Reliability-based trajectory optimization using nonintrusive polynomial chaos for Mars entry mission
NASA Astrophysics Data System (ADS)
Huang, Yuechen; Li, Haiyang
2018-06-01
This paper presents the reliability-based sequential optimization (RBSO) method to settle the trajectory optimization problem with parametric uncertainties in entry dynamics for Mars entry mission. First, the deterministic entry trajectory optimization model is reviewed, and then the reliability-based optimization model is formulated. In addition, the modified sequential optimization method, in which the nonintrusive polynomial chaos expansion (PCE) method and the most probable point (MPP) searching method are employed, is proposed to solve the reliability-based optimization problem efficiently. The nonintrusive PCE method contributes to the transformation between the stochastic optimization (SO) and the deterministic optimization (DO) and to the approximation of trajectory solution efficiently. The MPP method, which is used for assessing the reliability of constraints satisfaction only up to the necessary level, is employed to further improve the computational efficiency. The cycle including SO, reliability assessment and constraints update is repeated in the RBSO until the reliability requirements of constraints satisfaction are satisfied. Finally, the RBSO is compared with the traditional DO and the traditional sequential optimization based on Monte Carlo (MC) simulation in a specific Mars entry mission to demonstrate the effectiveness and the efficiency of the proposed method.
Biological optimization systems for enhancing photosynthetic efficiency and methods of use
Hunt, Ryan W.; Chinnasamy, Senthil; Das, Keshav C.; de Mattos, Erico Rolim
2012-11-06
Biological optimization systems for enhancing photosynthetic efficiency and methods of use. Specifically, methods for enhancing photosynthetic efficiency including applying pulsed light to a photosynthetic organism, using a chlorophyll fluorescence feedback control system to determine one or more photosynthetic efficiency parameters, and adjusting one or more of the photosynthetic efficiency parameters to drive the photosynthesis by the delivery of an amount of light to optimize light absorption of the photosynthetic organism while providing enough dark time between light pulses to prevent oversaturation of the chlorophyll reaction centers are disclosed.
An approach for aerodynamic optimization of transonic fan blades
NASA Astrophysics Data System (ADS)
Khelghatibana, Maryam
Aerodynamic design optimization of transonic fan blades is a highly challenging problem due to the complexity of flow field inside the fan, the conflicting design requirements and the high-dimensional design space. In order to address all these challenges, an aerodynamic design optimization method is developed in this study. This method automates the design process by integrating a geometrical parameterization method, a CFD solver and numerical optimization methods that can be applied to both single and multi-point optimization design problems. A multi-level blade parameterization is employed to modify the blade geometry. Numerical analyses are performed by solving 3D RANS equations combined with SST turbulence model. Genetic algorithms and hybrid optimization methods are applied to solve the optimization problem. In order to verify the effectiveness and feasibility of the optimization method, a singlepoint optimization problem aiming to maximize design efficiency is formulated and applied to redesign a test case. However, transonic fan blade design is inherently a multi-faceted problem that deals with several objectives such as efficiency, stall margin, and choke margin. The proposed multi-point optimization method in the current study is formulated as a bi-objective problem to maximize design and near-stall efficiencies while maintaining the required design pressure ratio. Enhancing these objectives significantly deteriorate the choke margin, specifically at high rotational speeds. Therefore, another constraint is embedded in the optimization problem in order to prevent the reduction of choke margin at high speeds. Since capturing stall inception is numerically very expensive, stall margin has not been considered as an objective in the problem statement. However, improving near-stall efficiency results in a better performance at stall condition, which could enhance the stall margin. An investigation is therefore performed on the Pareto-optimal solutions to demonstrate the relation between near-stall efficiency and stall margin. The proposed method is applied to redesign NASA rotor 67 for single and multiple operating conditions. The single-point design optimization showed +0.28 points improvement of isentropic efficiency at design point, while the design pressure ratio and mass flow are, respectively, within 0.12% and 0.11% of the reference blade. Two cases of multi-point optimization are performed: First, the proposed multi-point optimization problem is relaxed by removing the choke margin constraint in order to demonstrate the relation between near-stall efficiency and stall margin. An investigation on the Pareto-optimal solutions of this optimization shows that the stall margin has been increased with improving near-stall efficiency. The second multi-point optimization case is performed with considering all the objectives and constraints. One selected optimized design on the Pareto front presents +0.41, +0.56 and +0.9 points improvement in near-peak efficiency, near-stall efficiency and stall margin, respectively. The design pressure ratio and mass flow are, respectively, within 0.3% and 0.26% of the reference blade. Moreover the optimized design maintains the required choking margin. Detailed aerodynamic analyses are performed to investigate the effect of shape optimization on shock occurrence, secondary flows, tip leakage and shock/tip-leakage interactions in both single and multi-point optimizations.
NASA Astrophysics Data System (ADS)
Ariyarit, Atthaphon; Sugiura, Masahiko; Tanabe, Yasutada; Kanazaki, Masahiro
2018-06-01
A multi-fidelity optimization technique by an efficient global optimization process using a hybrid surrogate model is investigated for solving real-world design problems. The model constructs the local deviation using the kriging method and the global model using a radial basis function. The expected improvement is computed to decide additional samples that can improve the model. The approach was first investigated by solving mathematical test problems. The results were compared with optimization results from an ordinary kriging method and a co-kriging method, and the proposed method produced the best solution. The proposed method was also applied to aerodynamic design optimization of helicopter blades to obtain the maximum blade efficiency. The optimal shape obtained by the proposed method achieved performance almost equivalent to that obtained using the high-fidelity, evaluation-based single-fidelity optimization. Comparing all three methods, the proposed method required the lowest total number of high-fidelity evaluation runs to obtain a converged solution.
Miao, Zhidong; Liu, Dake; Gong, Chen
2017-10-01
Inductive wireless power transfer (IWPT) is a promising power technology for implantable biomedical devices, where the power consumption is low and the efficiency is the most important consideration. In this paper, we propose an optimization method of impedance matching networks (IMN) to maximize the IWPT efficiency. The IMN at the load side is designed to achieve the optimal load, and the IMN at the source side is designed to deliver the required amount of power (no-more-no-less) from the power source to the load. The theoretical analyses and design procedure are given. An IWPT system for an implantable glaucoma therapeutic prototype is designed as an example. Compared with the efficiency of the resonant IWPT system, the efficiency of our optimized system increases with a factor of 1.73. Besides, the efficiency of our optimized IWPT system is 1.97 times higher than that of the IWPT system optimized by the traditional maximum power transfer method. All the discussions indicate that the optimization method proposed in this paper could achieve a high efficiency and long working time when the system is powered by a battery.
Five-Junction Solar Cell Optimization Using Silvaco Atlas
2017-09-01
experimental sources [1], [4], [6]. f. Numerical Method The method selected for solving the non -linear equations that make up the simulation can be...and maximize efficiency. Optimization of solar cell efficiency is carried out via nearly orthogonal balanced design of experiments methodology . Silvaco...Optimization of solar cell efficiency is carried out via nearly orthogonal balanced design of experiments methodology . Silvaco ATLAS is utilized to
Prakash, Jaya; Yalavarthy, Phaneendra K
2013-03-01
Developing a computationally efficient automated method for the optimal choice of regularization parameter in diffuse optical tomography. The least-squares QR (LSQR)-type method that uses Lanczos bidiagonalization is known to be computationally efficient in performing the reconstruction procedure in diffuse optical tomography. The same is effectively deployed via an optimization procedure that uses the simplex method to find the optimal regularization parameter. The proposed LSQR-type method is compared with the traditional methods such as L-curve, generalized cross-validation (GCV), and recently proposed minimal residual method (MRM)-based choice of regularization parameter using numerical and experimental phantom data. The results indicate that the proposed LSQR-type and MRM-based methods performance in terms of reconstructed image quality is similar and superior compared to L-curve and GCV-based methods. The proposed method computational complexity is at least five times lower compared to MRM-based method, making it an optimal technique. The LSQR-type method was able to overcome the inherent limitation of computationally expensive nature of MRM-based automated way finding the optimal regularization parameter in diffuse optical tomographic imaging, making this method more suitable to be deployed in real-time.
Fast optimization of binary clusters using a novel dynamic lattice searching method.
Wu, Xia; Cheng, Wen
2014-09-28
Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd)79 clusters with DFT-fit parameters of Gupta potential.
An efficient multilevel optimization method for engineering design
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.; Yang, Y. J.; Kim, D. S.
1988-01-01
An efficient multilevel deisgn optimization technique is presented. The proposed method is based on the concept of providing linearized information between the system level and subsystem level optimization tasks. The advantages of the method are that it does not require optimum sensitivities, nonlinear equality constraints are not needed, and the method is relatively easy to use. The disadvantage is that the coupling between subsystems is not dealt with in a precise mathematical manner.
Chen, Zhongxian; Yu, Haitao; Wen, Cheng
2014-01-01
The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability. PMID:25152913
Chen, Zhongxian; Yu, Haitao; Wen, Cheng
2014-01-01
The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability.
Xiao, Feng; Kong, Lingjiang; Chen, Jian
2017-06-01
A rapid-search algorithm to improve the beam-steering efficiency for a liquid crystal optical phased array was proposed and experimentally demonstrated in this paper. This proposed algorithm, in which the value of steering efficiency is taken as the objective function and the controlling voltage codes are considered as the optimization variables, consisted of a detection stage and a construction stage. It optimized the steering efficiency in the detection stage and adjusted its search direction adaptively in the construction stage to avoid getting caught in a wrong search space. Simulations had been conducted to compare the proposed algorithm with the widely used pattern-search algorithm using criteria of convergence rate and optimized efficiency. Beam-steering optimization experiments had been performed to verify the validity of the proposed method.
Korolkov, Victor P; Nasyrov, Ruslan K; Shimansky, Ruslan V
2006-01-01
Enhancing the diffraction efficiency of continuous-relief diffractive optical elements fabricated by direct laser writing is discussed. A new method of zone-boundary optimization is proposed to correct exposure data only in narrow areas along the boundaries of diffractive zones. The optimization decreases the loss of diffraction efficiency related to convolution of a desired phase profile with a writing-beam intensity distribution. A simplified stepped transition function that describes optimized exposure data near zone boundaries can be made universal for a wide range of zone periods. The approach permits a similar increase in the diffraction efficiency as an individual-pixel optimization but with fewer computation efforts. Computer simulations demonstrated that the zone-boundary optimization for a 6 microm period grating increases the efficiency by 7% and 14.5% for 0.6 microm and 1.65 microm writing-spot diameters, respectively. The diffraction efficiency of as much as 65%-90% for 4-10 microm zone periods was obtained experimentally with this method.
NASA Astrophysics Data System (ADS)
Chen, Shiyu; Li, Haiyang; Baoyin, Hexi
2018-06-01
This paper investigates a method for optimizing multi-rendezvous low-thrust trajectories using indirect methods. An efficient technique, labeled costate transforming, is proposed to optimize multiple trajectory legs simultaneously rather than optimizing each trajectory leg individually. Complex inner-point constraints and a large number of free variables are one main challenge in optimizing multi-leg transfers via shooting algorithms. Such a difficulty is reduced by first optimizing each trajectory leg individually. The results may be, next, utilized as an initial guess in the simultaneous optimization of multiple trajectory legs. In this paper, the limitations of similar techniques in previous research is surpassed and a homotopic approach is employed to improve the convergence efficiency of the shooting process in multi-rendezvous low-thrust trajectory optimization. Numerical examples demonstrate that newly introduced techniques are valid and efficient.
Computational Efficiency of the Simplex Embedding Method in Convex Nondifferentiable Optimization
NASA Astrophysics Data System (ADS)
Kolosnitsyn, A. V.
2018-02-01
The simplex embedding method for solving convex nondifferentiable optimization problems is considered. A description of modifications of this method based on a shift of the cutting plane intended for cutting off the maximum number of simplex vertices is given. These modification speed up the problem solution. A numerical comparison of the efficiency of the proposed modifications based on the numerical solution of benchmark convex nondifferentiable optimization problems is presented.
Design of A Cyclone Separator Using Approximation Method
NASA Astrophysics Data System (ADS)
Sin, Bong-Su; Choi, Ji-Won; Lee, Kwon-Hee
2017-12-01
A Separator is a device installed in industrial applications to separate mixed objects. The separator of interest in this research is a cyclone type, which is used to separate a steam-brine mixture in a geothermal plant. The most important performance of the cyclone separator is the collection efficiency. The collection efficiency in this study is predicted by performing the CFD (Computational Fluid Dynamics) analysis. This research defines six shape design variables to maximize the collection efficiency. Thus, the collection efficiency is set up as the objective function in optimization process. Since the CFD analysis requires a lot of calculation time, it is impossible to obtain the optimal solution by linking the gradient-based optimization algorithm. Thus, two approximation methods are introduced to obtain an optimum design. In this process, an L18 orthogonal array is adopted as a DOE method, and kriging interpolation method is adopted to generate the metamodel for the collection efficiency. Based on the 18 analysis results, the relative importance of each variable to the collection efficiency is obtained through the ANOVA (analysis of variance). The final design is suggested considering the results obtained from two optimization methods. The fluid flow analysis of the cyclone separator is conducted by using the commercial CFD software, ANSYS-CFX.
A modified form of conjugate gradient method for unconstrained optimization problems
NASA Astrophysics Data System (ADS)
Ghani, Nur Hamizah Abdul; Rivaie, Mohd.; Mamat, Mustafa
2016-06-01
Conjugate gradient (CG) methods have been recognized as an interesting technique to solve optimization problems, due to the numerical efficiency, simplicity and low memory requirements. In this paper, we propose a new CG method based on the study of Rivaie et al. [7] (Comparative study of conjugate gradient coefficient for unconstrained Optimization, Aus. J. Bas. Appl. Sci. 5(2011) 947-951). Then, we show that our method satisfies sufficient descent condition and converges globally with exact line search. Numerical results show that our proposed method is efficient for given standard test problems, compare to other existing CG methods.
Panorama parking assistant system with improved particle swarm optimization method
NASA Astrophysics Data System (ADS)
Cheng, Ruzhong; Zhao, Yong; Li, Zhichao; Jiang, Weigang; Wang, Xin'an; Xu, Yong
2013-10-01
A panorama parking assistant system (PPAS) for the automotive aftermarket together with a practical improved particle swarm optimization method (IPSO) are proposed in this paper. In the PPAS system, four fisheye cameras are installed in the vehicle with different views, and four channels of video frames captured by the cameras are processed as a 360-deg top-view image around the vehicle. Besides the embedded design of PPAS, the key problem for image distortion correction and mosaicking is the efficiency of parameter optimization in the process of camera calibration. In order to address this problem, an IPSO method is proposed. Compared with other parameter optimization methods, the proposed method allows a certain range of dynamic change for the intrinsic and extrinsic parameters, and can exploit only one reference image to complete all of the optimization; therefore, the efficiency of the whole camera calibration is increased. The PPAS is commercially available, and the IPSO method is a highly practical way to increase the efficiency of the installation and the calibration of PPAS in automobile 4S shops.
Automation of On-Board Flightpath Management
NASA Technical Reports Server (NTRS)
Erzberger, H.
1981-01-01
The status of concepts and techniques for the design of onboard flight path management systems is reviewed. Such systems are designed to increase flight efficiency and safety by automating the optimization of flight procedures onboard aircraft. After a brief review of the origins and functions of such systems, two complementary methods are described for attacking the key design problem, namely, the synthesis of efficient trajectories. One method optimizes en route, the other optimizes terminal area flight; both methods are rooted in optimal control theory. Simulation and flight test results are reviewed to illustrate the potential of these systems for fuel and cost savings.
Optimization of the multi-turn injection efficiency for a medical synchrotron
NASA Astrophysics Data System (ADS)
Kim, J.; Yoon, M.; Yim, H.
2016-09-01
We present a method for optimizing the multi-turn injection efficiency for a medical synchrotron. We show that for a given injection energy, the injection efficiency can be greatly enhanced by choosing transverse tunes appropriately and by optimizing the injection bump and the number of turns required for beam injection. We verify our study by applying the method to the Korea Heavy Ion Medical Accelerator (KHIMA) synchrotron which is currently being built at the campus of Dongnam Institute of Radiological and Medical Sciences (DIRAMS) in Busan, Korea. First the frequency map analysis was performed with the help of the ELEGANT and the ACCSIM codes. The tunes that yielded good injection efficiency were then selected. With these tunes, the injection bump and the number of turns required for injection were then optimized by tracking a number of particles for up to one thousand turns after injection, beyond which no further beam loss occurred. Results for the optimization of the injection efficiency for proton ions are presented.
Pacheco, Shaun; Brand, Jonathan F.; Zaverton, Melissa; Milster, Tom; Liang, Rongguang
2015-01-01
A method to design one-dimensional beam-spitting phase gratings with low sensitivity to fabrication errors is described. The method optimizes the phase function of a grating by minimizing the integrated variance of the energy of each output beam over a range of fabrication errors. Numerical results for three 1x9 beam splitting phase gratings are given. Two optimized gratings with low sensitivity to fabrication errors were compared with a grating designed for optimal efficiency. These three gratings were fabricated using gray-scale photolithography. The standard deviation of the 9 outgoing beam energies in the optimized gratings were 2.3 and 3.4 times lower than the optimal efficiency grating. PMID:25969268
NASA Astrophysics Data System (ADS)
Najafi, Amir Abbas; Pourahmadi, Zahra
2016-04-01
Selecting the optimal combination of assets in a portfolio is one of the most important decisions in investment management. As investment is a long term concept, looking into a portfolio optimization problem just in a single period may cause loss of some opportunities that could be exploited in a long term view. Hence, it is tried to extend the problem from single to multi-period model. We include trading costs and uncertain conditions to this model which made it more realistic and complex. Hence, we propose an efficient heuristic method to tackle this problem. The efficiency of the method is examined and compared with the results of the rolling single-period optimization and the buy and hold method which shows the superiority of the proposed method.
Exploratory High-Fidelity Aerostructural Optimization Using an Efficient Monolithic Solution Method
NASA Astrophysics Data System (ADS)
Zhang, Jenmy Zimi
This thesis is motivated by the desire to discover fuel efficient aircraft concepts through exploratory design. An optimization methodology based on tightly integrated high-fidelity aerostructural analysis is proposed, which has the flexibility, robustness, and efficiency to contribute to this goal. The present aerostructural optimization methodology uses an integrated geometry parameterization and mesh movement strategy, which was initially proposed for aerodynamic shape optimization. This integrated approach provides the optimizer with a large amount of geometric freedom for conducting exploratory design, while allowing for efficient and robust mesh movement in the presence of substantial shape changes. In extending this approach to aerostructural optimization, this thesis has addressed a number of important challenges. A structural mesh deformation strategy has been introduced to translate consistently the shape changes described by the geometry parameterization to the structural model. A three-field formulation of the discrete steady aerostructural residual couples the mesh movement equations with the three-dimensional Euler equations and a linear structural analysis. Gradients needed for optimization are computed with a three-field coupled adjoint approach. A number of investigations have been conducted to demonstrate the suitability and accuracy of the present methodology for use in aerostructural optimization involving substantial shape changes. Robustness and efficiency in the coupled solution algorithms is crucial to the success of an exploratory optimization. This thesis therefore also focuses on the design of an effective monolithic solution algorithm for the proposed methodology. This involves using a Newton-Krylov method for the aerostructural analysis and a preconditioned Krylov subspace method for the coupled adjoint solution. Several aspects of the monolithic solution method have been investigated. These include appropriate strategies for scaling and matrix-vector product evaluation, as well as block preconditioning techniques that preserve the modularity between subproblems. The monolithic solution method is applied to problems with varying degrees of fluid-structural coupling, as well as a wing span optimization study. The monolithic solution algorithm typically requires 20%-70% less computing time than its partitioned counterpart. This advantage increases with increasing wing flexibility. The performance of the monolithic solution method is also much less sensitive to the choice of the solution parameter.
Increase of Gas-Turbine Plant Efficiency by Optimizing Operation of Compressors
NASA Astrophysics Data System (ADS)
Matveev, V.; Goriachkin, E.; Volkov, A.
2018-01-01
The article presents optimization method for improving of the working process of axial compressors of gas turbine engines. Developed method allows to perform search for the best geometry of compressor blades automatically by using optimization software IOSO and CFD software NUMECA Fine/Turbo. The calculation of the compressor parameters was performed for work and stall point of its performance map on each optimization step. Study was carried out for seven-stage high-pressure compressor and three-stage low-pressure compressors. As a result of optimization, improvement of efficiency was achieved for all investigated compressors.
Structural optimization of large structural systems by optimality criteria methods
NASA Technical Reports Server (NTRS)
Berke, Laszlo
1992-01-01
The fundamental concepts of the optimality criteria method of structural optimization are presented. The effect of the separability properties of the objective and constraint functions on the optimality criteria expressions is emphasized. The single constraint case is treated first, followed by the multiple constraint case with a more complex evaluation of the Lagrange multipliers. Examples illustrate the efficiency of the method.
Efficiencies of joint non-local update moves in Monte Carlo simulations of coarse-grained polymers
NASA Astrophysics Data System (ADS)
Austin, Kieran S.; Marenz, Martin; Janke, Wolfhard
2018-03-01
In this study four update methods are compared in their performance in a Monte Carlo simulation of polymers in continuum space. The efficiencies of the update methods and combinations thereof are compared with the aid of the autocorrelation time with a fixed (optimal) acceptance ratio. Results are obtained for polymer lengths N = 14, 28 and 42 and temperatures below, at and above the collapse transition. In terms of autocorrelation, the optimal acceptance ratio is approximately 0.4. Furthermore, an overview of the step sizes of the update methods that correspond to this optimal acceptance ratio is given. This shall serve as a guide for future studies that rely on efficient computer simulations.
Optimization methods and silicon solar cell numerical models
NASA Technical Reports Server (NTRS)
Girardini, K.; Jacobsen, S. E.
1986-01-01
An optimization algorithm for use with numerical silicon solar cell models was developed. By coupling an optimization algorithm with a solar cell model, it is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junction depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm was developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAP1D). SCAP1D uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the performance of a solar cell. A major obstacle is that the numerical methods used in SCAP1D require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the values associated with the maximum efficiency. This problem was alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution.
NASA Astrophysics Data System (ADS)
Wang, Bo; Tian, Kuo; Zhao, Haixin; Hao, Peng; Zhu, Tianyu; Zhang, Ke; Ma, Yunlong
2017-06-01
In order to improve the post-buckling optimization efficiency of hierarchical stiffened shells, a multilevel optimization framework accelerated by adaptive equivalent strategy is presented in this paper. Firstly, the Numerical-based Smeared Stiffener Method (NSSM) for hierarchical stiffened shells is derived by means of the numerical implementation of asymptotic homogenization (NIAH) method. Based on the NSSM, a reasonable adaptive equivalent strategy for hierarchical stiffened shells is developed from the concept of hierarchy reduction. Its core idea is to self-adaptively decide which hierarchy of the structure should be equivalent according to the critical buckling mode rapidly predicted by NSSM. Compared with the detailed model, the high prediction accuracy and efficiency of the proposed model is highlighted. On the basis of this adaptive equivalent model, a multilevel optimization framework is then established by decomposing the complex entire optimization process into major-stiffener-level and minor-stiffener-level sub-optimizations, during which Fixed Point Iteration (FPI) is employed to accelerate convergence. Finally, the illustrative examples of the multilevel framework is carried out to demonstrate its efficiency and effectiveness to search for the global optimum result by contrast with the single-level optimization method. Remarkably, the high efficiency and flexibility of the adaptive equivalent strategy is indicated by compared with the single equivalent strategy.
A Matrix-Free Algorithm for Multidisciplinary Design Optimization
NASA Astrophysics Data System (ADS)
Lambe, Andrew Borean
Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and constraints. On the aerostructural test problem formulated with thousands of constraints, the matrix-free optimizer is estimated to reduce the total computational time by up to 90% compared to conventional optimizers.
A Matrix-Free Algorithm for Multidisciplinary Design Optimization
NASA Astrophysics Data System (ADS)
Lambe, Andrew Borean
Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation. motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and constraints. On the aerostructural test problem formulated with thousands of constraints, the matrix-free optimizer is estimated to reduce the total computational time by up to 90% compared to conventional optimizers.
Increased glycosylation efficiency of recombinant proteins in Escherichia coli by auto-induction.
Ding, Ning; Yang, Chunguang; Sun, Shenxia; Han, Lichi; Ruan, Yao; Guo, Longhua; Hu, Xuejun; Zhang, Jianing
2017-03-25
Escherichia coli cells have been considered as promising hosts for producing N-glycosylated proteins since the successful production of N-glycosylated protein in E. coli with the pgl (N-linked protein glycosylation) locus from Campylobacter jejuni. However, one hurdle in producing N-glycosylated proteins in large scale using E. coli is inefficient glycan glycosylation. In this study, we developed a strategy for the production of N-glycosylated proteins with high efficiency via an optimized auto-induction method. The 10th human fibronectin type III domain (FN3) was engineered with native glycosylation sequon DFNRSK and optimized DQNAT sequon in C-terminus with flexible linker as acceptor protein models. The resulting glycosylation efficiencies were confirmed by Western blots with anti-FLAG M1 antibody. Increased efficiency of glycosylation was obtained by changing the conventional IPTG induction to auto-induction method, which increased the glycosylation efficiencies from 60% and 75% up to 90% and 100% respectively. Moreover, in the condition of inserting the glycosylation sequon in the loop of FN3 (the acceptor sequon with local structural conformation), the glycosylation efficiency was increased from 35% to 80% by our optimized auto-induction procedures. To justify the potential for general application of the optimized auto-induction method, the reconstituted lsg locus from Haemophilus influenzae and PglB from C. jejuni were utilized, and this led to 100% glycosylation efficiency. Our studies provided quantitative evidence that the optimized auto-induction method will facilitate the large-scale production of pure exogenous N-glycosylation proteins in E. coli cells. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohan Negi, Lalit; Jaggi, Manu; Talegaonkar, Sushama
2013-01-01
Development of an effective formulation involves careful optimization of a number of excipient and process variables. Sometimes the number of variables is so large that even the most efficient optimization designs require a very large number of trials which put stress on costs as well as time. A creative combination of a number of design methods leads to a smaller number of trials. This study was aimed at the development of nanostructured lipid carriers (NLCs) by using a combination of different optimization methods. A total of 11 variables were first screened using the Plackett-Burman design for their effects on formulation characteristics like size and entrapment efficiency. Four out of 11 variables were found to have insignificant effects on the formulation parameters and hence were screened out. Out of the remaining seven variables, four (concentration of tween-80, lecithin, sodium taurocholate, and total lipid) were found to have significant effects on the size of the particles while the other three (phase ratio, drug to lipid ratio, and sonication time) had a higher influence on the entrapment efficiency. The first four variables were optimized for their effect on size using the Taguchi L9 orthogonal array. The optimized values of the surfactants and lipids were kept constant for the next stage, where the sonication time, phase ratio, and drug:lipid ratio were varied using the Box-Behnken design response surface method to optimize the entrapment efficiency. Finally, by performing only 38 trials, we have optimized 11 variables for the development of NLCs with a size of 143.52 ± 1.2 nm, zeta potential of -32.6 ± 0.54 mV, and 98.22 ± 2.06% entrapment efficiency.
Empty tracks optimization based on Z-Map model
NASA Astrophysics Data System (ADS)
Liu, Le; Yan, Guangrong; Wang, Zaijun; Zang, Genao
2017-12-01
For parts with many features, there are more empty tracks during machining. If these tracks are not optimized, the machining efficiency will be seriously affected. In this paper, the characteristics of the empty tracks are studied in detail. Combining with the existing optimization algorithm, a new tracks optimization method based on Z-Map model is proposed. In this method, the tool tracks are divided into the unit processing section, and then the Z-Map model simulation technique is used to analyze the order constraint between the unit segments. The empty stroke optimization problem is transformed into the TSP with sequential constraints, and then through the genetic algorithm solves the established TSP problem. This kind of optimization method can not only optimize the simple structural parts, but also optimize the complex structural parts, so as to effectively plan the empty tracks and greatly improve the processing efficiency.
DSP code optimization based on cache
NASA Astrophysics Data System (ADS)
Xu, Chengfa; Li, Chengcheng; Tang, Bin
2013-03-01
DSP program's running efficiency on board is often lower than which via the software simulation during the program development, which is mainly resulted from the user's improper use and incomplete understanding of the cache-based memory. This paper took the TI TMS320C6455 DSP as an example, analyzed its two-level internal cache, and summarized the methods of code optimization. Processor can achieve its best performance when using these code optimization methods. At last, a specific algorithm application in radar signal processing is proposed. Experiment result shows that these optimization are efficient.
Optimization methods and silicon solar cell numerical models
NASA Technical Reports Server (NTRS)
Girardini, K.
1986-01-01
The goal of this project is the development of an optimization algorithm for use with a solar cell model. It is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junctions depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm has been developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAPID). SCAPID uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the operation of a solar cell. A major obstacle is that the numerical methods used in SCAPID require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the value associated with the maximum efficiency. This problem has been alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution. Adapting SCAPID so that it could be called iteratively by the optimization code provided another means of reducing the cpu time required to complete an optimization. Instead of calculating the entire I-V curve, as is usually done in SCAPID, only the efficiency is calculated (maximum power voltage and current) and the solution from previous calculations is used to initiate the next solution.
Homann, Stefanie; Hofmann, Christian; Gorin, Aleksandr M.; Nguyen, Huy Cong Xuan; Huynh, Diana; Hamid, Phillip; Maithel, Neil; Yacoubian, Vahe; Mu, Wenli; Kossyvakis, Athanasios; Sen Roy, Shubhendu; Yang, Otto Orlean
2017-01-01
Transfection is one of the most frequently used techniques in molecular biology that is also applicable for gene therapy studies in humans. One of the biggest challenges to investigate the protein function and interaction in gene therapy studies is to have reliable monospecific detection reagents, particularly antibodies, for all human gene products. Thus, a reliable method that can optimize transfection efficiency based on not only expression of the target protein of interest but also the uptake of the nucleic acid plasmid, can be an important tool in molecular biology. Here, we present a simple, rapid and robust flow cytometric method that can be used as a tool to optimize transfection efficiency at the single cell level while overcoming limitations of prior established methods that quantify transfection efficiency. By using optimized ratios of transfection reagent and a nucleic acid (DNA or RNA) vector directly labeled with a fluorochrome, this method can be used as a tool to simultaneously quantify cellular toxicity of different transfection reagents, the amount of nucleic acid plasmid that cells have taken up during transfection as well as the amount of the encoded expressed protein. Finally, we demonstrate that this method is reproducible, can be standardized and can reliably and rapidly quantify transfection efficiency, reducing assay costs and increasing throughput while increasing data robustness. PMID:28863132
Comparing kinetic curves in liquid chromatography
NASA Astrophysics Data System (ADS)
Kurganov, A. A.; Kanat'eva, A. Yu.; Yakubenko, E. E.; Popova, T. P.; Shiryaeva, V. E.
2017-01-01
Five equations for kinetic curves which connect the number of theoretical plates N and time of analysis t 0 for five different versions of optimization, depending on the parameters being varied (e.g., mobile phase flow rate, pressure drop, sorbent grain size), are obtained by means of mathematical modeling. It is found that a method based on the optimization of a sorbent grain size at fixed pressure is most suitable for the optimization of rapid separations. It is noted that the advantages of the method are limited by an area of relatively low efficiency, and the advantage of optimization is transferred to a method based on the optimization of both the sorbent grain size and the drop in pressure across a column in the area of high efficiency.
On computing the global time-optimal motions of robotic manipulators in the presence of obstacles
NASA Technical Reports Server (NTRS)
Shiller, Zvi; Dubowsky, Steven
1991-01-01
A method for computing the time-optimal motions of robotic manipulators is presented that considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacles. The optimization problem is reduced to a search for the time-optimal path in the n-dimensional position space. A small set of near-optimal paths is first efficiently selected from a grid, using a branch and bound search and a series of lower bound estimates on the traveling time along a given path. These paths are further optimized with a local path optimization to yield the global optimal solution. Obstacles are considered by eliminating the collision points from the tessellated space and by adding a penalty function to the motion time in the local optimization. The computational efficiency of the method stems from the reduced dimensionality of the searched spaced and from combining the grid search with a local optimization. The method is demonstrated in several examples for two- and six-degree-of-freedom manipulators with obstacles.
Optimized Multi-Spectral Filter Array Based Imaging of Natural Scenes.
Li, Yuqi; Majumder, Aditi; Zhang, Hao; Gopi, M
2018-04-12
Multi-spectral imaging using a camera with more than three channels is an efficient method to acquire and reconstruct spectral data and is used extensively in tasks like object recognition, relighted rendering, and color constancy. Recently developed methods are used to only guide content-dependent filter selection where the set of spectral reflectances to be recovered are known a priori. We present the first content-independent spectral imaging pipeline that allows optimal selection of multiple channels. We also present algorithms for optimal placement of the channels in the color filter array yielding an efficient demosaicing order resulting in accurate spectral recovery of natural reflectance functions. These reflectance functions have the property that their power spectrum statistically exhibits a power-law behavior. Using this property, we propose power-law based error descriptors that are minimized to optimize the imaging pipeline. We extensively verify our models and optimizations using large sets of commercially available wide-band filters to demonstrate the greater accuracy and efficiency of our multi-spectral imaging pipeline over existing methods.
Optimized Multi-Spectral Filter Array Based Imaging of Natural Scenes
Li, Yuqi; Majumder, Aditi; Zhang, Hao; Gopi, M.
2018-01-01
Multi-spectral imaging using a camera with more than three channels is an efficient method to acquire and reconstruct spectral data and is used extensively in tasks like object recognition, relighted rendering, and color constancy. Recently developed methods are used to only guide content-dependent filter selection where the set of spectral reflectances to be recovered are known a priori. We present the first content-independent spectral imaging pipeline that allows optimal selection of multiple channels. We also present algorithms for optimal placement of the channels in the color filter array yielding an efficient demosaicing order resulting in accurate spectral recovery of natural reflectance functions. These reflectance functions have the property that their power spectrum statistically exhibits a power-law behavior. Using this property, we propose power-law based error descriptors that are minimized to optimize the imaging pipeline. We extensively verify our models and optimizations using large sets of commercially available wide-band filters to demonstrate the greater accuracy and efficiency of our multi-spectral imaging pipeline over existing methods. PMID:29649114
NASA Technical Reports Server (NTRS)
Vanderplaats, Garrett; Townsend, James C. (Technical Monitor)
2002-01-01
The purpose of this research under the NASA Small Business Innovative Research program was to develop algorithms and associated software to solve very large nonlinear, constrained optimization tasks. Key issues included efficiency, reliability, memory, and gradient calculation requirements. This report describes the general optimization problem, ten candidate methods, and detailed evaluations of four candidates. The algorithm chosen for final development is a modern recreation of a 1960s external penalty function method that uses very limited computer memory and computational time. Although of lower efficiency, the new method can solve problems orders of magnitude larger than current methods. The resulting BIGDOT software has been demonstrated on problems with 50,000 variables and about 50,000 active constraints. For unconstrained optimization, it has solved a problem in excess of 135,000 variables. The method includes a technique for solving discrete variable problems that finds a "good" design, although a theoretical optimum cannot be guaranteed. It is very scalable in that the number of function and gradient evaluations does not change significantly with increased problem size. Test cases are provided to demonstrate the efficiency and reliability of the methods and software.
An efficiency study of the simultaneous analysis and design of structures
NASA Technical Reports Server (NTRS)
Striz, Alfred G.; Wu, Zhiqi; Sobieski, Jaroslaw
1995-01-01
The efficiency of the Simultaneous Analysis and Design (SAND) approach in the minimum weight optimization of structural systems subject to strength and displacement constraints as well as size side constraints is investigated. SAND allows for an optimization to take place in one single operation as opposed to the more traditional and sequential Nested Analysis and Design (NAND) method, where analyses and optimizations alternate. Thus, SAND has the advantage that the stiffness matrix is never factored during the optimization retaining its original sparsity. One of SAND's disadvantages is the increase in the number of design variables and in the associated number of constraint gradient evaluations. If SAND is to be an acceptable player in the optimization field, it is essential to investigate the efficiency of the method and to present a possible cure for any inherent deficiencies.
NASA Astrophysics Data System (ADS)
Cao, Jia; Yan, Zheng; He, Guangyu
2016-06-01
This paper introduces an efficient algorithm, multi-objective human learning optimization method (MOHLO), to solve AC/DC multi-objective optimal power flow problem (MOPF). Firstly, the model of AC/DC MOPF including wind farms is constructed, where includes three objective functions, operating cost, power loss, and pollutant emission. Combining the non-dominated sorting technique and the crowding distance index, the MOHLO method can be derived, which involves individual learning operator, social learning operator, random exploration learning operator and adaptive strategies. Both the proposed MOHLO method and non-dominated sorting genetic algorithm II (NSGAII) are tested on an improved IEEE 30-bus AC/DC hybrid system. Simulation results show that MOHLO method has excellent search efficiency and the powerful ability of searching optimal. Above all, MOHLO method can obtain more complete pareto front than that by NSGAII method. However, how to choose the optimal solution from pareto front depends mainly on the decision makers who stand from the economic point of view or from the energy saving and emission reduction point of view.
Optimization of blade motion of vertical axis turbine
NASA Astrophysics Data System (ADS)
Ma, Yong; Zhang, Liang; Zhang, Zhi-yang; Han, Duan-feng
2016-04-01
In this paper, a method is proposed to improve the energy efficiency of the vertical axis turbine. First of all, a single disk multiple stream-tube model is used to calculate individual fitness. Genetic algorithm is adopted to optimize blade pitch motion of vertical axis turbine with the maximum energy efficiency being selected as the optimization objective. Then, a particular data processing method is proposed, fitting the result data into a cosine-like curve. After that, a general formula calculating the blade motion is developed. Finally, CFD simulation is used to validate the blade pitch motion formula. The results show that the turbine's energy efficiency becomes higher after the optimization of blade pitch motion; compared with the fixed pitch turbine, the efficiency of variable-pitch turbine is significantly improved by the active blade pitch control; the energy efficiency declines gradually with the growth of speed ratio; besides, compactness has lager effect on the blade motion while the number of blades has little effect on it.
An improved reaction path optimization method using a chain of conformations
NASA Astrophysics Data System (ADS)
Asada, Toshio; Sawada, Nozomi; Nishikawa, Takuya; Koseki, Shiro
2018-05-01
The efficient fast path optimization (FPO) method is proposed to optimize the reaction paths on energy surfaces by using chains of conformations. No artificial spring force is used in the FPO method to ensure the equal spacing of adjacent conformations. The FPO method is applied to optimize the reaction path on two model potential surfaces. The use of this method enabled the optimization of the reaction paths with a drastically reduced number of optimization cycles for both potentials. It was also successfully utilized to define the MEP of the isomerization of the glycine molecule in water by FPO method.
Model-based optimal design of experiments - semidefinite and nonlinear programming formulations
Duarte, Belmiro P.M.; Wong, Weng Kee; Oliveira, Nuno M.C.
2015-01-01
We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D–, A– and E–optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D–optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice. PMID:26949279
Model-based optimal design of experiments - semidefinite and nonlinear programming formulations.
Duarte, Belmiro P M; Wong, Weng Kee; Oliveira, Nuno M C
2016-02-15
We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D -, A - and E -optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D -optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice.
An efficient surrogate-based simulation-optimization method for calibrating a regional MODFLOW model
NASA Astrophysics Data System (ADS)
Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.
2017-01-01
Simulation-optimization method entails a large number of model simulations, which is computationally intensive or even prohibitive if the model simulation is extremely time-consuming. Statistical models have been examined as a surrogate of the high-fidelity physical model during simulation-optimization process to tackle this problem. Among them, Multivariate Adaptive Regression Splines (MARS), a non-parametric adaptive regression method, is superior in overcoming problems of high-dimensions and discontinuities of the data. Furthermore, the stability and accuracy of MARS model can be improved by bootstrap aggregating methods, namely, bagging. In this paper, Bagging MARS (BMARS) method is integrated to a surrogate-based simulation-optimization framework to calibrate a three-dimensional MODFLOW model, which is developed to simulate the groundwater flow in an arid hardrock-alluvium region in northwestern Oman. The physical MODFLOW model is surrogated by the statistical model developed using BMARS algorithm. The surrogate model, which is fitted and validated using training dataset generated by the physical model, can approximate solutions rapidly. An efficient Sobol' method is employed to calculate global sensitivities of head outputs to input parameters, which are used to analyze their importance for the model outputs spatiotemporally. Only sensitive parameters are included in the calibration process to further improve the computational efficiency. Normalized root mean square error (NRMSE) between measured and simulated heads at observation wells is used as the objective function to be minimized during optimization. The reasonable history match between the simulated and observed heads demonstrated feasibility of this high-efficient calibration framework.
Aerodynamic design optimization using sensitivity analysis and computational fluid dynamics
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Eleshaky, Mohamed E.
1991-01-01
A new and efficient method is presented for aerodynamic design optimization, which is based on a computational fluid dynamics (CFD)-sensitivity analysis algorithm. The method is applied to design a scramjet-afterbody configuration for an optimized axial thrust. The Euler equations are solved for the inviscid analysis of the flow, which in turn provides the objective function and the constraints. The CFD analysis is then coupled with the optimization procedure that uses a constrained minimization method. The sensitivity coefficients, i.e. gradients of the objective function and the constraints, needed for the optimization are obtained using a quasi-analytical method rather than the traditional brute force method of finite difference approximations. During the one-dimensional search of the optimization procedure, an approximate flow analysis (predicted flow) based on a first-order Taylor series expansion is used to reduce the computational cost. Finally, the sensitivity of the optimum objective function to various design parameters, which are kept constant during the optimization, is computed to predict new optimum solutions. The flow analysis of the demonstrative example are compared with the experimental data. It is shown that the method is more efficient than the traditional methods.
Design of multi-energy Helds coupling testing system of vertical axis wind power system
NASA Astrophysics Data System (ADS)
Chen, Q.; Yang, Z. X.; Li, G. S.; Song, L.; Ma, C.
2016-08-01
The conversion efficiency of wind energy is the focus of researches and concerns as one of the renewable energy. The present methods of enhancing the conversion efficiency are mostly improving the wind rotor structure, optimizing the generator parameters and energy storage controller and so on. Because the conversion process involves in energy conversion of multi-energy fields such as wind energy, mechanical energy and electrical energy, the coupling effect between them will influence the overall conversion efficiency. In this paper, using system integration analysis technology, a testing system based on multi-energy field coupling (MEFC) of vertical axis wind power system is proposed. When the maximum efficiency of wind rotor is satisfied, it can match to the generator function parameters according to the output performance of wind rotor. The voltage controller can transform the unstable electric power to the battery on the basis of optimizing the parameters such as charging times, charging voltage. Through the communication connection and regulation of the upper computer system (UCS), it can make the coupling parameters configure to an optimal state, and it improves the overall conversion efficiency. This method can test the whole wind turbine (WT) performance systematically and evaluate the design parameters effectively. It not only provides a testing method for system structure design and parameter optimization of wind rotor, generator and voltage controller, but also provides a new testing method for the whole performance optimization of vertical axis wind energy conversion system (WECS).
General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED
NASA Astrophysics Data System (ADS)
Bultink, C. C.; Tarasinski, B.; Haandbæk, N.; Poletto, S.; Haider, N.; Michalak, D. J.; Bruno, A.; DiCarlo, L.
2018-02-01
We present and demonstrate a general three-step method for extracting the quantum efficiency of dispersive qubit readout in circuit QED. We use active depletion of post-measurement photons and optimal integration weight functions on two quadratures to maximize the signal-to-noise ratio of the non-steady-state homodyne measurement. We derive analytically and demonstrate experimentally that the method robustly extracts the quantum efficiency for arbitrary readout conditions in the linear regime. We use the proven method to optimally bias a Josephson traveling-wave parametric amplifier and to quantify different noise contributions in the readout amplification chain.
NASA Technical Reports Server (NTRS)
Pilkey, W. D.; Chen, Y. H.
1974-01-01
An indirect synthesis method is used in the efficient optimal design of multi-degree of freedom, multi-design element, nonlinear, transient systems. A limiting performance analysis which requires linear programming for a kinematically linear system is presented. The system is selected using system identification methods such that the designed system responds as closely as possible to the limiting performance. The efficiency is a result of the method avoiding the repetitive systems analyses accompanying other numerical optimization methods.
Airfoil Design and Optimization by the One-Shot Method
NASA Technical Reports Server (NTRS)
Kuruvila, G.; Taasan, Shlomo; Salas, M. D.
1995-01-01
An efficient numerical approach for the design of optimal aerodynamic shapes is presented in this paper. The objective of any optimization problem is to find the optimum of a cost function subject to a certain state equation (governing equation of the flow field) and certain side constraints. As in classical optimal control methods, the present approach introduces a costate variable (Lagrange multiplier) to evaluate the gradient of the cost function. High efficiency in reaching the optimum solution is achieved by using a multigrid technique and updating the shape in a hierarchical manner such that smooth (low-frequency) changes are done separately from high-frequency changes. Thus, the design variables are changed on a grid where their changes produce nonsmooth (high-frequency) perturbations that can be damped efficiently by the multigrid. The cost of solving the optimization problem is approximately two to three times the cost of the equivalent analysis problem.
Airfoil optimization by the one-shot method
NASA Technical Reports Server (NTRS)
Kuruvila, G.; Taasan, Shlomo; Salas, M. D.
1994-01-01
An efficient numerical approach for the design of optimal aerodynamic shapes is presented in this paper. The objective of any optimization problem is to find the optimum of a cost function subject to a certain state equation (Governing equation of the flow field) and certain side constraints. As in classical optimal control methods, the present approach introduces a costate variable (Language multiplier) to evaluate the gradient of the cost function. High efficiency in reaching the optimum solution is achieved by using a multigrid technique and updating the shape in a hierarchical manner such that smooth (low-frequency) changes are done separately from high-frequency changes. Thus, the design variables are changed on a grid where their changes produce nonsmooth (high-frequency) perturbations that can be damped efficiently by the multigrid. The cost of solving the optimization problem is approximately two to three times the cost of the equivalent analysis problem.
Optimal Design of Multitype Groundwater Monitoring Networks Using Easily Accessible Tools.
Wöhling, Thomas; Geiges, Andreas; Nowak, Wolfgang
2016-11-01
Monitoring networks are expensive to establish and to maintain. In this paper, we extend an existing data-worth estimation method from the suite of PEST utilities with a global optimization method for optimal sensor placement (called optimal design) in groundwater monitoring networks. Design optimization can include multiple simultaneous sensor locations and multiple sensor types. Both location and sensor type are treated simultaneously as decision variables. Our method combines linear uncertainty quantification and a modified genetic algorithm for discrete multilocation, multitype search. The efficiency of the global optimization is enhanced by an archive of past samples and parallel computing. We demonstrate our methodology for a groundwater monitoring network at the Steinlach experimental site, south-western Germany, which has been established to monitor river-groundwater exchange processes. The target of optimization is the best possible exploration for minimum variance in predicting the mean travel time of the hyporheic exchange. Our results demonstrate that the information gain of monitoring network designs can be explored efficiently and with easily accessible tools prior to taking new field measurements or installing additional measurement points. The proposed methods proved to be efficient and can be applied for model-based optimal design of any type of monitoring network in approximately linear systems. Our key contributions are (1) the use of easy-to-implement tools for an otherwise complex task and (2) yet to consider data-worth interdependencies in simultaneous optimization of multiple sensor locations and sensor types. © 2016, National Ground Water Association.
Shape optimization for aerodynamic efficiency and low observability
NASA Technical Reports Server (NTRS)
Vinh, Hoang; Van Dam, C. P.; Dwyer, Harry A.
1993-01-01
Field methods based on the finite-difference approximations of the time-domain Maxwell's equations and the potential-flow equation have been developed to solve the multidisciplinary problem of airfoil shaping for aerodynamic efficiency and low radar cross section (RCS). A parametric study and an optimization study employing the two analysis methods are presented to illustrate their combined capabilities. The parametric study shows that for frontal radar illumination, the RCS of an airfoil is independent of the chordwise location of maximum thickness but depends strongly on the maximum thickness, leading-edge radius, and leadingedge shape. In addition, this study shows that the RCS of an airfoil can be reduced without significant effects on its transonic aerodynamic efficiency by reducing the leading-edge radius and/or modifying the shape of the leading edge. The optimization study involves the minimization of wave drag for a non-lifting, symmetrical airfoil with constraints on the airfoil maximum thickness and monostatic RCS. This optimization study shows that the two analysis methods can be used effectively to design aerodynamically efficient airfoils with certain desired RCS characteristics.
An efficient hybrid approach for multiobjective optimization of water distribution systems
NASA Astrophysics Data System (ADS)
Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.
2014-05-01
An efficient hybrid approach for the design of water distribution systems (WDSs) with multiple objectives is described in this paper. The objectives are the minimization of the network cost and maximization of the network resilience. A self-adaptive multiobjective differential evolution (SAMODE) algorithm has been developed, in which control parameters are automatically adapted by means of evolution instead of the presetting of fine-tuned parameter values. In the proposed method, a graph algorithm is first used to decompose a looped WDS into a shortest-distance tree (T) or forest, and chords (Ω). The original two-objective optimization problem is then approximated by a series of single-objective optimization problems of the T to be solved by nonlinear programming (NLP), thereby providing an approximate Pareto optimal front for the original whole network. Finally, the solutions at the approximate front are used to seed the SAMODE algorithm to find an improved front for the original entire network. The proposed approach is compared with two other conventional full-search optimization methods (the SAMODE algorithm and the NSGA-II) that seed the initial population with purely random solutions based on three case studies: a benchmark network and two real-world networks with multiple demand loading cases. Results show that (i) the proposed NLP-SAMODE method consistently generates better-quality Pareto fronts than the full-search methods with significantly improved efficiency; and (ii) the proposed SAMODE algorithm (no parameter tuning) exhibits better performance than the NSGA-II with calibrated parameter values in efficiently offering optimal fronts.
Energy-saving management modelling and optimization for lead-acid battery formation process
NASA Astrophysics Data System (ADS)
Wang, T.; Chen, Z.; Xu, J. Y.; Wang, F. Y.; Liu, H. M.
2017-11-01
In this context, a typical lead-acid battery producing process is introduced. Based on the formation process, an efficiency management method is proposed. An optimization model with the objective to minimize the formation electricity cost in a single period is established. This optimization model considers several related constraints, together with two influencing factors including the transformation efficiency of IGBT charge-and-discharge machine and the time-of-use price. An example simulation is shown using PSO algorithm to solve this mathematic model, and the proposed optimization strategy is proved to be effective and learnable for energy-saving and efficiency optimization in battery producing industries.
Ishihara, Koji; Morimoto, Jun
2018-03-01
Humans use multiple muscles to generate such joint movements as an elbow motion. With multiple lightweight and compliant actuators, joint movements can also be efficiently generated. Similarly, robots can use multiple actuators to efficiently generate a one degree of freedom movement. For this movement, the desired joint torque must be properly distributed to each actuator. One approach to cope with this torque distribution problem is an optimal control method. However, solving the optimal control problem at each control time step has not been deemed a practical approach due to its large computational burden. In this paper, we propose a computationally efficient method to derive an optimal control strategy for a hybrid actuation system composed of multiple actuators, where each actuator has different dynamical properties. We investigated a singularly perturbed system of the hybrid actuator model that subdivided the original large-scale control problem into smaller subproblems so that the optimal control outputs for each actuator can be derived at each control time step and applied our proposed method to our pneumatic-electric hybrid actuator system. Our method derived a torque distribution strategy for the hybrid actuator by dealing with the difficulty of solving real-time optimal control problems. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Saito, Atsushi; Nawano, Shigeru; Shimizu, Akinobu
2017-05-01
This paper addresses joint optimization for segmentation and shape priors, including translation, to overcome inter-subject variability in the location of an organ. Because a simple extension of the previous exact optimization method is too computationally complex, we propose a fast approximation for optimization. The effectiveness of the proposed approximation is validated in the context of gallbladder segmentation from a non-contrast computed tomography (CT) volume. After spatial standardization and estimation of the posterior probability of the target organ, simultaneous optimization of the segmentation, shape, and location priors is performed using a branch-and-bound method. Fast approximation is achieved by combining sampling in the eigenshape space to reduce the number of shape priors and an efficient computational technique for evaluating the lower bound. Performance was evaluated using threefold cross-validation of 27 CT volumes. Optimization in terms of translation of the shape prior significantly improved segmentation performance. The proposed method achieved a result of 0.623 on the Jaccard index in gallbladder segmentation, which is comparable to that of state-of-the-art methods. The computational efficiency of the algorithm is confirmed to be good enough to allow execution on a personal computer. Joint optimization of the segmentation, shape, and location priors was proposed, and it proved to be effective in gallbladder segmentation with high computational efficiency.
Robust design of microchannel cooler
NASA Astrophysics Data System (ADS)
He, Ye; Yang, Tao; Hu, Li; Li, Leimin
2005-12-01
Microchannel cooler has offered a new method for the cooling of high power diode lasers, with the advantages of small volume, high efficiency of thermal dissipation and low cost when mass-produced. In order to reduce the sensitivity of design to manufacture errors or other disturbances, Taguchi method that is one of robust design method was chosen to optimize three parameters important to the cooling performance of roof-like microchannel cooler. The hydromechanical and thermal mathematical model of varying section microchannel was calculated using finite volume method by FLUENT. A special program was written to realize the automation of the design process for improving efficiency. The optimal design is presented which compromises between optimal cooling performance and its robustness. This design method proves to be available.
Efficient Optimization of Low-Thrust Spacecraft Trajectories
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Fink, Wolfgang; Russell, Ryan; Terrile, Richard; Petropoulos, Anastassios; vonAllmen, Paul
2007-01-01
A paper describes a computationally efficient method of optimizing trajectories of spacecraft driven by propulsion systems that generate low thrusts and, hence, must be operated for long times. A common goal in trajectory-optimization problems is to find minimum-time, minimum-fuel, or Pareto-optimal trajectories (here, Pareto-optimality signifies that no other solutions are superior with respect to both flight time and fuel consumption). The present method utilizes genetic and simulated-annealing algorithms to search for globally Pareto-optimal solutions. These algorithms are implemented in parallel form to reduce computation time. These algorithms are coupled with either of two traditional trajectory- design approaches called "direct" and "indirect." In the direct approach, thrust control is discretized in either arc time or arc length, and the resulting discrete thrust vectors are optimized. The indirect approach involves the primer-vector theory (introduced in 1963), in which the thrust control problem is transformed into a co-state control problem and the initial values of the co-state vector are optimized. In application to two example orbit-transfer problems, this method was found to generate solutions comparable to those of other state-of-the-art trajectory-optimization methods while requiring much less computation time.
NASA Astrophysics Data System (ADS)
Lang, Hans-Dieter; Sarris, Costas D.
2017-09-01
In magnetically mediated hyperthermia (MMH), an externally applied alternating magnetic field interacts with a mediator (such as a magnetic nanoparticle or an implant) inside the body to heat up the tissue in its proximity. Producing heat via induced currents in this manner is strikingly similar to wireless power transfer (WPT) for implants, where power is transferred from a transmitter outside of the body to an implanted receiver, in most cases via magnetic fields as well. Leveraging this analogy, a systematic method to design MMH implants for optimal heating efficiency is introduced, akin to the design of WPT systems for optimal power transfer efficiency. This paper provides analytical formulas for the achievable heating efficiency bounds as well as the optimal operating frequency and the implant material. Multiphysics simulations validate the approach and further demonstrate that optimization with respect to maximum heating efficiency is accompanied by minimizing heat delivery to healthy tissue. This is a property that is highly desirable when considering MMH as a key component or complementary method of cancer treatment and other applications.
Optimization of segmented thermoelectric generator using Taguchi and ANOVA techniques.
Kishore, Ravi Anant; Sanghadasa, Mohan; Priya, Shashank
2017-12-01
Recent studies have demonstrated that segmented thermoelectric generators (TEGs) can operate over large thermal gradient and thus provide better performance (reported efficiency up to 11%) as compared to traditional TEGs, comprising of single thermoelectric (TE) material. However, segmented TEGs are still in early stages of development due to the inherent complexity in their design optimization and manufacturability. In this study, we demonstrate physics based numerical techniques along with Analysis of variance (ANOVA) and Taguchi optimization method for optimizing the performance of segmented TEGs. We have considered comprehensive set of design parameters, such as geometrical dimensions of p-n legs, height of segmentation, hot-side temperature, and load resistance, in order to optimize output power and efficiency of segmented TEGs. Using the state-of-the-art TE material properties and appropriate statistical tools, we provide near-optimum TEG configuration with only 25 experiments as compared to 3125 experiments needed by the conventional optimization methods. The effect of environmental factors on the optimization of segmented TEGs is also studied. Taguchi results are validated against the results obtained using traditional full factorial optimization technique and a TEG configuration for simultaneous optimization of power and efficiency is obtained.
Application’s Method of Quadratic Programming for Optimization of Portfolio Selection
NASA Astrophysics Data System (ADS)
Kawamoto, Shigeru; Takamoto, Masanori; Kobayashi, Yasuhiro
Investors or fund-managers face with optimization of portfolio selection, which means that determine the kind and the quantity of investment among several brands. We have developed a method to obtain optimal stock’s portfolio more rapidly from twice to three times than conventional method with efficient universal optimization. The method is characterized by quadratic matrix of utility function and constrained matrices divided into several sub-matrices by focusing on structure of these matrices.
Aerodynamic shape optimization using control theory
NASA Technical Reports Server (NTRS)
Reuther, James
1996-01-01
Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.
A Method to Determine Supply Voltage of Permanent Magnet Motor at Optimal Design Stage
NASA Astrophysics Data System (ADS)
Matustomo, Shinya; Noguchi, So; Yamashita, Hideo; Tanimoto, Shigeya
The permanent magnet motors (PM motors) are widely used in electrical machinery, such as air conditioner, refrigerator and so on. In recent years, from the point of view of energy saving, it is necessary to improve the efficiency of PM motor by optimization. However, in the efficiency optimization of PM motor, many design variables and many restrictions are required. In this paper, the efficiency optimization of PM motor with many design variables was performed by using the voltage driven finite element analysis with the rotating simulation of the motor and the genetic algorithm.
NASA Astrophysics Data System (ADS)
Kim, Young Hyun; Cheon, Byung Chul; Lee, Jung Ho
2018-05-01
This study proposes criteria for both optimal-shape and magnetizer-system designs to be used for a high-output spoke-type motor. The study also examines methods of reducing high-cogging torque and torque ripple, to prevent noise and vibration. The optimal design of the stator and rotor can be enhanced using both a response surface method and finite element method. In addition, a magnetizer system is optimally designed for the magnetization of permanent magnets for use in the motor. Finally, this study verifies that the proposed motor can efficiently replace interior permanent magnet synchronous motor in many industries.
Multi-objective shape optimization of runner blade for Kaplan turbine
NASA Astrophysics Data System (ADS)
Semenova, A.; Chirkov, D.; Lyutov, A.; Chemy, S.; Skorospelov, V.; Pylev, I.
2014-03-01
Automatic runner shape optimization based on extensive CFD analysis proved to be a useful design tool in hydraulic turbomachinery. Previously the authors developed an efficient method for Francis runner optimization. It was successfully applied to the design of several runners with different specific speeds. In present work this method is extended to the task of a Kaplan runner optimization. Despite of relatively simpler blade shape, Kaplan turbines have several features, complicating the optimization problem. First, Kaplan turbines normally operate in a wide range of discharges, thus CFD analysis of each variant of the runner should be carried out for several operation points. Next, due to a high specific speed, draft tube losses have a great impact on the overall turbine efficiency, and thus should be accurately evaluated. Then, the flow in blade tip and hub clearances significantly affects the velocity profile behind the runner and draft tube behavior. All these features are accounted in the present optimization technique. Parameterization of runner blade surface using 24 geometrical parameters is described in details. For each variant of runner geometry steady state three-dimensional turbulent flow computations are carried out in the domain, including wicket gate, runner, draft tube, blade tip and hub clearances. The objectives are maximization of efficiency in best efficiency and high discharge operation points, with simultaneous minimization of cavitation area on the suction side of the blade. Multiobjective genetic algorithm is used for the solution of optimization problem, requiring the analysis of several thousands of runner variants. The method is applied to optimization of runner shape for several Kaplan turbines with different heads.
Overall Traveling-Wave-Tube Efficiency Improved By Optimized Multistage Depressed Collector Design
NASA Technical Reports Server (NTRS)
Vaden, Karl R.
2002-01-01
Depressed Collector Design The microwave traveling wave tube (TWT) is used widely for space communications and high-power airborne transmitting sources. One of the most important features in designing a TWT is overall efficiency. Yet, overall TWT efficiency is strongly dependent on the efficiency of the electron beam collector, particularly for high values of collector efficiency. For these reasons, the NASA Glenn Research Center developed an optimization algorithm based on simulated annealing to quickly design highly efficient multistage depressed collectors (MDC's). Simulated annealing is a strategy for solving highly nonlinear combinatorial optimization problems. Its major advantage over other methods is its ability to avoid becoming trapped in local minima. Simulated annealing is based on an analogy to statistical thermodynamics, specifically the physical process of annealing: heating a material to a temperature that permits many atomic rearrangements and then cooling it carefully and slowly, until it freezes into a strong, minimum-energy crystalline structure. This minimum energy crystal corresponds to the optimal solution of a mathematical optimization problem. The TWT used as a baseline for optimization was the 32-GHz, 10-W, helical TWT developed for the Cassini mission to Saturn. The method of collector analysis and design used was a 2-1/2-dimensional computational procedure that employs two types of codes, a large signal analysis code and an electron trajectory code. The large signal analysis code produces the spatial, energetic, and temporal distributions of the spent beam entering the MDC. An electron trajectory code uses the resultant data to perform the actual collector analysis. The MDC was optimized for maximum MDC efficiency and minimum final kinetic energy of all collected electrons (to reduce heat transfer). The preceding figure shows the geometric and electrical configuration of an optimized collector with an efficiency of 93.8 percent. The results show the improvement in collector efficiency from 89.7 to 93.8 percent, resulting in an increase of three overall efficiency points. In addition, the time to design a highly efficient MDC was reduced from a month to a few days. All work was done in-house at Glenn for the High Rate Data Delivery Program. Future plans include optimizing the MDC and TWT interaction circuit in tandem to further improve overall TWT efficiency.
One shot methods for optimal control of distributed parameter systems 1: Finite dimensional control
NASA Technical Reports Server (NTRS)
Taasan, Shlomo
1991-01-01
The efficient numerical treatment of optimal control problems governed by elliptic partial differential equations (PDEs) and systems of elliptic PDEs, where the control is finite dimensional is discussed. Distributed control as well as boundary control cases are discussed. The main characteristic of the new methods is that they are designed to solve the full optimization problem directly, rather than accelerating a descent method by an efficient multigrid solver for the equations involved. The methods use the adjoint state in order to achieve efficient smoother and a robust coarsening strategy. The main idea is the treatment of the control variables on appropriate scales, i.e., control variables that correspond to smooth functions are solved for on coarse grids depending on the smoothness of these functions. Solution of the control problems is achieved with the cost of solving the constraint equations about two to three times (by a multigrid solver). Numerical examples demonstrate the effectiveness of the method proposed in distributed control case, pointwise control and boundary control problems.
A new optimal seam method for seamless image stitching
NASA Astrophysics Data System (ADS)
Xue, Jiale; Chen, Shengyong; Cheng, Xu; Han, Ying; Zhao, Meng
2017-07-01
A novel optimal seam method which aims to stitch those images with overlapping area more seamlessly has been propos ed. Considering the traditional gradient domain optimal seam method and fusion algorithm result in bad color difference measurement and taking a long time respectively, the input images would be converted to HSV space and a new energy function is designed to seek optimal stitching path. To smooth the optimal stitching path, a simplified pixel correction and weighted average method are utilized individually. The proposed methods exhibit performance in eliminating the stitching seam compared with the traditional gradient optimal seam and high efficiency with multi-band blending algorithm.
Liu, Ping; Li, Guodong; Liu, Xinggao; Xiao, Long; Wang, Yalin; Yang, Chunhua; Gui, Weihua
2018-02-01
High quality control method is essential for the implementation of aircraft autopilot system. An optimal control problem model considering the safe aerodynamic envelop is therefore established to improve the control quality of aircraft flight level tracking. A novel non-uniform control vector parameterization (CVP) method with time grid refinement is then proposed for solving the optimal control problem. By introducing the Hilbert-Huang transform (HHT) analysis, an efficient time grid refinement approach is presented and an adaptive time grid is automatically obtained. With this refinement, the proposed method needs fewer optimization parameters to achieve better control quality when compared with uniform refinement CVP method, whereas the computational cost is lower. Two well-known flight level altitude tracking problems and one minimum time cost problem are tested as illustrations and the uniform refinement control vector parameterization method is adopted as the comparative base. Numerical results show that the proposed method achieves better performances in terms of optimization accuracy and computation cost; meanwhile, the control quality is efficiently improved. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Jin-ya; Cai, Shu-jie; Li, Yong-jiang; Li, Yong-jiang; Zhang, Yong-xue
2017-12-01
A novel optimization design method for the multiphase pump impeller is proposed through combining the quasi-3D hydraulic design (Q3DHD), the boundary vortex flux (BVF) diagnosis, and the genetic algorithm (GA). The BVF diagnosis based on the Q3DHD is used to evaluate the objection function. Numerical simulations and hydraulic performance tests are carried out to compare the impeller designed only by the Q3DHD method and that optimized by the presented method. The comparisons of both the flow fields simulated under the same condition show that (1) the pressure distribution in the optimized impeller is more reasonable and the gas-liquid separation is more efficiently inhibited, (2) the scales of the gas pocket and the vortex decrease remarkably for the optimized impeller, (3) the unevenness of the BVF distributions near the shroud of the original impeller is effectively eliminated in the optimized impeller. The experimental results show that the differential pressure and the maximum efficiency of the optimized impeller are increased by 4% and 2.5%, respectively. Overall, the study indicates that the optimization design method proposed in this paper is feasible.
Full space device optimization for solar cells.
Baloch, Ahmer A B; Aly, Shahzada P; Hossain, Mohammad I; El-Mellouhi, Fedwa; Tabet, Nouar; Alharbi, Fahhad H
2017-09-20
Advances in computational materials have paved a way to design efficient solar cells by identifying the optimal properties of the device layers. Conventionally, the device optimization has been governed by single or double descriptors for an individual layer; mostly the absorbing layer. However, the performance of the device depends collectively on all the properties of the material and the geometry of each layer in the cell. To address this issue of multi-property optimization and to avoid the paradigm of reoccurring materials in the solar cell field, a full space material-independent optimization approach is developed and presented in this paper. The method is employed to obtain an optimized material data set for maximum efficiency and for targeted functionality for each layer. To ensure the robustness of the method, two cases are studied; namely perovskite solar cells device optimization and cadmium-free CIGS solar cell. The implementation determines the desirable optoelectronic properties of transport mediums and contacts that can maximize the efficiency for both cases. The resulted data sets of material properties can be matched with those in materials databases or by further microscopic material design. Moreover, the presented multi-property optimization framework can be extended to design any solid-state device.
Optimal robust control strategy of a solid oxide fuel cell system
NASA Astrophysics Data System (ADS)
Wu, Xiaojuan; Gao, Danhui
2018-01-01
Optimal control can ensure system safe operation with a high efficiency. However, only a few papers discuss optimal control strategies for solid oxide fuel cell (SOFC) systems. Moreover, the existed methods ignore the impact of parameter uncertainty on system instantaneous performance. In real SOFC systems, several parameters may vary with the variation of operation conditions and can not be identified exactly, such as load current. Therefore, a robust optimal control strategy is proposed, which involves three parts: a SOFC model with parameter uncertainty, a robust optimizer and robust controllers. During the model building process, boundaries of the uncertain parameter are extracted based on Monte Carlo algorithm. To achieve the maximum efficiency, a two-space particle swarm optimization approach is employed to obtain optimal operating points, which are used as the set points of the controllers. To ensure the SOFC safe operation, two feed-forward controllers and a higher-order robust sliding mode controller are presented to control fuel utilization ratio, air excess ratio and stack temperature afterwards. The results show the proposed optimal robust control method can maintain the SOFC system safe operation with a maximum efficiency under load and uncertainty variations.
Research on design method of the full form ship with minimum thrust deduction factor
NASA Astrophysics Data System (ADS)
Zhang, Bao-ji; Miao, Ai-qin; Zhang, Zhu-xin
2015-04-01
In the preliminary design stage of the full form ships, in order to obtain a hull form with low resistance and maximum propulsion efficiency, an optimization design program for a full form ship with the minimum thrust deduction factor has been developed, which combined the potential flow theory and boundary layer theory with the optimization technique. In the optimization process, the Sequential Unconstrained Minimization Technique (SUMT) interior point method of Nonlinear Programming (NLP) was proposed with the minimum thrust deduction factor as the objective function. An appropriate displacement is a basic constraint condition, and the boundary layer separation is an additional one. The parameters of the hull form modification function are used as design variables. At last, the numerical optimization example for lines of after-body of 50000 DWT product oil tanker was provided, which indicated that the propulsion efficiency was improved distinctly by this optimal design method.
Improved Ant Algorithms for Software Testing Cases Generation
Yang, Shunkun; Xu, Jiaqi
2014-01-01
Existing ant colony optimization (ACO) for software testing cases generation is a very popular domain in software testing engineering. However, the traditional ACO has flaws, as early search pheromone is relatively scarce, search efficiency is low, search model is too simple, positive feedback mechanism is easy to porduce the phenomenon of stagnation and precocity. This paper introduces improved ACO for software testing cases generation: improved local pheromone update strategy for ant colony optimization, improved pheromone volatilization coefficient for ant colony optimization (IPVACO), and improved the global path pheromone update strategy for ant colony optimization (IGPACO). At last, we put forward a comprehensive improved ant colony optimization (ACIACO), which is based on all the above three methods. The proposed technique will be compared with random algorithm (RND) and genetic algorithm (GA) in terms of both efficiency and coverage. The results indicate that the improved method can effectively improve the search efficiency, restrain precocity, promote case coverage, and reduce the number of iterations. PMID:24883391
Memon, Muhammad Qasim; He, Jingsha; Yasir, Mirza Ammar; Memon, Aasma
2018-04-12
Radio frequency identification is a wireless communication technology, which enables data gathering and identifies recognition from any tagged object. The number of collisions produced during wireless communication would lead to a variety of problems including unwanted number of iterations and reader-induced idle slots, computational complexity in terms of estimation as well as recognition of the number of tags. In this work, dynamic frame adjustment and optimal splitting are employed together in the proposed algorithm. In the dynamic frame adjustment method, the length of frames is based on the quantity of tags to yield optimal efficiency. The optimal splitting method is conceived with smaller duration of idle slots using an optimal value for splitting level M o p t , where (M > 2), to vary slot sizes to get the minimal identification time for the idle slots. The application of the proposed algorithm offers the advantages of not going for the cumbersome estimation of the quantity of tags incurred and the size (number) of tags has no effect on its performance efficiency. Our experiment results show that using the proposed algorithm, the efficiency curve remains constant as the number of tags varies from 50 to 450, resulting in an overall theoretical gain in the efficiency of 0.032 compared to system efficiency of 0.441 and thus outperforming both dynamic binary tree slotted ALOHA (DBTSA) and binary splitting protocols.
Wilkie, Joel R.; Matuszak, Martha M.; Feng, Mary; Moran, Jean M.; Fraass, Benedick A.
2013-01-01
Purpose: Plan degradation resulting from compromises made to enhance delivery efficiency is an important consideration for intensity modulated radiation therapy (IMRT) treatment plans. IMRT optimization and/or multileaf collimator (MLC) sequencing schemes can be modified to generate more efficient treatment delivery, but the effect those modifications have on plan quality is often difficult to quantify. In this work, the authors present a method for quantitative assessment of overall plan quality degradation due to tradeoffs between delivery efficiency and treatment plan quality, illustrated using comparisons between plans developed allowing different numbers of intensity levels in IMRT optimization and/or MLC sequencing for static segmental MLC IMRT plans. Methods: A plan quality degradation method to evaluate delivery efficiency and plan quality tradeoffs was developed and used to assess planning for 14 prostate and 12 head and neck patients treated with static IMRT. Plan quality was evaluated using a physician's predetermined “quality degradation” factors for relevant clinical plan metrics associated with the plan optimization strategy. Delivery efficiency and plan quality were assessed for a range of optimization and sequencing limitations. The “optimal” (baseline) plan for each case was derived using a clinical cost function with an unlimited number of intensity levels. These plans were sequenced with a clinical MLC leaf sequencer which uses >100 segments, assuring delivered intensities to be within 1% of the optimized intensity pattern. Each patient's optimal plan was also sequenced limiting the number of intensity levels (20, 10, and 5), and then separately optimized with these same numbers of intensity levels. Delivery time was measured for all plans, and direct evaluation of the tradeoffs between delivery time and plan degradation was performed. Results: When considering tradeoffs, the optimal number of intensity levels depends on the treatment site and on the stage in the process at which the levels are limited. The cost of improved delivery efficiency, in terms of plan quality degradation, increased as the number of intensity levels in the sequencer or optimizer decreased. The degradation was more substantial for the head and neck cases relative to the prostate cases, particularly when fewer than 20 intensity levels were used. Plan quality degradation was less severe when the number of intensity levels was limited in the optimizer rather than the sequencer. Conclusions: Analysis of plan quality degradation allows for a quantitative assessment of the compromises in clinical plan quality as delivery efficiency is improved, in order to determine the optimal delivery settings. The technique is based on physician-determined quality degradation factors and can be extended to other clinical situations where investigation of various tradeoffs is warranted. PMID:23822412
Optimization of deflection of a big NEO through impact with a small one.
Zhu, Kaijian; Huang, Weiping; Wang, Yuncai; Niu, Wei; Wu, Gongyou
2014-01-01
Using a small near-Earth object (NEO) to impact a larger and potentially threatening NEO has been suggested as an effective method to avert a collision with Earth. This paper develops a procedure for analysis of the technique for specific NEOs. First, an optimization method is used to select a proper small body from the database. Some principles of optimality are achieved with the optimization process. Then, the orbit of the small body is changed to guarantee that it flies toward and impacts the big threatening NEO. Kinetic impact by a spacecraft is chosen as the strategy of deflecting the small body. The efficiency of this method is compared with that of a direct kinetic impact to the big NEO by a spacecraft. Finally, a case study is performed for the deflection of the Apophis NEO, and the efficiency of the method is assessed.
Optimization of Deflection of a Big NEO through Impact with a Small One
Zhu, Kaijian; Huang, Weiping; Wang, Yuncai; Niu, Wei; Wu, Gongyou
2014-01-01
Using a small near-Earth object (NEO) to impact a larger and potentially threatening NEO has been suggested as an effective method to avert a collision with Earth. This paper develops a procedure for analysis of the technique for specific NEOs. First, an optimization method is used to select a proper small body from the database. Some principles of optimality are achieved with the optimization process. Then, the orbit of the small body is changed to guarantee that it flies toward and impacts the big threatening NEO. Kinetic impact by a spacecraft is chosen as the strategy of deflecting the small body. The efficiency of this method is compared with that of a direct kinetic impact to the big NEO by a spacecraft. Finally, a case study is performed for the deflection of the Apophis NEO, and the efficiency of the method is assessed. PMID:25525627
Computationally efficient control allocation
NASA Technical Reports Server (NTRS)
Durham, Wayne (Inventor)
2001-01-01
A computationally efficient method for calculating near-optimal solutions to the three-objective, linear control allocation problem is disclosed. The control allocation problem is that of distributing the effort of redundant control effectors to achieve some desired set of objectives. The problem is deemed linear if control effectiveness is affine with respect to the individual control effectors. The optimal solution is that which exploits the collective maximum capability of the effectors within their individual physical limits. Computational efficiency is measured by the number of floating-point operations required for solution. The method presented returned optimal solutions in more than 90% of the cases examined; non-optimal solutions returned by the method were typically much less than 1% different from optimal and the errors tended to become smaller than 0.01% as the number of controls was increased. The magnitude of the errors returned by the present method was much smaller than those that resulted from either pseudo inverse or cascaded generalized inverse solutions. The computational complexity of the method presented varied linearly with increasing numbers of controls; the number of required floating point operations increased from 5.5 i, to seven times faster than did the minimum-norm solution (the pseudoinverse), and at about the same rate as did the cascaded generalized inverse solution. The computational requirements of the method presented were much better than that of previously described facet-searching methods which increase in proportion to the square of the number of controls.
Method of optimizing performance of Rankine cycle power plants
Pope, William L.; Pines, Howard S.; Doyle, Padraic A.; Silvester, Lenard F.
1982-01-01
A method for efficiently operating a Rankine cycle power plant (10) to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine (22) fluid inlet state which is substantially in the area adjacent and including the transposed critical temperature line (46).
Efficient discovery of risk patterns in medical data.
Li, Jiuyong; Fu, Ada Wai-chee; Fahey, Paul
2009-01-01
This paper studies a problem of efficiently discovering risk patterns in medical data. Risk patterns are defined by a statistical metric, relative risk, which has been widely used in epidemiological research. To avoid fruitless search in the complete exploration of risk patterns, we define optimal risk pattern set to exclude superfluous patterns, i.e. complicated patterns with lower relative risk than their corresponding simpler form patterns. We prove that mining optimal risk pattern sets conforms an anti-monotone property that supports an efficient mining algorithm. We propose an efficient algorithm for mining optimal risk pattern sets based on this property. We also propose a hierarchical structure to present discovered patterns for the easy perusal by domain experts. The proposed approach is compared with two well-known rule discovery methods, decision tree and association rule mining approaches on benchmark data sets and applied to a real world application. The proposed method discovers more and better quality risk patterns than a decision tree approach. The decision tree method is not designed for such applications and is inadequate for pattern exploring. The proposed method does not discover a large number of uninteresting superfluous patterns as an association mining approach does. The proposed method is more efficient than an association rule mining method. A real world case study shows that the method reveals some interesting risk patterns to medical practitioners. The proposed method is an efficient approach to explore risk patterns. It quickly identifies cohorts of patients that are vulnerable to a risk outcome from a large data set. The proposed method is useful for exploratory study on large medical data to generate and refine hypotheses. The method is also useful for designing medical surveillance systems.
[Optimized application of nested PCR method for detection of malaria].
Yao-Guang, Z; Li, J; Zhen-Yu, W; Li, C
2017-04-28
Objective To optimize the application of the nested PCR method for the detection of malaria according to the working practice, so as to improve the efficiency of malaria detection. Methods Premixing solution of PCR, internal primers for further amplification and new designed primers that aimed at two Plasmodium ovale subspecies were employed to optimize the reaction system, reaction condition and specific primers of P . ovale on basis of routine nested PCR. Then the specificity and the sensitivity of the optimized method were analyzed. The positive blood samples and examination samples of malaria were detected by the routine nested PCR and the optimized method simultaneously, and the detection results were compared and analyzed. Results The optimized method showed good specificity, and its sensitivity could reach the pg to fg level. The two methods were used to detect the same positive malarial blood samples simultaneously, the results indicated that the PCR products of the two methods had no significant difference, but the non-specific amplification reduced obviously and the detection rates of P . ovale subspecies improved, as well as the total specificity also increased through the use of the optimized method. The actual detection results of 111 cases of malarial blood samples showed that the sensitivity and specificity of the routine nested PCR were 94.57% and 86.96%, respectively, and those of the optimized method were both 93.48%, and there was no statistically significant difference between the two methods in the sensitivity ( P > 0.05), but there was a statistically significant difference between the two methods in the specificity ( P < 0.05). Conclusion The optimized PCR can improve the specificity without reducing the sensitivity on the basis of the routine nested PCR, it also can save the cost and increase the efficiency of malaria detection as less experiment links.
NASA Astrophysics Data System (ADS)
Panda, Satyasen
2018-05-01
This paper proposes a modified artificial bee colony optimization (ABC) algorithm based on levy flight swarm intelligence referred as artificial bee colony levy flight stochastic walk (ABC-LFSW) optimization for optical code division multiple access (OCDMA) network. The ABC-LFSW algorithm is used to solve asset assignment problem based on signal to noise ratio (SNR) optimization in OCDM networks with quality of service constraints. The proposed optimization using ABC-LFSW algorithm provides methods for minimizing various noises and interferences, regulating the transmitted power and optimizing the network design for improving the power efficiency of the optical code path (OCP) from source node to destination node. In this regard, an optical system model is proposed for improving the network performance with optimized input parameters. The detailed discussion and simulation results based on transmitted power allocation and power efficiency of OCPs are included. The experimental results prove the superiority of the proposed network in terms of power efficiency and spectral efficiency in comparison to networks without any power allocation approach.
Processing time tolerance-based ACO algorithm for solving job-shop scheduling problem
NASA Astrophysics Data System (ADS)
Luo, Yabo; Waden, Yongo P.
2017-06-01
Ordinarily, Job Shop Scheduling Problem (JSSP) is known as NP-hard problem which has uncertainty and complexity that cannot be handled by a linear method. Thus, currently studies on JSSP are concentrated mainly on applying different methods of improving the heuristics for optimizing the JSSP. However, there still exist many problems for efficient optimization in the JSSP, namely, low efficiency and poor reliability, which can easily trap the optimization process of JSSP into local optima. Therefore, to solve this problem, a study on Ant Colony Optimization (ACO) algorithm combined with constraint handling tactics is carried out in this paper. Further, the problem is subdivided into three parts: (1) Analysis of processing time tolerance-based constraint features in the JSSP which is performed by the constraint satisfying model; (2) Satisfying the constraints by considering the consistency technology and the constraint spreading algorithm in order to improve the performance of ACO algorithm. Hence, the JSSP model based on the improved ACO algorithm is constructed; (3) The effectiveness of the proposed method based on reliability and efficiency is shown through comparative experiments which are performed on benchmark problems. Consequently, the results obtained by the proposed method are better, and the applied technique can be used in optimizing JSSP.
Extreme Trust Region Policy Optimization for Active Object Recognition.
Liu, Huaping; Wu, Yupei; Sun, Fuchun; Huaping Liu; Yupei Wu; Fuchun Sun; Sun, Fuchun; Liu, Huaping; Wu, Yupei
2018-06-01
In this brief, we develop a deep reinforcement learning method to actively recognize objects by choosing a sequence of actions for an active camera that helps to discriminate between the objects. The method is realized using trust region policy optimization, in which the policy is realized by an extreme learning machine and, therefore, leads to efficient optimization algorithm. The experimental results on the publicly available data set show the advantages of the developed extreme trust region optimization method.
NASA Astrophysics Data System (ADS)
Fu, Rong-Huan; Zhang, Xing
2016-09-01
Supercritical carbon dioxide operated in a Brayton cycle offers a numerous of potential advantages for a power generation system, and a lot of thermodynamics analyses have been conducted to increase its efficiency. Because there are a lot of heat-absorbing and heat-lossing subprocesses in a practical thermodynamic cycle and they are implemented by heat exchangers, it will increase the gross efficiency of the whole power generation system to optimize the system combining thermodynamics and heat transfer theory. This paper analyzes the influence of the performance of heat exchangers on the actual efficiency of an ideal Brayton cycle with a simple configuration, and proposes a new method to optimize the power generation system, which aims at the minimum energy consumption. Although the method is operated only for the ideal working fluid in this paper, its merits compared to that only with thermodynamic analysis are fully shown.
Holograms for power-efficient excitation of optical surface waves
NASA Astrophysics Data System (ADS)
Ignatov, Anton I.; Merzlikin, Alexander M.
2018-02-01
A method for effective excitation of optical surface waves based on holography principles has been proposed. For a particular example of excitation of a plasmonic wave in a dielectric layer on metal the efficiency of proposed volume holograms in the dielectric layer has been analyzed in comparison with optimized periodic gratings in the dielectric layer. Conditions when the holograms are considerably more efficient than the gratings have been found out. In addition, holograms recorded in two iterations have been proposed and studied. Such holograms are substantially more efficient than the optimized periodic gratings for all incidence angles of an exciting Gaussian beam. The proposed method is universal: it can be extended for efficient excitation of different types of optical surface waves and optical waveguide modes.
Uncertainty quantification-based robust aerodynamic optimization of laminar flow nacelle
NASA Astrophysics Data System (ADS)
Xiong, Neng; Tao, Yang; Liu, Zhiyong; Lin, Jun
2018-05-01
The aerodynamic performance of laminar flow nacelle is highly sensitive to uncertain working conditions, especially the surface roughness. An efficient robust aerodynamic optimization method on the basis of non-deterministic computational fluid dynamic (CFD) simulation and Efficient Global Optimization (EGO)algorithm was employed. A non-intrusive polynomial chaos method is used in conjunction with an existing well-verified CFD module to quantify the uncertainty propagation in the flow field. This paper investigates the roughness modeling behavior with the γ-Ret shear stress transport model including modeling flow transition and surface roughness effects. The roughness effects are modeled to simulate sand grain roughness. A Class-Shape Transformation-based parametrical description of the nacelle contour as part of an automatic design evaluation process is presented. A Design-of-Experiments (DoE) was performed and surrogate model by Kriging method was built. The new design nacelle process demonstrates that significant improvements of both mean and variance of the efficiency are achieved and the proposed method can be applied to laminar flow nacelle design successfully.
Method of optimizing performance of Rankine cycle power plants. [US DOE Patent
Pope, W.L.; Pines, H.S.; Doyle, P.A.; Silvester, L.F.
1980-06-23
A method is described for efficiently operating a Rankine cycle power plant to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine fluid inlet state which is substantially on the area adjacent and including the transposed critical temperature line.
NASA Astrophysics Data System (ADS)
Wang, Qingze; Chen, Xingying; Ji, Li; Liao, Yingchen; Yu, Kun
2017-05-01
The air-conditioning system of office building is a large power consumption terminal equipment, whose unreasonable operation mode leads to low energy efficiency. Realizing the optimization of the air-conditioning system has become one of the important research contents of the electric power demand response. In this paper, in order to save electricity cost and improve energy efficiency, bi-level optimization method of air-conditioning system based on TOU price is put forward by using the energy storage characteristics of the office building itself. In the upper level, the operation mode of the air-conditioning system is optimized in order to minimize the uses’ electricity cost in the premise of ensuring user’ comfort according to the information of outdoor temperature and TOU price, and the cooling load of the air-conditioning is output to the lower level; In the lower level, the distribution mode of cooling load among the multi chillers is optimized in order to maximize the energy efficiency according to the characteristics of each chiller. Finally, the experimental results under different modes demonstrate that the strategy can improve the energy efficiency of chillers and save the electricity cost for users.
Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2017-01-07
Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6 ± 15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size.
NASA Astrophysics Data System (ADS)
Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2017-01-01
Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6 ± 15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size.
Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2016-01-01
Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6±15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size. PMID:27991456
A Single-Lap Joint Adhesive Bonding Optimization Method Using Gradient and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Smeltzer, Stanley S., III; Finckenor, Jeffrey L.
1999-01-01
A natural process for any engineer, scientist, educator, etc. is to seek the most efficient method for accomplishing a given task. In the case of structural design, an area that has a significant impact on the structural efficiency is joint design. Unless the structure is machined from a solid block of material, the individual components which compose the overall structure must be joined together. The method for joining a structure varies depending on the applied loads, material, assembly and disassembly requirements, service life, environment, etc. Using both metallic and fiber reinforced plastic materials limits the user to two methods or a combination of these methods for joining the components into one structure. The first is mechanical fastening and the second is adhesive bonding. Mechanical fastening is by far the most popular joining technique; however, in terms of structural efficiency, adhesive bonding provides a superior joint since the load is distributed uniformly across the joint. The purpose of this paper is to develop a method for optimizing single-lap joint adhesive bonded structures using both gradient and genetic algorithms and comparing the solution process for each method. The goal of the single-lap joint optimization is to find the most efficient structure that meets the imposed requirements while still remaining as lightweight, economical, and reliable as possible. For the single-lap joint, an optimum joint is determined by minimizing the weight of the overall joint based on constraints from adhesive strengths as well as empirically derived rules. The analytical solution of the sin-le-lap joint is determined using the classical Goland-Reissner technique for case 2 type adhesive joints. Joint weight minimization is achieved using a commercially available routine, Design Optimization Tool (DOT), for the gradient solution while an author developed method is used for the genetic algorithm solution. Results illustrate the critical design variables as a function of adhesive properties and convergences of different joints based on the two optimization methods.
Parametric modeling and stagger angle optimization of an axial flow fan
NASA Astrophysics Data System (ADS)
Li, M. X.; Zhang, C. H.; Liu, Y.; Y Zheng, S.
2013-12-01
Axial flow fans are widely used in every field of social production. Improving their efficiency is a sustained and urgent demand of domestic industry. The optimization of stagger angle is an important method to improve fan performance. Parametric modeling and calculation process automation are realized in this paper to improve optimization efficiency. Geometric modeling and mesh division are parameterized based on GAMBIT. Parameter setting and flow field calculation are completed in the batch mode of FLUENT. A control program is developed in Visual C++ to dominate the data exchange of mentioned software. It also extracts calculation results for optimization algorithm module (provided by Matlab) to generate directive optimization control parameters, which as feedback are transferred upwards to modeling module. The center line of the blade airfoil, based on CLARK y profile, is constructed by non-constant circulation and triangle discharge method. Stagger angles of six airfoil sections are optimized, to reduce the influence of inlet shock loss as well as gas leak in blade tip clearance and hub resistance at blade root. Finally an optimal solution is obtained, which meets the total pressure requirement under given conditions and improves total pressure efficiency by about 6%.
NASA Astrophysics Data System (ADS)
Dang, Haizheng; Tan, Jun; Zhang, Lei
2016-06-01
The match between the pulse tube cold finger (PTCF) and the linear compressor of the Stirling-type pulse tube cryocooler plays a vital role in optimizing the compressor efficiency and in improving the PTCF cooling performance as well. In this paper, the interaction of them has been analyzed in a detailed way to reveal the match mechanism, and systematic investigations on the two-way matching have been conducted. The design method of the PTCF to achieve the optimal matching for the given compressor and the counterpart design method of the compressor to achieve the optimal matching for the given PTCF are put forward. Specific experiments are then carried out to verify the conducted theoretical analyses and modeling. For a given linear compressor, a new in-line PTCF which seeks to achieve the optimal match is simulated, designed and tested. And for a given coaxial PTCF, a new dual-opposed moving-coil linear compressor is also developed to match with it. The simulated and experimental results are compared, and fairly good agreements are found between them in both cases. The matched in-line cooler with the newly-designed PTCF has capacities of 4-11.84 W at 80 K with higher than 17% of Carnot efficiency and the mean motor efficiency of 81.5%, and the matched coaxial cooler with the new-designed compressor can provide 2-5.5 W at 60 K with higher than 9.6% of Carnot efficiency and the mean motor efficiency of 83%, which verify the validity of the theoretical investigations on the optimal match and the proposed design methods.
Review of design optimization methods for turbomachinery aerodynamics
NASA Astrophysics Data System (ADS)
Li, Zhihui; Zheng, Xinqian
2017-08-01
In today's competitive environment, new turbomachinery designs need to be not only more efficient, quieter, and ;greener; but also need to be developed at on much shorter time scales and at lower costs. A number of advanced optimization strategies have been developed to achieve these requirements. This paper reviews recent progress in turbomachinery design optimization to solve real-world aerodynamic problems, especially for compressors and turbines. This review covers the following topics that are important for optimizing turbomachinery designs. (1) optimization methods, (2) stochastic optimization combined with blade parameterization methods and the design of experiment methods, (3) gradient-based optimization methods for compressors and turbines and (4) data mining techniques for Pareto Fronts. We also present our own insights regarding the current research trends and the future optimization of turbomachinery designs.
On Efficient Multigrid Methods for Materials Processing Flows with Small Particles
NASA Technical Reports Server (NTRS)
Thomas, James (Technical Monitor); Diskin, Boris; Harik, VasylMichael
2004-01-01
Multiscale modeling of materials requires simulations of multiple levels of structural hierarchy. The computational efficiency of numerical methods becomes a critical factor for simulating large physical systems with highly desperate length scales. Multigrid methods are known for their superior efficiency in representing/resolving different levels of physical details. The efficiency is achieved by employing interactively different discretizations on different scales (grids). To assist optimization of manufacturing conditions for materials processing with numerous particles (e.g., dispersion of particles, controlling flow viscosity and clusters), a new multigrid algorithm has been developed for a case of multiscale modeling of flows with small particles that have various length scales. The optimal efficiency of the algorithm is crucial for accurate predictions of the effect of processing conditions (e.g., pressure and velocity gradients) on the local flow fields that control the formation of various microstructures or clusters.
Network Modeling and Energy-Efficiency Optimization for Advanced Machine-to-Machine Sensor Networks
Jung, Sungmo; Kim, Jong Hyun; Kim, Seoksoo
2012-01-01
Wireless machine-to-machine sensor networks with multiple radio interfaces are expected to have several advantages, including high spatial scalability, low event detection latency, and low energy consumption. Here, we propose a network model design method involving network approximation and an optimized multi-tiered clustering algorithm that maximizes node lifespan by minimizing energy consumption in a non-uniformly distributed network. Simulation results show that the cluster scales and network parameters determined with the proposed method facilitate a more efficient performance compared to existing methods. PMID:23202190
He, Guilin; Zhang, Tuqiao; Zheng, Feifei; Zhang, Qingzhou
2018-06-20
Water quality security within water distribution systems (WDSs) has been an important issue due to their inherent vulnerability associated with contamination intrusion. This motivates intensive studies to identify optimal water quality sensor placement (WQSP) strategies, aimed to timely/effectively detect (un)intentional intrusion events. However, these available WQSP optimization methods have consistently presumed that each WDS node has an equal contamination probability. While being simple in implementation, this assumption may do not conform to the fact that the nodal contamination probability may be significantly regionally varied owing to variations in population density and user properties. Furthermore, the low computational efficiency is another important factor that has seriously hampered the practical applications of the currently available WQSP optimization approaches. To address these two issues, this paper proposes an efficient multi-objective WQSP optimization method to explicitly account for contamination probability variations. Four different contamination probability functions (CPFs) are proposed to represent the potential variations of nodal contamination probabilities within the WDS. Two real-world WDSs are used to demonstrate the utility of the proposed method. Results show that WQSP strategies can be significantly affected by the choice of the CPF. For example, when the proposed method is applied to the large case study with the CPF accounting for user properties, the event detection probabilities of the resultant solutions are approximately 65%, while these values are around 25% for the traditional approach, and such design solutions are achieved approximately 10,000 times faster than the traditional method. This paper provides an alternative method to identify optimal WQSP solutions for the WDS, and also builds knowledge regarding the impacts of different CPFs on sensor deployments. Copyright © 2018 Elsevier Ltd. All rights reserved.
Optimization of LDL targeted nanostructured lipid carriers of 5-FU by a full factorial design.
Andalib, Sare; Varshosaz, Jaleh; Hassanzadeh, Farshid; Sadeghi, Hojjat
2012-01-01
Nanostructured lipid carriers (NLC) are a mixture of solid and liquid lipids or oils as colloidal carrier systems that lead to an imperfect matrix structure with high ability for loading water soluble drugs. The aim of this study was to find the best proportion of liquid and solid lipids of different types for optimization of the production of LDL targeted NLCs used in carrying 5-Fu by the emulsification-solvent evaporation method. The influence of the lipid type, cholesterol or cholesteryl stearate for targeting LDL receptors, oil type (oleic acid or octanol), lipid and oil% on particle size, surface charge, drug loading efficiency, and drug released percent from the NLCs were studied by a full factorial design. The NLCs prepared by 54.5% cholesterol and 25% of oleic acid, showed optimum results with particle size of 105.8 nm, relatively high zeta potential of -25 mV, drug loading efficiency of 38% and release efficiency of about 40%. Scanning electron microscopy of nanoparticles confirmed the results of dynamic light scattering method used in measuring the particle size of NLCs. The optimization method by a full factorial statistical design is a useful optimization method for production of nanostructured lipid carriers.
Human motion planning based on recursive dynamics and optimal control techniques
NASA Technical Reports Server (NTRS)
Lo, Janzen; Huang, Gang; Metaxas, Dimitris
2002-01-01
This paper presents an efficient optimal control and recursive dynamics-based computer animation system for simulating and controlling the motion of articulated figures. A quasi-Newton nonlinear programming technique (super-linear convergence) is implemented to solve minimum torque-based human motion-planning problems. The explicit analytical gradients needed in the dynamics are derived using a matrix exponential formulation and Lie algebra. Cubic spline functions are used to make the search space for an optimal solution finite. Based on our formulations, our method is well conditioned and robust, in addition to being computationally efficient. To better illustrate the efficiency of our method, we present results of natural looking and physically correct human motions for a variety of human motion tasks involving open and closed loop kinematic chains.
Fast optimization of glide vehicle reentry trajectory based on genetic algorithm
NASA Astrophysics Data System (ADS)
Jia, Jun; Dong, Ruixing; Yuan, Xuejun; Wang, Chuangwei
2018-02-01
An optimization method of reentry trajectory based on genetic algorithm is presented to meet the need of reentry trajectory optimization for glide vehicle. The dynamic model for the glide vehicle during reentry period is established. Considering the constraints of heat flux, dynamic pressure, overload etc., the optimization of reentry trajectory is investigated by utilizing genetic algorithm. The simulation shows that the method presented by this paper is effective for the optimization of reentry trajectory of glide vehicle. The efficiency and speed of this method is comparative with the references. Optimization results meet all constraints, and the on-line fast optimization is potential by pre-processing the offline samples.
NASA Astrophysics Data System (ADS)
Bashiri, Mahdi; Farshbaf-Geranmayeh, Amir; Mogouie, Hamed
2013-11-01
In this paper, a new method is proposed to optimize a multi-response optimization problem based on the Taguchi method for the processes where controllable factors are the smaller-the-better (STB)-type variables and the analyzer desires to find an optimal solution with smaller amount of controllable factors. In such processes, the overall output quality of the product should be maximized while the usage of the process inputs, the controllable factors, should be minimized. Since all possible combinations of factors' levels, are not considered in the Taguchi method, the response values of the possible unpracticed treatments are estimated using the artificial neural network (ANN). The neural network is tuned by the central composite design (CCD) and the genetic algorithm (GA). Then data envelopment analysis (DEA) is applied for determining the efficiency of each treatment. Although the important issue for implementation of DEA is its philosophy, which is maximization of outputs versus minimization of inputs, this important issue has been neglected in previous similar studies in multi-response problems. Finally, the most efficient treatment is determined using the maximin weight model approach. The performance of the proposed method is verified in a plastic molding process. Moreover a sensitivity analysis has been done by an efficiency estimator neural network. The results show efficiency of the proposed approach.
NASA Astrophysics Data System (ADS)
Meng, Zeng; Yang, Dixiong; Zhou, Huanlin; Yu, Bo
2018-05-01
The first order reliability method has been extensively adopted for reliability-based design optimization (RBDO), but it shows inaccuracy in calculating the failure probability with highly nonlinear performance functions. Thus, the second order reliability method is required to evaluate the reliability accurately. However, its application for RBDO is quite challenge owing to the expensive computational cost incurred by the repeated reliability evaluation and Hessian calculation of probabilistic constraints. In this article, a new improved stability transformation method is proposed to search the most probable point efficiently, and the Hessian matrix is calculated by the symmetric rank-one update. The computational capability of the proposed method is illustrated and compared to the existing RBDO approaches through three mathematical and two engineering examples. The comparison results indicate that the proposed method is very efficient and accurate, providing an alternative tool for RBDO of engineering structures.
Biyikli, Emre; To, Albert C.
2015-01-01
A new topology optimization method called the Proportional Topology Optimization (PTO) is presented. As a non-sensitivity method, PTO is simple to understand, easy to implement, and is also efficient and accurate at the same time. It is implemented into two MATLAB programs to solve the stress constrained and minimum compliance problems. Descriptions of the algorithm and computer programs are provided in detail. The method is applied to solve three numerical examples for both types of problems. The method shows comparable efficiency and accuracy with an existing optimality criteria method which computes sensitivities. Also, the PTO stress constrained algorithm and minimum compliance algorithm are compared by feeding output from one algorithm to the other in an alternative manner, where the former yields lower maximum stress and volume fraction but higher compliance compared to the latter. Advantages and disadvantages of the proposed method and future works are discussed. The computer programs are self-contained and publicly shared in the website www.ptomethod.org. PMID:26678849
Xu, Zheng; Wang, Sheng; Li, Yeqing; Zhu, Feiyun; Huang, Junzhou
2018-02-08
The most recent history of parallel Magnetic Resonance Imaging (pMRI) has in large part been devoted to finding ways to reduce acquisition time. While joint total variation (JTV) regularized model has been demonstrated as a powerful tool in increasing sampling speed for pMRI, however, the major bottleneck is the inefficiency of the optimization method. While all present state-of-the-art optimizations for the JTV model could only reach a sublinear convergence rate, in this paper, we squeeze the performance by proposing a linear-convergent optimization method for the JTV model. The proposed method is based on the Iterative Reweighted Least Squares algorithm. Due to the complexity of the tangled JTV objective, we design a novel preconditioner to further accelerate the proposed method. Extensive experiments demonstrate the superior performance of the proposed algorithm for pMRI regarding both accuracy and efficiency compared with state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Rong, J. H.; Yi, J. H.
2010-10-01
In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topology can be obtained by starting from any initial topology configuration. An improved structural topological optimization method for multi- displacement constraints is proposed in this paper. In the proposed method, the whole optimization process is divided into two optimization adjustment phases and a phase transferring step. Firstly, an optimization model is built to deal with the varied displacement limits, design space adjustments, and reasonable relations between the element stiffness matrix and mass and its element topology variable. Secondly, a procedure is proposed to solve the optimization problem formulated in the first optimization adjustment phase, by starting with a small design space and advancing to a larger deign space. The design space adjustments are automatic when the design domain needs expansions, in which the convergence of the proposed method will not be affected. The final topology obtained by the proposed procedure in the first optimization phase, can approach to the vicinity of the optimum topology. Then, a heuristic algorithm is given to improve the efficiency and make the designed structural topology black/white in both the phase transferring step and the second optimization adjustment phase. And the optimum topology can finally be obtained by the second phase optimization adjustments. Two examples are presented to show that the topologies obtained by the proposed method are of very good 0/1 design distribution property, and the computational efficiency is enhanced by reducing the element number of the design structural finite model during two optimization adjustment phases. And the examples also show that this method is robust and practicable.
Optimization of Dish Solar Collectors with and without Secondary Concentrators
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1982-01-01
Methods for optimizing parabolic dish solar collectors and the consequent effects of various optical, thermal, mechanical, and cost variables are examined. The most important performance optimization is adjusting the receiver aperture to maximize collector efficiency. Other parameters that can be adjusted to optimize efficiency include focal length, and, if a heat engine is used, the receiver temperature. The efficiency maxima associated with focal length and receiver temperature are relatively broad; it may, accordingly, be desirable to design somewhat away from the maxima. Performance optimization is sensitive to the slope and specularity errors of the concentrator. Other optical and thermal variables affecting optimization are the reflectance and blocking factor of the concentrator, the absorptance and losses of the receiver, and, if a heat engine is used, the shape of the engine efficiency versus temperature curve. Performance may sometimes be improved by use of an additional optical element (a secondary concentrator) or a receiver window if the errors of the primary concentrator are large or the receiver temperature is high.
Optimization of the design of Gas Cherenkov Detectors for ICF diagnosis
NASA Astrophysics Data System (ADS)
Liu, Bin; Hu, Huasi; Han, Hetong; Lv, Huanwen; Li, Lan
2018-07-01
A design method, which combines a genetic algorithm (GA) with Monte-Carlo simulation, is established and applied to two different types of Cherenkov detectors, namely, Gas Cherenkov Detector (GCD) and Gamma Reaction History (GRH). For accelerating the optimization program, open Message Passing Interface (MPI) is used in the Geant4 simulation. Compared with the traditional optical ray-tracing method, the performances of these detectors have been improved with the optimization method. The efficiency for GCD system, with a threshold of 6.3 MeV, is enhanced by ∼20% and time response improved by ∼7.2%. For the GRH system, with threshold of 10 MeV, the efficiency is enhanced by ∼76% in comparison with previously published results.
Scarless assembly of unphosphorylated DNA fragments with a simplified DATEL method.
Ding, Wenwen; Weng, Huanjiao; Jin, Peng; Du, Guocheng; Chen, Jian; Kang, Zhen
2017-05-04
Efficient assembly of multiple DNA fragments is a pivotal technology for synthetic biology. A scarless and sequence-independent DNA assembly method (DATEL) using thermal exonucleases has been developed recently. Here, we present a simplified DATEL (sDATEL) for efficient assembly of unphosphorylated DNA fragments with low cost. The sDATEL method is only dependent on Taq DNA polymerase and Taq DNA ligase. After optimizing the committed parameters of the reaction system such as pH and the concentration of Mg 2+ and NAD+, the assembly efficiency was increased by 32-fold. To further improve the assembly capacity, the number of thermal cycles was optimized, resulting in successful assembly 4 unphosphorylated DNA fragments with an accuracy of 75%. sDATEL could be a desirable method for routine manual and automated assembly.
NASA Astrophysics Data System (ADS)
Vu, Duy-Duc; Monies, Frédéric; Rubio, Walter
2018-05-01
A large number of studies, based on 3-axis end milling of free-form surfaces, seek to optimize tool path planning. Approaches try to optimize the machining time by reducing the total tool path length while respecting the criterion of the maximum scallop height. Theoretically, the tool path trajectories that remove the most material follow the directions in which the machined width is the largest. The free-form surface is often considered as a single machining area. Therefore, the optimization on the entire surface is limited. Indeed, it is difficult to define tool trajectories with optimal feed directions which generate largest machined widths. Another limiting point of previous approaches for effectively reduce machining time is the inadequate choice of the tool. Researchers use generally a spherical tool on the entire surface. However, the gains proposed by these different methods developed with these tools lead to relatively small time savings. Therefore, this study proposes a new method, using toroidal milling tools, for generating toolpaths in different regions on the machining surface. The surface is divided into several regions based on machining intervals. These intervals ensure that the effective radius of the tool, at each cutter-contact points on the surface, is always greater than the radius of the tool in an optimized feed direction. A parallel plane strategy is then used on the sub-surfaces with an optimal specific feed direction for each sub-surface. This method allows one to mill the entire surface with efficiency greater than with the use of a spherical tool. The proposed method is calculated and modeled using Maple software to find optimal regions and feed directions in each region. This new method is tested on a free-form surface. A comparison is made with a spherical cutter to show the significant gains obtained with a toroidal milling cutter. Comparisons with CAM software and experimental validations are also done. The results show the efficiency of the method.
Efficient Regressions via Optimally Combining Quantile Information*
Zhao, Zhibiao; Xiao, Zhijie
2014-01-01
We develop a generally applicable framework for constructing efficient estimators of regression models via quantile regressions. The proposed method is based on optimally combining information over multiple quantiles and can be applied to a broad range of parametric and nonparametric settings. When combining information over a fixed number of quantiles, we derive an upper bound on the distance between the efficiency of the proposed estimator and the Fisher information. As the number of quantiles increases, this upper bound decreases and the asymptotic variance of the proposed estimator approaches the Cramér-Rao lower bound under appropriate conditions. In the case of non-regular statistical estimation, the proposed estimator leads to super-efficient estimation. We illustrate the proposed method for several widely used regression models. Both asymptotic theory and Monte Carlo experiments show the superior performance over existing methods. PMID:25484481
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; UT Southwestern Medical Center, Dallas, TX; Tian, Z
2015-06-15
Purpose: Intensity-modulated proton therapy (IMPT) is increasingly used in proton therapy. For IMPT optimization, Monte Carlo (MC) is desired for spots dose calculations because of its high accuracy, especially in cases with a high level of heterogeneity. It is also preferred in biological optimization problems due to the capability of computing quantities related to biological effects. However, MC simulation is typically too slow to be used for this purpose. Although GPU-based MC engines have become available, the achieved efficiency is still not ideal. The purpose of this work is to develop a new optimization scheme to include GPU-based MC intomore » IMPT. Methods: A conventional approach using MC in IMPT simply calls the MC dose engine repeatedly for each spot dose calculations. However, this is not the optimal approach, because of the unnecessary computations on some spots that turned out to have very small weights after solving the optimization problem. GPU-memory writing conflict occurring at a small beam size also reduces computational efficiency. To solve these problems, we developed a new framework that iteratively performs MC dose calculations and plan optimizations. At each dose calculation step, the particles were sampled from different spots altogether with Metropolis algorithm, such that the particle number is proportional to the latest optimized spot intensity. Simultaneously transporting particles from multiple spots also mitigated the memory writing conflict problem. Results: We have validated the proposed MC-based optimization schemes in one prostate case. The total computation time of our method was ∼5–6 min on one NVIDIA GPU card, including both spot dose calculation and plan optimization, whereas a conventional method naively using the same GPU-based MC engine were ∼3 times slower. Conclusion: A fast GPU-based MC dose calculation method along with a novel optimization workflow is developed. The high efficiency makes it attractive for clinical usages.« less
Hamiltonian Monte Carlo acceleration using surrogate functions with random bases.
Zhang, Cheng; Shahbaba, Babak; Zhao, Hongkai
2017-11-01
For big data analysis, high computational cost for Bayesian methods often limits their applications in practice. In recent years, there have been many attempts to improve computational efficiency of Bayesian inference. Here we propose an efficient and scalable computational technique for a state-of-the-art Markov chain Monte Carlo methods, namely, Hamiltonian Monte Carlo. The key idea is to explore and exploit the structure and regularity in parameter space for the underlying probabilistic model to construct an effective approximation of its geometric properties. To this end, we build a surrogate function to approximate the target distribution using properly chosen random bases and an efficient optimization process. The resulting method provides a flexible, scalable, and efficient sampling algorithm, which converges to the correct target distribution. We show that by choosing the basis functions and optimization process differently, our method can be related to other approaches for the construction of surrogate functions such as generalized additive models or Gaussian process models. Experiments based on simulated and real data show that our approach leads to substantially more efficient sampling algorithms compared to existing state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Chu, J.; Zhang, C.; Fu, G.; Li, Y.; Zhou, H.
2015-08-01
This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed method dramatically reduces the computational demands required for attaining high-quality approximations of optimal trade-off relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed dimension reduction and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform dimension reduction of optimization problems when solving complex multi-objective reservoir operation problems.
Homotopy method for optimization of variable-specific-impulse low-thrust trajectories
NASA Astrophysics Data System (ADS)
Chi, Zhemin; Yang, Hongwei; Chen, Shiyu; Li, Junfeng
2017-11-01
The homotopy method has been used as a useful tool in solving fuel-optimal trajectories with constant-specific-impulse low thrust. However, the specific impulse is often variable for many practical solar electric power-limited thrusters. This paper investigates the application of the homotopy method for optimization of variable-specific-impulse low-thrust trajectories. Difficulties arise when the two commonly-used homotopy functions are employed for trajectory optimization. The optimal power throttle level and the optimal specific impulse are coupled with the commonly-used quadratic and logarithmic homotopy functions. To overcome these difficulties, a modified logarithmic homotopy function is proposed to serve as a gateway for trajectory optimization, leading to decoupled expressions of both the optimal power throttle level and the optimal specific impulse. The homotopy method based on this homotopy function is proposed. Numerical simulations validate the feasibility and high efficiency of the proposed method.
Optimizing the wireless power transfer over MIMO Channels
NASA Astrophysics Data System (ADS)
Wiedmann, Karsten; Weber, Tobias
2017-09-01
In this paper, the optimization of the power transfer over wireless channels having multiple-inputs and multiple-outputs (MIMO) is studied. Therefore, the transmitter, the receiver and the MIMO channel are modeled as multiports. The power transfer efficiency is described by a Rayleigh quotient, which is a function of the channel's scattering parameters and the incident waves from both transmitter and receiver side. This way, the power transfer efficiency can be maximized analytically by solving a generalized eigenvalue problem, which is deduced from the Rayleigh quotient. As a result, the maximum power transfer efficiency achievable over a given MIMO channel is obtained. This maximum can be used as a performance bound in order to benchmark wireless power transfer systems. Furthermore, the optimal operating point which achieves this maximum will be obtained. The optimal operating point will be described by the complex amplitudes of the optimal incident and reflected waves of the MIMO channel. This supports the design of the optimal transmitter and receiver multiports. The proposed method applies for arbitrary MIMO channels, taking transmitter-side and/or receiver-side cross-couplings in both near- and farfield scenarios into consideration. Special cases are briefly discussed in this paper in order to illustrate the method.
PS-FW: A Hybrid Algorithm Based on Particle Swarm and Fireworks for Global Optimization
Chen, Shuangqing; Wei, Lixin; Guan, Bing
2018-01-01
Particle swarm optimization (PSO) and fireworks algorithm (FWA) are two recently developed optimization methods which have been applied in various areas due to their simplicity and efficiency. However, when being applied to high-dimensional optimization problems, PSO algorithm may be trapped in the local optima owing to the lack of powerful global exploration capability, and fireworks algorithm is difficult to converge in some cases because of its relatively low local exploitation efficiency for noncore fireworks. In this paper, a hybrid algorithm called PS-FW is presented, in which the modified operators of FWA are embedded into the solving process of PSO. In the iteration process, the abandonment and supplement mechanism is adopted to balance the exploration and exploitation ability of PS-FW, and the modified explosion operator and the novel mutation operator are proposed to speed up the global convergence and to avoid prematurity. To verify the performance of the proposed PS-FW algorithm, 22 high-dimensional benchmark functions have been employed, and it is compared with PSO, FWA, stdPSO, CPSO, CLPSO, FIPS, Frankenstein, and ALWPSO algorithms. Results show that the PS-FW algorithm is an efficient, robust, and fast converging optimization method for solving global optimization problems. PMID:29675036
NASA Astrophysics Data System (ADS)
Ouyang, Bo; Shang, Weiwei
2016-03-01
The solution of tension distributions is infinite for cable-driven parallel manipulators(CDPMs) with redundant cables. A rapid optimization method for determining the optimal tension distribution is presented. The new optimization method is primarily based on the geometry properties of a polyhedron and convex analysis. The computational efficiency of the optimization method is improved by the designed projection algorithm, and a fast algorithm is proposed to determine which two of the lines are intersected at the optimal point. Moreover, a method for avoiding the operating point on the lower tension limit is developed. Simulation experiments are implemented on a six degree-of-freedom(6-DOF) CDPM with eight cables, and the results indicate that the new method is one order of magnitude faster than the standard simplex method. The optimal distribution of tension distribution is thus rapidly established on real-time by the proposed method.
Multi-GPU hybrid programming accelerated three-dimensional phase-field model in binary alloy
NASA Astrophysics Data System (ADS)
Zhu, Changsheng; Liu, Jieqiong; Zhu, Mingfang; Feng, Li
2018-03-01
In the process of dendritic growth simulation, the computational efficiency and the problem scales have extremely important influence on simulation efficiency of three-dimensional phase-field model. Thus, seeking for high performance calculation method to improve the computational efficiency and to expand the problem scales has a great significance to the research of microstructure of the material. A high performance calculation method based on MPI+CUDA hybrid programming model is introduced. Multi-GPU is used to implement quantitative numerical simulations of three-dimensional phase-field model in binary alloy under the condition of multi-physical processes coupling. The acceleration effect of different GPU nodes on different calculation scales is explored. On the foundation of multi-GPU calculation model that has been introduced, two optimization schemes, Non-blocking communication optimization and overlap of MPI and GPU computing optimization, are proposed. The results of two optimization schemes and basic multi-GPU model are compared. The calculation results show that the use of multi-GPU calculation model can improve the computational efficiency of three-dimensional phase-field obviously, which is 13 times to single GPU, and the problem scales have been expanded to 8193. The feasibility of two optimization schemes is shown, and the overlap of MPI and GPU computing optimization has better performance, which is 1.7 times to basic multi-GPU model, when 21 GPUs are used.
Kinoform design with an optimal-rotation-angle method.
Bengtsson, J
1994-10-10
Kinoforms (i.e., computer-generated phase holograms) are designed with a new algorithm, the optimalrotation- angle method, in the paraxial domain. This is a direct Fourier method (i.e., no inverse transform is performed) in which the height of the kinoform relief in each discrete point is chosen so that the diffraction efficiency is increased. The optimal-rotation-angle algorithm has a straightforward geometrical interpretation. It yields excellent results close to, or better than, those obtained with other state-of-the-art methods. The optimal-rotation-angle algorithm can easily be modified to take different restraints into account; as an example, phase-swing-restricted kinoforms, which distribute the light into a number of equally bright spots (so called fan-outs), were designed. The phase-swing restriction lowers the efficiency, but the uniformity can still be made almost perfect.
NASA Astrophysics Data System (ADS)
Ebrahimi, Mehdi; Jahangirian, Alireza
2017-12-01
An efficient strategy is presented for global shape optimization of wing sections with a parallel genetic algorithm. Several computational techniques are applied to increase the convergence rate and the efficiency of the method. A variable fidelity computational evaluation method is applied in which the expensive Navier-Stokes flow solver is complemented by an inexpensive multi-layer perceptron neural network for the objective function evaluations. A population dispersion method that consists of two phases, of exploration and refinement, is developed to improve the convergence rate and the robustness of the genetic algorithm. Owing to the nature of the optimization problem, a parallel framework based on the master/slave approach is used. The outcomes indicate that the method is able to find the global optimum with significantly lower computational time in comparison to the conventional genetic algorithm.
Optimization design of hydroturbine rotors according to the efficiency-strength criteria
NASA Astrophysics Data System (ADS)
Bannikov, D. V.; Yesipov, D. V.; Cherny, S. G.; Chirkov, D. V.
2010-12-01
The hydroturbine runner designing [1] is optimized by efficient methods for calculation of head loss in entire flow-through part of the turbine and deformation state of the blade. Energy losses are found at modelling of the spatial turbulent flow and engineering semi-empirical formulae. State of deformation is determined from the solution of the linear problem of elasticity for the isolated blade at hydrodynamic pressure with the method of boundary elements. With the use of the proposed system, the problem of the turbine runner design with the capacity of 640 MW providing the preset dependence of efficiency on the turbine work mode (efficiency criterion) is solved. The arising stresses do not exceed the critical value (strength criterion).
Aerodynamic optimization studies on advanced architecture computers
NASA Technical Reports Server (NTRS)
Chawla, Kalpana
1995-01-01
The approach to carrying out multi-discipline aerospace design studies in the future, especially in massively parallel computing environments, comprises of choosing (1) suitable solvers to compute solutions to equations characterizing a discipline, and (2) efficient optimization methods. In addition, for aerodynamic optimization problems, (3) smart methodologies must be selected to modify the surface shape. In this research effort, a 'direct' optimization method is implemented on the Cray C-90 to improve aerodynamic design. It is coupled with an existing implicit Navier-Stokes solver, OVERFLOW, to compute flow solutions. The optimization method is chosen such that it can accomodate multi-discipline optimization in future computations. In the work , however, only single discipline aerodynamic optimization will be included.
Yan, Yongsheng; Wang, Haiyan; Shen, Xiaohong; Leng, Bing; Li, Shuangquan
2018-05-21
The energy reading has been an efficient and attractive measure for collaborative acoustic source localization in practical application due to its cost saving in both energy and computation capability. The maximum likelihood problems by fusing received acoustic energy readings transmitted from local sensors are derived. Aiming to efficiently solve the nonconvex objective of the optimization problem, we present an approximate estimator of the original problem. Then, a direct norm relaxation and semidefinite relaxation, respectively, are utilized to derive the second-order cone programming, semidefinite programming or mixture of them for both cases of sensor self-location and source localization. Furthermore, by taking the colored energy reading noise into account, several minimax optimization problems are formulated, which are also relaxed via the direct norm relaxation and semidefinite relaxation respectively into convex optimization problems. Performance comparison with the existing acoustic energy-based source localization methods is given, where the results show the validity of our proposed methods.
Yan, Yongsheng; Wang, Haiyan; Shen, Xiaohong; Leng, Bing; Li, Shuangquan
2018-01-01
The energy reading has been an efficient and attractive measure for collaborative acoustic source localization in practical application due to its cost saving in both energy and computation capability. The maximum likelihood problems by fusing received acoustic energy readings transmitted from local sensors are derived. Aiming to efficiently solve the nonconvex objective of the optimization problem, we present an approximate estimator of the original problem. Then, a direct norm relaxation and semidefinite relaxation, respectively, are utilized to derive the second-order cone programming, semidefinite programming or mixture of them for both cases of sensor self-location and source localization. Furthermore, by taking the colored energy reading noise into account, several minimax optimization problems are formulated, which are also relaxed via the direct norm relaxation and semidefinite relaxation respectively into convex optimization problems. Performance comparison with the existing acoustic energy-based source localization methods is given, where the results show the validity of our proposed methods. PMID:29883410
NASA Astrophysics Data System (ADS)
Chen, Jing; Qiu, Xiaojie; Yin, Cunyi; Jiang, Hao
2018-02-01
An efficient method to design the broadband gain-flattened Raman fiber amplifier with multiple pumps is proposed based on least squares support vector regression (LS-SVR). A multi-input multi-output LS-SVR model is introduced to replace the complicated solving process of the nonlinear coupled Raman amplification equation. The proposed approach contains two stages: offline training stage and online optimization stage. During the offline stage, the LS-SVR model is trained. Owing to the good generalization capability of LS-SVR, the net gain spectrum can be directly and accurately obtained when inputting any combination of the pump wavelength and power to the well-trained model. During the online stage, we incorporate the LS-SVR model into the particle swarm optimization algorithm to find the optimal pump configuration. The design results demonstrate that the proposed method greatly shortens the computation time and enhances the efficiency of the pump parameter optimization for Raman fiber amplifier design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Cheng-Chia, E-mail: ct2443@columbia.edu; Grote, Richard R.; Beck, Jonathan H.
2014-07-14
We describe a general method for maximizing the short-circuit current in thin planar organic photovoltaic (OPV) heterojunction cells by simultaneous optimization of light absorption and carrier collection. Based on the experimentally obtained complex refractive indices of the OPV materials and the thickness-dependence of the internal quantum efficiency of the OPV active layer, we analyze the potential benefits of light trapping strategies for maximizing the overall power conversion efficiency of the cell. This approach provides a general strategy for optimizing the power conversion efficiency of a wide range of OPV structures. In particular, as an experimental trial system, the approach ismore » applied here to a ultra-thin film solar cell with a SubPc/C{sub 60} photovoltaic structure. Using a patterned indium tin oxide (ITO) top contact, the numerically optimized designs achieve short-circuit currents of 0.790 and 0.980 mA/cm{sup 2} for 30 nm and 45 nm SubPc/C{sub 60} heterojunction layer thicknesses, respectively. These values correspond to a power conversion efficiency enhancement of 78% for the 30 nm thick cell, but only of 32% for a 45 nm thick cell, for which the overall photocurrent is actually higher. Applied to other material systems, the general optimization method can elucidate if light trapping strategies can improve a given cell architecture.« less
Design and Optimization Method of a Two-Disk Rotor System
NASA Astrophysics Data System (ADS)
Huang, Jingjing; Zheng, Longxi; Mei, Qing
2016-04-01
An integrated analytical method based on multidisciplinary optimization software Isight and general finite element software ANSYS was proposed in this paper. Firstly, a two-disk rotor system was established and the mode, humorous response and transient response at acceleration condition were analyzed with ANSYS. The dynamic characteristics of the two-disk rotor system were achieved. On this basis, the two-disk rotor model was integrated to the multidisciplinary design optimization software Isight. According to the design of experiment (DOE) and the dynamic characteristics, the optimization variables, optimization objectives and constraints were confirmed. After that, the multi-objective design optimization of the transient process was carried out with three different global optimization algorithms including Evolutionary Optimization Algorithm, Multi-Island Genetic Algorithm and Pointer Automatic Optimizer. The optimum position of the two-disk rotor system was obtained at the specified constraints. Meanwhile, the accuracy and calculation numbers of different optimization algorithms were compared. The optimization results indicated that the rotor vibration reached the minimum value and the design efficiency and quality were improved by the multidisciplinary design optimization in the case of meeting the design requirements, which provided the reference to improve the design efficiency and reliability of the aero-engine rotor.
On the Convergence Analysis of the Optimized Gradient Method.
Kim, Donghwan; Fessler, Jeffrey A
2017-01-01
This paper considers the problem of unconstrained minimization of smooth convex functions having Lipschitz continuous gradients with known Lipschitz constant. We recently proposed the optimized gradient method for this problem and showed that it has a worst-case convergence bound for the cost function decrease that is twice as small as that of Nesterov's fast gradient method, yet has a similarly efficient practical implementation. Drori showed recently that the optimized gradient method has optimal complexity for the cost function decrease over the general class of first-order methods. This optimality makes it important to study fully the convergence properties of the optimized gradient method. The previous worst-case convergence bound for the optimized gradient method was derived for only the last iterate of a secondary sequence. This paper provides an analytic convergence bound for the primary sequence generated by the optimized gradient method. We then discuss additional convergence properties of the optimized gradient method, including the interesting fact that the optimized gradient method has two types of worstcase functions: a piecewise affine-quadratic function and a quadratic function. These results help complete the theory of an optimal first-order method for smooth convex minimization.
On the Convergence Analysis of the Optimized Gradient Method
Kim, Donghwan; Fessler, Jeffrey A.
2016-01-01
This paper considers the problem of unconstrained minimization of smooth convex functions having Lipschitz continuous gradients with known Lipschitz constant. We recently proposed the optimized gradient method for this problem and showed that it has a worst-case convergence bound for the cost function decrease that is twice as small as that of Nesterov’s fast gradient method, yet has a similarly efficient practical implementation. Drori showed recently that the optimized gradient method has optimal complexity for the cost function decrease over the general class of first-order methods. This optimality makes it important to study fully the convergence properties of the optimized gradient method. The previous worst-case convergence bound for the optimized gradient method was derived for only the last iterate of a secondary sequence. This paper provides an analytic convergence bound for the primary sequence generated by the optimized gradient method. We then discuss additional convergence properties of the optimized gradient method, including the interesting fact that the optimized gradient method has two types of worstcase functions: a piecewise affine-quadratic function and a quadratic function. These results help complete the theory of an optimal first-order method for smooth convex minimization. PMID:28461707
On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2004-01-01
Differential Evolution (DE) is a simple and robust evolutionary strategy that has been provEn effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. Several approaches that have proven effective for other evolutionary algorithms are modified and implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for standard test optimization problems and for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.
Dai-Kou type conjugate gradient methods with a line search only using gradient.
Huang, Yuanyuan; Liu, Changhe
2017-01-01
In this paper, the Dai-Kou type conjugate gradient methods are developed to solve the optimality condition of an unconstrained optimization, they only utilize gradient information and have broader application scope. Under suitable conditions, the developed methods are globally convergent. Numerical tests and comparisons with the PRP+ conjugate gradient method only using gradient show that the methods are efficient.
Optimization of the working process of the axial compressor according to the criterion of efficiency
NASA Astrophysics Data System (ADS)
Baturin, O. V.; Popov, G. M.; Goryachkin, E. S.; Novikova, Yu D.
2017-01-01
The paper shows search results of the optimal shape of low pressure compressor blades of the industrial gas turbine plant using methods of computational fluid dynamics and multicriteria methods of mathematical optimization. The essence of the methods is that an increase in compressor efficiency should be achieved by increasing the degree of compression up to 2%, and reducing the air flow to 8% relative to basic engine parameters. However, the compressor design elements should be retained as maximally unchanged as possible. During the work, the calculation model of the workflow in the test compressor has been developed and verified in the NUMECA software package, the automated algorithm of the blades shape change has been also developed using a small number of variables, while maintaining its stress-strain state. It allows reducing the number of changeable variables more than twofold. As the result of this study, the option of compressor performance was found, which can increase its efficiency by 1.3% (abs.).
O'Neill, Liam; Dexter, Franklin
2005-11-01
We compare two techniques for increasing the transparency and face validity of Data Envelopment Analysis (DEA) results for managers at a single decision-making unit: multifactor efficiency (MFE) and non-radial super-efficiency (NRSE). Both methods incorporate the slack values from the super-efficient DEA model to provide a more robust performance measure than radial super-efficiency scores. MFE and NRSE are equivalent for unique optimal solutions and a single output. MFE incorporates the slack values from multiple output variables, whereas NRSE does not. MFE can be more transparent to managers since it involves no additional optimization steps beyond the DEA, whereas NRSE requires several. We compare results for operating room managers at an Iowa hospital evaluating its growth potential for multiple surgical specialties. In addition, we address the problem of upward bias of the slack values of the super-efficient DEA model.
Optimization of active cell area on the dye-sensitized solar cell efficiency
NASA Astrophysics Data System (ADS)
Putri, A. W.; Nurosyid, F.; Supriyanto, Agus
2017-11-01
This study is aimed to obtain optimal active area producing high efficiency of DSSC module. The DSSC structure is constructed of TiO2 as working electrode, dye as photosensitizer, platinum as counter electrode, and electrolyte as electron transfer media. TiO2 paste was deposited on Fluorine-doped Tin Oxide (FTO) by screen printing method. Meanwhile, platinum was also coated on FTO via brush painting method. Keithley I-V meter was performed to characterize DSSC electrical property. The active area of each cell was varied of 4.5 cm2, 9 cm2, and 13.5 cm2. Each cell was assembled into a module using an external series connection of Z type. The module was consisted of 12 cells, 6 cells, and 4 cells with module active area of 54 cm2. The optimal active area of DSSC cell is 4.5 cm2 resulting 0.4149% efficiency. In addition, the highest efficiency of DSSC module is 0.2234% acquired by 6 cells assembling.
FPGA Implementation of Optimal 3D-Integer DCT Structure for Video Compression
2015-01-01
A novel optimal structure for implementing 3D-integer discrete cosine transform (DCT) is presented by analyzing various integer approximation methods. The integer set with reduced mean squared error (MSE) and high coding efficiency are considered for implementation in FPGA. The proposed method proves that the least resources are utilized for the integer set that has shorter bit values. Optimal 3D-integer DCT structure is determined by analyzing the MSE, power dissipation, coding efficiency, and hardware complexity of different integer sets. The experimental results reveal that direct method of computing the 3D-integer DCT using the integer set [10, 9, 6, 2, 3, 1, 1] performs better when compared to other integer sets in terms of resource utilization and power dissipation. PMID:26601120
NASA Astrophysics Data System (ADS)
Lin, Pei-Chun; Yu, Chun-Chang; Chen, Charlie Chung-Ping
2015-01-01
As one of the critical stages of a very large scale integration fabrication process, postexposure bake (PEB) plays a crucial role in determining the final three-dimensional (3-D) profiles and lessening the standing wave effects. However, the full 3-D chemically amplified resist simulation is not widely adopted during the postlayout optimization due to the long run-time and huge memory usage. An efficient simulation method is proposed to simulate the PEB while considering standing wave effects and resolution enhancement techniques, such as source mask optimization and subresolution assist features based on the Sylvester equation and Abbe-principal component analysis method. Simulation results show that our algorithm is 20× faster than the conventional Gaussian convolution method.
Aerodynamic design and optimization in one shot
NASA Technical Reports Server (NTRS)
Ta'asan, Shlomo; Kuruvila, G.; Salas, M. D.
1992-01-01
This paper describes an efficient numerical approach for the design and optimization of aerodynamic bodies. As in classical optimal control methods, the present approach introduces a cost function and a costate variable (Lagrange multiplier) in order to achieve a minimum. High efficiency is achieved by using a multigrid technique to solve for all the unknowns simultaneously, but restricting work on a design variable only to grids on which their changes produce nonsmooth perturbations. Thus, the effort required to evaluate design variables that have nonlocal effects on the solution is confined to the coarse grids. However, if a variable has a nonsmooth local effect on the solution in some neighborhood, it is relaxed in that neighborhood on finer grids. The cost of solving the optimal control problem is shown to be approximately two to three times the cost of the equivalent analysis problem. Examples are presented to illustrate the application of the method to aerodynamic design and constraint optimization.
Comprehensive Optimization of LC-MS Metabolomics Methods Using Design of Experiments (COLMeD)
Rhoades, Seth D.
2017-01-01
Introduction Both reverse-phase and HILIC chemistries are deployed for liquid-chromatography mass spectrometry (LC-MS) metabolomics analyses, however HILIC methods lag behind reverse-phase methods in reproducibility and versatility. Comprehensive metabolomics analysis is additionally complicated by the physiochemical diversity of metabolites and array of tunable analytical parameters. Objective Our aim was to rationally and efficiently design complementary HILIC-based polar metabolomics methods on multiple instruments using Design of Experiments (DoE). Methods We iteratively tuned LC and MS conditions on ion-switching triple quadrupole (QqQ) and quadrupole-time-of-flight (qTOF) mass spectrometers through multiple rounds of a workflow we term COLMeD (Comprehensive optimization of LC-MS metabolomics methods using design of experiments). Multivariate statistical analysis guided our decision process in the method optimizations. Results LC-MS/MS tuning for the QqQ method on serum metabolites yielded a median response increase of 161.5% (p<0.0001) over initial conditions with a 13.3% increase in metabolite coverage. The COLMeD output was benchmarked against two widely used polar metabolomics methods, demonstrating total ion current increases of 105.8% and 57.3%, with median metabolite response increases of 106.1% and 10.3% (p<0.0001 and p<0.05 respectively). For our optimized qTOF method, 22 solvent systems were compared on a standard mix of physiochemically diverse metabolites, followed by COLMeD optimization, yielding a median 29.8% response increase (p<0.0001) over initial conditions. Conclusions The COLMeD process elucidated response tradeoffs, facilitating improved chromatography and MS response without compromising separation of isobars. COLMeD is efficient, requiring no more than 20 injections in a given DoE round, and flexible, capable of class-specific optimization as demonstrated through acylcarnitine optimization within the QqQ method. PMID:28348510
Optimization of Turbine Engine Cycle Analysis with Analytic Derivatives
NASA Technical Reports Server (NTRS)
Hearn, Tristan; Hendricks, Eric; Chin, Jeffrey; Gray, Justin; Moore, Kenneth T.
2016-01-01
A new engine cycle analysis tool, called Pycycle, was built using the OpenMDAO framework. Pycycle provides analytic derivatives allowing for an efficient use of gradient-based optimization methods on engine cycle models, without requiring the use of finite difference derivative approximation methods. To demonstrate this, a gradient-based design optimization was performed on a turbofan engine model. Results demonstrate very favorable performance compared to an optimization of an identical model using finite-difference approximated derivatives.
Chen, Xi; Xu, Yixuan; Liu, Anfeng
2017-04-19
High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs. However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%.
Chen, Xi; Xu, Yixuan; Liu, Anfeng
2017-01-01
High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs). However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%. PMID:28422062
On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2004-01-01
Differential Evolution (DE) is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. These approaches are implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.
NASA Astrophysics Data System (ADS)
Sizov, Gennadi Y.
In this dissertation, a model-based multi-objective optimal design of permanent magnet ac machines, supplied by sine-wave current regulated drives, is developed and implemented. The design procedure uses an efficient electromagnetic finite element-based solver to accurately model nonlinear material properties and complex geometric shapes associated with magnetic circuit design. Application of an electromagnetic finite element-based solver allows for accurate computation of intricate performance parameters and characteristics. The first contribution of this dissertation is the development of a rapid computational method that allows accurate and efficient exploration of large multi-dimensional design spaces in search of optimum design(s). The computationally efficient finite element-based approach developed in this work provides a framework of tools that allow rapid analysis of synchronous electric machines operating under steady-state conditions. In the developed modeling approach, major steady-state performance parameters such as, winding flux linkages and voltages, average, cogging and ripple torques, stator core flux densities, core losses, efficiencies and saturated machine winding inductances, are calculated with minimum computational effort. In addition, the method includes means for rapid estimation of distributed stator forces and three-dimensional effects of stator and/or rotor skew on the performance of the machine. The second contribution of this dissertation is the development of the design synthesis and optimization method based on a differential evolution algorithm. The approach relies on the developed finite element-based modeling method for electromagnetic analysis and is able to tackle large-scale multi-objective design problems using modest computational resources. Overall, computational time savings of up to two orders of magnitude are achievable, when compared to current and prevalent state-of-the-art methods. These computational savings allow one to expand the optimization problem to achieve more complex and comprehensive design objectives. The method is used in the design process of several interior permanent magnet industrial motors. The presented case studies demonstrate that the developed finite element-based approach practically eliminates the need for using less accurate analytical and lumped parameter equivalent circuit models for electric machine design optimization. The design process and experimental validation of the case-study machines are detailed in the dissertation.
NASA Astrophysics Data System (ADS)
Chaillat, Stéphanie; Desiderio, Luca; Ciarlet, Patrick
2017-12-01
In this work, we study the accuracy and efficiency of hierarchical matrix (H-matrix) based fast methods for solving dense linear systems arising from the discretization of the 3D elastodynamic Green's tensors. It is well known in the literature that standard H-matrix based methods, although very efficient tools for asymptotically smooth kernels, are not optimal for oscillatory kernels. H2-matrix and directional approaches have been proposed to overcome this problem. However the implementation of such methods is much more involved than the standard H-matrix representation. The central questions we address are twofold. (i) What is the frequency-range in which the H-matrix format is an efficient representation for 3D elastodynamic problems? (ii) What can be expected of such an approach to model problems in mechanical engineering? We show that even though the method is not optimal (in the sense that more involved representations can lead to faster algorithms) an efficient solver can be easily developed. The capabilities of the method are illustrated on numerical examples using the Boundary Element Method.
Wang, Hongbin; Hu, Gaofei; Zhang, Yongqian; Yuan, Zheng; Zhao, Xuan; Zhu, Yong; Cai, De; Li, Yujuan; Xiao, Shengyuan; Deng, Yulin
2010-07-15
The post-digestion (18)O labeling method decouples protein digestion and peptide labeling. This method allows labeling conditions to be optimized separately and increases labeling efficiency. A common method for protein denaturation in proteomics is the use of urea. Though some previous studies have used urea-based protein denaturation before post-digestion (18)O labeling, the optimal (18)O labeling conditions in this case have not been yet reported. Present study investigated the effects of urea concentration and pH on the labeling efficiency and obtained an optimized protocol. It was demonstrated that urea inhibited (18)O incorporation depending on concentration. However, a urea concentration between 1 and 2M had minimal effects on labeling. It was also demonstrated that the use of FA to quench the digestion reaction severely affected the labeling efficiency. This study revealed the reason why previous studies gave different optimal pH for labeling. They neglect the effects of different digestion conditions on the labeling conditions. Excellent labeling quality was obtained at the optimized conditions using urea 1-2 M and pH 4.5, 98.4+/-1.9% for a standard protein mixture and 97.2+/-6.2% for a complex biological sample. For a 1:1 mixture analysis of the (16)O- and (18)O-labeled peptides from the same protein sample, the average abundance ratios reached 1.05+/-0.31, demonstrating a good quantitation quality at the optimized conditions. This work will benefit other researchers who pair urea-based protein denaturation with a post-digestion (18)O labeling method. 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.
2018-01-01
Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection
Multicriteria approaches for a private equity fund
NASA Astrophysics Data System (ADS)
Tammer, Christiane; Tannert, Johannes
2012-09-01
We develop a new model for a Private Equity Fund based on stochastic differential equations. In order to find efficient strategies for the fund manager we formulate a multicriteria optimization problem for a Private Equity Fund. Using the e-constraint method we solve this multicriteria optimization problem. Furthermore, a genetic algorithm is applied in order to get an approximation of the efficient frontier.
Shaw, Calvin B; Prakash, Jaya; Pramanik, Manojit; Yalavarthy, Phaneendra K
2013-08-01
A computationally efficient approach that computes the optimal regularization parameter for the Tikhonov-minimization scheme is developed for photoacoustic imaging. This approach is based on the least squares-QR decomposition which is a well-known dimensionality reduction technique for a large system of equations. It is shown that the proposed framework is effective in terms of quantitative and qualitative reconstructions of initial pressure distribution enabled via finding an optimal regularization parameter. The computational efficiency and performance of the proposed method are shown using a test case of numerical blood vessel phantom, where the initial pressure is exactly known for quantitative comparison.
NASA Astrophysics Data System (ADS)
Pei, Ji; Wang, Wenjie; Yuan, Shouqi; Zhang, Jinfeng
2016-09-01
In order to widen the high-efficiency operating range of a low-specific-speed centrifugal pump, an optimization process for considering efficiencies under 1.0 Q d and 1.4 Q d is proposed. Three parameters, namely, the blade outlet width b 2, blade outlet angle β 2, and blade wrap angle φ, are selected as design variables. Impellers are generated using the optimal Latin hypercube sampling method. The pump efficiencies are calculated using the software CFX 14.5 at two operating points selected as objectives. Surrogate models are also constructed to analyze the relationship between the objectives and the design variables. Finally, the particle swarm optimization algorithm is applied to calculate the surrogate model to determine the best combination of the impeller parameters. The results show that the performance curve predicted by numerical simulation has a good agreement with the experimental results. Compared with the efficiencies of the original impeller, the hydraulic efficiencies of the optimized impeller are increased by 4.18% and 0.62% under 1.0 Q d and 1.4Qd, respectively. The comparison of inner flow between the original pump and optimized one illustrates the improvement of performance. The optimization process can provide a useful reference on performance improvement of other pumps, even on reduction of pressure fluctuations.
Data consistency-driven scatter kernel optimization for x-ray cone-beam CT
NASA Astrophysics Data System (ADS)
Kim, Changhwan; Park, Miran; Sung, Younghun; Lee, Jaehak; Choi, Jiyoung; Cho, Seungryong
2015-08-01
Accurate and efficient scatter correction is essential for acquisition of high-quality x-ray cone-beam CT (CBCT) images for various applications. This study was conducted to demonstrate the feasibility of using the data consistency condition (DCC) as a criterion for scatter kernel optimization in scatter deconvolution methods in CBCT. As in CBCT, data consistency in the mid-plane is primarily challenged by scatter, we utilized data consistency to confirm the degree of scatter correction and to steer the update in iterative kernel optimization. By means of the parallel-beam DCC via fan-parallel rebinning, we iteratively optimized the scatter kernel parameters, using a particle swarm optimization algorithm for its computational efficiency and excellent convergence. The proposed method was validated by a simulation study using the XCAT numerical phantom and also by experimental studies using the ACS head phantom and the pelvic part of the Rando phantom. The results showed that the proposed method can effectively improve the accuracy of deconvolution-based scatter correction. Quantitative assessments of image quality parameters such as contrast and structure similarity (SSIM) revealed that the optimally selected scatter kernel improves the contrast of scatter-free images by up to 99.5%, 94.4%, and 84.4%, and of the SSIM in an XCAT study, an ACS head phantom study, and a pelvis phantom study by up to 96.7%, 90.5%, and 87.8%, respectively. The proposed method can achieve accurate and efficient scatter correction from a single cone-beam scan without need of any auxiliary hardware or additional experimentation.
Front panel engineering with CAD simulation tool
NASA Astrophysics Data System (ADS)
Delacour, Jacques; Ungar, Serge; Mathieu, Gilles; Hasna, Guenther; Martinez, Pascal; Roche, Jean-Christophe
1999-04-01
THe progress made recently in display technology covers many fields of application. The specification of radiance, colorimetry and lighting efficiency creates some new challenges for designers. Photometric design is limited by the capability of correctly predicting the result of a lighting system, to save on the costs and time taken to build multiple prototypes or bread board benches. The second step of the research carried out by company OPTIS is to propose an optimization method to be applied to the lighting system, developed in the software SPEOS. The main features of the tool requires include the CAD interface, to enable fast and efficient transfer between mechanical and light design software, the source modeling, the light transfer model and an optimization tool. The CAD interface is mainly a prototype of transfer, which is not the subjects here. Photometric simulation is efficiently achieved by using the measured source encoding and a simulation by the Monte Carlo method. Today, the advantages and the limitations of the Monte Carlo method are well known. The noise reduction requires a long calculation time, which increases with the complexity of the display panel. A successful optimization is difficult to achieve, due to the long calculation time required for each optimization pass including a Monte Carlo simulation. The problem was initially defined as an engineering method of study. The experience shows that good understanding and mastering of the phenomenon of light transfer is limited by the complexity of non sequential propagation. The engineer must call for the help of a simulation and optimization tool. The main point needed to be able to perform an efficient optimization is a quick method for simulating light transfer. Much work has been done in this area and some interesting results can be observed. It must be said that the Monte Carlo method wastes time calculating some results and information which are not required for the needs of the simulation. Low efficiency transfer system cost a lot of lost time. More generally, the light transfer simulation can be treated efficiently when the integrated result is composed of elementary sub results that include quick analytical calculated intersections. The first axis of research appear. The quick integration research and the quick calculation of geometric intersections. The first axis of research brings some general solutions also valid for multi-reflection systems. The second axis requires some deep thinking on the intersection calculation. An interesting way is the subdivision of space in VOXELS. This is an adapted method of 3D division of space according to the objects and their location. An experimental software has been developed to provide a validation of the method. The gain is particularly high in complex systems. An important reduction in the calculation time has been achieved.
Dai, Hongying; Wu, Guodong; Wu, Michael; Zhi, Degui
2016-01-01
Next-generation sequencing data pose a severe curse of dimensionality, complicating traditional "single marker-single trait" analysis. We propose a two-stage combined p-value method for pathway analysis. The first stage is at the gene level, where we integrate effects within a gene using the Sequence Kernel Association Test (SKAT). The second stage is at the pathway level, where we perform a correlated Lancaster procedure to detect joint effects from multiple genes within a pathway. We show that the Lancaster procedure is optimal in Bahadur efficiency among all combined p-value methods. The Bahadur efficiency,[Formula: see text], compares sample sizes among different statistical tests when signals become sparse in sequencing data, i.e. ε →0. The optimal Bahadur efficiency ensures that the Lancaster procedure asymptotically requires a minimal sample size to detect sparse signals ([Formula: see text]). The Lancaster procedure can also be applied to meta-analysis. Extensive empirical assessments of exome sequencing data show that the proposed method outperforms Gene Set Enrichment Analysis (GSEA). We applied the competitive Lancaster procedure to meta-analysis data generated by the Global Lipids Genetics Consortium to identify pathways significantly associated with high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol.
Comprehensive Optimization of LC-MS Metabolomics Methods Using Design of Experiments (COLMeD).
Rhoades, Seth D; Weljie, Aalim M
2016-12-01
Both reverse-phase and HILIC chemistries are deployed for liquid-chromatography mass spectrometry (LC-MS) metabolomics analyses, however HILIC methods lag behind reverse-phase methods in reproducibility and versatility. Comprehensive metabolomics analysis is additionally complicated by the physiochemical diversity of metabolites and array of tunable analytical parameters. Our aim was to rationally and efficiently design complementary HILIC-based polar metabolomics methods on multiple instruments using Design of Experiments (DoE). We iteratively tuned LC and MS conditions on ion-switching triple quadrupole (QqQ) and quadrupole-time-of-flight (qTOF) mass spectrometers through multiple rounds of a workflow we term COLMeD (Comprehensive optimization of LC-MS metabolomics methods using design of experiments). Multivariate statistical analysis guided our decision process in the method optimizations. LC-MS/MS tuning for the QqQ method on serum metabolites yielded a median response increase of 161.5% (p<0.0001) over initial conditions with a 13.3% increase in metabolite coverage. The COLMeD output was benchmarked against two widely used polar metabolomics methods, demonstrating total ion current increases of 105.8% and 57.3%, with median metabolite response increases of 106.1% and 10.3% (p<0.0001 and p<0.05 respectively). For our optimized qTOF method, 22 solvent systems were compared on a standard mix of physiochemically diverse metabolites, followed by COLMeD optimization, yielding a median 29.8% response increase (p<0.0001) over initial conditions. The COLMeD process elucidated response tradeoffs, facilitating improved chromatography and MS response without compromising separation of isobars. COLMeD is efficient, requiring no more than 20 injections in a given DoE round, and flexible, capable of class-specific optimization as demonstrated through acylcarnitine optimization within the QqQ method.
Zhang, An-yang; Fan, Tian-yuan
2009-12-18
To investigate the preparation, optimization and in vitro properties of riboflavin sodium phosphate floating microspheres. The floating microspheres composed of riboflavin sodium phosphate and calcium alginate were prepared using ion gelatin-oven drying method. The properties of the microspheres were investigated, including the buoyancy, release, appearance and entrapment efficiency. The formulation was optimized by response surface methodology (RSM). The optimized microspheres were round. The entrapment efficiency was 57.49%. All the microspheres could float on the artificial gastric juice over 8 hours. The release of the drug from the microspheres complied with Fick's diffusion.
An improved 3D MoF method based on analytical partial derivatives
NASA Astrophysics Data System (ADS)
Chen, Xiang; Zhang, Xiong
2016-12-01
MoF (Moment of Fluid) method is one of the most accurate approaches among various surface reconstruction algorithms. As other second order methods, MoF method needs to solve an implicit optimization problem to obtain the optimal approximate surface. Therefore, the partial derivatives of the objective function have to be involved during the iteration for efficiency and accuracy. However, to the best of our knowledge, the derivatives are currently estimated numerically by finite difference approximation because it is very difficult to obtain the analytical derivatives of the object function for an implicit optimization problem. Employing numerical derivatives in an iteration not only increase the computational cost, but also deteriorate the convergence rate and robustness of the iteration due to their numerical error. In this paper, the analytical first order partial derivatives of the objective function are deduced for 3D problems. The analytical derivatives can be calculated accurately, so they are incorporated into the MoF method to improve its accuracy, efficiency and robustness. Numerical studies show that by using the analytical derivatives the iterations are converged in all mixed cells with the efficiency improvement of 3 to 4 times.
A sequential linear optimization approach for controller design
NASA Technical Reports Server (NTRS)
Horta, L. G.; Juang, J.-N.; Junkins, J. L.
1985-01-01
A linear optimization approach with a simple real arithmetic algorithm is presented for reliable controller design and vibration suppression of flexible structures. Using first order sensitivity of the system eigenvalues with respect to the design parameters in conjunction with a continuation procedure, the method converts a nonlinear optimization problem into a maximization problem with linear inequality constraints. The method of linear programming is then applied to solve the converted linear optimization problem. The general efficiency of the linear programming approach allows the method to handle structural optimization problems with a large number of inequality constraints on the design vector. The method is demonstrated using a truss beam finite element model for the optimal sizing and placement of active/passive-structural members for damping augmentation. Results using both the sequential linear optimization approach and nonlinear optimization are presented and compared. The insensitivity to initial conditions of the linear optimization approach is also demonstrated.
Structural optimisation of cage induction motors using finite element analysis
NASA Astrophysics Data System (ADS)
Palko, S.
The current trend in motor design is to have highly efficient, low noise, low cost, and modular motors with a high power factor. High torque motors are useful in applications like servo motors, lifts, cranes, and rolling mills. This report contains a detailed review of different optimization methods applicable in various design problems. Special attention is given to the performance of different methods, when they are used with finite element analysis (FEA) as an objective function, and accuracy problems arising from the numerical simulations. Also an effective method for designing high starting torque and high efficiency motors is presented. The method described in this work utilizes FEA combined with algorithms for the optimization of the slot geometry. The optimization algorithm modifies the position of the nodal points in the element mesh. The number of independent variables ranges from 14 to 140 in this work.
A single-loop optimization method for reliability analysis with second order uncertainty
NASA Astrophysics Data System (ADS)
Xie, Shaojun; Pan, Baisong; Du, Xiaoping
2015-08-01
Reliability analysis may involve random variables and interval variables. In addition, some of the random variables may have interval distribution parameters owing to limited information. This kind of uncertainty is called second order uncertainty. This article develops an efficient reliability method for problems involving the three aforementioned types of uncertain input variables. The analysis produces the maximum and minimum reliability and is computationally demanding because two loops are needed: a reliability analysis loop with respect to random variables and an interval analysis loop for extreme responses with respect to interval variables. The first order reliability method and nonlinear optimization are used for the two loops, respectively. For computational efficiency, the two loops are combined into a single loop by treating the Karush-Kuhn-Tucker (KKT) optimal conditions of the interval analysis as constraints. Three examples are presented to demonstrate the proposed method.
Optimization of composite sandwich cover panels subjected to compressive loadings
NASA Technical Reports Server (NTRS)
Cruz, Juan R.
1991-01-01
An analysis and design method is presented for the design of composite sandwich cover panels that includes transverse shear effects and damage tolerance considerations. This method is incorporated into an optimization program called SANDOP (SANDwich OPtimization). SANDOP is used in the present study to design optimized composite sandwich cover panels for transport aircraft wing applications as a demonstration of its capabilities. The results of this design study indicate that optimized composite sandwich cover panels have approximately the same structural efficiency as stiffened composite cover panels designed to identical constraints. Results indicate that inplane stiffness requirements have a large effect on the weight of these composite sandwich cover panels at higher load levels. Increasing the maximum allowable strain and the upper percentage limit of the 0 degree and plus or minus 45 degree plies can yield significant weight savings. The results show that the structural efficiency of these optimized composite sandwich cover panels is relatively insensitive to changes in core density.
NASA Astrophysics Data System (ADS)
Chaidee, S.; Pakawanwong, P.; Suppakitpaisarn, V.; Teerasawat, P.
2017-09-01
In this work, we devise an efficient method for the land-use optimization problem based on Laguerre Voronoi diagram. Previous Voronoi diagram-based methods are more efficient and more suitable for interactive design than discrete optimization-based method, but, in many cases, their outputs do not satisfy area constraints. To cope with the problem, we propose a force-directed graph drawing algorithm, which automatically allocates generating points of Voronoi diagram to appropriate positions. Then, we construct a Laguerre Voronoi diagram based on these generating points, use linear programs to adjust each cell, and reconstruct the diagram based on the adjustment. We adopt the proposed method to the practical case study of Chiang Mai University's allocated land for a mixed-use complex. For this case study, compared to other Voronoi diagram-based method, we decrease the land allocation error by 62.557 %. Although our computation time is larger than the previous Voronoi-diagram-based method, it is still suitable for interactive design.
Topology optimization under stochastic stiffness
NASA Astrophysics Data System (ADS)
Asadpoure, Alireza
Topology optimization is a systematic computational tool for optimizing the layout of materials within a domain for engineering design problems. It allows variation of structural boundaries and connectivities. This freedom in the design space often enables discovery of new, high performance designs. However, solutions obtained by performing the optimization in a deterministic setting may be impractical or suboptimal when considering real-world engineering conditions with inherent variabilities including (for example) variabilities in fabrication processes and operating conditions. The aim of this work is to provide a computational methodology for topology optimization in the presence of uncertainties associated with structural stiffness, such as uncertain material properties and/or structural geometry. Existing methods for topology optimization under deterministic conditions are first reviewed. Modifications are then proposed to improve the numerical performance of the so-called Heaviside Projection Method (HPM) in continuum domains. Next, two approaches, perturbation and Polynomial Chaos Expansion (PCE), are proposed to account for uncertainties in the optimization procedure. These approaches are intrusive, allowing tight and efficient coupling of the uncertainty quantification with the optimization sensitivity analysis. The work herein develops a robust topology optimization framework aimed at reducing the sensitivity of optimized solutions to uncertainties. The perturbation-based approach combines deterministic topology optimization with a perturbation method for the quantification of uncertainties. The use of perturbation transforms the problem of topology optimization under uncertainty to an augmented deterministic topology optimization problem. The PCE approach combines the spectral stochastic approach for the representation and propagation of uncertainties with an existing deterministic topology optimization technique. The resulting compact representations for the response quantities allow for efficient and accurate calculation of sensitivities of response statistics with respect to the design variables. The proposed methods are shown to be successful at generating robust optimal topologies. Examples from topology optimization in continuum and discrete domains (truss structures) under uncertainty are presented. It is also shown that proposed methods lead to significant computational savings when compared to Monte Carlo-based optimization which involve multiple formations and inversions of the global stiffness matrix and that results obtained from the proposed method are in excellent agreement with those obtained from a Monte Carlo-based optimization algorithm.
NASA Astrophysics Data System (ADS)
Savkiv, Volodymyr; Mykhailyshyn, Roman; Duchon, Frantisek; Mikhalishin, Mykhailo
2017-11-01
The article deals with the topical issue of reducing energy consumption for transportation of industrial objects. The energy efficiency of the process of objects manipulation with the use of the orientation optimization method while gripping with the help of different methods has been studied. The analysis of the influence of the constituent parts of inertial forces, that affect the object of manipulation, on the necessary force characteristics and energy consumption of Bernoulli gripping device has been proposed. The economic efficiency of the use of the optimal orientation of Bernoulli gripping device while transporting the object of manipulation in comparison to the transportation without re-orientation has been proved.
Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization.
Jiang, Z; Chen, W; Burkhart, C
2013-11-01
Obtaining an accurate three-dimensional (3D) structure of a porous microstructure is important for assessing the material properties based on finite element analysis. Whereas directly obtaining 3D images of the microstructure is impractical under many circumstances, two sets of methods have been developed in literature to generate (reconstruct) 3D microstructure from its 2D images: one characterizes the microstructure based on certain statistical descriptors, typically two-point correlation function and cluster correlation function, and then performs an optimization process to build a 3D structure that matches those statistical descriptors; the other method models the microstructure using stochastic models like a Gaussian random field and generates a 3D structure directly from the function. The former obtains a relatively accurate 3D microstructure, but computationally the optimization process can be very intensive, especially for problems with large image size; the latter generates a 3D microstructure quickly but sacrifices the accuracy due to issues in numerical implementations. A hybrid optimization approach of modelling the 3D porous microstructure of random isotropic two-phase materials is proposed in this paper, which combines the two sets of methods and hence maintains the accuracy of the correlation-based method with improved efficiency. The proposed technique is verified for 3D reconstructions based on silica polymer composite images with different volume fractions. A comparison of the reconstructed microstructures and the optimization histories for both the original correlation-based method and our hybrid approach demonstrates the improved efficiency of the approach. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Optimization Control of the Color-Coating Production Process for Model Uncertainty
He, Dakuo; Wang, Zhengsong; Yang, Le; Mao, Zhizhong
2016-01-01
Optimized control of the color-coating production process (CCPP) aims at reducing production costs and improving economic efficiency while meeting quality requirements. However, because optimization control of the CCPP is hampered by model uncertainty, a strategy that considers model uncertainty is proposed. Previous work has introduced a mechanistic model of CCPP based on process analysis to simulate the actual production process and generate process data. The partial least squares method is then applied to develop predictive models of film thickness and economic efficiency. To manage the model uncertainty, the robust optimization approach is introduced to improve the feasibility of the optimized solution. Iterative learning control is then utilized to further refine the model uncertainty. The constrained film thickness is transformed into one of the tracked targets to overcome the drawback that traditional iterative learning control cannot address constraints. The goal setting of economic efficiency is updated continuously according to the film thickness setting until this reaches its desired value. Finally, fuzzy parameter adjustment is adopted to ensure that the economic efficiency and film thickness converge rapidly to their optimized values under the constraint conditions. The effectiveness of the proposed optimization control strategy is validated by simulation results. PMID:27247563
Optimization Control of the Color-Coating Production Process for Model Uncertainty.
He, Dakuo; Wang, Zhengsong; Yang, Le; Mao, Zhizhong
2016-01-01
Optimized control of the color-coating production process (CCPP) aims at reducing production costs and improving economic efficiency while meeting quality requirements. However, because optimization control of the CCPP is hampered by model uncertainty, a strategy that considers model uncertainty is proposed. Previous work has introduced a mechanistic model of CCPP based on process analysis to simulate the actual production process and generate process data. The partial least squares method is then applied to develop predictive models of film thickness and economic efficiency. To manage the model uncertainty, the robust optimization approach is introduced to improve the feasibility of the optimized solution. Iterative learning control is then utilized to further refine the model uncertainty. The constrained film thickness is transformed into one of the tracked targets to overcome the drawback that traditional iterative learning control cannot address constraints. The goal setting of economic efficiency is updated continuously according to the film thickness setting until this reaches its desired value. Finally, fuzzy parameter adjustment is adopted to ensure that the economic efficiency and film thickness converge rapidly to their optimized values under the constraint conditions. The effectiveness of the proposed optimization control strategy is validated by simulation results.
TU-AB-BRC-12: Optimized Parallel MonteCarlo Dose Calculations for Secondary MU Checks
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, S; Nazareth, D; Bellor, M
Purpose: Secondary MU checks are an important tool used during a physics review of a treatment plan. Commercial software packages offer varying degrees of theoretical dose calculation accuracy, depending on the modality involved. Dose calculations of VMAT plans are especially prone to error due to the large approximations involved. Monte Carlo (MC) methods are not commonly used due to their long run times. We investigated two methods to increase the computational efficiency of MC dose simulations with the BEAMnrc code. Distributed computing resources, along with optimized code compilation, will allow for accurate and efficient VMAT dose calculations. Methods: The BEAMnrcmore » package was installed on a high performance computing cluster accessible to our clinic. MATLAB and PYTHON scripts were developed to convert a clinical VMAT DICOM plan into BEAMnrc input files. The BEAMnrc installation was optimized by running the VMAT simulations through profiling tools which indicated the behavior of the constituent routines in the code, e.g. the bremsstrahlung splitting routine, and the specified random number generator. This information aided in determining the most efficient compiling parallel configuration for the specific CPU’s available on our cluster, resulting in the fastest VMAT simulation times. Our method was evaluated with calculations involving 10{sup 8} – 10{sup 9} particle histories which are sufficient to verify patient dose using VMAT. Results: Parallelization allowed the calculation of patient dose on the order of 10 – 15 hours with 100 parallel jobs. Due to the compiler optimization process, further speed increases of 23% were achieved when compared with the open-source compiler BEAMnrc packages. Conclusion: Analysis of the BEAMnrc code allowed us to optimize the compiler configuration for VMAT dose calculations. In future work, the optimized MC code, in conjunction with the parallel processing capabilities of BEAMnrc, will be applied to provide accurate and efficient secondary MU checks.« less
Optimal and Miniaturized Strongly Coupled Magnetic Resonant Systems
NASA Astrophysics Data System (ADS)
Hu, Hao
Wireless power transfer (WPT) technologies for communication and recharging devices have recently attracted significant research attention. Conventional WPT systems based either on far-field or near-field coupling cannot provide simultaneously high efficiency and long transfer range. The Strongly Coupled Magnetic Resonance (SCMR) method was introduced recently, and it offers the possibility of transferring power with high efficiency over longer distances. Previous SCMR research has only focused on how to improve its efficiency and range through different methods. However, the study of optimal and miniaturized designs has been limited. In addition, no multiband and broadband SCMR WPT systems have been developed and traditional SCMR systems exhibit narrowband efficiency thereby imposing strict limitations on simultaneous wireless transmission of information and power, which is important for battery-less sensors. Therefore, new SCMR systems that are optimally designed and miniaturized in size will significantly enhance various technologies in many applications. The optimal and miniaturized SCMR systems are studied here. First, analytical models of the Conformal SCMR (CSCMR) system and thorough analysis and design methodology have been presented. This analysis specifically leads to the identification of the optimal design parameters, and predicts the performance of the designed CSCMR system. Second, optimal multiband and broadband CSCMR systems are designed. Two-band, three-band, and four-band CSCMR systems are designed and validated using simulations and measurements. Novel broadband CSCMR systems are also analyzed, designed, simulated and measured. The proposed broadband CSCMR system achieved more than 7 times larger bandwidth compared to the traditional SCMR system at the same frequency. Miniaturization methods of SCMR systems are also explored. Specifically, methods that use printable CSCMR with large capacitors, novel topologies including meandered, SRRs, and spiral topologies or 3-D structures, lower the operating frequency of SCMR systems, thereby reducing their size. Finally, SCMR systems are discussed and designed for various applications, such as biomedical devices and simultaneous powering of multiple devices.
Design Optimization Method for Composite Components Based on Moment Reliability-Sensitivity Criteria
NASA Astrophysics Data System (ADS)
Sun, Zhigang; Wang, Changxi; Niu, Xuming; Song, Yingdong
2017-08-01
In this paper, a Reliability-Sensitivity Based Design Optimization (RSBDO) methodology for the design of the ceramic matrix composites (CMCs) components has been proposed. A practical and efficient method for reliability analysis and sensitivity analysis of complex components with arbitrary distribution parameters are investigated by using the perturbation method, the respond surface method, the Edgeworth series and the sensitivity analysis approach. The RSBDO methodology is then established by incorporating sensitivity calculation model into RBDO methodology. Finally, the proposed RSBDO methodology is applied to the design of the CMCs components. By comparing with Monte Carlo simulation, the numerical results demonstrate that the proposed methodology provides an accurate, convergent and computationally efficient method for reliability-analysis based finite element modeling engineering practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Wei; Reddy, T. A.; Gurian, Patrick
2007-01-31
A companion paper to Jiang and Reddy that presents a general and computationally efficient methodology for dyanmic scheduling and optimal control of complex primary HVAC&R plants using a deterministic engineering optimization approach.
NASA Astrophysics Data System (ADS)
Beck, Joakim; Dia, Ben Mansour; Espath, Luis F. R.; Long, Quan; Tempone, Raúl
2018-06-01
In calculating expected information gain in optimal Bayesian experimental design, the computation of the inner loop in the classical double-loop Monte Carlo requires a large number of samples and suffers from underflow if the number of samples is small. These drawbacks can be avoided by using an importance sampling approach. We present a computationally efficient method for optimal Bayesian experimental design that introduces importance sampling based on the Laplace method to the inner loop. We derive the optimal values for the method parameters in which the average computational cost is minimized according to the desired error tolerance. We use three numerical examples to demonstrate the computational efficiency of our method compared with the classical double-loop Monte Carlo, and a more recent single-loop Monte Carlo method that uses the Laplace method as an approximation of the return value of the inner loop. The first example is a scalar problem that is linear in the uncertain parameter. The second example is a nonlinear scalar problem. The third example deals with the optimal sensor placement for an electrical impedance tomography experiment to recover the fiber orientation in laminate composites.
NASA Astrophysics Data System (ADS)
Arroyo, Orlando; Gutiérrez, Sergio
2017-07-01
Several seismic optimization methods have been proposed to improve the performance of reinforced concrete framed (RCF) buildings; however, they have not been widely adopted among practising engineers because they require complex nonlinear models and are computationally expensive. This article presents a procedure to improve the seismic performance of RCF buildings based on eigenfrequency optimization, which is effective, simple to implement and efficient. The method is used to optimize a 10-storey regular building, and its effectiveness is demonstrated by nonlinear time history analyses, which show important reductions in storey drifts and lateral displacements compared to a non-optimized building. A second example for an irregular six-storey building demonstrates that the method provides benefits to a wide range of RCF structures and supports the applicability of the proposed method.
Multiobjective Optimization of Low-Energy Trajectories Using Optimal Control on Dynamical Channels
NASA Technical Reports Server (NTRS)
Coffee, Thomas M.; Anderson, Rodney L.; Lo, Martin W.
2011-01-01
We introduce a computational method to design efficient low-energy trajectories by extracting initial solutions from dynamical channels formed by invariant manifolds, and improving these solutions through variational optimal control. We consider trajectories connecting two unstable periodic orbits in the circular restricted 3-body problem (CR3BP). Our method leverages dynamical channels to generate a range of solutions, and approximates the areto front for impulse and time of flight through a multiobjective optimization of these solutions based on primer vector theory. We demonstrate the application of our method to a libration orbit transfer in the Earth-Moon system.
Topology-optimized metasurfaces: impact of initial geometric layout.
Yang, Jianji; Fan, Jonathan A
2017-08-15
Topology optimization is a powerful iterative inverse design technique in metasurface engineering and can transform an initial layout into a high-performance device. With this method, devices are optimized within a local design phase space, making the identification of suitable initial geometries essential. In this Letter, we examine the impact of initial geometric layout on the performance of large-angle (75 deg) topology-optimized metagrating deflectors. We find that when conventional metasurface designs based on dielectric nanoposts are used as initial layouts for topology optimization, the final devices have efficiencies around 65%. In contrast, when random initial layouts are used, the final devices have ultra-high efficiencies that can reach 94%. Our numerical experiments suggest that device topologies based on conventional metasurface designs may not be suitable to produce ultra-high-efficiency, large-angle metasurfaces. Rather, initial geometric layouts with non-trivial topologies and shapes are required.
Optimization of the blade trailing edge geometric parameters for a small scale ORC turbine
NASA Astrophysics Data System (ADS)
Zhang, L.; Zhuge, W. L.; Peng, J.; Liu, S. J.; Zhang, Y. J.
2013-12-01
In general, the method proposed by Whitfield and Baines is adopted for the turbine preliminary design. In this design procedure for the turbine blade trailing edge geometry, two assumptions (ideal gas and zero discharge swirl) and two experience values (WR and γ) are used to get the three blade trailing edge geometric parameters: relative exit flow angle β6, the exit tip radius R6t and hub radius R6h for the purpose of maximizing the rotor total-to-static isentropic efficiency. The method above is established based on the experience and results of testing using air as working fluid, so it does not provide a mathematical optimal solution to instruct the optimization of geometry parameters and consider the real gas effects of the organic, working fluid which must be taken into consideration for the ORC turbine design procedure. In this paper, a new preliminary design and optimization method is established for the purpose of reducing the exit kinetic energy loss to improve the turbine efficiency ηts, and the blade trailing edge geometric parameters for a small scale ORC turbine with working fluid R123 are optimized based on this method. The mathematical optimal solution to minimize the exit kinetic energy is deduced, which can be used to design and optimize the exit shroud/hub radius and exit blade angle. And then, the influence of blade trailing edge geometric parameters on turbine efficiency ηts are analysed and the optimal working ranges of these parameters for the equations are recommended in consideration of working fluid R123. This method is used to modify an existing ORC turbine exit kinetic energy loss from 11.7% to 7%, which indicates the effectiveness of the method. However, the internal passage loss increases from 7.9% to 9.4%, so the only way to consider the influence of geometric parameters on internal passage loss is to give the empirical ranges of these parameters, such as the recommended ranges that the value of γ is at 0.3 to 0.4, and the value of τ is at 0.5 to 0.6.
Design of piezoelectric transformer for DC/DC converter with stochastic optimization method
NASA Astrophysics Data System (ADS)
Vasic, Dejan; Vido, Lionel
2016-04-01
Piezoelectric transformers were adopted in recent year due to their many inherent advantages such as safety, no EMI problem, low housing profile, and high power density, etc. The characteristics of the piezoelectric transformers are well known when the load impedance is a pure resistor. However, when piezoelectric transformers are used in AC/DC or DC/DC converters, there are non-linear electronic circuits connected before and after the transformer. Consequently, the output load is variable and due to the output capacitance of the transformer the optimal working point change. This paper starts from modeling a piezoelectric transformer connected to a full wave rectifier in order to discuss the design constraints and configuration of the transformer. The optimization method adopted here use the MOPSO algorithm (Multiple Objective Particle Swarm Optimization). We start with the formulation of the objective function and constraints; then the results give different sizes of the transformer and the characteristics. In other word, this method is looking for a best size of the transformer for optimal efficiency condition that is suitable for variable load. Furthermore, the size and the efficiency are found to be a trade-off. This paper proposes the completed design procedure to find the minimum size of PT in need. The completed design procedure is discussed by a given specification. The PT derived from the proposed design procedure can guarantee both good efficiency and enough range for load variation.
Poojary, Mahesha M; Passamonti, Paolo
2016-12-09
This paper reports on improved conventional thermal silylation (CTS) and microwave-assisted silylation (MAS) methods for simultaneous determination of tocopherols and sterols by gas chromatography. Reaction parameters in each of the methods developed were systematically optimized using a full factorial design followed by a central composite design. Initially, experimental conditions for CTS were optimized using a block heater. Further, a rapid MAS was developed and optimized. To understand microwave heating mechanisms, MAS was optimized by two distinct modes of microwave heating: temperature-controlled MAS and power-controlled MAS, using dedicated instruments where reaction temperature and microwave power level were controlled and monitored online. Developed methods: were compared with routine overnight derivatization. On a comprehensive level, while both CTS and MAS were found to be efficient derivatization techniques, MAS significantly reduced the reaction time. The optimal derivatization temperature and time for CTS found to be 55°C and 54min, while it was 87°C and 1.2min for temperature-controlled MAS. Further, a microwave power of 300W and a derivatization time 0.5min found to be optimal for power-controlled MAS. The use of an appropriate derivatization solvent, such as pyridine, was found to be critical for the successful determination. Catalysts, like potassium acetate and 4-dimethylaminopyridine, enhanced the efficiency slightly. The developed methods showed excellent analytical performance in terms of linearity, accuracy and precision. Copyright © 2016 Elsevier B.V. All rights reserved.
Optimization of Interior Permanent Magnet Motor by Quality Engineering and Multivariate Analysis
NASA Astrophysics Data System (ADS)
Okada, Yukihiro; Kawase, Yoshihiro
This paper has described the method of optimization based on the finite element method. The quality engineering and the multivariable analysis are used as the optimization technique. This optimizing method consists of two steps. At Step.1, the influence of parameters for output is obtained quantitatively, at Step.2, the number of calculation by the FEM can be cut down. That is, the optimal combination of the design parameters, which satisfies the required characteristic, can be searched for efficiently. In addition, this method is applied to a design of IPM motor to reduce the torque ripple. The final shape can maintain average torque and cut down the torque ripple 65%. Furthermore, the amount of permanent magnets can be reduced.
Steering Quantum Dynamics of a Two-Qubit System via Optimal Bang-Bang Control
NASA Astrophysics Data System (ADS)
Hu, Juju; Ke, Qiang; Ji, Yinghua
2018-02-01
The optimization of control time for quantum systems has been an important field of control science attracting decades of focus, which is beneficial for efficiency improvement and decoherence suppression caused by the environment. Based on analyzing the advantages and disadvantages of the existing Lyapunov control, using a bang-bang optimal control technique, we investigate the fast state control in a closed two-qubit quantum system, and give three optimized control field design methods. Numerical simulation experiments indicate the effectiveness of the methods. Compared to the standard Lyapunov control or standard bang-bang control method, the optimized control field design methods effectively shorten the state control time and avoid high-frequency oscillation that occurs in bang-bang control.
Efficiency optimization of wireless power transmission systems for active capsule endoscopes.
Zhiwei, Jia; Guozheng, Yan; Jiangpingping; Zhiwu, Wang; Hua, Liu
2011-10-01
Multipurpose active capsule endoscopes have drawn considerable attention in recent years, but these devices continue to suffer from energy limitations. A wireless power supply system is regarded as a practical way to overcome the power shortage problem in such devices. This paper focuses on the efficiency optimization of a wireless energy supply system with size and safety constraints. A mathematical programming model in which these constraints are considered is proposed for transmission efficiency, optimal frequency and current, and overall system effectiveness. To verify the feasibility of the proposed method, we use a wireless active capsule endoscope as an illustrative example. The achieved efficiency can be regarded as an index for evaluating the system, and the proposed approach can be used to direct the design of transmitting and receiving coils.
NASA Technical Reports Server (NTRS)
Khayat, Michael A.; Wilton, Donald R.; Fink, Patrick W.
2007-01-01
Simple and efficient numerical procedures using singularity cancellation methods are presented for evaluating singular and near-singular potential integrals. Four different transformations are compared and the advantages of the Radial-angular transform are demonstrated. A method is then described for optimizing this integration scheme.
ACCESS 3. Approximation concepts code for efficient structural synthesis: User's guide
NASA Technical Reports Server (NTRS)
Fleury, C.; Schmit, L. A., Jr.
1980-01-01
A user's guide is presented for ACCESS-3, a research oriented program which combines dual methods and a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and dual algorithms of mathematical programming are applied in the design optimization procedure. This program retains all of the ACCESS-2 capabilities and the data preparation formats are fully compatible. Four distinct optimizer options were added: interior point penalty function method (NEWSUMT); second order primal projection method (PRIMAL2); second order Newton-type dual method (DUAL2); and first order gradient projection-type dual method (DUAL1). A pure discrete and mixed continuous-discrete design variable capability, and zero order approximation of the stress constraints are also included.
León, Ileana R.; Schwämmle, Veit; Jensen, Ole N.; Sprenger, Richard R.
2013-01-01
The majority of mass spectrometry-based protein quantification studies uses peptide-centric analytical methods and thus strongly relies on efficient and unbiased protein digestion protocols for sample preparation. We present a novel objective approach to assess protein digestion efficiency using a combination of qualitative and quantitative liquid chromatography-tandem MS methods and statistical data analysis. In contrast to previous studies we employed both standard qualitative as well as data-independent quantitative workflows to systematically assess trypsin digestion efficiency and bias using mitochondrial protein fractions. We evaluated nine trypsin-based digestion protocols, based on standard in-solution or on spin filter-aided digestion, including new optimized protocols. We investigated various reagents for protein solubilization and denaturation (dodecyl sulfate, deoxycholate, urea), several trypsin digestion conditions (buffer, RapiGest, deoxycholate, urea), and two methods for removal of detergents before analysis of peptides (acid precipitation or phase separation with ethyl acetate). Our data-independent quantitative liquid chromatography-tandem MS workflow quantified over 3700 distinct peptides with 96% completeness between all protocols and replicates, with an average 40% protein sequence coverage and an average of 11 peptides identified per protein. Systematic quantitative and statistical analysis of physicochemical parameters demonstrated that deoxycholate-assisted in-solution digestion combined with phase transfer allows for efficient, unbiased generation and recovery of peptides from all protein classes, including membrane proteins. This deoxycholate-assisted protocol was also optimal for spin filter-aided digestions as compared with existing methods. PMID:23792921
NASA Astrophysics Data System (ADS)
Inoue, Kaoru; Ogata, Kenji; Kato, Toshiji
When the motor speed is reduced by using a regenerative brake, the mechanical energy of rotation is converted to the electrical energy. When the regenerative torque is large, the corresponding current increases so that the copper loss also becomes large. On the other hand, the damping effect of rotation increases according to the time elapse when the regenerative torque is small. In order to use the limited energy effectively, an optimal regenerative torque should be discussed in order to regenerate electrical energy as much as possible. This paper proposes a design methodology of a regenerative torque for an induction motor to maximize the regenerative electric energy by means of the variational method. Similarly, an optimal torque for acceleration is derived in order to minimize the energy to drive. Finally, an efficient motor drive system with the proposed optimal torque and the power storage system stabilizing the DC link voltage will be proposed. The effectiveness of the proposed methods are illustrated by both simulations and experiments.
An image segmentation method based on fuzzy C-means clustering and Cuckoo search algorithm
NASA Astrophysics Data System (ADS)
Wang, Mingwei; Wan, Youchuan; Gao, Xianjun; Ye, Zhiwei; Chen, Maolin
2018-04-01
Image segmentation is a significant step in image analysis and machine vision. Many approaches have been presented in this topic; among them, fuzzy C-means (FCM) clustering is one of the most widely used methods for its high efficiency and ambiguity of images. However, the success of FCM could not be guaranteed because it easily traps into local optimal solution. Cuckoo search (CS) is a novel evolutionary algorithm, which has been tested on some optimization problems and proved to be high-efficiency. Therefore, a new segmentation technique using FCM and blending of CS algorithm is put forward in the paper. Further, the proposed method has been measured on several images and compared with other existing FCM techniques such as genetic algorithm (GA) based FCM and particle swarm optimization (PSO) based FCM in terms of fitness value. Experimental results indicate that the proposed method is robust, adaptive and exhibits the better performance than other methods involved in the paper.
A self-optimizing scheme for energy balanced routing in Wireless Sensor Networks using SensorAnt.
Shamsan Saleh, Ahmed M; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A; Ismail, Alyani
2012-01-01
Planning of energy-efficient protocols is critical for Wireless Sensor Networks (WSNs) because of the constraints on the sensor nodes' energy. The routing protocol should be able to provide uniform power dissipation during transmission to the sink node. In this paper, we present a self-optimization scheme for WSNs which is able to utilize and optimize the sensor nodes' resources, especially the batteries, to achieve balanced energy consumption across all sensor nodes. This method is based on the Ant Colony Optimization (ACO) metaheuristic which is adopted to enhance the paths with the best quality function. The assessment of this function depends on multi-criteria metrics such as the minimum residual battery power, hop count and average energy of both route and network. This method also distributes the traffic load of sensor nodes throughout the WSN leading to reduced energy usage, extended network life time and reduced packet loss. Simulation results show that our scheme performs much better than the Energy Efficient Ant-Based Routing (EEABR) in terms of energy consumption, balancing and efficiency.
Chen, Xueye; Zhao, Zhongyi
2017-04-29
This paper aims at layout optimization design of obstacles in a three-dimensional T-type micromixer. Numerical analysis shows that the direction of flow velocity change constantly due to the obstacles blocking, which produces the chaotic convection and increases species mixing effectively. The orthogonal experiment method was applied for determining the effects of some key parameters on mixing efficiency. The weights in the order are: height of obstacles > geometric shape > symmetry = number of obstacles. Based on the optimized results, a multi-units obstacle micromixer was designed. Compared with T-type micromixer, the multi-units obstacle micromixer is more efficient, and more than 90% mixing efficiency were obtained for a wide range of peclet numbers. It can be demonstrated that the presented optimal design method of obstacles layout in three-dimensional microchannels is a simple and effective technology to improve species mixing in microfluidic devices. The obstacles layout methodology has the potential for applications in chemical engineering and bioengineering. Copyright © 2017 Elsevier B.V. All rights reserved.
Gu, Haihui; Huang, Xia; Xu, Jing; Song, Lili; Liu, Shuping; Zhang, Xiao-Bing; Yuan, Weiping; Li, Yanxin
2018-06-15
Generation of induced pluripotent stem cells (iPSCs) from human peripheral blood provides a convenient and low-invasive way to obtain patient-specific iPSCs. The episomal vector is one of the best approaches for reprogramming somatic cells to pluripotent status because of its simplicity and affordability. However, the efficiency of episomal vector reprogramming of adult peripheral blood cells is relatively low compared with cord blood and bone marrow cells. In the present study, integration-free human iPSCs derived from peripheral blood were established via episomal technology. We optimized mononuclear cell isolation and cultivation, episomal vector promoters, and a combination of transcriptional factors to improve reprogramming efficiency. Here, we improved the generation efficiency of integration-free iPSCs from human peripheral blood mononuclear cells by optimizing the method of isolating mononuclear cells from peripheral blood, by modifying the integration of culture medium, and by adjusting the duration of culture time and the combination of different episomal vectors. With this optimized protocol, a valuable asset for banking patient-specific iPSCs has been established.
Bloom, Guillaume; Larat, Christian; Lallier, Eric; Lee-Bouhours, Mane-Si Laure; Loiseaux, Brigitte; Huignard, Jean-Pierre
2011-02-10
We have designed a high-efficiency array generator composed of subwavelength grooves etched in a GaAs substrate for operation at 4.5 μm. The method used combines rigorous coupled wave analysis with an optimization algorithm. The optimized beam splitter has both a high efficiency (∼96%) and a good intensity uniformity (∼0.2%). The fabrication error tolerances are numerically calculated, and it is shown that this subwavelength array generator could be fabricated with current electron beam writers and inductively coupled plasma etching. Finally, we studied the effect of a simple and realistic antireflection coating on the performance of the beam splitter.
NASA Astrophysics Data System (ADS)
Keum, Jongho; Coulibaly, Paulin
2017-07-01
Adequate and accurate hydrologic information from optimal hydrometric networks is an essential part of effective water resources management. Although the key hydrologic processes in the water cycle are interconnected, hydrometric networks (e.g., streamflow, precipitation, groundwater level) have been routinely designed individually. A decision support framework is proposed for integrated design of multivariable hydrometric networks. The proposed method is applied to design optimal precipitation and streamflow networks simultaneously. The epsilon-dominance hierarchical Bayesian optimization algorithm was combined with Shannon entropy of information theory to design and evaluate hydrometric networks. Specifically, the joint entropy from the combined networks was maximized to provide the most information, and the total correlation was minimized to reduce redundant information. To further optimize the efficiency between the networks, they were designed by maximizing the conditional entropy of the streamflow network given the information of the precipitation network. Compared to the traditional individual variable design approach, the integrated multivariable design method was able to determine more efficient optimal networks by avoiding the redundant stations. Additionally, four quantization cases were compared to evaluate their effects on the entropy calculations and the determination of the optimal networks. The evaluation results indicate that the quantization methods should be selected after careful consideration for each design problem since the station rankings and the optimal networks can change accordingly.
Performance index and meta-optimization of a direct search optimization method
NASA Astrophysics Data System (ADS)
Krus, P.; Ölvander, J.
2013-10-01
Design optimization is becoming an increasingly important tool for design, often using simulation as part of the evaluation of the objective function. A measure of the efficiency of an optimization algorithm is of great importance when comparing methods. The main contribution of this article is the introduction of a singular performance criterion, the entropy rate index based on Shannon's information theory, taking both reliability and rate of convergence into account. It can also be used to characterize the difficulty of different optimization problems. Such a performance criterion can also be used for optimization of the optimization algorithms itself. In this article the Complex-RF optimization method is described and its performance evaluated and optimized using the established performance criterion. Finally, in order to be able to predict the resources needed for optimization an objective function temperament factor is defined that indicates the degree of difficulty of the objective function.
Multidisciplinary Optimization Methods for Aircraft Preliminary Design
NASA Technical Reports Server (NTRS)
Kroo, Ilan; Altus, Steve; Braun, Robert; Gage, Peter; Sobieski, Ian
1994-01-01
This paper describes a research program aimed at improved methods for multidisciplinary design and optimization of large-scale aeronautical systems. The research involves new approaches to system decomposition, interdisciplinary communication, and methods of exploiting coarse-grained parallelism for analysis and optimization. A new architecture, that involves a tight coupling between optimization and analysis, is intended to improve efficiency while simplifying the structure of multidisciplinary, computation-intensive design problems involving many analysis disciplines and perhaps hundreds of design variables. Work in two areas is described here: system decomposition using compatibility constraints to simplify the analysis structure and take advantage of coarse-grained parallelism; and collaborative optimization, a decomposition of the optimization process to permit parallel design and to simplify interdisciplinary communication requirements.
Multi-disciplinary optimization of aeroservoelastic systems
NASA Technical Reports Server (NTRS)
Karpel, Mordechay
1990-01-01
Efficient analytical and computational tools for simultaneous optimal design of the structural and control components of aeroservoelastic systems are presented. The optimization objective is to achieve aircraft performance requirements and sufficient flutter and control stability margins with a minimal weight penalty and without violating the design constraints. Analytical sensitivity derivatives facilitate an efficient optimization process which allows a relatively large number of design variables. Standard finite element and unsteady aerodynamic routines are used to construct a modal data base. Minimum State aerodynamic approximations and dynamic residualization methods are used to construct a high accuracy, low order aeroservoelastic model. Sensitivity derivatives of flutter dynamic pressure, control stability margins and control effectiveness with respect to structural and control design variables are presented. The performance requirements are utilized by equality constraints which affect the sensitivity derivatives. A gradient-based optimization algorithm is used to minimize an overall cost function. A realistic numerical example of a composite wing with four controls is used to demonstrate the modeling technique, the optimization process, and their accuracy and efficiency.
Multidisciplinary optimization of aeroservoelastic systems using reduced-size models
NASA Technical Reports Server (NTRS)
Karpel, Mordechay
1992-01-01
Efficient analytical and computational tools for simultaneous optimal design of the structural and control components of aeroservoelastic systems are presented. The optimization objective is to achieve aircraft performance requirements and sufficient flutter and control stability margins with a minimal weight penalty and without violating the design constraints. Analytical sensitivity derivatives facilitate an efficient optimization process which allows a relatively large number of design variables. Standard finite element and unsteady aerodynamic routines are used to construct a modal data base. Minimum State aerodynamic approximations and dynamic residualization methods are used to construct a high accuracy, low order aeroservoelastic model. Sensitivity derivatives of flutter dynamic pressure, control stability margins and control effectiveness with respect to structural and control design variables are presented. The performance requirements are utilized by equality constraints which affect the sensitivity derivatives. A gradient-based optimization algorithm is used to minimize an overall cost function. A realistic numerical example of a composite wing with four controls is used to demonstrate the modeling technique, the optimization process, and their accuracy and efficiency.
NASA Astrophysics Data System (ADS)
Yan, Rongge; Guo, Xiaoting; Cao, Shaoqing; Zhang, Changgeng
2018-05-01
Magnetically coupled resonance (MCR) wireless power transfer (WPT) system is a promising technology in electric energy transmission. But, if its system parameters are designed unreasonably, output power and transmission efficiency will be low. Therefore, optimized parameters design of MCR WPT has important research value. In the MCR WPT system with designated coil structure, the main parameters affecting output power and transmission efficiency are the distance between the coils, the resonance frequency and the resistance of the load. Based on the established mathematical model and the differential evolution algorithm, the change of output power and transmission efficiency with parameters can be simulated. From the simulation results, it can be seen that output power and transmission efficiency of the two-coil MCR WPT system and four-coil one with designated coil structure are improved. The simulation results confirm the validity of the optimization method for MCR WPT system with designated coil structure.
Design of a high altitude long endurance flying-wing solar-powered unmanned air vehicle
NASA Astrophysics Data System (ADS)
Alsahlani, A. A.; Johnston, L. J.; Atcliffe, P. A.
2017-06-01
The low-Reynolds number environment of high-altitude §ight places severe demands on the aerodynamic design and stability and control of a high altitude, long endurance (HALE) unmanned air vehicle (UAV). The aerodynamic efficiency of a §ying-wing configuration makes it an attractive design option for such an application and is investigated in the present work. The proposed configuration has a high-aspect ratio, swept-wing planform, the wing sweep being necessary to provide an adequate moment arm for outboard longitudinal and lateral control surfaces. A design optimization framework is developed under a MATLAB environment, combining aerodynamic, structural, and stability analysis. Low-order analysis tools are employed to facilitate efficient computations, which is important when there are multiple optimization loops for the various engineering analyses. In particular, a vortex-lattice method is used to compute the wing planform aerodynamics, coupled to a twodimensional (2D) panel method to derive aerofoil sectional characteristics. Integral boundary-layer methods are coupled to the panel method in order to predict §ow separation boundaries during the design iterations. A quasi-analytical method is adapted for application to flyingwing con¦gurations to predict the wing weight and a linear finite-beam element approach is used for structural analysis of the wing-box. Stability is a particular concern in the low-density environment of high-altitude flight for flying-wing aircraft and so provision of adequate directional stability and control power forms part of the optimization process. At present, a modified Genetic Algorithm is used in all of the optimization loops. Each of the low-order engineering analysis tools is validated using higher-order methods to provide con¦dence in the use of these computationally-efficient tools in the present design-optimization framework. This paper includes the results of employing the present optimization tools in the design of a HALE, flying-wing UAV to indicate that this is a viable design configuration option.
NASA Astrophysics Data System (ADS)
Arsenault, Richard; Gatien, Philippe; Renaud, Benoit; Brissette, François; Martel, Jean-Luc
2015-10-01
This study aims to test whether a weighted combination of several hydrological models can simulate flows more accurately than the models taken individually. In addition, the project attempts to identify the most efficient model averaging method and the optimal number of models to include in the weighting scheme. In order to address the first objective, streamflow was simulated using four lumped hydrological models (HSAMI, HMETS, MOHYSE and GR4J-6), each of which were calibrated with three different objective functions on 429 watersheds. The resulting 12 hydrographs (4 models × 3 metrics) were weighted and combined with the help of 9 averaging methods which are the simple arithmetic mean (SAM), Akaike information criterion (AICA), Bates-Granger (BGA), Bayes information criterion (BICA), Bayesian model averaging (BMA), Granger-Ramanathan average variant A, B and C (GRA, GRB and GRC) and the average by SCE-UA optimization (SCA). The same weights were then applied to the hydrographs in validation mode, and the Nash-Sutcliffe Efficiency metric was measured between the averaged and observed hydrographs. Statistical analyses were performed to compare the accuracy of weighted methods to that of individual models. A Kruskal-Wallis test and a multi-objective optimization algorithm were then used to identify the most efficient weighted method and the optimal number of models to integrate. Results suggest that the GRA, GRB, GRC and SCA weighted methods perform better than the individual members. Model averaging from these four methods were superior to the best of the individual members in 76% of the cases. Optimal combinations on all watersheds included at least one of each of the four hydrological models. None of the optimal combinations included all members of the ensemble of 12 hydrographs. The Granger-Ramanathan average variant C (GRC) is recommended as the best compromise between accuracy, speed of execution, and simplicity.
NASA Astrophysics Data System (ADS)
Herman, Aline; Sarrazin, Michaël; Deparis, Olivier
2014-01-01
The incoherence of sunlight has long been suspected to have an impact on solar cell energy conversion efficiency, although the extent of this is unclear. Existing computational methods used to optimize solar cell efficiency under incoherent light are based on multiple time-consuming runs and statistical averaging. These indirect methods show limitations related to the complexity of the solar cell structure. As a consequence, complex corrugated cells, which exploit light trapping for enhancing the efficiency, have not yet been accessible for optimization under incoherent light. To overcome this bottleneck, we developed an original direct method which has the key advantage that the treatment of incoherence can be totally decoupled from the complexity of the cell. As an illustration, surface-corrugated GaAs and c-Si thin-films are considered. The spectrally integrated absorption in these devices is found to depend strongly on the degree of light coherence and, accordingly, the maximum achievable photocurrent can be higher under incoherent light than under coherent light. These results show the importance of taking into account sunlight incoherence in solar cell optimization and point out the ability of our direct method to deal with complex solar cell structures.
Gravity inversion of a fault by Particle swarm optimization (PSO).
Toushmalani, Reza
2013-01-01
Particle swarm optimization is a heuristic global optimization method and also an optimization algorithm, which is based on swarm intelligence. It comes from the research on the bird and fish flock movement behavior. In this paper we introduce and use this method in gravity inverse problem. We discuss the solution for the inverse problem of determining the shape of a fault whose gravity anomaly is known. Application of the proposed algorithm to this problem has proven its capability to deal with difficult optimization problems. The technique proved to work efficiently when tested to a number of models.
NASA Astrophysics Data System (ADS)
Ma, Yuan-Zhuo; Li, Hong-Shuang; Yao, Wei-Xing
2018-05-01
The evaluation of the probabilistic constraints in reliability-based design optimization (RBDO) problems has always been significant and challenging work, which strongly affects the performance of RBDO methods. This article deals with RBDO problems using a recently developed generalized subset simulation (GSS) method and a posterior approximation approach. The posterior approximation approach is used to transform all the probabilistic constraints into ordinary constraints as in deterministic optimization. The assessment of multiple failure probabilities required by the posterior approximation approach is achieved by GSS in a single run at all supporting points, which are selected by a proper experimental design scheme combining Sobol' sequences and Bucher's design. Sequentially, the transformed deterministic design optimization problem can be solved by optimization algorithms, for example, the sequential quadratic programming method. Three optimization problems are used to demonstrate the efficiency and accuracy of the proposed method.
Selection of Thermal Worst-Case Orbits via Modified Efficient Global Optimization
NASA Technical Reports Server (NTRS)
Moeller, Timothy M.; Wilhite, Alan W.; Liles, Kaitlin A.
2014-01-01
Efficient Global Optimization (EGO) was used to select orbits with worst-case hot and cold thermal environments for the Stratospheric Aerosol and Gas Experiment (SAGE) III. The SAGE III system thermal model changed substantially since the previous selection of worst-case orbits (which did not use the EGO method), so the selections were revised to ensure the worst cases are being captured. The EGO method consists of first conducting an initial set of parametric runs, generated with a space-filling Design of Experiments (DoE) method, then fitting a surrogate model to the data and searching for points of maximum Expected Improvement (EI) to conduct additional runs. The general EGO method was modified by using a multi-start optimizer to identify multiple new test points at each iteration. This modification facilitates parallel computing and decreases the burden of user interaction when the optimizer code is not integrated with the model. Thermal worst-case orbits for SAGE III were successfully identified and shown by direct comparison to be more severe than those identified in the previous selection. The EGO method is a useful tool for this application and can result in computational savings if the initial Design of Experiments (DoE) is selected appropriately.
NASA Astrophysics Data System (ADS)
Yuan, Yongliang; Song, Xueguan; Sun, Wei; Wang, Xiaobang
2018-05-01
The dynamic performance of a belt drive system is composed of many factors, such as the efficiency, the vibration, and the optimal parameters. The conventional design only considers the basic performance of the belt drive system, while ignoring its overall performance. To address all these challenges, the study on vibration characteristics and optimization strategies could be a feasible way. This paper proposes a new optimization strategy and takes a belt drive design optimization as a case study based on the multidisciplinary design optimization (MDO). The MDO of the belt drive system is established and the corresponding sub-systems are analyzed. The multidisciplinary optimization is performed by using an improved genetic algorithm. Based on the optimal results obtained from the MDO, the three-dimension (3D) model of the belt drive system is established for dynamics simulation by virtual prototyping. From the comparison of the results with respect to different velocities and loads, the MDO method can effectively reduce the transverse vibration amplitude. The law of the vibration displacement, the vibration frequency, and the influence of velocities on the transverse vibrations has been obtained. Results show that the MDO method is of great help to obtain the optimal structural parameters. Furthermore, the kinematics principle of the belt drive has been obtained. The belt drive design case indicates that the proposed method in this paper can also be used to solve other engineering optimization problems efficiently.
Fast and Efficient Stochastic Optimization for Analytic Continuation
Bao, Feng; Zhang, Guannan; Webster, Clayton G; ...
2016-09-28
In this analytic continuation of imaginary-time quantum Monte Carlo data to extract real-frequency spectra remains a key problem in connecting theory with experiment. Here we present a fast and efficient stochastic optimization method (FESOM) as a more accessible variant of the stochastic optimization method introduced by Mishchenko et al. [Phys. Rev. B 62, 6317 (2000)], and we benchmark the resulting spectra with those obtained by the standard maximum entropy method for three representative test cases, including data taken from studies of the two-dimensional Hubbard model. Genearally, we find that our FESOM approach yields spectra similar to the maximum entropy results.more » In particular, while the maximum entropy method yields superior results when the quality of the data is strong, we find that FESOM is able to resolve fine structure with more detail when the quality of the data is poor. In addition, because of its stochastic nature, the method provides detailed information on the frequency-dependent uncertainty of the resulting spectra, while the maximum entropy method does so only for the spectral weight integrated over a finite frequency region. Therefore, we believe that this variant of the stochastic optimization approach provides a viable alternative to the routinely used maximum entropy method, especially for data of poor quality.« less
NASA Astrophysics Data System (ADS)
Cai, Xiaohui; Liu, Yang; Ren, Zhiming
2018-06-01
Reverse-time migration (RTM) is a powerful tool for imaging geologically complex structures such as steep-dip and subsalt. However, its implementation is quite computationally expensive. Recently, as a low-cost solution, the graphic processing unit (GPU) was introduced to improve the efficiency of RTM. In the paper, we develop three ameliorative strategies to implement RTM on GPU card. First, given the high accuracy and efficiency of the adaptive optimal finite-difference (FD) method based on least squares (LS) on central processing unit (CPU), we study the optimal LS-based FD method on GPU. Second, we develop the CPU-based hybrid absorbing boundary condition (ABC) to the GPU-based one by addressing two issues of the former when introduced to GPU card: time-consuming and chaotic threads. Third, for large-scale data, the combinatorial strategy for optimal checkpointing and efficient boundary storage is introduced for the trade-off between memory and recomputation. To save the time of communication between host and disk, the portable operating system interface (POSIX) thread is utilized to create the other CPU core at the checkpoints. Applications of the three strategies on GPU with the compute unified device architecture (CUDA) programming language in RTM demonstrate their efficiency and validity.
Modeling of biological intelligence for SCM system optimization.
Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang
2012-01-01
This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.
Modeling of Biological Intelligence for SCM System Optimization
Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang
2012-01-01
This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724
Wang, Yuhao; Li, Xin; Xu, Kai; Ren, Fengbo; Yu, Hao
2017-04-01
Compressive sensing is widely used in biomedical applications, and the sampling matrix plays a critical role on both quality and power consumption of signal acquisition. It projects a high-dimensional vector of data into a low-dimensional subspace by matrix-vector multiplication. An optimal sampling matrix can ensure accurate data reconstruction and/or high compression ratio. Most existing optimization methods can only produce real-valued embedding matrices that result in large energy consumption during data acquisition. In this paper, we propose an efficient method that finds an optimal Boolean sampling matrix in order to reduce the energy consumption. Compared to random Boolean embedding, our data-driven Boolean sampling matrix can improve the image recovery quality by 9 dB. Moreover, in terms of sampling hardware complexity, it reduces the energy consumption by 4.6× and the silicon area by 1.9× over the data-driven real-valued embedding.
Design optimization of a high specific speed Francis turbine runner
NASA Astrophysics Data System (ADS)
Enomoto, Y.; Kurosawa, S.; Kawajiri, H.
2012-11-01
Francis turbine is used in many hydroelectric power stations. This paper presents the development of hydraulic performance in a high specific speed Francis turbine runner. In order to achieve the improvements of turbine efficiency throughout a wide operating range, a new runner design method which combines the latest Computational Fluid Dynamics (CFD) and a multi objective optimization method with an existing design system was applied in this study. The validity of the new design system was evaluated by model performance tests. As the results, it was confirmed that the optimized runner presented higher efficiency compared with an originally designed runner. Besides optimization of runner, instability vibration which occurred at high part load operating condition was investigated by model test and gas-liquid two-phase flow analysis. As the results, it was confirmed that the instability vibration was caused by oval cross section whirl which was caused by recirculation flow near runner cone wall.
Cai, Yao; Hu, Huasi; Pan, Ziheng; Hu, Guang; Zhang, Tao
2018-05-17
To optimize the shield for neutrons and gamma rays compact and lightweight, a method combining the structure and components together was established employing genetic algorithms and MCNP code. As a typical case, the fission energy spectrum of 235 U which mixed neutrons and gamma rays was adopted in this study. Six types of materials were presented and optimized by the method. Spherical geometry was adopted in the optimization after checking the geometry effect. Simulations have made to verify the reliability of the optimization method and the efficiency of the optimized materials. To compare the materials visually and conveniently, the volume and weight needed to build a shield are employed. The results showed that, the composite multilayer material has the best performance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Multiobjective Optimization of Rocket Engine Pumps Using Evolutionary Algorithm
NASA Technical Reports Server (NTRS)
Oyama, Akira; Liou, Meng-Sing
2001-01-01
A design optimization method for turbopumps of cryogenic rocket engines has been developed. Multiobjective Evolutionary Algorithm (MOEA) is used for multiobjective pump design optimizations. Performances of design candidates are evaluated by using the meanline pump flow modeling method based on the Euler turbine equation coupled with empirical correlations for rotor efficiency. To demonstrate the feasibility of the present approach, a single stage centrifugal pump design and multistage pump design optimizations are presented. In both cases, the present method obtains very reasonable Pareto-optimal solutions that include some designs outperforming the original design in total head while reducing input power by one percent. Detailed observation of the design results also reveals some important design criteria for turbopumps in cryogenic rocket engines. These results demonstrate the feasibility of the EA-based design optimization method in this field.
Direct SQP-methods for solving optimal control problems with delays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goellmann, L.; Bueskens, C.; Maurer, H.
The maximum principle for optimal control problems with delays leads to a boundary value problem (BVP) which is retarded in the state and advanced in the costate function. Based on shooting techniques, solution methods for this type of BVP have been proposed. In recent years, direct optimization methods have been favored for solving control problems without delays. Direct methods approximate the control and the state over a fixed mesh and solve the resulting NLP-problem with SQP-methods. These methods dispense with the costate function and have shown to be robust and efficient. In this paper, we propose a direct SQP-method formore » retarded control problems. In contrast to conventional direct methods, only the control variable is approximated by e.g. spline-functions. The state is computed via a high order Runge-Kutta type algorithm and does not enter explicitly the NLP-problem through an equation. This approach reduces the number of optimization variables considerably and is implementable even on a PC. Our method is illustrated by the numerical solution of retarded control problems with constraints. In particular, we consider the control of a continuous stirred tank reactor which has been solved by dynamic programming. This example illustrates the robustness and efficiency of the proposed method. Open questions concerning sufficient conditions and convergence of discretized NLP-problems are discussed.« less
Global Search Capabilities of Indirect Methods for Impulsive Transfers
NASA Astrophysics Data System (ADS)
Shen, Hong-Xin; Casalino, Lorenzo; Luo, Ya-Zhong
2015-09-01
An optimization method which combines an indirect method with homotopic approach is proposed and applied to impulsive trajectories. Minimum-fuel, multiple-impulse solutions, with either fixed or open time are obtained. The homotopic approach at hand is relatively straightforward to implement and does not require an initial guess of adjoints, unlike previous adjoints estimation methods. A multiple-revolution Lambert solver is used to find multiple starting solutions for the homotopic procedure; this approach can guarantee to obtain multiple local solutions without relying on the user's intuition, thus efficiently exploring the solution space to find the global optimum. The indirect/homotopic approach proves to be quite effective and efficient in finding optimal solutions, and outperforms the joint use of evolutionary algorithms and deterministic methods in the test cases.
A novel algorithm for fast and efficient multifocus wavefront shaping
NASA Astrophysics Data System (ADS)
Fayyaz, Zahra; Nasiriavanaki, Mohammadreza
2018-02-01
Wavefront shaping using spatial light modulator (SLM) is a popular method for focusing light through a turbid media, such as biological tissues. Usually, in iterative optimization methods, due to the very large number of pixels in SLM, larger pixels are formed, bins, and the phase value of the bins are changed to obtain an optimum phase map, hence a focus. In this study an efficient optimization algorithm is proposed to obtain an arbitrary map of focus utilizing all the SLM pixels or small bin sizes. The application of such methodology in dermatology, hair removal in particular, is explored and discussed
Conditioning of Model Identification Task in Immune Inspired Optimizer SILO
NASA Astrophysics Data System (ADS)
Wojdan, K.; Swirski, K.; Warchol, M.; Maciorowski, M.
2009-10-01
Methods which provide good conditioning of model identification task in immune inspired, steady-state controller SILO (Stochastic Immune Layer Optimizer) are presented in this paper. These methods are implemented in a model based optimization algorithm. The first method uses a safe model to assure that gains of the process's model can be estimated. The second method is responsible for elimination of potential linear dependences between columns of observation matrix. Moreover new results from one of SILO implementation in polish power plant are presented. They confirm high efficiency of the presented solution in solving technical problems.
Mang, Andreas; Ruthotto, Lars
2017-01-01
We present an efficient solver for diffeomorphic image registration problems in the framework of Large Deformations Diffeomorphic Metric Mappings (LDDMM). We use an optimal control formulation, in which the velocity field of a hyperbolic PDE needs to be found such that the distance between the final state of the system (the transformed/transported template image) and the observation (the reference image) is minimized. Our solver supports both stationary and non-stationary (i.e., transient or time-dependent) velocity fields. As transformation models, we consider both the transport equation (assuming intensities are preserved during the deformation) and the continuity equation (assuming mass-preservation). We consider the reduced form of the optimal control problem and solve the resulting unconstrained optimization problem using a discretize-then-optimize approach. A key contribution is the elimination of the PDE constraint using a Lagrangian hyperbolic PDE solver. Lagrangian methods rely on the concept of characteristic curves. We approximate these curves using a fourth-order Runge-Kutta method. We also present an efficient algorithm for computing the derivatives of the final state of the system with respect to the velocity field. This allows us to use fast Gauss-Newton based methods. We present quickly converging iterative linear solvers using spectral preconditioners that render the overall optimization efficient and scalable. Our method is embedded into the image registration framework FAIR and, thus, supports the most commonly used similarity measures and regularization functionals. We demonstrate the potential of our new approach using several synthetic and real world test problems with up to 14.7 million degrees of freedom.
Optimization of Turbine Engine Cycle Analysis with Analytic Derivatives
NASA Technical Reports Server (NTRS)
Hearn, Tristan; Hendricks, Eric; Chin, Jeffrey; Gray, Justin; Moore, Kenneth T.
2016-01-01
A new engine cycle analysis tool, called Pycycle, was recently built using the OpenMDAO framework. This tool uses equilibrium chemistry based thermodynamics, and provides analytic derivatives. This allows for stable and efficient use of gradient-based optimization and sensitivity analysis methods on engine cycle models, without requiring the use of finite difference derivative approximation methods. To demonstrate this, a gradient-based design optimization was performed on a multi-point turbofan engine model. Results demonstrate very favorable performance compared to an optimization of an identical model using finite-difference approximated derivatives.
Determining the optimal number of Kanban in multi-products supply chain system
NASA Astrophysics Data System (ADS)
Widyadana, G. A.; Wee, H. M.; Chang, Jer-Yuan
2010-02-01
Kanban, a key element of just-in-time system, is a re-order card or signboard giving instruction or triggering the pull system to manufacture or supply a component based on actual usage of material. There are two types of Kanban: production Kanban and withdrawal Kanban. This study uses optimal and meta-heuristic methods to determine the Kanban quantity and withdrawal lot sizes in a supply chain system. Although the mix integer programming method gives an optimal solution, it is not time efficient. For this reason, the meta-heuristic methods are suggested. In this study, a genetic algorithm (GA) and a hybrid of genetic algorithm and simulated annealing (GASA) are used. The study compares the performance of GA and GASA with that of the optimal method using MIP. The given problems show that both GA and GASA result in a near optimal solution, and they outdo the optimal method in term of run time. In addition, the GASA heuristic method gives a better performance than the GA heuristic method.
Optimal control of population and coherence in three-level Λ systems
NASA Astrophysics Data System (ADS)
Kumar, Praveen; Malinovskaya, Svetlana A.; Malinovsky, Vladimir S.
2011-08-01
Optimal control theory (OCT) implementations for an efficient population transfer and creation of maximum coherence in a three-level system are considered. We demonstrate that the half-stimulated Raman adiabatic passage scheme for creation of the maximum Raman coherence is the optimal solution according to the OCT. We also present a comparative study of several implementations of OCT applied to the complete population transfer and creation of the maximum coherence. Performance of the conjugate gradient method, the Zhu-Rabitz method and the Krotov method has been analysed.
On the efficiency of a randomized mirror descent algorithm in online optimization problems
NASA Astrophysics Data System (ADS)
Gasnikov, A. V.; Nesterov, Yu. E.; Spokoiny, V. G.
2015-04-01
A randomized online version of the mirror descent method is proposed. It differs from the existing versions by the randomization method. Randomization is performed at the stage of the projection of a subgradient of the function being optimized onto the unit simplex rather than at the stage of the computation of a subgradient, which is common practice. As a result, a componentwise subgradient descent with a randomly chosen component is obtained, which admits an online interpretation. This observation, for example, has made it possible to uniformly interpret results on weighting expert decisions and propose the most efficient method for searching for an equilibrium in a zero-sum two-person matrix game with sparse matrix.
NASA Astrophysics Data System (ADS)
Mascia, Anthony Edward
Purpose: To develop and characterize the required detectors for uniform scanning optimization and characterization, and to develop the methodology and assess their efficacy for optimizing, characterizing and commissioning a novel proton beam uniform scanning system. Methods and Materials: The Multi Layer Ion Chamber (MLIC), a 1D array of vented parallel plate ion chambers, was developed in-house for measurement of longitudinal profiles. The Matrixx detector (IBA Dosimetry, Germany) and XOmat V film (Kodak, USA) were characterized for measurement of transverse profiles. The architecture of the uniform scanning system was developed and then optimized and characterized for clinical proton radiotherapy. Results: The MLIC detector significantly increased data collection efficiency without sacrificing data quality. The MLIC was capable of integrating an entire scanned and layer stacked proton field with one measurement, producing results with the equivalent spatial sampling of 1.0mm. The Matrixx detector and modified 1D water phantom jig improved data acquisition efficiency and complemented the film measurements. The proximal, central and distal proton field planes were measured using these methods, yielding better than 3% uniformity. The binary range modulator was programmed, optimized and characterized such that the proton field ranges were separated by approximately 5.0mm modulation width and delivered with an accuracy of 1.0mm in water. Several wobbling magnet scan patterns were evaluated and the raster pattern, spot spacing, scan amplitude and overscan margin were optimized for clinical use. Conclusion: Novel detectors and methods are required for clinically efficient optimization and characterization of proton beam scanning systems. Uniform scanning produces proton beam fields that are suited for clinical proton radiotherapy.
NASA Astrophysics Data System (ADS)
Thimmisetty, C.; Talbot, C.; Tong, C. H.; Chen, X.
2016-12-01
The representativeness of available data poses a significant fundamental challenge to the quantification of uncertainty in geophysical systems. Furthermore, the successful application of machine learning methods to geophysical problems involving data assimilation is inherently constrained by the extent to which obtainable data represent the problem considered. We show how the adjoint method, coupled with optimization based on methods of machine learning, can facilitate the minimization of an objective function defined on a space of significantly reduced dimension. By considering uncertain parameters as constituting a stochastic process, the Karhunen-Loeve expansion and its nonlinear extensions furnish an optimal basis with respect to which optimization using L-BFGS can be carried out. In particular, we demonstrate that kernel PCA can be coupled with adjoint-based optimal control methods to successfully determine the distribution of material parameter values for problems in the context of channelized deformable media governed by the equations of linear elasticity. Since certain subsets of the original data are characterized by different features, the convergence rate of the method in part depends on, and may be limited by, the observations used to furnish the kernel principal component basis. By determining appropriate weights for realizations of the stochastic random field, then, one may accelerate the convergence of the method. To this end, we present a formulation of Weighted PCA combined with a gradient-based means using automatic differentiation to iteratively re-weight observations concurrent with the determination of an optimal reduced set control variables in the feature space. We demonstrate how improvements in the accuracy and computational efficiency of the weighted linear method can be achieved over existing unweighted kernel methods, and discuss nonlinear extensions of the algorithm.
Chopped random-basis quantum optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caneva, Tommaso; Calarco, Tommaso; Montangero, Simone
2011-08-15
In this work, we describe in detail the chopped random basis (CRAB) optimal control technique recently introduced to optimize time-dependent density matrix renormalization group simulations [P. Doria, T. Calarco, and S. Montangero, Phys. Rev. Lett. 106, 190501 (2011)]. Here, we study the efficiency of this control technique in optimizing different quantum processes and we show that in the considered cases we obtain results equivalent to those obtained via different optimal control methods while using less resources. We propose the CRAB optimization as a general and versatile optimal control technique.
Optimal projection method determination by Logdet Divergence and perturbed von-Neumann Divergence.
Jiang, Hao; Ching, Wai-Ki; Qiu, Yushan; Cheng, Xiao-Qing
2017-12-14
Positive semi-definiteness is a critical property in kernel methods for Support Vector Machine (SVM) by which efficient solutions can be guaranteed through convex quadratic programming. However, a lot of similarity functions in applications do not produce positive semi-definite kernels. We propose projection method by constructing projection matrix on indefinite kernels. As a generalization of the spectrum method (denoising method and flipping method), the projection method shows better or comparable performance comparing to the corresponding indefinite kernel methods on a number of real world data sets. Under the Bregman matrix divergence theory, we can find suggested optimal λ in projection method using unconstrained optimization in kernel learning. In this paper we focus on optimal λ determination, in the pursuit of precise optimal λ determination method in unconstrained optimization framework. We developed a perturbed von-Neumann divergence to measure kernel relationships. We compared optimal λ determination with Logdet Divergence and perturbed von-Neumann Divergence, aiming at finding better λ in projection method. Results on a number of real world data sets show that projection method with optimal λ by Logdet divergence demonstrate near optimal performance. And the perturbed von-Neumann Divergence can help determine a relatively better optimal projection method. Projection method ia easy to use for dealing with indefinite kernels. And the parameter embedded in the method can be determined through unconstrained optimization under Bregman matrix divergence theory. This may provide a new way in kernel SVMs for varied objectives.
Optimization of spent fuel pool weir gate driving mechanism
NASA Astrophysics Data System (ADS)
Liu, Chao; Du, Lin; Tao, Xinlei; Wang, Shijie; Shang, Ertao; Yu, Jianjiang
2018-04-01
Spent fuel pool is crucial facility for fuel storage and nuclear safety, and the spent fuel pool weir gate is the key related equipment. In order to achieve a goal of more efficient driving force transfer, loading during the opening/closing process is analyzed and an optimized calculation method for dimensions of driving mechanism is proposed. The result of optimizing example shows that the method can be applied to weir gates' design with similar driving mechanism.
An approximation method for configuration optimization of trusses
NASA Technical Reports Server (NTRS)
Hansen, Scott R.; Vanderplaats, Garret N.
1988-01-01
Two- and three-dimensional elastic trusses are designed for minimum weight by varying the areas of the members and the location of the joints. Constraints on member stresses and Euler buckling are imposed and multiple static loading conditions are considered. The method presented here utilizes an approximate structural analysis based on first order Taylor series expansions of the member forces. A numerical optimizer minimizes the weight of the truss using information from the approximate structural analysis. Comparisons with results from other methods are made. It is shown that the method of forming an approximate structural analysis based on linearized member forces leads to a highly efficient method of truss configuration optimization.
A novel method for overlapping community detection using Multi-objective optimization
NASA Astrophysics Data System (ADS)
Ebrahimi, Morteza; Shahmoradi, Mohammad Reza; Heshmati, Zainabolhoda; Salehi, Mostafa
2018-09-01
The problem of community detection as one of the most important applications of network science can be addressed effectively by multi-objective optimization. In this paper, we aim to present a novel efficient method based on this approach. Also, in this study the idea of using all Pareto fronts to detect overlapping communities is introduced. The proposed method has two main advantages compared to other multi-objective optimization based approaches. The first advantage is scalability, and the second is the ability to find overlapping communities. Despite most of the works, the proposed method is able to find overlapping communities effectively. The new algorithm works by extracting appropriate communities from all the Pareto optimal solutions, instead of choosing the one optimal solution. Empirical experiments on different features of separated and overlapping communities, on both synthetic and real networks show that the proposed method performs better in comparison with other methods.
Carstensen, C.; Feischl, M.; Page, M.; Praetorius, D.
2014-01-01
This paper aims first at a simultaneous axiomatic presentation of the proof of optimal convergence rates for adaptive finite element methods and second at some refinements of particular questions like the avoidance of (discrete) lower bounds, inexact solvers, inhomogeneous boundary data, or the use of equivalent error estimators. Solely four axioms guarantee the optimality in terms of the error estimators. Compared to the state of the art in the temporary literature, the improvements of this article can be summarized as follows: First, a general framework is presented which covers the existing literature on optimality of adaptive schemes. The abstract analysis covers linear as well as nonlinear problems and is independent of the underlying finite element or boundary element method. Second, efficiency of the error estimator is neither needed to prove convergence nor quasi-optimal convergence behavior of the error estimator. In this paper, efficiency exclusively characterizes the approximation classes involved in terms of the best-approximation error and data resolution and so the upper bound on the optimal marking parameters does not depend on the efficiency constant. Third, some general quasi-Galerkin orthogonality is not only sufficient, but also necessary for the R-linear convergence of the error estimator, which is a fundamental ingredient in the current quasi-optimality analysis due to Stevenson 2007. Finally, the general analysis allows for equivalent error estimators and inexact solvers as well as different non-homogeneous and mixed boundary conditions. PMID:25983390
Multi-Criterion Preliminary Design of a Tetrahedral Truss Platform
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey
1995-01-01
An efficient method is presented for multi-criterion preliminary design and demonstrated for a tetrahedral truss platform. The present method requires minimal analysis effort and permits rapid estimation of optimized truss behavior for preliminary design. A 14-m-diameter, 3-ring truss platform represents a candidate reflector support structure for space-based science spacecraft. The truss members are divided into 9 groups by truss ring and position. Design variables are the cross-sectional area of all members in a group, and are either 1, 3 or 5 times the minimum member area. Non-structural mass represents the node and joint hardware used to assemble the truss structure. Taguchi methods are used to efficiently identify key points in the set of Pareto-optimal truss designs. Key points identified using Taguchi methods are the maximum frequency, minimum mass, and maximum frequency-to-mass ratio truss designs. Low-order polynomial curve fits through these points are used to approximate the behavior of the full set of Pareto-optimal designs. The resulting Pareto-optimal design curve is used to predict frequency and mass for optimized trusses. Performance improvements are plotted in frequency-mass (criterion) space and compared to results for uniform trusses. Application of constraints to frequency and mass and sensitivity to constraint variation are demonstrated.
Non-linear Multidimensional Optimization for use in Wire Scanner Fitting
NASA Astrophysics Data System (ADS)
Henderson, Alyssa; Terzic, Balsa; Hofler, Alicia; Center Advanced Studies of Accelerators Collaboration
2014-03-01
To ensure experiment efficiency and quality from the Continuous Electron Beam Accelerator at Jefferson Lab, beam energy, size, and position must be measured. Wire scanners are devices inserted into the beamline to produce measurements which are used to obtain beam properties. Extracting physical information from the wire scanner measurements begins by fitting Gaussian curves to the data. This study focuses on optimizing and automating this curve-fitting procedure. We use a hybrid approach combining the efficiency of Newton Conjugate Gradient (NCG) method with the global convergence of three nature-inspired (NI) optimization approaches: genetic algorithm, differential evolution, and particle-swarm. In this Python-implemented approach, augmenting the locally-convergent NCG with one of the globally-convergent methods ensures the quality, robustness, and automation of curve-fitting. After comparing the methods, we establish that given an initial data-derived guess, each finds a solution with the same chi-square- a measurement of the agreement of the fit to the data. NCG is the fastest method, so it is the first to attempt data-fitting. The curve-fitting procedure escalates to one of the globally-convergent NI methods only if NCG fails, thereby ensuring a successful fit. This method allows for the most optimal signal fit and can be easily applied to similar problems.
Innovative model-based flow rate optimization for vanadium redox flow batteries
NASA Astrophysics Data System (ADS)
König, S.; Suriyah, M. R.; Leibfried, T.
2016-11-01
In this paper, an innovative approach is presented to optimize the flow rate of a 6-kW vanadium redox flow battery with realistic stack dimensions. Efficiency is derived using a multi-physics battery model and a newly proposed instantaneous efficiency determination technique. An optimization algorithm is applied to identify optimal flow rates for operation points defined by state-of-charge (SoC) and current. The proposed method is evaluated against the conventional approach of applying Faraday's first law of electrolysis, scaled to the so-called flow factor. To make a fair comparison, the flow factor is also optimized by simulating cycles with different charging/discharging currents. It is shown through the obtained results that the efficiency is increased by up to 1.2% points; in addition, discharge capacity is also increased by up to 1.0 kWh or 5.4%. Detailed loss analysis is carried out for the cycles with maximum and minimum charging/discharging currents. It is shown that the proposed method minimizes the sum of losses caused by concentration over-potential, pumping and diffusion. Furthermore, for the deployed Nafion 115 membrane, it is observed that diffusion losses increase with stack SoC. Therefore, to decrease stack SoC and lower diffusion losses, a higher flow rate during charging than during discharging is reasonable.
Effective Energy Simulation and Optimal Design of Side-lit Buildings with Venetian Blinds
NASA Astrophysics Data System (ADS)
Cheng, Tian
Venetian blinds are popularly used in buildings to control the amount of incoming daylight for improving visual comfort and reducing heat gains in air-conditioning systems. Studies have shown that the proper design and operation of window systems could result in significant energy savings in both lighting and cooling. However, there is no convenient computer tool that allows effective and efficient optimization of the envelope of side-lit buildings with blinds now. Three computer tools, Adeline, DOE2 and EnergyPlus widely used for the above-mentioned purpose have been experimentally examined in this study. Results indicate that the two former tools give unacceptable accuracy due to unrealistic assumptions adopted while the last one may generate large errors in certain conditions. Moreover, current computer tools have to conduct hourly energy simulations, which are not necessary for life-cycle energy analysis and optimal design, to provide annual cooling loads. This is not computationally efficient, particularly not suitable for optimal designing a building at initial stage because the impacts of many design variations and optional features have to be evaluated. A methodology is therefore developed for efficient and effective thermal and daylighting simulations and optimal design of buildings with blinds. Based on geometric optics and radiosity method, a mathematical model is developed to reasonably simulate the daylighting behaviors of venetian blinds. Indoor illuminance at any reference point can be directly and efficiently computed. They have been validated with both experiments and simulations with Radiance. Validation results show that indoor illuminances computed by the new models agree well with the measured data, and the accuracy provided by them is equivalent to that of Radiance. The computational efficiency of the new models is much higher than that of Radiance as well as EnergyPlus. Two new methods are developed for the thermal simulation of buildings. A fast Fourier transform (FFT) method is presented to avoid the root-searching process in the inverse Laplace transform of multilayered walls. Generalized explicit FFT formulae for calculating the discrete Fourier transform (DFT) are developed for the first time. They can largely facilitate the implementation of FFT. The new method also provides a basis for generating the symbolic response factors. Validation simulations show that it can generate the response factors as accurate as the analytical solutions. The second method is for direct estimation of annual or seasonal cooling loads without the need for tedious hourly energy simulations. It is validated by hourly simulation results with DOE2. Then symbolic long-term cooling load can be created by combining the two methods with thermal network analysis. The symbolic long-term cooling load can keep the design parameters of interest as symbols, which is particularly useful for the optimal design and sensitivity analysis. The methodology is applied to an office building in Hong Kong for the optimal design of building envelope. Design variables such as window-to-wall ratio, building orientation, and glazing optical and thermal properties are included in the study. Results show that the selected design values could significantly impact the energy performance of windows, and the optimal design of side-lit buildings could greatly enhance energy savings. The application example also demonstrates that the developed methodology significantly facilitates the optimal building design and sensitivity analysis, and leads to high computational efficiency.
Optimization of a Small Scale Linear Reluctance Accelerator
NASA Astrophysics Data System (ADS)
Barrera, Thor; Beard, Robby
2011-11-01
Reluctance accelerators are extremely promising future methods of transportation. Several problems still plague these devices, most prominently low efficiency. Variables to overcoming efficiency problems are many and difficult to correlate how they affect our accelerator. The study examined several differing variables that present potential challenges in optimizing the efficiency of reluctance accelerators. These include coil and projectile design, power supplies, switching, and the elusive gradient inductance problem. Extensive research in these areas has been performed from computational and theoretical to experimental. Findings show that these parameters share significant similarity to transformer design elements, thus general findings show current optimized parameters the research suggests as a baseline for further research and design. Demonstration of these current findings will be offered at the time of presentation.
Vilas, Carlos; Balsa-Canto, Eva; García, Maria-Sonia G; Banga, Julio R; Alonso, Antonio A
2012-07-02
Systems biology allows the analysis of biological systems behavior under different conditions through in silico experimentation. The possibility of perturbing biological systems in different manners calls for the design of perturbations to achieve particular goals. Examples would include, the design of a chemical stimulation to maximize the amplitude of a given cellular signal or to achieve a desired pattern in pattern formation systems, etc. Such design problems can be mathematically formulated as dynamic optimization problems which are particularly challenging when the system is described by partial differential equations.This work addresses the numerical solution of such dynamic optimization problems for spatially distributed biological systems. The usual nonlinear and large scale nature of the mathematical models related to this class of systems and the presence of constraints on the optimization problems, impose a number of difficulties, such as the presence of suboptimal solutions, which call for robust and efficient numerical techniques. Here, the use of a control vector parameterization approach combined with efficient and robust hybrid global optimization methods and a reduced order model methodology is proposed. The capabilities of this strategy are illustrated considering the solution of a two challenging problems: bacterial chemotaxis and the FitzHugh-Nagumo model. In the process of chemotaxis the objective was to efficiently compute the time-varying optimal concentration of chemotractant in one of the spatial boundaries in order to achieve predefined cell distribution profiles. Results are in agreement with those previously published in the literature. The FitzHugh-Nagumo problem is also efficiently solved and it illustrates very well how dynamic optimization may be used to force a system to evolve from an undesired to a desired pattern with a reduced number of actuators. The presented methodology can be used for the efficient dynamic optimization of generic distributed biological systems.
Joint-layer encoder optimization for HEVC scalable extensions
NASA Astrophysics Data System (ADS)
Tsai, Chia-Ming; He, Yuwen; Dong, Jie; Ye, Yan; Xiu, Xiaoyu; He, Yong
2014-09-01
Scalable video coding provides an efficient solution to support video playback on heterogeneous devices with various channel conditions in heterogeneous networks. SHVC is the latest scalable video coding standard based on the HEVC standard. To improve enhancement layer coding efficiency, inter-layer prediction including texture and motion information generated from the base layer is used for enhancement layer coding. However, the overall performance of the SHVC reference encoder is not fully optimized because rate-distortion optimization (RDO) processes in the base and enhancement layers are independently considered. It is difficult to directly extend the existing joint-layer optimization methods to SHVC due to the complicated coding tree block splitting decisions and in-loop filtering process (e.g., deblocking and sample adaptive offset (SAO) filtering) in HEVC. To solve those problems, a joint-layer optimization method is proposed by adjusting the quantization parameter (QP) to optimally allocate the bit resource between layers. Furthermore, to make more proper resource allocation, the proposed method also considers the viewing probability of base and enhancement layers according to packet loss rate. Based on the viewing probability, a novel joint-layer RD cost function is proposed for joint-layer RDO encoding. The QP values of those coding tree units (CTUs) belonging to lower layers referenced by higher layers are decreased accordingly, and the QP values of those remaining CTUs are increased to keep total bits unchanged. Finally the QP values with minimal joint-layer RD cost are selected to match the viewing probability. The proposed method was applied to the third temporal level (TL-3) pictures in the Random Access configuration. Simulation results demonstrate that the proposed joint-layer optimization method can improve coding performance by 1.3% for these TL-3 pictures compared to the SHVC reference encoder without joint-layer optimization.
Coupling between a multi-physics workflow engine and an optimization framework
NASA Astrophysics Data System (ADS)
Di Gallo, L.; Reux, C.; Imbeaux, F.; Artaud, J.-F.; Owsiak, M.; Saoutic, B.; Aiello, G.; Bernardi, P.; Ciraolo, G.; Bucalossi, J.; Duchateau, J.-L.; Fausser, C.; Galassi, D.; Hertout, P.; Jaboulay, J.-C.; Li-Puma, A.; Zani, L.
2016-03-01
A generic coupling method between a multi-physics workflow engine and an optimization framework is presented in this paper. The coupling architecture has been developed in order to preserve the integrity of the two frameworks. The objective is to provide the possibility to replace a framework, a workflow or an optimizer by another one without changing the whole coupling procedure or modifying the main content in each framework. The coupling is achieved by using a socket-based communication library for exchanging data between the two frameworks. Among a number of algorithms provided by optimization frameworks, Genetic Algorithms (GAs) have demonstrated their efficiency on single and multiple criteria optimization. Additionally to their robustness, GAs can handle non-valid data which may appear during the optimization. Consequently GAs work on most general cases. A parallelized framework has been developed to reduce the time spent for optimizations and evaluation of large samples. A test has shown a good scaling efficiency of this parallelized framework. This coupling method has been applied to the case of SYCOMORE (SYstem COde for MOdeling tokamak REactor) which is a system code developed in form of a modular workflow for designing magnetic fusion reactors. The coupling of SYCOMORE with the optimization platform URANIE enables design optimization along various figures of merit and constraints.
NASA Astrophysics Data System (ADS)
Chu, J. G.; Zhang, C.; Fu, G. T.; Li, Y.; Zhou, H. C.
2015-04-01
This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce the computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed problem decomposition dramatically reduces the computational demands required for attaining high quality approximations of optimal tradeoff relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed problem decomposition and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform problem decomposition when solving the complex multi-objective reservoir operation problems.
Intelligent design optimization of a shape-memory-alloy-actuated reconfigurable wing
NASA Astrophysics Data System (ADS)
Lagoudas, Dimitris C.; Strelec, Justin K.; Yen, John; Khan, Mohammad A.
2000-06-01
The unique thermal and mechanical properties offered by shape memory alloys (SMAs) present exciting possibilities in the field of aerospace engineering. When properly trained, SMA wires act as linear actuators by contracting when heated and returning to their original shape when cooled. It has been shown experimentally that the overall shape of an airfoil can be altered by activating several attached SMA wire actuators. This shape-change can effectively increase the efficiency of a wing in flight at several different flow regimes. To determine the necessary placement of these wire actuators within the wing, an optimization method that incorporates a fully-coupled structural, thermal, and aerodynamic analysis has been utilized. Due to the complexity of the fully-coupled analysis, intelligent optimization methods such as genetic algorithms have been used to efficiently converge to an optimal solution. The genetic algorithm used in this case is a hybrid version with global search and optimization capabilities augmented by the simplex method as a local search technique. For the reconfigurable wing, each chromosome represents a realizable airfoil configuration and its genes are the SMA actuators, described by their location and maximum transformation strain. The genetic algorithm has been used to optimize this design problem to maximize the lift-to-drag ratio for a reconfigured airfoil shape.
Coupling HYDRUS-1D Code with PA-DDS Algorithms for Inverse Calibration
NASA Astrophysics Data System (ADS)
Wang, Xiang; Asadzadeh, Masoud; Holländer, Hartmut
2017-04-01
Numerical modelling requires calibration to predict future stages. A standard method for calibration is inverse calibration where generally multi-objective optimization algorithms are used to find a solution, e.g. to find an optimal solution of the van Genuchten Mualem (VGM) parameters to predict water fluxes in the vadose zone. We coupled HYDRUS-1D with PA-DDS to add a new, robust function for inverse calibration to the model. The PA-DDS method is a recently developed multi-objective optimization algorithm, which combines Dynamically Dimensioned Search (DDS) and Pareto Archived Evolution Strategy (PAES). The results were compared to a standard method (Marquardt-Levenberg method) implemented in HYDRUS-1D. Calibration performance is evaluated using observed and simulated soil moisture at two soil layers in the Southern Abbotsford, British Columbia, Canada in the terms of the root mean squared error (RMSE) and the Nash-Sutcliffe Efficiency (NSE). Results showed low RMSE values of 0.014 and 0.017 and strong NSE values of 0.961 and 0.939. Compared to the results by the Marquardt-Levenberg method, we received better calibration results for deeper located soil sensors. However, VGM parameters were similar comparing with previous studies. Both methods are equally computational efficient. We claim that a direct implementation of PA-DDS into HYDRUS-1D should reduce the computation effort further. This, the PA-DDS method is efficient for calibrating recharge for complex vadose zone modelling with multiple soil layer and can be a potential tool for calibration of heat and solute transport. Future work should focus on the effectiveness of PA-DDS for calibrating more complex versions of the model with complex vadose zone settings, with more soil layers, and against measured heat and solute transport. Keywords: Recharge, Calibration, HYDRUS-1D, Multi-objective Optimization
NASA Astrophysics Data System (ADS)
Prokhorov, Sergey
2017-10-01
Building industry in a present day going through the hard times. Machine and mechanism exploitation cost, on a field of construction and installation works, takes a substantial part in total building construction expenses. There is a necessity to elaborate high efficient method, which allows not only to increase production, but also to reduce direct costs during machine fleet exploitation, and to increase its energy efficiency. In order to achieve the goal we plan to use modern methods of work production, hi-tech and energy saving machine tools and technologies, and use of optimal mechanization sets. As the optimization criteria there are exploitation prime cost and set efficiency. During actual task-solving process we made a conclusion, which shows that mechanization works, energy audit with production juxtaposition, prime prices and costs for energy resources allow to make complex machine fleet supply, improve ecological level and increase construction and installation work quality.
Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization.
Lu, Hanbing; Jesmanowicz, Andrzej; Li, Shi-Jiang; Hyde, James S
2004-01-01
MRI gradient coil design is a type of nonlinear constrained optimization. A practical problem in transverse gradient coil design using the conjugate gradient descent (CGD) method is that wire elements move at different rates along orthogonal directions (r, phi, z), and tend to cross, breaking the constraints. A momentum-weighted conjugate gradient descent (MW-CGD) method is presented to overcome this problem. This method takes advantage of the efficiency of the CGD method combined with momentum weighting, which is also an intrinsic property of the Levenberg-Marquardt algorithm, to adjust step sizes along the three orthogonal directions. A water-cooled, 12.8 cm inner diameter, three axis torque-balanced gradient coil for rat imaging was developed based on this method, with an efficiency of 2.13, 2.08, and 4.12 mT.m(-1).A(-1) along X, Y, and Z, respectively. Experimental data demonstrate that this method can improve efficiency by 40% and field uniformity by 27%. This method has also been applied to the design of a gradient coil for the human brain, employing remote current return paths. The benefits of this design include improved gradient field uniformity and efficiency, with a shorter length than gradient coil designs using coaxial return paths. Copyright 2003 Wiley-Liss, Inc.
Efficiency Improvements to the Displacement Based Multilevel Structural Optimization Algorithm
NASA Technical Reports Server (NTRS)
Plunkett, C. L.; Striz, A. G.; Sobieszczanski-Sobieski, J.
2001-01-01
Multilevel Structural Optimization (MSO) continues to be an area of research interest in engineering optimization. In the present project, the weight optimization of beams and trusses using Displacement based Multilevel Structural Optimization (DMSO), a member of the MSO set of methodologies, is investigated. In the DMSO approach, the optimization task is subdivided into a single system and multiple subsystems level optimizations. The system level optimization minimizes the load unbalance resulting from the use of displacement functions to approximate the structural displacements. The function coefficients are then the design variables. Alternately, the system level optimization can be solved using the displacements themselves as design variables, as was shown in previous research. Both approaches ensure that the calculated loads match the applied loads. In the subsystems level, the weight of the structure is minimized using the element dimensions as design variables. The approach is expected to be very efficient for large structures, since parallel computing can be utilized in the different levels of the problem. In this paper, the method is applied to a one-dimensional beam and a large three-dimensional truss. The beam was tested to study possible simplifications to the system level optimization. In previous research, polynomials were used to approximate the global nodal displacements. The number of coefficients of the polynomials equally matched the number of degrees of freedom of the problem. Here it was desired to see if it is possible to only match a subset of the degrees of freedom in the system level. This would lead to a simplification of the system level, with a resulting increase in overall efficiency. However, the methods tested for this type of system level simplification did not yield positive results. The large truss was utilized to test further improvements in the efficiency of DMSO. In previous work, parallel processing was applied to the subsystems level, where the derivative verification feature of the optimizer NPSOL had been utilized in the optimizations. This resulted in large runtimes. In this paper, the optimizations were repeated without using the derivative verification, and the results are compared to those from the previous work. Also, the optimizations were run on both, a network of SUN workstations using the MPICH implementation of the Message Passing Interface (MPI) and on the faster Beowulf cluster at ICASE, NASA Langley Research Center, using the LAM implementation of UP]. The results on both systems were consistent and showed that it is not necessary to verify the derivatives and that this gives a large increase in efficiency of the DMSO algorithm.
Enhanced Particle Swarm Optimization Algorithm: Efficient Training of ReaxFF Reactive Force Fields.
Furman, David; Carmeli, Benny; Zeiri, Yehuda; Kosloff, Ronnie
2018-06-12
Particle swarm optimization (PSO) is a powerful metaheuristic population-based global optimization algorithm. However, when it is applied to nonseparable objective functions, its performance on multimodal landscapes is significantly degraded. Here we show that a significant improvement in the search quality and efficiency on multimodal functions can be achieved by enhancing the basic rotation-invariant PSO algorithm with isotropic Gaussian mutation operators. The new algorithm demonstrates superior performance across several nonlinear, multimodal benchmark functions compared with the rotation-invariant PSO algorithm and the well-established simulated annealing and sequential one-parameter parabolic interpolation methods. A search for the optimal set of parameters for the dispersion interaction model in the ReaxFF- lg reactive force field was carried out with respect to accurate DFT-TS calculations. The resulting optimized force field accurately describes the equations of state of several high-energy molecular crystals where such interactions are of crucial importance. The improved algorithm also presents better performance compared to a genetic algorithm optimization method in the optimization of the parameters of a ReaxFF- lg correction model. The computational framework is implemented in a stand-alone C++ code that allows the straightforward development of ReaxFF reactive force fields.
Egea, Jose A; Henriques, David; Cokelaer, Thomas; Villaverde, Alejandro F; MacNamara, Aidan; Danciu, Diana-Patricia; Banga, Julio R; Saez-Rodriguez, Julio
2014-05-10
Optimization is the key to solving many problems in computational biology. Global optimization methods, which provide a robust methodology, and metaheuristics in particular have proven to be the most efficient methods for many applications. Despite their utility, there is a limited availability of metaheuristic tools. We present MEIGO, an R and Matlab optimization toolbox (also available in Python via a wrapper of the R version), that implements metaheuristics capable of solving diverse problems arising in systems biology and bioinformatics. The toolbox includes the enhanced scatter search method (eSS) for continuous nonlinear programming (cNLP) and mixed-integer programming (MINLP) problems, and variable neighborhood search (VNS) for Integer Programming (IP) problems. Additionally, the R version includes BayesFit for parameter estimation by Bayesian inference. The eSS and VNS methods can be run on a single-thread or in parallel using a cooperative strategy. The code is supplied under GPLv3 and is available at http://www.iim.csic.es/~gingproc/meigo.html. Documentation and examples are included. The R package has been submitted to BioConductor. We evaluate MEIGO against optimization benchmarks, and illustrate its applicability to a series of case studies in bioinformatics and systems biology where it outperforms other state-of-the-art methods. MEIGO provides a free, open-source platform for optimization that can be applied to multiple domains of systems biology and bioinformatics. It includes efficient state of the art metaheuristics, and its open and modular structure allows the addition of further methods.
2014-01-01
Background Optimization is the key to solving many problems in computational biology. Global optimization methods, which provide a robust methodology, and metaheuristics in particular have proven to be the most efficient methods for many applications. Despite their utility, there is a limited availability of metaheuristic tools. Results We present MEIGO, an R and Matlab optimization toolbox (also available in Python via a wrapper of the R version), that implements metaheuristics capable of solving diverse problems arising in systems biology and bioinformatics. The toolbox includes the enhanced scatter search method (eSS) for continuous nonlinear programming (cNLP) and mixed-integer programming (MINLP) problems, and variable neighborhood search (VNS) for Integer Programming (IP) problems. Additionally, the R version includes BayesFit for parameter estimation by Bayesian inference. The eSS and VNS methods can be run on a single-thread or in parallel using a cooperative strategy. The code is supplied under GPLv3 and is available at http://www.iim.csic.es/~gingproc/meigo.html. Documentation and examples are included. The R package has been submitted to BioConductor. We evaluate MEIGO against optimization benchmarks, and illustrate its applicability to a series of case studies in bioinformatics and systems biology where it outperforms other state-of-the-art methods. Conclusions MEIGO provides a free, open-source platform for optimization that can be applied to multiple domains of systems biology and bioinformatics. It includes efficient state of the art metaheuristics, and its open and modular structure allows the addition of further methods. PMID:24885957
Kim, Yoon Jae; Kim, Yoon Young
2010-10-01
This paper presents a numerical method for the optimization of the sequencing of solid panels, perforated panels and air gaps and their respective thickness for maximizing sound transmission loss and/or absorption. For the optimization, a method based on the topology optimization formulation is proposed. It is difficult to employ only the commonly-used material interpolation technique because the involved layers exhibit fundamentally different acoustic behavior. Thus, an optimization method formulation using a so-called unified transfer matrix is newly proposed. The key idea is to form elements of the transfer matrix such that interpolated elements by the layer design variables can be those of air, perforated and solid panel layers. The problem related to the interpolation is addressed and bench mark-type problems such as sound transmission or absorption maximization problems are solved to check the efficiency of the developed method.
4-channels coherent perfect absorption (CPA)-type demultiplexer using plasmonic nano spheres
NASA Astrophysics Data System (ADS)
Soltani, Mohamadreza; Keshavarzi, Rasul
2017-10-01
The current research represents a nanoscale and compact 4-channels plasmonic demultiplexer. It includes eight coherent perfect absorption (CPA) - type filters. The operation principle is based on the absorbable formation of a conductive path in the dielectric layer of a plasmonic nano-spheres waveguide. Since the CPA efficiency depends strongly on the number of plasmonic nano-spheres and the nano spheres location, an efficient binary optimization method based on the Particle Swarm Optimization algorithm is used to design an optimized array of the plasmonic nano-sphere in order to achieve the maximum absorption coefficient in the 'off' state.
The technological raw material heating furnaces operation efficiency improving issue
NASA Astrophysics Data System (ADS)
Paramonov, A. M.
2017-08-01
The issue of fuel oil applying efficiency improving in the technological raw material heating furnaces by means of its combustion intensification is considered in the paper. The technical and economic optimization problem of the fuel oil heating before combustion is solved. The fuel oil heating optimal temperature defining method and algorithm analytically considering the correlation of thermal, operating parameters and discounted costs for the heating furnace were developed. The obtained optimization functionality provides the heating furnace appropriate thermal indices achievement at minimum discounted costs. The carried out research results prove the expediency of the proposed solutions using.
Ibrahim, Khaled Z.; Madduri, Kamesh; Williams, Samuel; ...
2013-07-18
The Gyrokinetic Toroidal Code (GTC) uses the particle-in-cell method to efficiently simulate plasma microturbulence. This paper presents novel analysis and optimization techniques to enhance the performance of GTC on large-scale machines. We introduce cell access analysis to better manage locality vs. synchronization tradeoffs on CPU and GPU-based architectures. Finally, our optimized hybrid parallel implementation of GTC uses MPI, OpenMP, and NVIDIA CUDA, achieves up to a 2× speedup over the reference Fortran version on multiple parallel systems, and scales efficiently to tens of thousands of cores.
Gilbert, Peter B; Yu, Xuesong; Rotnitzky, Andrea
2014-03-15
To address the objective in a clinical trial to estimate the mean or mean difference of an expensive endpoint Y, one approach employs a two-phase sampling design, wherein inexpensive auxiliary variables W predictive of Y are measured in everyone, Y is measured in a random sample, and the semiparametric efficient estimator is applied. This approach is made efficient by specifying the phase two selection probabilities as optimal functions of the auxiliary variables and measurement costs. While this approach is familiar to survey samplers, it apparently has seldom been used in clinical trials, and several novel results practicable for clinical trials are developed. We perform simulations to identify settings where the optimal approach significantly improves efficiency compared to approaches in current practice. We provide proofs and R code. The optimality results are developed to design an HIV vaccine trial, with objective to compare the mean 'importance-weighted' breadth (Y) of the T-cell response between randomized vaccine groups. The trial collects an auxiliary response (W) highly predictive of Y and measures Y in the optimal subset. We show that the optimal design-estimation approach can confer anywhere between absent and large efficiency gain (up to 24 % in the examples) compared to the approach with the same efficient estimator but simple random sampling, where greater variability in the cost-standardized conditional variance of Y given W yields greater efficiency gains. Accurate estimation of E[Y | W] is important for realizing the efficiency gain, which is aided by an ample phase two sample and by using a robust fitting method. Copyright © 2013 John Wiley & Sons, Ltd.
Gilbert, Peter B.; Yu, Xuesong; Rotnitzky, Andrea
2014-01-01
To address the objective in a clinical trial to estimate the mean or mean difference of an expensive endpoint Y, one approach employs a two-phase sampling design, wherein inexpensive auxiliary variables W predictive of Y are measured in everyone, Y is measured in a random sample, and the semi-parametric efficient estimator is applied. This approach is made efficient by specifying the phase-two selection probabilities as optimal functions of the auxiliary variables and measurement costs. While this approach is familiar to survey samplers, it apparently has seldom been used in clinical trials, and several novel results practicable for clinical trials are developed. Simulations are performed to identify settings where the optimal approach significantly improves efficiency compared to approaches in current practice. Proofs and R code are provided. The optimality results are developed to design an HIV vaccine trial, with objective to compare the mean “importance-weighted” breadth (Y) of the T cell response between randomized vaccine groups. The trial collects an auxiliary response (W) highly predictive of Y, and measures Y in the optimal subset. We show that the optimal design-estimation approach can confer anywhere between absent and large efficiency gain (up to 24% in the examples) compared to the approach with the same efficient estimator but simple random sampling, where greater variability in the cost-standardized conditional variance of Y given W yields greater efficiency gains. Accurate estimation of E[Y∣W] is important for realizing the efficiency gain, which is aided by an ample phase-two sample and by using a robust fitting method. PMID:24123289
Byron, Kelly; Bluvshtein, Vlad; Lucke, Lori
2013-01-01
Transcutaneous energy transmission systems (TETS) wirelessly transmit power through the skin. TETS is particularly desirable for ventricular assist devices (VAD), which currently require cables through the skin to power the implanted pump. Optimizing the inductive link of the TET system is a multi-parameter problem. Most current techniques to optimize the design simplify the problem by combining parameters leading to sub-optimal solutions. In this paper we present an optimization method using a genetic algorithm to handle a larger set of parameters, which leads to a more optimal design. Using this approach, we were able to increase efficiency while also reducing power variability in a prototype, compared to a traditional manual design method.
Multi-objective Optimization of a Solar Humidification Dehumidification Desalination Unit
NASA Astrophysics Data System (ADS)
Rafigh, M.; Mirzaeian, M.; Najafi, B.; Rinaldi, F.; Marchesi, R.
2017-11-01
In the present paper, a humidification-dehumidification desalination unit integrated with solar system is considered. In the first step mathematical model of the whole plant is represented. Next, taking into account the logical constraints, the performance of the system is optimized. On one hand it is desired to have higher energetic efficiency, while on the other hand, higher efficiency results in an increment in the required area for each subsystem which consequently leads to an increase in the total cost of the plant. In the present work, the optimum solution is achieved when the specific energy of the solar heater and also the areas of humidifier and dehumidifier are minimized. Due to the fact that considered objective functions are in conflict, conventional optimization methods are not applicable. Hence, multi objective optimization using genetic algorithm which is an efficient tool for dealing with problems with conflicting objectives has been utilized and a set of optimal solutions called Pareto front each of which is a tradeoff between the mentioned objectives is generated.
A novel adaptive Cuckoo search for optimal query plan generation.
Gomathi, Ramalingam; Sharmila, Dhandapani
2014-01-01
The emergence of multiple web pages day by day leads to the development of the semantic web technology. A World Wide Web Consortium (W3C) standard for storing semantic web data is the resource description framework (RDF). To enhance the efficiency in the execution time for querying large RDF graphs, the evolving metaheuristic algorithms become an alternate to the traditional query optimization methods. This paper focuses on the problem of query optimization of semantic web data. An efficient algorithm called adaptive Cuckoo search (ACS) for querying and generating optimal query plan for large RDF graphs is designed in this research. Experiments were conducted on different datasets with varying number of predicates. The experimental results have exposed that the proposed approach has provided significant results in terms of query execution time. The extent to which the algorithm is efficient is tested and the results are documented.
Efficient Simulation Budget Allocation for Selecting an Optimal Subset
NASA Technical Reports Server (NTRS)
Chen, Chun-Hung; He, Donghai; Fu, Michael; Lee, Loo Hay
2008-01-01
We consider a class of the subset selection problem in ranking and selection. The objective is to identify the top m out of k designs based on simulated output. Traditional procedures are conservative and inefficient. Using the optimal computing budget allocation framework, we formulate the problem as that of maximizing the probability of correc tly selecting all of the top-m designs subject to a constraint on the total number of samples available. For an approximation of this corre ct selection probability, we derive an asymptotically optimal allocat ion and propose an easy-to-implement heuristic sequential allocation procedure. Numerical experiments indicate that the resulting allocatio ns are superior to other methods in the literature that we tested, and the relative efficiency increases for larger problems. In addition, preliminary numerical results indicate that the proposed new procedur e has the potential to enhance computational efficiency for simulation optimization.
Hu, Shaoxing; Xu, Shike; Wang, Duhu; Zhang, Aiwu
2015-11-11
Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted "useful" data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency.
Detecting glaucomatous change in visual fields: Analysis with an optimization framework.
Yousefi, Siamak; Goldbaum, Michael H; Varnousfaderani, Ehsan S; Belghith, Akram; Jung, Tzyy-Ping; Medeiros, Felipe A; Zangwill, Linda M; Weinreb, Robert N; Liebmann, Jeffrey M; Girkin, Christopher A; Bowd, Christopher
2015-12-01
Detecting glaucomatous progression is an important aspect of glaucoma management. The assessment of longitudinal series of visual fields, measured using Standard Automated Perimetry (SAP), is considered the reference standard for this effort. We seek efficient techniques for determining progression from longitudinal visual fields by formulating the problem as an optimization framework, learned from a population of glaucoma data. The longitudinal data from each patient's eye were used in a convex optimization framework to find a vector that is representative of the progression direction of the sample population, as a whole. Post-hoc analysis of longitudinal visual fields across the derived vector led to optimal progression (change) detection. The proposed method was compared to recently described progression detection methods and to linear regression of instrument-defined global indices, and showed slightly higher sensitivities at the highest specificities than other methods (a clinically desirable result). The proposed approach is simpler, faster, and more efficient for detecting glaucomatous changes, compared to our previously proposed machine learning-based methods, although it provides somewhat less information. This approach has potential application in glaucoma clinics for patient monitoring and in research centers for classification of study participants. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Liwei; Liu, Xinggao; Zhang, Zeyin
2017-02-01
An efficient primal-dual interior-point algorithm using a new non-monotone line search filter method is presented for nonlinear constrained programming, which is widely applied in engineering optimization. The new non-monotone line search technique is introduced to lead to relaxed step acceptance conditions and improved convergence performance. It can also avoid the choice of the upper bound on the memory, which brings obvious disadvantages to traditional techniques. Under mild assumptions, the global convergence of the new non-monotone line search filter method is analysed, and fast local convergence is ensured by second order corrections. The proposed algorithm is applied to the classical alkylation process optimization problem and the results illustrate its effectiveness. Some comprehensive comparisons to existing methods are also presented.
Anaerobic digestion of food waste: A review focusing on process stability.
Li, Lei; Peng, Xuya; Wang, Xiaoming; Wu, Di
2018-01-01
Food waste (FW) is rich in biomass energy, and increasing numbers of national programs are being established to recover energy from FW using anaerobic digestion (AD). However process instability is a common operational issue for AD of FW. Process monitoring and control as well as microbial management can be used to control instability and increase the energy conversion efficiency of anaerobic digesters. Here, we review research progress related to these methods and identify existing limitations to efficient AD; recommendations for future research are also discussed. Process monitoring and control are suitable for evaluating the current operational status of digesters, whereas microbial management can facilitate early diagnosis and process optimization. Optimizing and combining these two methods are necessary to improve AD efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
CFD Analysis and Design Optimization Using Parallel Computers
NASA Technical Reports Server (NTRS)
Martinelli, Luigi; Alonso, Juan Jose; Jameson, Antony; Reuther, James
1997-01-01
A versatile and efficient multi-block method is presented for the simulation of both steady and unsteady flow, as well as aerodynamic design optimization of complete aircraft configurations. The compressible Euler and Reynolds Averaged Navier-Stokes (RANS) equations are discretized using a high resolution scheme on body-fitted structured meshes. An efficient multigrid implicit scheme is implemented for time-accurate flow calculations. Optimum aerodynamic shape design is achieved at very low cost using an adjoint formulation. The method is implemented on parallel computing systems using the MPI message passing interface standard to ensure portability. The results demonstrate that, by combining highly efficient algorithms with parallel computing, it is possible to perform detailed steady and unsteady analysis as well as automatic design for complex configurations using the present generation of parallel computers.
Efficiency of operation of wind turbine rotors optimized by the Glauert and Betz methods
NASA Astrophysics Data System (ADS)
Okulov, V. L.; Mikkelsen, R.; Litvinov, I. V.; Naumov, I. V.
2015-11-01
The models of two types of rotors with blades constructed using different optimization methods are compared experimentally. In the first case, the Glauert optimization by the pulsed method is used, which is applied independently for each individual blade cross section. This method remains the main approach in designing rotors of various duties. The construction of the other rotor is based on the Betz idea about optimization of rotors by determining a special distribution of circulation over the blade, which ensures the helical structure of the wake behind the rotor. It is established for the first time as a result of direct experimental comparison that the rotor constructed using the Betz method makes it possible to extract more kinetic energy from the homogeneous incoming flow.
On unified modeling, theory, and method for solving multi-scale global optimization problems
NASA Astrophysics Data System (ADS)
Gao, David Yang
2016-10-01
A unified model is proposed for general optimization problems in multi-scale complex systems. Based on this model and necessary assumptions in physics, the canonical duality theory is presented in a precise way to include traditional duality theories and popular methods as special applications. Two conjectures on NP-hardness are proposed, which should play important roles for correctly understanding and efficiently solving challenging real-world problems. Applications are illustrated for both nonconvex continuous optimization and mixed integer nonlinear programming.
NASA Astrophysics Data System (ADS)
Sun, Li; Wang, Deyu
2011-09-01
A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore, the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship, suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.
NASA Astrophysics Data System (ADS)
Li, Gang; Yu, Yue; Zhang, Cui; Lin, Ling
2017-09-01
The oxygen saturation is one of the important parameters to evaluate human health. This paper presents an efficient optimization method that can improve the accuracy of oxygen saturation measurement, which employs an optical frequency division triangular wave signal as the excitation signal to obtain dynamic spectrum and calculate oxygen saturation. In comparison to the traditional method measured RMSE (root mean square error) of SpO2 which is 0.1705, this proposed method significantly reduced the measured RMSE which is 0.0965. It is notable that the accuracy of oxygen saturation measurement has been improved significantly. The method can simplify the circuit and bring down the demand of elements. Furthermore, it has a great reference value on improving the signal to noise ratio of other physiological signals.
NASA Astrophysics Data System (ADS)
Ma, Qian; Shi, Chuan Bo; Chen, Tian Yi; Qing Qi, Mei; Li, Yun Bo; Cui, Tie Jun
2018-04-01
A new method is proposed to design gradient refractive-index metamaterial lens antennas by optimizing both the refractive-index distribution of the lens and the feed directivity. Comparing to the conventional design methods, source optimization provides a new degree of freedom to control aperture fields effectively. To demonstrate this method, two lenses with special properties based on this method are designed, to emit high-efficiency plane waves and fan-shaped beams, respectively. Both lenses have good performance and wide frequency band from 12 to 18 GHz, verifying the validity of the proposed method. The plane-wave emitting lens realized a high aperture efficiency of 75%, and the fan-beam lens achieved a high gain of 15 dB over board bandwidth. The experimental results have good agreement with the design targets and full-wave simulations.
Multi-disciplinary optimization of aeroservoelastic systems
NASA Technical Reports Server (NTRS)
Karpel, Mardechay
1992-01-01
The purpose of the research project was to continue the development of new methods for efficient aeroservoelastic analysis and optimization. The main targets were as follows: to complete the development of analytical tools for the investigation of flutter with large stiffness changes; to continue the work on efficient continuous gust response and sensitivity derivatives; and to advance the techniques of calculating dynamic loads with control and unsteady aerodynamic effects. An efficient and highly accurate mathematical model for time-domain analysis of flutter during which large structural changes occur was developed in cooperation with Carol D. Wieseman of NASA LaRC. The model was based on the second-year work 'Modal Coordinates for Aeroelastic Analysis with Large Local Structural Variations'. The work on continuous gust response was completed. An abstract of the paper 'Continuous Gust Response and Sensitivity Derivatives Using State-Space Models' was submitted for presentation in the 33rd Israel Annual Conference on Aviation and Astronautics, Feb. 1993. The abstract is given in Appendix A. The work extends the optimization model to deal with continuous gust objectives in a way that facilitates their inclusion in the efficient multi-disciplinary optimization scheme. Currently under development is a work designed to extend the analysis and optimization capabilities to loads and stress considerations. The work is on aircraft dynamic loads in response to impulsive and non-impulsive excitation. The work extends the formulations of the mode-displacement and summation-of-forces methods to include modes with significant local distortions, and load modes. An abstract of the paper,'Structural Dynamic Loads in Response to Impulsive Excitation' is given in appendix B. Another work performed this year under the Grant was 'Size-Reduction Techniques for the Determination of Efficient Aeroservoelastic Models' given in Appendix C.
NASA Astrophysics Data System (ADS)
Song, Wanjun; Zhang, Hou
2017-11-01
Through introducing the alternating direction implicit (ADI) technique and the memory-optimized algorithm to the shift operator (SO) finite difference time domain (FDTD) method, the memory-optimized SO-ADI FDTD for nonmagnetized collisional plasma is proposed and the corresponding formulae of the proposed method for programming are deduced. In order to further the computational efficiency, the iteration method rather than Gauss elimination method is employed to solve the equation set in the derivation of the formulae. Complicated transformations and convolutions are avoided in the proposed method compared with the Z transforms (ZT) ADI FDTD method and the piecewise linear JE recursive convolution (PLJERC) ADI FDTD method. The numerical dispersion of the SO-ADI FDTD method with different plasma frequencies and electron collision frequencies is analyzed and the appropriate ratio of grid size to the minimum wavelength is given. The accuracy of the proposed method is validated by the reflection coefficient test on a nonmagnetized collisional plasma sheet. The testing results show that the proposed method is advantageous for improving computational efficiency and saving computer memory. The reflection coefficient of a perfect electric conductor (PEC) sheet covered by multilayer plasma and the RCS of the objects coated by plasma are calculated by the proposed method and the simulation results are analyzed.
Optimization and characterization of liposome formulation by mixture design.
Maherani, Behnoush; Arab-tehrany, Elmira; Kheirolomoom, Azadeh; Reshetov, Vadzim; Stebe, Marie José; Linder, Michel
2012-02-07
This study presents the application of the mixture design technique to develop an optimal liposome formulation by using the different lipids in type and percentage (DOPC, POPC and DPPC) in liposome composition. Ten lipid mixtures were generated by the simplex-centroid design technique and liposomes were prepared by the extrusion method. Liposomes were characterized with respect to size, phase transition temperature, ζ-potential, lamellarity, fluidity and efficiency in loading calcein. The results were then applied to estimate the coefficients of mixture design model and to find the optimal lipid composition with improved entrapment efficiency, size, transition temperature, fluidity and ζ-potential of liposomes. The response optimization of experiments was the liposome formulation with DOPC: 46%, POPC: 12% and DPPC: 42%. The optimal liposome formulation had an average diameter of 127.5 nm, a phase-transition temperature of 11.43 °C, a ζ-potential of -7.24 mV, fluidity (1/P)(TMA-DPH)((¬)) value of 2.87 and an encapsulation efficiency of 20.24%. The experimental results of characterization of optimal liposome formulation were in good agreement with those predicted by the mixture design technique.
Zhao, Huimin; Tan, Zilong; Wen, Xuejing; Wang, Yucheng
2017-02-14
Syringe infiltration is an important transient transformation method that is widely used in many molecular studies. Owing to the wide use of syringe agroinfiltration, it is important and necessary to improve its transformation efficiency. Here, we studied the factors influencing the transformation efficiency of syringe agroinfiltration. The pCAMBIA1301 was transformed into Nicotiana benthamiana leaves for investigation. The effects of 5-azacytidine (AzaC), Ascorbate acid (ASC) and Tween-20 on transformation were studied. The β-glucuronidase ( GUS ) expression and GUS activity were respectively measured to determine the transformation efficiency. AzaC, ASC and Tween-20 all significantly affected the transformation efficiency of agroinfiltration, and the optimal concentrations of AzaC, ASC and Tween-20 for the transgene expression were identified. Our results showed that 20 μM AzaC, 0.56 mM ASC and 0.03% ( v / v ) Tween-20 is the optimal concentration that could significantly improve the transformation efficiency of agroinfiltration. Furthermore, a combined supplement of 20 μM AzaC, 0.56 mM ASC and 0.03% Tween-20 improves the expression of transgene better than any one factor alone, increasing the transgene expression by more than 6-fold. Thus, an optimized syringe agroinfiltration was developed here, which might be a powerful method in transient transformation analysis.
Zhong, Shangping; Chen, Tianshun; He, Fengying; Niu, Yuzhen
2014-09-01
For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shaver, Aaron C; Greig, Bruce W; Mosse, Claudio A; Seegmiller, Adam C
2015-05-01
Optimizing a clinical flow cytometry panel can be a subjective process dependent on experience. We develop a quantitative method to make this process more rigorous and apply it to B lymphoblastic leukemia/lymphoma (B-ALL) minimal residual disease (MRD) testing. We retrospectively analyzed our existing three-tube, seven-color B-ALL MRD panel and used our novel method to develop an optimized one-tube, eight-color panel, which was tested prospectively. The optimized one-tube, eight-color panel resulted in greater efficiency of time and resources with no loss in diagnostic power. Constructing a flow cytometry panel using a rigorous, objective, quantitative method permits optimization and avoids problems of interdependence and redundancy in a large, multiantigen panel. Copyright© by the American Society for Clinical Pathology.
Montenegro-Johnson, Thomas D; Lauga, Eric
2014-06-01
Propulsion at microscopic scales is often achieved through propagating traveling waves along hairlike organelles called flagella. Taylor's two-dimensional swimming sheet model is frequently used to provide insight into problems of flagellar propulsion. We derive numerically the large-amplitude wave form of the two-dimensional swimming sheet that yields optimum hydrodynamic efficiency: the ratio of the squared swimming speed to the rate-of-working of the sheet against the fluid. Using the boundary element method, we show that the optimal wave form is a front-back symmetric regularized cusp that is 25% more efficient than the optimal sine wave. This optimal two-dimensional shape is smooth, qualitatively different from the kinked form of Lighthill's optimal three-dimensional flagellum, not predicted by small-amplitude theory, and different from the smooth circular-arc-like shape of active elastic filaments.
Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi
2016-01-01
CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.
Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi
2016-01-01
CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996–2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658
Fang, Xinsheng; Wang, Jianhua; Zhou, Hongying; Jiang, Xingkai; Zhu, Lixiang; Gao, Xin
2009-07-01
An optimized microwave-assisted extraction method using water (MAE-W) as the extractant and an efficient HPLC analysis method were first developed for the fast extraction and simultaneous determination of D(+)-(3,4-dihydroxyphenyl) lactic acid (Dla), salvianolic acid B (SaB), and lithospermic acid (La) in radix Salviae Miltiorrhizae. The key parameters of MAE-W were optimized. It was found that the degradation of SaB was inhibited when using the optimized MAE-W and the stable content of Dla, La, and SaB in danshen was obtained. Furthermore, compared to the conventional extraction methods, the proposed MAE-W is a more rapid method with higher yield and lower solvent consumption with a reproducibility (RSD <6%). In addition, using water as extractant is safe and helpful for environment protection, which could be referred to as green extraction. The separation and quantitative determination of the three compounds was carried out by a developed reverse-phase high-performance liquid chromatographic (RP-HPLC) method with UV detection. Highly efficient separation was obtained using gradient solvent system. The optimized HPLC analysis method was validated to have specificity, linearity, precision, and accuracy. The results indicated that MAE-W followed by HPLC-UV determination is an appropriate alternative to previously proposed method for quality control of radix Salviae Miltiorrhizae.
Parametric optimal control of uncertain systems under an optimistic value criterion
NASA Astrophysics Data System (ADS)
Li, Bo; Zhu, Yuanguo
2018-01-01
It is well known that the optimal control of a linear quadratic model is characterized by the solution of a Riccati differential equation. In many cases, the corresponding Riccati differential equation cannot be solved exactly such that the optimal feedback control may be a complex time-oriented function. In this article, a parametric optimal control problem of an uncertain linear quadratic model under an optimistic value criterion is considered for simplifying the expression of optimal control. Based on the equation of optimality for the uncertain optimal control problem, an approximation method is presented to solve it. As an application, a two-spool turbofan engine optimal control problem is given to show the utility of the proposed model and the efficiency of the presented approximation method.
A conjugate gradient method with descent properties under strong Wolfe line search
NASA Astrophysics Data System (ADS)
Zull, N.; ‘Aini, N.; Shoid, S.; Ghani, N. H. A.; Mohamed, N. S.; Rivaie, M.; Mamat, M.
2017-09-01
The conjugate gradient (CG) method is one of the optimization methods that are often used in practical applications. The continuous and numerous studies conducted on the CG method have led to vast improvements in its convergence properties and efficiency. In this paper, a new CG method possessing the sufficient descent and global convergence properties is proposed. The efficiency of the new CG algorithm relative to the existing CG methods is evaluated by testing them all on a set of test functions using MATLAB. The tests are measured in terms of iteration numbers and CPU time under strong Wolfe line search. Overall, this new method performs efficiently and comparable to the other famous methods.
CAD-Based Aerodynamic Design of Complex Configurations using a Cartesian Method
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.
2003-01-01
A modular framework for aerodynamic optimization of complex geometries is developed. By working directly with a parametric CAD system, complex-geometry models are modified nnd tessellated in an automatic fashion. The use of a component-based Cartesian method significantly reduces the demands on the CAD system, and also provides for robust and efficient flowfield analysis. The optimization is controlled using either a genetic or quasi-Newton algorithm. Parallel efficiency of the framework is maintained even when subject to limited CAD resources by dynamically re-allocating the processors of the flow solver. Overall, the resulting framework can explore designs incorporating large shape modifications and changes in topology.
Accurate and Efficient Approximation to the Optimized Effective Potential for Exchange
NASA Astrophysics Data System (ADS)
Ryabinkin, Ilya G.; Kananenka, Alexei A.; Staroverov, Viktor N.
2013-07-01
We devise an efficient practical method for computing the Kohn-Sham exchange-correlation potential corresponding to a Hartree-Fock electron density. This potential is almost indistinguishable from the exact-exchange optimized effective potential (OEP) and, when used as an approximation to the OEP, is vastly better than all existing models. Using our method one can obtain unambiguous, nearly exact OEPs for any reasonable finite one-electron basis set at the same low cost as the Krieger-Li-Iafrate and Becke-Johnson potentials. For all practical purposes, this solves the long-standing problem of black-box construction of OEPs in exact-exchange calculations.
Procedures for shape optimization of gas turbine disks
NASA Technical Reports Server (NTRS)
Cheu, Tsu-Chien
1989-01-01
Two procedures, the feasible direction method and sequential linear programming, for shape optimization of gas turbine disks are presented. The objective of these procedures is to obtain optimal designs of turbine disks with geometric and stress constraints. The coordinates of the selected points on the disk contours are used as the design variables. Structural weight, stress and their derivatives with respect to the design variables are calculated by an efficient finite element method for design senitivity analysis. Numerical examples of the optimal designs of a disk subjected to thermo-mechanical loadings are presented to illustrate and compare the effectiveness of these two procedures.
Zeng, Zhi; Pan, Xingyu; Ma, Hao; He, Jianhua; Cang, Jirong; Zeng, Ming; Mi, Yuhao; Cheng, Jianping
2017-03-01
An underwater in-situ gamma-ray spectrometer based on LaBr 3 :Ce was developed and optimized to monitor marine radioactivity. The intrinsic background mainly from 138 La and 227 Ac of LaBr 3 :Ce was well determined by low background measurement and pulse shape discrimination method. A method of self-calibration using three internal contaminant peaks was proposed to eliminate the peak shift during long-term monitoring. With experiments under different temperatures, the method was proved to be helpful for maintaining long-term stability. To monitor the marine radioactivity, the spectrometer's efficiency was calculated via water tank experiment as well as Monte Carlo simulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
A tool for simulating parallel branch-and-bound methods
NASA Astrophysics Data System (ADS)
Golubeva, Yana; Orlov, Yury; Posypkin, Mikhail
2016-01-01
The Branch-and-Bound method is known as one of the most powerful but very resource consuming global optimization methods. Parallel and distributed computing can efficiently cope with this issue. The major difficulty in parallel B&B method is the need for dynamic load redistribution. Therefore design and study of load balancing algorithms is a separate and very important research topic. This paper presents a tool for simulating parallel Branchand-Bound method. The simulator allows one to run load balancing algorithms with various numbers of processors, sizes of the search tree, the characteristics of the supercomputer's interconnect thereby fostering deep study of load distribution strategies. The process of resolution of the optimization problem by B&B method is replaced by a stochastic branching process. Data exchanges are modeled using the concept of logical time. The user friendly graphical interface to the simulator provides efficient visualization and convenient performance analysis.
Development of a pump-turbine runner based on multiobjective optimization
NASA Astrophysics Data System (ADS)
Xuhe, W.; Baoshan, Z.; Lei, T.; Jie, Z.; Shuliang, C.
2014-03-01
As a key component of reversible pump-turbine unit, pump-turbine runner rotates at pump or turbine direction according to the demand of power grid, so higher efficiencies under both operating modes have great importance for energy saving. In the present paper, a multiobjective optimization design strategy, which includes 3D inverse design method, CFD calculations, response surface method (RSM) and multiobjective genetic algorithm (MOGA), is introduced to develop a model pump-turbine runner for middle-high head pumped storage plant. Parameters that controlling blade shape, such as blade loading and blade lean angle at high pressure side are chosen as input parameters, while runner efficiencies under both pump and turbine modes are selected as objective functions. In order to validate the availability of the optimization design system, one runner configuration from Pareto front is manufactured for experimental research. Test results show that the highest unit efficiency is 91.0% under turbine mode and 90.8% under pump mode for the designed runner, of which prototype efficiencies are 93.88% and 93.27% respectively. Viscous CFD calculations for full passage model are also conducted, which aim at finding out the hydraulic improvement from internal flow analyses.
Efficient robust conditional random fields.
Song, Dongjin; Liu, Wei; Zhou, Tianyi; Tao, Dacheng; Meyer, David A
2015-10-01
Conditional random fields (CRFs) are a flexible yet powerful probabilistic approach and have shown advantages for popular applications in various areas, including text analysis, bioinformatics, and computer vision. Traditional CRF models, however, are incapable of selecting relevant features as well as suppressing noise from noisy original features. Moreover, conventional optimization methods often converge slowly in solving the training procedure of CRFs, and will degrade significantly for tasks with a large number of samples and features. In this paper, we propose robust CRFs (RCRFs) to simultaneously select relevant features. An optimal gradient method (OGM) is further designed to train RCRFs efficiently. Specifically, the proposed RCRFs employ the l1 norm of the model parameters to regularize the objective used by traditional CRFs, therefore enabling discovery of the relevant unary features and pairwise features of CRFs. In each iteration of OGM, the gradient direction is determined jointly by the current gradient together with the historical gradients, and the Lipschitz constant is leveraged to specify the proper step size. We show that an OGM can tackle the RCRF model training very efficiently, achieving the optimal convergence rate [Formula: see text] (where k is the number of iterations). This convergence rate is theoretically superior to the convergence rate O(1/k) of previous first-order optimization methods. Extensive experiments performed on three practical image segmentation tasks demonstrate the efficacy of OGM in training our proposed RCRFs.
Genetic particle swarm parallel algorithm analysis of optimization arrangement on mistuned blades
NASA Astrophysics Data System (ADS)
Zhao, Tianyu; Yuan, Huiqun; Yang, Wenjun; Sun, Huagang
2017-12-01
This article introduces a method of mistuned parameter identification which consists of static frequency testing of blades, dichotomy and finite element analysis. A lumped parameter model of an engine bladed-disc system is then set up. A bladed arrangement optimization method, namely the genetic particle swarm optimization algorithm, is presented. It consists of a discrete particle swarm optimization and a genetic algorithm. From this, the local and global search ability is introduced. CUDA-based co-evolution particle swarm optimization, using a graphics processing unit, is presented and its performance is analysed. The results show that using optimization results can reduce the amplitude and localization of the forced vibration response of a bladed-disc system, while optimization based on the CUDA framework can improve the computing speed. This method could provide support for engineering applications in terms of effectiveness and efficiency.
Inversion of Robin coefficient by a spectral stochastic finite element approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Bangti; Zou Jun
2008-03-01
This paper investigates a variational approach to the nonlinear stochastic inverse problem of probabilistically calibrating the Robin coefficient from boundary measurements for the steady-state heat conduction. The problem is formulated into an optimization problem, and mathematical properties relevant to its numerical computations are investigated. The spectral stochastic finite element method using polynomial chaos is utilized for the discretization of the optimization problem, and its convergence is analyzed. The nonlinear conjugate gradient method is derived for the optimization system. Numerical results for several two-dimensional problems are presented to illustrate the accuracy and efficiency of the stochastic finite element method.
Viscoelastic material inversion using Sierra-SD and ROL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, Timothy; Aquino, Wilkins; Ridzal, Denis
2014-11-01
In this report we derive frequency-domain methods for inverse characterization of the constitutive parameters of viscoelastic materials. The inverse problem is cast in a PDE-constrained optimization framework with efficient computation of gradients and Hessian vector products through matrix free operations. The abstract optimization operators for first and second derivatives are derived from first principles. Various methods from the Rapid Optimization Library (ROL) are tested on the viscoelastic inversion problem. The methods described herein are applied to compute the viscoelastic bulk and shear moduli of a foam block model, which was recently used in experimental testing for viscoelastic property characterization.
NASA Astrophysics Data System (ADS)
Marchukov, E.; Egorov, I.; Popov, G.; Baturin, O.; Goriachkin, E.; Novikova, Y.; Kolmakova, D.
2017-08-01
The article presents one optimization method for improving of the working process of an axial compressor of gas turbine engine. Developed method allows to perform search for the best geometry of compressor blades automatically by using optimization software IOSO and CFD software NUMECA Fine/Turbo. Optimization was performed by changing the form of the middle line in the three sections of each blade and shifts of three sections of the guide vanes in the circumferential and axial directions. The calculation of the compressor parameters was performed for work and stall point of its performance map on each optimization step. Study was carried out for seven-stage high-pressure compressor and three-stage low-pressure compressors. As a result of optimization, improvement of efficiency was achieved for all investigated compressors.
A robust component mode synthesis method for stochastic damped vibroacoustics
NASA Astrophysics Data System (ADS)
Tran, Quang Hung; Ouisse, Morvan; Bouhaddi, Noureddine
2010-01-01
In order to reduce vibrations or sound levels in industrial vibroacoustic problems, the low-cost and efficient way consists in introducing visco- and poro-elastic materials either on the structure or on cavity walls. Depending on the frequency range of interest, several numerical approaches can be used to estimate the behavior of the coupled problem. In the context of low frequency applications related to acoustic cavities with surrounding vibrating structures, the finite elements method (FEM) is one of the most efficient techniques. Nevertheless, industrial problems lead to large FE models which are time-consuming in updating or optimization processes. A classical way to reduce calculation time is the component mode synthesis (CMS) method, whose classical formulation is not always efficient to predict dynamical behavior of structures including visco-elastic and/or poro-elastic patches. Then, to ensure an efficient prediction, the fluid and structural bases used for the model reduction need to be updated as a result of changes in a parametric optimization procedure. For complex models, this leads to prohibitive numerical costs in the optimization phase or for management and propagation of uncertainties in the stochastic vibroacoustic problem. In this paper, the formulation of an alternative CMS method is proposed and compared to classical ( u, p) CMS method: the Ritz basis is completed with static residuals associated to visco-elastic and poro-elastic behaviors. This basis is also enriched by the static response of residual forces due to structural modifications, resulting in a so-called robust basis, also adapted to Monte Carlo simulations for uncertainties propagation using reduced models.
Ullah, Hakeem; Islam, Saeed; Khan, Ilyas; Shafie, Sharidan; Fiza, Mehreen
2015-01-01
In this paper we applied a new analytic approximate technique Optimal Homotopy Asymptotic Method (OHAM) for treatment of coupled differential-difference equations (DDEs). To see the efficiency and reliability of the method, we consider Relativistic Toda coupled nonlinear differential-difference equation. It provides us a convenient way to control the convergence of approximate solutions when it is compared with other methods of solution found in the literature. The obtained solutions show that OHAM is effective, simpler, easier and explicit.
Ullah, Hakeem; Islam, Saeed; Khan, Ilyas; Shafie, Sharidan; Fiza, Mehreen
2015-01-01
In this paper we applied a new analytic approximate technique Optimal Homotopy Asymptotic Method (OHAM) for treatment of coupled differential- difference equations (DDEs). To see the efficiency and reliability of the method, we consider Relativistic Toda coupled nonlinear differential-difference equation. It provides us a convenient way to control the convergence of approximate solutions when it is compared with other methods of solution found in the literature. The obtained solutions show that OHAM is effective, simpler, easier and explicit. PMID:25874457
Optimized zein nanospheres for improved oral bioavailability of atorvastatin
Hashem, Fahima M; Al-Sawahli, Majid M; Nasr, Mohamed; Ahmed, Osama AA
2015-01-01
Background This work focuses on the development of atorvastatin utilizing zein, a natural, safe, and biocompatible polymer, as a nanosized formulation in order to overcome the poor oral bioavailability (12%) of the drug. Methods Twelve experimental runs of atorvastatin–zein nanosphere formula were formulated by a liquid–liquid phase separation method according to custom fractional factorial design to optimize the formulation variables. The factors studied were: weight % of zein to atorvastatin (X1), pH (X2), and stirring time (X3). Levels for each formulation variable were designed. The selected dependent variables were: mean particle size (Y1), zeta potential (Y2), drug loading efficiency (Y3), drug encapsulation efficiency (Y4), and yield (Y5). The optimized formulation was assayed for compatibility using an X-ray diffraction assay. In vitro diffusion of the optimized formulation was carried out. A pharmacokinetic study was also done to compare the plasma profile of the atorvastatin–zein nanosphere formulation versus atorvastatin oral suspension and the commercially available tablet. Results The optimized atorvastatin–zein formulation had a mean particle size of 183 nm, a loading efficiency of 14.86%, and an encapsulation efficiency of 29.71%. The in vitro dissolution assay displayed an initial burst effect, with a cumulative amount of atorvastatin released of 41.76% and 82.3% after 12 and 48 hours, respectively. In Wistar albino rats, the bioavailability of atorvastatin from the optimized atorvastatin–zein formulation was 3-fold greater than that from the atorvastatin suspension and the commercially available tablet. Conclusion The atorvastatin–zein nanosphere formulation improved the oral delivery and pharmacokinetic profile of atorvastatin by enhancing its oral bioavailability. PMID:26150716
Li, Nailu; Mu, Anle; Yang, Xiyun; Magar, Kaman T; Liu, Chao
2018-05-01
The optimal tuning of adaptive flap controller can improve adaptive flap control performance on uncertain operating environments, but the optimization process is usually time-consuming and it is difficult to design proper optimal tuning strategy for the flap control system (FCS). To solve this problem, a novel adaptive flap controller is designed based on a high-efficient differential evolution (DE) identification technique and composite adaptive internal model control (CAIMC) strategy. The optimal tuning can be easily obtained by DE identified inverse of the FCS via CAIMC structure. To achieve fast tuning, a high-efficient modified adaptive DE algorithm is proposed with new mutant operator and varying range adaptive mechanism for the FCS identification. A tradeoff between optimized adaptive flap control and low computation cost is successfully achieved by proposed controller. Simulation results show the robustness of proposed method and its superiority to conventional adaptive IMC (AIMC) flap controller and the CAIMC flap controllers using other DE algorithms on various uncertain operating conditions. The high computation efficiency of proposed controller is also verified based on the computation time on those operating cases. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Canseco Grellet, M A; Castagnaro, A; Dantur, K I; De Boeck, G; Ahmed, P M; Cárdenas, G J; Welin, B; Ruiz, R M
2016-10-01
To calculate fermentation efficiency in a continuous ethanol production process, we aimed to develop a robust mathematical method based on the analysis of metabolic by-product formation. This method is in contrast to the traditional way of calculating ethanol fermentation efficiency, where the ratio between the ethanol produced and the sugar consumed is expressed as a percentage of the theoretical conversion yield. Comparison between the two methods, at industrial scale and in sensitivity studies, showed that the indirect method was more robust and gave slightly higher fermentation efficiency values, although fermentation efficiency of the industrial process was found to be low (~75%). The traditional calculation method is simpler than the indirect method as it only requires a few chemical determinations in samples collected. However, a minor error in any measured parameter will have an important impact on the calculated efficiency. In contrast, the indirect method of calculation requires a greater number of determinations but is much more robust since an error in any parameter will only have a minor effect on the fermentation efficiency value. The application of the indirect calculation methodology in order to evaluate the real situation of the process and to reach an optimum fermentation yield for an industrial-scale ethanol production is recommended. Once a high fermentation yield has been reached the traditional method should be used to maintain the control of the process. Upon detection of lower yields in an optimized process the indirect method should be employed as it permits a more accurate diagnosis of causes of yield losses in order to correct the problem rapidly. The low fermentation efficiency obtained in this study shows an urgent need for industrial process optimization where the indirect calculation methodology will be an important tool to determine process losses. © 2016 The Society for Applied Microbiology.
Zheng, Qianwang; Mikš-Krajnik, Marta; Yang, Yishan; Xu, Wang; Yuk, Hyun-Gyun
2014-09-01
Conventional culture detection methods are time consuming and labor-intensive. For this reason, an alternative rapid method combining real-time PCR and immunomagnetic separation (IMS) was investigated in this study to detect both healthy and heat-injured Salmonella Typhimurium on raw duck wings. Firstly, the IMS method was optimized by determining the capture efficiency of Dynabeads(®) on Salmonella cells on raw duck wings with different bead incubation (10, 30 and 60 min) and magnetic separation (3, 10 and 30 min) times. Secondly, three Taqman primer sets, Sal, invA and ttr, were evaluated to optimize the real-time PCR protocol by comparing five parameters: inclusivity, exclusivity, PCR efficiency, detection probability and limit of detection (LOD). Thirdly, the optimized real-time PCR, in combination with IMS (PCR-IMS) assay, was compared with a standard ISO and a real-time PCR (PCR) method by analyzing artificially inoculated raw duck wings with healthy and heat-injured Salmonella cells at 10(1) and 10(0) CFU/25 g. Finally, the optimized PCR-IMS assay was validated for Salmonella detection in naturally contaminated raw duck wing samples. Under optimal IMS conditions (30 min bead incubation and 3 min magnetic separation times), approximately 85 and 64% of S. Typhimurium cells were captured by Dynabeads® from pure culture and inoculated raw duck wings, respectively. Although Sal and ttr primers exhibited 100% inclusivity and exclusivity for 16 Salmonella spp. and 36 non-Salmonella strains, the Sal primer showed lower LOD (10(3) CFU/ml) and higher PCR efficiency (94.1%) than the invA and ttr primers. Moreover, for Sal and invA primers, 100% detection probability on raw duck wings suspension was observed at 10(3) and 10(4) CFU/ml with and without IMS, respectively. Thus, the Sal primer was chosen for further experiments. The optimized PCR-IMS method was significantly (P=0.0011) better at detecting healthy Salmonella cells after 7-h enrichment than traditional PCR method. However there was no significant difference between the two methods with longer enrichment time (14 h). The diagnostic accuracy of PCR-IMS was shown to be 98.3% through the validation study. These results indicate that the optimized PCR-IMS method in this study could provide a sensitive, specific and rapid detection method for Salmonella on raw duck wings, enabling 10-h detection. However, a longer enrichment time could be needed for resuscitation and reliable detection of heat-injured cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Phase-Division-Based Dynamic Optimization of Linkages for Drawing Servo Presses
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Gang; Wang, Li-Ping; Cao, Yan-Ke
2017-11-01
Existing linkage-optimization methods are designed for mechanical presses; few can be directly used for servo presses, so development of the servo press is limited. Based on the complementarity of linkage optimization and motion planning, a phase-division-based linkage-optimization model for a drawing servo press is established. Considering the motion-planning principles of a drawing servo press, and taking account of work rating and efficiency, the constraints of the optimization model are constructed. Linkage is optimized in two modes: use of either constant eccentric speed or constant slide speed in the work segments. The performances of optimized linkages are compared with those of a mature linkage SL4-2000A, which is optimized by a traditional method. The results show that the work rating of a drawing servo press equipped with linkages optimized by this new method improved and the root-mean-square torque of the servo motors is reduced by more than 10%. This research provides a promising method for designing energy-saving drawing servo presses with high work ratings.
Continuum topology optimization considering uncertainties in load locations based on the cloud model
NASA Astrophysics Data System (ADS)
Liu, Jie; Wen, Guilin
2018-06-01
Few researchers have paid attention to designing structures in consideration of uncertainties in the loading locations, which may significantly influence the structural performance. In this work, cloud models are employed to depict the uncertainties in the loading locations. A robust algorithm is developed in the context of minimizing the expectation of the structural compliance, while conforming to a material volume constraint. To guarantee optimal solutions, sufficient cloud drops are used, which in turn leads to low efficiency. An innovative strategy is then implemented to enormously improve the computational efficiency. A modified soft-kill bi-directional evolutionary structural optimization method using derived sensitivity numbers is used to output the robust novel configurations. Several numerical examples are presented to demonstrate the effectiveness and efficiency of the proposed algorithm.
Optimal laser wavelength for efficient laser power converter operation over temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Höhn, O., E-mail: oliver.hoehn@ise.fraunhofer.de; Walker, A. W.; Bett, A. W.
2016-06-13
A temperature dependent modeling study is conducted on a GaAs laser power converter to identify the optimal incident laser wavelength for optical power transmission. Furthermore, the respective temperature dependent maximal conversion efficiencies in the radiative limit as well as in a practically achievable limit are presented. The model is based on the transfer matrix method coupled to a two-diode model, and is calibrated to experimental data of a GaAs photovoltaic device over laser irradiance and temperature. Since the laser wavelength does not strongly influence the open circuit voltage of the laser power converter, the optimal laser wavelength is determined tomore » be in the range where the external quantum efficiency is maximal, but weighted by the photon flux of the laser.« less
Kernel optimization for short-range molecular dynamics
NASA Astrophysics Data System (ADS)
Hu, Changjun; Wang, Xianmeng; Li, Jianjiang; He, Xinfu; Li, Shigang; Feng, Yangde; Yang, Shaofeng; Bai, He
2017-02-01
To optimize short-range force computations in Molecular Dynamics (MD) simulations, multi-threading and SIMD optimizations are presented in this paper. With respect to multi-threading optimization, a Partition-and-Separate-Calculation (PSC) method is designed to avoid write conflicts caused by using Newton's third law. Serial bottlenecks are eliminated with no additional memory usage. The method is implemented by using the OpenMP model. Furthermore, the PSC method is employed on Intel Xeon Phi coprocessors in both native and offload models. We also evaluate the performance of the PSC method under different thread affinities on the MIC architecture. In the SIMD execution, we explain the performance influence in the PSC method, considering the "if-clause" of the cutoff radius check. The experiment results show that our PSC method is relatively more efficient compared to some traditional methods. In double precision, our 256-bit SIMD implementation is about 3 times faster than the scalar version.
Near-optimal experimental design for model selection in systems biology.
Busetto, Alberto Giovanni; Hauser, Alain; Krummenacher, Gabriel; Sunnåker, Mikael; Dimopoulos, Sotiris; Ong, Cheng Soon; Stelling, Jörg; Buhmann, Joachim M
2013-10-15
Biological systems are understood through iterations of modeling and experimentation. Not all experiments, however, are equally valuable for predictive modeling. This study introduces an efficient method for experimental design aimed at selecting dynamical models from data. Motivated by biological applications, the method enables the design of crucial experiments: it determines a highly informative selection of measurement readouts and time points. We demonstrate formal guarantees of design efficiency on the basis of previous results. By reducing our task to the setting of graphical models, we prove that the method finds a near-optimal design selection with a polynomial number of evaluations. Moreover, the method exhibits the best polynomial-complexity constant approximation factor, unless P = NP. We measure the performance of the method in comparison with established alternatives, such as ensemble non-centrality, on example models of different complexity. Efficient design accelerates the loop between modeling and experimentation: it enables the inference of complex mechanisms, such as those controlling central metabolic operation. Toolbox 'NearOED' available with source code under GPL on the Machine Learning Open Source Software Web site (mloss.org).
NASA Astrophysics Data System (ADS)
Rousis, Damon A.
The expected growth of civil aviation over the next twenty years places significant emphasis on revolutionary technology development aimed at mitigating the environmental impact of commercial aircraft. As the number of technology alternatives grows along with model complexity, current methods for Pareto finding and multiobjective optimization quickly become computationally infeasible. Coupled with the large uncertainty in the early stages of design, optimal designs are sought while avoiding the computational burden of excessive function calls when a single design change or technology assumption could alter the results. This motivates the need for a robust and efficient evaluation methodology for quantitative assessment of competing concepts. This research presents a novel approach that combines Bayesian adaptive sampling with surrogate-based optimization to efficiently place designs near Pareto frontier intersections of competing concepts. Efficiency is increased over sequential multiobjective optimization by focusing computational resources specifically on the location in the design space where optimality shifts between concepts. At the intersection of Pareto frontiers, the selection decisions are most sensitive to preferences place on the objectives, and small perturbations can lead to vastly different final designs. These concepts are incorporated into an evaluation methodology that ultimately reduces the number of failed cases, infeasible designs, and Pareto dominated solutions across all concepts. A set of algebraic samples along with a truss design problem are presented as canonical examples for the proposed approach. The methodology is applied to the design of ultra-high bypass ratio turbofans to guide NASA's technology development efforts for future aircraft. Geared-drive and variable geometry bypass nozzle concepts are explored as enablers for increased bypass ratio and potential alternatives over traditional configurations. The method is shown to improve sampling efficiency and provide clusters of feasible designs that motivate a shift towards revolutionary technologies that reduce fuel burn, emissions, and noise on future aircraft.
Optimization of composite sandwich cover panels subjected to compressive loadings
NASA Technical Reports Server (NTRS)
Cruz, Juan R.
1991-01-01
An analysis and design method is presented for the design of composite sandwich cover panels that include the transverse shear effects and damage tolerance considerations. This method is incorporated into a sandwich optimization computer program entitled SANDOP. As a demonstration of its capabilities, SANDOP is used in the present study to design optimized composite sandwich cover panels for for transport aircraft wing applications. The results of this design study indicate that optimized composite sandwich cover panels have approximately the same structural efficiency as stiffened composite cover panels designed to satisfy individual constraints. The results also indicate that inplane stiffness requirements have a large effect on the weight of these composite sandwich cover panels at higher load levels. Increasing the maximum allowable strain and the upper percentage limit of the 0 degree and +/- 45 degree plies can yield significant weight savings. The results show that the structural efficiency of these optimized composite sandwich cover panels is relatively insensitive to changes in core density. Thus, core density should be chosen by criteria other than minimum weight (e.g., damage tolerance, ease of manufacture, etc.).
Discrete Biogeography Based Optimization for Feature Selection in Molecular Signatures.
Liu, Bo; Tian, Meihong; Zhang, Chunhua; Li, Xiangtao
2015-04-01
Biomarker discovery from high-dimensional data is a complex task in the development of efficient cancer diagnoses and classification. However, these data are usually redundant and noisy, and only a subset of them present distinct profiles for different classes of samples. Thus, selecting high discriminative genes from gene expression data has become increasingly interesting in the field of bioinformatics. In this paper, a discrete biogeography based optimization is proposed to select the good subset of informative gene relevant to the classification. In the proposed algorithm, firstly, the fisher-markov selector is used to choose fixed number of gene data. Secondly, to make biogeography based optimization suitable for the feature selection problem; discrete migration model and discrete mutation model are proposed to balance the exploration and exploitation ability. Then, discrete biogeography based optimization, as we called DBBO, is proposed by integrating discrete migration model and discrete mutation model. Finally, the DBBO method is used for feature selection, and three classifiers are used as the classifier with the 10 fold cross-validation method. In order to show the effective and efficiency of the algorithm, the proposed algorithm is tested on four breast cancer dataset benchmarks. Comparison with genetic algorithm, particle swarm optimization, differential evolution algorithm and hybrid biogeography based optimization, experimental results demonstrate that the proposed method is better or at least comparable with previous method from literature when considering the quality of the solutions obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimization design of wind turbine drive train based on Matlab genetic algorithm toolbox
NASA Astrophysics Data System (ADS)
Li, R. N.; Liu, X.; Liu, S. J.
2013-12-01
In order to ensure the high efficiency of the whole flexible drive train of the front-end speed adjusting wind turbine, the working principle of the main part of the drive train is analyzed. As critical parameters, rotating speed ratios of three planetary gear trains are selected as the research subject. The mathematical model of the torque converter speed ratio is established based on these three critical variable quantity, and the effect of key parameters on the efficiency of hydraulic mechanical transmission is analyzed. Based on the torque balance and the energy balance, refer to hydraulic mechanical transmission characteristics, the transmission efficiency expression of the whole drive train is established. The fitness function and constraint functions are established respectively based on the drive train transmission efficiency and the torque converter rotating speed ratio range. And the optimization calculation is carried out by using MATLAB genetic algorithm toolbox. The optimization method and results provide an optimization program for exact match of wind turbine rotor, gearbox, hydraulic mechanical transmission, hydraulic torque converter and synchronous generator, ensure that the drive train work with a high efficiency, and give a reference for the selection of the torque converter and hydraulic mechanical transmission.
Relaxation-optimized transfer of spin order in Ising spin chains
NASA Astrophysics Data System (ADS)
Stefanatos, Dionisis; Glaser, Steffen J.; Khaneja, Navin
2005-12-01
In this paper, we present relaxation optimized methods for the transfer of bilinear spin correlations along Ising spin chains. These relaxation optimized methods can be used as a building block for the transfer of polarization between distant spins on a spin chain, a problem that is ubiquitous in multidimensional nuclear magnetic resonance spectroscopy of proteins. Compared to standard techniques, significant reduction in relaxation losses is achieved by these optimized methods when transverse relaxation rates are much larger than the longitudinal relaxation rates and comparable to couplings between spins. We derive an upper bound on the efficiency of the transfer of the spin order along a chain of spins in the presence of relaxation and show that this bound can be approached by the relaxation optimized pulse sequences presented in the paper.
Ihme, Matthias; Marsden, Alison L; Pitsch, Heinz
2008-02-01
A pattern search optimization method is applied to the generation of optimal artificial neural networks (ANNs). Optimization is performed using a mixed variable extension to the generalized pattern search method. This method offers the advantage that categorical variables, such as neural transfer functions and nodal connectivities, can be used as parameters in optimization. When used together with a surrogate, the resulting algorithm is highly efficient for expensive objective functions. Results demonstrate the effectiveness of this method in optimizing an ANN for the number of neurons, the type of transfer function, and the connectivity among neurons. The optimization method is applied to a chemistry approximation of practical relevance. In this application, temperature and a chemical source term are approximated as functions of two independent parameters using optimal ANNs. Comparison of the performance of optimal ANNs with conventional tabulation methods demonstrates equivalent accuracy by considerable savings in memory storage. The architecture of the optimal ANN for the approximation of the chemical source term consists of a fully connected feedforward network having four nonlinear hidden layers and 117 synaptic weights. An equivalent representation of the chemical source term using tabulation techniques would require a 500 x 500 grid point discretization of the parameter space.
NASA Astrophysics Data System (ADS)
Ju, Yaping; Zhang, Chuhua
2016-03-01
Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression (SVR) metamodel is combined with the Monte Carlo simulation (MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.
Scaling Support Vector Machines On Modern HPC Platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Yang; Fu, Haohuan; Song, Shuaiwen
2015-02-01
We designed and implemented MIC-SVM, a highly efficient parallel SVM for x86 based multicore and many-core architectures, such as the Intel Ivy Bridge CPUs and Intel Xeon Phi co-processor (MIC). We propose various novel analysis methods and optimization techniques to fully utilize the multilevel parallelism provided by these architectures and serve as general optimization methods for other machine learning tools.
[Design method of convex master gratings for replicating flat-field concave gratings].
Zhou, Qian; Li, Li-Feng
2009-08-01
Flat-field concave diffraction grating is the key device of a portable grating spectrometer with the advantage of integrating dispersion, focusing and flat-field in a single device. It directly determines the quality of a spectrometer. The most important two performances determining the quality of the spectrometer are spectral image quality and diffraction efficiency. The diffraction efficiency of a grating depends mainly on its groove shape. But it has long been a problem to get a uniform predetermined groove shape across the whole concave grating area, because the incident angle of the ion beam is restricted by the curvature of the concave substrate, and this severely limits the diffraction efficiency and restricts the application of concave gratings. The authors present a two-step method for designing convex gratings, which are made holographically with two exposure point sources placed behind a plano-convex transparent glass substrate, to solve this problem. The convex gratings are intended to be used as the master gratings for making aberration-corrected flat-field concave gratings. To achieve high spectral image quality for the replicated concave gratings, the refraction effect at the planar back surface and the extra optical path lengths through the substrate thickness experienced by the two divergent recording beams are considered during optimization. This two-step method combines the optical-path-length function method and the ZEMAX software to complete the optimization with a high success rate and high efficiency. In the first step, the optical-path-length function method is used without considering the refraction effect to get an approximate optimization result. In the second step, the approximate result of the first step is used as the initial value for ZEMAX to complete the optimization including the refraction effect. An example of design problem was considered. The simulation results of ZEMAX proved that the spectral image quality of a replicated concave grating is comparable with that of a directly recorded concave grating.
A Technical Survey on Optimization of Processing Geo Distributed Data
NASA Astrophysics Data System (ADS)
Naga Malleswari, T. Y. J.; Ushasukhanya, S.; Nithyakalyani, A.; Girija, S.
2018-04-01
With growing cloud services and technology, there is growth in some geographically distributed data centers to store large amounts of data. Analysis of geo-distributed data is required in various services for data processing, storage of essential information, etc., processing this geo-distributed data and performing analytics on this data is a challenging task. The distributed data processing is accompanied by issues in storage, computation and communication. The key issues to be dealt with are time efficiency, cost minimization, utility maximization. This paper describes various optimization methods like end-to-end multiphase, G-MR, etc., using the techniques like Map-Reduce, CDS (Community Detection based Scheduling), ROUT, Workload-Aware Scheduling, SAGE, AMP (Ant Colony Optimization) to handle these issues. In this paper various optimization methods and techniques used are analyzed. It has been observed that end-to end multiphase achieves time efficiency; Cost minimization concentrates to achieve Quality of Service, Computation and reduction of Communication cost. SAGE achieves performance improvisation in processing geo-distributed data sets.
On the Use of CAD and Cartesian Methods for Aerodynamic Optimization
NASA Technical Reports Server (NTRS)
Nemec, M.; Aftosmis, M. J.; Pulliam, T. H.
2004-01-01
The objective for this paper is to present the development of an optimization capability for Curt3D, a Cartesian inviscid-flow analysis package. We present the construction of a new optimization framework and we focus on the following issues: 1) Component-based geometry parameterization approach using parametric-CAD models and CAPRI. A novel geometry server is introduced that addresses the issue of parallel efficiency while only sparingly consuming CAD resources; 2) The use of genetic and gradient-based algorithms for three-dimensional aerodynamic design problems. The influence of noise on the optimization methods is studied. Our goal is to create a responsive and automated framework that efficiently identifies design modifications that result in substantial performance improvements. In addition, we examine the architectural issues associated with the deployment of a CAD-based approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute engines. We demonstrate the effectiveness of the framework for a design problem that features topology changes and complex geometry.
A modular approach to large-scale design optimization of aerospace systems
NASA Astrophysics Data System (ADS)
Hwang, John T.
Gradient-based optimization and the adjoint method form a synergistic combination that enables the efficient solution of large-scale optimization problems. Though the gradient-based approach struggles with non-smooth or multi-modal problems, the capability to efficiently optimize up to tens of thousands of design variables provides a valuable design tool for exploring complex tradeoffs and finding unintuitive designs. However, the widespread adoption of gradient-based optimization is limited by the implementation challenges for computing derivatives efficiently and accurately, particularly in multidisciplinary and shape design problems. This thesis addresses these difficulties in two ways. First, to deal with the heterogeneity and integration challenges of multidisciplinary problems, this thesis presents a computational modeling framework that solves multidisciplinary systems and computes their derivatives in a semi-automated fashion. This framework is built upon a new mathematical formulation developed in this thesis that expresses any computational model as a system of algebraic equations and unifies all methods for computing derivatives using a single equation. The framework is applied to two engineering problems: the optimization of a nanosatellite with 7 disciplines and over 25,000 design variables; and simultaneous allocation and mission optimization for commercial aircraft involving 330 design variables, 12 of which are integer variables handled using the branch-and-bound method. In both cases, the framework makes large-scale optimization possible by reducing the implementation effort and code complexity. The second half of this thesis presents a differentiable parametrization of aircraft geometries and structures for high-fidelity shape optimization. Existing geometry parametrizations are not differentiable, or they are limited in the types of shape changes they allow. This is addressed by a novel parametrization that smoothly interpolates aircraft components, providing differentiability. An unstructured quadrilateral mesh generation algorithm is also developed to automate the creation of detailed meshes for aircraft structures, and a mesh convergence study is performed to verify that the quality of the mesh is maintained as it is refined. As a demonstration, high-fidelity aerostructural analysis is performed for two unconventional configurations with detailed structures included, and aerodynamic shape optimization is applied to the truss-braced wing, which finds and eliminates a shock in the region bounded by the struts and the wing.
Method for using global optimization to the estimation of surface-consistent residual statics
Reister, David B.; Barhen, Jacob; Oblow, Edward M.
2001-01-01
An efficient method for generating residual statics corrections to compensate for surface-consistent static time shifts in stacked seismic traces. The method includes a step of framing the residual static corrections as a global optimization problem in a parameter space. The method also includes decoupling the global optimization problem involving all seismic traces into several one-dimensional problems. The method further utilizes a Stochastic Pijavskij Tunneling search to eliminate regions in the parameter space where a global minimum is unlikely to exist so that the global minimum may be quickly discovered. The method finds the residual statics corrections by maximizing the total stack power. The stack power is a measure of seismic energy transferred from energy sources to receivers.
On optimal infinite impulse response edge detection filters
NASA Technical Reports Server (NTRS)
Sarkar, Sudeep; Boyer, Kim L.
1991-01-01
The authors outline the design of an optimal, computationally efficient, infinite impulse response edge detection filter. The optimal filter is computed based on Canny's high signal to noise ratio, good localization criteria, and a criterion on the spurious response of the filter to noise. An expression for the width of the filter, which is appropriate for infinite-length filters, is incorporated directly in the expression for spurious responses. The three criteria are maximized using the variational method and nonlinear constrained optimization. The optimal filter parameters are tabulated for various values of the filter performance criteria. A complete methodology for implementing the optimal filter using approximating recursive digital filtering is presented. The approximating recursive digital filter is separable into two linear filters operating in two orthogonal directions. The implementation is very simple and computationally efficient, has a constant time of execution for different sizes of the operator, and is readily amenable to real-time hardware implementation.
Mode perturbation method for optimal guided wave mode and frequency selection.
Philtron, J H; Rose, J L
2014-09-01
With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. However, work continues to find optimal mode and frequency selection for a given application. This "optimal" mode could give the highest sensitivity to defects or the greatest penetration power, increasing inspection efficiency. Since material properties used for modeling work may be estimates, in many cases guided wave mode and frequency selection can be adjusted for increased inspection efficiency in the field. In this paper, a novel mode and frequency perturbation method is described and used to identify optimal mode points based on quantifiable wave characteristics. The technique uses an ultrasonic phased array comb transducer to sweep in phase velocity and frequency space. It is demonstrated using guided interface waves for bond evaluation. After searching nearby mode points, an optimal mode and frequency can be selected which has the highest sensitivity to a defect, or gives the greatest penetration power. The optimal mode choice for a given application depends on the requirements of the inspection. Copyright © 2014 Elsevier B.V. All rights reserved.
Svatos, M.; Zankowski, C.; Bednarz, B.
2016-01-01
Purpose: The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and “4π” delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship within a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of “concurrent” Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner. Methods: The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the concept of momentum from stochastic gradient descent were used to address obstacles unique to performing gradient descent fluence optimization during MC particle transport. The authors have applied their method to two simple geometrical phantoms, and one clinical patient geometry to examine the capability of this platform to generate conformal plans as well as assess its computational scaling and efficiency, respectively. Results: The authors obtain a reduction of at least 50% in total histories transported in their investigation compared to a theoretical unweighted beamlet calculation and subsequent fluence optimization method, and observe a roughly fixed optimization time overhead consisting of ∼10% of the total computation time in all cases. Finally, the authors demonstrate a negligible increase in memory overhead of ∼7–8 MB to allow for optimization of a clinical patient geometry surrounded by 36 beams using their platform. Conclusions: This study demonstrates a fluence optimization approach, which could significantly improve the development of next generation radiation therapy solutions while incurring minimal additional computational overhead. PMID:27277051
Development Optimization and Uncertainty Analysis Methods for Oil and Gas Reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ettehadtavakkol, Amin, E-mail: amin.ettehadtavakkol@ttu.edu; Jablonowski, Christopher; Lake, Larry
Uncertainty complicates the development optimization of oil and gas exploration and production projects, but methods have been devised to analyze uncertainty and its impact on optimal decision-making. This paper compares two methods for development optimization and uncertainty analysis: Monte Carlo (MC) simulation and stochastic programming. Two example problems for a gas field development and an oilfield development are solved and discussed to elaborate the advantages and disadvantages of each method. Development optimization involves decisions regarding the configuration of initial capital investment and subsequent operational decisions. Uncertainty analysis involves the quantification of the impact of uncertain parameters on the optimum designmore » concept. The gas field development problem is designed to highlight the differences in the implementation of the two methods and to show that both methods yield the exact same optimum design. The results show that both MC optimization and stochastic programming provide unique benefits, and that the choice of method depends on the goal of the analysis. While the MC method generates more useful information, along with the optimum design configuration, the stochastic programming method is more computationally efficient in determining the optimal solution. Reservoirs comprise multiple compartments and layers with multiphase flow of oil, water, and gas. We present a workflow for development optimization under uncertainty for these reservoirs, and solve an example on the design optimization of a multicompartment, multilayer oilfield development.« less
Interior search algorithm (ISA): a novel approach for global optimization.
Gandomi, Amir H
2014-07-01
This paper presents the interior search algorithm (ISA) as a novel method for solving optimization tasks. The proposed ISA is inspired by interior design and decoration. The algorithm is different from other metaheuristic algorithms and provides new insight for global optimization. The proposed method is verified using some benchmark mathematical and engineering problems commonly used in the area of optimization. ISA results are further compared with well-known optimization algorithms. The results show that the ISA is efficiently capable of solving optimization problems. The proposed algorithm can outperform the other well-known algorithms. Further, the proposed algorithm is very simple and it only has one parameter to tune. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
An Optimization Method for the Reduction of Propeller Unsteady Forces.
1988-02-01
unsteady forces and the determination of skew distribulee has been developed. The current method provides an efficient propeller design tool capable...62633N HM35 SF33321 DN305 123 11. TITLE (ft .WC*i=iW) An Optimization Method for the Reduction of Propeller Unsteady Forces 12. PERSONAL AUTHOR(S) T.S...of determining a variety of cubic or quadratic skew distributioms, subject to constraints, which minimize the unsteady forces produced by the various
NASA Technical Reports Server (NTRS)
Rash, James L.
2010-01-01
NASA's space data-communications infrastructure, the Space Network and the Ground Network, provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft via orbiting relay satellites and ground stations. An implementation of the methods and algorithms disclosed herein will be a system that produces globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary search, a class of probabilistic strategies for searching large solution spaces, constitutes the essential technology in this disclosure. Also disclosed are methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithm itself. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally, with applicability to a very broad class of combinatorial optimization problems.
Dual-mode nested search method for categorical uncertain multi-objective optimization
NASA Astrophysics Data System (ADS)
Tang, Long; Wang, Hu
2016-10-01
Categorical multi-objective optimization is an important issue involved in many matching design problems. Non-numerical variables and their uncertainty are the major challenges of such optimizations. Therefore, this article proposes a dual-mode nested search (DMNS) method. In the outer layer, kriging metamodels are established using standard regular simplex mapping (SRSM) from categorical candidates to numerical values. Assisted by the metamodels, a k-cluster-based intelligent sampling strategy is developed to search Pareto frontier points. The inner layer uses an interval number method to model the uncertainty of categorical candidates. To improve the efficiency, a multi-feature convergent optimization via most-promising-area stochastic search (MFCOMPASS) is proposed to determine the bounds of objectives. Finally, typical numerical examples are employed to demonstrate the effectiveness of the proposed DMNS method.
Non-linear Multidimensional Optimization for use in Wire Scanner Fitting
NASA Astrophysics Data System (ADS)
Henderson, Alyssa; Terzic, Balsa; Hofler, Alicia; CASA and Accelerator Ops Collaboration
2013-10-01
To ensure experiment efficiency and quality from the Continuous Electron Beam Accelerator at Jefferson Lab, beam energy, size, and position must be measured. Wire scanners are devices inserted into the beamline to produce measurements which are used to obtain beam properties. Extracting physical information from the wire scanner measurements begins by fitting Gaussian curves to the data. This study focuses on optimizing and automating this curve-fitting procedure. We use a hybrid approach combining the efficiency of Newton Conjugate Gradient (NCG) method with the global convergence of three nature-inspired (NI) optimization approaches: genetic algorithm, differential evolution, and particle-swarm. In this Python-implemented approach, augmenting the locally-convergent NCG with one of the globally-convergent methods ensures the quality, robustness, and automation of curve-fitting. After comparing the methods, we establish that given an initial data-derived guess, each finds a solution with the same chi-square- a measurement of the agreement of the fit to the data. NCG is the fastest method, so it is the first to attempt data-fitting. The curve-fitting procedure escalates to one of the globally-convergent NI methods only if NCG fails, thereby ensuring a successful fit. This method allows for the most optimal signal fit and can be easily applied to similar problems. Financial support from DoE, NSF, ODU, DoD, and Jefferson Lab.
Generalized Buneman Pruning for Inferring the Most Parsimonious Multi-state Phylogeny
NASA Astrophysics Data System (ADS)
Misra, Navodit; Blelloch, Guy; Ravi, R.; Schwartz, Russell
Accurate reconstruction of phylogenies remains a key challenge in evolutionary biology. Most biologically plausible formulations of the problem are formally NP-hard, with no known efficient solution. The standard in practice are fast heuristic methods that are empirically known to work very well in general, but can yield results arbitrarily far from optimal. Practical exact methods, which yield exponential worst-case running times but generally much better times in practice, provide an important alternative. We report progress in this direction by introducing a provably optimal method for the weighted multi-state maximum parsimony phylogeny problem. The method is based on generalizing the notion of the Buneman graph, a construction key to efficient exact methods for binary sequences, so as to apply to sequences with arbitrary finite numbers of states with arbitrary state transition weights. We implement an integer linear programming (ILP) method for the multi-state problem using this generalized Buneman graph and demonstrate that the resulting method is able to solve data sets that are intractable by prior exact methods in run times comparable with popular heuristics. Our work provides the first method for provably optimal maximum parsimony phylogeny inference that is practical for multi-state data sets of more than a few characters.
Distance Metric Learning via Iterated Support Vector Machines.
Zuo, Wangmeng; Wang, Faqiang; Zhang, David; Lin, Liang; Huang, Yuchi; Meng, Deyu; Zhang, Lei
2017-07-11
Distance metric learning aims to learn from the given training data a valid distance metric, with which the similarity between data samples can be more effectively evaluated for classification. Metric learning is often formulated as a convex or nonconvex optimization problem, while most existing methods are based on customized optimizers and become inefficient for large scale problems. In this paper, we formulate metric learning as a kernel classification problem with the positive semi-definite constraint, and solve it by iterated training of support vector machines (SVMs). The new formulation is easy to implement and efficient in training with the off-the-shelf SVM solvers. Two novel metric learning models, namely Positive-semidefinite Constrained Metric Learning (PCML) and Nonnegative-coefficient Constrained Metric Learning (NCML), are developed. Both PCML and NCML can guarantee the global optimality of their solutions. Experiments are conducted on general classification, face verification and person re-identification to evaluate our methods. Compared with the state-of-the-art approaches, our methods can achieve comparable classification accuracy and are efficient in training.
A Domain Decomposition Parallelization of the Fast Marching Method
NASA Technical Reports Server (NTRS)
Herrmann, M.
2003-01-01
In this paper, the first domain decomposition parallelization of the Fast Marching Method for level sets has been presented. Parallel speedup has been demonstrated in both the optimal and non-optimal domain decomposition case. The parallel performance of the proposed method is strongly dependent on load balancing separately the number of nodes on each side of the interface. A load imbalance of nodes on either side of the domain leads to an increase in communication and rollback operations. Furthermore, the amount of inter-domain communication can be reduced by aligning the inter-domain boundaries with the interface normal vectors. In the case of optimal load balancing and aligned inter-domain boundaries, the proposed parallel FMM algorithm is highly efficient, reaching efficiency factors of up to 0.98. Future work will focus on the extension of the proposed parallel algorithm to higher order accuracy. Also, to further enhance parallel performance, the coupling of the domain decomposition parallelization to the G(sub 0)-based parallelization will be investigated.
Topology and boundary shape optimization as an integrated design tool
NASA Technical Reports Server (NTRS)
Bendsoe, Martin Philip; Rodrigues, Helder Carrico
1990-01-01
The optimal topology of a two dimensional linear elastic body can be computed by regarding the body as a domain of the plane with a high density of material. Such an optimal topology can then be used as the basis for a shape optimization method that computes the optimal form of the boundary curves of the body. This results in an efficient and reliable design tool, which can be implemented via common FEM mesh generator and CAD type input-output facilities.
Study on light weight design of truss structures of spacecrafts
NASA Astrophysics Data System (ADS)
Zeng, Fuming; Yang, Jianzhong; Wang, Jian
2015-08-01
Truss structure is usually adopted as the main structure form for spacecrafts due to its high efficiency in supporting concentrated loads. Light-weight design is now becoming the primary concern during conceptual design of spacecrafts. Implementation of light-weight design on truss structure always goes through three processes: topology optimization, size optimization and composites optimization. During each optimization process, appropriate algorithm such as the traditional optimality criterion method, mathematical programming method and the intelligent algorithms which simulate the growth and evolution processes in nature will be selected. According to the practical processes and algorithms, combined with engineering practice and commercial software, summary is made for the implementation of light-weight design on truss structure for spacecrafts.
Optimization of Composite Structures with Curved Fiber Trajectories
NASA Astrophysics Data System (ADS)
Lemaire, Etienne; Zein, Samih; Bruyneel, Michael
2014-06-01
This paper studies the problem of optimizing composites shells manufactured using Automated Tape Layup (ATL) or Automated Fiber Placement (AFP) processes. The optimization procedure relies on a new approach to generate equidistant fiber trajectories based on Fast Marching Method. Starting with a (possibly curved) reference fiber direction defined on a (possibly curved) meshed surface, the new method allows determining fibers orientation resulting from a uniform thickness layup. The design variables are the parameters defining the position and the shape of the reference curve which results in very few design variables. Thanks to this efficient parameterization, maximum stiffness optimization numerical applications are proposed. The shape of the design space is discussed, regarding local and global optimal solutions.
Wells, David B; Bhattacharya, Swati; Carr, Rogan; Maffeo, Christopher; Ho, Anthony; Comer, Jeffrey; Aksimentiev, Aleksei
2012-01-01
Molecular dynamics (MD) simulations have become a standard method for the rational design and interpretation of experimental studies of DNA translocation through nanopores. The MD method, however, offers a multitude of algorithms, parameters, and other protocol choices that can affect the accuracy of the resulting data as well as computational efficiency. In this chapter, we examine the most popular choices offered by the MD method, seeking an optimal set of parameters that enable the most computationally efficient and accurate simulations of DNA and ion transport through biological nanopores. In particular, we examine the influence of short-range cutoff, integration timestep and force field parameters on the temperature and concentration dependence of bulk ion conductivity, ion pairing, ion solvation energy, DNA structure, DNA-ion interactions, and the ionic current through a nanopore.
NASA Astrophysics Data System (ADS)
Zoka, Yoshifumi; Yorino, Naoto; Kawano, Koki; Suenari, Hiroyasu
This paper proposes a fast computation method for Available Transfer Capability (ATC) with respect to thermal and voltage magnitude limits. In the paper, ATC is formulated as an optimization problem. In order to obtain the efficiency for the N-1 outage contingency calculations, linear sensitivity methods are applied for screening and ranking all contingency selections with respect to the thermal and voltage magnitude limits margin to identify the severest case. In addition, homotopy functions are used for the generator QV constrains to reduce the maximum error of the linear estimation. Then, the Primal-Dual Interior Point Method (PDIPM) is used to solve the optimization problem for the severest case only, in which the solutions of ATC can be obtained efficiently. The effectiveness of the proposed method is demonstrated through IEEE 30, 57, 118-bus systems.
Optimal Control of Induction Machines to Minimize Transient Energy Losses
NASA Astrophysics Data System (ADS)
Plathottam, Siby Jose
Induction machines are electromechanical energy conversion devices comprised of a stator and a rotor. Torque is generated due to the interaction between the rotating magnetic field from the stator, and the current induced in the rotor conductors. Their speed and torque output can be precisely controlled by manipulating the magnitude, frequency, and phase of the three input sinusoidal voltage waveforms. Their ruggedness, low cost, and high efficiency have made them ubiquitous component of nearly every industrial application. Thus, even a small improvement in their energy efficient tend to give a large amount of electrical energy savings over the lifetime of the machine. Hence, increasing energy efficiency (reducing energy losses) in induction machines is a constrained optimization problem that has attracted attention from researchers. The energy conversion efficiency of induction machines depends on both the speed-torque operating point, as well as the input voltage waveform. It also depends on whether the machine is in the transient or steady state. Maximizing energy efficiency during steady state is a Static Optimization problem, that has been extensively studied, with commercial solutions available. On the other hand, improving energy efficiency during transients is a Dynamic Optimization problem that is sparsely studied. This dissertation exclusively focuses on improving energy efficiency during transients. This dissertation treats the transient energy loss minimization problem as an optimal control problem which consists of a dynamic model of the machine, and a cost functional. The rotor field oriented current fed model of the induction machine is selected as the dynamic model. The rotor speed and rotor d-axis flux are the state variables in the dynamic model. The stator currents referred to as d-and q-axis currents are the control inputs. A cost functional is proposed that assigns a cost to both the energy losses in the induction machine, as well as the deviations from desired speed-torque-magnetic flux setpoints. Using Pontryagin's minimum principle, a set of necessary conditions that must be satisfied by the optimal control trajectories are derived. The conditions are in the form a two-point boundary value problem, that can be solved numerically. The conjugate gradient method that was modified using the Hestenes-Stiefel formula was used to obtain the numerical solution of both the control and state trajectories. Using the distinctive shape of the numerical trajectories as inspiration, analytical expressions were derived for the state, and control trajectories. It was shown that the trajectory could be fully described by finding the solution of a one-dimensional optimization problem. The sensitivity of both the optimal trajectory and the optimal energy efficiency to different induction machine parameters were analyzed. A non-iterative solution that can use feedback for generating optimal control trajectories in real time was explored. It was found that an artificial neural network could be trained using the numerical solutions and made to emulate the optimal control trajectories with a high degree of accuracy. Hence a neural network along with a supervisory logic was implemented and used in a real-time simulation to control the Finite Element Method model of the induction machine. The results were compared with three other control regimes and the optimal control system was found to have the highest energy efficiency for the same drive cycle.
NASA Astrophysics Data System (ADS)
Zhiying, Chen; Ping, Zhou
2017-11-01
Considering the robust optimization computational precision and efficiency for complex mechanical assembly relationship like turbine blade-tip radial running clearance, a hierarchically response surface robust optimization algorithm is proposed. The distribute collaborative response surface method is used to generate assembly system level approximation model of overall parameters and blade-tip clearance, and then a set samples of design parameters and objective response mean and/or standard deviation is generated by using system approximation model and design of experiment method. Finally, a new response surface approximation model is constructed by using those samples, and this approximation model is used for robust optimization process. The analyses results demonstrate the proposed method can dramatic reduce the computational cost and ensure the computational precision. The presented research offers an effective way for the robust optimization design of turbine blade-tip radial running clearance.
Clustering methods for the optimization of atomic cluster structure
NASA Astrophysics Data System (ADS)
Bagattini, Francesco; Schoen, Fabio; Tigli, Luca
2018-04-01
In this paper, we propose a revised global optimization method and apply it to large scale cluster conformation problems. In the 1990s, the so-called clustering methods were considered among the most efficient general purpose global optimization techniques; however, their usage has quickly declined in recent years, mainly due to the inherent difficulties of clustering approaches in large dimensional spaces. Inspired from the machine learning literature, we redesigned clustering methods in order to deal with molecular structures in a reduced feature space. Our aim is to show that by suitably choosing a good set of geometrical features coupled with a very efficient descent method, an effective optimization tool is obtained which is capable of finding, with a very high success rate, all known putative optima for medium size clusters without any prior information, both for Lennard-Jones and Morse potentials. The main result is that, beyond being a reliable approach, the proposed method, based on the idea of starting a computationally expensive deep local search only when it seems worth doing so, is capable of saving a huge amount of searches with respect to an analogous algorithm which does not employ a clustering phase. In this paper, we are not claiming the superiority of the proposed method compared to specific, refined, state-of-the-art procedures, but rather indicating a quite straightforward way to save local searches by means of a clustering scheme working in a reduced variable space, which might prove useful when included in many modern methods.
NASA Astrophysics Data System (ADS)
Meng, Rui; Cheong, Kang Hao; Bao, Wei; Wong, Kelvin Kian Loong; Wang, Lu; Xie, Neng-gang
2018-06-01
This article attempts to evaluate the safety and economic performance of an arch dam under the action of static loads. The geometric description of a crown cantilever section and the horizontal arch ring is presented. A three-objective optimization model of arch dam shape is established based on the arch dam volume, maximum principal tensile stress and total strain energy. The evolutionary game method is then applied to obtain the optimal solution. In the evolutionary game technique, a novel and more efficient exploration method of the game players' strategy space, named the 'sorting partition method under the threshold limit', is presented, with the game profit functions constructed according to both competitive and cooperative behaviour. By way of example, three optimization goals have all shown improvements over the initial solutions. In particular, the evolutionary game method has potentially faster convergence. This demonstrates the preliminary proof of principle of the evolutionary game method.
A feasible DY conjugate gradient method for linear equality constraints
NASA Astrophysics Data System (ADS)
LI, Can
2017-09-01
In this paper, we propose a feasible conjugate gradient method for solving linear equality constrained optimization problem. The method is an extension of the Dai-Yuan conjugate gradient method proposed by Dai and Yuan to linear equality constrained optimization problem. It can be applied to solve large linear equality constrained problem due to lower storage requirement. An attractive property of the method is that the generated direction is always feasible and descent direction. Under mild conditions, the global convergence of the proposed method with exact line search is established. Numerical experiments are also given which show the efficiency of the method.
Formal and heuristic system decomposition methods in multidisciplinary synthesis. Ph.D. Thesis, 1991
NASA Technical Reports Server (NTRS)
Bloebaum, Christina L.
1991-01-01
The multidisciplinary interactions which exist in large scale engineering design problems provide a unique set of difficulties. These difficulties are associated primarily with unwieldy numbers of design variables and constraints, and with the interdependencies of the discipline analysis modules. Such obstacles require design techniques which account for the inherent disciplinary couplings in the analyses and optimizations. The objective of this work was to develop an efficient holistic design synthesis methodology that takes advantage of the synergistic nature of integrated design. A general decomposition approach for optimization of large engineering systems is presented. The method is particularly applicable for multidisciplinary design problems which are characterized by closely coupled interactions among discipline analyses. The advantage of subsystem modularity allows for implementation of specialized methods for analysis and optimization, computational efficiency, and the ability to incorporate human intervention and decision making in the form of an expert systems capability. The resulting approach is not a method applicable to only a specific situation, but rather, a methodology which can be used for a large class of engineering design problems in which the system is non-hierarchic in nature.
Taamalli, Amani; Arráez-Román, David; Ibañez, Elena; Zarrouk, Mokhtar; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2012-01-25
In the present work, a simple and rapid method for the extraction of phenolic compounds from olive leaves, using microwave-assisted extraction (MAE) technique, has been developed. The experimental variables that affect the MAE process, such as the solvent type and composition, microwave temperature, and extraction time, were optimized using a univariate method. The obtained extracts were analyzed by using high-performance liquid chromatography (HPLC) coupled to electrospray time-of-flight mass spectrometry (ESI-TOF-MS) and electrospray ion trap tandem mass spectrometry (ESI-IT-MS(2)) to prove the MAE extraction efficiency. The optimal MAE conditions were methanol:water (80:20, v/v) as extracting solvent, at a temperature equal to 80 °C for 6 min. Under these conditions, several phenolic compounds could be characterized by HPLC-ESI-MS/MS(2). As compared to the conventional method, MAE can be used as an alternative extraction method for the characterization of phenolic compounds from olive leaves due to its efficiency and speed.
efficiency and renewable energy projects. His patent on the Renewable Energy Optimization (REO) method of distribution function for time-series simulation Analytical and numerical optimization Project delivery with System Operations and Maintenance: 2nd Edition, 2016, NREL/Sandia/Sunspec Alliance SuNLaMP PV O&M
NASA Astrophysics Data System (ADS)
Jha, Ratneshwar
Multidisciplinary design optimization (MDO) procedures have been developed for smart composite wings and turbomachinery blades. The analysis and optimization methods used are computationally efficient and sufficiently rigorous. Therefore, the developed MDO procedures are well suited for actual design applications. The optimization procedure for the conceptual design of composite aircraft wings with surface bonded piezoelectric actuators involves the coupling of structural mechanics, aeroelasticity, aerodynamics and controls. The load carrying member of the wing is represented as a single-celled composite box beam. Each wall of the box beam is analyzed as a composite laminate using a refined higher-order displacement field to account for the variations in transverse shear stresses through the thickness. Therefore, the model is applicable for the analysis of composite wings of arbitrary thickness. Detailed structural modeling issues associated with piezoelectric actuation of composite structures are considered. The governing equations of motion are solved using the finite element method to analyze practical wing geometries. Three-dimensional aerodynamic computations are performed using a panel code based on the constant-pressure lifting surface method to obtain steady and unsteady forces. The Laplace domain method of aeroelastic analysis produces root-loci of the system which gives an insight into the physical phenomena leading to flutter/divergence and can be efficiently integrated within an optimization procedure. The significance of the refined higher-order displacement field on the aeroelastic stability of composite wings has been established. The effect of composite ply orientations on flutter and divergence speeds has been studied. The Kreisselmeier-Steinhauser (K-S) function approach is used to efficiently integrate the objective functions and constraints into a single envelope function. The resulting unconstrained optimization problem is solved using the Broyden-Fletcher-Goldberg-Shanno algorithm. The optimization problem is formulated with the objective of simultaneously minimizing wing weight and maximizing its aerodynamic efficiency. Design variables include composite ply orientations, ply thicknesses, wing sweep, piezoelectric actuator thickness and actuator voltage. Constraints are placed on the flutter/divergence dynamic pressure, wing root stresses and the maximum electric field applied to the actuators. Numerical results are presented showing significant improvements, after optimization, compared to reference designs. The multidisciplinary optimization procedure for the design of turbomachinery blades integrates aerodynamic and heat transfer design objective criteria along with various mechanical and geometric constraints on the blade geometry. The airfoil shape is represented by Bezier-Bernstein polynomials, which results in a relatively small number of design variables for the optimization. Thin shear layer approximation of the Navier-Stokes equation is used for the viscous flow calculations. Grid generation is accomplished by solving Poisson equations. The maximum and average blade temperatures are obtained through a finite element analysis. Total pressure and exit kinetic energy losses are minimized, with constraints on blade temperatures and geometry. The constrained multiobjective optimization problem is solved using the K-S function approach. The results for the numerical example show significant improvements after optimization.
Swarm based mean-variance mapping optimization (MVMOS) for solving economic dispatch
NASA Astrophysics Data System (ADS)
Khoa, T. H.; Vasant, P. M.; Singh, M. S. Balbir; Dieu, V. N.
2014-10-01
The economic dispatch (ED) is an essential optimization task in the power generation system. It is defined as the process of allocating the real power output of generation units to meet required load demand so as their total operating cost is minimized while satisfying all physical and operational constraints. This paper introduces a novel optimization which named as Swarm based Mean-variance mapping optimization (MVMOS). The technique is the extension of the original single particle mean-variance mapping optimization (MVMO). Its features make it potentially attractive algorithm for solving optimization problems. The proposed method is implemented for three test power systems, including 3, 13 and 20 thermal generation units with quadratic cost function and the obtained results are compared with many other methods available in the literature. Test results have indicated that the proposed method can efficiently implement for solving economic dispatch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y. M., E-mail: ymingy@gmail.com; Bednarz, B.; Svatos, M.
Purpose: The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and “4π” delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship withinmore » a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of “concurrent” Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner. Methods: The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the concept of momentum from stochastic gradient descent were used to address obstacles unique to performing gradient descent fluence optimization during MC particle transport. The authors have applied their method to two simple geometrical phantoms, and one clinical patient geometry to examine the capability of this platform to generate conformal plans as well as assess its computational scaling and efficiency, respectively. Results: The authors obtain a reduction of at least 50% in total histories transported in their investigation compared to a theoretical unweighted beamlet calculation and subsequent fluence optimization method, and observe a roughly fixed optimization time overhead consisting of ∼10% of the total computation time in all cases. Finally, the authors demonstrate a negligible increase in memory overhead of ∼7–8 MB to allow for optimization of a clinical patient geometry surrounded by 36 beams using their platform. Conclusions: This study demonstrates a fluence optimization approach, which could significantly improve the development of next generation radiation therapy solutions while incurring minimal additional computational overhead.« less
NASA Astrophysics Data System (ADS)
Madani, Kaveh; Hooshyar, Milad
2014-11-01
Reservoir systems with multiple operators can benefit from coordination of operation policies. To maximize the total benefit of these systems the literature has normally used the social planner's approach. Based on this approach operation decisions are optimized using a multi-objective optimization model with a compound system's objective. While the utility of the system can be increased this way, fair allocation of benefits among the operators remains challenging for the social planner who has to assign controversial weights to the system's beneficiaries and their objectives. Cooperative game theory provides an alternative framework for fair and efficient allocation of the incremental benefits of cooperation. To determine the fair and efficient utility shares of the beneficiaries, cooperative game theory solution methods consider the gains of each party in the status quo (non-cooperation) as well as what can be gained through the grand coalition (social planner's solution or full cooperation) and partial coalitions. Nevertheless, estimation of the benefits of different coalitions can be challenging in complex multi-beneficiary systems. Reinforcement learning can be used to address this challenge and determine the gains of the beneficiaries for different levels of cooperation, i.e., non-cooperation, partial cooperation, and full cooperation, providing the essential input for allocation based on cooperative game theory. This paper develops a game theory-reinforcement learning (GT-RL) method for determining the optimal operation policies in multi-operator multi-reservoir systems with respect to fairness and efficiency criteria. As the first step to underline the utility of the GT-RL method in solving complex multi-agent multi-reservoir problems without a need for developing compound objectives and weight assignment, the proposed method is applied to a hypothetical three-agent three-reservoir system.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Chen, J.
2017-09-01
A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multi-objective particle swarm optimization methods, Kriging meta-models and the trapezoid index are introduced and integrated with the traditional one. Kriging meta-models are built to match expensive or black-box functions. By applying Kriging meta-models, function evaluation numbers are decreased and the boundary Pareto-optimal solutions are identified rapidly. For bi-objective optimization problems, the trapezoid index is calculated as the sum of the trapezoid's area formed by the Pareto-optimal solutions and one objective axis. It can serve as a measure whether the Pareto-optimal solutions converge to the Pareto front. Illustrative examples indicate that to obtain Pareto-optimal solutions, the method proposed needs fewer function evaluations than the traditional multi-objective particle swarm optimization method and the non-dominated sorting genetic algorithm II method, and both the accuracy and the computational efficiency are improved. The proposed method is also applied to the design of a deepwater composite riser example in which the structural performances are calculated by numerical analysis. The design aim was to enhance the tension strength and minimize the cost. Under the buckling constraint, the optimal trade-off of tensile strength and material volume is obtained. The results demonstrated that the proposed method can effectively deal with multi-objective optimizations with black-box functions.
Du, Shouqiang; Chen, Miao
2018-01-01
We consider a kind of nonsmooth optimization problems with [Formula: see text]-norm minimization, which has many applications in compressed sensing, signal reconstruction, and the related engineering problems. Using smoothing approximate techniques, this kind of nonsmooth optimization problem can be transformed into a general unconstrained optimization problem, which can be solved by the proposed smoothing modified three-term conjugate gradient method. The smoothing modified three-term conjugate gradient method is based on Polak-Ribière-Polyak conjugate gradient method. For the Polak-Ribière-Polyak conjugate gradient method has good numerical properties, the proposed method possesses the sufficient descent property without any line searches, and it is also proved to be globally convergent. Finally, the numerical experiments show the efficiency of the proposed method.
Wang, Hui; Liu, Chunyue; Rong, Luge; Wang, Xiaoxu; Sun, Lina; Luo, Qing; Wu, Hao
2018-01-09
River monitoring networks play an important role in water environmental management and assessment, and it is critical to develop an appropriate method to optimize the monitoring network. In this study, an effective method was proposed based on the attainment rate of National Grade III water quality, optimal partition analysis and Euclidean distance, and Hun River was taken as a method validation case. There were 7 sampling sites in the monitoring network of the Hun River, and 17 monitoring items were analyzed once a month during January 2009 to December 2010. The results showed that the main monitoring items in the surface water of Hun River were ammonia nitrogen (NH 4 + -N), chemical oxygen demand, and biochemical oxygen demand. After optimization, the required number of monitoring sites was reduced from seven to three, and 57% of the cost was saved. In addition, there were no significant differences between non-optimized and optimized monitoring networks, and the optimized monitoring networks could correctly represent the original monitoring network. The duplicate setting degree of monitoring sites decreased after optimization, and the rationality of the monitoring network was improved. Therefore, the optimal method was identified as feasible, efficient, and economic.
Computer-intensive simulation of solid-state NMR experiments using SIMPSON.
Tošner, Zdeněk; Andersen, Rasmus; Stevensson, Baltzar; Edén, Mattias; Nielsen, Niels Chr; Vosegaard, Thomas
2014-09-01
Conducting large-scale solid-state NMR simulations requires fast computer software potentially in combination with efficient computational resources to complete within a reasonable time frame. Such simulations may involve large spin systems, multiple-parameter fitting of experimental spectra, or multiple-pulse experiment design using parameter scan, non-linear optimization, or optimal control procedures. To efficiently accommodate such simulations, we here present an improved version of the widely distributed open-source SIMPSON NMR simulation software package adapted to contemporary high performance hardware setups. The software is optimized for fast performance on standard stand-alone computers, multi-core processors, and large clusters of identical nodes. We describe the novel features for fast computation including internal matrix manipulations, propagator setups and acquisition strategies. For efficient calculation of powder averages, we implemented interpolation method of Alderman, Solum, and Grant, as well as recently introduced fast Wigner transform interpolation technique. The potential of the optimal control toolbox is greatly enhanced by higher precision gradients in combination with the efficient optimization algorithm known as limited memory Broyden-Fletcher-Goldfarb-Shanno. In addition, advanced parallelization can be used in all types of calculations, providing significant time reductions. SIMPSON is thus reflecting current knowledge in the field of numerical simulations of solid-state NMR experiments. The efficiency and novel features are demonstrated on the representative simulations. Copyright © 2014 Elsevier Inc. All rights reserved.
Utilization of group theory in studies of molecular clusters
NASA Astrophysics Data System (ADS)
Ocak, Mahir E.
The structure of the molecular symmetry group of molecular clusters was analyzed and it is shown that the molecular symmetry group of a molecular cluster can be written as direct products and semidirect products of its subgroups. Symmetry adaptation of basis functions in direct product groups and semidirect product groups was considered in general and the sequential symmetry adaptation procedure which is already known for direct product groups was extended to the case of semidirect product groups. By using the sequential symmetry adaptation procedure a new method for calculating the VRT spectra of molecular clusters which is named as Monomer Basis Representation (MBR) method is developed. In the MBR method, calculations starts with a single monomer with the purpose of obtaining an optimized basis for that monomer as a linear combination of some primitive basis functions. Then, an optimized basis for each identical monomer is generated from the optimized basis of this monomer. By using the optimized bases of the monomers, a basis is generated generated for the solution of the full problem, and the VRT spectra of the cluster is obtained by using this basis. Since an optimized basis is used for each monomer which has a much smaller size than the primitive basis from which the optimized bases are generated, the MBR method leads to an exponential optimization in the size of the basis that is required for the calculations. Application of the MBR method has been illustrated by calculating the VRT spectra of water dimer by using the SAPT-5st potential surface of Groenenboom et al. The rest of the calculations are in good agreement with both the original calculations of Groenenboom et al. and also with the experimental results. Comparing the size of the optimized basis with the size of the primitive basis, it can be said that the method works efficiently. Because of its efficiency, the MBR method can be used for studies of clusters bigger than dimers. Thus, MBR method can be used for studying the many-body terms and for deriving accurate potential surfaces.
Optimizing cost-efficiency in mean exposure assessment - cost functions reconsidered
2011-01-01
Background Reliable exposure data is a vital concern in medical epidemiology and intervention studies. The present study addresses the needs of the medical researcher to spend monetary resources devoted to exposure assessment with an optimal cost-efficiency, i.e. obtain the best possible statistical performance at a specified budget. A few previous studies have suggested mathematical optimization procedures based on very simple cost models; this study extends the methodology to cover even non-linear cost scenarios. Methods Statistical performance, i.e. efficiency, was assessed in terms of the precision of an exposure mean value, as determined in a hierarchical, nested measurement model with three stages. Total costs were assessed using a corresponding three-stage cost model, allowing costs at each stage to vary non-linearly with the number of measurements according to a power function. Using these models, procedures for identifying the optimally cost-efficient allocation of measurements under a constrained budget were developed, and applied on 225 scenarios combining different sizes of unit costs, cost function exponents, and exposure variance components. Results Explicit mathematical rules for identifying optimal allocation could be developed when cost functions were linear, while non-linear cost functions implied that parts of or the entire optimization procedure had to be carried out using numerical methods. For many of the 225 scenarios, the optimal strategy consisted in measuring on only one occasion from each of as many subjects as allowed by the budget. Significant deviations from this principle occurred if costs for recruiting subjects were large compared to costs for setting up measurement occasions, and, at the same time, the between-subjects to within-subject variance ratio was small. In these cases, non-linearities had a profound influence on the optimal allocation and on the eventual size of the exposure data set. Conclusions The analysis procedures developed in the present study can be used for informed design of exposure assessment strategies, provided that data are available on exposure variability and the costs of collecting and processing data. The present shortage of empirical evidence on costs and appropriate cost functions however impedes general conclusions on optimal exposure measurement strategies in different epidemiologic scenarios. PMID:21600023
Rahmani, Mashaallah; Kaykhaii, Massoud; Sasani, Mojtaba
2018-01-05
This study aimed to investigate the efficiency of 3A zeolite as a novel adsorbent for removal of Rhodamine B and Malachite green dyes from water samples. To increase the removal efficiency, effecting parameters on adsorption process were investigated and optimized by adopting Taguchi design of experiments approach. The percentage contribution of each parameter on the removal of Rhodamine B and Malachite green dyes determined using ANOVA and showed that the most effective parameters in removal of RhB and MG by 3A zeolite are initial concentration of dye and pH, respectively. Under optimized condition, the amount predicted by Taguchi design method and the value obtained experimentally, showed good closeness (more than 94.86%). Good adsorption efficiency obtained for proposed methods indicates that, the 3A zeolite is capable to remove the significant amounts of Rhodamine B and Malachite green from environmental water samples. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rahmani, Mashaallah; Kaykhaii, Massoud; Sasani, Mojtaba
2018-01-01
This study aimed to investigate the efficiency of 3A zeolite as a novel adsorbent for removal of Rhodamine B and Malachite green dyes from water samples. To increase the removal efficiency, effecting parameters on adsorption process were investigated and optimized by adopting Taguchi design of experiments approach. The percentage contribution of each parameter on the removal of Rhodamine B and Malachite green dyes determined using ANOVA and showed that the most effective parameters in removal of RhB and MG by 3A zeolite are initial concentration of dye and pH, respectively. Under optimized condition, the amount predicted by Taguchi design method and the value obtained experimentally, showed good closeness (more than 94.86%). Good adsorption efficiency obtained for proposed methods indicates that, the 3A zeolite is capable to remove the significant amounts of Rhodamine B and Malachite green from environmental water samples.
a Novel Discrete Optimal Transport Method for Bayesian Inverse Problems
NASA Astrophysics Data System (ADS)
Bui-Thanh, T.; Myers, A.; Wang, K.; Thiery, A.
2017-12-01
We present the Augmented Ensemble Transform (AET) method for generating approximate samples from a high-dimensional posterior distribution as a solution to Bayesian inverse problems. Solving large-scale inverse problems is critical for some of the most relevant and impactful scientific endeavors of our time. Therefore, constructing novel methods for solving the Bayesian inverse problem in more computationally efficient ways can have a profound impact on the science community. This research derives the novel AET method for exploring a posterior by solving a sequence of linear programming problems, resulting in a series of transport maps which map prior samples to posterior samples, allowing for the computation of moments of the posterior. We show both theoretical and numerical results, indicating this method can offer superior computational efficiency when compared to other SMC methods. Most of this efficiency is derived from matrix scaling methods to solve the linear programming problem and derivative-free optimization for particle movement. We use this method to determine inter-well connectivity in a reservoir and the associated uncertainty related to certain parameters. The attached file shows the difference between the true parameter and the AET parameter in an example 3D reservoir problem. The error is within the Morozov discrepancy allowance with lower computational cost than other particle methods.
Automated optimization techniques for aircraft synthesis
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.
1976-01-01
Application of numerical optimization techniques to automated conceptual aircraft design is examined. These methods are shown to be a general and efficient way to obtain quantitative information for evaluating alternative new vehicle projects. Fully automated design is compared with traditional point design methods and time and resource requirements for automated design are given. The NASA Ames Research Center aircraft synthesis program (ACSYNT) is described with special attention to calculation of the weight of a vehicle to fly a specified mission. The ACSYNT procedures for automatically obtaining sensitivity of the design (aircraft weight, performance and cost) to various vehicle, mission, and material technology parameters are presented. Examples are used to demonstrate the efficient application of these techniques.
NASA Astrophysics Data System (ADS)
Liu, Yuan; Wang, Mingqiang; Ning, Xingyao
2018-02-01
Spinning reserve (SR) should be scheduled considering the balance between economy and reliability. To address the computational intractability cursed by the computation of loss of load probability (LOLP), many probabilistic methods use simplified formulations of LOLP to improve the computational efficiency. Two tradeoffs embedded in the SR optimization model are not explicitly analyzed in these methods. In this paper, two tradeoffs including primary tradeoff and secondary tradeoff between economy and reliability in the maximum LOLP constrained unit commitment (UC) model are explored and analyzed in a small system and in IEEE-RTS System. The analysis on the two tradeoffs can help in establishing new efficient simplified LOLP formulations and new SR optimization models.
Research on bulbous bow optimization based on the improved PSO algorithm
NASA Astrophysics Data System (ADS)
Zhang, Sheng-long; Zhang, Bao-ji; Tezdogan, Tahsin; Xu, Le-ping; Lai, Yu-yang
2017-08-01
In order to reduce the total resistance of a hull, an optimization framework for the bulbous bow optimization was presented. The total resistance in calm water was selected as the objective function, and the overset mesh technique was used for mesh generation. RANS method was used to calculate the total resistance of the hull. In order to improve the efficiency and smoothness of the geometric reconstruction, the arbitrary shape deformation (ASD) technique was introduced to change the shape of the bulbous bow. To improve the global search ability of the particle swarm optimization (PSO) algorithm, an improved particle swarm optimization (IPSO) algorithm was proposed to set up the optimization model. After a series of optimization analyses, the optimal hull form was found. It can be concluded that the simulation based design framework built in this paper is a promising method for bulbous bow optimization.
Energy minimization in medical image analysis: Methodologies and applications.
Zhao, Feng; Xie, Xianghua
2016-02-01
Energy minimization is of particular interest in medical image analysis. In the past two decades, a variety of optimization schemes have been developed. In this paper, we present a comprehensive survey of the state-of-the-art optimization approaches. These algorithms are mainly classified into two categories: continuous method and discrete method. The former includes Newton-Raphson method, gradient descent method, conjugate gradient method, proximal gradient method, coordinate descent method, and genetic algorithm-based method, while the latter covers graph cuts method, belief propagation method, tree-reweighted message passing method, linear programming method, maximum margin learning method, simulated annealing method, and iterated conditional modes method. We also discuss the minimal surface method, primal-dual method, and the multi-objective optimization method. In addition, we review several comparative studies that evaluate the performance of different minimization techniques in terms of accuracy, efficiency, or complexity. These optimization techniques are widely used in many medical applications, for example, image segmentation, registration, reconstruction, motion tracking, and compressed sensing. We thus give an overview on those applications as well. Copyright © 2015 John Wiley & Sons, Ltd.
[Research on the photoelectric conversion efficiency of grating antireflective layer solar cells].
Zhong, Hui; Gao, Yong-Yi; Zhou, Ren-Long; Zhou, Bing-ju; Tang, Li-qiang; Wu, Ling-xi; Li, Hong-jian
2011-07-01
A numerical investigation of the effect of grating antireflective layer structure on the photoelectric conversion efficiency of solar cells was carried out by the finite-difference time-domain method. The influence of grating shape, height and the metal film thickness coated on grating surface on energy storage was analyzed in detail. It was found that the comparison between unoptimized and optimized surface grating structure on solar cells shows that the optimization of surface by grating significantly increases the energy storage capability and greatly improves the efficiency, especially of the photoelectric conversion efficiency and energy storage of the triangle grating. As the film thickness increases, energy storage effect increases, while as the film thickness is too thick, energy storage effect becomes lower and lower.
Fleet Feedback and Fleet Efficiency Metrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, Mark R
The Marine Corps have 10 years of experience implementing a telematics program and several lessons to share with partner agencies. This presentation details results of a Marine Corps survey as well as methods of using telematics to promote fleet efficiency and optimize the vehicle acquisition process.
NASA Astrophysics Data System (ADS)
Chen, J.; Chen, W.; Dou, A.; Li, W.; Sun, Y.
2018-04-01
A new information extraction method of damaged buildings rooted in optimal feature space is put forward on the basis of the traditional object-oriented method. In this new method, ESP (estimate of scale parameter) tool is used to optimize the segmentation of image. Then the distance matrix and minimum separation distance of all kinds of surface features are calculated through sample selection to find the optimal feature space, which is finally applied to extract the image of damaged buildings after earthquake. The overall extraction accuracy reaches 83.1 %, the kappa coefficient 0.813. The new information extraction method greatly improves the extraction accuracy and efficiency, compared with the traditional object-oriented method, and owns a good promotional value in the information extraction of damaged buildings. In addition, the new method can be used for the information extraction of different-resolution images of damaged buildings after earthquake, then to seek the optimal observation scale of damaged buildings through accuracy evaluation. It is supposed that the optimal observation scale of damaged buildings is between 1 m and 1.2 m, which provides a reference for future information extraction of damaged buildings.
Integration Research on Gas Turbine and Tunnel Kiln Combined System
NASA Astrophysics Data System (ADS)
Shi, Hefei; Ma, Liangdong; Liu, Mingsheng
2018-04-01
Through the integrated modeling of gas turbine and tunnel kiln combined system, a thermodynamic calculation method of combined system is put forward, and the combined system operation parameters are obtained. By this method, the optimization of the combined system is analyzed and the optimal configuration of the gas turbine is calculated. At the same time, the thermal efficiency of the combined system is analyzed, and the heat distribution and thermal efficiency of the system before and after the improvement are explained. Taking the 1500 kg/h ceramic production as an example, pointed out that if the tunnel kiln has a gas turbine with a power of 342 kw. The amount of electricity of the combined system that produced per unit volume of the fuel which consumes more than it used to will be 7.19 kwh, the system thermal efficiency will reach 57.49%, which higher than the individual gas turbine’s cycle thermal efficiency 20% at least.
Analysis of an optimization-based atomistic-to-continuum coupling method for point defects
Olson, Derek; Shapeev, Alexander V.; Bochev, Pavel B.; ...
2015-11-16
Here, we formulate and analyze an optimization-based Atomistic-to-Continuum (AtC) coupling method for problems with point defects. Application of a potential-based atomistic model near the defect core enables accurate simulation of the defect. Away from the core, where site energies become nearly independent of the lattice position, the method switches to a more efficient continuum model. The two models are merged by minimizing the mismatch of their states on an overlap region, subject to the atomistic and continuum force balance equations acting independently in their domains. We prove that the optimization problem is well-posed and establish error estimates.
Aerothermodynamic shape optimization of hypersonic blunt bodies
NASA Astrophysics Data System (ADS)
Eyi, Sinan; Yumuşak, Mine
2015-07-01
The aim of this study is to develop a reliable and efficient design tool that can be used in hypersonic flows. The flow analysis is based on the axisymmetric Euler/Navier-Stokes and finite-rate chemical reaction equations. The equations are coupled simultaneously and solved implicitly using Newton's method. The Jacobian matrix is evaluated analytically. A gradient-based numerical optimization is used. The adjoint method is utilized for sensitivity calculations. The objective of the design is to generate a hypersonic blunt geometry that produces the minimum drag with low aerodynamic heating. Bezier curves are used for geometry parameterization. The performances of the design optimization method are demonstrated for different hypersonic flow conditions.
NASA Astrophysics Data System (ADS)
Jerez-Hanckes, Carlos; Pérez-Arancibia, Carlos; Turc, Catalin
2017-12-01
We present Nyström discretizations of multitrace/singletrace formulations and non-overlapping Domain Decomposition Methods (DDM) for the solution of Helmholtz transmission problems for bounded composite scatterers with piecewise constant material properties. We investigate the performance of DDM with both classical Robin and optimized transmission boundary conditions. The optimized transmission boundary conditions incorporate square root Fourier multiplier approximations of Dirichlet to Neumann operators. While the multitrace/singletrace formulations as well as the DDM that use classical Robin transmission conditions are not particularly well suited for Krylov subspace iterative solutions of high-contrast high-frequency Helmholtz transmission problems, we provide ample numerical evidence that DDM with optimized transmission conditions constitute efficient computational alternatives for these type of applications. In the case of large numbers of subdomains with different material properties, we show that the associated DDM linear system can be efficiently solved via hierarchical Schur complements elimination.
Fateen, Seif-Eddeen K.; Bonilla-Petriciolet, Adrian
2014-01-01
The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium problems in applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and efficiency of eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium problems. These algorithms are the cuckoo search (CS), intelligent firefly (IFA), bat (BA), artificial bee colony (ABC), MAKHA, a hybrid between monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES), magnetic charged system search (MCSS), and bare bones particle swarm optimization (BBPSO). The results clearly showed that CS is the most reliable of all methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising nature-inspired optimization method to perform applied thermodynamic calculations for process design. PMID:24967430
Fateen, Seif-Eddeen K; Bonilla-Petriciolet, Adrian
2014-01-01
The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium problems in applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and efficiency of eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium problems. These algorithms are the cuckoo search (CS), intelligent firefly (IFA), bat (BA), artificial bee colony (ABC), MAKHA, a hybrid between monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES), magnetic charged system search (MCSS), and bare bones particle swarm optimization (BBPSO). The results clearly showed that CS is the most reliable of all methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising nature-inspired optimization method to perform applied thermodynamic calculations for process design.
Jihong, Qu
2014-01-01
Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision. PMID:24895663
Ren, Kun; Jihong, Qu
2014-01-01
Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision.
Nonlinear Multidimensional Assignment Problems Efficient Conic Optimization Methods and Applications
2015-06-24
WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Arizona State University School of Mathematical & Statistical Sciences 901 S...SUPPLEMENTARY NOTES 14. ABSTRACT The major goals of this project were completed: the exact solution of previously unsolved challenging combinatorial optimization... combinatorial optimization problem, the Directional Sensor Problem, was solved in two ways. First, heuristically in an engineering fashion and second, exactly
A stereo remote sensing feature selection method based on artificial bee colony algorithm
NASA Astrophysics Data System (ADS)
Yan, Yiming; Liu, Pigang; Zhang, Ye; Su, Nan; Tian, Shu; Gao, Fengjiao; Shen, Yi
2014-05-01
To improve the efficiency of stereo information for remote sensing classification, a stereo remote sensing feature selection method is proposed in this paper presents, which is based on artificial bee colony algorithm. Remote sensing stereo information could be described by digital surface model (DSM) and optical image, which contain information of the three-dimensional structure and optical characteristics, respectively. Firstly, three-dimensional structure characteristic could be analyzed by 3D-Zernike descriptors (3DZD). However, different parameters of 3DZD could descript different complexity of three-dimensional structure, and it needs to be better optimized selected for various objects on the ground. Secondly, features for representing optical characteristic also need to be optimized. If not properly handled, when a stereo feature vector composed of 3DZD and image features, that would be a lot of redundant information, and the redundant information may not improve the classification accuracy, even cause adverse effects. To reduce information redundancy while maintaining or improving the classification accuracy, an optimized frame for this stereo feature selection problem is created, and artificial bee colony algorithm is introduced for solving this optimization problem. Experimental results show that the proposed method can effectively improve the computational efficiency, improve the classification accuracy.
Approximating the Basset force by optimizing the method of van Hinsberg et al.
NASA Astrophysics Data System (ADS)
Casas, G.; Ferrer, A.; Oñate, E.
2018-01-01
In this work we put the method proposed by van Hinsberg et al. [29] to the test, highlighting its accuracy and efficiency in a sequence of benchmarks of increasing complexity. Furthermore, we explore the possibility of systematizing the way in which the method's free parameters are determined by generalizing the optimization problem that was considered originally. Finally, we provide a list of worked-out values, ready for implementation in large-scale particle-laden flow simulations.
A coarse-to-fine kernel matching approach for mean-shift based visual tracking
NASA Astrophysics Data System (ADS)
Liangfu, L.; Zuren, F.; Weidong, C.; Ming, J.
2009-03-01
Mean shift is an efficient pattern match algorithm. It is widely used in visual tracking fields since it need not perform whole search in the image space. It employs gradient optimization method to reduce the time of feature matching and realize rapid object localization, and uses Bhattacharyya coefficient as the similarity measure between object template and candidate template. This thesis presents a mean shift algorithm based on coarse-to-fine search for the best kernel matching. This paper researches for object tracking with large motion area based on mean shift. To realize efficient tracking of such an object, we present a kernel matching method from coarseness to fine. If the motion areas of the object between two frames are very large and they are not overlapped in image space, then the traditional mean shift method can only obtain local optimal value by iterative computing in the old object window area, so the real tracking position cannot be obtained and the object tracking will be disabled. Our proposed algorithm can efficiently use a similarity measure function to realize the rough location of motion object, then use mean shift method to obtain the accurate local optimal value by iterative computing, which successfully realizes object tracking with large motion. Experimental results show its good performance in accuracy and speed when compared with background-weighted histogram algorithm in the literature.
Van Middelaar, C E; Berentsen, P B M; Dijkstra, J; Van Arendonk, J A M; De Boer, I J M
2015-07-01
Breeding has the potential to reduce greenhouse gas (GHG) emissions from dairy farming. Evaluating the effect of a 1-unit change (i.e., 1 genetic standard deviation improvement) in genetic traits on GHG emissions along the chain provides insight into the relative importance of genetic traits to reduce GHG emissions. Relative GHG values of genetic traits, however, might depend on feed-related farm characteristics. The objective of this study was to evaluate the effect of feed-related farm characteristics on GHG values by comparing the values of milk yield and longevity for an efficient farm and a less efficient farm. The less efficient farm did not apply precision feeding and had lower feed production per hectare than the efficient farm. Greenhouse gas values of milk yield and longevity were calculated by using a whole-farm model and 2 different optimization methods. Method 1 optimized farm management before and after a change in genetic trait by maximizing labor income; the effect on GHG emissions (i.e., from production of farm inputs up to the farm gate) was considered a side effect. Method 2 optimized farm management after a change in genetic trait by minimizing GHG emissions per kilogram of milk while maintaining labor income and milk production at least at the level before the change in trait; the effect on labor income was considered a side effect. Based on maximizing labor income (method 1), GHG values of milk yield and longevity were, respectively, 279 and 143kg of CO2 equivalents (CO2e)/unit change per cow per year on the less efficient farm, and 247 and 210kg of CO2e/unit change per cow per year on the efficient farm. Based on minimizing GHG emissions (method 2), GHG values of milk yield and longevity were, respectively, 538 and 563kg of CO2e/unit change per cow per year on the less efficient farm, and 453 and 441kg of CO2e/unit change per cow per year on the efficient farm. Sensitivity analysis showed that, for both methods, the absolute effect of a change in genetic trait depends on model inputs, including prices and emission factors. Substantial changes in relative importance between traits due to a change in model inputs occurred only in case of maximizing labor income. We concluded that assumptions regarding feed-related farm characteristics affect the absolute level of GHG values, as well as the relative importance of traits to reduce emissions when using a method based on maximizing labor income. This is because optimizing farm management based on maximizing labor income does not give any incentive for lowering GHG emissions. When using a method based on minimizing GHG emissions, feed-related farm characteristics affected the absolute level of the GHG values, but the relative importance of the traits scarcely changed: at each level of efficiency, milk yield and longevity were equally important. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Integrating prediction, provenance, and optimization into high energy workflows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schram, M.; Bansal, V.; Friese, R. D.
We propose a novel approach for efficient execution of workflows on distributed resources. The key components of this framework include: performance modeling to quantitatively predict workflow component behavior; optimization-based scheduling such as choosing an optimal subset of resources to meet demand and assignment of tasks to resources; distributed I/O optimizations such as prefetching; and provenance methods for collecting performance data. In preliminary results, these techniques improve throughput on a small Belle II workflow by 20%.
Testing and Optimizing a Stove-Powered Thermoelectric Generator with Fan Cooling.
Zheng, Youqu; Hu, Jiangen; Li, Guoneng; Zhu, Lingyun; Guo, Wenwen
2018-06-07
In order to provide heat and electricity under emergency conditions in off-grid areas, a stove-powered thermoelectric generator (STEG) was designed and optimized. No battery was incorporated, ensuring it would work anytime, anywhere, as long as combustible materials were provided. The startup performance, power load feature and thermoelectric (TE) efficiency were investigated in detail. Furthermore, the heat-conducting plate thickness, cooling fan selection, heat sink dimension and TE module configuration were optimized. The heat flow method was employed to determine the TE efficiency, which was compared to the predicted data. Results showed that the STEG can supply clean-and-warm air (625 W) and electricity (8.25 W at 5 V) continuously at a temperature difference of 148 °C, and the corresponding TE efficiency was measured to be 2.31%. Optimization showed that the choice of heat-conducting plate thickness, heat sink dimensions and cooling fan were inter-dependent, and the TE module configuration affected both the startup process and the power output.
Relative entropy and optimization-driven coarse-graining methods in VOTCA
Mashayak, S. Y.; Jochum, Mara N.; Koschke, Konstantin; ...
2015-07-20
We discuss recent advances of the VOTCA package for systematic coarse-graining. Two methods have been implemented, namely the downhill simplex optimization and the relative entropy minimization. We illustrate the new methods by coarse-graining SPC/E bulk water and more complex water-methanol mixture systems. The CG potentials obtained from both methods are then evaluated by comparing the pair distributions from the coarse-grained to the reference atomistic simulations.We have also added a parallel analysis framework to improve the computational efficiency of the coarse-graining process.
Computational methods for aerodynamic design using numerical optimization
NASA Technical Reports Server (NTRS)
Peeters, M. F.
1983-01-01
Five methods to increase the computational efficiency of aerodynamic design using numerical optimization, by reducing the computer time required to perform gradient calculations, are examined. The most promising method consists of drastically reducing the size of the computational domain on which aerodynamic calculations are made during gradient calculations. Since a gradient calculation requires the solution of the flow about an airfoil whose geometry was slightly perturbed from a base airfoil, the flow about the base airfoil is used to determine boundary conditions on the reduced computational domain. This method worked well in subcritical flow.
Tuning Parameters in Heuristics by Using Design of Experiments Methods
NASA Technical Reports Server (NTRS)
Arin, Arif; Rabadi, Ghaith; Unal, Resit
2010-01-01
With the growing complexity of today's large scale problems, it has become more difficult to find optimal solutions by using exact mathematical methods. The need to find near-optimal solutions in an acceptable time frame requires heuristic approaches. In many cases, however, most heuristics have several parameters that need to be "tuned" before they can reach good results. The problem then turns into "finding best parameter setting" for the heuristics to solve the problems efficiently and timely. One-Factor-At-a-Time (OFAT) approach for parameter tuning neglects the interactions between parameters. Design of Experiments (DOE) tools can be instead employed to tune the parameters more effectively. In this paper, we seek the best parameter setting for a Genetic Algorithm (GA) to solve the single machine total weighted tardiness problem in which n jobs must be scheduled on a single machine without preemption, and the objective is to minimize the total weighted tardiness. Benchmark instances for the problem are available in the literature. To fine tune the GA parameters in the most efficient way, we compare multiple DOE models including 2-level (2k ) full factorial design, orthogonal array design, central composite design, D-optimal design and signal-to-noise (SIN) ratios. In each DOE method, a mathematical model is created using regression analysis, and solved to obtain the best parameter setting. After verification runs using the tuned parameter setting, the preliminary results for optimal solutions of multiple instances were found efficiently.
Optimal designs based on the maximum quasi-likelihood estimator
Shen, Gang; Hyun, Seung Won; Wong, Weng Kee
2016-01-01
We use optimal design theory and construct locally optimal designs based on the maximum quasi-likelihood estimator (MqLE), which is derived under less stringent conditions than those required for the MLE method. We show that the proposed locally optimal designs are asymptotically as efficient as those based on the MLE when the error distribution is from an exponential family, and they perform just as well or better than optimal designs based on any other asymptotically linear unbiased estimators such as the least square estimator (LSE). In addition, we show current algorithms for finding optimal designs can be directly used to find optimal designs based on the MqLE. As an illustrative application, we construct a variety of locally optimal designs based on the MqLE for the 4-parameter logistic (4PL) model and study their robustness properties to misspecifications in the model using asymptotic relative efficiency. The results suggest that optimal designs based on the MqLE can be easily generated and they are quite robust to mis-specification in the probability distribution of the responses. PMID:28163359
Li, Ke; Deb, Kalyanmoy; Zhang, Qingfu; Zhang, Qiang
2017-09-01
Nondominated sorting (NDS), which divides a population into several nondomination levels (NDLs), is a basic step in many evolutionary multiobjective optimization (EMO) algorithms. It has been widely studied in a generational evolution model, where the environmental selection is performed after generating a whole population of offspring. However, in a steady-state evolution model, where a population is updated right after the generation of a new candidate, the NDS can be extremely time consuming. This is especially severe when the number of objectives and population size become large. In this paper, we propose an efficient NDL update method to reduce the cost for maintaining the NDL structure in steady-state EMO. Instead of performing the NDS from scratch, our method only updates the NDLs of a limited number of solutions by extracting the knowledge from the current NDL structure. Notice that our NDL update method is performed twice at each iteration. One is after the reproduction, the other is after the environmental selection. Extensive experiments fully demonstrate that, comparing to the other five state-of-the-art NDS methods, our proposed method avoids a significant amount of unnecessary comparisons, not only in the synthetic data sets, but also in some real optimization scenarios. Last but not least, we find that our proposed method is also useful for the generational evolution model.
An Efficient Multiblock Method for Aerodynamic Analysis and Design on Distributed Memory Systems
NASA Technical Reports Server (NTRS)
Reuther, James; Alonso, Juan Jose; Vassberg, John C.; Jameson, Antony; Martinelli, Luigi
1997-01-01
The work presented in this paper describes the application of a multiblock gridding strategy to the solution of aerodynamic design optimization problems involving complex configurations. The design process is parallelized using the MPI (Message Passing Interface) Standard such that it can be efficiently run on a variety of distributed memory systems ranging from traditional parallel computers to networks of workstations. Substantial improvements to the parallel performance of the baseline method are presented, with particular attention to their impact on the scalability of the program as a function of the mesh size. Drag minimization calculations at a fixed coefficient of lift are presented for a business jet configuration that includes the wing, body, pylon, aft-mounted nacelle, and vertical and horizontal tails. An aerodynamic design optimization is performed with both the Euler and Reynolds Averaged Navier-Stokes (RANS) equations governing the flow solution and the results are compared. These sample calculations establish the feasibility of efficient aerodynamic optimization of complete aircraft configurations using the RANS equations as the flow model. There still exists, however, the need for detailed studies of the importance of a true viscous adjoint method which holds the promise of tackling the minimization of not only the wave and induced components of drag, but also the viscous drag.
Liu, Hao; Shao, Qi; Fang, Xuelin
2017-02-01
For the class-E amplifier in a wireless power transfer (WPT) system, the design parameters are always determined by the nominal model. However, this model neglects the conduction loss and voltage stress of MOSFET and cannot guarantee the highest efficiency in the WPT system for biomedical implants. To solve this problem, this paper proposes a novel circuit model of the subnominal class-E amplifier. On a WPT platform for capsule endoscope, the proposed model was validated to be effective and the relationship between the amplifier's design parameters and its characteristics was analyzed. At a given duty ratio, the design parameters with the highest efficiency and safe voltage stress are derived and the condition is called 'optimal subnominal condition.' The amplifier's efficiency can reach the highest of 99.3% at the 0.097 duty ratio. Furthermore, at the 0.5 duty ratio, the measured efficiency of the optimal subnominal condition can reach 90.8%, which is 15.2% higher than that of the nominal condition. Then, a WPT experiment with a receiving unit was carried out to validate the feasibility of the optimized amplifier. In general, the design parameters of class-E amplifier in a WPT system for biomedical implants can be determined with the proposed optimization method in this paper.
[Imaging center - optimization of the imaging process].
Busch, H-P
2013-04-01
Hospitals around the world are under increasing pressure to optimize the economic efficiency of treatment processes. Imaging is responsible for a great part of the success but also of the costs of treatment. In routine work an excessive supply of imaging methods leads to an "as well as" strategy up to the limit of the capacity without critical reflection. Exams that have no predictable influence on the clinical outcome are an unjustified burden for the patient. They are useless and threaten the financial situation and existence of the hospital. In recent years the focus of process optimization was exclusively on the quality and efficiency of performed single examinations. In the future critical discussion of the effectiveness of single exams in relation to the clinical outcome will be more important. Unnecessary exams can be avoided, only if in addition to the optimization of single exams (efficiency) there is an optimization strategy for the total imaging process (efficiency and effectiveness). This requires a new definition of processes (Imaging Pathway), new structures for organization (Imaging Center) and a new kind of thinking on the part of the medical staff. Motivation has to be changed from gratification of performed exams to gratification of process quality (medical quality, service quality, economics), including the avoidance of additional (unnecessary) exams. © Georg Thieme Verlag KG Stuttgart · New York.
Fast global image smoothing based on weighted least squares.
Min, Dongbo; Choi, Sunghwan; Lu, Jiangbo; Ham, Bumsub; Sohn, Kwanghoon; Do, Minh N
2014-12-01
This paper presents an efficient technique for performing a spatially inhomogeneous edge-preserving image smoothing, called fast global smoother. Focusing on sparse Laplacian matrices consisting of a data term and a prior term (typically defined using four or eight neighbors for 2D image), our approach efficiently solves such global objective functions. In particular, we approximate the solution of the memory-and computation-intensive large linear system, defined over a d-dimensional spatial domain, by solving a sequence of 1D subsystems. Our separable implementation enables applying a linear-time tridiagonal matrix algorithm to solve d three-point Laplacian matrices iteratively. Our approach combines the best of two paradigms, i.e., efficient edge-preserving filters and optimization-based smoothing. Our method has a comparable runtime to the fast edge-preserving filters, but its global optimization formulation overcomes many limitations of the local filtering approaches. Our method also achieves high-quality results as the state-of-the-art optimization-based techniques, but runs ∼10-30 times faster. Besides, considering the flexibility in defining an objective function, we further propose generalized fast algorithms that perform Lγ norm smoothing (0 < γ < 2) and support an aggregated (robust) data term for handling imprecise data constraints. We demonstrate the effectiveness and efficiency of our techniques in a range of image processing and computer graphics applications.
A Hybrid Approach for CpG Island Detection in the Human Genome.
Yang, Cheng-Hong; Lin, Yu-Da; Chiang, Yi-Cheng; Chuang, Li-Yeh
2016-01-01
CpG islands have been demonstrated to influence local chromatin structures and simplify the regulation of gene activity. However, the accurate and rapid determination of CpG islands for whole DNA sequences remains experimentally and computationally challenging. A novel procedure is proposed to detect CpG islands by combining clustering technology with the sliding-window method (PSO-based). Clustering technology is used to detect the locations of all possible CpG islands and process the data, thus effectively obviating the need for the extensive and unnecessary processing of DNA fragments, and thus improving the efficiency of sliding-window based particle swarm optimization (PSO) search. This proposed approach, named ClusterPSO, provides versatile and highly-sensitive detection of CpG islands in the human genome. In addition, the detection efficiency of ClusterPSO is compared with eight CpG island detection methods in the human genome. Comparison of the detection efficiency for the CpG islands in human genome, including sensitivity, specificity, accuracy, performance coefficient (PC), and correlation coefficient (CC), ClusterPSO revealed superior detection ability among all of the test methods. Moreover, the combination of clustering technology and PSO method can successfully overcome their respective drawbacks while maintaining their advantages. Thus, clustering technology could be hybridized with the optimization algorithm method to optimize CpG island detection. The prediction accuracy of ClusterPSO was quite high, indicating the combination of CpGcluster and PSO has several advantages over CpGcluster and PSO alone. In addition, ClusterPSO significantly reduced implementation time.
Vanniyasingam, Thuva; Cunningham, Charles E; Foster, Gary; Thabane, Lehana
2016-01-01
Objectives Discrete choice experiments (DCEs) are routinely used to elicit patient preferences to improve health outcomes and healthcare services. While many fractional factorial designs can be created, some are more statistically optimal than others. The objective of this simulation study was to investigate how varying the number of (1) attributes, (2) levels within attributes, (3) alternatives and (4) choice tasks per survey will improve or compromise the statistical efficiency of an experimental design. Design and methods A total of 3204 DCE designs were created to assess how relative design efficiency (d-efficiency) is influenced by varying the number of choice tasks (2–20), alternatives (2–5), attributes (2–20) and attribute levels (2–5) of a design. Choice tasks were created by randomly allocating attribute and attribute level combinations into alternatives. Outcome Relative d-efficiency was used to measure the optimality of each DCE design. Results DCE design complexity influenced statistical efficiency. Across all designs, relative d-efficiency decreased as the number of attributes and attribute levels increased. It increased for designs with more alternatives. Lastly, relative d-efficiency converges as the number of choice tasks increases, where convergence may not be at 100% statistical optimality. Conclusions Achieving 100% d-efficiency is heavily dependent on the number of attributes, attribute levels, choice tasks and alternatives. Further exploration of overlaps and block sizes are needed. This study's results are widely applicable for researchers interested in creating optimal DCE designs to elicit individual preferences on health services, programmes, policies and products. PMID:27436671
Ren, Jun; Lee, Haram; Yoo, Seung Min; Yu, Myeong-Sang; Park, Hansoo; Na, Dokyun
2017-04-01
DNA transformation that delivers plasmid DNAs into bacterial cells is fundamental in genetic manipulation to engineer and study bacteria. Developed transformation methods to date are optimized to specific bacterial species for high efficiency. Thus, there is always a demand for simple and species-independent transformation methods. We herein describe the development of a chemico-physical transformation method that combines a rubidium chloride (RbCl)-based chemical method and sepiolite-based physical method, and report its use for the simple and efficient delivery of DNA into various bacterial species. Using this method, the best transformation efficiency for Escherichia coli DH5α was 4.3×10 6 CFU/μg of pUC19 plasmid, which is higher than or comparable to the reported transformation efficiencies to date. This method also allowed the introduction of plasmid DNAs into Bacillus subtilis (5.7×10 3 CFU/μg of pSEVA3b67Rb), Bacillus megaterium (2.5×10 3 CFU/μg of pSPAsp-hp), Lactococcus lactis subsp. lactis (1.0×10 2 CFU/μg of pTRKH3-ermGFP), and Lactococcus lactis subsp. cremoris (2.2×10 2 CFU/μg of pMSP3535VA). Remarkably, even when the conventional chemical and physical methods failed to generate transformed cells in Bacillus sp. and Enterococcus faecalis, E. malodoratus and E. mundtii, our combined method showed a significant transformation efficiency (2.4×10 4 , 4.5×10 2 , 2×10 1 , and 0.5×10 1 CFU/μg of plasmid DNA). Based on our results, we anticipate that our simple and efficient transformation method should prove usefulness for introducing DNA into various bacterial species without complicated optimization of parameters affecting DNA entry into the cell. Copyright © 2017. Published by Elsevier B.V.
Maximum margin multiple instance clustering with applications to image and text clustering.
Zhang, Dan; Wang, Fei; Si, Luo; Li, Tao
2011-05-01
In multiple instance learning problems, patterns are often given as bags and each bag consists of some instances. Most of existing research in the area focuses on multiple instance classification and multiple instance regression, while very limited work has been conducted for multiple instance clustering (MIC). This paper formulates a novel framework, maximum margin multiple instance clustering (M(3)IC), for MIC. However, it is impractical to directly solve the optimization problem of M(3)IC. Therefore, M(3)IC is relaxed in this paper to enable an efficient optimization solution with a combination of the constrained concave-convex procedure and the cutting plane method. Furthermore, this paper presents some important properties of the proposed method and discusses the relationship between the proposed method and some other related ones. An extensive set of empirical results are shown to demonstrate the advantages of the proposed method against existing research for both effectiveness and efficiency.
A Fast Gradient Method for Nonnegative Sparse Regression With Self-Dictionary
NASA Astrophysics Data System (ADS)
Gillis, Nicolas; Luce, Robert
2018-01-01
A nonnegative matrix factorization (NMF) can be computed efficiently under the separability assumption, which asserts that all the columns of the given input data matrix belong to the cone generated by a (small) subset of them. The provably most robust methods to identify these conic basis columns are based on nonnegative sparse regression and self dictionaries, and require the solution of large-scale convex optimization problems. In this paper we study a particular nonnegative sparse regression model with self dictionary. As opposed to previously proposed models, this model yields a smooth optimization problem where the sparsity is enforced through linear constraints. We show that the Euclidean projection on the polyhedron defined by these constraints can be computed efficiently, and propose a fast gradient method to solve our model. We compare our algorithm with several state-of-the-art methods on synthetic data sets and real-world hyperspectral images.
SLFP: a stochastic linear fractional programming approach for sustainable waste management.
Zhu, H; Huang, G H
2011-12-01
A stochastic linear fractional programming (SLFP) approach is developed for supporting sustainable municipal solid waste management under uncertainty. The SLFP method can solve ratio optimization problems associated with random information, where chance-constrained programming is integrated into a linear fractional programming framework. It has advantages in: (1) comparing objectives of two aspects, (2) reflecting system efficiency, (3) dealing with uncertainty expressed as probability distributions, and (4) providing optimal-ratio solutions under different system-reliability conditions. The method is applied to a case study of waste flow allocation within a municipal solid waste (MSW) management system. The obtained solutions are useful for identifying sustainable MSW management schemes with maximized system efficiency under various constraint-violation risks. The results indicate that SLFP can support in-depth analysis of the interrelationships among system efficiency, system cost and system-failure risk. Copyright © 2011 Elsevier Ltd. All rights reserved.
Gradient-based Optimization for Poroelastic and Viscoelastic MR Elastography
Tan, Likun; McGarry, Matthew D.J.; Van Houten, Elijah E.W.; Ji, Ming; Solamen, Ligin; Weaver, John B.
2017-01-01
We describe an efficient gradient computation for solving inverse problems arising in magnetic resonance elastography (MRE). The algorithm can be considered as a generalized ‘adjoint method’ based on a Lagrangian formulation. One requirement for the classic adjoint method is assurance of the self-adjoint property of the stiffness matrix in the elasticity problem. In this paper, we show this property is no longer a necessary condition in our algorithm, but the computational performance can be as efficient as the classic method, which involves only two forward solutions and is independent of the number of parameters to be estimated. The algorithm is developed and implemented in material property reconstructions using poroelastic and viscoelastic modeling. Various gradient- and Hessian-based optimization techniques have been tested on simulation, phantom and in vivo brain data. The numerical results show the feasibility and the efficiency of the proposed scheme for gradient calculation. PMID:27608454
Reducing the impact of speed dispersion on subway corridor flow.
Qiao, Jing; Sun, Lishan; Liu, Xiaoming; Rong, Jian
2017-11-01
The rapid increase in the volume of subway passengers in Beijing has necessitated higher requirements for the safety and efficiency of subway corridors. Speed dispersion is an important factor that affects safety and efficiency. This paper aims to analyze the management control methods for reducing pedestrian speed dispersion in subways. The characteristics of the speed dispersion of pedestrian flow were analyzed according to field videos. The control measurements which were conducted by placing traffic signs, yellow marking, and guardrail were proposed to alleviate speed dispersion. The results showed that the methods of placing traffic signs, yellow marking, and a guardrail improved safety and efficiency for all four volumes of pedestrian traffic flow, and the best-performing control measurement was guardrails. Furthermore, guardrails' optimal position and design measurements were explored. The research findings provide a rationale for subway managers in optimizing pedestrian traffic flow in subway corridors. Copyright © 2017. Published by Elsevier Ltd.
An extension of the directed search domain algorithm to bilevel optimization
NASA Astrophysics Data System (ADS)
Wang, Kaiqiang; Utyuzhnikov, Sergey V.
2017-08-01
A method is developed for generating a well-distributed Pareto set for the upper level in bilevel multiobjective optimization. The approach is based on the Directed Search Domain (DSD) algorithm, which is a classical approach for generation of a quasi-evenly distributed Pareto set in multiobjective optimization. The approach contains a double-layer optimizer designed in a specific way under the framework of the DSD method. The double-layer optimizer is based on bilevel single-objective optimization and aims to find a unique optimal Pareto solution rather than generate the whole Pareto frontier on the lower level in order to improve the optimization efficiency. The proposed bilevel DSD approach is verified on several test cases, and a relevant comparison against another classical approach is made. It is shown that the approach can generate a quasi-evenly distributed Pareto set for the upper level with relatively low time consumption.
Sidler, Dominik; Cristòfol-Clough, Michael; Riniker, Sereina
2017-06-13
Replica-exchange enveloping distribution sampling (RE-EDS) allows the efficient estimation of free-energy differences between multiple end-states from a single molecular dynamics (MD) simulation. In EDS, a reference state is sampled, which can be tuned by two types of parameters, i.e., smoothness parameters(s) and energy offsets, such that all end-states are sufficiently sampled. However, the choice of these parameters is not trivial. Replica exchange (RE) or parallel tempering is a widely applied technique to enhance sampling. By combining EDS with the RE technique, the parameter choice problem could be simplified and the challenge shifted toward an optimal distribution of the replicas in the smoothness-parameter space. The choice of a certain replica distribution can alter the sampling efficiency significantly. In this work, global round-trip time optimization (GRTO) algorithms are tested for the use in RE-EDS simulations. In addition, a local round-trip time optimization (LRTO) algorithm is proposed for systems with slowly adapting environments, where a reliable estimate for the round-trip time is challenging to obtain. The optimization algorithms were applied to RE-EDS simulations of a system of nine small-molecule inhibitors of phenylethanolamine N-methyltransferase (PNMT). The energy offsets were determined using our recently proposed parallel energy-offset (PEOE) estimation scheme. While the multistate GRTO algorithm yielded the best replica distribution for the ligands in water, the multistate LRTO algorithm was found to be the method of choice for the ligands in complex with PNMT. With this, the 36 alchemical free-energy differences between the nine ligands were calculated successfully from a single RE-EDS simulation 10 ns in length. Thus, RE-EDS presents an efficient method for the estimation of relative binding free energies.
Fast globally optimal segmentation of 3D prostate MRI with axial symmetry prior.
Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron
2013-01-01
We propose a novel global optimization approach to segmenting a given 3D prostate T2w magnetic resonance (MR) image, which enforces the inherent axial symmetry of the prostate shape and simultaneously performs a sequence of 2D axial slice-wise segmentations with a global 3D coherence prior. We show that the proposed challenging combinatorial optimization problem can be solved globally and exactly by means of convex relaxation. With this regard, we introduce a novel coupled continuous max-flow model, which is dual to the studied convex relaxed optimization formulation and leads to an efficient multiplier augmented algorithm based on the modern convex optimization theory. Moreover, the new continuous max-flow based algorithm was implemented on GPUs to achieve a substantial improvement in computation. Experimental results using public and in-house datasets demonstrate great advantages of the proposed method in terms of both accuracy and efficiency.
Optimization-based additive decomposition of weakly coercive problems with applications
Bochev, Pavel B.; Ridzal, Denis
2016-01-27
In this study, we present an abstract mathematical framework for an optimization-based additive decomposition of a large class of variational problems into a collection of concurrent subproblems. The framework replaces a given monolithic problem by an equivalent constrained optimization formulation in which the subproblems define the optimization constraints and the objective is to minimize the mismatch between their solutions. The significance of this reformulation stems from the fact that one can solve the resulting optimality system by an iterative process involving only solutions of the subproblems. Consequently, assuming that stable numerical methods and efficient solvers are available for every subproblem,more » our reformulation leads to robust and efficient numerical algorithms for a given monolithic problem by breaking it into subproblems that can be handled more easily. An application of the framework to the Oseen equations illustrates its potential.« less
Comparison of stochastic optimization methods for all-atom folding of the Trp-Cage protein.
Schug, Alexander; Herges, Thomas; Verma, Abhinav; Lee, Kyu Hwan; Wenzel, Wolfgang
2005-12-09
The performances of three different stochastic optimization methods for all-atom protein structure prediction are investigated and compared. We use the recently developed all-atom free-energy force field (PFF01), which was demonstrated to correctly predict the native conformation of several proteins as the global optimum of the free energy surface. The trp-cage protein (PDB-code 1L2Y) is folded with the stochastic tunneling method, a modified parallel tempering method, and the basin-hopping technique. All the methods correctly identify the native conformation, and their relative efficiency is discussed.
2012-01-01
Background Elementary mode (EM) analysis is ideally suited for metabolic engineering as it allows for an unbiased decomposition of metabolic networks in biologically meaningful pathways. Recently, constrained minimal cut sets (cMCS) have been introduced to derive optimal design strategies for strain improvement by using the full potential of EM analysis. However, this approach does not allow for the inclusion of regulatory information. Results Here we present an alternative, novel and simple method for the prediction of cMCS, which allows to account for boolean transcriptional regulation. We use binary linear programming and show that the design of a regulated, optimal metabolic network of minimal functionality can be formulated as a standard optimization problem, where EM and regulation show up as constraints. We validated our tool by optimizing ethanol production in E. coli. Our study showed that up to 70% of the predicted cMCS contained non-enzymatic, non-annotated reactions, which are difficult to engineer. These cMCS are automatically excluded by our approach utilizing simple weight functions. Finally, due to efficient preprocessing, the binary program remains computationally feasible. Conclusions We used integer programming to predict efficient deletion strategies to metabolically engineer a production organism. Our formulation utilizes the full potential of cMCS but adds additional flexibility to the design process. In particular our method allows to integrate regulatory information into the metabolic design process and explicitly favors experimentally feasible deletions. Our method remains manageable even if millions or potentially billions of EM enter the analysis. We demonstrated that our approach is able to correctly predict the most efficient designs for ethanol production in E. coli. PMID:22898474
Algorithms for optimizing cross-overs in DNA shuffling.
He, Lu; Friedman, Alan M; Bailey-Kellogg, Chris
2012-03-21
DNA shuffling generates combinatorial libraries of chimeric genes by stochastically recombining parent genes. The resulting libraries are subjected to large-scale genetic selection or screening to identify those chimeras with favorable properties (e.g., enhanced stability or enzymatic activity). While DNA shuffling has been applied quite successfully, it is limited by its homology-dependent, stochastic nature. Consequently, it is used only with parents of sufficient overall sequence identity, and provides no control over the resulting chimeric library. This paper presents efficient methods to extend the scope of DNA shuffling to handle significantly more diverse parents and to generate more predictable, optimized libraries. Our CODNS (cross-over optimization for DNA shuffling) approach employs polynomial-time dynamic programming algorithms to select codons for the parental amino acids, allowing for zero or a fixed number of conservative substitutions. We first present efficient algorithms to optimize the local sequence identity or the nearest-neighbor approximation of the change in free energy upon annealing, objectives that were previously optimized by computationally-expensive integer programming methods. We then present efficient algorithms for more powerful objectives that seek to localize and enhance the frequency of recombination by producing "runs" of common nucleotides either overall or according to the sequence diversity of the resulting chimeras. We demonstrate the effectiveness of CODNS in choosing codons and allocating substitutions to promote recombination between parents targeted in earlier studies: two GAR transformylases (41% amino acid sequence identity), two very distantly related DNA polymerases, Pol X and β (15%), and beta-lactamases of varying identity (26-47%). Our methods provide the protein engineer with a new approach to DNA shuffling that supports substantially more diverse parents, is more deterministic, and generates more predictable and more diverse chimeric libraries.
Gálvez, Akemi; Iglesias, Andrés
2013-01-01
Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional optimization techniques usually fail. This paper presents a new bioinspired method to tackle this issue. In this method, optimization is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined by using De Boor's method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the proposed scheme can solve the original continuous nonlinear optimization problem very efficiently.
Gálvez, Akemi; Iglesias, Andrés
2013-01-01
Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional optimization techniques usually fail. This paper presents a new bioinspired method to tackle this issue. In this method, optimization is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined by using De Boor's method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the proposed scheme can solve the original continuous nonlinear optimization problem very efficiently. PMID:24376380
NASA Astrophysics Data System (ADS)
Perez, Luis
Dye-sensitized solar cells (DSSC) have the potential to replace traditional and cost-inefficient crystalline silicon or ruthenium solar cells. This can only be accomplished by optimizing DSSC's energy efficiency. One of the major components in a dye-sensitized solar cell is the porous layer of titanium dioxide. This layer is coated with a molecular dye that absorbs sunlight. The research conducted for this paper focuses on the different methods used to dye the porous TiO2 layer with ferritin-encapsulated quantum dots. Multiple anodes were dyed using a method known as SILAR which involves deposition through alternate immersion in two different solutions. The efficiencies of DSSCs with ferritin-encapsulated lead sulfide dye deposited using SILAR were subsequently compared against the efficiencies produced by cells using the traditional immersion method. It was concluded that both methods resulted in similar efficiencies (? .074%) however, the SILAR method dyed the TiO2 coating significantly faster than the immersion method. On a related note, our experiments concluded that conducting 2 SILAR cycles yields the highest possible efficiency for this particular binding method. National Science Foundation.
Wu, Rengmao; Hua, Hong; Benítez, Pablo; Miñano, Juan C.; Liang, Rongguang
2016-01-01
The energy efficiency and compactness of an illumination system are two main concerns in illumination design for extended sources. In this paper, we present two methods to design compact, ultra efficient aspherical lenses for extended Lambertian sources in two-dimensional geometry. The light rays are directed by using two aspherical surfaces in the first method and one aspherical surface along with an optimized parabola in the second method. The principles and procedures of each design method are introduced in detail. Three examples are presented to demonstrate the effectiveness of these two methods in terms of performance and capacity in designing compact, ultra efficient aspherical lenses. The comparisons made between the two proposed methods indicate that the second method is much simpler and easier to be implemented, and has an excellent extensibility to three-dimensional designs. PMID:29092336
[Studies on extraction process optimization of patrinia scabra Bunge saponins].
Wang, Xue-Xi; Chen, Ru; Li, Shi-Gang; Shen, Wei; Cheng, Wei-Dong; Zhao, Jian-Xiong
2007-05-01
To optimize the conditions for the extraction of Patrinia scabra Bunge saponins. Orthogonal experimental design and ultrasonic method were employed to examine the conditions for the extraction by determination of saponins. The optimun condition for the extraction of Patrinia scabra Bunge saponins was as follows: 65% ethanol for 40 minutes, 55 degrees C and 210 watt of ultrasonic efficinecy. The extraction method of Patrinia scabra Bunge sponins is simple and efficient.
Optimized emission in nanorod arrays through quasi-aperiodic inverse design.
Anderson, P Duke; Povinelli, Michelle L
2015-06-01
We investigate a new class of quasi-aperiodic nanorod structures for the enhancement of incoherent light emission. We identify one optimized structure using an inverse design algorithm and the finite-difference time-domain method. We carry out emission calculations on both the optimized structure as well as a simple periodic array. The optimized structure achieves nearly perfect light extraction while maintaining a high spontaneous emission rate. Overall, the optimized structure can achieve a 20%-42% increase in external quantum efficiency relative to a simple periodic design, depending on material quality.
Modeling and quantification of repolarization feature dependency on heart rate.
Minchole, A; Zacur, E; Pueyo, E; Laguna, P
2014-01-01
This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal Interpretation: Advanced Methods for Studying Cardiovascular and Respiratory Systems". This work aims at providing an efficient method to estimate the parameters of a non linear model including memory, previously proposed to characterize rate adaptation of repolarization indices. The physiological restrictions on the model parameters have been included in the cost function in such a way that unconstrained optimization techniques such as descent optimization methods can be used for parameter estimation. The proposed method has been evaluated on electrocardiogram (ECG) recordings of healthy subjects performing a tilt test, where rate adaptation of QT and Tpeak-to-Tend (Tpe) intervals has been characterized. The proposed strategy results in an efficient methodology to characterize rate adaptation of repolarization features, improving the convergence time with respect to previous strategies. Moreover, Tpe interval adapts faster to changes in heart rate than the QT interval. In this work an efficient estimation of the parameters of a model aimed at characterizing rate adaptation of repolarization features has been proposed. The Tpe interval has been shown to be rate related and with a shorter memory lag than the QT interval.
NASA Astrophysics Data System (ADS)
Kenway, Gaetan K. W.
This thesis presents new tools and techniques developed to address the challenging problem of high-fidelity aerostructural optimization with respect to large numbers of design variables. A new mesh-movement scheme is developed that is both computationally efficient and sufficiently robust to accommodate large geometric design changes and aerostructural deformations. A fully coupled Newton-Krylov method is presented that accelerates the convergence of aerostructural systems and provides a 20% performance improvement over the traditional nonlinear block Gauss-Seidel approach and can handle more exible structures. A coupled adjoint method is used that efficiently computes derivatives for a gradient-based optimization algorithm. The implementation uses only machine accurate derivative techniques and is verified to yield fully consistent derivatives by comparing against the complex step method. The fully-coupled large-scale coupled adjoint solution method is shown to have 30% better performance than the segregated approach. The parallel scalability of the coupled adjoint technique is demonstrated on an Euler Computational Fluid Dynamics (CFD) model with more than 80 million state variables coupled to a detailed structural finite-element model of the wing with more than 1 million degrees of freedom. Multi-point high-fidelity aerostructural optimizations of a long-range wide-body, transonic transport aircraft configuration are performed using the developed techniques. The aerostructural analysis employs Euler CFD with a 2 million cell mesh and a structural finite element model with 300 000 DOF. Two design optimization problems are solved: one where takeoff gross weight is minimized, and another where fuel burn is minimized. Each optimization uses a multi-point formulation with 5 cruise conditions and 2 maneuver conditions. The optimization problems have 476 design variables are optimal results are obtained within 36 hours of wall time using 435 processors. The TOGW minimization results in a 4.2% reduction in TOGW with a 6.6% fuel burn reduction, while the fuel burn optimization resulted in a 11.2% fuel burn reduction with no change to the takeoff gross weight.
Enhancements on the Convex Programming Based Powered Descent Guidance Algorithm for Mars Landing
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Blackmore, Lars; Scharf, Daniel P.; Wolf, Aron
2008-01-01
In this paper, we present enhancements on the powered descent guidance algorithm developed for Mars pinpoint landing. The guidance algorithm solves the powered descent minimum fuel trajectory optimization problem via a direct numerical method. Our main contribution is to formulate the trajectory optimization problem, which has nonconvex control constraints, as a finite dimensional convex optimization problem, specifically as a finite dimensional second order cone programming (SOCP) problem. SOCP is a subclass of convex programming, and there are efficient SOCP solvers with deterministic convergence properties. Hence, the resulting guidance algorithm can potentially be implemented onboard a spacecraft for real-time applications. Particularly, this paper discusses the algorithmic improvements obtained by: (i) Using an efficient approach to choose the optimal time-of-flight; (ii) Using a computationally inexpensive way to detect the feasibility/ infeasibility of the problem due to the thrust-to-weight constraint; (iii) Incorporating the rotation rate of the planet into the problem formulation; (iv) Developing additional constraints on the position and velocity to guarantee no-subsurface flight between the time samples of the temporal discretization; (v) Developing a fuel-limited targeting algorithm; (vi) Initial result on developing an onboard table lookup method to obtain almost fuel optimal solutions in real-time.
An hp symplectic pseudospectral method for nonlinear optimal control
NASA Astrophysics Data System (ADS)
Peng, Haijun; Wang, Xinwei; Li, Mingwu; Chen, Biaosong
2017-01-01
An adaptive symplectic pseudospectral method based on the dual variational principle is proposed and is successfully applied to solving nonlinear optimal control problems in this paper. The proposed method satisfies the first order necessary conditions of continuous optimal control problems, also the symplectic property of the original continuous Hamiltonian system is preserved. The original optimal control problem is transferred into a set of nonlinear equations which can be solved easily by Newton-Raphson iterations, and the Jacobian matrix is found to be sparse and symmetric. The proposed method, on one hand, exhibits exponent convergence rates when the number of collocation points are increasing with the fixed number of sub-intervals; on the other hand, exhibits linear convergence rates when the number of sub-intervals is increasing with the fixed number of collocation points. Furthermore, combining with the hp method based on the residual error of dynamic constraints, the proposed method can achieve given precisions in a few iterations. Five examples highlight the high precision and high computational efficiency of the proposed method.
An efficient graph theory based method to identify every minimal reaction set in a metabolic network
2014-01-01
Background Development of cells with minimal metabolic functionality is gaining importance due to their efficiency in producing chemicals and fuels. Existing computational methods to identify minimal reaction sets in metabolic networks are computationally expensive. Further, they identify only one of the several possible minimal reaction sets. Results In this paper, we propose an efficient graph theory based recursive optimization approach to identify all minimal reaction sets. Graph theoretical insights offer systematic methods to not only reduce the number of variables in math programming and increase its computational efficiency, but also provide efficient ways to find multiple optimal solutions. The efficacy of the proposed approach is demonstrated using case studies from Escherichia coli and Saccharomyces cerevisiae. In case study 1, the proposed method identified three minimal reaction sets each containing 38 reactions in Escherichia coli central metabolic network with 77 reactions. Analysis of these three minimal reaction sets revealed that one of them is more suitable for developing minimal metabolism cell compared to other two due to practically achievable internal flux distribution. In case study 2, the proposed method identified 256 minimal reaction sets from the Saccharomyces cerevisiae genome scale metabolic network with 620 reactions. The proposed method required only 4.5 hours to identify all the 256 minimal reaction sets and has shown a significant reduction (approximately 80%) in the solution time when compared to the existing methods for finding minimal reaction set. Conclusions Identification of all minimal reactions sets in metabolic networks is essential since different minimal reaction sets have different properties that effect the bioprocess development. The proposed method correctly identified all minimal reaction sets in a both the case studies. The proposed method is computationally efficient compared to other methods for finding minimal reaction sets and useful to employ with genome-scale metabolic networks. PMID:24594118
Simultaneous beam sampling and aperture shape optimization for SPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarepisheh, Masoud; Li, Ruijiang; Xing, Lei, E-mail: Lei@stanford.edu
Purpose: Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: The authors build a mathematical model with the fundamental station point parameters as the decisionmore » variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. Results: A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and neck and a prostate case. It significantly improved the target conformality and at the same time critical structure sparing compared with conventional intensity modulated radiation therapy (IMRT). In the head and neck case, for example, the average PTV coverage D99% for two PTVs, cord and brainstem max doses, and right parotid gland mean dose were improved, respectively, by about 7%, 37%, 12%, and 16%. Conclusions: The proposed method automatically determines the number of the stations required to generate a satisfactory plan and optimizes simultaneously the involved station parameters, leading to improved quality of the resultant treatment plans as compared with the conventional IMRT plans.« less
NASA Astrophysics Data System (ADS)
Bahreini, Elham; Aghaiypour, Khosrow; Abbasalipourkabir, Roghayeh; Mokarram, Ali Rezaei; Goodarzi, Mohammad Taghi; Saidijam, Massoud
2014-07-01
This paper describes the production, purification, and immobilization of l-asparaginase II (ASNase II) in chitosan nanoparticles (CSNPs). ASNase II is an effective antineoplastic agent, used in the acute lymphoblastic leukemia chemotherapy. Cloned ASNase II gene ( ansB) in pAED4 plasmid was transformed into Escherichia coli BL21pLysS (DE3) competent cells and expressed under optimal conditions. The lyophilized enzyme was loaded into CSNPs by ionotropic gelation method. In order to get optimal entrapment efficiency, CSNP preparation, chitosan/tripolyphosphate (CS/TPP) ratio, and protein loading were investigated. ASNase II loading into CSNPs was confirmed by Fourier transform infrared (FTIR) spectroscopy, and morphological observation was carried out by transmission electron microscopy. Three absolute CS/TPP ratios were studied. Entrapment efficiency and loading capacity increased with increasing CS and TPP concentration. The best ratio was applied for obtaining optimal ASNase II-loaded CSNPs with the highest entrapment efficiency. Size, zeta potential, entrapment efficiency, and loading capacity of the optimal ASNase II-CSNPs were 340 ± 12 nm, 21.2 ± 3 mV, 76.2% and 47.6%, respectively. The immobilized enzyme showed an increased in vitro half-life in comparison with the free enzyme. The pH and thermostability of the immobilized enzyme was comparable with the free enzyme. This study leads to a better understanding of how to prepare CSNPs, how to achieve high encapsulation efficiency for a high molecular weight protein, and how to prolong the release of protein from CSNPs. A conceptual understanding of biological responses to ASNase II-loaded CSNPs is needed for the development of novel methods of drug delivery.
A framework for simultaneous aerodynamic design optimization in the presence of chaos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Günther, Stefanie, E-mail: stefanie.guenther@scicomp.uni-kl.de; Gauger, Nicolas R.; Wang, Qiqi
Integrating existing solvers for unsteady partial differential equations into a simultaneous optimization method is challenging due to the forward-in-time information propagation of classical time-stepping methods. This paper applies the simultaneous single-step one-shot optimization method to a reformulated unsteady constraint that allows for both forward- and backward-in-time information propagation. Especially in the presence of chaotic and turbulent flow, solving the initial value problem simultaneously with the optimization problem often scales poorly with the time domain length. The new formulation relaxes the initial condition and instead solves a least squares problem for the discrete partial differential equations. This enables efficient one-shot optimizationmore » that is independent of the time domain length, even in the presence of chaos.« less
Optimization of brushless direct current motor design using an intelligent technique.
Shabanian, Alireza; Tousiwas, Armin Amini Poustchi; Pourmandi, Massoud; Khormali, Aminollah; Ataei, Abdolhay
2015-07-01
This paper presents a method for the optimal design of a slotless permanent magnet brushless DC (BLDC) motor with surface mounted magnets using an improved bee algorithm (IBA). The characteristics of the motor are expressed as functions of motor geometries. The objective function is a combination of losses, volume and cost to be minimized simultaneously. This method is based on the capability of swarm-based algorithms in finding the optimal solution. One sample case is used to illustrate the performance of the design approach and optimization technique. The IBA has a better performance and speed of convergence compared with bee algorithm (BA). Simulation results show that the proposed method has a very high/efficient performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks.
Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong
2015-01-01
This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme.
NASA Astrophysics Data System (ADS)
Kim, Kyung-Ha; Park, Chandeok; Park, Sang-Young
2015-12-01
This work presents fuel-optimal altitude maintenance of Low-Earth-Orbit (LEO) spacecrafts experiencing non-negligible air drag and J2 perturbation. A pseudospectral (direct) method is first applied to roughly estimate an optimal fuel consumption strategy, which is employed as an initial guess to precisely determine itself. Based on the physical specifications of KOrea Multi-Purpose SATellite-2 (KOMPSAT-2), a Korean artificial satellite, numerical simulations show that a satellite ascends with full thrust at the early stage of the maneuver period and then descends with null thrust. While the thrust profile is presumably bang-off, it is difficult to precisely determine the switching time by using a pseudospectral method only. This is expected, since the optimal switching epoch does not coincide with one of the collocation points prescribed by the pseudospectral method, in general. As an attempt to precisely determine the switching time and the associated optimal thrust history, a shooting (indirect) method is then employed with the initial guess being obtained through the pseudospectral method. This hybrid process allows the determination of the optimal fuel consumption for LEO spacecrafts and their thrust profiles efficiently and precisely.
Optimal lattice-structured materials
Messner, Mark C.
2016-07-09
This paper describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describingmore » the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.« less
A time-space domain stereo finite difference method for 3D scalar wave propagation
NASA Astrophysics Data System (ADS)
Chen, Yushu; Yang, Guangwen; Ma, Xiao; He, Conghui; Song, Guojie
2016-11-01
The time-space domain finite difference methods reduce numerical dispersion effectively by minimizing the error in the joint time-space domain. However, their interpolating coefficients are related with the Courant numbers, leading to significantly extra time costs for loading the coefficients consecutively according to velocity in heterogeneous models. In the present study, we develop a time-space domain stereo finite difference (TSSFD) method for 3D scalar wave equation. The method propagates both the displacements and their gradients simultaneously to keep more information of the wavefields, and minimizes the maximum phase velocity error directly using constant interpolation coefficients for different Courant numbers. We obtain the optimal constant coefficients by combining the truncated Taylor series approximation and the time-space domain optimization, and adjust the coefficients to improve the stability condition. Subsequent investigation shows that the TSSFD can suppress numerical dispersion effectively with high computational efficiency. The maximum phase velocity error of the TSSFD is just 3.09% even with only 2 sampling points per minimum wavelength when the Courant number is 0.4. Numerical experiments show that to generate wavefields with no visible numerical dispersion, the computational efficiency of the TSSFD is 576.9%, 193.5%, 699.0%, and 191.6% of those of the 4th-order and 8th-order Lax-Wendroff correction (LWC) method, the 4th-order staggered grid method (SG), and the 8th-order optimal finite difference method (OFD), respectively. Meanwhile, the TSSFD is compatible to the unsplit convolutional perfectly matched layer (CPML) boundary condition for absorbing artificial boundaries. The efficiency and capability to handle complex velocity models make it an attractive tool in imaging methods such as acoustic reverse time migration (RTM).
NASA Astrophysics Data System (ADS)
Vongsaysy, Uyxing; Bassani, Dario M.; Servant, Laurent; Pavageau, Bertrand; Wantz, Guillaume; Aziz, Hany
2014-01-01
Polymeric bulk heterojunction (BHJ) organic solar cells represent one of the most promising technologies for renewable energy with a low fabrication cost. Control over BHJ morphology is one of the key factors in obtaining high-efficiency devices. This review focuses on formulation strategies for optimizing the BHJ morphology. We address how solvent choice and the introduction of processing additives affect the morphology. We also review a number of recent studies concerning prediction methods that utilize the Hansen solubility parameters to develop efficient solvent systems.
Xu, Gang; Liang, Xifeng; Yao, Shuanbao; Chen, Dawei; Li, Zhiwei
2017-01-01
Minimizing the aerodynamic drag and the lift of the train coach remains a key issue for high-speed trains. With the development of computing technology and computational fluid dynamics (CFD) in the engineering field, CFD has been successfully applied to the design process of high-speed trains. However, developing a new streamlined shape for high-speed trains with excellent aerodynamic performance requires huge computational costs. Furthermore, relationships between multiple design variables and the aerodynamic loads are seldom obtained. In the present study, the Kriging surrogate model is used to perform a multi-objective optimization of the streamlined shape of high-speed trains, where the drag and the lift of the train coach are the optimization objectives. To improve the prediction accuracy of the Kriging model, the cross-validation method is used to construct the optimal Kriging model. The optimization results show that the two objectives are efficiently optimized, indicating that the optimization strategy used in the present study can greatly improve the optimization efficiency and meet the engineering requirements.
Mishra, Shikha; Aeri, Vidhu
2016-07-01
Lyoniside is the major constituent of Saraca asoca Linn. (Caesalpiniaceae) bark. There is an immediate need to develop an efficient method to isolate its chemical constituents, since it is a therapeutically important plant. A rapid extraction method for lyoniside based on microwave-assisted extraction of S. asoca bark was developed and optimized using response surface methodology (RSM). Lyoniside was analyzed and quantified by high-performance liquid chromatography coupled with ultraviolet detection (HPLC-UV). The extraction solvent ratio (%), material solvent ratio (g/ml) and extraction time (min) were optimized using Box-Behnken design (BBD) to obtain the highest extraction efficiency. The optimal conditions were the use of 1:30 material solvent ratio with 70:30 mixture of methanol:water for 10 min duration. The optimized microwave-assisted extraction yielded 9.4 mg/g of lyoniside content in comparison to reflux extraction under identical conditions which yielded 4.2 mg/g of lyoniside content. Under optimum conditions, the experimental values agreed closely with the predicted values. The analysis of variance (ANOVA) indicated a high goodness-of-fit model and the success of the RSM method for optimizing lyoniside extraction from the bark of S. asoca. All the three variables significantly affected the lyoniside content. Increased polarity of solvent medium enhances the lyoniside yield. The present study shows the applicability of microwave-assisted extraction in extraction of lyoniside from S. asoca bark.
Study on key technologies of optimization of big data for thermal power plant performance
NASA Astrophysics Data System (ADS)
Mao, Mingyang; Xiao, Hong
2018-06-01
Thermal power generation accounts for 70% of China's power generation, the pollutants accounted for 40% of the same kind of emissions, thermal power efficiency optimization needs to monitor and understand the whole process of coal combustion and pollutant migration, power system performance data show explosive growth trend, The purpose is to study the integration of numerical simulation of big data technology, the development of thermal power plant efficiency data optimization platform and nitrogen oxide emission reduction system for the thermal power plant to improve efficiency, energy saving and emission reduction to provide reliable technical support. The method is big data technology represented by "multi-source heterogeneous data integration", "large data distributed storage" and "high-performance real-time and off-line computing", can greatly enhance the energy consumption capacity of thermal power plants and the level of intelligent decision-making, and then use the data mining algorithm to establish the boiler combustion mathematical model, mining power plant boiler efficiency data, combined with numerical simulation technology to find the boiler combustion and pollutant generation rules and combustion parameters of boiler combustion and pollutant generation Influence. The result is to optimize the boiler combustion parameters, which can achieve energy saving.
Crown, William; Buyukkaramikli, Nasuh; Thokala, Praveen; Morton, Alec; Sir, Mustafa Y; Marshall, Deborah A; Tosh, Jon; Padula, William V; Ijzerman, Maarten J; Wong, Peter K; Pasupathy, Kalyan S
2017-03-01
Providing health services with the greatest possible value to patients and society given the constraints imposed by patient characteristics, health care system characteristics, budgets, and so forth relies heavily on the design of structures and processes. Such problems are complex and require a rigorous and systematic approach to identify the best solution. Constrained optimization is a set of methods designed to identify efficiently and systematically the best solution (the optimal solution) to a problem characterized by a number of potential solutions in the presence of identified constraints. This report identifies 1) key concepts and the main steps in building an optimization model; 2) the types of problems for which optimal solutions can be determined in real-world health applications; and 3) the appropriate optimization methods for these problems. We first present a simple graphical model based on the treatment of "regular" and "severe" patients, which maximizes the overall health benefit subject to time and budget constraints. We then relate it back to how optimization is relevant in health services research for addressing present day challenges. We also explain how these mathematical optimization methods relate to simulation methods, to standard health economic analysis techniques, and to the emergent fields of analytics and machine learning. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
OPTIMIZING THROUGH CO-EVOLUTIONARY AVALANCHES
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. BOETTCHER; A. PERCUS
2000-08-01
We explore a new general-purpose heuristic for finding high-quality solutions to hard optimization problems. The method, called extremal optimization, is inspired by ''self-organized critically,'' a concept introduced to describe emergent complexity in many physical systems. In contrast to Genetic Algorithms which operate on an entire ''gene-pool'' of possible solutions, extremal optimization successively replaces extremely undesirable elements of a sub-optimal solution with new, random ones. Large fluctuations, called ''avalanches,'' ensue that efficiently explore many local optima. Drawing upon models used to simulate far-from-equilibrium dynamics, extremal optimization complements approximation methods inspired by equilibrium statistical physics, such as simulated annealing. With only onemore » adjustable parameter, its performance has proved competitive with more elaborate methods, especially near phase transitions. Those phase transitions are found in the parameter space of most optimization problems, and have recently been conjectured to be the origin of some of the hardest instances in computational complexity. We will demonstrate how extremal optimization can be implemented for a variety of combinatorial optimization problems. We believe that extremal optimization will be a useful tool in the investigation of phase transitions in combinatorial optimization problems, hence valuable in elucidating the origin of computational complexity.« less
A computational method for optimizing fuel treatment locations
Mark A. Finney
2006-01-01
Modeling and experiments have suggested that spatial fuel treatment patterns can influence the movement of large fires. On simple theoretical landscapes consisting of two fuel types (treated and untreated) optimal patterns can be analytically derived that disrupt fire growth efficiently (i.e. with less area treated than random patterns). Although conceptually simple,...
Strengthening the revenue cycle: a 4-step method for optimizing payment.
Clark, Jonathan J
2008-10-01
Four steps for enhancing the revenue cycle to ensure optimal payment are: *Establish key performance indicator dashboards in each department that compare current with targeted performance; *Create proper organizational structures for each department; *Ensure that high-performing leaders are hired in all management and supervisory positions; *Implement efficient processes in underperforming operations.
Jiang, Yuyi; Shao, Zhiqing; Guo, Yi
2014-01-01
A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems. PMID:25143977
Jiang, Yuyi; Shao, Zhiqing; Guo, Yi
2014-01-01
A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems.
NASA Astrophysics Data System (ADS)
Harkouss, F.; Biwole, P. H.; Fardoun, F.
2018-05-01
Buildings’ optimization is a smart method to inspect the available design choices starting from passive strategies, to energy efficient systems and finally towards the adequate renewable energy system to be implemented. This paper outlines the methodology and the cost-effectiveness potential for optimizing the design of net-zero energy building in a French city; Embrun. The non-dominated sorting genetic algorithm is chosen in order to minimize thermal, electrical demands and life cycle cost while reaching the net zero energy balance; and thus getting the Pareto-front. Elimination and Choice Expressing the Reality decision making method is applied to the Pareto-front so as to obtain one optimal solution. A wide range of energy efficiency measures are investigated, besides solar energy systems are employed to produce required electricity and hot water for domestic purposes. The results indicate that the appropriate selection of the passive parameters is very important and critical in reducing the building energy consumption. The optimum design parameters yield to a decrease of building’s thermal loads and life cycle cost by 32.96% and 14.47% respectively.
Kan, Guangyuan; He, Xiaoyan; Ding, Liuqian; Li, Jiren; Liang, Ke; Hong, Yang
2017-10-01
The shuffled complex evolution optimization developed at the University of Arizona (SCE-UA) has been successfully applied in various kinds of scientific and engineering optimization applications, such as hydrological model parameter calibration, for many years. The algorithm possesses good global optimality, convergence stability and robustness. However, benchmark and real-world applications reveal the poor computational efficiency of the SCE-UA. This research aims at the parallelization and acceleration of the SCE-UA method based on powerful heterogeneous computing technology. The parallel SCE-UA is implemented on Intel Xeon multi-core CPU (by using OpenMP and OpenCL) and NVIDIA Tesla many-core GPU (by using OpenCL, CUDA, and OpenACC). The serial and parallel SCE-UA were tested based on the Griewank benchmark function. Comparison results indicate the parallel SCE-UA significantly improves computational efficiency compared to the original serial version. The OpenCL implementation obtains the best overall acceleration results however, with the most complex source code. The parallel SCE-UA has bright prospects to be applied in real-world applications.
Sun, Qing-hua; Yu, De-shuang; Zhang, Pei-yu; Lin, Xue-zheng; Li, Jin
2016-02-15
A heterotrophic nitrification-aerobic denitrification strain named y5 was isolated from marine environment by traditional microbial isolation method using seawater as medium. It was identified as Klebsiella sp. based on the morphological, physiological and 16S rRNA sequence analysis. The experiment results showed that the optimal carbon resource was sodium citrate; the optimal pH was 7.0; and the optimal C/N was 17. The strain could use NH4Cl, NaNO2 and KNO3 as sole nitrogen source, and the removal efficiencies were77.07%, 64.14% and 100% after 36 hours, respectively. The removal efficiency reached 100% after 36 hours in the coexistence of NH4Cl, NaNO2 and KNO3. The results showed that the strain y5 had independent and efficient heterotrophic nitrification and aerobic denitrification activities in high salt wastewater.
Thermal design of a Mars oxygen production plant
NASA Technical Reports Server (NTRS)
Sridhar, K. R.; Iyer, Venkatesh A.
1991-01-01
The optimal design of the thermal components of a system that uses carbon dioxide from the Martian atmosphere to produce oxygen for spacecraft propulsion and/or life support is discussed. The gases are pressurized, heated and passed through an electrochemical cell. Carbon dioxide is reduced to carbon monoxide and oxygen due to thermal dissociation and electrocatalysis. The oxygen thus formed is separated from the gas mixture by the electrochemical cell. The objective of the design is to optimize both the overall mass and the power consumption of the system. The analysis shows that at electrochemical cell efficiencies of about 50 percent and lower, the optimal system would require unspent carbon dioxide in the exhaust gases to be separated and recycled. Various methods of efficiently compressing the intake gases to system pressures of 0.1 MPa are investigated. The total power requirement for oxygen production rates of 1, 5, and 10 kg/day at various cell efficiencies are presented.
Optimized iterative decoding method for TPC coded CPM
NASA Astrophysics Data System (ADS)
Ma, Yanmin; Lai, Penghui; Wang, Shilian; Xie, Shunqin; Zhang, Wei
2018-05-01
Turbo Product Code (TPC) coded Continuous Phase Modulation (CPM) system (TPC-CPM) has been widely used in aeronautical telemetry and satellite communication. This paper mainly investigates the improvement and optimization on the TPC-CPM system. We first add the interleaver and deinterleaver to the TPC-CPM system, and then establish an iterative system to iteratively decode. However, the improved system has a poor convergence ability. To overcome this issue, we use the Extrinsic Information Transfer (EXIT) analysis to find the optimal factors for the system. The experiments show our method is efficient to improve the convergence performance.
Random search optimization based on genetic algorithm and discriminant function
NASA Technical Reports Server (NTRS)
Kiciman, M. O.; Akgul, M.; Erarslanoglu, G.
1990-01-01
The general problem of optimization with arbitrary merit and constraint functions, which could be convex, concave, monotonic, or non-monotonic, is treated using stochastic methods. To improve the efficiency of the random search methods, a genetic algorithm for the search phase and a discriminant function for the constraint-control phase were utilized. The validity of the technique is demonstrated by comparing the results to published test problem results. Numerical experimentation indicated that for cases where a quick near optimum solution is desired, a general, user-friendly optimization code can be developed without serious penalties in both total computer time and accuracy.
Fast sweeping methods for hyperbolic systems of conservation laws at steady state II
NASA Astrophysics Data System (ADS)
Engquist, Björn; Froese, Brittany D.; Tsai, Yen-Hsi Richard
2015-04-01
The idea of using fast sweeping methods for solving stationary systems of conservation laws has previously been proposed for efficiently computing solutions with sharp shocks. We further develop these methods to allow for a more challenging class of problems including problems with sonic points, shocks originating in the interior of the domain, rarefaction waves, and two-dimensional systems. We show that fast sweeping methods can produce higher-order accuracy. Computational results validate the claims of accuracy, sharp shock curves, and optimal computational efficiency.
Log sampling methods and software for stand and landscape analyses.
Lisa J. Bate; Torolf R. Torgersen; Michael J. Wisdom; Edward O. Garton; Shawn C. Clabough
2008-01-01
We describe methods for efficient, accurate sampling of logs at landscape and stand scales to estimate density, total length, cover, volume, and weight. Our methods focus on optimizing the sampling effort by choosing an appropriate sampling method and transect length for specific forest conditions and objectives. Sampling methods include the line-intersect method and...
Towards efficient multi-scale methods for monitoring sugarcane aphid infestations in sorghum
USDA-ARS?s Scientific Manuscript database
We discuss approaches and issues involved with developing optimal monitoring methods for sugarcane aphid infestations (SCA) in grain sorghum. We discuss development of sequential sampling methods that allow for estimation of the number of aphids per sample unit, and statistical decision making rela...
NASA Astrophysics Data System (ADS)
Ryzhikov, I. S.; Semenkin, E. S.; Akhmedova, Sh A.
2017-02-01
A novel order reduction method for linear time invariant systems is described. The method is based on reducing the initial problem to an optimization one, using the proposed model representation, and solving the problem with an efficient optimization algorithm. The proposed method of determining the model allows all the parameters of the model with lower order to be identified and by definition, provides the model with the required steady-state. As a powerful optimization tool, the meta-heuristic Co-Operation of Biology-Related Algorithms was used. Experimental results proved that the proposed approach outperforms other approaches and that the reduced order model achieves a high level of accuracy.
Towards Robust Designs Via Multiple-Objective Optimization Methods
NASA Technical Reports Server (NTRS)
Man Mohan, Rai
2006-01-01
Fabricating and operating complex systems involves dealing with uncertainty in the relevant variables. In the case of aircraft, flow conditions are subject to change during operation. Efficiency and engine noise may be different from the expected values because of manufacturing tolerances and normal wear and tear. Engine components may have a shorter life than expected because of manufacturing tolerances. In spite of the important effect of operating- and manufacturing-uncertainty on the performance and expected life of the component or system, traditional aerodynamic shape optimization has focused on obtaining the best design given a set of deterministic flow conditions. Clearly it is important to both maintain near-optimal performance levels at off-design operating conditions, and, ensure that performance does not degrade appreciably when the component shape differs from the optimal shape due to manufacturing tolerances and normal wear and tear. These requirements naturally lead to the idea of robust optimal design wherein the concept of robustness to various perturbations is built into the design optimization procedure. The basic ideas involved in robust optimal design will be included in this lecture. The imposition of the additional requirement of robustness results in a multiple-objective optimization problem requiring appropriate solution procedures. Typically the costs associated with multiple-objective optimization are substantial. Therefore efficient multiple-objective optimization procedures are crucial to the rapid deployment of the principles of robust design in industry. Hence the companion set of lecture notes (Single- and Multiple-Objective Optimization with Differential Evolution and Neural Networks ) deals with methodology for solving multiple-objective Optimization problems efficiently, reliably and with little user intervention. Applications of the methodologies presented in the companion lecture to robust design will be included here. The evolutionary method (DE) is first used to solve a relatively difficult problem in extended surface heat transfer wherein optimal fin geometries are obtained for different safe operating base temperatures. The objective of maximizing the safe operating base temperature range is in direct conflict with the objective of maximizing fin heat transfer. This problem is a good example of achieving robustness in the context of changing operating conditions. The evolutionary method is then used to design a turbine airfoil; the two objectives being reduced sensitivity of the pressure distribution to small changes in the airfoil shape and the maximization of the trailing edge wedge angle with the consequent increase in airfoil thickness and strength. This is a relevant example of achieving robustness to manufacturing tolerances and wear and tear in the presence of other objectives.
Towards high efficiency heliostat fields
NASA Astrophysics Data System (ADS)
Arbes, Florian; Wöhrbach, Markus; Gebreiter, Daniel; Weinrebe, Gerhard
2017-06-01
CSP power plants have great potential to substantially contribute to world energy supply. To set this free, cost reductions are required for future projects. Heliostat field layout optimization offers a great opportunity to improve field efficiency. Field efficiency primarily depends on the positions of the heliostats around the tower, commonly known as the heliostat field layout. Heliostat shape also influences efficiency. Improvements to optical efficiency results in electricity cost reduction without adding any extra technical complexity. Due to computational challenges heliostat fields are often arranged in patterns. The mathematical models of the radial staggered or spiral patterns are based on two parameters and thus lead to uniform patterns. Optical efficiencies of a heliostat field do not change uniformly with the distance to the tower, they even differ in the northern and southern field. A fixed pattern is not optimal in many parts of the heliostat field, especially when used as large scaled heliostat field. In this paper, two methods are described which allow to modify field density suitable to inconsistent field efficiencies. A new software for large scale heliostat field evaluation is presented, it allows for fast optimizations of several parameters for pattern modification routines. It was used to design a heliostat field with 23,000 heliostats, which is currently planned for a site in South Africa.
Fuel-optimal low-thrust formation reconfiguration via Radau pseudospectral method
NASA Astrophysics Data System (ADS)
Li, Jing
2016-07-01
This paper investigates fuel-optimal low-thrust formation reconfiguration near circular orbit. Based on the Clohessy-Wiltshire equations, first-order necessary optimality conditions are derived from the Pontryagin's maximum principle. The fuel-optimal impulsive solution is utilized to divide the low-thrust trajectory into thrust and coast arcs. By introducing the switching times as optimization variables, the fuel-optimal low-thrust formation reconfiguration is posed as a nonlinear programming problem (NLP) via direct transcription using multiple-phase Radau pseudospectral method (RPM), which is then solved by a sparse nonlinear optimization software SNOPT. To facilitate optimality verification and, if necessary, further refinement of the optimized solution of the NLP, formulas for mass costate estimation and initial costates scaling are presented. Numerical examples are given to show the application of the proposed optimization method. To fix the problem, generic fuel-optimal low-thrust formation reconfiguration can be simplified as reconfiguration without any initial and terminal coast arcs, whose optimal solutions can be efficiently obtained from the multiple-phase RPM at the cost of a slight fuel increment. Finally, influence of the specific impulse and maximum thrust magnitude on the fuel-optimal low-thrust formation reconfiguration is analyzed. Numerical results shown the links and differences between the fuel-optimal impulsive and low-thrust solutions.
Aerostructural Level Set Topology Optimization for a Common Research Model Wing
NASA Technical Reports Server (NTRS)
Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia
2014-01-01
The purpose of this work is to use level set topology optimization to improve the design of a representative wing box structure for the NASA common research model. The objective is to minimize the total compliance of the structure under aerodynamic and body force loading, where the aerodynamic loading is coupled to the structural deformation. A taxi bump case was also considered, where only body force loads were applied. The trim condition that aerodynamic lift must balance the total weight of the aircraft is enforced by allowing the root angle of attack to change. The level set optimization method is implemented on an unstructured three-dimensional grid, so that the method can optimize a wing box with arbitrary geometry. Fast matching and upwind schemes are developed for an unstructured grid, which make the level set method robust and efficient. The adjoint method is used to obtain the coupled shape sensitivities required to perform aerostructural optimization of the wing box structure.
Optimized blind gamma-ray pulsar searches at fixed computing budget
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pletsch, Holger J.; Clark, Colin J., E-mail: holger.pletsch@aei.mpg.de
The sensitivity of blind gamma-ray pulsar searches in multiple years worth of photon data, as from the Fermi LAT, is primarily limited by the finite computational resources available. Addressing this 'needle in a haystack' problem, here we present methods for optimizing blind searches to achieve the highest sensitivity at fixed computing cost. For both coherent and semicoherent methods, we consider their statistical properties and study their search sensitivity under computational constraints. The results validate a multistage strategy, where the first stage scans the entire parameter space using an efficient semicoherent method and promising candidates are then refined through a fullymore » coherent analysis. We also find that for the first stage of a blind search incoherent harmonic summing of powers is not worthwhile at fixed computing cost for typical gamma-ray pulsars. Further enhancing sensitivity, we present efficiency-improved interpolation techniques for the semicoherent search stage. Via realistic simulations we demonstrate that overall these optimizations can significantly lower the minimum detectable pulsed fraction by almost 50% at the same computational expense.« less
NASA Technical Reports Server (NTRS)
Carlson, Harry W.; Darden, Christine M.
1988-01-01
Extensive correlations of computer code results with experimental data are employed to illustrate the use of linearized theory attached flow methods for the estimation and optimization of the aerodynamic performance of simple hinged flap systems. Use of attached flow methods is based on the premise that high levels of aerodynamic efficiency require a flow that is as nearly attached as circumstances permit. A variety of swept wing configurations are considered ranging from fighters to supersonic transports, all with leading- and trailing-edge flaps for enhancement of subsonic aerodynamic efficiency. The results indicate that linearized theory attached flow computer code methods provide a rational basis for the estimation and optimization of flap system aerodynamic performance at subsonic speeds. The analysis also indicates that vortex flap design is not an opposing approach but is closely related to attached flow design concepts. The successful vortex flap design actually suppresses the formation of detached vortices to produce a small vortex which is restricted almost entirely to the leading edge flap itself.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X; Belcher, AH; Wiersma, R
Purpose: In radiation therapy optimization the constraints can be either hard constraints which must be satisfied or soft constraints which are included but do not need to be satisfied exactly. Currently the voxel dose constraints are viewed as soft constraints and included as a part of the objective function and approximated as an unconstrained problem. However in some treatment planning cases the constraints should be specified as hard constraints and solved by constrained optimization. The goal of this work is to present a computation efficiency graph form alternating direction method of multipliers (ADMM) algorithm for constrained quadratic treatment planning optimizationmore » and compare it with several commonly used algorithms/toolbox. Method: ADMM can be viewed as an attempt to blend the benefits of dual decomposition and augmented Lagrangian methods for constrained optimization. Various proximal operators were first constructed as applicable to quadratic IMRT constrained optimization and the problem was formulated in a graph form of ADMM. A pre-iteration operation for the projection of a point to a graph was also proposed to further accelerate the computation. Result: The graph form ADMM algorithm was tested by the Common Optimization for Radiation Therapy (CORT) dataset including TG119, prostate, liver, and head & neck cases. Both unconstrained and constrained optimization problems were formulated for comparison purposes. All optimizations were solved by LBFGS, IPOPT, Matlab built-in toolbox, CVX (implementing SeDuMi) and Mosek solvers. For unconstrained optimization, it was found that LBFGS performs the best, and it was 3–5 times faster than graph form ADMM. However, for constrained optimization, graph form ADMM was 8 – 100 times faster than the other solvers. Conclusion: A graph form ADMM can be applied to constrained quadratic IMRT optimization. It is more computationally efficient than several other commercial and noncommercial optimizers and it also used significantly less computer memory.« less
Aerodynamic Design of Complex Configurations Using Cartesian Methods and CAD Geometry
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.
2003-01-01
The objective for this paper is to present the development of an optimization capability for the Cartesian inviscid-flow analysis package of Aftosmis et al. We evaluate and characterize the following modules within the new optimization framework: (1) A component-based geometry parameterization approach using a CAD solid representation and the CAPRI interface. (2) The use of Cartesian methods in the development Optimization techniques using a genetic algorithm. The discussion and investigations focus on several real world problems of the optimization process. We examine the architectural issues associated with the deployment of a CAD-based design approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute nodes. In addition, we study the influence of noise on the performance of optimization techniques, and the overall efficiency of the optimization process for aerodynamic design of complex three-dimensional configurations. of automated optimization tools. rithm and a gradient-based algorithm.
NASA Astrophysics Data System (ADS)
Guang, Chen; Qibo, Feng; Keqin, Ding; Zhan, Gao
2017-10-01
A subpixel displacement measurement method based on the combination of particle swarm optimization (PSO) and gradient algorithm (GA) was proposed for accuracy and speed optimization in GA, which is a subpixel displacement measurement method better applied in engineering practice. An initial integer-pixel value was obtained according to the global searching ability of PSO, and then gradient operators were adopted for a subpixel displacement search. A comparison was made between this method and GA by simulated speckle images and rigid-body displacement in metal specimens. The results showed that the computational accuracy of the combination of PSO and GA method reached 0.1 pixel in the simulated speckle images, or even 0.01 pixels in the metal specimen. Also, computational efficiency and the antinoise performance of the improved method were markedly enhanced.
Decomposition method for zonal resource allocation problems in telecommunication networks
NASA Astrophysics Data System (ADS)
Konnov, I. V.; Kashuba, A. Yu
2016-11-01
We consider problems of optimal resource allocation in telecommunication networks. We first give an optimization formulation for the case where the network manager aims to distribute some homogeneous resource (bandwidth) among users of one region with quadratic charge and fee functions and present simple and efficient solution methods. Next, we consider a more general problem for a provider of a wireless communication network divided into zones (clusters) with common capacity constraints. We obtain a convex quadratic optimization problem involving capacity and balance constraints. By using the dual Lagrangian method with respect to the capacity constraint, we suggest to reduce the initial problem to a single-dimensional optimization problem, but calculation of the cost function value leads to independent solution of zonal problems, which coincide with the above single region problem. Some results of computational experiments confirm the applicability of the new methods.
NASA Astrophysics Data System (ADS)
Bürger, Adrian; Sawant, Parantapa; Bohlayer, Markus; Altmann-Dieses, Angelika; Braun, Marco; Diehl, Moritz
2017-10-01
Within this work, the benefits of using predictive control methods for the operation of Adsorption Cooling Machines (ACMs) are shown on a simulation study. Since the internal control decisions of series-manufactured ACMs often cannot be influenced, the work focuses on optimized scheduling of an ACM considering its internal functioning as well as forecasts for load and driving energy occurrence. For illustration, an assumed solar thermal climate system is introduced and a system model suitable for use within gradient-based optimization methods is developed. The results of a system simulation using a conventional scheme for ACM scheduling are compared to the results of a predictive, optimization-based scheduling approach for the same exemplary scenario of load and driving energy occurrence. The benefits of the latter approach are shown and future actions for application of these methods for system control are addressed.
3D sensor placement strategy using the full-range pheromone ant colony system
NASA Astrophysics Data System (ADS)
Shuo, Feng; Jingqing, Jia
2016-07-01
An optimized sensor placement strategy will be extremely beneficial to ensure the safety and cost reduction considerations of structural health monitoring (SHM) systems. The sensors must be placed such that important dynamic information is obtained and the number of sensors is minimized. The practice is to select individual sensor directions by several 1D sensor methods and the triaxial sensors are placed in these directions for monitoring. However, this may lead to non-optimal placement of many triaxial sensors. In this paper, a new method, called FRPACS, is proposed based on the ant colony system (ACS) to solve the optimal placement of triaxial sensors. The triaxial sensors are placed as single units in an optimal fashion. And then the new method is compared with other algorithms using Dalian North Bridge. The computational precision and iteration efficiency of the FRPACS has been greatly improved compared with the original ACS and EFI method.
OpenMDAO: Framework for Flexible Multidisciplinary Design, Analysis and Optimization Methods
NASA Technical Reports Server (NTRS)
Heath, Christopher M.; Gray, Justin S.
2012-01-01
The OpenMDAO project is underway at NASA to develop a framework which simplifies the implementation of state-of-the-art tools and methods for multidisciplinary design, analysis and optimization. Foremost, OpenMDAO has been designed to handle variable problem formulations, encourage reconfigurability, and promote model reuse. This work demonstrates the concept of iteration hierarchies in OpenMDAO to achieve a flexible environment for supporting advanced optimization methods which include adaptive sampling and surrogate modeling techniques. In this effort, two efficient global optimization methods were applied to solve a constrained, single-objective and constrained, multiobjective version of a joint aircraft/engine sizing problem. The aircraft model, NASA's nextgeneration advanced single-aisle civil transport, is being studied as part of the Subsonic Fixed Wing project to help meet simultaneous program goals for reduced fuel burn, emissions, and noise. This analysis serves as a realistic test problem to demonstrate the flexibility and reconfigurability offered by OpenMDAO.
Apparatus and Methods for Manipulation and Optimization of Biological Systems
NASA Technical Reports Server (NTRS)
Sun, Ren (Inventor); Ho, Chih-Ming (Inventor); Wong, Pak Kin (Inventor); Yu, Fuqu (Inventor)
2014-01-01
The invention provides systems and methods for manipulating biological systems, for example to elicit a more desired biological response from a biological sample, such as a tissue, organ, and/or a cell. In one aspect, the invention operates by efficiently searching through a large parametric space of stimuli and system parameters to manipulate, control, and optimize the response of biological samples sustained in the system. In one aspect, the systems and methods of the invention use at least one optimization algorithm to modify the actuator's control inputs for stimulation, responsive to the sensor's output of response signals. The invention can be used, e.g., to optimize any biological system, e.g., bioreactors for proteins, and the like, small molecules, polysaccharides, lipids, and the like. Another use of the apparatus and methods includes is for the discovery of key parameters in complex biological systems.
Redundant interferometric calibration as a complex optimization problem
NASA Astrophysics Data System (ADS)
Grobler, T. L.; Bernardi, G.; Kenyon, J. S.; Parsons, A. R.; Smirnov, O. M.
2018-05-01
Observations of the redshifted 21 cm line from the epoch of reionization have recently motivated the construction of low-frequency radio arrays with highly redundant configurations. These configurations provide an alternative calibration strategy - `redundant calibration' - and boost sensitivity on specific spatial scales. In this paper, we formulate calibration of redundant interferometric arrays as a complex optimization problem. We solve this optimization problem via the Levenberg-Marquardt algorithm. This calibration approach is more robust to initial conditions than current algorithms and, by leveraging an approximate matrix inversion, allows for further optimization and an efficient implementation (`redundant STEFCAL'). We also investigated using the preconditioned conjugate gradient method as an alternative to the approximate matrix inverse, but found that its computational performance is not competitive with respect to `redundant STEFCAL'. The efficient implementation of this new algorithm is made publicly available.
Novo, Leonardo; Chakraborty, Shantanav; Mohseni, Masoud; Neven, Hartmut; Omar, Yasser
2015-01-01
Continuous time quantum walks provide an important framework for designing new algorithms and modelling quantum transport and state transfer problems. Often, the graph representing the structure of a problem contains certain symmetries that confine the dynamics to a smaller subspace of the full Hilbert space. In this work, we use invariant subspace methods, that can be computed systematically using the Lanczos algorithm, to obtain the reduced set of states that encompass the dynamics of the problem at hand without the specific knowledge of underlying symmetries. First, we apply this method to obtain new instances of graphs where the spatial quantum search algorithm is optimal: complete graphs with broken links and complete bipartite graphs, in particular, the star graph. These examples show that regularity and high-connectivity are not needed to achieve optimal spatial search. We also show that this method considerably simplifies the calculation of quantum transport efficiencies. Furthermore, we observe improved efficiencies by removing a few links from highly symmetric graphs. Finally, we show that this reduction method also allows us to obtain an upper bound for the fidelity of a single qubit transfer on an XY spin network. PMID:26330082
Limited-memory fast gradient descent method for graph regularized nonnegative matrix factorization.
Guan, Naiyang; Wei, Lei; Luo, Zhigang; Tao, Dacheng
2013-01-01
Graph regularized nonnegative matrix factorization (GNMF) decomposes a nonnegative data matrix X[Symbol:see text]R(m x n) to the product of two lower-rank nonnegative factor matrices, i.e.,W[Symbol:see text]R(m x r) and H[Symbol:see text]R(r x n) (r < min {m,n}) and aims to preserve the local geometric structure of the dataset by minimizing squared Euclidean distance or Kullback-Leibler (KL) divergence between X and WH. The multiplicative update rule (MUR) is usually applied to optimize GNMF, but it suffers from the drawback of slow-convergence because it intrinsically advances one step along the rescaled negative gradient direction with a non-optimal step size. Recently, a multiple step-sizes fast gradient descent (MFGD) method has been proposed for optimizing NMF which accelerates MUR by searching the optimal step-size along the rescaled negative gradient direction with Newton's method. However, the computational cost of MFGD is high because 1) the high-dimensional Hessian matrix is dense and costs too much memory; and 2) the Hessian inverse operator and its multiplication with gradient cost too much time. To overcome these deficiencies of MFGD, we propose an efficient limited-memory FGD (L-FGD) method for optimizing GNMF. In particular, we apply the limited-memory BFGS (L-BFGS) method to directly approximate the multiplication of the inverse Hessian and the gradient for searching the optimal step size in MFGD. The preliminary results on real-world datasets show that L-FGD is more efficient than both MFGD and MUR. To evaluate the effectiveness of L-FGD, we validate its clustering performance for optimizing KL-divergence based GNMF on two popular face image datasets including ORL and PIE and two text corpora including Reuters and TDT2. The experimental results confirm the effectiveness of L-FGD by comparing it with the representative GNMF solvers.
Efficient computation of photonic crystal waveguide modes with dispersive material.
Schmidt, Kersten; Kappeler, Roman
2010-03-29
The optimization of PhC waveguides is a key issue for successfully designing PhC devices. Since this design task is computationally expensive, efficient methods are demanded. The available codes for computing photonic bands are also applied to PhC waveguides. They are reliable but not very efficient, which is even more pronounced for dispersive material. We present a method based on higher order finite elements with curved cells, which allows to solve for the band structure taking directly into account the dispersiveness of the materials. This is accomplished by reformulating the wave equations as a linear eigenproblem in the complex wave-vectors k. For this method, we demonstrate the high efficiency for the computation of guided PhC waveguide modes by a convergence analysis.
Li, Guangxia; An, Kang; Gao, Bin; Zheng, Gan
2017-01-01
This paper proposes novel satellite-based wireless sensor networks (WSNs), which integrate the WSN with the cognitive satellite terrestrial network. Having the ability to provide seamless network access and alleviate the spectrum scarcity, cognitive satellite terrestrial networks are considered as a promising candidate for future wireless networks with emerging requirements of ubiquitous broadband applications and increasing demand for spectral resources. With the emerging environmental and energy cost concerns in communication systems, explicit concerns on energy efficient resource allocation in satellite networks have also recently received considerable attention. In this regard, this paper proposes energy-efficient optimal power allocation schemes in the cognitive satellite terrestrial networks for non-real-time and real-time applications, respectively, which maximize the energy efficiency (EE) of the cognitive satellite user while guaranteeing the interference at the primary terrestrial user below an acceptable level. Specifically, average interference power (AIP) constraint is employed to protect the communication quality of the primary terrestrial user while average transmit power (ATP) or peak transmit power (PTP) constraint is adopted to regulate the transmit power of the satellite user. Since the energy-efficient power allocation optimization problem belongs to the nonlinear concave fractional programming problem, we solve it by combining Dinkelbach’s method with Lagrange duality method. Simulation results demonstrate that the fading severity of the terrestrial interference link is favorable to the satellite user who can achieve EE gain under the ATP constraint comparing to the PTP constraint. PMID:28869546
Preliminary Design of Low-Thrust Interplanetary Missions
NASA Technical Reports Server (NTRS)
Sims, Jon A.; Flanagan, Steve N.
1997-01-01
For interplanetary missions, highly efficient electric propulsion systems can be used to increase the mass delivered to the destination and/or reduce the trip time over typical chemical propulsion systems. This technology is being demonstrated on the Deep Space 1 mission - part of NASA's New Millennium Program validating technologies which can lower the cost and risk and enhance the performance of future missions. With the successful demonstration on Deep Space 1, future missions can consider electric propulsion as a viable propulsion option. Electric propulsion systems, while highly efficient, produce only a small amount of thrust. As a result, the engines operate during a significant fraction of the trajectory. This characteristic makes it much more difficult to find optimal trajectories. The methods for optimizing low-thrust trajectories are typically categorized as either indirect, or direct. Indirect methods are based on calculus of variations, resulting in a two-point boundary value problem that is solved by satisfying terminal constraints and targeting conditions. These methods are subject to extreme sensitivity to the initial guess of the variables - some of which are not physically intuitive. Adding a gravity assist to the trajectory compounds the sensitivity. Direct methods parameterize the problem and use nonlinear programming techniques to optimize an objective function by adjusting a set of variables. A variety of methods of this type have been examined with varying results. These methods are subject to the limitations of the nonlinear programming techniques. In this paper we present a direct method intended to be used primarily for preliminary design of low-thrust interplanetary trajectories, including those with multiple gravity assists. Preliminary design implies a willingness to accept limited accuracy to achieve an efficient algorithm that executes quickly.
Augmented Lagrange Hopfield network for solving economic dispatch problem in competitive environment
NASA Astrophysics Data System (ADS)
Vo, Dieu Ngoc; Ongsakul, Weerakorn; Nguyen, Khai Phuc
2012-11-01
This paper proposes an augmented Lagrange Hopfield network (ALHN) for solving economic dispatch (ED) problem in the competitive environment. The proposed ALHN is a continuous Hopfield network with its energy function based on augmented Lagrange function for efficiently dealing with constrained optimization problems. The ALHN method can overcome the drawbacks of the conventional Hopfield network such as local optimum, long computational time, and linear constraints. The proposed method is used for solving the ED problem with two revenue models of revenue based on payment for power delivered and payment for reserve allocated. The proposed ALHN has been tested on two systems of 3 units and 10 units for the two considered revenue models. The obtained results from the proposed methods are compared to those from differential evolution (DE) and particle swarm optimization (PSO) methods. The result comparison has indicated that the proposed method is very efficient for solving the problem. Therefore, the proposed ALHN could be a favorable tool for ED problem in the competitive environment.
Space Radiation Transport Methods Development
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Tripathi, R. K.; Qualls, G. D.; Cucinotta, F. A.; Prael, R. E.; Norbury, J. W.; Heinbockel, J. H.; Tweed, J.
2002-01-01
Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 milliseconds and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of reconfigurable computing and could be utilized in the final design as verification of the deterministic method optimized design.
Application of genetic algorithms to focal mechanism determination
NASA Astrophysics Data System (ADS)
Kobayashi, Reiji; Nakanishi, Ichiro
1994-04-01
Genetic algorithms are a new class of methods for global optimization. They resemble Monte Carlo techniques, but search for solutions more efficiently than uniform Monte Carlo sampling. In the field of geophysics, genetic algorithms have recently been used to solve some non-linear inverse problems (e.g., earthquake location, waveform inversion, migration velocity estimation). We present an application of genetic algorithms to focal mechanism determination from first-motion polarities of P-waves and apply our method to two recent large events, the Kushiro-oki earthquake of January 15, 1993 and the SW Hokkaido (Japan Sea) earthquake of July 12, 1993. Initial solution and curvature information of the objective function that gradient methods need are not required in our approach. Moreover globally optimal solutions can be efficiently obtained. Calculation of polarities based on double-couple models is the most time-consuming part of the source mechanism determination. The amount of calculations required by the method designed in this study is much less than that of previous grid search methods.
The development of optimal lightweight truss-core sandwich panels
NASA Astrophysics Data System (ADS)
Langhorst, Benjamin Robert
Sandwich structures effectively provide lightweight stiffness and strength by sandwiching a low-density core between stiff face sheets. The performance of lightweight truss-core sandwich panels is enhanced through the design of novel truss arrangements and the development of methods by which the panels may be optimized. An introduction to sandwich panels is presented along with an overview of previous research of truss-core sandwich panels. Three alternative truss arrangements are developed and their corresponding advantages, disadvantages, and optimization routines are discussed. Finally, performance is investigated by theoretical and numerical methods, and it is shown that the relative structural efficiency of alternative truss cores varies with panel weight and load-carrying capacity. Discrete truss core sandwich panels can be designed to serve bending applications more efficiently than traditional pyramidal truss arrangements at low panel weights and load capacities. Additionally, discrete-truss cores permit the design of heterogeneous cores, which feature unit cells that vary in geometry throughout the panel according to the internal loads present at each unit cell's location. A discrete-truss core panel may be selectively strengthened to more efficiently support bending loads. Future research is proposed and additional areas for lightweight sandwich panel development are explained.
Factorization and reduction methods for optimal control of distributed parameter systems
NASA Technical Reports Server (NTRS)
Burns, J. A.; Powers, R. K.
1985-01-01
A Chandrasekhar-type factorization method is applied to the linear-quadratic optimal control problem for distributed parameter systems. An aeroelastic control problem is used as a model example to demonstrate that if computationally efficient algorithms, such as those of Chandrasekhar-type, are combined with the special structure often available to a particular problem, then an abstract approximation theory developed for distributed parameter control theory becomes a viable method of solution. A numerical scheme based on averaging approximations is applied to hereditary control problems. Numerical examples are given.
Comparative analysis of quantitative efficiency evaluation methods for transportation networks
He, Yuxin; Hong, Jian
2017-01-01
An effective evaluation of transportation network efficiency could offer guidance for the optimal control of urban traffic. Based on the introduction and related mathematical analysis of three quantitative evaluation methods for transportation network efficiency, this paper compares the information measured by them, including network structure, traffic demand, travel choice behavior and other factors which affect network efficiency. Accordingly, the applicability of various evaluation methods is discussed. Through analyzing different transportation network examples it is obtained that Q-H method could reflect the influence of network structure, traffic demand and user route choice behavior on transportation network efficiency well. In addition, the transportation network efficiency measured by this method and Braess’s Paradox can be explained with each other, which indicates a better evaluation of the real operation condition of transportation network. Through the analysis of the network efficiency calculated by Q-H method, it can also be drawn that a specific appropriate demand is existed to a given transportation network. Meanwhile, under the fixed demand, both the critical network structure that guarantees the stability and the basic operation of the network and a specific network structure contributing to the largest value of the transportation network efficiency can be identified. PMID:28399165
Comparative analysis of quantitative efficiency evaluation methods for transportation networks.
He, Yuxin; Qin, Jin; Hong, Jian
2017-01-01
An effective evaluation of transportation network efficiency could offer guidance for the optimal control of urban traffic. Based on the introduction and related mathematical analysis of three quantitative evaluation methods for transportation network efficiency, this paper compares the information measured by them, including network structure, traffic demand, travel choice behavior and other factors which affect network efficiency. Accordingly, the applicability of various evaluation methods is discussed. Through analyzing different transportation network examples it is obtained that Q-H method could reflect the influence of network structure, traffic demand and user route choice behavior on transportation network efficiency well. In addition, the transportation network efficiency measured by this method and Braess's Paradox can be explained with each other, which indicates a better evaluation of the real operation condition of transportation network. Through the analysis of the network efficiency calculated by Q-H method, it can also be drawn that a specific appropriate demand is existed to a given transportation network. Meanwhile, under the fixed demand, both the critical network structure that guarantees the stability and the basic operation of the network and a specific network structure contributing to the largest value of the transportation network efficiency can be identified.
Adjoint Algorithm for CAD-Based Shape Optimization Using a Cartesian Method
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.
2004-01-01
Adjoint solutions of the governing flow equations are becoming increasingly important for the development of efficient analysis and optimization algorithms. A well-known use of the adjoint method is gradient-based shape optimization. Given an objective function that defines some measure of performance, such as the lift and drag functionals, its gradient is computed at a cost that is essentially independent of the number of design variables (geometric parameters that control the shape). More recently, emerging adjoint applications focus on the analysis problem, where the adjoint solution is used to drive mesh adaptation, as well as to provide estimates of functional error bounds and corrections. The attractive feature of this approach is that the mesh-adaptation procedure targets a specific functional, thereby localizing the mesh refinement and reducing computational cost. Our focus is on the development of adjoint-based optimization techniques for a Cartesian method with embedded boundaries.12 In contrast t o implementations on structured and unstructured grids, Cartesian methods decouple the surface discretization from the volume mesh. This feature makes Cartesian methods well suited for the automated analysis of complex geometry problems, and consequently a promising approach to aerodynamic optimization. Melvin et developed an adjoint formulation for the TRANAIR code, which is based on the full-potential equation with viscous corrections. More recently, Dadone and Grossman presented an adjoint formulation for the Euler equations. In both approaches, a boundary condition is introduced to approximate the effects of the evolving surface shape that results in accurate gradient computation. Central to automated shape optimization algorithms is the issue of geometry modeling and control. The need to optimize complex, "real-life" geometry provides a strong incentive for the use of parametric-CAD systems within the optimization procedure. In previous work, we presented an effective optimization framework that incorporates a direct-CAD interface. In this work, we enhance the capabilities of this framework with efficient gradient computations using the discrete adjoint method. We present details of the adjoint numerical implementation, which reuses the domain decomposition, multigrid, and time-marching schemes of the flow solver. Furthermore, we explain and demonstrate the use of CAD in conjunction with the Cartesian adjoint approach. The final paper will contain a number of complex geometry, industrially relevant examples with many design variables to demonstrate the effectiveness of the adjoint method on Cartesian meshes.
Mission and system optimization of nuclear electric propulsion vehicles for lunar and Mars missions
NASA Technical Reports Server (NTRS)
Gilland, James H.
1991-01-01
The detailed mission and system optimization of low thrust electric propulsion missions is a complex, iterative process involving interaction between orbital mechanics and system performance. Through the use of appropriate approximations, initial system optimization and analysis can be performed for a range of missions. The intent of these calculations is to provide system and mission designers with simple methods to assess system design without requiring access or detailed knowledge of numerical calculus of variations optimizations codes and methods. Approximations for the mission/system optimization of Earth orbital transfer and Mars mission have been derived. Analyses include the variation of thruster efficiency with specific impulse. Optimum specific impulse, payload fraction, and power/payload ratios are calculated. The accuracy of these methods is tested and found to be reasonable for initial scoping studies. Results of optimization for Space Exploration Initiative lunar cargo and Mars missions are presented for a range of power system and thruster options.
Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.
Said, Nadia; Engelhart, Michael; Kirches, Christian; Körkel, Stefan; Holt, Daniel V
2016-01-01
Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.
Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk
NASA Astrophysics Data System (ADS)
Long, C. C.; Marsden, A. L.; Bazilevs, Y.
2014-10-01
In this paper we perform shape optimization of a pediatric pulsatile ventricular assist device (PVAD). The device simulation is carried out using fluid-structure interaction (FSI) modeling techniques within a computational framework that combines FEM for fluid mechanics and isogeometric analysis for structural mechanics modeling. The PVAD FSI simulations are performed under realistic conditions (i.e., flow speeds, pressure levels, boundary conditions, etc.), and account for the interaction of air, blood, and a thin structural membrane separating the two fluid subdomains. The shape optimization study is designed to reduce thrombotic risk, a major clinical problem in PVADs. Thrombotic risk is quantified in terms of particle residence time in the device blood chamber. Methods to compute particle residence time in the context of moving spatial domains are presented in a companion paper published in the same issue (Comput Mech, doi: 10.1007/s00466-013-0931-y, 2013). The surrogate management framework, a derivative-free pattern search optimization method that relies on surrogates for increased efficiency, is employed in this work. For the optimization study shown here, particle residence time is used to define a suitable cost or objective function, while four adjustable design optimization parameters are used to define the device geometry. The FSI-based optimization framework is implemented in a parallel computing environment, and deployed with minimal user intervention. Using five SEARCH/ POLL steps the optimization scheme identifies a PVAD design with significantly better throughput efficiency than the original device.
Structural optimization with approximate sensitivities
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Hopkins, D. A.; Coroneos, R.
1994-01-01
Computational efficiency in structural optimization can be enhanced if the intensive computations associated with the calculation of the sensitivities, that is, gradients of the behavior constraints, are reduced. Approximation to gradients of the behavior constraints that can be generated with small amount of numerical calculations is proposed. Structural optimization with these approximate sensitivities produced correct optimum solution. Approximate gradients performed well for different nonlinear programming methods, such as the sequence of unconstrained minimization technique, method of feasible directions, sequence of quadratic programming, and sequence of linear programming. Structural optimization with approximate gradients can reduce by one third the CPU time that would otherwise be required to solve the problem with explicit closed-form gradients. The proposed gradient approximation shows potential to reduce intensive computation that has been associated with traditional structural optimization.
NASA Astrophysics Data System (ADS)
Wu, Yuechen; Chrysler, Benjamin; Kostuk, Raymond K.
2018-01-01
The technique of designing, optimizing, and fabricating broadband volume transmission holograms using dichromate gelatin (DCG) is summarized for solar spectrum-splitting applications. The spectrum-splitting photovoltaic (PV) system uses a series of single-bandgap PV cells that have different spectral conversion efficiency properties to more fully utilize the solar spectrum. In such a system, one or more high-performance optical filters are usually required to split the solar spectrum and efficiently send them to the corresponding PV cells. An ideal spectral filter should have a rectangular shape with sharp transition wavelengths. A methodology of designing and modeling a transmission DCG hologram using coupled wave analysis for different PV bandgap combinations is described. To achieve a broad diffraction bandwidth and sharp cutoff wavelength, a cascaded structure of multiple thick holograms is described. A search algorithm is then developed to optimize both single- and two-layer cascaded holographic spectrum-splitting elements for the best bandgap combinations of two- and three-junction spectrum-splitting photovoltaic (SSPV) systems illuminated under the AM1.5 solar spectrum. The power conversion efficiencies of the optimized systems are found to be 42.56% and 48.41%, respectively, using the detailed balance method, and show an improvement compared with a tandem multijunction system. A fabrication method for cascaded DCG holographic filters is also described and used to prototype the optimized filter for the three-junction SSPV system.
Application of Box-Behnken design to prepare gentamicin-loaded calcium carbonate nanoparticles.
Maleki Dizaj, Solmaz; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad-Hossein; Adibkia, Khosro
2016-09-01
The aim of this research was to prepare and optimize calcium carbonate (CaCO3) nanoparticles as carriers for gentamicin sulfate. A chemical precipitation method was used to prepare the gentamicin sulfate-loaded CaCO3 nanoparticles. A 3-factor, 3-level Box-Behnken design was used for the optimization procedure, with the molar ratio of CaCl2: Na2CO3 (X1), the concentration of drug (X2), and the speed of homogenization (X3) as the independent variables. The particle size and entrapment efficiency were considered as response variables. Mathematical equations and response surface plots were used, along with the counter plots, to relate the dependent and independent variables. The results indicated that the speed of homogenization was the main variable contributing to particle size and entrapment efficiency. The combined effect of all three independent variables was also evaluated. Using the response optimization design, the optimized Xl-X3 levels were predicted. An optimized formulation was then prepared according to these levels, resulting in a particle size of 80.23 nm and an entrapment efficiency of 30.80%. It was concluded that the chemical precipitation technique, together with the Box-Behnken experimental design methodology, could be successfully used to optimize the formulation of drug-incorporated calcium carbonate nanoparticles.
NASA Astrophysics Data System (ADS)
Garabito, German; Cruz, João Carlos Ribeiro; Oliva, Pedro Andrés Chira; Söllner, Walter
2017-01-01
The Common Reflection Surface stack is a robust method for simulating zero-offset and common-offset sections with high accuracy from multi-coverage seismic data. For simulating common-offset sections, the Common-Reflection-Surface stack method uses a hyperbolic traveltime approximation that depends on five kinematic parameters for each selected sample point of the common-offset section to be simulated. The main challenge of this method is to find a computationally efficient data-driven optimization strategy for accurately determining the five kinematic stacking parameters on which each sample of the stacked common-offset section depends. Several authors have applied multi-step strategies to obtain the optimal parameters by combining different pre-stack data configurations. Recently, other authors used one-step data-driven strategies based on a global optimization for estimating simultaneously the five parameters from multi-midpoint and multi-offset gathers. In order to increase the computational efficiency of the global optimization process, we use in this paper a reduced form of the Common-Reflection-Surface traveltime approximation that depends on only four parameters, the so-called Common Diffraction Surface traveltime approximation. By analyzing the convergence of both objective functions and the data enhancement effect after applying the two traveltime approximations to the Marmousi synthetic dataset and a real land dataset, we conclude that the Common-Diffraction-Surface approximation is more efficient within certain aperture limits and preserves at the same time a high image accuracy. The preserved image quality is also observed in a direct comparison after applying both approximations for simulating common-offset sections on noisy pre-stack data.
Marschner, Karel; Musil, Stanislav; Dědina, Jiří
2016-04-05
An experimental setup consisting of a flow injection hydride generator coupled to an atomic fluorescence spectrometer was optimized in order to generate arsanes from tri- and pentavalent inorganic arsenic species (iAs(III), iAs(V)), monomethylarsonic acid (MAs(V)), and dimethylarsinic acid (DMAs(V)) with 100% efficiency with the use of only HCl and NaBH4 as the reagents. The optimal concentration of HCl was 2 mol L(-1); the optimal concentration of NaBH4 was 2.5% (m/v), and the volume of the reaction coil was 8.9 mL. To prevent excessive signal noise due to fluctuations of hydride supply to an atomizer, a new design of a gas-liquid separator was implemented. The optimized experimental setup was subsequently interfaced to HPLC and employed for speciation analysis of arsenic. Two chromatography columns were tested: (i) ion-pair chromatography and (ii) ion exchange chromatography. The latter offered much better results for human urine samples without a need for sample dilution. Due to the equal hydride generation efficiency (and thus the sensitivities) of all As species, a single species standardization by DMAs(V) standard was feasible. The limits of detection for iAs(III), iAs(V), MAs(V), and DMAs(V) were 40, 97, 57, and 55 pg mL(-1), respectively. Accuracy of the method was tested by the analysis of the standard reference material (human urine NIST 2669), and the method was also verified by the comparative analyses of human urine samples collected from five individuals with an independent reference method.
Evolutionary optimization methods for accelerator design
NASA Astrophysics Data System (ADS)
Poklonskiy, Alexey A.
Many problems from the fields of accelerator physics and beam theory can be formulated as optimization problems and, as such, solved using optimization methods. Despite growing efficiency of the optimization methods, the adoption of modern optimization techniques in these fields is rather limited. Evolutionary Algorithms (EAs) form a relatively new and actively developed optimization methods family. They possess many attractive features such as: ease of the implementation, modest requirements on the objective function, a good tolerance to noise, robustness, and the ability to perform a global search efficiently. In this work we study the application of EAs to problems from accelerator physics and beam theory. We review the most commonly used methods of unconstrained optimization and describe the GATool, evolutionary algorithm and the software package, used in this work, in detail. Then we use a set of test problems to assess its performance in terms of computational resources, quality of the obtained result, and the tradeoff between them. We justify the choice of GATool as a heuristic method to generate cutoff values for the COSY-GO rigorous global optimization package for the COSY Infinity scientific computing package. We design the model of their mutual interaction and demonstrate that the quality of the result obtained by GATool increases as the information about the search domain is refined, which supports the usefulness of this model. We Giscuss GATool's performance on the problems suffering from static and dynamic noise and study useful strategies of GATool parameter tuning for these and other difficult problems. We review the challenges of constrained optimization with EAs and methods commonly used to overcome them. We describe REPA, a new constrained optimization method based on repairing, in exquisite detail, including the properties of its two repairing techniques: REFIND and REPROPT. We assess REPROPT's performance on the standard constrained optimization test problems for EA with a variety of different configurations and suggest optimal default parameter values based on the results. Then we study the performance of the REPA method on the same set of test problems and compare the obtained results with those of several commonly used constrained optimization methods with EA. Based on the obtained results, particularly on the outstanding performance of REPA on test problem that presents significant difficulty for other reviewed EAs, we conclude that the proposed method is useful and competitive. We discuss REPA parameter tuning for difficult problems and critically review some of the problems from the de-facto standard test problem set for the constrained optimization with EA. In order to demonstrate the practical usefulness of the developed method, we study several problems of accelerator design and demonstrate how they can be solved with EAs. These problems include a simple accelerator design problem (design a quadrupole triplet to be stigmatically imaging, find all possible solutions), a complex real-life accelerator design problem (an optimization of the front end section for the future neutrino factory), and a problem of the normal form defect function optimization which is used to rigorously estimate the stability of the beam dynamics in circular accelerators. The positive results we obtained suggest that the application of EAs to problems from accelerator theory can be very beneficial and has large potential. The developed optimization scenarios and tools can be used to approach similar problems.
Efficient experimental design for uncertainty reduction in gene regulatory networks.
Dehghannasiri, Roozbeh; Yoon, Byung-Jun; Dougherty, Edward R
2015-01-01
An accurate understanding of interactions among genes plays a major role in developing therapeutic intervention methods. Gene regulatory networks often contain a significant amount of uncertainty. The process of prioritizing biological experiments to reduce the uncertainty of gene regulatory networks is called experimental design. Under such a strategy, the experiments with high priority are suggested to be conducted first. The authors have already proposed an optimal experimental design method based upon the objective for modeling gene regulatory networks, such as deriving therapeutic interventions. The experimental design method utilizes the concept of mean objective cost of uncertainty (MOCU). MOCU quantifies the expected increase of cost resulting from uncertainty. The optimal experiment to be conducted first is the one which leads to the minimum expected remaining MOCU subsequent to the experiment. In the process, one must find the optimal intervention for every gene regulatory network compatible with the prior knowledge, which can be prohibitively expensive when the size of the network is large. In this paper, we propose a computationally efficient experimental design method. This method incorporates a network reduction scheme by introducing a novel cost function that takes into account the disruption in the ranking of potential experiments. We then estimate the approximate expected remaining MOCU at a lower computational cost using the reduced networks. Simulation results based on synthetic and real gene regulatory networks show that the proposed approximate method has close performance to that of the optimal method but at lower computational cost. The proposed approximate method also outperforms the random selection policy significantly. A MATLAB software implementing the proposed experimental design method is available at http://gsp.tamu.edu/Publications/supplementary/roozbeh15a/.
Efficient experimental design for uncertainty reduction in gene regulatory networks
2015-01-01
Background An accurate understanding of interactions among genes plays a major role in developing therapeutic intervention methods. Gene regulatory networks often contain a significant amount of uncertainty. The process of prioritizing biological experiments to reduce the uncertainty of gene regulatory networks is called experimental design. Under such a strategy, the experiments with high priority are suggested to be conducted first. Results The authors have already proposed an optimal experimental design method based upon the objective for modeling gene regulatory networks, such as deriving therapeutic interventions. The experimental design method utilizes the concept of mean objective cost of uncertainty (MOCU). MOCU quantifies the expected increase of cost resulting from uncertainty. The optimal experiment to be conducted first is the one which leads to the minimum expected remaining MOCU subsequent to the experiment. In the process, one must find the optimal intervention for every gene regulatory network compatible with the prior knowledge, which can be prohibitively expensive when the size of the network is large. In this paper, we propose a computationally efficient experimental design method. This method incorporates a network reduction scheme by introducing a novel cost function that takes into account the disruption in the ranking of potential experiments. We then estimate the approximate expected remaining MOCU at a lower computational cost using the reduced networks. Conclusions Simulation results based on synthetic and real gene regulatory networks show that the proposed approximate method has close performance to that of the optimal method but at lower computational cost. The proposed approximate method also outperforms the random selection policy significantly. A MATLAB software implementing the proposed experimental design method is available at http://gsp.tamu.edu/Publications/supplementary/roozbeh15a/. PMID:26423515
NASA Astrophysics Data System (ADS)
Vasilkin, Andrey
2018-03-01
The more designing solutions at the search stage for design for high-rise buildings can be synthesized by the engineer, the more likely that the final adopted version will be the most efficient and economical. However, in modern market conditions, taking into account the complexity and responsibility of high-rise buildings the designer does not have the necessary time to develop, analyze and compare any significant number of options. To solve this problem, it is expedient to use the high potential of computer-aided designing. To implement automated search for design solutions, it is proposed to develop the computing facilities, the application of which will significantly increase the productivity of the designer and reduce the complexity of designing. Methods of structural and parametric optimization have been adopted as the basis of the computing facilities. Their efficiency in the synthesis of design solutions is shown, also the schemes, that illustrate and explain the introduction of structural optimization in the traditional design of steel frames, are constructed. To solve the problem of synthesis and comparison of design solutions for steel frames, it is proposed to develop the computing facilities that significantly reduces the complexity of search designing and based on the use of methods of structural and parametric optimization.
Sutradhar, Alok; Park, Jaejong; Carrau, Diana; Nguyen, Tam H; Miller, Michael J; Paulino, Glaucio H
2016-07-01
Large craniofacial defects require efficient bone replacements which should not only provide good aesthetics but also possess stable structural function. The proposed work uses a novel multiresolution topology optimization method to achieve the task. Using a compliance minimization objective, patient-specific bone replacement shapes can be designed for different clinical cases that ensure revival of efficient load transfer mechanisms in the mid-face. In this work, four clinical cases are introduced and their respective patient-specific designs are obtained using the proposed method. The optimized designs are then virtually inserted into the defect to visually inspect the viability of the design . Further, once the design is verified by the reconstructive surgeon, prototypes are fabricated using a 3D printer for validation. The robustness of the designs are mechanically tested by subjecting them to a physiological loading condition which mimics the masticatory activity. The full-field strain result through 3D image correlation and the finite element analysis implies that the solution can survive the maximum mastication of 120 lb. Also, the designs have the potential to restore the buttress system and provide the structural integrity. Using the topology optimization framework in designing the bone replacement shapes would deliver surgeons new alternatives for rather complicated mid-face reconstruction.
Single- and Multiple-Objective Optimization with Differential Evolution and Neural Networks
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2006-01-01
Genetic and evolutionary algorithms have been applied to solve numerous problems in engineering design where they have been used primarily as optimization procedures. These methods have an advantage over conventional gradient-based search procedures became they are capable of finding global optima of multi-modal functions and searching design spaces with disjoint feasible regions. They are also robust in the presence of noisy data. Another desirable feature of these methods is that they can efficiently use distributed and parallel computing resources since multiple function evaluations (flow simulations in aerodynamics design) can be performed simultaneously and independently on ultiple processors. For these reasons genetic and evolutionary algorithms are being used more frequently in design optimization. Examples include airfoil and wing design and compressor and turbine airfoil design. They are also finding increasing use in multiple-objective and multidisciplinary optimization. This lecture will focus on an evolutionary method that is a relatively new member to the general class of evolutionary methods called differential evolution (DE). This method is easy to use and program and it requires relatively few user-specified constants. These constants are easily determined for a wide class of problems. Fine-tuning the constants will off course yield the solution to the optimization problem at hand more rapidly. DE can be efficiently implemented on parallel computers and can be used for continuous, discrete and mixed discrete/continuous optimization problems. It does not require the objective function to be continuous and is noise tolerant. DE and applications to single and multiple-objective optimization will be included in the presentation and lecture notes. A method for aerodynamic design optimization that is based on neural networks will also be included as a part of this lecture. The method offers advantages over traditional optimization methods. It is more flexible than other methods in dealing with design in the context of both steady and unsteady flows, partial and complete data sets, combined experimental and numerical data, inclusion of various constraints and rules of thumb, and other issues that characterize the aerodynamic design process. Neural networks provide a natural framework within which a succession of numerical solutions of increasing fidelity, incorporating more realistic flow physics, can be represented and utilized for optimization. Neural networks also offer an excellent framework for multiple-objective and multi-disciplinary design optimization. Simulation tools from various disciplines can be integrated within this framework and rapid trade-off studies involving one or many disciplines can be performed. The prospect of combining neural network based optimization methods and evolutionary algorithms to obtain a hybrid method with the best properties of both methods will be included in this presentation. Achieving solution diversity and accurate convergence to the exact Pareto front in multiple objective optimization usually requires a significant computational effort with evolutionary algorithms. In this lecture we will also explore the possibility of using neural networks to obtain estimates of the Pareto optimal front using non-dominated solutions generated by DE as training data. Neural network estimators have the potential advantage of reducing the number of function evaluations required to obtain solution accuracy and diversity, thus reducing cost to design.
Liu, Ping; Li, Guodong; Liu, Xinggao
2015-09-01
Control vector parameterization (CVP) is an important approach of the engineering optimization for the industrial dynamic processes. However, its major defect, the low optimization efficiency caused by calculating the relevant differential equations in the generated nonlinear programming (NLP) problem repeatedly, limits its wide application in the engineering optimization for the industrial dynamic processes. A novel highly effective control parameterization approach, fast-CVP, is first proposed to improve the optimization efficiency for industrial dynamic processes, where the costate gradient formulae is employed and a fast approximate scheme is presented to solve the differential equations in dynamic process simulation. Three well-known engineering optimization benchmark problems of the industrial dynamic processes are demonstrated as illustration. The research results show that the proposed fast approach achieves a fine performance that at least 90% of the computation time can be saved in contrast to the traditional CVP method, which reveals the effectiveness of the proposed fast engineering optimization approach for the industrial dynamic processes. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beltran, C; Kamal, H
Purpose: To provide a multicriteria optimization algorithm for intensity modulated radiation therapy using pencil proton beam scanning. Methods: Intensity modulated radiation therapy using pencil proton beam scanning requires efficient optimization algorithms to overcome the uncertainties in the Bragg peaks locations. This work is focused on optimization algorithms that are based on Monte Carlo simulation of the treatment planning and use the weights and the dose volume histogram (DVH) control points to steer toward desired plans. The proton beam treatment planning process based on single objective optimization (representing a weighted sum of multiple objectives) usually leads to time-consuming iterations involving treatmentmore » planning team members. We proved a time efficient multicriteria optimization algorithm that is developed to run on NVIDIA GPU (Graphical Processing Units) cluster. The multicriteria optimization algorithm running time benefits from up-sampling of the CT voxel size of the calculations without loss of fidelity. Results: We will present preliminary results of Multicriteria optimization for intensity modulated proton therapy based on DVH control points. The results will show optimization results of a phantom case and a brain tumor case. Conclusion: The multicriteria optimization of the intensity modulated radiation therapy using pencil proton beam scanning provides a novel tool for treatment planning. Work support by a grant from Varian Inc.« less
A kriging metamodel-assisted robust optimization method based on a reverse model
NASA Astrophysics Data System (ADS)
Zhou, Hui; Zhou, Qi; Liu, Congwei; Zhou, Taotao
2018-02-01
The goal of robust optimization methods is to obtain a solution that is both optimum and relatively insensitive to uncertainty factors. Most existing robust optimization approaches use outer-inner nested optimization structures where a large amount of computational effort is required because the robustness of each candidate solution delivered from the outer level should be evaluated in the inner level. In this article, a kriging metamodel-assisted robust optimization method based on a reverse model (K-RMRO) is first proposed, in which the nested optimization structure is reduced into a single-loop optimization structure to ease the computational burden. Ignoring the interpolation uncertainties from kriging, K-RMRO may yield non-robust optima. Hence, an improved kriging-assisted robust optimization method based on a reverse model (IK-RMRO) is presented to take the interpolation uncertainty of kriging metamodel into consideration. In IK-RMRO, an objective switching criterion is introduced to determine whether the inner level robust optimization or the kriging metamodel replacement should be used to evaluate the robustness of design alternatives. The proposed criterion is developed according to whether or not the robust status of the individual can be changed because of the interpolation uncertainties from the kriging metamodel. Numerical and engineering cases are used to demonstrate the applicability and efficiency of the proposed approach.
Brasil, Christiane Regina Soares; Delbem, Alexandre Claudio Botazzo; da Silva, Fernando Luís Barroso
2013-07-30
This article focuses on the development of an approach for ab initio protein structure prediction (PSP) without using any earlier knowledge from similar protein structures, as fragment-based statistics or inference of secondary structures. Such an approach is called purely ab initio prediction. The article shows that well-designed multiobjective evolutionary algorithms can predict relevant protein structures in a purely ab initio way. One challenge for purely ab initio PSP is the prediction of structures with β-sheets. To work with such proteins, this research has also developed procedures to efficiently estimate hydrogen bond and solvation contribution energies. Considering van der Waals, electrostatic, hydrogen bond, and solvation contribution energies, the PSP is a problem with four energetic terms to be minimized. Each interaction energy term can be considered an objective of an optimization method. Combinatorial problems with four objectives have been considered too complex for the available multiobjective optimization (MOO) methods. The proposed approach, called "Multiobjective evolutionary algorithms with many tables" (MEAMT), can efficiently deal with four objectives through the combination thereof, performing a more adequate sampling of the objective space. Therefore, this method can better map the promising regions in this space, predicting structures in a purely ab initio way. In other words, MEAMT is an efficient optimization method for MOO, which explores simultaneously the search space as well as the objective space. MEAMT can predict structures with one or two domains with RMSDs comparable to values obtained by recently developed ab initio methods (GAPFCG , I-PAES, and Quark) that use different levels of earlier knowledge. Copyright © 2013 Wiley Periodicals, Inc.
Efficient and robust model-to-image alignment using 3D scale-invariant features.
Toews, Matthew; Wells, William M
2013-04-01
This paper presents feature-based alignment (FBA), a general method for efficient and robust model-to-image alignment. Volumetric images, e.g. CT scans of the human body, are modeled probabilistically as a collage of 3D scale-invariant image features within a normalized reference space. Features are incorporated as a latent random variable and marginalized out in computing a maximum a posteriori alignment solution. The model is learned from features extracted in pre-aligned training images, then fit to features extracted from a new image to identify a globally optimal locally linear alignment solution. Novel techniques are presented for determining local feature orientation and efficiently encoding feature intensity in 3D. Experiments involving difficult magnetic resonance (MR) images of the human brain demonstrate FBA achieves alignment accuracy similar to widely-used registration methods, while requiring a fraction of the memory and computation resources and offering a more robust, globally optimal solution. Experiments on CT human body scans demonstrate FBA as an effective system for automatic human body alignment where other alignment methods break down. Copyright © 2012 Elsevier B.V. All rights reserved.
Efficient and Robust Model-to-Image Alignment using 3D Scale-Invariant Features
Toews, Matthew; Wells, William M.
2013-01-01
This paper presents feature-based alignment (FBA), a general method for efficient and robust model-to-image alignment. Volumetric images, e.g. CT scans of the human body, are modeled probabilistically as a collage of 3D scale-invariant image features within a normalized reference space. Features are incorporated as a latent random variable and marginalized out in computing a maximum a-posteriori alignment solution. The model is learned from features extracted in pre-aligned training images, then fit to features extracted from a new image to identify a globally optimal locally linear alignment solution. Novel techniques are presented for determining local feature orientation and efficiently encoding feature intensity in 3D. Experiments involving difficult magnetic resonance (MR) images of the human brain demonstrate FBA achieves alignment accuracy similar to widely-used registration methods, while requiring a fraction of the memory and computation resources and offering a more robust, globally optimal solution. Experiments on CT human body scans demonstrate FBA as an effective system for automatic human body alignment where other alignment methods break down. PMID:23265799
Optimal approach to quantum communication using dynamic programming.
Jiang, Liang; Taylor, Jacob M; Khaneja, Navin; Lukin, Mikhail D
2007-10-30
Reliable preparation of entanglement between distant systems is an outstanding problem in quantum information science and quantum communication. In practice, this has to be accomplished by noisy channels (such as optical fibers) that generally result in exponential attenuation of quantum signals at large distances. A special class of quantum error correction protocols, quantum repeater protocols, can be used to overcome such losses. In this work, we introduce a method for systematically optimizing existing protocols and developing more efficient protocols. Our approach makes use of a dynamic programming-based searching algorithm, the complexity of which scales only polynomially with the communication distance, letting us efficiently determine near-optimal solutions. We find significant improvements in both the speed and the final-state fidelity for preparing long-distance entangled states.
Techniques for Increasing the Efficiency of Automation Systems in School Library Media Centers.
ERIC Educational Resources Information Center
Caffarella, Edward P.
1996-01-01
Discusses methods of managing queues (waiting lines) to optimize the use of student computer stations in school library media centers and to make searches more efficient and effective. The three major factors in queue management are arrival interval of the patrons, service time, and number of stations. (Author/LRW)
NASA Astrophysics Data System (ADS)
Xu, Jiuping; Ma, Ning; Lv, Chengwei
2016-08-01
Efficient water transfer and allocation are critical for disaster mitigation in drought emergencies. This is especially important when the different interests of the multiple decision makers and the fluctuating water resource supply and demand simultaneously cause space and time conflicts. To achieve more effective and efficient water transfers and allocations, this paper proposes a novel optimization method with an integrated bi-level structure and a dynamic strategy, in which the bi-level structure works to deal with space dimension conflicts in drought emergencies, and the dynamic strategy is used to deal with time dimension conflicts. Combining these two optimization methods, however, makes calculation complex, so an integrated interactive fuzzy program and a PSO-POA are combined to develop a hybrid-heuristic algorithm. The successful application of the proposed model in a real world case region demonstrates its practicality and efficiency. Dynamic cooperation between multiple reservoirs under the coordination of a global regulator reflects the model's efficiency and effectiveness in drought emergency water transfer and allocation, especially in a fluctuating environment. On this basis, some corresponding management recommendations are proposed to improve practical operations.
Abrahamsson, Sara; Ilic, Rob; Wisniewski, Jan; Mehl, Brian; Yu, Liya; Chen, Lei; Davanco, Marcelo; Oudjedi, Laura; Fiche, Jean-Bernard; Hajj, Bassam; Jin, Xin; Pulupa, Joan; Cho, Christine; Mir, Mustafa; El Beheiry, Mohamed; Darzacq, Xavier; Nollmann, Marcelo; Dahan, Maxime; Wu, Carl; Lionnet, Timothée; Liddle, J Alexander; Bargmann, Cornelia I
2016-03-01
Multifocus microscopy (MFM) allows high-resolution instantaneous three-dimensional (3D) imaging and has been applied to study biological specimens ranging from single molecules inside cells nuclei to entire embryos. We here describe pattern designs and nanofabrication methods for diffractive optics that optimize the light-efficiency of the central optical component of MFM: the diffractive multifocus grating (MFG). We also implement a "precise color" MFM layout with MFGs tailored to individual fluorophores in separate optical arms. The reported advancements enable faster and brighter volumetric time-lapse imaging of biological samples. In live microscopy applications, photon budget is a critical parameter and light-efficiency must be optimized to obtain the fastest possible frame rate while minimizing photodamage. We provide comprehensive descriptions and code for designing diffractive optical devices, and a detailed methods description for nanofabrication of devices. Theoretical efficiencies of reported designs is ≈90% and we have obtained efficiencies of > 80% in MFGs of our own manufacture. We demonstrate the performance of a multi-phase MFG in 3D functional neuronal imaging in living C. elegans.
Generation of structural topologies using efficient technique based on sorted compliances
NASA Astrophysics Data System (ADS)
Mazur, Monika; Tajs-Zielińska, Katarzyna; Bochenek, Bogdan
2018-01-01
Topology optimization, although well recognized is still widely developed. It has gained recently more attention since large computational ability become available for designers. This process is stimulated simultaneously by variety of emerging, innovative optimization methods. It is observed that traditional gradient-based mathematical programming algorithms, in many cases, are replaced by novel and e cient heuristic methods inspired by biological, chemical or physical phenomena. These methods become useful tools for structural optimization because of their versatility and easy numerical implementation. In this paper engineering implementation of a novel heuristic algorithm for minimum compliance topology optimization is discussed. The performance of the topology generator is based on implementation of a special function utilizing information of compliance distribution within the design space. With a view to cope with engineering problems the algorithm has been combined with structural analysis system Ansys.
A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks
Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong
2015-01-01
This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme. PMID:26690571
Orbital-Optimized MP3 and MP2.5 with Density-Fitting and Cholesky Decomposition Approximations.
Bozkaya, Uğur
2016-03-08
Efficient implementations of the orbital-optimized MP3 and MP2.5 methods with the density-fitting (DF-OMP3 and DF-OMP2.5) and Cholesky decomposition (CD-OMP3 and CD-OMP2.5) approaches are presented. The DF/CD-OMP3 and DF/CD-OMP2.5 methods are applied to a set of alkanes to compare the computational cost with the conventional orbital-optimized MP3 (OMP3) [Bozkaya J. Chem. Phys. 2011, 135, 224103] and the orbital-optimized MP2.5 (OMP2.5) [Bozkaya and Sherrill J. Chem. Phys. 2014, 141, 204105]. Our results demonstrate that the DF-OMP3 and DF-OMP2.5 methods provide considerably lower computational costs than OMP3 and OMP2.5. Further application results show that the orbital-optimized methods are very helpful for the study of open-shell noncovalent interactions, aromatic bond dissociation energies, and hydrogen transfer reactions. We conclude that the DF-OMP3 and DF-OMP2.5 methods are very promising for molecular systems with challenging electronic structures.
Fast Numerical Methods for the Design of Layered Photonic Structures with Rough Interfaces
NASA Technical Reports Server (NTRS)
Komarevskiy, Nikolay; Braginsky, Leonid; Shklover, Valery; Hafner, Christian; Lawson, John
2011-01-01
Modified boundary conditions (MBC) and a multilayer approach (MA) are proposed as fast and efficient numerical methods for the design of 1D photonic structures with rough interfaces. These methods are applicable for the structures, composed of materials with arbitrary permittivity tensor. MBC and MA are numerically validated on different types of interface roughness and permittivities of the constituent materials. The proposed methods can be combined with the 4x4 scattering matrix method as a field solver and an evolutionary strategy as an optimizer. The resulted optimization procedure is fast, accurate, numerically stable and can be used to design structures for various applications.
AUTOMATIC GENERATION OF FFT FOR TRANSLATIONS OF MULTIPOLE EXPANSIONS IN SPHERICAL HARMONICS
Mirkovic, Dragan; Pettitt, B. Montgomery; Johnsson, S. Lennart
2009-01-01
The fast multipole method (FMM) is an efficient algorithm for calculating electrostatic interactions in molecular simulations and a promising alternative to Ewald summation methods. Translation of multipole expansion in spherical harmonics is the most important operation of the fast multipole method and the fast Fourier transform (FFT) acceleration of this operation is among the fastest methods of improving its performance. The technique relies on highly optimized implementation of fast Fourier transform routines for the desired expansion sizes, which need to incorporate the knowledge of symmetries and zero elements in the input arrays. Here a method is presented for automatic generation of such, highly optimized, routines. PMID:19763233
NASA Astrophysics Data System (ADS)
Tang, Peipei; Wang, Chengjing; Dai, Xiaoxia
2016-04-01
In this paper, we propose a majorized Newton-CG augmented Lagrangian-based finite element method for 3D elastic frictionless contact problems. In this scheme, we discretize the restoration problem via the finite element method and reformulate it to a constrained optimization problem. Then we apply the majorized Newton-CG augmented Lagrangian method to solve the optimization problem, which is very suitable for the ill-conditioned case. Numerical results demonstrate that the proposed method is a very efficient algorithm for various large-scale 3D restorations of geological models, especially for the restoration of geological models with complicated faults.
Simultaneous beam sampling and aperture shape optimization for SPORT.
Zarepisheh, Masoud; Li, Ruijiang; Ye, Yinyu; Xing, Lei
2015-02-01
Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and neck and a prostate case. It significantly improved the target conformality and at the same time critical structure sparing compared with conventional intensity modulated radiation therapy (IMRT). In the head and neck case, for example, the average PTV coverage D99% for two PTVs, cord and brainstem max doses, and right parotid gland mean dose were improved, respectively, by about 7%, 37%, 12%, and 16%. The proposed method automatically determines the number of the stations required to generate a satisfactory plan and optimizes simultaneously the involved station parameters, leading to improved quality of the resultant treatment plans as compared with the conventional IMRT plans.