Accuracy and precision of the flow digestion procedure were compared with reference digestions using batch mode closed vessel microwave-assisted digestion and no statistically significant differences were encountered at the 95% confidence level. Graphical abstract Application of a high-pressure microwave-assisted flow digestion system for fruit juice and milk sample preparation.
Application of microwave energy in the control of DPM, oxides of nitrogen and VOC emissions
NASA Astrophysics Data System (ADS)
Pallavkar, Sameer M.
The emissions of DPM (diesel particulate matter), NOx (oxides of nitrogen), and toxic VOCs (volatile organic compounds) from diesel engine exhaust gases and other sources such as chemical process industry and manufacturing industry have been a great environmental and health concern. Most control technologies for these emissions require elevated temperatures. The use of microwave energy as a source of heat energy, however, has not been fully explored. In this study, the microwave energy was used as the energy source in three separate emission control processes, namely, the regeneration of diesel particulate filter (DPF) for DPM control, the NOx reduction using a platinum catalyst, and the VOC destruction involving a ceramic based material. The study has demonstrated that microwave heating is an effective method in providing heat for the studied processes. The control efficiencies associated with the microwave-assisted processes have been observed to be high and acceptable. Further research, however, is required for the commercial use of these technologies.
Single-Shot Quantum Nondemolition Detection of Individual Itinerant Microwave Photons
NASA Astrophysics Data System (ADS)
Besse, Jean-Claude; Gasparinetti, Simone; Collodo, Michele C.; Walter, Theo; Kurpiers, Philipp; Pechal, Marek; Eichler, Christopher; Wallraff, Andreas
2018-04-01
Single-photon detection is an essential component in many experiments in quantum optics, but it remains challenging in the microwave domain. We realize a quantum nondemolition detector for propagating microwave photons and characterize its performance using a single-photon source. To this aim, we implement a cavity-assisted conditional phase gate between the incoming photon and a superconducting artificial atom. By reading out the state of this atom in a single shot, we reach an external (internal) photon-detection fidelity of 50% (71%), limited by transmission efficiency between the source and the detector (75%) and the coherence properties of the qubit. By characterizing the coherence and average number of photons in the field reflected off the detector, we demonstrate its quantum nondemolition nature. We envisage applications in generating heralded remote entanglement between qubits and for realizing logic gates between propagating microwave photons.
The first Pd-N-heterocyclic carbene (NHC) complex in the form of organic silica is prepared using sol-gel method and its application in Heck and Suzuki reactions are demonstrated. These C-C coupling reactions proceeded efficiently under the influence of microwave irradiation, wit...
NASA Astrophysics Data System (ADS)
Thirunarayanan, G.; Mayavel, P.; Thirumurthy, K.
2012-06-01
Some 2E aryl chalcones have been synthesized using greener catalyst Fly-ash:H2SO4 assisted solvent free environmentally benign Crossed-Aldol reaction. The yields of chalcones are more than 90%. The synthesized chalcones are characterized by their physical constants and spectral data.
Ma, Chun-hui; Liu, Ting-ting; Yang, Lei; Zu, Yuan-gang; Chen, Xiaoqiang; Zhang, Lin; Zhang, Ying; Zhao, Chunjian
2011-12-02
Ionic liquid-based microwave-assisted extraction (ILMAE) has been successfully applied in extracting essential oil and four kinds of biphenyl cyclooctene lignans from Schisandra chinensis Baill. 0.25 M 1-lauryl-3-methylimidazolium bromide ionic liquid is selected as solvent. The optimum parameters of dealing with 25.0 g sample are 385 W irradiation power, 40 min microwave extraction time and 1:12 solid-liquid ratio. The yields of essential oil and lignans are 12.12±0.37 ml/kg and 250.2±38.2 mg/kg under the optimum conditions. The composition of the essential oil extracted by hydro-distillation, steam-distillation and ILMAE is analyzed by GC-MS. With ILMAE method, the energy consumption time has not only been shortened to 40 min (hydro-distillation 3.0 h for extracting essential oil and reflux extraction 4.0 h for extracting lignans, respectively), but also the extraction efficiency has been improved (extraction of lignans and distillation of essential oil at the same time) and reduces the environmental pollution. S. chinensis materials treated by different methods are observed by scanning electronic microscopy. Micrographs provide more evidence to prove that ILMAE is a better and faster method. The experimental results also indicate that ILMAE is a simple and efficient technique for sample preparation. Copyright © 2011 Elsevier B.V. All rights reserved.
Xu, Wei; Chu, Kedan; Li, Huang; Zhang, Yuqin; Zheng, Haiyin; Chen, Ruilan; Chen, Lidian
2012-12-03
An ionic liquids (IL)-based microwave-assisted approach for extraction and determination of flavonoids from Bauhinia championii (Benth.) Benth. was proposed for the first time. Several ILs with different cations and anions and the microwave-assisted extraction (MAE) conditions, including sample particle size, extraction time and liquid-solid ratio, were investigated. Two M 1-butyl-3-methylimidazolium bromide ([bmim] Br) solution with 0.80 M HCl was selected as the optimal solvent. Meanwhile the optimized conditions a ratio of liquid to material of 30:1, and the extraction for 10 min at 70 °C. Compared with conventional heat-reflux extraction (CHRE) and the regular MAE, IL-MAE exhibited a higher extraction yield and shorter extraction time (from 1.5 h to 10 min). The optimized extraction samples were analysed by LC-MS/MS. IL extracts of Bauhinia championii (Benth.)Benth consisted mainly of flavonoids, among which myricetin, quercetin and kaempferol, β-sitosterol, triacontane and hexacontane were identified. The study indicated that IL-MAE was an efficient and rapid method with simple sample preparation. LC-MS/MS was also used to determine the chemical composition of the ethyl acetate/MAE extract of Bauhinia championii (Benth.) Benth, and it maybe become a rapid method to determine the composition of new plant extracts.
Wu, Lijie; Song, Ying; Hu, Mingzhu; Yu, Cui; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming
2015-09-01
Microwave-assisted ionic-liquid-impregnated resin solid-liquid extraction was developed for the extraction of triazine herbicides, including cyanazine, metribuzin, desmetryn, secbumeton, terbumeton, terbuthylazine, dimethametryn, and dipropetryn in honey samples. The ionic-liquid-impregnated resin was prepared by immobilizing 1-hexyl-3-methylimidazolium hexafluorophosphate in the microspores of resin. The resin was used as the extraction adsorbent. The extraction and enrichment of analytes were performed in a single step. The extraction time can be shortened greatly with the help of microwave. The effects of experimental parameters including type of resin, type of ionic liquid, mass ratio of resin to ionic liquid, extraction time, amount of the impregnated resin, extraction temperature, salt concentration, and desorption conditions on the extraction efficiency, were investigated. A Box-Behnken design was applied to the selection of the experimental parameters. The recoveries were in the range of 80.1 to 103.4% and the relative standard deviations were lower than 6.8%. The present method was applied to the analysis of honey samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shanmugalingam, A.; Murugesan, A.
2018-05-01
This study reports adsorption of Cr(VI) ions from aqueous solution using activated carbon that was prepared from stems of Leucas aspera. Eight hundred and fifty watts power of microwave radiation, 12 min of radiation time, 60% of ZnCl2 solution and 24 h of impregnation time are the optimal parameters to prepare efficient carbon effective activated carbon. It was designated as MWLAC (Microwave assisted Zinc chloride activated Leucas aspera carbon). Various adsorption characteristics such as dose of the adsorbent, agitation time, initial Cr(VI) ion concentration, pH of the solution and temperature on adsorption were studied for removal of Cr(VI) ions from aqueous solution by batch mode. Also the equilibrium adsorption was analyzed by the Langmuir, Freundlich, Tempkin and D-R isotherm models. The order of best describing isotherms was given based on R2 value. The pseudo-second-order kinetic model best fitted with the Cr(VI) adsorption data. Thermodynamic parameters were also determined and results suggest that the adsorption process is a spontaneous, endothermic and proceeded with increased randomness.
Shao, P; Zhang, J F; Chen, X X; Sun, P L
2015-08-01
An efficient method for the rapid extraction, separation and purification of chlorogenic acid (CGA) from by-products of Eucommia Ulmoides Oliver (E. ulmoides) by microwave-assisted extraction (MAE) coupled with high-speed counter-current chromatography (HSCCC) was developed. The optimal MAE parameters were evaluated by response surface methodology (RSM), and they were extraction time of 12 min, microwave power of 420 W, ethanol concentration of 75 %, solvent/sample ratio of 30:1 (mL/g), yield of CGA reached 3.59 %. The crude extract was separated and purified directly by HSCCC using ethyl acetate-butyl alcohol-water (3:1:4, v/v) as the two-phase solvent system. The 14.5 mg of CGA with the purity of 98.7 % was obtained in one-step separation from 400 mg of crude extract. The chemical structure of CGA was verified with IR, ESI-MS analysis. Meanwhile, the purified CGA extract was evaluated by MTT assay and results indicate that CGA extract exhibited potential anti-tumor activity for AGS gastric cancer cell.
Carro, N; García, I; Ignacio, M-C; Llompart, M; Yebra, M-C; Mouteira, A
2002-10-01
A sample-preparation procedure (extraction and saponification) using microwave energy is proposed for determination of organochlorine pesticides in oyster samples. A Plackett-Burman factorial design has been used to optimize the microwave-assisted extraction and mild saponification on a freeze dried sample spiked with a mixture of aldrin, endrin, dieldrin, heptachlor, heptachorepoxide, isodrin, transnonachlor, p, p'-DDE, and p, p'-DDD. Six variables: solvent volume, extraction time, extraction temperature, amount of acetone (%) in the extractant solvent, amount of sample, and volume of NaOH solution were considered in the optimization process. The results show that the amount of sample is statistically significant for dieldrin, aldrin, p, p'-DDE, heptachlor, and transnonachlor and solvent volume for dieldrin, aldrin, and p, p'-DDE. The volume of NaOH solution is statistically significant for aldrin and p, p'-DDE only. Extraction temperature and extraction time seem to be the main factors determining the efficiency of extraction process for isodrin and p, p'-DDE, respectively. The optimized procedure was compared with conventional Soxhlet extraction.
Gupta, Vinod Kumar; Nayak, Arunima; Agarwal, Shilpi; Tyagi, Inderjeet
2014-03-01
Rubber tire activated carbon modification (RTACMC) and rubber tire activated carbon (RTAC) were prepared from waste rubber tire by microwave assisted chemical treatment and physical heating respectively. A greater improvement in porosity and total pore volume was achieved in RTACMC as compared to that of RTAC. But both have a predominantly mesoporous structure. Under identical operating conditions, an irradiation time of 10 min, chemical impregnation ratio of 1.50 and a microwave power of 600 W resulted in maximizing the efficiency of RTACMC for p-cresol (250 mg/g) at a contact time of 90 min while RTAC showed a 71.43 mg/g adsorption capacity at 150 min. Phenol, due to its higher solubility was adsorbed to a lesser extent by both adsorbents. Physical nature of interactions, pore diffusion mechanism and exothermicity of the adsorption process was operative in both adsorbents. The outcomes support the feasibility of preparing high quality activated carbon from waste rubber tire by microwave assisted chemical activation. Copyright © 2013 Elsevier Inc. All rights reserved.
Extraction and derivatization of polar herbicides for GC-MS analyses.
Ranz, Andreas; Maier, Eveline; Motter, Herbert; Lankmayr, Ernst
2008-09-01
A sample preparation procedure including a simultaneous microwave-assisted (MA) extraction and derivatization for the determination of chlorophenoxy acids in soil samples is presented. For a selective and sensitive measurement, an analytical technique such as GC coupled with MS needs to be adopted. For GC analyses, chlorophenoxy acids have to be converted into more volatile and thermally stable derivatives. Derivatization by means of microwave radiation offers new alternatives in terms of shorter derivatization time and reduces susceptibility for the formation of artefacts. Extraction and derivatization into methyl esters (ME) were performed with sulphuric acid and methanol. Due to the novelty of the simultaneous extraction and derivatization assisted by means of microwave radiation, a careful investigation and optimization of influential reaction parameters was necessary. It could be shown that the combination of sulphuric acid and methanol provides a fast sample preparation including an efficient clean up procedure. The data obtained by the described method are in good agreement with those published for the reference material. Finally, compared to conventional heating and also to the standard procedure of the EPA, the sample preparation time could be considerably shortened.
Kamila, Sukanta; Ankati, Haribabu; Biehl, Edward R
2011-08-24
(Z)-5-(2-(1H-Indol-3-yl)-2-oxoethylidene)-3-phenyl-2-thioxothiazolidin-4-one (7a-q) derivatives have been synthesized by the condensation reaction of 3-phenyl-2-thioxothiazolidin-4-ones (3a-h) with suitably substituted 2-(1H-indol-3-yl)-2-oxoacetaldehyde (6a-d) under microwave condition. The thioxothiazolidine-4-ones were prepared from corresponding aromatic amines (1a-e) and di-(carboxymethyl)-trithiocarbonyl (2). The aldehydes (6a-h) were synthesized from the corresponding acidchlorides (5a-d) using HSnBu(3).
Kamila, Sukanta; Ankati, Haribabu; Biehl, Edward R.
2011-01-01
(Z)-5-(2-(1H-Indol-3-yl)-2-oxoethylidene)-3-phenyl-2-thioxothiazolidin-4-one (7a-q) derivatives have been synthesized by the condensation reaction of 3-phenyl-2-thioxothiazolidin-4-ones (3a-h) with suitably substituted 2-(1H-indol-3-yl)-2-oxoacetaldehyde (6a-d) under microwave condition. The thioxothiazolidine-4-ones were prepared from corresponding aromatic amines (1a-e) and di-(carboxymethyl)-trithiocarbonyl (2). The aldehydes (6a-h) were synthesized from the corresponding acidchlorides (5a-d) using HSnBu3. PMID:21804651
Bagley, Mark C; Davis, Terence; Dix, Matthew C; Murziani, Paola G S; Rokicki, Michal J; Kipling, David
2008-07-01
5-Aminopyrazol-4-yl ketones are prepared rapidly and efficiently using microwave dielectric heating from beta-ketonitriles by treatment with N,N'-diphenylformamidine followed by heterocyclocondensation by irradiation with a hydrazine. The inhibitory activity of RO3201195 prepared by this methodology was confirmed in hTERT-immortalized HCA2 and WS dermal fibroblasts at 200nM concentration, both by ELISA and immunoblot assay, and displays excellent kinase selectivity for p38alpha MAPK over the related stress-activated kinase JNK.
Bosca, Federica; Orio, Laura; Tagliapietra, Silvia; Corazzari, Ingrid; Turci, Francesco; Martina, Katia; Pastero, Linda; Cravotto, Giancarlo; Barge, Alessandro
2016-01-26
This work describes the design of a modified porphyrin that bears four furan rings linked by 1,2-bis-(2-aminoethoxy)ethane spacers. This unit is a well-suited scaffold for a Diels-Alder reaction with commercial reduced-graphene oxide, which is also described in this paper. A new hybrid material is obtained, thanks to efficient grafting under microwave irradiation, and fully characterized in terms of structure (UV, TGA, Raman) and morphology (HR-TEM and AFM). Potential applications in photo- and sonodynamic therapy are envisaged. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mandal, Vivekananda; Dewanjee, Saikat; Mandal, Subhash C
2009-01-01
To develop a fast and ecofriendly microwave assisted extraction (MAE) technique for the effective and exhaustive extraction of gymnemagenin as an indicative biomarker for the quality control of Gymnema sylvestre. Several extraction parameters such as microwave power, extraction time, solvent composition, pre-leaching time, loading ratio and extraction cycle were studied for the determination of the optimum extraction condition. Scanning electron micrographs were obtained to elucidate the mechanism of extraction. The final optimum extraction conditions as obtained from the study were: 40% microwave power, 6 min irradiation time, 85% v/v methanol as the extraction solvent, 15 min pre-leaching time and 25 : 1 (mL/g) as the solvent-to-material loading ratio. The proposed extraction technique produced a maximum yield of 4.3% w/w gymnemagenin in 6 min which was 1.3, 2.5 and 1.95 times more efficient than 6 h of heat reflux, 24 h of maceration and stirring extraction, respectively. A synergistic heat and mass transfer theory was also proposed to support the extraction mechanism. Comparison with conventional extraction methods revealed that MAE could save considerable amounts of time and energy, whilst the reduction of volume of organic solvent consumed provides an ecofriendly feature.
Liu, Ye; Yang, Lei; Zu, Yuangang; Zhao, Chunjian; Zhang, Lin; Zhang, Ying; Zhang, Zhonghua; Wang, Wenjie
2012-12-15
Cortex cinnamomi is associated with many health benefits and is used in the food and pharmaceutical industries. In this study, an efficient ionic liquid-based microwave-assisted simultaneous extraction and distillation (ILMSED) technique was used to extract cassia oil and proanthocyanidins from Cortex cinnamomi; these were quantified by gas chromatography/mass spectrometry (GC-MS) and the vanillin-HCl colorimetric method, respectively. 0.5M 1-butyl-3-methylimidazolium bromide ionic liquid was selected as solvent. The optimum parameters of dealing with 20.0 g sample were 230 W microwave irradiation power, 15 min microwave extraction time and 10 liquid-solid ratio. The yields of essential oil and proanthocyanidins were 1.24 ± 0.04% and 4.58 ± 0.21% under the optimum conditions. The composition of the essential oil was analysed by GC-MS. Using the ILMSED method, the energy consumption was reduced and the extraction yields were improved. The proposed method was validated using stability, repeatability, and recovery experiments. The results indicated that the developed ILMSED method provided a good alternative for the extraction of both the essential oil and proanthocyanidins from Cortex cinnamomi. Copyright © 2012 Elsevier Ltd. All rights reserved.
Obermayer, David; Kappe, C Oliver
2010-01-07
The temperature profiles obtained from both an external infrared and internal fiber-optic sensor were compared for heating and synthesizing the ionic liquid 1-butyl-3-methylimidazolium bromide (bmimBr) under microwave conditions. Utilizing a single-mode microwave reactor that allows simultaneous infrared/fiber-optic temperature measurements, significant differences between the two methods of temperature monitoring were revealed. Due to the strong microwave absorptivity of ionic liquids and the delay experienced in monitoring temperature on the outer surface of a heavy-walled glass vial, external infrared temperature sensors can not be used to accurately control the temperature in the heating of ionic liquids under microwave conditions. The use of internal fiber-optic probes allows the monitoring and control of the heating behavior in a much better way. In order to prevent the strong exotherm in the synthesis of bmimBr under microwave conditions the use of a reaction vessel made out of silicon carbide is the method of choice. Because of the high thermal conductivity and effusivity of silicon carbide, the heat generated during the ionic liquid formation is efficiently exchanged with the comparatively cool air in the microwave cavity via the silicon carbide ceramic.
A Microwave-Assisted Reduction of Cyclohexanone Using Solid-State-Supported Sodium Borohydride
ERIC Educational Resources Information Center
White, Lori L.; Kittredge, Kevin W.
2005-01-01
The reduction of carbonyl groups by sodium borohydride though is a well-known reaction in most organic lab texts, a difficulty for an instructor adopting this reaction in a student lab is that it is too long. Using a microwave assisted organic synthesis solves this difficulty and one such reaction, which is the microwave-assisted reduction of…
Production of xylooligosaccharide from wheat bran by microwave assisted enzymatic hydrolysis.
Wang, Tseng-Hsing; Lu, Shin
2013-06-01
The effective production of xylooligosaccharides (XOS) from wheat bran was investigated. Wheat bran contains rich hemicellulose which can be hydrolyzed by enzyme; the XOS were obtained by microwave assisted enzymatic hydrolysis. To improve the productivity of XOS, repeated microwave assisted enzymatic hydrolysis and activated carbon adsorption method was chosen to eliminate macromolecules in the XOS. On the basis of experimental data, an industrial XOS production process consisting of pretreatment, repeated microwave assisted enzymatic treatment and purification was designed. Using the designed process, 3.2g dry of purified XOS was produced from 50 g dry wheat bran powder. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yang, Yanqin; Chu, Guohai; Zhou, Guojun; Jiang, Jian; Yuan, Kailong; Pan, Yuanjiang; Song, Zhiyu; Li, Zuguang; Xia, Qian; Lu, Xinbo; Xiao, Weiqiang
2016-03-01
An ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction was first employed to determine the volatile components in tobacco samples. The method combined the advantages of ultrasound, microwave, and headspace solid-phase microextraction. The extraction, separation, and enrichment were performed in a single step, which could greatly simplify the operation and reduce the whole pretreatment time. In the developed method, several experimental parameters, such as fiber type, ultrasound power, and irradiation time, were optimized to improve sampling efficiency. Under the optimal conditions, there were 37, 36, 34, and 36 components identified in tobacco from Guizhou, Hunan, Yunnan, and Zimbabwe, respectively, including esters, heterocycles, alkanes, ketones, terpenoids, acids, phenols, and alcohols. The compound types were roughly the same while the contents were varied from different origins due to the disparity of their growing conditions, such as soil, water, and climate. In addition, the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method was compared with the microwave-assisted extraction coupled to headspace solid-phase microextraction and headspace solid-phase microextraction methods. More types of volatile components were obtained by using the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method, moreover, the contents were high. The results indicated that the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction technique was a simple, time-saving and highly efficient approach, which was especially suitable for analysis of the volatile components in tobacco. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of water addition in a microwave assisted thermal cracking of biomass tar gasification
NASA Astrophysics Data System (ADS)
Warsita, A.; Surya, I.
2018-02-01
Producer gas from biomass gasification is plagued by the presence of tar which causes pipe blockages. Thermal and catalytic treatments in a microwave reactor have been shown to be effective methods for removing tar from producer gas. A question arises as to the possibility of enhancing the removal mechanism by adding water into the reactor. Thermal treatment with a various amount of water was added at temperatures in the range of 800-1200°C. The tar removal efficiency obtained 96.32% at the optimum temperature of 1200°C at the water to tar ratio (W/T) of 0.3. This study shows that the removal of tar by microwave irradiation with water addition is a significant and effective method in tar cracking.
Jaitak, Vikas; Bikram Singh, Bandna; Kaul, V K
2009-01-01
Stevioside and rebaudioside-A are major low-calorie diterpene steviol glycosides in the leaves of Stevia rebaudiana. They are widely used as natural sweeteners for diabetic patients, but the long extraction procedures required and the optimisation of product yield present challenging problems. To develop a rapid and effective methodology for the extraction of stevioside and rebaudioside-A from S. rebaudiana leaves and to compare yields using different extraction techniques. Dried and powdered leaves of S. rebaudiana were extracted by conventional, ultrasound and microwave-assisted extraction techniques using methanol, ethanol and water as single solvents as well as in binary mixtures. Conventional cold extraction was performed at 25 degrees C for 12 h while ultrasound extraction was carried out at temperature of 35 +/- 5 degrees C for 30 min. Microwave-assisted extraction (MAE) was carried out at a power level of 80 W for 1 min at 50 degrees C. MAE yielded 8.64 and 2.34% of stevioside and rebaudioside-A, respectively, while conventional and ultrasound techniques yielded 6.54 and 1.20%, and 4.20 and 1.98% of stevioside and rebaudioside-A, respectively. A rapid and efficient method has been developed for the extraction of stevioside and rebaudioside-A in optimum yields using MAE procedure. This method has the advantage of rapid extraction and fast screening of a large number of S. rebaudiana samples for assessment of planting material. MAE saves considerable time, energy and has implications in the quality assessment of stevioside and rebaudioside-A prior to their industrial production from the leaves of S. rebaudiana. Copyright (c) 2009 John Wiley & Sons, Ltd.
Hartwig, Carla Andrade; Pereira, Rodrigo Mendes; Novo, Diogo La Rosa; Oliveira, Dirce Taina Teixeira; Mesko, Marcia Foster
2017-11-01
Responding to the need for green and efficient methods to determine catalyst residues with suitable precision and accuracy in samples with high fat content, the present work evaluates a microwave-assisted ultraviolet digestion (MW-UV) system for margarines and subsequent determination of Ni, Pd and Pt using inductively coupled plasma mass spectrometry (ICP-MS). It was possible to digest up to 500mg of margarine using only 10mL of 4molL -1 HNO 3 with a digestion efficiency higher than 98%. This allowed the determination of catalyst residues using the ICP-MS and free of interferences. For this purpose, the following experimental parameters were evaluated: concentration of digestion solution, sample mass and microwave irradiation program. The residual carbon content was used as a parameter to evaluate the efficiency of digestion and to select the most suitable experimental conditions. The accuracy evaluation was performed by recovery tests using a standard solution and certified reference material, and recoveries ranging from 94% to 99% were obtained for all analytes. The limits of detection for Ni, Pd and Pt using the proposed method were 35.6, 0.264 and 0.302ngg -1 , respectively. When compared to microwave-assisted digestion (MW-AD) in closed vessels using concentrated HNO 3 (used as a reference method for sample digestion), the proposed MW-UV could be considered an excellent alternative for the digestion of margarine, as this method requires only a diluted nitric acid solution for efficient digestion. In addition, MW-UV provides appropriate solutions for further ICP-MS determination with suitable precision (relative standard deviation < 7%) and accuracy for all evaluated analytes. The proposed method was applied to margarines from different brands produced in Brazil, and the concentration of catalyst residues was in agreement with the current legislation or recommendations. Copyright © 2017 Elsevier B.V. All rights reserved.
Tsai, Chia-Ju; Chen, Yen-Ling; Feng, Chia-Hsien
2013-10-04
This study explored dispersive liquid-liquid microextraction for extraction and concentration of lipoic acid in human urine. To improve the detection of lipoic acid by both capillary liquid chromatography (CapLC) with UV detection and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), microwave-assisted derivatization with 4-bromomethyl-6,7-dimethoxycoumarin was performed to render lipoic acid chromophores for UV detection and also high ionization efficiency in MALDI. All parameters that affected lipoic acid extraction and derivatization from urine were investigated and optimized. In the analyses of human urine samples, the two methods had a linear range of 0.1-20 μM with a correlation coefficient of 0.999. The detection limits of CapLC-UV and MALDI-TOF MS were 0.03 and 0.02 μM (S/N ≧ 3), respectively. The major metabolites of lipoic acid, including 6,8-bismethylthio-octanoic acid, 4,6-bismethylthio-hexanoic acid, and 2,4-bismethylthio-butanoic acid were also extracted by dispersive liquid-liquid microextraction and detected by MALDI-TOF MS. The minor metabolites (undetectable by MALDI-TOF MS), bisnorlipoic acid and tetranorlipoic acid were also extracted by dispersive liquid-liquid microextraction and identified with an LTQ Orbitrap mass spectrometer. After dispersive liquid-liquid microextraction and microwave-assisted derivatization, all lipoic acid derivatizations and metabolites were structurally confirmed by LTQ Orbitrap. Copyright © 2013 Elsevier B.V. All rights reserved.
Microwave-Assisted Organic Synthesis and Transformations using Benign Reaction Media
The nonclassical heating technique using microwaves, termed as 'Bunsen burner of the 21st century, is rapidly becoming popular and is dramatically reducing the reaction times. The significant outcomes of microwave (MW)-assisted green chemistry endeavors are summarized that have r...
Microwave-assisted synthesis of organics and nanomaterials
Microwave-assisted chemistry techniques and greener reaction media are dramatically reducing chemical waste and reaction times in several organic transformations and material synthesis. This presentation summarizes author’s own experience in developing MW-assisted chemical proces...
Applications of life cycle assessment and cost analysis in health care waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soares, Sebastiao Roberto, E-mail: soares@ens.ufsc.br; Finotti, Alexandra Rodrigues, E-mail: finotti@ens.ufsc.br; Prudencio da Silva, Vamilson, E-mail: vamilson@epagri.sc.gov.br
Highlights: Black-Right-Pointing-Pointer Three Health Care Waste (HCW) scenarios were assessed through environmental and cost analysis. Black-Right-Pointing-Pointer HCW treatment using microwave oven had the lowest environmental impacts and costs in comparison with autoclave and lime. Black-Right-Pointing-Pointer Lime had the worst environmental and economic results for HCW treatment, in comparison with autoclave and microwave. - Abstract: The establishment of rules to manage Health Care Waste (HCW) is a challenge for the public sector. Regulatory agencies must ensure the safety of waste management alternatives for two very different profiles of generators: (1) hospitals, which concentrate the production of HCW and (2) small establishments, such as clinics, pharmacies and other sources, that generate dispersed quantities of HCW and are scattered throughout the city. To assist in developing sector regulations for the small generators, we evaluated three management scenarios using decision-making tools. They consisted of a disinfection technique (microwave, autoclave and lime) followed by landfilling, where transportation was also included. The microwave, autoclave and lime techniques were tested at the laboratory to establish the operating parameters to ensure their efficiency in disinfection. Using a life cycle assessment (LCA) and cost analysis, the decision-making tools aimed to determine the technique with the best environmental performance. This consisted of evaluating the eco-efficiency of each scenario. Based on the life cycle assessment, microwaving had the lowest environmental impact (12.64 Pt) followed by autoclaving (48.46 Pt). The cost analyses indicated values of USmore » $$ 0.12 kg{sup -1} for the waste treated with microwaves, US$$ 1.10 kg{sup -1} for the waste treated by the autoclave and US$ 1.53 kg{sup -1} for the waste treated with lime. The microwave disinfection presented the best eco-efficiency performance among those studied and provided a feasible alternative to subsidize the formulation of the policy for small generators of HCW.« less
Yan, Yan; Sun, Shaofang; Song, Yang; Yan, Xu; Guan, Weisheng; Liu, Xinlin; Shi, Weidong
2013-04-15
To improve the photodegradation efficiency for ciprofloxacin (CIP), a new-type microwave-assisted in situ growth method is developed for the preparation of reduced graphene oxide (RGO) -BiVO4 composite photocatalysts. The as-produced RGO-BiVO4 composite photocatalysts show extremely high enhancement of CIP degradation ratio over the pure BiVO4 photocatalyst under visible light. Specially, the 2 wt% RGO-BiVO4 composite photocatalyst exhibits the highest CIP degradation ratio (68.2%) in 60 min, which is over 3 times than that (22.7%) of the pure BiVO4 particles. The enhancement of photocatalytic activities of RGO-BiVO4 photocatalysts can be attributed to the effective separation of electron-hole pairs rather than the improvement of light absorption. Copyright © 2013 Elsevier B.V. All rights reserved.
Dhanani, Tushar; Singh, Raghuraj; Reddy, Nagaraja; Trivedi, A; Kumar, Satyanshu
2017-05-01
Senna is an important medicinal plant and is used in many Ayurvedic formulations. Dianthraquinone glucosides are the main bioactive phytochemicals present in leaves and pods of senna. The extraction efficiency in terms of yield and composition of the extract of senna prepared using both conventional (cold percolation at room temperature and refluxing) and non conventional (ultrasound and microwave assisted solvent extraction as well as supercritical fluid extraction) techniques were compared in the present study. Also a rapid reverse phase HPLC-PDA detection method was developed and validated for the simultaneous determination of sennoside A and sennoside B in the different extracts of senna leaves. Ultrasound and microwave assisted solvent extraction techniques were more effective in terms of yield and composition of the extracts compared to cold percolation at room temperature and refluxing methods of extraction.
Bharkavi, Chelliah; Vivek Kumar, Sundaravel; Ashraf Ali, Mohamed; Osman, Hasnah; Muthusubramanian, Shanmugam; Perumal, Subbu
2017-07-15
An efficient one-pot microwave assisted stereoselective synthesis of novel dihydro-2'H-spiro[indene-2,1'-pyrrolo[3,4-c]pyrrole]-tetraone derivatives through three-component 1,3-dipolar cycloaddition of azomethine ylides generated in situ from ninhydrin and sarcosine with a series of 1-aryl-1H-pyrrole-2,5-diones is described. The synthesised compounds were screened for their antimycobacterial and AChE inhibition activities. Compound 4b (IC 50 1.30µM) has been found to display twelve fold antimycobacterial activity compared to cycloserine and it is thirty seven times more active than pyrimethamine. Compound 4h displays maximum AchE inhibitory activity with IC 50 value of 0.78±0.01µmol/L. Copyright © 2017 Elsevier Ltd. All rights reserved.
Petenzi, Michele; Verga, Daniela; Largy, Eric; Hamon, Florian; Doria, Filippo; Teulade-Fichou, Marie-Paule; Guédin, Aurore; Mergny, Jean-Louis; Mella, Mariella; Freccero, Mauro
2012-11-05
We report herein a solvent-free and microwaved-assisted synthesis of several water soluble acyclic pentaheteroaryls containing 1,2,4-oxadiazole moieties (1-7). Their binding interactions with DNA quadruplex structures were thoroughly investigated by FRET melting, fluorescent intercalator displacement assay (G4-FID) and CD spectroscopy. Among the G-quadruplexes considered, attention was focused on telomeric repeats together with the proto-oncogenic c-kit sequences and the c-myc oncogene promoter. Compound 1, and to a lesser extent 2 and 5, preferentially stabilise an antiparallel structure of the telomeric DNA motif, and exhibit an opposite binding behaviour to structurally related polyoxazole (TOxaPy), and do not bind duplex DNA. The efficiency and selectivity of the binding process was remarkably controlled by the structure of the solubilising moieties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Park, Young S.; Wu, Qin; Nam, Chang-Yong; Grubbs, Robert B.
2014-01-01
We report the synthesis of a tellurophene-containing low bandgap polymer, PDPPTe2T, via microwave-assisted palladium-catalyzed ipso-arylative polymerization of 2,5-bis[(α-hydroxy-α,α-diphenyl)methyl]tellurophene with a diketopyrrolopyrrole (DPP) monomer. Compared with the corresponding thiophene analog, PDPPTe2T absorbs light of longer wavelengths and has a smaller bandgap. Bulk heterojunction solar cells prepared from PDPPTe2T and PC71BM show PCE values of up to 4.4%. External quantum efficiency measurements show that PDPPTe2T produces photocurrent at wavelengths up to 1 μm. DFT calculations suggest that the atomic substitution from sulfur to tellurium increases electronic coupling to decrease the length of the carbon-carbon bonds between the tellurophene and thiophene rings, which results in the red-shift in absorption upon substitution of tellurium for sulfur. PMID:25145499
Rapid and Facile Microwave-Assisted Surface Chemistry for Functionalized Microarray Slides
Lee, Jeong Heon; Hyun, Hoon; Cross, Conor J.; Henary, Maged; Nasr, Khaled A.; Oketokoun, Rafiou; Choi, Hak Soo; Frangioni, John V.
2011-01-01
We describe a rapid and facile method for surface functionalization and ligand patterning of glass slides based on microwave-assisted synthesis and a microarraying robot. Our optimized reaction enables surface modification 42-times faster than conventional techniques and includes a carboxylated self-assembled monolayer, polyethylene glycol linkers of varying length, and stable amide bonds to small molecule, peptide, or protein ligands to be screened for binding to living cells. We also describe customized slide racks that permit functionalization of 100 slides at a time to produce a cost-efficient, highly reproducible batch process. Ligand spots can be positioned on the glass slides precisely using a microarraying robot, and spot size adjusted for any desired application. Using this system, we demonstrate live cell binding to a variety of ligands and optimize PEG linker length. Taken together, the technology we describe should enable high-throughput screening of disease-specific ligands that bind to living cells. PMID:23467787
Ghosh, Animesh; Mukherjee, Koushik; Jiang, Xinpeng; Zhou, Ying; McCarroll, Joshua; Qu, James; Swain, Pamela M.; Baigude, Huricha; Rana, Tariq M.
2010-01-01
RNA interference (RNAi), a gene-silencing phenomenon whereby double-stranded RNA (dsRNA) triggers the sequence-specific degradation of homologous mRNA. RNAi has been quickly and widely applied to discover gene functions and holds great potential to provide a new class of therapeutic agents. However, new chemistry and delivery approaches are greatly needed to silence disease-causing genes without toxic effects. We reasoned that conjugation of the cholesterol moiety to cationic lipids would enhance RNAi efficiencies and lower the toxic effects of lipid-mediated RNAi delivery. Here, we report the first design and synthesis of new cholesterol-conjugated cationic lipids for RNAi delivery using microwave-assisted quaternization (MAQ) of tertiary amines. This strategy can be employed to develop new classes of non-viral gene delivery agents under safe and fast reaction conditions. PMID:20722369
Microwave-assisted synthesis of noble nanostructures (Au, Pt, and Pd) using biodegradable polymer carboxymethyl cellulose (CMC) under microwave irradiation (MW) at 100 0C is reported. The reaction occurs within a few minutes, whereas at room temperature the reaction does not pro...
Yin, Chaomin; Fan, Xiuzhi; Fan, Zhe; Shi, Defang; Gao, Hong
2018-05-01
Enzymes-microwave-ultrasound assisted extraction (EMUE) method had been used to extract Lentinus edodes polysaccharides (LEPs). The enzymatic temperature, enzymatic pH, microwave power and microwave time were optimized by response surface methodology. The yields, properties and antioxidant activities of LEPs from EMUE and other extraction methods including hot-water extraction, enzymes-assisted extraction, microwave-assisted extraction and ultrasound-assisted extraction were evaluated. The results showed that the highest LEPs yield of 9.38% was achieved with enzymatic temperature of 48°C, enzymatic pH of 5.0, microwave power of 440W and microwave time of 10min, which correlated well with the predicted value of 9.79%. Additionally, LEPs from different extraction methods possessed typical absorption peak of polysaccharides, which meant different extraction methods had no significant effects on type of glycosidic bonds and sugar ring of LEPs. However, SEM images of LEPs from different extraction methods were significantly different. Moreover, the different LEPs all showed antioxidant activities, but LEPs from EMUE showed the highest reducing power when compared to other LEPs. The results indicated LEPs from EMUE can be used as natural antioxidant component in the pharmaceutical and functional food industries. Copyright © 2018 Elsevier B.V. All rights reserved.
Plasma-assisted microwave processing of materials
NASA Technical Reports Server (NTRS)
Barmatz, Martin (Inventor); Jackson, Henry (Inventor); Ylin, Tzu-yuan (Inventor)
1998-01-01
A microwave plasma assisted method and system for heating and joining materials. The invention uses a microwave induced plasma to controllably preheat workpiece materials that are poorly microwave absorbing. The plasma preheats the workpiece to a temperature that improves the materials' ability to absorb microwave energy. The plasma is extinguished and microwave energy is able to volumetrically heat the workpiece. Localized heating of good microwave absorbing materials is done by shielding certain parts of the workpiece and igniting the plasma in the areas not shielded. Microwave induced plasma is also used to induce self-propagating high temperature synthesis (SHS) process for the joining of materials. Preferably, a microwave induced plasma preheats the material and then microwave energy ignites the center of the material, thereby causing a high temperature spherical wave front from the center outward.
MICROWAVE-ASSISTED SYNTHESIS OF NOBLE NANOSTRUCTURES
Microwave-assisted (MW) spontaneous reduction of noble metal salts, silver (Ag), gold (Au), platinum (Pt) and palladium (Pd) is reported using sugar solutions such as -D glucose, sucrose and maltose, etc. to generate nanomaterials. These MW-assisted reactions, conducted in aqueo...
NASA Astrophysics Data System (ADS)
Li, Shuo; Zhang, Guangshan; Zheng, Heshan; Zheng, Yongjie; Wang, Peng
2018-05-01
In this study, BiFeO3 (BFO) powders decorated on nickel foam (NF) with a high catalytic activity are prepared via a one-step microwave-assisted hydrothermal method. The factors that influence the degradation of bisphenol A (BPA) with BFO/NFs as catalysts are optimized to improve the catalytic activity in a microwave-enhanced Fenton-like process. BFO/NF exhibit a superior catalytic activity with a high BPA removal ratio (98.4%) and TOC removal ratio (69.5%) within 5 min. Results indicate that NF significantly affect the improvement of the catalytic activity of BFO because it served as a source of hydroxyl radicals (•OH) during degradation. The amount of •OH generated by BFO/NF is approximately 1.65-fold higher than that by pure BFO. After six reaction cycles, the stability and reusability of •OH remain high. These findings provide new insights into the synthesis of composites on heterogeneous catalysts with high efficiency and easy recyclability for water treatment applications.
Cravotto, Giancarlo; Di Carlo, Stefano; Ondruschka, Bernd; Tumiatti, Vander; Roggero, Carlo Maria
2007-10-01
The effect on halogenated aromatics of solid, non-toxic oxidants such as sodium percarbonate and the urea/hydrogen peroxide complex (Fenton-like reagents) was investigated. A microwaves-assisted, solvent-free method for soil decontamination is presented. It marks a considerable advance in the search of more efficient, environment-friendly procedures for the degradative oxidation of persistent organic pollutants. Residual pollutants in treated soil samples were determined by GC/MS analysis after solvent extraction or direct thermal desorption. Results showed that 4-chloronaphthol, 2,4-dichlorophenoxyacetic acid and p-nonylphenol had been degraded completely, 2,4-dibromophenol to a large extent.
Microwave-enhanced pyrolysis of natural algae from water blooms.
Zhang, Rui; Li, Linling; Tong, Dongmei; Hu, Changwei
2016-07-01
Microwave-enhanced pyrolysis (MEP) of natural algae under different reaction conditions was carried out. The optimal conditions for bio-oil production were the following: algae particle size of 20-5 mesh, microwave power of 600W, and 10% of activated carbon as microwave absorber and catalyst. The maximum liquid yield obtained under N2, 10% H2/Ar, and CO2 atmosphere was 49.1%, 51.7%, and 54.3% respectively. The energy yield of bio-products was 216.7%, 236.9% and 208.7% respectively. More long chain fatty acids were converted into hydrocarbons by hydrodeoxygenation under 10% H2/Ar atmosphere assisted by microwave over activated carbon containing small amounts of metals. Under CO2 atmosphere, carboxylic acids (66.6%) were the main products in bio-oil because the existence of CO2 vastly inhibited the decarboxylation. The MEP of algae was quick and efficient for bio-oil production, which provided a way to not only ameliorate the environment but also obtain fuel or chemicals at the same time. Copyright © 2016 Elsevier Ltd. All rights reserved.
Process characteristics for microwave assisted hydrothermal carbonization of cellulose.
Zhang, Junting; An, Ying; Borrion, Aiduan; He, Wenzhi; Wang, Nan; Chen, Yirong; Li, Guangming
2018-07-01
The process characteristics of microwave assisted hydrothermal carbonization of cellulose was investigated and a first order kinetics model based on carbon concentration was developed. Chemical properties analysis showed that comparing to conventional hydrothermal carbonization, hydrochar with comparable energy properties can be obtained with 5-10 times decrease in reaction time with assistance of microwave heating. Results from kinetics study was in great agreement with experimental analysis, that they both illustrated the predominant mechanism of the reaction depend on variations in the reaction rates of two co-existent pathways. Particularly, the pyrolysis-like intramolecular dehydration reaction was proved to be the predominant mechanism for hydrochar generation under high temperatures. Finally, the enhancement effects of microwave heating were reflected under both soluble and solid pathways in this research, suggesting microwave-assisted hydrothermal carbonization as a more attracting method for carbon-enriched hydrochar recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.
Electrical detection of microwave assisted magnetization reversal by spin pumping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Siddharth; Subhra Mukherjee, Sankha; Elyasi, Mehrdad
2014-03-24
Microwave assisted magnetization reversal has been investigated in a bilayer system of Pt/ferromagnet by detecting a change in the polarity of the spin pumping signal. The reversal process is studied in two material systems, Pt/CoFeB and Pt/NiFe, for different aspect ratios. The onset of the switching behavior is indicated by a sharp transition in the spin pumping voltage. At a threshold value of the external field, the switching process changes from partial to full reversal with increasing microwave power. The proposed method provides a simple way to detect microwave assisted magnetization reversal.
NASA Astrophysics Data System (ADS)
Taherpour, Avat (Arman)
2010-01-01
Utilization of microwave irradiation provides an effective method for fast synthesizing of some important compounds. Microwave-assisted solid phase is an especial class in chemical synthesis. By the use of MW-irradiation on chemicals, sometimes interesting results can be seen. The synthesis of the interesting molecule ethylenetetracarboxylic dianhydride (C 6O 6) was attempted with a few different methods. In this study, the microwave-assisted solid phase conversion of Meldrum's acid to ethylenetetracarboxylic dianhydride was reported. This conversion was characterized by FT-IR, GC/MS and NMR spectroscopy results.
NASA Astrophysics Data System (ADS)
Zhang, Hao; Liu, Qian; Xu, Xu-Sheng; Xiong, Jun; Alsaedi, Ahmed; Hayat, Tasawar; Deng, Fu-Guo
2017-11-01
Microwave photons have become very important qubits in quantum communication, as the first quantum satellite has been launched successfully. Therefore, it is a necessary and meaningful task for ensuring the high security and efficiency of microwave-based quantum communication in practice. Here, we present an original polarization entanglement purification protocol for nonlocal microwave photons based on the cross-Kerr effect in circuit quantum electrodynamics (QED). Our protocol can solve the problem that the purity of maximally entangled states used for constructing quantum channels will decrease due to decoherence from environment noise. This task is accomplished by means of the polarization parity-check quantum nondemolition (QND) detector, the bit-flipping operation, and the linear microwave elements. The QND detector is composed of several cross-Kerr effect systems which can be realized by coupling two superconducting transmission line resonators to a superconducting molecule with the N -type level structure. We give the applicable experimental parameters of QND measurement system in circuit QED and analyze the fidelities. Our protocol has good applications in long-distance quantum communication assisted by microwave photons in the future, such as satellite quantum communication.
Microwave-Assisted Synthesis of "N"-Phenylsuccinimide
ERIC Educational Resources Information Center
Shell, Thomas A.; Shell, Jennifer R.; Poole, Kathleen A.; Guetzloff, Thomas F.
2011-01-01
A microwave-assisted synthesis of "N"-phenylsuccinimide has been developed for the second-semester organic teaching laboratory. Utilizing this procedure, "N"-phenylsuccinimide can be synthesized in moderate yields (40-60%) by heating a mixture of aniline and succinic anhydride in a domestic microwave oven for four minutes. This technique reduces…
Bonny, Sarah; Paquin, Ludovic; Carrié, Daniel; Boustie, Joël; Tomasi, Sophie
2011-11-30
Ionic liquids based extraction method has been applied to the effective extraction of norstictic acid, a common depsidone isolated from Pertusaria pseudocorallina, a crustose lichen. Five 1-alkyl-3-methylimidazolium ionic liquids (ILs) differing in composition of alkyl chain and anion were investigated for extraction efficiency. The extraction amount of norstictic acid was determined after recovery on HPTLC with a spectrophotodensitometer. The proposed approaches (IL-MAE and IL-heat extraction (IL-HE)) have been evaluated in comparison with usual solvents such as tetrahydrofuran in heat-reflux extraction and microwave-assisted extraction (MAE). The results indicated that both the characteristics of the alkyl chain and anion influenced the extraction of polyphenolic compounds. The sulfate-based ILs [C(1)mim][MSO(4)] and [C(2)mim][ESO(4)] presented the best extraction efficiency of norstictic acid. The reduction of the extraction times between HE and MAE (2 h-5 min) and a non-negligible ratio of norstictic acid in total extract (28%) supports the suitability of the proposed method. This approach was successfully applied to obtain additional compounds from other crustose lichens (Pertusaria amara and Ochrolechia parella). Copyright © 2011 Elsevier B.V. All rights reserved.
Enhanced degradation of 4-nitrophenol by microwave assisted Fe/EDTA process.
Liu, Bo; Li, Song; Zhao, Yongjun; Wu, Wenfei; Zhang, Xuxiang; Gu, Xueyuan; Li, Ruihua; Yang, Shaogui
2010-04-15
A microwave assisted zero-valent iron oxidation process was studied in order to investigate the synergetic effects of MW irradiation on Fe/EDTA system (Fe/EDTA/MW) treated 4-nitrophenol (4-NP) from aqueous solution. The results indicated that the thermal effect of microwave improved the removal effect of 4-NP and TOC through raising the temperature of the system, as well as the non-thermal effect generated by the interaction between the microwave and the Fe resulting in an increase in the hydrophobic character of Fe surface. During the degradation of 4-NP in Fe/EDTA/MW system, the optimum value for MW power, Fe, EDTA dosage was 400 W, 2 g and 0.4 mM, respectively. The possible pathway for degrading the 4-NP was proposed based on GC/MS and HPLC analysis of the degradation intermediates. The concentration change course of the main bio-refractory by-products, the aminophenol formed in the degradation of 4-NP suggested a more efficient degradation and mineralization in Fe/EDTA/MW system. Finally, BOD(5)/COD(Cr) of the solution increased from 0.237 to 0.635 after reaction for 18 min, indicating that the biodegradability of wastewater was greatly improved by Fe/EDTA/MW system and would benefit to further treatment by biochemical methods. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tsuchida, Akihiro; Shimamura, Takeshi; Sawada, Seiya; Sato, Susumu; Serpone, Nick; Horikoshi, Satoshi
2018-06-01
A microwave-inspired device that generates stable in-liquid plasma (LP) in aqueous media and emits narrow light emission lines at 280-320 nm, 660 nm and 780 nm is examined as a light source capable of driving photochemical reactions and advanced oxidation processes in wastewater treatments. The microwave-driven lighting efficiency was improved by decompressing the inside of the reaction vessel, which resulted in lowering the incident power of the microwaves and suppressed the deterioration of the microwave irradiation antenna. This protocol made it possible to generate continuous stable plasma in water. Evaluation of the LP device was carried out by revisiting the decomposition of 1,4-dioxane in aqueous media against the use of such other conventional water treatment processes as (i) UV irradiation alone, (ii) TiO2-assisted photocatalysis with UV irradiation (UV/TiO2), (iii) oxidation with sodium hypochlorite (NaClO), and (iv) UV-assisted decomposition in the presence of NaClO (UV/NaClO). The in-liquid plasma technique proved superior to these four other methods. The influence of pH on the LP protocol was ascertained through experiments in acidified (HCl and H2SO4) and alkaline (NaOH and KOH) aqueous media. Except for H2SO4, decomposition of 1,4-dioxane was enhanced in both acidic and alkaline media.
Jiang, Wenhui; Shan, Hu; Song, Jiying; Lü, Haitao
2017-01-01
A rapid and efficient method for the separation and purification of ombuoside from Gynostemma pentaphyllum by microwave-assisted extraction coupled with high-speed counter-current chromatography (HSCCC) was successfully developed. Using an orthogonal array design L 9 (3 4 ), the extraction conditions, including microwave power, irradiation time, solid-to-liquid ratio and extraction times, were optimized. Ombuoside was isolated and purified from the crude extraction by HSCCC with two-phase solvent system composed of n-hexane:ethyl acetate:ethanol:water (5:6:5:5, v/v) in a single run. A 210 mg quantity of the crude extract containing 2.16% ombuoside was loaded, yielding 3.9 mg of ombuoside at 96.7% purity. The chemical structure of ombuoside was determined by comparison with the high-performance liquid chromatography retention time of standard substance as well as UV, FT-IR, ESI-MS, 1 H NMR and 13 C NMR spectra. The purified ombuoside had strong 1,1-diphenyl-2-picrylhydrazyl and hydroxyl free radical scavenging activities. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ameer, Kashif; Bae, Seong-Woo; Jo, Yunhee; Lee, Hyun-Gyu; Ameer, Asif; Kwon, Joong-Ho
2017-08-15
Stevia rebaudiana (Bertoni) consists of stevioside and rebaudioside-A (Reb-A). We compared response surface methodology (RSM) and artificial neural network (ANN) modelling for their estimation and predictive capabilities in building effective models with maximum responses. A 5-level 3-factor central composite design was used to optimize microwave-assisted extraction (MAE) to obtain maximum yield of target responses as a function of extraction time (X 1 : 1-5min), ethanol concentration, (X 2 : 0-100%) and microwave power (X 3 : 40-200W). Maximum values of the three output parameters: 7.67% total extract yield, 19.58mg/g stevioside yield, and 15.3mg/g Reb-A yield, were obtained under optimum extraction conditions of 4min X 1 , 75% X 2 , and 160W X 3 . The ANN model demonstrated higher efficiency than did the RSM model. Hence, RSM can demonstrate interaction effects of inherent MAE parameters on target responses, whereas ANN can reliably model the MAE process with better predictive and estimation capabilities. Copyright © 2017. Published by Elsevier Ltd.
Microwave-Assisted Organic Synthesis in the Organic Teaching Lab: A Simple, Greener Wittig Reaction
ERIC Educational Resources Information Center
Martin, Eric; Kellen-Yuen, Cynthia
2007-01-01
A greener, microwave-assisted Wittig reaction has been developed for the second-semester organic teaching laboratory. Utilizing this microwave technique, a variety of styrene derivatives have been successfully synthesized from aromatic aldehydes in good yields (41-68%). The reaction not only occurs under neat reaction conditions, but also employs…
Alternative and Efficient Extraction Methods for Marine-Derived Compounds
Grosso, Clara; Valentão, Patrícia; Ferreres, Federico; Andrade, Paula B.
2015-01-01
Marine ecosystems cover more than 70% of the globe’s surface. These habitats are occupied by a great diversity of marine organisms that produce highly structural diverse metabolites as a defense mechanism. In the last decades, these metabolites have been extracted and isolated in order to test them in different bioassays and assess their potential to fight human diseases. Since traditional extraction techniques are both solvent- and time-consuming, this review emphasizes alternative extraction techniques, such as supercritical fluid extraction, pressurized solvent extraction, microwave-assisted extraction, ultrasound-assisted extraction, pulsed electric field-assisted extraction, enzyme-assisted extraction, and extraction with switchable solvents and ionic liquids, applied in the search for marine compounds. Only studies published in the 21st century are considered. PMID:26006714
Zhang, Honglei; Ding, Jincheng; Zhao, Zengdian
2012-11-01
The traditional heating and microwave assisted method for biodiesel production using cation ion-exchange resin particles (CERP)/PES catalytic membrane were comparatively studied to achieve economic and effective method for utilization of free fatty acids (FFAs) from waste cooking oil (WCO). The optimal esterification conditions of the two methods were investigated and the experimental results showed that microwave irradiation exhibited a remarkable enhanced effect for esterification compared with that of traditional heating method. The FFAs conversion of microwave assisted esterification reached 97.4% under the optimal conditions of reaction temperature 60°C, methanol/acidified oil mass ratio 2.0:1, catalytic membrane (annealed at 120°C) loading 3g, microwave power 360W and reaction time 90min. The study results showed that it is a fast, easy and green way to produce biodiesel applying microwave irradiation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Microwave-assisted extraction of pectin from cocoa peel
NASA Astrophysics Data System (ADS)
Sarah, M.; Hanum, F.; Rizky, M.; Hisham, M. F.
2018-02-01
Pectin is a polymer of d-galacturonate acids linked by β-1,4 glycosidic bond. This study isolates pectin from cocoa peel (Theobroma cacao) using citric acid as solvent by microwave-assisted extraction method. Cocoa peels (moisture content of 10%) with citric acid solution (pH of 1.5) irradiated by microwave energy at various microwave power (180, 300, 450 and 600 W) for 10, 15, 20, 25 and 30 minutes respectively. Pectin obtained from this study was collected and filtrated by adding 96% ethanol to precipitate the pectin. The best results obtained from extraction process using microwave power of 180 Watt for 30 minutes. This combination of power and time yielded 42.3% pectin with moisture content, ash content, weight equivalent, methoxyl content and galacturonate levels were 8.08%, 5%, 833.33 mg, 6.51% and 58,08%, respectively. The result finding suggested that microwave-assisted extraction method has a great potency on the commercial pectin production.
Sood, Rakhi; Donnadio, Anna; Giancola, Stefano; Kreisz, Aurélien; Jones, Deborah J; Cavaliere, Sara
2016-07-06
Microwave heating holds all the aces regarding development of effective and environmentally friendly methods to perform chemical transformations. Coupling the benefits of microwave-enhanced chemistry with highly reliable copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry paves the way for a rapid and efficient synthesis procedure to afford high performance thermoplastic materials. We describe herein fast and high yielding synthesis of 1,2,3-triazole-functionalized polysulfone through microwave-assisted CuAAC as well as explore their potential as phosphoric acid doped polymer electrolyte membranes (PEM) for high temperature PEM fuel cells. Polymers with various degrees of substitution of the side-chain functionality of 1,4-substituted 1,2,3-triazole with alkyl and aryl pendant structures are prepared by sequential chloromethylation, azidation, and microwave-assisted CuAAC using a range of alkynes (1-pentyne, 1-nonyne, and phenylacetylene). The completeness of reaction at each step and the purity of the clicked polymers were confirmed by (1)H-(13)C NMR, DOSY-NMR and FTIR-ATR spectroscopies. The thermal and thermochemical properties of the modified polymers were characterized by differential scanning calorimetry and thermogravimetric analysis coupled with mass spectroscopy (TG-MS), respectively. TG-MS analysis demonstrated that the commencement of the thermal degradation takes place with the decomposition of the triazole ring while its substituents have critical influence on the initiation temperature. Polysulfone functionalized with 4-phenyl-1,2,3-triazole demonstrates significantly higher Tg, Td, and elastic modulus than the ones bearing 4-propyl-1,2,3-triazole and 4-heptyl-1,2,3-triazole groups. After doping with phosphoric acid, the functionalized polymers with acid doping level of 5 show promising performance with high proton conductivity in anhydrous conditions (in the range of 27-35 mS/cm) and satisfactorily high elastic modulus (in the range of 332-349 MPa).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Tsung-Yung; Lu, Kai-Tai; Peng, Cheng-Hsiung
2015-10-15
Graphical abstract: A microwave-assisted solvothermal process was used to prepare Fe{sub 3}O{sub 4} nanoparticles/graphene hybrids, which could be applied as an electromagnetic (EM) radiation absorbent. The absorber, composed of 20 wt% Fe{sub 3}O{sub 4}/graphene–epoxy, exhibited a dual-frequency reflection characteristic covering the C and Ku bands with maximum reflection losses of less than −20 dB at thicknesses of 4 and 5 mm. - Highlights: • Fe{sub 3}O{sub 4}/graphene composites were prepared by a microwave-assisted solvothermal route. • Uniform loading of Fe{sub 3}O{sub 4} nanoparticles on graphene was obtained. • The products as-synthesized show great promise as a microwave absorption material. •more » Synergistic effects of Fe{sub 3}O{sub 4} and graphene caused improved absorption efficiency. • The Fe{sub 3}O{sub 4}/graphene product possessed a dual-frequency reflection characteristic. - Abstract: A rapid, simple, and inexpensive process combining a microwave-assisted technique and a solvothermal method has been developed using graphene sheets and FeCl{sub 3}·6H{sub 2}O as the reactant to prepare graphene/Fe{sub 3}O{sub 4} nanoparticle hybrids, which can be applied as an electromagnetic radiation absorbent. The experimental factors (i.e., composition ratio, microwave power, and irradiation time) on the products’ characteristics were examined. Under optimal conditions, the morphological analysis revealed that the graphene sheet was homogeneously covered with Fe{sub 3}O{sub 4} nanoparticles (∼50 nm). The electromagnetic parameters of the composites made from 20 wt% Fe{sub 3}O{sub 4}/graphene–epoxy were measured by a vector network analyzer. It was found that the 4- and 5 mm-thick composites could attain a reflection loss below −20 dB in the dual-ranges of 4–8 and 12–18 GHz.« less
The use of emerging microwave (MW) -assisted chemistry techniques is dramatically reducing chemical waste and reaction times in several organic syntheses and chemical transformations. A brief account of our experiences in developing MW-assisted organic transformations, which invo...
Agu, Obiora S.; Tabil, Lope G.; Dumonceaux, Tim
2017-01-01
The effects of microwave-assisted alkali pre-treatment on pellets’ characteristics and enzymatic saccharification for bioethanol production using lignocellulosic biomass of canola straw and oat hull were investigated. The ground canola straw and oat hull were immersed in distilled water, sodium hydroxide and potassium hydroxide solutions at two concentrations (0.75% and 1.5% w/v) and exposed to microwave radiation at power level 713 W and three residence times (6, 12 and 18 min). Bulk and particle densities of ground biomass samples were determined. Alkaline-microwave pre-treated and untreated samples were subjected to single pelleting test in an Instron universal machine, pre-set to a load of 4000 N. The measured parameters, pellet density, tensile strength and dimensional stability were evaluated and the results showed that the microwave-assisted alkali pre-treated pellets had a significantly higher density and tensile strength compared to samples that were untreated or pre-treated by microwave alone. The chemical composition analysis showed that microwave-assisted alkali pre-treatment was able to disrupt and break down the lignocellulosic structure of the samples, creating an area of cellulose accessible to cellulase reactivity. The best enzymatic saccharification results gave a high glucose yield of 110.05 mg/g dry sample for canola straw ground in a 1.6 mm screen hammer mill and pre-treated with 1.5% NaOH for 18 min, and a 99.10 mg/g dry sample for oat hull ground in a 1.6 mm screen hammer mill and pre-treated with 0.75% NaOH for 18 min microwave-assisted alkali pre-treatments. The effects of pre-treatment results were supported by SEM analysis. Overall, it was found that microwave-assisted alkali pre-treatment of canola straw and oat hull at a short residence time enhanced glucose yield. PMID:28952504
Agu, Obiora S; Tabil, Lope G; Dumonceaux, Tim
2017-03-26
The effects of microwave-assisted alkali pre-treatment on pellets' characteristics and enzymatic saccharification for bioethanol production using lignocellulosic biomass of canola straw and oat hull were investigated. The ground canola straw and oat hull were immersed in distilled water, sodium hydroxide and potassium hydroxide solutions at two concentrations (0.75% and 1.5% w/v) and exposed to microwave radiation at power level 713 W and three residence times (6, 12 and 18 min). Bulk and particle densities of ground biomass samples were determined. Alkaline-microwave pre-treated and untreated samples were subjected to single pelleting test in an Instron universal machine, pre-set to a load of 4000 N. The measured parameters, pellet density, tensile strength and dimensional stability were evaluated and the results showed that the microwave-assisted alkali pre-treated pellets had a significantly higher density and tensile strength compared to samples that were untreated or pre-treated by microwave alone. The chemical composition analysis showed that microwave-assisted alkali pre-treatment was able to disrupt and break down the lignocellulosic structure of the samples, creating an area of cellulose accessible to cellulase reactivity. The best enzymatic saccharification results gave a high glucose yield of 110.05 mg/g dry sample for canola straw ground in a 1.6 mm screen hammer mill and pre-treated with 1.5% NaOH for 18 min, and a 99.10 mg/g dry sample for oat hull ground in a 1.6 mm screen hammer mill and pre-treated with 0.75% NaOH for 18 min microwave-assisted alkali pre-treatments. The effects of pre-treatment results were supported by SEM analysis. Overall, it was found that microwave-assisted alkali pre-treatment of canola straw and oat hull at a short residence time enhanced glucose yield.
NASA Astrophysics Data System (ADS)
Kashinath, L.; Namratha, K.; Byrappa, K.
2015-12-01
Microwave assisted hydrothermal process of synthesis of ZnO-GO nanocomposite by using ZnCl2 and NaOH as precursors is being reported first time. In this investigation, a novel route to study on synthesis, interaction, kinetics and mechanism of hybrid zinc oxide-graphene oxide (ZnO-GO) nanocomposite using microwave assisted facile hydrothermal method has been reported. The results shows that the ZnO-GO nanocomposite exhibits an enhancement and acts as stable photo-response degradation performance of Brilliant Yellow under the UV light radiation better than pure GO and ZnO nanoparticles. The microwave exposure played a vital role in the synthesis process, it facilitates with well define crystalline structure, porosity and fine morphology of ZnO/GO nanocomposite. Different molar concentrations of ZnO precursors doped to GO sheets were been synthesized, characterized and their photodegradation performances were investigated. The optical studies by UV-vis and Photo Luminescence shows an increase in band gap of nanocomposite, which added an advantage in photodegradation performance. The in situ flower like ZnO nano particles are were densely decorated and anchored on the surfaces of graphene oxide sheets which aids in the enhancement of the surface area, adsorption, mass transfer of dyes and evolution of oxygen species. The nanocomposite having high surface area and micro/mesoporous in nature. This structure and morphology supports significantly in increasing photo catalytic performance legitimate to the efficient photosensitized electron injection and repressed electron recombination due to electron transfer process with GO as electron collector and transporter dependent on the proportion of GO in ZnO/GO composite.
Heilmann, Jens; Boulyga, Sergei F; Heumann, Klaus G
2004-09-01
Inductively coupled plasma isotope-dilution mass spectrometry (ICP-IDMS) with direct injection of isotope-diluted samples into the plasma, using a direct injection high-efficiency nebulizer (DIHEN), was applied for accurate sulfur determinations in sulfur-free premium gasoline, gas oil, diesel fuel, and heating oil. For direct injection a micro-emulsion consisting of the corresponding organic sample and an aqueous 34S-enriched spike solution with additions of tetrahydronaphthalene and Triton X-100, was prepared. The ICP-MS parameters were optimized with respect to high sulfur ion intensities, low mass-bias values, and high precision of 32S/34S ratio measurements. For validation of the DIHEN-ICP-IDMS method two certified gas oil reference materials (BCR 107 and BCR 672) were analyzed. For comparison a wet-chemical ICP-IDMS method was applied with microwave-assisted digestion using decomposition of samples in a closed quartz vessel inserted into a normal microwave system. The results from both ICP-IDMS methods agree well with the certified values of the reference materials and also with each other for analyses of other samples. However, the standard deviation of DIHEN-ICP-IDMS was about a factor of two higher (5-6% RSD at concentration levels above 100 mircog g(-1)) compared with those of wet-chemical ICP-IDMS, mainly due to inhomogeneities of the micro-emulsion, which causes additional plasma instabilities. Detection limits of 4 and 18 microg g(-1) were obtained for ICP-IDMS in connection with microwave-assisted digestion and DIHEN-ICP-IDMS, respectively, with a sulfur background of the used Milli-Q water as the main limiting factor for both methods.
Wang, Yudan; Dai, Xinpeng; He, Xi; Chen, Lin; Hou, Xiaohong
2017-10-25
In this work, MIL-101(Cr)@GO (Graphite Oxide) was synthesized using a hydrothermal synthesis method and was applied as a dispersive micro-solid-phase extraction (D-μ-SPE) sorbent for the efficient concentration of four residual drugs (metronidazole, MNZ; tinidazole, TNZ; chloramphenicol, CAP; sulfamethoxazole, SMX). Meanwhile, the extraction process was optimized by combining it with microwave-assisted extraction. Factors affecting the D-μ-SPE efficiency, such as selection of sorbent materials, pH of the sample solution, salting-out effect, amount of used material, extraction time, desorption solvent and desorption time, were studied. Under the optimal extraction conditions, the linearity ranged from 10 to 1000ngkg -1 and 1-100ngkg -1 (r 2 ≥0.9928) for the target analytes. The limits of detection were between 0.08 and 1.02ngkg -1 , and the limits of quantitation were between 0.26 and 3.40ngkg -1 . Additionally, the developed method also exhibited good precision (RSD≤2.5%), repeatability (RSD≤4.3%), high recoveries (88.9%-102.3%) and low matrix effects (78.2%-95.1%). The proposed method proved to be an efficient and reliable approach for the determination of the analytes. Finally, we successfully detected the four drugs in chicken breast. Copyright © 2017 Elsevier B.V. All rights reserved.
Microwave-Assisted Rapid Enzymatic Synthesis of Nucleic Acids.
Hari Das, Rakha; Ahirwar, Rajesh; Kumar, Saroj; Nahar, Pradip
2016-07-02
Herein we report microwave-induced enhancement of the reactions catalyzed by Escherichia coli DNA polymerase I and avian myeloblastosis virus-reverse transcriptase. The reactions induced by microwaves result in a highly selective synthesis of nucleic acids in 10-50 seconds. In contrast, same reactions failed to give desired reaction products when carried out in the same time periods, but without microwave irradiation. Each of the reactions was carried out for different duration of microwave exposure time to find the optimum reaction time. The products produced by the respective enzyme upon microwave irradiation of the reaction mixtures were identical to that produced by the conventional procedures. As the microwave-assisted reactions are rapid, microwave could be a useful alternative to the conventional and time consuming procedures of enzymatic synthesis of nucleic acids.
Microwave-assisted liquefaction of rape straw for the production of bio-oils
Xing-Yan Huang; Feng Li; Jiu-Long Xie; Cornelis F. De Hoop; Chung-Yun Hse; Jin-Qiu Qi; Hui Xiao
2017-01-01
The acid-catalyzed liquefaction of rape straw in methanol using microwave energy was examined. Conversion yield and energy consumption were evaluated to profile the microwave-assisted liquefaction process. Chemical components of the bio-oils from various liquefaction conditions were identified. A higher reaction temperature was found to be beneficial to obtain higher...
Hydrogen production from alcohol reforming in a microwave ‘tornado’-type plasma
NASA Astrophysics Data System (ADS)
Tatarova, E.; Bundaleska, N.; Dias, F. M.; Tsyganov, D.; Saavedra, R.; Ferreira, C. M.
2013-12-01
In this work, an experimental investigation of microwave plasma-assisted reforming of different alcohols is presented. A microwave (2.45 GHz) ‘tornado’-type plasma with a high-speed tangential gas injection (swirl) at atmospheric pressure is applied to decompose alcohol molecules, namely methanol, ethanol and propanol, and to produce hydrogen-rich gas. The reforming efficiency is investigated both in Ar and Ar+ water vapor plasma environments. The hydrogen yield dependence on the partial alcohol flux is analyzed. Mass spectrometry and Fourier transform infrared spectroscopy are used to detect the outlet gas products from the decomposition process. Hydrogen, carbon monoxide, carbon dioxide and solid carbon are the main decomposition by-products. A significant increase in the hydrogen production rate is observed with the addition of a small amount of water. Furthermore, optical emission spectroscopy is applied to detect the radiation emitted by the plasma and to estimate the gas temperature and electron density.
2016-01-01
Microwave irradiation of tissue during fixation and subsequent histochemical staining procedures significantly reduces the time required for incubation in fixation and staining solutions. Minimizing the incubation time in fixative reduces disruption of tissue morphology, and reducing the incubation time in staining solution or antibody solution decreases nonspecific labeling. Reduction of incubation time in staining solution also decreases the level of background noise. Microwave-assisted tissue preparation is applicable for tissue fixation, decalcification of bone tissues, treatment of adipose tissues, antigen retrieval, and other special staining of tissues. Microwave-assisted tissue fixation and staining are useful tools for histological analyses. This review describes the protocols using microwave irradiation for several essential procedures in histochemical studies, and these techniques are applicable to other protocols for tissue fixation and immunostaining in the field of cell biology. PMID:27840640
"In silico" mechanistic studies as predictive tools in microwave-assisted organic synthesis.
Rodriguez, A M; Prieto, P; de la Hoz, A; Díaz-Ortiz, A
2011-04-07
Computational calculations can be used as a predictive tool in Microwave-Assisted Organic Synthesis (MAOS). A DFT study on Intramolecular Diels-Alder reactions (IMDA) indicated that the activation energy of the reaction and the polarity of the stationary points are two fundamental parameters to determine "a priori" if a reaction can be improved by using microwave irradiation.
Free-space microwave power transmission study, phase 3
NASA Technical Reports Server (NTRS)
Brown, W. C.
1975-01-01
The results of an investigation of the technology of free-space power transmission by microwave beam are presented. A description of the steps that were taken to increase the overall dc to dc efficiency of microwave power transmission from 15 percent to over 50 percent is given. Included in this overall efficiency were the efficiencies of the dc to microwave conversion, the microwave transmission itself, and the microwave to dc conversion. Improvements in launching the microwave beam with high efficiency by means of a dual mode horn resulted in 95 percent of the output of the microwave generator reaching the receiving area. Emphasis was placed upon successive improvements in reception and rectification of the microwave power, resulting in the design of a rectenna device for this purpose whose efficiency was 75 percent. The procedures and the hardware developed were the basis for tests certified by the Jet Propulsion Laboratory in which an overall dc to dc efficiency of 54 percent was achieved.
Zhao, Xian-En; Lv, Tao; Zhu, Shuyun; Qu, Fei; Chen, Guang; He, Yongrui; Wei, Na; Li, Guoliang; Xia, Lian; Sun, Zhiwei; Zhang, Shijuan; You, Jinmao; Liu, Shu; Liu, Zhiqiang; Sun, Jing; Liu, Shuying
2016-03-11
This paper, for the first time, reported a speedy hyphenated technique of low toxic dual ultrasonic-assisted dispersive liquid-liquid microextraction (dual-UADLLME) coupled with microwave-assisted derivatization (MAD) for the simultaneous determination of 20(S)-protopanaxadiol (PPD) and 20(S)-protopanaxatriol (PPT). The developed method was based on ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) detection using multiple-reaction monitoring (MRM) mode. A mass spectrometry sensitizing reagent, 4'-carboxy-substituted rosamine (CSR) with high reaction activity and ionization efficiency was synthesized and firstly used as derivatization reagent. Parameters of dual-UADLLME, MAD and UHPLC-MS/MS conditions were all optimized in detail. Low toxic brominated solvents were used as extractant instead of traditional chlorinated solvents. Satisfactory linearity, recovery, repeatability, accuracy and precision, absence of matrix effect and extremely low limits of detection (LODs, 0.010 and 0.015ng/mL for PPD and PPT, respectively) were achieved. The main advantages were rapid, sensitive and environmentally friendly, and exhibited high selectivity, accuracy and good matrix effect results. The proposed method was successfully applied to pharmacokinetics of PPD and PPT in rat plasma. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Warsito, W.; Noorhamdani, A. S.; Suratmo; Dwi Sapri, R.; Alkaroma, D.; Azhar, A. Z.
2018-04-01
Simple method has been used for the synthesis of benzimidazole derivative from citronellal in kaffir lime oil under microwave irradiation. These compounds were synthesized also by conventional heating for comparison. In addtion, microwave-assited synthesis was also compared between using to dichloromethane and methanol solvents with variation of reaction time for 30 to 70 minutes and 4 to 12 h for conventional heating. The 2-citronellyl benzimidazole compound synthesized were characterised by FT-IR, GC-MS, 1H and 13C NMR spectroscopy. Comparison between conventional and microwave-assisted synthesis was done by comparing between correlation of reaction time and percentage yield. The time optimum of microwave-assisted and conventional synthesis using dichloromethane solvent respectively at 60 minutes (yield 19.23%) and 8 hours (yield 11.54%). In addition, microwave-assited synthesis increasing 157.81 times compared by conventional heating. While using methanol solvent tends to increase linearly however the percentage of yield only 0.77 times of synthesis using dichloromethane solvent.
Ren, Yao; Chen, Yu; Hu, Bohan; Wu, Hui; Lai, Furao; Li, Xiaofeng
2015-12-01
An efficient microwave-assisted extraction (MAE) technique was applied to isolate total steroid saponins from Dioscorea zingiberensis C.H. Wright (DZW). The optimal extracting conditions were established as 75% ethanol as solvent, ratio of solid/liquid 1:20 (g/ml), temperature 75 °C, irradiation power 600 W and three extraction cycles of 6 min each. Scanning electron microscopy (SEM) images of DZW processed by four different extractions provided visual evidence of the disruption effect on DZW. Diosgenin was quantified by HPLC and examined further by LC-ESI/MS after acid hydrolysis. Total steroid saponins were calculated using diosgenin from total steroid saponins. The MAE procedure was optimized, validated and compared with other conventional extraction processes. This report provides a convenient technology for the extraction and quantification of total saponins of DZW combining MAE with HPLC and LC-ESI/MS for the first time. Copyright © 2015 Elsevier Inc. All rights reserved.
Microwave-assisted extraction for Hibiscus sabdariffa bioactive compounds.
Pimentel-Moral, Sandra; Borrás-Linares, Isabel; Lozano-Sánchez, Jesús; Arráez-Román, David; Martínez-Férez, Antonio; Segura-Carretero, Antonio
2018-07-15
H. sabdariffa has demonstrated positive results against chronic diseases due to the presence of phytochemicals, mainly phenolic compounds. The extraction process of bioactive compounds increases the efficient collection of extracts with high bioactivity. Microwave-Assisted Extraction (MAE) constituted a "green technology" widely employed for plant matrix. In this work, the impact of temperature (50-150 °C), composition of extraction solvent (15-75% EtOH) and extraction time (5-20 min) on the extraction yield and individual compounds concentrations were evaluated. Furthermore, the characterization of 16 extracts obtained was performed by HPLC-ESI-TOF-MS. The results showed that 164 °C, 12.5 min, 45% ethanol was the best extraction condition, although glycoside flavonoids were degraded. Besides that, the optimal conditions for extraction yield were 164 °C, 60% ethanol and 22 min. Thus, temperature and solvent concentration have demonstrated to be potential factors in MAE for obtaining bioactive compounds from H. sabdariffa. Copyright © 2018 Elsevier B.V. All rights reserved.
Ethanol production from sorghum by a microwave-assisted dilute ammonia pretreatment.
Chen, Cong; Boldor, Dorin; Aita, Giovanna; Walker, Michelle
2012-04-01
The efficiency of a batch microwave-assisted ammonia heating system was investigated as pretreatment for sweet sorghum bagasse and its effect on porosity, chemical composition, particle size, enzymatic hydrolysis and fermentation into ethanol evaluated. Sorghum bagasse, fractionated into three particle size groups (9.5-18, 4-6 and 1-2mm), was pretreated with ammonium hydroxide (28% v/v solution) and water at a ratio of 1:0.5:8 at 100, 115, 130, 145 and 160°C for 1h. Simon's stain method revealed an increase in the porosity of the biomass compared to untreated biomass. The most lignin removal (46%) was observed at 160°C. About 90% of the cellulose and 73% of the hemicellulose remained within the bagasse. The best glucose yields and ethanol yields (from glucose only) among all different pretreatment conditions averaged 42/100g dry biomass and 21/100g dry biomass, respectively with 1-2mm sorghum bagasse pretreated at 130°C for 1h. Published by Elsevier Ltd.
Cheng, Jun; Huang, Rui; Li, Tao; Zhou, Junhu; Cen, Kefa
2014-10-01
A chloroform-free novel process for the efficient production of biodiesel from wet microalgae is proposed. Crude biodiesel is produced through extraction with hexane after microwave-assisted transesterification (EHMT) of lipids in wet microalgae. Effects of different parameters, including reaction temperature, reaction time, methanol dosage, and catalyst dosage, on fatty acids methyl esters (FAMEs) yield are investigated. The yield of FAME extracted into the hexane from the wet microalgae is increased 6-fold after the transesterification of lipids. The yield of FAME obtained through EHMT of lipids in wet microalgae is comparable to that obtained through direct transesterification of dried microalgae biomass with chloroform; however, FAME content in crude biodiesel obtained through EHMT is 86.74%, while that in crude biodiesel obtained through the chloroform-based process is 75.93%. EHMT ensures that polar pigments present in microalgae are not extracted into crude biodiesel, which leads to a 50% reduction in nitrogen content in crude biodiesel. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kulkarni, Ketav; Friend, James; Yeo, Leslie; Perlmutter, Patrick
2014-07-01
In this paper we demonstrate the use of an energy-efficient surface acoustic wave (SAW) device for driving closed-vessel SAW-assisted (CVSAW), ligand-free Suzuki couplings in aqueous media. The reactions were carried out on a mmolar scale with low to ultra-low catalyst loadings. The reactions were driven by heating resulting from the penetration of acoustic energy derived from RF Raleigh waves generated by a piezoelectric chip via a renewable fluid coupling layer. The yields were uniformly high and the reactions could be executed without added ligand and in water. In terms of energy density this new technology was determined to be roughly as efficient as microwaves and superior to ultrasound. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Sequential ultrasound-microwave assisted acid extraction (UMAE) of pectin from pomelo peels.
Liew, Shan Qin; Ngoh, Gek Cheng; Yusoff, Rozita; Teoh, Wen Hui
2016-12-01
This study aims to optimize sequential ultrasound-microwave assisted extraction (UMAE) on pomelo peel using citric acid. The effects of pH, sonication time, microwave power and irradiation time on the yield and the degree of esterification (DE) of pectin were investigated. Under optimized conditions of pH 1.80, 27.52min sonication followed by 6.40min microwave irradiation at 643.44W, the yield and the DE value of pectin obtained was respectively at 38.00% and 56.88%. Based upon optimized UMAE condition, the pectin from microwave-ultrasound assisted extraction (MUAE), ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE) were studied. The yield of pectin adopting the UMAE was higher than all other techniques in the order of UMAE>MUAE>MAE>UAE. The pectin's galacturonic acid content obtained from combined extraction technique is higher than that obtained from sole extraction technique and the pectin gel produced from various techniques exhibited a pseudoplastic behaviour. The morphological structures of pectin extracted from MUAE and MAE closely resemble each other. The extracted pectin from UMAE with smaller and more regular surface differs greatly from that of UAE. This has substantiated the highest pectin yield of 36.33% from UMAE and further signified their compatibility and potentiality in pectin extraction. Copyright © 2016 Elsevier B.V. All rights reserved.
Microwave-assisted 'greener' synthesis of organics and nanomaterials
Microwave selective heating techniques in conjunction with greener reaction media are dramatically reducing chemical waste and reaction times in several organic transformations and material synthesis. This presentation summarizes author’s own experience in developing MW-assisted ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Fei, E-mail: long.drf@gmail.com; Chi, Shangsen; Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083
Wurtzite Cu{sub 2}ZnSnS{sub 4} (CZTS) hexagonal prisms were synthesized by a simple ultrasound-microwave solvothermal method. The product was characterized by XRD, FESEM, EDS, TEM, Raman and UV–vis spectrometer. The hexagonal prisms were 0.5–2 μm wide and 5–12 μm long. The PVP played an important role in the formation of the CZTS hexagonal prisms. In addition, the ultrasound-assisted microwave process was helpful for synthesis of wurtzite rather than kesterite phase CZTS. A nucleation–dissolution–recrystallization mechanism was also proposed to explain the growth of the CZTS hexagonal prisms. - Graphical abstract: Wurtzite Cu{sub 2}ZnSnS{sub 4} hexagonal prisms were synthesized by ultrasound-microwave solvothermal method.more » The ultrasound-assisted microwave process and PVP were useful to the growth of CZTS. A nucleation–dissolution–recrystallization growth mechanism was also proposed. - Highlights: • Wurtzite Cu{sub 2}ZnSnS{sub 4} was prepared by ultrasound-assisted microwave solvothermal method. • The wurtzite CZTS hexagonal prisms are demonstrated a band gap of 1.49 eV. • Synergistic effect of ultrasound and microwave is helpful to prepare Wurtzite CZTS. • PVP plays an important role in the formation of the CZTS hexagonal prisms. • Nucleation–dissolution–recrystallization growth mechanism of the CZTS was proposed.« less
García-Sarrió, María Jesús; Sanz, María Luz; Sanz, Jesús; González-Coloma, Azucena; Cristina Soria, Ana
2018-04-14
A new microwave-assisted extraction (MAE) method using ethanol as solvent has been optimized by means of a Box-Behnken experimental design for the enhanced extraction of bioactive terpenoids from Mentha rotundifolia leaves; 100°C, 5 min, 1.125 g dry sample: 10 mL solvent and a single extraction cycle were selected as optimal conditions. Improved performance of MAE method in terms of extraction yield and/or reproducibility over conventional solid-liquid extraction and ultrasound assisted extraction was also previously assessed. A comprehensive characterization of MAE extracts was carried out by GC-MS. A total of 46 compounds, mostly terpenoids, were identified; piperitenone oxide and piperitenone were the major compounds determined. Several neophytadiene isomers were also detected for the first time in MAE extracts. Different procedures (solid-phase extraction and activated charcoal (AC) treatment) were also evaluated for clean-up of MAE extracts, with AC providing the highest enrichment in bioactive terpenoids. Finally, the MAE method here developed is shown as a green, fast, efficient and reproducible liquid extraction methodology to obtain M. rotundifolia bioactive extracts for further application, among others, as food preservatives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peng, Li-Qing; Cao, Jun; Du, Li-Jing; Zhang, Qi-Dong; Xu, Jing-Jing; Chen, Yu-Bo; Shi, Yu-Ting; Li, Rong-Rong
2017-09-15
Two kinds of extraction methods ultrasonic-assisted micellar extraction (UAME) and microwave-assisted micellar extraction (MAME) coupled with ultra-high performance liquid chromatography with ultraviolet detector (UHPLC-UV) were developed and evaluated for extraction and determination of zingerone, 6-gingerol, 8-gingerol, 6-shogaol and 10-gingerol in Rhizoma Zingiberis and Rhizoma Zingiberis Preparata. A biosurfactant, hyodeoxycholic acid sodium salt, was used in micellar extraction. Several experimental parameters were studied separately by a univariate method. The result indicated that the MAME was more efficient than UAME. The optimal conditions of MAME were as follows: 100mM of hyodeoxycholic acid sodium salt was used as surfactant, the irradiation time was set at 10s and the extraction temperature was set at 60°C. The validation results indicated that the limits of detection were in the range of 3.80-8.11ng/mL. The average recoveries were in the range of 87.32-103.12% for the two samples at two spiking levels. Compared with other reported methods, the proposed MAME-UHPLC-UV method was more effective, quicker (10s) and more eco-friendly. Copyright © 2017 Elsevier B.V. All rights reserved.
Green chemistry is a rapidly developing new field that provides us a proactive avenue for the sustainable development of future science and technologies.1 It emphasis the use of highly efficient and environmental benign synthetic protocols to deliver bio-active heterocycles, acc...
Detoxification of mercury pollutant leached from spent fluorescent lamps using bacterial strains.
Al-Ghouti, Mohammad A; Abuqaoud, Reem H; Abu-Dieyeh, Mohammed H
2016-03-01
The spent fluorescent lamps (SFLs) are being classified as a hazardous waste due to having mercury as one of its main components. Mercury is considered the second most toxic heavy metal (arsenic is the first) with harmful effects on animal nervous system as it causes different neurological disorders. In this research, the mercury from phosphor powder was leached, then bioremediated using bacterial strains isolated from Qatari environment. Leaching of mercury was carried out with nitric and hydrochloric acid solutions using two approaches: leaching at ambient conditions and microwave-assisted leaching. The results obtained from this research showed that microwave-assisted leaching method was significantly better in leaching mercury than the acid leaching where the mercury leaching efficiency reached 76.4%. For mercury bio-uptake, twenty bacterial strains (previously isolated and purified from petroleum oil contaminated soils) were sub-cultured on Luria Bertani (LB) plates with mercury chloride to check the bacterial tolerance to mercury. Seven of these twenty strains showed a degree of tolerance to mercury. The bio-uptake capacities of the promising strains were investigated using the mercury leached from the fluorescent lamps. Three of the strains (Enterobacter helveticus, Citrobacter amalonaticus, and Cronobacter muytjensii) showed bio-uptake efficiency ranged from 28.8% to 63.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jiao, Jiao; Gai, Qing-Yan; Zhang, Lin; Wang, Wei; Luo, Meng; Zu, Yuan-Gang; Fu, Yu-Jie
2015-06-01
A new, simple and efficient analysis method for fresh plant in vitro cultures-namely, high-speed homogenization coupled with microwave-assisted extraction (HSH-MAE) followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS)-was developed for simultaneous determination of six alkaloids and eight flavonoids in Isatis tinctoria hairy root cultures (ITHRCs). Compared with traditional methods, the proposed HSH-MAE offers the advantages of easy manipulation, higher efficiency, energy saving, and reduced waste. Cytohistological studies were conducted to clarify the mechanism of HSH-MAE at cellular/tissue levels. Moreover, the established LC-MS/MS method showed excellent linearity, precision, repeatability, and reproducibility. The HSH-MAE-LC-MS/MS method was also successfully applied for screening high-productivity ITHRCs. Overall, this study opened up a new avenue for the direct determination of secondary metabolic profiles from fresh plant in vitro cultures, which is valuable for improving quality control of plant cell/organ cultures and sheds light on the metabolomic analysis of biological samples. Graphical Abstract HSH-MAE-LC-MS/MS opened up a new avenue for the direct determination of alkaloids and flavonoids in fresh Isatis tinctoria hairy root cultures.
Xu, Jingjing; Zhang, Ruifang; Lu, Shiyao; Liu, Huan; Li, Zhaoyang; Zhang, Xinyu; Ding, Shujiang
2018-07-27
A facile and ultrafast microwave-assisted thermolysis approach has been adopted to synthesize hierarchical nitrogen-doped carbon within a very short time. The precursor PANI@carbon felt composite was pyrolyzed in microwave oven for different time (10, 20, 30, 40, 50 s) and denoted as NC-X (X = 10, 20, 30, 40, 50). As for NC-30, nitrogen-doping content is obtained up to 3.62 at% with striking enrichment of pyridinic N as high as 45% of the total nitrogen content. Raman analysis indicates the extent graphitization level for the resultant NC-30 and the relative intensity I D /I G was 1.26. High nitrogen-doping content and graphitization level provide effective active sites and efficient electron transfer channel. The resultant NC-30 exhibits pronounced ORR activity with an onset potential of 0.94 V (versus RHE), half-wave potential of 0.80 V and diffusion limiting current density of -5.23 mA cm -2 , comparable to those of the commercial Pt/C. It also shows enhanced stability with current retention of 98.3% over 7.5 h as well as superior tolerance against methanol. The simple preparation and excellent ORR performance of NC-30 suggest its promising practical application.
NASA Astrophysics Data System (ADS)
Prakoso, S. P.; Taufik, A.; Saleh, R.
2017-04-01
This study reports the characterization and catalytic activities of silver-oxide/silver nanoparticles (Ag2O/Ag NPs) synthesized by microwave-assisted colloidal method in the presence of anionic sodium dodecyl sulfate (SDS) surfactant. To promote different contents of silver in silver oxide, the volume ratio (VR) of ethylene glycol (EG) was varied (VR: 10% to 14%) in relation to the total volume of distilled water solvent. The plasmonic resonance of Ag2O/Ag NPs could be detected around a wavelength of 350 nm, and it is suggested that Ag2O/Ag NPs were successfully formed in the colloid solution following exposure to microwaves. Additionally, the growth rate for each crystal phase within Ag2O and Ag was influenced by an increase of EG as revealed by x-ray diffraction patterns. The morphology, average diameter, and uniformity of Ag2O/Ag NPs were studied simultaneously by transmission electron microscopy. Infrared absorption measurement of Ag2O/Ag NPs confirmed the existence of SDS surfactant as a protective agent. Based on the characterization data, Ag2O/Ag NPs synthesized using this technique exhibited good properties, with high-yield production of NPs. The photocatalytic experiments demonstrate the key role of the crystal phase of Ag2O/Ag NPs in photocatalytic efficiency.
Microwave-Assisted Resolution of α-Lipoic Acid Catalyzed by an Ionic Liquid Co-Lyophilized Lipase.
Liu, Ning; Wang, Lei; Wang, Zhi; Jiang, Liyan; Wu, Zhuofu; Yue, Hong; Xie, Xiaona
2015-05-29
The combination of the ionic liquid co-lyophilized lipase and microwave irradiation was used to improve enzyme performance in enantioselective esterification of α-lipoic acid. Effects of various reaction conditions on enzyme activity and enantioselectivity were investigated. Under optimal condition, the highest enantioselectivity (E = 41.2) was observed with a high enzyme activity (178.1 μmol/h/mg) when using the ionic liquid co-lyophilized lipase with microwave assistance. Furthermore, the ionic liquid co-lyophilized lipase exhibited excellent reusability under low power microwave.
Microwave-Assisted Green Synthesis of Silver Nanostructures
This account summarizes a microwave (MW)-assisted synthetic approach for producing silver nanostructures. The rapid and in-core MW heating has received considerable attention as a promising new method for the one-pot synthesis of metallic nanostructures in solutions. Conceptually...
Microwave-Assisted Synthesis of Mesoporous Nano-Hydroxyapatite Using Surfactant Templates
Mesoporous nano-hydroxyapatite (n-HAP) was expeditiously synthesized using the pseudo sol-gel microwave-assisted protocol (30 min) in the presence of two novel templates, namely sodium lauryl ether sulfate (SLES) and linear alkylbenzenesulfonate (LABS). The cooperative self-assem...
Microwave-Assisted Synthesis – Catalytic Applications in Aqueous Media
The development of sustainable methods directed towards the synthesis of molecules is due to the heightened awareness and recognition of alternative eco-friendly and economical protocols that have minimum impact on environment. Among others, microwave (MW)-assisted methodology ha...
Xiao, Xiaohua; Song, Wei; Wang, Jiayue; Li, Gongke
2012-01-27
In this study, low temperature vacuum microwave-assisted extraction, which simultaneous performed microwave-assisted extraction (MAE) in low temperature and in vacuo environment, was proposed. The influencing parameters including solid/liquid ratio, extraction temperature, extraction time, degree of vacuum and microwave power were discussed. The predominance of low temperature vacuum microwave-assisted extraction was investigated by comparing the extraction yields of vitamin C, β-carotene, aloin A and astaxanthin in different foods with that in MAE and solvent extraction, and 5.2-243% increments were obtained. On the other hand, the chemical kinetics of vitamin C and aloin A, which composed two different steps including the extraction step of analyte transferred from matrix into solvent and the decomposition step of analyte degraded in the extraction solvent, were proposed. All of the decomposition rates (K(2)) for the selected analyte in low temperature, in vacuo and in nitrogen atmosphere decreased significantly comparing with that in conventional MAE, which are in agreement with that obtained from experiments. Consequently, the present method was successfully applied to extract labile compound from different food samples. These results showed that low temperature and/or in vacuo environment in microwave-assisted extraction system was especially important to prevent the degradation of labile components and have good potential on the extraction of labile compound in foods, pharmaceutical and natural products. Copyright © 2011 Elsevier B.V. All rights reserved.
Microwave-assisted one-step patterning of aqueous colloidal silver.
Yang, G; Zhou, Y W; Guo, Z R; Wan, Y; Ding, Q; Bai, T T; Wang, C L; Gu, N
2012-07-05
A new approach of utilizing microwave to pattern gradient concentric silver nanoparticle ring structures has been presented. The width and height of a single ring and the space between adjacent rings can be adjusted by changing the silver colloidal concentration and the microwave output power. By simply enhancing the ambient vapour pressure to the saturated value during microwave-assisted evaporation, sub-100 nm rings can be deposited in between adjacent micro-rings over a distance of millimetres. Combined with microwave sintering, this approach can also create conductive silver tracks in a single step, showing huge potential in fabricating micro- and nano-electronic devices in an ultra-fast and cost-effective fashion.
Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing.
Huang, Jie; Hua, Lei; Lan, Xinwei; Wei, Tao; Xiao, Hai
2013-07-29
This paper reports a distributed fiber optic sensing technique through microwave assisted separation and reconstruction of optical interferograms in spectrum domain. The approach involves sending a microwave-modulated optical signal through cascaded fiber optic interferometers. The microwave signal was used to resolve the position and reflectivity of each sensor along the optical fiber. By sweeping the optical wavelength and detecting the modulation signal, the optical spectrum of each sensor can be reconstructed. Three cascaded fiber optic extrinsic Fabry-Perot interferometric sensors were used to prove the concept. Their microwave-reconstructed interferogram matched well with those recorded individually using an optical spectrum analyzer. The application in distributed strain measurement has also been demonstrated.
Takahashi, Hideyuki; Imai, Yoshinori; Maeda, Atsutaka
2016-06-01
We present a design for a tunneling-current-assisted scanning near-field microwave microscope. For stable operation at cryogenic temperatures, making a small and rigid microwave probe is important. Our coaxial resonator probe has a length of approximately 30 mm and can fit inside the 2-in. bore of a superconducting magnet. The probe design includes an insulating joint, which separates DC and microwave signals without degrading the quality factor. By applying the SMM to the imaging of an electrically inhomogeneous superconductor, we obtain the spatial distribution of the microwave response with a spatial resolution of approximately 200 nm. Furthermore, we present an analysis of our SMM probe based on a simple lumped-element circuit model along with the near-field microwave measurements of silicon wafers having different conductivities.
NASA Astrophysics Data System (ADS)
Takahashi, Hideyuki; Imai, Yoshinori; Maeda, Atsutaka
2016-06-01
We present a design for a tunneling-current-assisted scanning near-field microwave microscope. For stable operation at cryogenic temperatures, making a small and rigid microwave probe is important. Our coaxial resonator probe has a length of approximately 30 mm and can fit inside the 2-in. bore of a superconducting magnet. The probe design includes an insulating joint, which separates DC and microwave signals without degrading the quality factor. By applying the SMM to the imaging of an electrically inhomogeneous superconductor, we obtain the spatial distribution of the microwave response with a spatial resolution of approximately 200 nm. Furthermore, we present an analysis of our SMM probe based on a simple lumped-element circuit model along with the near-field microwave measurements of silicon wafers having different conductivities.
Box-Behnken design for investigation of microwave-assisted extraction of patchouli oil
NASA Astrophysics Data System (ADS)
Kusuma, Heri Septya; Mahfud, Mahfud
2015-12-01
Microwave-assisted extraction (MAE) technique was employed to extract the essential oil from patchouli (Pogostemon cablin). The optimal conditions for microwave-assisted extraction of patchouli oil were determined by response surface methodology. A Box-Behnken design (BBD) was applied to evaluate the effects of three independent variables (microwave power (A: 400-800 W), plant material to solvent ratio (B: 0.10-0.20 g mL-1) and extraction time (C: 20-60 min)) on the extraction yield of patchouli oil. The correlation analysis of the mathematical-regression model indicated that quadratic polynomial model could be employed to optimize the microwave extraction of patchouli oil. The optimal extraction conditions of patchouli oil was microwave power 634.024 W, plant material to solvent ratio 0.147648 g ml-1 and extraction time 51.6174 min. The maximum patchouli oil yield was 2.80516% under these optimal conditions. Under the extraction condition, the experimental values agreed with the predicted results by analysis of variance. It indicated high fitness of the model used and the success of response surface methodology for optimizing and reflect the expected extraction condition.
NASA Astrophysics Data System (ADS)
Li, Cheng; Mitra, Somenath
2007-12-01
A fullerene-single wall carbon nanotube (C60-SWCNT) complex is used as a component of the photoactive layer in bulk heterojunction photovoltaic cells. This complex synthesized by microwave-assisted reaction takes advantage of the electron accepting feature of C60 and the high electron transport capability of SWCNTs. In this paper, quantum efficiency enhancement by increasing light absorption and by bringing about appropriate morphological rearrangements via solvent vapor treatment and thermal annealing is presented. The optimum combination of these steps led to an increase in efficiency by as much as 87.5%.
Zhao, Yang; Huang, Zhiding; Chang, Wenkai; Wei, Chao; Feng, Xugen; Ma, Lin; Qi, Xiaoxia; Li, Zenghe
2017-07-01
Organotin compounds have been widely used in recent decades, however, the residential tributyltin (TBT) in environment has potential harmful effects on human health due to the disruption of endocrine system even at trace level. Herein, this work reports on an effective electro-field-assisted-photocatalytic technique for removal of TBT by applying an electric field to photocatalysis of as-prepared hierarchical TiO 2 microspheres. The synthesis of catalytic materials is based on a self-assembly process induced by microwave-assisted solvothermal reaction. Hierarchical TiO 2 microspheres consisting of nanowires can be obtained in short time with this facile method and possess high surface area and superior optical properties. As the catalyst, it was found that the reaction rate constant of electro-field-assisted-photocatalytic removal (0.0488 min -1 ) of TBT exhibited almost a 9 fold improvement as compared to that of photocatalysis (0.0052 min -1 ). The proposed mechanism of electro-field-assisted-photocatalytic removal of TBT was verified by using 117 Sn-enriched TBT spike solution as an isotopic tracer. In addition, varying impacts from some key reaction conditions, such as voltage of potential, pH value and the presence of Cr and formaldehyde were also discussed. The overall satisfactory TBT removal performance of the proposed electro-field-assisted-photocatalysis procedure with hierarchical TiO 2 microspheres, which was validated using actual tannery wastewater samples from three different kinds of tanning procedures. These attributes suggest that this electro-field-assisted-photocatalysis may have broad applications for the treatment of tannery wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sun, Jing; Wang, Wenlong; Yue, Qinyan
2016-01-01
Microwave heating is rapidly emerging as an effective and efficient tool in various technological and scientific fields. A comprehensive understanding of the fundamentals of microwave–matter interactions is the precondition for better utilization of microwave technology. However, microwave heating is usually only known as dielectric heating, and the contribution of the magnetic field component of microwaves is often ignored, which, in fact, contributes greatly to microwave heating of some aqueous electrolyte solutions, magnetic dielectric materials and certain conductive powder materials, etc. This paper focuses on this point and presents a careful review of microwave heating mechanisms in a comprehensive manner. Moreover, in addition to the acknowledged conventional microwave heating mechanisms, the special interaction mechanisms between microwave and metal-based materials are attracting increasing interest for a variety of metallurgical, plasma and discharge applications, and therefore are reviewed particularly regarding the aspects of the reflection, heating and discharge effects. Finally, several distinct strategies to improve microwave energy utilization efficiencies are proposed and discussed with the aim of tackling the energy-efficiency-related issues arising from the application of microwave heating. This work can present a strategic guideline for the developed understanding and utilization of the microwave heating technology. PMID:28773355
Hsieh, Yu-Chi; Chir, Jiun-Ly; Zou, Wei; Wu, Hsiu-Han; Wu, An-Tai
2009-05-26
A short and highly efficient route to the alpha-anomer of a furanoid sugar-aza-crown ether was developed by a one-pot reductive amination of an alpha-anomer C-ribosyl azido aldehyde. In addition, the beta-anomer furanoid sugar-aza-crown ether was synthesized from a linear disaccharide precursor via amidation and then followed by microwave-assisted amide reduction.
Rapid, facile microwave-assisted synthesis of xanthan gum grafted polyaniline for chemical sensor.
Pandey, Sadanand; Ramontja, James
2016-08-01
Grafting method, through microwave radiation procedure is extremely productive in terms of time consumption, cost effectiveness and environmental friendliness. In this study, conductive and thermally stable composite (mwXG-g-PANi) was synthesized by grafting of aniline (ANi) on to xanthan gum (XG) using catalytic weight of initiator, ammonium peroxydisulfate in the process of microwave irradiation in an aqueous medium. The synthesis of mwXG-g-PANi were confirm by FTIR, XRD, TGA, and SEM. The influence of altering the microwave power, exposure time of microwave, concentration of monomer and the amount of initiator of graft polymerization were studied over the grafting parameters, for example, grafting percentage (%G) and grafting efficiency (%E). The maximum %G and %E achieved was 172 and 74.13 respectively. The outcome demonstrates that the microwave irradiation strategy can increase the reaction rate by 72 times over the conventional method. Electrical conductivity of XG and mwXG-g-PANi composite film was performed. The fabricated grafted sample film were then examined for the chemical sensor. The mwXG-g-PANi, effectively integrated and handled, are NH3 sensitive and exhibit a rapid sensing in presence of NH3 vapor. Chemiresistive NH3 sensors with superior room temperature sensing performance were produced with sensor response of 905 at 1ppb and 90% recovery within few second. Copyright © 2016 Elsevier B.V. All rights reserved.
Diaz, Ana Belen; Moretti, Marcia Maria de Souza; Bezerra-Bussoli, Carolina; Carreira Nunes, Christiane da Costa; Blandino, Ana; da Silva, Roberto; Gomes, Eleni
2015-06-01
A pretreatment with microwave irradiation was applied to enhance enzyme hydrolysis of corn straw and rice husk immersed in water, aqueous glycerol or alkaline glycerol. Native and pretreated solids underwent enzyme hydrolysis using the extract obtained from the fermentation of Myceliophthora heterothallica, comparing its efficiency with that of the commercial cellulose cocktail Celluclast®. The highest saccharification yields, for both corn straw and rice husk, were attained when biomass was pretreated in alkaline glycerol, method that has not been previously reported in literature. Moreover, FTIR, TG and SEM analysis revealed a more significant modification in the structure of corn straw subjected to this pretreatment. Highest global yields were attained with the crude enzyme extract, which might be the result of its content in a great variety of hydrolytic enzymes, as revealed zymogram analysis. Moreover, its hydrolysis efficiency can be improved by its supplementation with commercial β-glucosidase. Copyright © 2015 Elsevier Ltd. All rights reserved.
MICROWAVE-ASSISTED EXTRACTION OF ORGANIC COMPOUNDS FROM STANDARD REFERENCE SOILS AND SEDIMENTS
As part of an ongoing evaluation of new sample preparation techniques by the U.S. Environmental Protection Agency (EPA), especially those that minimize waste solvents, microwave-assisted extraction (MAE) of organic compounds from solid materials (or "matrices") was evaluated. Six...
Microwave-assisted synthesis of cyclodextrin polyurethanes
USDA-ARS?s Scientific Manuscript database
Cyclodextrin (CD) has often been incorporated into polyurethanes in order to facilitate its use in encapsulation or removal of organic species for various applications. In this work a microwave-assisted method has been developed to produce polyurethanes consisting of alpha-, ß-, and gamma-CD and thr...
Fast microwave assisted pyrolysis of biomass using microwave absorbent.
Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger
2014-03-01
A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lin, Yun-Jian; Le, Guo-Wei; Wang, Jie-Yun; Li, Ya-Xin; Shi, Yong-Hui; Sun, Jin
2010-01-01
This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid). The highest degree of hydrolysis (DH) was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain), with an optimum condition of: (1) ratio of enzyme and substrate, 4760 U/g; (2) concentration of substrate, 4%; (3) reaction temperature, 55 °C and (4) pH 7.0. At 4 h, DH increased significantly (P < 0.01) under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen. PMID:21151439
Zou, Tangbin; Wu, Hongfu; Li, Huawen; Jia, Qing; Song, Gang
2013-10-01
Mangiferin is the main bioactive component in mango leaves, which possesses anti-inflammatory, antioxidative, antidiabetic, immunomodulatory, and antitumor activities. In the present study, a microwave-assisted extraction method was developed for the extraction of mangiferin from mango leaves. Some parameters such as ethanol concentration, liquid-to-solid ratio, microwave power, and extraction time were optimized by single-factor experiments and response surface methodology. The optimal extraction conditions were 45% ethanol, liquid-to-solid ratio of 30:1 (mL/g), and extraction time of 123 s under microwave irradiation of 474 W. Under optimal conditions, the yield of mangiferin was 36.10 ± 0.72 mg/g, significantly higher than that of conventional extraction. The results obtained are beneficial for the full utilization of mango leaves and also indicate that microwave-assisted extraction is a very useful method for extracting mangiferin from plant materials. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microwave-assisted hydrolysis and extraction of tricyclic antidepressants from human hair.
Wietecha-Posłuszny, Renata; Garbacik, Aneta; Woźniakiewicz, Michał; Kościelniak, Paweł
2011-03-01
The objective of this research was to develop, optimize, and validate a modern, rapid method of preparation of human hair samples, using microwave irradiation, for analysis of eight tricyclic antidepressants (TCADs): nordoxepin, nortriptyline, imipramine, amitriptyline, doxepin, desipramine, clomipramine, and norclomipramine. It was based on simultaneous alkaline hair microwave-assisted hydrolysis and microwave-assisted extraction (MAH-MAE). Extracts were analyzed by high-performance liquid chromatography with diode-array detection (HPLC-DAD). A mixture of n-hexane and isoamyl alcohol (99:1, v/v) was used as extraction solvent and the process was performed at 60°C. Application of 1.0 mol L(-1) NaOH and microwave irradiation for 40 min were found to be optimum for hair samples. Limits of detection ranged from 0.3 to 1.2 μg g(-1) and LOQ from 0.9 to 4.0 μg g(-1) for the different drugs. This enabled us to quantify them in hair samples within average therapeutic concentration ranges.
NASA Astrophysics Data System (ADS)
Lourenço, A. V. S.; Kodaira, C. A.; Souza, E. R.; Felinto, M. C. F. C.; Malta, O. L.; Brito, H. F.
2011-08-01
In the present work, the surface of the Eu-BTC = [Eu(EMA)(H 2O) 2], [Eu(TLA)(H 2O) 4] and [Eu(TMA)(H 2O) 6] complexes (EMA = 1,2,3-benzenetricarboxylate, TLA = 1,2,4-benzenetricarboxylate and TMA = 1,3,5-benzenetricarboxylate) was modified using 3-aminopropyltriethoxysilane (APTES) by a new microwave assisted method that proved to be simple and efficient. According to our observations, the most efficient luminescence is the material based on APTES incorporating [Eu(TMA)(H 2O) 6] complexes, denoted as Eu-TMA-Si, shows the highest emission efficiency. Therefore, it is proposed as a promising material for molecular conjugation in clinical diagnosis.
Two-steps microwave-assisted treatment on acid hydrolysis of sago pith for bioethanol production
NASA Astrophysics Data System (ADS)
Sunarti, T. C.; Yanti, S. D.; Ruriani, E.
2017-05-01
Sago is a genus of palm that can be utilized to produce fermentable sugars as substrate for bioethanol. Sago pith is a heterogeneous substrate consists of starch and fiber. Acid hydrolysis by microwave heating radiation can break down starch and fibers together in a very short time, so it is considered to be very efficient process. The use of microwave energy (as power level) and variation of heating time can produce fermentable sugar with certain characteristics. This study included the preparation and analysis of sago pith flour; process of acid hydrolysis (0.3 M and 0.5 M H2SO4) using two steps microwave heating, first with power level 30% (1, 2 and 3 min) and second with power level 70% (3 min); and ethanol production. The conventional treatment (autoclaving at 121°C for 15 min) was carried for the comparison. The highest fermentable sugar (105.7 g/l) was resulted from microwave heating with power level 30% for 2 min followed by the power level 70% for 3 min. This hydrolyzate then used as substrate for bioethanol fermentation and partially neutralized (pH 3, 4, 5) by using yeast Issatchenkia orientalis, and the highest ethanol (2.8 g/l) was produced in pH 5.
Wang, Xiao-Hui; Bo, Long-Li; Liu, Hai-Nan; Zhang, Hao; Sun, Jian-Yu; Yang, Li; Cai, Li-Dong
2013-06-01
Molecular sieve loaded catalyst was prepared by impregnation method, microwave-absorbing material silicon carbide and the catalyst were investigated for catalytic oxidation of toluene by microwave irradiation. Research work examined effects of silicon carbide and molecular sieve loading Cu-V catalyst's mixture ratio as well as mixed approach changes on degradation of toluene, and characteristics of catalyst were measured through scanning electron microscope, specific surface area test and X-ray diffraction analysis. The result showed that the fixed bed reactor had advantages of both thermal storage property and low-temperature catalytic oxidation when 20% silicon carbide was filled at the bottom of the reactor, and this could effectively improve the utilization of microwave energy as well as catalytic oxidation efficiency of toluene. Under microwave power of 75 W and 47 W, complete-combustion temperatures of molecular sieve loaded Cu-V catalyst and Cu-V-Ce catalyst to toluene were 325 degrees C and 160 degrees C, respectively. Characteristics of the catalysts showed that mixture of rare-earth element Ce increased the dispersion of active components in the surface of catalyst, micropore structure of catalyst effectively guaranteed high adsorption capacity for toluene, while amorphous phase of Cu and V oxides increased the activity of catalyst greatly.
Wang, Zhibing; Hu, Jianxue; Du, Hongxia; He, Shuang; Li, Qing; Zhang, Hanqi
2016-06-05
The microwave-assisted ionic liquid homogeneous liquid-liquid microextraction (MA-IL-HLLME) coupled with high performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of anthraquinones, including aloe-emodin, emodin, chrysophanol and physcion in root of Rheum palmatum L. Several experimental parameters influencing the extraction efficiency, including amount of sample, type and volume of ionic liquid, volume and pH value of extraction medium, microwave power and extraction time, concentration of NH4PF6 as well as centrifugal condition were optimized. When 140μL of ionic liquid ([C8MIM][BF4]) was used as an extraction solvent, target analytes can be extracted from sample matrix in one minute with the help of microwave irradiation. The MA-IL-HLLME is simple and quick. The calibration curves exhibited good linear relationship (r>0.9984). The limits of detection and quantification were in the range of 0.015-0.026 and 0.051-0.088μgmL(-1), respectively. The spiked recovery for each analyte was in the range of 81.13-93.07% with relative standard deviations lower than 6.89%. The present method is free of volatile organic solvents, and represents lower expenditures of sample, extraction time and solvent, compared with ultrasonic and heat reflux extraction. The results indicated that the present method can be successfully applied to the determination of anthraquinones in medicinal plant. Copyright © 2016 Elsevier B.V. All rights reserved.
Pooja, N S; Sajeev, M S; Jeeva, M L; Padmaja, G
2018-01-01
The effect of microwave (MW)-assisted acid or alkali pretreatment (300 W, 7 min) followed by saccharification with a triple enzyme cocktail (Cellic, Optimash BG and Stargen) with or without detoxification mix on ethanol production from three cassava residues (stems, leaves and peels) by Saccharomyces cerevisiae was investigated. Significantly higher fermentable sugar yields (54.58, 47.39 and 64.06 g/L from stems, leaves and peels, respectively) were obtained after 120 h saccharification from MW-assisted alkali-pretreated systems supplemented (D+) with detoxification chemicals (Tween 20 + polyethylene glycol 4000 + sodium borohydride) compared to the non-supplemented (D0) or MW-assisted acid-pretreated systems. The percentage utilization of reducing sugars during fermentation (48 h) was also the highest (91.02, 87.16 and 89.71%, respectively, for stems, leaves and peels) for the MW-assisted alkali-pretreated (D+) systems. HPLC sugar profile indicated that glucose was the predominant monosaccharide in the hydrolysates from this system. Highest ethanol yields ( Y E , g/g), fermentation efficiency (%) and volumetric ethanol productivity (g/L/h) of 0.401, 78.49 and 0.449 (stems), 0.397, 77.71 and 0.341 (leaves) and 0.433, 84.65 and 0.518 (peels) were also obtained for this system. The highest ethanol yields (ml/kg dry biomass) of ca. 263, 200 and 303, respectively, for stems, leaves and peels from the MW-assisted alkali pretreatment (D+) indicated that this was the most effective pretreatment for cassava residues.
Baran, Talat; Sargin, Idris; Kaya, Murat; Menteş, Ayfer
2016-11-05
In green catalyst systems, both the catalyst and the technique should be environmentally safe. In this study we designed a green palladium(II) catalyst for microwave-assisted Suzuki CC coupling reactions. The catalyst support was produced from biopolymers; chitosan and cellulose. The catalytic activity of the catalyst was tested on 16 substrates in solvent-free media and compared with those of commercial palladium salts. Reusability tests were done. The catalyst was also used in conventional reflux-heating system to demonstrate the efficiency of microwave heating method. We recorded high activity, selectivity and excellent TONs (6600) and TOFs (82500) just using a small catalyst loading (1.5×10(-3)mol%) in short reaction time (5min). The catalyst exhibited a long lifetime (9 runs). The findings indicated that both green chitosan/cellulose-Pd(II) catalyst and the microwave heating are suitable for synthesis of biaryl compounds by using Suzuki CC coupling reactions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Microwave assisted centrifuge and related methods
Meikrantz, David H [Idaho Falls, ID
2010-08-17
Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.
DEXTROSE-TEMPLATED MICROWAVE-ASSISTED COMBUSTION SYNTHESIS OF SPONGY METAL OXIDES
Microwave-assisted combustion synthesis of porous nanocrystalline titania and carbon coated titania is reported using dextrose as template and the product was compared with the one obtained using conventional heating furnace. Out of three compositions viz., 1:1, 1:3, and 1:5 (met...
The magic of microwave (MW) heating technique, termed as the Bunsen burner of the 21th Century, has emerged as valuable alternative in synthesis of organics, polymers, inorganics, and nanomaterials. Important innovations in MW-assisted chemistry now enable chemists to prepare cat...
Microwave-assisted (MW) synthesis of noble metals such as Au, Pt and Pd is reported using biodegradable polymer carboxymethyl cellulose (CMC) at 100°C within few seconds. The possible reduction entails the coupling of polar hydroxyl units in beta-glucopyranose units with micr...
Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiao-Lin, E-mail: liu_x_l@sina.cn; Zhu, Ying-Jie; Zhang, Qian
2012-12-15
Graphical abstract: Cadmium sulfide polycrystalline nanotubes have been successfully synthesized by microwave-assisted transformation method using Cd–cysteine precursor nanowires as the source material and template in ethylene glycol at 160 °C or ethanol at 60 °C. Display Omitted Highlights: ► Cd–cysteine precursor nanowires were successfully synthesized in alkaline solution. ► CdS nanotubes were prepared by templated microwave-assisted transformation method. ► CdS nanotubes can well duplicate the size and morphology of precursor nanowires. ► This method has the advantages of the simplicity and low cost. -- Abstract: We report the Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes. In thismore » method, the Cd–cysteine precursor nanowires are synthesized using CdCl{sub 2}·2.5H{sub 2}O, L-cysteine and ethanolamine in water at room temperature. The Cd–cysteine precursor nanowires are used as the source material and template for the subsequent preparation of CdS nanotubes by a microwave-assisted transformation method using ethylene glycol or ethanol as the solvent. This method has the advantages of the simplicity and low cost, and may be extended to the synthesis of nanotubes of other compounds. The products are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).« less
Zhang, Jiao-Jiao; Li, Ya; Lin, Sheng-Jun; Li, Hua-Bin
2018-05-02
The waste of Sterculia nobilis fruit was massively produced during food processing, which contains lots of natural antioxidants. In this study, antioxidants in the Sterculia nobilis fruit waste were extracted using the green microwave-assisted extraction (MAE) technique. The effects of five independent variables (ethanol concentration, solvent/material ratio, extraction time, temperature, and microwave power) on extraction efficiency were explored, and three major factors (ethanol concentration, extraction time, and temperature) showing great influences were chosen to study their interactions by response surface methodology. The optimal conditions were as follows: 40.96% ethanol concentration, 30 mL/g solvent/material ratio, 37.37 min extraction time at 66.76 °C, and 700 W microwave power. The Trolox equivalent antioxidant capacity value obtained in optimal conditions was in agreement with the predicted value. Besides, MAE improved the extraction efficiency compared with maceration and Soxhlet extraction methods. Additionally, the phenolic profile in the extract was analyzed by UPLC-MS/MS, and eight kinds of phenolic compounds were identified and quantified, including epicatechin, protocatechuic acid, ferulic acid, gallic acid, p -coumaric acid, caffeic acid, quercetin, and p -hydroxycinnamic acid. This study could contribute to the value-added utilization of the waste from Sterculia nobilis fruit, and the extract could be developed as food additive or functional food.
A parametric study of the microwave plasma-assisted combustion of premixed ethylene/air mixtures
NASA Astrophysics Data System (ADS)
Fuh, Che A.; Wu, Wei; Wang, Chuji
2017-11-01
A parametric study of microwave argon plasma assisted combustion (PAC) of premixed ethylene/air mixtures was carried out using visual imaging, optical emission spectroscopy and cavity ringdown spectroscopy as diagnostic tools. The parameters investigated included the plasma feed gas flow rate, the plasma power, the fuel equivalence ratio and the total flow rate of the fuel/air mixture. The combustion enhancement effects were characterized by the minimum ignition power, the flame length and the fuel efficiency of the combustor. It was found that: (1) increasing the plasma feed gas flow rate resulted in a decrease in the flame length, an increase in the minimum ignition power for near stoichiometric fuel equivalence ratios and a corresponding decrease in the minimum ignition power for ultra-lean and rich fuel equivalence ratios; (2) at a constant plasma power, increasing the total flow rate of the ethylene/air mixture from 1.0 slm to 1.5 slm resulted in an increase in the flame length and a reduction in the fuel efficiency; (3) increasing the plasma power resulted in a slight increase in flame length as well as improved fuel efficiency with fewer C2(d) and CH(A) radicals present downstream of the flame; (4) increasing the fuel equivalence ratio caused an increase in flame length but at a reduced fuel efficiency when plasma power was kept constant; and (5) the ground state OH(X) number density was on the order of 1015 molecules/cm3 and was observed to drop downstream along the propagation axis of the flame at all parameters investigated. Results suggest that each of the parameters independently influences the PAC processes.
Bulk and shape-controlled synthesis of gold (Au) nanostructures with various shapes such as prisms, cubes and hexagons is described that occurs via microwave-assisted spontaneous reduction of noble metal salts using an aqueous solution of α-D-glucose, sucrose and maltose. The exp...
ERIC Educational Resources Information Center
Russell, Cianán B.; Mason, Jeremy D.; Bean, Theodore G.; Murphree, S. Shaun
2014-01-01
An instructional laboratory curriculum for a first-semester introductory organic chemistry course has been developed using microwave-assisted organic synthesis (MAOS). Taking advantage of short reaction times, materials were developed to facilitate collaborative experimental design, analysis, and debriefing of results during the normal laboratory…
Influence of solvent type on microwave-assisted liquefaction of bamboo
Jiulong Xie; Chung Hse; Todd F. Shupe; Tingxing Hu
2016-01-01
Microwave-assisted liquefaction of bamboo in glycerol, polyethylene glycerol (PEG), methanol, ethanol, and water were comparatively investigated by evaluating the temperature-dependence for conversion and liquefied residue characteristics. The conversion for the liquefaction in methanol, ethanol, and water increased with an increase in reaction temperature, while that...
USDA-ARS?s Scientific Manuscript database
Several parameters of Microwave-assisted extraction (MAE) including extraction time, extraction temperature, ethanol concentration and solid-liquid ratio were selected to describe the MAE processing. The silybin content, measured by an UV-Vis spectrophotometry, was considered as the silymarin yield....
Microwave assisted total synthesis of a benzothiophene-based new chemical entity (NCE)
Pharmaceutical scientists are required to generate diverse arrays of complex targets in short span of time, which can now be achieved by microwave-assisted organic synthesis. New chemical entities (NCE) can be built in a fraction of the time using this technique. However, there a...
Mathematical Modeling of Microwave-Assisted Convective Heating and Drying of Grapes
USDA-ARS?s Scientific Manuscript database
This research studied the processing performance and product quality of Thompson seedless grapes dried using microwave-assisted convective hot air drying as well as the effect of blanching and dipping pretreatments. Two pretreatment methods were compared, dipping into 2% ethyl oleate (V/V) and 5% p...
Uma, Kasimayan; Pan, Guan-Ting; Yang, Thomas C-K
2017-06-02
Abst r act: Metal organic framework (MOF) of MIL-101(Cr)-Silica (SiO₂) composites with highly mesoporous and uniform dispersions were synthesized by a microwave-assisted hydrothermal method followed by the sol-gel technique. Water vapor adsorption experiments were conducted on the MIL-101(Cr)-SiO₂ composites for industrial adsorption chiller applications. The effects of MIL-101(Cr)-SiO₂ mixing ratios (ranging from 0% to 52%), the surface area and amount of Lewis and Brønsted sites were comprehensively determined through water vapor adsorption experiments and the adsorption mechanism is also explained. The BET and Langmuir results indicate that the adsorption isotherms associated with the various MIL-101(Cr)-SiO₂ ratios demonstrated Type I and IV adsorption behavior, due to the mesoporous structure of the MIL-101(Cr)-SiO₂. It was observed that the increase in the amount of Lewis and Brønsted sites on the MIL-101(Cr)-SiO₂ composites significantly improves the water vapor adsorption efficiency, for greater stability during the water vapor adsorption experiments.
Caputo, Leonardo; Quintieri, Laura; Cavalluzzi, Maria Maddalena; Lentini, Giovanni; Habtemariam, Solomon
2018-06-17
Citrus pomace is a huge agro-food industrial waste mostly composed of peels and traditionally used as compost or animal feed. Owing to its high content of compounds beneficial to humans (e.g., flavonoids, phenol-like acids, and terpenoids), citrus waste is increasingly used to produce valuable supplements, fragrance, or antimicrobials. However, such processes require sustainable and efficient extraction strategies by solvent-free techniques for environmentally-friendly good practices. In this work, we evaluated the antimicrobial and antibiofilm activity of water extracts of three citrus peels (orange, lemon, and citron) against ten different sanitary relevant bacteria. Both conventional extraction methods using hot water (HWE) and microwave-assisted extraction (MAE) were used. Even though no extract fully inhibited the growth of the target bacteria, these latter (mostly pseudomonads) showed a significant reduction in biofilm biomass. The most active extracts were obtained from orange and lemon peel by using MAE at 100 °C for 8 min. These results showed that citrus peel water infusions by MAE may reduce biofilm formation possibly enhancing the susceptibility of sanitary-related bacteria to disinfection procedures.
Zhou, Tianyu; Ding, Jie; Wang, Qiang; Xu, Yuan; Wang, Bo; Zhao, Li; Ding, Hong; Chen, Yanhua; Ding, Lan
2018-03-01
Monodisperse superhydrophilic melamine formaldehyde resorcinol resin (MFR) microspheres were prepared in 90min at 85°C via a microwave-assisted method with a yield of 60.6%. The obtained MFR microspheres exhibited narrow size distribution with the average particle size of about 2.5µm. The MFR microspheres were used as absorbents to detect triazines in juices followed by high performance liquid chromatography tandem mass spectrometry. Various factors affecting the extraction efficiency were investigated. Under the optimized conditions, the built method exhibited excellent linearity in the range of 1-250μgL -1 (R 2 ≥ 0.9994) and lower detection limits (0.3-0.65μgL -1 ). The relative standard deviations of intra- and inter-day analyses ranged from 3% to 7% and from 2% to 7%, respectively. The method was applied to determine six triazines in three juice samples. At the spiked level of 3μgL -1 , the recoveries were in the range of 90-99% with the relative standard deviations ≤ 8%. Copyright © 2017 Elsevier B.V. All rights reserved.
Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis.
Dai, Leilei; Fan, Liangliang; Liu, Yuhuan; Ruan, Roger; Wang, Yunpu; Zhou, Yue; Zhao, Yunfeng; Yu, Zhenting
2017-02-01
In this study, production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis combining the advantages of in-situ and ex-situ catalysis was performed. The effects of catalyst and pyrolysis temperature on product fractional yields and bio-oil chemical compositions were investigated. From the perspective of bio-oil yield, the optimal pyrolysis temperature was 550°C. The use of catalysts reduced the water content, and the addition of bentonite increased the bio-oil yield. Up to 84.16wt.% selectivity of hydrocarbons in the bio-oil was obtained in the co-catalytic process. In addition, the co-catalytic process can reduce the proportion of oxygenates in the bio-oil to 15.84wt.% and eliminate the N-containing compounds completely. The addition of bentonite enhanced the BET surface area of bio-char. In addition, the bio-char removal efficiency of Cd 2+ from soapstock pyrolysis in presence of bentonite was 27.4wt.% higher than without bentonite. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Waziiroh, E.; Harijono; Kamilia, K.
2018-03-01
Mahogany is frequently used for medicines for cancer, tumor, and diabetes, as it contains saponin and flavonoid. Saponin is a complex glycosydic compound consisted of triterpenoids or steroids. Saponin can be extracted from a plant by using a solvent extraction. Microwave Assisted Extraction (MAE) is a non-conventional extraction method that use micro waves in the process. This research was conducted by a Complete Random Design with two factors which were extraction time (120, 150, and 180 seconds) and solvent ratio (10:1, 15:1, and 20:1 v/w). The best treatment of MAE were the solvent ratio 15:1 (v/w) for 180 seconds. The best treatment resulting crude saponin extract yield of 41.46%, containing 11.53% total saponins, and 49.17% of antioxidant activity. Meanwhile, the treatment of maceration method were the solvent ratio 20:1 (v/w) for 48 hours resulting 39.86% yield of saponin crude extract, 9.26% total saponins and 56.23% of antioxidant activity. The results showed MAE was more efficient (less time of extraction and solvent amount) than maceration method.
Microwave-assisted synthesis of medicinally relevant indoles.
Patil, S A; Patil, R; Miller, D D
2011-01-01
Indoles represent an important structural class in medicinal chemistry with broad spectrum of biological activities. The synthesis of indoles, therefore, has attracted enormous attention from synthetic chemists. Microwave methods for the preparation of indole analogs have been developed to speed up the synthesis, therefore, microwave assisted organic synthesis (MAOS) in controlled conditions is an invaluable technique for medicinal chemistry. In this review, indole forming classical reactions such as Fischer, Madelung, Bischler-Mohlau, Batcho-Leimgruber, Hemetsberger-Knittel, Graebe-Ullmann, Diels-Alder and Wittig type reactions using microwave radiation has been summarized. In addition, metal mediated cyclizations along with solid phase synthesis of indoles have been discussed. © 2011 Bentham Science Publishers Ltd.
Xue, Bai-Liang; Wen, Jia-Long; Sun, Run-Cang
2015-02-10
Lignin-based polyols were synthesized through microwave-assisted liquefaction under different microwave heating times (5-30 min). The liquefaction reactions were carried out using polyethylene glycol (PEG-400)/glycerol as liquefying solvents and 97 wt% sulfur acid as a catalyst at 140 °C. The polyols obtained were analyzed for their yield, composition and structural characteristics using gel permeation chromatography (GPC), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra. FT-IR and NMR spectra showed that the liquefying solvents reacted with the phenol hydroxyl groups of the lignin in the liquefied product. With increasing microwave heating time, the viscosity of polyols was slightly increased and their corresponding molecular weight ( M W ) was gradually reduced. The optimal condition at the microwave heating time (5 min) ensured a high liquefaction yield (97.47%) and polyol with a suitable hydroxyl number (8.628 mmol/g). Polyurethane (PU) foams were prepared by polyols and methylene diphenylene diisocyanate (MDI) using the one-shot method. With the isocyanate/hydroxyl group ([NCO]/[OH]) ratio increasing from 0.6 to 1.0, their mechanical properties were gradually increased. This study provided some insight into the microwave-assisted liquefied lignin polyols for the production of rigid PU foam.
Solvent-free, microwave-assisted synthesis of thiophene oligomers via Suzuki coupling.
Melucci, Manuela; Barbarella, Giovanna; Sotgiu, Giovanna
2002-12-13
The purpose of this study was to obtain a rapid, efficient, and environmentally friendly methodology for the synthesis of highly pure thiophene oligomers. The solvent-free, microwave-assisted coupling of thienyl boronic acids and esters with thienyl bromides, using aluminum oxide as the solid support, allowed us to rapidly check the reaction trends on changing times, temperature, catalyst, and base and easily optimize the experimental conditions to obtain the targeted product in fair amounts. This procedure offers a novel, general, and very rapid route to the preparation of soluble thiophene oligomers. Thus, for example, quaterthiophene was obtained in 6 min by reaction of 2-bromo-2,2'-bithiophene with bis(pinacolato)diboron (isolated yield 65%), whereas quinquethiophene was obtained in 11 min by reaction of dibromoterthiophene with thienylboronic acid (isolated yield 74%). The synthesis of new chiral 2,2'-bithiophenes is reported. The detailed analysis of the byproducts of some reactions allowed us to elucidate a few aspects of reaction mechanisms. While the use of microwaves proved to be very convenient for the coupling between conventional thienyl moieties, the same was not true for the coupling of thienyl rings to thienyl-S,S-dioxide moieties. Indeed, in this case, the targeted product was obtained in low yields because of the competitive, accelerated, Diels-Alder reaction that affords a variety of condensation products.
Zhao, Chunjian; Lu, Zhicheng; He, Xin; Li, Zhao; Shi, Kunming; Yang, Lei; Fu, Yujie; Zu, Yuangang
2014-01-01
An ionic liquids based simultaneous ultrasonic and microwave assisted extraction (ILs-UMAE) method has been proposed for the extraction of rutin (RU), quercetin (QU), from velvetleaf leaves. The influential parameters of the ILs-UMAE were optimized by the single factor and the central composite design (CCD) experiments. A 2.00 M 1-butyl-3-methylimidazolium bromide ([C4mim]Br) was used as the experimental ionic liquid, extraction temperature 60°C, extraction time 12 min, liquid-solid ratio 32 mL/g, microwave power of 534 W, and a fixed ultrasonic power of 50 W. Compared to conventional heating reflux extraction (HRE), the RU and QU extraction yields obtained by ILs-UMAE were, respectively, 5.49 mg/g and 0.27 mg/g, which increased, respectively, 2.01-fold and 2.34-fold with the recoveries that were in the range of 97.62–102.36% for RU and 97.33–102.21% for QU with RSDs lower than 3.2% under the optimized UMAE conditions. In addition, the shorter extraction time was used in ILs-UMAE, compared with HRE. Therefore, ILs-UMAE was a rapid and an efficient method for the extraction of RU and QU from the leaves of velvetleaf. PMID:25243207
Nascimento-Júnior, Nailton M; Mendes, Thaiana C F; Leal, Daniella M; Corrêa, Claudia Maria N; Sudo, Roberto T; Zapata-Sudo, Gisele; Barreiro, Eliezer J; Fraga, Carlos A M
2010-01-01
We described herein the optimization of the synthetic methodology exploited to obtain the pyrazolo[3,4-b]pyrrolo[3,4-d]pyridine sedative prototype 1a and novel analogues designed by successive molecular simplifications. By applying microwave irradiation during the hetero Diels-Alder key-step to obtain the heterotricyclic scaffold, under solvent-free conditions, we were able to obtain the desired compounds in drastically shorter times and better yields. Additionally, in vivo evaluation of the sedative effects of these heterocyclic derivatives showed that 1a and the novel structurally-related analogue 1e were the most efficient compounds to impair the locomotor activity in mice at the dose of 10micromol/kg. Copyright 2009 Elsevier Ltd. All rights reserved.
Fang, Xinsheng; Wang, Jianhua; Zhou, Hongying; Jiang, Xingkai; Zhu, Lixiang; Gao, Xin
2009-07-01
An optimized microwave-assisted extraction method using water (MAE-W) as the extractant and an efficient HPLC analysis method were first developed for the fast extraction and simultaneous determination of D(+)-(3,4-dihydroxyphenyl) lactic acid (Dla), salvianolic acid B (SaB), and lithospermic acid (La) in radix Salviae Miltiorrhizae. The key parameters of MAE-W were optimized. It was found that the degradation of SaB was inhibited when using the optimized MAE-W and the stable content of Dla, La, and SaB in danshen was obtained. Furthermore, compared to the conventional extraction methods, the proposed MAE-W is a more rapid method with higher yield and lower solvent consumption with a reproducibility (RSD <6%). In addition, using water as extractant is safe and helpful for environment protection, which could be referred to as green extraction. The separation and quantitative determination of the three compounds was carried out by a developed reverse-phase high-performance liquid chromatographic (RP-HPLC) method with UV detection. Highly efficient separation was obtained using gradient solvent system. The optimized HPLC analysis method was validated to have specificity, linearity, precision, and accuracy. The results indicated that MAE-W followed by HPLC-UV determination is an appropriate alternative to previously proposed method for quality control of radix Salviae Miltiorrhizae.
Lou, Chuangneng; Liu, Wenqi; Liu, Xiaodong
2014-10-15
Seabird guano is one of the main sources of nutrient fertilizers in remote coastal island areas, but guano-derived contaminants such as arsenic may cause serious threats to local ecosystems and public health issues. In this study, a new method was developed to analyze arsenic speciation in guano and ornithogenic sediments. Good extraction efficiencies of As(III) (arsenite), DMA (dimethylarsinate), MMA (monomethylarsonate) and As(V) (arsenate) were obtained by using 1.0molL(-1) orthophosphoric acid and 0.1molL(-1) ascorbic acid, followed by microwave-assisted extraction and high-performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry (HPLC-HG-AFS) detection. Under the optimized conditions, the extraction efficiencies of four arsenic species were over 80%. The relative standard deviations (RSDs) were 9.60, 6.15, 6.34 and 2.93% (n=7), and the detection limits (μgL(-1)) were 0.82, 2.38, 1.45 and 2.31 for As(III), DMA, MMA and As(V), respectively. This method was successfully used to determine arsenic speciation in the guano samples collected from the Xisha Islands of the South China Sea, and the results indicated that As(III) and As(V) were the dominant arsenic species in modern and ancient guano, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
Chan, Chung-Hung; Yusoff, Rozita; Ngoh, Gek-Cheng
2013-09-01
A modeling technique based on absorbed microwave energy was proposed to model microwave-assisted extraction (MAE) of antioxidant compounds from cocoa (Theobroma cacao L.) leaves. By adapting suitable extraction model at the basis of microwave energy absorbed during extraction, the model can be developed to predict extraction profile of MAE at various microwave irradiation power (100-600 W) and solvent loading (100-300 ml). Verification with experimental data confirmed that the prediction was accurate in capturing the extraction profile of MAE (R-square value greater than 0.87). Besides, the predicted yields from the model showed good agreement with the experimental results with less than 10% deviation observed. Furthermore, suitable extraction times to ensure high extraction yield at various MAE conditions can be estimated based on absorbed microwave energy. The estimation is feasible as more than 85% of active compounds can be extracted when compared with the conventional extraction technique. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xia, Jing; Huang, Yangqi; Zhang, Xichao; Kang, Wang; Zheng, Chentian; Liu, Xiaoxi; Zhao, Weisheng; Zhou, Yan
2017-10-01
Magnetic skyrmion is a topologically protected domain-wall structure at nanoscale, which could serve as a basic building block for advanced spintronic devices. Here, we propose a microwave field-driven skyrmionic device with the transistor-like function, where the motion of a skyrmion in a voltage-gated ferromagnetic nanotrack is studied by micromagnetic simulations. It is demonstrated that the microwave field can drive the motion of a skyrmion by exciting the propagating spin waves, and the skyrmion motion can be governed by a gate voltage. We also investigate the microwave current-assisted creation of a skyrmion to facilitate the operation of the transistor-like skyrmionic device on the source terminal. It is found that the microwave current with an appropriate frequency can reduce the threshold current density required for the creation of a skyrmion from the ferromagnetic background. The proposed transistor-like skyrmionic device operated with the microwave field and current could be useful for building future skyrmion-based circuits.
Périno-Issartier, Sandrine; Ginies, Christian; Cravotto, Giancarlo; Chemat, Farid
2013-08-30
A total of eight extraction techniques ranging from conventional methods (hydrodistillation (HD), steam distillation (SD), turbohydrodistillation (THD)), through innovative techniques (ultrasound assisted extraction (US-SD) and finishing with microwave assisted extraction techniques such as In situ microwave-generated hydrodistillation (ISMH), microwave steam distillation (MSD), microwave hydrodiffusion and gravity (MHG), and microwave steam diffusion (MSDf)) were used to extract essential oil from lavandin flowers and their results were compared. Extraction time, yield, essential oil composition and sensorial analysis were considered as the principal terms of comparison. The essential oils extracted using the more innovative processes were quantitatively (yield) and qualitatively (aromatic profile) similar to those obtained from the conventional techniques. The method which gave the best results was the microwave hydrodiffusion and gravity (MHG) method which gave reduced extraction time (30min against 220min for SD) and gave no differences in essential oil yield and sensorial perception. Copyright © 2013 Elsevier B.V. All rights reserved.
Insights into a microwave susceptible agent for minimally invasive microwave tumor thermal therapy.
Shi, Haitang; Liu, Tianlong; Fu, Changhui; Li, Linlin; Tan, Longfei; Wang, Jingzhuo; Ren, Xiangling; Ren, Jun; Wang, Jianxin; Meng, Xianwei
2015-03-01
This work develops a kind of sodium alginate (SA) microcapsules as microwave susceptible agents for in vivo tumor microwave thermal therapy for the first time. Due to the excellent microwave susceptible properties and low bio-toxicity, excellent therapy efficiency can be achieved with the tumor inhibiting ratio of 97.85% after one-time microwave thermal therapy with ultralow power (1.8 W, 450 MHz). Meanwhile, the mechanism of high microwave heating efficiency was confirmed via computer-simulated model in theory, demonstrating that the spatial confinement efficiency of microcapsule walls endows the inside ions with high microwave susceptible properties. This strategy offers tremendous potential applications in clinical tumor treatment with the benefits of safety, reliability, effectiveness and minimally invasiveness. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fatty acids from high rate algal pond's microalgal biomass and osmotic stress effects.
Drira, Neila; Dhouibi, Nedra; Hammami, Saoussen; Piras, Alessandra; Rosa, Antonella; Porcedda, Silvia; Dhaouadi, Hatem
2017-11-01
The extraction of oil from a wild microalgae biomass collected from a domestic wastewater treatment facility's high rate algal pond (HRAP) was investigated. An experiment plan was used to determine the most efficient extraction method, the optimal temperature, time and solvent system based on total lipids yield. Microwave-assisted extraction was the most efficient method whether in n-hexane or in a mixture of chloroform/methanol compared to Soxhlet, homogenization, and ultrasounds assisted extractions. This same wild biomass was cultivated in a photobioreactor (PBR) and the effect of osmotic stress was studied. The lipids extraction yield after 3days of stress increased by more than four folds without any significant loss of biomass, however, the quality of extracted total lipids in terms of saturated, monounsaturated and polyunsaturated fatty acids was not affected by salinity change in the culture medium. Copyright © 2017 Elsevier Ltd. All rights reserved.
Organ, Michael G.; Hanson, Paul R.; Rolfe, Alan; Samarakoon, Thiwanka B.; Ullah, Farman
2011-01-01
The generation of stereochemically-rich benzothiaoxazepine-1,1′-dioxides for enrichment of high-throughput screening collections is reported. Utilizing a microwave-assisted, continuous flow organic synthesis platform (MACOS), scale-out of core benzothiaoxazepine-1,1′-dioxide scaffolds has been achieved on multi-gram scale using an epoxide opening/SNAr cyclization protocol. Diversification of these sultam scaffolds was attained via a microwave-assisted intermolecular SNAr reaction with a variety of amines. Overall, a facile, 2-step protocol generated a collection of benzothiaoxazepine-1,1′-dioxides possessing stereochemical complexity in rapid fashion, where all 8 stereoisomers were accessed from commercially available starting materials. PMID:22116791
Chen, Wei-Yu; Chen, Yu-Chie
2007-11-01
The presence of alkali cation adductions of oligonucleotides commonly deteriorates matrix-assisted laser desorption/ionization (MALDI) mass spectra. Thus, desalting is required for oligonucleotide samples prior to MALDI MS analysis in order to prevent the mass spectra from developing poor quality. In this paper, we demonstrate a new approach to extract traces of oligonucleotides from aqueous solutions containing high concentrations of salts using microwave-assisted extraction. The C18-presenting magnetite beads, capable of absorbing microwave irradiation, are used as affinity probes for oligonucleotides with the addition of triethylammonium acetate as the counterions. This new microwave-assisted extraction approach using magnetite beads as the trapping agents and as microwave-absorbers has been demonstrated to be very effective in the selective binding of oligonucleotides from aqueous solutions. The extraction of oligonucleotides from solutions onto the C18-presenting magnetite beads takes only 30 s to enrich oligonucleotides in sufficient quantities for MALDI MS analysis. After using this desalting approach, alkali cation adductions of oligonucleotides are dramatically reduced in the MALDI mass spectra. The presence of saturated NaCl (approximately 6 M) in the oligonucleotide sample is tolerated without degrading the mass spectra. The detection limit for d(A)6 is approximately 2.8 fmol.
Magnetic carbon nanostructures: microwave energy-assisted pyrolysis vs. conventional pyrolysis.
Zhu, Jiahua; Pallavkar, Sameer; Chen, Minjiao; Yerra, Narendranath; Luo, Zhiping; Colorado, Henry A; Lin, Hongfei; Haldolaarachchige, Neel; Khasanov, Airat; Ho, Thomas C; Young, David P; Wei, Suying; Guo, Zhanhu
2013-01-11
Magnetic carbon nanostructures from microwave assisted- and conventional-pyrolysis processes are compared. Unlike graphitized carbon shells from conventional heating, different carbon shell morphologies including nanotubes, nanoflakes and amorphous carbon were observed. Crystalline iron and cementite were observed in the magnetic core, different from a single cementite phase from the conventional process.
Highly luminescent carbon nanodots by microwave-assisted pyrolysis.
Zhai, Xinyun; Zhang, Peng; Liu, Changjun; Bai, Tao; Li, Wenchen; Dai, Liming; Liu, Wenguang
2012-08-18
Carbon nanodots (CDs) with a low cytotoxicity have been synthesized by one-step microwave-assisted pyrolysis of citric acid in the presence of various amine molecules. The primary amine molecules have been confirmed to serve dual roles as N-doping precursors and surface passivation agents, both of which considerably enhanced the fluorescence of the CDs.
Solventless and One-Pot Synthesis of Cu(II) Phthalocyanine Complex: A Green Chemistry Experiment
ERIC Educational Resources Information Center
Sharma, R. K.; Sharma, Chetna; Sidhwani, Indu Tucker
2011-01-01
With the growing awareness of green chemistry, it is increasingly important for students to understand this concept in the context of laboratory experiments. Although microwave-assisted organic synthesis has become a common and invaluable technique in recent years, there have been few procedures published for microwave-assisted inorganic synthesis…
NRMRL-CIN-1437 Jeselnik, M., Varma*, R.S., Polanc, S., and Kocevar, M. Catalyst-free Reactions under Solvent-fee Conditions: Microwave-assisted Synthesis of Heterocyclic Hydrazones below the Melting Point of Neat Reactants. Published in: Chemical Communications 18:1716-1717 (200...
In this presentation we report the application of microwave assisted chemistry to the parallel synthesis of 4-aryl-3,4-dihydropyrimidin-2(1H)-ones employing a solventless Biginelli multicomponent condensation protocol. The novel method employs neat mixtures of B-ketoesters, aryl ...
NASA Astrophysics Data System (ADS)
Chen, Zhixin; Li, Danzhen; Xiao, Guangcan; He, Yunhui; Xu, Yi-Jun
2012-02-01
Marigold-like ZnIn2S4 microspheres were synthesized by a microwave-assisted hydrothermal method with the temperature ranging from 80 to 195 °C. X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen sorption analysis, UV-visible spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperatures were almost the same. The degradation of methyl orange (MO) under the visible light irradiation has been used as a probe reaction to investigate the photocatalytic activity of as-prepared ZnIn2S4, which shows that the ZnIn2S4 sample synthesized at 195 °C shows the best photocatalytic activity for MO degradation. In addition, the photocatalytic activities of all the samples prepared by the microwave-assisted hydrothermal method are better than those prepared by a normal hydrothermal method, which could be attributed to the formation of more defect sites during the microwave-assisted hydrothermal treatment.
NASA Astrophysics Data System (ADS)
Hidayanti, Nur; Suryanto, A.; Qadariyah, L.; Prihatini, P.; Mahfud, Mahfud
2015-12-01
A simple batch process was designed for the transesterification of coconut oil to alkyl esters using microwave assisted method. The product with yield above 93.225% of alkyl ester is called the biodiesel fuel. Response surface methodology was used to design the experiment and obtain the maximum possible yield of biodiesel in the microwave-assisted reaction from coconut oil with KOH as the catalyst. The results showed that the time reaction and concentration of KOH catalyst have significant effects on yield of alkyl ester. Based on the response surface methodology using the selected operating conditions, the time of reaction and concentration of KOH catalyst in transesterification process were 150 second and 0.25%w/w, respectively. The largest predicted and experimental yield of alkyl esters (biodiesel) under the optimal conditions are 101.385% and 93.225%, respectively. Our findings confirmed the successful development of process for the transesterification reaction of coconut oil by microwave-assisted heating, which is effective and time-saving for alkyl ester production.
Li, Ming-Fei; Sun, Shao-Ni; Xu, Feng; Sun, Run-Cang
2012-10-01
Microwave-assisted extraction in organic acid aqueous solution (formic acid/acetic acid/water, 3/5/2, v/v/v) was applied to isolate lignin from bamboo. Additionally, the structural features of the extracted lignins were thoroughly investigated in terms of C₉ formula, molecular weight distribution, FT-IR, (1)H NMR and HSQC spectroscopy. It was found that with an increase in the severity of microwave-assisted extraction, there was an increase of phenolic hydroxyl content in the lignin. In addition, an increase of the severity resulted in a decrease of the bound carbohydrate content as well as molecular weight of the lignin. Antioxidant activity investigation indicated that the radical scavenging index of the extracted lignins (0.35-1.15) was higher than that of BHT (0.29) but lower than that of BHA (3.85). The results suggested that microwave-assisted organic acid extraction provides a promising way to prepare lignin from bamboo with good antioxidant activity for potential application in the food industry. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Suto, Hirofumi; Kanao, Taro; Nagasawa, Tazumi; Mizushima, Koichi; Sato, Rie
2018-05-01
Microwave-assisted magnetization switching (MAS) is attracting attention as a method for reversing nanomagnets with a high magnetic anisotropy by using a small-amplitude magnetic field. We experimentally study MAS of a perpendicularly magnetized nanomagnet by applying a microwave magnetic field with a time-varying frequency. Because the microwave field frequency can follow the nonlinear decrease of the resonance frequency, larger magnetization excitation than that in a constant-frequency microwave field is induced, which enhances the MAS effect. The switching field decreases almost linearly as the start value of the time-varying microwave field frequency increases, and it becomes smaller than the minimum switching field in a constant-frequency microwave field. To obtain this enhancement of the MAS effect, the end value of the time-varying microwave field frequency needs to be almost the same as or lower than the critical frequency for MAS in a constant-frequency microwave field. In addition, the frequency change typically needs to take 1 ns or longer to make the rate of change slow enough for the magnetization to follow the frequency change. This switching behavior is qualitatively explained by the theory based on the macrospin model.
Microwave Assisted Synthesis of Biorelevant Benzazoles.
Seth, Kapileswar; Purohit, Priyank; Chakraborti, Asit K
2017-01-01
The benzazole scaffolds are present in various therapeutic agents and have been recognized as the essential pharmacophore for diverse biological activities. These have generated interest and necessity to develop efficient synthetic methods of these privileged classes of compounds to generate new therapeutic leads for various diseases. The biological activities of the benzazoles and efforts towards their synthesis have been summarized in a few review articles. In view of these, the aim of this review is to provide an account of the developments that have taken place in the synthesis of biorelevant benzazoles under microwave irradiation as the application of microwave heating has long been recognized as a green chemistry tool for speedy generation of synthetic targets. Attention has been focused to those literature reports wherein the use of microwave irradiation is the key step in the formation of the heterocyclic ring system or in functionalization of the benzazole ring system to generate the essential pharmacophoric feature. The convenient and economic way to synthesize these privileged class of heterocycles through the use of microwave irradiation that would be beneficial for the drug discovery scientist to synthesize biologically active benzazoles and provide access to wide range of reactions for the synthesis of benzazoles constitute the theme of this review. Examples have been drawn wherein the use of microwave heating offers distinct advantage in terms of improved product yields and reduction of reaction time as compared to those observed for the synthesis under conventional heating. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Zhixin, E-mail: czx@fzu.edu.cn; Analysis and Test Center, Fuzhou University, Fuzhou 350002; Li Danzhen
Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a microwave-assisted hydrothermal method with the temperature ranging from 80 to 195 Degree-Sign C. X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen sorption analysis, UV-visible spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperatures were almost the same. The degradation of methyl orange (MO) under the visible light irradiation has been used as a probe reaction to investigate the photocatalytic activity of as-prepared ZnIn{sub 2}S{sub 4}, which shows that the ZnIn{sub 2}S{submore » 4} sample synthesized at 195 Degree-Sign C shows the best photocatalytic activity for MO degradation. In addition, the photocatalytic activities of all the samples prepared by the microwave-assisted hydrothermal method are better than those prepared by a normal hydrothermal method, which could be attributed to the formation of more defect sites during the microwave-assisted hydrothermal treatment. - Graphical abstract: Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a fast microwave-assisted hydrothermal method at 80-195 Degree-Sign C with a very short reaction time of 10 min. The as-prepared ZnIn{sub 2}S{sub 4} sample can be used as visible light photocatalyst for degradation of organic dyes. Highlights: Black-Right-Pointing-Pointer ZnIn{sub 2}S{sub 4} microspheres were synthesized by microwave-assisted hydrothermal method. Black-Right-Pointing-Pointer The crystal structure and optical property of the products were almost the same. Black-Right-Pointing-Pointer Increment of the temperature renders high surface area due to the bubbling effect. Black-Right-Pointing-Pointer The ZnIn{sub 2}S{sub 4} synthesized at 195 Degree-Sign C shows the best visible catalytic activity for MO.« less
[Determination of Mineral Elements in Choerospondias Axillaris and Its Extractives by ICP-AES].
Zhai, Yu-xin; Chen, Jun; Li, Ti; Liu, Ji-yan; Wang, Xie-yi; Cheng, Chao; Liu, Cheng-mei
2015-04-01
Nine elements in Choerospondias axillaris flesh, peels, aqueous extractives and gastric digesta were determined by the inductively coupled plasma atomic emission spectrometry (ICP-AES) in the present study. The results showed that the contents of Fe, Ca, Zn, Mn, Al, Mg, Cu, K and P in the flesh were 27.37, 269.88, 1.51, 2.45, 1.95, 195.30, 2.45, 2,970.11, and 133.94 µg · g(-1), respectively. They are lower than that in the peels, about 40.31%, 11.70%, 21.68%, 4.27%, 10.58%, 15.76%, 68.72%, 42.04%, and 22.59%, respectively. For microwave assistant extraction, the release rate of Mn was highest (81.68%), while Fe was lowest (4.42%) in the flesh. The release rate of Zn was the highest (79.00%), while that of A1 was the lowest (4.94%) in the peels. Except Fe, Cu and Zn, the release rates of the other elements in flesh were higher than those in the peels. After gastric digestion, the release rates of nine elements were 3.25%-87.51% in the flesh and 7.11%-50.69% in the peels. The release rates of minerals in the flesh were found to be higher than those in the peels except Fe and Cu. Microwave assistant extraction can more efficiently release Fe, Ca, Mn, Mg and K from the flesh than the gastric digestion do. While gastric digestion had a significant effect on the peels, the release rates of elements, except Zn, were higher than those in microwave assistant extraction. Therefore, the difference of distribution and release of mineral elements between peels and flesh of Choerospondias axillaris was understood, which will provide a positive guide for further study of bioavailability of minerals for human body.
Horikoshi, Satoshi; Tsuchida, Akihiro; Abe, Masahiko; Ohba, Naoki; Uchida, Masayoshi; Serpone, Nick
2010-01-01
This short article examines the microwave-assisted photolytic disinfection of aqueous solutions contaminated by Bacillus subtilis microorganisms using UV and vacuum-UV radiation emitted from a microwave discharge electrodeless lamp (MDEL), a device containing a Hg/Ar gas-fill that was proposed recently for use in Advanced Oxidation Processes (AOPs). Results of the disinfection are compared with those obtained from UV radiation emitted by a low-pressure electrode Hg lamp and by an excimer lamp. Also examined is the disinfection of B. subtilis aqueous media that contained Au3+ or Ni2+ ions, species often found in the treatment of electroplating wash wastewaters.
The Microwave Assisted Composite Manufacturing and Repair (MACMAR) Project
NASA Technical Reports Server (NTRS)
Falker, John; Terrier, Douglas; Clayton, Ronald G.; Worthy, Erica; Sosa, Edward
2015-01-01
The inherent microwave property of carbon nanotubes (CNTs) generates the thermal energy required to induce reversible polymerization of the matrix in these self-healing composites. Microwaves will be used to demonstrate advanced composite manufacturing and repair using self-healing composites.
GREENER SYNTHESIS OF HETEROCYCLIC COMPOUNDS USING MICROWAVE IRRADIATION
An introduction of our interest in the microwave-assisted greener synthesis of a variety of heterocyclic compounds will be presented. It involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of recyclable mineral supports, such as alumina, sili...
Costanzo, Paola; Bonacci, Sonia; Cariati, Luca; Nardi, Monica; Oliverio, Manuela; Procopio, Antonio
2018-04-15
A simple and very environmental friendly microwave assisted method to produce oleacein in good yield starting from the easily available oleuropein is here presented. The methodology is proposed to produce the appropriate amount of hydroxytyrosol derivatives to enrich a commercial oil for an oil which provides beneficial effects on the human health. Copyright © 2017 Elsevier Ltd. All rights reserved.
Martín-Acosta, Pedro; Feresin, Gabriela; Tapia, Alejandro; Estévez-Braun, Ana
2016-10-21
A highly efficient and regioselective approach to new polycyclic embelin derivatives through a domino Knoevenagel condensation/intramolecular hetero Diels-Alder reaction using O-(arylpropynyloxy)-salicylaldehydes in the presence of ethylenediamine diacetate (EDDA) is reported. This organocatalyzed protocol is compatible toward a wide range of aryl-substituted alkynyl ethers with electron-donating and electron-withdrawing groups. When other active methylene compounds were subjected to this domino reaction the corresponding adducts were obtained in high yield.
Simple Preparation of Novel Metal-Containing Mesoporous Starches †
Ojeda, Manuel; Budarin, Vitaliy; Shuttleworth, Peter S.; Clark, James H.; Pineda, Antonio; Balu, Alina M.; Romero, Antonio A.; Luque, Rafael
2013-01-01
Metal-containing mesoporous starches have been synthesized using a simple and efficient microwave-assisted methodology followed by metal impregnation in the porous gel network. Final materials exhibited surface areas >60 m2 g−1, being essentially mesoporous with pore sizes in the 10–15 nm range with some developed inter-particular mesoporosity. These materials characterized by several techniques including XRD, SEM, TG/DTA and DRIFTs may find promising catalytic applications due to the presence of (hydr)oxides in their composition. PMID:28809249
Oliveira, Jussiane S S; Picoloto, Rochele S; Bizzi, Cezar A; Mello, Paola A; Barin, Juliano S; Flores, Erico M M
2015-11-01
A method for the simultaneous determination of Ni, V and S in petroleum coke by inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted ultraviolet digestion (MW-UV) in closed vessels was proposed. Digestion was performed using electrodeless discharge lamps positioned inside quartz vessels and turned on by microwave radiation. The following parameters were evaluated: HNO3 concentration (15 mL of 1, 4, 7, 10 or 14.4 mol L(-1)), volume of H2O2 (30%, 1 or 3 mL), sample mass (100, 250 or 500 mg) and heating time (40 or 60 min) with or without the use of UV lamps. Digestion efficiency was evaluated by the determination of the residual carbon content (RCC) in digests. Using UV lamps lower RCC was obtained and the combination of 4 mol L(-1) HNO3 with 3 mL of H2O2 and 60 min of heating allowed a suitable digestion of up to 500 mg of petroleum coke (RCC< 21%). The agreement with the reference values for Ni, V and S (obtained by digestion of petroleum coke by microwave-induced combustion) and with a certified reference material of petroleum coke was between 96 and 101%. The proposed method was considered as advantageous when compared to American Society for Testing and Materials method because it allowed the simultaneous determination of Ni, V and S with lower limit of detection (0.22, 0.12 and 8.7 µg g(-1) for Ni, V and S, respectively) avoiding the use of concentrated nitric acid and providing digests suitable for routine analysis by ICP-OES. Copyright © 2015 Elsevier B.V. All rights reserved.
Bhardwaj, Abhishek K; Shukla, Abhishek; Mishra, Rohit K; Singh, S C; Mishra, Vani; Uttam, K N; Singh, Mohan P; Sharma, Shivesh; Gopal, R
2017-01-01
Plasmonic nanoparticles (NPs) such as silver and gold have fascinating optical properties due to their enhanced optical sensitivity at a wavelength corresponding to their surface plasmon resonance (SPR) absorption. Present work deals with the fabrication of silver nanoparticles decorated cotton (SNDC) fibers as a cheap and efficient point of contact disinfectant. SNDC fibers were fabricated by a simple microwave assisted route. The microwave power and irradiation time were controlled to optimize size and density of silver nanoparticles (SNPs) on textile fibers. As prepared cotton fabric was characterized for ATR-FTIR, UV-VIS diffuse reflectance, SEM and TEM investigations. Size of SNPs as well as total density of silver atoms on fabric gets increased with the increase of microwave power from 100 W to 600 W. The antibacterial efficacy of SNPs extracted from SNDC fibers was found to be more effective against Gram-negative bacteria than Gram-positive bacteria with MIC 38.5 ± 0.93 μg/mL against Salmonella typhimurium MTCC-98 and 125 ± 2.12 μg/mL against Staphylococcus aureus MTCC-737, a linear correlation coefficient with R 2 ranging from ∼0.928-0.935 was also observed. About >50% death cells were observed through Propidium Iodide (PI) internalization after treatment of SNPs extracted from SNDC fibers with concentration 31.25 μg/mL. Generation of ROS and free radical has also been observed which leads to cell death. Excellent Escherichia coli deactivation efficacy suggested that SNDC fibers could be used as potentially safe disinfectants for cleaning of medical equipment, hand, wound, water and preservation of food and beverages.
Bhardwaj, Abhishek K.; Shukla, Abhishek; Mishra, Rohit K.; Singh, S. C.; Mishra, Vani; Uttam, K. N.; Singh, Mohan P.; Sharma, Shivesh; Gopal, R.
2017-01-01
Plasmonic nanoparticles (NPs) such as silver and gold have fascinating optical properties due to their enhanced optical sensitivity at a wavelength corresponding to their surface plasmon resonance (SPR) absorption. Present work deals with the fabrication of silver nanoparticles decorated cotton (SNDC) fibers as a cheap and efficient point of contact disinfectant. SNDC fibers were fabricated by a simple microwave assisted route. The microwave power and irradiation time were controlled to optimize size and density of silver nanoparticles (SNPs) on textile fibers. As prepared cotton fabric was characterized for ATR-FTIR, UV-VIS diffuse reflectance, SEM and TEM investigations. Size of SNPs as well as total density of silver atoms on fabric gets increased with the increase of microwave power from 100 W to 600 W. The antibacterial efficacy of SNPs extracted from SNDC fibers was found to be more effective against Gram-negative bacteria than Gram-positive bacteria with MIC 38.5 ± 0.93 μg/mL against Salmonella typhimurium MTCC-98 and 125 ± 2.12 μg/mL against Staphylococcus aureus MTCC-737, a linear correlation coefficient with R2 ranging from ∼0.928–0.935 was also observed. About >50% death cells were observed through Propidium Iodide (PI) internalization after treatment of SNPs extracted from SNDC fibers with concentration 31.25 μg/mL. Generation of ROS and free radical has also been observed which leads to cell death. Excellent Escherichia coli deactivation efficacy suggested that SNDC fibers could be used as potentially safe disinfectants for cleaning of medical equipment, hand, wound, water and preservation of food and beverages. PMID:28316594
Using x-ray mammograms to assist in microwave breast image interpretation.
Curtis, Charlotte; Frayne, Richard; Fear, Elise
2012-01-01
Current clinical breast imaging modalities include ultrasound, magnetic resonance (MR) imaging, and the ubiquitous X-ray mammography. Microwave imaging, which takes advantage of differing electromagnetic properties to obtain image contrast, shows potential as a complementary imaging technique. As an emerging modality, interpretation of 3D microwave images poses a significant challenge. MR images are often used to assist in this task, and X-ray mammograms are readily available. However, X-ray mammograms provide 2D images of a breast under compression, resulting in significant geometric distortion. This paper presents a method to estimate the 3D shape of the breast and locations of regions of interest from standard clinical mammograms. The technique was developed using MR images as the reference 3D shape with the future intention of using microwave images. Twelve breast shapes were estimated and compared to ground truth MR images, resulting in a skin surface estimation accurate to within an average Euclidean distance of 10 mm. The 3D locations of regions of interest were estimated to be within the same clinical area of the breast as corresponding regions seen on MR imaging. These results encourage investigation into the use of mammography as a source of information to assist with microwave image interpretation as well as validation of microwave imaging techniques.
Xue, Bai-Liang; Wen, Jia-Long; Sun, Run-Cang
2015-01-01
Lignin-based polyols were synthesized through microwave-assisted liquefaction under different microwave heating times (5–30 min). The liquefaction reactions were carried out using polyethylene glycol (PEG-400)/glycerol as liquefying solvents and 97 wt% sulfur acid as a catalyst at 140 °C. The polyols obtained were analyzed for their yield, composition and structural characteristics using gel permeation chromatography (GPC), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra. FT-IR and NMR spectra showed that the liquefying solvents reacted with the phenol hydroxyl groups of the lignin in the liquefied product. With increasing microwave heating time, the viscosity of polyols was slightly increased and their corresponding molecular weight (MW) was gradually reduced. The optimal condition at the microwave heating time (5 min) ensured a high liquefaction yield (97.47%) and polyol with a suitable hydroxyl number (8.628 mmol/g). Polyurethane (PU) foams were prepared by polyols and methylene diphenylene diisocyanate (MDI) using the one-shot method. With the isocyanate/hydroxyl group ([NCO]/[OH]) ratio increasing from 0.6 to 1.0, their mechanical properties were gradually increased. This study provided some insight into the microwave-assisted liquefied lignin polyols for the production of rigid PU foam. PMID:28787959
MICROWAVE-ASSISTED EXTRACTION OF PHENOLIC COMPOUNDS FROM POLYGONUM MULTIFLORUM THUNB. ROOTS.
Quoc, Le Pham Tan; Muoi, Nguyen Van
2016-01-01
The aim of this study was to determine the best extraction conditions for total phenolic content (TPC) and antioxidant capacity (AC) of Polygonum multiflorum Thunb. root using microwave-assisted extraction (MAE). The raw material used was Polygonum multiflorum Thunb. root powder. Five factors such as solvent type, solvent concentrations, solvent/material ratio, extraction time and microwave power were studied; TPC and AC values were determined by the Folin-Ciocalteu method and DPPH free radical scavenging activity measurement, respectively. In addition, studies involved assaying the HPLC test of extracts and SEM of samples. Optimal results pointed to acetone as the solvent, acetone concentration of 60%, solvent/material ratio of 40/1 (v/w), extraction time of 5 mins and microwave power of 127 W. TPC and AC obtained were approximates 44.3 ±0.13 mg GAE/g DW and 341.26 ±1.54 μmol TE/g DW, respectively. The effect of microwaving on the cell destruction of Polygonum multiflorum Thunb. root was observed by scanning electron microscopy (SEM). Some phenolic compounds were determined by the HPLC method, for instance, gallic acid, catechin and resveratrol. These factors significantly affected TPC and AC. We can use acetone as a solvent with microwave-assisted extraction to achieve the best result.
Su, Ya; Zhang, Min; Bhandari, Bhesh; Zhang, Weiming
2018-06-01
The combination of ultrasound and microwave in vacuum frying system was investigated to achieve higher drying efficiency and quality attributes of fried products. Purple-fleshed potato were used as test specimen and different power levels of microwave (0 W, 600 W, 800 W) and ultrasound (0 W, 300 W, 600 W) during vacuum frying. Drying kinetics, dielectric properties, moisture state variation and quality attributes of fried samples were measured in a vacuum frying (VF), and an innovatively designed ultrasound and microwave assisted vacuum frying (USMVF) equipment. The USMVF process markedly increased the moisture evaporation rate and effective moisture diffusivity compared to VF process. The oil uptake was reduced by about 16-34%, the water activity and the shrinkage was lowered, the texture (crispness) and the color of fried samples were greatly improved. The higher ultrasound and microwave power level in USMVF made a greater improvement. The total anthocyanin levels and retention of fried purple-fleshed potato chips was the highest (123.52 mg/100 g solids and 79.51% retention, respectively) among all treatments in US600M800VF process. The SEM analysis revealed a more porous and disruption microstructure in USMVF sample. Copyright © 2018 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The objective of this study is to develop a mathematical method to simulate the internal temperature history of products processed in a prototype microwave-assisted pasteurization system (MAPS) developed by Washington State University. Two products (10 oz. beef meatball trays and 16 oz. salmon fill...
JiuLong Xie; XingYan Huang; JinQiu Qi; Chung Hse; Todd Shupe
2014-01-01
The epidermis layer waste (ELW) and the inner layer waste (ILW) were removed from Phyllostachys pubescens bamboo, and the anatomical characteristics and chemical components of these wastes were comparatively investigated. Both the ELW and the ILW were subjected to a microwave-assisted liquefaction process to evaluate the relationship between bamboo...
Gao, Hongzhi; Teng, Choon Peng; Huang, Donghong; Xu, Wanqing; Zheng, Chaohui; Chen, Yisong; Liu, Minghuan; Yang, Da-Peng; Lin, Ming; Li, Zibiao; Ye, Enyi
2017-11-01
Bombyx mori silk as a natural protein based biopolymer with high nitrogen content, is abundant and sustainable because of its mass product all over the world per year. In this study, we developed a facile and fast microwave-assisted synthesis of luminescent carbonaceous nanoparticles using Bombyx mori silk fibroin and silk solution as the precursors. As a result, the obtained carbonaceous nanoparticles exhibit a photoluminescence quantum yield of ~20%, high stability, low cytotoxicity, high biocompatibility. Most importantly, we successfully demonstrated bioimaging using these luminescent carbonaceous nanoparticles with excitation dependent luminescence. In addition, the microwave-assisted hydrothermal method can be extended to convert other biomass into functional nanomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Horikoshi, Satoshi; Abe, Hideki; Torigoe, Kanjiro; Abe, Masahiko; Serpone, Nick
2010-08-01
This article examines the effect(s) of the 2.45-GHz microwave (MW) radiation in the synthesis of silver nanoparticles in aqueous media by reduction of the diaminesilver(i) complex, [Ag(NH3)2]+, with carboxymethylcellulose (CMC) in both batch-type and continuous-flow reactor systems with a particular emphasis on the characteristics of the microwaves in this process and the size distributions. This microwave thermally-assisted synthesis is compared to a conventional heating (CH) method, both requiring a reaction temperature of 100 °C to produce the nanoparticles, in both cases leading to the formation of silver colloids with different size distributions. Reduction of the diaminesilver(i) precursor complex, [Ag(NH3)2]+, by CMC depended on the solution temperature. Cooling the reactor during the heating process driven with 390-Watt microwaves (MW-390W/Cool protocol) yielded silver nanoparticles with sizes spanning the range 1-2 nm. By contrast, the size distribution of Ag nanoparticles with 170-Watt microwaves (no cooling; MW-170W protocol) was in the range 1.4-3.6 nm (average size ~3 nm). The overall results suggest the potential for a scale-up process in the microwave-assisted synthesis of nanoparticles. Based on the present data, a flow-through microwave reactor system is herein proposed for the continuous production of silver nanoparticles. The novel flow reactor system (flow rate, 600 mL min-1) coupled to 1200-Watt microwave radiation generated silver nanoparticles with a size distribution 0.7-2.8 nm (average size ca. 1.5 nm).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preda, Silviu, E-mail: predas01@yahoo.co.uk; Rutar, Melita; Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana
2015-11-15
Highlights: • The microwave-assisted hydrothermal route was used for titanate nanotubes synthesis. • Conversion to single-phase nanotube morphology completes after 8 h reaction time. • The nanotube morphology is stable up to 600 °C, as determined by in-situ XRD and SEM. • Sodium ions migrate to the surface due to thermal motion and structure condensation. - Abstract: Sodium titanate nanotubes (NaTiNTs) were synthesized by microwave-assisted hydrothermal treatment of commercial TiO{sub 2}, at constant temperature (135 °C) and different irradiation times (15 min, 1, 4, 8 and 16 h). The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electronmore » microscopy, differential scanning calorimetry and specific surface area measurements. The irradiation time turned out to be the key parameter for morphological control of the material. Nanotubes were observed already after 15 min of microwave irradiation. The analyses of the products irradiated for 8 and 16 h confirm the complete transformation of the starting TiO{sub 2} powder to NaTiNTs. The nanotubes are open ended with multi-wall structures, with the average outer diameter of 8 nm and specific surface area up to 210 m{sup 2}/g. The morphology, surface area and crystal structure of the sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method were similar to those obtained by conventional hydrothermal method.« less
Jha, Pankaj; Das, Arup Jyoti; Deka, Sankar Chandra
2017-11-01
Phenolic compounds were extracted from the husk of milled black rice (cv. Poireton) by using a combination of ultrasound assisted extraction and microwave assisted extraction. Extraction parameters were optimized by response surface methodology according to a three levels, five variables Box-Behnken design. The appropriate process variables (extraction temperature and extraction time) to maximize the ethanolic extraction of total phenolic compounds, flavonoids, anthocyanins and antioxidant activity of the extracts were obtained. Extraction of functional components with varying ethanol concentration and microwave time were significantly affected by the process variables. The best possible conditions obtained by RSM for all the factors included 10.02 min sonication time, 49.46 °C sonication temperature, 1:40.79 (w/v) solute solvent ratio, 67.34% ethanol concentration, and 31.11 s microwave time. Under the given solutions, the maximum extraction of phenolics (1.65 mg/g GAE), flavonoids (3.04 mg/100 g), anthocyanins (3.39 mg/100 g) and antioxidants (100%) were predicted, while the experimental values included 1.72 mg/g GAE of total phenolics, 3.01 mg/100 g of flavonoids, 3.36 mg/100 g of anthocyanins and 100% antioxidant activity. The overall results indicated positive impact of co-application of microwave and ultrasound assisted extractions of phenolic compounds from black rice husk.
NASA Astrophysics Data System (ADS)
Rana, Abu Ul Hassan Sarwar; Kang, Mingi; Kim, Hyun-Seok
2016-04-01
The time constraint in the growth of ZnO nanostructures when using a hydrothermal method is of paramount importance in contemporary research, where a long fabrication time rots the very essence of the research on ZnO nanostructures. In this study, we present the facile and ultrafast growth of ZnO nanostructures in a domestic microwave oven within a pressurized environment in just a few minutes. This method is preferred for the conventional solution-based method because of the ultrafast supersaturation of zinc salts and the fabrication of high-quality nanostructures. The study of the effect of seed layer density, growth time, and the solution’s molar concentration on the morphology, alignment, density, and aspect ratio of ZnO nanorods (ZNRs) is explored. It is found in a microwave-assisted direct growth method that ~5 mins is the optimum time beyond which homogeneous nucleation supersedes heterogeneous nucleation, which results in the growth stoppage of ZNRs. To deal with this issue, we propound different methods such as microwave-assisted solution-replacement, preheating, and PEI-based growth methods, where growth stoppage is addressed and ZNRs with a high aspect ratio can be grown. Furthermore, high-quality ZnO nanoflowers and ZnO nanowalls are fabricated via ammonium hydroxide treatment in a very short time.
A study on experimental characteristic of microwave-assisted pyrolysis of microalgae.
Hu, Zhifeng; Ma, Xiaoqian; Chen, Chunxiang
2012-03-01
The microwave-assisted pyrolysis of Chlorella vulgaris was carried out under different microwave power levels, catalysts and contents of activated carbon and solid residue. The products, pyrolysis temperature and temperature rising rate were analyzed in order to obtain the optimal conditions. The results indicated that the higher the microwave power level was, the higher the maximum temperature rising rate and pyrolysis temperature were. The maximum bio-oil yield (35.83 wt.%) and gas yield (52.37%) were achieved under the microwave power of 1500 W and 2250 W, respectively. And 2250 W was the optimal power to obtain bio-fuel product. High microwave power level and catalyst can enhance the production of gas. Catalysts can promote the pyrolysis of C. vulgaris, and activated carbon was the best among the tested catalysts followed by the solid residue. The optimal content of activated carbon is 5% with the maximum bio-fuel yield of 87.47%. Copyright © 2011 Elsevier Ltd. All rights reserved.
Silicon carbide passive heating elements in microwave-assisted organic synthesis.
Kremsner, Jennifer M; Kappe, C Oliver
2006-06-09
Microwave-assisted organic synthesis in nonpolar solvents is investigated utilizing cylinders of sintered silicon carbide (SiC)--a chemically inert and strongly microwave absorbing material--as passive heating elements (PHEs). These heating inserts absorb microwave energy and subsequently transfer the generated thermal energy via conduction phenomena to the reaction mixture. The use of passive heating elements allows otherwise microwave transparent or poorly absorbing solvents such as hexane, carbon tetrachloride, tetrahydrofuran, dioxane, or toluene to be effectively heated to temperatures far above their boiling points (200-250 degrees C) under sealed vessel microwave conditions. This opens up the possibility to perform microwave synthesis in unpolar solvent environments as demonstrated successfully for several organic transformations, such as Claisen rearrangements, Diels-Alder reactions, Michael additions, N-alkylations, and Dimroth rearrangements. This noninvasive technique is a particularly valuable tool in cases where other options to increase the microwave absorbance of the reaction medium, such as the addition of ionic liquids as heating aids, are not feasible due to an incompatibility of the ionic liquid with a particular substrate. The SiC heating elements are thermally and chemically resistant to 1500 degrees C and compatible with any solvent or reagent.
Development of microwave assisted spectrophotometric method for the determination of glucose
NASA Astrophysics Data System (ADS)
Ali, Asif; Hussain, Zahid; Arain, Muhammad Balal; Shah, Nasrullah; Khan, Khalid Mohammad; Gulab, Hussain; Zada, Amir
2016-01-01
A spectrophotometric method was developed based on the microwave assisted synthesis of Maillard product. Various conditions of the reaction were optimized by varying the relative concentration of the reagents, operating temperature and volume of solutions used in the reaction in the microwave synthesizer. The absorbance of the microwave synthesized Maillard product was measured in the range of 360-740 nm using UV-Visible spectrophotometer. Based on the maximum absorbance, 370 nm was selected as the optimum wave length for further studies. The LOD and LOQ of glucose was found 3.08 μg mL- 1 and 9.33 μg mL- 1 with standard deviation of ± 0.05. The developed method was also applicable to urine sample.
Martínez-Palou, Rafael; Zepeda, L Gerardo; Höpfl, Herbert; Montoya, Ascensión; Guzmán-Lucero, Diego J; Guzmán, Javier
2005-01-01
A versatile route to 40-membered library of 2-long alkyl chain substituted benzoazoles (1 and 2) and azole[4,5-b]pyridines (3 and 4) via microwave-assisted combinatorial synthesis was developed. The reactions were carried out in both monomode and multimode microwave oven. With the latter, all reactions were performed in high-throughput experimental settings consisting of an 8 x 5 combinatorial library designed to synthesize 40 compounds. Each step, from the addition of reagents to the recovery of final products, was automated. The microwave-assisted N-long chain alkylation reactions of 2-alkyl-1H-benzimidazole (1) and 2-alkyl-1H-benzimidazole[4,5-b] pyridines (3) were also studied.
Mihiretu, Gezahegn T; Brodin, Malin; Chimphango, Annie F; Øyaas, Karin; Hoff, Bård H; Görgens, Johann F
2017-10-01
The viability of single-step microwave-induced pressurized hot water conditions for co-production of xylan-based biopolymers and bioethanol from aspenwood sawdust and sugarcane trash was investigated. Extraction of hemicelluloses was conducted using microwave-assisted pressurized hot water system. The effects of temperature and time on extraction yield and enzymatic digestibility of resulting solids were determined. Temperatures between 170-200°C for aspenwood and 165-195°C for sugarcane trash; retention times between 8-22min for both feedstocks, were selected for optimization purpose. Maximum xylan extraction yields of 66 and 50%, and highest cellulose digestibilities of 78 and 74%, were attained for aspenwood and sugarcane trash respectively. Monomeric xylose yields for both feedstocks were below 7%, showing that the xylan extracts were predominantly in non-monomeric form. Thus, single-step microwave-assisted hot water method is viable biorefinery approach to extract xylan from lignocelluloses while rendering the solid residues sufficiently digestible for ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shrestha, Rojeet; Miura, Yusuke; Hirano, Ken-Ichi; Chen, Zhen; Okabe, Hiroaki; Chiba, Hitoshi; Hui, Shu-Ping
2018-01-01
Fatty acid (FA) profiling of milk has important applications in human health and nutrition. Conventional methods for the saponification and derivatization of FA are time-consuming and laborious. We aimed to develop a simple, rapid, and economical method for the determination of FA in milk. We applied a beneficial approach of microwave-assisted saponification (MAS) of milk fats and microwave-assisted derivatization (MAD) of FA to its hydrazides, integrated with HPLC-based analysis. The optimal conditions for MAS and MAD were determined. Microwave irradiation significantly reduced the sample preparation time from 80 min in the conventional method to less than 3 min. We used three internal standards for the measurement of short-, medium- and long-chain FA. The proposed method showed satisfactory analytical sensitivity, recovery and reproducibility. There was a significant correlation in the milk FA concentrations between the proposed and conventional methods. Being quick, economic, and convenient, the proposed method for the milk FA measurement can be substitute for the convention method.
PASOTRON high-energy microwave source
NASA Astrophysics Data System (ADS)
Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.
1992-04-01
A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.
Babu, Robin; Roshan, Roshith; Kathalikkattil, Amal Cherian; Kim, Dong Woo; Park, Dae-Won
2016-12-14
A dual-porous, three-dimensional, metal-organic framework [Zn 4 O(2,6-NDC)(BTB) 4/3 ] (MOF-205, BET = 4200 m 2 /g) has been synthesized using microwave power as an alternative energy source for the first time, and its catalytic activity has been exploited for CO 2 -epoxide coupling reactions to produce five-membered cyclic carbonates under solvent-free conditions. Microwave synthesis was performed at different time intervals to reveal the formation of the crystals. Significant conversion of various epoxides was obtained at room temperature, with excellent selectivity toward the desired five-membered cyclic carbonates. The importance of the dual porosity and the synergistic effect of quaternary ammonium salts on efficiently catalyzed CO 2 conversion were investigated using various experimental and physicochemical characterization techniques, and the results were compared with those of the solvothermally synthesized MOF-205 sample. On the basis of literature and experimental inferences, a rationalized mechanism mediated by the zinc center of MOF-205 for the CO 2 -epoxide cycloaddition reaction has been proposed.
Xu, Li; Lee, Hian Kee
2008-05-30
A single-step extraction-cleanup procedure involving microwave-assisted extraction (MAE) and micro-solid-phase extraction (micro-SPE) has been developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) from soil samples. Micro-SPE is a relatively new extraction procedure that makes use of a sorbent enclosed within a sealed polypropylene membrane envelope. In the present work, for the first time, graphite fiber was used as a sorbent material for extraction. MAE-micro-SPE was used to cleanup sediment samples and to extract and preconcentrate five PAHs in sediment samples prepared as slurries with addition of water. The best extraction conditions comprised of microwave heating at 50 degrees C for a duration of 20 min, and an elution (desorption) time of 5 min using acetonitrile with sonication. Using gas chromatography (GC)-flame ionization detection (FID), the limits of detection (LODs) of the PAHs ranged between 2.2 and 3.6 ng/g. With GC-mass spectrometry (MS), LODs were between 0.0017 and 0.0057 ng/g. The linear ranges were between 0.1 and 50 or 100 microg/g for GC-FID analysis, and 1 and 500 or 1000 ng/g for GC-MS analysis. Granular activated carbon was also used for the micro-SPE device but was found to be not as efficient in the PAH extraction. The MAE-micro-SPE method was successfully used for the extraction of PAHs in river and marine sediments, demonstrating its applicability to real environmental solid matrixes.
ERIC Educational Resources Information Center
Dintzner, Matthew R.; Wucka, Paul R.; Lyons, Thomas W.
2006-01-01
A detailed investigation of the clay-catalyzed condensation of sesamol and other phenols with 3-methyl-2-butenal to give methylenedioxyprecocene (MDP) and other chromenes is presented. The clay-catalyzed microwave-assisted condensation of sesamol with 3-methyl-2-butenal is appropriate for incorporation into undergraduate organic laboratory…
Caglar, Yasemin; Gorgun, Kamuran; Aksoy, Seval
2015-03-05
ZnO nanopowders were synthesized via microwave-assisted hydrothermal method at different deposition (microwave irradiation) times and pH values. The effects of pH and deposition (microwave irradiation) time on the crystalline structure and orientation of the ZnO nanopowders have been investigated by X-ray diffraction (XRD) study. XRD observations showed that the crystalline quality of ZnO nanopowders increased with increasing pH value. The crystallite size and texture coefficient values of ZnO nanopowders were calculated. The structural quality of ZnO nanopowder was improved by deposition parameters. Field emission scanning electron microscope (FESEM) was used to analyze the surface morphology of the ZnO nanopowders. Microwave irradiation time and pH value showed a significant effect on the surface morphology. Copyright © 2014 Elsevier B.V. All rights reserved.
Mahpeykar, S M; Koohsorkhi, J; Ghafoori-Fard, H
2012-04-27
Long vertically aligned ZnO nanowire arrays were synthesized using an ultra-fast microwave-assisted hydrothermal process. Using this method, we were able to grow ZnO nanowire arrays at an average growth rate as high as 200 nm min(-1) for maximum microwave power level. This method does not suffer from the growth stoppage problem at long growth times that, according to our investigations, a normal microwave-assisted hydrothermal method suffers from. Longitudinal growth of the nanowire arrays was investigated as a function of microwave power level and growth time using cross-sectional FESEM images of the grown arrays. Effect of seed layer on the alignment of nanowires was also studied. X-ray diffraction analysis confirmed c-axis orientation and single-phase wurtzite structure of the nanowires. J-V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cells indicated that the short-circuit current density is increased with increasing the length of the nanowire array. According to the UV-vis spectra of the dyes detached from the cells, these increments were mainly attributed to the enlarged internal surface area and therefore dye loading enhancement in the lengthened nanowire arrays.
Methane Synthesis from Automotive Paint Sludge via Microwave Assisted Pyrolysis
NASA Astrophysics Data System (ADS)
Rosli, N. L.; Rahman, N. Abd; Kadri, A.
2018-05-01
Methane gas, which has one atom of carbon and four atoms of hydrogen, is a valuable energy resource, which can be used in the energy sector. The purpose of this research work is to identify methane synthesis from Automotive Paint Sludge (APS) using microwave assisted pyrolysis. APS is known as a hazardous waste since it contains various chemicals that categorized as heavy metals and toxic substances. A modified conventional kitchen microwave was used to pyrolise the APS. The microwave was set with the power level of 600 W and 50 minutes radiation time. Through the experiment, pyrogas was collected into tedlar bag and was analysed using Gas Chromatography with Flame Ionization Detector (GC-FID). Results from the GC-FID were shown that the retention time of 3.3583, 3.2733, and 3.2267 min are proved to be methane gas. The results obtained are resembled with the results from the literature. This indicates methane gas was presented in the pyrogas of pyrolysis of APS and there is a possibility of producing methane gas. The research study suggests that it is possible to synthesize methane gas from the APS via microwave assisted pyrolysis, and in the meantime reduce the volume of APS in the landfill.
The microwave-assisted ionic-liquid method: a promising methodology in nanomaterials.
Ma, Ming-Guo; Zhu, Jie-Fang; Zhu, Ying-Jie; Sun, Run-Cang
2014-09-01
In recent years, the microwave-assisted ionic-liquid method has been accepted as a promising methodology for the preparation of nanomaterials and cellulose-based nanocomposites. Applications of this method in the preparation of cellulose-based nanocomposites comply with the major principles of green chemistry, that is, they use an environmentally friendly method in environmentally preferable solvents to make use of renewable materials. This minireview focuses on the recent development of the synthesis of nanomaterials and cellulose-based nanocomposites by means of the microwave-assisted ionic-liquid method. We first discuss the preparation of nanomaterials including noble metals, metal oxides, complex metal oxides, metal sulfides, and other nanomaterials by means of this method. Then we provide an overview of the synthesis of cellulose-based nanocomposites by using this method. The emphasis is on the synthesis, microstructure, and properties of nanostructured materials obtained through this methodology. Our recent research on nanomaterials and cellulose-based nanocomposites by this rapid method is summarized. In addition, the formation mechanisms involved in the microwave-assisted ionic-liquid synthesis of nanostructured materials are discussed briefly. Finally, the future perspectives of this methodology in the synthesis of nanostructured materials are proposed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microwave-assisted spontaneous reduction of gold salts is described using sugar solutions such as alpha-D-glucose, sucrose and maltose, etc. The expeditious reactions are conducted in aqueous media using microwave irradiation wherein the reduction occurs within 30 to 60 seconds ...
Microwave-assisted water extraction of green tea polyphenols.
Nkhili, Ezzohra; Tomao, Valerie; El Hajji, Hakima; El Boustani, Es-Seddik; Chemat, Farid; Dangles, Olivier
2009-01-01
Green tea, a popular drink with beneficial health properties, is a rich source of specific flavanols (polyphenols). There is a special interest in the water extraction of green tea polyphenols since the composition of the corresponding extracts is expected to reflect the one of green tea infusions consumed worldwide. To develop a microwave-assisted water extraction (MWE) of green tea polyphenols. MWE of green tea polyphenols has been investigated as an alternative to water extraction under conventional heating (CWE). The experimental conditions were selected after consideration of both temperature and extraction time. The efficiency and selectivity of the process were determined in terms of extraction time, total phenolic content, chemical composition (HPLC-MS analysis) and antioxidant activity of the extracts. By MWE (80 degrees C, 30 min), the flavanol content of the extract reached 97.46 (+/- 0.08) mg of catechin equivalent/g of green tea extract, vs. only 83.06 (+/- 0.08) by CWE (80 degrees C, 45 min). In particular, the concentration of the most bioactive flavanol EGCG was 77.14 (+/- 0.26) mg of catechin equivalent/g of green tea extract obtained by MWE, vs 64.18 (+/- 0.26) mg/g by CWE. MWE appears more efficient than CWE at both 80 and 100 degrees C, particularly for the extraction of flavanols and hydroxycinnamic acids. Although MWE at 100 degrees C typically affords higher yields in total phenols, MWE at 80 degrees C appears more convenient for the extraction of the green tea-specific and chemically sensitive flavanols.
Azzouz, Abdelmonaim; Ballesteros, Evaristo
2016-01-01
Soil can contain large numbers of endocrine disrupting chemicals (EDCs). The varied physicochemical properties of EDCs constitute a great challenge to their determination in this type of environmental matrix. In this work, an analytical method was developed for the simultaneous determination of various classes of EDCs, including parabens, alkylphenols, phenylphenols, bisphenol A, and triclosan, in soils, sediments, and sewage sludge. The method uses microwave-assisted extraction (MAE) in combination with continuous solid-phase extraction for determination by gas chromatography-mass spectrometry. A systematic comparison of the MAE results with those of ultrasound-assisted and Soxhlet extraction showed MAE to provide the highest extraction efficiency (close to 100%) in the shortest extraction time (3 min). The proposed method provides a linear response over the range 2.0 - 5000 ng kg(-1) and features limits of detection from 0.5 to 4.5 ng kg(-1) depending on the properties of the EDC. The method was successfully applied to the determination of target compounds in agricultural soils, pond and river sediments, and sewage sludge. The sewage sludge samples were found to contain all target compounds except benzylparaben at concentration levels from 36 to 164 ng kg(-1). By contrast, the other types of samples contained fewer EDCs and at lower concentrations (5.6 - 84 ng kg(-1)).
Kong, Na; Shimpi, Manishkumar R; Ramström, Olof; Yan, Mingdi
2015-03-20
Carbohydrate-functionalized single-walled carbon nanotubes (SWNTs) were synthesized using microwave-assisted reaction of perfluorophenyl azide with the nanotubes. The results showed that microwave radiation provides a rapid and effective means to covalently attach carbohydrates to SWNTs, producing carbohydrate-SWNT conjugates for biorecognition. The carbohydrate-functionalized SWNTs were furthermore shown to interact specifically with cognate carbohydrate-specific proteins (lectins), resulting in predicted recognition patterns. The carbohydrate-presenting SWNTs constitute a new platform for sensitive protein- or cell recognition, which pave the way for glycoconjugated carbon nanomaterials in biorecognition applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ahmad, Muthanna; Grime, Geoffrey W
2013-04-01
Porous silicon (PS) has been prepared using a microwave-assisted hydrofluoric acid (HF) etching method from a silicon wafer pre-implanted with 5 MeV Cu ions. The use of microbeam proton-induced X-ray emission (micro-PIXE) and microbeam Rutherford backscattering techniques reveals for the first time the capability of these techniques for studying the formation of micropores. The porous structures observed from micro-PIXE imaging results are compared to scanning electron microscope images. It was observed that the implanted copper accumulates in the same location as the pores and that at high implanted dose the pores form large-scale patterns of lines and concentric circles. This is the first work demonstrating the use of microwave-assisted HF etching in the formation of PS.
NASA Astrophysics Data System (ADS)
Matos, Wladiana O.; Menezes, Eveline A.; Gonzalez, Mário H.; Costa, Letícia M.; Trevizan, Lilian C.; Nogueira, Ana Rita A.
2009-06-01
A procedure for partial digestion of bovine tissue is proposed using polytetrafluoroethylene (PTFE) micro-vessels inside a baby-bottle sterilizer under microwave radiation for multi-element determination by inductively coupled plasma optical emission spectrometry (ICP OES). Samples were directly weighed in laboratory-made polytetrafluoroethylene vessels. Nitric acid and hydrogen peroxide were added to the uncovered vessels, which were positioned inside the baby-bottle sterilizer, containing 500 mL of water. The hydrogen peroxide volume was fixed at 100 µL. The system was placed in a domestic microwave oven and partial digestion was carried out for the determination of Ca, Cu, Fe, Mg, Mn and Zn by inductively coupled plasma optical emission spectrometry. The single-vessel approach was used in the entire procedure, to minimize contamination in trace analysis. Better recoveries and lower residual carbon content (RCC) levels were obtained under the conditions established through a 2 4-1 fractional factorial design: 650 W microwave power, 7 min digestion time, 50 µL nitric acid and 50 mg sample mass. The digestion efficiency was ascertained according to the residual carbon content determined by inductively coupled plasma optical emission spectrometry. The accuracy of the proposed procedure was checked against two certified reference materials.
Highly Efficient Proteolysis Accelerated by Electromagnetic Waves for Peptide Mapping
Chen, Qiwen; Liu, Ting; Chen, Gang
2011-01-01
Proteomics will contribute greatly to the understanding of gene functions in the post-genomic era. In proteome research, protein digestion is a key procedure prior to mass spectrometry identification. During the past decade, a variety of electromagnetic waves have been employed to accelerate proteolysis. This review focuses on the recent advances and the key strategies of these novel proteolysis approaches for digesting and identifying proteins. The subjects covered include microwave-accelerated protein digestion, infrared-assisted proteolysis, ultraviolet-enhanced protein digestion, laser-assisted proteolysis, and future prospects. It is expected that these novel proteolysis strategies accelerated by various electromagnetic waves will become powerful tools in proteome research and will find wide applications in high throughput protein digestion and identification. PMID:22379392
Hydrolytic pre-treatment methods for enhanced biobutanol production from agro-industrial wastes.
Maiti, Sampa; Gallastegui, Gorka; Suresh, Gayatri; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Drogui, Patrick; LeBihan, Yann; Buelna, Gerardo; Verma, Mausam; Soccol, Carlos Ricardo
2018-02-01
Brewery industry liquid waste (BLW), brewery spent grain (BSG), apple pomace solid wastes (APS), apple pomace ultrafiltration sludge (APUS) and starch industry wastewater (SIW) have been considered as substrates to produce biobutanol. Efficiency of hydrolysis techniques tested to produce fermentable sugars depended on nature of agro-industrial wastes and process conditions. Acid-catalysed hydrolysis of BLW and BSG gave a total reducing sugar yield of 0.433 g/g and 0.468 g/g respectively. Reducing sugar yield from microwave assisted hydrothermal method was 0.404 g/g from APS and 0.631 g/g from APUS, and, 0.359 g/g from microwave assisted acid-catalysed SIW dry mass. Parameter optimization (time, pH and substrate concentration) for acid-catalysed BLW hydrolysate utilization using central composite model technique produced 307.9 g/kg glucose with generation of inhibitors (5-hydroxymethyl furfural (20 g/kg), furfural (1.6 g/kg), levulinic acid (9.3 g/kg) and total phenolic compound (0.567 g/kg)). 10.62 g/L of acetone-butanol-ethanol was produced by subsequent clostridial fermentation of the substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nordschild, Simon; Auner, Norbert
2008-01-01
A series of technically and economically important element chlorides-such as SiCl4, BCl3, AlCl3, FeCl2, PCl3 and TiCl4-was synthesized through reactions between hydrogen chloride and the corresponding element oxides in the presence of different carbon sources with microwave assistance. This process route was optimized for demonstration purposes for tetrachlorosilane formation and successfully demonstrates the broad applicability of various silicon oxide-containing minerals and materials for carbohydrochlorination. The chlorination reaction occurs at lower temperatures than with conventional heating in a tubular oven, with substantially shorter reaction times and in better yields: quantitatively in the case of tetrachlorosilane, based on the silicon content of the starting material. The experimental procedure is very simple and provides basic information about the suitability of element compounds, especially element oxides, for carbohydrochlorination. According to the general reaction sequence element oxide-->element-->element chloride used in today's technology, this one-step carbohydrochlorination with hydrogen chloride is considerably more efficient, particularly in terms of energy input and reaction times, avoiding the isolation of the pure elements required for chlorination to give the element chlorides with use of the more corrosive and toxic chlorine gas.
Microwave-assisted synthesis of novel purine nucleosides as selective cholinesterase inhibitors.
Schwarz, S; Csuk, R; Rauter, A P
2014-04-21
Alzheimer's disease (AD), the most common form of senile dementia, is characterized by high butyrylcholinesterase (BChE) levels in the brain in later AD stages, for which no treatment is available. Pursuing our studies on selective BChE inhibitors, that may contribute to understand the role of this enzyme in disease progression, we present now microwave-assisted synthesis and anticholinesterase activity of a new nucleoside series embodying 6-chloropurine or 2-acetamido-6-chloropurine linked to D-glucosyl, D-galactosyl and D-mannosyl residues. It was designed to assess the contribution of sugar stereochemistry, purine structure and linkage to the sugar for cholinesterase inhibition efficiency and selectivity. Compounds were subjected to Ellman's assay and their inhibition constants determined. The α-anomers were the most active compounds, while selectivity for BChE or acetylcholinesterase (AChE) inhibition could be tuned by the purine base, by the glycosyl moiety and by N(7)-ligation. Some of the nucleosides were far more potent than the drug galantamine, and the most promising competitive and selective BChE inhibitor, the N(7)-linked 2-acetamido-α-D-mannosylpurine, showed a Ki of 50 nM and a selectivity factor of 340 fold for BChE over AChE.
Ju, Yongming; Yang, Shaogui; Ding, Youchao; Sun, Cheng; Zhang, Aiqian; Wang, Lianhong
2008-11-06
Microwave-assisted photocatalytic (MPC) degradation of malachite green (MG) in aqueous TiO2 suspensions was investigated. A 20 mg/L sample of MG was rapidly and completely decomposed in 3 min with the corresponding TOC removal efficiency of about 85%. To gain insight into the degradation mechanism, both GC-MS and LC-ESI-MS/MS techniques were employed to identify the major intermediates of MG degradation, including N-demethylation intermediates [(p-dimethylaminophenyl)(p-methylaminophenyl)phenylmethylium (DM-PM), (p-methylaminophenyl)(p-methylaminophenyl)phenylmethylium (MM-PM), (p-methylaminophenyl)(p-aminophenyl)phenylmethylium (M-PM)]; a decomposition compound of the conjugated structure (4-dimethylaminobenzophenone (DLBP)); products resulting from the adduct reaction of hydroxyl radical; products of benzene removal; and other open-ring intermediates such as phenol, terephthalic acid, adipic acid, benzoic acid, etc. The possible degradation mechanism of MG included five processes: the N-demethylation process, adduct products of the hydroxyl radical, the breakdown of chromophores such as destruction of the conjugated structure intermediate, removal of benzene, and an open-ring reaction. To the best of our knowledge, it is the first time the whole MG photodegradation processes have been reported.
Zheng, Zhenjia; Zhao, Xian-En; Zhu, Shuyun; Dang, Jun; Qiao, Xuguang; Qiu, Zhichang; Tao, Yanduo
2018-04-18
Simultaneous detection of oleanolic acid and ursolic acid in rat blood by in vivo microdialysis can provide important pharmacokinetics information. Microwave-assisted derivatization coupled with magnetic dispersive solid phase extraction was established for the determination of oleanolic acid and ursolic acid by liquid chromatography tandem mass spectrometry. 2'-Carbonyl-piperazine rhodamine B was first designed and synthesized as the derivatization reagent, which was easily adsorbed onto the surface of Fe 3 O 4 /graphene oxide. Simultaneous derivatization and extraction of oleanolic acid and ursolic acid were performed on Fe 3 O 4 /graphene oxide. The permanent positive charge of the derivatization reagent significantly improved the ionization efficiencies. The limits of detection were 0.025 and 0.020 ng/mL for oleanolic acid and ursolic acid, respectively. The validated method was shown to be promising for sensitive, accurate, and simultaneous determination of oleanolic acid and ursolic acid. It was used for their pharmacokinetics study in rat blood after oral administration of Arctiumlappa L. root extract.
Uma, Kasimayan; Pan, Guan-Ting; Yang, Thomas C.-K.
2017-01-01
Metal organic framework (MOF) of MIL-101(Cr)-Silica (SiO2) composites with highly mesoporous and uniform dispersions were synthesized by a microwave-assisted hydrothermal method followed by the sol-gel technique. Water vapor adsorption experiments were conducted on the MIL-101(Cr)-SiO2 composites for industrial adsorption chiller applications. The effects of MIL-101(Cr)-SiO2 mixing ratios (ranging from 0% to 52%), the surface area and amount of Lewis and Brønsted sites were comprehensively determined through water vapor adsorption experiments and the adsorption mechanism is also explained. The BET and Langmuir results indicate that the adsorption isotherms associated with the various MIL-101(Cr)-SiO2 ratios demonstrated Type I and IV adsorption behavior, due to the mesoporous structure of the MIL-101(Cr)-SiO2. It was observed that the increase in the amount of Lewis and Brønsted sites on the MIL-101(Cr)-SiO2 composites significantly improves the water vapor adsorption efficiency, for greater stability during the water vapor adsorption experiments. PMID:28772969
Bashiry, Moein; Mohammadi, Abdorreza; Hosseini, Hedayat; Kamankesh, Marzieh; Aeenehvand, Saeed; Mohammadi, Zaniar
2016-01-01
A novel method based on microwave-assisted extraction and dispersive liquid-liquid microextraction (MAE-DLLME) followed by high-performance liquid chromatography (HPLC) was developed for the determination of three polyamines from turkey breast meat samples. Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the effective factors in DLLME process. The optimum microextraction efficiency was obtained under optimized conditions. The calibration graphs of the proposed method were linear in the range of 20-200 ng g(-1), with the coefficient determination (R(2)) higher than 0.9914. The relative standard deviations were 6.72-7.30% (n = 7). The limits of detection were in the range of 0.8-1.4 ng g(-1). The recoveries of these compounds in spiked turkey breast meat samples were from 95% to 105%. The increased sensitivity in using the MAE-DLLME-HPLC-UV has been demonstrated. Compared with previous methods, the proposed method is an accurate, rapid and reliable sample-pretreatment method. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Koch, Andrew S.; Chimento, Clio A.; Berg, Allison N.; Mughal, Farah D.; Spencer, Jean-Paul; Hovland, Douglas E.; Mbadugha, Bessie; Hovland, Allan K.; Eller, Leah R.
2015-01-01
Two methods for the extraction of maltol from Fraser fir needles are performed and compared in this two-week experiment. A traditional benchtop extraction using dichloromethane is compared to a microwave-assisted extraction using aqueous ethanol. Students perform both procedures and weigh the merits of each technique. In doing so, students see a…
Experimental and numerical modeling research of rubber material during microwave heating process
NASA Astrophysics Data System (ADS)
Chen, Hailong; Li, Tao; Li, Kunling; Li, Qingling
2018-05-01
This paper aims to investigate the heating behaviors of block rubber by experimental and simulated method. The COMSOL Multiphysics 5.0 software was utilized in numerical simulation work. The effects of microwave frequency, power and sample size on temperature distribution are examined. The effect of frequency on temperature distribution is obvious. The maximum and minimum temperatures of block rubber increase first and then decrease with frequency increasing. The microwave heating efficiency is maximum in the microwave frequency of 2450 MHz. However, more uniform temperature distribution is presented in other microwave frequencies. The influence of microwave power on temperature distribution is also remarkable. The smaller the power, the more uniform the temperature distribution on the block rubber. The effect of power on microwave heating efficiency is not obvious. The effect of sample size on temperature distribution is evidently found. The smaller the sample size, the more uniform the temperature distribution on the block rubber. However, the smaller the sample size, the lower the microwave heating efficiency. The results can serve as references for the research on heating rubber material by microwave technology.
Kumar, Ritesh; Kumar, G Ravi; Chandrashekar, N
2011-06-01
In this study, microwave assisted transesterification of Pongamia pinnata seed oil was carried out for the production of biodiesel. The experiments were carried out using methanol and two alkali catalysts i.e., sodium hydroxide (NaOH) and potassium hydroxide (KOH). The experiments were carried out at 6:1 alcohol/oil molar ratio and 60°C reaction temperature. The effect of catalyst concentration and reaction time on the yield and quality of biodiesel was studied. The result of the study suggested that 0.5% sodium hydroxide and 1.0% potassium hydroxide catalyst concentration were optimum for biodiesel production from P. pinnata oil under microwave heating. There was a significant reduction in reaction time for microwave induced transesterification as compared to conventional heating. Copyright © 2011 Elsevier Ltd. All rights reserved.
Metherel, Adam H; Aristizabal Henao, Juan J; Ciobanu, Flaviu; Taha, Ameer Y; Stark, Ken D
2015-09-01
Dried blood spots (DBS) by fingertip prick collection for fatty acid profiling are becoming increasingly popular due to ease of collection, minimal invasiveness and its amenability to high-throughput analyses. Herein, we assess a microwave-assisted direct transesterification method for the production of fatty acid methyl esters (FAME) from DBS. Technical replicates of human whole blood were collected and 25-μL aliquots were applied to chromatography strips prior to analysis by a standard 3-h transesterification method or microwave-assisted direct transesterification method under various power (variable vs constant), time (1-5 min) and reagent (1-10% H2SO4 in methanol) conditions. In addition, a standard method was compared to a 5-min, 30-W power microwave in 1% H2SO4 method for FAME yield from whole blood sphingomyelin, and sphingomyelin standards alone and spiked in whole blood. Microwave-assisted direct transesterification yielded no significant differences in both quantitative (nmol/100 µL) and qualitative (mol%) fatty acid assessments after as little as 1.5- and 1-min reaction times, respectively, using the variable power method and 5% H2SO4 in methanol. However, 30-W power for 5 min increased total FAME yield of the technical replicates by 14%. This increase appears largely due to higher sphingomyelin-derived FAME yield of up to 109 and 399% compared to the standard method when determined from whole blood or pure standards, respectively. In conclusion, microwave-assisted direct transesterification of DBS achieved in as little as 1-min, and 5-min reaction times increase total fatty acids primarily by significantly improving sphingomyelin-derived fatty acid yield.
Development of a microwave clothes dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesselring, J.P.; Smith, R.D.
1996-01-01
A laboratory test model of a microwave clothes dryer was constructed and tested over a wide range of test variables, including number of magnetrons and use of auxiliary heat. The tests identified three distinct operating modes: cool drying, which uses only microwave energy and drying occurs at less than 105 F; fast drying, where microwave drying is superimposed on conventional drying; and efficient drying, where the use of microwave energy with waste heat recovery from the power supply results in significant efficiency improvements compared to conventional dryers.
[Application of microwave irradiation technology to the field of pharmaceutics].
Zhang, Xue-Bing; Shi, Nian-Qiu; Yang, Zhi-Qiang; Wang, Xing-Lin
2014-03-01
Microwaves can be directly transformed into heat inside materials because of their ability of penetrating into any substance. The degree that materials are heated depends on their dielectric properties. Materials with high dielectric loss are more easily to reach a resonant state by microwaves field, then microwaves can be absorbed efficiently. Microwave irradiation technique with the unique heating mechanisms could induce drug-polymer interaction and change the properties of dissolution. Many benefits such as improving product quality, increasing energy efficiency and reducing times can be obtained by microwaves. This paper summarized characteristics of the microwave irradiation technique, new preparation techniques and formulation process in pharmaceutical industry by microwave irradiation technology. The microwave technology provides a new clue for heating and drying in the field of pharmaceutics.
Patil, Narendra G; Rebrov, Evgeny V; Eränen, Kari; Benaskar, Faysal; Meuldijk, Jan; Mikkola, Jyri-Pekka; Hessel, Volker; Hulshof, Lumbertus A; Murzin, Dmitry Yu; Schouten, Jaap C
2012-01-01
A novel heating efficiency analysis of the microwave heated stop-flow (i.e. stagnant liquid) and continuous-flow reactors has been presented. The thermal losses to the surrounding air by natural convection have been taken into account for heating efficiency calculation of the microwave heating process. The effect of the load diameter in the range of 4-29 mm on the heating efficiency of ethylene glycol was studied in a single mode microwave cavity under continuous flow and stop-flow conditions. The variation of the microwave absorbing properties of the load with temperature was estimated. Under stop-flow conditions, the heating efficiency depends on the load diameter. The highest heating efficiency has been observed at the load diameter close to the half wavelength of the electromagnetic field in the corresponding medium. Under continuous-flow conditions, the heating efficiency increased linearly. However, microwave leakage above the propagation diameter restricted further experimentation at higher load diameters. Contrary to the stop-flow conditions, the load temperature did not raise monotonously from the inlet to outlet under continuous-flow conditions. This was due to the combined effect of lagging convective heat fluxes in comparison to volumetric heating. This severely disturbs the uniformity of the electromagnetic field in the axial direction and creates areas of high and low field intensity along the load Length decreasing the heating efficiency as compared to stop-flow conditions.
Zou, Fang; Yu, Runhan; Li, Rongguan; Li, Wei
2013-08-26
A simple, rapid and efficient synthesis of the metal-organic framework (MOF) HKUST-1 [Cu3(1,3,5-benzene-tri-carboxilic-acid)2] by microwave irradiation is described, which afforded a homogeneous and highly selective material. The unusually short time to complete the synthesis by microwave irradiation is mainly attributable to rapid nucleation rather than to crystal growth rate. Using this method, HKUST-1-MW (MW=microwave) could be prepared within 20 min, whereas by hydrothermal synthesis, involving conventional heating, the preparation time is 8 h. Work efficiency was improved by the good performance of the obtained HKUST-1-MW which exhibited good selective adsorption of heavy metal ions, as well as a remarkably high adsorption affinity and adsorption capacity, but no adsorption of Hg(2+) under the same experimental conditions. Of particular importance is the preservation of the structure after metal-ion adsorption, which remained virtually intact, with only a few changes in X-ray diffraction intensity and a moderate decline in surface area. Synthesis of the polyoxometalate-containing HKUST-1-MW@H3PW12O40 afforded a MOF with enhanced stability in water, due to the introduced Keggin-type phosphotungstate, which systematically occluded in the cavities constituting the walls between the mesopores. Different Cu/W ratios were investigated according to the extrusion rate of cooper ions concentration, without significant structural changes after adsorption. The MOFs obtained feature particle sizes between 10-20 μm and their structures were determined using synchrotron-based X-ray diffraction. The results of this study can be considered important for potentially wider future applications of MOFs, especially to attend environmental issues. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microwave-Assisted Drying for the Conservation of Honeybee Pollen.
Canale, Angelo; Benelli, Giovanni; Castagna, Antonella; Sgherri, Cristina; Poli, Piera; Serra, Andrea; Mele, Marcello; Ranieri, Annamaria; Signorini, Francesca; Bientinesi, Matteo; Nicolella, Cristiano
2016-05-12
Bee pollen is becoming an important product thanks to its nutritional properties, including a high content of bioactive compounds such as essential amino acids, antioxidants, and vitamins. Fresh bee pollen has a high water content (15%-30% wt %), thus it is a good substrate for microorganisms. Traditional conservation methods include drying in a hot air chamber and/or freezing. These techniques may significantly affect the pollen organoleptic properties and its content of bioactive compounds. Here, a new conservation method, microwave drying, is introduced and investigated. The method implies irradiating the fresh pollen with microwaves under vacuum, in order to reduce the water content without reaching temperatures capable of thermally deteriorating important bioactive compounds. The method was evaluated by taking into account the nutritional properties after the treatment. The analyzed parameters were phenols, flavonoids, with special reference to rutin content, and amino acids. Results showed that microwave drying offers important advantages for the conservation of bee pollen. Irrespective of microwave power and treatment time, phenol and flavonoid content did not vary over untreated fresh pollen. Similarly, rutin content was unaffected by the microwave drying, suggesting that the microwave-assisted drying could be a powerful technology to preserve bioprotective compounds in fresh pollen.
Baqi, Younis; Müller, Christa E
2010-05-01
This protocol describes the efficient, generally applicable Ullmann coupling reaction of bromaminic acid with alkyl- or aryl-amines in phosphate buffer under microwave irradiation using elemental copper as a catalyst. The reaction leads to a number of biologically active compounds. As a prototypical example, the synthesis of a new, potent antagonist of human platelet P2Y(12) receptors, which has potential as an antithrombotic drug, is described in detail. The optimized protocol includes a description of an appropriate reaction setup, thin layer chromatography for monitoring the reaction and a procedure for the isolation, purification and characterization of the anticipated product. The reaction is performed without the use of a glove box and there is no requirement for an inert atmosphere. The reaction typically proceeds within 2-30 min, the protocol, including workup, generally takes 1-3 h to complete.
Characterizing Adsorption Performance of Granular Activated Carbon with Permittivity.
Yang, Yang; Shi, Chao; Zhang, Yi; Ye, Jinghua; Zhu, Huacheng; Huang, Kama
2017-03-07
A number of studies have achieved the consensus that microwave thermal technology can regenerate the granular activated carbon (GAC) more efficiently and energy-conservatively than other technologies. In particular, in the microwave heating industry, permittivity is a crucial parameter. This paper developed two equivalent models to establish the relationship between effective complex permittivity and pore volume of the GAC. It is generally based on Maxwell-Garnett approximation (MGA) theory. With two different assumptions in the model, two quantificational expressions were derived, respectively. Permittivity measurements and Brunauer-Emmett-Teller (BET) testing had been introduced in the experiments. Results confirmed the two expressions, which were extremely similar. Theoretical and experimental graphs were matched. This paper set up a bridge which links effective complex permittivity and pore volume of the GAC. Furthermore, it provides a potential and convenient method for the rapid assisted characterization of the GAC in its adsorption performance.
Characterizing Adsorption Performance of Granular Activated Carbon with Permittivity
Yang, Yang; Shi, Chao; Zhang, Yi; Ye, Jinghua; Zhu, Huacheng; Huang, Kama
2017-01-01
A number of studies have achieved the consensus that microwave thermal technology can regenerate the granular activated carbon (GAC) more efficiently and energy-conservatively than other technologies. In particular, in the microwave heating industry, permittivity is a crucial parameter. This paper developed two equivalent models to establish the relationship between effective complex permittivity and pore volume of the GAC. It is generally based on Maxwell-Garnett approximation (MGA) theory. With two different assumptions in the model, two quantificational expressions were derived, respectively. Permittivity measurements and Brunauer–Emmett–Teller (BET) testing had been introduced in the experiments. Results confirmed the two expressions, which were extremely similar. Theoretical and experimental graphs were matched. This paper set up a bridge which links effective complex permittivity and pore volume of the GAC. Furthermore, it provides a potential and convenient method for the rapid assisted characterization of the GAC in its adsorption performance. PMID:28772628
Shagieva, F; Zaiser, S; Neumann, P; Dasari, D B R; Stöhr, R; Denisenko, A; Reuter, R; Meriles, C A; Wrachtrup, J
2018-06-13
The ability to optically initialize the electronic spin of the nitrogen-vacancy (NV) center in diamond has long been considered a valuable resource to enhance the polarization of neighboring nuclei, but efficient polarization transfer to spin species outside the diamond crystal has proven challenging. Here we demonstrate variable-magnetic-field, microwave-enabled cross-polarization from the NV electronic spin to protons in a model viscous fluid in contact with the diamond surface. Further, slight changes in the cross-relaxation rate as a function of the wait time between successive repetitions of the transfer protocol suggest slower molecular dynamics near the diamond surface compared to that in bulk. This observation is consistent with present models of the microscopic structure of a fluid and can be exploited to estimate the diffusion coefficient near a solid-liquid interface, of importance in colloid science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia Lixin; Wang Haibo; Wang Jian
A sensitive silver substrate for surface-enhanced Raman scattering (SERS) spectroscopy is synthesized under multimode microwave irradiation. The microwave-assisted synthesis of the SERS-active substrate was carried out in a modified domestic microwave oven of 2450 MHz, and the reductive reaction was conducted in a polypropylene container under microwave irradiation with a power of 100 W for 5 min. Formaldehyde was employed as both the reductant and microwave absorber in the reductive process. The effects of different heating methods (microwave dielectric and conventional) on the properties of the SERS-active substrates were investigated. Samples obtained with 5 min of microwave irradiation at amore » power of 100 W have more well-defined edges, corners, and sharper surface features, while the samples synthesized with 1 h of conventional heating at 40 deg. C consist primarily of spheroidal nanoparticles. The SERS peak intensity of the {approx}1593 cm{sup -1} band of 4-mercaptobenzoic acid adsorbed on silver nanoparticles synthesized with 5 min of microwave irradiation at a power of 100 W is about 30 times greater than when it is adsorbed on samples synthesized with 1 h of conventional heating at 40 deg. C. The results of quantum chemical calculations are in good agreement with our experimental data. This method is expected to be utilized for the synthesis of other metal nanostructural materials.« less
USDA-ARS?s Scientific Manuscript database
This study assesses the potential for using bentonite as a microwave absorber for microwave-assisted biomass pyrolysis based on the dielectric properties. Dielectric properties of bentonite at different moisture contents were measured using a coaxial line dielectric probe and vector network analyzer...
Microwave-Mediated Synthesis of Lophine: Developing a Mechanism to Explain a Product
ERIC Educational Resources Information Center
Crouch, R. David; Howard, Jessica L.; Zile, Jennifer L.; Barker, Kathryn H.
2006-01-01
The microwave-mediated preparation of lophine (2,4,5-triphenylimidazole) is described. This experiment allows for an introduction to the emerging technology of microwave-assisted organic synthesis while providing an opportunity for students to employ the principles of carbonyl chemistry in devising a mechanism to explain the formation of the…
Zhang, Bo; Zhong, Zhaoping; Xie, Qinglong; Liu, Shiyu; Ruan, Roger
2016-07-01
A novel technology of two-step fast microwave-assisted pyrolysis (fMAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent (SiC) and HZSM-5 catalyst. Effects of fMAP temperature and catalyst-to-biomass ratio on bio-oil yield and chemical components were examined. The results showed that this technology, employing microwave, microwave absorbent and HZSM-5 catalyst, was effective and promising for biomass fast pyrolysis. The fMAP temperature of 500°C was considered the optimum condition for maximum yield and best quality of bio-oil. Besides, the bio-oil yield decreased linearly and the chemical components in bio-oil were improved sequentially with the increase of catalyst-to-biomass ratio from 1:100 to 1:20. The elemental compositions of bio-char were also determined. Additionally, compared to one-step fMAP process, two-step fMAP could promote the bio-oil quality with a smaller catalyst-to-biomass ratio. Copyright © 2016. Published by Elsevier B.V.
Wireless Power Transmission Technology State-Of-The-Art
NASA Astrophysics Data System (ADS)
Dickinson, R. M. T.
2002-01-01
This first Bill Brown SSP La Crescenta, CA 91214 technology , including microwave and laser systems for the transfer of electric , as related to eventually developing Space Solar Power (SSP) systems. Current and past technology accomplishments in ground based and air and space applied energy conversion devices, systems and modeling performance and cost information is presented, where such data are known to the author. The purpose of the presentation is to discuss and present data to encourage documenting and breaking the current technology records, so as to advance the SOA in WPT for SSP . For example, regarding DC to RF and laser converters, 83% efficient 2.45 GHz cooker-tube magnetrons with 800W CW output have been jointly developed by Russia and US. Over 50% wa11-plug efficient 1.5 kW/cm2 CW, water cooled, multibeam, solid state laser diode bar-arrays have been developed by LLNL at 808 nm wavelength. The Gennans have developed a 36% efficient, kW level, sing1e coherent beam, lateral pumped semiconductor laser. The record for end-to-end DC input to DC output power overall WPT link conversion efficiency is 54% during the Raytheon-JPL experiments in 1975 for 495.6 W recovered at 1.7-mrange at 2.4469 GAz. The record for usefully recovered electric power output ( as contrasted with thennally induced power in structures) is 34 kW OC output at a range of 1.55 km, using 2.388 GHz microwaves, during the JPL- Raytheon experiments by Bill Brown and the author at Goldstone, CA in 1975. The GaAs-diode rectenna array had an average collection-conversion efficiency of 82.5%. A single rectenna element operating a 6W RF input, developed by Bill Brown demonstrated 91.4% efficiency. The comparable record for laser light to OC output power conversion efficiency of photovoltaics is 590/0. for AlGaAs at 1.7 Wand 826nm wavelength. Russian cyclotron-wave converters have demonstrated 80% rectification efficiency at S-band. Concerning WPT technology equipment costs, magnetron conversion devices for microwave ovens are approximately O.O25/W, due to the large manufacturing quantities. Comparable, remanufactured lasers for industrial applications at the 4 kW CW level are of order 25/W. Industrial klystrons cost over 1/W and solid state power amplifiers cost over 3/W. Model tethered helicopters, model airplanes, a smal1 airship and several small rovers have been powered with microwave beams at 2.45, 5.8 and 35 GHz. Smal1 rovers have been powered with laser beams. Two space-to-space microwave power link experiments have been conducted by the Japanese and with Texas A&M assistance in one case. International records for WPT link electric power delivered, range, 1ink efficiency and other salient parameters for both wireless-laser and -microwave power demonstrations win be reviewed. Also, costing models for WPT -system figure- of-merit (FOM) in terms of capital costs, in /MW -km, as a fonction of range and power level are reviewed. Records in Japan. France, Korea, Russia, Canada and the US will be reviewed for various land based WPT demonstrations. SSP applicable elements of technology in fiber and wireless links, cell phones and base stations, aircraft, and spacecraft phased arrays, industrial and scientific klystrons and lasers, military equipment (where information is available in open literature) microwave heating, and other telecommunication activities win be presented, concerning power handling, frequency or wavelength, conversion efficiency, specific mass, specific cost, etc. Previously studied and proposed applications of WPT technology will be presented to show the range of WPT technology being considered for commercial and other applications that will lead to advancing the SOA of WPT technology that win benefit SSP .
Green extraction of grape skin phenolics by using deep eutectic solvents.
Cvjetko Bubalo, Marina; Ćurko, Natka; Tomašević, Marina; Kovačević Ganić, Karin; Radojčić Redovniković, Ivana
2016-06-01
Conventional extraction techniques for plant phenolics are usually associated with high organic solvent consumption and long extraction times. In order to establish an environmentally friendly extraction method for grape skin phenolics, deep eutectic solvents (DES) as a green alternative to conventional solvents coupled with highly efficient microwave-assisted and ultrasound-assisted extraction methods (MAE and UAE, respectively) have been considered. Initially, screening of five different DES for proposed extraction was performed and choline chloride-based DES containing oxalic acid as a hydrogen bond donor with 25% of water was selected as the most promising one, resulting in more effective extraction of grape skin phenolic compounds compared to conventional solvents. Additionally, in our study, UAE proved to be the best extraction method with extraction efficiency superior to both MAE and conventional extraction method. The knowledge acquired in this study will contribute to further DES implementation in extraction of biologically active compounds from various plant sources. Copyright © 2016 Elsevier Ltd. All rights reserved.
A New Route to Azafluoranthene Natural Products via Direct Arylation
Ponnala, Shashikanth; Harding, Wayne W.
2013-01-01
Microwave-assisted direct arylation was successfully employed in the synthesis of azafluoranthene alkaloids for the first time. Direct arylation reactions on a diverse set of phenyltetrahydroisoquinolines produces the indeno[1,2,3-ij]isoquinoline nucleus en route to a high yielding azafluoranthene synthesis. The method was used as a key step in the efficient preparation of the natural products rufescine and triclisine. As demonstrated herein, this synthetic approach should be generally applicable to the preparation of natural and un-natural azafluoranthene alkaloids as well as “azafluoranthene-like” isoquinoline alkaloids. PMID:23503080
Characterization of biomass waste torrefaction under conventional and microwave heating.
Ho, Shih-Hsin; Zhang, Congyu; Chen, Wei-Hsin; Shen, Ying; Chang, Jo-Shu
2018-05-13
To evaluate the potential of microwave heating for biomass torrefaction, the torrefaction performances and energy utilization of coffee grounds and microalga residue, under conventional and microwave heating were investigated and compared with each other. For the two biomass samples, the dehydrogenation of the coffee grounds was more sensitive to torrefaction severity, whereas the microalga residue consumed more energy under the same torrefaction conditions. Microwave heating under lower torrefaction severity had a higher energy efficiency. As regard to the lower solid yields or higher torrefaction severity, the energy efficiency of microwave heating was close to that of conventional heating, irrespective of the feedstocks. This revealed the comparable energy consumption state between the two heating modes. Accordingly, it is concluded that microwave torrefaction is more efficient for biomass upgrading and densification than conventional torrefaction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Trirattanapikul, W; Phoungchandang, S
2014-12-01
The appropriate stage of maturity of Centella asiatica (L.) Urban leaves was investigated. Mature leaves with large diameter contained high total phenolics and % inhibition. Microwave blanching for 30 s retained the highest total phenolics and the microwave blanching for 30 s and 45 s retained the highest % inhibition. Modified Henderson and Modified Chung-Pfost models showed the best fit to both fresh and blanched leaves for equilibrium moisture content, Xe = f(RHe, T) and equilibrium relative humidity, RHe = f(Xe, T), respectively. The Modified Page model was the most effective model in describing the leaf drying. All drying was in the falling rate period. The drying constant was related to drying air temperature using the Arrhenius model. Effective moisture diffusivities increased with increasing temperature and blanching treatments as well as dehumidification by heat pump-assisted dehumidified dryer. The heat pump-assited dehumidified drying incorporated by the microwave blanching could reduce the drying time at 40 °C by 31.2 % and increase % inhibition by 6.1 %. Quality evaluation by total phenolics, % inhibition and rehydration ratio showed the best quality for C. asiatica leaves pretreated by microwave blanching and dried at 40 °C in heat pump-assisted dehumidified dryer.
Microwave-assisted extraction of cyclotides from Viola ignobilis.
Farhadpour, Mohsen; Hashempour, Hossein; Talebpour, Zahra; A-Bagheri, Nazanin; Shushtarian, Mozhgan Sadat; Gruber, Christian W; Ghassempour, Alireza
2016-03-15
Cyclotides are an interesting family of circular plant peptides. Their unique three-dimensional structure, comprising a head-to-tail circular backbone chain and three disulfide bonds, confers them stability against thermal, chemical, and enzymatic degradation. Their unique stability under extreme conditions creates an idea about the possibility of using harsh extraction methods such as microwave-assisted extraction (MAE) without affecting their structures. MAE has been introduced as a potent extraction method for extraction of natural compounds, but it is seldom used for peptide and protein extraction. In this work, microwave irradiation was applied to the extraction of cyclotides. The procedure was performed in various steps using a microwave instrument under different conditions. High-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) results show stability of cyclotide structures on microwave radiation. The influential parameters, including time, temperature, and the ratio of solvents that are affecting the MAE potency, were optimized. Optimal conditions were obtained at 20 min of irradiation time, 1200 W of system power in 60 °C, and methanol/water at the ratio of 90:10 (v/v) as solvent. The comparison of MAE results with maceration extraction shows that there are similarities between cyclotide sequences and extraction yields. Copyright © 2015 Elsevier Inc. All rights reserved.
Xiaoli Sun; Wengang Li; Jian Li; Yuangang Zu; Chung-Yun Hse; Jiulong Xie; Xiuhua Zhao
2016-01-01
Ethanol and hexane mixture agent microwave-assisted extraction (MAE) method was conducted to extract peony (Paeonia suffruticosa Andr.) seed oil (PSO). The aim of the study was to optimise the extraction for both yield and energy consumption in mixture agent MAE. The highest oil yield (34.49%) and lowest unit energy consumption (14 125.4 J g -1)...
Jiulong Xie; Chung Hse; Todd F. Shupe; Hui Pan; Tingxing Hu
2016-01-01
Microwave-assisted selective liquefaction was proposed and used as a novel method for the isolation of holocellulose fibers. The results showed that the bamboo lignin component and extractives were almost completely removed by using a liquefaction process at 120 8C for 9 min, and the residual lignin and extractives in the solid residue were as low as 0.65% and 0.49%,...
Junfeng Feng; Chungyun Hse; Zhongzhi Yang; Kui Wang; Jianchun Jiang; Junming Xu
2017-01-01
Directional microwave-assisted liquefaction and stepwise extraction are introduced for producing platform chemicals: aromatics and monosaccharides. When sulfuric acid was used as a catalyst, a 45% monosaccharides yield and a 29% aromatics yield were obtained from bamboo with 0.3 g catalyst per 18 g methanol and 2 g bamboo at 160 °C with 10 min. Approximately 78â86 wt%...
Joseph, Siby; Mathew, Beena
2015-02-05
Herein, we report a simple microwave assisted method for the green synthesis of silver and gold nanoparticles by the reduction of aqueous metal salt solutions using leaf extract of the medicinal plant Aerva lanata. UV-vis., FTIR, XRD, and HR-TEM studies were conducted to assure the formation of nanoparticles. XRD studies clearly confirmed the crystalline nature of the synthesized nanoparticles. From the HR-TEM images, the silver nanoparticles (AgNPs) were found to be more or less spherical and gold nanoparticles (AuNPs) were observed to be of different morphology with an average diameter of 18.62nm for silver and 17.97nm for gold nanoparticles. In order to evaluate the effect of microwave heating upon rate of formation, the synthesis was also conducted under ambient condition without the assistance of microwave radiation and the former method was found to be much faster than the later. The synthesized nanoparticles were used as nanocatalysts in the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. Copyright © 2014 Elsevier B.V. All rights reserved.
Nayak, Balunkeswar; Dahmoune, Farid; Moussi, Kamal; Remini, Hocine; Dairi, Sofiane; Aoun, Omar; Khodir, Madani
2015-11-15
Peel of Citrus sinensis contains significant amounts of bioactive polyphenols that could be used as ingredients for a number of value-added products with health benefits. Extraction of polyphenols from the peels was performed using a microwave-assisted extraction (MAE) technique. The effects of aqueous acetone concentration, microwave power, extraction time and solvent-to-solid ratio on the total phenolic content (TPC), total antioxidant activity (TAA) (using DPPH and ORAC-values) and individual phenolic acids (IPA) were investigated using a response surface method. The TPC, TAA and IPA of peel extracts using MAE was compared with conventional, ultrasound-assisted and accelerated solvent extraction. The maximum predicted TPC under the optimal MAE conditions (51% acetone concentration in water (v/v), 500 W microwave power, 122 s extraction time and 25 mL g(-1) solvent to solid ratio), was 12.20 mg GAE g(-1) DW. The TPC and TAA in MAE extracts were higher than the other three extracts. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kusuma, H. S.; Mahfud, M.
2016-04-01
Sandalwood and its oil, is one of the oldest known perfume materials and has a long history (more than 4000 years) of use as mentioned in Sanskrit manuscripts. Sandalwood oil plays an important role as an export commodity in many countries and its widely used in the food, perfumery and pharmaceuticals industries. The aim of this study is to know and verify the kinetics and mechanism of microwave-assisted hydrodistillation of sandalwood based on a second-order model. In this study, microwave-assisted hydrodistillation is used to extract essential oils from sandalwood. The extraction was carried out in ten extraction cycles of 15 min to 2.5 hours. The initial extraction rate, the extraction capacity and the second-order extraction rate constant were calculated using the model. Kinetics of oil extraction from sandalwood by microwave-assisted hydrodistillation proved that the extraction process was based on the second-order extraction model as the experimentally done in three different steps. The initial extraction rate, h, was 0.0232 g L-1 min-1, the extraction capacity, C S, was 0.6015 g L-1, the second-order extraction rate constant, k, was 0.0642 L g-1 min-1 and coefficient of determination, R 2, was 0.9597.
NASA Astrophysics Data System (ADS)
Sanz Lobón, Germán; Yepez, Alfonso; Garcia, Luane Ferreira; Morais, Ruiter Lima; Vaz, Boniek Gontijo; Carvalho, Veronica Vale; de Oliveira, Gisele Augusto Rodrigues; Luque, Rafael; Gil, Eric De Souza
2017-02-01
Microcystin-leucine arginine (MC-LR) is the most abundant and toxic secondary metabolite produced by freshwater cyanobacteria. This toxin has a high potential hazard health due to potential interactions with liver, kidney and the nervous system. The aim of this work was the design of a simple and environmentally friendly electrochemical system based on highly efficient nanostructured electrodes for the removal of MC-LR in tap water. Titania nanoparticles were deposited on carbon (graphite) under a simple and efficient microwave assisted approach for the design of the electrode, further utilized in the electrochemical remediation assays. Parameters including the applied voltage, time of removal and pH (natural tap water or alkaline condition) were investigated in the process, with results pointing to a high removal efficiency for MC-LR (60% in tap water and 90% in alkaline media experiments, under optimized conditions).
Sanz Lobón, Germán; Yepez, Alfonso; Garcia, Luane Ferreira; Morais, Ruiter Lima; Vaz, Boniek Gontijo; Carvalho, Veronica Vale; de Oliveira, Gisele Augusto Rodrigues; Luque, Rafael; Gil, Eric de Souza
2017-01-01
Microcystin-leucine arginine (MC-LR) is the most abundant and toxic secondary metabolite produced by freshwater cyanobacteria. This toxin has a high potential hazard health due to potential interactions with liver, kidney and the nervous system. The aim of this work was the design of a simple and environmentally friendly electrochemical system based on highly efficient nanostructured electrodes for the removal of MC-LR in tap water. Titania nanoparticles were deposited on carbon (graphite) under a simple and efficient microwave assisted approach for the design of the electrode, further utilized in the electrochemical remediation assays. Parameters including the applied voltage, time of removal and pH (natural tap water or alkaline condition) were investigated in the process, with results pointing to a high removal efficiency for MC-LR (60% in tap water and 90% in alkaline media experiments, under optimized conditions). PMID:28145477
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nusinovich, G.S.; Sinitsyn, O.V.
This paper contains a simple analytical theory that allows one to evaluate the effect of transverse nonuniformity of the rf field on the interaction efficiency in various microwave sources driven by linear electron beams. The theory is, first, applied to the systems where the beams of cylindrical symmetry interact with rf fields of microwave circuits having Cartesian geometry. Also, various kinds of microwave devices driven by sheet electron beams (orotrons, clinotrons) are considered. The theory can be used for evaluating the efficiency of novel sources of coherent terahertz radiation.
FAST TRACK COMMUNICATION: An electromagnetically induced grating by microwave modulation
NASA Astrophysics Data System (ADS)
Xiao, Zhi-Hong; Shin, Sung Guk; Kim, Kisik
2010-08-01
We study the phenomenon of an electromagnetically induced phase grating in a double-dark state system of 87Rb atoms, the two closely placed lower fold levels of which are coupled by a weak microwave field. Owing to the existence of the weak microwave field, the efficiency of the phase grating is strikingly improved, and an efficiency of approximately 33% can be achieved. Under the action of the weak standing wave field, the high efficiency of the phase grating can be maintained by modulating the strength and detuning of the weak microwave field, increasing the strength of the standing wave field.
NASA Astrophysics Data System (ADS)
Cheng, Song; Zhang, Libo; Zhang, Shengzhou; Xia, Hongying; Peng, Jinhui
2018-01-01
The spent phenolic resin is as raw material for preparing high surface area activated carbon (HSAAC) by microwave-assisted KOH activation. The effects of microwave power, activation duration and impregnation ratio (IR) on the iodine adsorption capability and yield of HSAAC were investigated. The surface characteristics of HSAAC were characterized by nitrogen adsorption isotherms, FTIR, SEM and TEM. The operating variables were optimized utilizing the response surface methodology (RSM) and were identified to be microwave power of 700 W, activation duration of 15 min and IR of 4, corresponding to a yield of 51.25 % and an iodine number of 2,384 mg/g. The pore structure parameters of the HSAAC, i. e., Brunauer-Emmett-Teller (BET) surface area, total pore volume, and average pore diameter were estimated to be 4,269 m2/g, 2.396 ml/g and 2.25 nm, respectively, under optimum conditions. The findings strongly support the feasibility of microwave-assisted KOH activation for preparation of HSAAC from spent phenolic resin.
Thirumalai, Sundararajan; Shanmugavel, Balasivanandha Prabu
2011-01-01
Barium titanate is a common ferroelectric electro-ceramic material having high dielectric constant, with photorefractive effect and piezoelectric properties. In this research work, nano-scale barium titanate powders were synthesized by microwave assisted mechano-chemical route. Suitable precursors were ball milled for 20 hours. TGA studies were performed to study the thermal stability of the powders. The powders were characterized by XRD, SEM and EDX Analysis. Microwave and Conventional heating were performed at 1000 degrees C. The overall heating schedule was reduced by 8 hours in microwave heating thereby reducing the energy and time requirement. The nano-scale, impurity-free and defect-free microstructure was clearly evident from the SEM micrograph and EDX patterns. LCR meter was used to measure the dielectric constant and dielectric loss values at various frequencies. Microwave heated powders showed superior dielectric constant value with low dielectric loss which is highly essential for the fabrication of Multi Layered Ceramic Capacitors.
Golmakani, Mohammad-Taghi; Moayyedi, Mahsa
2015-11-01
Dried and fresh peels of Citrus limon were subjected to microwave-assisted hydrodistillation (MAHD) and solvent-free microwave extraction (SFME), respectively. A comparison was made between MAHD and SFME with the conventional hydrodistillation (HD) method in terms of extraction kinetic, chemical composition, and antioxidant activity. Higher yield results from higher extraction rates by microwaves and could be due to a synergy of two transfer phenomena: mass and heat acting in the same way. Gas chromatography/mass spectrometry (GC/MS) analysis did not indicate any noticeable differences between the constituents of essential oils obtained by MAHD and SFME, in comparison with HD. Antioxidant analysis of the extracted essential oils indicated that microwave irradiation did not have adverse effects on the radical scavenging activity of the extracted essential oils. The results of this study suggest that MAHD and SFME can be termed as green technologies because of their less energy requirements per ml of essential oil extraction.
Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology.
Kappe, C Oliver
2013-07-16
In the past few years, the use of microwave energy to heat chemical reactions has become an increasingly popular theme in the scientific community. This nonclassical heating technique has slowly progressed from a laboratory curiosity to an established method commonly used both in academia and in industry. Because of its efficiency, microwave heating dramatically reduces reaction times (from days and hours to minutes and seconds) and improves product purities or material properties among other advantages. Since the early days of microwave chemistry, researchers have observed rate-accelerations and, in some cases, altered product distributions as compared with reactions carried out using classical oil-bath heating. As a result, researchers have speculated that so-called specific or nonthermal microwave effects could be responsible for these differences. Much of the debate has centered on the question of whether the electromagnetic field can exert a direct influence on a chemical transformation outside of the simple macroscopic change in bulk reaction temperature. In 2009, our group developed a relatively simple "trick" that allows us to rapidly evaluate whether an observed effect seen in a microwave-assisted reaction results from a purely thermal phenomenon, or involves specific or nonthermal microwave effects. We use a microwave reaction vessel made from silicon carbide (SiC) ceramic. Because of its high microwave absorptivity, the vessel shields its contents from the electromagnetic field. As a result, we can easily mimic a conventionally heated autoclave experiment inside a microwave reactor under carefully controlled reaction conditions. The switch from an almost microwave transparent glass (Pyrex) to a strongly microwave absorbing SiC reaction vial under otherwise identical reaction conditions (temperature profiles, pressure, stirring speed) then allows us to carefully evaluate the influence of the electromagnetic field on the particular chemical transformation. Over the past five years we have subjected a wide variety of chemical transformations, including organic reactions, preparations of inorganic nanoparticles, and the hydrolysis of proteins, to the "SiC test." In nearly all of the studied examples, we obtained identical results from reactions carried out in Pyrex vials and those carried out in SiC vials. The data obtained from these investigations confirm that in the overwhelming majority of cases a bulk temperature phenomenon drives the enhancements in microwave chemistry and that the electromagnetic field has no direct influence on the reaction pathway.
Saucier, Caroline; Adebayo, Matthew A; Lima, Eder C; Cataluña, Renato; Thue, Pascal S; Prola, Lizie D T; Puchana-Rosero, M J; Machado, Fernando M; Pavan, Flavio A; Dotto, G L
2015-05-30
Microwave-induced chemical activation process was used to prepare an activated carbon from cocoa shell for efficient removal of two anti-inflammatories, sodium diclofenac (DFC) and nimesulide (NM), from aqueous solutions. A paste was obtained from a mixture of cocoa shell and inorganic components; with a ratio of inorganic: organic of 1 (CSC-1.0). The mixture was pyrolyzed in a microwave oven in less than 10 min. The CSC-1.0 was acidified with a 6 mol L(-1) HCl under reflux to produce MWCS-1.0. The CSC-1.0 and MWCS-1.0 were characterized using FTIR, SEM, N2 adsorption/desorption curves, X-ray diffraction, and point of zero charge (pHpzc). Experimental variables such as initial pH of the adsorbate solutions and contact time were optimized for adsorptive characteristics of MWCS-1.0. The optimum pH for removal of anti-inflammatories ranged between 7.0 and 8.0. The kinetic of adsorption was investigated using general order, pseudo first-order and pseu do-second order kinetic models. The maximum amounts of DCF and NM adsorbed onto MWCS-1.0 at 25 °C are 63.47 and 74.81 mg g(-1), respectively. The adsorbent was tested on two simulated hospital effluents. MWCS-1.0 is capable of efficient removal of DCF and NM from a medium that contains high sugar and salt concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.
Wu, Lijie; Hu, Mingzhu; Li, Zhanchao; Song, Ying; Yu, Cui; Zhang, Yupu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming
2015-02-01
A novel extraction method, dynamic microwave-assisted extraction coupled with homogeneous ionic liquid microextraction, was developed for the determination of triazine herbicides, including desmetryn, terbumeton, propazine, terbuthylazine, dimethametryn, and dipropetryn in fresh vegetable samples by high performance liquid chromatography (HPLC). In the developed method, 120 μL of 1-butyl-3-methylimidazolium tetrafluoroborate ([C4MIM][BF4]) was added to 10 mL of aqueous solution containing 0.3 g of NaCl to obtained the extraction solvent. Six triazines could be extracted completely within 4 min by the present method. Then, [NH4][PF6] was added into the extract to form a water-insoluble ionic liquid [C4MIM][PF6] via a simple metathesis reaction, and the analytes were enriched into the ionic liquid phase. After centrifugation and dilution with acetonitrile, the resulting solution was analyzed directly by HPLC. The effects of some experimental parameters, including type and volume of ionic liquid, volume of extraction solvent, amount of ion-pairing agent [NH4][PF6], salt concentration, microwave power, and flow rate of extraction solvent on the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 2.50-250.00 μg kg(-1), with the correlation coefficients ranging from 0.9989 to 0.9999. When the present method was applied to the analysis of vegetable samples, satisfactory recoveries were obtained in the range of 76.8%-106.9%, and relative standard deviations were lower than 9.8%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhao-Qian; Lin, Xin-Shan; Zhang, Lei
2012-09-15
Highlights: ► Bi{sub 2}GeO{sub 5} nanoflakes were successfully synthesized via a microwave-assisted solution-phase approach. ► Ag nanoparticles were deposited on the Bi{sub 2}GeO{sub 5} nanoflakes by a photoreduction procedure. ► Catalytic activity of the Ag/Bi{sub 2}GeO{sub 5} nanocomposite in the photo-degradation of rhodamine B (RhB) was much higher than that of pure Bi{sub 2}GeO{sub 5}. -- Abstract: In this work, a facile and rapid microwave-assisted hydrothermal route has been developed to prepare Bi{sub 2}GeO{sub 5} nanoflakes. Ag nanoparticles were subsequently deposited on the Bi{sub 2}GeO{sub 5} nanoflakes by a photoreduction procedure. The phases and morphologies of the products were characterizedmore » by powder X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV–vis diffuse reflectance spectroscopy. Photocatalytic experiments indicate that such Ag/Bi{sub 2}GeO{sub 5} nanocomposite possesses higher photocatalytic activity for RhB degradation under UV light irradiation in comparison to pure Bi{sub 2}GeO{sub 5}. The amount of Ag in the nanocomposite affects the catalytic activity, and 3 wt% Ag showed the highest photodegradation efficiency. Moreover, the catalyst remains active after four consecutive tests. The present study provides a new strategy to design composite materials with enhanced photocatalytic activity.« less
Synthesis and properties of Ag/ZnO/g-C3N4 ternary micro/nano composites by microwave-assisted method
NASA Astrophysics Data System (ADS)
Zhang, Zijie; Li, Xuexue; Chen, Haitao; Shao, Gang; Zhang, Rui; Lu, Hongxia
2018-01-01
Ag/ZnO/g-C3N4 ternary micro/nanocomposites, as novel visible-light-driven photocatalysts, were prepared by a simple and convenient microwave-assisted method. The resulting ternary structure micro/nano composites were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy and infrared radiation techniques to examine its phase structure, valence state, morphological, thermal and optical properties. Well crystallized Ag/ZnO/g-C3N4 ternary micro/nano composites were synthesized under microwave-radiation for 15 min with the output of 240 W. Further experiments indicated Ag(5.0mol%)/ZnO/g-C3N4 photocatalyst in degradation of methylene blue exhibited an outstanding photocatalytic activity and its reaction rate constant (k, 0.0084 min-1) is 7.5, 2.4 2.9 and 3.5 times higher than that of monolithic ZnO (k, 0.0011 min-1), ZnO/g-C3N4(k, 0.0035 min-1), Ag(5 mol%)/ZnO(k, 0.0029 min-1) and Ag(5mol%)/g-C3N4 (k, 0.0024 min-1) respectively. Finally, a possible photocatalytic mechanism of Ag/ZnO/g-C3N4 photocatalyst in degradation process was proposed. This work provides a feasible strategy to synthesize an efficient ZnO-based photocatalyst which combines structure and properties of different dimensional components and made this ternary system an exciting candidate for sunlight-driven photocatalytic water treatment.
Khanage, Shantaram Gajanan; Mohite, Popat Baban; Pandhare, Ramdas Bhanudas; Raju, S. Appala
2014-01-01
Purpose: An efficient technique has been developed for microwave assisted synthesis of 1-[5-(substituted aryl)-1H-pyrazol-3-yl]-3,5-diphenyl-1H-1,2,4-triazole as antinociceptive and antimicrobial agents. Methods: The desired compounds (S1-S10) were synthesized by the microwave irradiation via cyclization of formerly synthesized chalcones of 3,5-diphenyl-1H-1,2,4-triazole and hydrazine hydrate in mild acidic condition. All newly synthesized compounds were subjected to study their antinociceptive and antimicrobial activity. The analgesic potential of compounds was tested by acetic acid induced writhing response and hot plate method. The MIC values for antimicrobial activity were premeditated by liquid broth method. Results: The compounds S1, S2, S4, S6 and S10 were found to be excellent peripherally acting analgesic agents when tested on mice by acetic acid induced writhing method and compounds S3, S6 and S1 at dose level of 100 mg/kg were exhibited superior centrally acting antinociceptive activity when tested by Eddy’s hot plate method. In antimicrobial activity compound S10 found to be broad spectrum antibacterial agent at MIC value of 15.62 µg/ml and compound S6 was exhibited antifungal potential at 15.62 µg/mL on both fungal strains. Conclusion: Some novel pyrazoles clubbed with 1,2,4-triazole derivatives were synthesized and evaluated as possible antimicrobial, centrally and peripherally acting analgesics. PMID:24511473
Saffron Samples of Different Origin: An NMR Study of Microwave-Assisted Extracts
Sobolev, Anatoly P.; Carradori, Simone; Capitani, Donatella; Vista, Silvia; Trella, Agata; Marini, Federico; Mannina, Luisa
2014-01-01
An NMR analytical protocol is proposed to characterize saffron samples of different geographical origin (Greece, Spain, Hungary, Turkey and Italy). A microwave-assisted extraction procedure was developed to obtain a comparable recovery of metabolites with respect to the ISO specifications, reducing the solvent volume and the extraction time needed. Metabolite profiles of geographically different saffron extracts were compared showing significant differences in the content of some metabolites. PMID:28234327
Microwave-assisted extraction of green coffee oil and quantification of diterpenes by HPLC.
Tsukui, A; Santos Júnior, H M; Oigman, S S; de Souza, R O M A; Bizzo, H R; Rezende, C M
2014-12-01
The microwave-assisted extraction (MAE) of 13 different green coffee beans (Coffea arabica L.) was compared to Soxhlet extraction for oil obtention. The full factorial design applied to the microwave-assisted extraction (MAE), related to time and temperature parameters, allowed to develop a powerful fast and smooth methodology (10 min at 45°C) compared to a 4h Soxhlet extraction. The quantification of cafestol and kahweol diterpenes present in the coffee oil was monitored by HPLC/UV and showed satisfactory linearity (R(2)=0.9979), precision (CV 3.7%), recovery (<93%), limit of detection (0.0130 mg/mL), and limit of quantification (0.0406 mg/mL). The space-time yield calculated on the diterpenes content for sample AT1 (Arabica green coffee) showed a six times higher value compared to the traditional Soxhlet method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pluhácek, T; Hanzal, J; Hendrych, J; Milde, D
2016-04-01
The monitoring of inorganic impurities in active pharmaceutical ingredients plays a crucial role in the quality control of the pharmaceutical production. The heavy metals and residue on ignition/sulfated ash methods employing microwave-assisted digestion with concentrated nitric acid have been demonstrated as alternatives to inappropriate compendial methods recommended in United States Pharmacopoeia (USP) and European Pharmacopoeia (Ph. Eur.). The recoveries using the heavy metals method ranged between 89% and 122% for nearly all USP and Ph. Eur. restricted elements as well as the recoveries of sodium sulfate spikes were around 100% in all tested matrices. The proposed microwave-assisted digestion method allowed simultaneous decomposition of 15 different active pharmaceutical ingredients with sample weigh up to 1 g. The heavy metals and sulfated ash procedures were successfully applied to the determination of heavy metals and residue on ignition/sulfated ash content in mycophenolate mofetil, nicergoline and silymarin.
High power microwave generator
Ekdahl, Carl A.
1986-01-01
A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.
High power microwave generator
Ekdahl, C.A.
1983-12-29
A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.
Navarro, P; Cortazar, E; Bartolomé, L; Deusto, M; Raposo, J C; Zuloaga, O; Arana, G; Etxebarria, N
2006-09-22
The feasibility of different clean-up procedures was studied for the determination of polycyclic aromatic hydrocarbons (PAHs) in biota samples such as oysters, mussels and fish liver. In this sense, once the samples were extracted--essentially with acetone and in a microwave system--and before they could be analysed by gas chromatography-mass spectrometry (GC-MS), three different approaches were studied for the clean-up step: solid phase extraction (SPE), microwave-assisted saponification (MAS) and gel permeation chromatography (GPC). The main aim of this work was to maximise the recoveries of PAHs and to minimise the presence of interfering compounds in the last extract. In the case of SPE, Florisil cartridges of 1, 2 and 5 g, and silica cartridges of 5 g were studied. In that case, and with oysters and mussels, microwave-assisted extraction and 5 g Florisil cartridges provided good results. In addition, the concentrations obtained for Standard Reference Material (SRM) NIST 2977 (mussel tissue) were in good agreement with the certified values. In the case of microwave-assisted saponification, the extracts were not as clean as those obtained with 5 g Florisil and this fact lead to overestimate the concentration of the heaviest PAHs. Finally, the cleanest extracts were obtained by GPC. The method was successfully applied to mussels, oysters and hake liver, and the results obtained for NIST 2977 (mussel tissue) were within the confidence interval of the certified reference material for most of the certified analytes.
The effect of pressure on microwave-enhanced Diels-Alder reactions. A case study.
Kaval, Nadya; Dehaen, Wim; Kappe, C Oliver; Van der Eycken, Erik
2004-01-21
It is demonstrated that microwave-assisted Diels-Alder reactions of substituted 2(1H)-pyrazinones with ethylene are significantly more effective utilizing pre-pressurized (up to 10 bar) reaction vessels.
NASA Astrophysics Data System (ADS)
Sari, A. M.; Ishartani, D.; Dewanty, P. S.
2018-01-01
The aims of this research are to study the effect of microwave power (119.7 W, 199.5 W and 279.3 W) and irradiation time (6, 9 and 12 min) on pectin extraction by using Microwave Assisted Extraction (MAE) with acetic acid and to do a preliminary characterization of pectin from watermelon rinds. A randomized factorial design with two factors was used to determine the effect of microwave power and processing time on the yield, equivalent weight, degree of methoxylation (DM), galacturonic acid content (GA) and the degree of esterification (DE) of extracted pectin. The results showed that extracted pectin from watermelon rinds using MAE method have yield ranged from 3.925% to 5.766%, with equivalent weight ranged from 1249.702 to 2007.756. Extracted pectin have a DM value ranged from 3.89% to 10.81%. Galacturonic acid content that meets with IPPA standard resulted from extraction condition of 279.3-watt microwave power for 9 min and 12 min. The degree of esterification (DE) value ranged from 56.86% to 85.76%, and this value exhibited a relatively high methoxyl pectin (>50%). The best pectin properties was obtained at a microwave power of 279.3 watts for 12 min.
Chen, Zhi; Zhang, Wei; Tang, Xunyou; Fan, Huajun; Xie, Xiujuan; Wan, Qiang; Wu, Xuehao; Tang, James Z
2016-06-25
A novel and rapid method for simultaneous extraction and separation of the different polysaccharides from Semen Cassiae (SC) was developed by microwave-assisted aqueous two-phase extraction (MAATPE) in a one-step procedure. Using ethanol/ammonium sulfate system as a multiphase solvent, the effects of MAATPE on the extraction of polysaccharides from SC such as the composition of the ATPS, extraction time, temperature and solvent-to-material ratio were investigated by UV-vis analysis. Under the optimum conditions, the yields of polysaccharides were 4.49% for the top phase, 8.80% for the bottom phase and 13.29% for total polysaccharides, respectively. Compared with heating solvent extraction and ultrasonic assisted extraction, MAATPE exhibited the higher extraction yields in shorter time. Fourier-transform infrared spectra showed that two polysaccharides extracted from SC to the top and bottom phases by MAATPE were different from each other in their chemical structures. Through acid hydrolysis and PMP derivatization prior to HPLC, analytical results by indicated that a polysaccharide of the top phases was a relatively homogeneous homepolysaccharide composed of dominant gucose glucose while that of the bottom phase was a water-soluble heteropolysaccharide with multiple components of glucose, xylose, arabinose, galactose, mannose and glucuronic acid. Molar ratios of monosaccharides were 95.13:4.27:0.60 of glucose: arabinose: galactose for the polysaccharide from the top phase and 62.96:14.07:6.67: 6.67:5.19:4.44 of glucose: xylose: arabinose: galactose: mannose: glucuronic acid for that from the bottom phase, respectively. The mechanism for MAATPE process was also discussed in detail. MAATPE with the aid of microwave and the selectivity of the ATPS not only improved yields of the extraction, but also obtained a variety of polysaccharides. Hence, it was proved as a green, efficient and promising alternative to simultaneous extraction of polysaccharides from SC. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bidirectional microwave-mechanical-optical transducer in a dilution refrigerator
NASA Astrophysics Data System (ADS)
Burns, Peter S.; Higginbotham, Andrew P.; Peterson, Robert W.; Urmey, Maxwell D.; Kampel, Nir S.; Menke, Timothy; Cicak, Katarina; Simmonds, Raymond. W.; Regal, Cindy A.; Lehnert, Konrad W.
Transferring quantum states between microwave and optical networks would be a powerful resource for quantum communication and computation. Our approach is to simultaneously couple one mode of a micromechanical oscillator to a resonant microwave circuit and a high-finesse optical cavity. Building on previous work demonstrating bidirectional and efficient classical conversion at 4 K, a new microwave-to-optical transducer is operated at 0.1 K and preparations are underway to operate it in the quantum regime. To improve transfer efficiency, we characterize and implement wireless microwave access to the converter chip. Transfer efficiency of the device is measured, and loss in the LC circuit due to laser light is characterized. We acknowledge support from AFOSR MURI Grant FA9550-15-1-0015 and PFC National Science Foundation Grant 1125844.
Muley, Pranjali D; Boldor, Dorin
2012-01-01
Use of advanced microwave technology for biodiesel production from vegetable oil is a relatively new technology. Microwave dielectric heating increases the process efficiency and reduces reaction time. Microwave heating depends on various factors such as material properties (dielectric and thermo-physical), frequency of operation and system design. Although lab scale results are promising, it is important to study these parameters and optimize the process before scaling up. Numerical modeling approach can be applied for predicting heating and temperature profiles including at larger scale. The process can be studied for optimization without actually performing the experiments, reducing the amount of experimental work required. A basic numerical model of continuous electromagnetic heating of biodiesel precursors was developed. A finite element model was built using COMSOL Multiphysics 4.2 software by coupling the electromagnetic problem with the fluid flow and heat transfer problem. Chemical reaction was not taken into account. Material dielectric properties were obtained experimentally, while the thermal properties were obtained from the literature (all the properties were temperature dependent). The model was tested for the two different power levels 4000 W and 4700 W at a constant flow rate of 840ml/min. The electric field, electromagnetic power density flow and temperature profiles were studied. Resulting temperature profiles were validated by comparing to the temperatures obtained at specific locations from the experiment. The results obtained were in good agreement with the experimental data.
Ultra-Fast Microwave Synthesis of ZnO Nanorods on Cellulose Substrates for UV Sensor Applications
Pimentel, Ana; Samouco, Ana; Araújo, Andreia; Martins, Rodrigo; Fortunato, Elvira
2017-01-01
In the present work, tracing and Whatman papers were used as substrates to grow zinc oxide (ZnO) nanostructures. Cellulose-based substrates are cost-efficient, highly sensitive and environmentally friendly. ZnO nanostructures with hexagonal structure were synthesized by hydrothermal under microwave irradiation using an ultrafast approach, that is, a fixed synthesis time of 10 min. The effect of synthesis temperature on ZnO nanostructures was investigated from 70 to 130 °C. An Ultra Violet (UV)/Ozone treatment directly to the ZnO seed layer prior to microwave assisted synthesis revealed expressive differences regarding formation of the ZnO nanostructures. Structural characterization of the microwave synthesized materials was carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The optical characterization has also been performed. The time resolved photocurrent of the devices in response to the UV turn on/off was investigated and it has been observed that the ZnO nanorod arrays grown on Whatman paper substrate present a responsivity 3 times superior than the ones grown on tracing paper. By using ZnO nanorods, the surface area-to-volume ratio will increase and will improve the sensor sensibility, making these types of materials good candidates for low cost and disposable UV sensors. The sensors were exposed to bending tests, proving their high stability, flexibility and adaptability to different surfaces. PMID:29140304
NASA Astrophysics Data System (ADS)
Niu, Jinfen; Dai, Peixuan; Zhang, Qian; Yao, Binghua; Yu, Xiaojiao
2018-02-01
In the present paper, a novel composite of BiOI/rGO with excellent visible-light photocatalytic activity was successfully fabricated via very different simple, fast and mild rapid microwave hydrothermal method. The BiOI/rGO -1(BG-1) was donated as a simple chemical mechanical and the BiOI/rGO -2(BG-2) was donated as one-step rapid microwave hydrothermal method. The BG-1 were composed of the BiOI microspheres with a diameter of about 1 μm and mixed heterogeneously with graphene. While, the BG-2 were consist of the BiOI nanoplates with the thickness of approximately 20 nm dispersed heterogeneously on the surface of rGO. The degradation of 40 mg/L methylene blue (MB) and 20 mg/L levofloxacin (LEV) under visible light irradiation can reach about 11 and 3 times than that of P25, respectively. Furthermore, the reactive species of hole was determined to dominant the photodegradation process. The intensive photocatlytic could ascribe to more effective electron transportation and separations, this conclusion was different with other studies. A possible photocatalytic mechanism of BG-2 was also proposed.
2016-01-01
Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 GHz, 2–20 W) up to 120 s. The extent of damage to synthetic skin samples, assessed by the change in the surface area of skin samples, was negligible for microwave power of ≤7 W and more extensive damage (>50%) to skin samples occurred when exposed to >7 W at initial temperature range of 20–39 °C. The initial temperature of synthetic skin samples significantly affected the extent of change in temperature of synthetic skin samples during their exposure to microwave heating. The proof of principle use of the MAMAD technique was demonstrated for the decrystallization of a model biological crystal (l-alanine) placed under synthetic skin samples in the presence of gold nanoparticles. Our results showed that the size (initial size ∼850 μm) of l-alanine crystals can be reduced up to 60% in 120 s without damage to synthetic skin samples using the MAMAD technique. Finite-difference time-domain-based simulations of the electric field distribution of an 8 GHz monomode microwave radiation showed that synthetic skin samples are predicted to absorb ∼92.2% of the microwave radiation. PMID:27917407
Co-pyrolysis of microwave-assisted acid pretreated bamboo sawdust and soapstock.
Wang, Yunpu; Wu, Qiuhao; Duan, Dengle; Zhang, Yayun; Ruan, Roger; Liu, Yuhuan; Fu, Guiming; Zhang, Shumei; Zhao, Yunfeng; Dai, Leilei; Fan, Liangliang
2018-05-30
Fast microwave-assisted co-pyrolysis of pretreated bamboo sawdust and soapstock was conducted. The pretreatment process was carried out under microwave irradiation. The effects of microwave irradiation temperature, irradiation time, and concentration of hydrochloric acid on product distribution from co-pyrolysis and the relative contents of the major components in bio-oil were investigated. A maximum bio-oil yield of 40.00 wt.% was obtained at 200 °C for 60 min with 0.5 M hydrochloric acid. As pretreatment temperature, reaction time and acid concentration increased, respectively, the relative contents of phenols, diesel fraction (C12 + aliphatics), and other oxygenates decreased. The gasoline fraction (including C5-C12 aliphatics and aromatics) ranged from 55.77% to 73.30% under various pretreatment conditions. Therefore, excessive reaction time and concentration of acid are not beneficial to upgrading bio-oil. Copyright © 2018 Elsevier Ltd. All rights reserved.
Microwave-assisted synthesis of triple-helical, collagen-mimetic lipopeptides
Banerjee, Jayati; Hanson, Andrea J; Muhonen, Wallace W; Shabb, John B; Mallik, Sanku
2018-01-01
Collagen-mimetic peptides and lipopeptides are widely used as substrates for matrix degrading enzymes, as new biomaterials for tissue engineering, as drug delivery systems and so on. However, the preparation and subsequent purification of these peptides and their fatty-acid conjugates are really challenging. Herein, we report a rapid microwave-assisted, solid-phase synthetic protocol to prepare the fatty-acid conjugated, triple-helical peptides containing the cleavage site for the enzyme matrix metalloproteinase-9 (MMP-9). We employed a PEG-based resin as the solid support and the amino acids were protected with Fmoc- and tert-butyl groups. The amino acids were coupled at 50 °C (25 W of microwave power) for 5 min. The deprotection reactions were carried out at 75 °C (35 W of microwave power) for 3 min. Using this protocol, a peptide containing 23 amino acids was synthesized and then conjugated to stearic acid in 14 h. PMID:20057380
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lu; Lei, Hanwu; Ren, Shoujie
Microwave assisted catalytic pyrolysis was investigated to convert Douglas fir pellets to bio-oils by a ZSM-5 Zeolite catalyst. A central composite experimental design (CCD) was used to optimize the catalytic pyrolysis process. The effects of reaction time, temperature and catalyst to biomass ratio on the bio-oil, syngas, and biochar yields were determined. GC/MS analysis results showed that the bio-oil contained a series of important and useful chemical compounds. Phenols, guaiacols, and aromatic hydrocarbons were the most abundant compounds which were about 50-82 % in bio-oil depending on the pyrolysis conditions. Comparison between the bio-oils from microwave pyrolysis with and withoutmore » catalyst showed that the catalyst increased the content of aromatic hydrocarbons and phenols. A reaction pathway was proposed for microwave assisted catalyst pyrolysis of Douglas fir pellets.« less
System to continuously produce carbon fiber via microwave assisted plasma processing
White, Terry L [Knoxville, TN; Paulauskas, Felix L [Knoxville, TN; Bigelow, Timothy S [Knoxville, TN
2010-11-02
A system to continuously produce fully carbonized or graphitized carbon fibers using microwave-assisted plasma (MAP) processing comprises an elongated chamber in which a microwave plasma is excited in a selected gas atmosphere. Fiber is drawn continuously through the chamber, entering and exiting through openings designed to minimize in-leakage of air. There is a gradient of microwave power within the chamber with generally higher power near where the fiber exits and lower power near where the fiber enters. Polyacrylonitrile (PAN), pitch, or any other suitable organic/polymeric precursor fibers can be used as a feedstock for the inventive system. Oxidized or partially oxidized PAN or pitch or other polymeric fiber precursors are run continuously through a MAP reactor in an inert, non-oxidizing atmosphere to heat the fibers, drive off the unwanted elements such as oxygen, nitrogen, and hydrogen, and produce carbon or graphite fibers faster than conventionally produced carbon fibers.
Optimisation of microwave-assisted processing in production of pineapple jam
NASA Astrophysics Data System (ADS)
Ismail, Nur Aisyah Mohd; Abdullah, Norazlin; Muhammad, Norhayati
2017-10-01
Pineapples are available all year round since they are unseasonal fruits. Due to the continuous harvesting of the fruit, the retailers and farmers had to find a solution such as the processing of pineapple into jam, to treat the unsuccessfully sold pineapples. The direct heating of pineapple puree during the production of pineapple jam can cause over degradation of quality of the fresh pineapple. Thus, this study aims to optimise the microwave-assisted processing conditions for producing pineapple jam which could reduce water activity and meets minimum requirement for pH and total soluble solids contents of fruit jam. The power and time of the microwave processing were chosen as the factors, while the water activity, pH and total soluble solids (TSS) content of the pineapple jam were determined as responses to be optimised. The microwave treatment on the pineapple jam was able to give significant effect on the water activity and TSS content of the pineapple jam. The optimum power and time for the microwave processing of pineapple jam is 800 Watt and 8 minutes, respectively. The use of domestic microwave oven for the pineapple jam production results in acceptable pineapple jam same as conventional fruit jam sold in the marketplace.
Shuang-Chen, Ma; Yao, Juan-Juan; Gao, Li
2012-01-01
Experimental studies were carried out on flue gas denitrification using activated carbon irradiated by microwave. The effects of microwave irradiation power (reaction temperature), the flow rate of flue gas, the concentration of NO and the flue gas coexisting compositions on the adsorption property of activated carbon and denitrification efficiency were investigated. The results show that: the higher of microwave power, the higher of denitrification efficiency; denitrification efficiency would be greater than 99% and adsorption capacity of NO is relatively stable after seven times regeneration if the microwave power is more than 420 W; adsorption capacity of NO in activated carbon bed is 33.24 mg/g when the space velocity reaches 980 per hour; adsorption capacity declines with increasing of the flow rate of flue gas; the change in denitrification efficiency is not obvious with increasing oxygen content in the flue gas; and the maximum adsorption capacity of NO was observed when moisture in flue gas was about 5.88%. However, the removal efficiency of NO reduces with increasing moisture, and adsorption capacity and removal efficiency of NO reduce with increasing of SO2 concentration in the flue gas.
Engelberg, Jesse A.; Giberson, Richard T.; Young, Lawrence J.T.; Hubbard, Neil E.
2014-01-01
Microwave methods of fixation can dramatically shorten fixation times while preserving tissue structure; however, it remains unclear if adequate tissue antigenicity is preserved. To assess and validate antigenicity, robust quantitative methods and animal disease models are needed. We used two mouse mammary models of human breast cancer to evaluate microwave-assisted and standard 24-hr formalin fixation. The mouse models expressed four antigens prognostic for breast cancer outcome: estrogen receptor, progesterone receptor, Ki67, and human epidermal growth factor receptor 2. Using pathologist evaluation and novel methods of quantitative image analysis, we measured and compared the quality of antigen preservation, percentage of positive cells, and line plots of cell intensity. Visual evaluations by pathologists established that the amounts and patterns of staining were similar in tissues fixed by the different methods. The results of the quantitative image analysis provided a fine-grained evaluation, demonstrating that tissue antigenicity is preserved in tissues fixed using microwave methods. Evaluation of the results demonstrated that a 1-hr, 150-W fixation is better than a 45-min, 150-W fixation followed by a 15-min, 650-W fixation. The results demonstrated that microwave-assisted formalin fixation can standardize fixation times to 1 hr and produce immunohistochemistry that is in every way commensurate with longer conventional fixation methods. PMID:24682322
Kumar, Satyanshu; Dhanani, Tushar; Shah, Sonal
2014-10-01
Andrographis paniculata (Burm.f.) wall.ex Nees (Acanthaceae) or Kalmegh is an important medicinal plant finding uses in many Ayurvedic formulations. Diterpenoid compounds andrographolides (APs) are the main bioactive phytochemicals present in leaves and herbage of A. paniculata. The efficiency of supercritical fluid extraction (SFE) using carbon dioxide was compared with the solid-liquid extraction techniques such as solvent extraction, ultrasound-assisted solvent extraction and microwave-assisted solvent extraction with methanol, water and methanol-water as solvents. Also a rapid and validated reverse-phase high-performance liquid chromatography-diode array detection method was developed for the simultaneous determination of the three biologically active compounds, AP, neoandrographolide and andrograpanin, in the extracts of A. paniculata. Under the best SFE conditions tested for diterpenoids, which involved extraction at 60°C and 100 bar, the extractive efficiencies were 132 and 22 µg/g for AP and neoandrographolide, respectively. The modifier percentage significantly affected the extraction efficiency. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Magnetisation switching of ECC grains in microwave-assisted magnetic recording
NASA Astrophysics Data System (ADS)
Greaves, Simon John; Muraoka, Hiroaki; Kanai, Yasushi
2018-05-01
Microwave-assisted magnetic recording was investigated using a planar write head and exchange-coupled composite (ECC) media. When recording on ECC media using a planar head field distribution and the high frequency field generated by a spin torque oscillator it was possible to switch the media magnetisation into the opposite direction to the head field, i.e. the media effectively had a negative coercive field. The conditions for this effect to occur are discussed.
NASA Astrophysics Data System (ADS)
Zhang, Linglin; Li, Yingguang; Zhou, Jing
2018-01-01
Microwave cuing technology is a promising alternative to conventional autoclave curing technology in high efficient and energy saving processing of polymer composites. Dielectric properties of composites are key parameters related to the energy conversion efficiency during the microwave curing process. However, existing methods of dielectric measurement cannot be applied to the microwave curing process. This paper presented an offline test method to solve this problem. Firstly, a kinetics model of the polymer composites under microwave curing was established based on differential scanning calorimetry to describe the whole curing process. Then several specially designed samples of different feature cure degrees were prepared and used to reflect the dielectric properties of the composite during microwave curing. It was demonstrated to be a feasible plan for both test accuracy and efficiency through extensive experimental research. Based on this method, the anisotropic complex permittivity of a carbon fiber/epoxy composite during microwave curing was accurately determined. Statistical results indicated that both the dielectric constant and dielectric loss of the composite increased at the initial curing stage, peaked at the maximum reaction rate point and decreased finally during the microwave curing process. Corresponding mechanism has also been systematically investigated in this work.
Reiz, Bela; Li, Liang
2010-09-01
Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.
High Efficiency Microwave Power Amplifier: From the Lab to Industry
NASA Technical Reports Server (NTRS)
Sims, William Herbert, III; Bell, Joseph L. (Technical Monitor)
2001-01-01
Since the beginnings of space travel, various microwave power amplifier designs have been employed. These included Class-A, -B, and -C bias arrangements. However, shared limitation of these topologies is the inherent high total consumption of input power associated with the generation of radio frequency (RF)/microwave power. The power amplifier has always been the largest drain for the limited available power on the spacecraft. Typically, the conversion efficiency of a microwave power amplifier is 10 to 20%. For a typical microwave power amplifier of 20 watts, input DC power of at least 100 watts is required. Such a large demand for input power suggests that a better method of RF/microwave power generation is required. The price paid for using a linear amplifier where high linearity is unnecessary includes higher initial and operating costs, lower DC-to-RF conversion efficiency, high power consumption, higher power dissipation and the accompanying need for higher capacity heat removal means, and an amplifier that is more prone to parasitic oscillation. The first use of a higher efficiency mode of power generation was described by Baxandall in 1959. This higher efficiency mode, Class-D, is achieved through distinct switching techniques to reduce the power losses associated with switching, conduction, and gate drive losses of a given transistor.
Khamlich, S; Mokrani, T; Dhlamini, M S; Mothudi, B M; Maaza, M
2016-01-01
Simonkolleite (Zn5(OH)8Cl2·H2O) nanoplatelets has been deposited on nickel foam-supported graphene by using an efficient microwave-assisted hydrothermal method. The three-dimensional (3D) porous microstructure of the as-fabricated nickel foam-graphene/simonkolleite (NiF-G/SimonK) composite is beneficial to electrolyte penetration and ions exchange, whereas graphene provide improved electronic conductivity. Structural and morphological characterizations confirmed the presence of highly crystalline hexagonal-shaped nanoplatelets of simonkolleite. Field emission scanning electron microscope (FE-SEM) of the NiF-G/SimonK composite revealed that the SimonK nanoplatelets were evenly distributed on the surface of NiF-G and interlaced with each other, resulting in a higher specific surface area of 35.69 m(2) g(-1) compared to SimonK deposited directly on NiF 17.2 m(2) g(-1). Electrochemical measurements demonstrated that the NiF-G/SimonK composite exhibit a high specific capacitance of 836 F g(-1) at a current density of 1 A g(-1), and excellent rate capability and cycling stability with capacitance retention of 92% after 5000 charge/discharge cycles. Copyright © 2015 Elsevier Inc. All rights reserved.
Moret, Sabrina; Scolaro, Marianna; Barp, Laura; Purcaro, Giorgia; Conte, Lanfranco S
2016-04-01
A high throughput, high-sensitivity procedure, involving simultaneous microwave-assisted extraction (MAS) and unsaponifiable extraction, followed by on-line liquid chromatography (LC)-gas chromatography (GC), has been optimised for rapid and efficient extraction and analytical determination of mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH) in cereal-based products of different composition. MAS has the advantage of eliminating fat before LC-GC analysis, allowing an increase in the amount of sample extract injected, and hence in sensitivity. The proposed method gave practically quantitative recoveries and good repeatability. Among the different cereal-based products analysed (dry semolina and egg pasta, bread, biscuits, and cakes), egg pasta packed in direct contact with recycled paperboard had on average the highest total MOSH level (15.9 mg kg(-1)), followed by cakes (10.4 mg kg(-1)) and bread (7.5 mg kg(-1)). About 50% of the pasta and bread samples and 20% of the biscuits and cake samples had detectable MOAH amounts. The highest concentrations were found in an egg pasta in direct contact with recycled paperboard (3.6 mg kg(-1)) and in a milk bread (3.6 mg kg(-1)). Copyright © 2015 Elsevier Ltd. All rights reserved.
Fujita, Hiroyuki; Honda, Katsuhisa; Hamada, Noriaki; Yasunaga, Genta; Fujise, Yoshihiro
2009-02-01
Validation of a high-throughput measurement system with microwave-assisted extraction (MAE), fully automated sample preparation device (SPD), and gas chromatography-electron capture detector (GC-ECD) for the determination of polychlorinated biphenyls (PCBs) in minke whale blubber was performed. PCB congeners accounting for > 95% of the total PCBs burden in blubber were efficiently extracted with a small volume (20 mL) of n-hexane using MAE due to simultaneous saponification and extraction. Further, the crude extract obtained by MAE was rapidly purified and automatically substituted to a small volume (1 mL) of toluene using SPD without using concentrators. Furthermore, the concentration of PCBs in the purified and concentrated solution was accurately determined by GC-ECD. Moreover, the result of accuracy test using a certified material (SRM 1588b; Cod liver oil) showed good agreement with the NIST certified concentration values. In addition, the method quantification limit of total-PCB in whale blubbers was 41 ng g(-1). This new measurement system for PCBs takes only four hours. Consequently, it indicated this method is the most suitable for the monitoring and screening of PCBs in the conservation of the marine ecosystem and safe distribution of foods.
NASA Astrophysics Data System (ADS)
Khan, Muhammad Riaz; Zaib, Sumera; Rauf, Muhammad Khawar; Ebihara, Masahiro; Badshah, Amin; Zahid, Muhammad; Nadeem, Muhammad Arif; Iqbal, Jamshed
2018-07-01
An efficient and facile microwave-assisted solution phase parallel synthesis for a 38-member library of N-aroyl-N‧-aryl thioureas was accomplished successfully. These analogues (1-38) were synthesized under identical set of conditions. It has been observed that the reaction time was drastically reduced from 8 to 12 h for conventional methods to only 10-15 mins. Products obtained were more than 98% pure, as characterized by elemental analysis along with FT-IR and 1H, 13C NMR. The solid-phase structural analysis was accomplished by single crystal XRD analysis. The urease inhibitory potential of synthetic compounds was tested and compounds were found to inhibit urease in moderate to significant manner. Compound 17 was the most potent inhibitor of urease having an IC50 value of 0.17 ± 0.1 μM. To check the cytotoxic profile of the derivatives, lungs cancer cell lines were used. Cytotoxicity analysis revealed remarkable toxicity of the compounds against tested lungs carcinoma and compounds showed variation in inhibition activity due to the substituents attached. The molecular docking studies were carried out to identify the possible binding modes of potent inhibitors in the active site of enzyme. The results suggested that the compounds can be further investigated and used against different cancers.
Fuentes, Edwar; Báez, María E; Díaz, Juan
2009-12-18
An effective extraction method was devised for the determination of organophosphorus pesticides (OPPs) in olive and avocado oil samples, using atmospheric pressure microwave-assisted liquid-liquid extraction (APMAE) and solid-phase extraction or low-temperature precipitation as clean-up step. A simple glass system equipped with an air-cooled condenser was designed as an extraction vessel. The pesticides were partitioned between acetonitrile and oil solution in hexane. Analytical determinations were carried out by gas chromatography-flame photometric detection and gas chromatography-tandem mass spectrometry, using a triple quadrupole mass analyzer, for confirmation purposes. Several factors influencing the extraction efficiency were investigated and optimized through fractional factorial design and Doehlert design. Under optimal conditions the recovery of pesticides from oil at 0.025 microg g(-1) ranged from 71% to 103%, except for fenthion in avocado oil, with RSDs < or = 13% (n=5). The LOQ for the entire method ranged from 0.004 to 0.015 microg g(-1). Finally, the proposed method was successfully applied to the extraction and determination of the selected pesticides in 20 commercially packed extra virgin olive oils and four commercially packed avocado oils produced in Chile. Detectable residues of different OPPs were observed in 85% of samples.
Mahmoud, Abdallah G; Guedes da Silva, M Fátima C; Sokolnicki, Jerzy; Smoleński, Piotr; Pombeiro, Armando J L
2018-05-16
New hydrosoluble and air-stable Cu(i) halide compounds, viz. [CuX(DAPTA)3] (1) and (2), and [Cu(μ-X)(DAPTA)2]2 (3) and (4) (X = Br or I, in this order), have been prepared by reacting Cu(i) halide (i.e., bromide or iodide) with 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (DAPTA) under mild conditions. They represent the first examples of Cu(i) halide complexes bearing the DAPTA ligand, which have been fully characterized by elemental analysis, IR, 1H, 13C{1H} and 31P{1H} NMR spectroscopies, ESI-MS+ and, for 4, also by single-crystal X-ray diffraction (SCXRD) analyses. Complexes 1-4 are efficient catalysts for the one-pot microwave assisted three-component (terminal alkyne, organic halide and NaN3) Huisgen cycloaddition reaction in aqueous media to afford the corresponding disubstituted triazoles. The catalysis proceeds with a broad alkyne substrate scope and according to "click rules". Photophysical studies of compound 4 showed an unusual reversible thermochromic behaviour exhibiting a blue emission at 298 K due to the halide-to-ligand charge transfer (3XLCT) and a red emission at 77 K because of the {Cu2I2} unit.
Lü, Haitao; Sun, Zhaoyun; Shan, Hu; Song, Jiying
2016-03-01
An efficient method for the rapid extraction, separation and purification of bioactive lignans, arctiin and arctigenin, from Fructus arctii by microwave-assisted extraction coupled with high-speed countercurrent chromatography was developed. The optimal extraction conditions of arctiin and arctigenin were evaluated by orthogonal array. Arctigenin could be converted from arctiin by hydrochloric acid hydrolysis. The separations were performed at a preparative scale with two-phase solvents composed of ethyl acetate-ethanol-water (5 : 1 : 5, v/v/v) for arctiin, and n-hexane-ethyl acetate-ethanol-water (4 : 4 : 3 : 4, v/v/v/v) for arctigenin. From 500 mg of crude extract sample, 122.3 mg of arctiin and 45.7 mg of arctigenin were obtained with the purity of 98.46 and 96.57%, and the recovery of 94.3 and 81.6%, respectively. Their structures were determined by comparison with the high-performance liquid chromatography retention time of standard substance as well as UV, FT-IR, electrospray ion source (ESI)-MS, (1)H-NMR and (13)C-NMR spectrum. According to the antioxidant activity assay, arctigenin had stronger 1,1-diphenyl-2-picrylhydrazyl free radicals scavenging activity. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Controlled Microwave Heating Accelerates Rolling Circle Amplification.
Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi
2015-01-01
Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.
The Microwave-Assisted Green Synthesis of TiC Powders.
Wang, Hui; Zhu, Wencheng; Liu, Yanchun; Zeng, Lingke; Sun, Luyi
2016-11-08
Titanium carbide (TiC) is an important engineering material and has found widespread applications. Currently, TiC is typically synthesized through carbothermal reduction, requiring a high temperature (ca. 1700-2300 °C) and long reaction time (ca. 10-20 h), which is not eco-friendly. During a conventional reaction path, anatase TiO₂ (A-TiO₂) was first converted to rutile TiO₂ (R-TiO₂), which was subsequently reduced to TiC. Herein, we explored the synthesis of TiC powders with the assistance of microwave heating. In particular, we achieved the conversion of A-TiO₂, which was more reactive than R-TiO₂ for the carbothermal reduction, to TiC, which was directly due to quick microwave heating. As such, the carbothermal reduction started at a much lower temperature of ca. 1200 °C and finished within 30 min when reacting at 1400 °C, leading to significant energy saving. This study shows that microwave-assisted synthesis can be an effective and green process for preparing TiC powders, which is promising for future large-scale production. The influence of the reaction temperature, the reaction duration, and the carbon content on the synthesis of TiC powders was investigated.
Wang, Shu-Ling; Yi, Ling; Ye, Li-Hong; Cao, Jun; Du, Li-Jing; Peng, Li-Qing; Xu, Jing-Jing; Zhang, Qi-Dong
2017-08-04
Zwitterionic surfactant, used as extractant in microwave-assisted extraction (MAE) was investigated for the first time to extract organic and inorganic iodines from kelp samples. Optimized conditions for the MAE were 200W of microwave irradiation power, 100°C of extraction temperature, 10min of microwave irradiation time, 1g of sample, and 20mL of solvent volume. Ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) was used for the quantitative and qualitative analyses of the iodines. Under the optimum experimental conditions, KI, MIT and DIT were identified in kelp samples, the limits of detection of these analytes were ranged between 3.39 and 6.31ng/mL. The recoveries for spiked samples obtained from different areas were all higher than 92.48%. Compared with the ultrasound-assisted extraction, the proposed method is faster and more effective. Thus, the combination of zwitterionic surfactant-MAE and UHPLC-Q-TOF/MS made up a simple, rapid and effective approach for extraction and determination of iodine compounds in complex seaweed materials. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiong; Miao, Wang; Li, Chen
Highlights: • Birnessite-type MnO{sub 2} nanoparticles were prepared by the microwave-assisted reflux. • The microwave reaction duration was only 5 min. • A specific capacitance of 329 F g{sup −1} was obtained for birnessite-type MnO{sub 2}. - Abstract: Birnessite-type MnO{sub 2} nanoparticles have been successfully synthesized by the microwave-assisted reflux as short as 5 min. The microstructure and morphology of the products were characterized by X-ray diffraction, N{sub 2} adsorption–desorption isotherms, scanning electron microscopy, transmission electron microscopy. The electrochemical properties of the as-prepared MnO{sub 2} as an electrode material for supercapacitor were investigated by cyclic voltammetry and galvanostatic charge-discharge measurementsmore » in 1 M Na{sub 2}SO{sub 4} electrolyte, and a high specific capacitance of 329 F g{sup −1} was achieved at a current density of 0.2 A g{sup −1}. The specific capacitance retention was 92% after 1000 cycles at 2 A g{sup −1}, suggesting that it is a promising electrode material for supercapacitors.« less
Nanosize Fe x O y @SBA-3: A Comparative Study Between Conventional and Microwave Assisted Synthesis.
Barik, Sunita; Badamali, Sushanta K; Sahoo, Sagarika; Behera, Nandakishor; Dapurkar, Sudhir E
2018-01-01
The present study is focussed on development of highly dispersed nanosize iron oxide (FexOy) particles within the uniform mesopore channels of SBA-3. Herein we report a comparative study between conventional incipient wetness and microwave assisted synthesis routes adopted to devise nanoparticles. The developed materials are characterised by following X-ray diffraction, high resolution transmission electron microscopy, proton induced X-ray emission, diffuse reflectance UV-visible spectroscopy, thermogravimetry and Fourier transform infrared spectroscopy. Mesoporous siliceous SBA-3 was prepared at room temperature to obtain samples with good crystallinity and ordered pore structure. Pore channels of SBA-3 were used as nanoreactor for developing iron oxide nanoparticles. Iron oxide nanoparticles developed under microwave activation showed uniform distribution within the SBA-3 structure along with retaining the orderness of the pore architecture. On the contrary, iron oxides developed under incipient wetness method followed by conventional heating resulted in agglomeration of nanoparticles along with significant loss in SBA-3 pore structure. Proton induced X-ray emission studies revealed the extremely high purity of the samples and almost thrice higher amount of iron oxide particles are encapsulated within the host by microwave assisted preparation as compared to incipient/conventional heating method.
Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis
Microwave, ultrasound, sunlight and mechanochemical mixing can be used to augment conventional laboratory techniques. By applying these alternative means of activation, a number of chemical transformations have been achieved thereby improving many existing protocols with superi...
NASA Astrophysics Data System (ADS)
Li, Li; Wang, Lili; Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi; Dong, Xue
2014-12-01
A series of urchin-like CdS/ZrO2 nanocomposites with different mole ratios of Cd/Zr were prepared by a two-step method combining the microwave-assisted hydrothermal and ion exchange methods. The products were characterized by X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N2 adsorption-desorption measurements. The results of the study revealed that the CdS/ZrO2 nanocomposites had mixed phases of tetragonal ZrO2 and hexagonal CdS. Moreover, the samples prepared by the microwave-assisted hydrothermal method possessed the urchin-like structure with a surface composed of protrude-like nanoparticles in large quantities. The absorption in the visible region changed slightly with increasing mole ratio of Cd/Zr. Moreover, compared to the nanocomposites prepared by the conventional heating, the nanocomposites prepared by the microwave-assisted hydrothermal synthesis showed significantly different Brunauer-Emmett-Teller values, and the urchin-like CdS/ZrO2 structures were obtained. The photocatalytic degradation of methyl orange under ultraviolet (UV) light irradiation indicated that the photocatalytic activity of the CdS/ZrO2 nanocomposite with CdS/ZrO2 molar ratio of 30 % was higher than those of CdS, ZrO2, and other different ratios of CdS/ZrO2 nanocomposites. Moreover, under UV light, visible light, and microwave-assisted multimode photocatalytic degradation, the urchin-like CdS/ZrO2 nanocomposites significantly affected the photodegradation of various dyes. To understand the possible reaction mechanism of the photocatalysis by the CdS/ZrO2 nanocomposites, a series of controlled experiments were performed, and the stability and reusability of the CdS/ZrO2 nanocomposites were further investigated by the photocatalytic reaction.
Rapid microwave-assisted preparation of binary and ternary transition metal sulfide compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butala, Megan M.; Perez, Minue A.; Arnon, Shiri
Transition metal chalcogenides are of interest for energy applications, including energy generation in photoelectrochemical cells and as electrodes for next-generation electrochemical energy storage. Synthetic routes for such chalcogenides typically involve extended heating at elevated temperatures for multiple weeks. We demonstrate here the feasibility of rapidly preparing select sulfide compounds in a matter of minutes, rather than weeks, using microwave-assisted heating in domestic microwaves. We report the preparations of phase pure FeS2, CoS2, and solid solutions thereof from the elements with only 40 min of heating. Conventional furnace and rapid microwave preparations of CuTi2S4 both result in a majority of themore » targeted phase, even with the significantly shorter heating time of 40 min for microwave methods relative to 12 days using a conventional furnace. The preparations we describe for these compounds can be extended to related structures and chemistries and thus enable rapid screening of the properties and performance of various compositions of interest for electronic, optical, and electrochemical applications.« less
Influence of Polarity and Activation Energy in Microwave–Assisted Organic Synthesis (MAOS)
Rodríguez, Antonio M; Prieto, Pilar; de la Hoz, Antonio; Díaz-Ortiz, Ángel; Martín, D Raúl; García, José I
2015-01-01
The aim of this work was to determine the parameters that have decisive roles in microwave-assisted reactions and to develop a model, using computational chemistry, to predict a priori the type of reactions that can be improved under microwaves. For this purpose, a computational study was carried out on a variety of reactions, which have been reported to be improved under microwave irradiation. This comprises six types of reactions. The outcomes obtained in this study indicate that the most influential parameters are activation energy, enthalpy, and the polarity of all the species that participate. In addition to this, in most cases, slower reacting systems observe a much greater improvement under microwave irradiation. Furthermore, for these reactions, the presence of a polar component in the reaction (solvent, reagent, susceptor, etc.) is necessary for strong coupling with the electromagnetic radiation. We also quantified that an activation energy of 20–30 kcal mol−1 and a polarity (μ) between 7–20 D of the species involved in the process is required to obtain significant improvements under microwave irradiation. PMID:26246993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulauskas, F.L.; Meek, T.T.
Studies of microwave-assisted curing of neat resins (epoxy) and unidirectional glass and carbon fiber laminates have shown that a substantial reduction in the curing time was obtained. This may be explained by the penetration of microwave energy directly and throughout the laminate with enhancement of the kinetics of the chemical reaction. Results of this work indicate that the microwave assisted curing of glass fiber laminates also shows a substantial reduction of the required curing time. Microwave radiation of 2.45 GHz has been demonstrated to be an acceptable method to cure unidirectional carbon fiber laminates. Also, effective curing of crossply (0/90)more » laminates through this method was observed when proper rotation of the parts accompanied the curing process. This is in accordance with previous work. Multidirectional carbon fiber/epoxy laminates demonstrate a lack of coupling during the curing process. A direct curing of these laminates was not possible by microwave radiation with the experimental approach used, in agreement with previous work. Nevertheless, a moderate reduction in the curing time of these thin laminates was observed due to hybrid curing.« less
The Production of Biodiesel and Bio-kerosene from Coconut Oil Using Microwave Assisted Reaction
NASA Astrophysics Data System (ADS)
SAIFUDDIN, N.; SITI FAZLILI, A.; KUMARAN, P.; PEI-JUA, N.; PRIATHASHINI, P.
2016-03-01
Biofuels including biodiesel, an alternative fuel, is renewable, environmentally friendly, non-toxic and low emissions. The raw material used in this work was coconut oil, which contained saturated fatty acids about 90% with high percentage of medium chain (C8-C12), especially lauric acid and myristic acid. The purpose of this research was to study the effect of power and NaOH catalyst in transesterification assisted by microwave for production of biofuels (biodiesel and bio-kerosene) derived from coconut oil. The reaction was performed with oil and methanol using mole ratio of 1:6, catalyst concentration of 0.6% with microwave power at 100W, 180W, 300W, 450W, 600W, and 850W. The reaction time was set at of 3, 5, 7, 10 and 15 min. The results showed that microwave could accelerate the transesterification process to produce biodiesel and bio-kerosene using NaOH catalyst. The highest yield of biodiesel was 97.17 %, or 99.05 % conversion at 5 min and 100W microwave power. Meanwhile, the bio-kerosene obtained was 65% after distillation.
Mariana Balu, Alina; Pineda, Antonio; Yoshida, Kenta; Manuel Campelo, Juan; Gai, Pratibha L; Luque, Rafael; Angel Romero, Antonio
2010-11-07
A synergetic Fe-Al effect in Fe(2)O(3) nanoparticles supported on mesoporous aluminosilicates compared to pure siliceous silicates has been demonstrated, for the first time, by a remarkably superior catalytic activity of the former in the microwave-assisted selective oxidation of benzyl alcohol to benzaldehyde. This significant finding, that also deeply influences the acidity of the materials (increasing total and particularly Lewis acidity), can have important consequences in the improved efficiency of these systems in related oxidations as well as in acid catalysed processes.
Microwave-assisted Stille-coupling of steroidal substrates.
Skoda-Földes, Rita; Pfeiffer, Péter; Horváth, Judit; Tuba, Zoltán; Kollár, László
2002-07-01
Steroidal dienes were synthesised by Stille-coupling of the corresponding alkenyl iodides with vinyltributyltin under microwave irradiation in a domestic microwave oven in drastically reduced reaction times. Rate acceleration was observed also in the one-pot Stille-coupling-Diels-Alder reaction of 17-iodo-5alpha-androst-16-ene. Stereoselectivity of cycloaddition was slightly improved with diethyl maleate as the dienophile, compared to that achieved with thermal heating.
Rashed, Marwan M A; Tong, Qunyi; Abdelhai, Mandour H; Gasmalla, Mohammed A A; Ndayishimiye, Jean B; Chen, Long; Ren, Fei
2016-03-01
The aims of the current study were to evaluate the best technique for total phenolic extraction from Lavandula pubescens (Lp) and its application in vegetable oil industries as alternatives of synthetic food additives (TBHQ and BHT). To achieve these aims, three techniques of extraction were used: ultrasonic-microwave (40 kHz, 50 W, microwave power 480 W, 5 min), ultrasonic-homogenizer (20 kHz, 150 W, 5 min) and conventional maceration as a control. By using the Folin-Ciocalteu method, the total phenolic contents (TPC) (mg gallic acid equivalent/g dry matter) were found to be 253.87, 216.96 and 203.41 for ultrasonic-microwave extract, ultrasonic-homogenizer extract and maceration extract, respectively. The ultrasonic-microwave extract achieved the higher scavenger effect of DPPH (90.53%) with EC50 (19.54 μg/mL), and higher inhibition of β-carotene/linoleate emulsion deterioration (94.44%) with IC50 (30.62 μg/mL). The activity of the ultrasonic-microwave treatment could prolong the induction period (18.82 h) and oxidative stability index (1.67) of fresh refined, bleached and deodorized palm olein oil (RBDPOo) according to Rancimat assay. There was an important synergist effect between citric acid and Lp extracts in improving the oxidative stability of fresh RBDPOo. The results of this work also showed that the ultrasonic-microwave assisted extract was the most effective against Gram-positive and Gram-negative strains that were assessed in this study. The uses of ultrasonic-microwave could induce the acoustic cavitation and rupture of plant cells, and this facilitates the flow of solvent into the plant cells and enhances the desorption from the matrix of solid samples, and thus would enhance the efficiency of extraction based on cavitation phenomenon. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Junlong; Zhang, Ji; Wang, Xiaofang; Zhao, Baotang; Wu, Yiqian; Yao, Jian
2009-12-01
The conventional extraction methods for polysaccharides were time-consuming, laborious and energy-consuming. Microwave-assisted extraction (MAE) technique was employed for the extraction of Artemisia sphaerocephala polysaccharides (ASP), which is a traditional Chinese food. The extracting parameters were optimized by Box-Behnken design. In microwave heating process, a decrease in molecular weight (M(w)) was detected in SEC-LLS measurement. A d(f) value of 2.85 indicated ASP using MAE exhibited as a sphere conformation of branched clusters in aqueous solution. Furthermore, it showed stronger antioxidant activities compared with hot water extraction. The data obtained showed that the molecular weights played a more important role in antioxidant activities.
Microwave-assisted reaction of 2'-hydroxychalcones in the presence of DBU resulted in the formation of hitherto unknown dimers by conjugate addition of the intermediate cyclic ketone to the starting enone.
CARBON NANOTUBES IN MICROWAVE ENVIRONMENT-IGNITION AND RECONSTRUCTION
The unusual property of single-walled carbon nanotubes (SWNT), multi-wall (MWNT) nanotubes and Buckminsterfullerene (C-60) is observed upon exposure to microwave-assisted ignition. Carbon nanotubes known for a range of mechanical and electronic properties because of their unique...
Zhang, Shouqin; Chen, Ruizhan; Wu, Hua; Wang, Changzheng
2006-04-11
A new method of ultrahigh pressure extraction (UPE) was used to extract the ginsenosides from Panax quinquefolium L. (American ginseng) root at room temperature. Several solvents, including water, ethanol, methanol, and n-butanol were used in the UPE. The ginsenosides were quantified by a HPLC equipped with UV-vis detector. The results showed that ethanol is the most efficient solvent among the used ones. Compared with other methods, i.e., Soxhlet extraction, heat reflux extraction, ultrasound-assisted extraction, microwave-assisted extraction, and supercritical CO2 extraction, the UPE has the highest extraction yield in the shortest time. The extraction yield of 0.861% ginsenoside-Rc in 2 min was achieved by the UPE, while the yields of 0.284% and 0.661% were obtained in several hours by supercritical CO2 extraction and the heat reflux extraction, respectively.
Microwave-assisted transformations and synthesis of polymer nanocomposites and nanomaterials
The use of emerging MW-assisted chemistry techniques in conjunction with greener reaction media is dramatically reducing chemical waste and reaction times in several organic transformations and material synthesis. This account summarizes our own experience in developing MW-assist...
Electron beam collector for a microwave power tube
Dandl, Raphael A.
1980-01-01
This invention relates to a cylindrical, electron beam collector that efficiently couples the microwave energy out of a high power microwave source while stopping the attendant electron beam. The interior end walls of the collector are a pair of facing parabolic mirrors and the microwave energy from an input horn is radiated between the two mirrors and reassembled at the entrance to the output waveguide where the transmitted mode is reconstructed. The mode transmission through the collector of the present invention has an efficiency of at least 94%.
NASA Astrophysics Data System (ADS)
Xiao, Wei; Huang, Kama; He, Jianbo; Wu, Ying
2017-09-01
The waveguide-based microwave plasma device is widely used to generate atmospheric plasma for some industrial applications. Nevertheless, the traditional tapered waveguide device has limited power efficiency and produces unstable plasma. A novel ridged waveguide with an oblique hole is proposed to produce microwave atmospheric plasma for fluid processing. By using the ridged waveguide, the microwave field can be well focused, which can sustain plasma at relatively low power. Besides, an oblique hole is used to decrease the power reflection and generate a stable plasma torch especially in the case of high flowing rates. Experiments have been performed with the air flowing rates ranging from 500 l h-1 to 1000 l h-1 and the microwave working frequency of 2.45 GHz. The results show that in comparison with the conventional tapered waveguide, this novel device can both sustain plasma at relative low power and increase the power transfer efficiency by 11% from microwave to plasma. Moreover, both devices are used to process the waste gas-CO and CH4. Significantly, the removal efficiency for CO and CH4 can be increased by 19.7% and 32% respectively in the ridged waveguide compared with the tapered waveguide. It demonstrates that the proposed device possesses a great potential in industrial applications because of its high efficiency and stable performance.
Long, Yun; Zhou, Linjie; Wang, Jian
2016-01-01
Photonic generation of microwave signal is obviously attractive for many prominent advantages, such as large bandwidth, low loss, and immunity to electromagnetic interference. Based on a single integrated silicon Mach–Zehnder modulator (MZM), we propose and experimentally demonstrate a simple and compact photonic scheme to enable frequency-multiplicated microwave signal. Using the fabricated integrated MZM, we also demonstrate the feasibility of microwave amplitude-shift keying (ASK) modulation based on integrated photonic approach. In proof-of-concept experiments, 2-GHz frequency-doubled microwave signal is generated using a 1-GHz driving signal. 750-MHz/1-GHz frequency-tripled/quadrupled microwave signals are obtained with a driving signal of 250 MHz. In addition, a 50-Mb/s binary amplitude coded 1-GHz microwave signal is also successfully generated. PMID:26832305
Microwave-assisted Bi2Se3 nanoparticles using various organic solvents
NASA Astrophysics Data System (ADS)
Vijila, J. Joy Jeba; Mohanraj, K.; Henry, J.; Sivakumar, G.
2016-01-01
Microwave assisted Bi2Se3 nanoparticles were synthesized from five different solvents DMF, EG, EG + H2O, EDA + dil.HNO3 and N2H4 + H2O + Ethanol. The influence of solvents on purity of the compound was analysed by using X-ray diffraction patterns. The result indicates pure rhombohedral Bi2Se3 nanoparticles formed for N2H4 + H2O + Ethanol. The presence of vibrational bands in the range of 400-800 cm- 1 is confirmed the formation of Bi2Se3. The maximum optical absorption observed around 450 nm and the band gap values are found in the range of 1.5 eV-2.17 eV for all the solvents. The nanostructure of the Bi2Se3 particles change with solvents. From the experimental results, the solvent N2H4 + H2O + Ethanol produces pure nanosize Bi2Se3 particles under the microwave assisted method.
Microwave-assisted synthesis of porous carbon-titania and highly crystalline titania nanostructures.
Parker, Alison; Marszewski, Michal; Jaroniec, Mietek
2013-03-01
Porous carbon-titania and highly crystalline titania nanostructured materials were obtained through a microwave-assisted one-pot synthesis. Resorcinol and formaldehyde were used as carbon precursors, triblock copolymer Pluronic F127 as a stabilizing agent, and titanium isopropoxide as a titania precursor. This microwave-assisted one-pot synthesis involved formation of carbon spheres according to the recently modified Stöber method followed by hydrolysis and condensation of titania precursor. This method afforded carbon-titania composite materials containing anatase phase with specific surface areas as high as 390 m(2) g(-1). The pure nanostructured titania, obtained after removal of carbon through calcination of the composite material in air, was shown to be the anatase phase with considerably higher degree of crystallinity and the specific surface area as high as 130 m(2) g(-1). The resulting titania, because of its high surface area, well-developed porosity, and high crystallinity, is of great interest for catalysis, water treatment, lithium batteries, and other energy-related applications.
NASA Technical Reports Server (NTRS)
Hallock, Ashley; Polzin, Kurt; Emsellem, Gregory
2012-01-01
Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) [4, 5] is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and permanent magnets that are arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the inductive coil is high. The use of a conical theta-pinch coil is under investigation. The conical geometry serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [2, 3], however a conical coil imparts a direct radial acceleration of the current sheet that serves to rapidly decouple the propellant from the coil, limiting the direct axial electromagnetic acceleration in favor of an indirect acceleration mechanism that requires significant heating of the propellant within the volume bounded by the current sheet. In this paper, we describe thrust stand measurements performed to characterize the performance (specific impulse, thrust efficiency) of the MAD-IPA thruster. Impulse data are obtained at various pulse energies, mass flow rates and inductive coil. geometries. Dependencies on these experimental parameters are discussed in the context of the current sheet formation and electromagnetic plasma acceleration processes.
Damm, Markus; Nusshold, Christoph; Cantillo, David; Rechberger, Gerald N.; Gruber, Karl; Sattler, Wolfgang; Kappe, C. Oliver
2012-01-01
This study reevaluates the putative advantages of microwave-assisted tryptic digests compared to conventionally heated protocols performed at the same temperature. An initial investigation of enzyme stability in a temperature range of 37–80 °C demonstrated that trypsin activity declines sharply at temperatures above 60 °C, regardless if microwave dielectric heating or conventional heating is employed. Tryptic digests of three proteins of different size (bovine serum albumin, cytochrome c and β-casein) were thus performed at 37 °C and 50 °C using both microwave and conventional heating applying accurate internal fiber-optic probe reaction temperature measurements. The impact of the heating method on protein degradation and peptide fragment generation was analyzed by SDS-PAGE and MALDI-TOF-MS. Time-dependent tryptic digestion of the three proteins and subsequent analysis of the corresponding cleavage products by MALDI-TOF provided virtually identical results for both microwave and conventional heating. In addition, the impact of electromagnetic field strength on the tertiary structure of trypsin and BSA was evaluated by molecular mechanics calculations. These simulations revealed that the applied field in a typical laboratory microwave reactor is 3–4 orders of magnitude too low to induce conformational changes in proteins or enzymes. PMID:22889711
Gan, Sinyee; Zakaria, Sarani; Chia, Chin Hua; Kaco, Hatika; Padzil, Farah Nadia Mohammad
2014-06-15
Cellulose carbamate (CCs) was produced from kenaf core pulp (KCP) using microwave reactor-assisted method. The effects of urea concentration and reaction time on the formation of nitrogen content in CCs were investigated. The CCs' solubility in LiOH/urea system was determined and its membranes were characterized. As the urea content and reaction time increased, the nitrogen content form in CCs increased which enhanced the CCs' solubility. The formation of CCs was confirmed by Fourier transform infrared spectroscopy (FT-IR) and nitrogen content analysis. The CCs' morphology was examined using Scanning electron microscopy (SEM). The cellulose II and crystallinity index of the membranes were confirmed by X-ray diffraction (XRD). The pore size of the membrane displayed upward trend with respect to the urea content observed under Field emission scanning electron microscope (FESEM). This investigation provides a simple and efficient procedure of CCs determination which is useful in producing environmental friendly regenerated CCs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yang, Szu-Chi; Lin, Huan-Chun; Liu, Tzu-Ming; Lu, Jen-Tang; Hung, Wan-Ting; Huang, Yu-Ru; Tsai, Yi-Chun; Kao, Chuan-Liang; Chen, Shih-Yuan; Sun, Chi-Kuang
2015-01-01
Virus is known to resonate in the confined-acoustic dipolar mode with microwave of the same frequency. However this effect was not considered in previous virus-microwave interaction studies and microwave-based virus epidemic prevention. Here we show that this structure-resonant energy transfer effect from microwaves to virus can be efficient enough so that airborne virus was inactivated with reasonable microwave power density safe for the open public. We demonstrate this effect by measuring the residual viral infectivity of influenza A virus after illuminating microwaves with different frequencies and powers. We also established a theoretical model to estimate the microwaves power threshold for virus inactivation and good agreement with experiments was obtained. Such structure-resonant energy transfer induced inactivation is mainly through physically fracturing the virus structure, which was confirmed by real-time reverse transcription polymerase chain reaction. These results provide a pathway toward establishing a new epidemic prevention strategy in open public for airborne virus. PMID:26647655
Yang, Szu-Chi; Lin, Huan-Chun; Liu, Tzu-Ming; Lu, Jen-Tang; Hung, Wan-Ting; Huang, Yu-Ru; Tsai, Yi-Chun; Kao, Chuan-Liang; Chen, Shih-Yuan; Sun, Chi-Kuang
2015-12-09
Virus is known to resonate in the confined-acoustic dipolar mode with microwave of the same frequency. However this effect was not considered in previous virus-microwave interaction studies and microwave-based virus epidemic prevention. Here we show that this structure-resonant energy transfer effect from microwaves to virus can be efficient enough so that airborne virus was inactivated with reasonable microwave power density safe for the open public. We demonstrate this effect by measuring the residual viral infectivity of influenza A virus after illuminating microwaves with different frequencies and powers. We also established a theoretical model to estimate the microwaves power threshold for virus inactivation and good agreement with experiments was obtained. Such structure-resonant energy transfer induced inactivation is mainly through physically fracturing the virus structure, which was confirmed by real-time reverse transcription polymerase chain reaction. These results provide a pathway toward establishing a new epidemic prevention strategy in open public for airborne virus.
Coherent Microwave-to-Optical Conversion via Six-Wave Mixing in Rydberg Atoms
NASA Astrophysics Data System (ADS)
Han, Jingshan; Vogt, Thibault; Gross, Christian; Jaksch, Dieter; Kiffner, Martin; Li, Wenhui
2018-03-01
We present an experimental demonstration of converting a microwave field to an optical field via frequency mixing in a cloud of cold 87Rb atoms, where the microwave field strongly couples to an electric dipole transition between Rydberg states. We show that the conversion allows the phase information of the microwave field to be coherently transferred to the optical field. With the current energy level scheme and experimental geometry, we achieve a photon-conversion efficiency of ˜0.3 % at low microwave intensities and a broad conversion bandwidth of more than 4 MHz. Theoretical simulations agree well with the experimental data, and they indicate that near-unit efficiency is possible in future experiments.
High-efficiency water-loaded microwave antenna in ultra-high-frequency band
NASA Astrophysics Data System (ADS)
Gong, Zilun; Bartone, Chris; Yang, Fuyi; Yao, Jie
2018-03-01
High-index dielectrics are widely used in microwave antennas to control the radiation characteristics. Liquid water, with a high dielectric index at microwave frequency, is an interesting material to achieving tunable functionalities. Here, we demonstrate a water-loaded microwave antenna system that has high loss-tolerance and wideband tunability enabled by fluidity. Our simulation and experimental results show that the resonance frequency can be effectively tuned by the size of loading water. Furthermore, the antenna systems with water loading can achieve high radiation efficiency (>90%) in the ultra-high-frequency (0.3-3 GHz) band. This work brings about opportunities in realistic tunable microwave antenna designs enabled by liquid.
Fayaz, Mohammadreza; Shariaty, Pooya; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark
2015-04-07
Incomplete regeneration of activated carbon loaded with organic compounds results in heel build-up that reduces the useful life of the adsorbent. In this study, microwave heating was tested as a regeneration method for beaded activated carbon (BAC) loaded with n-dodecane, a high molecular weight volatile organic compound. Energy consumption and desorption efficiency for microwave-heating regeneration were compared with conductive-heating regeneration. The minimum energy needed to completely regenerate the adsorbent (100% desorption efficiency) using microwave regeneration was 6% of that needed with conductive heating regeneration, owing to more rapid heating rates and lower heat loss. Analyses of adsorbent pore size distribution and surface chemistry confirmed that neither heating method altered the physical/chemical properties of the BAC. Additionally, gas chromatography (with flame ionization detector) confirmed that neither regeneration method detectably altered the adsorbate composition during desorption. By demonstrating improvements in energy consumption and desorption efficiency and showing stable adsorbate and adsorbent properties, this paper suggests that microwave heating is an attractive method for activated carbon regeneration particularly when high-affinity VOC adsorbates are present.
Controlled Microwave Heating Accelerates Rolling Circle Amplification
Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi
2015-01-01
Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same. PMID:26348227
The electromagnetic wave energy effect(s) in microwave-assisted organic syntheses (MAOS).
Horikoshi, Satoshi; Watanabe, Tomoki; Narita, Atsushi; Suzuki, Yumiko; Serpone, Nick
2018-03-26
Organic reactions driven by microwaves have been subjected for several years to some enigmatic phenomenon referred to as the microwave effect, an effect often mentioned in microwave chemistry but seldom understood. We identify this microwave effect as an electromagnetic wave effect that influences many chemical reactions. In this article, we demonstrate its existence using three different types of microwave generators with dissimilar oscillation characteristics. We show that this effect is operative in photocatalyzed TiO 2 reactions; it negatively influences electro-conductive catalyzed reactions, and yet has but a negligible effect on organic syntheses. The relationship between this electromagnetic wave effect and chemical reactions is elucidated from such energetic considerations as the photon energy and the reactions' activation energies.
Garcia, Leonardo; Garcia, Renata; Sutili, Felipe; Souza, Rodrigo De
2016-01-01
The vegetal species Arachis repens, commonly known as peanut grass, was studied and, for the first time, we detected the presence of the bioactive compound trans-resveratrol (t-RSV). We compared the efficiency of three different methodologies (conventional maceration [CM], ultrasound-assisted extractions [UAE], and microwave-assisted extractions [MAE]) concerning total phenolics (TP) and resveratrol (t-RSV) content, followed by antioxidant activity (AA) evaluation. By CM, at 1 h, the highest RSV content (1.024 ± 0.036 mg/L) and, correspondingly, the highest DPPH capture (23.90 ± 0.04%) were found. The TP contents, at 1 h, presented the highest value (27.26 ± 0.26 mg/g GAE). By the UAE, the maximum yields of TP (357.18 mg/g GAE) and RSV (2.14 mg/L), as well as, the highest AA (70.95%), were obtained by 5 min after a maceration pretreatment, on the solid-solvent ratio 1 : 40 w/v. For MAE, a central composite rotatable design (CCRD) was applied followed by the FFD design in order to evaluate the statistical effects of four independent variables on the extraction of RSV. The optimal conditions established for obtaining the highest recovery (2.516 mg/g) were 20 min; 90% MeOH aq.; 120 rpm; 60°C; and solid-solvent ratio: 1 : 35 w/v. Relevant correlations were established considering the TP and RSV contents, as well as the AA, corroborating obvious advantages of such techniques in terms of high extraction efficiency in shorter times. PMID:28116343
Garcia, Leonardo; Garcia, Renata; Pacheco, Georgia; Sutili, Felipe; Souza, Rodrigo De; Mansur, Elisabeth; Leal, Ivana
2016-01-01
The vegetal species Arachis repens , commonly known as peanut grass, was studied and, for the first time, we detected the presence of the bioactive compound trans- resveratrol ( t -RSV). We compared the efficiency of three different methodologies (conventional maceration [CM], ultrasound-assisted extractions [UAE], and microwave-assisted extractions [MAE]) concerning total phenolics (TP) and resveratrol ( t -RSV) content, followed by antioxidant activity (AA) evaluation. By CM, at 1 h, the highest RSV content (1.024 ± 0.036 mg/L) and, correspondingly, the highest DPPH capture (23.90 ± 0.04%) were found. The TP contents, at 1 h, presented the highest value (27.26 ± 0.26 mg/g GAE). By the UAE, the maximum yields of TP (357.18 mg/g GAE) and RSV (2.14 mg/L), as well as, the highest AA (70.95%), were obtained by 5 min after a maceration pretreatment, on the solid-solvent ratio 1 : 40 w/v. For MAE, a central composite rotatable design (CCRD) was applied followed by the FFD design in order to evaluate the statistical effects of four independent variables on the extraction of RSV. The optimal conditions established for obtaining the highest recovery (2.516 mg/g) were 20 min; 90% MeOH aq.; 120 rpm; 60°C; and solid-solvent ratio: 1 : 35 w/v. Relevant correlations were established considering the TP and RSV contents, as well as the AA, corroborating obvious advantages of such techniques in terms of high extraction efficiency in shorter times.
Yuan, Zhiquan; Xiao, Xiaohua; Li, Gongke
2013-11-22
A simple and efficient dynamic pH junction high-speed counter-current chromatography method was developed and further applied to the online extraction, separation and purification of alkaloids from Stephania cepharantha by coupling with microwave-assisted extraction. Mineral acid and organic base were added into the mobile phase and the sample solution, respectively, leading to the formation of a dynamic pH junction in the column and causing focus of alkaloids. Selective focus of analytes can be achieved on the basis of velocity changes of the pH junction through appropriate selection of solvent systems and optimization of additive concentrations. The extract can be directly introduced into the HSCCC for the online extraction, separation and purification of alkaloids from S. cepharantha. Continuous separation can be easily achieved with the same solvent system. Under the optimum conditions, 6.0 g original sample was extracted with 60 mL of the upper phase of hexane-ethyl acetate-methanol-water (1:1:1:1, v/v/v/v) containing 10% triethylamine under 50 °C and 400 W irradiation power for 10 min, the extracts were directly separated and purified by high-speed counter-current chromatography. A total of 5.7 mg sinomenine, 8.3mg 6,7-di-O-acetylsinococuline, 17.9 mg berbamine, 12.7 mg isotetrandrine and 14.6 mg cepharanthine were obtained with purities of 96.7%, 93.7%, 98.7%, 97.3% and 99.3%, respectively. The online method provides good selectivity to ionizable compounds and improves the separation and purification efficiency of the high-speed counter-current chromatography technique. It has good potential for separation and purification of effective compounds from natural products. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kheiralla, Zeinab Mohamed Hassan; Rushdy, Abeer Ahmed; Betiha, Mohamed Ahmed; Yakob, Naglaa Abdullah Nasif
2014-08-01
Syntheses of silver nanocomposites (AgNPs@MMT) were fabricated with different silver nanoparticles to montmorillonite clay (MMT) ratios using microwave-assisted synthesis method, and silver nitrate was used as the precursor of silver nanoparticles. The antibacterial activities of the nanocomposite were evaluated against Staphylococcus aureus and Pseudomonas aeruginosa bacteria by the disk diffusion and macrodilution broth techniques. The prepared nanocomposites were characterized by N2 adsorption-desorption isotherms, X-ray diffraction (XRD), field emission scanning electron microscope, high-resolution transmission electron microscope (HRTEM), X-ray fluorescence spectroscopy and Fourier transform infrared spectroscopy. The wide-angle XRD patterns and HRTEM images demonstrate that silver nanoparticles were fabricated on surface and within MMT channels. The diameters of the AgNPs were below 15 nm, as indicated by UV-Vis absorption, which effectively controlled by the pores of the MMT host. Data revealed that 5 % AgNP@MMT nanocomposite is much more effective than silver nitrate and shows strong antibacterial activities. The efficiency of antibiotics increased when combined with 5 % AgNP@MMT nanocomposite against both the tested strains. The increase in fold area was higher in case of P. aeruginosa than S. aureus. The highest percentage of fold increases was found for Sulfamethaxole/Trimethoprim and Oxacillin followed by Levofloxaci and Nalidixic acid against P.aeruginosa. On the other hand, Imipenem increases activity in presence of AgNP@MMT nanocomposite against S. aureus. Overall, the synergistic effect of antibiotics and nanoparticles clearly revealed that nanoparticles can be effectively used in combination with antibiotics in order to improve their efficiency against various pathogenic microbes. The suspensions of the synthesized nanocomposites were found to be stable over a long time without any sign of detachment of AgNPs.
Microwave-Assisted Synthesis of Nanomaterials and Nanocomposites
The aqueous preparation of nanoparticles using vitamins B1 and B2, and vitamin C which can function both as reducing and capping agents prompted us accomplished the bulk syntheses of Ag and Fe nanorods using polyethylene glycol (PEG) under microwave (MW) irradiation conditions; t...
Yang, Xiaoqing; Wu, Jie; Mao, Xianwen; Jamison, Timothy F; Hatton, T Alan
2014-03-25
An effective transformation of alkenes into cyclic carbonates has been achieved using NaHCO3 as the C1 source in acetone-water under microwave heating, with selectivities and yields significantly surpassing those obtained using conventional heating.
DEXTRON TEMPLATED MICROWAVE-ASSISTED SYNTHESIS OF POROUS TITANIUM DIOXIDE
An alternative route to the preparation and formation of porous titania powders and carbon coated titania using microwave radiation is described. Inexpensive dextrose was chosen as capping agent or template in view of its high water solubility when compared to other sugar templat...
Microwave-Assisted Organic Synthesis Using Benign Reaction Medium and Reagents
Account of chemical reactions expedited by microwave (MW) exposure of neat reactants for the rapid one-pot assembly of heterocyclic compounds from in situ generated reactive intermediates via enamines or using hypervalent iodine reagents will be described that can be adapted for ...
Li, Na; Wu, Lijie; Nian, Li; Song, Ying; Lei, Lei; Yang, Xiao; Wang, Kun; Wang, Zhibing; Zhang, Liyuan; Zhang, Hanqi; Yu, Aimin; Zhang, Ziwei
2015-09-01
Non-polar solvent dynamic microwave assisted extraction was firstly applied to the treatment of high-fat soybean samples. In the dispersive micro-solid-phase extraction (D-µ-SPE), the herbicides in the high-fat extract were directly adsorbed on metal-organic frameworks MIL-101(Cr). The effects of several experimental parameters, including extraction solvent, microwave absorption medium, microwave power, volume and flow rate of extraction solvent, amount of MIL-101(Cr), and D-µ-SPE time, were investigated. At the optimal conditions, the limits of detection for the herbicides ranged from 1.56 to 2.00 μg kg(-1). The relative recoveries of the herbicides were in the range of 91.1-106.7%, and relative standard deviations were equal to or lower than 6.7%. The present method was simple, rapid and effective. A large amount of fat was also removed. This method was demonstrated to be suitable for treatment of high-fat samples. Copyright © 2015 Elsevier B.V. All rights reserved.
dos Santos, Danilo Martins; Bukzem, Andrea de Lacerda; Campana-Filho, Sérgio Paulo
2016-03-15
A quaternized derivative of chitosan, namely N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride (QCh), was synthesized by reacting glycidyltrimethylammonium chloride (GTMAC) and chitosan (Ch) in acid medium under microwave irradiation. Full-factorial 2(3) central composite design and response surface methodology (RSM) were applied to evaluate the effects of molar ratio GTMAC/Ch, reaction time and temperature on the reaction yield, average degree of quaternization (DQ) and intrinsic viscosity ([η]) of QCh. The molar ratio GTMAC/Ch was the most important factor affecting the response variables and RSM results showed that highly substituted QCh (DQ = 71.1%) was produced at high yield (164%) when the reaction was carried out for 30min. at 85°C by using molar ratio GTMAC/Ch 6/1. Results showed that microwave-assisted synthesis is much faster (≤30min.) as compared to conventional reaction procedures (>4h) carried out in similar conditions except for the use of microwave irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kumar, Pramod; Yadav, Devbrat; Kumar, Pradyuman; Panesar, Paramjeet Singh; Bunkar, Durga Shankar; Mishra, Diwaker; Chopra, H K
2016-04-01
In present study, conventional, ultrasonic and microwave assisted extraction methods were compared with the aim of optimizing best fitting solvent and method, solvent concentration and digestion time for high yield of γ-oryzanol from rice bran. Petroleum ether, hexane and methanol were used to prepare extracts. Extraction yield were evaluated for giving high crude oil yield, total phenolic content (TPC) and γ-oryzanol content. Gas chromatography-mass spectrophotometry was used for the determination of γ-oryzanol concentration. The highest concentration of γ-oryzanol was detected in methanolic extracts of microwave treatment (85.0 ppm) followed by ultrasonication (82.0 ppm) and conventional extraction method (73.5 ppm). Concentration of γ-oryzanol present in the extracts was found to be directly proportional to the total phenolic content. A combination of 80 % methanolic concentration and 55 minutes digestion time of microwave treatment yielded the best extraction method for TPC and thus γ-oryzanol (105 ppm).
Zhou, Junwen; Liu, Shiyu; Zhou, Nan; Fan, Liangliang; Zhang, Yaning; Peng, Peng; Anderson, Erik; Ding, Kuan; Wang, Yunpu; Liu, Yuhuan; Chen, Paul; Ruan, Roger
2018-05-01
A continuous fast microwave-assisted pyrolysis system was designed, fabricated, and tested with sewage sludge. The system is equipped with continuous biomass feeding, mixing of biomass and microwave absorbent, and separated catalyst upgrading. The effect of the sludge pyrolysis temperature (450, 500, 550, and 600 °C) on the products yield, distribution and potentially energy recovery were investigated. The physical, chemical, and energetic properties of the raw sewage sludge and bio-oil, char and gas products obtained were analyzed using elemental analyzer, GC-MS, Micro-GC, SEM and ICP-OES. While the maximum bio-oil yield of 41.39 wt% was obtained at pyrolysis temperature of 550 °C, the optimal pyrolysis temperature for maximum overall energy recovery was 500 °C. The absence of carrier gas in the process may be responsible for the high HHV of gas products. This work could provide technical support for microwave-assisted system scale-up and sewage sludge utilization. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mabood, Fazal; Hussain, Z.; Haq, H.; Arian, M. B.; Boqué, R.; Khan, K. M.; Hussain, K.; Jabeen, F.; Hussain, J.; Ahmed, M.; Alharasi, A.; Naureen, Z.; Hussain, H.; Khan, A.; Perveen, S.
2016-01-01
A new UV-Visible spectroscopic method assisted with microwave for the determination of glucose in pharmaceutical formulations was developed. In this study glucose solutions were oxidized by ammonium molybdate in the presence of microwave energy and reacted with aniline to produce a colored solution. Optimum conditions of the reaction including wavelength, temperature, and pH of the medium and relative concentration ratio of the reactants were investigated. It was found that the optimal wavelength for the reaction is 610 nm, the optimal reaction time is 80 s, the optimal reaction temperature is 160 °C, the optimal reaction pH is 4, and the optimal concentration ratio aniline/ammonium molybdate solution was found to be 1:1. The limits of detection and quantification of the method are 0.82 and 2.75 ppm for glucose solution, respectively. The use of microwaves improved the speed of the method while the use of aniline improved the sensitivity of the method by shifting the wavelength.
Oil extraction from sheanut (Vitellaria paradoxa Gaertn C.F.) kernels assisted by microwaves.
Nde, Divine B; Boldor, Dorin; Astete, Carlos; Muley, Pranjali; Xu, Zhimin
2016-03-01
Shea butter, is highly solicited in cosmetics, pharmaceuticals, chocolates and biodiesel formulations. Microwave assisted extraction (MAE) of butter from sheanut kernels was carried using the Doehlert's experimental design. Factors studied were microwave heating time, temperature and solvent/solute ratio while the responses were the quantity of oil extracted and the acid number. Second order models were established to describe the influence of experimental parameters on the responses studied. Under optimum MAE conditions of heating time 23 min, temperature 75 °C and solvent/solute ratio 4:1 more than 88 % of the oil with a free fatty acid (FFA) value less than 2, was extracted compared to the 10 h and solvent/solute ratio of 10:1 required for soxhlet extraction. Scanning electron microscopy was used to elucidate the effect of microwave heating on the kernels' microstructure. Substantial reduction in extraction time and volumes of solvent used and oil of suitable quality are the main benefits derived from the MAE process.
Zhou, Pei-pei; Shan, Jin-feng; Jiang, Jian-lan
2015-12-01
To optimize the optimal microwave-assisted extraction method of curcuminoids from Curcuma longa. On the base of single factor experiment, the ethanol concentration, the ratio of liquid to solid and the microwave time were selected for further optimization. Support Vector Regression (SVR) and Central Composite Design-Response Surface Methodology (CCD) algorithm were utilized to design and establish models respectively, while Particle Swarm Optimization (PSO) was introduced to optimize the parameters of SVR models and to search optimal points of models. The evaluation indicator, the sum of curcumin, demethoxycurcumin and bisdemethoxycurcumin by HPLC, were used. The optimal parameters of microwave-assisted extraction were as follows: ethanol concentration of 69%, ratio of liquid to solid of 21 : 1, microwave time of 55 s. On those conditions, the sum of three curcuminoids was 28.97 mg/g (per gram of rhizomes powder). Both the CCD model and the SVR model were credible, for they have predicted the similar process condition and the deviation of yield were less than 1.2%.
Khoomrung, Sakda; Chumnanpuen, Pramote; Jansa-ard, Suwanee; Nookaew, Intawat; Nielsen, Jens
2012-06-01
We present a fast and accurate method for preparation of fatty acid methyl esters (FAMEs) using microwave-assisted derivatization of fatty acids present in yeast samples. The esterification of free/bound fatty acids to FAMEs was completed within 5 min, which is 24 times faster than with conventional heating methods. The developed method was validated in two ways: (1) through comparison with a conventional method (hot plate) and (2) through validation with the standard reference material (SRM) 3275-2 omega-3 and omega-6 fatty acids in fish oil (from the Nation Institute of Standards and Technology, USA). There were no significant differences (P>0.05) in yields of FAMEs with both validations. By performing a simple modification of closed-vessel microwave heating, it was possible to carry out the esterification in Pyrex glass tubes kept inside the closed vessel. Hereby, we are able to increase the number of sample preparations to several hundred samples per day as the time for preparation of reused vessels was eliminated. Pretreated cell disruption steps are not required, since the direct FAME preparation provides equally quantitative results. The new microwave-assisted derivatization method facilitates the preparation of FAMEs directly from yeast cells, but the method is likely to also be applicable for other biological samples.
NASA Astrophysics Data System (ADS)
Mogolodi Dimpe, K.; Mpupa, Anele; Nomngongo, Philiswa N.
2018-01-01
This work was chiefly encouraged by the continuous consumption of antibiotics which eventually pose harmful effects on animals and human beings when present in water systems. In this study, the activated carbon (AC) was used as a solid phase material for the removal of sulfamethoxazole (SMX) in wastewater samples. The microwave assisted solid phase extraction (MASPE) as a sample extraction method was employed to better extract SMX in water samples and finally the analysis of SMX was done by the UV-Vis spectrophotometer. The microwave assisted solid phase extraction method was optimized using a two-level fractional factorial design by evaluating parameters such as pH, mass of adsorbent (MA), extraction time (ET), eluent ratio (ER) and microwave power (MP). Under optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.5 μg L- 1 and 1.7 μg L- 1, respectively, and intraday and interday precision expressed in terms of relative standard deviation were > 6%.The maximum adsorption capacity was 138 mg g- 1 for SMX and the adsorbent could be reused eight times. Lastly, the MASPE method was applied for the removal of SMX in wastewater samples collected from a domestic wastewater treatment plant (WWTP) and river water.
Microwave-assisted synthesis of iron oxide nanoparticles in biocompatible organic environment
NASA Astrophysics Data System (ADS)
Aivazoglou, E.; Metaxa, E.; Hristoforou, E.
2018-04-01
The development of magnetite and maghemite particles in uniform nanometer size has triggered the interest of the research community due to their many interesting properties leading to a wide range of applications, such as catalysis, nanomedicine-nanobiology and other engineering applications. In this study, a simple, time-saving and low energy-consuming, microwave-assisted synthesis of iron oxide nanoparticles, is presented. The nanoparticles were prepared by microwave-assisted synthesis using polyethylene glycol (PEG) or PEG and β-cyclodextrin (β-CD)/water solutions of chloride salts of iron in the presence of ammonia solution. The prepared nano-powders were characterized using X-Ray Diffraction (XRD), Transition Electron Microscopy (TEM), Fourier-transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, Vibrating Sample Magnetometer (VSM), X-Ray Photoelectron Spectroscopy (XPS) and Thermal analysis (TG/DSC). The produced nanoparticles are crystallized mostly in the magnetite and maghemite lattice exhibiting very similar shape and size, with indications of partial PEG coating. Heating time, microwave power and presence of PEG, are the key factors shaping the size properties of nanoparticles. The average size of particles ranges from 10.3 to 19.2 nm. The nanoparticles exhibit a faceted morphology, with zero contamination levels. The magnetic measurements indicate that the powders are soft magnetic materials with negligible coercivity and remanence, illustrating super-paramagnetic behavior.
System to continuously produce carbon fiber via microwave assisted plasma processing
White, Terry L; Paulauskas, Felix L; Bigelow, Timothy S
2014-03-25
A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber having the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.
The use of emerging MW-assisted chemistry techniques in conjunction with benign reaction media is dramatically reducing chemical waste and reaction times in several organic syntheses and chemical transformations. This review summarizes recent developments in MW-assisted synthesis...
Thermal characteristics analysis of microwaves reactor for pyrolysis of used cooking oil
NASA Astrophysics Data System (ADS)
Anis, Samsudin; Shahadati, Laily; Sumbodo, Wirawan; Wahyudi
2017-03-01
The research is objected to develop microwave reactor for pyrolysis of used cooking oil. The effect of microwave power as well as addition of char as absorber towards its thermal characteristic were investigated. Domestic microwave was modified and used to test the thermal characteristic of used cooking oil in the terms of temperature evolution, heating rate, and thermal efficiency. The samples were examined under various microwave power of 347W, 399W, 572W and 642W for 25 minutes of irradiation time. The char loading was tested in the level of 0, 50, and 100 g. Microwave reactor consists of microwave unit with a maximum power of 642W, a ceramic reactor, and a condenser equipped with temperature measurement system was successfully developed. It was found that microwave power and addition of absorber significantly influenced the thermal characteristic of microwave reactor. Under investigated condition, the optimum result was obtained at microwave power of 642W and 100 g of char. The condition was able to provide temperature of 480°C, heating rate of 18.2°C/min and thermal efficiency of 53% that is suitable to pyrolyze used cooking oil.
Direct-Coupled Plasma-Assisted Combustion Using a Microwave Waveguide Torch
2011-12-01
enhance combustion by coupling an atmospheric plasma dis- charge to a premixed methane/air flame. The absorbed microwave power ranges from 60 to 150 W...The plasma system allows for complete access of the plasma- enhanced flame for laser and optical diagnostics 0093-3813/$26.00 © 2011 IEEE Report...microwave waveguide is used to initiate and enhance combustion by coupling an atmospheric plasma discharge to a premixed methane/air flame. The
2017-01-01
The complexity and challenges in noncontact temperature measurements inside microwave-heated catalytic reactors are presented in this paper. A custom-designed microwave cavity has been used to focus the microwave field on the catalyst and enable monitoring of the temperature field in 2D. A methodology to study the temperature distribution in the catalytic bed by using a thermal camera in combination with a thermocouple for a heterogeneous catalytic reaction (methane dry reforming) under microwave heating has been demonstrated. The effects of various variables that affect the accuracy of temperature recordings are discussed in detail. The necessity of having at least one contact sensor, such as a thermocouple, or some other microwave transparent sensor, is recommended to keep track of the temperature changes occurring in the catalytic bed during the reaction under microwave heating. PMID:29170599
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darwish, Maher, E-mail: m-darwish@razi.tums.ac.ir; Mohammadi, Ali, E-mail: alimohammadi@tums.ac.ir; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran
2016-02-15
Highlights: • PVP-stabilized CdS nanoparticles have been fabricated by a polyol-microwave method. • CdS nanoparticles were characterized and the size was approximately 48 ± 10 nm. • Catalytic activity of our nanoparticles was examined for tartrazine degradation. • Remarkable results were obtained under both UV and visible light irradiations. - Abstract: Polyvinylpyrrolidone capped cadmium sulfide nanoparticles have been successfully synthesized by a facile polyol method with ethylene glycol. Microwave irradiation and calcination were used to control the size and shape of nanoparticles. Characterization with scanning electron microscopy revealed a restricted nanoparticles growth comparing with the uncapped product, hexagonal phase andmore » 48 nm average particle size were confirmed by X-ray diffraction, and finally mechanism of passivation was suggested depending on Fourier transform infrared spectra. The efficiency of nanoparticles was evaluated by the photocatalytic degradation of tartrazine in aqueous solution under UVC and visible light irradiation. Complete degradation of the dye was observed after 90 min of UVC irradiation under optimized conditions. Kinetic of reaction fitted well to the pseudo-first-order kinetic and Langmuir–Hinshelwood models. Furthermore, 85% degradation of the dye in 9 h under visible light suggests that cadmium sulfide is a promising tool to work under visible light for environmental remediation.« less
NASA Astrophysics Data System (ADS)
Santos, Clarissa M. M.; Nunes, Matheus A. G.; Barbosa, Isa S.; Santos, Gabriel L.; Peso-Aguiar, Marlene C.; Korn, Maria G. A.; Flores, Erico M. M.; Dressler, Valderi L.
2013-08-01
Liquid chromatography-inductively coupled plasma-mass spectrometry (LC-ICP-MS) was used for arsenic speciation analysis in tissues of bivalve mollusks (Anomalocardia brasiliana sp. and Macoma constricta sp.). Microwave and ultrasound radiation, combined with different extraction conditions (solvent, sample amount, time, and temperature), were evaluated for As-species extraction from the mollusks' tissues. Accuracy, extraction efficiency, and the stability of As species were evaluated by analyzing certified reference materials (DORM-2, dogfish muscle; BCR-627, tuna fish tissue; and SRM 1566b, oyster tissue) and analyte recovery tests. The best conditions were found to be microwave-assisted extraction using 200 mg of samples and water at 80 °C for 6 min. The agreement of As-species concentration in samples ranged from 97% to 102%. Arsenobetaine (AsB) was the main species present in bivalve mollusk tissues, while monomethylarsonic acid (MMA) and arsenate (As(V)) were below the limit of quantification (0.001 and 0.003 μg g- 1, respectively). Two unidentified As species also were detected and quantified. The sum of the As-species concentration was in agreement (90 to 104%), with the total As content determined by ICP-MS after sample digestion.
Tajti, Ádám; Ádám, Anna; Csontos, István; Karaghiosoff, Konstantin; Czugler, Mátyás; Ábrányi-Balogh, Péter
2017-01-01
A family of α-aryl-α-aminophosphonates and α-aryl-α-aminophosphine oxides was synthesized by the microwave-assisted solvent-free addition of dialkyl phosphites and diphenylphosphine oxide, respectively, to imines formed from benzaldehyde derivatives and primary amines. After optimization, the reactivity was mapped, and the fine mechanism was evaluated by DFT calculations. Two α-aminophosphonates were subjected to an X-ray study revealing a racemic dimer formation made through a N–H···O=P intermolecular hydrogen bridges pair. PMID:28179951
Microwave-assisted extraction of polycyclic aromatic compounds from coal.
Kerst, M; Andersson, J T
2001-08-01
Microwave-assisted extraction (MAE) of polycyclic aromatic compounds (PACs) from coal is shown to give the same pattern of compounds as Soxhlet extraction. MAE requires only 10 mL solvent and 10 min extraction time whereas Soxhlet uses 200 mL and takes 24 h. Although the yields were lower, dichloromethane (DCM) was preferred to pyridine, N-methyl-2-pyrrolidone (NMP), and NMP with CS2 because the pattern of the PACs is shown to be independent of solvent and DCM is a much more convenient solvent to work with.
NASA Astrophysics Data System (ADS)
Li, Jing; Fa, Wenjun; Li, Yasi; Zhao, Hongxiao; Gao, Yuanhao; Zheng, Zhi
2013-02-01
Copper selenide films with different phase and morphology were synthesized on copper substrate through controlling reaction solvent by microwave-assisted nonaqueous approach. The films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The result showed that the pure films could be obtained using cyclohexyl alcohol or benzyl alcohol as solvent. The cubic Cu2-xSe dendrites were synthesized in cyclohexyl alcohol reaction system and hexagonal CuSe flaky crystals were obtained with benzyl alcohol as solvent.
Sinha, A K; Joshi, B P; Sharma, A; Kumar, J K; Kaul, V K
2003-12-01
Microwave assisted condensation of asaronaldehyde (2) with malonic acid in piperidine-AcOH provides 2,4,5-trimethoxycinnamic acid (3) in 87% yield within 4 min, which upon further reduction with PdCl2- HCOOH-aq. NaOH gives 3-(2,4,5-trimethoxy)phenyl propionic acid (4) in 88% yield within 3 min. Esterification of 4 with MeOH-H+ gives methyl 2,4,5-trimethoxyphenylpropionate (1), a metabolite of Cordia alliodora, in 94% yield within 3 min (overall 69% yield).
Microwave assisted tandem reactions for the synthesis of 2-hydrazolyl-4-thiazolidinones
Saiz, Cecilia; Pizzo, Chiara; Manta, Eduardo; Wipf, Peter; Mahler, S. Graciela
2009-01-01
A tandem method for the synthesis of 2-hydrazolyl-4-thiazolidinones (5) from commercially available materials in a 3 component reaction has been developed. The reaction connects aldehydes, thiosemicarbazides and maleic anhydride, effectively assisted by microwave irradiation. The synthesis of a new type of compound, 2-hydrazolyl-5,5-diphenyl-4-thiazolidinone (7), obtained by treatment of thiosemicarbazone with benzil in basic media is also reported. HOMO/LUMO energies, orbital coefficients and charge distribution were used to explain the proposed reaction mechanism. PMID:19756224
Photon-assisted tunneling through a quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kouwenhoven, L.P.; Jauhar, S.; McCormick, K.
1994-07-15
We study single-electron tunneling in a two-junction device in the presence of microwave radiation. We introduce a model for numerical simulations that extends the Tien-Gordon theory for photon-assisted tunneling to encompass correlated single-electron tunneling. We predict sharp current jumps which reflect the discrete photon energy [ital hf], and a zero-bias current whose sign changes when an electron is added to the central island of the device. Measurements on split-gate quantum dots show microwave-induced features that are in good agreement with the model.
Destruction kinetic of PCDDs/Fs in MSWI fly ash using microwave peroxide oxidation.
Chang, Yu-Min; Fang, Wen-Bin; Tsai, Kuo-Sheng; Kao, Jimmy C M; Lin, Kae-Long; Chen, Ching-Ho
2015-01-01
Microwave peroxide oxidation is a less greenhouse gas emission and energy-efficient technology to destroy toxic organic compounds in hazardous waste. The research novelty is to adopt the innovative microwave peroxide oxidation in H2SO4/HNO3 solution to efficiently destroy the polychlorinated dibenzo-p-dioxins (PCDDs)/Fs in municipal solid waste incineration fly ash. The major objective of this paper is to study dynamic destruction of PCDDs/Fs using the microwave peroxide oxidation. Almost all PCDDs/Fs in the raw fly ash can be destructed in 120 min at a temperature of 423 K using the microwave peroxide oxidation treatment. It was found that the microwave peroxide oxidation provides the potential to destruct the PCDDs/Fs content in municipal solid waste incinerator (MSWI) fly ash to a low level as a function of treatment time. A useful kinetic correlation between destruction efficiency and treatment conditions is proposed on the basis of the experimental data obtained in this study. The significance of this work in terms of practical engineering applications is that the necessary minimum treatment time can be solved using a proposed graphic illustration method, by which the minimum treatment time is obtained if the desired destruction efficiency and treatment temperature are known. Because of inorganic salt dissolution, the temperature would be a critical factor facilitating the parts of fly ash dissolution. Material loss problem caused by the microwave peroxide oxidation and the effects of treatment time and temperature are also discussed in this paper.
Microwave-Assisted Esterification: A Discovery-Based Microscale Laboratory Experiment
ERIC Educational Resources Information Center
Reilly, Maureen K.; King, Ryan P.; Wagner, Alexander J.; King, Susan M.
2014-01-01
An undergraduate organic chemistry laboratory experiment has been developed that features a discovery-based microscale Fischer esterification utilizing a microwave reactor. Students individually synthesize a unique ester from known sets of alcohols and carboxylic acids. Each student identifies the best reaction conditions given their particular…
A microwave assisted intramolecular-furan-Diels-Alder approach to 4-substituted indoles.
Petronijevic, Filip; Timmons, Cody; Cuzzupe, Anthony; Wipf, Peter
2009-01-07
The key steps of a versatile new protocol for the convergent synthesis of 3,4-disubstituted indoles are the addition of an alpha-lithiated alkylaminofuran to a carbonyl compound, a microwave-accelerated intramolecular Diels-Alder cycloaddition and an in situ double aromatization reaction.
NASA Astrophysics Data System (ADS)
Kabouzi, Yassine
The remediation of greenhouse gases, such as perfluorinated compounds (PFCs), constitutes a major environmental concern. Plasmas operating at atmospheric pressure offer an efficient technology for the control of toxic and greenhouse gas emission. The two main objectives of the thesis were to investigate the mechanisms of contraction and filamentation in atmospheric-pressure microwave discharges, and to examine their influence on the plasma abatement process of PFC gases in these discharges. The finite thermal conductivity of the gas discharge is responsible for the gas nonuniform heating leading to a contracted discharge column. The gas thermal conductivity and the penetration depth of the microwave electric field in the plasma are shown to set the value of the plasma radius. The degree of contraction and filamentation of microwave discharges can be controlled, and even reduced, by modulating adequately the incident microwave power. The relaxation times of heat conduction and heat release are actually observed to be of the same magnitude, and correspond to the modulation period for which the discharge shows less contraction. PFC molecules are eliminated through their fragmentation by inelastic collisions with electrons and the subsequent oxidation of these fragments. Reformation of PFC molecules is the main process limiting the abatement efficiency in atmospheric-pressure microwave discharges. As a result of discharge radial contraction, a relative "colder" space between the plasma filament and the discharge tube wall favors PFC reformation and, therefore, lowers the destruction efficiency. The PFC destruction efficiency is found to increase with absorbed microwave power. Surface-wave microwave discharges sustained at atmospheric pressure prove to be an efficient and ecological solution for emission reduction of greenhouse gases.
Liu, Yongzhuang; Chen, Wenshuai; Xia, Qinqin; Guo, Bingtuo; Wang, Qingwen; Liu, Shouxin; Liu, Yixing; Li, Jian
2017-01-01
Abstract Lignocellulosic biomass is an abundant and renewable resource for the production of biobased value‐added fuels, chemicals, and materials, but its effective exploitation by an energy‐efficient and environmentally friendly strategy remains a challenge. Herein, a facile approach for efficiently cleaving lignin–carbohydrate complexes and ultrafast fractionation of components from wood by microwave‐assisted treatment with deep eutectic solvent is reported. The solvent was composed of sustainable choline chloride and oxalic acid dihydrate, and showed a hydrogen‐bond acidity of 1.31. Efficient fractionation of lignocellulose with the solvent was realized by heating at 80 °C under 800 W microwave irradiation for 3 min. The extracted lignin showed a low molecular weight of 913, a low polydispersity of 1.25, and consisted of lignin oligomers with high purity (ca. 96 %), and thus shows potential in downstream production of aromatic chemicals. The other dissolved matter mainly comprised glucose, xylose, and hydroxymethylfurfural. The undissolved material was cellulose with crystal I structure and a crystallinity of approximately 75 %, which can be used for fabricating nanocellulose. Therefore, this work promotes an ultrafast lignin‐first biorefinery approach while simultaneously keeping the undissolved cellulose available for further utilization. This work is expected to contribute to improving the economics of overall biorefining of lignocellulosic biomass. PMID:28054749
NASA Astrophysics Data System (ADS)
Lehtimäki, Esa; Väisänen, Ari
2017-01-01
The digestion methods for the determination of As, Cd, Cr, Pb, Sb, Sn and Zn concentrations in plastic samples using microwave-assisted digestion (MW-AD) and small-size autoclave digestion was developed. The certified polyethylene, polypropylene, polyvinyl chloride and acrylonitrile butadiene styrene certified reference materials were used in order to find digestion method working properly for several sample matrices. Efficiency of the digestion methods was evaluated by analyzing the residual carbon in digests by TOC analyzer. MW-AD using a mixture of 7 mL of HNO3 and 3 mL of H2O2 as a digestion solution resulted in excellent recoveries for As, Cd, Pb, Sb and Zn, and were in the range of 92-107% for all the analytes except Pb in polyethylene material. Autoclave digestion using 5 mL of concentrated HNO3 as a digestion solution resulted in similar recoveries with the exception of a higher As recovery (98%). Tin recovery resulted in low level after both MW-AD and autoclave digestion. Autoclave digestion was further developed resulting in a partially open two-step digestion process especially for the determination of Sn and Cr. The method resulted in higher recoveries of Sn and Cr (87 and 76%) but with the lower concentration of easily volatile As, Cd and Sb.
Friligou, Irene; Papadimitriou, Evangelia; Gatos, Dimitrios; Matsoukas, John; Tselios, Theodore
2011-05-01
A fast and efficient microwave-assisted solid phase peptide synthesis (MW-SPPS) of a 51mer peptide, the main heparin-binding site (60-110) of human pleiotrophin (hPTN), using 2-chlorotrityl chloride resin (CLTR-Cl) following the 9-fluorenylmethyloxycarbonyl/tert-butyl (Fmoc/tBu) methodology and with the standard N,N'-diisopropylcarbodiimide/1-hydroxybenzotriazole (DIC/HOBt) coupling reagents, is described. An MW-SPPS protocol was for the first time successfully applied to the acid labile CLTR-Cl for the faster synthesis of long peptides (51mer peptide) and with an enhanced purity in comparison to conventional SPPS protocols. The synthesis of such long peptides is not trivial and it is generally achieved by recombinant techniques. The desired linear peptide was obtained in only 30 h of total processing time and in 51% crude yield, in which 60% was the purified product obtained with 99.4% purity. The synthesized peptide was purified by reversed phase high performance liquid chromatography (RP-HPLC) and identified by electrospray ionization mass spectrometry (ESI-MS). Then, the regioselective formation of the two disulfide bridges of hPTN 60-110 was successfully achieved by a two-step procedure, involving an oxidative folding step in dimethylsulfoxide (DMSO) to form the Cys(77)-Cys(109) bond, followed by iodine oxidation to form the Cys(67)-Cys(99) bond.
Microwave Sterilization and Depyrogenation System
NASA Technical Reports Server (NTRS)
Akse, James R.; Dahl, Roger W.; Wheeler, Richard R., Jr.
2009-01-01
A fully functional, microgravity-compatible microwave sterilization and depyrogenation system (MSDS) prototype was developed that is capable of producing medical-grade water (MGW) without expendable supplies, using NASA potable water that currently is available aboard the International Space Station (ISS) and will be available for Lunar and planetary missions in the future. The microwave- based, continuous MSDS efficiently couples microwaves to a single-phase, pressurized, flowing water stream that is rapidly heated above 150 C. Under these conditions, water is rapidly sterilized. Endotoxins, significant biological toxins that originate from the cell walls of gram-negative bacteria and which represent another defining MGW requirement, are also deactivated (i.e., depyrogenated) albeit more slowly, with such deactivation representing a more difficult challenge than sterilization. Several innovations culminated in the successful MSDS prototype design. The most significant is the antenna-directed microwave heating of a water stream flowing through a microwave sterilization chamber (MSC). Novel antenna designs were developed to increase microwave transmission efficiency. These improvements resulted in greater than 95-percent absorption of incident microwaves. In addition, incorporation of recuperative heat exchangers (RHxs) in the design reduced the microwave power required to heat a water stream flowing at 15 mL/min to 170 C to only 50 W. Further improvements in energy efficiency involved the employment of a second antenna to redirect reflected microwaves back into the MSC, eliminating the need for a water load and simplifying MSDS design. A quick connect (QC) is another innovation that can be sterilized and depyrogenated at temperature, and then cooled using a unique flow design, allowing collection of MGW at atmospheric pressure and 80 C. The final innovation was the use of in-line mixers incorporated in the flow path to disrupt laminar flow and increase contact time at a given flow rate. These technologies can be employed in small-scale systems for efficient production of MGW in the laboratory or in a range of larger systems that meet various industrial requirements. The microwave antennas can also be adapted to selectively sterilize vulnerable connections to ultra-pure water production facilities or biologically vulnerable systems where microorganisms may intrude.
Microwave-Assisted Hydantoins Synthesis on Solid Support
ERIC Educational Resources Information Center
Coursindel, Thibault; Martinez, Jean; Parrot, Isabelle
2010-01-01
In this laboratory activity, students are introduced to a three-step synthesis of hydantoin (imidazolidine-2,4-dione), a moiety that is found in many biologically active compounds. Using a microwave oven and solid-support technology, this synthetic experiment is designed for masters-degree candidates working in organic chemistry or upper-level…