Sample records for efficient nonradiative decay

  1. Efficient Cryogenic Near-Infrared Tm: YLF Laser

    DTIC Science & Technology

    2016-12-22

    pumped at 781.5 nm and operated at 816 nm. Although Tm:YLF has lower nonradiative decay rate than Tm:YAG, residual population trapping still affects...mitigated by cryogenic cooling, use of a YLF crystal host to reduce nonradiative decay rates and the use of a dual-wavelength resonator to

  2. DNA-Enabled Integrated Molecular Systems for Computation and Sensing

    DTIC Science & Technology

    2014-05-21

    nanostructures to create nanophotonic networks that undergo nonradiative , near-field energy transfer. This process is known as resonance energy transfer (RET...promoting A to A*. The A* species can then decay nonradiatively or emit a photon of energy hν2.When chromophores are too far away, they cannot efficiently

  3. Enhancing the luminescence efficiency of silicon-nanocrystals by interaction with H+ ions.

    PubMed

    Cannas, Marco; Camarda, Pietro; Vaccaro, Lavinia; Amato, Francesco; Messina, Fabrizio; Fiore, Tiziana; Li Vigni, Maria

    2018-04-18

    The emission of silicon nanocrystals (Si-NCs), synthesized by pulsed laser ablation in water, was investigated on varying the pH of the solution. These samples emit μs decaying orange photoluminescence (PL) associated with radiative recombination of quantum-confined excitons. Time-resolved spectra reveal that both the PL intensity and the lifetime increase by a factor of ∼20 when the pH decreases from 10 to 1 thus indicating that the emission quantum efficiency increases by inhibiting nonradiative decay rates. Infrared (IR) absorption and electron paramagnetic resonance (EPR) experiments allow addressing the origin of defects on which the excitons nonradiatively recombine. The linear correlation between the PL and the growth of SiH groups demonstrates that H+ ions passivate the nonradiative defects that are located in the interlayer between the Si-NC core and the amorphous SiO2 shell.

  4. Near-Unity Internal Quantum Efficiency of Luminescent Silicon Nanocrystals with Ligand Passivation.

    PubMed

    Sangghaleh, Fatemeh; Sychugov, Ilya; Yang, Zhenyu; Veinot, Jonathan G C; Linnros, Jan

    2015-07-28

    Spectrally resolved photoluminescence (PL) decays were measured for samples of colloidal, ligand-passivated silicon nanocrystals. These samples have PL emission energies with peak positions in the range ∼1.4-1.8 eV and quantum yields of ∼30-70%. Their ensemble PL decays are characterized by a stretched-exponential decay with a dispersion factor of ∼0.8, which changes to an almost monoexponential character at fixed detection energies. The dispersion factors and decay rates for various detection energies were extracted from spectrally resolved curves using a mathematical approach that excluded the effect of homogeneous line width broadening. Since nonradiative recombination would introduce a random lifetime variation, leading to a stretched-exponential decay for an ensemble, we conclude that the observed monoexponential decay in size-selected ensembles signifies negligible nonradiative transitions of a similar strength to the radiative one. This conjecture is further supported as extracted decay rates agree with radiative rates reported in the literature, suggesting 100% internal quantum efficiency over a broad range of emission wavelengths. The apparent differences in the quantum yields can then be explained by a varying fraction of "dark" or blinking nanocrystals.

  5. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells

    NASA Astrophysics Data System (ADS)

    Benduhn, Johannes; Tvingstedt, Kristofer; Piersimoni, Fortunato; Ullbrich, Sascha; Fan, Yeli; Tropiano, Manuel; McGarry, Kathryn A.; Zeika, Olaf; Riede, Moritz K.; Douglas, Christopher J.; Barlow, Stephen; Marder, Seth R.; Neher, Dieter; Spoltore, Donato; Vandewal, Koen

    2017-06-01

    Organic solar cells demonstrate external quantum efficiencies and fill factors approaching those of conventional photovoltaic technologies. However, as compared with the optical gap of the absorber materials, their open-circuit voltage is much lower, largely due to the presence of significant non-radiative recombination. Here, we study a large data set of published and new material combinations and find that non-radiative voltage losses decrease with increasing charge-transfer-state energies. This observation is explained by considering non-radiative charge-transfer-state decay as electron transfer in the Marcus inverted regime, being facilitated by a common skeletal molecular vibrational mode. Our results suggest an intrinsic link between non-radiative voltage losses and electron-vibration coupling, indicating that these losses are unavoidable. Accordingly, the theoretical upper limit for the power conversion efficiency of single-junction organic solar cells would be reduced to about 25.5% and the optimal optical gap increases to 1.45-1.65 eV, that is, 0.2-0.3 eV higher than for technologies with minimized non-radiative voltage losses.

  6. Influence of Energetic Disorder on Exciton Lifetime and Photoluminescence Efficiency in Conjugated Polymers.

    PubMed

    Rörich, Irina; Mikhnenko, Oleksandr V; Gehrig, Dominik; Blom, Paul W M; Crăciun, N Irina

    2017-02-16

    Using time-resolved photoluminescence (TRPL) spectroscopy the exciton lifetime in a range of conjugated polymers is investigated. For poly(p-phenylenevinylene) (PPV)-based derivatives and a polyspirobifluorene copolymer (PSBF) we find that the exciton lifetime is correlated with the energetic disorder. Better ordered polymers exhibit a single exponential PL decay with exciton lifetimes of a few hundred picoseconds, whereas polymers with a larger degree of disorder show multiexponential PL decays with exciton lifetimes in the nanosecond regime. These observations are consistent with diffusion-limited exciton quenching at nonradiative recombination centers. The measured PL decay time reflects the time that excitons need to diffuse toward these quenching sites. Conjugated polymers with large energetic disorder and thus longer exciton lifetime also exhibit a higher photoluminescence quantum yield due to the slower exciton diffusion toward nonradiative quenching sites.

  7. Fluorescence Quenching of Alpha-Fetoprotein by Gold Nanoparticles: Effect of Dielectric Shell on Non-Radiative Decay

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Li, Jian-Jun; Wang, A.-Qing; Chen, Yu; Zhao, Jun-Wu

    2010-09-01

    Fluorescence quenching spectrometry was applied to study the interactions between gold colloidal nanoparticles and alpha-fetoprotein (AFP). Experimental results show that the gold nanoparticles can quench the fluorescence emission of adsorbed AFP effectively. Furthermore, the intensity of fluorescence emission peak decreases monotonously with the increasing gold nanoparticles content. A mechanism based on surface plasmon resonance-induced non-radiative decay was investigated to illuminate the effect of a dielectric shell on the fluorescence quenching ability of gold nanoparticles. The calculation results show that the increasing dielectric shell thickness may improve the monochromaticity of fluorescence quenching. However, high energy transfer efficiency can be obtained within a wide wavelength band by coating a thinner dielectric shell.

  8. Ultrafast Nonradiative Decay and Excitation Energy Transfer by Carotenoids in Photosynthetic Light-Harvesting Proteins

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumen

    This dissertation investigates the photophysical and structural dynamics that allow carotenoids to serve as efficient excitation energy transfer donor to chlorophyll acceptors in photosynthetic light harvesting proteins. Femtosecond transient grating spectroscopy with optical heterodyne detection has been employed to follow the nonradiative decay pathways of carotenoids and excitation energy transfer to chlorophylls. It was found that the optically prepared S2 (11Bu+) state of beta-carotene decays in 12 fs fs to populate an intermediate electronic state, Sx, which then decays nonradiatively to the S 1 state. The ultrafast rise of the dispersion component of the heterodyne transient grating signal reports the formation of Sx intermediate since the rise of the dispersion signal is controlled by the loss of stimulated emission from the S2 state. These findings were extended to studies of peridinin, a carbonyl substituted carotenoid that serves as a photosynthetic light-harvesting chromophore in dinoflagellates. Numerical simulations using nonlinear response formalism and the multimode Brownian oscillator model assigned the Sx intermediate to a torsionally distorted structure evolving on the S2 potential surface. The decay of the Sx state is promoted by large amplitude out-of-plane torsional motions and is significantly retarded by solvent friction owing to the development of an intramolecular charge transfer character in peridinin. The slowing of the nonradiative decay allows the Sx state to transfer significant portion of the excitation energy to chlorophyll a acceptors in the peridinin-chlorophyll a protein. The results of heterodyne transient grating study on peridinin-chlorophyll a protein suggests two distinct energy transfer channels from peridinin to chlorophyll a: a 30 fs process involving quantum coherence and delocalized peridinin-Chl states and an incoherent, 2.5 ps process involving the distorted S2 state of peridinin. The torsional evolution on the S2 state is accompanied by the formation of an ICT character and dynamic exciton localization, which controls the mechanism of excitation energy transfer to chlorophyll a acceptors in the peridinin-chlorophyll a protein.

  9. Visible upconversion emission and non-radiative direct Yb 3+ to Er 3+ energy transfer processes in nanocrystalline ZrO 2:Yb 3+,Er 3+

    NASA Astrophysics Data System (ADS)

    Diaz-Torres, L. A.; Meza, O.; Solis, D.; Salas, P.; De la Rosa, E.

    2011-06-01

    Wide band gap Yb 3+ and Er 3+ codoped ZrO 2 nanocrystals have been synthesized by a modified sol-gel method. Under 967 nm excitation strong green and red upconversion emission is observed for several Er 3+ to Yb 3+ ions concentration ratios. A simple microscopic rate equation model is used to study the effects of non-radiative direct Yb 3+ to Er 3+ energy transfer processes on the visible and near infrared fluorescence decay trends of both Er 3+ and Yb 3+ ions. The microscopic rate equation model takes into account the crystalline phase as well as the size of nanocrystals. Nanocrystals phase and size were estimated from XRD patterns. The rate equation model succeeds to fit simultaneously all visible and near infrared fluorescence decay profiles. The dipole-dipole interaction parameters that drive the non-radiative energy transfer processes depend on doping concentration due to crystallite phase changes. In addition the non-radiative relaxation rate ( 4I11/2→ 4I13/2) is found to be greater than that estimated by the Judd-Ofelt parameters due to the action of surface impurities. Results suggest that non-radiative direct Yb 3+ to Er 3+ energy transfer processes in ZrO 2:Yb,Er are extremely efficient.

  10. Förster resonance energy transfer in hybrid associates of colloidal Ag2S quantum dots with thionine molecules

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Oleg V.; Smirnov, Mikhail S.; Kondratenko, Tamara S.; Ambrosevich, Sergey A.; Metlin, Mikhail T.; Grevtseva, Irina G.; Perepelitsa, Aleksey S.

    2017-12-01

    Nonradiative resonance energy transfer in hydrophilic hybrid associates of thionine molecules (TH+) with colloidal Ag2S quantum dots (QDs) with average diameter of 3.5 nm was studied. Photoluminescence spectra and its decay shown that for these systems the supplemental photosensitization of recombination luminescence of Ag2S QDs (1200 nm) from the region of TH+ fluorescence (618 nm) is possible. It was found that the average lifetime of TH+ molecules luminescence is shortened during their association with Ag2S QDs. Approximation of luminescence decay by stretched exponent with value of parameter β = 0.5 indicates on the inductive-resonance dipole-dipole (Förster) mechanism of nonradiative energy transfer (FRET). The efficiency of FRET was 0.29-0.41.

  11. Upconversion Effects in Resonantly Pumped Er3+ and Pr3+ Doped Low Phonon-Energy Crystals for Eye-Safe Laser Applications

    DTIC Science & Technology

    2015-07-14

    2.4 ms [24] for Er: KPb2Cl5 and  ~ 1.9 ms [13] for Er: KPb2Br5). This feature is indicative of nonradiative ETU process taking place [16...such as YAG as nonradiative decay rates are smaller in chloride and bromide based hosts. Using equation (5) the microparameters for the infrared...is present which also contributes to the effective decay transient. Similar to Pr3+ in the halide hosts KPb2Cl5 and 25 KPb2Br5 nonradiative decay

  12. Trapping time statistics and efficiency of transport of optical excitations in dendrimers

    NASA Astrophysics Data System (ADS)

    Heijs, Dirk-Jan; Malyshev, Victor A.; Knoester, Jasper

    2004-09-01

    We theoretically study the trapping time distribution and the efficiency of the excitation energy transport in dendritic systems. Trapping of excitations, created at the periphery of the dendrimer, on a trap located at its core, is used as a probe of the efficiency of the energy transport across the dendrimer. The transport process is treated as incoherent hopping of excitations between nearest-neighbor dendrimer units and is described using a rate equation. We account for radiative and nonradiative decay of the excitations while diffusing across the dendrimer. We derive exact expressions for the Laplace transform of the trapping time distribution and the efficiency of trapping, and analyze those for various realizations of the energy bias, number of dendrimer generations, and relative rates for decay and hopping. We show that the essential parameter that governs the trapping efficiency is the product of the on-site excitation decay rate and the trapping time (mean first passage time) in the absence of decay.

  13. Plasmonic enhancement of electroluminescence

    NASA Astrophysics Data System (ADS)

    Guzatov, D. V.; Gaponenko, S. V.; Demir, H. V.

    2018-01-01

    Here plasmonic effect specifically on electroluminescence (EL) is studied in terms of radiative and nonradiative decay rates for a dipole near a metal spherical nanoparticle (NP). Contribution from scattering is taken into account and is shown to play a decisive role in EL enhancement owing to pronounced size-dependent radiative decay enhancement and weak size effect on non-radiative counterpart. Unlike photoluminescence where local incident field factor mainly determines the enhancement possibility and level, EL enhancement is only possible by means of quantum yield rise, EL enhancement being feasible only for an intrinsic quantum yield Q0 < 1. The resulting plasmonic effect is independent of intrinsic emitter lifetime but is exclusively defined by the value of Q0, emission spectrum, NP diameter and emitter-metal spacing. For 0.1< Q0 < 0.25, Ag nanoparticles are shown to enhance LED/OLED intensity by several times over the whole visible whereas Au particles feature lower effect within the red-orange range only. Independently of positive effect on quantum yield, metal nanoparticles embedded in an electroluminescent device will improve its efficiency at high currents owing to enhanced overall recombination rate which will diminish manifestation of Auger processes. The latter are believed to be responsible for the known undesirable efficiency droop in semiconductor commercial quantum well based LEDs at higher current. For the same reason plasmonics can diminish quantum dot photodegradation from Auger process induced non-radiative recombination and photoionization thus opening a way to avoid negative Auger effects in emerging colloidal semiconductor LEDs.

  14. A multi-timescale map of radiative and nonradiative decay pathways for excitons in CdSe quantum dots.

    PubMed

    Knowles, Kathryn E; McArthur, Eric A; Weiss, Emily A

    2011-03-22

    A combination of transient absorption (TA) and time-resolved photoluminescence (TRPL) spectroscopies performed on solution-phase samples of colloidal CdSe quantum dots (QDs) allows the construction of a time-resolved, charge carrier-resolved map of decay from the first excitonic state of the QD. Data from TA and TRPL yield the same six exponential components, with time constants ranging from ∼1 ps to 50 ns, for excitonic decay. Comparison of TA signals in the visible and near-infrared (NIR) spectral regions enables determination of the relative contributions of electron and hole dynamics to each decay component, and comparison of TA and TRPL reveals that each component represents a competition between radiative and nonradiative decay pathways. In total, these data suggest that the QD sample comprises at least three distinct populations that differ in both the radiative and nonradiative decay pathways available to the excitonic charge carriers, and provide evidence for multiple emissive excitonic states in which the hole is not in the valence band, but rather a relaxed or trapped state.

  15. A 'bottom up', ab initio computational approach to understanding fundamental photophysical processes in nitrogen containing heterocycles, DNA bases and base pairs.

    PubMed

    Marchetti, Barbara; Karsili, Tolga N V; Ashfold, Michael N R; Domcke, Wolfgang

    2016-07-27

    The availability of non-radiative decay mechanisms by which photoexcited molecules can revert to their ground electronic state, without experiencing potentially deleterious chemical transformation, is fundamental to molecular photostability. This Perspective Article combines results of new ab initio electronic structure calculations and prior experimental data in an effort to systematise trends in the non-radiative decay following UV excitation of selected families of heterocyclic molecules. We start with the prototypical uni- and bicyclic molecules phenol and indole, and explore the structural and photophysical consequences of incorporating progressively more nitrogen atoms within the respective ring structures en route to the DNA bases thymine, cytosine, adenine and guanine. For each of the latter, we identify low energy non-radiative decay pathways via conical intersections with the ground state potential energy surface accessed by out-of-plane ring deformations. This is followed by summary descriptions and illustrations of selected rival (electron driven H atom transfer) non-radiative excited state decay processes that demand consideration once the nucleobases are merely components in larger biomolecular systems like nucleosides, and both individual and stacked base-pairs.

  16. Solvent effects on the ultrafast nonradiative deactivation mechanisms of thymine in aqueous solution: Excited-state QM/MM molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Nakayama, Akira; Arai, Gaku; Yamazaki, Shohei; Taketsugu, Tetsuya

    2013-12-01

    On-the-fly excited-state quantum mechanics/molecular mechanics molecular dynamics (QM/MM-MD) simulations of thymine in aqueous solution are performed to investigate the role of solvent water molecules on the nonradiative deactivation process. The complete active space second-order perturbation theory (CASPT2) method is employed for a thymine molecule as the QM part in order to provide a reliable description of the excited-state potential energies. It is found that, in addition to the previously reported deactivation pathway involving the twisting of the C-C double bond in the pyrimidine ring, another efficient deactivation pathway leading to conical intersections that accompanies the out-of-plane displacement of the carbonyl group is observed in aqueous solution. Decay through this pathway is not observed in the gas phase simulations, and our analysis indicates that the hydrogen bonds with solvent water molecules play a key role in stabilizing the potential energies of thymine in this additional decay pathway.

  17. Extremely long nonradiative relaxation of photoexcited graphane is greatly accelerated by oxidation: time-domain ab initio study.

    PubMed

    Nelson, Tammie R; Prezhdo, Oleg V

    2013-03-06

    Graphane and its derivatives are stable and extremely thin, wide band gap semiconductors that promise to replace conventional semiconductors in electronics, catalysis, and energy applications, greatly reducing device size and power consumption. In order to be useful, band-gap excitations in these materials should be long lived and nonradiative energy losses to heat should be slow. We use state-of-the-art nonadiabatic molecular dynamics combined with time-dependent density functional theory in order to determine the nonradiative lifetime and radiative line width of the lowest energy singlet excitations in pure and oxidized graphanes. We predict that pure graphane has a very long nonradiative decay time, on the order of 100 ns, while epoxy- and hydroxy-graphanes lose electronic excitation energy to heat 10-20 times faster. The luminescence line width is 1.5 times larger in pristine graphane compared to its oxidized forms, and at room temperature, it is on the order of 50 meV. Hydroxylation lowers graphane's band gap, while epoxidation increases the gap. The nonradiative decay and luminescence line width of pure graphane are governed by electron coupling to the 1200 cm(-1) vibrational mode. In the oxidized forms of graphane, the electronic excitations couple to a broad range of vibrational modes, rationalizing the more rapid nonradiative decay in these systems. The slow electron-phonon energy losses in graphane compared to other graphene derivatives, such as carbon nanotubes and nanoribbons, indicate that graphanes are excellent candidates for semiconductor applications.

  18. Vibrationally induced center reconfiguration in co-doped GaN:Eu, Mg epitaxial layers: Local hydrogen migration vs. activation of non-radiative channels

    NASA Astrophysics Data System (ADS)

    Mitchell, B.; Lee, D.; Lee, D.; Fujiwara, Y.; Dierolf, V.

    2013-12-01

    Europium doped gallium nitride (GaN:Eu) is a promising candidate as a material for red light emitting diodes. When Mg was co-doped into GaN:Eu, additional incorporation environments were discovered that show high excitation efficiency at room temperature and have been attributed to the coupling of Mg-H complexes to the majority Eu site. Electron beam irradiation, indirect and resonant (direct) laser excitation were found to modify these complexes, indicating that vibrational energy alone can trigger the migration of the H while the presence of additional charges and excess energy controls the type of reconfiguration and the activation of non-radiative decay channels.

  19. Luminescence properties of Eu3+-doped SiO2-LiYF4 glass-ceramic microrods

    NASA Astrophysics Data System (ADS)

    Secu, C. E.; Secu, M.

    2015-09-01

    Photoluminescence properties of the glass-ceramics microrods containing Eu3+-doped LiYF4 nanocrystals have been studied and characterized. Judd-Ofelt parameters and quantum efficiency has been computed from luminescence spectra and discussed by comparison to the glass ceramic bulk and pellet. The radiative decay rate Arad is higher in the glass ceramic rods (221 s-1) than in the glass ceramic bulk (130 s-1) but the quantum efficiency computed is very low (21%) compared to the glass-ceramic bulk (97%). There are effective non-radiative decay channels that might be related to an influence of the dimensional constraints imposed by the membrane pores during xerogel formation and subsequent glass ceramization.

  20. Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer

    NASA Astrophysics Data System (ADS)

    Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob

    2015-07-01

    We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq)2(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq)2(acac). The lifetime of device (t95: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.

  1. Effects of environment of the activated nonradiative decay of the /sup 3/A/sub 2/ state of Rh/sub 2/(TMB)/sub 4//sup 2 +/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milder, S.J.

    1985-10-09

    The effect of environment on the temperature dependence of the nonradiative decay of the /sup 3/A/sup 2/ state of Rh/sub 2/(TMB)/sub 4//sup 2 +/ (TMB = 2,5-dimethyl-2,5-diisocyanohexane) is studied. The temperature dependence of the observed nonradiative decay rate can be approximately fit to an Arrhenius-like expression: k/sub obsd/ = k/sub 0/ + Ae/sup -E/sub a//RT/. Arrhenius parameters are obtained in seven different environments, with the activation energies varying from 1970 to 3420 cm/sup -1/. A plot of 1n A vs. E/sub a/, known as a Barclay-Butler plot, is linear, with slope = 3.3 x 10/sup -3/ cm and y interceptmore » = 20.0. The linear Barclay-Butler plot suggests that the activated decay from the /sup 3/A/sub 2/ state of Rh/sub 2/(TMB)/sub 4//sup 2 +/ has the same mechanism, regardless of environment. Single-crystal, dilute-plastic, and dilute-crystal environments have been tested. 13 references, 4 figures.« less

  2. Electronic Energy Transfer in New Polymer Nanocomposite Assemblies

    DTIC Science & Technology

    1994-07-13

    for public release and sale; its distribution is unlimited. OL AISTfrRACT fMaimunt 20o war*) New light-harvesting thin film supramolecular assemblies...be supression or reduction of exciplex formation between excited donor molecules and ground state acceptor molecules that may lead to nonradiative...nonradiative excited state decay exists other than EET.33 One possibility for this nonradiative and non-EET pathway is exciplex formation between the

  3. Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob, E-mail: sy96.lee@samsung.com

    2015-07-27

    We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq){sub 2}(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq){sub 2}(acac). The lifetime of device (t{sub 95}: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.

  4. Optical Properties of Tm(3+) Ions in Alkali Germanate Glass

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Barnes, Norman P.; Reichle, Donald J.; Jiang, Shibin

    2006-01-01

    Tm-doped alkali germanate glass is investigated for use as a laser material. Spectroscopic investigations of bulk Tm-doped germanate glass are reported for the absorption, emission and luminescence decay. Tm:germanate shows promise as a fiber laser when pumped with 0.792 m diodes because of low phonon energies. Spectroscopic analysis indicates low nonradiative quenching and pulsed laser performance studies confirm this prediction by showing a quantum efficiency of 1.69.

  5. Silica and Germanate Glass High Power Fiber Laser Sources

    DTIC Science & Technology

    2014-01-01

    with bismuth germanate glasses. The lower phonon energy offers negligible nonradiative multiphonon relaxation of rare earth transitions up to 2.5µm...of the various emission transitions. [1] J.M.F. van Dijk, M.F.H. Schuurmans, “On the nonradiative and radiative decay rates and a modified

  6. Ultrafast endothermic transfer of non-radiative exciplex state to radiative excitons in polyfluorene random copolymer for blue electroluminescence

    NASA Astrophysics Data System (ADS)

    Moghe, Dhanashree A.; Dey, Amrita; Johnson, Kerr; Lu, L.-P.; Friend, Richard H.; Kabra, Dinesh

    2018-04-01

    We report a blue-emitting random copolymer (termed modified Aryl-F8) consisting of three repeat units of polydioctylfluorene (F8), Aryl-polydioctylfluorene (Aryl-F8), and an aromatic amine comonomer unit, poly(bis-N,Ν'-(4-butylphenyl)-bis-N,N'-phenyl-1,4 phenylenediamine) chemically linked to get an improved charge carrier balance without compromising on the photoluminescence (PL) quantum yield with respect to the Aryl-F8 homo-polymer. The measured photoluminescence quantum efficiency (˜70%) of the blue-emitting polymer is comparable to or greater than the individual monomer units. The time resolved PL spectra from the modified Aryl-F8 are similar to those of Arylated-poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4 phenylenediamine) (PFB) even at a time scale of 100-250 ps, indicating an ultrafast energy transfer from the (Aryl-F8 or F8):Arylated-PFB interface to Arylated-PFB, i.e., endothermic transfer of non-radiative exciplex to a radiative molecular exciton. Furthermore, the presence of non-radiative exciplex is confirmed by the photoluminescence decay profile and temperature dependent PL spectra. The luminance efficiency achieved for the modified Aryl-F8 polymer light-emitting diodes is ˜11 cd A-1 with an external quantum efficiency (EQE) of ˜4.5%, whereas it is 0.05 cd/A with an EQE of ˜0.025% for Aryl-F8. Almost two orders of higher efficiency is achieved due to the improved charge carrier balance from the random copolymer without compromising on the photoluminescence yield.

  7. Quantitative fluorescence measurements performed on typical matrix molecules in matrix-assisted laser desorption/ionisation

    NASA Astrophysics Data System (ADS)

    Allwood, D. A.; Dyer, P. E.

    2000-11-01

    Fundamental photophysical parameters have been determined for several molecules that are commonly used as matrices, e.g. ferulic acid, within matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Fluorescence quantum efficiencies ( φqe), singlet decay rates ( kl), vibrationless ground-singlet transition energies and average fluorescence wavelengths have been obtained from solid and solution samples by quantitative optical measurements. This new data will assist in modelling calculations of MALDI processes and in highlighting desirable characteristics of MALDI matrices. φqe may be as high as 0.59 whilst the radiative decay rate ( kf) appears to be within the (0.8-4)×10 8 s -1 range. Interestingly, α-cyano-4-hydroxycinnamic acid (α-CHC) has a very low φqe and fast non-radiative decay rate which would imply a rapid and efficient thermalisation of electronic excitation. This is in keeping with observations that α-CHC exhibits low threshold fluences for ion detection and the low fluences at which α-CHC tends to fragment.

  8. Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna

    DOE PAGES

    Matsuzaki, Korenobu; Vassant, Simon; Liu, Hsuan-Wei; ...

    2017-02-14

    Multiexcitonic transitions and emission of several photons per excitation comprise a very attractive feature of semiconductor quantum dots for optoelectronics applications. However, these higher-order radiative processes are usually quenched in colloidal quantum dots by Auger and other nonradiative decay channels. To increase the multiexcitonic quantum efficiency, several groups have explored plasmonic enhancement, so far with moderate results. By controlled positioning of individual quantum dots in the near field of gold nanocone antennas, we enhance the radiative decay rates of monoexcitons and biexcitons by 109 and 100 folds at quantum efficiencies of 60 and 70%, respectively, in very good agreement withmore » the outcome of numerical calculations. We discuss the implications of our work for future fundamental and applied research in nano-optics.« less

  9. Nonradiative relaxation in tunable solid state laser crystals

    NASA Technical Reports Server (NTRS)

    Gayen, S. K.; Wang, W. B.; Petricevic, V.; Alfano, R. R.

    1986-01-01

    The characteristics of nonradiative transitions between the 4T2 and 2E excited states of trivalent-chromium-ion-activated ruby (containing 0.04 percent Cr2O3 by weight) and alexandrite (containing 0.4 at. percent chromium ion) laser crystals were studied using the technique described by Gayen et al. (1985). In this technique, a 527-nm pulse excites the 4T2 band of the Cr(3+), and the subsequent population kinetics among excited states is monitored by an IR picosecond probe pulse as a function of pump-probe delay. In ruby, a resolution-limited sharp rise in the excited state population was followed by a long-lifetime decay, leading to an upper limit of 7 ps for the 4T2-state nonradiative lifetime. In alexandrite, a longer rise time was followed by a multicomponent decay. A theoretical model is proposed for explaining the induced absorption and the transition dynamics observed in these crystals.

  10. Induced dual EIT and EIA resonances with optical trapping phenomenon in near/far fields in the N-type four-level system

    NASA Astrophysics Data System (ADS)

    Osman, Kariman I.; Joshi, Amitabh

    2017-01-01

    The optical trapping phenomenon is investigated in the probe absorptive susceptibility spectra, during the interaction of four-level N-type atomic system with three transverse Gaussian fields, in a Doppler broadened medium. The system was studied under different temperature settings of 87Rb atomic vapor as well as different non-radiative decay rate. The system exhibits a combination of dual electromagnetically induced transparency with electromagnetically induced absorption (EIA) or transparency (EIT) resonances simultaneously in near/far field. Also, the optical trapping phenomenon is considerably affected by the non-radiative decay rate.

  11. Time-resolved photoluminescence investigation of (Mg, Zn) O alloy growth on a non-polar plane

    NASA Astrophysics Data System (ADS)

    Mohammed Ali, Mohammed Jassim; Chauveau, J. M.; Bretagnon, T.

    2018-04-01

    Excitons recombination dynamics in ZnMgO alloy have been studied by time-resolved photoluminescence according to temperature. At low temperature, localisation effects of the exciton are found to play a significant role. The photoluminescence (PL) decays are bi-exponential. The short lifetime has a constant value, whereas the long lifetime shows a dependency with temperature. For temperature higher than 100 K the declines show a mono-exponential decay. The PL declines are dominated by non-radiative process at temperatures above 150 K. The PL lifetime dependancy with temperature is analysed using a model including localisation effects and non-radiative recombinations.

  12. Surface and interface effects on non-radiative exciton recombination and relaxation dynamics in CdSe/Cd,Zn,S nanocrystals

    NASA Astrophysics Data System (ADS)

    Walsh, Brenna R.; Saari, Jonathan I.; Krause, Michael M.; Nick, Robert; Coe-Sullivan, Seth; Kambhampati, Patanjali

    2016-06-01

    Excitonic state-resolved pump/probe spectroscopy and time correlate single photon counting were used to study exciton dynamics from the femtosecond to nanosecond time scales in CdSe/Cd,Zn,S nanocrystals. These measurements reveal the role of the core/shell interface as well as surface on non-radiative excitonic processes over three time regimes. Time resolved photoluminescence reports on how the interface controls slow non-radiative processes that dictate emission at the single excitonic level. Heterogeneity in decay is minimized by interfacial structure. Pump/probe measurements explore the non-radiative multiexcitonic recombination processes on the picosecond timescale. These Auger based non-radiative processes dictate lifetimes of multiexcitonic states. Finally state-resolved pump/probe measurements on the femtosecond timescale reveal the influence of the interface on electron and hole relaxation dynamics. We find that the interface has a profound influence on all three types of non-radiative processes which ultimately control light emission from nanocrystals.

  13. The methyl- and aza-substituent effects on nonradiative decay mechanisms of uracil in water: a transient absorption study in the UV region.

    PubMed

    Hua, XinZhong; Hua, LinQiang; Liu, XiaoJun

    2016-05-18

    The nonradiative decay dynamics of photo-excited uracil (Ura) and its derivatives, i.e., thymine (5-methyluracil, Thy), 6-methyluracil (6-MU) and 6-azauracil (6-AU) in water, has been studied using a femtosecond transient absorption method. The molecules are populated in the lowest (1)ππ* state by a pump pulse at 266 nm, and a broadband continuum in the deep UV region is then employed as the probe. The extension of the continuous UV probe down to 250 nm enables us to investigate comprehensively the population dynamics of the ground states for those molecules and to uncover the substituent effects on nonradiative decay dynamics of uracil. Vibrational cooling in the ground states of Ura, Thy and 6-MU has been directly observed for the first time, providing solid evidence of the ultrafast (1)ππ* → S0 decay. In combination with the ground state bleaching signals, it is consolidated that their lowest (1)ππ* state decays via two parallel pathways, i.e., (1)ππ* → S0 and (1)ππ* → (1)nπ*. Moreover, the contribution of the (1)ππ* → (1)nπ* channel is found to be much smaller for Thy or 6-MU than for Ura. Different from methyl-substitution, the initial (1)ππ* state of the aza-substituent 6-AU decays primarily to the (1)nπ* state, while the (1)ππ* → S0 channel can be negligible. Our study provides a comprehensive understanding of the substituent effects on the excited-state dynamics of uracil in water.

  14. Emission mechanisms in Al-rich AlGaN/AlN quantum wells assessed by excitation power dependent photoluminescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwata, Yoshiya; Banal, Ryan G.; Ichikawa, Shuhei

    2015-02-21

    The optical properties of Al-rich AlGaN/AlN quantum wells are assessed by excitation-power-dependent time-integrated (TI) and time-resolved (TR) photoluminescence (PL) measurements. Two excitation sources, an optical parametric oscillator and the 4th harmonics of a Ti:sapphire laser, realize a wide range of excited carrier densities between 10{sup 12} and 10{sup 21 }cm{sup −3}. The emission mechanisms change from an exciton to an electron-hole plasma as the excitation power increases. Accordingly, the PL decay time is drastically reduced, and the integrated PL intensities increase in the following order: linearly, super-linearly, linearly again, and sub-linearly. The observed results are well accounted for by rate equationsmore » that consider the saturation effect of non-radiative recombination processes. Using both TIPL and TRPL measurements allows the density of non-radiative recombination centers, the internal quantum efficiency, and the radiative recombination coefficient to be reliably extracted.« less

  15. Femtosecond Heterodyne Transient Grating Studies of Nonradiative Decay of the S2 (11Bu+) State of Peridinin: Detection and Spectroscopic Assignment of an Sx Intermediate State

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumen; Bishop, Michael M.; Roscioli, Jerome D.; Lafountain, Amy M.; Frank, Harry A.; Beck, Warren F.

    Femtosecond heterodyne transient grating spectroscopy was employed to investigate the nonradiative relaxation dynamics of peridinin from the S2 state to the S1 (21Ag-) state in methanol. A global target analysis indicates that S2 decays in 12 fs to populate an intermediate state, Sx. The absorption and dispersion components of the transient grating signal exhibit a response that is very similar to that of β-carotene in benzonitrile solution. Numerical simulation of the experimental data indicates that the excited state absorption transition from Sx has a larger oscillator strength than that of S1, which rules out an assignment of Sx to a vibrationally excited S1 state. The lifetime of Sx is found to be strongly dependent on the polar solvation timescale. This result indicates that nonradiative decay from Sx to S1 involves large-amplitude torsional motions and a concomitant formation of intramolecular charge transfer character. The present work provides the first evidence that peridinin has an ultrashort S2 lifetime owing to the onset of torsional motions and shows that the Sx acts as an active state for excitation energy transfer to chlorophyll in light-harvesting proteins. Work supported by the Photosynthetic Systems program of U.S. Department of Energy under Award Number DE-SC0010847.

  16. Quenching And Luminescence Efficiency Of Nd3+ In YAG

    NASA Astrophysics Data System (ADS)

    Lupei, Voicu; Lupei, Aurelia; Georgescu, Serban; Ionescu, Christian I.; Yen, William M.

    1989-05-01

    The effect of the concentration luminescence quenching of the 4F 3/2, level of Nd3+ in YAG on the relative efficiency is presented. Based on the analysis of the decay curves in terms of the energy transfer theory, an analytical expression for the relative luminescence efficiency is obtained. In the low concentration range (up to q,1.5 at % Nd3+), the efficiency linearly decreases when Nd3+ concentration increases. It is also stressed that pairs quenching contribute about 20 % to the nonradiative energy transfer losses. Quantum efficiency of luminescence is an important parameter for the characterization of laser active media; its lowering is due to either multiphonon relaxation or energy transfer processes. The multiphonon non-radiative probability depends on the energy gap between levels, on the phonon energy and temperature; usually at low activator doping it is practically independent on concentration. On the other hand, energy transfer losses show a marked dependence on activator concentration, a fact that severely limits the range of useful con-centration of active centers in some laser crystals. In the YAG:Nd case the minimum energy gap between the Stark components of the 4F,I.) and the next lower level 4F15/2 is of about 4700 cm-1. Since in YAG tree phonons most effdbtively coupled to the Rare pi.th ions have an energy of 1, 700 cm-1, the probability for multiphonon relaxation from the 'F3/, level, even at room temperature, is very low and therefore for low Nd 3+ concentrations quantum efficiency is expected to be close to 1.

  17. Multisite constrained model of trans-4-(N,N-dimethylamino)-4'-nitrostilbene for structural elucidation of radiative and nonradiative excited states.

    PubMed

    Lin, Cheng-Kai; Wang, Yu-Fu; Cheng, Yuan-Chung; Yang, Jye-Shane

    2013-04-18

    A constrained model compound of trans-4-(N,N-dimethylamino)-4'-nitrostilbene (DNS), namely, compound DNS-B3 that is limited to torsions about the phenyl-nitro C-N bond and the central C═C bond, was prepared to investigate the structural nature of the radiative and nonradiative states of electronically excited DNS. The great similarities in solvent-dependent electronic spectra, fluorescence decay times, and quantum yields for fluorescence (Φf) and trans → cis photoisomerization (Φtc) between DNS and DNS-B3 indicate that the fluorescence is from a planar charge-transfer state and torsion of the nitro group is sufficient to account for the nonradiative decay of DNS. This conclusion is supported by TDDFT calculations on DNS-B3 in dichloromethane. The structure at the conical intersection for internal conversion is associated with not only a twisting but also a pyramidalization of the nitro group. The mechanism of the NO2 torsion is discussed in terms of the effects of solvent polarity, the substituents, and the volume demand. The differences and analogies of the NO2- vs amino-twisted intramolecular charge-transfer (TICT) state of trans-aminostilbenes are also discussed.

  18. Recombination dynamics of excitons with low non-radiative component in semi-polar (10-11)-oriented GaN/AlGaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Rosales, D.; Gil, B.; Bretagnon, T.; Guizal, B.; Izyumskaya, N.; Monavarian, M.; Zhang, F.; Okur, S.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2014-09-01

    Optical properties of GaN/Al0.2Ga0.8N multiple quantum wells grown with semi-polar (10-11) orientation on patterned 7°-off Si (001) substrates have been investigated. Studies performed at 8 K reveal the in-plane anisotropic behavior of the QW photoluminescence (PL) intensity for this semi-polar orientation. The time resolved PL measurements were carried out in the temperature range from 8 to 295 K to deduce the effective recombination decay times, with respective radiative and non-radiative contributions. The non-radiative component remains relatively weak with increasing temperature, indicative of high crystalline quality. The radiative decay time is a consequence of contribution from both localized and free excitons. We report an effective density of interfacial defects of 2.3 × 1012 cm-2 and a radiative recombination time of τloc = 355 ps for the localized excitons. This latter value is significantly larger than those reported for the non-polar structures, which we attribute to the presence of a weak residual electric field in the semi-polar QW layers.

  19. Photoluminescence enhancement of monolayer tungsten disulfide in complicated plasmonic microstructures

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Hu, Xiaoyong; Gao, Wei; Song, Hanfa; Chu, Saisai; Yang, Hong; Gong, Qihuang

    2018-06-01

    Two-dimensional van der Waals materials are interesting for fundamental physics exploration and device applications because of their attractive physical properties. Here, we report a strategy to realize photoluminescence (PL) enhancement of two-dimensional transition-metal dichalcogenides (TMDCs) in the visible range using a plasmonic microstructure with patterned gold nanoantennas and a metal-insulator-semiconductor-insulator-metal structure. The PL intensity was enhanced by a factor of two under Y-polarization due to the increased radiative decay rate by the surface plasmon radiation channel in the gold nanoantennas and the decreased nonradiative decay rate by suppressing exciton quenching in the SiO2 isolation layer. The fluorescence lifetime of monolayer tungsten disulfide in this structure was shorter than that of a sample without patterned gold nanoantennas. Tailoring the light-matter interactions between two-dimensional TMDCs and plasmonic nanostructures may provide highly efficient optoelectronic devices such as TMDC-based light emitters.

  20. On the origin of stretched exponential (Kohlrausch) relaxation kinetics in the room temperature luminescence decay of colloidal quantum dots.

    PubMed

    Bodunov, E N; Antonov, Yu A; Simões Gamboa, A L

    2017-03-21

    The non-exponential room temperature luminescence decay of colloidal quantum dots is often well described by a stretched exponential function. However, the physical meaning of the parameters of the function is not clear in the majority of cases reported in the literature. In this work, the room temperature stretched exponential luminescence decay of colloidal quantum dots is investigated theoretically in an attempt to identify the underlying physical mechanisms associated with the parameters of the function. Three classes of non-radiative transition processes between the excited and ground states of colloidal quantum dots are discussed: long-range resonance energy transfer, multiphonon relaxation, and contact quenching without diffusion. It is shown that multiphonon relaxation cannot explain a stretched exponential functional form of the luminescence decay while such dynamics of relaxation can be understood in terms of long-range resonance energy transfer to acceptors (molecules, quantum dots, or anharmonic molecular vibrations) in the environment of the quantum dots acting as energy-donors or by contact quenching by acceptors (surface traps or molecules) distributed statistically on the surface of the quantum dots. These non-radiative transition processes are assigned to different ranges of the stretching parameter β.

  1. Design of Organic Solar Cells as a Function of Radiative Quantum Efficiency

    NASA Astrophysics Data System (ADS)

    Godefroid, Blaise; Kozyreff, Gregory

    2017-09-01

    We study the radiative decay, or fluorescence, of excitons in organic solar cells as a function of its geometrical parameters. Contrary to their nonradiative counterpart, fluorescence losses strongly depend on the environment. By properly tuning the thicknesses of the buffer layers between the active regions of the cell and the electrodes, the exciton lifetime and, hence, the exciton diffusion length can be increased. The importance of this phenomenon depends on the radiative quantum efficiency, which is the fraction of the exciton decay that is intrinsically due to fluorescence. Besides this effect, interferences within the cell control the efficiency of sunlight injection into the active layers. The optimal cell design must rely on a consideration of these two aspects. By properly managing fluorescence losses, one can significantly improve the cell performance. To demonstrate this fact, we use realistic material parameters inspired from literature data and obtain an increase of power-conversion efficiency from 11.3% to 12.7%. Conversely, not to take into account the strong dependence of fluorescence on the environment may lead to a suboptimal cell design and a degradation of cell performance. The presence of radiative losses, however small, significantly changes the optimal set of thicknesses. We illustrate the latter situation with experimental material data.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzatov, D. V., E-mail: dm-guzatov@mail.ru

    Analytic expressions for the radiative and nonradiative decay rates for an electric quadrupole source (atom, molecule) in the vicinity of a spherical particle (dielectric, metal) have been derived and analyzed within the classical electrodynamics. It has been shown that the highest increase in the decay rates appears in the quasi-static case, when the wavelength of the transition in question is much larger than the characteristic size of the system formed by the particle and the quadrupole. Asymptotic expressions for the decay rates have been derived for this case.

  3. Picosecond excite-and-probe absorption measurement of the 4T2 state nonradiative lifetime in ruby

    NASA Technical Reports Server (NTRS)

    Gayen, S. K.; Wang, W. B.; Petricevic, V.; Dorsinville, R.; Alfano, R. R.

    1985-01-01

    In a picosecond excite-and-probe absorption measurement, a 527-nm picosecond pulse excites the 4T2 state of the Cr(3+) ion in ruby and a 3.4-micron picosecond probe pulse monitors the growth and decay of population in the 2E state as a function of pump-probe delay. From the growth of population in the metastable 2E state, an upper limit of 7 ps for the nonradiative lifetime of the 4T2 state is determined.

  4. Radiative, nonradiative, and mixed-decay transitions of rare-earth ions in dielectric media

    NASA Astrophysics Data System (ADS)

    Burshtein, Zeev

    2010-09-01

    We present and discuss in a comprehensive, deductive, and simplified manner, issues of nonradiative transitions involvement in fluorescence of ions embedded in dielectric solid matrices. The semiclassical approach is favored over a full quantum description, and empiric quantities are introduced from the start. One issue is nonradiative single-phonon transitions when the energy gap between the adjacent electronic ion states is smaller than the cutoff matrix phonon energy. Another issue is transitions in a complex energy scheme, where some visible and near-visible transitions are radiative and others are nonradiative. A refined Füchtbauer-Ladenburg recipe for calculation of the stimulated emission spectrum on the basis of measurable absorption and fluorescence emission spectra is worked out. The last issue is multiphonon nonradiative transitions occurring when the energy gap between adjacent electronic ion states is larger than the cutoff matrix phonon energy. Transition probabilities were calculated on the basis of anharmonicity of the effective potential supporting the internal atomic basis vibrations. An expression in a closed form is obtained, similar to the empiric ``energy gap'' law, however, with parameters related to specific host material properties and the actual transition in the ion. Comparison to existing experimental evidence is presented and discussed in detail.

  5. Optical Characterization and 2,525 micron Lasing of Cr(2+):Cd(0.85)Mn(0.15)Te

    NASA Technical Reports Server (NTRS)

    Davis, V. R.; Wu, X.; Hoemmerich, U.; Trivedi, S. B.; Grasza, K.; Yu, Z.

    1997-01-01

    Transition metal doped solids are of significant current interest for the development of tunable solid-state lasers for the near and mid-infrared (1-4 pm) spectral region. Applications of these lasers include basic research in atomic, molecular, and solid-state physics, optical communication, medicine, and environmental studies of the atmosphere. In transition metal based laser materials, absorption and emission of light arises from electronic transitions between crystal field split energy levels of 3d transition metal ions. The optical spectra generally exhibit broad bands due to the strong interaction between dopant and host (electron-phonon coupling). Broad emission bands offer the prospect of tunable laser activity over a wide wavelength range, e.g. the tuning range of Ti:Sapphire extends from 700-1100 run. The only current transition metal laser operating in the mid-infrared wavelength region (1.8-2.4 micro-m) is CO(2+):MgF2, but its performance is severely limited due to strong nonradiative decay at room temperature. Based on lifetime data, the quantum efficiency is estimated to be less than 3 deg/0 11,21. In general, the probability for non-radiative decay via multi-phonon relaxation increases with decreasing energy gap between ground and excited state. Therefore, efficient transition metal lasers beyond -1.6 micro-m are rare. Recently, tunable laser activity around 2.3 micro-m was observed from Cr doped ZnS and ZnSe. The new lasing center in these materials was identified as Cr(2+) occupying the tetrahedral Zn site. Tetrahedrally coordinated optical centers are rather unusual among transition metal lasers. Their potential usefulness, however, has been demonstrated by the recent development of near infrared laser materials such as Cr:forsterite and Cr:YAG, which are based on tetrahedrally coordinated Cr(4+) ions. According to the Laporte selection rule, electric-dipole transition within the optically active 3d-electron shells are parity forbidden. However, a static acentric electric crystal field or the coupling of asymmetric phonons can force electric-dipole transitions by the admixture of wave functions with opposite parity. Tetrahedral sites lack inversion symmetry which provides the odd-parity field necessary to relax the parity selection rule. Therefore, high absorption and emission cross sections are observed. An enhanced radiative emission rate is also expected to reduce the detrimental effect of non-radiative decay. Motivated by the initial results on Cr doped ZnS and ZnSe, we have started a comprehensive effort to study Cr(2+) doped II-VI semiconductors for solid-state laser applications. In this paper we present the optical properties and the demonstration of mid-infrared lasing from Cr doped Cd(0.85)Mn(0.15)Te.

  6. Electrical Stress Influences the Efficiency of CH3 NH3 PbI3 Perovskite Light Emitting Devices.

    PubMed

    Zhao, Lianfeng; Gao, Jia; Lin, YunHui L; Yeh, Yao-Wen; Lee, Kyung Min; Yao, Nan; Loo, Yueh-Lin; Rand, Barry P

    2017-06-01

    Organic-inorganic hybrid perovskite materials are emerging as semiconductors with potential application in optoelectronic devices. In particular, perovskites are very promising for light-emitting devices (LEDs) due to their high color purity, low nonradiative recombination rates, and tunable bandgap. Here, using pure CH 3 NH 3 PbI 3 perovskite LEDs with an external quantum efficiency (EQE) of 5.9% as a platform, it is shown that electrical stress can influence device performance significantly, increasing the EQE from an initial 5.9% to as high as 7.4%. Consistent with the enhanced device performance, both the steady-state photoluminescence (PL) intensity and the time-resolved PL decay lifetime increase after electrical stress, indicating a reduction in nonradiative recombination in the perovskite film. By investigating the temperature-dependent characteristics of the perovskite LEDs and the cross-sectional elemental depth profile, it is proposed that trap reduction and resulting device-performance enhancement is due to local ionic motion of excess ions, likely excess mobile iodide, in the perovskite film that fills vacancies and reduces interstitial defects. On the other hand, it is found that overstressed LEDs show irreversibly degraded device performance, possibly because ions initially on the perovskite lattice are displaced during extended electrical stress and create defects such as vacancies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Localized Surface Plasmon-Enhanced Electroluminescence in OLEDs by Self-Assembly Ag Nanoparticle Film

    NASA Astrophysics Data System (ADS)

    He, Xiaoxiao; Wang, Wenjun; Li, Shuhong; Wang, Qingru; Zheng, Wanquan; Shi, Qiang; Liu, Yunlong

    2015-12-01

    We fabricated Ag nanoparticle (NP) film in organic light emission diodes (OLEDs), and a 23 times increase in electroluminescence (EL) at 518 nm was probed by time-resolved EL measurement. The luminance and relative external quantum efficiency (REQE) were increased by 5.4 and 3.7 times, respectively. There comes a new energy transport way that localized surface plasmons (LSPs) would absorb energy that corresponds to the electron-hole pair before recombination, promoting the formation of electron-hole pair and exciting local surface plasmon resonance (LSPR). The extended lifetime of Alq3 indicates the existence of strong interaction between LSPR and exciton, which decreases the nonradiative decay rate of OLEDs.

  8. Band gap grading and photovoltaic performance of solution-processed Cu(In,Ga)S2 thin-film solar cells.

    PubMed

    Sohn, So Hyeong; Han, Noh Soo; Park, Yong Jin; Park, Seung Min; An, Hee Sang; Kim, Dong-Wook; Min, Byoung Koun; Song, Jae Kyu

    2014-12-28

    The photophysical properties of CuInxGa1-xS2 (CIGS) thin films, prepared by solution-based coating methods, are investigated to understand the correlation between the optical properties of these films and the electrical characteristics of solar cells fabricated using these films. Photophysical properties, such as the depth-dependent band gap and carrier lifetime, turn out to be at play in determining the energy conversion efficiency of solar cells. A double grading of the band gap in CIGS films enhances solar cell efficiency, even when defect states disturb carrier collection by non-radiative decay. The combinational stacking of different density films leads to improved solar cell performance as well as efficient fabrication because a graded band gap and reduced shunt current increase carrier collection efficiency. The photodynamics of minority-carriers suggests that the suppression of defect states is a primary area of improvement in CIGS thin films prepared by solution-based methods.

  9. Comparative study of ab initio nonradiative recombination rate calculations under different formalisms

    NASA Astrophysics Data System (ADS)

    Shi, Lin; Xu, Ke; Wang, Lin-Wang

    2015-05-01

    Nonradiative carrier recombination is of both great applied and fundamental importance, but the correct ab initio approaches to calculate it remain to be inconclusive. Here we used five different approximations to calculate the nonradiative carrier recombinations of two complex defect structures GaP :Z nGa-OP and GaN :Z nGa-VN , and compared the results with experiments. In order to apply different multiphonon assisted electron transition formalisms, we have calculated the electron-phonon coupling constants by ab initio density functional theory for all phonon modes. Compared with different methods, the capture coefficients calculated by the static coupling theory are 4.30 ×10-8 and 1.46 ×10-7c m3/s for GaP :Z nGa-OP and GaN :Z nGa-VN , which are in good agreement with the experiment results, (4-1+2) ×10-8 and 3.0 ×10-7c m3/s , respectively. We also provided arguments for why the static coupling theory should be used to calculate the nonradiative decays of semiconductors.

  10. Torsional Dynamics, Intramolecular Charge Transfer, and Solvent Friction in the S2 (11Bu+) Excited State of Peridinin: A Mechanism for Enhanced Mid-Visible Light Harvesting in the Peridinin-Chlorophyll a Protein

    NASA Astrophysics Data System (ADS)

    Beck, Warren; Roscioli, Jerome; Ghosh, Soumen; Bishop, Michael; Lafountain, Amy; Frank, Harry

    The structural mechanism that allows peridinin to provide one of the highest quantum efficiencies for excitation energy transfer to chlorophyll (Chl) a acceptors in the peridinin-chlorophyll a protein (PCP) from dinoflagellates involves an order-of-magnitude slowing of the S2 (11Bu+)--> S1 (21Ag-)nonradiative decay pathway compared to carotenoids lacking carbonyl substitution. Using femtosecond transient grating spectroscopy with heterodyne detection, we have determined for the first time that the decay of an intermediate state termed Sx, which we assign to a twisted form of the S2 state, is substantially slowed by solvent friction in peridinin due to its intramolecular charge transfer (ICT) character. The Sx intermediate exhibits a long enough lifetime to serve as an efficient excitation energy transfer donor to Chl a in PCP. The possibility that the Franck-Condon S2 state also transfers excitation via quantum coherent mechanisms is being considered currently using broadband two-dimensional electronic spectroscopy. Support from the DOE/BES Photosynthetic Systems Program, Grant DE-SC0010847.

  11. Excited-state relaxation in PbSe quantum dots

    NASA Astrophysics Data System (ADS)

    An, Joonhee M.; Califano, Marco; Franceschetti, Alberto; Zunger, Alex

    2008-04-01

    In solids the phonon-assisted, nonradiative decay from high-energy electronic excited states to low-energy electronic excited states is picosecond fast. It was hoped that electron and hole relaxation could be slowed down in quantum dots, due to the unavailability of phonons energy matched to the large energy-level spacings ("phonon-bottleneck"). However, excited-state relaxation was observed to be rather fast (⩽1ps) in InP, CdSe, and ZnO dots, and explained by an efficient Auger mechanism, whereby the excess energy of electrons is nonradiatively transferred to holes, which can then rapidly decay by phonon emission, by virtue of the densely spaced valence-band levels. The recent emergence of PbSe as a novel quantum-dot material has rekindled the hope for a slow down of excited-state relaxation because hole relaxation was deemed to be ineffective on account of the widely spaced hole levels. The assumption of sparse hole energy levels in PbSe was based on an effective-mass argument based on the light effective mass of the hole. Surprisingly, fast intraband relaxation times of 1-7ps were observed in PbSe quantum dots and have been considered contradictory with the Auger cooling mechanism because of the assumed sparsity of the hole energy levels. Our pseudopotential calculations, however, do not support the scenario of sparse hole levels in PbSe: Because of the existence of three valence-band maxima in the bulk PbSe band structure, hole energy levels are densely spaced, in contradiction with simple effective-mass models. The remaining question is whether the Auger decay channel is sufficiently fast to account for the fast intraband relaxation. Using the atomistic pseudopotential wave functions of Pb2046Se2117 and Pb260Se249 quantum dots, we explicitly calculated the electron-hole Coulomb integrals and the P →S electron Auger relaxation rate. We find that the Auger mechanism can explain the experimentally observed P →S intraband decay time scale without the need to invoke any exotic relaxation mechanisms.

  12. Factors influencing photoluminescence and photocarrier lifetime in CdSeTe/CdMgTe double heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartz, Craig H.; Zaunbrecher, K. N.; Sohal, S.

    2016-10-28

    CdSeTe/CdMgTe double heterostructures were produced with both n-type and unintentionally doped absorber layers. Measurements of the dependence of photoluminescence intensity on excitation intensity were carried out, as well as measurements of time-resolved photoluminescence decay after an excitation pulse. It was found that decay times under very low photon injection conditions are dominated by a non-radiative Shockley-Read-Hall process described using a recombination center with an asymmetric capture cross section, where the cross section for holes is larger than that for electrons. As a result of the asymmetry, the center effectively extends photoluminescence decay by a hole trapping phenomenon. A reduction inmore » electron capture cross section appeared at doping densities over 10 16cm -3. An analysis of the excitation intensity dependence of room temperature photoluminescence revealed a strong relationship with doping concentration. Here, this allows estimates of the carrier concentration to be made through a non-destructive optical method. Iodine was found to be an effective n-type dopant for CdTe, allowing controllable carrier concentrations without an increased rate of non-radiative recombination.« less

  13. On the origin of ultrafast nonradiative transitions in nitro-polycyclic aromatic hydrocarbons: Excited-state dynamics in 1-nitronaphthalene.

    PubMed

    Reichardt, Christian; Vogt, R Aaron; Crespo-Hernández, Carlos E

    2009-12-14

    The electronic energy relaxation of 1-nitronaphthalene was studied in nonpolar, aprotic, and protic solvents in the time window from femtoseconds to microseconds. Excitation at 340 or 360 nm populates the Franck-Condon S(1)(pipi( *)) state, which is proposed to bifurcate into two essentially barrierless nonradiative decay channels with sub-200 fs lifetimes. The first main decay channel connects the S(1) state with a receiver T(n) state that has considerable npi( *) character. The receiver T(n) state undergoes internal conversion to populate the vibrationally excited T(1)(pipi( *)) state in 2-4 ps. It is shown that vibrational cooling dynamics in the T(1) state depends on the solvent used, with average lifetimes in the range from 6 to 12 ps. Furthermore, solvation dynamics competes effectively with vibrational cooling in the triplet manifold in primary alcohols. The relaxed T(1) state undergoes intersystem crossing back to the ground state within a few microseconds in N(2)-saturated solutions in all the solvents studied. The second minor channel involves conformational relaxation of the bright S(1) state (primarily rotation of the NO(2)-group) to populate a dissociative singlet state with significant charge-transfer character and negligible oscillator strength. This dissociative channel is proposed to be responsible for the observed photochemistry in 1-nitronaphthalene. Ground- and excited-state calculations at the density functional level of theory that include bulk and explicit solvent effects lend support to the proposed mechanism where the fluorescent S(1) state decays rapidly and irreversibly to dark excited states. A four-state kinetic model is proposed that satisfactorily explains the origin of the nonradiative electronic relaxation pathways in 1-nitronaphthalene.

  14. Temperature-dependent radiative and non-radiative dynamics of photo-excited carriers in extremely high-density and small InGaN nanodisks fabricated by neutral-beam etching using bio-nano-templates

    NASA Astrophysics Data System (ADS)

    Chen, Yafeng; Kiba, Takayuki; Takayama, Junichi; Higo, Akio; Tanikawa, Tomoyuki; Chen, Shula; Samukawa, Seiji; Murayama, Akihiro

    2018-05-01

    Temperature-dependent radiative and non-radiative dynamics of photoexcited carriers were studied in In0.3Ga0.7N nanodisks (NDs) fabricated from quantum wells (QWs) by neutral-beam etching using bio-nano-templates. The NDs had a diameter of 5 nm, a thickness of 2 and 3 nm, and a sheet density of 2 × 1011 cm-2. The radiative decay time, reflecting the displacement between the electron and hole wavefunctions, is about 0.2 ns; this value is almost constant as a function of temperature in the NDs and not dependent on their thickness. We observed non-exponential decay curves of photoluminescence (PL) in the NDs, particularly at temperatures above 150 K. The thermal activation energies of PL quenching in the NDs are revealed to be about 110 meV, corresponding to the barrier heights of the valence bands in the disks. Therefore, hole escape is deemed responsible for the PL quenching, while thermal activation energies of 12 meV due to the trapping of carriers by defects were dominant in the mother QWs. The above-mentioned non-exponential PL decay curves can be attributed to variations in the rate of hole escape in the NDs because of fluctuations in the valence-band barrier height, which, in turn, is possibly due to compositional fluctuations in the QWs. We found that non-radiative trapping, characteristic of the original QW, also exists in about 1% of the NDs in a form that is not masked by other newly formable defects. Therefore, we suggest that additional defect formation is not significant during our ND fabrication process.

  15. Interfacing the Ab initio multiple spawning method with electronic structure methods in GAMESS: Photodecay of trans-Azomethane

    DOE PAGES

    Gaenko, Alexander; DeFusco, Albert; Varganov, Sergey A.; ...

    2014-10-20

    This work presents a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane, using the ab initio multiple spawning (AIMS) program that has been interfaced with the General Atomic and Molecular Electronic Structure System (GAMESS) quantum chemistry package for on-the-fly electronic structure evaluation. The interface strategy is discussed, and the capabilities of the combined programs are demonstrated with a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane. Energies, gradients, and nonadiabatic coupling matrix elements were obtained with the state-averaged complete active space self-consistent field method, as implemented in GAMESS. The influence of initial vibrational excitationmore » on the outcome of the photoinduced isomerization is explored. Increased vibrational excitation in the CNNC torsional mode shortens the excited state lifetime. Depending on the degree of vibrational excitation, the excited state lifetime varies from ~60–200 fs. As a result, these short lifetimes are in agreement with time-resolved photoionization mass spectroscopy experiments.« less

  16. Non-radiative decay paths in rhodamines: new theoretical insights.

    PubMed

    Savarese, Marika; Raucci, Umberto; Adamo, Carlo; Netti, Paolo A; Ciofini, Ilaria; Rega, Nadia

    2014-10-14

    We individuate a photoinduced electron transfer (PeT) as a quenching mechanism affecting rhodamine B photophysics in solvent. The PeT involves an electron transfer from the carboxylate group to the xanthene ring of rhodamine B. This is finely modulated by the subtle balance of coulombic and non-classical interactions between the carboxyphenyl and xanthene rings, also mediated by the solvent. We propose the use of an electronic density based index, the so called DCT index, as a new tool to assess and quantify the nature of the excited states involved in non-radiative decays near the region of their intersection. In the present case, this analysis allows us to gain insight on the interconversion process from the bright state to the dark state responsible for the quenching of rhodamine B fluorescence. Our findings encourage the use of density based indices to study the processes affecting excited state reactions that are characterized by a drastic change in the excitation nature, in order to rationalize the photophysical behavior of complex molecular systems.

  17. Decay rates of inner-valence excitations in noble gas atoms.

    PubMed

    Gokhberg, K; Averbukh, V; Cederbaum, L S

    2007-04-21

    A Fano - algebraic diagrammatic construction - Stieltjes method has been recently developed for ab initio calculations of nonradiative decay rates [V. Averbukh and L. S. Cederbaum, J. Chem. Phys. 123, 204107 (2005)] of singly ionized states. In the present work this method is generalized for the case of electronic decay of excited states. The decay widths of autoionizing inner-valence-excited states of Ne, Ar, and Kr are calculated. Apart from the lowest excitation of Kr, they are found to be in good to excellent agreement with the experimental values. Comparison with the other theoretical studies shows that in many cases the new method performs better than the previously available techniques.

  18. Molecular quenching and relaxation in a plasmonic tunable system

    NASA Astrophysics Data System (ADS)

    Baffou, Guillaume; Girard, Christian; Dujardin, Erik; Colas Des Francs, Gérard; Martin, Olivier J. F.

    2008-03-01

    Molecular fluorescence decay is significantly modified when the emitting molecule is located near a plasmonic structure. When the lateral sizes of such structures are reduced to nanometer-scale cross sections, they can be used to accurately control and amplify the emission rate. In this Rapid Communication, we extend Green’s dyadic method to quantitatively investigate both radiative and nonradiative decay channels experienced by a single fluorescent molecule confined in an adjustable dielectric-metal nanogap. The technique produces data in excellent agreement with current experimental work.

  19. Excitonic mechanism of the photoinduced surface restructuring of copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotskii, Michel

    An explanation for the photoinduced reconstruction of Cu single-crystal surfaces that was observed by Ernst et al. [Science 279, 679 (1998)] under the influence of visible light is proposed. It is suggested that reconstruction can be attributed to the energy released during the nonradiative decay of excitons that were excited by light irradiation and captured on surface active centers. The estimates performed show that exciton decay on surface steps and adatoms releases enough energy to create surface defects.

  20. Photochemistry of nucleic acid bases and their thio- and aza-analogues in solution.

    PubMed

    Pollum, Marvin; Martínez-Fernández, Lara; Crespo-Hernández, Carlos E

    2015-01-01

    The steady-state and time-resolved photochemistry of the natural nucleic acid bases and their sulfur- and nitrogen-substituted analogues in solution is reviewed. Emphasis is given to the experimental studies performed over the last 3-5 years that showcase topical areas of scientific inquiry and those that require further scrutiny. Significant progress has been made toward mapping the radiative and nonradiative decay pathways of nucleic acid bases. There is a consensus that ultrafast internal conversion to the ground state is the primary relaxation pathway in the nucleic acid bases, whereas the mechanism of this relaxation and the level of participation of the (1)πσ*, (1) nπ*, and (3)ππ* states are still matters of debate. Although impressive research has been performed in recent years, the microscopic mechanism(s) by which the nucleic acid bases dissipate excess vibrational energy to their environment, and the role of the N-glycosidic group in this and in other nonradiative decay pathways, are still poorly understood. The simple replacement of a single atom in a nucleobase with a sulfur or nitrogen atom severely restricts access to the conical intersections responsible for the intrinsic internal conversion pathways to the ground state in the nucleic acid bases. It also enhances access to ultrafast and efficient inter-system crossing pathways that populate the triplet manifold in yields close to unity. Determining the coupled nuclear and electronic pathways responsible for the significantly different photochemistry in these nucleic acid base analogues serves as a convenient platform to examine the current state of knowledge regarding the photodynamic properties of the DNA and RNA bases from both experimental and computational perspectives. Further investigations should also aid in forecasting the prospective use of sulfur- and nitrogen-substituted base analogues in photochemotherapeutic applications.

  1. Constraints on decay plus oscillation solutions of the solar neutrino problem

    NASA Astrophysics Data System (ADS)

    Joshipura, Anjan S.; Massó, Eduard; Mohanty, Subhendra

    2002-12-01

    We examine the constraints on the nonradiative decay of neutrinos from the observations of solar neutrino experiments. The standard oscillation hypothesis among three neutrinos solves the solar and atmospheric neutrino problems. The decay of a massive neutrino mixed with the electron neutrino results in the depletion of the solar neutrino flux. We introduce neutrino decay in the oscillation hypothesis and demand that decay does not spoil the successful explanation of solar and atmospheric observations. We obtain a lower bound on the ratio of the lifetime over the mass of ν2, τ2/m2>22.7 s/MeV for the Mikheyev-Smirnov-Wolfenstein solution of the solar neutrino problem and τ2/m2>27.8 s/MeV for the vacuum oscillation solution (at 99% C.L.).

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Zhentao; Krauss, Todd D.

    Addition of dithiothreitol (DTT) to a suspension consisting of either DNA or sodium dodecyl sulfate (SDS) wrapped single-walled carbon nanotubes (SWCNTs) caused significant photoluminescence (PL) brightening from the SWCNTs, while PL quenching to different extents was observed for other surfactant-SWCNT suspensions. PL lifetime studies with high temporal resolution show that addition of DTT mitigates non-radiative decay processes, but also surprisingly increases the radiative decay rate for DNA- and SDS-SWCNTs. There are completely opposite effects on the decay rates found for the other surfactant-SWCNTs and show PL quenching. Here, we propose that the PL brightening results from a surfactant reorganization uponmore » DTT addition. TOC« less

  3. Disentangling nonradiative recombination processes in Ge micro-crystals on Si substrates

    NASA Astrophysics Data System (ADS)

    Pezzoli, Fabio; Giorgioni, Anna; Gallacher, Kevin; Isa, Fabio; Biagioni, Paolo; Millar, Ross W.; Gatti, Eleonora; Grilli, Emanuele; Bonera, Emiliano; Isella, Giovanni; Paul, Douglas J.; Miglio, Leo

    2016-06-01

    We address nonradiative recombination pathways by leveraging surface passivation and dislocation management in μm-scale arrays of Ge crystals grown on deeply patterned Si substrates. The time decay photoluminescence (PL) at cryogenic temperatures discloses carrier lifetimes approaching 45 ns in band-gap engineered Ge micro-crystals. This investigation provides compelling information about the competitive interplay between the radiative band-edge transitions and the trapping of carriers by dislocations and free surfaces. Furthermore, an in-depth analysis of the temperature dependence of the PL, combined with capacitance data and finite difference time domain modeling, demonstrates the effectiveness of GeO2 in passivating the surface of Ge and thus in enhancing the room temperature PL emission.

  4. Femtosecond Heterodyne Transient Grating Detection of Conformational Dynamics in the S0 (11Ag-) State of Carotenoids After Nonradiative Decay of the S2 (11Bu+) State

    NASA Astrophysics Data System (ADS)

    Roscioli, Jerome D.; Ghosh, Soumen; Bishop, Michael M.; Lafountain, Amy M.; Frank, Harry A.; Beck, Warren F.

    Transient grating spectroscopy was used to study the dynamics of nonradiative decay of the S1 (21Ag-) state in ß-carotene and peridinin after optical preparation of the S2) state. The kinetics of the recovery of the absorption and dispersion components of the third-order signal exhibit significantly different time constants. For β-carotene in benzonitrile, the absorption and dispersion recovery time constants are 11.6 and 10.2 ps. For peridinin in methanol, the time constants are 9.9 and 7.4 ps. These results indicate that the initial product of the decay of the S1 state is a conformationally displaced structure. The decay rate for the S1 state and the conformational relaxation rate are both slowed in peridinin as the polarity of the solvent decreases; in ethyl acetate, the conformational relaxation time constant is 45 ps, which rules out a dominant contribution from vibrational cooling. These results indicate that the S1 state develops intramolecular charge transfer character owing to distortions along torsional and out-of-plane coordinates, with a pyramidal structure favored as the most stable conformation. Recovery of the photoselected ground state conformation involves a reverse charge-transfer event followed by relaxation to a planar structure. Work supported by Photosynthetic Systems Program of the U.S. Department of Energy under Grant DE-SC0010847.

  5. Exciton localization in (11-22)-oriented semi-polar InGaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza; Rosales, Daniel; Gil, Bernard; Izyumskaya, Natalia; Das, Saikat; Özgür, Ümit; Morkoç, Hadis; Avrutin, Vitaliy

    2016-02-01

    Excitonic recombination dynamics in (11-22) -oriented semipolar In0.2Ga0.8N/In0.06Ga0.94N multiquantum wells (MQWs) grown on GaN/m-sapphire templates have been investigated by temperature-dependent time-resolved photoluminescence (TRPL). The radiative and nonradiative recombination contributions to the PL intensity at different temperatures were evaluated by analysing temperature dependences of PL peak intensity and decay times. The obtained data indicate the existence of exciton localization with a localization energy of Eloc(15K) =7meV and delocalization temperature of Tdeloc = 200K in the semipolar InGaN MQWs. Presence of such exciton localization in semipolar (11-22) -oriented structures could lead to improvement of excitonic emission and internal quantum efficiency.

  6. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Spectral and energy parameters of multiband barrier-discharge KrBr excilamps

    NASA Astrophysics Data System (ADS)

    Avdeev, S. M.; Erofeev, M. V.; Skakun, V. S.; Sosnin, E. A.; Suslov, A. I.; Tarasenko, V. F.; Schitz, D. V.

    2008-07-01

    The spectral and energy characteristics of multiband barrier-discharge coaxial KrBr excilamps are studied experimentally at pressures from a few tens of Torr to 0.4 atm. It is shown that an increase in the Br2 concentration reduces the emission intensity of KrBr* molecules with respect to the emission intensity of Br2* molecules and reduces the total emission power of the excilamp. This can be explained by the nonradiative decay of exciplex KrBr* molecules caused by their quenching by molecular bromine. The emission power and efficiency in the Kr:Br2 = 400:1 mixture at a pressure of ≈230 Torr and a discharge gap of 8.5 mm were 4.8 W and 2.4%, respectively.

  7. Open nonradiative cavities as millimeter wave single-mode resonators

    NASA Astrophysics Data System (ADS)

    Annino, G.; Cassettari, M.; Martinelli, M.

    2005-06-01

    Open single-mode metallic cavities operating in nonradiative configurations are proposed and demonstrated. Starting from well-known dielectric resonators, possible nonradiative cavities have been established; their behavior on the fundamental TE011 mode has been predicted on the basis of general considerations. As a result, very efficient confinement properties are expected for a wide variety of open structures having rotational invariance. Test cavities realized having in mind practical millimeter wave constraints have been characterized at microwave frequencies. The obtained results confirm the expected high performances on widely open configurations. A possible excitation of the proposed resonators exploiting their nonradiative character is discussed, and the resulting overall ease of realization enlightened in view of millimeter wave employments.

  8. Photoluminescence Brightening of Isolated Single-Walled Carbon Nanotubes

    DOE PAGES

    Hou, Zhentao; Krauss, Todd D.

    2017-09-22

    Addition of dithiothreitol (DTT) to a suspension consisting of either DNA or sodium dodecyl sulfate (SDS) wrapped single-walled carbon nanotubes (SWCNTs) caused significant photoluminescence (PL) brightening from the SWCNTs, while PL quenching to different extents was observed for other surfactant-SWCNT suspensions. PL lifetime studies with high temporal resolution show that addition of DTT mitigates non-radiative decay processes, but also surprisingly increases the radiative decay rate for DNA- and SDS-SWCNTs. There are completely opposite effects on the decay rates found for the other surfactant-SWCNTs and show PL quenching. Here, we propose that the PL brightening results from a surfactant reorganization uponmore » DTT addition. TOC« less

  9. Enhancement of emission efficiency of colloidal CdSe quantum dots on silicon substrate via an ultra-thin layer of aluminum oxide.

    PubMed

    Patty, K; Sadeghi, S M; Nejat, A; Mao, C-B

    2014-04-18

    We demonstrate that an ultra-thin layer of aluminum oxide can significantly enhance the emission efficiency of colloidal quantum dots on a Si substrate. For an ensemble of single quantum dots, our results show that this super brightening process can increase the fluorescence of CdSe quantum dots, forming well-resolved spectra, while in the absence of this layer the emission remains mostly at the noise level. We demonstrate that this process can be further enhanced with irradiation of the quantum dots, suggesting a significant photo-induced fluorescence enhancement via considerable suppression of non-radiative decay channels of the quantum dots. We study the impact of the Al oxide thickness on Si and interdot interactions, and discuss the results in terms of photo-induced catalytic properties of the Al oxide and the effects of such an oxide on the Coulomb blockade responsible for suppression of photo-ionization of the quantum dots.

  10. Understanding non-radiative recombination processes of the optoelectronic materials from first principles

    NASA Astrophysics Data System (ADS)

    Shu, Yinan

    The annual potential of the solar energy hit on the Earth is several times larger than the total energy consumption in the world. This huge amount of energy source makes it appealing as an alternative to conventional fuels. Due to the problems, for example, global warming, fossil fuel shortage, etc. arising from utilizing the conventional fuels, a tremendous amount of efforts have been applied toward the understanding and developing cost effective optoelectrical devices in the past decades. These efforts have pushed the efficiency of optoelectrical devices, say solar cells, increases from 0% to 46% as reported until 2015. All these facts indicate the significance of the optoelectrical devices not only regarding protecting our planet but also a large potential market. Empirical experience from experiment has played a key role in optimization of optoelectrical devices, however, a deeper understanding of the detailed electron-by-electron, atom-by-atom physical processes when material upon excitation is the key to gain a new sight into the field. It is also useful in developing the next generation of solar materials. Thanks to the advances in computer hardware, new algorithms, and methodologies developed in computational chemistry and physics in the past decades, we are now able to 1). model the real size materials, e.g. nanoparticles, to locate important geometries on the potential energy surfaces(PESs); 2). investigate excited state dynamics of the cluster models to mimic the real systems; 3). screen large amount of possible candidates to be optimized toward certain properties, so to help in the experiment design. In this thesis, I will discuss the efforts we have been doing during the past several years, especially in terms of understanding the non-radiative decay process of silicon nanoparticles with oxygen defects using ab initio nonadiabatic molecular dynamics as well as the accurate, efficient multireference electronic structure theories we have developed to fulfill our purpose. The new paradigm we have proposed in understanding the nonradiative recombination mechanisms is also applied to other systems, like water splitting catalyst. Besides in gaining a deeper understanding of the mechanism, we applied an evolutionary algorithm to optimize promising candidates towards specific properties, for example, organic light emitting diodes (OLED).

  11. Kinetics of color center formation in silica irradiated with swift heavy ions: Thresholding and formation efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manzano-Santamaria, J.; Euratom/CIEMAT Fusion Association, Madrid; Olivares, J.

    2012-10-08

    We have determined the cross-section {sigma} for color center generation under single Br ion impacts on amorphous SiO{sub 2}. The evolution of the cross-sections, {sigma}(E) and {sigma}(S{sub e}), show an initial flat stage that we associate to atomic collision mechanisms. Above a certain threshold value (S{sub e} > 2 keV/nm), roughly coinciding with that reported for the onset of macroscopic disorder (compaction), {sigma} shows a marked increase due to electronic processes. In this regime, a energetic cost of around 7.5 keV is necessary to create a non bridging oxygen hole center-E Prime (NBOHC/E Prime ) pair, whatever the input energy.more » The data appear consistent with a non-radiative decay of self-trapped excitons.« less

  12. Exciton Dynamics, Transport, and Annihilation in Atomically Thin Two-Dimensional Semiconductors.

    PubMed

    Yuan, Long; Wang, Ti; Zhu, Tong; Zhou, Mingwei; Huang, Libai

    2017-07-20

    Large binding energy and unique exciton fine structure make the transition metal dichalcogenides (TMDCs) an ideal platform to study exciton behaviors in two-dimensional (2D) systems. While excitons in these systems have been extensively researched, there currently lacks a consensus on mechanisms that control dynamics. In this Perspective, we discuss extrinsic and intrinsic factors in exciton dynamics, transport, and annihilation in 2D TMDCs. Intrinsically, dark and bright exciton energy splitting is likely to play a key role in modulating the dynamics. Extrinsically, defect scattering is prevalent in single-layer TMDCs, which leads to rapid picosecond decay and limits exciton transport. The exciton-exciton annihilation process in single-layer TMDCs is highly efficient, playing an important role in the nonradiative recombination rate in the high exciton density regime. Future challenges and opportunities to control exciton dynamics are discussed.

  13. Efficient luminescent solar cells based on tailored mixed-cation perovskites

    PubMed Central

    Bi, Dongqin; Tress, Wolfgang; Dar, M. Ibrahim; Gao, Peng; Luo, Jingshan; Renevier, Clémentine; Schenk, Kurt; Abate, Antonio; Giordano, Fabrizio; Correa Baena, Juan-Pablo; Decoppet, Jean-David; Zakeeruddin, Shaik Mohammed; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Hagfeldt, Anders

    2016-01-01

    We report on a new metal halide perovskite photovoltaic cell that exhibits both very high solar-to-electric power-conversion efficiency and intense electroluminescence. We produce the perovskite films in a single step from a solution containing a mixture of FAI, PbI2, MABr, and PbBr2 (where FA stands for formamidinium cations and MA stands for methylammonium cations). Using mesoporous TiO2 and Spiro-OMeTAD as electron- and hole-specific contacts, respectively, we fabricate perovskite solar cells that achieve a maximum power-conversion efficiency of 20.8% for a PbI2/FAI molar ratio of 1.05 in the precursor solution. Rietveld analysis of x-ray diffraction data reveals that the excess PbI2 content incorporated into such a film is about 3 weight percent. Time-resolved photoluminescence decay measurements show that the small excess of PbI2 suppresses nonradiative charge carrier recombination. This in turn augments the external electroluminescence quantum efficiency to values of about 0.5%, a record for perovskite photovoltaics approaching that of the best silicon solar cells. Correspondingly, the open-circuit photovoltage reaches 1.18 V under AM 1.5 sunlight. PMID:26767196

  14. The Impact of Atmosphere on the Local Luminescence Properties of Metal Halide Perovskite Grains.

    PubMed

    Brenes, Roberto; Eames, Christopher; Bulović, Vladimir; Islam, M Saiful; Stranks, Samuel D

    2018-04-01

    Metal halide perovskites are exceptional candidates for inexpensive yet high-performing optoelectronic devices. Nevertheless, polycrystalline perovskite films are still limited by nonradiative losses due to charge carrier trap states that can be affected by illumination. Here, in situ microphotoluminescence measurements are used to elucidate the impact of light-soaking individual methylammonium lead iodide grains in high-quality polycrystalline films while immersing them with different atmospheric environments. It is shown that emission from each grain depends sensitively on both the environment and the nature of the specific grain, i.e., whether it shows good (bright grain) or poor (dark grain) luminescence properties. It is found that the dark grains show substantial rises in emission, while the bright grain emission is steady when illuminated in the presence of oxygen and/or water molecules. The results are explained using density functional theory calculations, which reveal strong adsorption energies of the molecules to the perovskite surfaces. It is also found that oxygen molecules bind particularly strongly to surface iodide vacancies which, in the presence of photoexcited electrons, lead to efficient passivation of the carrier trap states that arise from these vacancies. The work reveals a unique insight into the nature of nonradiative decay and the impact of atmospheric passivation on the microscale properties of perovskite films. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Search and Characterization of Optical Ceramics and Crystals for Diode-pumped Laser Oscillations

    DTIC Science & Technology

    2013-04-01

    results in a lower oscillation efficiency due to a strong loss of excitation energy during fast nonradiative interactions in Nd-Nd pairs than...associated nonradiative losses due to the formation of unquenched Nd-La pairs. To ensure that Nd-La pairs predominate in a SrF2-LaF3 solid solution, a

  16. Cross sections and quantum yields of the 3 micron emission for Er(3+) and Ho(3+) dopants in crystalsls

    NASA Astrophysics Data System (ADS)

    Payne, Stephen A.; Smith, Larry K.; Krupke, William F.

    1995-05-01

    The lifetime, quantum yields, and branching ratios for the 2.8 micron emissions of several Er-and Ho-doped fluorides and oxides were measured. Among the fluoride crystals examined, which included LiYF4, BaY2F8, LaF3, and KY3F10, only the Ho:LiFY4 systems showed any proof of nonradiative decay. Conversely, all the oxide crystals were affected by nonradiative processes, resulting in measured quantum yields ranging from 3.6% for Er:Y3Al5O12 to 62% for Er in Gd3Sc2Ga3O12. In addition, plots of the 2.8 micron emission cross sections for seven Er- and Ho-doped crystals were presented.

  17. Modifying the electronic and optical properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kinder, Jesse M.

    The intrinsic electronic and optical properties of carbon nanotubes make them promising candidates for circuit elements and LEDs in nanoscale devices. However, applied fields and interactions with the environment can modify these intrinsic properties. This dissertation is a theoretical study of perturbations to an ideal carbon nanotube. It illustrates how transport and optical properties of carbon nanotubes can be adversely affected or intentionally modified by the local environment. The dissertation is divided into three parts. Part I analyzes the effect of a transverse electric field on the single-electron energy spectrum of semiconducting carbon nanotubes. Part II analyzes the effect of the local environment on selection rules and decay pathways relevant to dark excitons. Part III is a series of 26 appendices. Two different models for a transverse electric field are introduced in Part I. The first is a uniform field perpendicular to the nanotube axis. This model suggests the field has little effect on the band gap until it exceeds a critical value that can be tuned with strain or a magnetic field. The second model is a transverse field localized to a small region along the nanotube axis. The field creates a pair of exponentially localized bound states but has no effect on the band gap for particle transport. Part II explores the physics of dark excitons in carbon nanotubes. Two model calculations illustrate the effect of the local environment on allowed optical transitions and nonradiative recombination pathways. The first model illustrates the role of inversion symmetry in the optical spectrum. Broken inversion symmetry may explain low-lying peaks in the exciton spectrum of boron nitride nanotubes and localized photoemission around impurities and interfaces in carbon nanotubes. The second model in Part II suggests that free charge carriers can mediate an efficient nonradiative decay process for dark excitons in carbon nanotubes. The appendices in Part III provide background material and details of calculations relevant to the main text. These appendices may be useful to researchers new to the study of carbon nanotubes.

  18. Blue and white light emission in Tm3+ and Tm3+/Dy3+ doped zinc phosphate glasses upon UV light excitation

    NASA Astrophysics Data System (ADS)

    Meza-Rocha, A. N.; Speghini, A.; Lozada-Morales, R.; Caldiño, U.

    2016-08-01

    A spectroscopic study based on photoluminescence spectra and decay time profiles in Tm3+ and Tm3+/Dy3+ doped Zn(PO3)2 glasses is reported. The Tm3+ doped Zn(PO3)2 glass, upon 357 nm excitation, exhibits blue emission with CIE1931 chromaticity coordinates, x = 0.157 and y = 0.030, and color purity of about 96%. Under excitations at 348, 352 and 363 nm, which match with the emissions of AlGaN and GaN based LEDs, the Tm3+/Dy3+ co-doped Zn(PO3)2 glass displays natural white, bluish white and cool white overall emissions, with correlated color temperature values of 4523, 10700 and 7788 K, respectively, depending strongly on the excitation wavelength. The shortening of the Dy3+ emission decay time in presence of Tm3+ suggests that Dy3+→Tm3+ non-radiative energy transfer occurs. By using the Inokuti-Hirayama model, it is inferred that an electric quadrupole-quadrupole interaction might be the dominant mechanism involved in the energy transfer. The efficiency and probability of this energy transfer are 0.12 and 126.70 s-1, respectively.

  19. The Role of Triplet Exciton Diffusion in Light-Upconverting Polymer Glasses.

    PubMed

    Raišys, Steponas; Kazlauskas, Karolis; Juršėnas, Saulius; Simon, Yoan C

    2016-06-22

    Light upconversion (UC) via triplet-triplet annihilation (TTA) by using noncoherent photoexcitation at subsolar irradiance power densities is extremely attractive, particularly for enhanced solar energy harvesting. Unfortunately, practical TTA-UC application is hampered by low UC efficiency of upconverting polymer glasses, which is commonly attributed to poor exciton diffusion of the triplet excitons across emitter molecules. The present study addresses this issue by systematically evaluating triplet exciton diffusion coefficients and diffusion lengths (LD) in a UC model system based on platinum-octaethylporphyrin-sensitized poly(methyl methacrylate)/diphenylanthracene (emitter) films as a function of emitter concentration (15-40 wt %). For this evaluation time-resolved photoluminescence bulk-quenching technique followed by Stern-Volmer-type quenching analysis of experimental data was employed. The key finding is that although increasing emitter concentration in the disordered PMMA/DPA/PtOEP films improves triplet exciton diffusion, and thus LD, this does not result in enhanced UC quantum yield. Conversely, improved LD accompanied by the accelerated decay of UC intensity on millisecond time scale degrades TTA-UC performance at high emitter loadings (>25 wt %) and suggests that diffusion-enhanced nonradiative decay of triplet excitons is the major limiting factor.

  20. Testing decay of astrophysical neutrinos with incomplete information

    NASA Astrophysics Data System (ADS)

    Bustamante, Mauricio; Beacom, John F.; Murase, Kohta

    2017-03-01

    Neutrinos mix and have mass differences, so decays from one to another must occur. But how fast? The best direct limits on nonradiative decays, based on solar and atmospheric neutrinos, are weak, τ ≳10-3 s (m /eV ) or much worse. Greatly improved sensitivity, τ ˜1 03 s (m /eV ), will eventually be obtained using neutrinos from distant astrophysical sources, but large uncertainties—in neutrino properties, source properties, and detection aspects—do not allow this yet. However, there is a way forward now. We show that IceCube diffuse neutrino measurements, supplemented by improvements expected in the near term, can increase sensitivity to τ ˜10 s (m /eV ) for all neutrino mass eigenstates. We provide a road map for the necessary analyses and show how to manage the many uncertainties. If limits are set, this would definitively rule out the long-considered possibility that neutrino decay affects solar, atmospheric, or terrestrial neutrino experiments.

  1. Effect of Proton Radiation on the Kinetics of Phosphorescence Decay in the Ceramic Material ZnS-Cu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchakova, T.A.; Vesna, G.V.; Makara, V.A.

    2004-11-01

    The results of studying the dose dependences of the decay kinetics of phosphorescence excited by X-ray radiation in luminescent ZnS-Cu ceramic material before and after irradiation with 50-MeV protons are considered. An anomalous variation in the exponent of the hyperbolic phosphorescence curves was observed experimentally as the accumulated light sum increased. It is found from an analysis of the data obtained that two processes are involved in the decay: one of these is monomolecular and corresponds to the first-order kinetics; the other is bimolecular and corresponds to the second-order kinetics. Transitions of charge carriers delocalized from traps occur at themore » nonradiative-recombination centers induced by proton radiation. Recombination of these charge carriers at the emission centers in the course of decay is described by the second-order kinetics.« less

  2. Interatomic Coulombic Decay: The Mechanism for Rapid Deexcitation of Hollow Atoms.

    PubMed

    Wilhelm, Richard A; Gruber, Elisabeth; Schwestka, Janine; Kozubek, Roland; Madeira, Teresa I; Marques, José P; Kobus, Jacek; Krasheninnikov, Arkady V; Schleberger, Marika; Aumayr, Friedrich

    2017-09-08

    The impact of a highly charged ion onto a solid gives rise to charge exchange between the ion and target atoms, so that a slow ion gets neutralized in the vicinity of the surface. Using highly charged Ar and Xe ions and the surface-only material graphene as a target, we show that the neutralization and deexcitation of the ions proceeds on a sub-10 fs time scale. We further demonstrate that a multiple Interatomic Coulombic Decay (ICD) model can describe the observed ultrafast deexcitation. Other deexcitation mechanisms involving nonradiative decay and quasimolecular orbital formation during the impact are not important, as follows from the comparison of our experimental data with the results of first-principles calculations. Our method also enables the estimation of ICD rates directly.

  3. Strong carrier localization in stacking faults in semipolar (11-22) GaN

    NASA Astrophysics Data System (ADS)

    Okur, Serdal; Monavarian, Morteza; Das, Saikat; Izyumskaya, Natalia; Zhang, Fan; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2015-03-01

    The effects of stacking faults (SFs) on optical processes in epitaxially grown semipolar (1122) GaN on m-sapphire substrate have been investigated in detail using steady-state photoluminescence (PL) and time- and polarization-resolved PL. We demonstrate that the carrier recombination dynamics are substantially influenced due to strong carrier localization in the stacking faults. In addition to nonradiative recombination, carrier trapping/detrapping and carrier transfer between the stacking faults and donors are also found to be among the mechanisms affecting the recombination dynamics at different temperatures. PL decay times of both I1-type BSF and 3.31 eV SF (E-type BSF or prismatic stacking fault) do not show temperature dependence up to 80 K while 3.31 eV SF exhibits longer PL decay times (~3 ns) at low temperatures as compared to I1-type BSF (~1 ns), indicative of lower efficiency for radiative recombination. After 80 K, PL decay times decreased by power of ~-1 and ~-2 for 3.31 eV SF and I1-type BSF, respectively. It is obtained from radiative decay times with respect to temperature that the carrier localization becomes higher in I1-type BSF compared to 3.31 eV SF increasing the temperature. I1-type BSF also shows higher PL intensity, which is attributed to larger density, and therefore, larger contribution to recombination dynamics as compared to other type of stacking faults. Polarization-resolved PL measurements also revealed that the degree of polarization for the I1-type BSF (0.30) was twice that for the 3.31 eV SF.

  4. Analysis of future generation solar cells and materials

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masafumi; Zhu, Lin; Akiyama, Hidefumi; Kanemitsu, Yoshihiko; Tampo, Hitoshi; Shibata, Hajime; Lee, Kan-Hua; Araki, Kenji; Kojima, Nobuaki

    2018-04-01

    The efficiency potentials of future generation solar cells such as wide bandgap chalcopyrite, Cu2ZnSnS4 (CZTS), Cu2ZnSn(S,Se)4 (CZTSSe), multi quantum well (MQW) and quantum dot (QD) solar cells are discussed on the basis of external radiative efficiency (ERE), open-circuit voltage loss, fill factor loss, and nonradiative recombination losses. CZTS and CZTSSe solar cells have efficiency potentials of more than 20% owing to the improvement in ERE from about 0.001 to 1%. MQW and QD cells have efficiency potentials of 24.8%, and 25.8% owing to the improvement in ERE from around 0.01 to 0.1%, and 1%, respectively. In this paper, the effects of nonradiative recombination on the properties of future generation solar cells are discussed.

  5. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes

    PubMed Central

    Bae, Wan Ki; Park, Young-Shin; Lim, Jaehoon; Lee, Donggu; Padilha, Lazaro A.; McDaniel, Hunter; Robel, Istvan; Lee, Changhee; Pietryga, Jeffrey M.; Klimov, Victor I.

    2013-01-01

    Development of light-emitting diodes (LEDs) based on colloidal quantum dots is driven by attractive properties of these fluorophores such as spectrally narrow, tunable emission and facile processibility via solution-based methods. A current obstacle towards improved LED performance is an incomplete understanding of the roles of extrinsic factors, such as non-radiative recombination at surface defects, versus intrinsic processes, such as multicarrier Auger recombination or electron-hole separation due to applied electric field. Here we address this problem with studies that correlate the excited state dynamics of structurally engineered quantum dots with their emissive performance within LEDs. We find that because of significant charging of quantum dots with extra electrons, Auger recombination greatly impacts both LED efficiency and the onset of efficiency roll-off at high currents. Further, we demonstrate two specific approaches for mitigating this problem using heterostructured quantum dots, either by suppressing Auger decay through the introduction of an intermediate alloyed layer, or by using an additional shell that impedes electron transfer into the quantum dot to help balance electron and hole injection. PMID:24157692

  6. Temperature influence on luminescent coupling efficiency in concentrator MJ SCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvarts, Maxim, E-mail: shvarts@scell.ioffe.ru; Emelyanov, Viktor; Mintairov, Mikhail

    2015-09-28

    In the work, presented are the results of investigation of temperature dependencies of the luminescent coupling effectiveness in lattice-matched (LM) GaInP/GaAs/Ge and metamorphic (MM) GaInP/GaInAs/Ge solar cells. The “ordinary” luminescent coupling effectiveness rise has been observed with temperature decrease for GaAs-Ge, GaInP-GaInAs and GaInAs-Ge pairs of subcells, and its limiting values have been defined. A “reverse” behavior of the luminescent coupling effectiveness for the GaInP-GaAs pair has been found, determined emittance potential drop of wideband GaInP p-n junction. It is shown that the established “unusual” behavior of the LC efficiency may be determined by the presence of thermalized centers ofmore » non-radiative recombination of charge carriers for the GaInP subcell in GaInP/GaAs/Ge LM structure. Estimation of characteristic parameters for the nonradiative recombination processes in wideband GaInP p-n junction has been carried out, and values for the energy of the nonradiative center thermalization (E{sub nrad2} =79.42meV) and for the activation energy of nonradiative band-to-band recombination (E{sub A}=33.4meV) have been obtained.« less

  7. An antilock molecular braking system.

    PubMed

    Sun, Wei-Ting; Huang, Shou-Ling; Yao, Hsuan-Hsiao; Chen, I-Chia; Lin, Ying-Chih; Yang, Jye-Shane

    2012-08-17

    A light-driven molecular brake displaying an antilock function is constructed by introducing a nonradiative photoinduced electron transfer (PET) decay channel to compete with the trans (brake-off) → cis (brake-on) photoisomerization. A fast release of the brake can be achieved by deactivating the PET process through addition of protons. The cycle of irradiation-protonation-irradiation-deprotonation conducts the brake function and mimics the antilock braking system (ABS) of vehicles.

  8. Defect-Reduction Mechanism for Improving Radiative Efficiency in InGaN/GaN Light-Emitting Diodes using InGaN Underlayers

    DOE PAGES

    Armstrong, Andrew M.; Bryant, Benjamin N.; Crawford, Mary H.; ...

    2015-04-01

    The influence of a dilute In xGa 1-xN (x~0.03) underlayer (UL) grown below a single In 0.16Ga 0.84N quantum well (SQW), within a light-emitting diode(LED), on the radiative efficiency and deep level defect properties was studied using differential carrier lifetime (DCL) measurements and deep level optical spectroscopy (DLOS). DCL measurements found that inclusion of the UL significantly improved LED radiative efficiency. At low current densities, the non-radiative recombination rate of the LED with an UL was found to be 3.9 times lower than theLED without an UL, while the radiative recombination rates were nearly identical. This, then, suggests that themore » improved radiative efficiency resulted from reduced non-radiative defect concentration within the SQW. DLOS measurement found the same type of defects in the InGaN SQWs with and without ULs. However, lighted capacitance-voltage measurements of the LEDs revealed a 3.4 times reduction in a SQW-related near-mid-gap defect state for the LED with an UL. Furthermore, quantitative agreement in the reduction of both the non-radiative recombination rate (3.9×) and deep level density (3.4×) upon insertion of an UL corroborates deep level defect reduction as the mechanism for improved LED efficiency.« less

  9. Ultrafast Physics Behind the Nonradiative Relaxation Process of Chromium Ions in Forsterite Crystals.

    NASA Astrophysics Data System (ADS)

    Demos, Stavros Gregorios

    The nonradiative relaxation following photoexcitation has been studied in Cr^{4+} -doped forsterite (Mg_2SiO _4) using picosecond laser excitation and ultrasensitive photon counting detection. The experimental techniques utilized were time resolved antiStokes Raman scattering and up-converted hot and ordinary luminescence. The up-converted hot luminescence technique allowed the investigation of the upper state nonradiative relaxation of the excited state manifold of Cr^{4+ }-doped forsterite. The excitation involves the absorption of two photons per photoexcited ion in a two-step absorption. Discrete peaks are observed in the hot up-converted luminescence spectrum and are attributed to the population of nonequilibrium vibronic levels during the deexcitation of the ions by phonon emission. This work reveals that the phonon modes participating in the initial steps of the nonradiative relaxation of the photoexcited ions have energies 218 +/- 20, 325 +/- 20, 365 +/- 20 and 513 +/- 12 cm^ {-1}. The shape of the luminescence spectral envelope suggests two electronic bottlenecks at ~2.1 and ~2.45 eV associated with slower rates of vibrational relaxation at different parts of the excited state manifold. Time resolved measurements indicated that the average time for phonon emission is of the order of hundreds of fs. Information on the nonequilibrium phonon dynamics of the 225, 335 and 370 cm^{-1} modes of forsterite has been obtained using time resolved Raman scattering. Laser pulses of 450 fs in duration and 590 nm in wavelength were used to excite the Cr ions 2.1 eV above the ground state. The probe pulses (obtained from the same laser) are monitoring the nonequilibrium phonon population through the intensity of the antiStokes Raman lines at various pump-probe delay times. Experiments were performed at room and liquid nitrogen temperatures. The observed nonequilibrium phonon populations are associated with the overall complex nonradiative decay following the excitation of the impurity Cr^{4+} ions. Using rate equations to describe the electron -lattice system, the nonradiative relaxation time and the phonon lifetimes were estimated by fitting to the experimental data. The nonradiative relaxation time is estimated to be in the order of few ps while the phonon lifetimes are of the order of 10 ps. Best fit suggests the presence of an electronic bottleneck immediately after photoexcitation with an estimated lifetime of 3 ps at room temperature.

  10. Nonradiative decay dynamics of methyl-4-hydroxycinnamate and its hydrated complex revealed by picosecond pump-probe spectroscopy.

    PubMed

    Shimada, Daiki; Kusaka, Ryoji; Inokuchi, Yoshiya; Ehara, Masahiro; Ebata, Takayuki

    2012-07-07

    The lifetimes of methyl 4-hydroxycinnamate (OMpCA) and its mono-hydrated complex (OMpCA-H(2)O) in the S(1) state have been measured by picosecond pump-probe spectroscopy in a supersonic beam. For OMpCA, the lifetime of the S(1)-S(0) origin is 8-9 ps. On the other hand, the lifetime of the OMpCA-H(2)O complex at the origin is 930 ps, which is ∼100 times longer than that of OMpCA. Furthermore, in the complex the S(1) lifetime shows rapid decrease at an energy of ∼200 cm(-1) above the origin and finally becomes as short as 9 ps at ∼500 cm(-1). Theoretical calculations with a symmetry-adapted cluster-configuration interaction (SAC-CI) method suggest that the observed lifetime behavior of the two species is described by nonradiative decay dynamics involving trans → cis isomerization. That is both OMpCA and OMpCA-H(2)O in the S(1) state decay due to the trans → cis isomerization, and the large difference of the lifetimes between them is due to the difference of the isomerization potential energy curve. In OMpCA, the trans → cis isomerization occurs smoothly without a barrier on the S(1) surface, while in the OMpCA-H(2)O complex, there exists a barrier along the isomerization coordinate. The calculated barrier height of OMpCA-H(2)O is in good agreement with that observed experimentally.

  11. Non-adiabatic molecular dynamics investigation of photoionization state formation and lifetime in Mn²⁺-doped ZnO quantum dots.

    PubMed

    Fischer, Sean A; Lingerfelt, David B; May, Joseph W; Li, Xiaosong

    2014-09-07

    The unique electronic structure of Mn(2+)-doped ZnO quantum dots gives rise to photoionization states that can be used to manipulate the magnetic state of the material and to generate zero-reabsorption luminescence. Fast formation and long non-radiative decay of this photoionization state is a necessary requirement for these important applications. In this work, surface hopping based non-adiabatic molecular dynamics are used to demonstrate the fast formation of a metal-to-ligand charge transfer state in a Mn(2+)-doped ZnO quantum dot. The formation occurs on an ultrafast timescale and is aided by the large density of states and significant mixing of the dopant Mn(2+) 3dt2 levels with the valence-band levels of the ZnO lattice. The non-radiative lifetime of the photoionization states is also investigated.

  12. Probing Local Heterogeneity in the Optoelectronic Properties of Organic-Inorganic Perovskites Using Fluorescence Microscopy

    NASA Astrophysics Data System (ADS)

    De Quilettes, Dane W.

    Unregulated emission of carbon dioxide and greenhouse gases into our atmosphere has led to an increase in the average global surface air temperature, to a disruption of weather patterns, and to the acidification of oceans all of which threaten the continued prosperity of our race and our planet. The transition to renewable sources of energy is therefore one of, if not the most, important challenge that the 21st century faces. Solar energy is predicted to play a major role in global energy production in the coming century, as the amount of energy hitting the earth's surface is far greater than the energy demands of industrialized human activity. Many current photovoltaic technologies show promise in contributing to a large fraction of global energy production, but in order to reach terawatt-scale production the photovoltaic modules will need to be scalable, cheap, and efficient. Perovskite-based photovoltaics hold exceptional potential in contributing to solar energy production. Thus far, the unprecedented rise in power conversion efficiencies over the past few years can be primarily attributed to improvements in film processing and device engineering. Although effective, the fundamental photophysical processes that govern charge generation, transport, recombination, and collection in these materials is still in its infancy. Historically in semiconductor technologies, this understanding has been essential in the rational design of optimized materials. Prior to these studies, much of the field had focused on bulk spectroscopic measurements to characterize the semiconducting properties of hybrid perovskite thin films. From our contributions as well as many others, microscopy has now given us a window into how this bulk behavior is composed of an ensemble of spatially varying structure and composition, which controls carrier transport and dynamics on the way to carrier extraction and power generation. This understanding has led to some exciting new discoveries on the rational design of materials and is leveraged to deploy chemical passivation techniques to improve the optoelectronic quality of the material, with the ultimate goal of improving photovoltaic power conversion efficiency. Reducing non-radiative recombination in semiconducting materials is a prerequisite for achieving the highest performance in a host of light-emitting and photovoltaic applications. In the first study described herein, we used confocal fluorescence microscopy correlated with scanning electron microscopy to spatially resolve the photoluminescence (PL) decay dynamics from films of nonstoichiometric organic-inorganic perovskites, CH3NH 3PbI3(Cl). The PL intensities and lifetimes varied between different grains in the same film, even for films that exhibited long bulk lifetimes. The grain boundaries were dimmer and exhibited faster non-radiative decay. Energy-dispersive x-ray spectroscopy showed a positive correlation between chlorine concentration and regions of brighter PL, while PL imaging revealed that chemical treatment with pyridine could activate previously dark grains. Next, to better elucidate the sources of these loss pathways, we performed a systematic study using confocal and widefield fluorescence microscopy to deconvolve the contributions from diffusion and non-radiative recombination which lead to the observed image heterogeneity. We showed that, in addition to local variations in non-radiative loss, carriers diffuse anisotropically due to heterogeneous intergrain connectivity. In addition to non-radiative recombination impeding material performance, we also showed that the materials exhibit a range of complex dynamic phenomena under illumination. We used a unique combination of confocal PL microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH 3PbI3 films under illumination. We demonstrated that the photo-induced "brightening" of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. Next, we studied the effects of a series of post-deposition ligand treatments on the PL of polycrystalline methylammonium lead triiodide perovskite thin films. Using glow discharge optical emission spectroscopy (GDOES) and nuclear magnetic resonance (NMR) spectroscopy, we showed that the ligands are incorporated primarily at the film surface and are acting as electron donors. These results indicate it is possible to obtain thin film PL lifetime and PLQE values that are comparable to those from single crystals by control over surface chemistry. Finally, we further characterized these TOPO treated films to show, with respect to material bandgap, these passivated films could demonstrate quasi-Fermi level splittings comparable to the highest performing GaAs solar cells, reaching 96% of the Shockley-Queisser limit. Importantly, we reported internal photoluminescence quantum efficiency values of 92% under one sun illumination intensity, which are the highest values achieved to date. These results suggest that the material optoelectronic quality has been nearly optimized and further increases in voltage and device efficiency will be obtained by integrating these types of surface passivation schemes into charge carrier selective interfaces. (Abstract shortened by ProQuest.).

  13. Temperature-dependent photoluminescence in meso-porous MCM nanotubes

    NASA Astrophysics Data System (ADS)

    Lee, Y. C.; Liu, Y. L.; Lee, W. Z.; Wang, C. K.; Shen, J. L.; Cheng, P. W.; Cheng, C. F.; Lin, T. Y.

    2004-11-01

    Temperature-dependent photoluminescence (PL) was exploited to investigate the mechanism of luminescence of MCM (Mobil Composition of Matter)-41 and MCM-48 nanotubes. The PL intensity has a maximum around 40 K. Localization of the carriers involved in the radiative recombination was deduced from the PL decay profiles at various energies. A model based on competition between radiative recombination of localized carriers and nonradiative recombination is suggested to explain the temperature-dependence of PL intensity.

  14. Tuning the Quantum Efficiency of Random Lasers - Intrinsic Stokes-Shift and Gain

    PubMed Central

    Lubatsch, Andreas; Frank, Regine

    2015-01-01

    We report the theoretical analysis for tuning the quantum efficiency of solid state random lasers. Vollhardt-Wölfle theory of photonic transport in disordered non-conserving and open random media, is coupled to lasing dynamics and solved positionally dependent. The interplay of non-linearity and homogeneous non-radiative frequency conversion by means of a Stokes-shift leads to a reduction of the quantum efficiency of the random laser. At the threshold a strong decrease of the spot-size in the stationary state is found due to the increase of non-radiative losses. The coherently emitted photon number per unit of modal surface is also strongly reduced. This result allows for the conclusion that Stokes-shifts are not sufficient to explain confined and extended mode regimes. PMID:26593237

  15. Tuning the Quantum Efficiency of Random Lasers - Intrinsic Stokes-Shift and Gain.

    PubMed

    Lubatsch, Andreas; Frank, Regine

    2015-11-23

    We report the theoretical analysis for tuning the quantum efficiency of solid state random lasers. Vollhardt-Wölfle theory of photonic transport in disordered non-conserving and open random media, is coupled to lasing dynamics and solved positionally dependent. The interplay of non-linearity and homogeneous non-radiative frequency conversion by means of a Stokes-shift leads to a reduction of the quantum efficiency of the random laser. At the threshold a strong decrease of the spot-size in the stationary state is found due to the increase of non-radiative losses. The coherently emitted photon number per unit of modal surface is also strongly reduced. This result allows for the conclusion that Stokes-shifts are not sufficient to explain confined and extended mode regimes.

  16. Opening a spiropyran ring by way of an exciplex intermediate.

    PubMed

    Benniston, Andrew C; Harriman, Anthony; Howell, Sarah L; Li, Peiyi; Lydon, Donocadh P

    2007-02-02

    A molecular dyad has been synthesized in which the main chromophore is a 1,4-diethynylated benzene residue terminated with pyrene moieties, this latter unit acting as a single chromophore. A spiropyran group has been condensed to the central phenylene ring so as to position a weak electron donor close to the pyrene unit. Illumination of the pyrene-based chromophore leads to formation of a fluorescent exciplex in polar solvents but pyrene-like fluorescence is observed in nonpolar solvents. The exciplex has a lifetime of a few nanoseconds and undergoes intersystem crossing to the pyrene-like triplet state with low efficiency. Attaching a 4-nitrobenzene group to the open end of the spiropyran unit creates a new route for decay of the exciplex whereby the triplet state of the spiropyran is formed. Nonradiative decay of this latter species results in ring opening to form the corresponding merocyanine species. Rate constants for the various steps have been obtained from time-resolved fluorescence spectroscopy carried out over a modest temperature range. Under visible light illumination, the merocyanine form reverts to the original spiropyran geometry so that the cycle is closed. Energy transfer from the pyrene chromophore to the merocyanine unit leads to an increased rate of ring closure and serves to push the steady-state composition in favor of the spiropyran form.

  17. A theoretical investigation on the neutral Cu(I) phosphorescent complexes with azole-based and phosphine mixed ligand

    NASA Astrophysics Data System (ADS)

    Ding, Xiao-Li; Shen, Lu; Zou, Lu-Yi; Ma, Ming-Shuo; Ren, Ai-Min

    2018-04-01

    A theoretical study on a series of neutral heteroleptic Cu(I) complexes with different azole-pyridine-based N^N ligands has been presented to get insight into the effect of various nitrogen atoms in the azole ring on photophysical properties. The results reveal that the highest occupied molecular orbital (HOMO) levels and the emission wavelengths of these complexes are mainly governed by the nitrogen atom number in azole ring. With the increasing number of nitrogen atom , the electron density distribution of HOMO gradually extend from the N^N ligand to the whole molecule, meanwhile, the improved contribution from Cu(d) orbits in HOMO results in an effective mixing of various charge transfermodes, and hence, the fast radiative decay(kr) and the slow non-radiative decay rate(knr) are achieved. The photoluminescence quantum yield (PLQY) show an apparent dependence on the nitrogen atom number in the five-membered nitrogen heterocycles. However, the increasing number of nitrogen atoms is not necessary for increasing PLQY. The complex 3 with 1,2,4-triazole-pyridine-based N^N ligands is considered to be a potential emitter with high phosphorescence efficiency. Finally, we hope that our investigations will contribute to systematical understanding and guiding for material molecular engineering.

  18. Visualization of Membrane Rafts Using a Perylene Monoimide Derivative and Fluorescence Lifetime Imaging

    PubMed Central

    Margineanu, Anca; Hotta, Jun-ichi; Van der Auweraer, Mark; Ameloot, Marcel; Stefan, Alina; Beljonne, David; Engelborghs, Yves; Herrmann, Andreas; Müllen, Klaus; De Schryver, Frans C.; Hofkens, Johan

    2007-01-01

    A new membrane probe, based on the perylene imide chromophore, with excellent photophysical properties (high absorption coefficient, quantum yield (QY) ≈ 1, high photostability) and excited in the visible domain is proposed for the study of membrane rafts. Visualization of separation between the liquid-ordered (Lo) and the liquid-disordered (Ld) phases can be achieved in artificial membranes by fluorescence lifetime imaging due to the different decay times of the membrane probe in the two phases. Rafts on micrometer-scale in cell membranes due to cellular activation can also be observed by this method. The decay time of the dye in the Lo phase is higher than in organic solvents where its QY is 1. This allows proposing a (possible general) mechanism for the decay time increase in the Lo phase, based on the local field effects of the surrounding molecules. For other fluorophores with QY < 1, the suggested mechanism could also contribute, in addition to effects reducing the nonradiative decay pathways, to an increase of the fluorescence decay time in the Lo phase. PMID:17573424

  19. Excited state dynamics of the astaxanthin radical cation

    NASA Astrophysics Data System (ADS)

    Amarie, Sergiu; Förster, Ute; Gildenhoff, Nina; Dreuw, Andreas; Wachtveitl, Josef

    2010-07-01

    Femtosecond transient absorption spectroscopy in the visible and NIR and ultrafast fluorescence spectroscopy were used to examine the excited state dynamics of astaxanthin and its radical cation. For neutral astaxanthin, two kinetic components corresponding to time constants of 130 fs (decay of the S 2 excited state) and 5.2 ps (nonradiative decay of the S 1 excited state) were sufficient to describe the data. The dynamics of the radical cation proved to be more complex. The main absorption band was shifted to 880 nm (D 0 → D 3 transition), showing a weak additional band at 1320 nm (D 0 → D 1 transition). We found, that D 3 decays to the lower-lying D 2 within 100 fs, followed by a decay to D 1 with a time constant of 0.9 ps. The D 1 state itself exhibited a dual behavior, the majority of the population is transferred to the ground state in 4.9 ps, while a small population decays on a longer timescale of 40 ps. Both transitions from D 1 were found to be fluorescent.

  20. Origin of Reduced Open-Circuit Voltage in Highly Efficient Small-Molecule-Based Solar Cells upon Solvent Vapor Annealing.

    PubMed

    Deng, Wanyuan; Gao, Ke; Yan, Jun; Liang, Quanbin; Xie, Yuan; He, Zhicai; Wu, Hongbin; Peng, Xiaobin; Cao, Yong

    2018-03-07

    In this study, we demonstrate that remarkably reduced open-circuit voltage in highly efficient organic solar cells (OSCs) from a blend of phenyl-C 61 -butyric acid methyl ester and a recently developed conjugated small molecule (DPPEZnP-THD) upon solvent vapor annealing (SVA) is due to two independent sources: increased radiative recombination and increased nonradiative recombination. Through the measurements of electroluminescence due to the emission of the charge-transfer state and photovoltaic external quantum efficiency measurement, we can quantify that the open-circuit voltage losses in a device with SVA due to the radiative recombination and nonradiative recombination are 0.23 and 0.31 V, respectively, which are 0.04 and 0.07 V higher than those of the as-cast device. Despite of the reduced open-circuit voltage, the device with SVA exhibited enhanced dissociation of charge-transfer excitons, leading to an improved short-circuit current density and a remarkable power conversion efficiency (PCE) of 9.41%, one of the best for solution-processed OSCs based on small-molecule donor materials. Our study also clearly shows that removing the nonradiative recombination pathways and/or suppressing energetic disorder in the active layer would result in more long-lived charge carriers and enhanced open-circuit voltage, which are prerequisites for further improving the PCE.

  1. Experimental and theoretical study on the excited-state dynamics of ortho-, meta-, and para-methoxy methylcinnamate.

    PubMed

    Miyazaki, Yasunori; Yamamoto, Kanji; Aoki, Jun; Ikeda, Toshiaki; Inokuchi, Yoshiya; Ehara, Masahiro; Ebata, Takayuki

    2014-12-28

    The S1 state dynamics of methoxy methylcinnamate (MMC) has been investigated under supersonic jet-cooled conditions. The vibrationally resolved S1-S0 absorption spectrum was recorded by laser induced fluorescence and mass-resolved resonant two-photon ionization spectroscopy and separated into conformers by UV-UV hole-burning (UV-UV HB) spectroscopy. The S1 lifetime measurements revealed different dynamics of para-methoxy methylcinnamate from ortho-methoxy methylcinnamate and meta-methoxy methylcinnamate (hereafter, abbreviated as p-, o-, and m-MMCs, respectively). The lifetimes of o-MMC and m-MMC are on the nanosecond time scale and exhibit little tendency of excess energy dependence. On the other hand, p-MMC decays much faster and its lifetime is conformer and excess energy dependent. In addition, the p-MMC-H2O complex was studied to explore the effect of hydration on the S1 state dynamics of p-MMC, and it was found that the hydration significantly accelerates the nonradiative decay. Quantum chemical calculation was employed to search the major decay route from S1(ππ(∗)) for three MMCs and p-MMC-H2O in terms of (i) trans → cis isomerization and (ii) internal conversion to the (1)nπ(∗) state. In o-MMC and m-MMC, the large energy barrier is created for the nonradiative decay along (i) the double-bond twisting coordinate (∼1000 cm(-1)) in S1 as well as (ii) the linear interpolating internal coordinate (∼1000 cm(-1)) from S1 to (1)nπ(∗) states. The calculation on p-MMC decay dynamics suggests that both (i) and (ii) are available due to small energy barrier, i.e., 160 cm(-1) by the double-bond twisting and 390 cm(-1) by the potential energy crossing. The hydration of p-MMC raises the energy barrier of the IC route to the S1/(1)nπ(∗) conical intersection, convincing that the direct isomerization is more likely to occur.

  2. Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with phenol-ionic complexes

    NASA Astrophysics Data System (ADS)

    Bray, Kerem; Previdi, Rodolfo; Gibson, Brant C.; Shimoni, Olga; Aharonovich, Igor

    2015-03-01

    Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and bio-labeling. In this work we demonstrate a robust approach to achieve an encapsulation of individual nanodiamonds with phenol-ionic complexes that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation reduces the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications.Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and bio-labeling. In this work we demonstrate a robust approach to achieve an encapsulation of individual nanodiamonds with phenol-ionic complexes that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation reduces the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07510b

  3. Room-Temperature Triple-Ligand Surface Engineering Synergistically Boosts Ink Stability, Recombination Dynamics, and Charge Injection toward EQE-11.6% Perovskite QLEDs.

    PubMed

    Song, Jizhong; Li, Jinhang; Xu, Leimeng; Li, Jianhai; Zhang, Fengjuan; Han, Boning; Shan, Qingsong; Zeng, Haibo

    2018-06-10

    Developing low-cost and high-quality quantum dots (QDs) or nanocrystals (NCs) and their corresponding efficient light-emitting diodes (LEDs) is crucial for the next-generation ultra-high-definition flexible displays. Here, there is a report on a room-temperature triple-ligand surface engineering strategy to play the synergistic role of short ligands of tetraoctylammonium bromide (TOAB), didodecyldimethylammonium bromide (DDAB), and octanoic acid (OTAc) toward "ideal" perovskite QDs with a high photoluminescence quantum yield (PLQY) of >90%, unity radiative decay in its intrinsic channel, stable ink characteristics, and effective charge injection and transportation in QD films, resulting in the highly efficient QD-based LEDs (QLEDs). Furthermore, the QD films with less nonradiative recombination centers exhibit improved PL properties with a PLQY of 61% through dopant engineering in A-site. The robustness of such properties is demonstrated by the fabrication of green electroluminescent LEDs based on CsPbBr 3 QDs with the peak external quantum efficiency (EQE) of 11.6%, and the corresponding peak internal quantum efficiency (IQE) and power efficiency are 52.2% and 44.65 lm W -1 , respectively, which are the most-efficient perovskite QLEDs with colloidal CsPbBr 3 QDs as emitters up to now. These results demonstrate that the as-obtained QD inks have a wide range application in future high-definition QD displays and high-quality lightings. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates.

    PubMed

    Patty, Kira; Sadeghi, Seyed M; Campbell, Quinn; Hamilton, Nathan; West, Robert G; Mao, Chuanbin

    2014-09-21

    We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggests the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide.

  5. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates

    PubMed Central

    Patty, Kira; Sadeghi, Seyed M.; Campbell, Quinn; Hamilton, Nathan; West, Robert G.; Mao, Chuanbin

    2014-01-01

    We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggests the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide. PMID:25316953

  6. Excitation Energy Transfer by Coherent and Incoherent Mechanisms in the Peridinin-Chlorophyll a Protein.

    PubMed

    Ghosh, Soumen; Bishop, Michael M; Roscioli, Jerome D; LaFountain, Amy M; Frank, Harry A; Beck, Warren F

    2017-01-19

    Excitation energy transfer from peridinin to chlorophyll (Chl) a is unusually efficient in the peridinin-chlorophyll a protein (PCP) from dinoflagellates. This enhanced performance is derived from the long intrinsic lifetime of 4.4 ps for the S 2 (1 1 B u + ) state of peridinin in PCP, which arises from the electron-withdrawing properties of its carbonyl substituent. Results from heterodyne transient grating spectroscopy indicate that S 2 serves as the donor for two channels of energy transfer: a 30 fs process involving quantum coherence and delocalized peridinin-Chl states and an incoherent, 2.5 ps process initiated by dynamic exciton localization, which accompanies the formation of a conformationally distorted intermediate in 45 fs. The lifetime of the S 2 state is lengthened in PCP by its intramolecular charge-transfer character, which increases the system-bath coupling and slows the torsional motions that promote nonradiative decay to the S 1 (2 1 A g - ) state.

  7. Electron-phonon interaction in efficient perovskite blue emitters

    NASA Astrophysics Data System (ADS)

    Gong, Xiwen; Voznyy, Oleksandr; Jain, Ankit; Liu, Wenjia; Sabatini, Randy; Piontkowski, Zachary; Walters, Grant; Bappi, Golam; Nokhrin, Sergiy; Bushuyev, Oleksandr; Yuan, Mingjian; Comin, Riccardo; McCamant, David; Kelley, Shana O.; Sargent, Edward H.

    2018-06-01

    Low-dimensional perovskites have—in view of their high radiative recombination rates—shown great promise in achieving high luminescence brightness and colour saturation. Here we investigate the effect of electron-phonon interactions on the luminescence of single crystals of two-dimensional perovskites, showing that reducing these interactions can lead to bright blue emission in two-dimensional perovskites. Resonance Raman spectra and deformation potential analysis show that strong electron-phonon interactions result in fast non-radiative decay, and that this lowers the photoluminescence quantum yield (PLQY). Neutron scattering, solid-state NMR measurements of spin-lattice relaxation, density functional theory simulations and experimental atomic displacement measurements reveal that molecular motion is slowest, and rigidity greatest, in the brightest emitter. By varying the molecular configuration of the ligands, we show that a PLQY up to 79% and linewidth of 20 nm can be reached by controlling crystal rigidity and electron-phonon interactions. Designing crystal structures with electron-phonon interactions in mind offers a previously underexplored avenue to improve optoelectronic materials' performance.

  8. Super-Poissonian statistics of photon emission from single CdSe-CdS core-shell nanocrystals coupled to metal nanostructures.

    PubMed

    Park, Young-Shin; Ghosh, Yagnaseni; Chen, Yongfen; Piryatinski, Andrei; Xu, Ping; Mack, Nathan H; Wang, Hsing-Lin; Klimov, Victor I; Hollingsworth, Jennifer A; Htoon, Han

    2013-03-15

    We demonstrate that photon antibunching observed for individual nanocrystal quantum dots (NQDs) can be transformed into photon bunching characterized by super-Poissonian statistics when they are coupled to metal nanostructures (MNs). This observation indicates that, while the quantum yield of a biexciton (Q(2X)) is lower than that of a single exciton (Q(1X)) in freestanding NQDs, Q(2X) becomes greater than Q(1X) in NQDs coupled to MNs. This unique phenomenon is attributed to metal-induced quenching with a rate that scales more slowly with exciton multiplicity than the radiative decay rate and dominates over other nonradiative decay channels for both single excitons and biexcitons.

  9. Measuring the dependence of the decay curve on the electron energy deposit in NaI(Tl)

    NASA Astrophysics Data System (ADS)

    Choong, W.-S.; Bizarri, G.; Cherepy, N. J.; Hull, G.; Moses, W. W.; Payne, S. A.

    2011-08-01

    We report on the first measurement of the decay times of NaI(Tl) as a function of the deposited electron energy. It has been suggested that the decay curve depends on the ionization density, which is correlated with the electron energy deposit in the scintillator. The ionization creates excitation states, which can decay radiatively and non-radiatively through a number of competing processes. As a result, the rate at which the excitation decays depends on the ionization density. A measurement of the decay curve as a function of the ionization density will allow us to probe the kinetic rates of the competing processes. The Scintillator Light Yield Non-proportionality Characterization Instrument (SLYNCI) measures the electron response of scintillators utilizing fast sampling ADCs to digitize the raw signals from the detectors, and so can provide a measurement of the light pulse shape from the scintillator. Using data collected with the SLYNCI instrument, the intrinsic scintillation profile is extracted on an event-by-event basis by deconvolving the raw signal with the impulse response of the system. Scintillation profiles with the same electron energy deposit are summed to obtain decay curves as a function of the deposited electron energy. The decay time constants are obtained by fitting the decay curves with a two-component exponential decay. While a slight dependence of the decay time constants on the electron energy deposit is observed, the results are not statistically significant.

  10. Time-resolved photoluminescence in Mobil Composition of Matter-48

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Lee, W. Z.; Shen, J. L.; Lee, Y. C.; Cheng, P. W.; Cheng, C. F.

    2004-12-01

    Dynamical properties of Mobil Composition of Matter (MCM)-48 were studied by time-resolved photoluminescence (PL). The PL intensity exhibits a clear nonexponential profile, which can be fitted by a stretched exponential function. In the temperature range from 50to300K, the PL decay lifetime becomes thermally activated by a characteristic energy of 25meV, which is suggested to be an indication of the phonon-assisted nonradiative process. A model is proposed to explain the relaxation behavior of the PL in MCM-48.

  11. Photoluminescence properties of non-stoichiometric strontium zirconate powder phosphor

    NASA Astrophysics Data System (ADS)

    Jarý, V.; Boháček, P.; Mihóková, E.; Havlák, L.; Trunda, B.; Nikl, M.

    2013-03-01

    Excitation and emission spectra and decay kinetics of non-stoichiometric strontium zirconate powder phosphor were measured in the 8-500 K temperature interval. Phenomenological model was applied to extract quantitative parameters of the excited state levels and nonradiative quenching pathways related to the luminescence centre. Delayed recombination integrals measurement was employed to investigate the occurrence of thermally induced ionization of the excited state of the emission centre. The nature of the emission centre itself is suggested. Suitability for phosphor and scintillation application is discussed.

  12. Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: the plasmonic Dicke effect.

    PubMed

    Pustovit, Vitaliy N; Shahbazyan, Tigran V

    2009-02-20

    We identify a new mechanism for cooperative emission of light by an ensemble of N dipoles near a metal nanostructure supporting a surface plasmon. The cross talk between emitters due to the virtual plasmon exchange leads to the formation of three plasmonic superradiant modes whose radiative decay rates scale with N, while the total radiated energy is thrice that of a single emitter. Our numerical simulations indicate that the plasmonic Dicke effect survives nonradiative losses in the metal.

  13. Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neo, Darren C. J.; Assender, Hazel E.; Watt, Andrew A. R., E-mail: Andrew.watt@materials.ox.ac.uk

    2015-09-07

    Multi-band gap heterojunction solar cells fabricated from a blend of 1.2 eV and 1.4 eV PbS colloidal quantum dots (CQDs) show poor device performance due to non-radiative recombination. To overcome this, a CdS shell is epitaxially formed around the PbS core using cation exchange. From steady state and transient photoluminescence measurements, we understand the nature of charge transfer between these quantum dots. Photoluminescence decay lifetimes are much longer in the PbS/CdS core/shell blend compared to PbS only, explained by a reduction in non-radiative recombination resulting from CdS surface passivation. PbS/CdS heterojunction devices sustain a higher open-circuit voltage and lower reverse saturation currentmore » as compared to PbS-only devices, implying lower recombination rates. Further device performance enhancement is attained by modifying the composition profile of the CQD species in the absorbing layer resulting in a three dimensional quantum cascade structure.« less

  14. Exciton Dynamics in Monolayer Transition Metal Dichalcogenides.

    PubMed

    Moody, Galan; Schaibley, John; Xu, Xiaodong

    2016-07-01

    Since the discovery of semiconducting monolayer transition metal dichalcogenides, a variety of experimental and theoretical studies have been carried out seeking to understand the intrinsic exciton population recombination and valley relaxation dynamics. Reports of the exciton decay time range from hundreds of femtoseconds to ten nanoseconds, while the valley depolarization time can exceed one nanosecond. At present, however, a consensus on the microscopic mechanisms governing exciton radiative and non-radiative recombination is lacking. The strong exciton oscillator strength resulting in up to ~ 20% absorption for a single monolayer points to ultrafast radiative recombination. However, the low quantum yield and large variance in the reported lifetimes suggest that non-radiative Auger-type processes obscure the intrinsic exciton radiative lifetime. In either case, the electron-hole exchange interaction plays an important role in the exciton spin and valley dynamics. In this article, we review the experiments and theory that have led to these conclusions and comment on future experiments that could complement our current understanding.

  15. Exciton Dynamics in Monolayer Transition Metal Dichalcogenides

    PubMed Central

    Moody, Galan; Schaibley, John; Xu, Xiaodong

    2017-01-01

    Since the discovery of semiconducting monolayer transition metal dichalcogenides, a variety of experimental and theoretical studies have been carried out seeking to understand the intrinsic exciton population recombination and valley relaxation dynamics. Reports of the exciton decay time range from hundreds of femtoseconds to ten nanoseconds, while the valley depolarization time can exceed one nanosecond. At present, however, a consensus on the microscopic mechanisms governing exciton radiative and non-radiative recombination is lacking. The strong exciton oscillator strength resulting in up to ~ 20% absorption for a single monolayer points to ultrafast radiative recombination. However, the low quantum yield and large variance in the reported lifetimes suggest that non-radiative Auger-type processes obscure the intrinsic exciton radiative lifetime. In either case, the electron-hole exchange interaction plays an important role in the exciton spin and valley dynamics. In this article, we review the experiments and theory that have led to these conclusions and comment on future experiments that could complement our current understanding. PMID:28890600

  16. Increase in the Shockley–Read–Hall recombination rate in InGaN/GaN QWs as the main mechanism of the efficiency droop in LEDs at high injection levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bochkareva, N. I.; Rebane, Yu. T.; Shreter, Yu. G., E-mail: y.shreter@mail.ioffe.ru

    It is shown that the efficiency droop observed as the current through a GaN-based light-emitting diode increases is due to a decrease in the Shockley–Read–Hall nonradiative lifetime. The lifetime decreases with increasing current because a steadily growing number of traps in the density-of-states tails of InGaN/GaN quantum wells become nonradiative recombination centers upon the approach of quasi-Fermi levels to the band edges. This follows from the correlation between the efficiency droop and the appearance of negative differential capacitance, observed in the study. The correlation appears due to slow trap recharging via the trap-assisted tunneling of electrons through the n-type barriermore » of the quantum well and to the inductive nature of the diode-current variation with forward bias.« less

  17. The luminescence characteristics of CsI(Na) crystal under α and X/γ excitation

    NASA Astrophysics Data System (ADS)

    Liu, Jinliang; Liu, Fang; Ouyang, Xiaoping; Liu, Bin; Chen, Liang; Ruan, Jinlu; Zhang, Zhongbing; Liu, Jun

    2013-01-01

    In this paper, we study the effective decay time characteristic of CsI(Na) crystal under 239Pu alpha particle and 137Cs gamma-ray excitation using a single photon counting decay time measurement system. The measurement system employs a silicon optical fiber to couple and transit single photon. The slow decay time component of CsI(Na) crystal is 460-550 ns. We observe a 15 ns fast decay component under alpha particle excitation. In addition, we find that the primary stage of the falling edge in the decay time curve is non-exponential and drops rapidly when CsI(Na) crystal is excited by 239Pu alpha particles. Since the high density of self-trapped-excitons (STEs) is produced in alpha particle excitation process, we propose that the fast falling edge is corresponding to the quenching process of STEs which transit with non-radiation in the case of high excitation density. To prove this proposal, we excited the CsI(Na) crystal with sub-nanosecond intensive pulsed X-ray radiation. Our X-ray impinging results show that the fast falling edge also exists under low energy (average 100 keV) bremsstrahlung X-ray excitation.

  18. Excitation energy migration processes in various multi-porphyrin assemblies.

    PubMed

    Yang, Jaesung; Kim, Dongho

    2012-08-13

    The electronic interactions and excitation energy transfer (EET) processes of a variety of multi-porphyrin arrays with linear, cyclic and box architectures have been explored. Directly meso-meso linked linear arrays (Z(N)) exhibit strong excitonic coupling with an exciton coherence length of approximately 6 porphyrin units, while fused linear arrays (T(N)) exhibit extensive π-conjugation over the whole array. The excitonic coherence length in directly linked cyclic porphyrin rings (CZ(N)) was determined to be approximately 2.7 porphyrin units by simultaneous analysis of fluorescence intensities and lifetimes at the single-molecule level. By performing transient absorption (TA) and TA anisotropy decay measurements, the EET rates in m-phenylene linked cyclic porphyrin wheels C12ZA and C24ZB were determined to be 4 and 36 ps(-1), respectively. With increasing the size of C(N)ZA, the EET efficiencies decrease owing to the structural distortions that produce considerable non-radiative decay pathways. Finally, the EET rates of self-assembled porphyrin boxes consisting of directly linked diporphyrins, B1A, B2A and B3A, are 48, 98 and 361 ps(-1), respectively. The EET rates of porphyrin boxes consisting of alkynylene-bridged diporphyrins, B2B and B4B, depend on the conformation of building blocks (planar or orthogonal) rather than the length of alkynylene linkers.

  19. Eu3 + amidst ionic copper in glass: Enhancement through energy transfer from Cu+, or quenching by Cu2 +?

    NASA Astrophysics Data System (ADS)

    Jiménez, José A.

    2017-02-01

    A barium-phosphate glass system doped with europium(III) and containing a high concentration of copper(I) together with a copper(II) remnant has been studied spectroscopically. The main object is to elucidate whether the orange-red emission of Eu3 + ions succeeds through sensitization via luminescent Cu+ ions or else is preferentially quenched by non-radiative transfer to Cu2 +. A characterization of the melt-quenched glass was first performed by UV/Vis optical absorption, 31P nuclear magnetic resonance and infrared absorption spectroscopy. A photoluminescence (PL) spectroscopy and emission decay dynamics assessment was subsequently performed. Despite the concentration of Cu+ being estimated to be much higher than that of Cu2 +, the data shows that quenching of Eu3 + PL by Cu2 + dominates. The lifetime analysis of emitting centers Cu+ and Eu3 + points to the origin of the manifestation being that the Eu3 + → Cu2 + non-radiative transfer rate responsible for the quenching is almost two times higher than that for the Cu+ → Eu3 + transfer accountable for the enhancement. Finally, an effort was made for the determination of Cu2 + in the glass containing Cu+, Cu2 + and Eu3 + ions based on the Eu3 + (5D0) emission decay rates. It was found to be in excellent agreement with the UV/Vis spectrophotometric approach, thus supporting the utility of Eu3 + ions for optical sensing of copper(II) in the solid state.

  20. Ultrafast non-radiative dynamics of atomically thin MoSe 2

    DOE PAGES

    Lin, Ming -Fu; Kochat, Vidya; Krishnamoorthy, Aravind; ...

    2017-10-17

    Non-radiative energy dissipation in photoexcited materials and resulting atomic dynamics provide a promising pathway to induce structural phase transitions in two-dimensional materials. However, these dynamics have not been explored in detail thus far because of incomplete understanding of interaction between the electronic and atomic degrees of freedom, and a lack of direct experimental methods to quantify real-time atomic motion and lattice temperature. Here, we explore the ultrafast conversion of photoenergy to lattice vibrations in a model bi-layered semiconductor, molybdenum diselenide, MoSe 2. Specifically, we characterize sub-picosecond lattice dynamics initiated by the optical excitation of electronic charge carriers in the highmore » electron-hole plasma density regime. Our results focuses on the first ten picosecond dynamics subsequent to photoexcitation before the onset of heat transfer to the substrate, which occurs on a ~100 picosecond time scale. Photoinduced atomic motion is probed by measuring the time dependent Bragg diffraction of a delayed mega-electronvolt femtosecond electron beam. Transient lattice temperatures are characterized through measurement of Bragg peak intensities and calculation of the Debye-Waller factor (DWF). These measurements show a sub-picosecond decay of Bragg diffraction and a correspondingly rapid rise in lattice temperatures. We estimate a high quantum yield for the conversion of excited charge carrier energy to lattice motion under our experimental conditions, indicative of a strong electron-phonon interaction. First principles nonadiabatic quantum molecular dynamics simulations (NAQMD) on electronically excited MoSe 2 bilayers reproduce the observed picosecond-scale increase in lattice temperature and ultrafast conversion of photoenergy to lattice vibrations. Calculation of excited-state phonon dispersion curves suggests that softened vibrational modes in the excited state are involved in efficient and rapid energy transfer between the electronic system and the lattice.« less

  1. Ultrafast non-radiative dynamics of atomically thin MoSe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ming -Fu; Kochat, Vidya; Krishnamoorthy, Aravind

    Non-radiative energy dissipation in photoexcited materials and resulting atomic dynamics provide a promising pathway to induce structural phase transitions in two-dimensional materials. However, these dynamics have not been explored in detail thus far because of incomplete understanding of interaction between the electronic and atomic degrees of freedom, and a lack of direct experimental methods to quantify real-time atomic motion and lattice temperature. Here, we explore the ultrafast conversion of photoenergy to lattice vibrations in a model bi-layered semiconductor, molybdenum diselenide, MoSe 2. Specifically, we characterize sub-picosecond lattice dynamics initiated by the optical excitation of electronic charge carriers in the highmore » electron-hole plasma density regime. Our results focuses on the first ten picosecond dynamics subsequent to photoexcitation before the onset of heat transfer to the substrate, which occurs on a ~100 picosecond time scale. Photoinduced atomic motion is probed by measuring the time dependent Bragg diffraction of a delayed mega-electronvolt femtosecond electron beam. Transient lattice temperatures are characterized through measurement of Bragg peak intensities and calculation of the Debye-Waller factor (DWF). These measurements show a sub-picosecond decay of Bragg diffraction and a correspondingly rapid rise in lattice temperatures. We estimate a high quantum yield for the conversion of excited charge carrier energy to lattice motion under our experimental conditions, indicative of a strong electron-phonon interaction. First principles nonadiabatic quantum molecular dynamics simulations (NAQMD) on electronically excited MoSe 2 bilayers reproduce the observed picosecond-scale increase in lattice temperature and ultrafast conversion of photoenergy to lattice vibrations. Calculation of excited-state phonon dispersion curves suggests that softened vibrational modes in the excited state are involved in efficient and rapid energy transfer between the electronic system and the lattice.« less

  2. Experimental and theoretical study on the excited-state dynamics of ortho-, meta-, and para-methoxy methylcinnamate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, Yasunori; Yamamoto, Kanji; Aoki, Jun

    The S{sub 1} state dynamics of methoxy methylcinnamate (MMC) has been investigated under supersonic jet-cooled conditions. The vibrationally resolved S{sub 1}-S{sub 0} absorption spectrum was recorded by laser induced fluorescence and mass-resolved resonant two-photon ionization spectroscopy and separated into conformers by UV-UV hole-burning (UV-UV HB) spectroscopy. The S{sub 1} lifetime measurements revealed different dynamics of para-methoxy methylcinnamate from ortho-methoxy methylcinnamate and meta-methoxy methylcinnamate (hereafter, abbreviated as p-, o-, and m-MMCs, respectively). The lifetimes of o-MMC and m-MMC are on the nanosecond time scale and exhibit little tendency of excess energy dependence. On the other hand, p-MMC decays much faster andmore » its lifetime is conformer and excess energy dependent. In addition, the p-MMC-H{sub 2}O complex was studied to explore the effect of hydration on the S{sub 1} state dynamics of p-MMC, and it was found that the hydration significantly accelerates the nonradiative decay. Quantum chemical calculation was employed to search the major decay route from S{sub 1}(ππ{sup ∗}) for three MMCs and p-MMC-H{sub 2}O in terms of (i) trans → cis isomerization and (ii) internal conversion to the {sup 1}nπ{sup ∗} state. In o-MMC and m-MMC, the large energy barrier is created for the nonradiative decay along (i) the double-bond twisting coordinate (∼1000 cm{sup −1}) in S{sub 1} as well as (ii) the linear interpolating internal coordinate (∼1000 cm{sup −1}) from S{sub 1} to {sup 1}nπ{sup ∗} states. The calculation on p-MMC decay dynamics suggests that both (i) and (ii) are available due to small energy barrier, i.e., 160 cm{sup −1} by the double-bond twisting and 390 cm{sup −1} by the potential energy crossing. The hydration of p-MMC raises the energy barrier of the IC route to the S{sub 1}/{sup 1}nπ{sup ∗} conical intersection, convincing that the direct isomerization is more likely to occur.« less

  3. Eu3+-doped Bi4Si3O12 red phosphor for solid state lighting: microwave synthesis, characterization, photoluminescence properties and thermal quenching mechanisms

    PubMed Central

    Zhang, Yan; Xu, Jiayue; Cui, Qingzhi; Yang, Bobo

    2017-01-01

    Europium-doped bismuth silicate (Bi4Si3O12) phosphor has been prepared by microwave irradiation method and its crystal structure is determined using Rietveld method. As-prepared phosphor consists of spherical, monodispersed particles with few agglomeration, high crystallinity, and narrow grain size distribution. The phosphor can be efficiently excited in the wavelength range of 260–400 nm, which matched well with the emission wavelengths of NUV LED chips. The photoluminescence spectra exhibit the highest emission peak at 703 nm originating from 5D0 → 7F4 transition of Eu3+ under NUV excitation. The luminescence lifetime for Bi4Si3O12: 2 at% Eu3+ phosphor decreases from 2.11 to 1.86 ms with increasing temperature from 10 to 498 K. This behavior of decays is discussed in terms of radiative and nonradiative decays dependence on temperature. The thermal quenching mechanism of 5D0 emission of Eu3+ in Bi4Si3O12 phosphor is a crossover process from the 5D0 level of Eu3+ to a ligand-to-europium (O2− → Eu3+) charge transfer state. The quantum efficiency of the phosphor under 393 nm excitation is found to be 14.5%, which is higher than that of the commercial red phosphors Y2O3: Eu3+, Y2O2S: Eu3+. The temperature effect on CIE coordinate was discussed in order to further investigate the potential applications. PMID:28198396

  4. Structural and optical properties of Dy3+ doped Aluminofluoroborophosphate glasses for white light applications

    NASA Astrophysics Data System (ADS)

    Vijayakumar, M.; Mahesvaran, K.; Patel, Dinesh K.; Arunkumar, S.; Marimuthu, K.

    2014-11-01

    Dy3+ doped Aluminofluoroborophosphate glasses (BPAxD) have been prepared following conventional melt quenching technique and their structural and optical properties were explored through XRD, FTIR, optical absorption, excitation, emission and decay measurements. The coexistence of BO3 groups in borate rich domain and BO4 groups in phosphate rich domain have been confirmed through vibrational energy analysis. Negative bonding parameter (δ) values indicate that, the metal-ligand environment in the prepared glasses is of ionic in nature. The oscillator strength and the luminescent intensity Ωλ (λ = 2, 4 and 6) parameters are calculated using Judd-Ofelt theory. The radiative properties such as transition probability (A), stimulated emission cross-section (σpE) and branching ratios (β) have been calculated using JO intensity parameters and compared with the reported Dy3+ doped glasses. Concentration effect on Y/B intensity ratios and the CIE chromaticity coordinates were calculated for the generation of white light from the luminescence spectra. The color purity and the correlated color temperature were also calculated and the results are discussed in the present work. The decay of the 4F9/2 excited level is found to be single exponential for lower concentration and become non-exponential for higher concentration. The non-exponential behavior arises due to the efficient energy transfer between the Dy3+ ions through various non-radiative relaxation channels and the decay of the 4F9/2 excited level have been analyzed with IH model. Among the prepared glasses, BPA0.5D glass exhibits higher σpE, βR, σpE×σpE, σpE×Δλeff and η values for the 6H13/2 emission band which in turn specifies its suitability for white LEDs, laser applications and optical amplifiers.

  5. Polarized time-resolved photoluminescence measurements of m-plane AlGaN/GaN MQWs

    NASA Astrophysics Data System (ADS)

    Rosales, Daniel; Gil, B.; Bretagnon, T.; Zhang, F.; Okur, S.; Monavarian, M.; Izioumskaia, N.; Avrutin, V.; Özgür, Ü.; Morkoç, H.; Leach, J. H.

    2014-03-01

    The optical properties of GaN/Al0.15Ga0.85N multiple quantum wells grown on m-plane oriented substrate are studied in 8K-300K temperature range. The optical spectra reveal strong in-plane optical anisotropies as predicted by group theory. Polarized time resolved temperature-dependent photoluminescence experiments are performed providing access to the relative contributions of the non-radiative and radiative recombination processes. We deduce the variation of the radiative decay time with temperature in the two polarizations.

  6. ∼2 μm emission properties and non-radiative processes of Tm{sup 3+} in germanate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Song; Liu, Xueqiang; Fan, Xiaokang

    2014-11-07

    In this paper, 80GeO{sub 2}-8Ga{sub 2}O{sub 3}-10BaO-2Nb{sub 2}O{sub 5}-6PbO (in mol%) glass samples with different Tm{sub 2}O{sub 3} concentrations (0, 0.5, 0.75, 1, 1.25, and 1.5 mol. %) were prepared by traditional melt-quenching method. According to the measurement of thermal properties of the host glass, the glass transition temperature is 596.7 °C and no crystallization peak is observed. Judd–Ofelt parameters Ω{sub t} (t = 2, 4, 6) and fluorescent lifetimes were obtained by Judd-Ofelt theory. The similar values of Judd–Ofelt parameters and the full-width at half-maximums of ∼1800 nm indicate the local environment of Tm{sup 3+} changes little with increment of Tm{sub 2}O{sub 3} concentrations.more » Maximum stimulated emission cross-section of ∼1800 nm is 6.22 × 10{sup −21} cm{sup 2} as calculated by Fuchtbauer–Ladenburg formula. Energy migration among Tm{sup 3+} ions was analyzed by the extended overlap integral method. The non-radiative transition rates between mainly energy levels of Tm{sup 3+} were calculated. Non-radiative transition rate of {sup 3}F{sub 4} energy level caused by OH was analyzed by rate equation and deduced by fitting the fluorescence decay curve.« less

  7. Internal quantum efficiency and carrier dynamics in semipolar (2021) InGaN/GaN light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okur, Serdal; Nami, Mohsen; Rishinaramangalam, Ashwin K.

    Here, the internal quantum efficiencies (IQE) and carrier lifetimes of semipolar (more » $$20\\bar{2}$$$\\bar{1}$$) InGaN/GaN LEDs with different active regions are measured using temperature-dependent, carrier-density-dependent, and time-resolved photoluminescence. Three active regions are investigated: one 12-nm-thick single quantum well (SQW), two 6-nm-thick QWs, and three 4-nm-thick QWs. The IQE is highest for the 12-nm-thick SQW and decreases as the well width decreases. The radiative lifetimes are similar for all structures, while the nonradiative lifetimes decrease as the well width decreases. The superior IQE and longer nonradiative lifetime of the SQW structure suggests using thick SQW active regions for high brightness semipolar ($$20\\bar{2}$$$\\bar{1}$$) LEDs.« less

  8. Internal quantum efficiency and carrier dynamics in semipolar (2021) InGaN/GaN light-emitting diodes

    DOE PAGES

    Okur, Serdal; Nami, Mohsen; Rishinaramangalam, Ashwin K.; ...

    2017-01-26

    Here, the internal quantum efficiencies (IQE) and carrier lifetimes of semipolar (more » $$20\\bar{2}$$$\\bar{1}$$) InGaN/GaN LEDs with different active regions are measured using temperature-dependent, carrier-density-dependent, and time-resolved photoluminescence. Three active regions are investigated: one 12-nm-thick single quantum well (SQW), two 6-nm-thick QWs, and three 4-nm-thick QWs. The IQE is highest for the 12-nm-thick SQW and decreases as the well width decreases. The radiative lifetimes are similar for all structures, while the nonradiative lifetimes decrease as the well width decreases. The superior IQE and longer nonradiative lifetime of the SQW structure suggests using thick SQW active regions for high brightness semipolar ($$20\\bar{2}$$$\\bar{1}$$) LEDs.« less

  9. Enhanced light emission near 2.7 μm from Er-Nd co-doped germanate glass

    NASA Astrophysics Data System (ADS)

    Bai, Gongxun; Tao, Lili; Li, Kefeng; Hu, Lili; Tsang, Yuen Hong

    2013-04-01

    Laser glass gain medium that can convert low cost 808 nm diode laser into 2.7 μm has attracted considerable interest due to its potential application for medical surgery fiber laser system. In this study, enhanced 2.7 μm emission has been achieved in Er3+:germanate glass by co-doping with Nd3+ ions under the excitation of an 808 nm diode laser. In the co-doped sample, the experimental results show that the harmful visible emissions via up-conversion were effectively restricted. The reduction of 1.5 μm emission was also detected in the co-doped sample, which indicates significant de-excitation of 4I13/2 Er3+ ion through energy transfer and non-radiative decay in Nd3+ ions. In conclusion, the 2.7 μm emission enhancement achieved was due to the increased optical absorption of 808 nm, efficient energy transfer (ET) with efficiency of 81.73% between Er3+ and Nd3+ ions, and shortening the lifetime of the lower lasing level 4I13/2 Er3+ in the co-doped sample. Therefore, Er3+/Nd3+ co-doped germanate glass could be used to fabricate fiber optical gain media for 2.7 μm laser generation.

  10. Fluorescence properties of Schiff base - N,N‧-bis(salicylidene) - 1,2-Phenylenediamine in presence of bile acid host

    NASA Astrophysics Data System (ADS)

    Roy, Nayan; Paul, Pradip C.; Singh, T. Sanjoy

    2015-05-01

    Fluorescence properties of Schiff base - N,N‧-bis(salicylidene) - 1,2-phenylenediamine (LH2) is used to study the micelles formed by aggregation of different important bile acids like cholic acid, deoxycholic acid, chenodeoxycholic acid and glycocholic acid by steady state and picosecond time-resolved fluorescence spectroscopy. The fluorescence band intensity was found out to increase with concomitant red shift with gradual addition of different bile acids. Binding constant of the probe with different bile acids as well as critical micelle concentration was obtained from the variation of fluorescence intensity on increasing concentration of bile acids in the medium. The increase in fluorescence quantum yields, fluorescence decay times and substantial decrease in nonradiative decay rate constants in bile acids micellar environment points to the restricted motion of the fluorophore inside the micellar subdomains.

  11. Some photophysical properties of new oligomer obtained from anodic oxidation of 4,4‧-dimethoxychalcone

    NASA Astrophysics Data System (ADS)

    Ghomrasni, S.; Aribi, I.; Chemek, M.; Said, A. Haj; Alimi, K.

    2018-04-01

    Some photopysical properties of a new oligomer obtained from the anodic oxidation of the 4,4‧-dimethoxy-chalcone were investigated using different and complementary techniques. Firstly, TGA analysis and X-Ray diffraction experiments showed that the oligomer is thermally stable up to 500 K and partially organized at the solid state, respectively. Secondly, the optical properties of the oligomer were studied in solution and in the solid state. The optical band gap was estimated to be 3.17 eV in solution state and 2.70 eV in film state. What's more, the fluorescence decay is determined showing a considerably faster in the film state (0.183 ns) than in solution state (1.606 ns), due to the rapid non-radiative decay at inter-chain trap sites.

  12. Carrier lifetimes in polar InGaN-based LEDs

    NASA Astrophysics Data System (ADS)

    Wang, Lai; Jin, Jie; Hao, Zhibiao; Luo, Yi

    2018-02-01

    Measurement of carrier lifetime is very important to understand the physics in light-emitting diodes (LEDs), as it builds a link between carrier concentration and excitation power or current density. In this paper, we present our study on optical and electrical characterizations on carrier lifetimes in polar InGaN-based LEDs. First, a carrier rate equation model is proposed to explain the non-exponential nature of time-resolved photoluminescence (TRPL) decay curves, wherein exciton recombination is replaced by bimolecular recombination, considering the influence of polarization field on electron-hole pairs. Then, nonradiative recombination and radiative recombination coefficients can be deduced from fitting and used to calculate the radiative recombination efficiency. By comparing with the temperature-dependent photoluminescence (TDPL) and power-dependent photoluminescence (PDPL), it is found these three methods provide the consistent results. Second, differential carrier lifetimes depending on injection current are measured in commercial near-ultraviolet (NUV), blue and green LEDs. It is found that carrier lifetime is longer in green one and shorter in NUV one, which is attributed to the influence of polarization-induced quantum confined Stark effect (QCSE). This result implies the carrier density is higher in green LED while lower NUV LED, even the injection current is the same. By ignoring Auger recombination and fitting the efficiency-current and carrier lifetime-current curves simultaneously, the dependence of injection efficiency on carrier concentration in different LED samples are plotted. The NUV LED, which has the shallowest InGaN quantum well, actually exhibits the most serious efficiency droop versus carrier concentration. Then, the approaches to overcome the efficiency droop are discussed.

  13. Temperature Sensing Above 1000 C Using Cr-Doped GdAlO3 Spin-Allowed Broadband Luminescence

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Chambers, Matthew D.

    2012-01-01

    Cr-doped GdAlO3 (Cr:GdAlO3) is shown to produce remarkably high-intensity spin-allowed broadband luminescence with sufficiently long decay times to make effective luminescence-decay-time based temperature measurements above 1000 C. This phosphor is therefore an attractive alternative to the much lower luminescence intensity rare-earth-doped thermographic phosphors that are typically utilized at these elevated temperatures. In particular, Cr:GdAlO3 will be preferred over rare-earth-doped phosphors, such as Dy:YAG, at temperatures up to 1200 C for intensity-starved situations when the much lower emission intensity from rare-earth-doped phosphors is insufficient for accurate temperature measurements in the presence of significant radiation background. While transition-metal-doped phosphors such as Cr:Al2O3 (ruby) are known to exhibit high luminescence intensity at low dopant concentrations, quenching due to nonradiative decay pathways competing with the (sup 2)E to (sup 4)A(sub 2) radiative transition (R line) has typically restricted their use for temperature sensing to below 600 C. Thermal quenching of the broadband (sup 4)T(sub 2) to (sup 4)A(sub 2) radiative transition from Cr:GdAlO3, however, is delayed until much higher temperatures (above 1000 C). This spin-allowed broadband emission persists to high temperatures because the lower-lying (sup 2)E energy level acts as a reservoir to thermally populate the higher shorter-lived (sup 4)T(sub 2) energy level and because the activation energy for nonradiative crossover relaxation from the (sup 4)T(sub 2) level to the (sup 4)A(sub 2) ground state is high. The strong crystal field associated with the tight bonding of the AlO6 octahedra in the GdAlO3 perovskite structure is responsible for this behavior.

  14. Mobility and fluorescence of barium ions in xenon gas for the exo experiment

    NASA Astrophysics Data System (ADS)

    Benitez Medina, Julio Cesar

    The Enriched Xenon Observatory (EXO) is an experiment which aims to observe the neutrinoless double beta decay of 136Xe. The measurement of this decay would give information about the absolute neutrino mass and whether or not the neutrino is its own antiparticle. Since this is a very rare decay, the ability to reject background events by detecting the barium ion daughter from the double beta decay would be a major advantage. EXO is currently operating a detector with 200 kg of enriched liquid xenon, and there are plans to build a ton scale xenon detector. Measurements of the purity of liquid xenon in our liquid xenon test cell are reported. These results are relevant to the research on detection of single barium ions by our research group at Colorado State University. Details of the operation of the purity monitor are described. The effects of using a purifier, recirculation and laser ablation on the purity of liquid xenon are discussed. Mobility measurements of barium in xenon gas are reported for the first time. The variation of mobility with xenon gas pressure suggests that a significant fraction of molecular ions are formed when barium ions interact with xenon gas at high pressures. The measured mobility of Ba+ in Xe gas at different pressures is compared with the predicted theoretical value, and deviations are explained by a model that describes the fraction of molecular ions in Xe gas as a function of pressure. The results are useful for the analysis of experiments of fluorescence of Ba+ in xenon gas. It is also important to know the mobility of the ions in order to calculate the time they interact with an excitation laser in fluorescence experiments and in proposed 136 Ba+ daughter detection schemes. This thesis presents results of detection of laser induced fluorescence of Ba+ ions in Xe gas. Measurements of the pressure broadening of the excitation spectra of Ba+ in xenon gas are presented. Nonradiative decays due to gas collisions and optical pumping affect the number of fluorescence counts detected. A model that treats the barium ion as a three level system is used to predict the total number of fluorescence counts and correct for optical pumping. A pressure broadening coefficient for Ba+ in xenon gas is extracted and limits for p-d and d-s nonradiative decay rates are extracted. Although fluorescence is reduced significantly at 5-10 atm xenon pressure, the measurements in this thesis indicate that it is still feasible to detect 136Ba+ ions directly in high pressure xenon gas, e.g. in a double beta decay detector.

  15. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patty, Kira; Campbell, Quinn; Hamilton, Nathan

    We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggestsmore » the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide.« less

  16. Femtosecond Measurements Of Size-Dependent Spin Crossover In FeII(pyz)Pt(CN)4 Nanocrystals

    DOE PAGES

    Sagar, D. M.; Baddour, Frederick G.; Konold, Patrick; ...

    2016-01-07

    We report a femtosecond time-resolved spectroscopic study of size-dependent dynamics in nanocrystals (NCs) of Fe(pyz)Pt(CN) 4. We observe that smaller NCs (123 or 78 nm cross section and < 25 nm thickness) exhibit signatures of spin crossover (SCO) with time constants of ~ 5-10 ps whereas larger NCs with 375 nm cross section and 43 nm thickness exhibit a weaker SCO signature accompanied by strong spectral shifting on a ~20 ps time scale. For the small NCs, the fast dynamics appear to result from thermal promotion of residual low-spin states to high-spin states following nonradiative decay, and the size dependencemore » is postulated to arise from differing high-spin vs low-spin fractions in domains residing in strained surface regions. The SCO is less efficient in larger NCs owing to their larger size and hence lower residual LS/HS fractions. Our results suggest that size-dependent dynamics can be controlled by tuning surface energy in NCs with dimensions below ~25 nm for use in energy harvesting, spin switching, and other applications.« less

  17. Observation of radiative surface plasmons in metal-oxide-metal tunnel junctions

    NASA Technical Reports Server (NTRS)

    Donohue, J. F.; Yang, E. Y.

    1986-01-01

    A peak in the UV region of the spectrum of light emitted from metal-oxide-metal (MOM) tunnel junctions has been observed at room temperature. Both the amplitude and wavelength of the peak are sensitive to applied junction bias. The UV peak corresponds to the normal or radiative surface plasmon mode while a visible peak, also present in the present spectra and reported in past MOM literature, is due to the tangential or nonradiative mode. The radiative mode requires no surface roughness or gratings for photon coupling. The results show that it is possible to obtain radiative surface plasmon production followed by a direct decay into photons with MOM tunnel diodes. A MOM diode with a double anode structure is found to emit light associated only with the nonradiative mode. The thickness dependence of the UV peak, along with the experimental results of the double anode MOM diode and the ratio of the UV peak to visible peak, support the contention that the UV light emission is indeed due to the radiative surface plasmon.

  18. Spectroscopic and energy transfer studies of Er3+ ions in B2O3-TeO2-MgO-ZnO glasses

    NASA Astrophysics Data System (ADS)

    Vijayakumar, M.; Arunkumar, S.; Maheshvaran, K.; Marimuthu, K.

    2016-05-01

    Composition dependent spectroscopic behavior of Er3+ doped telluroborate glasses were prepared and the energy transfer mechanism in Er3+ ions were investigated for 1.532 µm amplification. The emission cross-section and gain coefficient for 4I13/2→4I15/2 level of Er3+ ions have been analysed through the Judd-Ofelt and McCumber theory. The excited state decay curves were measured and the effect of TeO2 on the lifetime for 4I13/2→4I15/2 level of Er3+ ions has been associated with the various energy transfer mechanism. Further the interaction between Er3+ and OH- were investigated and it was confirmed that the OH free radicals in the prepared glasses are dominant quenching center through the non-radiative relaxation that causes the quenching of 1.532 µm amplification. The non-radiative rate through the OH content were calculated and compared with the reported Er3+ doped glasses.

  19. Analytical design of an advanced radial turbine. [automobile engines

    NASA Technical Reports Server (NTRS)

    Large, G. D.; Finger, D. G.; Linder, C. G.

    1981-01-01

    The aerodynamic and mechanical potential of a single stage ceramic radial inflow turbine was evaluated for a high temperature single stage automotive engine. The aerodynamic analysis utilizes a turbine system optimization technique to evaluate both radial and nonradial rotor blading. Selected turbine rotor configurations were evaluated mechanically with three dimensional finite element techniques. Results indicate that exceptionally high rotor tip speeds (2300 ft/sec) and performance potential are feasible with radial bladed rotors if the projected ceramic material properties are realized. Nonradial rotors reduced tip speed requirements (at constant turbine efficiency) but resulted in a lower cumulative probability of success due to higher blade and disk stresses.

  20. A displaced and low-frequency vibration of phosphorescent state of trans-[Rh(ethylenediamine)2Cl2]PF6 in a range of 5-497 K

    NASA Astrophysics Data System (ADS)

    Islam, Ashraful; Ikeda, Noriaki; Nozaki, Koichi; Ohno, Takeshi

    1998-09-01

    The lowest 3(dπ-dσ*) excited states of both cis- and trans-isomers of [Rh(en)2Cl2]X (en=ethylenediamine; X=PF6-, NO3-) and the deuteriated crystal of trans-[Rh(en-d4)2Cl2]PF6 have been investigated in the solid state and in a wide temperature range of 5-497 K by means of emission spectra, lifetime and quantum yield measurements. Emission spectral simulation of trans-[Rh(en)2Cl2]PF6 shows that the emission from the lowest 3(dπ-dσ*) excited state exhibits a progression of a low-frequency metal-chloride stretching vibration (250 cm-1) with a large Huang-Rhys factor (S) of 21 and a progression of a high-frequency N-H stretching vibration (3000 cm-1). The increasing full-width at half maximum (2200 cm-1→4400 cm-1) with increasing temperature (77 K→468 K) is ascribed to hot bands from the excited levels of low-frequency vibration. The luminescence quantum yields of the crystal samples are determined to 0.0008 at 298 K and 0.003 at 80 K for trans-[Rh(en)2Cl2]PF6 and 0.18 at 298 K and 0.40 at 80 K for trans-[Rh(en-d4)2Cl2]PF6. From a combination of lifetime and emission quantum yield measurements, values for kr and knr have been obtained. The observed temperature dependence of nonradiative decay rates of trans-[Rh(en-d4)2Cl2]PF6 in a low-temperature region (<300 K) is possible to reconstitute by using the emission spectral fitting parameters and assuming nuclear tunneling mechanism. The temperature effect and deuteriation effect on the nonradiative rate definitively establishes that the dominant "accepting" modes in the nonradiative transition are a highly displaced (S=21) vibrational mode of low-frequency Cl-Rh-Cl stretching and a weakly displaced (S=0.1) vibrational mode of high-frequency N-D stretching. The nonradiative transition in a high-temperature region occurs via barrier passing along a displaced coordinate of Cl-Rh-Cl vibration with a pre-exponential factor of 1011s-1 and is relatively insensitive to the high-frequency vibrational mode. The crystal of cis-[Rh(en)2Cl2]NO3 shows a red shift of the emission peak energy and an increase in the full-width at half maximum with increasing temperature. The results of temperature-dependent decay and spectra of emission can be interpreted in terms of two 3(dπ-dσ*) emitting states model.

  1. Structural origin and laser performance of thulium-doped germanate glasses.

    PubMed

    Xu, Rongrong; Xu, Lin; Hu, Lili; Zhang, Junjie

    2011-12-15

    The structural origin and laser performance of thulium-doped germanate glasses have been studied. The investigation includes two main sections. The first part discusses the Raman spectroscopic and thermal stability of the host glass structure. The low value of the largest phonon energy (850 cm(-1)) reduces the probability of nonradiative relaxation. The large emission cross section of the Tm(3+) : (3)F(4) level (8.69 × 10(-21) cm(2)), the high quantum efficiency of the (3)F(4) level (71%), and the low nonradiative relaxation rate of the (3)F(4) → (3)H(6) transition (0.09 ms(-1)) illustrate good optical properties of the germanate glass. In the second part, the room-temperature laser action from the thulium-doped germanate glass is demonstrated when pumped by a 790 nm laser diode. The maximum output power of 346 mW and slope efficiency of 25.6% are achieved.

  2. Near infrared radio-luminescence of O{sub 2} loaded radiation hardened silica optical fibers: A candidate dosimeter for harsh environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Francesca, D., E-mail: diego.di.francesca@univ-st-etienne.fr; Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, I-90123 Palermo; Girard, S.

    2014-11-03

    We report on an experimental investigation of the infrared Radio-Luminescence (iRL) emission of interstitial O{sub 2} molecules loaded in radiation hardened pure-silica-core and fluorine-doped silica-based optical fibers (OFs). The O{sub 2} loading treatment successfully dissolved high concentrations of oxygen molecules into the silica matrix. A sharp luminescence at 1272 nm was detected when 2.5 cm of the treated OFs were irradiated with 10 keV X-rays. This emission originates from the radiative decay of the first excited singlet state of the embedded O{sub 2} molecules. The dose, dose-rate, and temperature dependencies of the infrared emission are studied through in situ optical measurements. The resultsmore » show that the iRL is quite stable in doses of up to 1 MGy(SiO{sub 2}) and is linearly dependent on the dose-rate up to the maximum investigated dose-rate of ∼200 kGy(SiO{sub 2})/h. The temperature dependency of the iRL shows a decrease in efficiency above 200 °C, which is attributed to the non-radiative decay of the excited O{sub 2} molecules. The results obtained and the long-term stability of the O{sub 2}-loading treatment (no out-gassing effect) strongly suggest the applicability of these components to real-time remote dosimetry in environments characterized by high radiation doses and dose-rates.« less

  3. Spectrally-resolved internal quantum efficiency and carrier dynamics of semipolar [Formula: see text] core-shell triangular nanostripe GaN/InGaN LEDs.

    PubMed

    Okur, Serdal; Rishinaramangalam, Ashwin K; Mishkat-Ul-Masabih, Saadat; Nami, Mohsen; Liu, Sheng; Brener, Igal; Brueck, Steven R J; Feezell, Daniel F

    2018-06-08

    We investigate the spectrally resolved internal quantum efficiency (IQE) and carrier dynamics in semipolar [Formula: see text] core-shell triangular nanostripe light-emitting diodes (TLEDs) using temperature-dependent photoluminescence (TDPL) and time-resolved photoluminescence (TRPL) at various excitation energy densities. Using electroluminescence, photoluminescence, and cathodoluminescence measurements, we verify the origins of the broad emission spectra from the nanostructures and confirm that localized regions of high-indium-content InGaN exist along the apex of the nanostructures. Spectrally resolved IQE measurements are then performed, with the spectra integrated from 400-450 nm and 450-500 nm to obtain the IQE of the QWs mainly near the sidewalls and apex of the TLEDs, respectively. TDPL and TRPL are used to decouple the radiative and non-radiative carrier lifetimes for different regions of the emission spectra. We observe that the IQE is higher for the spectral region between 450 nm and 500 nm compared to the IQE between 400 and 450 nm. This result is in contrast to the typical observation that the IQE of planar GaN-based LEDs is lower for longer wavelengths (i.e., higher indium contents). We also observe a longer non-radiative recombination lifetime for the longer wavelength portion of the spectrum. Several explanations are proposed for the improved IQE and longer non-radiative lifetime observed near the apex of the nanostructures. The results show that nanostructures may be leveraged to design more efficient green LEDs, potentially addressing a long-standing challenge in GaN-based materials.

  4. Spectrally-resolved internal quantum efficiency and carrier dynamics of semipolar (10\\bar{1}1) core-shell triangular nanostripe GaN/InGaN LEDs

    NASA Astrophysics Data System (ADS)

    Okur, Serdal; Rishinaramangalam, Ashwin K.; Mishkat-Ul-Masabih, Saadat; Nami, Mohsen; Liu, Sheng; Brener, Igal; Brueck, Steven R. J.; Feezell, Daniel F.

    2018-06-01

    We investigate the spectrally resolved internal quantum efficiency (IQE) and carrier dynamics in semipolar (10\\bar{1}1) core–shell triangular nanostripe light-emitting diodes (TLEDs) using temperature-dependent photoluminescence (TDPL) and time-resolved photoluminescence (TRPL) at various excitation energy densities. Using electroluminescence, photoluminescence, and cathodoluminescence measurements, we verify the origins of the broad emission spectra from the nanostructures and confirm that localized regions of high-indium-content InGaN exist along the apex of the nanostructures. Spectrally resolved IQE measurements are then performed, with the spectra integrated from 400–450 nm and 450–500 nm to obtain the IQE of the QWs mainly near the sidewalls and apex of the TLEDs, respectively. TDPL and TRPL are used to decouple the radiative and non-radiative carrier lifetimes for different regions of the emission spectra. We observe that the IQE is higher for the spectral region between 450 nm and 500 nm compared to the IQE between 400 and 450 nm. This result is in contrast to the typical observation that the IQE of planar GaN-based LEDs is lower for longer wavelengths (i.e., higher indium contents). We also observe a longer non-radiative recombination lifetime for the longer wavelength portion of the spectrum. Several explanations are proposed for the improved IQE and longer non-radiative lifetime observed near the apex of the nanostructures. The results show that nanostructures may be leveraged to design more efficient green LEDs, potentially addressing a long-standing challenge in GaN-based materials.

  5. Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages.

    PubMed

    Baran, D; Kirchartz, T; Wheeler, S; Dimitrov, S; Abdelsamie, M; Gorman, J; Ashraf, R S; Holliday, S; Wadsworth, A; Gasparini, N; Kaienburg, P; Yan, H; Amassian, A; Brabec, C J; Durrant, J R; McCulloch, I

    2016-12-01

    Optimization of the energy levels at the donor-acceptor interface of organic solar cells has driven their efficiencies to above 10%. However, further improvements towards efficiencies comparable with inorganic solar cells remain challenging because of high recombination losses, which empirically limit the open-circuit voltage ( V oc ) to typically less than 1 V. Here we show that this empirical limit can be overcome using non-fullerene acceptors blended with the low band gap polymer PffBT4T-2DT leading to efficiencies approaching 10% (9.95%). We achieve V oc up to 1.12 V, which corresponds to a loss of only E g / q - V oc = 0.5 ± 0.01 V between the optical bandgap E g of the polymer and V oc . This high V oc is shown to be associated with the achievement of remarkably low non-geminate and non-radiative recombination losses in these devices. Suppression of non-radiative recombination implies high external electroluminescence quantum efficiencies which are orders of magnitude higher than those of equivalent devices employing fullerene acceptors. Using the balance between reduced recombination losses and good photocurrent generation efficiencies achieved experimentally as a baseline for simulations of the efficiency potential of organic solar cells, we estimate that efficiencies of up to 20% are achievable if band gaps and fill factors are further optimized.

  6. Modulation of porphyrin photoluminescence by nanoscale spacers on silicon substrates

    NASA Astrophysics Data System (ADS)

    Fang, Y. C.; Zhang, Y.; Gao, H. Y.; Chen, L. G.; Gao, B.; He, W. Z.; Meng, Q. S.; Zhang, C.; Dong, Z. C.

    2013-11-01

    We investigate photoluminescence (PL) properties of quasi-monolayered tetraphenyl porphyrin (TPP) molecules on silicon substrates modulated by three different nanoscale spacers: native oxide layer (NOL), hydrogen (H)-passivated layer, and Ag nanoparticle (AgNP) thin film, respectively. In comparison with the PL intensity from the TPP molecules on the NOL-covered silicon, the fluorescence intensity from the molecules on the AgNP-covered surface was greatly enhanced while that for the H-passivated surface was found dramatically suppressed. Time-resolved fluorescence spectra indicated shortened lifetimes for TPP molecules in both cases, but the decay kinetics is believed to be different. The suppressed emission for the H-passivated sample was attributed to the weaker decoupling effect of the monolayer of hydrogen atoms as compared to the NOL, leading to increased nonradiative decay rate; whereas the enhanced fluorescence with shortened lifetime for the AgNP-covered sample is attributed not only to the resonant excitation by local surface plasmons, but also to the increased radiative decay rate originating from the emission enhancement in plasmonic "hot-spots".

  7. Study of recombination characteristics in MOCVD grown GaN epi-layers on Si

    NASA Astrophysics Data System (ADS)

    Gaubas, E.; Ceponis, T.; Dobrovolskas, D.; Malinauskas, T.; Meskauskaite, D.; Miasojedovas, S.; Mickevicius, J.; Pavlov, J.; Rumbauskas, V.; Simoen, E.; Zhao, M.

    2017-12-01

    The radiative and non-radiative recombination carrier decay lifetimes in GaN epi-layers grown by metal-organic chemical vapour deposition technology on Si substrates were measured by contactless techniques of time-resolved photoluminescence and microwave-probed transients of photoconductivity. The lifetime variations were obtained to be dependent on growth regimes. These variations have been related to varied densities of edge dislocations associated with growth temperature. It has been also revealed that the lateral carrier lifetime and photoluminescence intensity distribution is determined by the formation of dislocation clusters dependent on the growth conditions. For low excitation level, the asymptotic component within the excess carrier decay transients is attributed to carrier trapping and anomalous diffusion through random-walk processes within dislocation cluster regions and barriers at dislocation cores. The two-componential decay process at high excitation conditions, where excess carriers may suppress barriers, proceeds through a nonlinear recombination, where band-to-band transitions determine the nonlinearity of the process, while the asymptotic component is ascribed to the impact of D-A pair PL within the long-wavelength wing of the UV-PL band.

  8. Triplet-Triplet Annihilation Photon Upconversion in Polymer Thin Film: Sensitizer Design.

    PubMed

    Jiang, Xinpeng; Guo, Xinyan; Peng, Jiang; Zhao, Dahui; Ma, Yuguo

    2016-05-11

    Efficient visible-to-UV photon upconversion via triplet-triplet annihilation (TTA) is accomplished in polyurethane (PU) films by developing new, powerful photosensitizers fully functional in the solid-state matrix. These rationally designed triplet sensitizers feature a bichromophoric scaffold comprising a tris-cyclometalated iridium(III) complex covalently tethered to a suitable organic small molecule. The very rapid intramolecular triplet energy transfer from the former to the latter is pivotal for achieving the potent sensitizing ability, because this process out-competes the radiative and nonradiative decays inherent to the metal complex and produces long-lived triplet excitons localized with the acceptor moiety readily available for intermolecular transfer and TTA. Nonetheless, compared to the solution state, the molecular diffusion is greatly limited in solid matrices, which even creates difficulty for the Dexter-type intramolecular energy transfer. This is proven by the experimental results showing that the sensitizing performance of the bichromophoric molecules strongly depends on the spatial distance separating the donor (D) and acceptor (A) units and that incorporating a longer linker between the D and A evidently curbs the TTA upconversion efficiency in PU films. Using a rationally optimized sensitizer structure in combination with 2,7-di-tert-butylpyrene as the annihilator/emitter, the doped polyurethane (PU) films demonstrate effective visible-to-UV upconverted emission signal under noncoherent-light irradiation, attaining an upconversion quantum yield of 2.6%. Such quantum efficiency is the highest value so far reported for the visible-to-UV TTA systems in solid matrices.

  9. Photoluminescence Spectra From The Direct Energy Gap of a-SiQDs

    NASA Astrophysics Data System (ADS)

    Abdul-Ameer, Nidhal M.; Abdulrida, Moafak C.; Abdul-Hakeem, Shatha M.

    2018-05-01

    A theoretical model for radiative recombination in amorphous silicon quantum dots (a-SiQDs) was developed. In this model, for the first time, the coexistence of both spatial and quantum confinements were considered. Also, it is found that the photoluminescence exhibits significant size dependence in the range (1-4) nm of the quantum dots. a-SiQDs show visible light emission peak energies and high radiative quantum efficiency at room temperature,in contrast to bulk a-Si structures. The quantum efficiency is sensitive to any change in defect density (the volume nonradiative centers density and/or the surface nonradiative centers density) but, with small dots sizes, the quantum efficiency is insensitive to such defects. Our analysis shows that the photoluminescence intensity increases or decreases by the effect of radiative quantum efficiency. By controlling the size of a-SiQDs, we note that the energy of emission can be tuned. The blue shift is attributed to quantum confinement effect. Meanwhile, the spatial confinement effect is clearly observed in red shift in emission spectra. we found a good agreement with the experimental published data. Therefore, we assert that a-SiQDs material is a promising candidate for visible, tunable, and high performance devices of light emitting.

  10. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell

    NASA Astrophysics Data System (ADS)

    Rana, Aniket; Gupta, Neeraj; Lochan, Abhiram; Sharma, G. D.; Chand, Suresh; Kumar, Mahesh; Singh, Rajiv K.

    2016-08-01

    The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET) mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.

  11. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Aniket; Lochan, Abhiram; Chand, Suresh

    The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET)more » mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.« less

  12. Acetone photophysics at 282 nm excitation at elevated pressure and temperature. II: Fluorescence modeling

    NASA Astrophysics Data System (ADS)

    Hartwig, Jason; Raju, Mandhapati; Sung, Chih-Jen

    2017-07-01

    This is the second in a series of two papers that presents an updated fluorescence model and compares with the new experimental data reported in the first paper, as well as the available literature data, to extend the range of acetone photophysics to elevated pressure and temperature conditions. This work elucidates the complete acetone photophysical model in terms of each and every competing radiative and non-radiative rate. The acetone fluorescence model is then thoroughly examined and optimized based on disparity with recently conducted elevated pressure and temperature photophysical calibration experiments. The current work offers insight into the competition between non-radiative and vibrational energy decay rates at elevated temperature and pressure and proposes a global optimization of model parameters from the photophysical model developed by Thurber (Acetone Laser-Induced Fluorescence for Temperature and Multiparameter Imaging in Gaseous Flows. PhD thesis, Stanford University Mechanical Engineering Department, 1999). The collisional constants of proportionality, which govern vibrational relaxation, are shown to be temperature dependent at elevated pressures. A new oxygen quenching rate is proposed which takes into account collisions with oxygen as well as the oxygen-assisted intersystem crossing component. Additionally, global trends in ketone photophysics are presented and discussed.

  13. Spectroscopic and energy transfer studies of Er{sup 3+} ions in B{sub 2}O{sub 3}–TeO{sub 2}–MgO–ZnO glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayakumar, M.; Arunkumar, S.; Marimuthu, K., E-mail: mari-ram2000@yahoo.com

    2016-05-23

    Composition dependent spectroscopic behavior of Er{sup 3+} doped telluroborate glasses were prepared and the energy transfer mechanism in Er{sup 3+} ions were investigated for 1.532 µm amplification. The emission cross-section and gain coefficient for {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} level of Er{sup 3+} ions have been analysed through the Judd-Ofelt and McCumber theory. The excited state decay curves were measured and the effect of TeO{sub 2} on the lifetime for {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} level of Er{sup 3+} ions has been associated with the various energy transfer mechanism. Further the interaction between Er{sup 3+} and OH{sup −} were investigatedmore » and it was confirmed that the OH free radicals in the prepared glasses are dominant quenching center through the non-radiative relaxation that causes the quenching of 1.532 µm amplification. The non-radiative rate through the OH content were calculated and compared with the reported Er{sup 3+} doped glasses.« less

  14. Direct local solvent probing by transient infrared spectroscopy reveals the mechanism of hydrogen-bond induced nonradiative deactivation† †Electronic supplementary information (ESI) available: Experimental details, basic photophysics of ADA, transient electronic absorption, additional steady-state and transient IR spectra. See DOI: 10.1039/c7sc00437k Click here for additional data file.

    PubMed Central

    Dereka, Bogdan

    2017-01-01

    The fluorescence quenching of organic dyes via H-bonding interactions is a well-known phenomenon. However, the mechanism of this Hydrogen-Bond Induced Nonradiative Deactivation (HBIND) is not understood. Insight into this process is obtained by probing in the infrared the O–H stretching vibration of the solvent after electronic excitation of a dye with H-bond accepting cyano groups. The fluorescence lifetime of this dye was previously found to decrease from 1.5 ns to 110 ps when going from an aprotic solvent to the strongly protic hexafluoroisopropanol (HFP). Prompt strengthening of the H-bond with the dye was identified by the presence of a broad positive O–H band of HFP, located at lower frequency than the O–H band of the pure solvent. Further strengthening occurs within a few picoseconds before the excited H-bonded complex decays to the ground state in 110 ps. The latter process is accompanied by the dissipation of energy from the dye to the solvent and the rise of a characteristic hot solvent band in the transient spectrum. Polarization-resolved measurements evidence a collinear alignment of the nitrile and hydroxyl groups in the H-bonded complex, which persists during the whole excited-state lifetime. Measurements in other fluorinated alcohols and in chloroform/HFP mixtures reveal that the HBIND efficiency depends not only on the strength of the H-bond interactions between the dye and the solvent but also on the ability of the solvent to form an extended H-bond network. The HBIND process can be viewed as an enhanced internal conversion of an excited complex consisting of the dye molecule connected to a large H-bond network. PMID:28970892

  15. The non-radiating component of the field generated by a finite monochromatic scalar source distribution

    NASA Astrophysics Data System (ADS)

    Hoenders, Bernhard J.; Ferwerda, Hedzer A.

    1998-09-01

    We separate the field generated by a spherically symmetric bounded scalar monochromatic source into a radiative and non-radiative part. The non-radiative part is obtained by projecting the total field on the space spanned by the non-radiating inhomogeneous modes, i.e. the modes which satisfy the inhomogeneous wave equation. Using residue techniques, introduced by Cauchy, we obtain an explicit analytical expression for the non-radiating component. We also identify the part of the source distribution which corresponds to this non-radiating part. The analysis is based on the scalar wave equation.

  16. Re-dispersion and film formation of GdVO4 :  Ln3+ (Ln3+ = Dy3+, Eu3+, Sm3+, Tm3+) nanoparticles: particle size and luminescence studies.

    PubMed

    Shanta Singh, N; Ningthoujam, R S; Phaomei, Ganngam; Singh, S Dorendrajit; Vinu, A; Vatsa, R K

    2012-04-21

    GdVO(4) : Ln(3+) (Ln(3+) = Dy(3+), Eu(3+), Sm(3+), Tm(3+)) nanoparticles are prepared by a simple chemical route at 140 °C. The crystallite size can be tuned by varying the pH of the reaction medium. Interestingly, the crystallite size is found to increase significantly when pH increases from 6 to 12. This is related to slower nucleation of the GdVO(4) formation with increase of VO(4)(3-) present in solution. The luminescence study shows an efficient energy transfer from vanadate absorption of GdVO(4) to Ln(3+) and thereby enhanced emissions are obtained. A possible reaction mechanism at different pH values is suggested in this study. As-prepared samples are well dispersed in ethanol, methanol and water, and can be incorporated into polymer films. Luminescence and its decay lifetime studies confirm the decrease in non-radiative transition probability with the increase of heat treatment temperature. Re-dispersed particles will be useful in potential applications of life science and the film will be useful in display devices.

  17. Relationships for electron-vibrational coupling in conjugated π organic systems

    NASA Astrophysics Data System (ADS)

    O'Neill, L.; Lynch, P.; McNamara, M.; Byrne, H. J.

    2005-06-01

    A series of π conjugated systems were studied by absorption, photoluminescence and vibrational spectroscopy. As is common for these systems, a linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length is observed. The relationships are in good agreement with the simple particle in a box method, one of the earliest descriptions of the properties of one-dimensional organic molecules. In addition to the electronic transition energies, it was observed that the Stokes shift also exhibited a well-defined relationship with increasing conjugation length, implying a correlation between the electron-vibrational coupling and chain length. This correlation is further examined using Raman spectroscopy, whereby the integrated Raman scattering is seen to behave superlinearly with chain length. There is a clear indication that the vibrational activity and thus nonradiative decay processes are controllable through molecular structure. The correlations between the Stokes energies and the vibrational structure are also observed in a selection of PPV based polymers and a clear trend of increasing luminescence efficiency with decreasing vibrational activity and Stokes shift is observable. The implications of such structure property relationships in terms of materials design are discussed.

  18. Bottom-up excited state dynamics of two cinnamate-based sunscreen filter molecules.

    PubMed

    Peperstraete, Yoann; Staniforth, Michael; Baker, Lewis A; Rodrigues, Natércia D N; Cole-Filipiak, Neil C; Quan, Wen-Dong; Stavros, Vasilios G

    2016-10-12

    Methyl-E-4-methoxycinnamate (E-MMC) is a model chromophore of the commonly used commercial sunscreen agent, 2-ethylhexyl-E-4-methoxycinnamate (E-EHMC). In an effort to garner a molecular-level understanding of the photoprotection mechanisms in operation with E-EHMC, we have used time-resolved pump-probe spectroscopy to explore E-MMC's and E-EHMC's excited state dynamics upon UV-B photoexcitation to the S 1 (1 1 ππ*) state in both the gas- and solution-phase. In the gas-phase, our studies suggest that the excited state dynamics are driven by non-radiative decay from the 1 1 ππ* to the S 3 (1 1 nπ*) state, followed by de-excitation from the 1 1 nπ* to the ground electronic state (S 0 ). Using both a non-polar-aprotic solvent, cyclohexane, and a polar-protic solvent, methanol, we investigated E-MMC and E-EHMC's photochemistry in a more realistic, 'closer-to-shelf' environment. A stark change to the excited state dynamics in the gas-phase is observed in the solution-phase suggesting that the dynamics are now driven by efficient E/Z isomerisation from the initially photoexcited 1 1 ππ* state to S 0 .

  19. Photoluminescence properties of polystyrene-hosted fluorophore thin films

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subha; Harris, Katherine; Huang, Mengbing

    2016-12-01

    We report on a photo-luminescence study of four different fluorophores: Coumarin 6, 2,5-Diphenyloxazole (PPO), 1,4-Bis(5-phenyl-2-oxazolyl)benzene (POPOP) and Para-terpehnyl (PTP), doped in a polystyrene-based thin film. All of the samples are prepared by spin coating from a non-polar polymer solution at various concentrations. Their emission spectra and transient properties are characterized by photoluminescence measurements. Red-shifts in the emission spectra are observed for all four types of fluorophores as their concentration increases. We explain this phenomenon based on concentration dependence of solvatochromic effects and the results show good agreement with existing literature. We also show that the singlet-singlet annihilation processes are possibly a prevalent mechanism in the high concentration regime that affects the steady state and transient emission characteristics of the fluors. With the exception of PTP, photoluminescence quenching occurs as the fluorophore concentration in the polymer is increased. Rate equations for excited state decay mechanisms are analysed by considering different radiative and non-radiative energy transfer mechanisms. The results show consistency with our experimental observations. PTP shows the best photoluminescence results as an efficient fluor in the thin film, whereas PPO shows the strongest concentration dependent quenching and an anomalous lifetime distribution.

  20. [Interaction between strychnine and bovine serum albumin].

    PubMed

    Zhao, Jin; Wang, Zhi; Wu, Qiu-hua; Yang, Xiu-min; Wang, Chun; Hu, Yan-xue

    2006-07-01

    To study the interaction between strychnine and bovine serum albumin. Fluorescence spectroscopy and ultraviolet spectroscopy were used. The static quenching and the non-radiation energy transfer are the two main reasons to leading the fluorescence quenching of BSA. The apparent combining constants (K(A)) between strychnine and BSA are 3.72 x 10(3) at 27 degrees C, 4.27 x 10(3) at 37 degrees C, 4.47 x 10(3) at 47 degrees C and the combining sites are 1.01 +/- 0.03. The combining distance (r = 3.795 nm) and energy transfer efficiency (E = 0.0338) are obtained by Förster's non-radiation energy transfer mechanism. The interaction between strychnine and BSA was driven mainly by hydrophobic force.

  1. Carrier-induced transient defect mechanism for non-radiative recombination in InGaN light-emitting devices

    DOE PAGES

    Bang, Junhyeok; Sun, Y. Y.; Song, Jung -Hoon; ...

    2016-04-14

    Non-radiative recombination (NRR) of excited carriers poses a serious challenge to optoelectronic device efficiency. Understanding the mechanism is thus crucial to defect physics and technological applications. Here, by using first-principles calculations, we propose a new NRR mechanism, where excited carriers recombine via a Frenkel-pair (FP) defect formation. While in the ground state the FP is high in energy and is unlikely to form, in the electronic excited states its formation is enabled by a strong electron-phonon coupling of the excited carriers. As a result, this NRR mechanism is expected to be general for wide-gap semiconductors, rather than being limited tomore » InGaN-based light emitting devices.« less

  2. Frequency-domain phase fluorometry in the presence of dark states: A numerical study

    NASA Astrophysics Data System (ADS)

    Zhu, Xinxin; Min, Wei

    2011-11-01

    Fluorescence anomalous phase advance (FAPA) is a newly discovered spectroscopy phenomenon: instead of lagging behind the modulated light, fluorescence signal can exhibit FAPA as if it precedes the excitation source in time. While FAPA offers a promising technique for probing dark state lifetime, the underlying mechanism is not fully elucidated. Herein we investigate frequency-domain phase fluorometry as a result of intricate interplay between a short-lived fluorescent state and a long-lived dark state. In particular, the quantitative dependence on modulation frequency, excitation intensity, nonradiative decay, intersystem crossing and dark-state lifetime are explored respectively. A comprehensive view of phase fluorometry emerges consequently.

  3. An Analytical Quantum Model to Calculate Fluorescence Enhancement of a Molecule in Vicinity of a Sub-10 nm Metal Nanoparticle.

    PubMed

    Bagheri, Zahra; Massudi, Reza

    2017-05-01

    An analytical quantum model is used to calculate electrical permittivity of a metal nanoparticle located in an adjacent molecule. Different parameters, such as radiative and non-radiative decay rates, quantum yield, electrical field enhancement factor, and fluorescence enhancement are calculated by such a model and they are compared with those obtained by using the classical Drude model. It is observed that using an analytical quantum model presents a higher enhancement factor, up to 30%, as compared to classical model for nanoparticles smaller than 10 nm. Furthermore, the results are in better agreement with those experimentally realized.

  4. Spin-Orbit Mediated Interference in the Radiative and Nonradiative Channels of the La 4d Core Resonances

    NASA Astrophysics Data System (ADS)

    Suljoti, E.; de Groot, F. M. F.; Nagasono, M.; Glatzel, P.; Hennies, F.; Deppe, M.; Pietzsch, A.; Sonntag, B.; Föhlisch, A.; Wurth, W.

    2009-09-01

    Symmetrical fluorescence yield profiles and asymmetrical electron yield profiles of the preresonances at the La NIV,V x-ray absorption edge are experimentally observed in LaPO4 nanoparticles. Theoretical studies show that they are caused by interference effects. The spin-orbit interaction and the giant resonance produce symmetry entangled intermediate states that activate coherent scattering and alter the spectral distribution of the oscillator strength. The scattering amplitudes of the electron and fluorescence decays are further modified by the spin-orbit coupling in the final 5p5ɛl and 5p54f1 states.

  5. Molecular specificity in photoacoustic microscopy by time-resolved transient absorption.

    PubMed

    Shelton, Ryan L; Mattison, Scott P; Applegate, Brian E

    2014-06-01

    We have recently harnessed transient absorption, a resonant two-photon process, for ultrahigh resolution photoacoustic microscopy, achieving nearly an order of magnitude improvement in axial resolution. The axial resolution is optically constrained due to the two-photon process unlike traditional photoacoustic microscopy where the axial resolution is inversely proportional to the frequency bandwidth of the detector. As a resonant process, the arrival time of the two photons need not be instantaneous. Systematically recording the signal as a function of the delay between two pulses will result in the measurement of an exponential decay whose time constant is related to the molecular dynamics. This time constant, analogous to the fluorescence lifetime, but encompassing nonradiative decay as well, can be used to differentiate between molecular systems with overlapping absorption spectra. This is frequently the situation for closely related yet distinct molecules such as redox pairs. In order to enable the measure of the exponential decay, we have reconfigured our transient absorption ultrasonic microscopy (TAUM) system to incorporate two laser sources with precisely controlled pulse trains. The system was tested by measuring Rhodamine 6G, an efficient laser dye where the molecular dynamics are dominated by the fluorescence pathway. As expected, the measured exponential time constant or ground state recovery time, 3.3±0.7  ns, was similar to the well-known fluorescence lifetime, 4.11±0.05  ns. Oxy- and deoxy-hemoglobin are the quintessential pair whose relative concentration is related to the local blood oxygen saturation. We have measured the ground state recovery times of these two species in fully oxygenated and deoxygenated bovine whole blood to be 3.7±0.8  ns and 7.9±1.0  ns, respectively. Hence, even very closely related pairs of molecules may be differentiated with this technique.

  6. Reddish-orange, neutral and warm white emissions in Eu3+, Dy3+ and Dy3+/Eu3+ doped CdO-GeO2-TeO2 glasses

    NASA Astrophysics Data System (ADS)

    Rodríguez-Carvajal, David A.; Meza-Rocha, A. N.; Caldiño, U.; Lozada-Morales, R.; Álvarez, E.; Zayas, Ma. E.

    2016-11-01

    Eu3+, Dy3+ and Dy3+/Eu3+ doped CdO-GeO2-TeO2 glasses were prepared using the melt-quenching process and analyzed by X-diffraction, Raman spectroscopy, excitation and emission spectra, and emission decay time profiles. The lack of X ray diffraction peaks revealed that all samples are amorphous. Vibrational modes associated with Tesbnd Osbnd Te and Gesbnd Osbnd Ge related bonds and molecular oxygen were detected by Raman spectroscopy. The luminescence characteristics were studied upon excitations that correspond with the emission of InGaN (370-420 nm) based LEDs. The Eu3+ singly doped glass displayed reddish-orange global emission, with x = 0.601 and y = 0.349 CIE1931 chromaticity coordinates, upon 393 nm excitation. Neutral emission with x = 0.373 and y = 0.412 CIE1931 chromaticity coordinates and correlated color temperature (CCT) of 4400 K, was achieved in the Dy3+ singly doped glass excited at 388 nm. The Dy3+/Eu3+ co-doped glass exhibited warm, neutral and soft warm white emissions with CCT values of 3435, 4153 and 2740 K, under excitations at 382, 388 and 393 nm, respectively, depending mainly on the Dy3+ and Eu3+ relative excitation. The Dy3+ excitation bands observed in the Dy3+/Eu3+ glass by monitoring the 611 nm Eu3+ emission, suggest that Dy3+ → Eu3+ energy transfer takes place, despite the fact that the Dy3+ emission decays in the Dy3+ and Dy3+/Eu3+ doped glass, remain without changes. The shortening of Eu3+ decay in presence of Dy3+ was attributed to an Eu3+ → Dy3+ non-radiative energy transfer process, which according with the Inokuti-Hirayama model might be dominated through an electric quadrupole-quadrupole interaction, with efficiency and probability of 5.5% and 51.6 s-1, respectively.

  7. Spectral and Temporal Properties of the Alpha and Beta Subunits and (alpha Beta) Monomer Isolated from Nostoc SP. Using Picosecond Laser Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Dagen, Aaron J.

    1985-12-01

    The fluorescence decay profiles, relative quantum yield and transmission of the (alpha), (beta) and ((alpha)(beta)) complexes from phycoerythrin isolated from the photosynthetic antenna system of Nostoc sp. and measured by single picosecond laser spectroscopic techniques is studied. The fluorescence decay profiles of all three complexes are found to be intensity independent for the intensity range investigated ((TURN)4 x 10('13) to (TURN)4 x 10('15) photons-cm('-2) per pulse). The apparent decrease in the relative quantum yield of all three complexes as intensity increases is offset by a corresponding increase in the relative transmission. This evidence, along with the intensity independent fluorescence kinetics, suggests that exciton annihilation is absent in these complexes. The decay profiles are fit to models assuming energy transfer amongst fluorescing chromophores. The intraprotein transfer rate is found to be 100 ps in the (alpha) subunit, 666 ps in the (beta) subunit. Constraining these rates to be identical in the monomer results in explaining the monomer kinetics by an increase in the nonradiative rate of the f(,(beta)) chromophore, an apparent result of aggregation effects.

  8. Spectral and temporal properties of the alpha and beta subunits and (alpha beta) monomer isolated from Nostoc sp. using picosecond laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Dagen, A. J.

    1985-12-01

    The fluorescence decay profiles, relative quantum yield and transmission of the alpha, beta and (alpha beta) complexes from phycoerythrin isolated from the photosynthetic antenna system of Nostoc sp. and measured by single picosecond laser spectroscopic techniques is studied. The fluorescence decay profiles of all three complexes are found to be intensity independent for the intensity range investigated (approx. 4x10 to the 13th power to 4x10 to the 15th power photons/sq cm per pulse). The apparent decrease in the relative quantum yield of all three complexes as intensity increases is offset by a corresponding increase in the relative transmission. This evidence, along with the intensity independent fluorescence kinetics, suggests that exciton annihilation is absent in these complexes. The decay profiles are fit to models assuming energy transfer amongst fluorescing chromophores. The intraprotein transfer rate is found to be 100 ps in the alpha subunit, 666 ps in the beta subunit. Constraining these rates to be identical in the monomer results in explaining the monomer kinetics by an increase in the nonradiative rate of the f beta chromophore, an apparent result of aggregation effects.

  9. Dependence on Excitation Density of Multiphonon Decay in Er-doped ZBLAN Glass

    NASA Astrophysics Data System (ADS)

    Bycenski, Kenneth; Collins, John

    2001-11-01

    The dependence of multiphonon decay of rare earth ions in solids on the intensity of the pump beam, first reported by Auzel et al., is examined for the 4S3/2 and 2H11/2 levels of Er-doped ZBLAN glass. Using a frequency-doubled, Q-switched Nd:YAG laser as a pump source, the kinetics of the 4S3/2 level was studied at different pump intensities and temperatures. Lifetime curves show a rise time, which represents the feeding of the 4S3/2 level by the 2H11/2, and a decay time that vary with the intensity of the pump beam, i.e. on the concentration of excited centers. The measured decay times of the 4S3/2 are consistent with those previously reported [2]. In this poster we report on the temperature dependence of this process, and we look at the dependence of the feeding of the 4S3/2 level as pump intensity changes. A rate equation model shows that the intensity dependence of the rise time on pump intensity is due, in part, to a slowing down of the nonradiative decay from the 2H11/2 level as the pump intensity is increased. We discuss these results in terms of the phonon bottleneck mechanism proposed in reference 1. 1. F. Auzel and F. Pelle, Phys. Rev. B 55, 17 (1106-09) 1997. 2. F Auzel, private communications.

  10. Perovskite Solar Cells with Near 100% Internal Quantum Efficiency Based on Large Single Crystalline Grains and Vertical Bulk Heterojunctions

    DOE PAGES

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; ...

    2015-07-09

    Grain boundaries (GBs) as defects in the crystal lattice detrimentally impact the power conversion efficiency (PCE) of polycrystalline solar cells, particularly in recently emerging hybrid perovskites where non-radiative recombination processes lead to significant carrier losses. Here, the beneficial effects of activated vertical GBs are demonstrated by first growing large, vertically-oriented methylammonium lead tri-iodide (CH 3NH 3PbI 3) single-crystalline grains. We show that infiltration of p-type doped 2 -7,7 -tetrakis(N,Ndi-p-methoxyphenylamine)-9,9-spirobifluorene (Spiro-OMeTAD) into CH 3NH 3PbI 3 films along the GBs creates space charge regions to suppress non-radiative recombination and enhance carrier collection efficiency. Solar cells with such activated GBs yielded averagemore » PCE of 16.3 ± 0.9%, which are among the best solution-processed perovskite devices. As an important alternative to growing ideal CH 3NH 3PbI 3 single crystal films, which is difficult to achieve for such fast-crystallizing perovskites, activating GBs paves a way to design a new type of bulk heterojunction hybrid perovskite photovoltaics toward theoretical maximum PCE.« less

  11. Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid Perovskite Solar Cells.

    PubMed

    De Marco, Nicholas; Zhou, Huanping; Chen, Qi; Sun, Pengyu; Liu, Zonghao; Meng, Lei; Yao, En-Ping; Liu, Yongsheng; Schiffer, Andy; Yang, Yang

    2016-02-10

    Hybrid perovskites have shown astonishing power conversion efficiencies owed to their remarkable absorber characteristics including long carrier lifetimes, and a relatively substantial defect tolerance for solution-processed polycrystalline films. However, nonradiative charge carrier recombination at grain boundaries limits open circuit voltages and consequent performance improvements of perovskite solar cells. Here we address such recombination pathways and demonstrate a passivation effect through guanidinium-based additives to achieve extraordinarily enhanced carrier lifetimes and higher obtainable open circuit voltages. Time-resolved photoluminescence measurements yield carrier lifetimes in guanidinium-based films an order of magnitude greater than pure-methylammonium counterparts, giving rise to higher device open circuit voltages and power conversion efficiencies exceeding 17%. A reduction in defect activation energy of over 30% calculated via admittance spectroscopy and confocal fluorescence intensity mapping indicates successful passivation of recombination/trap centers at grain boundaries. We speculate that guanidinium ions serve to suppress formation of iodide vacancies and passivate under-coordinated iodine species at grain boundaries and within the bulk through their hydrogen bonding capability. These results present a simple method for suppressing nonradiative carrier loss in hybrid perovskites to further improve performances toward highly efficient solar cells.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jin; Prezhdo, Oleg V.

    Rapid development in lead halide perovskites has led to solution-processable thin film solar cells with power conversion efficiencies close to 20%. Nonradiative electron–hole recombination within perovskites has been identified as the main pathway of energy losses, competing with charge transport and limiting the efficiency. Using nonadiabatic (NA) molecular dynamics, combined with time-domain density functional theory, we show that nonradiative recombination happens faster than radiative recombination and long-range charge transfer to an acceptor material. Doping of lead iodide perovskites with chlorine atoms reduces charge recombination. On the one hand, chlorines decrease the NA coupling because they contribute little to the wavemore » functions of the valence and conduction band edges. On the other hand, chlorines shorten coherence time because they are lighter than iodines and introduce high-frequency modes. Both factors favor longer excited-state lifetimes. The simulation shows good agreement with the available experimental data and contributes to the comprehensive understanding of electronic and vibrational dynamics in perovskites. The generated insights into design of higher-efficiency solar cells range from fundamental scientific principles, such as the role of electron–vibrational coupling and quantum coherence, to practical guidelines, such as specific suggestions for chemical doping.« less

  13. Exciton-Plasmon hybrids for surface catalysis detected by SERS.

    PubMed

    Cao, En; Sun, Mengtao; Song, Yu-Zhi; Liang, Wenjie

    2018-06-25

    Surface plasmons (SPs), the free electrons are collectively excited on the metal surface, which have been successfully used in the analysis chemical and signal detection. Generally, SPs possess two types of decay channels. One of that is radiation decay by reemitting photons. The other way is producing hot electrons with high kinetic energy that named non-radiation, which can be applied in surface catalysis. When the excitation light with special wavelength is irradiated on the surface of pasmonic nanostructure, the strong coupling interaction between electrons and light will occur on that, followed by a series of unique properties. More than a decade, two-dimensional (2D) materials have become a hot topic of research, since the graphene was found in 2004. Recently, the combination of graphene with metal NPs has been shown lots of supernormal advantages in that, such as high stability and catalytic activity, which also has been successfully applied in plasmon-exciton co-driven chemical reactions. © 2018 IOP Publishing Ltd.

  14. Localized Charges Control Exciton Energetics and Energy Dissipation in Doped Carbon Nanotubes.

    PubMed

    Eckstein, Klaus H; Hartleb, Holger; Achsnich, Melanie M; Schöppler, Friedrich; Hertel, Tobias

    2017-10-24

    Doping by chemical or physical means is key for the development of future semiconductor technologies. Ideally, charge carriers should be able to move freely in a homogeneous environment. Here, we report on evidence suggesting that excess carriers in electrochemically p-doped semiconducting single-wall carbon nanotubes (s-SWNTs) become localized, most likely due to poorly screened Coulomb interactions with counterions in the Helmholtz layer. A quantitative analysis of blue-shift, broadening, and asymmetry of the first exciton absorption band also reveals that doping leads to hard segmentation of s-SWNTs with intrinsic undoped segments being separated by randomly distributed charge puddles approximately 4 nm in width. Light absorption in these doped segments is associated with the formation of trions, spatially separated from neutral excitons. Acceleration of exciton decay in doped samples is governed by diffusive exciton transport to, and nonradiative decay at charge puddles within 3.2 ps in moderately doped s-SWNTs. The results suggest that conventional band-filling in s-SWNTs breaks down due to inhomogeneous electrochemical doping.

  15. Theoretical studies on the photophysical properties of luminescent pincer gold(iii) arylacetylide complexes: the role of π-conjugation at the C-deprotonated [C^N^C] ligand† †Electronic supplementary information (ESI) available: Experimental details of synthesis, characterization, and photophysical properties of complex 3-endo, additional computational details, and the Cartesian coordinates of the optimized structures. CCDC 1034529. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4sc03697b

    PubMed Central

    Chan, Kaai Tung; Chang, Xiaoyong

    2015-01-01

    We have performed theoretical analyses of the photophysical properties of a series of cyclometalated gold(iii) arylacetylide complexes, [(C^N^C)AuIIIC 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 CPh-4-OMe], with different extents of π-conjugation at the doubly C-deprotonated [C^N^C] ligand via replacement of one of the phenyl moieties in the non-conjugated CH^N^C ligand (1) by a naphthalenyl (2) or a fluorenyl moiety (3-exo and 3-endo; HCH^N^CH = 2,6-diphenylpyridine). Conforming to the conventional wisdom that extended π-conjugation imposes rigidity on the structure of the 3IL(ππ*(C^N^C)) excited state (IL = intraligand), the calculated Huang–Rhys factors for the 3IL → S0 transition follow the order: 1 > 2 > 3-exo ∼ 3-endo, which corroborates qualitatively the experimental non-radiative decay rate constants, knr: 1 ≫ 2 > 3-exo, but not 3-endo. Density Functional Theory (DFT) calculations revealed that there is an additional triplet excited state minimum of 3LLCT character (LLCT = ligand-to-ligand charge transfer; 3[π(C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 CPh-4-OMe) → π*(C^N^C)]) for complexes 1 and 3-endo. This 3LLCT excited state, possessing a large out-of-plane torsional motion between the planes of the C^N^C and arylacetylide ligands, has a double minimum anharmonic potential energy surface along this torsional coordinate which leads to enhanced Franck–Condon overlap between the 3LLCT excited state and the ground state. Together with the larger spin–orbit coupling (SOC) and solvent reorganization energy for the 3LLCT → S0 transition compared with those for the 3IL → S0 transition, the calculated knr values for the 3LLCT → S0 transition are more than 690- and 1500-fold greater than the corresponding 3IL → S0 transition for complexes 1 and 3-endo respectively. Importantly, when this 3LLCT → S0 decay channel is taken into consideration, the non-radiative decay rate constant knr could be reproduced quantitatively and in the order of: 1 ≫ 3-endo, 2 > 3-exo. This challenges the common view that the facile non-radiative decay rate of transition metal complexes is due to the presence of a low-lying metal-centred 3dd or 3LMCT excited state (LMCT = ligand-to-metal charge transfer). By analysis of the relative order of MOs of the chromophoric [C^N^C] cyclometalated and arylacetylide ligands, one may discern why complexes 1 and 3-endo have a low-lying 3LLCT excited state while 3-exo does not. PMID:29403639

  16. Optical parameters of diode lasers based on an InAsSb/InAsSbP heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Astakhova, A. P.; Bez'yazychnaya, T. V.; Burov, L. I.

    2008-02-15

    The rates of radiative recombination (including transitions induced by enhanced luminescence) and nonradiative recombination, internal quantum yield of luminescence, and the matrix element for band-to-band optical transitions were determined for the first time for InAsSb/InAsSbP diode lasers oscillating at wavelengths of 3.1-3.2 {mu}m. It is established that the contribution of nonradiative recombination to the lasing threshold can be as large as 97%. The internal quantum yield of luminescence for the InAs{sub 0.97}Sb{sub 0.03} compound is no higher than 3%. Most likely, the nonradiative channel is formed with involvement of Auger recombination with the constant C = 4.2 Multiplication-Sign 10{sup -38}more » m{sup 6}s{sup -1} (T = 77 K). The studied samples of lasers feature relatively low optical losses {rho} = 900 m{sup -1} and internal quantum efficiency of emission at the level of 0.6. The spontaneous lifetime of nonequilibrium charge carriers as determined from the radiative-recombination rate is equal to 6 Multiplication-Sign 10{sup -8} s, which is consistent with known published data.« less

  17. Optical parameters of diode lasers based on an InAsSb/InAsSbP heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Astakhova, A. P.; Bez'yazychnaya, T. V.; Burov, L. I.

    2008-02-15

    The rates of radiative recombination (including transitions induced by enhanced luminescence) and nonradiative recombination, internal quantum yield of luminescence, and the matrix element for band-to-band optical transitions were determined for the first time for InAsSb/InAsSbP diode lasers oscillating at wavelengths of 3.1-3.2 {mu}m. It is established that the contribution of nonradiative recombination to the lasing threshold can be as large as 97%. The internal quantum yield of luminescence for the InAs{sub 0.97}Sb{sub 0.03} compound is no higher than 3%. Most likely, the nonradiative channel is formed with involvement of Auger recombination with the constant C = 4.2 x 10{sup -38}more » m{sup 6}s{sup -1} (T = 77 K). The studied samples of lasers feature relatively low optical losses {rho} = 900 m{sup -1} and internal quantum efficiency of emission at the level of 0.6. The spontaneous lifetime of nonequilibrium charge carriers as determined from the radiative-recombination rate is equal to 6 x 10{sup -8} s, which is consistent with known published data.« less

  18. Near band gap luminescence in hybrid organic-inorganic structures based on sputtered GaN nanorods.

    PubMed

    Forsberg, Mathias; Serban, Elena Alexandra; Hsiao, Ching-Lien; Junaid, Muhammad; Birch, Jens; Pozina, Galia

    2017-04-26

    Novel hybrid organic-inorganic nanostructures fabricated to utilize non-radiative resonant energy transfer mechanism are considered to be extremely attractive for a variety of light emitters for down converting of ultaviolet light and for photovoltaic applications since they can be much more efficient compared to devices grown with common design. Organic-inorganic hybrid structures based on green polyfluorene (F8BT) and GaN (0001) nanorods grown by magnetron sputtering on Si (111) substrates are studied. In such nanorods, stacking faults can form periodic polymorphic quantum wells characterized by bright luminescence. In difference to GaN exciton emission, the recombination rate for the stacking fault related emission increases in the presence of polyfluorene film, which can be understood in terms of Förster interaction mechanism. From comparison of dynamic properties of the stacking fault related luminescence in the hybrid structures and in the bare GaN nanorods, the pumping efficiency of non-radiative resonant energy transfer in hybrids was estimated to be as high as 35% at low temperatures.

  19. The luminescence properties of nanocrystalline phosphors Mg2SiO4:Eu3+

    NASA Astrophysics Data System (ADS)

    Kolomytsev, A. Y.; Mamonova, D. V.; Manshina, A. A.; Kolesnikov, I. E.

    2017-11-01

    Nanocrystalline Eu3+-doped Mg2SiO4 powders were prepared with combined Pechini-solid phase synthesis. The structural properties were investigated with XRD, SEM and Raman spectroscopy. XRD pattern indicated that Mg2SiO4:Eu3+ were obtained with formation of other phase: MgO. Raman spectrum revealed good homogeneity and crystallinity of synthesized nanopowders. The luminescence properties were studied with measurement of excitation and emission spectra and decay curves. The effect of Eu3+ concentration on 5D0 level lifetime was studied. Most probably, the observed shortening of 5D0 level lifetime with Eu3+ concentration is caused by increase of nonradiative process probability.

  20. Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with phenol-ionic complexes.

    PubMed

    Bray, Kerem; Previdi, Rodolfo; Gibson, Brant C; Shimoni, Olga; Aharonovich, Igor

    2015-03-21

    Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and bio-labeling. In this work we demonstrate a robust approach to achieve an encapsulation of individual nanodiamonds with phenol-ionic complexes that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation reduces the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications.

  1. Superradiance of J-Aggregated 2,2'-Cyanine Absorbed onto a Vesicle Surface

    NASA Technical Reports Server (NTRS)

    Akins, Daniel L.; Ozcelik, Serdar

    1995-01-01

    Phospholipid vesicles are used as substrates to form adsorbed aggregates of 2,2'-cyanine, also referred to as pseudoisocyanine (PIC). In this paper, we report photophysical parameters of two putative adsorbed aggregates species (cis- and trans-aggregates, relating to their makeup from mono-cis and all-transstereoisomers, respectively). Phase modulation picosecond fluorescence decay measurements reveal that superradiance and energy transfer are dominant features controlling photophysical processes. Superradiance, coherence size, energy transfer and exciton-phonon coupling are discussed for the two types of aggregates; as regards photophysical parameters, the fluorescence lifetimes, fluorescence quantum yields, and nonradiative rate constants are determined. It is suggested that structure plays the crucial role in excited state dynamics.

  2. Effect of silica surface coating on the luminescence lifetime and upconversion temperature sensing properties of semiconductor zinc oxide doped with gallium(III) and sensitized with rare earth ions Yb(III) and Tm(III).

    PubMed

    Li, Yuemei; Li, Yongmei; Wang, Rui; Zheng, Wei

    2018-02-26

    Optical sensing of temperature by measurement of the ratio of the intensities of the 700 nm emission and the 800 nm emission of Ga(III)-doped ZnO (GZO) nanoparticles (NPs) and of GZO NPs coated with a silica shell are demonstrated at 980 nm excitation. It is found that the relative sensitivity of SiO 2 @Yb/Tm/GZO is 6.2% K -1 at a temperature of 693 K. This is ~3.4 times higher than that of Yb/Tm/GZO NPs. Obviously, the SiO 2 shell structure decreases the rate of the nonradiative decay. The decay time of the 800 nm emission of the Yb/Tm/GZO NPs (15 mol% Ga; 7 mol% Yb; 0.5 mol% Tm) displays a biexponential decay with a dominant decay time of 148 μs and a second decay time of ~412 μs. The lifetime of the Yb/Tm/GZO NPs at 293 K, and of the SiO 2 @Yb/Tm/GZO NPs are ~412 μs. Both the Yb/Tm/GZO and SiO 2 @Yb/Tm/GZO can be used up to 693 K. These results indicate that the SiO 2 shell on the Yb/Tm/GZO is beneficial in terms of sensitivity and resolution. Graphical abstract The enhancement the decay time and thermal sensitivity in the SiO 2 @Yb/Tm/GZO shell@core structure have been studied compared to the Ga(III)-doped Yb/Tm-doped ZnO (Yb/Tm/GZO). The SiO 2 @Yb/Tm/GZO have good thermal accuracy up to 693 °C.

  3. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit.

    PubMed

    Assawaworrarit, Sid; Yu, Xiaofang; Fan, Shanhui

    2017-06-14

    Considerable progress in wireless power transfer has been made in the realm of non-radiative transfer, which employs magnetic-field coupling in the near field. A combination of circuit resonance and impedance transformation is often used to help to achieve efficient transfer of power over a predetermined distance of about the size of the resonators. The development of non-radiative wireless power transfer has paved the way towards real-world applications such as wireless powering of implantable medical devices and wireless charging of stationary electric vehicles. However, it remains a fundamental challenge to create a wireless power transfer system in which the transfer efficiency is robust against the variation of operating conditions. Here we propose theoretically and demonstrate experimentally that a parity-time-symmetric circuit incorporating a nonlinear gain saturation element provides robust wireless power transfer. Our results show that the transfer efficiency remains near unity over a distance variation of approximately one metre, without the need for any tuning. This is in contrast with conventional methods where high transfer efficiency can only be maintained by constantly tuning the frequency or the internal coupling parameters as the transfer distance or the relative orientation of the source and receiver units is varied. The use of a nonlinear parity-time-symmetric circuit should enable robust wireless power transfer to moving devices or vehicles.

  4. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit

    NASA Astrophysics Data System (ADS)

    Assawaworrarit, Sid; Yu, Xiaofang; Fan, Shanhui

    2017-06-01

    Considerable progress in wireless power transfer has been made in the realm of non-radiative transfer, which employs magnetic-field coupling in the near field. A combination of circuit resonance and impedance transformation is often used to help to achieve efficient transfer of power over a predetermined distance of about the size of the resonators. The development of non-radiative wireless power transfer has paved the way towards real-world applications such as wireless powering of implantable medical devices and wireless charging of stationary electric vehicles. However, it remains a fundamental challenge to create a wireless power transfer system in which the transfer efficiency is robust against the variation of operating conditions. Here we propose theoretically and demonstrate experimentally that a parity-time-symmetric circuit incorporating a nonlinear gain saturation element provides robust wireless power transfer. Our results show that the transfer efficiency remains near unity over a distance variation of approximately one metre, without the need for any tuning. This is in contrast with conventional methods where high transfer efficiency can only be maintained by constantly tuning the frequency or the internal coupling parameters as the transfer distance or the relative orientation of the source and receiver units is varied. The use of a nonlinear parity-time-symmetric circuit should enable robust wireless power transfer to moving devices or vehicles.

  5. Yellow to orange-reddish glass phosphors: Sm3+, Tb3+ and Sm3+/Tb3+ in zinc tellurite-germanate glasses

    NASA Astrophysics Data System (ADS)

    Alvarez-Ramos, M. E.; Alvarado-Rivera, J.; Zayas, Ma. E.; Caldiño, U.; Hernández-Paredes, J.

    2018-01-01

    An optical spectroscopy analysis of TeO-GeO2-ZnO glass co-activating Sm3+/Tb3+ ions was carried out through Raman, photoluminescence spectra and decay time profiles as a function of Sm3+ concentration. According to the estimated CIE1931 chromaticity coordinates, the color of the emission can be adjusted from the yellow light region (0.4883, 0.4774), towards the reddish light region (0.5194,0.4144) by increasing the Sm3+ content from 1, 3, 5% mol, co-doped with 1% mol Tb3+ under co-excitation of Sm3+ and Tb3+ at 378 nm. The color temperatures are in the range of 1379-2804 K. Such photoluminescence is generated by the 4G 5/2 → 4H 5/2, 4H 7/2, 4H9/2 emissions of Sm3+ in addition to the 5D4→7F6,5,4,3 emissions of Tb3+; the single doped Sm3+ glass displayed an intense orange light. Meanwhile, co-doped Sm3+/Tb3+ glasses excited at 378 nm showed a significant reduction in Tb3+ emission, with a simultaneous increment in the reddish-orange emission of Sm3+, due to a non-radiative resonant energy transfer from Tb3+ to Sm3+. Decay time profile analysis of the Tb3+ emission as function of Sm3+ ion content suggests that an electric dipole-dipole interaction into Tb3+-Sm3+ clusters might dominate in the energy transfer process, with an efficiency and probability of 0.22, 0.27, 0.38 and 122.8, 327.6, 522.7 s-1, respectively.

  6. Chlorine Doping Reduces Electron–Hole Recombination in Lead Iodide Perovskites: Time-Domain Ab Initio Analysis

    DOE PAGES

    Liu, Jin; Prezhdo, Oleg V.

    2015-10-27

    Rapid development in lead halide perovskites has led to solution-processable thin film solar cells with power conversion efficiencies close to 20%. Nonradiative electron–hole recombination within perovskites has been identified as the main pathway of energy losses, competing with charge transport and limiting the efficiency. Using nonadiabatic (NA) molecular dynamics, combined with time-domain density functional theory, we show that nonradiative recombination happens faster than radiative recombination and long-range charge transfer to an acceptor material. Doping of lead iodide perovskites with chlorine atoms reduces charge recombination. On the one hand, chlorines decrease the NA coupling because they contribute little to the wavemore » functions of the valence and conduction band edges. On the other hand, chlorines shorten coherence time because they are lighter than iodines and introduce high-frequency modes. Both factors favor longer excited-state lifetimes. The simulation shows good agreement with the available experimental data and contributes to the comprehensive understanding of electronic and vibrational dynamics in perovskites. The generated insights into design of higher-efficiency solar cells range from fundamental scientific principles, such as the role of electron–vibrational coupling and quantum coherence, to practical guidelines, such as specific suggestions for chemical doping.« less

  7. Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide (GaAs)/Aluminum Gallium Arsenide (AlGaAs) Double Heterostructures

    DTIC Science & Technology

    2015-09-01

    ARL-TR-7473 ● SEP 2015 US Army Research Laboratory Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide...return it to the originator. ARL-TR-7473 ● SEP 2015 US Army Research Laboratory Bragg Reflector-Induced Increased Nonradiative ...3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide (GaAs)/Aluminum

  8. Effects of Gd/Lu ratio on the luminescence properties and garnet phase stability of Ce3+ activated GdxLu3-xAl5O12 single crystals

    NASA Astrophysics Data System (ADS)

    Bartosiewicz, K.; Babin, V.; Kamada, K.; Yoshikawa, A.; Beitlerova, A.; Nikl, M.

    2018-06-01

    The luminescence properties of Ce3+ activated (Gd,Lu)3Al5O12 single crystals are investigated as a function of the Gd/Lu ratio with the aim of an improved understanding of the luminescence quenching, energy transfer processes, and garnet phase stability. Upon heavy substitution of Lu with Gd, the target garnet phase becomes thermodynamically unstable and unwanted secondary phase inclusions arise. The secondary phase shows luminescence properties in the UV spectral range. The thermal quenching process of the 5d→4f emission of Ce3+ in the garnet phase is determined by the temperature dependence of the photoluminescence decay time and delayed radiative recombination decays. The results show that the onset of the thermal quenching is moved to lower temperatures with increasing the Gd3+ content. The main mechanism responsible for the luminescence quenching is due to the non-radiative relaxation from 5d1 excited state to 4f ground state of Ce3+. The energy transfer processes between Gd3+ and Ce3+ as well as between secondary and garnet phase are evidenced by the photoluminescence excitation and emission spectra as well as decay kinetic measurements.

  9. On the mechanism of non-radiative decay of blue fluorescent protein chromophore: New insight from the excited-state molecular dynamics simulations and potential energy calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Liu, Jian-Yong; Zhou, Pan-Wang

    2017-11-01

    A detailed theoretical investigation based on the ab initio on-the-fly surface hopping dynamics simulations and potential energy surfaces calculations has been performed to unveil the mechanism of the photoinduced non-adiabatic relaxation process of the isolated blue fluorescent protein (BFP) chromophore in gas phase. The data analysis presents that the dominant reaction coordinate of the BFP chromophore is driven by a rotation motion around the CC double bridging bond, which is in remarkable difference with a previous result which supports a Hula-Twist rotation pattern. Such behavior is consistent with the double bond rotation pattern of the GFP neutral chromophore. In addition, the dynamics simulations give an estimated decay time of 1.1 ps for the S1 state, which is agrees well with the experimental values measured in proteins. The present work offers a straightforward understanding for the decay mechanism of the BFP chromophore and suggestions of the photochemical properties of analogous protein chromophores. We hope the current work would be helpful for further exploration of the BFP photochemical and photophysical properties in various environments, and can provide guidance and prediction for rational design of the fluorescent proteins catering for different demands.

  10. Efficient Nd3+→Yb3+ energy transfer processes in high phonon energy phosphate glasses for 1.0 μm Yb3+ laser

    NASA Astrophysics Data System (ADS)

    Rivera-López, F.; Babu, P.; Basavapoornima, Ch.; Jayasankar, C. K.; Lavín, V.

    2011-06-01

    Efficient Nd3+→Yb3+ resonant and phonon-assisted energy transfer processes have been observed in phosphate glasses and have been studied using steady-state and time-resolved optical spectroscopies. Results indicate that the energy transfer occurs via nonradiative electric dipole-dipole processes and is enhanced with the concentration of Yb3+ acceptor ions, having an efficiency higher than 75% for the glass doped with 1 mol% of Nd2O3 and 4 mol% of Yb2O3. The luminescence decay curves show a nonexponential character and the energy transfer microscopic parameter calculated with the Inokuti-Hirayama model gives a value of 240 × 10-40 cm6 s-1, being one of the highest reported in the literature for Nd3+-Yb3+ co-doped matrices. From the steady-state experimental absorption and emission cross-sections, a general expression for estimating the microscopic energy transfer parameter is proposed based upon the theoretical methods developed by Miyakawa and Dexter and Tarelho et al. This expression takes into account all the resonant mechanisms involved in an energy transfer processes together with other phonon-assisted nonvanishing overlaps. The value of the Nd3+→Yb3+ energy transfer microscopic parameter has been calculated to be 200 × 10-40 cm6 s-1, which is in good agreement with that obtained from the Inokuti-Hirayama fitting. These results show the importance of the nonresonant phonon-assisted Nd3+→Yb3+ energy transfer processes and the great potential of these glasses as active matrices in the development of multiple-pump-channel Yb3+ lasers.

  11. Theoretical characterization and design of highly efficient iridium (III) complexes bearing guanidinate ancillary ligand.

    PubMed

    Ren, Xin-Yao; Wu, Yong; Wang, Li; Zhao, Liang; Zhang, Min; Geng, Yun; Su, Zhong-Min

    2014-06-01

    A density functional theory/time-depended density functional theory was used to investigate the synthesized guanidinate-based iridium(III) complex [(ppy)2Ir{(N(i)Pr)2C(NPh2)}] (1) and two designed derivatives (2 and 3) to determine the influences of different cyclometalated ligands on photophysical properties. Except the conventional discussions on geometric relaxations, absorption and emission properties, many relevant parameters, including spin-orbital coupling (SOC) matrix elements, zero-field-splitting parameters, radiative rate constants (kr) and so on were quantitatively evaluated. The results reveal that the replacement of the pyridine ring in the 2-phenylpyridine ligand with different diazole rings cannot only enlarge the frontier molecular orbital energy gaps, resulting in a blue-shift of the absorption spectra for 2 and 3, but also enhance the absorption intensity of 3 in the lower-energy region. Furthermore, it is intriguing to note that the photoluminescence quantum efficiency (ΦPL) of 3 is significantly higher than that of 1. This can be explained by its large SOC value(n=3-4) and large transition electric dipole moment (μS3), which could significantly contribute to a larger kr. Besides, compared with 1, the higher emitting energy (ET1) and smaller (2) value for 3 may lead to a smaller non-radiative decay rate. Additionally, the detailed results also indicate that compared to 1 with pyridine ring, 3 with imidazole ring performs a better hole injection ability. Therefore, the designed complex 3 can be expected as a promising candidate for highly efficient guanidinate-based phosphorescence emitter for OLEDs applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells.

    PubMed

    Zhang, Cai; Tang, Ning; Shang, Liangliang; Fu, Lei; Wang, Weiying; Xu, Fujun; Wang, Xinqiang; Ge, Weikun; Shen, Bo

    2017-05-24

    We report the enhancement of the polarization and internal quantum efficiency (IQE) of deep-UV LEDs by evaporating Al nanoparticles on the device surface to induce localized surface plasmons (LSPs). The deep-UV LEDs polarization is improved due to part of TM emission turns into TE emission through LSPs coupling. The significantly enhanced IQE is attributed to LSPs coupling, which suppress the participation of delocalized and dissociated excitons to non-radiative recombination process.

  13. Antimicrobial Amino-Functionalized Nitrogen-Doped Graphene Quantum Dots for Eliminating Multidrug-Resistant Species in Dual-Modality Photodynamic Therapy and Bioimaging under Two-Photon Excitation.

    PubMed

    Kuo, Wen-Shuo; Shao, Yu-Ting; Huang, Keng-Shiang; Chou, Ting-Mao; Yang, Chih-Hui

    2018-05-02

    Developing a nanomaterial, for use in highly efficient dual-modality two-photon photodynamic therapy (PDT) involving reactive oxygen species (ROS) generation and for use as a two-photon imaging contrast probe, is currently desirable. Here, graphene quantum dots (GQDs) doped with nitrogen and functionalized with an amino group (amino-N-GQDs) serving as a photosensitizer in PDT had the superior ability to generate ROS as compared to unmodified GQDs. Multidrug-resistant (MDR) species were completely eliminated at an ultralow energy (239.36 nJ pixel -1 ) through only 12 s two-photon excitation (TPE) in the near-infrared region (800 nm). Furthermore, the amino-N-GQDs had an absorption wavelength of approximately 800 nm, quantum yield of 0.33, strong luminescence, an absolute cross section of approximately 54 356 Göeppert-Mayer units, a lifetime of 1.09 ns, a ratio of the radiative to nonradiative decay rates of approximately 0.49, and high two-photon stability under TPE. These favorable properties enabled the amino-N-GQDs to act as a two-photon contrast probe for tracking and localizing analytes through in-depth two-photon imaging in a three-dimensional biological environment and concurrently easily eliminating MDR species through PDT.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stagi, Luigi, E-mail: luigi.stagi@dsf.unica.it; Chiriu, Daniele; Carbonaro, Carlo M.

    The phenomenon of luminescence enhancement was studied in melamine-Y{sub 2}O{sub 3}:Tb hybrids. Terbium doped Y{sub 2}O{sub 3} mesoporous nanowires were synthesized by hydrothermal method. X-ray diffraction patterns and Raman scattering spectra testified the realization of a cubic crystal phase. Organic-inorganic melamine-Y{sub 2}O{sub 3}:Tb{sup 3+} hybrid system was successfully obtained by vapour deposition method. Vibration Raman active modes of the organic counterpart were investigated in order to verify the achievement of hybrid system. Photoluminescence excitation and photoluminescence spectra, preformed in the region between 250 and 350 nm, suggest a strong interaction among melamine and Terbium ions. In particular, a remarkable improvement ofmore » {sup 5}D{sub 4}→ F{sub J} Rare Earth emission (at about 542 nm) of about 10{sup 2} fold was observed and attributed to an efficient organic-Tb energy transfer. The energy transfer mechanism was studied by the use of time resolved photoluminescence measurements. The melamine lifetime undergoes to a significant decrease when adsorbed to oxide surfaces and it was connected to a sensitization mechanism. The detailed analysis of time decay profile of Terbium radiative recombination shows a variation of double exponential law toward a single exponential one. Its correlation with surface defects and non-radiative recombination was thus discussed.« less

  15. Stabilization of primary mobile radiation defects in MgF2 crystals

    NASA Astrophysics Data System (ADS)

    Lisitsyn, V. M.; Lisitsyna, L. A.; Popov, A. I.; Kotomin, E. A.; Abuova, F. U.; Akilbekov, A.; Maier, J.

    2016-05-01

    Non-radiative decay of the electronic excitations (excitons) into point defects (F-H pairs of Frenkel defects) is main radiation damage mechanism in many ionic (halide) solids. Typical time scale of the relaxation of the electronic excitation into a primary, short-lived defect pair is about 1-50 ps with the quantum yield up to 0.2-0.8. However, only a small fraction of these primary defects are spatially separated and survive after transformation into stable, long-lived defects. The survival probability (or stable defect accumulation efficiency) can differ by orders of magnitude, dependent on the material type; e.g. ∼10% in alkali halides with f.c.c. or b.c.c. structure, 0.1% in rutile MgF2 and <0.001% in fluorides MeF2 (Me: Ca, Sr, Ba). The key factor determining accumulation of stable radiation defects is stabilization of primary defects, first of all, highly mobile hole H centers, through their transformation into more complex immobile defects. In this talk, we present the results of theoretical calculations of the migration energies of the F and H centers in poorely studied MgF2 crystals with a focus on the H center stabilization in the form of the interstitial F2 molecules which is supported by presented experimental data.

  16. Origin of Non-Radiative Voltage Losses in Fullerene-Based Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Benduhn, Johannes; Tvingstedt, Kristofer; Piersimoni, Fortunato; Ullbrich, Sascha; Neher, Dieter; Spoltore, Donato; Vandewal, Koen

    The open-circuit voltage of organic solar cells (OSCs) is low as compared to the optical gap of the absorber molecules, indicating high energy losses per absorbed photon. These voltage losses arise only partly due to necessity of an electron transfer event to dissociate the excitons. A large part of these voltage losses is due to recombination of photo-generated charge carriers, including inevitable radiative recombination. In this work, we study the non-radiative recombination losses and we find that they increase when the energy difference between charge transfer (CT) state and ground state decreases. This behavior is in agreement with the \\x9Denergy gap law for non-radiative transition\\x9D, which implies that internal conversion from CT state to ground state is facilitated by skeletal molecular vibrations. This intrinsic loss mechanism, which until now has not been thoroughly considered for OSCs, is different in its nature as compared to the commonly considered inorganic photovoltaic loss mechanisms of defect, surface, and Auger recombination. As a consequence, the theoretical upper limit for the power conversion efficiency of a single junction OSC reduces by 25% as compared to the Shockley-Queisser limit for an optimal optical gap of the main absorber between (1.45-1.65) eV.

  17. A singular-value method for reconstruction of nonradial and lossy objects.

    PubMed

    Jiang, Wei; Astheimer, Jeffrey; Waag, Robert

    2012-03-01

    Efficient inverse scattering algorithms for nonradial lossy objects are presented using singular-value decomposition to form reduced-rank representations of the scattering operator. These algorithms extend eigenfunction methods that are not applicable to nonradial lossy scattering objects because the scattering operators for these objects do not have orthonormal eigenfunction decompositions. A method of local reconstruction by segregation of scattering contributions from different local regions is also presented. Scattering from each region is isolated by forming a reduced-rank representation of the scattering operator that has domain and range spaces comprised of far-field patterns with retransmitted fields that focus on the local region. Methods for the estimation of the boundary, average sound speed, and average attenuation slope of the scattering object are also given. These methods yielded approximations of scattering objects that were sufficiently accurate to allow residual variations to be reconstructed in a single iteration. Calculated scattering from a lossy elliptical object with a random background, internal features, and white noise is used to evaluate the proposed methods. Local reconstruction yielded images with spatial resolution that is finer than a half wavelength of the center frequency and reproduces sound speed and attenuation slope with relative root-mean-square errors of 1.09% and 11.45%, respectively.

  18. Quantum theory of phonon-mediated decoherence and relaxation of two-level systems in a structured electromagnetic reservoir

    NASA Astrophysics Data System (ADS)

    Roy, Chiranjeeb

    In this thesis we study the role of nonradiative degrees of freedom on quantum optical properties of mesoscopic quantum dots placed in the structured electromagnetic reservoir of a photonic crystal. We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption lineshape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the "colored" electromagnetic vacuum of a photonic band gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. Phonon sidebands in an ordinary electromagnetic reservoir are recaptured in a simple model of optical phonons using a mean-field factorization of the atomic and lattice displacement operators. Our formalism is then used to treat the non-Markovian dynamics of the same system within the structured electromagnetic density of states of a photonic crystal. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to enhanced lifetime of a photon-atom bound state in a PBG by (i) dephasing and reducing the transition electric dipole moment of the atom and (ii) reducing the quantum mechanical overlap of the state vectors of the excited and ground state (polaronic shift). This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (break-up of phonons into lower energy phonons) and purely nonradiative decay. We demonstrate how these additional damping effects limit the extent of the polaronic (Franck-Condon) shift of the atomic excited state. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption lineshapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.

  19. Explanation of low efficiency droop in semipolar (202¯1¯) InGaN/GaN LEDs through evaluation of carrier recombination coefficients.

    PubMed

    Monavarian, Morteza; Rashidi, Arman; Aragon, Andrew; Oh, Sang H; Nami, Mohsen; DenBaars, Steve P; Feezell, Daniel

    2017-08-07

    We report the carrier dynamics and recombination coefficients in single-quantum-well semipolar (202¯1¯) InGaN/GaN light-emitting diodes emitting at 440 nm with 93% peak internal quantum efficiency. The differential carrier lifetime is analyzed for various injection current densities from 5 A/cm 2 to 10 kA/cm 2 , and the corresponding carrier densities are obtained. The coupling of internal quantum efficiency and differential carrier lifetime vs injected carrier density (n) enables the separation of the radiative and nonradiative recombination lifetimes and the extraction of the Shockley-Read-Hall (SRH) nonradiative (A), radiative (B), and Auger (C) recombination coefficients and their n-dependency considering the saturation of the SRH recombination rate and phase-space filling. The results indicate a three to four-fold higher A and a nearly two-fold higher B0 for this semipolar orientation compared to that of c-plane reported using a similar approach [A. David and M. J. Grundmann, Appl. Phys. Lett. 96, 103504 (2010)]. In addition, the carrier density in semipolar (202¯1¯) is found to be lower than the carrier density in c-plane for a given current density, which is important for suppressing efficiency droop. The semipolar LED also shows a two-fold lower C0 compared to c-plane, which is consistent with the lower relative efficiency droop for the semipolar LED (57% vs. 69%). The lower carrier density, higher B 0 coefficient, and lower C 0 (Auger) coefficient are directly responsible for the high efficiency and low efficiency droop reported in semipolar (202¯1¯) LEDs.

  20. Explanation of low efficiency droop in semipolar (202¯1¯) InGaN/GaN LEDs through evaluation of carrier recombination coefficients

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza; Rashidi, Arman; Aragon, Andrew; Oh, Sang H.; Nami, Mohsen; DenBaars, Steve P.; Feezell, Daniel

    2017-08-01

    We report the carrier dynamics and recombination coefficients in single-quantum-well semipolar $(20\\bar 2\\bar 1)$ InGaN/GaN light-emitting diodes emitting at 440 nm with 93% peak internal quantum efficiency. The differential carrier lifetime is analyzed for various injection current densities from 5 $A/cm^2$ to 10 $kA/cm^2$, and the corresponding carrier densities are obtained. The coupling of internal quantum efficiency and differential carrier lifetime vs injected carrier density ($n$) enables the separation of the radiative and nonradiative recombination lifetimes and the extraction of the Shockley-Read-Hall (SRH) nonradiative ($A$), radiative ($B$), and Auger ($C$) recombination coefficients and their $n$-dependency considering the saturation of the SRH recombination rate and phase-space filling. The results indicate a three to four-fold higher $A$ and a nearly two-fold higher $B_0$ for this semipolar orientation compared to that of $c$-plane reported using a similar approach [A. David and M. J. Grundmann, Appl. Phys. Lett. 96, 103504 (2010)]. In addition, the carrier density in semipolar $(20\\bar 2\\bar 1)$ is found to be lower than the carrier density in $c$-plane for a given current density, which is important for suppressing efficiency droop. The semipolar LED also shows a two-fold lower $C_0$ compared to $c$-plane, which is consistent with the lower relative efficiency droop for the semipolar LED (57% vs. 69%). The lower carrier density, higher $B_0$ coefficient, and lower $C_0$ (Auger) coefficient are directly responsible for the high efficiency and low efficiency droop reported in semipolar $(20\\bar 2\\bar 1)$ LEDs.

  1. Optimization of the Nonradiative Lifetime of Molecular-Beam-Epitaxy (MBE)-Grown Undoped GaAs/AlGaAs Double Heterostructures (DH)

    DTIC Science & Technology

    2013-09-01

    Optimization of the Nonradiative Lifetime of Molecular- Beam-Epitaxy (MBE)-Grown Undoped GaAs/AlGaAs Double Heterostructures (DH) by P...it to the originator. Army Research Laboratory Adelphi, MD 20783-1197 ARL-TR-6660 September 2013 Optimization of the Nonradiative ...REPORT TYPE Final 3. DATES COVERED (From - To) FY2013 4. TITLE AND SUBTITLE Optimization of the Nonradiative Lifetime of Molecular-Beam-Epitaxy

  2. Optical spectra and emission characteristics of terbium-doped potassium-lead double chloride crystals (KPb2Cl5:Tb3+)

    NASA Astrophysics Data System (ADS)

    Tkachuk, A. M.; Ivanova, S. E.; Mirzaeva, A. A.; Isaenko, L. I.

    2017-05-01

    Optical transitions in KPb2Cl5:Tb3+ crystals are studied experimentally and theoretically. The absorption cross-section spectra are plotted and the oscillator strengths of transitions from the ground terbium state to excited multiplets are determined. Intensity parameters Ωt for KPC:Tb3+ are determined by the Judd-Ofelt method to be Ω2 = 2.70 × 10-20 cm2, Ω4 = 7.0 × 10-20 cm2, and Ω6 = 0.72 × 10-20 cm2. These values were used to calculate such characteristics of spontaneous radiative transitions as oscillator strengths, probabilities of radiative transitions, and radiative lifetimes. The emission spectra of KPb2Cl5:Tb3+ crystals upon UV excitation and the decay kinetics of luminescence from the excited 5 D 3 and 5 D 4 levels are studied experimentally, the lifetimes of these levels are determined, and the dependences of the rates of nonradiative relaxation from the excited 7 F j ( j = 0-5), 5 D 4, and 5 D 3 levels to lower-lying terbium levels are calculated. It is shown that the population of the 5 D 4 level in KPC:Tb3+ crystals occurs according to a cascade scheme, which leads to quenching of the 5 D 3 level. The calculated data agree well with the known experimental rates of multiphonon nonradiative transitions for Dy:KPC, Nd:KPC, Er:KPC, Tb:KPB, and Nd:KPB crystals. It is shown that transitions in the near-IR (3-6 μm) region in double halide crystals (MPb2Hal5) are almost unquenched and the rates of nonradiative relaxation of excited levels spaced by energy gaps Δ E ji > 1000 cm-1 are W ji NR < 103s-1. This circumstance suggests that it is possible to obtain stimulated emission in KPb2Cl5:RE3+ crystals in the IR spectral region up to 6 μm.

  3. Semiconductor quantum dot super-emitters: spontaneous emission enhancement combined with suppression of defect environment using metal-oxide plasmonic metafilms

    NASA Astrophysics Data System (ADS)

    Sadeghi, Seyed M.; Wing, Waylin J.; Gutha, Rithvik R.; Sharp, Christina

    2018-01-01

    We demonstrate that a metal-oxide plasmonic metafilm consisting of a Si/Al oxide junction in the vicinity of a thin gold layer can quarantine excitons in colloidal semiconductor quantum dots against their defect environments. This process happens while the plasmon fields of the gold layer enhance spontaneous emission decay rates of the quantum dots. We study the emission dynamics of such quantum dots when the distance between the Si/Al oxide junction and the gold thin layer is varied. The results show that for distances less than a critical value the lifetime of the quantum dots can be elongated while they experience intense plasmon fields. This suggests that the metal-oxide metafilm can keep photo-excited electrons in the cores of the quantum dots, suppressing their migration to the surface defect sites. This leads to suppression of Auger recombination, offering quantum dot super-emitters with emission that is enhanced not only by the plasmon fields (Purcell effect), but also by strong suppression of the non-radiative decay caused by the defect sites.

  4. Dispersion and decay rate of exciton-polaritons and radiative modes in transition metal dichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Alpeggiani, Filippo; Gong, Su-Hyun; Kuipers, L.

    2018-05-01

    The two-dimensional excitons of transition metal dichalcogenide (TMDC) monolayers make these materials extremely promising for optical and optoelectronic applications. When the excitons interact with the electromagnetic field, they will give rise to exciton-polaritons, i.e., modes that propagate in the material plane while being confined in the out-of-plane direction. In this work, we derive the characteristic equations that determine both radiative and polaritonic modes in TMDC monolayers and we analyze the dispersion and decay rate of the modes. The condition for the existence of exciton-polaritons can be described in terms of a strong-coupling regime for the interaction between the exciton and the three-dimensional continuum of free-space electromagnetic modes. We show that the threshold for the strong-coupling regime critically depends on the interplay between nonradiative losses and the dielectric function imbalance at the two sides of the monolayer. Our results illustrate that a fine control of the dielectric function of the embedding media is essential for realizing exciton-polaritons in the strong-coupling regime.

  5. The role of radiative de-excitation in the neutralization process of highly charged ions interacting with a single layer of graphene

    NASA Astrophysics Data System (ADS)

    Schwestka, J.; Wilhelm, R. A.; Gruber, E.; Heller, R.; Kozubek, R.; Schleberger, M.; Facsko, S.; Aumayr, F.

    2018-05-01

    X-ray emission of slow (<1 a.u.) highly charged Argon and Xenon ions is measured for transmission through a freestanding single layer of graphene. To discriminate against X-ray emission originating from the graphene's support grid a coincidence technique is used. X-ray emission of 75 keV Ar17+ and Ar18+ ions with either one or two K-shell vacancies is recorded. Using a windowless Bruker XFlash detector allows us to measure additionally Ar KLL and KLM Auger electrons and determine the branching ratio of radiative vs. non-radiative decay of Ar K-shell holes. Furthermore, X-ray spectra for 100 keV Xe22+-Xe35+ ions are compared, showing a broad M-line peak for all cases, where M-shell vacancies are present. All these peaks are accompanied by emission lines at still higher energies indicating the presence of a hollow atom during X-ray decay. We report a linear shift of the main M-line peak to higher energies for increasing incident charge state, i.e. increasing number of M-shell holes.

  6. Quantum Yield of Single Surface Plasmons Generated by a Quantum Dot Coupled with a Silver Nanowire.

    PubMed

    Li, Qiang; Wei, Hong; Xu, Hongxing

    2015-12-09

    The interactions between surface plasmons (SPs) in metal nanostructures and excitons in quantum emitters (QEs) lead to many interesting phenomena and potential applications that are strongly dependent on the quantum yield of SPs. The difficulty in distinguishing all the possible exciton recombination channels hinders the experimental determination of SP quantum yield. Here, we experimentally measured for the first time the quantum yield of single SPs generated by the exciton-plasmon coupling in a system composed of a single quantum dot and a silver nanowire (NW). By utilizing the SP guiding property of the NW, the decay rates of all the exciton recombination channels, i.e., direct free space radiation channel, SP generation channel, and nonradiative damping channel, are quantitatively obtained. It is determined that the optimum emitter-NW coupling distance for the largest SP quantum yield is about 10 nm, resulting from the different distance-dependent decay rates of the three channels. These results are important for manipulating the coupling between plasmonic nanostructures and QEs and developing on-chip quantum plasmonic devices for potential nanophotonic and quantum information applications.

  7. Excitonic recombination dynamics in non-polar GaN/AlGaN quantum wells

    NASA Astrophysics Data System (ADS)

    Rosales, D.; Gil, B.; Bretagnon, T.; Guizal, B.; Zhang, F.; Okur, S.; Monavarian, M.; Izyumskaya, N.; Avrutin, V.; Özgür, Ü.; Morkoç, H.; Leach, J. H.

    2014-02-01

    The optical properties of GaN/Al0.15Ga0.85N multiple quantum wells are examined in 8 K-300 K temperature range. Both polarized CW and time resolved temperature-dependent photoluminescence experiment are performed so that we can deduce the relative contributions of the non-radiative and radiative recombination processes. From the calculation of the proportion of the excitonic population having wave vector in the light cone, we can deduce the variation of the radiative decay time with temperature. We find part of the excitonic population to be localized in concert with the report of Corfdir et al. (Jpn. J. Appl. Phys., Part 2 52, 08JC01 (2013)) in case of a-plane quantum wells.

  8. Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells.

    PubMed

    Eyderman, Sergey; John, Sajeev

    2016-06-23

    We demonstrate nearly 30% power conversion efficiency in ultra-thin (~200 nm) gallium arsenide photonic crystal solar cells by numerical solution of the coupled electromagnetic Maxwell and semiconductor drift-diffusion equations. Our architecture enables wave-interference-induced solar light trapping in the wavelength range from 300-865 nm, leading to absorption of almost 90% of incoming sunlight. Our optimized design for 200 nm equivalent bulk thickness of GaAs, is a square-lattice, slanted conical-pore photonic crystal (lattice constant 550 nm, pore diameter 600 nm, and pore depth 290 nm), passivated with AlGaAs, deposited on a silver back-reflector, with ITO upper contact and encapsulated with SiO2. Our model includes both radiative and non-radiative recombination of photo-generated charge carriers. When all light from radiative recombination is assumed to escape the structure, a maximum achievable photocurrent density (MAPD) of 27.6 mA/cm(2) is obtained from normally incident AM 1.5 sunlight. For a surface non-radiative recombination velocity of 10(3) cm/s, this corresponds to a solar power conversion efficiency of 28.3%. When all light from radiative recombination is trapped and reabsorbed (complete photon recycling) the power conversion efficiency increases to 29%. If the surface recombination velocity is reduced to 10 cm/sec, photon recycling is much more effective and the power conversion efficiency reaches 30.6%.

  9. Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells

    DOE PAGES

    Eyderman, Sergey; John, Sajeev

    2016-06-23

    Here, we demonstrate nearly 30% power conversion efficiency in ultra-thin (~200 nm) gallium arsenide photonic crystal solar cells by numerical solution of the coupled electromagnetic Maxwell and semiconductor drift-diffusion equations. Our architecture enables wave-interference-induced solar light trapping in the wavelength range from 300-865 nm, leading to absorption of almost 90% of incoming sunlight. Our optimized design for 200 nm equivalent bulk thickness of GaAs, is a square-lattice, slanted conical-pore photonic crystal (lattice constant 550 nm, pore diameter 600 nm, and pore depth 290 nm), passivated with AlGaAs, deposited on a silver back-reflector, with ITO upper contact and encapsulated with SiOmore » 2. Our model includes both radiative and non-radiative recombination of photo-generated charge carriers. When all light from radiative recombination is assumed to escape the structure, a maximum achievable photocurrent density (MAPD) of 27.6 mA/cm 2 is obtained from normally incident AM 1.5 sunlight. For a surface non-radiative recombination velocity of 10 3 cm/s, this corresponds to a solar power conversion efficiency of 28.3%. When all light from radiative recombination is trapped and reabsorbed (complete photon recycling) the power conversion efficiency increases to 29%. If the surface recombination velocity is reduced to 10 cm/sec, photon recycling is much more effective and the power conversion efficiency reaches 30.6%.« less

  10. Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyderman, Sergey; John, Sajeev

    Here, we demonstrate nearly 30% power conversion efficiency in ultra-thin (~200 nm) gallium arsenide photonic crystal solar cells by numerical solution of the coupled electromagnetic Maxwell and semiconductor drift-diffusion equations. Our architecture enables wave-interference-induced solar light trapping in the wavelength range from 300-865 nm, leading to absorption of almost 90% of incoming sunlight. Our optimized design for 200 nm equivalent bulk thickness of GaAs, is a square-lattice, slanted conical-pore photonic crystal (lattice constant 550 nm, pore diameter 600 nm, and pore depth 290 nm), passivated with AlGaAs, deposited on a silver back-reflector, with ITO upper contact and encapsulated with SiOmore » 2. Our model includes both radiative and non-radiative recombination of photo-generated charge carriers. When all light from radiative recombination is assumed to escape the structure, a maximum achievable photocurrent density (MAPD) of 27.6 mA/cm 2 is obtained from normally incident AM 1.5 sunlight. For a surface non-radiative recombination velocity of 10 3 cm/s, this corresponds to a solar power conversion efficiency of 28.3%. When all light from radiative recombination is trapped and reabsorbed (complete photon recycling) the power conversion efficiency increases to 29%. If the surface recombination velocity is reduced to 10 cm/sec, photon recycling is much more effective and the power conversion efficiency reaches 30.6%.« less

  11. General Relativistic Non-radial Oscillations of Compact Stars

    NASA Astrophysics Data System (ADS)

    Hall, Zack, II; Jaikumar, Prashanth

    2017-01-01

    Currently, we lack a means of identifying the type of matter at the core of compact stars, but in the future, we may be able to use gravitational wave signals produced by fluid oscillations inside compact stars to discover new phases of dense matter. To this end, we study the fluid perturbations inside compact stars such as Neutron Stars and Strange Quark Stars, focusing on modes that couple to gravitational waves. Using a modern equation of state for quark matter that incorporates interactions at moderately high densities, we implement an efficient computational scheme to solve the oscillation equations in the framework of General Relativity, and determine the complex eigenfrequencies that describe the oscillation and damping of the non-radial fluid modes. We discuss the significance of our results for future detection of these modes through gravitational waves. This work is supported in part by the CSULB Graduate Research Fellowship and by the National Science Foundation NSF PHY-1608959.

  12. The luminescence properties of the heteroleptic [Re(CO)3(N∩N)Cl] and [Re(CO)3(N∩N)(CH3CN)](+) complexes in view of the combined Marcus-Jortner and Mulliken-Hush formalism.

    PubMed

    Woźna, Agnieszka; Kapturkiewicz, Andrzej

    2015-11-11

    The luminescence properties of the heteroleptic fac-Re(CO)3(+) complexes with α-diimine N∩N ligands, neutral [Re(CO)3(N∩N)Cl] and cationic [Re(CO)3(N∩N)(CH3CN)](+) species, have been studied in acetonitrile solutions at room temperature. The investigated complexes exhibit the metal to ligand charge-transfer (MLCT) phosphorescence with the emission characteristics strongly affected by the nature of coordinated α-diimine N∩N ligands. The observed trends can be quantitatively described by invoking the electronic interactions between (3)*LC and (3)*MLCT states as well as the spin-orbit interactions between (3)*MLCT and (1)*MLCT states, respectively. All quantities necessary for the description can be straightforwardly accounted from analysis of the radiative (1)*MLCT ← S0 and (3)*MLCT → S0 charge transfer processes. It is also demonstrated that the radiative kr and non-radiative knr decay rate constants of the excited (3)*MLCT states can be interpreted within the same set of parameters. As expected from the Mulliken-Hush formalism the both processes are strictly related that allows prediction of the non-radiative knr rate constants using the parameters available from analysis of the radiative (1)*MLCT ← S0 and (3)*MLCT → S0 charge transfer processes.

  13. The role of temperature ramp-up time before barrier layer growth in optical and structural properties of InGaN/GaN multi-quantum wells

    NASA Astrophysics Data System (ADS)

    Xing, Yao; Zhao, Degang; Jiang, Desheng; Liu, Zongshun; Zhu, Jianjun; Chen, Ping; Yang, Jing; Liu, Wei; Liang, Feng; Liu, Shuangtao; Zhang, Liqun; Wang, Wenjie; Li, Mo; Zhang, Yuantao; Du, Guotong

    2018-05-01

    In InGaN/GaN multi-quantum wells (MQWs), a low temperature cap (LT-cap) layer is grown between the InGaN well layer and low temperature GaN barrier layer. During the growth, a temperature ramp-up and ramp-down process is added between LT-cap and barrier layer growth. The effect of temperature ramp-up time duration on structural and optical properties of quantum wells is studied. It is found that as the ramp-up time increases, the Indium floating layer on the top of the well layer can be diminished effectively, leading to a better interface quality between well and barrier layers, and the carrier localization effect is enhanced, thereby the internal quantum efficiency (IQE) of QWs increases surprisingly. However, if the ramp-up time is too long, the carrier localization effect is weaker, which may increase the probabilities of carriers to meet with nonradiative recombination centers. Meanwhile, more nonradiative recombination centers will be introduced into well layers due to the indium evaporation. Both of them will lead to a reduction of internal quantum efficiency (IQE) of MQWs.

  14. Highly Efficient Defect Emission from ZnO:Zn and ZnO:S Powders

    NASA Astrophysics Data System (ADS)

    Everitt, Henry

    2013-03-01

    Bulk Zinc Oxide (ZnO) is a wide band gap semiconductor with an ultraviolet direct band gap energy of 3.4 eV and a broad, defect-related visible wavelength emission band centered near 2 eV. We have shown that the external quantum efficiency can exceed 50% for this nearly white emission band that closely matches the human dark-adapted visual response. To explore the potential of ZnO as a rare earth-free white light phosphor, we investigated the mechanism of efficient defect emission in three types of ZnO powders: unannealed, annealed, and sulfur-doped. Annealing and sulfur-doping of ZnO greatly increase the strength of defect emission while suppressing the UV band edge emission. Continuous wave and ultrafast one- and two-photon excitation spectroscopy are used to examine the defect emission mechanism. Low temperature photoluminescence (PL) and PL excitation (PLE) spectra were measured for all three compounds, and it was found that bound excitons mediate the defect emission. Temperature-dependent PLE spectra for the defect and band edge emission were measured to estimate trapping and activation energies of the bound excitons and clarify the role they play in the defect emission. Time-resolved techniques were used to ascertain the role of exciton diffusion, the effects of reabsorption, and the spatial distributions of radiative and non-radiative traps. In unannealed ZnO we find that defect emission is suppressed and UV band edge emission is inefficient (< 2%) because of reabsorption and non-radiative recombination due to a high density of non-radiative bulk traps. By annealing ZnO, bulk trap densities are reduced, and a high density of defects responsible for the broad visible emission are created near the surface. Interestingly, nearly identical PLE spectra are found for both the band edge and the defect emission, one of many indications that the defect emission is deeply connected to bound excitons. Quantum efficiency, also measured as a function of excitation wavelength, closely mirrors the PLE spectra for both emission bands. Sulfur-doped ZnO exhibits additional PLE and X-ray features indicative of a ZnS-rich surface shell that correlates with even more efficient defect emission. The results presented here offer hope that engineering defects in ZnO materials may significantly improve the quantum efficiency for white light phosphor applications. This work was supported by the Army's in-house laboratory innovative research program.

  15. Carrier Decay and Diffusion Dynamics in Single-Crystalline CdTe as seen via Microphotoluminescence

    NASA Astrophysics Data System (ADS)

    Mascarenhas, Angelo; Fluegel, Brian; Alberi, Kirstin; Zhang, Yong-Hang

    2015-03-01

    The ability to spatially resolve the degree to which extended defects impact carrier diffusion lengths and lifetimes is important for determining upper limits for defect densities in semiconductor devices. We show that a new spatially and temporally resolved photoluminescence (PL) imaging technique can be used to accurately extract carrier lifetimes in the immediate vicinity of dark-line defects in CdTe/MgCdTe double heterostructures. A series of PL images captured during the decay process show that extended defects with a density of 1.4x10-5 cm-2 deplete photogenerated charge carriers from the surrounding semiconductor material on a nanosecond time scale. The technique makes it possible to elucidate the interplay between nonradiative carrier recombination and carrier diffusion and reveals that they both combine to degrade the PL intensity over a fractional area that is much larger than the physical size of the defects. Carrier lifetimes are correctly determined from numerical simulations of the decay behavior by taking these two effects into account. Our study demonstrates that it is crucial to measure and account for the influence of local defects in the measurement of carrier lifetime and diffusion, which are key transport parameters for the design and modeling of advanced solar-cell and light-emitting devices. We acknowledge the financial support of the Department of Energy Office of Science under Grant No. DE-AC36-08GO28308.

  16. "Supertrap" at Work: Extremely Efficient Nonradiative Recombination Channels in MAPbI3 Perovskites Revealed by Luminescence Super-Resolution Imaging and Spectroscopy.

    PubMed

    Merdasa, Aboma; Tian, Yuxi; Camacho, Rafael; Dobrovolsky, Alexander; Debroye, Elke; Unger, Eva L; Hofkens, Johan; Sundström, Villy; Scheblykin, Ivan G

    2017-06-27

    Organo-metal halide perovskites are some of the most promising materials for the new generation of low-cost photovoltaic and light-emitting devices. Their solution processability is a beneficial trait, although it leads to a spatial inhomogeneity of perovskite films with a variation of the trap state density at the nanoscale. Comprehending their properties using traditional spectroscopy therefore becomes difficult, calling for a combination with microscopy in order to see beyond the ensemble-averaged response. We studied photoluminescence (PL) blinking of micrometer-sized individual methylammonium lead iodide (MAPbI 3 ) perovskite polycrystals, as well as monocrystalline microrods up to 10 μm long. We correlated their PL dynamics with structure employing scanning electron and optical super-resolution microscopy. Combining super-resolution localization imaging and super-resolution optical fluctuation imaging (SOFI), we could detect and quantify preferential emitting regions in polycrystals exhibiting different types of blinking. We propose that blinking in MAPbI 3 occurs by the activation/passivation of a "supertrap" which presumably is a donor-acceptor pair able to trap both electrons and holes. As such, nonradiative recombination via supertraps, in spite being present at a rather low concentrations (10 12 -10 15 cm -3 ), is much more efficient than via all other defect states present in the material at higher concentrations (10 16 -10 18 cm -3 ). We speculate that activation/deactivation of a supertrap occurs by its temporary dissociation into free donor and acceptor impurities. We found that supertraps are most efficient in structurally homogeneous and large MAPbI 3 crystals where carrier diffusion is efficient, which may therefore pose limitations on the efficiency of perovskite-based devices.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorovich, S V; Protsenko, I E

    We report the results of numerical modelling of emission of a two-level atom near a metal nanoparticle under resonant interaction of light with plasmon modes of the particle. Calculations have been performed for different polarisations of light by a dipole approximation method and a complex multipole method. Depending on the distance between a particle and an atom, the contribution of the nonradiative process of electron tunnelling from a two-level atom into a particle, which is calculated using the quasi-classical approximation, has been taken into account and assessed. We have studied spherical gold and silver particles of different diameters (10 –more » 100 nm). The rates of electron tunnelling and of spontaneous decay of the excited atomic state are found. The results can be used to develop nanoscale plasmonic emitters, lasers and photodetectors. (nanooptics)« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCEmore » allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.« less

  19. Effects of surface and interface traps on exciton and multi-exciton dynamics in core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Bozio, Renato; Righetto, Marcello; Minotto, Alessandro

    2017-08-01

    Exciton interactions and dynamics are the most important factors determining the exceptional photophysical properties of semiconductor quantum dots (QDs). In particular, best performances have been obtained for ingeniously engineered core/shell QDs. We have studied two factors entering in the exciton decay dynamics with adverse effects for the luminescence efficiency: exciton trapping at surface and interface traps, and non-radiative Auger recombination in QDs carrying either net charges or multiple excitons. In this work, we present a detailed study into the optical absorption, fluorescence dynamics and quantum yield, as well as ultrafast transient absorption properties of CdSe/CdS, CdSe/Cd0.5Zn0.5S, and CdSe/ZnS QDs as a function of shell thickness. It turns out that de-trapping processes play a pivotal role in determining steady state emission properties. By studying the excitation dependent photoluminescence quantum yields (PLQY) in different CdSe/CdxZn1-xS (x = 0, 0.5, 1) QDs, we demonstrate the different role played by hot and cold carrier trapping rates in determining fluorescence quantum yields. Finally, the use of global analysis allows us untangling the complex ultrafast transient absorption signals. Smoothing of interface potential, together with effective surface passivation, appear to be crucial factors in slowing down both Auger-based and exciton trapping recombination processes.

  20. Exciton Level Structure and Dynamics in Tubular Porphyrin Aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Yan; Stradomska, Anna; Fong, Sarah

    2014-10-30

    We present an account of the optical properties of the Frenkel excitons in self-assembled porphyrin tubular aggregates that represent an analog to natural photosynthetic antennae. Using a combination of ultrafast optical spectroscopy and stochastic exciton modeling, we address both linear and nonlinear exciton absorption, relaxation pathways, and the role of disorder. The static disorder-dominated absorption and fluorescence line widths show little temperature dependence for the lowest excitons (Q band), which we successfully simulate using a model of exciton scattering on acoustic phonons in the host matrix. Temperature-dependent transient absorption of and fluorescence from the excitons in the tubular aggregates aremore » marked by nonexponential decays with time scales ranging from a few picoseconds to a few nanoseconds, reflecting complex relaxation mechanisms. Combined experimental and theoretical investigations indicate that nonradiative pathways induced by traps and defects dominate the relaxation of excitons in the tubular aggregates. We model the pumpprobe spectra and ascribe the excited-state absorption to transitions from one-exciton states to a manifold of mixed one- and two-exciton states. Our results demonstrate that while the delocalized Frenkel excitons (over 208 (1036) molecules for the optically dominant excitons in the Q (B) band) resulting from strong intermolecular coupling in these aggregates could potentially facilitate efficient energy transfer, fast relaxation due to defects and disorder probably present a major limitation for exciton transport over large distances.« less

  1. Ultralow Surface Recombination Velocity in Passivated InGaAs/InP Nanopillars

    PubMed Central

    2017-01-01

    The III–V semiconductor InGaAs is a key material for photonics because it provides optical emission and absorption in the 1.55 μm telecommunication wavelength window. However, InGaAs suffers from pronounced nonradiative effects associated with its surface states, which affect the performance of nanophotonic devices for optical interconnects, namely nanolasers and nanodetectors. This work reports the strong suppression of surface recombination of undoped InGaAs/InP nanostructured semiconductor pillars using a combination of ammonium sulfide, (NH4)2S, chemical treatment and silicon oxide, SiOx, coating. An 80-fold enhancement in the photoluminescence (PL) intensity of submicrometer pillars at a wavelength of 1550 nm is observed as compared with the unpassivated nanopillars. The PL decay time of ∼0.3 μm wide square nanopillars is dramatically increased from ∼100 ps to ∼25 ns after sulfur treatment and SiOx coating. The extremely long lifetimes reported here, to our knowledge the highest reported to date for undoped InGaAs nanostructures, are associated with a record-low surface recombination velocity of ∼260 cm/s. We also conclusively show that the SiOx capping layer plays an active role in the passivation. These results are crucial for the future development of high-performance nanoscale optoelectronic devices for applications in energy-efficient data optical links, single-photon sensing, and photovoltaics. PMID:28340296

  2. High Performing Ternary Solar Cells through Förster Resonance Energy Transfer between Nonfullerene Acceptors.

    PubMed

    Yang, Lei; Gu, Wenxing; Hong, Ling; Mi, Yang; Liu, Feng; Liu, Ming; Yang, Yufei; Sharma, Bigyan; Liu, Xinfeng; Huang, Hui

    2017-08-16

    Nonradiative Förster resonance energy transfer (FRET) is an important mechanism of organic solar cells, which can improve the exciton migration over a long distance, resulting in improvement of efficiency of solar cells. However, the current observations of FRET are very limited, and the efficiencies are less than 9%. In this study, FRET effect was first observed between two nonfullerene acceptors in ternary solar cells, which improved both the absorption range and exciton harvesting, leading to the dramatic enhancement in the short circuit current and power conversion efficiency. Moreover, this strategy is proved to be a versatile platform for conjugated polymers with different bandgaps, resulting in a remarkable efficiency of 10.4%. These results demonstrated a novel method to enhance the efficiency of organic soar cells.

  3. Photoexcited emission efficiencies of zinc oxide

    NASA Astrophysics Data System (ADS)

    Foreman, John Vincent

    Optoelectronic properties of the II-VI semiconductor zinc oxide (ZnO) have been studied scientifically for almost 60 years; however, many fundamental questions remain unanswered about its two primary emission bands--the exciton-related luminescence in the ultraviolet and the defect-related emission band centered in the green portion of the visible spectrum. The work in this dissertation was motivated by the surprising optical properties of a ZnO nanowire sample grown by the group of Prof. Jie Liu, Department of Chemistry, Duke University. We found that this nanowire sample exhibited defect-related green/white emission of unprecedented intensity relative to near-band-edge luminescence. The experimental work comprising this dissertation was designed to explain the optical properties of this ZnO nanowire sample. Understanding the physics underlying such exceptional intensity of green emission addresses many of the open questions of ZnO research and assesses the possibility of using ZnO nanostructures as an ultraviolet-excited, broadband visible phosphor. The goal of this dissertation is to provide insight into what factors influence the radiative and nonradiative recombination efficiencies of ZnO by characterizing simultaneously the optical properties of the near-band-edge ultraviolet and the defect-related green emission bands. Specifically, we seek to understand the mechanisms of ultraviolet and green emission, the mechanism of energy transfer between them, and the evolution of their emission efficiencies with parameters such as excitation density and sample temperature. These fundamental but unanswered questions of ZnO emission are addressed here by using a novel combination of ultrafast spectroscopic techniques in conjunction with a systematic set of ZnO samples. Through this systematic investigation, ZnO may be realistically assessed as a potential green/white light phosphor. Photoluminescence techniques are used to characterize the thermal quenching behavior of both emission bands in micrometer-scale ZnO powders. Green luminescence quenching is described by activation energies associated with bound excitons. We find that green luminescence efficiency is maximized when excitons are localized in the vicinity of green-emitting defects. Subsequent photoluminescence excitation measurements performed at multiple temperatures independently verified that green band photoluminescence intensity directly correlates with the photogenerated exciton population. The spatial distributions of green-emitting defects and nonradiative traps are elucidated by an innovative combination of quantum efficiency and time-integrated/resolved photoluminescence measurements. By combining these techniques for the first time, we take advantage of the drastically different absorption coefficients for one- and two-photon excitations to provide details about the types and concentrations of surface and bulk defects and to demonstrate the non-negligible effects of reabsorption. A comparison of results for unannealed and annealed ZnO powders indicates that the annealing process creates a high density of green-emitting defects near the surface of the sample while simultaneously reducing the density of bulk nonradiative traps. These experimental results are discussed in the context of a simple rate equation model that accounts for the quantum efficiencies of both emission bands. For both femtosecond pulsed and continuous-wave excitations, the green band efficiency is found to decrease with increasing excitation density--from 35% to 5% for pulsed excitation spanning 1-1000 muJ/cm--2, and from 60% to 5% for continuous excitation in the range 0.01-10 W/cm --2. On the other hand, near-band-edge emission efficiency increases from 0.4% to 25% for increasing pulsed excitation density and from 0.1% to 0.6% for continuous excitation. It is shown experimentally that these changes in efficiency correspond to a reduction in exciton formation efficiency. The differences in efficiencies for pulsed versus continuous-wave excitation are described by changes in the relative rates of exciton luminescence and exciton capture at green defects based on an extended rate equation model that accounts for the excitation density dependence of both luminescence bands. In using a systematic set of ZnO samples and a novel combination of optical techniques to characterize them, this body of work presents a comprehensive and detailed physical picture of recombination mechanisms in ZnO. The insight provided by these results has immediate implications for material growth/processing techniques and should help material growers control the relative efficiencies of ultraviolet, green/visible, and nonradiative recombination channels in ZnO.

  4. Multidimensional, fully implicit, exactly conserving electromagnetic particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Chacon, Luis

    2015-09-01

    We discuss a new, conservative, fully implicit 2D-3V particle-in-cell algorithm for non-radiative, electromagnetic kinetic plasma simulations, based on the Vlasov-Darwin model. Unlike earlier linearly implicit PIC schemes and standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. This has been demonstrated in 1D electrostatic and electromagnetic contexts. In this study, we build on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the Darwin field and particle orbit equations for multiple species in multiple dimensions. The Vlasov-Darwin model is very attractive for PIC simulations because it avoids radiative noise issues in non-radiative electromagnetic regimes. The algorithm conserves global energy, local charge, and particle canonical-momentum exactly, even with grid packing. The nonlinear iteration is effectively accelerated with a fluid preconditioner, which allows efficient use of large timesteps, O(√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D and 2D. Support from the LANL LDRD program and the DOE-SC ASCR office.

  5. Nonradiative lifetime extraction using power-dependent relative photoluminescence of III-V semiconductor double-heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, A. W., E-mail: alexandre.walker@ise.fraunhofer.de; Heckelmann, S.; Karcher, C.

    2016-04-21

    A power-dependent relative photoluminescence measurement method is developed for double-heterostructures composed of III-V semiconductors. Analyzing the data yields insight into the radiative efficiency of the absorbing layer as a function of laser intensity. Four GaAs samples of different thicknesses are characterized, and the measured data are corrected for dependencies of carrier concentration and photon recycling. This correction procedure is described and discussed in detail in order to determine the material's Shockley-Read-Hall lifetime as a function of excitation intensity. The procedure assumes 100% internal radiative efficiency under the highest injection conditions, and we show this leads to less than 0.5% uncertainty.more » The resulting GaAs material demonstrates a 5.7 ± 0.5 ns nonradiative lifetime across all samples of similar doping (2–3 × 10{sup 17 }cm{sup −3}) for an injected excess carrier concentration below 4 × 10{sup 12 }cm{sup −3}. This increases considerably up to longer than 1 μs under high injection levels due to a trap saturation effect. The method is also shown to give insight into bulk and interface recombination.« less

  6. Recombination-Enhanced Effect in Green/Yellow Luminescence from BeZnCdSe Quantum Wells Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Akimoto, Ryoichi

    2018-02-01

    The recombination-enhanced defect reaction (REDR) effect in single green/yellow emission BeZnCdSe quantum wells (QWs) has been investigated using photoluminescence (PL) microscopy and time-resolved PL measurements. Even though a lattice hardening effect is expected in BeZnCdSe QWs alloyed with beryllium, PL intensity enhancement due to photoannealing as well as subsequent degradation due to generation of dark spot defects (DSDs) and dark line defects (DLDs) were observed. PL microscopy provided insights into the REDR effect during photoannealing. PL images were spatially inhomogeneous in intensity for the as-grown wafer, with the darker areas having size from submicrometer to 1 μm becoming brighter with the progress of photoannealing, revealing a built-in distribution of point defects incorporated in the structure during crystal growth. In addition, we showed that the PL lifetime increased with the progress of photoannealing; hence, the density of point defects decreased due to the REDR effect. A nonradiative decay channel insensitive to the REDR effect was also found in the area free from DSDs and DLDs, suggesting that another type of defect remained in the structure (note that this is not the defect reported in study of slow-mode degradation in long-lived laser diodes). As the degradation progresses, a nonradiative channel such as photocarrier diffusion and subsequent trapping by a patch of DLDs will emerge before radiative recombination.

  7. Non-radiative relaxation of photoexcited chlorophylls: Theoretical and experimental study

    DOE PAGES

    Bricker, William P.; Shenai, Prathamesh M.; Ghosh, Avishek; ...

    2015-09-08

    Nonradiative relaxation of high-energy excited states to the lowest excited state in chlorophylls marks the first step in the process of photosynthesis. We perform ultrafast transient absorption spectroscopy measurements, that reveal this internal conversion dynamics to be slightly slower in chlorophyll B than in chlorophyll A. With modeling this process, non-adiabatic excited state molecular dynamics simulations uncovers a critical role played by the different side groups in the two molecules in governing the intramolecular redistribution of excited state wavefunction, leading, in turn, to different time-scales. Even given smaller electron-vibrational couplings compared to common organic conjugated chromophores, these molecules are ablemore » to efficiently dissipate about 1 eV of electronic energy into heat on the timescale of around 200 fs. This is achieved via selective participation of specific atomic groups and complex global migration of the wavefunction from the outer to inner ring, which may have important implications for biological light-harvesting function.« less

  8. Decay channels of Al L sub 2,3 excitons and the absence of O K excitons in. alpha. -Al sub 2 O sub 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, W.L.; Jia, J.; Dong, Q.

    1991-12-15

    The Al {ital L}{sub 2,3} and O {ital K} thresholds for single-crystal {alpha}-Al{sub 2}O{sub 3} have been studied by photoemission. Energy-distribution curves, constant-initial-state (CIS), and constant-final-state (CFS) spectra are reported and compared to the absorption spectrum reported previously. An exciton appears as a doublet at threshold in the Al {ital L}{sub 2,3} CFS, CIS, and absorption spectra. The details of the Al {ital L}{sub 2,3} CFS spectrum and absorption spectrum are similar, while the exciton is the only feature present in the CIS spectrum. Comparisons of the various Al {ital L}{sub 2,3} spectra allow the probabilities of different exciton decaymore » channels to be determined. The probability for nonradiative direct recombination of the exciton is found to be (8{plus minus}1)% and the probability for Auger decay of the exciton is found to be (72{plus minus}20)%. Comparisons of the O {ital K} CIS and CFS spectra suggest that no O {ital K} exciton is formed.« less

  9. Modulating the Electron-Hole Interaction in a Hybrid Lead Halide Perovskite with an Electric Field.

    PubMed

    Leijtens, Tomas; Srimath Kandada, Ajay Ram; Eperon, Giles E; Grancini, Giulia; D'Innocenzo, Valerio; Ball, James M; Stranks, Samuel D; Snaith, Henry J; Petrozza, Annamaria

    2015-12-16

    Despite rapid developments in both photovoltaic and light-emitting device performance, the understanding of the optoelectronic properties of hybrid lead halide perovskites is still incomplete. In particular, the polarizability of the material, the presence of molecular dipoles, and their influence on the dynamics of the photoexcitations remain an open issue to be clarified. Here, we investigate the effect of an applied external electric field on the photoexcited species of CH3NH3PbI3 thin films, both at room temperature and at low temperature, by monitoring the photoluminescence (PL) yield and PL decays. At room temperature we find evidence for electric-field-induced reduction of radiative bimolecular carrier recombination together with motion of charged defects that affects the nonradiative decay rate of the photoexcited species. At low temperature (190 K), we observe a field-induced enhancement of radiative free carrier recombination rates that lasts even after the removal of the field. We assign this to field-induced alignment of the molecular dipoles, which reduces the vibrational freedom of the lattice and the associated local screening and hence results in a stronger electron-hole interaction.

  10. Intensity and temperature-dependent photoluminescence of tris (8-hydroxyquinoline) aluminum films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajward, A. M.; Wang, X.; Wagner, H. P.

    2013-12-04

    We investigate the recombination of excitons in tris (8-hydroxyquinoline) aluminum films by intensity and temperature dependent time-resolved photoluminescence (PL). At low temperature (15 K) and elevated excitation intensity the radiative emission is quenched by singlet-singlet annihilation processes. With rising temperature the PL quenching is strongly reduced resulting in a PL efficiency maximum at ∼170 K. The reduced exciton annihilation is attributed to thermally activated occupation of non-quenchable trapped exciton states. Above 170 K the PL efficiency decreases due to thermal de-trapping of radiative states and subsequent migration to non-radiative centers.

  11. 50W CW output power and 12mJ pulses from a quasi-2-level Yb:YAG ceramic rod laser end-pumped at the 969nm zero-phonon line

    NASA Astrophysics Data System (ADS)

    Fries, Christian; Weitz, Marco; Theobald, Christian; v. Löwis of Menar, Patric; Bartschke, Jürgen; L'huillier, Johannes A.

    2015-02-01

    With the advent of high power and narrow bandwidth 969 nm pump diodes, direct pumping into the upper laser level of Yb:YAG and hence quasi-2-level lasers became possible. Pumping directly into the emitting level leads to higher quantum efficiency and reduction of non-radiative decay. Consequently, thermal load, thermal lensing and risk of fracture are reduced significantly. Moreover pump saturation and thermal population of uninvolved energy-levels in ground and excited states are benefical for a homogenous distribution of the pump beam as well as the reduction of reabsorption loss compared to 3-level systems, which allows for high-power DPSS lasers. Beside continuous-wave (cw) operation, nanosecond pulses with a repetition rate between 1 and 5 kHz are an attractive alternative to flashlamp-pumped systems (10-100 Hz) in various measurement applications that require higher data acquisition rates because of new faster detectors. Based on measurements of the absorption and a detailed numerical model for pump beam distribution, including beam propagation and saturation factors, power-scaling of a ceramic rod Yb:YAG oscillator was possible. Finally a cw output power of 50 W with 33 % pump efficiency at 1030 nm has been demonstrated (M2 < 1.2). Nanosecond pulses have been produced by cavity-dumping of this system. The cavity-dumped setup allowed for 3-10 ns pulses with a pulse energy of 12.5 mJ at 1 kHz (M2 < 1.1). In order to achieve these results a systematic experimental and numerical investigation on gain dynamics and the identification of different stable operating regimes has been carried out.

  12. Data-driven discovery of energy materials: efficient BaM2Si3O10 : Eu2+ (M = Sc, Lu) phosphors for application in solid state white lighting.

    PubMed

    Brgoch, Jakoah; Hasz, Kathryn; Denault, Kristin A; Borg, Christopher K H; Mikhailovsky, Alexander A; Seshadri, Ram

    2014-01-01

    In developing phosphors for application in solid state lighting, it is advantageous to target structures from databases with highly condensed polyhedral networks that produce rigid host compounds. Rigidity limits channels for non-radiative decay that will decrease the luminescence quantum yield. BaM(2)Si(3)O(10) (M = Sc, Lu) follows this design criterion and is studied here as an efficient Eu(2+)-based phosphor. M = Sc(3+) and Lu(3+) compounds with Eu(2+) substitution were prepared and characterized using synchrotron X-ray powder diffraction and photoluminescence spectroscopy. Substitution with Eu(2+) according to Ba(1-x)Eu(x)Sc(2)Si(3)O(10) and Ba(1-x)Eu(x)Lu(2)Si(3)O(10) results in UV-to-blue and UV-to-blue-green phosphors, respectively. Interestingly, substitution with Eu(2+) in the Lu(3+) containing material produces two emission peaks at low temperature and with 365 nm excitation, as allowed by the two substitution sites. The photoluminescence of the Sc(3+) compound is robust at high temperature, decreasing by only 25% of its room temperature intensity at 503 K, while the Lu-analogue suffers a large drop (75%) from its room temperature intensity. The decrease in emission intensity is explained as stemming from charge transfer quenching due to the short distances separating the luminescent centers on the Lu(3+) substitution site. The correlation between structure and optical response in these two compounds indicates that even though the structures are three-dimensionally connected, high symmetry is required to prevent structural distortions that could impact photoluminescence.

  13. Energy conversion of X-ray, ultraviolet and infrared radiation in Gd2O3 crystals doped with Er3+ ions

    NASA Astrophysics Data System (ADS)

    Trofimova, E. S.; Pustovarov, V. A.; Kuznetsova, Yu. A.; Zatsepin, A. F.

    2017-09-01

    Spectra of photoluminescence (PL) and X-ray excited luminescence (XRL) in region of 1.5-5.0 eV, PL excitation spectra (2.8-5.8 eV), PL decay kinetics were measured in Gd2O3 crystals doped both with Er3+ and Zn2+ ions. Synchrotron radiation (VEPP-3 storage ring, Novosibirsk, Russia) were used for XRL measurements. PL spectra were studied at room temperature and T= 88 K under excitation with energy Eexc: a) in fundamental absorption region (Eexc≥Eg); b) in intracenter excitation region (Eexc

  14. Development of Non-Toxic Quantum Dots for Flexible Display Applications

    DTIC Science & Technology

    2013-11-14

    of these organically passivated core NCs typically exhibit surface related trap states acting as fast non-radiative de -excitation channels for...CSS) structures. These CS or CSS d-dots are planned to surface passivation with inorganic metal-free ligands for efficient electron-hole injection...1998, 281, 2013. (2) Chan, W.; Nie, S. Science 1998, 281, 2016. (3) Kim, S.; Lim, Y. T.; Soltesz, E. G.; De Grand, A. M.; Lee, J.; Nakayama, A

  15. Comment on "Comparative study of ab initio nonradiative recombination rate calculations under different formalisms"

    NASA Astrophysics Data System (ADS)

    Wickramaratne, Darshana; Shen, Jimmy-Xuan; Alkauskas, Audrius; Van de Walle, Chris G.

    2018-02-01

    In a recent article [Phys. Rev. B 91, 205315 (2015), 10.1103/PhysRevB.91.205315] Shi, Xu, and Wang presented a comparison of several formalisms to calculate nonradiative recombination rates and concluded the "one-dimensional (1D) quantum formula" that was used by Alkauskas et al. [Phys. Rev. B 90, 075202 (2014), 10.1103/PhysRevB.90.075202] is insufficient to accurately describe nonradiative capture rates. Our analysis of the results of Shi, Xu, and Wang indicates that their conclusions about the 1D quantum formula are unfounded and stem from an error in their calculations. Our own calculations demonstrate that the 1D quantum formula approach yields reliable and accurate results for nonradiative recombination rates.

  16. Ab initio calculations of deep-level carrier nonradiative recombination rates in bulk semiconductors.

    PubMed

    Shi, Lin; Wang, Lin-Wang

    2012-12-14

    Nonradiative carrier recombination is of both applied and fundamental interest. Here a novel algorithm is introduced to calculate such a deep level nonradiative recombination rate using the ab initio density functional theory. This algorithm can calculate the electron-phonon coupling constants all at once. An approximation is presented to calculate the phonon modes for one impurity in a large supercell. The neutral Zn impurity site together with a N vacancy is considered as the carrier-capturing deep impurity level in bulk GaN. Its capture coefficient is calculated as 5.57 × 10(-10)cm(3)/s at 300 K. We found that there is no apparent onset of such a nonradiative process as a function of temperature.

  17. Microscopic theory of multiple-phonon-mediated dephasing and relaxation of quantum dots near a photonic band gap

    NASA Astrophysics Data System (ADS)

    Roy, Chiranjeeb; John, Sajeev

    2010-02-01

    We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption line shape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the “colored” electromagnetic vacuum of a photonic band-gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to an enhanced lifetime of a photon-atom bound state in a PBG. This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (breakup of phonons into lower energy phonons) and purely nonradiative decay. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption line shapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.

  18. Towards improved photovoltaic conversion using dilute magnetic semiconductors (abstract only)

    NASA Astrophysics Data System (ADS)

    Olsson, Pär; Guillemoles, J.-F.; Domain, C.

    2008-02-01

    Present photovoltaic devices, based on p/n junctions, are limited from first principles to maximal efficiencies of 31% (40% under full solar concentration; Shockley and Queisser 1961 J. Appl. Phys. 32 510). However, more innovative schemes may overcome the Shockley-Queisser limit since the theoretical maximal efficiency of solar energy conversion is higher than 85% (Harder and Würfel 2003 Semicond. Sci. Technol. 18 S151). To date, the only practical realization of such an innovative scheme has been multi-junction devices, which at present hold the world record for efficiency at nearly 41% at significant solar concentration (US DOE news site: http://www.energy.gov/news/4503.htm). It has been proposed that one could make use of the solar spectrum in much the same way as the multi-junction devices do but in a single cell, using impurity induced intermediate levels to create gaps of different sizes. This intermediate level semiconductor (ILSC) concept (Green and Wenham 1994 Appl. Phys. Lett. 65 2907; Luque and Martí1997 Phys. Rev. Lett. 78 5014) has a maximal efficiency similar to that of multi-junction devices but suffers from prohibitively large non-radiative recombination rates. We here propose to use a ferromagnetic impurity scheme in order to reduce the non-radiative recombination rates while maintaining the high theoretical maximum efficiency of the ILSC scheme, that is about 46%. Using density functional theory calculations, the electronic and energetic properties of transition metal impurities for a wide range of semiconductors have been analysed. Of the several hundred compounds studied, only a few fulfil the design criteria that we present here. As an example, wide gap AlP is one of the most promising compounds. It was found that inclusion of significant amounts of Mn in AlP induces band structures providing conversion efficiencies potentially close to the theoretical maximum, with an estimated Curie temperature reaching above 100 K.

  19. Spectroscopic studies on the interaction of fluorescein and safranine T in PC liposomes

    NASA Astrophysics Data System (ADS)

    Bozkurt, Ebru; Bayraktutan, Tuğba; Acar, Murat; Toprak, Mahmut

    2013-01-01

    In this study, the fluorescence quenching of fluorescein by safranine T in liposome media had been investigated systematically by fluorescence spectroscopy, UV-vis absorption spectroscopy and fluorescence decay lifetime measurements. The spectroscopic data were analyzed using a Stern-Volmer equation to determine the quenching process. The experimental results showed that the intrinsic fluorescence of fluorescein was strongly quenched by safranine T, and that the quenching mechanism was considered as static quenching by forming a ground-complex. The Stern-Volmer quenching constant Ksv, and the bimolecular quenching constant Kq were estimated. The distances between the donor (fluorescein) and the acceptor (safranine T) were calculated according to the Förster non-radiation energy transfer theory. In addition, the partition coefficient of the safranine T (Kp) in the L-egg lecithin phosphatidylcholine liposomes was also calculated by utilizing the fluorescence quenching.

  20. Enhanced nonlinear optical responses in donor-acceptor ionic complexes via photo induced energy transfer.

    PubMed

    Mamidala, Venkatesh; Polavarapu, Lakshminarayana; Balapanuru, Janardhan; Loh, Kian Ping; Xu, Qing-Hua; Ji, Wei

    2010-12-06

    By complexion of donor and acceptor using ionic interactions, the enhanced nonlinear optical responses of donor-acceptor ionic complexes in aqueous solution were studied with 7-ns laser pulses at 532 nm. The optical limiting performance of negatively charged gold nanoparticles or graphene oxide (Acceptor) was shown to be improved significantly when they were mixed with water-soluble, positively-charged porphyrin (Donor) derivative. In contrast, no enhancement was observed when mixing with negatively-charged porphyrin. Transient absorption studies of the donor-acceptor complexes confirmed that the addition of energy transfer pathway were responsible for excited-state deactivation, which results in the observed enhancement. Fluence, angle-dependent scattering and time correlated single photon counting measurements suggested that the enhanced nonlinear scattering due to faster nonradiative decay should play a major role in the enhanced optical limiting responses.

  1. Quantum Mechanics/Molecular Mechanics Free Energy Maps and Nonadiabatic Simulations for a Photochemical Reaction in DNA: Cyclobutane Thymine Dimer.

    PubMed

    Mendieta-Moreno, Jesús I; Trabada, Daniel G; Mendieta, Jesús; Lewis, James P; Gómez-Puertas, Paulino; Ortega, José

    2016-11-03

    The absorption of ultraviolet radiation by DNA may result in harmful genetic lesions that affect DNA replication and transcription, ultimately causing mutations, cancer, and/or cell death. We analyze the most abundant photochemical reaction in DNA, the cyclobutane thymine dimer, using hybrid quantum mechanics/molecular mechanics (QM/MM) techniques and QM/MM nonadiabatic molecular dynamics. We find that, due to its double helix structure, DNA presents a free energy barrier between nonreactive and reactive conformations leading to the photolesion. Moreover, our nonadiabatic simulations show that most of the photoexcited reactive conformations return to standard B-DNA conformations after an ultrafast nonradiative decay to the ground state. This work highlights the importance of dynamical effects (free energy, excited-state dynamics) for the study of photochemical reactions in biological systems.

  2. Plasmon enhanced fluorescence studies from aligned gold nanorod arrays modified with SiO{sub 2} spacer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damm, Signe; Fedele, Stefano; Rice, James H., E-mail: james.rice@ucd.ie

    Here, we demonstrate that quasi self-standing Au nanorod arrays prepared with plasma polymerisation deposited SiO{sub 2} dielectric spacers support surface enhanced fluorescence (SEF) while maintaining high signal reproducibility. We show that it is possible to find a balance between enhanced radiative and non-radiative decay rates at which the fluorescent intensity is maximized. The SEF signal optimised with a 30 nm spacer layer thickness showed a 3.5-fold enhancement with a signal variance of <15% thereby keeping the integrity of the nanorod array. We also demonstrate the decreased importance of obtaining resonance conditions when localized surface plasmon resonance is positioned within the spectralmore » region of Au interband transitions. Procedures for further increasing the SEF enhancement factor are also discussed.« less

  3. Maximum efficiency of state-space models of nanoscale energy conversion devices

    NASA Astrophysics Data System (ADS)

    Einax, Mario; Nitzan, Abraham

    2016-07-01

    The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage.

  4. Maximum efficiency of state-space models of nanoscale energy conversion devices.

    PubMed

    Einax, Mario; Nitzan, Abraham

    2016-07-07

    The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage.

  5. Methods for understanding super-efficient data envelopment analysis results with an application to hospital inpatient surgery.

    PubMed

    O'Neill, Liam; Dexter, Franklin

    2005-11-01

    We compare two techniques for increasing the transparency and face validity of Data Envelopment Analysis (DEA) results for managers at a single decision-making unit: multifactor efficiency (MFE) and non-radial super-efficiency (NRSE). Both methods incorporate the slack values from the super-efficient DEA model to provide a more robust performance measure than radial super-efficiency scores. MFE and NRSE are equivalent for unique optimal solutions and a single output. MFE incorporates the slack values from multiple output variables, whereas NRSE does not. MFE can be more transparent to managers since it involves no additional optimization steps beyond the DEA, whereas NRSE requires several. We compare results for operating room managers at an Iowa hospital evaluating its growth potential for multiple surgical specialties. In addition, we address the problem of upward bias of the slack values of the super-efficient DEA model.

  6. Photoacoustic Determination of Non-radiative Relaxation Time of Absorbing Centers in Maize Seeds

    NASA Astrophysics Data System (ADS)

    Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.

    2017-07-01

    Using non-destructive photothermal techniques, it is possible to characterize non-homogenous materials to obtain its optical and thermal properties through photoacoustic spectroscopy (PAS). In photoacoustic (PA) phenomena, there are transient states of thermal excitation, when samples absorb the incident light; these states manifest an excitation process that generates the PA signal, being in direct relation with the non-radiative relaxation times with the sample absorbent centers. The objective of this study was to determine the non-radiative relaxation times associated with different absorbent centers of corn seeds ( Zea mays L.), by using PAS. A frequency scan was done at different wavelengths (350 nm, 470 nm and 650 nm) in order to obtain the non-radiative relaxation times with different types of maize seeds.

  7. Förster resonance energy transfer: Role of diffusion of fluorophore orientation and separation in observed shifts of FRET efficiency

    DOE PAGES

    Wallace, Bram; Atzberger, Paul J.; D’Auria, Sabato

    2017-05-19

    Forster resonance energy transfer (FRET) is a widely used single-molecule technique for measuring nanoscale distances from changes in the non-radiative transfer of energy between donor and acceptor fluorophores. For macromolecules and complexes this observed transfer efficiency is used to infer changes in molecular conformation under differing experimental conditions. But, sometimes shifts are observed in the FRET efficiency even when there is strong experimental evidence that the molecular conformational state is unchanged. Here, we investigate ways in which such discrepancies can arise from kinetic effects. We show that significant shifts can arise from the interplay between excitation kinetics, orientation diffusion ofmore » fluorophores, separation diffusion of fluorophores, and non-emitting quenching.« less

  8. Förster resonance energy transfer: Role of diffusion of fluorophore orientation and separation in observed shifts of FRET efficiency

    PubMed Central

    Wallace, Bram

    2017-01-01

    Förster resonance energy transfer (FRET) is a widely used single-molecule technique for measuring nanoscale distances from changes in the non-radiative transfer of energy between donor and acceptor fluorophores. For macromolecules and complexes this observed transfer efficiency is used to infer changes in molecular conformation under differing experimental conditions. However, sometimes shifts are observed in the FRET efficiency even when there is strong experimental evidence that the molecular conformational state is unchanged. We investigate ways in which such discrepancies can arise from kinetic effects. We show that significant shifts can arise from the interplay between excitation kinetics, orientation diffusion of fluorophores, separation diffusion of fluorophores, and non-emitting quenching. PMID:28542211

  9. Ag colloids and arrays for plasmonic non-radiative energy transfer from quantum dots to a quantum well

    NASA Astrophysics Data System (ADS)

    Murphy, Graham P.; Gough, John J.; Higgins, Luke J.; Karanikolas, Vasilios D.; Wilson, Keith M.; Garcia Coindreau, Jorge A.; Zubialevich, Vitaly Z.; Parbrook, Peter J.; Bradley, A. Louise

    2017-03-01

    Non-radiative energy transfer (NRET) can be an efficient process of benefit to many applications including photovoltaics, sensors, light emitting diodes and photodetectors. Combining the remarkable optical properties of quantum dots (QDs) with the electrical properties of quantum wells (QWs) allows for the formation of hybrid devices which can utilize NRET as a means of transferring absorbed optical energy from the QDs to the QW. Here we report on plasmon-enhanced NRET from semiconductor nanocrystal QDs to a QW. Ag nanoparticles in the form of colloids and ordered arrays are used to demonstrate plasmon-mediated NRET from QDs to QWs with varying top barrier thicknesses. Plasmon-mediated energy transfer (ET) efficiencies of up to ˜25% are observed with the Ag colloids. The distance dependence of the plasmon-mediated ET is found to follow the same d -4 dependence as the direct QD to QW ET. There is also evidence for an increase in the characteristic distance of the interaction, thus indicating that it follows a Förster-like model with the Ag nanoparticle-QD acting as an enhanced donor dipole. Ordered Ag nanoparticle arrays display plasmon-mediated ET efficiencies up to ˜21%. To explore the tunability of the array system, two arrays with different geometries are presented. It is demonstrated that changing the geometry of the array allows a transition from overall quenching of the acceptor QW emission to enhancement, as well as control of the competition between the QD donor quenching and ET rates.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Bram; Atzberger, Paul J.; D’Auria, Sabato

    Forster resonance energy transfer (FRET) is a widely used single-molecule technique for measuring nanoscale distances from changes in the non-radiative transfer of energy between donor and acceptor fluorophores. For macromolecules and complexes this observed transfer efficiency is used to infer changes in molecular conformation under differing experimental conditions. But, sometimes shifts are observed in the FRET efficiency even when there is strong experimental evidence that the molecular conformational state is unchanged. Here, we investigate ways in which such discrepancies can arise from kinetic effects. We show that significant shifts can arise from the interplay between excitation kinetics, orientation diffusion ofmore » fluorophores, separation diffusion of fluorophores, and non-emitting quenching.« less

  11. Growth and Optimization of 2 Micrometers InGaSb/AlGaSb Quantum-Well-Based VECSELs on GaAs/AlGaAs DBRs

    DTIC Science & Technology

    2013-08-01

    overwhelming nonradiative recombination losses in the antimonide active region. Furthermore, if the growth of the antimonide active region is done on a GaAs...This is important as threading dislocations would introduce a strong nonradiative recombination process in the QWs and relaxation that is not 100...These defects can act as nonradiative recombination centers. Thus, the source of the threading dislocations and their density in the active region

  12. Screw dislocation-induced growth spirals as emissive exciton localization centers in Al-rich AlGaN/AlN quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funato, Mitsuru, E-mail: funato@kuee.kyoto-u.ac.jp; Banal, Ryan G.; Kawakami, Yoichi

    2015-11-15

    Screw dislocations in Al-rich AlGaN/AlN quantum wells cause growth spirals with an enhanced Ga incorporation, which create potential minima. Although screw dislocations and their surrounding potential minima suggest non-radiative recombination processes within growth spirals, in reality, screw dislocations are not major non-radiative sinks for carriers. Consequently, carriers localized within growth spirals recombine radiatively without being captured by non-radiative recombination centers, resulting in intense emissions from growth spirals.

  13. Interaction of non-radially symmetric camphor particles

    NASA Astrophysics Data System (ADS)

    Ei, Shin-Ichiro; Kitahata, Hiroyuki; Koyano, Yuki; Nagayama, Masaharu

    2018-03-01

    In this study, the interaction between two non-radially symmetric camphor particles is theoretically investigated and the equation describing the motion is derived as an ordinary differential system for the locations and the rotations. In particular, slightly modified non-radially symmetric cases from radial symmetry are extensively investigated and explicit motions are obtained. For example, it is theoretically shown that elliptically deformed camphor particles interact so as to be parallel with major axes. Such predicted motions are also checked by real experiments and numerical simulations.

  14. Influence of ZnO seed layer precursor molar ratio on the density of interface defects in low temperature aqueous chemically synthesized ZnO nanorods/GaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Alnoor, Hatim; Pozina, Galia; Khranovskyy, Volodymyr; Liu, Xianjie; Iandolo, Donata; Willander, Magnus; Nur, Omer

    2016-04-01

    Low temperature aqueous chemical synthesis (LT-ACS) of zinc oxide (ZnO) nanorods (NRs) has been attracting considerable research interest due to its great potential in the development of light-emitting diodes (LEDs). The influence of the molar ratio of the zinc acetate (ZnAc): KOH as a ZnO seed layer precursor on the density of interface defects and hence the presence of non-radiative recombination centers in LT-ACS of ZnO NRs/GaN LEDs has been systematically investigated. The material quality of the as-prepared seed layer as quantitatively deduced by the X-ray photoelectron spectroscopy is found to be influenced by the molar ratio. It is revealed by spatially resolved cathodoluminescence that the seed layer molar ratio plays a significant role in the formation and the density of defects at the n-ZnO NRs/p-GaN heterostructure interface. Consequently, LED devices processed using ZnO NRs synthesized with molar ratio of 1:5 M exhibit stronger yellow emission (˜575 nm) compared to those based on 1:1 and 1:3 M ratios as measured by the electroluminescence. Furthermore, seed layer molar ratio shows a quantitative dependence of the non-radiative defect densities as deduced from light-output current characteristics analysis. These results have implications on the development of high-efficiency ZnO-based LEDs and may also be helpful in understanding the effects of the ZnO seed layer on defect-related non-radiative recombination.

  15. The dependence of the ultrafast relaxation kinetics of the S2 and S1 states in β-carotene homologs and lycopene on conjugation length studied by femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies

    NASA Astrophysics Data System (ADS)

    Kosumi, Daisuke; Fujiwara, Masazumi; Fujii, Ritsuko; Cogdell, Richard J.; Hashimoto, Hideki; Yoshizawa, Masayuki

    2009-06-01

    The ultrafast relaxation kinetics of all-trans-β-carotene homologs with varying numbers of conjugated double bonds n(n =7-15) and lycopene (n =11) has been investigated using femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies, both carried out under identical excitation conditions. The nonradiative relaxation rates of the optically allowed S2(1Bu+1) state were precisely determined by the time-resolved fluorescence. The kinetics of the optically forbidden S1(2Ag-1) state were observed by the time-resolved absorption measurements. The dependence of the S1 relaxation rates upon the conjugation length is adequately described by application of the energy gap law. In contrast to this, the nonradiative relaxation rates of S2 have a minimum at n =9 and show a reverse energy gap law dependence for values of n above 11. This anomalous behavior of the S2 relaxation rates can be explained by the presence of an intermediate state (here called the Sx state) located between the S2 and S1 states at large values of n (such as n =11). The presence of such an intermediate state would then result in the following sequential relaxation pathway S2→Sx→S1→S0. A model based on conical intersections between the potential energy curves of these excited singlet states can readily explain the measured relationships between the decay rates and the energy gaps.

  16. Lithium-aluminum-zinc phosphate glasses activated with Tb3+ and Tb3+/Eu3+ for green laser medium, reddish-orange and white phosphor applications

    NASA Astrophysics Data System (ADS)

    Francisco-Rodriguez, H. I.; Lira, A.; Soriano-Romero, O.; Meza-Rocha, A. N.; Bordignon, S.; Speghini, A.; Lozada-Morales, R.; Caldiño, U.

    2018-05-01

    A spectroscopic analysis of Tb3+ and Tb3+/Eu3+ doped lithium-aluminum-zinc phosphate glasses is performed through their absorbance and photoluminescence spectra, and decay time profiles. Laser parameter values (stimulated emission cross section, effective bandwidth, gain bandwidth and optical gain) were obtained for the terbium 5D4 → 7F5 green emission from the Tb3+ singly-doped glass (LAZT) excited at 350 nm to judge the suitability of the glass phosphor for fiber lasers. A quantum yield of (47.68 ± 0.49)% was measured for the 5D4 level luminescence. Upon 350 nm excitation the LAZT glass phosphor emits green light with a color purity of 65.6% and chromaticity coordinates (0.285, 0.585) very close to those (0.29, 0.60) of European Broadcasting Union illuminant green. The Tb3+/Eu3+codoped glass emission color can be tuned from reddish-orange of 1865 K upon 318 nm excitation to warm white of 3599 K and neutral white of 4049 K upon 359 and 340 nm excitations, respectively. Upon Tb3+ excitation at 340 nm Eu3+ is sensitized by Tb3+ through a non-radiative energy transfer with an efficiency of 0.23-0.26. An electric dipole-dipole interaction might be the dominant mechanism in the Tb3+ to Eu3+ energy transfer taking place into Tb3+ - Eu3+ clusters.

  17. Thorough subcells diagnosis in a multi-junction solar cell via absolute electroluminescence-efficiency measurements

    PubMed Central

    Chen, Shaoqiang; Zhu, Lin; Yoshita, Masahiro; Mochizuki, Toshimitsu; Kim, Changsu; Akiyama, Hidefumi; Imaizumi, Mitsuru; Kanemitsu, Yoshihiko

    2015-01-01

    World-wide studies on multi-junction (tandem) solar cells have led to record-breaking improvements in conversion efficiencies year after year. To obtain detailed and proper feedback for solar-cell design and fabrication, it is necessary to establish standard methods for diagnosing subcells in fabricated tandem devices. Here, we propose a potential standard method to quantify the detailed subcell properties of multi-junction solar cells based on absolute measurements of electroluminescence (EL) external quantum efficiency in addition to the conventional solar-cell external-quantum-efficiency measurements. We demonstrate that the absolute-EL-quantum-efficiency measurements provide I–V relations of individual subcells without the need for referencing measured I–V data, which is in stark contrast to previous works. Moreover, our measurements quantify the absolute rates of junction loss, non-radiative loss, radiative loss, and luminescence coupling in the subcells, which constitute the “balance sheets” of tandem solar cells. PMID:25592484

  18. Investigation of p-type depletion doping for InGaN/GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Yiping; Zhang, Zi-Hui; Tan, Swee Tiam; Hernandez-Martinez, Pedro Ludwig; Zhu, Binbin; Lu, Shunpeng; Kang, Xue Jun; Sun, Xiao Wei; Demir, Hilmi Volkan

    2017-01-01

    Due to the limitation of the hole injection, p-type doping is essential to improve the performance of InGaN/GaN multiple quantum well light-emitting diodes (LEDs). In this work, we propose and show a depletion-region Mg-doping method. Here we systematically analyze the effectiveness of different Mg-doping profiles ranging from the electron blocking layer to the active region. Numerical computations show that the Mg-doping decreases the valence band barrier for holes and thus enhances the hole transportation. The proposed depletion-region Mg-doping approach also increases the barrier height for electrons, which leads to a reduced electron overflow, while increasing the hole concentration in the p-GaN layer. Experimentally measured external quantum efficiency indicates that Mg-doping position is vitally important. The doping in or adjacent to the quantum well degrades the LED performance due to Mg diffusion, increasing the corresponding nonradiative recombination, which is well supported by the measured carrier lifetimes. The experimental results are well numerically reproduced by modifying the nonradiative recombination lifetimes, which further validate the effectiveness of our approach.

  19. Optimization of the defects and the nonradiative lifetime of GaAs/AlGaAs double heterostructures

    NASA Astrophysics Data System (ADS)

    Cevher, Z.; Folkes, P. A.; Hier, H. S.; VanMil, B. L.; Connelly, B. C.; Beck, W. A.; Ren, Y. H.

    2018-04-01

    We used Raman scattering and time-resolved photoluminescence spectroscopy to investigate the molecular-beam-epitaxy (MBE) growth parameters that optimize the structural defects and therefore the internal radiative quantum efficiency of MBE-grown GaAs/AlGaAs double heterostructures (DH). The DH structures were grown at two different temperatures and three different As/Ga flux ratios to determine the conditions for an optimized structure with the longest nonradiative minority carrier lifetime. Raman scattering measurements show an improvement in the lattice disorder in the AlGaAs and GaAs layers as the As/Ga flux ratio is reduced from 40 to 15 and as the growth temperature is increased from 550 to 595 °C. The optimized structure is obtained with the As/Ga flux ratio equal to 15 and the substrate temperature 595 °C. This is consistent with the fact that the optimized structure has the longest minority carrier lifetime. Moreover, our Raman studies reveal that incorporation of a distributed Bragg reflector layer between the substrate and DH structures significantly reduces the defect density in the subsequent epitaxial layers.

  20. Effects of two-step Mg doping in p-GaN on efficiency characteristics of InGaN blue light-emitting diodes without AlGaN electron-blocking layers

    NASA Astrophysics Data System (ADS)

    Ryu, Han-Youl; Lee, Jong-Moo

    2013-05-01

    A light-emitting diode (LED) structure containing p-type GaN layers with two-step Mg doping profiles is proposed to achieve high-efficiency performance in InGaN-based blue LEDs without any AlGaN electron-blocking-layer structures. Photoluminescence and electroluminescence (EL) measurement results show that, as the hole concentration in the p-GaN interlayer between active region and the p-GaN layer increases, defect-related nonradiative recombination increases, while the electron current leakage decreases. Under a certain hole-concentration condition in the p-GaN interlayer, the electron leakage and active region degradation are optimized so that high EL efficiency can be achieved. The measured efficiency characteristics are analyzed and interpreted using numerical simulations.

  1. Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires

    PubMed Central

    Burgess, Tim; Saxena, Dhruv; Mokkapati, Sudha; Li, Zhe; Hall, Christopher R.; Davis, Jeffrey A.; Wang, Yuda; Smith, Leigh M.; Fu, Lan; Caroff, Philippe; Tan, Hark Hoe; Jagadish, Chennupati

    2016-01-01

    Nanolasers hold promise for applications including integrated photonics, on-chip optical interconnects and optical sensing. Key to the realization of current cavity designs is the use of nanomaterials combining high gain with high radiative efficiency. Until now, efforts to enhance the performance of semiconductor nanomaterials have focused on reducing the rate of non-radiative recombination through improvements to material quality and complex passivation schemes. Here we employ controlled impurity doping to increase the rate of radiative recombination. This unique approach enables us to improve the radiative efficiency of unpassivated GaAs nanowires by a factor of several hundred times while also increasing differential gain and reducing the transparency carrier density. In this way, we demonstrate lasing from a nanomaterial that combines high radiative efficiency with a picosecond carrier lifetime ready for high speed applications. PMID:27311597

  2. Sensitized green emission of terbium with dibenzoylmethane and 1, 10 phenanthroline in polyvinyl alcohol and polyvinyl pyrrolidone blends

    NASA Astrophysics Data System (ADS)

    Kumar, Brijesh; Kaur, Gagandeep; Rai, S. B.

    2017-12-01

    Tb doped polyvinyl alcohol: polyvinyl pyrrolidone blends with dibenzoylmethane (DBM) and 1, 10 Phenanthroline (Phen) have been prepared by solution cast technique. Bond formation amongst the ligands and Tb3 + ions in the doped polymer has been confirmed employing Fourier Transform Infrared (FTIR) techniques. Optical properties of the Tb3 + ions have been investigated using UV-Vis absorption, excitation and fluorescence studies excited by different radiations. Addition of dimethylbenzoate and 1, 10 Phenanthroline to the polymer blend increases the luminescence from Tb3 + ions along with energy transfer from the polymer blend itself. Luminescence decay curve analysis affirms the non-radiative energy transfer from DBM and Phen to Tb3 + ions, which is identified as the reason behind this enhancement. The fluorescence decay time of PVA-PVP host decreases from 6.02 ns to 2.31 ns showing an evidence of energy transfer from the host blend to the complexed Tb ions. Similarly the lifetime of DBM and Phen and both in the blend reduces in the complexed system showing the feasibility of energy transfer from these excited DBM and Phen to Tb3 + and is proposed as the cause of the above observations. These entire phenomena have been explained by the energy level diagram.

  3. Communication: X-ray excited optical luminescence from TbCl3 at the giant resonance of terbium

    NASA Astrophysics Data System (ADS)

    Heigl, F.; Jürgensen, A.; Zhou, X.-T.; Hu, Y.-F.; Zuin, L.; Sham, T. K.

    2013-02-01

    We have studied the optical recombination channels of TbCl3 using x-ray excited optical luminescence at the N4,5 absorption edge of Tb (giant resonance) in both the energy and time domain. The luminescence exhibits a relatively fast 5D3, and a slow 5D4 decay channel in the blue and green, respectively. The rather short lifetime of the 5D3 state indicates that the decay is mainly driven by Tb-Tb ion interaction via non-radiative energy transfer (cross-relaxation). At the giant resonance the X-ray Absorption Near Edge Structure (XANES) recorded using partial photoluminescence yield is inverted. In the pre-edge region the contrast of the spectral feature is significantly better in optical XANES than in total electron yield. Changes in the intensity of 5D3-7F5 (544 nm) and 5D4-7F6 (382 nm) optical transitions as the excitation energy is tuned across the giant resonance are also noted. The results provide detailed insight into the dynamics of the optical recombination channels and an alternative method to obtain high sensitivity, high energy resolution XANES at the giant resonance of light emitting rare-earth materials.

  4. Tunable luminescence mediated by energy transfer in Tm3+/Dy3+ co-doped phosphate glasses under UV excitation

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Chen, Guohua; Liu, Xiangyu; Yuan, Changlai; Zhou, Changrong

    2017-11-01

    Tm3+/Dy3+ co-doped phosphate glasses for white light-emitting diodes were synthesized by a conventional melting-quenching method. A spectroscopic research based on optical, photoluminescence spectrum and decay time curves in Tm3+/Dy3+ co-doped phosphate glasses was carried out. The color of luminescence could be tuned by altering the concentrations of Tm3+ ions. Under UV light excitation, the CIE chromaticity coordinates (0.3471, 0.3374) and color correlate temperature (CCT = 4866.21 K) close to the standard white-light illumination (0.333, 0.333 and CCT = 5454.12 K) could be achieved in 0.4 Tm3+/0.6 Dy3+ (mol %) co-doped glass sample. The decrease of the Dy3+ emission decay time in existence of Tm3+ ascertained that non-radiative energy transfer from Dy3+ to Tm3+ occurred. Moreover, the research of energy transfers between Dy3+ and Tm3+ based on the Inokuti-Hirayama model revealed that an electric quadrupole-quadrupole interaction might be the predominant mechanism participated in the energy transfer. This finding suggests that the as-prepared Tm3+/Dy3+ co-doped phosphate glasses may be promising candidate for white LEDs and other display devices.

  5. Very Low Threshold ASE and Lasing Using Auger-Suppressed Nanocrystal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Park, Young-Shin; Bae, Wan Ki; Fidler, Andrew; Baker, Tomas; Lim, Jaehoon; Pietryga, Jeffrey; Klimov, Victor

    2015-03-01

    We report amplified spontaneous emission (ASE) and lasing with very low thresholds obtained using thin films made of engineered thick-shell CdSe/CdS QDs that have a CdSeS alloyed layer between the CdSe core and the CdS shell. These ``alloyed'' QDs exhibit considerable reduction of Auger decay rates, which results in high biexciton emission quantum yields (QBX of ~ 12%) and extended biexciton lifetimes (τBX of ~ 4ns). By using a fs laser (400 nm at 1 kHz repetition rate) as a pump source, we measured the threshold intensity of biexciton ASE as low as 5 μJ/cm2, which is about 5 times lower than the lowest ASE thresholds reported for thick-shell QDs without interfacial alloying. Interestingly, we also observed biexciton random lasing from the same QD film. Lasing spectrum comprises several sharp peaks (linewidth ~0.2 nm), and the heights and the spectral positions of these peaks show strong dependence on the exact position of the excitation spot on the QD film. Our study suggests that further suppression of nonradiative Auger decay rates via even finer grading of the core/shell interface could lead to a further reduction in the lasing threshold and potentially realization of lasing under continuous-wave excitation.

  6. Photoluminescence studies of Mn4+ ions in YAlO3 crystals at ambient and high pressure

    NASA Astrophysics Data System (ADS)

    Zhydachevskii, Ya; Galanciak, D.; Kobyakov, S.; Berkowski, M.; Kaminska, A.; Suchocki, A.; Zakharko, Ya; Durygin, A.

    2006-12-01

    Detailed investigations of the photoluminescence properties of Mn4+ (3d3) ions in YAlO3 have been performed in the temperature range 10-600 K. The luminescence of Mn4+ ions due to the ^{2}\\mathrm {E}\\to {}^{4}\\mathrm {A}_{2} transition consists of two zero-phonon lines (R lines) at 691.3 and 692.7 nm, which became visible only at low temperature, and their vibronic sidebands that cover the range of 660-740 nm. The thermal quenching of the luminescence intensity due to the non-radiative decay occurs at temperatures above 420 K. The temperature dependence of the luminescence decay time shows a quasi-linear decrease from τ = 4.9 to 1.6 ms in the temperature range from 90 to 420 K (with a temperature coefficient -0.01 ms K-1) that makes YAlO3:Mn a potentially good phosphor for a fibre optic fluorescence thermometer in this temperature range. The high-pressure low-temperature luminescence measurements in a diamond-anvil cell reveal similar pressure coefficients for Mn4+ and Cr3+ dopant ions in YAlO3, equal to 1.16 cm-1 kbar-1 and 1.08 cm-1 kbar-1, respectively.

  7. Nonradiative transition dynamics in alexandrite

    NASA Technical Reports Server (NTRS)

    Gayen, S. K.; Wang, W. B.; Petricevic, V.; Alfano, R. R.

    1986-01-01

    The first direct picosecond time-resolved measurement of the nonradiative transition dynamics between the excited 4T2 pump band and the metastable 2E storage level of the trivalent chromium ion in alexandrite is reported. The nonradiative relaxation times of 17 ps for intra-4T2 vibrational transitions, and 27 ps for 4T2-2E electronic transition are obtained. The thermal repopulation rate of the 4T2 state from the metastable 2E level is of the order 3.5 x 10 to the 9th per s.

  8. Plasmon-Exciton Interactions Probed Using Spatial Coentrapment of Nanoparticles by Topological Singularities.

    PubMed

    Ackerman, Paul J; Mundoor, Haridas; Smalyukh, Ivan I; van de Lagemaat, Jao

    2015-12-22

    We study plasmon-exciton interaction by using topological singularities to spatially confine, selectively deliver, cotrap and optically probe colloidal semiconductor and plasmonic nanoparticles. The interaction is monitored in a single quantum system in the bulk of a liquid crystal medium where nanoparticles are manipulated and nanoconfined far from dielectric interfaces using laser tweezers and topological configurations containing singularities. When quantum dot-in-a-rod particles are spatially colocated with a plasmonic gold nanoburst particle in a topological singularity core, its fluorescence increases because blinking is significantly suppressed and the radiative decay rate increases by nearly an order of magnitude owing to the Purcell effect. We argue that the blinking suppression is the result of the radiative rate change that mitigates Auger recombination and quantum dot ionization, consequently reducing nonradiative recombination. Our work demonstrates that topological singularities are an effective platform for studying and controlling plasmon-exciton interactions.

  9. Plasmon–Exciton Interactions Probed Using Spatial Coentrapment of Nanoparticles by Topological Singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, Paul J.; Mundoor, Haridas; Smalyukh, Ivan I.

    2015-12-22

    We study plasmon-exciton interaction by using topological singularities to spatially confine, selectively deliver, cotrap and optically probe colloidal semiconductor and plasmonic nanoparticles. The interaction is monitored in a single quantum system in the bulk of a liquid crystal medium where nanoparticles are manipulated and nanoconfined far from dielectric interfaces using laser tweezers and topological configurations containing singularities. When quantum dot-in-a-rod particles are spatially colocated with a plasmonic gold nanoburst particle in a topological singularity core, its fluorescence increases because blinking is significantly suppressed and the radiative decay rate increases by nearly an order of magnitude owing to the Purcell effect.more » We argue that the blinking suppression is the result of the radiative rate change that mitigates Auger recombination and quantum dot ionization, consequently reducing nonradiative recombination. Our work demonstrates that topological singularities are an effective platform for studying and controlling plasmon-exciton interactions.« less

  10. Light-Harvesting Organic Nanocrystals Capable of Photon Upconversion.

    PubMed

    Li, Li; Zeng, Yi; Yu, Tianjun; Chen, Jinping; Yang, Guoqiang; Li, Yi

    2017-11-23

    Harvesting and converting low energy photons into higher ones through upconversion have great potential in solar energy conversion. A light-harvesting nanocrystal assembled from 9,10-distyrylanthracene and palladium(II) meso-tetraphenyltetrabenzoporphyrin as the acceptor and the sensitizer, respectively effects red-to-green upconversion under incoherent excitation of low power density. An upconversion quantum yield of 0.29±0.02 % is obtained upon excitation with 640 nm laser of 120 mW cm -2 . The well-organized packing of acceptor molecules with aggregation-induced emission in the nanocrystals dramatically reduces the nonradiative decay of the excited acceptor, benefits the triplet-triplet annihilation (TTA) upconversion and guides the consequent upconverted emission. This work provides a straightforward strategy to develop light-harvesting nanocrystals based on TTA upconversion, which is attractive for energy conversion and photonic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ultrafast carrier dynamics in a p-type GaN wafer under different carrier distributions

    NASA Astrophysics Data System (ADS)

    Fang, Yu; Yang, Junyi; Yang, Yong; Wu, Xingzhi; Xiao, Zhengguo; Zhou, Feng; Song, Yinglin

    2016-02-01

    The dependence of the carrier distribution on photoexcited carrier dynamics in a p-type Mg-doped GaN (GaN:Mg) wafer were systematically measured by femtosecond transient absorption (TA) spectroscopy. The homogeneity of the carrier distribution was modified by tuning the wavelength of the UV pulse excitation around the band gap of GaN:Mg. The TA kinetics appeared to be biexponential for all carrier distributions, and only the slower component decayed faster as the inhomogeneity of the carrier distribution increased. It was concluded that the faster component (50-70 ps) corresponded to the trap process of holes by the Mg acceptors, and the slower component (150-600 ps) corresponded to the combination of non-radiative surface recombination and intrinsic carrier recombination via dislocations. Moreover, the slower component increased gradually with the incident fluence due to the saturation of surface states.

  12. Fluorescence excitation and excited state intramolecular relaxation dynamics of jet-cooled methyl-2-hydroxy-3-naphthoate

    NASA Astrophysics Data System (ADS)

    McCarthy, Annemarie; Ruth, Albert A.

    2013-11-01

    Two distinct S0 → S1 fluorescence excitation spectra of methyl-2-hydroxy-3-napthoate (MHN23) have been obtained by monitoring fluorescence separately in the short (˜410 nm) and long (˜650 nm) wavelength emission bands. The short wavelength fluorescence is assigned to two MHN23 conformers which do not undergo excited state intramolecular proton transfer (ESIPT). Analysis of the 'long wavelength' fluorescence excitation spectrum, which arises from the proton transfer tautomer of MHN23 indicates an average lifetime of τ ⩾ 18 ± 2 fs for the initially excited states. Invoking the results of Catalan et al. [J. Phys. Chem. A, 1999, 103, 10921], who determined the N tautomer to decay predominantly via a fast non-radiative process, the limit of the rate of intramolecular excited proton transfer in MHN23 is calculated as, kpt ⩽ 1 × 1012 s-1.

  13. Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser

    PubMed Central

    Kim, Seonghwan; Lee, Dongkyu; Liu, Xunchen; Van Neste, Charles; Jeon, Sangmin; Thundat, Thomas

    2013-01-01

    Speciation of complex mixtures of trace explosives presents a formidable challenge for sensors that rely on chemoselective interfaces due to the unspecific nature of weak intermolecular interactions. Nanomechanical infrared (IR) spectroscopy provides higher selectivity in molecular detection without using chemoselective interfaces by measuring the photothermal effect of adsorbed molecules on a thermally sensitive microcantilever. In addition, unlike conventional IR spectroscopy, the detection sensitivity is drastically enhanced by increasing the IR laser power, since the photothermal signal comes from the absorption of IR photons and nonradiative decay processes. By using a broadly tunable quantum cascade laser for the resonant excitation of molecules, we increased the detection sensitivity by one order of magnitude compared to the use of a conventional IR monochromator. Here, we demonstrate the successful speciation and quantification of picogram levels of ternary mixtures of similar explosives (trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX), and pentaerythritol tetranitrate (PETN)) using nanomechanical IR spectroscopy. PMID:23346368

  14. Near-unity quantum yields from chloride treated CdTe colloidal quantum dots

    DOE PAGES

    Page, Robert C.; Espinobarro-Velazquez, Daniel; Leontiadou, Marina A.; ...

    2014-10-27

    Colloidal quantum dots (CQDs) are promising materials for novel light sources and solar energy conversion. However, trap states associated with the CQD surface can produce non-radiative charge recombination that significantly reduces device performance. Here a facile post-synthetic treatment of CdTe CQDs is demonstrated that uses chloride ions to achieve near-complete suppression of surface trapping, resulting in an increase of photoluminescence (PL) quantum yield (QY) from ca. 5% to up to 97.2 ± 2.5%. The effect of the treatment is characterised by absorption and PL spectroscopy, PL decay, scanning transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. We find thismore » process also dramatically improves the air-stability of the CQDs: before treatment the PL is largely quenched after 1 hour of air-exposure, whilst the treated samples showed a PL QY of nearly 50% after more than 12 hours.« less

  15. Individual electron and hole localization in submonolayer InN quantum sheets embedded in GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feix, F., E-mail: feix@pdi-berlin.de; Flissikowski, T.; Chèze, C.

    2016-07-25

    We investigate sub-monolayer InN quantum sheets embedded in GaN(0001) by temperature-dependent photoluminescence spectroscopy under both continuous-wave and pulsed excitation. Both the peak energy and the linewidth of the emission band associated with the quantum sheets exhibit an anomalous dependence on temperature indicative of carrier localization. Photoluminescence transients reveal a power law decay at low temperatures reflecting that the recombining electrons and holes occupy spatially separate, individual potential minima reminiscent of conventional (In,Ga)N(0001) quantum wells exhibiting the characteristic disorder of a random alloy. At elevated temperatures, carrier delocalization sets in and is accompanied by a thermally activated quenching of the emission.more » We ascribe the strong nonradiative recombination to extended states in the GaN barriers and confirm our assumption by a simple rate-equation model.« less

  16. Interference in acetylene intersystem crossing acts as the molecular analog of Young's double-slit experiment

    PubMed Central

    de Groot, Mattijs; Field, Robert W.; Buma, Wybren J.

    2009-01-01

    We report on an experimental approach that reveals crucial details of the composition of singlet-triplet mixed eigenstates in acetylene. Intersystem crossing in this prototypical polyatomic molecule embodies the mixing of the lowest excited singlet state (S1) with 3 triplet states (T1, T2, and T3). Using high-energy (157-nm) photons from an F2 laser to record excited-state photoelectron spectra, we have decomposed the mixed eigenstates into their S1, T3, T2, and T1 constituent parts. One example of the interpretive power that ensues from the selective sensitivity of the experiment to the individual electronic state characters is the discovery and examination of destructive interference between two doorway-mediated intersystem crossing pathways. This observation of an interference effect in nonradiative decay opens up possibilities for rational coherent control over molecular excited state dynamics. PMID:19179288

  17. Theoretical study of optical pump process in solid gain medium based on four-energy-level model

    NASA Astrophysics Data System (ADS)

    Ma, Yongjun; Fan, Zhongwei; Zhang, Bin; Yu, Jin; Zhang, Hongbo

    2018-04-01

    A semiclassical algorithm is explored to a four-energy level model, aiming to find out the factors that affect the dynamics behavior during the pump process. The impacts of pump intensity Ω p , non-radiative transition rate γ 43 and decay rate of electric dipole δ 14 are discussed in detail. The calculation results show that large γ 43, small δ 14, and strong pumping Ω p are beneficial to the establishing of population inversion. Under strong pumping conditions, the entire pump process can be divided into four different phases, tentatively named far-from-equilibrium process, Rabi oscillation process, quasi dynamic equilibrium process and ‘equilibrium’ process. The Rabi oscillation can slow the pumping process and cause some instability. Moreover, the duration of the entire process is negatively related to Ω p and γ 43 whereas positively related to δ 14.

  18. Exciton characteristics in graphene epoxide.

    PubMed

    Zhu, Xi; Su, Haibin

    2014-02-25

    Exciton characteristics in graphene epoxide (GE) are investigated by density functional theory with quasi-particle corrections and many-body interactions. The nature of the exciton is influenced by epoxide content and detailed geometric configurations. Two kinds of excitons are identified in GE: Frenkel-like exciton originated from the sp(2) carbon cluster and charge-transfer exciton formed by localized states involving both oxygen and carbon atoms. The unusual blue shift associated with the Frenkel-like exciton leaking is highlighted. One scaling relationship is proposed to address the power-law dependence of Frenkel-like exciton binding strength on its size. The charge-transfer exciton appears in GE samples with the high oxygen coverage. Particularly, the exciton in GE structures exhibits long lifetime by analyzing both radiative and nonradiative decay processes. This study sheds light on the potential applications of GE-based structures with attractive high quantum yield in light emission and optoelectronic technology.

  19. Efficiency droop in GaN LEDs at high injection levels: Role of hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bochkareva, N. I.; Sheremet, I. A.; Shreter, Yu. G., E-mail: y.shreter@mail.ioffe.ru

    2016-10-15

    Point defects in GaN and, in particular, their manifestation in the photoluminescence, optical absorption, and recombination current in light-emitting diodes with InGaN/GaN quantum wells are analyzed. The results of this analysis demonstrate that the wide tail of defect states in the band gap of GaN facilitates the trap-assisted tunneling of thermally activated carriers into the quantum well, but simultaneously leads to a decrease in the nonradiative-recombination lifetime and to an efficiency droop as the quasi-Fermi levels intersect the defect states with increasing forward bias. The results reveal the dominant role of hydrogen in the recombination activity of defects with danglingmore » bonds and in the efficiency of GaN-based devices.« less

  20. Ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Weiquan; Becker, Jacob; Liu, Shi

    2014-05-28

    This paper reports the proposal, design, and demonstration of ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer to optimize light management and minimize non-radiative recombination. According to our recently developed semi-analytical model, this design offers one of the highest potential achievable efficiencies for GaAs solar cells possessing typical non-radiative recombination rates found among commercially available III-V arsenide and phosphide materials. The structure of the demonstrated solar cells consists of an In{sub 0.49}Ga{sub 0.51}P/GaAs/In{sub 0.49}Ga{sub 0.51}P double-heterostructure PN junction with an ultra-thin 300 nm thick GaAs absorber, combined with a 5 μm thick Al{sub 0.52}In{sub 0.48}P layer with amore » textured as-grown surface coated with Au used as a reflective back scattering layer. The final devices were fabricated using a substrate-removal and flip-chip bonding process. Solar cells with a top metal contact coverage of 9.7%, and a MgF{sub 2}/ZnS anti-reflective coating demonstrated open-circuit voltages (V{sub oc}) up to 1.00 V, short-circuit current densities (J{sub sc}) up to 24.5 mA/cm{sup 2}, and power conversion efficiencies up to 19.1%; demonstrating the feasibility of this design approach. If a commonly used 2% metal grid coverage is assumed, the anticipated J{sub sc} and conversion efficiency of these devices are expected to reach 26.6 mA/cm{sup 2} and 20.7%, respectively.« less

  1. New possibilities for Cr/sup 3 +/ ions as activators of the active media of solid-state lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zharikov, E.V.; Lavrishchev, S.V.; Laptev, V.V.

    An analysis is made of the relationship between the excited-state lifetime of chromium and the ratio of the luminescence intensities in the /sup 4/T/sub 2/--/sup 4/A/sub 2/ and /sup 2/E--/sup 4/A/sub 2/ channels, on one hand, and the Cr/sup 3 +/..-->..acceptor energy transfer efficiency, on the other. A method is proposed for determination of the energy gap ..delta..E between the /sup 2/E and /sup 4/T/sub 2/ levels of Cr/sup 3 +/ from the temperature dependence of the Cr/sup 3 +/..-->..acceptor nonradiative transfer efficiency. Two independent methods were used to determine ..delta..E for gadolinium gallium garnet (GGG) crystals doped with chromiummore » and with chromium and neodymium. The probabilities of Cr/sup 3 +/ intracenter relaxation and typical parameters of the Cr/sup 3 +/--Nd/sup 3 +/ energy transfer process were also determined. It was found that the values of ..delta..E in gadolinium scandium gallium (GdScGaG) and lanthanum lutetium gallium garnet crystals are comparable with the values of kT at liquid helium temperature. It is shown that the high efficiency of the Cr/sup 3 +/..-->..Nd/sup 3 +/ nonradiative transfer in GGG and GdScGaG crystals doped with chromium and neodymium at room temperature is due to the relatively low value of ..delta..E. It is noted that there are many crystals having the garnet structure and low values of ..delta..E that are potentially suitable for developing lasers utilizing the /sup 4/T/sub 2/--/sup 4/A/sub 2/ electronic--vibrational transition in Cr/sup 3 +/ and having an emission frequency continuously tunable over a wide spectral range.« less

  2. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation.

    PubMed

    Abdi-Jalebi, Mojtaba; Andaji-Garmaroudi, Zahra; Cacovich, Stefania; Stavrakas, Camille; Philippe, Bertrand; Richter, Johannes M; Alsari, Mejd; Booker, Edward P; Hutter, Eline M; Pearson, Andrew J; Lilliu, Samuele; Savenije, Tom J; Rensmo, Håkan; Divitini, Giorgio; Ducati, Caterina; Friend, Richard H; Stranks, Samuel D

    2018-03-21

    Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield-a quantity that must be maximized to obtain high efficiency-remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.

  3. Coherent Anti-Stokes Raman Scattering Spectroscopy of Single Molecules in Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunney Xie, Wei Min, Chris Freudiger, Sijia Lu

    2012-01-18

    During this funding period, we have developed two breakthrough techniques. The first is stimulated Raman scattering microscopy, providing label-free chemical contrast for chemical and biomedical imaging based on vibrational spectroscopy. Spontaneous Raman microscopy provides specific vibrational signatures of chemical bonds, but is often hindered by low sensitivity. We developed a three-dimensional multiphoton vibrational imaging technique based on stimulated Raman scattering (SRS). The sensitivity of SRS imaging is significantly greater than that of spontaneous Raman microscopy, which is achieved by implementing high-frequency (megahertz) phase-sensitive detection. SRS microscopy has a major advantage over previous coherent Raman techniques in that it offers background-freemore » and readily interpretable chemical contrast. We demonstrated a variety of biomedical applications, such as differentiating distributions of omega-3 fatty acids and saturated lipids in living cells, imaging of brain and skin tissues based on intrinsic lipid contrast, and monitoring drug delivery through the epidermis. This technology offers exciting prospect for medical imaging. The second technology we developed is stimulated emission microscopy. Many chromophores, such as haemoglobin and cytochromes, absorb but have undetectable fluorescence because the spontaneous emission is dominated by their fast non-radiative decay. Yet the detection of their absorption is difficult under a microscope. We use stimulated emission, which competes effectively with the nonradiative decay, to make the chromophores detectable, as a new contrast mechanism for optical microscopy. We demonstrate a variety of applications of stimulated emission microscopy, such as visualizing chromoproteins, non-fluorescent variants of the green fluorescent protein, monitoring lacZ gene expression with a chromogenic reporter, mapping transdermal drug distribu- tions without histological sectioning, and label-free microvascular imaging based on endogenous contrast of haemoglobin. For all these applications, sensitivity is orders of magnitude higher than for spontaneous emission or absorption contrast, permitting nonfluorescent reporters for molecular imaging. Although we did not accomplish the original goal of detecting single-molecule by CARS, our quest for high sensitivity of nonlinear optical microscopy paid off in providing the two brand new enabling technologies. Both techniques were greatly benefited from the use of high frequency modulation for microscopy, which led to orders of magnitude increase in sensitivity. Extensive efforts have been made on optics and electronics to accomplish these breakthroughs.« less

  4. Influence of ZnO seed layer precursor molar ratio on the density of interface defects in low temperature aqueous chemically synthesized ZnO nanorods/GaN light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alnoor, Hatim, E-mail: hatim.alnoor@liu.se; Iandolo, Donata; Willander, Magnus

    Low temperature aqueous chemical synthesis (LT-ACS) of zinc oxide (ZnO) nanorods (NRs) has been attracting considerable research interest due to its great potential in the development of light-emitting diodes (LEDs). The influence of the molar ratio of the zinc acetate (ZnAc): KOH as a ZnO seed layer precursor on the density of interface defects and hence the presence of non-radiative recombination centers in LT-ACS of ZnO NRs/GaN LEDs has been systematically investigated. The material quality of the as-prepared seed layer as quantitatively deduced by the X-ray photoelectron spectroscopy is found to be influenced by the molar ratio. It is revealedmore » by spatially resolved cathodoluminescence that the seed layer molar ratio plays a significant role in the formation and the density of defects at the n-ZnO NRs/p-GaN heterostructure interface. Consequently, LED devices processed using ZnO NRs synthesized with molar ratio of 1:5 M exhibit stronger yellow emission (∼575 nm) compared to those based on 1:1 and 1:3 M ratios as measured by the electroluminescence. Furthermore, seed layer molar ratio shows a quantitative dependence of the non-radiative defect densities as deduced from light-output current characteristics analysis. These results have implications on the development of high-efficiency ZnO-based LEDs and may also be helpful in understanding the effects of the ZnO seed layer on defect-related non-radiative recombination.« less

  5. Non-radial instabilities and progenitor asphericities in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Müller, B.; Janka, H.-Th.

    2015-04-01

    Since core-collapse supernova simulations still struggle to produce robust neutrino-driven explosions in 3D, it has been proposed that asphericities caused by convection in the progenitor might facilitate shock revival by boosting the activity of non-radial hydrodynamic instabilities in the post-shock region. We investigate this scenario in depth using 42 relativistic 2D simulations with multigroup neutrino transport to examine the effects of velocity and density perturbations in the progenitor for different perturbation geometries that obey fundamental physical constraints (like the anelastic condition). As a framework for analysing our results, we introduce semi-empirical scaling laws relating neutrino heating, average turbulent velocities in the gain region, and the shock deformation in the saturation limit of non-radial instabilities. The squared turbulent Mach number, , reflects the violence of aspherical motions in the gain layer, and explosive runaway occurs for ≳ 0.3, corresponding to a reduction of the critical neutrino luminosity by ˜ 25 per cent compared to 1D. In the light of this theory, progenitor asphericities aid shock revival mainly by creating anisotropic mass flux on to the shock: differential infall efficiently converts velocity perturbations in the progenitor into density perturbations δρ/ρ at the shock of the order of the initial convective Mach number Maprog. The anisotropic mass flux and ram pressure deform the shock and thereby amplify post-shock turbulence. Large-scale (ℓ = 2, ℓ = 1) modes prove most conducive to shock revival, whereas small-scale perturbations require unrealistically high convective Mach numbers. Initial density perturbations in the progenitor are only of the order of Ma_prog^2 and therefore play a subdominant role.

  6. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites

    NASA Astrophysics Data System (ADS)

    Xiao, Zhengguo; Kerner, Ross A.; Zhao, Lianfeng; Tran, Nhu L.; Lee, Kyung Min; Koh, Tae-Wook; Scholes, Gregory D.; Rand, Barry P.

    2017-01-01

    Organic-inorganic hybrid perovskite materials are emerging as highly attractive semiconductors for use in optoelectronics. In addition to their use in photovoltaics, perovskites are promising for realizing light-emitting diodes (LEDs) due to their high colour purity, low non-radiative recombination rates and tunable bandgap. Here, we report highly efficient perovskite LEDs enabled through the formation of self-assembled, nanometre-sized crystallites. Large-group ammonium halides added to the perovskite precursor solution act as a surfactant that dramatically constrains the growth of 3D perovskite grains during film forming, producing crystallites with dimensions as small as 10 nm and film roughness of less than 1 nm. Coating these nanometre-sized perovskite grains with longer-chain organic cations yields highly efficient emitters, resulting in LEDs that operate with external quantum efficiencies of 10.4% for the methylammonium lead iodide system and 9.3% for the methylammonium lead bromide system, with significantly improved shelf and operational stability.

  7. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency

    NASA Astrophysics Data System (ADS)

    Braly, Ian L.; deQuilettes, Dane W.; Pazos-Outón, Luis M.; Burke, Sven; Ziffer, Mark E.; Ginger, David S.; Hillhouse, Hugh W.

    2018-06-01

    Reducing non-radiative recombination in semiconducting materials is a prerequisite for achieving the highest performance in light-emitting and photovoltaic applications. Here, we characterize both external and internal photoluminescence quantum efficiency and quasi-Fermi-level splitting of surface-treated hybrid perovskite (CH3NH3PbI3) thin films. With respect to the material bandgap, these passivated films exhibit the highest quasi-Fermi-level splitting measured to date, reaching 97.1 ± 0.7% of the radiative limit, approaching that of the highest performing GaAs solar cells. We confirm these values with independent measurements of internal photoluminescence quantum efficiency of 91.9 ± 2.7% under 1 Sun illumination intensity, setting a new benchmark for these materials. These results suggest hybrid perovskite solar cells are inherently capable of further increases in power conversion efficiency if surface passivation can be combined with optimized charge carrier selective interfaces.

  8. Optical absorption, luminescence, and energy transfer processes studies for Dy3+/Tb3+-codoped borate glasses for solid-state lighting applications

    NASA Astrophysics Data System (ADS)

    Lakshminarayana, G.; Kaky, Kawa M.; Baki, S. O.; Lira, A.; Caldiño, U.; Kityk, I. V.; Mahdi, M. A.

    2017-10-01

    By using melt quenching technique, good optical quality singly doped Dy3+ or Tb3+ and Dy3+/Tb3+-codoped borate glasses were synthesized and studied by optical absorption, excitation, emission and decay lifetimes curve analysis. Following the absorption spectrum, the evaluated Judd-Ofelt (J-O) intensity parameters (Ωλ (λ = 2, 4 and 6)) were used to calculate the transition probability (AR), the branching ratio (βR), and the radiative lifetime (τR) for different luminescent transitions such as 4I15/2 → 6H15/2, 4F9/2 → 6H15/2, 4F9/2 → 6H13/2, 4F9/2 → 6H11/2 and 4F9/2 → 6H9/2,6F11/2 for the 0.5 mol % singly Dy3+-doped glass. The βR calculated (65%) indicates that for lasing applications, 4F9/2 → 6H13/2 emission transition is highly suitable. For all the Dy3+/Tb3+-codoped glasses, Tb3+: 5D3→7F6 emission decay lifetime curves are found to be non-exponential in nature for different concentrations of Dy3+ codoping. Using the Inokuti-Hirayama model, these nonexponential decay curves were analyzed to identify the nature of the energy transfer (ET) processes and here the electric dipole-dipole interaction is dominant for the ET. Based on the excitation and emission spectra and decay lifetimes curve analysis, the cross relaxation and ET processes between Dy3+ and Tb3+ were confirmed. For the 0.5 mol % Tb3+ and 2.0 mol % Dy3+-codoped glass, the evaluated Tb3+→Dy3+ ET efficiency (η) is found to be 45% under 369 nm excitation. Further, for Tb3+/Dy3+ -codoped glasses, an enhancement of Tb3+ green emission is observed up to 1.5 mol % Dy3+ codoping, and this is due to the non-radiative resonant ET from Dy3+ to Tb3+ upon 395 nm excitation. For singly 0.5 mol % Dy3+ or 0.5 mol % Tb3+-doped glass, the calculated color coordinates (x,y) and correlated color temperatures (CCT) represent the neutral white or warm white light regions, whereas Dy3+/Tb3+-codoped glasses (x,y) and CCT values fall in the yellowish green region with respect to the different Dy3+ concentrations under 350 and 395 nm excitations. Following the analyzed optical data, the singly Dy3+ or Tb3+-doped and Dy3+/Tb3+-codoped glasses could be suggested as promising materials for their applications in solid state light emitting diodes and luminescent display devices.

  9. Interplay of point defects, extended defects, and carrier localization in the efficiency droop of InGaN quantum wells light-emitting diodes investigated using spatially resolved electroluminescence and photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yue, E-mail: yuelin@fjirsm.ac.cn; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002; Department of Electronic Science and Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen, Fujian 361005

    2014-01-14

    We perform both spatially resolved electroluminescence (SREL) as a function of injection current and spatially resolved photoluminescence (SRPL) as a function of excitation power on InGaN quantum well blue light-emitting diodes to investigate the underlying physics for the phenomenon of the external quantum efficiency (EQE) droop. SREL allows us to study two most commonly observed but distinctly different droop behaviors on a single device, minimizing the ambiguity trying to compare independently fabricated devices. Two representative devices are studied: one with macroscopic scale material non-uniformity, the other being macroscopically uniform, but both with microscopic scale fluctuations. We suggest that the EQE–currentmore » curve reflects the interplay of three effects: nonradiative recombination through point defects, carrier localization due to either In composition or well width fluctuation, and nonradiative recombination of the extended defects, which is common to various optoelectronic devices. By comparing SREL and SRPL, two very different excitation/detection modes, we show that individual singular sites exhibiting either particularly strong or weak emission in SRPL do not usually play any significant and direct role in the EQE droop. We introduce a two-level model that can capture the basic physical processes that dictate the EQE–current dependence and describe the whole operating range of the device from 0.01 to 100 A/cm{sup 2}.« less

  10. Management of surgical and radiation induced rectourethral fistulas with an interposition muscle flap and selective buccal mucosal onlay graft.

    PubMed

    Vanni, Alex J; Buckley, Jill C; Zinman, Leonard N

    2010-12-01

    Rectourethral fistulas are a rare but devastating complication of pelvic surgery and radiation. We review, analyze and describe the management and outcomes of nonradiated and radiation/ablation induced rectourethral fistulas during a consecutive 12-year period. We performed a retrospective review of patients undergoing rectourethral fistula repair between January 1, 1998 and December 31, 2009. Patient demographics as well as preoperative, operative and postoperative data were obtained. All rectourethral fistulas were repaired using an anterior transperineal approach with a muscle interposition flap and selective use of a buccal mucosal graft urethral patch onlay. A total of 74 patients with rectourethral fistulas underwent repair with an anterior perineal approach and muscle interposition flap (68 gracilis muscle interposition flaps, 6 other muscle interposition flaps). We compared 35 nonradiated and 39 radiated/ablation induced rectourethral fistulas. Concurrent urethral strictures were present in 11% of nonradiated and 28% of radiated/ablation rectourethral fistulas. At a mean followup of 20 months 100% of nonradiated rectourethral fistulas were closed with 1 procedure while 84% of radiated/ablation rectourethral fistulas were closed in a single stage. Of the patients with nonradiated rectourethral fistulas 97% had the bowel undiverted. Of those undiverted cases 100% were without bowel complication. Of the patients with radiated/ablation rectourethral fistulas 31% required permanent fecal diversion. Successful rectourethral fistula closure can be achieved for nonradiated (100%) and radiation/ablation (84%) rectourethral fistulas using a standard anterior perineal approach with an interposition muscle flap and selective use of buccal mucosal graft, providing a standard for rectourethral fistula repair. Even the most complex radiation/ablation rectourethral fistula can be repaired avoiding permanent urinary and fecal diversion. Copyright © 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. LuAG:Pr3+-porphyrin based nanohybrid system for singlet oxygen production: Toward the next generation of PDTX drugs.

    PubMed

    Popovich, Kseniya; Tomanová, Kateřina; Čuba, Václav; Procházková, Lenka; Pelikánová, Iveta Terezie; Jakubec, Ivo; Mihóková, Eva; Nikl, Martin

    2018-02-01

    A highly prospective drug for the X-ray induced photodynamic therapy (PDTX), LuAG:Pr 3+ @SiO 2 -PpIX nanocomposite, was successfully prepared by a three step process: photo-induced precipitation of the Lu 3 Al 5 O 12 :Pr 3+ (LuAG:Pr 3+ ) core, sol-gel technique for amorphous silica coating, and a biofunctionalization by attaching the protoporphyrin IX (PpIX) molecules. The synthesis procedure provides three-layer nanocomposite with uniform shells covering an intensely luminescent core. Room temperature radioluminescence (RT RL) spectra as well as photoluminescence (RT PL) steady-state and time resolved spectra of the material confirm the non-radiative energy transfer from the core Pr 3+ ions to the PpIX outer layer. First, excitation of Pr 3+ ions results in the red luminescence of PpIX. Second, the decay measurements exhibit clear evidence of mentioned non-radiative energy transfer (ET). The singlet oxygen generation in the system was demonstrated by the 3'-(p-aminophenyl) fluorescein (APF) chemical probe sensitive to the singlet oxygen presence. The RT PL spectra of an X-ray irradiated material with the APF probe manifest the formation of singlet oxygen due to which enhanced luminescence around 530 nm is observed. Quenching studies, using NaN 3 as an 1 O 2 inhibitor, also confirm the presence of 1 O 2 in the system and rule out the parasitic reaction with OH radicals. To summarize, presented features of LuAG:Pr 3+ @SiO 2 -PpIX nanocomposite indicate its considerable potential for PDTX application. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Ultrasmall Microfabricated Laser Cavities

    DTIC Science & Technology

    2013-10-23

    as 105-106 K/W, where material gain saturates and nonradiative processes overwhelm before the device can go into stimulated emission [17, 90, 96...K. Hwang, D.-S. Song, I.-Y. Han, and Y.-H. Lee, \\Effect of nonradiative recombination on light emitting properties of two dimensional photonic

  13. Giant Suppression of Photobleaching for Single Molecule Detection via the Purcell Effect

    DTIC Science & Technology

    2013-11-18

    the molecule dissipates energy to emit another photon (spontaneous emission, or fluorescence, with rate kf) or to heat (intrinsic nonradiative process...enhancement gives rise to both enhanced radiation and enhanced nonradiation (energy dissipation due to Ohmic losses). The enhancement of

  14. Excited state intramolecular proton transfer reaction of 4'-N,N-diethylamino-3-hydroxyflavone and solvation dynamics in room temperature ionic liquids studied by optical Kerr gate fluorescence measurement.

    PubMed

    Kimura, Yoshifumi; Fukuda, Masanori; Suda, Kayo; Terazima, Masahide

    2010-09-16

    Fluorescence dynamics of 4'-N,N-diethylamino-3-hydroxyflavone (DEAHF) and its methoxy derivative (DEAMF) in various room temperature ionic liquids (RTILs) have been studied mainly by an optical Kerr gate method. DEAMF showed a single band fluorescence whose peak shifted with time by the solvation dynamics. The averaged solvation time determined by the fluorescence peak shift was proportional to the viscosity of the solvent except for tetradecyltrihexylphosphonium bis(trifluoromethanesulfonyl)amide. The solvation times were consistent with reported values determined with different probe molecules. DEAHF showed dual fluorescence due to the normal and tautomer forms produced by the excited state intramolecular proton transfer (ESIPT), and the relative intensities were dependent on the time and the solvent cation or anion species. By using the information of the fluorescence spectrum of DEAMF, the fluorescence spectrum of DEAHF at each delay time after the photoexcitation was decomposed into the normal and the tautomer fluorescence components, respectively. The normal component showed a very fast decay simulated by a biexponential function (2-3 and 20-30 ps) with an additional slower decay component. The tautomer component showed a rise with the time constants corresponding to the faster decay of the normal form with an additional instantaneous rise. The faster dynamics of the normal and tautomer population changes were assigned to the ESIPT process, while the slower decay of the fluorescence was attributed to the population decay from the excited state through the radiative and nonradiative processes. The average ESIPT time was much faster than the averaged solvation time of RTILs. Basically, the ESIPT kinetics in RTILs is similar to those in conventional liquid solvents like acetonitrile (Chou et al. J. Phys. Chem. A 2005, 109, 3777). The faster ESIPT is interpreted in terms of the activation barrierless process from the Franck-Condon state before the solvation of the normal state in the electronic excited state. With the advance of the solvation in the excited state, the normal form becomes relatively more stable than the tautomer form, which makes the ESIPT become an activation process.

  15. Investigation and Characterization of Defects in Epitaxial Films for Ultraviolet Light Emitting Devices Using FUV Time-Resolved Photoluminescence, Time-Resolved Cathodoluminescence, and Spatio-Time-Resolved Cathodoluminescence Excited Using Femtosecond Laser Pulses

    DTIC Science & Technology

    2013-05-22

    mole fraction AlxGa1-xN alloys, and GaN were studied in this project. For this purpose, we quantified the radiative lifetimes (R) and nonradiative ...61556;R) and nonradiative lifetimes (NR) for the near-band-edge (NBE) emission by measuring the luminescence lifetimes () and...that is a fraction of radiative rate over the sum of radiative and nonradiative rates; i. e. int=(1+R/NR)-1. To improve int of practical devices

  16. Transition Metal Complex/Polymer Systems as Optical Limiting Materials

    DTIC Science & Technology

    2013-05-01

    make other ligands that have a higher degree of structural rigidity, thereby removing many low frequency modes for nonradiative relaxation from the...Earlier it was mentioned that the BDPZ ligand was prepared as a means of decreasing the nonradiative relaxation rate of the complexes through

  17. The Origin of Nonradiative Heating/momentum in Hot Stars

    NASA Technical Reports Server (NTRS)

    Underhill, A. B. (Editor); Michalitsianos, A. G. (Editor)

    1985-01-01

    The origin of nonradiative heating and momentum in the atmospheres of stars is studied. The similarities and differences between what occurs in the hot stars and what occurs in cool stars are emphasized. Key points in the theory are reviewed. Areas requiring new study are indicated.

  18. THE BALMER-DOMINATED BOW SHOCK AND WIND NEBULA STRUCTURE OF {gamma}-RAY PULSAR PSR J1741-2054

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romani, Roger W.; Shaw, Michael S.; Camilo, Fernando

    2010-12-01

    We have detected an H{alpha} bow shock nebula around PSR J1741-2054, a pulsar discovered through its GeV {gamma}-ray pulsations. The pulsar is only {approx}1.''5 behind the leading edge of the shock. Optical spectroscopy shows that the nebula is non-radiative, dominated by Balmer emission. The H{alpha} images and spectra suggest that the pulsar wind momentum is equatorially concentrated and implies a pulsar space velocity {approx}150 km s{sup -1}, directed 15{sup 0} {+-} 10{sup 0} out of the plane of the sky. The complex H{alpha} profile indicates that different portions of the post-shock flow dominate line emission as gas moves along themore » nebula and provide an opportunity to study the structure of this unusual slow non-radiative shock under a variety of conditions. CXO ACIS observations reveal an X-ray pulsar wind nebula within this nebula, with a compact {approx}2.''5 equatorial structure and a trail extending several arcminutes behind. Together these data support a close ({<=}0.5 kpc) distance, a spin geometry viewed edge-on, and highly efficient {gamma}-ray production for this unusual, energetic pulsar.« less

  19. Lewis Base Passivation of Hybrid Halide Perovskites Slows Electron-Hole Recombination: Time-Domain Ab Initio Analysis.

    PubMed

    Liu, Lihong; Fang, Wei-Hai; Long, Run; Prezhdo, Oleg V

    2018-03-01

    Nonradiative electron-hole recombination plays a key role in determining photon conversion efficiencies in solar cells. Experiments demonstrate significant reduction in the recombination rate upon passivation of methylammonium lead iodide perovskite with Lewis base molecules. Using nonadiabatic molecular dynamics combined with time-domain density functional theory, we find that the nonradiative charge recombination is decelerated by an order of magnitude upon adsorption of the molecules. Thiophene acts by the traditional passivation mechanism, forcing electron density away from the surface. In contrast, pyridine localizes the electron at the surface while leaving it energetically near the conduction band edge. This is because pyridine creates a stronger coordinative bond with a lead atom of the perovskite and has a lower energy unoccupied orbital compared with thiophene due to the more electronegative nitrogen atom relative to thiophene's sulfur. Both molecules reduce two-fold the nonadiabatic coupling and electronic coherence time. A broad range of vibrational modes couple to the electronic subsystem, arising from inorganic and organic components. The simulations reveal the atomistic mechanisms underlying the enhancement of the excited-state lifetime achieved by the perovskite passivation, rationalize the experimental results, and advance our understanding of charge-phonon dynamics in perovskite solar cells.

  20. Comparative Killing Efficiencies for Decays of Tritiated Compounds Incorporated into E. coli

    PubMed Central

    Person, Stanley

    1963-01-01

    The killing efficiencies due to the decay of incorporated H3-thymidine, H3-uridine, and H3-histidine in E. coli 15T-L- have been determined. Decays from H3-thymidine are 2.0 times as effective in producing lethality as those from H3-uridine and 2.5 times as effective as those from H3-histidine. Therefore, it seems that the greater part of damage from H3-thymidine decays is due to chemical changes associated with nuclear transmutation. PMID:19431323

  1. LaF3 core/shell nanoparticles for subcutaneous heating and thermal sensing in the second biological-window

    NASA Astrophysics Data System (ADS)

    Ximendes, Erving Clayton; Rocha, Uéslen; Kumar, Kagola Upendra; Jacinto, Carlos; Jaque, Daniel

    2016-06-01

    We report on Ytterbium and Neodymium codoped LaF3 core/shell nanoparticles capable of simultaneous heating and thermal sensing under single beam infrared laser excitation. Efficient light-to-heat conversion is produced at the Neodymium highly doped shell due to non-radiative de-excitations. Thermal sensing is provided by the temperature dependent Nd3+ → Yb3+ energy transfer processes taking place at the core/shell interface. The potential application of these core/shell multifunctional nanoparticles for controlled photothermal subcutaneous treatments is also demonstrated.

  2. Probing the Ultrafast Energy Dissipation Mechanism of the Sunscreen Oxybenzone after UVA Irradiation.

    PubMed

    Baker, Lewis A; Horbury, Michael D; Greenough, Simon E; Coulter, Philip M; Karsili, Tolga N V; Roberts, Gareth M; Orr-Ewing, Andrew J; Ashfold, Michael N R; Stavros, Vasilios G

    2015-04-16

    Oxybenzone is a common constituent of many commercially available sunscreens providing photoprotection from ultraviolet light incident on the skin. Femtosecond transient electronic and vibrational absorption spectroscopies have been used to investigate the nonradiative relaxation pathways of oxybenzone in cyclohexane and methanol after excitation in the UVA region. The present data suggest that the photoprotective properties of oxybenzone can be understood in terms of an initial ultrafast excited state enol → keto tautomerization, followed by efficient internal conversion and subsequent vibrational relaxation to the ground state (enol) tautomer.

  3. Carrier capture efficiency in InGaN/GaN LEDs: Role of high temperature annealing

    NASA Astrophysics Data System (ADS)

    Vinattieri, A.; Batignani, F.; Bogani, F.; Meneghini, M.; Meneghesso, G.; Zanoni, E.; Zhu, D.; Humphreys, C. J.

    2014-02-01

    By means of time integrated (TI), time-resolved (TR) photoluminescence (PL) and PL excitation spectra, we investigate the role of an high temperature post-growth thermal annealing (TA) on a set of InGaN/GaN LED structures with different dislocation densities. We provide evidence of the nature of the radiative recombination from a wide distribution of non-interacting localised states and we show the beneficial effect of thermal annealing in reducing the contribution of non-radiative recombination in the well region.

  4. Role of impurities in determining the exciton diffusion length in organic semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtin, Ian J.; Holmes, Russell J.; Blaylock, D. Wayne

    2016-04-18

    The design and performance of organic photovoltaic cells is dictated, in part, by the magnitude of the exciton diffusion length (L{sub D}). Despite the importance of this parameter, there have been few investigations connecting L{sub D} and materials purity. Here, we investigate L{sub D} for the organic small molecule N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl)-benzidine as native impurities are systematically removed from the material. Thin films deposited from the as-synthesized material yield a value for L{sub D}, as measured by photoluminescence quenching, of (3.9 ± 0.5) nm with a corresponding photoluminescence efficiency (η{sub PL}) of (25 ± 1)% and thin film purity of (97.1 ± 1.2)%, measured by high performance liquid chromatography.more » After purification by thermal gradient sublimation, the value of L{sub D} is increased to (4.7 ± 0.5) nm with a corresponding η{sub PL} of (33 ± 1)% and purity of (98.3 ± 0.8)%. Interestingly, a similar behavior is also observed as a function of the deposition boat temperature. Films deposited from the purified material at a high temperature give L{sub D} = (5.3 ± 0.8) nm with η{sub PL} = (37 ± 1)% for films with a purity of (99.0 ± 0.3)% purity. Using a model of diffusion by Förster energy transfer, the variation of L{sub D} with purity is predicted as a function of η{sub PL} and is in good agreement with measurements. The removal of impurities acts to decrease the non-radiative exciton decay rate and increase the radiative decay rate, leading to increases in both the diffusivity and exciton lifetime. The results of this work highlight the role of impurities in determining L{sub D}, while also providing insight into the degree of materials purification necessary to achieve optimized exciton transport.« less

  5. Time- and Space-Resolved Spectroscopic Investigation on Pi-Conjugated Nanostructures

    DTIC Science & Technology

    2013-03-26

    compared with 1 suggest that the nonradiative rates in the S1 states of 2 and 3 substantially decrease with respect to the radiative rate constants. By... nonradiative internal conversion rates. Moreover, to investigate the NLO properties of the biradical 2-OS, two-photon absorption measurements were

  6. Exciton-dominant Electroluminescence from a Diode of Monolayer MoS2

    DTIC Science & Technology

    2014-05-14

    caused by a phonon-assisted nonradiative process, as the two peaks display different current dependencies. We pro- pose this is a different effect...monolayer MoS2. The Auger process opens up a nonradiative recombination channel for electron-hole pair recombination. If the Auger process is

  7. Solvent Dependency in the Quantum Efficiency of 4-[(4-Aminophenyl)-(4-imino-1-cyclohexa-2, 5- dienylidene) methyl] Aniline Hydrochloride.

    PubMed

    Pathrose, Bini; Nampoori, V P N; Radhakrishnan, P; Sahira, H; Mujeeb, A

    2015-05-01

    In the present work dual beam thermal lens technique is used for studying the solvent dependency on the quantum efficiency of a novel dye used for biomedical applications. The role of solvent in the absolute fluorescence quantum yield of 4-[(4-Aminophenyl)-(4-imino-1-cyclohexa-2, 5- dienylidene) methyl] aniline hydrochloride is studied using thermal lens technique. It is observed that the variation in solvents and its concentration results considerable variations in the fluorescence quantum yield. These variations are due to the non-radiative relaxation of the absorbed energy and because of the different solvent properties. The highest quantum yield of the dye is observed in the polar protic solvent-water.

  8. Probing the Influence of Disorder on Lanthanide Luminescence Using Eu-Doped LaPO4 Nanoparticles

    PubMed Central

    2017-01-01

    Lanthanide-doped nanocrystals (NCs) differ from their bulk counterparts due to their large surface to volume ratio. It is generally assumed that the optical properties are not affected by size effects as electronic transitions occur within the well-shielded 4f shell of the lanthanide dopant ions. However, defects and disorder in the surface layer can affect the luminescence properties. Trivalent europium is a suitable ion to investigate the subtle influence of the surface, because of its characteristic luminescence and high sensitivity to the local environment. Here, we investigate the influence of disorder in NCs on the optical properties of lanthanide dopants by studying the inhomogeneous linewidth, emission intensity ratios, and luminescence decay curves for LaPO4:Eu3+ samples of different sizes (4 nm to bulk) and core–shell configurations (core, core–isocrystalline shell, and core–silica shell). We show that the emission linewidths increase strongly for NCs. The ratio of the intensities of the forced electric dipole (ED) and magnetic dipole (MD) transitions, a measure for the local symmetry distortion around Eu3+ ions, is higher for samples with a large fraction of Eu3+ ions close to the surface. Finally, we present luminescence decay curves revealing an increased nonradiative decay rate for Eu3+ in NCs. The effects are strongest in core and core–silica shell NCs and can be reduced by growth of an isocrystalline LaPO4 shell. The present systematic study provides quantitative insight into the role of surface disorder on the optical properties of lanthanide-doped NCs. These insights are important in emerging applications of lanthanide-doped nanocrystals. PMID:28919934

  9. Nonradiative Decay Route of Cinnamate Derivatives Studied by Frequency and Time Domain Laser Spectroscopy in the Gas Phase, Matrix Isolation FTIR Spectroscopy and Quantum Chemical Calculations

    NASA Astrophysics Data System (ADS)

    Ebata, Takayuki

    2017-06-01

    The nonraddiative dececy route involving trans → cis photo-isomerization from the S_1 (ππ*) state has been investigated for several trans-cinnamate derivatives, which are known as sunscreen reagents. We examined two types of substitution effects. One is structural isomer such as ortho-, meta-, and para-hydroxy-methylcinnmate (o-, m-, p-HMC). The S_1 lifetime of p-HMC is less than 8 ps at zero-point level, and it undergoes rapid S_1 → ^1nπ* → T_1 decay via multiple conical intersections. Finally, the trans → cis isomerization proceeds in the T_1 state. On the other hand, both o- and m-HMC show very slow decay. Their S_1 lifetimes are in the order of 100 ps even at the excess energy of 2000-3000 \\wn. The other is the effect of the complexity of ester group in para-subsitituted species, such as para-methoxy-methyl, -ethyl and -2ethylhexyl cinnamate (p-MMC, p-MEC, p-M2EHC). p-MMC and p-MEC show sharp S_0 → S_1 (ππ*) vibronic bands, while p-M2EHC shows only broad structureless feature even under the jet-cooled condition. In addition, we found that the S_0 → ^1nπ* absorption appears at 1000 \\wn below the S_0 → S_1 (ππ*) transition in p-MEC and p-M2EHC, but not in p-MMC. Thus, the complexity of the ester group is very important for the appearance of the ^1nπ* state.

  10. Luminescence quenching and scintillation response in the Ce3+ doped GdxY3-xAl5O12 (x = 0.75, 1, 1.25, 1.5, 1.75, 2) single crystals

    NASA Astrophysics Data System (ADS)

    Bartosiewicz, K.; Babin, V.; Kamada, K.; Yoshikawa, A.; Mares, J. A.; Beitlerova, A.; Nikl, M.

    2017-01-01

    The luminescence and scintillation properties of the gadolinium yttrium aluminium garnets, (Gd,Y)3Al5O12 doped with Ce3+ are investigated as a function of the Gd/Y ratio with the aim of an improved understanding of the luminescence quenching, energy transfer and phase stability in these materials. An increase of both crystal field strength and instability of the garnet phase with increasing content of Gd3+ is observed. The instability of the garnet phase results in an appearance of the perovskite phase inclusions incorporated into the garnet phase. The luminescence features of Ce3+ in the perovskite phase inclusions and in the main garnet phase are studied separately. The thermal quenching of the 5 d → 4f emission of Ce3+ in the latter phase is determined by temperature dependence of the photoluminescence decay time. The results show that the onset of the thermal quenching is moved to lower temperatures with increasing gadolinium content. The measurements of temperature dependence of delayed radiative recombination do not reveal a clear evidence that the thermal quenching is caused by thermally induced ionization of the Ce3+ 5d1 excited state. Therefore, the main mechanism responsible for the luminescence quenching is due to the non-radiative relaxation from 5d1 excited state to 4f ground state of Ce3+. The energy transfer processes between Gd3+ and Ce3+ as well as between perovskite and garnet phases are evidenced by the photoluminescence excitation and emission spectra as well as decay kinetic measurements. Thermally stimulated luminescence (TSL) studies in the temperature range 77-497 K and scintillation decays under γ excitation complete the material characterization.

  11. A case study of energy transfer mechanism from uranium to europium in ZnAl2O4 spinel host by photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kumar, Mithlesh; Mohapatra, M.

    2016-04-01

    Zinc aluminate (ZAO), a member of spinel class of inorganic compounds has been of much interest of late due to its wide range of use in catalysis, optical, electronic and ceramic industries. When doped with several lanthanides, this material has proved to be a potential host matrix for phosphors. As lanthanides suffer from poor (direct) excitation and emission cross sections, the use of a co-dopant ion can help to circumvent this and extract better emission from a lanthanide doped ZAO system. In this connection, energy transfer mechanism from uranium to europium in the ZAO host was investigated by photoluminescence spectroscopic technique. It was seen that uranium gets stabilized in the hexavalent state as UO66 - (octahedral uranate) where as the lanthanide ion, Eu is stabilized in its trivalent state in the ZAO host. In the co-doped system, an efficient energy transfer pathway from the uranate to europium ion was observed. Based upon emission and life time data a suitable mechanism was proposed for the energy transfer (quenching) process. It was proposed that after excitation by photons, the uranate ions transfer their energy to nearby 5D1 level of Eu3 + ions which non-radiatively de-excites to the corresponding lower levels of 5D0. Further this 5D0 level decays in a radiative mode to the 7F manifold giving the characteristic emission profile of trivalent Eu. It was proposed that both static and dynamic types of energy transfer mechanism were responsible for this process.

  12. Synthesis and spectroscopic behavior of highly luminescent Eu 3+-dibenzoylmethanate (DBM) complexes with sulfoxide ligands

    NASA Astrophysics Data System (ADS)

    Niyama, E.; Brito, H. F.; Cremona, M.; Teotonio, E. E. S.; Reyes, R.; Brito, G. E. S.; Felinto, M. C. F. C.

    2005-09-01

    In this paper the synthesis, characterization and photoluminescent behavior of the [RE(DBM) 3L 2] complexes (RE = Gd and Eu) with a variety of sulfoxide ligands; L = benzyl sulfoxide (DBSO), methyl sulfoxide (DMSO), phenyl sulfoxide (DPSO) and p-tolyl sulfoxide (PTSO) have been investigated in solid state. The emission spectra of the Eu 3+-β-diketonate complexes show characteristics narrow bands arising from the 5D 0 → 7F J ( J = 0-4) transitions, which are split according to the selection rule for C n, C nv or C s site symmetries. The experimental Judd-Ofelt intensity parameters ( Ω2 and Ω4), radiative ( Arad) and non-radiative ( Anrad) decay rates, and R02 for the europium complexes have been determined and compared. The highest value of Ω2 (61.9 × 10 -20 cm 2) was obtained to the complex with PTSO ligand, indicating that Eu 3+ ion is in the highly polarizable chemical environment. The higher values of the experimental quantum yield ( q) and emission quantum efficiency of the emitter 5D 0 level ( η) for the Eu-complexes with DMSO, DBSO and PTSO sulfoxides suggest that these complexes are promising Light Conversion Molecular Devices (LCMDs). The lower value of quantum yield ( q = 1%), for the hydrated complex [Eu(DBM) 3(H 2O)], indicates that the luminescence quenching occurs via multiphonon relaxation by coupling with the OH-oscillators from water molecule coordinated to rare earth ion. The pure red emission of the Eu-complexes has been confirmed by ( x, y) color coordinates.

  13. Single-exciton optical gain in semiconductor nanocrystals.

    PubMed

    Klimov, Victor I; Ivanov, Sergei A; Nanda, Jagjit; Achermann, Marc; Bezel, Ilya; McGuire, John A; Piryatinski, Andrei

    2007-05-24

    Nanocrystal quantum dots have favourable light-emitting properties. They show photoluminescence with high quantum yields, and their emission colours depend on the nanocrystal size--owing to the quantum-confinement effect--and are therefore tunable. However, nanocrystals are difficult to use in optical amplification and lasing. Because of an almost exact balance between absorption and stimulated emission in nanoparticles excited with single electron-hole pairs (excitons), optical gain can only occur in nanocrystals that contain at least two excitons. A complication associated with this multiexcitonic nature of light amplification is fast optical-gain decay induced by non-radiative Auger recombination, a process in which one exciton recombines by transferring its energy to another. Here we demonstrate a practical approach for obtaining optical gain in the single-exciton regime that eliminates the problem of Auger decay. Specifically, we develop core/shell hetero-nanocrystals engineered in such a way as to spatially separate electrons and holes between the core and the shell (type-II heterostructures). The resulting imbalance between negative and positive charges produces a strong local electric field, which induces a giant ( approximately 100 meV or greater) transient Stark shift of the absorption spectrum with respect to the luminescence line of singly excited nanocrystals. This effect breaks the exact balance between absorption and stimulated emission, and allows us to demonstrate optical amplification due to single excitons.

  14. Crystal growth and near infrared optical properties of Pr 3+ doped lead halide materials for resonantly pumped eye safe laser applications

    NASA Astrophysics Data System (ADS)

    Jones, Ivy Krystal

    In this dissertation the material development and optical spectroscopy of Pr3+ activated low phonon energy halide crystals is presented for possible applications in resonantly pumped eye-safe solid-state laser gain media. In the last twenty years, the developments in fiber and diode lasers have enabled highly efficient resonant pumping of Pr3+ doped crystals for possible lasing in the 1.6--1.7 microm region. In this work, the results of the purification, crystal growth, and near-infrared (NIR) spectroscopic characterization of Pr3+ doped lead (II) chloride, PbCl2 and lead (II) bromide, PbBr2 are presented. The investigated PbCl2 and PbBr2 crystals are non-hygroscopic with maximum phonon energies between ~180--200 cm-1, which enable efficient emission in the NIR spectral region (~ 1.6 microm) from the 3F3/3F4 → 3H4 transition of Pr3+ ions. The commercial available starting materials were purchased as ultra dry, high purity (~ 99.999 %) beads and purified through a combination of zone-refinement and halogenation. The crystal growth of Pr3+ doped PbCl 2 and PbBr2 was performed via vertical Bridgman technique using a two-zone furnace. The resulting Pr3+ doped PbCl 2 and PbBr2 crystals exhibited characteristic IR absorption bands in the 1.5--1.7 microm region (3H4 → 3F3/3F4), which allow for resonant pumping using commercial diode lasers. A broad IR emission band centered at ~1.6 microm was observed under ~1445 nm diode laser excitation from both Pr3+ doped halides. This dissertation presents comparative spectroscopic results for Pr 3+:PbCl2 and Pr3+:PbBr2 including NIR absorption and emission studies, lifetime measurements, modelling of radiative and non-radiative decay rates, determination of transition cross-section, and the net effective gain cross sections.

  15. Can we Predict Quantum Yields Using Excited State Density Functional Theory for New Families of Fluorescent Dyes?

    NASA Astrophysics Data System (ADS)

    Kohn, Alexander W.; Lin, Zhou; Shepherd, James J.; Van Voorhis, Troy

    2016-06-01

    For a fluorescent dye, the quantum yield characterizes the efficiency of energy transfer from the absorbed light to the emitted fluorescence. In the screening among potential families of dyes, those with higher quantum yields are expected to have more advantages. From the perspective of theoreticians, an efficient prediction of the quantum yield using a universal excited state electronic structure theory is in demand but still challenging. The most representative examples for such excited state theory include time-dependent density functional theory (TDDFT) and restricted open-shell Kohn-Sham (ROKS). In the present study, we explore the possibility of predicting the quantum yields for conventional and new families of organic dyes using a combination of TDDFT and ROKS. We focus on radiative (kr) and nonradiative (knr) rates for the decay of the first singlet excited state (S_1) into the ground state (S_0) in accordance with Kasha's rule. M. Kasha, Discuss. Faraday Soc., 9, 14 (1950). For each dye compound, kr is calculated with the S_1-S_0 energy gap and transition dipole moment obtained using ROKS and TDDFT respectively at the relaxed S_1 geometry. Our predicted kr agrees well with the experimental value, so long as the order of energy levels is correctly predicted. Evaluation of knr is less straightforward as multiple processes are involved. Our study focuses on the S_1-T_1 intersystem crossing (ISC) and the S_1-S_0 internal conversion (IC): we investigate the properties that allow us to model the knr value using a Marcus-like expression, such as the Stokes shift, the reorganization energy, and the S_1-T_1 and S_1-S_0 energy gaps. Taking these factors into consideration, we compare our results with those obtained using the actual Marcus theory and provide explanation for discrepancy. T. Kowalczyk, T. Tsuchimochi, L. Top, P.-T. Chen, and T. Van Voorhis, J. Chem. Phys., 138, 164101 (2013). M. Kasha, Discuss. Faraday Soc., 9, 14 (1950).

  16. From Nonradiating Sources to Directionally Invisible Objects

    NASA Astrophysics Data System (ADS)

    Hurwitz, Elisa

    The goal of this dissertation is to extend the understanding of invisible objects, in particular nonradiating sources and directional nonscattering scatterers. First, variations of null-field nonradiating sources are derived from Maxwell's equations. Next, it is shown how to design a nonscattering scatterer by applying the boundary conditions for nonradiating sources to the scalar wave equation, referred to here as the "field cloak method". This technique is used to demonstrate directionally invisible scatterers for an incident field with one direction of incidence, and the influence of symmetry on the directionality is explored. This technique, when applied to the scalar wave equation, is extended to show that a directionally invisible object may be invisible for multiple directions of incidence simultaneously. This opens the door to the creation of optically switchable, directionally invisible objects which could be implemented in couplers and other novel optical devices. Next, a version of the "field cloak method" is extended to the Maxwell's electro-magnetic vector equations, allowing more flexibility in the variety of directionally invisible objects that can be designed. This thesis concludes with examples of such objects and future applications.

  17. Correlation between microturbulence and nonradial pulsations in iota Herculis

    NASA Astrophysics Data System (ADS)

    Said, N. M. M.; Razelan, M. M.; Chong, H. Y.; Aziz, A. H. A.; Zainuddin, M. Z.

    2015-04-01

    In this work, we study the correlation between microturbulence and nonradial pulsations of iota Herculis a B3 IV-typed star. This research is conducted using 144 spectra of iota Herculis taken from the ELODIE archive data (May 17 to 21, 1995) and 47 spectra from the archive data of Ritter Observatory (February 6, 1994 to October 30, 1995). The spectra of the ELODIE and the Ritter Observatory are analysed using the rvidlines subroutine of IRAF software to obtain the value of nonradial pulsations velocities (which represented by the heliocentric radial velocities). The heliocentric radial velocities (HRV) of iota Herculis obtained from ELODIE and Ritter Observatory are from -13.66 km s-1 to -17.09 km s-1 and -13.60 km s-1 to -29.70 km s-1, respectively. The microturbulent velocities are determined by using the important equation of the full width at half-maximum (FWHM) of the line profile for Doppler broadening. The value varies from 3.44 km s-1 to 5.32 km s-1 for the ELODIE data whereas the Ritter Observatory data are from 1.50 km s-1 to 5.83 km s-1. Both curves of HRV and microturbulent velocities show an identical pattern which the HRV curves will increase when the microturbulent velocities curves increase and vice versa. We propose the correlation between microturbulence and nonradial pulsations in this star is due to the gravity waves which drive the nonradial pulsations and subsequently induce the microturbulence.

  18. Electroluminescence and transport properties in amorphous silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Irrera, Alessia; Iacona, Fabio; Crupi, Isodiana; Presti, Calogero D.; Franzò, Giorgia; Bongiorno, Corrado; Sanfilippo, Delfo; Di Stefano, Gianfranco; Piana, Angelo; Fallica, Pier Giorgio; Canino, Andrea; Priolo, Francesco

    2006-03-01

    We report the results of a detailed study on the structural, electrical and optical properties of light emitting devices based on amorphous Si nanostructures. Amorphous nanostructures may constitute an interesting system for the monolithic integration of optical and electrical functions in Si ULSI technology. In fact, they exhibit an intense room temperature electroluminescence (EL), with the advantage of being formed at a temperature of 900 °C, while at least 1100 °C is needed for the formation of Si nanocrystals. Optical and electrical properties of amorphous Si nanocluster devices have been studied in the temperature range between 30 and 300 K. The EL is seen to have a bell-shaped trend as a function of temperature with a maximum at around 60 K. The efficiency of these devices is comparable to that found in devices based on Si nanocrystals, although amorphous nanostructures exhibit peculiar working conditions (very high current densities and low applied voltages). Time resolved EL measurements demonstrate the presence of a short lifetime, only partially due to the occurrence of non-radiative phenomena, since the very small amorphous clusters formed at 900 °C are characterized by a short radiative lifetime. By forcing a current through the device a phenomenon of charge trapping in the Si nanostructures has been observed. Trapped charges affect luminescence through an Auger-type non-radiative recombination of excitons. Indeed, it is shown that unbalanced injection of carriers (electrons versus holes) is one of the main processes limiting luminescence efficiency. These data will be reported and the advantages and limitations of this approach will be discussed.

  19. Development of a model to assess environmental performance, concerning HSE-MS principles.

    PubMed

    Abbaspour, M; Hosseinzadeh Lotfi, F; Karbassi, A R; Roayaei, E; Nikoomaram, H

    2010-06-01

    The main objective of the present study was to develop a valid and appropriate model to evaluate companies' efficiency and environmental performance, concerning health, safety, and environmental management system principles. The proposed model overcomes the shortcomings of the previous models developed in this area. This model has been designed on the basis of a mathematical method known as Data Envelopment Analysis (DEA). In order to differentiate high-performing companies from weak ones, one of DEA nonradial models named as enhanced Russell graph efficiency measure has been applied. Since some of the environmental performance indicators cannot be controlled by companies' managers, it was necessary to develop the model in a way that it could be applied when discretionary and/or nondiscretionary factors were involved. The model, then, has been modified on a real case that comprised 12 oil and gas general contractors. The results showed the relative efficiency, inefficiency sources, and the rank of contractors.

  20. Photoactive High Explosives: Substituents Effects on Tetrazine Photochemistry and Photophysics

    DOE PAGES

    McGrane, Shawn David; Bolme, Cynthia Anne; Greenfield, Margo Torello; ...

    2016-01-21

    High explosives that are photoactive, i.e., can be initiated with light, offer significant advantages in reduced potential for accidental electrical initiation. In this study, we examined a series of structurally related tetrazine based photoactive high explosive materials to detail their photochemical and photophysical properties. Using photobleaching infrared absorption, we determined quantum yields of photochemistry for nanosecond pulsed excitation at 355 and 532 nm. Changes in mass spectrometry during laser irradiation in vacuum measured the evolution of gaseous products. Fluorescence spectra, quantum yields, and lifetimes were measured to observe radiative channels of energy decay that compete with photochemistry. For the 6more » materials studied, quantum yields of photochemistry ranged from <10 –5 to 0.03 and quantum yield of fluorescence ranged from <10 –3 to 0.33. In all cases, the photoexcitation nonradiatively relaxed primarily to heat, appropriate for supporting photothermal initiation processes. Lastly, the photochemistry observed was dominated by ring scission of the tetrazine, but there was evidence of more extensive multistep reactions as well.« less

  1. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Jaehoon; Park, Young-Shin; Klimov, Victor Ivanovich

    Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge—realization of lasing with electrical injection—remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here in this paper, we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, wemore » apply a special current-focusing device architecture, which allows us to produce high current densities (j) up to ~18 A cm -2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3-4 A cm -2 we achieve the population inversion of the band-edge states.« less

  2. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping

    NASA Astrophysics Data System (ADS)

    Lim, Jaehoon; Park, Young-Shin; Klimov, Victor I.

    2018-01-01

    Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge--realization of lasing with electrical injection--remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, we apply a special current-focusing device architecture, which allows us to produce high current densities (j) up to ~18 A cm-2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3-4 A cm-2 we achieve the population inversion of the band-edge states.

  3. Photophysics of a coumarin based Schiff base in solvents of varying polarities

    NASA Astrophysics Data System (ADS)

    Ghosh, Saptarshi; Roy, Nayan; Singh, T. Sanjoy; Chattopadhyay, Nitin

    2018-01-01

    The present work reports detailed photophysics of a coumarin based Schiff base, namely, (E)-7-(((8-hydroxyquinolin-2-yl)methylene)amino)-4-methyl-2H-chromen-2-one (HMC) in different solvents of varying polarity exploiting steady state absorption, fluorescence and time resolved fluorescence spectroscopy. The dominant photophysical features of HMC are discussed in terms of emission from an intramolecular charge transfer (ICT) excited state. Molecular orbital (MO) diagrams as obtained from DFT based computational analysis confirms the occurrence of charge transfer from 8‧-hydroxy quinoline moiety of the molecule to the coumarin part. The notable difference in the photophysical response of HMC from its analogous coumarin (C480) lies in a lower magnitude of fluorescence quantum yield of the former, particularly in the solvents of low polarity, which is rationalized by considering the higher rate of non-radiative decay of HMC in apolar solvents. Phosphorescence emission as well as phosphorescence lifetime of HMC has also been reported in 77 K frozen matrix.

  4. Multi-Phonon Relaxation of H^- Local Modes in CaF_2

    NASA Astrophysics Data System (ADS)

    Davison, C. P.; Happek, U.; Campbell, J. A.; Engholm, J. R.; Schwettman, H. A.

    1998-03-01

    Local modes play an important role in the relaxation of vibrational modes of small molecules in solids (J.R. Engholm, C.W. Rella, H.A. Schwettman, and U. Happek; Phys. Rev. Lett. 77), 1302 (1996)., but only few attempts have been reported to study the relaxation of these local modes. Here we report on experiments to investigate the non-radiative relaxation of H^- local modes in CaF_2. Using a pump-probe technique, saturation experiments on the H^- local modes, both interstitial and substitutional, were performed at the Stanford Free Electron Laser Center. At low temperature we find a relaxation time T1 of 45 psec for the substitutional H^- local mode, and a more rapid relaxation for the interstitial H^- local modes next to La^3+ and Lu^3+ impurities. Information on the decay channels of the local modes are obtained from the characteristic temperature dependence of the relaxation rates. This work is supported in part by the ONR, Grant No. N00014-94-1024.

  5. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping

    DOE PAGES

    Lim, Jaehoon; Park, Young-Shin; Klimov, Victor Ivanovich

    2017-11-20

    Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge—realization of lasing with electrical injection—remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here in this paper, we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, wemore » apply a special current-focusing device architecture, which allows us to produce high current densities (j) up to ~18 A cm -2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3-4 A cm -2 we achieve the population inversion of the band-edge states.« less

  6. Towards zero-threshold optical gain using charged semiconductor quantum dots

    DOE PAGES

    Wu, Kaifeng; Park, Young -Shin; Lim, Jaehoon; ...

    2017-10-16

    Colloidal semiconductor quantum dots are attractive materials for the realization of solution-processable lasers. However, their applications as optical-gain media are complicated by a non-unity degeneracy of band-edge states, because of which multiexcitons are required to achieve the lasing regime. This increases the lasing thresholds and leads to very short optical gain lifetimes limited by nonradiative Auger recombination. Here, we show that these problems can be at least partially resolved by employing not neutral but negatively charged quantum dots. By applying photodoping to specially engineered quantum dots with impeded Auger decay, we demonstrate a considerable reduction of the optical gain thresholdmore » due to suppression of ground-state absorption by pre-existing carriers. Moreover, by injecting approximately one electron per dot on average, we achieve a more than twofold reduction in the amplified spontaneous emission threshold, bringing it to the sub-single-exciton level. Furthermore, these measurements indicate the feasibility of ‘zero-threshold’ gain achievable by completely blocking the band-edge state with two electrons.« less

  7. Exciton dynamics in a site-controlled quantum dot coupled to a photonic crystal cavity

    NASA Astrophysics Data System (ADS)

    Jarlov, C.; Lyasota, A.; Ferrier, L.; Gallo, P.; Dwir, B.; Rudra, A.; Kapon, E.

    2015-11-01

    Exciton and cavity mode (CM) dynamics in site-controlled pyramidal quantum dots (QDs), integrated with linear photonic crystal membrane cavities, are investigated for a range of temperatures and photo-excitation power levels. The absence of spurious multi-excitonic effects, normally observed in similar structures based on self-assembled QDs, permits the observation of effects intrinsic to two-level systems embedded in a solid state matrix and interacting with optical cavity modes. The coupled exciton and CM dynamics follow the same trend, indicating that the CM is fed only by the exciton transition. The Purcell reduction of the QD and CM decay times is reproduced well by a theoretical model that includes exciton linewidth broadening and temperature dependent non-radiative processes, from which we extract a Purcell factor of 17 ± 5. For excitation powers above QD saturation, we show the influence of quantum wire barrier states at short delay time, and demonstrate the absence of multiexcitonic background emission.

  8. Probing Photoexcited Carriers in a Few-Layer MoS2 Laminate by Time-Resolved Optical Pump-Terahertz Probe Spectroscopy.

    PubMed

    Kar, Srabani; Su, Y; Nair, R R; Sood, A K

    2015-12-22

    We report the dynamics of photoinduced carriers in a free-standing MoS2 laminate consisting of a few layers (1-6 layers) using time-resolved optical pump-terahertz probe spectroscopy. Upon photoexcitation with the 800 nm pump pulse, the terahertz conductivity increases due to absorption by the photoinduced charge carriers. The relaxation of the non-equilibrium carriers shows fast as well as slow decay channels, analyzed using a rate equation model incorporating defect-assisted Auger scattering of photoexcited electrons, holes, and excitons. The fast relaxation time occurs due to the capture of electrons and holes by defects via Auger processes, resulting in nonradiative recombination. The slower relaxation arises since the excitons are bound to the defects, preventing the defect-assisted Auger recombination of the electrons and the holes. Our results provide a comprehensive understanding of the non-equilibrium carrier kinetics in a system of unscreened Coulomb interactions, where defect-assisted Auger processes dominate and should be applicable to other 2D systems.

  9. New solid state lasers from the ultraviolet to the mid-infrared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, S.A.; Krupke, W.F.; Beach, R.J.

    The authors discuss three new laser materials that offer improved access to the ultraviolet, near infrared and mid-infrared spectral regions. In order for each of these materials to have been identified, a particular hurdle needed to be overcome with respect to the fundamental laser physics impacting the material. In the case of the 280-320nm Ce:LiSAF laser, the main issue is the need to reduce the loss associated with excited state absorption, while for 1047nm Yb:S-FAP it is the ground state absorption at the laser wavelength that must be minimized. Cr:ZnSe has been down-selected from a number of potential candidates whichmore » could lase in the 2200-3000nm region, in order to mitigate the detrimental impact of nonradiative decay. In all three cases the authors discuss how appropriate consideration of fundamental concerns has led to the identification and understanding of the new laser system.« less

  10. Towards zero-threshold optical gain using charged semiconductor quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kaifeng; Park, Young -Shin; Lim, Jaehoon

    Colloidal semiconductor quantum dots are attractive materials for the realization of solution-processable lasers. However, their applications as optical-gain media are complicated by a non-unity degeneracy of band-edge states, because of which multiexcitons are required to achieve the lasing regime. This increases the lasing thresholds and leads to very short optical gain lifetimes limited by nonradiative Auger recombination. Here, we show that these problems can be at least partially resolved by employing not neutral but negatively charged quantum dots. By applying photodoping to specially engineered quantum dots with impeded Auger decay, we demonstrate a considerable reduction of the optical gain thresholdmore » due to suppression of ground-state absorption by pre-existing carriers. Moreover, by injecting approximately one electron per dot on average, we achieve a more than twofold reduction in the amplified spontaneous emission threshold, bringing it to the sub-single-exciton level. Furthermore, these measurements indicate the feasibility of ‘zero-threshold’ gain achievable by completely blocking the band-edge state with two electrons.« less

  11. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes

    PubMed Central

    Zhang, Liuqi; Yang, Xiaolei; Jiang, Qi; Wang, Pengyang; Yin, Zhigang; Zhang, Xingwang; Tan, Hairen; Yang, Yang (Michael); Wei, Mingyang; Sutherland, Brandon R.; Sargent, Edward H.; You, Jingbi

    2017-01-01

    Inorganic perovskites such as CsPbX3 (X=Cl, Br, I) have attracted attention due to their excellent thermal stability and high photoluminescence quantum efficiency. However, the electroluminescence quantum efficiency of their light-emitting diodes was <1%. We posited that this low efficiency was a result of high leakage current caused by poor perovskite morphology, high non-radiative recombination at interfaces and perovskite grain boundaries, and also charge injection imbalance. Here, we incorporated a small amount of methylammonium organic cation into the CsPbBr3 lattice and by depositing a hydrophilic and insulating polyvinyl pyrrolidine polymer atop the ZnO electron-injection layer to overcome these issues. As a result, we obtained light-emitting diodes exhibiting a high brightness of 91,000 cd m−2 and a high external quantum efficiency of 10.4% using a mixed-cation perovskite Cs0.87MA0.13PbBr3 as the emitting layer. To the best of our knowledge, this is the brightest and most-efficient green perovskite light-emitting diodes reported to date. PMID:28589960

  12. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Liuqi; Yang, Xiaolei; Jiang, Qi; Wang, Pengyang; Yin, Zhigang; Zhang, Xingwang; Tan, Hairen; Yang, Yang (Michael); Wei, Mingyang; Sutherland, Brandon R.; Sargent, Edward H.; You, Jingbi

    2017-06-01

    Inorganic perovskites such as CsPbX3 (X=Cl, Br, I) have attracted attention due to their excellent thermal stability and high photoluminescence quantum efficiency. However, the electroluminescence quantum efficiency of their light-emitting diodes was <1%. We posited that this low efficiency was a result of high leakage current caused by poor perovskite morphology, high non-radiative recombination at interfaces and perovskite grain boundaries, and also charge injection imbalance. Here, we incorporated a small amount of methylammonium organic cation into the CsPbBr3 lattice and by depositing a hydrophilic and insulating polyvinyl pyrrolidine polymer atop the ZnO electron-injection layer to overcome these issues. As a result, we obtained light-emitting diodes exhibiting a high brightness of 91,000 cd m-2 and a high external quantum efficiency of 10.4% using a mixed-cation perovskite Cs0.87MA0.13PbBr3 as the emitting layer. To the best of our knowledge, this is the brightest and most-efficient green perovskite light-emitting diodes reported to date.

  13. Depleted Nanocrystal-Oxide Heterojunctions for High-Sensitivity Infrared Detection

    DTIC Science & Technology

    2015-08-28

    from surface dangling bonds and behave as effective nonradiative recombination centers.17 Upon the growth of CdSe, the main PL peak exhibits a redshift...as nonradiative recombination sites and cause PL degradation. With a 4.5 ML CdSe shell, the QY drops to 4%. As seen in Fig. 6, the PL QY is

  14. CME Research and Space Weather Support for the SECCHI Experiments on the STEREO Mission

    DTIC Science & Technology

    2014-01-14

    Corbett, ed., Cambridge Univ. Press (2010) Kahler, S.W. and D. F. Webb, "Tracking Nonradial Motions and Azimuthal Expansions of Interplanetary CME...Imaging and In-situ Data from LASCO, STEREO and SMEI", Bull. AAS, 41(2), p. 855, 2009. Kahler S. and D. Webb, "Tracking Nonradial Motions and

  15. Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Seitz, O.; Caillard, L.; Nguyen, H. M.; Chiles, C.; Chabal, Y. J.; Malko, A. V.

    2012-01-01

    To optimize colloidal nanocrystals/Si hybrid structures, nanopillars are prepared and organized via microparticle patterning and Si etching. A monolayer of CdSe nanocrystals is then grafted on the passivated oxide-free nanopillar surfaces, functionalized with carboxy-alkyl chain linkers. This process results to a negligible number of non-radiative surface state defects with a tightly controlled separation between the nanocrystals and Si. Steady-state and time-resolved photoluminescence measurements confirm the close-packing nanocrystal arrangement and the dominance of non-radiative energy transfer from nanocrystals to Si. We suggest that radially doped p-n junction devices based on energy transfer offer a viable approach for thin film photovoltaic devices.

  16. Extraction of inhomogeneous broadening and nonradiative losses in InAs quantum-dot lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, Weng W.; Liu, Alan Y.; Gossard, Arthur C.

    2015-10-28

    We present a method to quantify inhomogeneous broadening and nonradiative losses in quantum dot lasers by comparing the gain and spontaneous emission results of a microscopic laser theory with measurements made on 1.3 μm InAs quantum-dot lasers. Calculated spontaneous-emission spectra are first matched to those measured experimentally to determine the inhomogeneous broadening in the experimental samples. This is possible because treatment of carrier scattering at the level of quantum kinetic equations provides the homogeneously broadened spectra without use of free parameters, such as the dephasing rate. Thus we then extract the nonradiative recombination current associated with the quantum-dot active regionmore » from a comparison of measured and calculated gain versus current relations.« less

  17. Extraction of inhomogeneous broadening and nonradiative losses in InAs quantum-dot lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, Weng W., E-mail: wwchow@sandia.gov; Liu, Alan Y.; Gossard, Arthur C.

    2015-10-26

    We present a method to quantify inhomogeneous broadening and nonradiative losses in quantum dot lasers by comparing the gain and spontaneous emission results of a microscopic laser theory with measurements made on 1.3 μm InAs quantum-dot lasers. Calculated spontaneous-emission spectra are first matched to those measured experimentally to determine the inhomogeneous broadening in the experimental samples. This is possible because treatment of carrier scattering at the level of quantum kinetic equations provides the homogeneously broadened spectra without use of free parameters, such as the dephasing rate. We then extract the nonradiative recombination current associated with the quantum-dot active region from amore » comparison of measured and calculated gain versus current relations.« less

  18. Surface-admittance equivalence principle for nonradiating and cloaking problems

    NASA Astrophysics Data System (ADS)

    Labate, Giuseppe; Alù, Andrea; Matekovits, Ladislau

    2017-06-01

    In this paper, we address nonradiating and cloaking problems exploiting the surface equivalence principle, by imposing at any arbitrary boundary the control of the admittance discontinuity between the overall object (with or without cloak) and the background. After a rigorous demonstration, we apply this model to a nonradiating problem, appealing for anapole modes and metamolecules modeling, and to a cloaking problem, appealing for non-Foster metasurface design. A straightforward analytical condition is obtained for controlling the scattering of a dielectric object over a surface boundary of interest. Previous quasistatic results are confirmed and a general closed-form solution beyond the subwavelength regime is provided. In addition, this formulation can be extended to other wave phenomena once the proper admittance function is defined (thermal, acoustics, elastomechanics, etc.).

  19. Effects of Decay of Incorporated H3-Thymidine on Bacteria

    PubMed Central

    Person, Stanley; Leah Lewis, Hazel

    1962-01-01

    The killing efficiency due to the decay of incorporated H3-thymidine in three mutants of E. coli strain 15: 15T-, 15T-L-, and 15T-U- has been determined. This efficiency is comparable to that previously determined by others for P32 decay. The killing efficiency has been determined as a function of H3-thymidine specific activity, storage media and storage temperature. We have observed a latent killing effect that causes lethality under certain conditions. The kinetics of latent killing have been examined at several temperatures. Finally, mutation production induced by H3-thymidine decays was shown to occur. The results are consistent with the idea that inactivation and mutations may be caused by a process in the nuclear transmutation that is not associated with β-particle ionization damage. PMID:19431318

  20. Selection Metric for Photovoltaic Materials Screening Based on Detailed-Balance Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blank, Beatrix; Kirchartz, Thomas; Lany, Stephan

    The success of recently discovered absorber materials for photovoltaic applications has been generating increasing interest in systematic materials screening over the last years. However, the key for a successful materials screening is a suitable selection metric that goes beyond the Shockley-Queisser theory that determines the thermodynamic efficiency limit of an absorber material solely by its band-gap energy. Here, we develop a selection metric to quantify the potential photovoltaic efficiency of a material. Our approach is compatible with detailed balance and applicable in computational and experimental materials screening. We use the complex refractive index to calculate radiative and nonradiative efficiency limitsmore » and the respective optimal thickness in the high mobility limit. We also compare our model to the widely applied selection metric by Yu and Zunger [Phys. Rev. Lett. 108, 068701 (2012)] with respect to their dependence on thickness, internal luminescence quantum efficiency, and refractive index. Finally, the model is applied to complex refractive indices calculated via electronic structure theory.« less

  1. Modeling the Performance Limitations and Prospects of Perovskite/Si Tandem Solar Cells under Realistic Operating Conditions

    PubMed Central

    2017-01-01

    Perovskite/Si tandem solar cells have the potential to considerably out-perform conventional solar cells. Under standard test conditions, perovskite/Si tandem solar cells already outperform the Si single junction. Under realistic conditions, however, as we show, tandem solar cells made from current record cells are hardly more efficient than the Si cell alone. We model the performance of realistic perovskite/Si tandem solar cells under real-world climate conditions, by incorporating parasitic cell resistances, nonradiative recombination, and optical losses into the detailed-balance limit. We show quantitatively that when optimizing these parameters in the perovskite top cell, perovskite/Si tandem solar cells could reach efficiencies above 38% under realistic conditions, even while leaving the Si cell untouched. Despite the rapid efficiency increase of perovskite solar cells, our results emphasize the need for further material development, careful device design, and light management strategies, all necessary for highly efficient perovskite/Si tandem solar cells. PMID:28920081

  2. Modeling the Performance Limitations and Prospects of Perovskite/Si Tandem Solar Cells under Realistic Operating Conditions.

    PubMed

    Futscher, Moritz H; Ehrler, Bruno

    2017-09-08

    Perovskite/Si tandem solar cells have the potential to considerably out-perform conventional solar cells. Under standard test conditions, perovskite/Si tandem solar cells already outperform the Si single junction. Under realistic conditions, however, as we show, tandem solar cells made from current record cells are hardly more efficient than the Si cell alone. We model the performance of realistic perovskite/Si tandem solar cells under real-world climate conditions, by incorporating parasitic cell resistances, nonradiative recombination, and optical losses into the detailed-balance limit. We show quantitatively that when optimizing these parameters in the perovskite top cell, perovskite/Si tandem solar cells could reach efficiencies above 38% under realistic conditions, even while leaving the Si cell untouched. Despite the rapid efficiency increase of perovskite solar cells, our results emphasize the need for further material development, careful device design, and light management strategies, all necessary for highly efficient perovskite/Si tandem solar cells.

  3. Selection Metric for Photovoltaic Materials Screening Based on Detailed-Balance Analysis

    DOE PAGES

    Blank, Beatrix; Kirchartz, Thomas; Lany, Stephan; ...

    2017-08-31

    The success of recently discovered absorber materials for photovoltaic applications has been generating increasing interest in systematic materials screening over the last years. However, the key for a successful materials screening is a suitable selection metric that goes beyond the Shockley-Queisser theory that determines the thermodynamic efficiency limit of an absorber material solely by its band-gap energy. Here, we develop a selection metric to quantify the potential photovoltaic efficiency of a material. Our approach is compatible with detailed balance and applicable in computational and experimental materials screening. We use the complex refractive index to calculate radiative and nonradiative efficiency limitsmore » and the respective optimal thickness in the high mobility limit. We also compare our model to the widely applied selection metric by Yu and Zunger [Phys. Rev. Lett. 108, 068701 (2012)] with respect to their dependence on thickness, internal luminescence quantum efficiency, and refractive index. Finally, the model is applied to complex refractive indices calculated via electronic structure theory.« less

  4. High-Resolution and -Efficiency Gamma-Ray Detection for the FRIB Decay Station

    NASA Astrophysics Data System (ADS)

    Grover, Hannah; Leach, Kyle; Natzke, Connor; FRIB Decay Station Collaboration Collaboration

    2017-09-01

    As we push our knowledge of nuclear structure to the frontier of the unknown with FRIB, a new high-efficiency, -resolution, and -sensitivity photon-detection device is critical. The FRIB Decay Station Collaboration is working to create a new detector array that meets the needs of the exploratory nature of FRIB by minimizing cost and maximizing efficiency. GEANT4 simulations are being utilized to combine detectors in various configurations to test their feasibility. I will discuss these simulations and how they compare to existing simulations of past-generation decay-spectroscopy equipment. This work has been funded by the DOE Office of Science, Office of Nuclear Physics.

  5. Plasmonic Landau damping in active environments

    NASA Astrophysics Data System (ADS)

    Thakkar, Niket; Montoni, Nicholas P.; Cherqui, Charles; Masiello, David J.

    2018-03-01

    Optical manipulation of charge on the nanoscale is of fundamental importance to an array of proposed technologies from selective photocatalysis to nanophotonics. Open plasmonic systems where collective electron oscillations release energy and charge to their environments offer a potential means to this end as plasmons can rapidly decay into energetic electron-hole pairs; however, isolating this decay from other plasmon-environment interactions remains a challenge. Here we present an analytic theory of noble-metal nanoparticles that quantitatively models plasmon decay into electron-hole pairs, demonstrates that this decay depends significantly on the nanoparticle's dielectric environment, and disentangles this effect from competing decay pathways. Using our approach to incorporate embedding material and substrate effects on plasmon-electron interaction, we show that predictions from the model agree with four separate experiments. Finally, examination of coupled nanoparticle-emitter systems further shows that the hybridized in-phase mode more efficiently decays to photons whereas the out-of-phase mode more efficiently decays to electron-hole pairs, offering a strategy to tailor open plasmonic systems for charge manipulation.

  6. IAEA Co-ordinated Research Project: update of X-ray and gamma-ray decay data standards for detector calibration and other applications.

    PubMed

    Nichols, Alan L

    2004-01-01

    A Co-ordinated Research Project (CRP) was established in 1998 by the IAEA Nuclear Data Section (Update of X-ray and gamma-ray Decay Data Standards for Detector Calibration and Other Applications), in order to improve further the recommended decay data used to undertake efficiency calibrations of gamma-ray detectors. Participants in this CRP reviewed and modified the list of radionuclides most suited for detector efficiency calibration, and also considered the decay-data needs for safeguards, waste management, dosimetry, nuclear medicine, material analysis and environmental monitoring. Overall, 62 radionuclides were selected for decay-data evaluation, along with four parent-daughter combinations and two natural decay chains. gamma-ray emissions from specific nuclear reactions were also included to extend the calibrant energy well beyond 10 MeV. A significant number of these decay-data evaluations have been completed, and an IAEA-TECDOC report and database are in the process of being assembled for planned completion by the end of 2003.

  7. Extension of the TDCR model to compute counting efficiencies for radionuclides with complex decay schemes.

    PubMed

    Kossert, K; Cassette, Ph; Carles, A Grau; Jörg, G; Gostomski, Christroph Lierse V; Nähle, O; Wolf, Ch

    2014-05-01

    The triple-to-double coincidence ratio (TDCR) method is frequently used to measure the activity of radionuclides decaying by pure β emission or electron capture (EC). Some radionuclides with more complex decays have also been studied, but accurate calculations of decay branches which are accompanied by many coincident γ transitions have not yet been investigated. This paper describes recent extensions of the model to make efficiency computations for more complex decay schemes possible. In particular, the MICELLE2 program that applies a stochastic approach of the free parameter model was extended. With an improved code, efficiencies for β(-), β(+) and EC branches with up to seven coincident γ transitions can be calculated. Moreover, a new parametrization for the computation of electron stopping powers has been implemented to compute the ionization quenching function of 10 commercial scintillation cocktails. In order to demonstrate the capabilities of the TDCR method, the following radionuclides are discussed: (166m)Ho (complex β(-)/γ), (59)Fe (complex β(-)/γ), (64)Cu (β(-), β(+), EC and EC/γ) and (229)Th in equilibrium with its progenies (decay chain with many α, β and complex β(-)/γ transitions). © 2013 Published by Elsevier Ltd.

  8. Growth and optical properties of CMOS-compatible silicon nanowires for photonic devices

    NASA Astrophysics Data System (ADS)

    Guichard, Alex Richard

    Silicon (Si) is the dominant semiconductor material in both the microelectronic and photovoltaic industries. Despite its poor optical properties, Si is simply too abundant and useful to be completely abandoned in either industry. Since the initial discovery of efficient room temperature photoluminescence (PL) from porous Si and the following discoveries of PL and time-resolved optical gain from Si nanocrystals (Si-nc) in SiO2, many groups have studied the feasibility of making Si-based, CMOS-compatible electroluminescent devices and electrically pumped lasers. These studies have shown that for Si-ne sizes below about 10 nm, PL can be attributed to radiative recombination of confined excitons and quantum efficiencies can reach 90%. PL peak energies are blue-shifted from the bulk Si band edge of 1.1 eV due to the quantum confinement effect and PL decay lifetimes are on mus timescales. However, many unanswered questions still exist about both the ease of carrier injection and various non-radiative and loss mechanisms that are present. A potential alternative material system to porous Si and Si-nc is Si nanowires (SiNWs). In this thesis, I examine the optical properties of SiNWs with diameters in the range of 3-30 nm fabricated by a number of compound metal oxide semiconductor (CMOS) compatible fabrication techniques including Chemical Vapor Deposition on metal nanoparticle coated substrates, catalytic wet etching of bulk Si and top-down electron-beam lithographic patterning. Using thermal oxidation and etching, we can increase the degree of confinement in the SiNWs. I demonstrate PL peaked in the visible and near-infrared (NIR) wavelength ranges that is tunable by controlling the crystalline SiNW core diameter, which is measured with dark field and high-resolution transmission electron microscopy. PL decay lifetimes of the SiNWs are on the order of 50 mus after proper surface passivation, which suggest that the PL is indeed from confined carriers in the SiNW cores. Investigation of the non-radiative Auger recombination (AR) process suggests that for high carrier densities in excess of 1019 cm-3, the AR lifetime is about 80 ns and decreases with increasing carrier density. This SiNW AR lifetime is slower than the AR process in Si nanocrystals at similar carrier densities, but faster than the radiative process. I also study the light emission and absorption properties of single SiNWs patterned on Silicon-on-insulator (SOI) substrates and find that a large fraction of NWs is optically dead. Moreover, the active, light-emitting nanostructures exhibit PL blinking, a mechanism often seen for individual nanostructure light emitters. These results are essential to evaluating Si nanostructures as a feasible gain or lasing medium. A second potential application for SiNWs is as a building block for low-cost, Si-based photovoltaics (PV). The market for thin-film PV, particularly organic thin-film PV, exists because it offers potential lower cost solutions for solar power versus bulk Si-based PV. However, many thin film technologies, while possessing superior optical absorption properties compared to Si, suffer from poor electronic transport properties. Here, I present a new Si-based PV design that combines the desirable optical properties of highly absorptive organic molecules and the high-mobility electronic properties of crystalline Si. This synergy is achieved by exploiting efficient Forster energy transfer from the light absorbing organic to SiNWs that enable current extraction. The energy transfer radius of a particular dye and bulk Si is found to be roughly 4 nm. Spectroscopic photocurrent experiments were performed on unpatterned SOI wafers as well as SiNWs patterned in SOI substrates and a significant photocurrent increase was seen in samples coated with organics versus uncoated samples. The photocurrent increase is seen in the wavelength range of the dye's absorption band, suggesting absorption of the dye and subsequent energy transfer to the Si plays a role. These results could pave the way for new low-cost, Si-based solar cell designs that leverage the strengths of the Si PV and microelectronics industries.

  9. High-power AlGaN-based near-ultraviolet light-emitting diodes grown on Si(111)

    NASA Astrophysics Data System (ADS)

    Li, Zengcheng; Liu, Legong; Huang, Yingnan; Sun, Qian; Feng, Meixin; Zhou, Yu; Zhao, Hanmin; Yang, Hui

    2017-07-01

    High-power AlGaN-based 385 nm near-ultraviolet light-emitting diodes (UVA-LEDs) grown on Si(111) substrates are reported. The threading dislocation (TD) density of AlGaN was reduced by employing an Al-composition step-graded AlN/AlGaN multilayer buffer. V-shaped pits were intentionally incorporated into the active region to screen the carriers from the nonradiative recombination centers (NRCs) around the TDs and to facilitate hole injection. The light extraction efficiency was enhanced by the surface roughening of a thin-film (TF) vertical chip structure. The as-fabricated TF-UVA-LED exhibited a light output power of 960 mW at 500 mA, corresponding to an external quantum efficiency of 59.7%.

  10. An experimental method to simulate incipient decay of wood basidiomycete fungi

    Treesearch

    Simon Curling; Jerrold E. Winandy; Carol A. Clausen

    2000-01-01

    At very early stages of decay of wood by basidiomycete fungi, strength loss can be measured from wood before any measurable weight loss. Therefore, strength loss is a more efficient measure of incipient decay than weight loss. However, common standard decay tests (e.g. EN 113 or ASTM D2017) use weight loss as the measure of decay. A method was developed that allowed...

  11. Rayleigh and Wood anomalies in the diffraction of light from a perfectly conducting reflection grating

    NASA Astrophysics Data System (ADS)

    Maradudin, A. A.; Simonsen, I.; Polanco, J.; Fitzgerald, R. M.

    2016-02-01

    By means of a modal method we have calculated the angular dependence of the reflectivity and the efficiencies of several other diffracted orders of a perfectly conducting lamellar reflection grating illuminated by p-polarized light. These dependencies display the signatures of Rayleigh and Wood anomalies, usually associated with diffraction from a metallic grating. The Wood anomalies here are caused by the excitation of the surface electromagnetic waves supported by a periodically corrugated perfectly conducting surface, whose dispersion curves in both the nonradiative and radiative regions of the frequency-wavenumber plane are calculated.

  12. Porphyrin and bodipy molecular rotors as microviscometers

    NASA Astrophysics Data System (ADS)

    Kimball, Joseph Daniel, III

    Viscosity, a fluid's internal resistance to flow and resist molecular diffusion, is a fundamental property of fluid media. Determining the bulk viscosity of a fluid has been easy to relatively simple to accomplish for many years, yet in the recent decade there has been a focus on techniques to measure a fluid's microviscosity. Microviscosity differs from bulk viscosity such that microviscosity is the friction experienced by a single particle interacting with its micron-sized local environment. Macroscopic methods to evaluate the viscosity are well established, but methods to determine viscosity on the microscale level remains unclear. This work determines the viability of three molecular rotors designed as probes for microviscosity in organic media, ionic liquids, and in the cellular microenvironment. Understanding microviscosity is important because it one of the main properties of any fluid and thus has an effect on any diffusion related processes. A variety of mass and signal transport phenomena as well as intermolecular interactions are often governed by viscosity. Molecular rotors are a subclass of intramolecular charge transfer fluorophores which form a lower energy twisted state. This results in a charge separated species which is highly sensitive to its surrounding microenviroment's viscosity as high viscosity limits its ability to form this twisted state. Once excited, there are deactivation routes which the excited fluorophore can undergo: radiative and non-radiative. Both were studied in this work. In the case of a radiative decay, as seen in porphyrin dimer, the energy is released in the form of a photon and is seen as a shifted band in the emission structure. The conformation of the porphyrin dimer was found to be influenced differently by ionic liquids as compared to molecular solvents, indicating the microheterogenous nature of ionic liquids play a role in the conformation. For non-radiative decays, BODIPY dyads and triads were investigated. The triad has an extinction coefficient in the range of 200,000 M -1 cm-1, making it an extremely useful and sensitive fluorescent molecular rotor. Their fluorescent lifetimes were proven to correlate linearly with viscosity. Thus they were both encapsulated into lipds to determine their viability for cellular studies. The dyes were readily uptaken into three cancer cell lines, SKOV3, Calu 3 and Du 145. The lifetimes were then recorded using FLIM to map the viscosity of the cellular cytoplasm, mitochondria, lysosomes and other various organelles. A longer than expected lifetime in the cytoplasm was observed. This could be due to binding onto cytoplasmic proteins distributed throughout the cytoplasm, not due to viscosity as the theory of molecular rotors predicts..

  13. Oxalate analysis methodology for decayed wood

    Treesearch

    Carol A. Clausen; William Kenealy; Patricia K. Lebow

    2008-01-01

    Oxalate from partially decayed southern pine wood was analyzed by HPLC or colorimetric assay. Oxalate extraction efficiency, assessed by comparing analysis of whole wood cubes with ground wood, showed that both wood geometries could be extracted with comparable efficiency. To differentiate soluble oxalate from total oxalate, three extraction methods were assessed,...

  14. Non-radial oscillation modes with long lifetimes in giant stars.

    PubMed

    De Ridder, Joris; Barban, Caroline; Baudin, Frédéric; Carrier, Fabien; Hatzes, Artie P; Hekker, Saskia; Kallinger, Thomas; Weiss, Werner W; Baglin, Annie; Auvergne, Michel; Samadi, Réza; Barge, Pierre; Deleuil, Magali

    2009-05-21

    Towards the end of their lives, stars like the Sun greatly expand to become red giant stars. Such evolved stars could provide stringent tests of stellar theory, as many uncertainties of the internal stellar structure accumulate with age. Important examples are convective overshooting and rotational mixing during the central hydrogen-burning phase, which determine the mass of the helium core, but which are not well understood. In principle, analysis of radial and non-radial stellar oscillations can be used to constrain the mass of the helium core. Although all giants are expected to oscillate, it has hitherto been unclear whether non-radial modes are observable at all in red giants, or whether the oscillation modes have a short or a long mode lifetime, which determines the observational precision of the frequencies. Here we report the presence of radial and non-radial oscillations in more than 300 giant stars. For at least some of the giants, the mode lifetimes are of the order of a month. We observe giant stars with equally spaced frequency peaks in the Fourier spectrum of the time series, as well as giants for which the spectrum seems to be more complex. No satisfactory theoretical explanation currently exists for our observations.

  15. Correlating electroluminescence characterization and physics-based models of InGaN/GaN LEDs: Pitfalls and open issues

    NASA Astrophysics Data System (ADS)

    Calciati, Marco; Goano, Michele; Bertazzi, Francesco; Vallone, Marco; Zhou, Xiangyu; Ghione, Giovanni; Meneghini, Matteo; Meneghesso, Gaudenzio; Zanoni, Enrico; Bellotti, Enrico; Verzellesi, Giovanni; Zhu, Dandan; Humphreys, Colin

    2014-06-01

    Electroluminescence (EL) characterization of InGaN/GaN light-emitting diodes (LEDs), coupled with numerical device models of different sophistication, is routinely adopted not only to establish correlations between device efficiency and structural features, but also to make inferences about the loss mechanisms responsible for LED efficiency droop at high driving currents. The limits of this investigative approach are discussed here in a case study based on a comprehensive set of current- and temperature-dependent EL data from blue LEDs with low and high densities of threading dislocations (TDs). First, the effects limiting the applicability of simpler (closed-form and/or one-dimensional) classes of models are addressed, like lateral current crowding, vertical carrier distribution nonuniformity, and interband transition broadening. Then, the major sources of uncertainty affecting state-of-the-art numerical device simulation are reviewed and discussed, including (i) the approximations in the transport description through the multi-quantum-well active region, (ii) the alternative valence band parametrizations proposed to calculate the spontaneous emission rate, (iii) the difficulties in defining the Auger coefficients due to inadequacies in the microscopic quantum well description and the possible presence of extra, non-Auger high-current-density recombination mechanisms and/or Auger-induced leakage. In the case of the present LED structures, the application of three-dimensional numerical-simulation-based analysis to the EL data leads to an explanation of efficiency droop in terms of TD-related and Auger-like nonradiative losses, with a C coefficient in the 10-30 cm6/s range at room temperature, close to the larger theoretical calculations reported so far. However, a study of the combined effects of structural and model uncertainties suggests that the C values thus determined could be overestimated by about an order of magnitude. This preliminary attempt at uncertainty quantification confirms, beyond the present case, the need for an improved description of carrier transport and microscopic radiative and nonradiative recombination mechanisms in device-level LED numerical models.

  16. Non-radiation induced signals in TL dosimetry.

    PubMed

    German, U; Weinstein, M

    2002-01-01

    One source of background signals, which are non-radiation related, is the reader system and it includes dark current, external contaminants and electronic spikes. These factors can induce signals equivalent to several hundredths of mSv. Mostly, the effects are minimised by proper design of the TLD reader, but some effects are dependent on proper operation of the system. The other main group of background signals originates in the TL crystal and is due to tribothermoluminescence, dirt, chemical reactions and stimulation by visible or UV light. These factors can have a significant contribution, equivalent to over several mSv, depending on whether the crystal is bare or protected by PTFE. Working in clean environments, monitoring continuously the glow curves and performing glow curve deconvolution are suggested to minimise non-radiation induced spurious signals.

  17. A novel pendulum test for measuring roller chain efficiency

    NASA Astrophysics Data System (ADS)

    Wragge-Morley, R.; Yon, J.; Lock, R.; Alexander, B.; Burgess, S.

    2018-07-01

    This paper describes a novel pendulum decay test for determining the transmission efficiency of chain drives. The test involves releasing a pendulum with an initial potential energy and measuring its decaying oscillations: under controlled conditions the decay reveals the losses in the transmission to a high degree of accuracy. The main advantage over motorised rigs is that there are significantly fewer sources of friction and inertia and hence measurement error. The pendulum rigs have an accuracy around 0.6% for the measurement of the coefficient of friction, giving an accuracy of transmission efficiency measurement around 0.012%. A theoretical model of chain friction combined with the equations of motion enables the coefficient of friction to be determined from the decay rate of pendulum velocity. The pendulum rigs operate at relatively low speeds. However, they allow an accurate determination of the coefficient of friction to estimate transmission efficiency at higher speeds. The pendulum rig revealed a previously undetected rocking behaviour in the chain links at very small articulation angles. In this regime, the link interfaces were observed to roll against one another rather than slide. This observation indicates that a very high-efficiency transmission can be achieved if the articulation angle is very low.

  18. Efficiency of solution-processed multilayer polymer light-emitting diodes using charge blocking layers

    NASA Astrophysics Data System (ADS)

    Kasparek, Christian; Rörich, Irina; Blom, Paul W. M.; Wetzelaer, Gert-Jan A. H.

    2018-01-01

    By blending semiconducting polymers with the cross-linkable matrix ethoxylated-(4)-bisphenol-a-dimethacrylate (SR540), an insoluble layer is acquired after UV-illumination. Following this approach, a trilayer polymer light-emitting diode (PLED) consisting of a blend of poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)-benzidine] (poly-TPD) and SR540 as an electron-blocking layer, Super Yellow-Poly(p-phenylene vinylene) (SY-PPV) blended with SR540 as an emissive layer, and poly(9,9-di-n-octylfluorenyl-2,7-diyl) as a hole-blocking layer is fabricated from solution. The trilayer PLED shows a 23% increase in efficiency at low voltage as compared to a single layer SY-PPV PLED. However, at higher voltage, the advantage in current efficiency gradually decreases. A combined experimental and modelling study shows that the increased efficiency is not only due to the elimination of exciton quenching at the electrodes but also due to suppressed nonradiative trap-assisted recombination due to carrier confinement. At high voltages, holes can overcome the hole-blocking barrier, which explains the efficiency roll-off.

  19. A comparative study on charge carrier recombination across the junction region of Cu{sub 2}ZnSn(S,Se){sub 4} and Cu(In,Ga)Se{sub 2} thin film solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halim, Mohammad Abdul, E-mail: halimtsukuba2012@gmail.com; Islam, Muhammad Monirul; Luo, Xianjia

    A comparative study with focusing on carrier recombination properties in Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) and the CuInGaSe{sub 2} (CIGS) solar cells has been carried out. For this purpose, electroluminescence (EL) and also bias-dependent time resolved photoluminescence (TRPL) using femtosecond (fs) laser source were performed. For the similar forward current density, the EL-intensity of the CZTSSe sample was obtained significantly lower than that of the CIGS sample. Primarily, it can be attributed to the existence of excess amount of non-radiative recombination center in the CZTSSe, and/or CZTSSe/CdS interface comparing to that of CIGS sample. In case of CIGS sample, TRPL decaymore » time was found to increase with the application of forward-bias. This can be attributed to the reduced charge separation rate resulting from the reduced electric-field at the junction. However, in CZTSSe sample, TRPL decay time has been found almost independent under the forward and reverse-bias conditions. This phenomenon indicates that the charge recombination rate strongly dominates over the charge separation rate across the junction of the CZTSSe sample. Finally, temperature dependent V{sub OC} suggests that interface related recombination in the CZTSSe solar cell structure might be one of the major factors that affect EL-intensity and also, TRPL decay curves.« less

  20. FRET enhancement close to gold nanoparticles positioned in DNA origami constructs.

    PubMed

    Aissaoui, Nesrine; Moth-Poulsen, Kasper; Käll, Mikael; Johansson, Peter; Wilhelmsson, L Marcus; Albinsson, Bo

    2017-01-05

    Here we investigate the energy transfer rates of a Förster resonance energy transfer (FRET) pair positioned in close proximity to a 5 nm gold nanoparticle (AuNP) on a DNA origami construct. We study the distance dependence of the FRET rate by varying the location of the donor molecule, D, relative to the AuNP while maintaining a fixed location of the acceptor molecule, A. The presence of the AuNP induces an alteration in the spontaneous emission of the donor (including radiative and non-radiative rates) which is strongly dependent on the distance between the donor and AuNP surface. Simultaneously, the energy transfer rates are enhanced at shorter D-A (and D-AuNP) distances. Overall, in addition to the direct influence of the acceptor and AuNP on the donor decay there is also a significant increase in decay rate not explained by the sum of the two interactions. This leads to enhanced energy transfer between donor and acceptor in the presence of a 5 nm AuNP. We also demonstrate that the transfer rate in the three "particle" geometry (D + A + AuNP) depends approximately linearly on the transfer rate in the donor-AuNP system, suggesting the possibility to control FRET process with electric field induced by 5 nm AuNPs close to the donor fluorophore. It is concluded that DNA origami is a very versatile platform for studying interactions between molecules and plasmonic nanoparticles in general and FRET enhancement in particular.

  1. Ab initio theory of spin-orbit coupling for quantum bits in diamond exhibiting dynamic Jahn-Teller effect

    NASA Astrophysics Data System (ADS)

    Gali, Adam; Thiering, Gergő

    Dopants in solids are promising candidates for implementations of quantum bits for quantum computing. In particular, the high-spin negatively charged nitrogen-vacancy defect (NV) in diamond has become a leading contender in solid-state quantum information processing. The initialization and readout of the spin is based on the spin-selective decay of the photo-excited electron to the ground state which is mediated by spin-orbit coupling between excited states states and phonons. Generally, the spin-orbit coupling plays a crucial role in the optical spinpolarization and readout of NV quantum bit (qubit) and alike. Strong electron-phonon coupling in dynamic Jahn-Teller (DJT) systems can substantially influence the effective strength of spin-orbit coupling. Here we show by ab initio supercell density functional theory (DFT) calculations that the intrinsic spin-orbit coupling is strongly damped by DJT effect in the triplet excited state that has a consequence on the rate of non-radiative decay. This theory is applied to the ground state of silicon-vacancy (SiV) and germanium-vacancy (GeV) centers in their negatively charged state that can also act like qubits. We show that the intrinsic spin-orbit coupling in SiV and GeV centers is in the 100 GHz region, in contrast to the NV center of 10 GHz region. Our results provide deep insight in the nature of SiV and GeV qubits in diamond. EU FP7 DIADEMS project (Contract No. 611143).

  2. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation

    NASA Astrophysics Data System (ADS)

    Abdi-Jalebi, Mojtaba; Andaji-Garmaroudi, Zahra; Cacovich, Stefania; Stavrakas, Camille; Philippe, Bertrand; Richter, Johannes M.; Alsari, Mejd; Booker, Edward P.; Hutter, Eline M.; Pearson, Andrew J.; Lilliu, Samuele; Savenije, Tom J.; Rensmo, Håkan; Divitini, Giorgio; Ducati, Caterina; Friend, Richard H.; Stranks, Samuel D.

    2018-03-01

    Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.

  3. Simulation study of GaAsP/Si tandem cells including the impact of threading dislocations on the luminescent coupling between the cells

    NASA Astrophysics Data System (ADS)

    Onno, Arthur; Harder, Nils-Peter; Oberbeck, Lars; Liu, Huiyun

    2016-03-01

    A model, derived from the detailed balance model from Shockley and Queisser, has been adapted to monolithically grown GaAsP/Si tandem dual junction solar cells. In this architecture, due to the difference of lattice parameters between the silicon bottom cell - acting as the substrate - and the GaAsP top cell, threading dislocations (TDs) arise at the IIIV/ Si interface and propagate in the top cell. These TDs act as non-radiative recombination centers, degrading the performances of the tandem cell. Our model takes into account the impact of TDs by integrating the NTT model developed by Yamaguchi et. al.. Two surface geometries have been investigated: flat and ideally textured. Finally the model considers the luminescent coupling (LC) between the cells due to reemitted photons from the top cell cascading to the bottom cell. Without dislocations, LC allows a greater flexibility in the cell design by rebalancing the currents between the two cells when the top cell presents a higher short-circuit current. However we show that, as the TD density (TDD) increases, nonradiative recombinations take over radiative recombinations in the top cell and the LC is quenched. As a result, nonoptimized tandem cells with higher short-circuit current in the top cell experience a very fast degradation of efficiency for TDDs over 104cm-2. On the other hand optimized cells with matching currents only experience a small efficiency drop for TDDs up to 105cm-2. High TDD cells therefore need to be current-matched for optimal performances as the flexibility due to LC is lost.

  4. Red-luminescence band: A tool for the quality assessment of germanium and silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Fraj, I.; Favre, L.; David, T.; Abbarchi, M.; Liu, K.; Claude, J. B.; Ronda, A.; Naffouti, M.; Saidi, F.; Hassen, F.; Maaref, H.; Aqua, J. N.; Berbezier, I.

    2017-10-01

    We present the photoluminescence (PL) emission of Silicon and Germanium nanocrystals (NCs) of different sizes embedded in two different matrices. Formation of the NCs is achieved via solid-state dewetting during annealing in a molecular beam epitaxy ultra-high vacuum system of ultrathin amorphous Si and Ge layers deposited at room temperature on SiO2. During the dewetting process, the bi-dimensional amorphous layers transform into small pseudo-spherical islands whose mean size can be tuned directly with the deposited thickness. The nanocrystals are capped either ex situ by silicon dioxide or in situ by amorphous Silicon. The surface-state dependent emission (typically in the range 1.74 eV-1.79 eV) exhibited higher relative PL quantum yields compared to the emission originating from the band gap transition. This red-PL emission comes from the radiative transitions between a Si band and an interface level. It is mainly ascribed to the NCs and environment features deduced from morphological and structural analyses. Power dependent analysis of the photoluminescence intensity under continuous excitation reveals a conventional power law with an exponent close to 1, in agreement with the type II nature of the emission. We show that Ge-NCs exhibit much lower quantum efficiency than Si-NCs due to non-radiative interface states. Low quantum efficiency is also obtained when NCs have been exposed to air before capping, even if the exposure time is very short. Our results indicate that a reduction of the non-radiative surface states is a key strategy step in producing small NCs with increased PL emission for a variety of applications. The red-PL band is then an effective tool for the quality assessment of NCs based structures.

  5. Nonradiative recombination centers and electrical aging of organic light-emitting diodes: Direct connection between accumulation of trapped charge and luminance loss

    NASA Astrophysics Data System (ADS)

    Kondakov, D. Y.; Sandifer, J. R.; Tang, C. W.; Young, R. H.

    2003-01-01

    Organic light-emitting diodes (OLEDs) are attractive for display applications because of their high brightness, low driving voltage, and tunable color. Their operating lifetimes, hundreds or thousands of hours, are sufficient for only a limited range of applications. The luminance efficiency decreases gradually as the device is operated (electrically aged), for reasons that are poorly understood. A prototypical OLED has the structure anode|HTL|ETL|cathode, where the HTL and ETL are hole- and electron-transporting layers, and the recombination and emission occur at or near the HTL|ETL interface. We find that the decreasing luminance efficiency is linearly correlated with an accumulation of immobile positive charge at the HTL|ETL interface, and the magnitude of the charge is comparable to the total charge at that interface when an unaged device is operated. A natural explanation of the connection between the two phenomena is that electrical aging either generates hole traps (and trapped holes) or drives metal ions into the device, and that either species act as nonradiative recombination centers. To estimate the accumulating immobile charge and determine its location, we use a variant of a recently introduced capacitance versus voltage technique. In the prototypical OLEDs described here, the HTL is a ca. 1000 Å layer of NPB, and the ETL is a 300-1800 Å layer of Alq3. A device with an additional "emission layer" (EML) of an anthracene derivative between the HTL and ETL, in which the electroluminescence spectrum is characteristic of the EML, behaved similarly. We surmise that the phenomena reported here may be common to a wider variety of OLED structures and compositions.

  6. Adenine and 2-aminopurine: Paradigms of modern theoretical photochemistry

    PubMed Central

    Serrano-Andrés, Luis; Merchán, Manuela; Borin, Antonio C.

    2006-01-01

    Distinct photophysical behavior of nucleobase adenine and its constitutional isomer, 2-aminopurine, has been studied by using quantum chemical methods, in particular an accurate ab initio multiconfigurational second-order perturbation theory. After light irradiation, the efficient, ultrafast energy dissipation observed for nonfluorescent 9H-adenine is explained here by the nonradiative internal conversion process taking place along a barrierless reaction path from the initially populated 1(ππ* La) excited state toward a low-lying conical intersection (CI) connected with the ground state. In contrast, the strong fluorescence recorded for 2-aminopurine at 4.0 eV with large decay lifetime is interpreted by the presence of a minimum in the 1(ππ* La) hypersurface lying below the lowest CI and the subsequent potential energy barrier required to reach the funnel to the ground state. Secondary deactivation channels were found in the two systems related to additional CIs involving the 1(ππ* Lb) and 1(nπ*) states. Although in 9H-adenine a population switch between both states is proposed, in 7H-adenine this may be perturbed by a relatively larger barrier to access the 1(nπ*) state, and, therefore, the 1(ππ* Lb) state becomes responsible for the weak fluorescence measured in aqueous adenine at ≈4.5 eV. In contrast to previous models that explained fluorescence quenching in adenine, unlike in 2-aminopurine, on the basis of the vibronic coupling of the nearby 1(ππ*) and 1(nπ*) states, the present results indicate that the 1(nπ*) state does not contribute to the leading photophysical event and establish the prevalence of a model based on the CI concept in modern photochemistry. PMID:16731617

  7. Adenine and 2-aminopurine: paradigms of modern theoretical photochemistry.

    PubMed

    Serrano-Andrés, Luis; Merchán, Manuela; Borin, Antonio C

    2006-06-06

    Distinct photophysical behavior of nucleobase adenine and its constitutional isomer, 2-aminopurine, has been studied by using quantum chemical methods, in particular an accurate ab initio multiconfigurational second-order perturbation theory. After light irradiation, the efficient, ultrafast energy dissipation observed for nonfluorescent 9H-adenine is explained here by the nonradiative internal conversion process taking place along a barrierless reaction path from the initially populated 1(pipi* La) excited state toward a low-lying conical intersection (CI) connected with the ground state. In contrast, the strong fluorescence recorded for 2-aminopurine at 4.0 eV with large decay lifetime is interpreted by the presence of a minimum in the 1(pipi* La) hypersurface lying below the lowest CI and the subsequent potential energy barrier required to reach the funnel to the ground state. Secondary deactivation channels were found in the two systems related to additional CIs involving the 1(pipi* Lb) and 1(npi*) states. Although in 9H-adenine a population switch between both states is proposed, in 7H-adenine this may be perturbed by a relatively larger barrier to access the 1(npi*) state, and, therefore, the 1(pipi* Lb) state becomes responsible for the weak fluorescence measured in aqueous adenine at approximately 4.5 eV. In contrast to previous models that explained fluorescence quenching in adenine, unlike in 2-aminopurine, on the basis of the vibronic coupling of the nearby 1(pipi*) and 1(npi*) states, the present results indicate that the 1(npi*) state does not contribute to the leading photophysical event and establish the prevalence of a model based on the CI concept in modern photochemistry.

  8. A comparison of the optical properties of InGaN/GaN multiple quantum well structures grown with and without Si-doped InGaN prelayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, M. J., E-mail: Matthew.Davies-2@Manchester.ac.uk; Hammersley, S.; Dawson, P.

    In this paper, we report on a detailed spectroscopic study of the optical properties of InGaN/GaN multiple quantum well structures, both with and without a Si-doped InGaN prelayer. In photoluminescence and photoluminescence excitation spectroscopy, a 2nd emission band, occurring at a higher energy, was identified in the spectrum of the multiple quantum well structure containing the InGaN prelayer, originating from the first quantum well in the stack. Band structure calculations revealed that a reduction in the resultant electric field occurred in the quantum well immediately adjacent to the InGaN prelayer, therefore leading to a reduction in the strength of themore » quantum confined Stark effect in this quantum well. The partial suppression of the quantum confined Stark effect in this quantum well led to a modified (higher) emission energy and increased radiative recombination rate. Therefore, we ascribed the origin of the high energy emission band to recombination from the 1st quantum well in the structure. Study of the temperature dependent recombination dynamics of both samples showed that the decay time measured across the spectrum was strongly influenced by the 1st quantum well in the stack (in the sample containing the prelayer) leading to a shorter average room temperature lifetime in this sample. The room temperature internal quantum efficiency of the prelayer containing sample was found to be higher than the reference sample (36% compared to 25%) which was thus attributed to the faster radiative recombination rate of the 1st quantum well providing a recombination pathway that is more competitive with non-radiative recombination processes.« less

  9. Impact of extended defects on optical properties of (1-101)GaN grown on patterned Si

    NASA Astrophysics Data System (ADS)

    Okur, S.; Izyumskaya, N.; Zhang, F.; Avrutin, V.; Metzner, S.; Karbaum, C.; Bertram, F.; Christen, J.; Morkoç, H.; Özgür, Ü.

    2014-03-01

    The optical quality of semipolar (1 101)GaN layers was explored by time- and polarization-resolved photoluminescence spectroscopy. High intensity bandedge emission was observed in +c-wing regions of the stripes as a result of better structural quality, while -c-wing regions were found to be of poorer optical quality due to basal plane and prismatic stacking faults (BSFs and PSFs) in addition to a high density of TDs. The high optical quality region formed on the +cwings was evidenced also from the much slower biexponential PL decays (0.22 ns and 1.70 ns) and an order of magnitude smaller amplitude ratio of the fast decay (nonradiative origin) to the slow decay component (radiative origin) compared to the -c-wing regions. In regard to defect-related emission, decay times for the BSF and PSF emission lines at 25 K (~ 0.80 ns and ~ 3.5 ns, respectively) were independent of the excitation density within the range employed (5 - 420 W/cm2), and much longer than that for the donor bound excitons (0.13 ns at 5 W/cm2 and 0.22 ns at 420 W/cm2). It was also found that the emission from BSFs had lower polarization degree (0.22) than that from donor bound excitons (0.35). The diminution of the polarization degree when photogenerated carriers recombine within the BSFs is another indication of the negative effects of stacking faults on the optical quality of the semipolar (1101)GaN. In addition, spatial distribution of defects in semipolar (1101)-oriented InGaN active region layers grown on stripe patterned Si substrates was investigated using near-field scanning optical microscopy. The optical quality of -c- wing regions was found to be worse compared to +c-wing regions due to the presence of higher density of stacking faults and threading dislocations. The emission from the +c-wings was very bright and relatively uniform across the sample, which is indicative of a homogeneous In distribution.

  10. Reactive oxygen species generation in aqueous solutions containing GdVO4:Eu3+ nanoparticles and their complexes with methylene blue

    NASA Astrophysics Data System (ADS)

    Hubenko, Kateryna; Yefimova, Svetlana; Tkacheva, Tatyana; Maksimchuk, Pavel; Borovoy, Igor; Klochkov, Vladimir; Kavok, Nataliya; Opolonin, Oleksander; Malyukin, Yuri

    2018-04-01

    It this letter, we report the study of free radicals and reactive oxygen species (ROS) generation in water solutions containing gadolinium orthovanadate GdVO4:Eu3+ nanoparticles (VNPs) and their complexes with methylene blue (MB) photosensitizer. The catalytic activity was studied under UV-Vis and X-ray irradiation by three methods (conjugated dienes test, OH· radical, and singlet oxygen detection). It has been shown that the VNPs-MB complexes reveal high efficiency of ROS generation under UV-Vis irradiation associated with both high efficiency of OH· radicals generation by VNPs and singlet oxygen generation by MB due to nonradiative excitation energy transfer from VNPs to MB molecules. Contrary to that under X-ray irradiation, the strong OH . radicals scavenging by VNPs has been observed.

  11. Reactive oxygen species generation in aqueous solutions containing GdVO4:Eu3+ nanoparticles and their complexes with methylene blue.

    PubMed

    Hubenko, Kateryna; Yefimova, Svetlana; Tkacheva, Tatyana; Maksimchuk, Pavel; Borovoy, Igor; Klochkov, Vladimir; Kavok, Nataliya; Opolonin, Oleksander; Malyukin, Yuri

    2018-04-13

    It this letter, we report the study of free radicals and reactive oxygen species (ROS) generation in water solutions containing gadolinium orthovanadate GdVO 4 :Eu 3+ nanoparticles (VNPs) and their complexes with methylene blue (MB) photosensitizer. The catalytic activity was studied under UV-Vis and X-ray irradiation by three methods (conjugated dienes test, OH· radical, and singlet oxygen detection). It has been shown that the VNPs-MB complexes reveal high efficiency of ROS generation under UV-Vis irradiation associated with both high efficiency of OH· radicals generation by VNPs and singlet oxygen generation by MB due to nonradiative excitation energy transfer from VNPs to MB molecules. Contrary to that under X-ray irradiation, the strong OH . radicals scavenging by VNPs has been observed.

  12. Bright Photon Upconversion on Composite Organic Lanthanide Molecules through Localized Thermal Radiation.

    PubMed

    Ye, Huanqing; Bogdanov, Viktor; Liu, Sheng; Vajandar, Saumitra; Osipowicz, Thomas; Hernández, Ignacio; Xiong, Qihua

    2017-12-07

    Converting low-energy photons via thermal radiation can be a potential approach for utilizing infrared (IR) photons to improve photovoltaic efficiency. Lanthanide-containing materials have achieved great progress in IR-to-visible photon upconversion (UC). Herein, we first report bright photon, tunable wavelength UC through localized thermal radiation at the molecular scale with low excitation power density (<10 W/cm 2 ) realized on lanthanide complexes of perfluorinated organic ligands. This is enabled by engineering the pathways of nonradiative de-excitation and energy transfer in a composite of ytterbium and terbium perfluoroimidodiphosphinates. The IR-excited thermal UC and wavelength control is realized through the terbium activators sensitized by the ytterbium sensitizers having high luminescence efficiency. The metallic molecular composite thus can be a potential energy material in the use of the IR solar spectrum for thermal photovoltaic applications.

  13. Multi-dimensional, fully implicit, exactly conserving electromagnetic particle-in-cell simulations in curvilinear geometry

    NASA Astrophysics Data System (ADS)

    Chen, Guangye; Chacon, Luis

    2015-11-01

    We discuss a new, conservative, fully implicit 2D3V Vlasov-Darwin particle-in-cell algorithm in curvilinear geometry for non-radiative, electromagnetic kinetic plasma simulations. Unlike standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. Here, we extend these algorithms to curvilinear geometry. The algorithm retains its exact conservation properties in curvilinear grids. The nonlinear iteration is effectively accelerated with a fluid preconditioner for weakly to modestly magnetized plasmas, which allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D (slow shock) and 2D (island coalescense).

  14. Energy transfer and up-conversion in rare-earth doped dielectric crystals

    NASA Astrophysics Data System (ADS)

    Tkachuk, Alexandra M.

    1996-01-01

    In this work, we consider the prospects of development of the visible, and IR laser-diode pumped lasers based on TR3+-doped double-fluoride crystals. On the basis of estimates of the probabilities of competing non-radiative energy-transfer processes obtained from the experiments and theoretical calculations, the conclusions are drawn on the efficiency of up-conversion pumping and selfquenching of the upper TR3+ states excited by laser-diode emission. The effect of the host composition, dopant concentration, and temperature on the efficiency of up-conversion processes is demonstrated on the example of the YLF:Nd, YLF:Er, BaY2F8:Er, and BaY2F8:Er,Yb crystals. The transfer microparameters for most important cross-relaxation transitions are determined and the conclusions about interaction mechanisms are drawn.

  15. Suppression of an acoustic mode by an elastic mode of a liquid-filled spherical shell resonator.

    PubMed

    Lonzaga, Joel B; Raymond, Jason L; Mobley, Joel; Gaitan, D Felipe

    2011-02-01

    The purpose of this paper is to report on the suppression of an approximately radial (radially symmetric) acoustic mode by an elastic mode of a water-filled, spherical shell resonator. The resonator, which has a 1-in. wall thickness and a 9.5-in. outer diameter, was externally driven by a small transducer bolted to the external wall. Experiments showed that for the range of drive frequencies (19.7-20.6 kHz) and sound speeds in water (1520-1570 m/s) considered in this paper, a nonradial (radially nonsymmetric) mode was also excited, in addition to the radial mode. Furthermore, as the sound speed in the liquid was changed, the resonance frequency of the nonradial mode crossed with that of the radial one and the amplitude of the latter was greatly reduced near the crossing point. The crossing of the eigenfrequency curves of these two modes was also predicted theoretically. Further calculations demonstrated that while the radial mode is an acoustic one associated with the interior fluid, the nonradial mode is an elastic one associated with the shell. Thus, the suppression of the radial acoustic mode is apparently caused by the overlapping with the nonradial elastic mode near the crossing point.

  16. Novel energy relay dyes for high efficiency dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Mahbubur; Ko, Min Jae; Lee, Jae-Joon

    2015-02-01

    4',6-Diamidino-2-phenylindole (DAPI) and Hoechst 33342 (H33342) were used as novel energy relay dyes (ERDs) for an efficient energy transfer to the N719 dye in I-/I3- based liquid-junction dye-sensitized solar cells (DSSCs). The introduction of the ERDs, either as an additive in the electrolyte or as a co-adsorbent, greatly enhanced the power conversion efficiencies (PCEs), mainly because of an increase in short-circuit current density (Jsc). This was attributed to the effects of non-radiative Förster-type excitation energy transfer as well as the radiative (emission)-type fluorescent energy transfer to the sensitizers. The net PCEs for the N719-sensitized DSSCs with DAPI and H33342 were 10.65% and 10.57%, and showed an improvement of 12.2% and 11.4% over control devices, respectively.4',6-Diamidino-2-phenylindole (DAPI) and Hoechst 33342 (H33342) were used as novel energy relay dyes (ERDs) for an efficient energy transfer to the N719 dye in I-/I3- based liquid-junction dye-sensitized solar cells (DSSCs). The introduction of the ERDs, either as an additive in the electrolyte or as a co-adsorbent, greatly enhanced the power conversion efficiencies (PCEs), mainly because of an increase in short-circuit current density (Jsc). This was attributed to the effects of non-radiative Förster-type excitation energy transfer as well as the radiative (emission)-type fluorescent energy transfer to the sensitizers. The net PCEs for the N719-sensitized DSSCs with DAPI and H33342 were 10.65% and 10.57%, and showed an improvement of 12.2% and 11.4% over control devices, respectively. Electronic supplementary information (ESI) available: Details of the materials and instrumentation, device fabrication, measurement and calculations of the quantum yield (Qd), calculations of the Förster radius (R0), optimization of the ERDs mixed with electrolyte according to Type-A strategy; normalized absorption profiles of the N3, Ru505, and Z907 dyes and the emission profiles of DAPI and H33342; J-V characteristics of ERD-incorporated DSSCs sensitized with N3, Ru505, and Z907 (Type-A strategy). See DOI: 10.1039/c4nr06645f

  17. Origin of visible and near-infrared photoluminescence from chemically etched Si nanowires decorated with arbitrarily shaped Si nanocrystals.

    PubMed

    Ghosh, Ramesh; Giri, P K; Imakita, Kenji; Fujii, Minoru

    2014-01-31

    Arrays of vertically aligned single crystalline Si nanowires (NWs) decorated with arbitrarily shaped Si nanocrystals (NCs) have been fabricated by a silver assisted wet chemical etching method. Scanning electron microscopy and transmission electron microscopy are performed to measure the dimensions of the Si NWs as well as the Si NCs. A strong broad band and tunable visible (2.2 eV) to near-infrared (1.5 eV) photoluminescence (PL) is observed from these Si NWs at room temperature (RT). Our studies reveal that the Si NCs are primarily responsible for the 1.5-2.2 eV emission depending on the cross-sectional area of the Si NCs, while the large diameter Si/SiOx NWs yield distinct NIR PL consisting of peaks at 1.07, 1.10 and 1.12 eV. The latter NIR peaks are attributed to TO/LO phonon assisted radiative recombination of free carriers condensed in the electron-hole plasma in etched Si NWs observed at RT for the first time. Since the shape of the Si NCs is arbitrary, an analytical model is proposed to correlate the measured PL peak position with the cross-sectional area (A) of the Si NCs, and the bandgap (E(g)) of nanostructured Si varies as E(g) = E(g) (bulk) + 3.58 A(-0.52). Low temperature PL studies reveal the contribution of non-radiative defects in the evolution of PL spectra at different temperatures. The enhancement of PL intensity and red-shift of the PL peak at low temperatures are explained based on the interplay of radiative and non-radiative recombinations at the Si NCs and Si/SiO(x) interface. Time resolved PL studies reveal bi-exponential decay with size correlated lifetimes in the range of a few microseconds. Our results help to resolve a long standing debate on the origin of visible-NIR PL from Si NWs and allow quantitative analysis of PL from arbitrarily shaped Si NCs.

  18. Chapter 3: Wood Decay

    Treesearch

    Dan Cullen

    2014-01-01

    A significant portion of global carbon is sequestered in forest systems. Specialized fungi have evolved to efficiently deconstruct woody plant cell walls. These important decay processes generate litter, soil bound humic substances, or carbon dioxide and water. This chapter reviews the enzymology and molecular genetics of wood decay fungi, most of which are members of...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, M.; Sato, K.; Kimura, K.

    Photoelectron spectra due to autoionization for two series of high Rydberg states have been observed for diazabicyclooctane (DABCO) in a supersonic jet. The selection rule of the autoionization has been found to be ..delta..v = -1 for each vibrational mode involved in the Rydberg states, consistent with Berry's theory available for the vibrational autoionization of a polyatomic molecule. The relative autoionization efficiencies Phi/sub a/ for the high Rydberg series have also been determined from two-color MPI and fluorescence dip spectra. The irregular variation of Phi/sub a/ with the principal quantum number n has been found for the two Rydberg series,more » suggesting the irregular variation in their nonradiative rates« less

  20. 3D numerical modeling of the carrier transport and radiative efficiency for InGaN/GaN light emitting diodes with V-shaped pits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chi-Kang; Wu, Chen-Kuo; Hsu, Chung-Cheng

    2016-05-15

    In this paper, influence of a V-pit embedded inside the multiple quantum wells (MQWs) LED was studied. A fully three-dimensional stress-strain solver and Poisson-drift-diffusion solver are employed to study the current path, where the quantum efficiency and turn-on voltage will be discussed. Our results show that the hole current is not only from top into lateral quantum wells (QWs) but flowing through shallow sidewall QWs and then injecting into the deeper lateral QWs in V-pit structures, where the V-pit geometry provides more percolation length for holes to make the distribution uniform along lateral MQWs. The IQE behavior with different V-pitmore » sizes, threading dislocation densities, and current densities were analyzed. Substantially, the variation of the quantum efficiency for different V-pit sizes is due to the trap-assisted nonradiative recombination, effective QW ratio, and ability of hole injections.« less

  1. Ion-implanted epitaxially grown ZnSe

    NASA Technical Reports Server (NTRS)

    Chernow, F.

    1975-01-01

    The use of ZnSe to obtain efficient, short wavelength injection luminescence was investigated. It was proposed that shorter wavelength emission and higher efficiency be achieved by employing a p-i-n diode structure rather than the normal p-n diode structure. The intervening i layer minimizes concentration quenching effects and the donor-acceptor pair states leading to long wavelength emission. The surface p layer was formed by ion implantation; implantation of the i layer rather than the n substrate permits higher, uncompensated p-type doping. An ion implanted p-n junction in ZnSe is efficiency-limited by high electron injection terminating in nonradiative recombination at the front surface, and by low hole injection resulting from the inability to obtain high conductivity p-type surface layers. While the injection ratio in p-n junctions was determined by the radio of majority carrier concentrations, the injection ratio in p-i-n structures was determined by the mobility ratios and/or space charge neutrality requirements in the i layer.

  2. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling

    PubMed Central

    Richter, Johannes M.; Abdi-Jalebi, Mojtaba; Sadhanala, Aditya; Tabachnyk, Maxim; Rivett, Jasmine P.H.; Pazos-Outón, Luis M.; Gödel, Karl C.; Price, Michael; Deschler, Felix; Friend, Richard H.

    2016-01-01

    In lead halide perovskite solar cells, there is at least one recycling event of electron–hole pair to photon to electron–hole pair at open circuit under solar illumination. This can lead to a significant reduction in the external photoluminescence yield from the internal yield. Here we show that, for an internal yield of 70%, we measure external yields as low as 15% in planar films, where light out-coupling is inefficient, but observe values as high as 57% in films on textured substrates that enhance out-coupling. We analyse in detail how externally measured rate constants and photoluminescence efficiencies relate to internal recombination processes under photon recycling. For this, we study the photo-excited carrier dynamics and use a rate equation to relate radiative and non-radiative recombination events to measured photoluminescence efficiencies. We conclude that the use of textured active layers has the ability to improve power conversion efficiencies for both LEDs and solar cells. PMID:28008917

  3. Cascaded plasmon-plasmon coupling mediated energy transfer across stratified metal-dielectric nanostructures

    PubMed Central

    Golmakaniyoon, Sepideh; Hernandez-Martinez, Pedro Ludwig; Demir, Hilmi Volkan; Sun, Xiao Wei

    2016-01-01

    Surface plasmon (SP) coupling has been successfully applied to nonradiative energy transfer via exciton-plasmon-exciton coupling in conventionally sandwiched donor-metal film-acceptor configurations. However, these structures lack the desired efficiency and suffer poor photoemission due to the high energy loss. Here, we show that the cascaded exciton-plasmon-plasmon-exciton coupling in stratified architecture enables an efficient energy transfer mechanism. The overlaps of the surface plasmon modes at the metal-dielectric and dielectric-metal interfaces allow for strong cross-coupling in comparison with the single metal film configuration. The proposed architecture has been demonstrated through the analytical modeling and numerical simulation of an oscillating dipole near the stratified nanostructure of metal-dielectric-metal-acceptor. Consistent with theoretical and numerical results, experimental measurements confirm at least 50% plasmon resonance energy transfer enhancement in the donor-metal-dielectric-metal-acceptor compared to the donor-metal-acceptor structure. Cascaded plasmon-plasmon coupling enables record high efficiency for exciton transfer through metallic structures. PMID:27698422

  4. Design of Al-rich AlGaN quantum well structures for efficient UV emitters

    NASA Astrophysics Data System (ADS)

    Funato, Mitsuru; Ichikawa, Shuhei; Kumamoto, Kyosuke; Kawakami, Yoichi

    2017-02-01

    The effects of the structure design of AlGaN-based quantum wells (QWs) on the optical properties are discussed. We demonstrate that to achieve efficient emission in the germicidal wavelength range (250 - 280 nm), AlxGa1-xN QWs in an AlyGa1-yN matrix (x < y) is quite effective, compared with those in an AlN matrix: Time-resolved photoluminescence and cathodoluminescence spectroscopies show that the AlyGa1-yN matrix can enhance the radiative recombination process and can prevent misfit dislocations, which act as non-radiative recombination centers, from being induced in the QW interface. As a result, the emission intensity at room temperature is about 2.7 times larger for the AlxGa1-xN QW in the AlyGa1-yN matrix than that in the AlN matrix. We also point out that further reduction of point defects is crucial to achieve an even higher emission efficiency.

  5. Impact of interfacial molecular orientation on radiative recombination and charge generation efficiency

    DOE PAGES

    Ran, Niva A.; Roland, Steffen; Love, John A.; ...

    2017-07-19

    Here, a long standing question in organic electronics concerns the effects of molecular orientation at donor/acceptor heterojunctions. Given a well-controlled donor/acceptor bilayer system, we uncover the genuine effects of molecular orientation on charge generation and recombination. These effects are studied through the point of view of photovoltaics—however, the results have important implications on the operation of all optoelectronic devices with donor/acceptor interfaces, such as light emitting diodes and photodetectors. Our findings can be summarized by two points. First, devices with donor molecules face-on to the acceptor interface have a higher charge transfer state energy and less non-radiative recombination, resulting inmore » larger open-circuit voltages and higher radiative efficiencies. Second, devices with donor molecules edge-on to the acceptor interface are more efficient at charge generation, attributed to smaller electronic coupling between the charge transfer states and the ground state, and lower activation energy for charge generation.« less

  6. Metamaterial-enhanced coupling between magnetic dipoles for efficient wireless power transfer

    NASA Astrophysics Data System (ADS)

    Urzhumov, Yaroslav; Smith, David R.

    2011-05-01

    Nonradiative coupling between conductive coils is a candidate mechanism for wireless energy transfer applications. In this paper we propose a power relay system based on a near-field metamaterial superlens and present a thorough theoretical analysis of this system. We use time-harmonic circuit formalism to describe all interactions between two coils attached to external circuits and a slab of anisotropic medium with homogeneous permittivity and permeability. The fields of the coils are found in the point-dipole approximation using Sommerfeld integrals which are reduced to standard special functions in the long-wavelength limit. We show that, even with a realistic magnetic loss tangent of order 0.1, the power transfer efficiency with the slab can be an order of magnitude greater than free-space efficiency when the load resistance exceeds a certain threshold value. We also find that the volume occupied by the metamaterial between the coils can be greatly compressed by employing magnetic permeability with a large anisotropy ratio.

  7. High Efficiency Quantum Well Waveguide Solar Cells and Methods for Constructing the Same

    NASA Technical Reports Server (NTRS)

    Sood, Ashok K. (Inventor); Welser, Roger E. (Inventor)

    2014-01-01

    Photon absorption, and thus current generation, is hindered in conventional thin-film solar cell designs, including quantum well structures, by the limited path length of incident light passing vertically through the device. Optical scattering into lateral waveguide structures provides a physical mechanism to increase photocurrent generation through in-plane light trapping. However, the insertion of wells of high refractive index material with lower energy gap into the device structure often results in lower voltage operation, and hence lower photovoltaic power conversion efficiency. The voltage output of an InGaAs quantum well waveguide photovoltaic device can be increased by employing a III-V material structure with an extended wide band gap emitter heterojunction. Analysis of the light IV characteristics reveals that non-radiative recombination components of the underlying dark diode current have been reduced, exposing the limiting radiative recombination component and providing a pathway for realizing solar-electric conversion efficiency of 30% or more in single junction cells.

  8. Dislocation related droop in InGaN/GaN light emitting diodes investigated via cathodoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pozina, Galia; Ciechonski, Rafal; Bi, Zhaoxia

    2015-12-21

    Today's energy saving solutions for general illumination rely on efficient white light emitting diodes (LEDs). However, the output efficiency droop experienced in InGaN based LEDs with increasing current injection is a serious limitation factor for future development of bright white LEDs. We show using cathodoluminescence (CL) spatial mapping at different electron beam currents that threading dislocations are active as nonradiative recombination centers only at high injection conditions. At low current, the dislocations are inactive in carrier recombination due to local potentials, but these potentials are screened by carriers at higher injection levels. In CL images, this corresponds to the increasemore » of the dark contrast around dislocations with the injection (excitation) density and can be linked with droop related to the threading dislocations. Our data indicate that reduction of droop in the future efficient white LED can be achieved via a drastic reduction of the dislocation density by using, for example, bulk native substrates.« less

  9. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling.

    PubMed

    Richter, Johannes M; Abdi-Jalebi, Mojtaba; Sadhanala, Aditya; Tabachnyk, Maxim; Rivett, Jasmine P H; Pazos-Outón, Luis M; Gödel, Karl C; Price, Michael; Deschler, Felix; Friend, Richard H

    2016-12-23

    In lead halide perovskite solar cells, there is at least one recycling event of electron-hole pair to photon to electron-hole pair at open circuit under solar illumination. This can lead to a significant reduction in the external photoluminescence yield from the internal yield. Here we show that, for an internal yield of 70%, we measure external yields as low as 15% in planar films, where light out-coupling is inefficient, but observe values as high as 57% in films on textured substrates that enhance out-coupling. We analyse in detail how externally measured rate constants and photoluminescence efficiencies relate to internal recombination processes under photon recycling. For this, we study the photo-excited carrier dynamics and use a rate equation to relate radiative and non-radiative recombination events to measured photoluminescence efficiencies. We conclude that the use of textured active layers has the ability to improve power conversion efficiencies for both LEDs and solar cells.

  10. Can quantum coherent solar cells break detailed balance?

    NASA Astrophysics Data System (ADS)

    Kirk, Alexander P.

    2015-07-01

    Carefully engineered coherent quantum states have been proposed as a design attribute that is hypothesized to enable solar photovoltaic cells to break the detailed balance (or radiative) limit of power conversion efficiency by possibly causing radiative recombination to be suppressed. However, in full compliance with the principles of statistical mechanics and the laws of thermodynamics, specially prepared coherent quantum states do not allow a solar photovoltaic cell—a quantum threshold energy conversion device—to exceed the detailed balance limit of power conversion efficiency. At the condition given by steady-state open circuit operation with zero nonradiative recombination, the photon absorption rate (or carrier photogeneration rate) must balance the photon emission rate (or carrier radiative recombination rate) thus ensuring that detailed balance prevails. Quantum state transitions, entropy-generating hot carrier relaxation, and photon absorption and emission rate balancing are employed holistically and self-consistently along with calculations of current density, voltage, and power conversion efficiency to explain why detailed balance may not be violated in solar photovoltaic cells.

  11. Temperature-dependent luminescence and temperature-stimulated NIR-to-VIS up-conversion in Nd3+-doped La2O3-Na2O-ZnO-TeO2 glasses

    NASA Astrophysics Data System (ADS)

    Sobczyk, Marcin

    2013-04-01

    Telluride glasses of the composition xNd2O3-(7-x)La2O3-3Na2O-25ZnO-65TeO2, where (0≤x≤7) were prepared by the melt quench technique. Some physical and optical properties of the glasses were evaluated. The thermal behavior i.e. glass transition and crystallization temperatures were studied by using TGA-DTA technique. Optical properties of Nd3+-doped telluride glasses were investigated between 298 and 700 K. Basing on the obtained values of J-O parameter values (×10-20 cm2: Ω2=4.49±0.84, Ω4=5.03±0.61, Ω6=4.31±0.73), the radiative transition probabilities (AT), radiative lifetimes (τR), fluorescence branching ratios (β) and emission cross-sections (σem) were calculated for the 4F3/2→4IJ/2 (where J=9, 11 and 13) transitions of Nd3+ ions. The τR value of the 4F3/2 level amount to 164 μs and is slightly higher than the measured decay time of 162 μs. With the increasing of Nd2O3 concentration from 0.5 to 7.0 mol% the experimental lifetime of the fluorescent level decreases from 162 to 5.6 μs. The estimated quantum efficiency amount to 100%, based on a comparison of τR and the experimental decay time of a slightly doped Nd3+ telluride glass. An analysis of the non-radiative decay was based on the cross-relaxation mechanisms. The 4F3/2→4I9/2 and 4F5/2→4I9/2 transitions were analyzed with respect to the fluorescence intensity ratio (FIR) and were found to be temperature dependent. Infrared-to-visible up-conversion emissions with a maximum at 603.0 and 635.3 nm were observed at high temperatures using the 804 nm excitation and are due to the 4G5/2→4I9/2 and 4G5/2→4I11/2 transitions of Nd3+ ions, respectively. The near quadratic dependence of fluorescence on excitation laser power confirms that two photons contribute to up-conversion of the orange emissions. The temperature-stimulated up-conversion excitation processes have been analyzed in detail. The optical results indicate that the investigated glasses are potentially applicable as a 1063 nm laser host as well as an optical sensor for temperature measurements.

  12. Complete Sets of Radiating and Nonradiating Parts of a Source and Their Fields with Applications in Inverse Scattering Limited-Angle Problems

    PubMed Central

    Louis, A. K.

    2006-01-01

    Many algorithms applied in inverse scattering problems use source-field systems instead of the direct computation of the unknown scatterer. It is well known that the resulting source problem does not have a unique solution, since certain parts of the source totally vanish outside of the reconstruction area. This paper provides for the two-dimensional case special sets of functions, which include all radiating and all nonradiating parts of the source. These sets are used to solve an acoustic inverse problem in two steps. The problem under discussion consists of determining an inhomogeneous obstacle supported in a part of a disc, from data, known for a subset of a two-dimensional circle. In a first step, the radiating parts are computed by solving a linear problem. The second step is nonlinear and consists of determining the nonradiating parts. PMID:23165060

  13. Nonradiating anapole modes in dielectric nanoparticles

    PubMed Central

    Miroshnichenko, Andrey E.; Evlyukhin, Andrey B.; Yu, Ye Feng; Bakker, Reuben M.; Chipouline, Arkadi; Kuznetsov, Arseniy I.; Luk'yanchuk, Boris; Chichkov, Boris N.; Kivshar, Yuri S.

    2015-01-01

    Nonradiating current configurations attract attention of physicists for many years as possible models of stable atoms. One intriguing example of such a nonradiating source is known as ‘anapole'. An anapole mode can be viewed as a composition of electric and toroidal dipole moments, resulting in destructive interference of the radiation fields due to similarity of their far-field scattering patterns. Here we demonstrate experimentally that dielectric nanoparticles can exhibit a radiationless anapole mode in visible. We achieve the spectral overlap of the toroidal and electric dipole modes through a geometry tuning, and observe a highly pronounced dip in the far-field scattering accompanied by the specific near-field distribution associated with the anapole mode. The anapole physics provides a unique playground for the study of electromagnetic properties of nontrivial excitations of complex fields, reciprocity violation and Aharonov–Bohm like phenomena at optical frequencies. PMID:26311109

  14. Entropic and near-field improvements of thermoradiative cells

    DOE PAGES

    Hsu, Wei -Chun; Tong, Jonathan K.; Liao, Bolin; ...

    2016-10-13

    A p-n junction maintained at above ambient temperature can work as a heat engine, converting some of the supplied heat into electricity and rejecting entropy by interband emission. Such thermoradiative cells have potential to harvest low-grade heat into electricity. By analyzing the entropy content of different spectral components of thermal radiation, we identify an approach to increase the efficiency of thermoradiative cells via spectrally selecting long-wavelength photons for radiative exchange. Furthermore, we predict that the near-field photon extraction by coupling photons generated from interband electronic transition to phonon polariton modes on the surface of a heat sink can increase themore » conversion efficiency as well as the power generation density, providing more opportunities to efficiently utilize terrestrial emission for clean energy. An ideal InSb thermoradiative cell can achieve a maximum efficiency and power density up to 20.4% and 327 Wm -2, respectively, between a hot source at 500 K and a cold sink at 300 K. Furthermore, sub-bandgap and non-radiative losses will significantly degrade the cell performance.« less

  15. Entropic and Near-Field Improvements of Thermoradiative Cells

    PubMed Central

    Hsu, Wei-Chun; Tong, Jonathan K.; Liao, Bolin; Huang, Yi; Boriskina, Svetlana V.; Chen, Gang

    2016-01-01

    A p-n junction maintained at above ambient temperature can work as a heat engine, converting some of the supplied heat into electricity and rejecting entropy by interband emission. Such thermoradiative cells have potential to harvest low-grade heat into electricity. By analyzing the entropy content of different spectral components of thermal radiation, we identify an approach to increase the efficiency of thermoradiative cells via spectrally selecting long-wavelength photons for radiative exchange. Furthermore, we predict that the near-field photon extraction by coupling photons generated from interband electronic transition to phonon polariton modes on the surface of a heat sink can increase the conversion efficiency as well as the power generation density, providing more opportunities to efficiently utilize terrestrial emission for clean energy. An ideal InSb thermoradiative cell can achieve a maximum efficiency and power density up to 20.4% and 327 Wm−2, respectively, between a hot source at 500 K and a cold sink at 300 K. However, sub-bandgap and non-radiative losses will significantly degrade the cell performance. PMID:27734902

  16. Structural and photophysical studies on gallium(III) 8-hydroxyquinoline-5-sulfonates. Does excited state decay involve ligand photolabilisation?

    PubMed

    Ramos, M Luísa; de Sousa, Andreia R E; Justino, Licínia L G; Fonseca, Sofia M; Geraldes, Carlos F G C; Burrows, Hugh D

    2013-03-14

    Multinuclear ((1)H, (13)C and (71)Ga) magnetic resonance spectroscopy (1D and 2D), DFT calculations and luminescence techniques have been used to study 8-hydroxyquinoline-5-sulfonate (8-HQS) and its complexes with Ga(III) in aqueous solutions. The study combines the high sensitivity of luminescence techniques and the selectivity of multinuclear NMR spectroscopy with the structural details accessible through DFT calculations, and aims to obtain a complete understanding of the complexation between the Ga(3+) ion and 8-HQS, and how this influences the luminescence behaviour. A full speciation study has been performed on this system and three complexes detected, with (metal : ligand) 1 : 1, 1 : 2 and 1 : 3 stoichiometries, the results being consistent with those previously found for the system Al(III)-8-HQS. Complexation in these systems is relevant to their potential biomedical, sensing and optoelectronic applications. On binding to Ga(III), a marked increase is seen in the intensity of the 8-HQS fluorescence band, which is accompanied by changes in the absorption spectra. These support the use of 8-HQS as a sensitive fluorescent sensor to detect Ga(3+) metal ions in surface waters, biological fluids, etc., and its metal complexes as an emitting or charge transport layer in light emitting devices. However, the fluorescence quantum yield of the Ga(III)-8-HQS 1 : 3 complex is about 35% of that of the corresponding system with Al(III). Although this may be due in part to a heavy atom effect favouring S(1)→ T(1) intersystem crossing with Ga(3+), this does not agree with transient absorption measurements on the triplet state yield, which is lower with the Ga(III) system than with Al(III). Instead, it is suggested that photolabilisation of ligand exchange plays a major role in nonradiative decay of the excited state and that this is more efficient with the Ga(3+) complex. Based on these results, suggestions are made of ways of enhancing fluorescence intensity in metal complexes with 8-HQS by inhibiting ligand exchange using surfactant complexation for applications in either sensing or optoelectronics.

  17. Solvent-Controlled Branching of Localized versus Delocalized Singlet Exciton States and Equilibration with Charge Transfer in a Structurally Well-Defined Tetracene Dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Jasper D.; Carey, Thomas J.; Arias, Dylan H.

    A detailed photophysical picture is elaborated for a structurally well-defined and symmetrical bis-tetracene dimer in solution. The molecule was designed for interrogation of the initial photophysical steps (S 1 → 1TT) in intramolecular singlet fission (SF). (Triisopropylsilyl)acetylene substituents on the dimer TIPS-BT1 as well as a monomer model TIPS-Tc enable a comparison of photophysical properties, including transient absorption dynamics, as solvent polarity is varied. In nonpolar toluene solutions, TIPS-BT1 decays via radiative and nonradiative pathways to the ground state with no evidence for dynamics related to the initial stages of SF. This contrasts with the behavior of the previously reportedmore » unsubstituted dimer BT1 and is likely a consequence of energetic perturbations to the singlet excited-state manifold of TIPS-BT1 by the (trialkylsilyl)acetylene substituents. In polar benzonitrile, two key findings emerge. First, photoexcited TIPS-BT1 shows a bifurcation into both arm-localized (S 1-loc) and dimer-delocalized (S 1-dim) singlet exciton states. The S 1-loc decays to the ground state, and weak temperature dependence of its emissive signatures suggests that once it is formed, it is isolated from S 1-dim. Emissive signatures of the S 1-dim state, on the other hand, are strongly temperature-dependent, and transient absorption dynamics show that S1-dim equilibrates with an intramolecular charge-transfer state in 50 ps at room temperature. This equilibrium decays to the ground state with little evidence for formation of long-lived triplets nor 1TT. These detailed studies spectrally characterize many of the key states in intramolecular SF in this class of dimers but highlight the need to tune electronic coupling and energetics for the S 1 → 1TT photoreaction.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kaifeng; Lim, Jaehoon; Klimov, Victor I.

    Application of colloidal semiconductor quantum dots (QDs) in optical and optoelectronic devices is often complicated by unintentional generation of extra charges, which opens fast nonradiative Auger recombination pathways whereby the recombination energy of an exciton is quickly transferred to the extra carrier(s) and ultimately dissipated as heat. Previous studies of Auger recombination have primarily focused on neutral and, more recently, negatively charged multicarrier states. Auger dynamics of positively charged species remains more poorly explored due to difficulties in creating, stabilizing, and detecting excess holes in the QDs. Here we apply photochemical doping to prepare both negatively and positively charged CdSe/CdSmore » QDs with two distinct core/shell interfacial profiles (“sharp” versus “smooth”). Using neutral and charged QD samples we evaluate Auger lifetimes of biexcitons, negative and positive trions (an exciton with an extra electron or a hole, respectively), and multiply negatively charged excitons. Using these measurements, we demonstrate that Auger decay of both neutral and charged multicarrier states can be presented as a superposition of independent elementary three-particle Auger events. As one of the manifestations of the superposition principle, we observe that the biexciton Auger decay rate can be presented as a sum of the Auger rates for independent negative and positive trion pathways. Furthermore, by comparing the measurements on the QDs with the “sharp” versus “smooth” interfaces, we also find that while affecting the absolute values of Auger lifetimes, manipulation of the shape of the confinement potential does not lead to violation of the superposition principle, which still allows us to accurately predict the biexciton Auger lifetimes based on the measured negative and positive trion dynamics. Our findings indicate considerable robustness of the superposition principle as applied to Auger decay of charged and neutral multicarrier states, suggesting its generality to quantum-confined nanocrystals of arbitrary compositions and complexities.« less

  19. Superposition Principle in Auger Recombination of Charged and Neutral Multicarrier States in Semiconductor Quantum Dots

    DOE PAGES

    Wu, Kaifeng; Lim, Jaehoon; Klimov, Victor I.

    2017-07-19

    Application of colloidal semiconductor quantum dots (QDs) in optical and optoelectronic devices is often complicated by unintentional generation of extra charges, which opens fast nonradiative Auger recombination pathways whereby the recombination energy of an exciton is quickly transferred to the extra carrier(s) and ultimately dissipated as heat. Previous studies of Auger recombination have primarily focused on neutral and, more recently, negatively charged multicarrier states. Auger dynamics of positively charged species remains more poorly explored due to difficulties in creating, stabilizing, and detecting excess holes in the QDs. Here we apply photochemical doping to prepare both negatively and positively charged CdSe/CdSmore » QDs with two distinct core/shell interfacial profiles (“sharp” versus “smooth”). Using neutral and charged QD samples we evaluate Auger lifetimes of biexcitons, negative and positive trions (an exciton with an extra electron or a hole, respectively), and multiply negatively charged excitons. Using these measurements, we demonstrate that Auger decay of both neutral and charged multicarrier states can be presented as a superposition of independent elementary three-particle Auger events. As one of the manifestations of the superposition principle, we observe that the biexciton Auger decay rate can be presented as a sum of the Auger rates for independent negative and positive trion pathways. Furthermore, by comparing the measurements on the QDs with the “sharp” versus “smooth” interfaces, we also find that while affecting the absolute values of Auger lifetimes, manipulation of the shape of the confinement potential does not lead to violation of the superposition principle, which still allows us to accurately predict the biexciton Auger lifetimes based on the measured negative and positive trion dynamics. Our findings indicate considerable robustness of the superposition principle as applied to Auger decay of charged and neutral multicarrier states, suggesting its generality to quantum-confined nanocrystals of arbitrary compositions and complexities.« less

  20. Superposition Principle in Auger Recombination of Charged and Neutral Multicarrier States in Semiconductor Quantum Dots.

    PubMed

    Wu, Kaifeng; Lim, Jaehoon; Klimov, Victor I

    2017-08-22

    Application of colloidal semiconductor quantum dots (QDs) in optical and optoelectronic devices is often complicated by unintentional generation of extra charges, which opens fast nonradiative Auger recombination pathways whereby the recombination energy of an exciton is quickly transferred to the extra carrier(s) and ultimately dissipated as heat. Previous studies of Auger recombination have primarily focused on neutral and, more recently, negatively charged multicarrier states. Auger dynamics of positively charged species remains more poorly explored due to difficulties in creating, stabilizing, and detecting excess holes in the QDs. Here we apply photochemical doping to prepare both negatively and positively charged CdSe/CdS QDs with two distinct core/shell interfacial profiles ("sharp" versus "smooth"). Using neutral and charged QD samples we evaluate Auger lifetimes of biexcitons, negative and positive trions (an exciton with an extra electron or a hole, respectively), and multiply negatively charged excitons. Using these measurements, we demonstrate that Auger decay of both neutral and charged multicarrier states can be presented as a superposition of independent elementary three-particle Auger events. As one of the manifestations of the superposition principle, we observe that the biexciton Auger decay rate can be presented as a sum of the Auger rates for independent negative and positive trion pathways. By comparing the measurements on the QDs with the "sharp" versus "smooth" interfaces, we also find that while affecting the absolute values of Auger lifetimes, manipulation of the shape of the confinement potential does not lead to violation of the superposition principle, which still allows us to accurately predict the biexciton Auger lifetimes based on the measured negative and positive trion dynamics. These findings indicate considerable robustness of the superposition principle as applied to Auger decay of charged and neutral multicarrier states, suggesting its generality to quantum-confined nanocrystals of arbitrary compositions and complexities.

  1. Solvent-Controlled Branching of Localized versus Delocalized Singlet Exciton States and Equilibration with Charge Transfer in a Structurally Well-Defined Tetracene Dimer

    DOE PAGES

    Cook, Jasper D.; Carey, Thomas J.; Arias, Dylan H.; ...

    2017-11-04

    A detailed photophysical picture is elaborated for a structurally well-defined and symmetrical bis-tetracene dimer in solution. The molecule was designed for interrogation of the initial photophysical steps (S 1 → 1TT) in intramolecular singlet fission (SF). (Triisopropylsilyl)acetylene substituents on the dimer TIPS-BT1 as well as a monomer model TIPS-Tc enable a comparison of photophysical properties, including transient absorption dynamics, as solvent polarity is varied. In nonpolar toluene solutions, TIPS-BT1 decays via radiative and nonradiative pathways to the ground state with no evidence for dynamics related to the initial stages of SF. This contrasts with the behavior of the previously reportedmore » unsubstituted dimer BT1 and is likely a consequence of energetic perturbations to the singlet excited-state manifold of TIPS-BT1 by the (trialkylsilyl)acetylene substituents. In polar benzonitrile, two key findings emerge. First, photoexcited TIPS-BT1 shows a bifurcation into both arm-localized (S 1-loc) and dimer-delocalized (S 1-dim) singlet exciton states. The S 1-loc decays to the ground state, and weak temperature dependence of its emissive signatures suggests that once it is formed, it is isolated from S 1-dim. Emissive signatures of the S 1-dim state, on the other hand, are strongly temperature-dependent, and transient absorption dynamics show that S1-dim equilibrates with an intramolecular charge-transfer state in 50 ps at room temperature. This equilibrium decays to the ground state with little evidence for formation of long-lived triplets nor 1TT. These detailed studies spectrally characterize many of the key states in intramolecular SF in this class of dimers but highlight the need to tune electronic coupling and energetics for the S 1 → 1TT photoreaction.« less

  2. Nonradiative Decay Dynamics of METHYL-4-HYDROXYCINNAMATE and its Monohydrated Complex Revealed by Picosecond Pump-Probe Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ebata, T.; Shimada, D.; Kusaka, R.; Inokuchi, Y.; Ehara, M.

    2012-06-01

    The lifetimes of methyl 4-hydroxycinnamate (OMpCA) and its mono-hydrated complex (OMpCA-H_2O) in the S_1 state have been measured by picosecond pump-probe spectroscopy in a supersonic beam. For OMpCA, the lifetime of the S_1 - S_0 origin is 8 - 9 ps. On the other hand, the lifetime of OMpCA-H_2O complex at the origin is 930 ps, which is 100 times longer than that. Furthermore, in the complex the S_1 lifetime shows rapid decrease at an energy of 200 cm-1 above the origin and becomes as short as 9 ps at 500 cm-1. Theoretical calculations with symmetry-adapted cluster-configuration interaction (SAC-CI) method suggest that in OMpCA, the trans - cis isomerization occurs smoothly without a barrier on the S_1surface, while in OMpCA-H_2O complex, there exists a barrier along the isomerization coordinate. The calculated barrier height of OMpCA-H_2O is in good agreement with that estimated from the lifetime measurements.

  3. Biological sensing and control of emission dynamics of quantum dot bioconjugates using arrays of long metallic nanorods.

    PubMed

    Sadeghi, Seyed M; Gutha, Rithvik R; Wing, Waylin J; Sharp, Christina; Capps, Lucas; Mao, Chuanbin

    2017-01-01

    We study biological sensing using plasmonic and photonic-plasmonic resonances of arrays of ultralong metallic nanorods and analyze the impact of these resonances on emission dynamics of quantum dot bioconjugates. We demonstrate that the LSPRs and plasmonic lattice modes of such array can be used to detect a single self-assembled monolayer of alkanethiol at the visible (550 nm) and near infrared (770 nm) range with well resolved shifts. We study adsorption of streptavidin-quantum dot conjugates to this monolayer, demonstrating that formation of nearly two dimensional arrays of quantum dots with limited emission blinking can lead to extra well-defined wavelength shifts in these modes. Using spectrally-resolved lifetime measurements we study the emission dynamics of such quantum dot bioconjugates within their monodispersed size distribution. We show that, despite their close vicinity to the nanorods, the rate of energy transfer from these quantum dots to nanorods is rather weak, while the plasmon field enhancement can be strong. Our results reveal that the nanorods present a strongly wavelength or size-dependent non-radiative decay channel to the quantum dot bioconjugates.

  4. Structural and optical study on antimony-silicate glasses doped with thulium ions.

    PubMed

    Dorosz, D; Zmojda, J; Kochanowicz, M; Miluski, P; Jelen, P; Sitarz, M

    2015-01-05

    Structural, spectroscopic and thermal properties of SiO₂-Al₂O₃-Sb₂O₃-Na₂O glass system doped with 0.2 mol% Tm₂O₃ have been presented. Synthesis of antimony-silicate glasses with relatively low phonon energy (600 cm(-1), which implicates a small non-radiative decay rate) was performed by conventional high-temperature melt-quenching methods. The effect of SiO₂/Sb₂O₃ ratio in fabricated Tm(3+) doped glass on thermal, structural and luminescence properties was investigated. On the basis of structural investigations decomposition of absorption bands in the infrared FTIR region was performed, thus determining that antimony ions are the only glass-forming ions, setting up the lattice of fabricated glasses. Luminescence band at the wavelength of 1.8 μm corresponding to (3)F₄→(3)H₆ transition in thulium ions was obtained under 795 nm laser pumping. It was observed that combination of relatively low phonon energy and greater separation of optically active centers in the fabricated glasses influenced in decreasing the luminescence intensity at 1800 nm. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Self-organization of colloidal PbS quantum dots into highly ordered superlattices.

    PubMed

    Baranov, Alexander V; Ushakova, Elena V; Golubkov, Valery V; Litvin, Aleksandr P; Parfenov, Peter S; Fedorov, Anatoly V; Berwick, Kevin

    2015-01-13

    X-ray structural analysis, together with steady-state and transient optical spectroscopy, is used for studying the morphology and optical properties of quantum dot superlattices (QDSLs) formed on glass substrates by the self-organization of PbS quantum dots with a variety of surface ligands. The diameter of the PbS QDs varies from 2.8 to 8.9 nm. The QDSL's period is proportional to the dot diameter, increasing slightly with dot size due to the increase in ligand layer thickness. Removal of the ligands has a number of effects on the morphology of QDSLs formed from the dots of different sizes: for small QDs the reduction in the amount of ligands obstructs the self-organization process, impairing the ordering of the QDSLs, while for large QDs the ordering of the superlattice structure is improved, with an interdot distance as low as 0.4 nm allowing rapid charge carrier transport through the QDSLs. QDSL formation does not induce significant changes to the absorption and photoluminescence spectra of the QDs. However, the luminescence decay time is reduced dramatically, due to the appearance of nonradiative relaxation channels.

  6. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals

    NASA Astrophysics Data System (ADS)

    Yu, Kuai; Yang, Yang; Wang, Junzhong; Tang, Xiaosheng; Xu, Qing-Hua; Wang, Guo Ping

    2018-06-01

    Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I–III–VI semiconductor nanocrystals (NCs), such as CuInS2 and AgInS2. However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS2 and AgInS2/ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS2 and AgInS2/ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility {χ }(3) of AgInS2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.

  7. Radiation effects and defects in lithium borate crystals

    NASA Astrophysics Data System (ADS)

    Ogorodnikov, Igor N.; Poryvay, Nikita E.; Pustovarov, Vladimir A.

    2010-11-01

    The paper presents the results of a study of the formation and decay of lattice defects in wide band-gap optical crystals of LiB3O5 (LBO), Li2B4O7 (LTB) and Li6Gd(BO3)3 (LGBO) with a sublattice of mobile lithium cations. By means of thermoluminescence techniques, and luminescent and absorption optical spectroscopy with a nanosecond time resolution under excitation with an electron beam, it was revealed that the optical absorption in these crystals in the visible and ultraviolet spectral ranges is produced by optical hole-transitions from the local defect level to the valence band states. The valence band density of the states determines mainly the optical absorption spectral profile, and the relaxation kinetics is rated by the interdefect non-radiative tunnel recombination between the trapped-hole center and the Li0 trapped-electron centers. At 290 K, the Li0 centers are subject to thermally stimulated migration. Based on experimental results, the overall picture of thermally stimulated recombination processes with the participation of shallow traps was established for these crystals.

  8. Pushing the plasmonic imaging nanolithography to nano-manufacturing

    NASA Astrophysics Data System (ADS)

    Gao, Ping; Li, Xiong; Zhao, Zeyu; Ma, Xiaoliang; Pu, Mingbo; Wang, Changtao; Luo, Xiangang

    2017-12-01

    Suffering from the so-called diffraction limit, the minimum resolution of conventional photolithography is limited to λ / 2 or λ / 4, where λ is the incident wavelength. The physical mechanism of this limit lies at the fact that the evanescent waves that carry subwavelength information of the object decay exponentially in a medium, and cannot reach the image plane. Surface plasmons (SPs) are non-radiative electromagnetic waves that propagate along the interface between metal and dielectric, which exhibits unique sub-diffraction optical characteristics. In recent years, benefiting from SPs' features, researchers have proposed a variety of plasmonic lithography methods in the manner of interference, imaging and direct writing, and have demonstrated that sub-diffraction resolution could be achieved by theoretical simulations or experiments. Among the various plasmonic lithography modes, plasmonic imaging lithography seems to be of particular importance for applications due to its compatibility with conventional lithography. Recent results show that the half pitch of nanograting can be shrinked down to 22 nm and even 16 nm. This paper will give an overview of research progress, representative achievements of plasmonic imaging lithography, the remained problems and outlook of further developments.

  9. Additional compound semiconductor nanowires for photonics

    NASA Astrophysics Data System (ADS)

    Ishikawa, F.

    2016-02-01

    GaAs related compound semiconductor heterostructures are one of the most developed materials for photonics. Those have realized various photonic devices with high efficiency, e. g., lasers, electro-optical modulators, and solar cells. To extend the functions of the materials system, diluted nitride and bismide has been paid attention over the past decade. They can largely decrease the band gap of the alloys, providing the greater tunability of band gap and strain status, eventually suppressing the non-radiative Auger recombinations. On the other hand, selective oxidation for AlGaAs is a vital technique for vertical surface emitting lasers. That enables precisely controlled oxides in the system, enabling the optical and electrical confinement, heat transfer, and mechanical robustness. We introduce the above functions into GaAs nanowires. GaAs/GaAsN core-shell nanowires showed clear redshift of the emitting wavelength toward infrared regime. Further, the introduction of N elongated the carrier lifetime at room temperature indicating the passivation of non-radiative surface recombinations. GaAs/GaAsBi nanowire shows the redshift with metamorphic surface morphology. Selective and whole oxidations of GaAs/AlGaAs core-shell nanowires produce semiconductor/oxide composite GaAs/AlGaOx and oxide GaOx/AlGaOx core-shell nanowires, respectively. Possibly sourced from nano-particle species, the oxide shell shows white luminescence. Those property should extend the functions of the nanowires for their application to photonics.

  10. Identification of the Radiative and Nonradiative Parts of a Wave Field

    NASA Astrophysics Data System (ADS)

    Hoenders, B. J.; Ferwerda, H. A.

    2001-08-01

    We present a method for decomposing a wave field, described by a second-order ordinary differential equation, into a radiative component and a nonradiative one, using a biorthonormal system related to the problem under consideration. We show that it is possible to select a special system such that the wave field is purely radiating. We discuss the differences and analogies with approaches which, unlike our approach, start from the corresponding sources of the field.

  11. Effects of the impurity-host interactions on the nonradiative processes in ZnS:Cr

    NASA Astrophysics Data System (ADS)

    Tablero, C.

    2010-11-01

    There is a great deal of controversy about whether the behavior of an intermediate band in the gap of semiconductors is similar or not to the deep-gap levels. It can have significant consequences, for example, on the nonradiative recombination. In order to analyze the behavior of an intermediate band, we have considered the effect of the inward and outward displacements corresponding to breathing and longitudinal modes of Cr-doped ZnS and on the charge density for different processes involved in the nonradiative recombination using first-principles. This metal-doped zinc chalcogenide has a partially filled band within the host semiconductor gap. In contrast to the properties exhibited by deep-gap levels in other systems, we find small variations in the equilibrium configurations, forces, and electronic density around the Cr when the nonradiative recombination mechanisms modify the intermediate band charge. The charge density around the impurity is equilibrated in response to the perturbations in the equilibrium nuclear configuration and the charge of the intermediate band. The equilibration follows a Le Chatelier principle through the modification of the contribution from the impurity to the intermediate band and to the valence band. The intermediate band introduced by Cr in ZnS for the concentrations analyzed makes the electronic capture difficult and later multiphonon emission in the charge-transfer processes, in accordance with experimental results.

  12. Hydrophobic Polystyrene Passivation Layer for Simultaneously Improved Efficiency and Stability in Perovskite Solar Cells.

    PubMed

    Li, Minghua; Yan, Xiaoqin; Kang, Zhuo; Huan, Yahuan; Li, Yong; Zhang, Ruxiao; Zhang, Yue

    2018-06-06

    The major restraint for the commercialization of the high-performance hybrid metal halide perovskite solar cells is the long-term stability, especially at the infirm interface between the perovskite film and organic charge-transfer layer. Recently, engineering the interface between the perovskite and spiro-OMeTAD becomes an effective strategy to simultaneously improve the efficiency and stability in the perovskite solar cells. In this work, we demonstrated that introducing an interfacial polystyrene layer between the perovskite film and spiro-OMeTAD layer can effectively improve the perovskite solar cells photovoltaic performance. The inserted polystyrene layer can passivate the interface traps and defects effectively and decrease the nonradiative recombination, leading to enhanced photoluminescence intensity and carrier lifetime, without compromising the carrier extraction and transfer. Under the optimized condition, the perovskite solar cells with the polystyrene layer achieve an enhanced average power efficiency of about 19.61% (20.46% of the best efficiency) from about 17.63% with negligible current density-voltage hysteresis. Moreover, the optimized perovskite solar cells with the hydrophobic polystyrene layer can maintain about 85% initial efficiency after 2 months storage in open air conditions without encapsulation.

  13. Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Wang, Zhiping; Lin, Qianqian; Chmiel, Francis P.; Sakai, Nobuya; Herz, Laura M.; Snaith, Henry J.

    2017-09-01

    Perovskite solar cells are remarkably efficient; however, they are prone to degradation in water, oxygen and ultraviolet light. Cation engineering in 3D perovskite absorbers has led to reduced degradation. Alternatively, 2D Ruddlesden-Popper layered perovskites exhibit improved stability, but have not delivered efficient solar cells so far. Here, we introduce n-butylammonium cations into a mixed-cation lead mixed-halide FA0.83Cs0.17Pb(IyBr1-y)3 3D perovskite. We observe the formation of 2D perovskite platelets, interspersed between highly orientated 3D perovskite grains, which suppress non-radiative charge recombination. We investigate the relationship between thin-film composition, crystal alignment and device performance. Solar cells with an optimal butylammonium content exhibit average stabilized power conversion efficiency of 17.5 ± 1.3% with a 1.61-eV-bandgap perovskite and 15.8 ± 0.8% with a 1.72-eV-bandgap perovskite. The stability under simulated sunlight is also enhanced. Cells sustain 80% of their 'post burn-in' efficiency after 1,000 h in air, and close to 4,000 h when encapsulated.

  14. Are participants in markets for water rights more efficient in the use of water than non-participants? A case study for Limarí Valley (Chile).

    PubMed

    Molinos-Senante, María; Donoso, Guillermo; Sala-Garrido, Ramon

    2016-06-01

    The need to increase water productivity in agriculture has been stressed as one of the most important factors to achieve greater agricultural productivity and sustainability. The main aim of this paper is to investigate whether there are differences in water use efficiency (WUE) between farmers who participate in water markets and farmers who do not participate in them. Moreover, the use of a non-radial data envelopment analysis model allows to compute global efficiency (GE), WUE as well the efficiency in the use of other inputs such as fertilizers, pesticides, energy, and labor. In a second stage, external factors that may affect GE and WUE are explored. The empirical application focuses on a sample of farmers located in Limarí Valley (Chile) where regulated permanent water rights (WR) markets for surface water have a long tradition. Results illustrate that WR sellers are the most efficient in the use of water while non-traders are the farmers that present the lowest WUE. From a policy perspective, significant conclusions are drawn from the assessment of agricultural water productivity in the framework of water markets.

  15. Anapole nanolasers for mode-locking and ultrafast pulse generation

    PubMed Central

    Totero Gongora, Juan S.; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Fratalocchi, Andrea

    2017-01-01

    Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry. PMID:28561017

  16. A multi-dimensional nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell (PIC) algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Guangye; Chacón, Luis; CoCoMans Team

    2014-10-01

    For decades, the Vlasov-Darwin model has been recognized to be attractive for PIC simulations (to avoid radiative noise issues) in non-radiative electromagnetic regimes. However, the Darwin model results in elliptic field equations that renders explicit time integration unconditionally unstable. Improving on linearly implicit schemes, fully implicit PIC algorithms for both electrostatic and electromagnetic regimes, with exact discrete energy and charge conservation properties, have been recently developed in 1D. This study builds on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the particle-field equations in multiple dimensions. The algorithm conserves energy, charge, and canonical-momentum exactly, even with grid packing. A simple fluid preconditioner allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. We demonstrate the accuracy and efficiency properties of the of the algorithm with various numerical experiments in 2D3V.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ran, Niva A.; Roland, Steffen; Love, John A.

    Here, a long standing question in organic electronics concerns the effects of molecular orientation at donor/acceptor heterojunctions. Given a well-controlled donor/acceptor bilayer system, we uncover the genuine effects of molecular orientation on charge generation and recombination. These effects are studied through the point of view of photovoltaics—however, the results have important implications on the operation of all optoelectronic devices with donor/acceptor interfaces, such as light emitting diodes and photodetectors. Our findings can be summarized by two points. First, devices with donor molecules face-on to the acceptor interface have a higher charge transfer state energy and less non-radiative recombination, resulting inmore » larger open-circuit voltages and higher radiative efficiencies. Second, devices with donor molecules edge-on to the acceptor interface are more efficient at charge generation, attributed to smaller electronic coupling between the charge transfer states and the ground state, and lower activation energy for charge generation.« less

  18. SHEAR ACCELERATION IN EXPANDING FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rieger, F. M.; Duffy, P., E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: peter.duffy@ucd.ie

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplifymore » that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).« less

  19. The Negative Impact of Stark Law Exemptions on Graduate Medical Education and Health Care Costs: The Example of Radiation Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anscher, Mitchell S., E-mail: manscher@mcvh-vcu.ed; Anscher, Barbara M.; Bradley, Cathy J.

    2010-04-15

    Purpose: To survey radiation oncology training programs to determine the impact of ownership of radiation oncology facilities by non-radiation oncologists on these training programs and to place these findings in a health policy context based on data from the literature. Methods and Materials: A survey was designed and e-mailed to directors of all 81 U.S. radiation oncology training programs in this country. Also, the medical and health economic literature was reviewed to determine the impact that ownership of radiation oncology facilities by non-radiation oncologists may have on patient care and health care costs. Prostate cancer treatment is used to illustratemore » the primary findings. Results: Seventy-three percent of the surveyed programs responded. Ownership of radiation oncology facilities by non-radiation oncologists is a widespread phenomenon. More than 50% of survey respondents reported the existence of these arrangements in their communities, with a resultant reduction in patient volumes 87% of the time. Twenty-seven percent of programs in communities with these business arrangements reported a negative impact on residency training as a result of decreased referrals to their centers. Furthermore, the literature suggests that ownership of radiation oncology facilities by non-radiation oncologists is associated with both increased utilization and increased costs but is not associated with increased access to services in traditionally underserved areas. Conclusions: Ownership of radiation oncology facilities by non-radiation oncologists appears to have a negative impact on residency training by shifting patients away from training programs and into community practices. In addition, the literature supports the conclusion that self-referral results in overutilization of expensive services without benefit to patients. As a result of these findings, recommendations are made to study further how physician ownership of radiation oncology facilities influence graduate medical education, treatment patterns and utilization, and health care costs. Patients also need to be aware of financial arrangements that may influence their physician's treatment recommendations.« less

  20. Silicon-Induced UV Transparency in Phosphate Glasses and Its Application to the Enhancement of the UV Type B Emission of Gd3.

    PubMed

    Jiménez, José A

    2017-05-10

    The silicon route to improve the ultraviolet (UV) transparency in phosphate glasses is investigated and further exploited to enhance the UV type B (280-320 nm) emission of gadolinium(III) relevant for biomedical applications. The glasses were synthesized with a barium phosphate composition by melt-quenching in ambient atmosphere and the optical properties investigated by optical absorption and photoluminescence (PL) spectroscopy including emission decay kinetics. An improvement in the UV transparency was gradually developed for the glasses melted merely with increasing amounts of Si powder. A particular PL in the visible was also exhibited for such glasses under excitation at 275 nm, consistent with the presence of Si-induced defects. For Si-Gd codoped glasses, the UV transparency was likewise manifested, while the UV emission from Gd 3+ around 312 nm was enhanced with the increase in Si concentration (up to ∼6.7 times). Moreover, along with the Gd 3+ PL intensity enhancement, a linear correlation was revealed between the increase in decay times for the Gd 3+6 P 7/2 -emitting state and the amount of silicon. It is then suggested that the improved PL properties of gadolinium(III) originate from the increased UV transparency of the host and the consequent precluding of a nonradiative energy transfer from Gd 3+ to the matrix. Accordingly, a role of Si as PL quenching inhibitor is supported. The demonstrated efficacy of the Si-Gd codoping concept realized by a facile glass synthesis procedure may appeal to the application of the UV-emitting glasses for phototherapy lamps.

  1. Optical spectroscopy of Sm(3+) doped Na2O-ZnO-La2O3-TeO2 glasses.

    PubMed

    Sobczyk, Marcin

    2015-10-05

    Telluride glasses with the composition xSm2O3-(7-x)La2O3-3Na2O-25ZnO-65TeO2 (where x=0.1, 1, 2, 5 and 7 mol%) were obtained by the melt quenching technique. Electronic absorption and fluorescence spectra as well as fluorescence dynamics of the Sm(3+)-doped title glasses are presented and analysed in detail. A Judd-Ofelt intensity analysis of the absorption spectrum at 300 K has been applied for determination of Ωλ parameters (Ω2=3.10, Ω4=3.80, Ω6=1.61×10(-20) cm(2)) which in turn have been used for calculations of the radiative transition probabilities (AT), the natural (radiative) lifetimes (τR) of the (4)G5/2 level of Sm(3+), the fluorescence branching ratios (β) and the emission cross-sections (σem). The τR value of the (4)G5/2 level amount to 1546 μs and is slightly higher than the measured decay time of 1306 μs. With the increasing of Sm2O3 concentration from 0.1 to 7.0 mol% the experimental lifetime of the fluorescent level decreases from 1306 to 41 μs. An analysis of the non-radiative decay was based on the cross-relaxation mechanisms. The optical achieved results indicate that the investigated glasses are potentially applicable as an orange and/or red laser host. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Swarnendu, E-mail: swarnendu.bhattacharyya@ch.tum.de; Domcke, Wolfgang, E-mail: wolfgang.domcke@ch.tum.de; Dai, Zuyang

    A diabatic three-sheeted six-dimensional potential-energy surface has been constructed for the ground state and the lowest excited state of the PH{sub 3}{sup +} cation. Coupling terms of Jahn-Teller and pseudo-Jahn-Teller origin up to eighth order had to be included to describe the pronounced anharmonicity of the surface due to multiple conical intersections. The parameters of the diabatic Hamiltonian have been optimized by fitting the eigenvalues of the potential-energy matrix to ab initio data calculated at the CASSCF/MRCI level employing the correlation-consistent triple-ζ basis. The theoretical photoelectron spectrum of phosphine and the non-adiabatic nuclear dynamics of the phosphine cation have beenmore » computed by propagating nuclear wave packets with the multiconfiguration time-dependent Hartree method. The theoretical photoelectron bands obtained by Fourier transformation of the autocorrelation function agree well with the experimental results. It is shown that the ultrafast non-radiative decay dynamics of the first excited state of PH{sub 3}{sup +} is dominated by the exceptionally strong Jahn-Teller coupling of the asymmetric bending vibrational mode together with a hyperline of conical intersections with the electronic ground state induced by the umbrella mode. Time-dependent population probabilities have been computed for the three adiabatic electronic states. The non-adiabatic Jahn-Teller dynamics within the excited state takes place within ≈5 fs. Almost 80% of the excited-state population decay to the ground state within about 10 fs. The wave packets become highly complex and delocalized after 20 fs and no further significant transfer of electronic population seems to occur up to 100 fs propagation time.« less

  3. Reduction of capacity decay in vanadium flow batteries by an electrolyte-reflow method

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Liu, Le; Xi, Jingyu; Wu, Zenghua; Qiu, Xinping

    2017-01-01

    Electrolyte imbalance is a major issue with Vanadium flow batteries (VFBs) as it has a significant impact on electrolyte utilization and cycle life over extended charge-discharge cycling. This work seeks to reduce capacity decay and prolong cycle life of VFBs by adopting a novel electrolyte-reflow method. Different current density and various start-up time of the method are investigated in the charge-discharge tests. The results show that the capacity decay rate is reduced markedly and the cycle life is prolonged substantially by this method. In addition, the coulomb efficiency, voltage efficiency and energy efficiency remain stable during the whole cycle life test, which indicates this method has little impact on the long lifetime performance of the VFBs. The method is low-cost, simple, effective, and can be applied in industrial VFB productions.

  4. X-ray detection capability of a BaCl{sub 2} single crystal scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshimizu, Masanori; CREST, Japan Science and Technology Agency, Sanbancho, Chiyoda-ku, Tokyo 102-0075; Onodera, Kazuya

    2012-01-15

    The x-ray detection capability of a scintillation detector equipped with a BaCl{sub 2} single crystal was evaluated. The scintillation decay kinetics can be expressed by a sum of two exponential decay components. The fast and slow components have lifetimes of 1.5 and 85 ns, respectively. The total light output is 5% that of YAP:Ce. A subnanosecond timing resolution was obtained. The detection efficiency of a 67.41 keV x-ray is 87% for a detector equipped with a BaCl{sub 2} crystal 6-mm thick. Thus, excellent timing resolution and high detection efficiency can be simultaneously achieved. Additionally, luminescence decay characteristics under vacuum ultravioletmore » excitation have been investigated. Radiative decay of self-trapped excitons is thought to be responsible for the fast scintillation component.« less

  5. Non-contact pumping of light emitters via non-radiative energy transfer

    DOEpatents

    Klimov, Victor I.; Achermann, Marc

    2010-01-05

    A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

  6. Uterine fibroids: postsonication temperature decay rate enables prediction of therapeutic responses to MR imaging-guided high-intensity focused ultrasound ablation.

    PubMed

    Kim, Young-sun; Park, Min Jung; Keserci, Bilgin; Nurmilaukas, Kirsi; Köhler, Max O; Rhim, Hyunchul; Lim, Hyo Keun

    2014-02-01

    To determine whether intraprocedural thermal parameters as measured with magnetic resonance (MR) thermometry can be used to predict immediate or delayed therapeutic response after MR-guided high-intensity focused ultrasound (HIFU) ablation of uterine fibroids. Institutional review board approval and subject informed consent were obtained. A total of 105 symptomatic uterine fibroids (mean diameter, 8.0 cm; mean volume, 251.8 mL) in 71 women (mean age, 43.3 years; age range, 25-52 years) who underwent volumetric MR HIFU ablation were analyzed. Correlations between tumor-averaged intraprocedural thermal parameters (peak temperature, thermal dose efficiency [estimated volume of 240 equivalent minutes at 43°C divided by volume of treatment cells], and temperature decay rate after sonication) and the immediate ablation efficiency (ratio of nonperfused volume [NPV] at immediate follow-up to treatment cell volume) or ablation sustainability (ratio of NPV at 3-month follow-up to NPV at immediate follow-up) were assessed with linear regression analysis. A total of 2818 therapeutic sonications were analyzed. At immediate follow-up with MR imaging (n = 105), mean NPV-to-fibroid volume ratio and ablation efficiency were 0.68 ± 0.26 (standard deviation) and 1.35 ± 0.75, respectively. A greater thermal dose efficiency (B = 1.894, P < .001) and slower temperature decay rate (B = -1.589, P = .044) were independently significant factors that indicated better immediate ablation efficiency. At 3-month follow-up (n = 81), NPV had decreased to 43.1% ± 21.0 of the original volume, and only slower temperature decay rate was significantly associated with better ablation sustainability (B = -0.826, P = .041). The postsonication temperature decay rate enables prediction of both immediate and delayed therapeutic responses, whereas thermal dose efficiency enables prediction of immediate therapeutic response to MR HIFU ablation of uterine fibroids. © RSNA, 2013.

  7. Correlating electroluminescence characterization and physics-based models of InGaN/GaN LEDs: Pitfalls and open issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calciati, Marco; Vallone, Marco; Zhou, Xiangyu

    2014-06-15

    Electroluminescence (EL) characterization of InGaN/GaN light-emitting diodes (LEDs), coupled with numerical device models of different sophistication, is routinely adopted not only to establish correlations between device efficiency and structural features, but also to make inferences about the loss mechanisms responsible for LED efficiency droop at high driving currents. The limits of this investigative approach are discussed here in a case study based on a comprehensive set of current- and temperature-dependent EL data from blue LEDs with low and high densities of threading dislocations (TDs). First, the effects limiting the applicability of simpler (closed-form and/or one-dimensional) classes of models are addressed,more » like lateral current crowding, vertical carrier distribution nonuniformity, and interband transition broadening. Then, the major sources of uncertainty affecting state-of-the-art numerical device simulation are reviewed and discussed, including (i) the approximations in the transport description through the multi-quantum-well active region, (ii) the alternative valence band parametrizations proposed to calculate the spontaneous emission rate, (iii) the difficulties in defining the Auger coefficients due to inadequacies in the microscopic quantum well description and the possible presence of extra, non-Auger high-current-density recombination mechanisms and/or Auger-induced leakage. In the case of the present LED structures, the application of three-dimensional numerical-simulation-based analysis to the EL data leads to an explanation of efficiency droop in terms of TD-related and Auger-like nonradiative losses, with a C coefficient in the 10{sup −30} cm{sup 6}/s range at room temperature, close to the larger theoretical calculations reported so far. However, a study of the combined effects of structural and model uncertainties suggests that the C values thus determined could be overestimated by about an order of magnitude. This preliminary attempt at uncertainty quantification confirms, beyond the present case, the need for an improved description of carrier transport and microscopic radiative and nonradiative recombination mechanisms in device-level LED numerical models.« less

  8. Charge versus Energy Transfer Effects in High-Performance Perylene Diimide Photovoltaic Blend Films.

    PubMed

    Singh, Ranbir; Shivanna, Ravichandran; Iosifidis, Agathaggelos; Butt, Hans-Jürgen; Floudas, George; Narayan, K S; Keivanidis, Panagiotis E

    2015-11-11

    Perylene diimide (PDI)-based organic photovoltaic devices can potentially deliver high power conversion efficiency values provided the photon energy absorbed is utilized efficiently in charge transfer (CT) reactions instead of being consumed in nonradiative energy transfer (ET) steps. Hitherto, it remains unclear whether ET or CT primarily drives the photoluminescence (PL) quenching of the PDI excimer state in PDI-based blend films. Here, we affirm the key role of the thermally assisted PDI excimer diffusion and subsequent CT reaction in the process of PDI excimer PL deactivation. For our study we perform PL quenching experiments in the model PDI-based composite made of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2-6-diyl] (PBDTTT-CT) polymeric donor mixed with the N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (PDI) acceptor. Despite the strong spectral overlap between the PDI excimer PL emission and UV-vis absorption of PBDTTT-CT, two main observations indicate that no significant ET component operates in the overall PL quenching: the PL intensity of the PDI excimer (i) increases with decreasing temperature and (ii) remains unaffected even in the presence of 10 wt % content of the PBDTTT-CT quencher. Temperature-dependent wide-angle X-ray scattering experiments further indicate that nonradiative resonance ET is highly improbable due to the large size of PDI domains. The dominance of the CT over the ET process is verified by the high performance of devices with an optimum composition of 30:70 PBDTTT-CT:PDI. By adding 0.4 vol % of 1,8-diiodooctane we verify the plasticization of the polymer side chains that balances the charge transport properties of the PBDTTT-CT:PDI composite and results in additional improvement in the device efficiency. The temperature-dependent spectral width of the PDI excimer PL band suggests the presence of energetic disorder in the PDI excimer excited state manifold.

  9. Microscopic models of non-radiative and high-current effects in LEDs: state of the art and future developments

    NASA Astrophysics Data System (ADS)

    Bertazzi, Francesco; Goano, Michele; Calciati, Marco; Zhou, Xiangyu; Ghione, Giovanni; Bellotti, Enrico

    2014-02-01

    Auger recombination is at the hearth of the debate on droop, the decline of the internal quantum efficiency at high injection levels. The theory of Auger recombination in quantum wells is reviewed. The proposed microscopic model is based on a full-Brillouin-zone description of the electronic structure obtained by nonlocal empirical pseudopotential calculations and the linear combination of bulk bands. The lack of momentum conservation along the confining direction in InGaN/GaN quantum wells enhances direct (i.e. phononless) Auger transitions, leading to Auger coefficients in the range of those predicted for phonon-dressed processes in bulk InGaN.

  10. Optical spectroscopy of cobalt-doped cadmium telluride

    NASA Astrophysics Data System (ADS)

    Turner, Eric J.; Evans, Jonathan; Harris, Thomas

    2018-02-01

    Spectroscopic investigation of Co2+:CdTe was performed to evaluate it's potential as a lasing medium. The sample had a targeted doping concentration of 2% and measurements were performed from 10 - 120K. Cross-sections for Co:CdTe were calculated using Füchtbauer-Ladenburg and reciprocity methods. Calculations suggest the potential for efficient lasing at 3.7μm when pumped by a 3μm laser source on the 4A2 <-> 4T2 transition. The fluorescence lifetime was measured to quantify the temperature dependence of the non-radiative relaxation rate. This work aims to characterize Co:CdTe as a novel gain medium for compact, tunable mid-infrared lasers operating within the atmospheric transmission window.

  11. Room temperature triplet state spectroscopy of organic semiconductors.

    PubMed

    Reineke, Sebastian; Baldo, Marc A

    2014-01-21

    Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is 'dark' with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isić, Goran, E-mail: isicg@ipb.ac.rs; Gajić, Radoš

    It is well known that due to the high conductivity of noble metals at terahertz frequencies and scalability of macroscopic Maxwell equations, a geometrical downscaling of a terahertz resonator results in the linear upscaling of its resonance frequency. However, the scaling laws of modal decay rates, important for the resonator excitation efficiency, are much less known. Here, we investigate the extent to which the scale-invariance of decay rates is violated due to the finite conductivity of the metal. We find that the resonance quality factor or the excitation efficiency may be substantially affected by scaling and show that this happensmore » as a result of the scale-dependence of the metal absorption rate, while the radiative decay and the dielectric cavity absorption rates are approximately scale-invariant. In particular, we find that by downscaling overcoupled resonators, their excitation efficiency increases, while the opposite happens with undercoupled resonators.« less

  13. Modulation of ICT probability in bi(polyarene)-based O-BODIPYs: towards the development of low-cost bright arene-BODIPY dyads.

    PubMed

    Gartzia-Rivero, Leire; Sánchez-Carnerero, Esther M; Jiménez, Josue; Bañuelos, Jorge; Moreno, Florencio; Maroto, Beatriz L; López-Arbeloa, Iñigo; de la Moya, Santiago

    2017-09-12

    We report the synthesis, and spectroscopic and electrochemical properties of a selected library of novel spiranic O-BODIPYs bearing a phenol-based bi(polyarene) unit tethered to the boron center through oxygen atoms. These dyes constitute an interesting family of arene-BODIPY dyads useful for the development of photonic applications due to their synthetic accessibility and tunable photonic properties. It is demonstrated that the electron-donor capability of the involved arene moiety switches on a non-emissive intramolecular charge transfer (ICT) state, which restricts the fluorescence efficiency of the dyad. Interestingly, the influence of this non-radiative deactivation channel can be efficiently modulated by the substitution pattern, either at the dipyrrin ligand or at the polyarene moiety. Thus, dyads featuring electron-rich dipyrrin and electron-poor polyarene show lower or almost negligible ICT probability, and hence display bright fluorescence upon dual excitation at far-away spectral regions. This synthetic approach has allowed the easy development of low-cost efficient ultraviolet-absorbing visible-emitting cassettes by selecting properly the substitution pattern of the involved key units, dipyrrin and bi(polyarene), to modulate not only absorption and emission wavelengths, but also fluorescence efficiencies.

  14. Emergence of Uranium as a Distinct Metal Center for Building Intrinsic X-ray Scintillators.

    PubMed

    Wang, Yaxing; Yin, Xuemiao; Liu, Wei; Xie, Jian; Chen, Junfeng; Silver, Mark A; Sheng, Daopeng; Chen, Lanhua; Diwu, Juan; Liu, Ning; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2018-06-25

    The combination of high atomic number and high oxidation state in U VI materials gives rise to both high X-ray attenuation efficiency and intense green luminescence originating from ligand-to-metal charge transfer. These two features suggest that U VI materials might act as superior X-ray scintillators, but this postulate has remained substantially untested. Now the first observation of intense X-ray scintillation in a uranyl-organic framework (SCU-9) that is observable by the naked eye is reported. Combining the advantage in minimizing the non-radiative relaxation during the X-ray excitation process over those of inorganic salts of uranium, SCU-9 exhibits a very efficient X-ray to green light luminescence conversion. The luminescence intensity shows an essentially linear correlation with the received X-ray intensity, and is comparable with that of commercially available CsI:Tl. SCU-9 possesses an improved X-ray attenuation efficiency (E>20 keV) as well as enhanced radiation resistance and decreased hygroscopy compared to CsI:Tl. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Suppressing Nonradiative Recombination in Crown-Shaped Quantum Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Kwangwook; Ju, Gunwu; Na, Byung Hoon

    We examined the structural and optical properties of a crown-shaped quantum well (CSQW) to suppress nonradiative recombination. To reduce carrier loss in defect traps at the well/barrier interface, the CSQW was designed to concentrate carriers in the central region by tailoring the bandgap energy. Temperature-dependent photoluminescence measurements showed that the CSQW had a high activation energy and low potential fluctuation. In addition, the long carrier lifetime of the CSQW at high temperatures can be interpreted as indicating a decrease in carrier loss at defect traps.

  16. Muon reconstruction performance of the ATLAS detector in proton-proton collision data at [Formula: see text]=13 TeV.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Aben, R; Abolins, M; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alstaty, M; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barranco Navarro, L; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez, J; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Bossio Sola, J D; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Calvet, T P; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerda Alberich, L; Cerio, B C; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Chavez Barajas, C A; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Colasurdo, L; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cormier, K J R; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cúth, J; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Gaudio, M; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dumancic, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, R R M; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Garay Walls, F M; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gascon Bravo, A; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Geng, C; Gentile, S; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; Gongadze, A; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Grohs, J P; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Hadef, A; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Herde, H; Hernández Jiménez, Y; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ito, F; Iturbe Ponce, J M; Iuppa, R; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanneau, F; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Juste Rozas, A; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Kentaro, K; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koehler, N M; Koffas, T; Koffeman, E; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; Le Quilleuc, E P; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lopez Solis, A; Lorenz, J; Lorenzo Martinez, N; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Machado Miguens, J; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Maneira, J; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Mansoulie, B; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mc Fadden, N C; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Mellado Garcia, B R; Melo, M; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer Zu Theenhausen, H; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Munoz Sanchez, F J; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Naranjo Garcia, R F; Narayan, R; Narrias Villar, D I; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nguyen Manh, T; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Oleiro Seabra, L F; Olivares Pino, S A; Oliveira Damazio, D; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Panagiotopoulou, E St; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Perez Codina, E; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pozo Astigarraga, M E; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Rodriguez Perez, A; Rodriguez Rodriguez, D; Roe, S; Rogan, C S; Røhne, O; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rud, V I; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Salazar Loyola, J E; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Solans Sanchez, C A; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; St Denis, R D; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Tapia Araya, S; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turgeman, D; Turra, R; Turvey, A J; Tuts, P M; Tyndel, M; Ucchielli, G; Ueda, I; Ueno, R; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valdes Santurio, E; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigani, L; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zwalinski, L

    2016-01-01

    This article documents the performance of the ATLAS muon identification and reconstruction using the LHC dataset recorded at [Formula: see text] TeV in 2015. Using a large sample of [Formula: see text] and [Formula: see text] decays from 3.2 fb[Formula: see text] of pp collision data, measurements of the reconstruction efficiency, as well as of the momentum scale and resolution, are presented and compared to Monte Carlo simulations. The reconstruction efficiency is measured to be close to [Formula: see text] over most of the covered phase space ([Formula: see text] and [Formula: see text] GeV). The isolation efficiency varies between 93 and [Formula: see text] depending on the selection applied and on the momentum of the muon. Both efficiencies are well reproduced in simulation. In the central region of the detector, the momentum resolution is measured to be [Formula: see text] ([Formula: see text]) for muons from [Formula: see text] ([Formula: see text]) decays, and the momentum scale is known with an uncertainty of [Formula: see text]. In the region [Formula: see text], the [Formula: see text] resolution for muons from [Formula: see text] decays is [Formula: see text] while the precision of the momentum scale for low-[Formula: see text] muons from [Formula: see text] decays is about [Formula: see text].

  17. Effective suppression of efficiency droop in GaN-based light-emitting diodes: role of significant reduction of carrier density and built-in field.

    PubMed

    Yoo, Yang-Seok; Na, Jong-Ho; Son, Sung Jin; Cho, Yong-Hoon

    2016-10-19

    A critical issue in GaN-based high power light-emitting diodes (LEDs) is how to suppress the efficiency droop problem occurred at high current injection while improving overall quantum efficiency, especially in conventional c-plane InGaN/GaN quantum well (QW), without using complicated bandgap engineering or unconventional materials and structures. Although increasing thickness of each QW may decrease carrier density in QWs, formation of additional strain and defects as well as increased built-in field effect due to enlarged QW thickness are unavoidable. Here, we propose a facile and effective method for not only reducing efficiency droop but also improving quantum efficiency by utilizing c-plane InGaN/GaN QWs having thinner barriers and increased QW number while keeping the same single well thickness and total active layer thickness. As the barrier thickness decreases and the QW number increases, both internal electric field and carrier density within QWs are simultaneously reduced without degradation of material quality. Furthermore, we found overall improved efficiency and reduced efficiency droop, which was attributed to the decrease of the built-in field and to less influence by non-radiative recombination processes at high carrier density. This simple and effective approach can be extended further for high power ultraviolet, green, and red LEDs.

  18. Effective suppression of efficiency droop in GaN-based light-emitting diodes: role of significant reduction of carrier density and built-in field

    NASA Astrophysics Data System (ADS)

    Yoo, Yang-Seok; Na, Jong-Ho; Son, Sung Jin; Cho, Yong-Hoon

    2016-10-01

    A critical issue in GaN-based high power light-emitting diodes (LEDs) is how to suppress the efficiency droop problem occurred at high current injection while improving overall quantum efficiency, especially in conventional c-plane InGaN/GaN quantum well (QW), without using complicated bandgap engineering or unconventional materials and structures. Although increasing thickness of each QW may decrease carrier density in QWs, formation of additional strain and defects as well as increased built-in field effect due to enlarged QW thickness are unavoidable. Here, we propose a facile and effective method for not only reducing efficiency droop but also improving quantum efficiency by utilizing c-plane InGaN/GaN QWs having thinner barriers and increased QW number while keeping the same single well thickness and total active layer thickness. As the barrier thickness decreases and the QW number increases, both internal electric field and carrier density within QWs are simultaneously reduced without degradation of material quality. Furthermore, we found overall improved efficiency and reduced efficiency droop, which was attributed to the decrease of the built-in field and to less influence by non-radiative recombination processes at high carrier density. This simple and effective approach can be extended further for high power ultraviolet, green, and red LEDs.

  19. An Improved Recovery Algorithm for Decayed AES Key Schedule Images

    NASA Astrophysics Data System (ADS)

    Tsow, Alex

    A practical algorithm that recovers AES key schedules from decayed memory images is presented. Halderman et al. [1] established this recovery capability, dubbed the cold-boot attack, as a serious vulnerability for several widespread software-based encryption packages. Our algorithm recovers AES-128 key schedules tens of millions of times faster than the original proof-of-concept release. In practice, it enables reliable recovery of key schedules at 70% decay, well over twice the decay capacity of previous methods. The algorithm is generalized to AES-256 and is empirically shown to recover 256-bit key schedules that have suffered 65% decay. When solutions are unique, the algorithm efficiently validates this property and outputs the solution for memory images decayed up to 60%.

  20. Efficiency assessment of wastewater treatment plants: A data envelopment analysis approach integrating technical, economic, and environmental issues.

    PubMed

    Castellet, Lledó; Molinos-Senante, María

    2016-02-01

    The assessment of the efficiency of wastewater treatment plants (WWTPs) is essential to compare their performance and consequently to identify the best operational practices that can contribute to the reduction of operational costs. Previous studies have evaluated the efficiency of WWTPs using conventional data envelopment analysis (DEA) models. Most of these studies have considered the operational costs of the WWTPs as inputs, while the pollutants removed from wastewater are treated as outputs. However, they have ignored the fact that each pollutant removed by a WWTP involves a different environmental impact. To overcome this limitation, this paper evaluates for the first time the efficiency of a sample of WWTPs by applying the weighted slacks-based measure model. It is a non-radial DEA model which allows assigning weights to the inputs and outputs according their importance. Thus, the assessment carried out integrates environmental issues with the traditional "techno-economic" efficiency assessment of WWTPs. Moreover, the potential economic savings for each cost item have been quantified at a plant level. It is illustrated that the WWTPs analyzed have significant room to save staff and energy costs. Several managerial implications to help WWTPs' operators make informed decisions were drawn from the methodology and empirical application carried out. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Highly Efficient Visible Colloidal Lead-Halide Perovskite Nanocrystal Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Xing, Jun; Xing, Guichuan; Quan, Lina; Tan, Swee Tiam; Zhao, Jiaxin; Su, Rui; Zhang, Lulu; Chen, Shi; Zhao, Yawen; Huan, Alfred; Sargent, Edward H.; Xiong, Qihua; Demir, Hilmi Volkan

    2018-05-01

    Lead-halide perovskites have been attracting attention for potential use in solid-state lighting. Following the footsteps of solar cells, the field of perovskite light-emitting diodes (PeLEDs) has been growing rapidly. Their application prospects in lighting, however, remain still uncertain due to a variety of shortcomings in device performance including their limited levels of luminous efficiency achievable thus far. Here we show high-efficiency PeLEDs based on colloidal perovskite nanocrystals (PeNCs) synthesized at room temperature possessing dominant first-order excitonic radiation (enabling a photoluminescence quantum yield of 71% in solid film), unlike in the case of bulk perovskites with slow electron-hole bimolecular radiative recombination (a second-order process). In these PeLEDs, by reaching charge balance in the recombination zone, we find that the Auger nonradiative recombination, with its significant role in emission quenching, is effectively suppressed in low driving current density range. In consequence, these devices reach a record high maximum external quantum efficiency of 12.9% reported to date and an unprecedentedly high power efficiency of 30.3 lm W-1 at luminance levels above 1000 cd m-2 as required for various applications. These findings suggest that, with feasible levels of device performance, the PeNCs hold great promise for their use in LED lighting and displays.

  2. Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-Light Emission.

    PubMed

    Quan, Li Na; Zhao, Yongbiao; García de Arquer, F Pelayo; Sabatini, Randy; Walters, Grant; Voznyy, Oleksandr; Comin, Riccardo; Li, Yiying; Fan, James Z; Tan, Hairen; Pan, Jun; Yuan, Mingjian; Bakr, Osman M; Lu, Zhenghong; Kim, Dong Ha; Sargent, Edward H

    2017-06-14

    Organo-metal halide perovskites are a promising platform for optoelectronic applications in view of their excellent charge-transport and bandgap tunability. However, their low photoluminescence quantum efficiencies, especially in low-excitation regimes, limit their efficiency for light emission. Consequently, perovskite light-emitting devices are operated under high injection, a regime under which the materials have so far been unstable. Here we show that, by concentrating photoexcited states into a small subpopulation of radiative domains, one can achieve a high quantum yield, even at low excitation intensities. We tailor the composition of quasi-2D perovskites to direct the energy transfer into the lowest-bandgap minority phase and to do so faster than it is lost to nonradiative centers. The new material exhibits 60% photoluminescence quantum yield at excitation intensities as low as 1.8 mW/cm 2 , yielding a ratio of quantum yield to excitation intensity of 0.3 cm 2 /mW; this represents a decrease of 2 orders of magnitude in the excitation power required to reach high efficiency compared with the best prior reports. Using this strategy, we report light-emitting diodes with external quantum efficiencies of 7.4% and a high luminescence of 8400 cd/m 2 .

  3. The generation of gravitational waves. I - Weak-field sources

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Kovacs, S. J.

    1975-01-01

    This paper derives and summarizes a 'plug-in-and-grind' formalism for calculating the gravitational waves emitted by any system with weak internal gravitational fields. If the internal fields have negligible influence on the system's motions, the formalism reduces to standard 'linearized theory'. Independent of the effects of gravity on the motions, the formalism reduces to the standard 'quadrupole-moment formalism' if the motions are slow and internal stresses are weak. In the general case, the formalism expresses the radiation in terms of a retarded Green's function for slightly curved spacetime and breaks the Green's function integral into five easily understood pieces: direct radiation, produced directly by the motions of the source; whump radiation, produced by the 'gravitational stresses' of the source; transition radiation, produced by a time-changing time delay ('Shapiro effect') in the propagation of the nonradiative 1/r field of the source; focusing radiation, produced when one portion of the source focuses, in a time-dependent way, the nonradiative field of another portion of the source; and tail radiation, produced by 'back-scatter' of the nonradiative field in regions of focusing.

  4. The generation of gravitational waves. 1. Weak-field sources: A plug-in-and-grind formalism

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Kovacs, S. J.

    1974-01-01

    A plug-in-and-grind formalism is derived for calculating the gravitational waves emitted by any system with weak internal gravitational fields. If the internal fields have negligible influence on the system's motions, then the formalism reduces to standard linearized theory. Whether or not gravity affects the motions, if the motions are slow and internal stresses are weak, then the new formalism reduces to the standard quadrupole-moment formalism. In the general case the new formalism expresses the radiation in terms of a retarded Green's function for slightly curved spacetime, and then breaks the Green's-function integral into five easily understood pieces: direct radiation, produced directly by the motions of the sources; whump radiation, produced by the the gravitational stresses of the source; transition radiation, produced by a time-changing time delay (Shapiro effect) in the propagation of the nonradiative, 1/r field of the source; focussing radiation produced when one portion of the source focusses, in a time-dependent way, the nonradiative field of another portion of the source, and tail radiation, produced by backscatter of the nonradiative field in regions of focussing.

  5. Nonradiative Transitions in Media of Different Polarities and Their Modeling for 12'-Apo-β-Caroten-12'-Al and 8'-Apo-β-Caroten-8'-Al

    NASA Astrophysics Data System (ADS)

    Pavlovich, V. S.

    2014-09-01

    The theory of nonradiative transitions, based on the model of orientational broadening of electronic levels, is used to interpret known data on the effect of the polarity of the medium and temperature on the lifetime of the S 1( A {/g -}) state for 12'-apo-β-caroten-12'-al and 8'-apo-β-caroten-8'-al. The effect of promoting vibrations on the rate constant for nonradiative transitions is considered. The results make it possible to hypothesize that the internal electric field created by the environment strongly perturbs the pigment molecules. Consequently, in the excited S 1( A {/g -}) state, both pigments exist as different conformers I and II. Their structures differ by a 180° rotation of the cyclohexene ring relative to the polyene chain. Conformer II predominates in polar media, and is found in an intramolecular charge-transfer state S 1( A {/g -}/ ICT). In addition, as a result of fluctuations in the internal electric field, it can also be found in a charge-separated state S 1( A {/g -}/ CS).

  6. Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities

    PubMed Central

    Liberal, Iñigo; Engheta, Nader

    2016-01-01

    Controlling the emission and interaction properties of quantum emitters (QEs) embedded within an optical cavity is a key technique in engineering light-matter interactions at the nanoscale, as well as in the development of quantum information processing. State-of-the-art optical cavities are based on high quality factor photonic crystals and dielectric resonators. However, wealthier responses might be attainable with cavities carved in more exotic materials. We theoretically investigate the emission and interaction properties of QEs embedded in open epsilon-near-zero (ENZ) cavities. Using analytical methods and numerical simulations, we demonstrate that open ENZ cavities present the unique property of supporting nonradiating modes independently of the geometry of the external boundary of the cavity (shape, size, topology, etc.). Moreover, the possibility of switching between radiating and nonradiating modes enables a dynamic control of the emission by, and the interaction between, QEs. These phenomena provide unprecedented degrees of freedom in controlling and trapping fields within optical cavities, as well as in the design of cavity opto- and acoustomechanical systems. PMID:27819047

  7. Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities.

    PubMed

    Liberal, Iñigo; Engheta, Nader

    2016-10-01

    Controlling the emission and interaction properties of quantum emitters (QEs) embedded within an optical cavity is a key technique in engineering light-matter interactions at the nanoscale, as well as in the development of quantum information processing. State-of-the-art optical cavities are based on high quality factor photonic crystals and dielectric resonators. However, wealthier responses might be attainable with cavities carved in more exotic materials. We theoretically investigate the emission and interaction properties of QEs embedded in open epsilon-near-zero (ENZ) cavities. Using analytical methods and numerical simulations, we demonstrate that open ENZ cavities present the unique property of supporting nonradiating modes independently of the geometry of the external boundary of the cavity (shape, size, topology, etc.). Moreover, the possibility of switching between radiating and nonradiating modes enables a dynamic control of the emission by, and the interaction between, QEs. These phenomena provide unprecedented degrees of freedom in controlling and trapping fields within optical cavities, as well as in the design of cavity opto- and acoustomechanical systems.

  8. Energetic Aspects of Non-Radial Solar-Like Oscillations in Red Giants

    NASA Astrophysics Data System (ADS)

    Dupret, Marc-Antoine; Belkacem, Kévin

    The non-radial oscillations discovered by CoRoT (see e.g. de Ridder et al. (2009)) and by Kepler(see e.g. Bedding et al. (2010)) in thousands of red giants constitute a wonderful mine of information to determine their global characteristics and probe their internal structure. A. Miglio and J. Montalbán have presented in detail in this conference the seismic structure of red giants, the information hold by their oscillation frequencies, and how it can be used. An adiabatic analysis of the oscillations was sufficient at this level as the frequencies are mainly determined by the deep layers were the oscillatons are quasi-adiabatic. We consider here energetic aspects of non-radial oscillations in red-giants. Non-adiabatic models of solar-like oscillations are required to determine the theoretical amplitude and lifetimes of the modes. These parameters allow us to determine how power spectra are expected to look like, depending on the structure of the red giant. Comparison with the observed measures gives thus additional constraints on the models.

  9. Aspherical Supernovae: Effects on Early Light Curves

    NASA Astrophysics Data System (ADS)

    Afsariardchi, Niloufar; Matzner, Christopher D.

    2018-04-01

    Early light from core-collapse supernovae, now detectable in high-cadence surveys, holds clues to a star and its environment just before it explodes. However, effects that alter the early light have not been fully explored. We highlight the possibility of nonradial flows at the time of shock breakout. These develop in sufficiently nonspherical explosions if the progenitor is not too diffuse. When they do develop, nonradial flows limit ejecta speeds and cause ejecta–ejecta collisions. We explore these phenomena and their observational implications using global, axisymmetric, nonrelativistic FLASH simulations of simplified polytropic progenitors, which we scale to representative stars. We develop a method to track photon production within the ejecta, enabling us to estimate band-dependent light curves from adiabatic simulations. Immediate breakout emission becomes hidden as an oblique flow develops. Nonspherical effects lead the shock-heated ejecta to release a more constant luminosity at a higher, evolving color temperature at early times, effectively mixing breakout light with the early light curve. Collisions between nonradial ejecta thermalize a small fraction of the explosion energy; we will address emission from these collisions in a subsequent paper.

  10. Long-lived planetary vortices and their evolution: Conservative intermediate geostrophic model.

    PubMed

    Sutyrin, Georgi G.

    1994-06-01

    Large, long-lived vortices, surviving during many turnaround times and far longer than the dispersive linear Rossby wave packets, are abundant in planetary atmospheres and oceans. Nonlinear effects which prevent dispersive decay of intense cyclones and anticyclones and provide their self-propelling propagation are revised here using shallow water equations and their balanced approximations. The main physical mechanism allowing vortical structures to be long-lived in planetary fluid is the quick fluid rotation inside their cores which prevents growth in the amplitude of asymmetric circulation arising due to the beta-effect. Intense vortices of both signs survive essentially longer than the linear Rossby wave packet if their azimuthal velocity is much larger than the Rossby wave speed. However, in the long-time evolution, cyclonic and anticyclonic vortices behave essentially differently that is illustrated by the conservative intermediate geostrophic model. Asymmetric circulation governing vortex propagation is described by the azimuthal mode m=1 for the initial value problem as well as for steadily propagating solutions. Cyclonic vortices move west-poleward decaying gradually due to Rossby wave radiation while anticyclonic ones adjust to non-radiating solitary vortices. Slow weakening of an intense cyclone with decreasing of its size and shrinking of the core is described assuming zero azimuthal velocity outside the core while drifting poleward. The poleward tendency of the cyclone motion relative to the stirring flow corresponds to characteristic trajectories of tropical cyclones in the Earth's atmosphere. The asymmetry in dispersion-nonlinear properties of cyclones and anticyclones is thought to be one of the essential reasons for the observed predominance of anticyclones among long-lived vortices in the atmospheres of the giant planets and also among intrathermoclinic eddies in the ocean.

  11. Benzo[b]phosphole-containing pi-electron systems: synthesis based on an intramolecular trans-halophosphanylation and some insights into their properties.

    PubMed

    Fukazawa, Aiko; Ichihashi, Yasunori; Kosaka, Youhei; Yamaguchi, Shigehiro

    2009-11-02

    The intramolecular trans-halophosphanylation of 2-(aminophosphanyl)phenylacetylenes mediated by PBr3 followed by the oxidation with H2O2, produces 3-bromobenzo[b]phosphole oxide derivatives. This cyclization is also used for the synthesis of a 3-iodo derivative by conducting the reaction in the presence of LiI. Based on this synthetic method, various benzophosphole-containing pi-conjugated compounds, including a phosphoryl and methylene-bridged stilbene 10, 2,3,6,7-tetraphenylbenzo[1,2-b:4,5-b']diphosphole-P,P'-dioxides 11, and their phosphine sulfide derivatives 12, are synthesized. The study of the structure-property relationships in a series of the bridged stilbenes, including a bis(methylene)-bridged stilbene 10, and a bis(phosphoryl)-bridged stilbene, reveals that as the contribution of the phosphoryl groups increased, the absorption and emission maxima substantially shift to longer wavelengths. The intrinsic substituent effects of the phosphoryl group in this skeleton are to decrease the oscillator strength of the electronic transition and thus decrease the radiative decay rate constants from the singlet excited state. Nevertheless, these compounds maintain high fluorescence quantum yields (Phi(F)>0.8) owing to the significantly retarded nonradiative decay process. In the study of the benzodiphosphole derivatives 11 and 12, their cyclic voltammetry revealed that both of the phosphoryl and phosphine sulfide derivatives have low reduction potentials (-1.7 to -1.8 V vs ferrocene/ferrocenium couple) with the high reversibility of the redox waves. These compounds also showed high thermal stabilities with the high glass transition temperatures of 147-159 degrees C, indicative of their potential utilities as amorphous materials.

  12. Fluorescence Spectroscopic Properties of Normal and Abnormal Biomedical Materials

    NASA Astrophysics Data System (ADS)

    Pradhan, Asima

    Steady state and time-resolved optical spectroscopy and native fluorescence is used to study the physical and optical properties occurring in diseased and non-diseased biological human tissue, in particular, cancer of the human breast, artery and the dynamics of a photosensitizer useful in photodynamic therapy. The main focus of the research is on the optical properties of cancer and atherosclerotic tissues as compared to their normal counterparts using the different luminescence based spectroscopic techniques such as steady state fluorescence, time-resolved fluorescence, excitation spectroscopy and phosphorescence. The excitation and steady-state spectroscopic fluorescence using visible excitation wavelength displays a difference between normal and malignant tissues. This difference is attributed to absorption of the emission by hemoglobin in normal tissues. This method using 488nm fails to distinguish neoplastic tissue such as benign tissues and tumors from malignant tumors. The time-resolved fluorescence at visible, near -uv and uv excitation wavelengths display non-exponential profiles which are significantly different for malignant tumors as compared to non-malignant tissues only with uv excitation. The differences observed with visible and near-uv excitation wavelengths are not as significant. The non-exponential profiles are interpreted as due to a combination of fluorophores along with the action of non-radiative processes. Low temperature luminescence studies confirm the occurrence of non-radiative decay processes while temporal studies of various relevant biomolecules indicate the probable fluorophores responsible for the observed signal in tissues. Phosphorescence from human tissues have been observed for the first time and lifetimes of a few hundred nanoseconds are measured for malignant and benign tissues. Time-resolved fluorescence studies of normal artery and atherosclerotic plaque have shown that a combination of two excitation wavelengths can distinguish fibrous and calcified atherosclerotic plaque from normal artery. A minor effort of the study involves the high intensity effects on the optical properties of the dye, doxycycline (a particular photosensitizer of the tetracycline group) occurring during relaxation when excited at different laser intensities. This study has been performed by observing the fluorescence lifetimes and quantum yields of DOTC at different excitation intensities. The results obtained support the sequential excited state absorption model.

  13. Solvent organization around the perfluoro group of coumarin 153 governs its photophysical properties: An experimental and simulation study of coumarin dyes in ethanol as well as fluorinated ethanol solvents.

    PubMed

    Mondal, Saptarsi; Halder, Ritaban; Biswas, Biswajit; Jana, Biman; Singh, Prashant Chandra

    2016-05-14

    The self-aggregation property of the perfluoro group containing molecules makes it important in the research fields of biology and polymer and organic synthesis. In the quest of understanding the role of the perfluoro group on the photophysical properties of perfluoro-containing molecules in biologically important fluoroethanol solvents, we have applied photophysical as well as molecular dynamics simulation techniques to explore the properties of perfluoro groups containing molecule coumarin-153 (C153) in ethanol (ETH), monofluoroethanol (MFE), difluoroethanol (DFE), and trifluoroethanol (TFE) and compared them with the molecules without perfluoro moiety, namely coumarin-6H (C6H) and coumarin-480 (C480). In contrast to C6H and C480, the excited state lifetime of C153 in fluorinated ETHs is not monotonic. The excited state lifetime of C153 decreases in MFE and DFE as compared to ETH, whereas in TFE, it increases as compared to MFE and DFE. Molecular dynamics simulation reveals that the carbon terminal away from the OH group of fluorinated ETHs has a preferential orientation near the perfluoro (CF3) group of C153. In MFE and DFE, the CF3 group of C153 prefers to have a CF2-F⋯H -(CHF) type of electrostatic interaction over CF2-F⋯F -(CH2) kind of dispersion interaction which increases the rate of nonradiative decay, probably due to the electrostatic nature of the CF2-F⋯H -(CHF) hydrogen bond. On the other hand, in TFE, C-F⋯ F-C type of dispersion interaction, also known as fluorous interaction, takes place between the CF3 groups of C153 and TFE which decreases the rate of nonradiative rate as compared to MFE and DFE, leading to the increased lifetime of C153 in TFE. Photophysical and MD simulation studies clearly depict that the structural organization of solvents and their interaction with the fluorocarbon group are crucial factors for the photophysical behavior of the fluorocarbon containing molecules.

  14. Solvent organization around the perfluoro group of coumarin 153 governs its photophysical properties: An experimental and simulation study of coumarin dyes in ethanol as well as fluorinated ethanol solvents

    NASA Astrophysics Data System (ADS)

    Mondal, Saptarsi; Halder, Ritaban; Biswas, Biswajit; Jana, Biman; Singh, Prashant Chandra

    2016-05-01

    The self-aggregation property of the perfluoro group containing molecules makes it important in the research fields of biology and polymer and organic synthesis. In the quest of understanding the role of the perfluoro group on the photophysical properties of perfluoro-containing molecules in biologically important fluoroethanol solvents, we have applied photophysical as well as molecular dynamics simulation techniques to explore the properties of perfluoro groups containing molecule coumarin-153 (C153) in ethanol (ETH), monofluoroethanol (MFE), difluoroethanol (DFE), and trifluoroethanol (TFE) and compared them with the molecules without perfluoro moiety, namely coumarin-6H (C6H) and coumarin-480 (C480). In contrast to C6H and C480, the excited state lifetime of C153 in fluorinated ETHs is not monotonic. The excited state lifetime of C153 decreases in MFE and DFE as compared to ETH, whereas in TFE, it increases as compared to MFE and DFE. Molecular dynamics simulation reveals that the carbon terminal away from the OH group of fluorinated ETHs has a preferential orientation near the perfluoro (CF3) group of C153. In MFE and DFE, the CF3 group of C153 prefers to have a CF2—F⋯H —(CHF) type of electrostatic interaction over CF2—F⋯F —(CH2) kind of dispersion interaction which increases the rate of nonradiative decay, probably due to the electrostatic nature of the CF2—F⋯H —(CHF) hydrogen bond. On the other hand, in TFE, C—F⋯ F—C type of dispersion interaction, also known as fluorous interaction, takes place between the CF3 groups of C153 and TFE which decreases the rate of nonradiative rate as compared to MFE and DFE, leading to the increased lifetime of C153 in TFE. Photophysical and MD simulation studies clearly depict that the structural organization of solvents and their interaction with the fluorocarbon group are crucial factors for the photophysical behavior of the fluorocarbon containing molecules.

  15. Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes

    DOE PAGES

    Dai, Qi; Shan, Qifeng; Wang, Jing; ...

    2010-09-30

    In this work, we model the carrier recombination mechanisms in GaInN/GaN light-emitting diodes as R=An+Bn 2+Cn 3+f(n), where f(n) represents carrier leakage out of the active region. The term f(n) is expanded into a power series and shown to have higher-than-third-order contributions to the recombination. The total third-order nonradiative coefficient (which may include an f(n) leakage contribution and an Auger contribution) is found to be 8×10 -29 cm 6 s -1. Finally, comparison of the theoretical ABC+f(n) model with experimental data shows that a good fit requires the inclusion of the f(n) term.

  16. Active media for up-conversion diode-pumped lasers

    NASA Astrophysics Data System (ADS)

    Tkachuk, Alexandra M.

    1996-03-01

    In this work, we consider the different methods of populating the initial and final working levels of laser transitions in TR-doped crystals under the selective 'up-conversion' and 'avalanche' diode laser pumping. On the basis of estimates of the probabilities of competing non-radiative energy-transfer processes rates obtained from the experimental data and theoretical calculations, we estimated the efficiency of the up-conversion pumping and selfquenching of the upper TR3+ states excited by laser-diode emission. The effect of the host composition, dopant concentration, and temperature on the output characteristics and up-conversion processes in YLF:Er; BaY2F8:Er; BaY2F8:Er,Yb and BaY2F8:Yb,Ho are determined.

  17. Ultraviolet/blue light-emitting diodes based on single horizontal ZnO microrod/GaN heterojunction.

    PubMed

    Du, Chia-Fong; Lee, Chen-Hui; Cheng, Chao-Tsung; Lin, Kai-Hsiang; Sheu, Jin-Kong; Hsu, Hsu-Cheng

    2014-01-01

    We report electroluminescence (EL) from single horizontal ZnO microrod (MR) and p-GaN heterojunction light-emitting diodes under forward and reverse bias. EL spectra were composed of two blue emissions centered at 431 and 490 nm under forward biases, but were dominated by a ultraviolet (UV) emission located at 380 nm from n-ZnO MR under high reverse biases. Light-output-current characteristic of the UV emission reveals that the rate of radiative recombination is faster than that of the nonradiative recombination. Highly efficient ZnO excitonic recombination at reverse bias is caused by electrons tunneling from deep-level states near the n-ZnO/p-GaN interface to the conduction band in n-ZnO.

  18. Silver nanowires enhance absorption of poly(3-hexylthiophene)

    NASA Astrophysics Data System (ADS)

    Smolarek, Karolina; Ebenhoch, Bernd; Czechowski, Nikodem; Prymaczek, Aneta; Twardowska, Magdalena; Samuel, Ifor D. W.; Mackowski, Sebastian

    2013-11-01

    Results of optical spectroscopy reveal strong influence of plasmon excitations in silver nanowires on the fluorescence properties of poly(3-hexylthiophene) (P3HT), which is one of the building blocks of organic solar cells. For the structure where a conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) was used as a spacer in order to minimize effects associated with non-radiative energy transfer from P3HT to metallic nanoparticles, we demonstrate over two-fold increase of the fluorescence intensity. Results of time-resolved fluorescence indicate that the enhancement of emission intensity can be attributed to increased absorption of P3HT. Our findings are a step towards improving the efficiency of organic solar cells through incorporation of plasmonic nanostructures.

  19. Silver nanowires enhance absorption of poly(3-hexylthiophene)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smolarek, Karolina; Czechowski, Nikodem; Prymaczek, Aneta

    2013-11-11

    Results of optical spectroscopy reveal strong influence of plasmon excitations in silver nanowires on the fluorescence properties of poly(3-hexylthiophene) (P3HT), which is one of the building blocks of organic solar cells. For the structure where a conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) was used as a spacer in order to minimize effects associated with non-radiative energy transfer from P3HT to metallic nanoparticles, we demonstrate over two-fold increase of the fluorescence intensity. Results of time-resolved fluorescence indicate that the enhancement of emission intensity can be attributed to increased absorption of P3HT. Our findings are a step towards improving the efficiency of organic solar cellsmore » through incorporation of plasmonic nanostructures.« less

  20. Coherent spin dynamics of carriers in ferromagnetic semiconductor heterostructures with an Mn δ layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaitsev, S. V., E-mail: szaitsev@issp.ac.ru; Akimov, I. A.; Langer, L.

    2016-09-15

    The coherent spin dynamics of carriers in the heterostructures that contain an InGaAs/GaAs quantum well (QW) and an Mn δ layer, which are separated by a narrow GaAs spacer 2–10 nm thick, is comprehensively studied by the magnetooptical Kerr effect method at a picosecond time resolution. The exchange interaction of photoexcited electrons in QW with the ferromagnetic Mn δ layer manifests itself in magnetic-field and temperature dependences of the Larmor precession frequency of electron spins and is found to be very weak (several microelectron volts). Two nonoscillating components related to holes exist apart from an electron contribution to the Kerrmore » signal of polarization plane rotation. At the initial stage, a fast relaxation process, which corresponds to the spin relaxation of free photoexcited holes, is detected in the structures with a wide spacer. The second component is caused by the further spin dephasing of energyrelaxed holes, which are localized at strong QW potential fluctuations in the structures under study. The decay of all contributions to the Kerr signal in time increases substantially when the spacer thickness decreases, which correlates with the enhancement of nonradiative recombination in QW.« less

  1. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals.

    PubMed

    Yu, Kuai; Yang, Yang; Wang, Junzhong; Tang, Xiaosheng; Xu, Qing-Hua; Wang, Guo Ping

    2018-06-22

    Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I-III-VI semiconductor nanocrystals (NCs), such as CuInS 2 and AgInS 2 . However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS 2 and AgInS 2 /ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS 2 and AgInS 2 /ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility [Formula: see text] of AgInS 2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.

  2. Near-field infrared vibrational dynamics and tip-enhanced decoherence.

    PubMed

    Xu, Xiaoji G; Raschke, Markus B

    2013-04-10

    Ultrafast infrared spectroscopy can reveal the dynamics of vibrational excitations in matter. In its conventional far-field implementation, however, it provides only limited insight into nanoscale sample volumes due to insufficient spatial resolution and sensitivity. Here, we combine scattering-scanning near-field optical microscopy (s-SNOM) with femtosecond infrared vibrational spectroscopy to characterize the coherent vibrational dynamics of a nanoscopic ensemble of C-F vibrational oscillators of polytetrafluoroethylene (PTFE). The near-field mode transfer between the induced vibrational molecular coherence and the metallic scanning probe tip gives rise to a tip-mediated radiative IR emission of the vibrational free-induction decay (FID). By increasing the tip–sample coupling, we can enhance the vibrational dephasing of the induced coherent vibrational polarization and associated IR emission, with dephasing times up to T2(NF) is approximately equal to 370 fs in competition against the intrinsic far-field lifetime of T2(FF) is approximately equal to 680 fs as dominated by nonradiative damping. Near-field antenna-coupling thus provides for a new way to modify vibrational decoherence. This approach of ultrafast s-SNOM enables the investigation of spatiotemporal dynamics and correlations with nanometer spatial and femtosecond temporal resolution.

  3. Spectral Selectivity of Plasmonic Interactions between Individual Up-Converting Nanocrystals and Spherical Gold Nanoparticles.

    PubMed

    Piątkowski, Dawid; Schmidt, Mikołaj K; Twardowska, Magdalena; Nyk, Marcin; Aizpurua, Javier; Maćkowski, Sebastian

    2017-08-04

    We experimentally demonstrate strong spectral selectivity of plasmonic interaction that occurs between α-NaYF₄:Er 3+ /Yb 3+ nanocrystals, which feature two emission bands, and spherical gold nanoparticles, with plasmon frequency resonant with one of the emission bands. Spatially-resolved luminescence intensity maps acquired for individual nanocrystals, together with microsecond luminescence lifetime images, show two qualitatively different effects that result from the coupling between plasmon excitations in metallic nanoparticles and emitting states of the nanocrystals. On the one hand, we observe nanocrystals, whose emission intensity is strongly enhanced for both resonant and non-resonant bands with respect to the plasmon resonance. Importantly, this increase is accompanied with shortening of luminescence decays times. In contrast, a significant number of nanocrystals exhibits almost complete quenching of the emission resonant with the plasmon resonance of gold nanoparticles. Theoretical analysis indicates that such an effect can occur for emitters placed at distances of about 5 nm from gold nanoparticles. While under these conditions, both transitions experience significant increases of the radiative emission rates due to the Purcell effect, the non-radiative energy transfer between resonant bands results in strong quenching, which in that situation nullifies the enhancement.

  4. Ultrafast investigation of photoinduced charge transfer in aminoanthraquinone pharmaceutical product

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Sun, Simei; Zhou, Miaomiao; Wang, Lian; Zhang, Bing

    2017-02-01

    We investigated the mechanism of intramolecular charge transfer and the following radiationless dynamics of the excited states of 1-aminoanthraquinone using steady state and time-resolved absorption spectroscopy combined with quantum chemical calculations. Following photoexcitation with 460 nm, conformational relaxation via twisting of the amino group, charge transfer and the intersystem crossing (ISC) processes have been established to be the major relaxation pathways responsible for the ultrafast nonradiative of the excited S1 state. Intramolecular proton transfer, which could be induced by intramolecular hydrogen bonding is inspected and excluded. Time-dependent density functional theory (TDDFT) calculations reveal the change of the dipole moments of the S0 and S1 states along the twisted coordinate of the amino group, indicating the mechanism of twisted intra-molecular charge transfer (TICT). The timescale of TICT is measured to be 5 ps due to the conformational relaxation and a barrier on the S1 potential surface. The ISC from the S1 state to the triplet manifold is a main deactivation pathway with the decay time of 28 ps. Our results observed here have yield a physically intuitive and complete picture of the photoinduced charge transfer and radiationless dynamics in anthraquinone pharmaceutial products.

  5. Exciton dynamics and annihilation in WS2 2D semiconductors.

    PubMed

    Yuan, Long; Huang, Libai

    2015-04-28

    We systematically investigate the exciton dynamics in monolayered, bilayered, and trilayered WS2 two-dimensional (2D) crystals by time-resolved photoluminescence (TRPL) spectroscopy. The exciton lifetime when free of exciton annihilation was determined to be 806 ± 37 ps, 401 ± 25 ps, and 332 ± 19 ps for WS2 monolayer, bilayer, and trilayer, respectively. By measuring the fluorescence quantum yields, we also establish the radiative and nonradiative lifetimes of the direct and indirect excitons. The exciton decay in monolayered WS2 exhibits a strong excitation density-dependence, which can be described using an exciton-exciton annihilation (two-particle Auger recombination) model. The exciton-exciton annihilation rate for monolayered, bilayered, and trilayered WS2 was determined to be 0.41 ± 0.02, (6.00 ± 1.09) × 10(-3) and (1.88 ± 0.47) × 10(-3) cm(2) s(-1), respectively. Notably, the exciton-exciton annihilation rate is two orders of magnitude faster in the monolayer than in the bilayer and trilayer. We attribute the much slower exciton-exciton annihilation rate in the bilayer and trilayer to reduced many-body interaction and phonon-assisted exciton-exciton annihilation of indirect excitons.

  6. Energy transfer and radiative recombination processes in (Gd, Lu)3Ga3Al2O12:Pr3+ scintillators

    NASA Astrophysics Data System (ADS)

    Wu, Yuntao; Ren, Guohao

    2013-10-01

    (GdxLu3-x)Ga3Al2O12:0.3 at.%Pr (x = 0.025, 0.05, 0.1, 0.2, 0.4, 0.6) (GLGAG:Pr) polycrystalline powders are prepared by solid-state reaction method. To better understand the luminescence mechanism, the optical diffuse reflectance, photoluminescence emission and excitation, X-ray excited luminescence spectra and decay kinetics of GLGAG:Pr were investigated in detailed, allowing the determination of energy transfer from 5d state of Pr3+ to 4f state of Gd3+, and the non-radiative relaxation from 5d to 4f state of Pr3+. Besides, the former process plays more negative role in the emission quenching of GLGAG:Pr than later one. Pr3+ ion is regarded as an ineffective activation ion in Gd-based multicomponent aluminate garnets. In addition, the wavelength-resolved thermoluminescence spectra of GLGAG:Pr were studied after UV and X-ray irradiation. It is revealed that the localized recombination processes from electron traps to lower lying 4f levels of Pr3+ occurs without populating the higher 5d levels of Pr3+.

  7. Adiabatic Quantum Computation: Coherent Control Back Action.

    PubMed

    Goswami, Debabrata

    2006-11-22

    Though attractive from scalability aspects, optical approaches to quantum computing are highly prone to decoherence and rapid population loss due to nonradiative processes such as vibrational redistribution. We show that such effects can be reduced by adiabatic coherent control, in which quantum interference between multiple excitation pathways is used to cancel coupling to the unwanted, non-radiative channels. We focus on experimentally demonstrated adiabatic controlled population transfer experiments wherein the details on the coherence aspects are yet to be explored theoretically but are important for quantum computation. Such quantum computing schemes also form a back-action connection to coherent control developments.

  8. Two-level quenching of photoluminescence in hexagonal boron nitride micropowder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henaish, A. M. A.; Tanta University, Physics Department, Tanta, Egypt, 31527; Vokhmintsev, A. S.

    2016-03-29

    The processes of photoluminescence thermal quenching in the range RT – 800 K of h-BN micropowder in the 3.56 eV band were studied. It was found that two non-radiative channels of excitations relaxation with activation energies of 0.27 and 0.81 eV control the quenching for emission observed. It was assumed that emptying the shallow traps based on O{sub N}-centers characterized external quenching in RT – 530 K range and non-radiative mechanism of donor-acceptor recombination began to dominate at T > 530 K.

  9. Modification of the Simons model for calculation of nonradial expansion plumes

    NASA Technical Reports Server (NTRS)

    Boyd, I. D.; Stark, J. P. W.

    1989-01-01

    The Simons model is a simple model for calculating the expansion plumes of rockets and thrusters and is a widely used engineering tool for the determination of spacecraft impingement effects. The model assumes that the density of the plume decreases radially from the nozzle exit. Although a high degree of success has been achieved in modeling plumes with moderate Mach numbers, the accuracy obtained under certain conditions is unsatisfactory. A modification made to the model that allows effective description of nonradial behavior in plumes is presented, and the conditions under which its use is preferred are prescribed.

  10. Manipulation of nanoscale V-pits to optimize internal quantum efficiency of InGaN multiple quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chiao-Yun; Li, Heng; Shih, Yang-Ta

    2015-03-02

    We systematically investigated the influence of nanoscale V-pits on the internal quantum efficiency (IQE) of InGaN multiple quantum wells (MQWs) by adjusting the underlying superlattices (SLS). The analysis indicated that high barrier energy of sidewall MQWs on V-pits and long diffusion distance between the threading dislocation (TD) center and V-pit boundary were crucial to effectively passivate the non-radiative centers of TDs. For a larger V-pit, the thicker sidewall MQW on V-pit would decrease the barrier energy. On the contrary, a shorter distance between the TD center and V-pit boundary would be observed in a smaller V-pit, which could increase themore » carrier capturing capability of TDs. An optimized V-pit size of approximately 200–250 nm in our experiment could be concluded for MQWs with 15 pairs SLS, which exhibited an IQE value of 70%.« less

  11. Trapping time of excitons in Si nanocrystals embedded in a SiO2 matrix

    NASA Astrophysics Data System (ADS)

    de Jong, E. M. L. D.; de Boer, W. D. A. M.; Yassievich, I. N.; Gregorkiewicz, T.

    2017-05-01

    Silicon (Si) nanocrystals (NCs) are of great interest for many applications, ranging from photovoltaics to optoelectonics. The photoluminescence quantum yield of Si NCs dispersed in SiO2 is limited, suggesting the existence of very efficient processes of nonradiative recombination, among which the formation of a self-trapped exciton state on the surface of the NC. In order to improve the external quantum efficiency of these systems, the carrier relaxation and recombination need to be understood more thoroughly. For that purpose, we perform transient-induced absorption spectroscopy on Si NCs embedded in a SiO2 matrix over a broad probe range for NCs of average sizes from 2.5 to 5.5 nm. The self-trapping of free excitons on surface-related states is experimentally and theoretically discussed and found to be dependent on the NC size. These results offer more insight into the self-trapped exciton state and are important to increase the optical performance of Si NCs.

  12. Activation of the surface dark-layer to enhance upconversion in a thermal field

    NASA Astrophysics Data System (ADS)

    Zhou, Jiajia; Wen, Shihui; Liao, Jiayan; Clarke, Christian; Tawfik, Sherif Abdulkader; Ren, Wei; Mi, Chao; Wang, Fan; Jin, Dayong

    2018-03-01

    Thermal quenching, in which light emission experiences a loss with increasing temperature, broadly limits luminescent efficiency at higher temperature in optical materials, such as lighting phosphors1-3 and fluorescent probes4-6. Thermal quenching is commonly caused by the increased activity of phonons that leverages the non-radiative relaxation pathways. Here, we report a kind of heat-favourable phonons existing at the surface of lanthanide-doped upconversion nanomaterials to combat thermal quenching. It favours energy transfer from sensitizers to activators to pump up the intermediate excited-state upconversion process. We identify that the oxygen moiety chelating Yb3+ ions, [Yb...O], is the key underpinning this enhancement. We demonstrate an approximately 2,000-fold enhancement in blue emission for 9.7 nm Yb3+-Tm3+ co-doped nanoparticles at 453 K. This strategy not only provides a powerful solution to illuminate the dark layer of ultra-small upconversion nanoparticles, but also suggests a new pathway to build high-efficiency upconversion systems.

  13. Nonradiative relaxation and laser action in tunable solid state laser crystals

    NASA Technical Reports Server (NTRS)

    Petricevic, V.; Gayen, S. K.; Alfano, R. R.

    1989-01-01

    Room-temperature pulsed laser action was obtained in chromium-activated forsterite (Cr:Mg2SiO4) for both 532 and 1064 nm pumping. Free running laser emission in both cases is centered at 1235 nm and has a bandwidth of approximately 30 nm. Slope efficiency as high as 22 percent was measured. Using different sets of output mirrors and a single birefrigent plate as the intracavity wavelength selecting element tunability over the 1167 to 1268 nm spectral range was demonstrated. Continuous wave laser operation at room temperature was obtained for 1064 nm pumping from a CW Nd:YAG laser. The output power slope efficiency is 6.8 percent. The gain cross section is estimated to be 1.1 x 10 to the 19th sq cm. Spectroscopic studies suggest that the laser action is due to a center other than the trivalent chromium (Cr 3+), presumably the tetravalent chromium (Cr 4+) in a tetrahedrally coordinated site.

  14. Fabrication and analysis of Cr-doped ZnO nanoparticles from the gas phase.

    PubMed

    Schneider, L; Zaitsev, S V; Jin, W; Kompch, A; Winterer, M; Acet, M; Bacher, G

    2009-04-01

    High quality Cr-doped ZnO nanoparticles from the gas phase were prepared and investigated with respect to their structural, optical and magnetic properties. The extended x-ray absorption fine structure and the x-ray absorption near edge structure of the particles verify that after nanoparticle preparation Cr is incorporated as Cr3+ ) at least partially on sites with a 4-fold oxygen configuration, most likely on a Zn site, into the wurtzite lattice. Despite the fact that Cr is known to act as an efficient non-radiative loss centre for near band gap emission (NBE), a pronounced NBE is obtained up to room temperature even for a nominal Cr concentration of 10 at.%. Annealing at 1000 degrees C results in a significant improvement of the photoluminescence efficiency and a reduced PL linewidth down to 2.9 meV at low temperatures while the structural and magnetic data indicate the formation of ZnCr2O4 clusters.

  15. Carbon dot/polyvinylpyrrolidone hybrid nanofibers with efficient solid-state photoluminescence constructed using an electrospinning technique

    NASA Astrophysics Data System (ADS)

    Zhai, Yue; Bai, Xue; Cui, Haining; Zhu, Jinyang; Liu, Wei; Zhang, Tianxiang; Dong, Biao; Pan, Gencai; Xu, Lin; Zhang, Shuang; Song, Hongwei

    2018-01-01

    Carbon dots (CDs) are the promising candidates for application in optoelectronic and biological areas due to their excellent photostability, unique photoluminescence, good biocompatibility, low toxicity and chemical inertness. However, the self-quenching of photoluminescence as they are dried into the solid state dramatically limits their further application. Therefore, realizing efficient photoluminescence and large-scale production of CDs in the solid state is an urgent challenge. Herein, solid-state hybrid nanofibers based on CDs and polyvinylpyrrolidone (PVP) are constructed through an electrospinning process. The resulting solid-state hybrid PVP/CD nanofibers present much enhanced photoluminescence performance compared to the corresponding pristine colloidal CDs due to the decrease in non-radiative recombination of electron-holes. Owing to the suppressed self-quenching of CDs, the photoluminescence quantum yield is considerably improved from 42.9% of pristine CDs to 83.5% of nanofibers under the excitation wavelength of 360 nm. This has great application potential in optical or optoelectronic devices.

  16. Temperature dependence of tris(2,2'-bipyridine) ruthenium (II) device characteristics

    NASA Astrophysics Data System (ADS)

    Slinker, Jason D.; Malliaras, George G.; Flores-Torres, Samuel; Abruña, Héctor D.; Chunwachirasiri, Withoon; Winokur, Michael J.

    2004-04-01

    We have investigated the temperature dependence of the current, radiance, and efficiency from electroluminescent devices based on [Ru(bpy)3]2+(PF6-)2, where bpy is 2,2'-bipyridine. We find that the current increases monotonically with temperature from 200 to 380 K, while the radiance reaches a maximum near room temperature. For temperatures greater than room temperature, an irreversible, current-induced degradation occurs with thermal cycling that diminishes both the radiance and the photoluminescence (PL) quantum yield, but does not affect the current. The temperature dependence of the external quantum efficiency is fully accounted for by the dependence of the PL quantum yield as measured from the emissive area of the device. This implies that the contacts remain ohmic throughout the temperature range investigated. The quenching of the PL with temperature was attributed to thermal activation to a nonradiative d-d transition. The temperature dependence of the current shows a complex behavior in which transport appears to be thermally activated, with distinct low-temperature and high-temperature regimes.

  17. Photoinduced Single- and Multiple-Electron Dynamics Processes Enhanced by Quantum Confinement in Lead Halide Perovskite Quantum Dots

    DOE PAGES

    Vogel, Dayton J.; Kryjevski, Andrei; Inerbaev, Talgat; ...

    2017-03-21

    Methylammonium lead iodide perovskite (MAPbI 3) is a promising material for photovoltaic devices. A modification of MAPbI 3 into confined nanostructures is expected to further increase efficiency of solar energy conversion. Photoexcited dynamic processes in a MAPbI3 quantum dot (QD) have been modeled by many-body perturbation theory and nonadiabatic dynamics. A photoexcitation is followed by either exciton cooling (EC), its radiative (RR) or nonradiative recombination (NRR), or multiexciton generation (MEG) processes. Computed times of these processes fall in the order of MEG < EC < RR < NRR, where MEG is on the order of a few femtoseconds, EC ismore » in the picosecond range, while RR and NRR are on the order of nanoseconds. Computed time scales indicate which electronic transition pathways can contribute to increase in charge collection efficiency. Simulated mechanisms of relaxation and their rates show that quantum confinement promotes MEG in MAPbI 3 QDs.« less

  18. High-efficiency and low-background multi-segmented proportional gas counter for β-decay spectroscopy

    NASA Astrophysics Data System (ADS)

    Mukai, M.; Hirayama, Y.; Watanabe, Y. X.; Schury, P.; Jung, H. S.; Ahmed, M.; Haba, H.; Ishiyama, H.; Jeong, S. C.; Kakiguchi, Y.; Kimura, S.; Moon, J. Y.; Oyaizu, M.; Ozawa, A.; Park, J. H.; Ueno, H.; Wada, M.; Miyatake, H.

    2018-03-01

    A multi-segmented proportional gas counter (MSPGC) with high detection efficiency and low-background event rate has been developed for β-decay spectroscopy. The MSPGC consists of two cylindrically aligned layers of 16 counters (32 counters in total). Each counter has a long active length and small trapezoidal cross-section, and the total solid angle of the 32 counters is 80% of 4 π. β-rays are distinguished from the background events including cosmic-rays by analyzing the hit patterns of independent counters. The deduced intrinsic detection efficiency of each counter was almost 100%. The measured background event rate was 0.11 counts per second using the combination of veto counters for cosmic-rays and lead block shields for background γ-rays. The MSPGC was applied to measure the β-decay half-lives of 198Ir and 199mPt. The evaluated half-lives of T1/2 = 9 . 8(7) s and 12.4(7) s for 198Ir and 199mPt, respectively, were in agreement with previously reported values. The estimated absolute detection efficiency of the MSPGC from GEANT4 simulations was consistent with the evaluated efficiency from the analysis of the β- γ spectroscopy of 199Pt, saturating at approximately 60% for Qβ > 4 MeV.

  19. A Fluorescent Indicator for Imaging Lysosomal Zinc(II) with Förster Resonance Energy Transfer (FRET)-Enhanced Photostability and a Narrow Band of Emission

    PubMed Central

    Sreenath, Kesavapillai; Yuan, Zhao; Allen, John R.

    2015-01-01

    We demonstrate a strategy to transfer the zinc(II) sensitivity of a fluoroionophore with low photostability and a broad emission band to a bright and photostable fluorophore with a narrow emission band. The two fluorophores are covalently connected to afford an intramolecular Förster resonance energy transfer (FRET) conjugate. The FRET donor in the conjugate is a zinc(II)-sensitive arylvinylbipyridyl fluoroionophore, the absorption and emission of which undergo bathochromic shifts upon zinc(II) coordination. When the FRET donor is excited, efficient intramolecular energy transfer occurs to result in the emission of the acceptor boron dipyrromethene (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene or BODIPY) as a function of zinc(II) concentration. The broad emission band of the donor/zinc(II) complex is transformed into the strong, narrow emission band of the BODIPY acceptor in the FRET conjugates, which can be captured within the narrow emission window that is preferred for multicolor imaging experiments. In addition to competing with other nonradiative decay processes of the FRET donor, the rapid intramolecular FRET of the excited FRET-conjugate molecule protects the donor fluorophore from photobleaching, thus enhancing the photostability of the indicator. FRET conjugates 3 and 4 contain aliphatic amino groups, which selectively target lysosomes in mammalian cells. This subcellular localization preference was verified by using confocal fluorescence microscopy, which also shows the zinc(II)-enhanced emission of 3 and 4 in lysosomes. It was further shown using two-color structured illumination microscopy (SIM), which is capable of extending the lateral resolution over the Abbe diffraction limit by a factor of two, that the morpholino-functionalized compound 4 localizes in the interior of lysosomes, rather than anchoring on the lysosomal membranes, of live HeLa cells. PMID:25382395

  20. The electroluminescence mechanism of Er³⁺ in different silicon oxide and silicon nitride environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebohle, L., E-mail: l.rebohle@hzdr.de; Wutzler, R.; Braun, M.

    Rare earth doped metal-oxide-semiconductor (MOS) structures are of great interest for Si-based light emission. However, several physical limitations make it difficult to achieve the performance of light emitters based on compound semiconductors. To address this point, in this work the electroluminescence (EL) excitation and quenching mechanism of Er-implanted MOS structures with different designs of the dielectric stack are investigated. The devices usually consist of an injection layer made of SiO₂ and an Er-implanted layer made of SiO₂, Si-rich SiO₂, silicon nitride, or Si-rich silicon nitride. All structures implanted with Er show intense EL around 1540 nm with EL power efficienciesmore » in the order of 2 × 10⁻³ (for SiO₂:Er) or 2 × 10⁻⁴(all other matrices) for lower current densities. The EL is excited by the impact of hot electrons with an excitation cross section in the range of 0.5–1.5 × 10⁻¹⁵cm⁻². Whereas the fraction of potentially excitable Er ions in SiO₂ can reach values up to 50%, five times lower values were observed for other matrices. The decrease of the EL decay time for devices with Si-rich SiO₂ or Si nitride compared to SiO₂ as host matrix implies an increase of the number of defects adding additional non-radiative de-excitation paths for Er³⁺. For all investigated devices, EL quenching cross sections in the 10⁻²⁰ cm² range and charge-to-breakdown values in the range of 1–10 C cm⁻² were measured. For the present design with a SiO₂ acceleration layer, thickness reduction and the use of different host matrices did not improve the EL power efficiency or the operation lifetime, but strongly lowered the operation voltage needed to achieve intense EL.« less

  1. Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots

    DOE PAGES

    Makarov, Nikolay Sergeevich; Guo, Shaojun; Isaienko, Oleksandr; ...

    2016-02-16

    Organic–inorganic lead-halide perovskites have been the subject of recent intense interest due to their unusually strong photovoltaic performance. A new addition to the perovskite family is all-inorganic Cs–Pb-halide perovskite nanocrystals, or quantum dots, fabricated via a moderate-temperature colloidal synthesis. While being only recently introduced to the research community, these nanomaterials have already shown promise for a range of applications from color-converting phosphors and light-emitting diodes to lasers, and even room-temperature single-photon sources. Knowledge of the optical properties of perovskite quantum dots still remains vastly incomplete. Here we apply various time-resolved spectroscopic techniques to conduct a comprehensive study of spectral andmore » dynamical characteristics of single- and multiexciton states in CsPbX3 nanocrystals with X being either Br, I, or their mixture. Specifically, we measure exciton radiative lifetimes, absorption cross-sections, and derive the degeneracies of the band-edge electron and hole states. We also characterize the rates of intraband cooling and nonradiative Auger recombination and evaluate the strength of exciton–exciton coupling. The overall conclusion of this work is that spectroscopic properties of Cs–Pb-halide quantum dots are largely similar to those of quantum dots of more traditional semiconductors such as CdSe and PbSe. At the same time, we observe some distinctions including, for example, an appreciable effect of the halide identity on radiative lifetimes, considerably shorter biexciton Auger lifetimes, and apparent deviation of their size dependence from the “universal volume scaling” previously observed for many traditional nanocrystal systems. The high efficiency of Auger decay in perovskite quantum dots is detrimental to their prospective applications in light-emitting devices and lasers. Furthermore, this points toward the need for the development of approaches for effective suppression of Auger recombination in these nanomaterials, using perhaps insights gained from previous studies of II–VI nanocrystals.« less

  2. Search for charmless hadronic decays of B mesons with the SLAC SLD detector

    NASA Astrophysics Data System (ADS)

    Abe, Kenji; Abe, Koya; Abe, T.; Adam, I.; Akagi, T.; Akimoto, H.; Allen, N. J.; Ash, W. W.; Aston, D.; Baird, K. G.; Baltay, C.; Band, H. R.; Barakat, M. B.; Bardon, O.; Barklow, T. L.; Bashindzhagyan, G. L.; Bauer, J. M.; Bellodi, G.; Benvenuti, A. C.; Bilei, G. M.; Bisello, D.; Blaylock, G.; Bogart, J. R.; Bower, G. R.; Brau, J. E.; Breidenbach, M.; Bugg, W. M.; Burke, D.; Burnett, T. H.; Burrows, P. N.; Byrne, R. M.; Calcaterra, A.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Chou, A.; Church, E.; Cohn, H. O.; Coller, J. A.; Convery, M. R.; Cook, V.; Cowan, R. F.; Coyne, D. G.; Crawford, G.; Damerell, C. J.; Danielson, M. N.; Daoudi, M.; de Groot, N.; dell'orso, R.; Dervan, P. J.; de Sangro, R.; Dima, M.; Dong, D. N.; Doser, M.; Dubois, R.; Eisenstein, B. I.; Erofeeva, I.; Eschenburg, V.; Etzion, E.; Fahey, S.; Falciai, D.; Fan, C.; Fernandez, J. P.; Fero, M. J.; Flood, K.; Frey, R.; Gifford, J.; Gillman, T.; Gladding, G.; Gonzalez, S.; Goodman, E. R.; Hart, E. L.; Harton, J. L.; Hasuko, K.; Hedges, S. J.; Hertzbach, S. S.; Hildreth, M. D.; Huber, J.; Huffer, M. E.; Hughes, E. W.; Huynh, X.; Hwang, H.; Iwasaki, M.; Jackson, D. J.; Jacques, P.; Jaros, J. A.; Jiang, Z. Y.; Johnson, A. S.; Johnson, J. R.; Johnson, R. A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Kamyshkov, Y.; Kang, H. J.; Karliner, I.; Kawahara, H.; Kim, Y. D.; King, M. E.; King, R.; Kofler, R. R.; Krishna, N. M.; Kroeger, R. S.; Langston, M.; Lath, A.; Leith, D. W.; Lia, V.; Lin, C.; Liu, M. X.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H. L.; Ma, J.; Mahjouri, M.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T. W.; Maruyama, T.; Masuda, H.; Mazzucato, E.; McKemey, A. K.; Meadows, B. T.; Menegatti, G.; Messner, R.; Mockett, P. M.; Moffeit, K. C.; Moore, T. B.; Morii, M.; Muller, D.; Murzin, V.; Nagamine, T.; Narita, S.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Oishi, N.; Onoprienko, D.; Osborne, L. S.; Panvini, R. S.; Park, C. H.; Pavel, T. J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pitts, K. T.; Plano, R. J.; Prepost, R.; Prescott, C. Y.; Punkar, G. D.; Quigley, J.; Ratcliff, B. N.; Reeves, T. W.; Reidy, J.; Reinertsen, P. L.; Rensing, P. E.; Rochester, L. S.; Rowson, P. C.; Russell, J. J.; Saxton, O. H.; Schalk, T.; Schindler, R. H.; Schumm, B. A.; Schwiening, J.; Sen, S.; Serbo, V. V.; Shaevitz, M. H.; Shank, J. T.; Shapiro, G.; Sherden, D. J.; Shmakov, K. D.; Simopoulos, C.; Sinev, N. B.; Smith, S. R.; Smy, M. B.; Snyder, J. A.; Staengle, H.; Stahl, A.; Stamer, P.; Steiner, H.; Steiner, R.; Strauss, M. G.; Su, D.; Suekane, F.; Sugiyama, A.; Suzuki, S.; Swartz, M.; Szumilo, A.; Takahashi, T.; Taylor, F. E.; Thom, J.; Torrence, E.; Toumbas, N. K.; Usher, T.; Vannini, C.; Va'vra, J.; Vella, E.; Venuti, J. P.; Verdier, R.; Verdini, P. G.; Wagner, D. L.; Wagner, S. R.; Waite, A. P.; Walston, S.; Watts, S. J.; Weidemann, A. W.; Weiss, E. R.; Whitaker, J. S.; White, S. L.; Wickens, F. J.; Williams, B.; Williams, D. C.; Williams, S. H.; Willocq, S.; Wilson, R. J.; Wisniewski, W. J.; Wittlin, J. L.; Woods, M.; Word, G. B.; Wright, T. R.; Wyss, J.; Yamamoto, R. K.; Yamartino, J. M.; Yang, X.; Yashima, J.; Yellin, S. J.; Young, C. C.; Yuta, H.; Zapalac, G.; Zdarko, R. W.; Zhou, J.

    2000-10-01

    Based on a sample of approximately 500 000 hadronic Z0 decays accumulated between 1993 and 1998, the SLD experiment has set limits on 24 fully charged two-body and quasi-two-body exclusive charmless hadronic decays of B+, B0, and B0s mesons. The precise tracking capabilities of the SLD detector provided for the efficient reduction of combinatoric backgrounds, yielding the most precise available limits for ten of these modes.

  3. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.

    PubMed

    Kanemitsu, Yoshihiko

    2013-06-18

    Semiconducting nanomaterials such as single-walled carbon nanotubes (SWCNTs) and nanocrystals (NCs) exhibit unique size-dependent quantum properties. They have therefore attracted considerable attention from the viewpoints of fundamental physics and functional device applications. SWCNTs and NCs also provide an excellent new stage for experimental studies of many-body effects of electrons and excitons on optical processes in nanomaterials. In this Account, we discuss multiple exciton generation and recombination in SWCNTs and NCs for next-generation photovoltaics. Strongly correlated ensembles of conduction-band electrons and valence-band holes in semiconductors are complex quantum systems that exhibit unique optical phenomena. In bulk crystals, the carrier recombination dynamics can be described by a simple model, which includes the nonradiative single-carrier trapping rate, the radiative two-carrier recombination rate, and the nonradiative three-carrier Auger recombination rate. The nonradiative Auger recombination rate determines the carrier recombination dynamics at high carrier density and depends on the spatial localization of carriers in two-dimensional quantum wells. The Auger recombination and multiple exciton generation rates can be advantageously manipulated by nanomaterials with designated energy structures. In addition, SWCNTs and NCs show quantized recombination dynamics of multiple excitons and carriers. In one-dimensional SWCNTs, excitons have large binding energies and are very stable at room temperature. The extremely rapid Auger recombination between excitons determines the photoluminescence (PL) intensity, the PL linewidth, and the PL lifetime. SWCNTs can undergo multiple exciton generation, while strong exciton-exciton interactions and complicated exciton structures affect the quantized Auger rate and the multiple exciton generation efficiency. Interestingly, in zero-dimensional NC quantum dots, quantized Auger recombination causes unique optical phenomena. The breakdown of the k-conversion rule and strong Coulomb interactions between carriers in NCs enhance Auger recombination rate and decrease the energy threshold for multiple exciton generation. We discuss this impact of the k-conservation rule on two-carrier radiative recombination and the three-carrier Auger recombination processes in indirect-gap semiconductor Si NCs. In NCs and SWCNTs, multiple exciton generation competes with Auger recombination, surface trapping of excitons, and cooling of hot electrons or excitons. In addition, we explore heterostructured NCs and impurity-doped NCs in the context of the optimization of charge carrier extraction from excitons in NCs.

  4. Decay instability of an electron plasma wave in a dusty plasma

    NASA Astrophysics Data System (ADS)

    Amin, M. R.; Ferdous, T.; Salimullah, M.

    1996-03-01

    The parametric decay instability of an electron plasma wave in a homogeneous, unmagnetized, hot and collisionless dusty plasma has been investigated analytically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles. The presence of the charged dust grains introduces a background inhomogeneous electric field that significantly influences the dispersive properties of the plasma and the decay process. The growth rate of the decay instability through the usual ion-acoustic mode is modified, and depends upon the dust perturbation parameter μi, dust correlation length q0, and the related ion motion. However, the decay process of the electron plasma wave through the ultralow frequency dust mode, excited due to the presence of the dust particles, is more efficient than the decay through the usual ion-acoustic mode in the dusty plasma.

  5. Effects of quantum well growth temperature on the recombination efficiency of InGaN/GaN multiple quantum wells that emit in the green and blue spectral regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammersley, S.; Dawson, P.; Kappers, M. J.

    2015-09-28

    InGaN-based light emitting diodes and multiple quantum wells designed to emit in the green spectral region exhibit, in general, lower internal quantum efficiencies than their blue-emitting counter parts, a phenomenon referred to as the “green gap.” One of the main differences between green-emitting and blue-emitting samples is that the quantum well growth temperature is lower for structures designed to emit at longer wavelengths, in order to reduce the effects of In desorption. In this paper, we report on the impact of the quantum well growth temperature on the optical properties of InGaN/GaN multiple quantum wells designed to emit at 460 nmmore » and 530 nm. It was found that for both sets of samples increasing the temperature at which the InGaN quantum well was grown, while maintaining the same indium composition, led to an increase in the internal quantum efficiency measured at 300 K. These increases in internal quantum efficiency are shown to be due reductions in the non-radiative recombination rate which we attribute to reductions in point defect incorporation.« less

  6. Enhanced optoelectronic quality of perovskite films with excess CH3NH3I for high-efficiency solar cells in ambient air

    NASA Astrophysics Data System (ADS)

    Zhang, Yunhai; Lv, Huiru; Cui, Can; Xu, Lingbo; Wang, Peng; Wang, Hao; Yu, Xuegong; Xie, Jiangsheng; Huang, Jiabin; Tang, Zeguo; Yang, Deren

    2017-05-01

    Solution-processed polycrystalline perovskite films contribute critically to the high photovoltaic performance of perovskite-based solar cells (PSCs). The inevitable electronic trap states at grain boundaries and intrinsic defects such as metallic lead (Pb0) and halide vacancies in perovskite films cause serious carrier recombination loss. Furthermore, the film can easily decompose into PbI2 in a moist atmosphere. Here, we introduce a simple strategy, through a small increase in methylammonium iodide (CH3NH3I, MAI), molar proportion (5%), for perovskite fabrication in ambient air with ˜50% relative humidity. Analysis of the morphology and crystallography demonstrates that excess MAI significantly promotes grain growth without decomposition. X-ray photoemission spectroscopy shows that no metallic Pb0 exists in the perovskite film and the I/Pb ratio is improved. A time-resolved photoluminescence measurement indicates efficient suppression of non-radiative recombination in the perovskite layer. As a result, the device yields improved power conversion efficiency from 14.06% to 18.26% with reduced hysteresis and higher stability under AM1.5G illumination (100 mW cm-2). This work strongly provides a feasible and low-cost way to develop highly efficient PSCs in ambient air.

  7. Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst.

    PubMed

    Gao, Honglin; Yan, Shicheng; Wang, Jiajia; Huang, Yu An; Wang, Peng; Li, Zhaosheng; Zou, Zhigang

    2013-11-07

    The development of efficient photocatalytic material for converting solar energy to hydrogen energy as viable alternatives to fossil-fuel technologies is expected to revolutionize energy shortage and environment issues. However, to date, the low quantum yield for solar hydrogen production over photocatalysts has hindered advances in the practical applications of photocatalysis. Here, we show that a carbon nitride intercalation compound (CNIC) synthesized by a simple molten salt route is an efficient polymer photocatalyst with a high quantum yield. We found that coordinating the alkali metals into the C-N plane of carbon nitride will induce the un-uniform spatial charge distribution. The electrons are confined in the intercalated region while the holes are in the far intercalated region, which promoted efficient separation of photogenerated carriers. The donor-type alkali metal ions coordinating into the nitrogen pots of carbon nitrides increase the free carrier concentration and lead to the formation of novel nonradiative paths. This should favor improved transport of the photogenerated electron and hole and decrease the electron-hole recombination rate. As a result, the CNIC exhibits a quantum yield as high as 21.2% under 420 nm light irradiation for solar hydrogen production. Such high quantum yield opens up new opportunities for using cheap semiconducting polymers as energy transducers.

  8. An efficiency-decay model for Lumen maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobashev, Georgiy; Baldasaro, Nicholas G.; Mills, Karmann C.

    Proposed is a multicomponent model for the estimation of light-emitting diode (LED) lumen maintenance using test data that were acquired in accordance with the test standards of the Illumination Engineering Society of North America, i.e., LM-80-08. Lumen maintenance data acquired with this test do not always follow exponential decay, particularly data collected in the first 1000 h or under low-stress (e.g., low temperature) conditions. This deviation from true exponential behavior makes it difficult to use the full data set in models for the estimation of lumen maintenance decay coefficient. As a result, critical information that is relevant to the earlymore » life or low-stress operation of LED light sources may be missed. We present an efficiency-decay model approach, where all lumen maintenance data can be used to provide an alternative estimate of the decay rate constant. The approach considers a combined model wherein one part describes an initial “break-in” period and another part describes the decay in lumen maintenance. During the break-in period, several mechanisms within the LED can act to produce a small (typically <; 10%) increase in luminous flux. The effect of the break-in period and its longevity is more likely to be present at low-ambient temperatures and currents, where the discrepancy between a standard TM-21 approach and our proposed model is the largest. For high temperatures and currents, the difference between the estimates becomes nonsubstantial. Finally, our approach makes use of all the collected data and avoids producing unrealistic estimates of the decay coefficient.« less

  9. An efficiency-decay model for Lumen maintenance

    DOE PAGES

    Bobashev, Georgiy; Baldasaro, Nicholas G.; Mills, Karmann C.; ...

    2016-08-25

    Proposed is a multicomponent model for the estimation of light-emitting diode (LED) lumen maintenance using test data that were acquired in accordance with the test standards of the Illumination Engineering Society of North America, i.e., LM-80-08. Lumen maintenance data acquired with this test do not always follow exponential decay, particularly data collected in the first 1000 h or under low-stress (e.g., low temperature) conditions. This deviation from true exponential behavior makes it difficult to use the full data set in models for the estimation of lumen maintenance decay coefficient. As a result, critical information that is relevant to the earlymore » life or low-stress operation of LED light sources may be missed. We present an efficiency-decay model approach, where all lumen maintenance data can be used to provide an alternative estimate of the decay rate constant. The approach considers a combined model wherein one part describes an initial “break-in” period and another part describes the decay in lumen maintenance. During the break-in period, several mechanisms within the LED can act to produce a small (typically <; 10%) increase in luminous flux. The effect of the break-in period and its longevity is more likely to be present at low-ambient temperatures and currents, where the discrepancy between a standard TM-21 approach and our proposed model is the largest. For high temperatures and currents, the difference between the estimates becomes nonsubstantial. Finally, our approach makes use of all the collected data and avoids producing unrealistic estimates of the decay coefficient.« less

  10. Top tagging: a method for identifying boosted hadronically decaying top quarks.

    PubMed

    Kaplan, David E; Rehermann, Keith; Schwartz, Matthew D; Tweedie, Brock

    2008-10-03

    A method is introduced for distinguishing top jets (boosted, hadronically decaying top quarks) from light-quark and gluon jets using jet substructure. The procedure involves parsing the jet cluster to resolve its subjets and then imposing kinematic constraints. With this method, light-quark or gluon jets with p{T} approximately 1 TeV can be rejected with an efficiency of around 99% while retaining up to 40% of top jets. This reduces the dijet background to heavy tt[over ] resonances by a factor of approximately 10 000, thereby allowing resonance searches in tt[over ] to be extended into the all-hadronic channel. In addition, top tagging can be used in tt[over ] events when one of the top quarks decays semileptonically, in events with missing energy, and in studies of b-tagging efficiency at high p{T}.

  11. Predictive model for CO2 generation and decay in building envelopes

    NASA Astrophysics Data System (ADS)

    Aglan, Heshmat A.

    2003-01-01

    Understanding carbon dioxide generation and decay patterns in buildings with high occupancy levels is useful to identify their indoor air quality, air change rates, percent fresh air makeup, occupancy pattern, and how a variable air volume system to off-set undesirable CO2 level can be modulated. A mathematical model governing the generation and decay of CO2 in building envelopes with forced ventilation due to high occupancy is developed. The model has been verified experimentally in a newly constructed energy efficient healthy house. It was shown that the model accurately predicts the CO2 concentration at any time during the generation and decay processes.

  12. Importance of Thomas single-electron transfer in fast p-He collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.; Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1 D-69126; Gudmundsson, M.

    We report experimental angular differential cross sections for nonradiative single-electron capture in p-He collisions (p+ He -> H + He{sup +}) with a separate peak at the 0.47 mrad Thomas scattering angle for energies in the 1.3-12.5 MeV range. We find that the intensity of this peak scales with the projectile velocity as v{sub P}{sup -11}. This constitutes the first experimental test of the prediction from 1927 by L. H. Thomas [Proc. R. Soc. 114, 561 (1927)]. At our highest energy, the peak at the Thomas angle contributes with 13.5% to the total integrated nonradiative single-electron capture cross section.

  13. The Blazhko Effect

    NASA Astrophysics Data System (ADS)

    Kovács, G.

    2009-09-01

    Current status of (the lack of) understanding Blazhko effect is reviewed. We focus mostly on the various components of the failure of the models and touch upon the observational issues only at a degree needed for the theoretical background. Attention is to be paid to models based on radial mode resonances, since they seem to be not fully explored yet, especially if we consider possible non-standard effects (e.g., heavy element enhancement). To aid further modeling efforts, we stress the need for accurate time-series spectral line analysis to reveal any possible non-radial component(s) and thereby let to include (or exclude) non-radial modes in explaining the Blazhko phenomenon.

  14. Anapoles in Free-Standing III-V Nanodisks Enhancing Second-Harmonic Generation.

    PubMed

    Timofeeva, Maria; Lang, Lukas; Timpu, Flavia; Renaut, Claude; Bouravleuv, Alexei; Shtrom, Igor; Cirlin, George; Grange, Rachel

    2018-06-13

    Nonradiating electromagnetic configurations in nanostructures open new horizons for applications due to two essential features: a lack of energy losses and invisibility to the propagating electromagnetic field. Such radiationless configurations form a basis for new types of nanophotonic devices, in which a strong electromagnetic field confinement can be achieved together with lossless interactions between nearby components. In our work, we present a new design of free-standing disk nanoantennas with nonradiating current distributions for the optical near-infrared range. We show a novel approach to creating nanoantennas by slicing III-V nanowires into standing disks using focused ion-beam milling. We experimentally demonstrate the suppression of the far-field radiation and the associated strong enhancement of the second-harmonic generation from the disk nanoantennas. With a theoretical analysis of the electromagnetic field distribution using multipole expansions in both spherical and Cartesian coordinates, we confirm that the demonstrated nonradiating configurations are anapoles. We expect that the presented procedure of designing and producing disk nanoantennas from nanowires becomes one of the standard approaches to fabricating controlled chains of standing nanodisks with different designs and configurations. These chains can be essential building blocks for new types of lasers and sensors with low power consumption.

  15. Nonradiative transport of atomic excitation in Na vapor

    NASA Astrophysics Data System (ADS)

    Zajonc, Arthur G.; Phelps, A. V.

    1981-05-01

    Measurements are reported which show the effect of nonradiative losses at a gas-window interface on the backscattered fluorescence intensity for Na vapor at frequencies in the vicinity of the resonance lines near 589 nm. The Na 3P12,32 states are excited with a low-intensity single-mode tunable dye laser at high Na densities and the frequency integral of the backscattered fluorescence intensity in the D1 and D2 lines is measured. As the laser is tuned through resonance, the loss of atomic excitation to the window appears as a sharp decrease in the frequency-integrated fluorescence intensity. For example, at 7×1020 atoms m-3 the fluorescence intensity decreases by a factor of 4 in a frequency interval of 4 GHz. Measured absolute fluorescence intensities versus laser frequency are compared with predictions made using the theory of Hummer and Kunasz which includes both radiative and nonradiative transport processes. The agreement between theory and experiment is remarkably good when one considers that the theory contains only one unknown coefficient, i.e., the reflection coefficient for excited atoms at the windows. In our case the excited atoms are assumed to be completely destroyed at the window.

  16. DNA base pair resolution measurements using resonance energy transfer efficiency in lanthanide doped nanoparticles.

    PubMed

    Delplanque, Aleksandra; Wawrzynczyk, Dominika; Jaworski, Pawel; Matczyszyn, Katarzyna; Pawlik, Krzysztof; Buckle, Malcolm; Nyk, Marcin; Nogues, Claude; Samoc, Marek

    2015-01-01

    Lanthanide-doped nanoparticles are of considerable interest for biodetection and bioimaging techniques thanks to their unique chemical and optical properties. As a sensitive luminescence material, they can be used as (bio) probes in Förster Resonance Energy Transfer (FRET) where trivalent lanthanide ions (La3+) act as energy donors. In this paper we present an efficient method to transfer ultrasmall (ca. 8 nm) NaYF4 nanoparticles dispersed in organic solvent to an aqueous solution via oxidation of the oleic acid ligand. Nanoparticles were then functionalized with single strand DNA oligomers (ssDNA) by inducing covalent bonds between surface carboxylic groups and a 5' amine modified-ssDNA. Hybridization with the 5' fluorophore (Cy5) modified complementary ssDNA strand demonstrated the specificity of binding and allowed the fine control over the distance between Eu3+ ions doped nanoparticle and the fluorophore by varying the number of the dsDNA base pairs. First, our results confirmed nonradiative resonance energy transfer and demonstrate the dependence of its efficiency on the distance between the donor (Eu3+) and the acceptor (Cy5) with sensitivity at a nanometre scale.

  17. Enhancement of photoluminescence from GaInNAsSb quantum wells upon annealing: improvement of material quality and carrier collection by the quantum well.

    PubMed

    Baranowski, M; Kudrawiec, R; Latkowska, M; Syperek, M; Misiewicz, J; Sarmiento, T; Harris, J S

    2013-02-13

    In this study we apply time resolved photoluminescence and contactless electroreflectance to study the carrier collection efficiency of a GaInNAsSb/GaAs quantum well (QW). We show that the enhancement of photoluminescence from GaInNAsSb quantum wells annealed at different temperatures originates not only from (i) the improvement of the optical quality of the GaInNAsSb material (i.e., removal of point defects, which are the source of nonradiative recombination) but it is also affected by (ii) the improvement of carrier collection by the QW region. The total PL efficiency is the product of these two factors, for which the optimal annealing temperatures are found to be ~700 °C and ~760 °C, respectively, whereas the optimal annealing temperature for the integrated PL intensity is found to be between the two temperatures and equals ~720 °C. We connect the variation of the carrier collection efficiency with the modification of the band bending conditions in the investigated structure due to the Fermi level shift in the GaInNAsSb layer after annealing.

  18. A multi-dimensional, energy- and charge-conserving, nonlinearly implicit, electromagnetic Vlasov–Darwin particle-in-cell algorithm

    DOE PAGES

    Chen, G.; Chacón, L.

    2015-08-11

    For decades, the Vlasov–Darwin model has been recognized to be attractive for particle-in-cell (PIC) kinetic plasma simulations in non-radiative electromagnetic regimes, to avoid radiative noise issues and gain computational efficiency. However, the Darwin model results in an elliptic set of field equations that renders conventional explicit time integration unconditionally unstable. We explore a fully implicit PIC algorithm for the Vlasov–Darwin model in multiple dimensions, which overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. The finite-difference scheme for Darwin field equations and particle equations of motion is space–time-centered, employing particle sub-cycling and orbit-averaging. This algorithm conserves total energy, local charge,more » canonical-momentum in the ignorable direction, and preserves the Coulomb gauge exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. Finally, we demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 2D–3V.« less

  19. Influence of dislocation density on internal quantum efficiency of GaN-based semiconductors

    NASA Astrophysics Data System (ADS)

    Yu, Jiadong; Hao, Zhibiao; Li, Linsen; Wang, Lai; Luo, Yi; Wang, Jian; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Li, Hongtao

    2017-03-01

    By considering the effects of stress fields coming from lattice distortion as well as charge fields coming from line charges at edge dislocation cores on radiative recombination of exciton, a model of carriers' radiative and non-radiative recombination has been established in GaN-based semiconductors with certain dislocation density. Using vector average of the stress fields and the charge fields, the relationship between dislocation density and the internal quantum efficiency (IQE) is deduced. Combined with related experimental results, this relationship is fitted well to the trend of IQEs of bulk GaN changing with screw and edge dislocation density, meanwhile its simplified form is fitted well to the IQEs of AlGaN multiple quantum well LEDs with varied threading dislocation densities but the same light emission wavelength. It is believed that this model, suitable for different epitaxy platforms such as MOCVD and MBE, can be used to predict to what extent the luminous efficiency of GaN-based semiconductors can still maintain when the dislocation density increases, so as to provide a reasonable rule of thumb for optimizing the epitaxial growth of GaN-based devices.

  20. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    DOE PAGES

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; ...

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore » as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less

Top