DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Feng; Shen, Yi; Liu, Bo
Bone is a rigid yet dynamic organ, and this dynamism is mediated by the delicate balance between osteoclastic bone resorption and osteoblastic bone formation. However, excessive activation of osteoclasts is responsible for many bone diseases such as osteoporosis, Paget disease, and tumor bone metastasis. Agents that could inhibit osteoclast formation or function are regarded as promising alternatives to treat osteoclast-related diseases. Recently, traditional Chinese medicine has attracted attention because of its multiple activities in bone metabolism. Among them, gastrodin has been reported as an anti-osteoporosis agent that reduces reactive oxygen species. However, the direct action of gastrodin on osteoclast differentiationmore » and bone resorption, and its underlying molecular mechanism, remain unknown. In this study, we investigated the effects of gastrodin on receptor activator NF-κB ligand (RANKL)-activated osteoclasts formation and bone resorption. Our results showed that gastrodin retarded RANKL-induced osteoclast differentiation efficiently by downregulating transcriptional and translational expression of nuclear factor of activated T cells cl (NFATc1), a major factor in RANKL-mediated osteoclastogenesis. Meanwhile, gastrodin prevented osteoclast maturation and migration by inhibiting the gene expression of dendrocyte expressed seven transmembrane protein (DC-STAMP), an osteoclastic-specific gene that controls cells fusion and movement. And gastrodin prevented RANKL-induced osteoclastic bone erosion in vitro. In addition, gastrodin also stimulated bone mesenchymal stem cell (BMSC) spreading and osseointegration in titanium plate. In summary, gastrodin could prevent osteoclasts formation and bone resorption via blockage of NFATc1 activity, and stimulate osseointegration in vitro. Gastrodin could be developed as a potent phytochemical candidate to treat osteolytic diseases. - Highlights: • Gastrodin suppresses osteoclasts formation and function in vitro. • Gastrodin impairs NFATc1 activation. • Gastrodin stimulates osseointegration in vitro. • Gastrodin may be used for treating osteoclast related diseases.« less
Hu, Yingwei; Ek-Rylander, Barbro; Karlström, Erik; Wendel, Mikael; Andersson, Göran
2008-02-01
Prothrombin (PT) is an RGD-containing bone-residing precursor to the serine protease thrombin (TH), which acts as an agonist for a variety of cellular responses in osteoblasts and osteoclasts. We show here that PT, TH, osteopontin (OPN) and fibronectin (FN) promoted adhesion of isolated neonatal rat long bone osteoclasts. However, the cells that adhered to PT and TH were smaller in size, rounded and contained 3-4 nuclei, in comparison to the cells adhering to OPN and FN, which were larger with extended cytoplasmic processes and 6-7 nuclei. Attachment of the larger osteoclasts to OPN and FN was inhibited by antibodies towards beta 3 and beta 1 integrin subunits, respectively. Whereas an RGD-containing peptide inhibited adhesion of the smaller osteoclasts to PT and TH, this was not seen with the beta 3 or beta 1 antibodies. In contrast, the beta 1 antibody augmented osteoclast adhesion to PT and TH in an RGD-dependent manner. Small osteoclasts were less efficient in resorbing mineralized bovine bone slices, as well as expressed lower mRNA levels of MMP-9 and the cathepsins K and L compared to large osteoclasts. The small osteoclast adhering to PT and TH may represent either an immature, less functional precursor to the large osteoclast or alternatively constitute a distinct osteoclast population with a specific role in bone.
Kim, Kwang-Jin; Yeon, Jeong-Tae; Choi, Sik-Won; Moon, Seong-Hee; Ryu, Byung Jun; Yu, Ri; Park, Sang-Joon; Kim, Seong Hwan; Son, Young-Jin
2015-12-01
Bone sustains its structure through dynamic interaction between osteoblastic cells and osteoclastic cells. But imbalance may lead to osteoporosis caused by overactivated osteoclast cells that have bone-resorbing function. Recently, herbs have been researched as major sources of medicines in many countries. In vitro and in vivo anti-osteoclastogenic activity of Angelica gigas NAKAI have been reported, but the biological activity of decursin, its major component in osteoclast differentiation is still unknown. Therefore, in this study, we explored whether decursin could affect RANKL-mediated osteoclastogenesis. The results showed that decursin efficiently inhibited RANKL-activated osteoclast differentiation by inhibiting transcriptional and translational expression of NFATc1, a major factor in RANKL-mediated osteoclastogenesis. Furthermore, decursin decreased fusion and migration of pre-osteoclasts by downregulating mRNA expression levels of DC-STAMP and β3 integrin, respectively. In addition, decursin prevents lipopolysaccharide (LPS)-induced bone erosion in vivo. In summary, decursin could prevent osteoclastogenesis and inflammatory bone loss via blockage of NFATc1 activity and fusion and migration of pre-osteoclasts, and it could be developed as a potent phytochemical candidate for treating pathologies of bone diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
The inhibitory effect of vitamin K on RANKL-induced osteoclast differentiation and bone resorption.
Wu, Wei-Jie; Kim, Min Seuk; Ahn, Byung-Yong
2015-10-01
To further understand the correlation between vitamin K and bone metabolism, the effects of vitamins K1, menaquinone-4 (MK-4), and menaquinone-7 (MK-7) on RANKL-induced osteoclast differentiation and bone resorption were comparatively investigated. Vitamin K2 groups (MK-4 and MK-7) were found to significantly inhibit RANKL-medicated osteoclast cell formation of bone marrow macrophages (BMMs) in a dose-dependent manner, without any evidence of cytotoxicity. The mRNA expression of specific osteoclast differentiation markers, such as c-Fos, NFATc1, OSCAR, and TRAP, as well as NFATc1 protein expression and TRAP activity in RANKL-treated BMMs were inhibited by vitamin K2, although MK-4 exhibited a significantly greater efficiency compared to MK-7. In contrast, the same dose of vitamin K1 had no inhibitory effect on RANKL-induced osteoclast cell formation, but increased the expression of major osteoclastogenic genes. Interestingly, vitamins K1, MK-4 and MK-7 all strongly inhibited osteoclastic bone resorption (p < 0.01) in a dose dependent manner. These results suggest that vitamins K1, MK-4 and MK-7 have anti-osteoporotic properties, while their regulation effects on osteoclastogenesis are somewhat different.
Park, So Jeong; Park, Doo Ri; Bhattarai, Deepak; Lee, Kyeong; Kim, Jaesang; Bae, Yun Soo; Lee, Soo Young
2014-08-01
2-(Trimethylammonium) ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a derivative of an organic chemical identified from a natural product library, promotes highly efficient megakaryopoiesis. Here, we show that (R)-TEMOSPho blocks osteoclast maturation from progenitor cells of hematopoietic origin, as well as blocking the resorptive function of mature osteoclasts. The inhibitory effect of (R)-TEMOSPho on osteoclasts was due to a disruption of the actin cytoskeleton, resulting from impaired downstream signaling of c-Fms, a receptor for macrophage-colony stimulating factor linked to c-Cbl, phosphoinositol-3-kinase (PI3K), Vav3, and Rac1. In addition, (R)-TEMOSPho blocked inflammation-induced bone destruction by reducing the numbers of osteoclasts produced in mice. Thus, (R)-TEMOSPho may represent a promising new class of antiresorptive drugs for the treatment of bone loss associated with increased osteoclast maturation and activity.
Cordycepin Prevents Bone Loss through Inhibiting Osteoclastogenesis by Scavenging ROS Generation
Dou, Ce; Cao, Zhen; Ding, Ning; Hou, Tianyong; Luo, Fei; Kang, Fei; Yang, Xiaochao; Jiang, Hong; Xie, Zhao; Hu, Min; Xu, Jianzhong; Dong, Shiwu
2016-01-01
Cordycepin was previously reported to have anti-tumor, anti-inflammatory and anti-oxidant activity. However, the potential role of cordycepin in bone metabolism and cell biology of osteoclasts remains unclear. In our study, we focused on the in vitro effects of cordycepin on osteoclastogenesis and its in vivo effects in ovariectomized (OVX) mice. Osteoclast differentiation, formation and fusion were evaluated by Tartrate-resistant acid phosphatase (TRAP) stain, focal adhesion stain and fusion assay, respectively. Osteoclastic bone resorption was evaluated by pit formation assay. Reactive oxygen species (ROS) generation and removal were detected by the ROS assay. OVX mice were orally administered with 10 mg/kg of cordycepin daily for four weeks. In vitro results revealed that cordycepin inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation, formation, fusion and bone resorption activity. We further proved that cordycepin treatments scavenged the generation of ROS, upregulated interferon regulatory factor 8 (IRF-8) and suppressed the activity of nuclear factor of activated T cells c1 (NFATc1) during osteoclastogenesis. In vivo results indicated cordycepin prevents bone loss, rescues bone microarchitecture, and restores bone mineralization in OVX mice. Our observations strongly suggested that cordycepin is an efficient osteoclast inhibitor and hold potential therapeutic value in preventing bone loss among postmenopausal osteoporosis patients. PMID:27104563
Cordycepin Prevents Bone Loss through Inhibiting Osteoclastogenesis by Scavenging ROS Generation.
Dou, Ce; Cao, Zhen; Ding, Ning; Hou, Tianyong; Luo, Fei; Kang, Fei; Yang, Xiaochao; Jiang, Hong; Xie, Zhao; Hu, Min; Xu, Jianzhong; Dong, Shiwu
2016-04-20
Cordycepin was previously reported to have anti-tumor, anti-inflammatory and anti-oxidant activity. However, the potential role of cordycepin in bone metabolism and cell biology of osteoclasts remains unclear. In our study, we focused on the in vitro effects of cordycepin on osteoclastogenesis and its in vivo effects in ovariectomized (OVX) mice. Osteoclast differentiation, formation and fusion were evaluated by Tartrate-resistant acid phosphatase (TRAP) stain, focal adhesion stain and fusion assay, respectively. Osteoclastic bone resorption was evaluated by pit formation assay. Reactive oxygen species (ROS) generation and removal were detected by the ROS assay. OVX mice were orally administered with 10 mg/kg of cordycepin daily for four weeks. In vitro results revealed that cordycepin inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation, formation, fusion and bone resorption activity. We further proved that cordycepin treatments scavenged the generation of ROS, upregulated interferon regulatory factor 8 (IRF-8) and suppressed the activity of nuclear factor of activated T cells c1 (NFATc1) during osteoclastogenesis. In vivo results indicated cordycepin prevents bone loss, rescues bone microarchitecture, and restores bone mineralization in OVX mice. Our observations strongly suggested that cordycepin is an efficient osteoclast inhibitor and hold potential therapeutic value in preventing bone loss among postmenopausal osteoporosis patients.
Notch signaling drives multiple myeloma induced osteoclastogenesis
Colombo, Michela; Thümmler, Katja; Mirandola, Leonardo; Garavelli, Silvia; Todoerti, Katia; Apicella, Luana; Lazzari, Elisa; Lancellotti, Marialuigia; Platonova, Natalia; Akbar, Moeed; Chiriva-Internati, Maurizio; Soutar, Richard; Neri, Antonino; Goodyear, Carl S.; Chiaramonte, Raffaella
2014-01-01
Multiple myeloma (MM) is closely associated with bone destruction. Once migrated to the bone marrow, MM cells unbalance bone formation and resorption via the recruitment and maturation of osteoclast precursors. The Notch pathway plays a key role in different types of cancer and drives several biological processes relevant in MM, including cell localization within the bone marrow, proliferation, survival and pharmacological resistance. Here we present evidences that MM can efficiently drive osteoclastogenesis by contemporaneously activating Notch signaling on tumor cells and osteoclasts through the aberrant expression of Notch ligands belonging to the Jagged family. Active Notch signaling in MM cells induces the secretion of the key osteoclastogenic factor, RANKL, which can be boosted in the presence of stromal cells. In turn, MM cells-derived RANKL causes the upregulation of its receptor, RANK, and Notch2 in pre-osteoclasts. Notch2 stimulates osteoclast differentiation by promoting autocrine RANKL signaling. Finally, MM cells through Jagged ligands expression can also activate Notch signaling in pre-osteoclast by direct contact. Such synergism between tumor cells and pre-osteoclasts in MM-induced osteoclastogenesis can be disrupted by silencing tumor-derived Jagged1 and 2. These results make the Jagged ligands new promising therapeutic targets in MM to contrast bone disease and the associated co-morbidities. PMID:25257302
Jacome-Galarza, Christian E.; Lee, Sun-Kyeong; Lorenzo, Joseph A.; LeonardoAguila, Hector
2012-01-01
Osteoclasts are specialized bone resorbing cells that derive from monocyte precursors. We have identified three populations of cells with high osteoclastogenic potential in murine bone marrow, which expressed the phenotype: B220−CD3−CD11b−/low CD115+ and either CD117hi, CD117intermediate or CD117low. We have evaluated these populations for their ability to also generate macrophages and dendritic cells. At a single cell level, the population expressing higher CD117 levels was able to generate bone-resorbing osteoclasts, phagocytic macrophages and antigen-presenting dendritic cells in vitro with efficiencies of over 90 percent, indicating that there exists a common developmental pathway for these cell types. Cells with osteoclastogenic potential also exist in blood and peripheral hematopoietic organs. Their functional meaning and/or their relationship with bone marrow progenitors is not well established. Hence, we characterized murine peripheral cell populations for their ability to form osteoclasts, macrophages and dendritic cells in vitro. The spleen and peripheral blood monocyte progenitors share phenotypic markers with bone marrow progenitors, but differ in their expression of CD11b, which was low in bone marrow but high in periphery. We propose that circulating monocyte progenitors are derived from a common bone marrow osteoclasts/macrophage/dendritic cell progenitor (OcMDC), which we have now characterized at a clonal level. However, the lineage relationship between the bone marrow and peripheral monocyte progenitors has yet to be defined. PMID:23165930
Genetic Ablation of CD68 Results in Mice with Increased Bone and Dysfunctional Osteoclasts
Ashley, Jason W.; Shi, Zhenqi; Zhao, Haibo; Li, Xingsheng; Kesterson, Robert A.; Feng, Xu
2011-01-01
CD68 is a member of the lysosome associated membrane protein (LAMP) family that is restricted in its expression to cells of the monocyte/macrophage lineage. This lineage restriction includes osteoclasts, and, while previous studies of CD68 in macrophages and dendritic cells have proposed roles in lipid metabolism, phagocytosis, and antigen presentation, the expression and function of CD68 in osteoclasts have not been explored. In this study, we investigated the expression and localization of CD68 in macrophages and osteoclasts in response to the monocyte/macrophage-colony stimulating factor (M-CSF) and the receptor activator of NF-κB ligand (RANKL). We found that M-CSF stimulates CD68 expression and RANKL alters the apparent molecular weight of CD68 as measured by Western immunoblotting. In addition, we explored the significance of CD68 expression in osteoclasts by generating mice that lack expression of CD68. These mice have increased trabecular bone, and in vitro assessment of CD68−/− osteoclasts revealed that, in the absence of CD68, osteoclasts demonstrate an accumulation of intracellular vesicle-like structures, and do not efficiently resorb bone. These findings demonstrate a role for CD68 in the function of osteoclasts, and future studies will determine the mechanistic nature of the defects seen in CD68−/− osteoclasts. PMID:21991369
NASA Astrophysics Data System (ADS)
Tang, Anming; Qian, Yu; Liu, Shuang; Wang, Weijuan; Xu, Bing; Qin, An; Liang, Gaolin
2016-05-01
Osteoporosis (OP) is an important aging-related disease and the effective prevention/treatment of this disease remains challenging. Considering the acidic microenvironment of bone resorption lacunae, herein, we rationally designed two pamidronate (Pami)-derivative and alendronate (Alen)-derivative hydrogelators Pami-D and Alen-D which self-assemble into nanofibers to form supramolecular hydrogels under acidic conditions. Cell viability assay, osteoclastogenesis, osteoclastic gene expression, and in vitro bone resorption results indicated that both Pami-D and Alen-D have better inhibitory effects on osteoclastic formation and bone resorption than Pami and Alen, respectively. We anticipate that our new drugs Pami-D and Alen-D could ``smartly'' self-assemble and locally concentrate the drugs at bone resorption lacunae in vivo and subsequently prevent/treat osteoporosis more efficiently.Osteoporosis (OP) is an important aging-related disease and the effective prevention/treatment of this disease remains challenging. Considering the acidic microenvironment of bone resorption lacunae, herein, we rationally designed two pamidronate (Pami)-derivative and alendronate (Alen)-derivative hydrogelators Pami-D and Alen-D which self-assemble into nanofibers to form supramolecular hydrogels under acidic conditions. Cell viability assay, osteoclastogenesis, osteoclastic gene expression, and in vitro bone resorption results indicated that both Pami-D and Alen-D have better inhibitory effects on osteoclastic formation and bone resorption than Pami and Alen, respectively. We anticipate that our new drugs Pami-D and Alen-D could ``smartly'' self-assemble and locally concentrate the drugs at bone resorption lacunae in vivo and subsequently prevent/treat osteoporosis more efficiently. Electronic supplementary information (ESI) available: Experiment methods and details; syntheses and characterization of Pami-D and Alen-D; HPLC conditions; Fig. S1-S15, Schemes S1 and S2, Tables S1 and S2. See DOI: 10.1039/c6nr00843g
Henriksen, K; Leeming, D J; Byrjalsen, I; Nielsen, R H; Sorensen, M G; Dziegiel, M H; Martin, T John; Christiansen, C; Qvist, P; Karsdal, M A
2007-06-01
We investigated whether the age of the bones endogenously exerts control over the bone resorption ability of the osteoclasts, and found that osteoclasts preferentially develop and resorb bone on aged bone. These findings indicate that the bone matrix itself plays a role in targeted remodeling of aged bones. Osteoclasts resorb aging bone in order to repair damage and maintain the quality of bone. The mechanism behind the targeting of aged bone for remodeling is not clear. We investigated whether bones endogenously possess the ability to control osteoclastic resorption. To biochemically distinguish aged and young bones; we measured the ratio between the age-isomerized betaCTX fragment and the non-isomerized alphaCTX fragment. By measurement of TRACP activity, CTX release, number of TRACP positive cells and pit area/pit number, we evaluated osteoclastogenesis as well as osteoclast resorption on aged and young bones. We found that the alphaCTX/betaCTX ratio is 3:1 in young compared to aged bones, and we found that both alpha and betaCTX are released by osteoclasts during resorption. Osteoclastogenesis was augmented on aged compared to young bones, and the difference was enhanced under low serum conditions. We found that mature osteoclasts resorb more on aged than on young bone, despite unchanged adhesion and morphology. These data indicate that the age of the bone plays an important role in controlling osteoclast-mediated resorption, with significantly higher levels of osteoclast differentiation and resorption on aged bones when compared to young bones.
Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation
Li, Defang; Liu, Jin; Guo, Baosheng; Liang, Chao; Dang, Lei; Lu, Cheng; He, Xiaojuan; Cheung, Hilda Yeuk-Siu; Xu, Liang; Lu, Changwei; He, Bing; Liu, Biao; Shaikh, Atik Badshah; Li, Fangfei; Wang, Luyao; Yang, Zhijun; Au, Doris Wai-Ting; Peng, Songlin; Zhang, Zongkang; Zhang, Bao-Ting; Pan, Xiaohua; Qian, Airong; Shang, Peng; Xiao, Lianbo; Jiang, Baohong; Wong, Chris Kong-Chu; Xu, Jiake; Bian, Zhaoxiang; Liang, Zicai; Guo, De-an; Zhu, Hailong; Tan, Weihong; Lu, Aiping; Zhang, Ge
2016-01-01
Emerging evidence indicates that osteoclasts direct osteoblastic bone formation. MicroRNAs (miRNAs) have a crucial role in regulating osteoclast and osteoblast function. However, whether miRNAs mediate osteoclast-directed osteoblastic bone formation is mostly unknown. Here, we show that increased osteoclastic miR-214-3p associates with both elevated serum exosomal miR-214-3p and reduced bone formation in elderly women with fractures and in ovariectomized (OVX) mice. Osteoclast-specific miR-214-3p knock-in mice have elevated serum exosomal miR-214-3p and reduced bone formation that is rescued by osteoclast-targeted antagomir-214-3p treatment. We further demonstrate that osteoclast-derived exosomal miR-214-3p is transferred to osteoblasts to inhibit osteoblast activity in vitro and reduce bone formation in vivo. Moreover, osteoclast-targeted miR-214-3p inhibition promotes bone formation in ageing OVX mice. Collectively, our results suggest that osteoclast-derived exosomal miR-214-3p transfers to osteoblasts to inhibit bone formation. Inhibition of miR-214-3p in osteoclasts may be a strategy for treating skeletal disorders involving a reduction in bone formation. PMID:26947250
Araujo, John C; Poblenz, Ann; Corn, Paul; Parikh, Nila U; Starbuck, Michael W; Thompson, Jerry T; Lee, Francis; Logothetis, Christopher J; Darnay, Bryant G
2009-11-01
Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC(50) of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts, and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases.
Weivoda, Megan M; Ruan, Ming; Pederson, Larry; Hachfeld, Christine; Davey, Rachel A; Zajac, Jeffrey D; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo
2016-01-01
Osteoblast-mediated bone formation is coupled to osteoclast-mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age-related bone loss. Osteoclasts release and activate TGF-β from the bone matrix. Here we show that osteoclastspecific inhibition of TGF-β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF-β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF-β receptor signaling. Osteoclasts in aged murine bones had lower TGF-β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF-β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF-β availability with age. Therefore, osteoclast responses to TGF-β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age-related bone loss. PMID:26108893
Yovich, S; Seydel, U; Papadimitriou, J M; Nicholson, G C; Wood, D J; Zheng, M H
1998-04-01
Osteoclasts resorb bone by a complex dynamic process that initially involves attachment, polarization and enzyme secretion, followed by their detachment and migration to new sites. In this study, we postulated that mineralized and osteoid bone matrix signal osteoclasts differently, resulting in the resorption of mineralized bone matrix only. We, therefore, compared the cytoplasmic distribution of cytoskeletal proteins F-actin and vinculin using confocal laser-scanning microscopy in osteoclasts cultured on mineralized and demineralized bone slices and correlated the observations with their functional activity. Our results have demonstrated significant differences in F-actin and vinculin staining patterns between osteoclasts cultured on mineralized bone matrix and those on demineralized bone matrix. In addition, the structural variations were accompanied by significant differences in bone resorbing activity between osteoclasts grown on mineralized bone matrix and those on demineralized bone matrix after 24 h of culture --resorption only occurring in mineralized bone but not in demineralized bone. These results indicated that failure of osteoid bone resorption is caused by perturbation of osteoclast polarization.
Araujo, John C.; Poblenz, Ann; Corn, Paul G.; Parikh, Nila U.; Starbuck, Michael W.; Thompson, Jerry T.; Lee, Francis; Logothetis, Christopher J.; Darnay, Bryant G.
2013-01-01
Purpose Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. Results Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC50 of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. Experimental design We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. Conclusion Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases. PMID:19855158
Shinohara, Masahiro; Chang, Betty Y; Buggy, Joseph J; Nagai, Yusuke; Kodama, Tatsuhiko; Asahara, Hiroshi; Takayanagi, Hiroshi
2014-03-01
Bone-resorbing osteoclasts play an essential role in normal bone homeostasis, as well as in various bone disorders such as osteoporosis and rheumatoid arthritis. Previously we showed that the Tec family of tyrosine kinases is essential for the differentiation of osteoclasts and the inhibition of Btk is a promising strategy for the prevention of the bone loss in osteoclast-associated bone disorders. Here we demonstrate that an orally available Btk inhibitor, ibrutinib (PCI-32765), suppresses osteoclastic bone resorption by inhibiting both osteoclast differentiation and function. Ibrutinib downregulated the expression of NFATc1, the key transcription factor for osteoclastogenesis, and disrupted the formation of the actin ring in mature osteoclasts. In addition, genome-wide screening revealed that Btk regulates the expression of the genes involved in osteoclast differentiation and function in both an NFATc1-dependent and -independent manner. Finally, we showed that ibrutinib administration ameliorated the bone loss that developed in a RANKL-induced osteoporosis mouse model. Thus, this study suggests ibrutinib to be a promising therapeutic agent for osteoclast-associated bone diseases. Copyright © 2013 Elsevier Inc. All rights reserved.
[Development, physiology, and cell activity of bone].
de Baat, P; Heijboer, M P; de Baat, C
2005-07-01
Bones are of crucial importance for the human body, providing skeletal support, serving as a home for the formation of haematopoietic cells, and reservoiring calcium and phosphate. Long bones develop by endochondral ossification. Flat bones develop by intramembranous ossification. Bone tissue contains hydroxyapatite and various extracellular proteins, producing bone matrix. Two biological mechanisms, determining the strength of bone, are modelling and remodelling. Modelling can change bone shape and size through bone formation by osteoblasts at some sites and through bone destruction by osteoclasts at other sites. Remodelling is bone turnover, also performed by osteoclasts and osteoblasts. The processes of modelling and remodelling are induced by mechanical loads, predominantly muscle loads. Osteoblasts develop from mesenchymal stem cells. Many stimulating factors are known to activate the differentiation. Mature osteoblasts synthesize bone matrix and may further differentiate into osteocytes. Osteocytes maintain structural bone integrity and allow bone to adapt to any mechanical and chemical stimulus. Osteoclasts derive from haematopoietic stem cells. A number of transcription and growth factors have been identified essential for osteoclast differentiation and function. Finally, there is a complex interaction between osteoblasts and osteoclasts. Bone destruction starts by attachment of osteoclasts to the bone surface. Following this, osteoclasts undergo specific morphological changes. The process of bone destruction starts by acid dissolution of hydroxyapatite. After that osteoclasts start to destruct the organic matrix.
The Multifaceted Osteoclast; Far and Beyond Bone Resorption.
Drissi, Hicham; Sanjay, Archana
2016-08-01
The accepted function of the bone resorbing cell, osteoclast, has been linked to bone remodeling and pathological osteolysis. Emerging evidence points to novel functions of osteoclasts in controlling bone formation and angiogenesis. Thus, while the concept of a "clastokine" with the potential to regulate osteogenesis during remodeling did not come as a surprise, new evidence provided unique insight into the mechanisms underlying osteoclastic control of bone formation. The question still remains as to whether osteoclast precursors or a unique trap positive mononuclear cell, can govern any aspect of bone formation. The novel paradigm eloquently proposed by leaders in the field brings together the concept of clastokines and osteoclast precursor-mediated bone formation, potentially though enhanced angiogenesis. These fascinating advances in osteoclast biology have motivated this short review, in which we discuss these new roles of osteoclasts. J. Cell. Biochem. 117: 1753-1756, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Water extract of the fruits of Alpinia oxyphylla inhibits osteoclast differentiation and bone loss.
Ha, Hyunil; Shim, Ki-Shuk; Kim, Taesoo; Lee, Chung-Jo; Park, Ji Hyung; Kim, Han Sung; Ma, Jin Yeul
2014-09-23
Excessive bone resorption by osteoclasts causes pathological bone destruction, seen in various bone diseases. There is accumulating evidence that certain herbal extracts have beneficial effects on bone metabolism. The fruits of Alpinia oxyphylla has been traditionally used for the treatment of diarrhea and enuresis. In this study, we investigated the effects of water extract of the fruits of Alpinia oxyphylla (WEAO) on osteoclast differentiation and osteoclast-mediated bone destruction. For osteoclast differentiation assay, mouse bone marrow-derived macrophages (BMMs) were cultured in the presence of RANKL and M-CSF. RANKL signaling pathways and gene expression of transcription factors regulating osteoclast differentiation were investigated by real-time PCR and Western blotting. A constitutively active form of NFATc1 was retrovirally transduced into BMMs. Bone resorbing activity of mature osteoclast was examined on a plate coated with an inorganic crystalline calcium phosphate. The in vivo effect against bone destruction was assessed in a murine model of RANKL-induced osteoporosis by micro-computed tomography and bone metabolism marker analyses. WEAO dose-dependently inhibited RANKL-induced osteoclast differentiation from BMMs by targeting the early stages of osteoclast differentiation. WEAO inhibited RANKL-induced expression of NFATc1, the master regulator of osteoclast differentiation. Overexpression of a constitutively active form of NFATc1 blunted the inhibitory effect of WEAO on osteoclast differentiation, suggesting that NFATc1 is a critical target of the inhibitory action of WEAO. WEAO inhibited RANKL-induced expression of c-Fos, an upstream activator of NFATc1, by suppressing the classical NF-κB signaling pathway. WEAO also inhibited RANKL-induced down-regulation of Id2 and MafB, negative regulators of NFATc1. WEAO does not directly affect bone resorbing activity of mature osteoclasts. In accordance with the in vitro results, WEAO attenuated RANKL-induced bone destruction in mice by inhibiting osteoclast differentiation. This study demonstrates that WEAO exhibits a protective effect against bone loss by inhibiting RANKL-induced osteoclast differentiation. These findings suggest that WEAO might be useful for the prevention and treatment of bone diseases associated with excessive bone resorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Xinhua; Zhai, Zanjing; Liu, Xuqiang
Highlights: •A natural-derived compound, dioscin, suppresses osteoclast formation and bone resorption. •Dioscin inhibits osteolytic bone loss in vivo. •Dioscin impairs the Akt signaling cascades pathways during osteoclastogenesis. •Dioscin have therapeutic value in treating osteoclast-related diseases. -- Abstract: Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiationmore » and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases.« less
Maia, F Raquel; Musson, David S; Naot, Dorit; da Silva, Lucilia P; Bastos, Ana R; Costa, João B; Oliveira, Joaquim M; Correlo, Vitor M; Reis, Rui L; Cornish, Jillian
2018-03-16
Bone tissue engineering with cell-scaffold constructs has been attracting a lot of attention, in particular as a tool for the efficient guiding of new tissue formation. However, the majority of the current strategies used to evaluate novel biomaterials focus on osteoblasts and bone formation, while osteoclasts are often overlooked. Consequently, there is limited knowledge on the interaction between osteoclasts and biomaterials. In this study, the ability of spongy-like gellan gum and hydroxyapatite-reinforced gellan gum hydrogels to support osteoclastogenesis was investigated in vitro. First, the spongy-like gellan gum and hydroxyapatite-reinforced gellan gum hydrogels were characterized in terms of microstructure, water uptake and mechanical properties. Then, bone marrow cells isolated from the long bones of mice and cultured in spongy-like hydrogels were treated with 1,25-dihydroxyvitamin D3 to promote osteoclastogenesis. It was shown that the addition of HAp to spongy-like gellan gum hydrogels enables the formation of larger pores and thicker walls, promoting an increase in stiffness. Hydroxyapatite-reinforced spongy-like gellan gum hydrogels support the formation of the aggregates of tartrate-resistant acid phosphatase-stained cells and the expression of genes encoding DC-STAMP and Cathepsin K, suggesting the differentiation of bone marrow cells into pre-osteoclasts. The hydroxyapatite-reinforced spongy-like gellan gum hydrogels developed in this work show promise for future use in bone tissue scaffolding applications.
Merolli, Antonio; Fung, Stephanie; Murthy, N Sanjeeva; Pashuck, E Thomas; Mao, Yong; Wu, Xiaohuan; Steele, Joseph A M; Martin, Daniel; Moghe, Prabhas V; Bromage, Timothy; Kohn, Joachim
2018-03-21
Osteoclasts are large multinucleated giant cells that actively resorb bone during the physiological bone turnover (BTO), which is the continuous cycle of bone resorption (by osteoclasts) followed by new bone formation (by osteoblasts). Osteoclasts secrete chemotactic signals to recruit cells for regeneration of vasculature and bone. We hypothesize that a biomaterial that attracts osteoclasts and re-establishes BTO will induce a better healing response than currently used bone graft materials. While the majority of bone regeneration efforts have focused on maximizing bone deposition, the novelty in this approach is the focus on stimulating osteoclastic resorption as the starter for BTO and its concurrent new vascularized bone formation. A biodegradable tyrosine-derived polycarbonate, E1001(1k), was chosen as the polymer base due to its ability to support bone regeneration in vivo. The polymer was functionalized with a RGD peptide or collagen I, or blended with β-tricalcium phosphate. Osteoclast attachment and early stages of active resorption were observed on all substrates. The transparency of E1001(1k) in combination with high resolution confocal imaging enabled visualization of morphological features of osteoclast activation such as the formation of the "actin ring" and the "ruffled border", which previously required destructive forms of imaging such as transmission electron microscopy. The significance of these results is twofold: (1) E1001(1k) is suitable for osteoclast attachment and supports osteoclast maturation, making it a base polymer that can be further modified to optimize stimulation of BTO and (2) the transparency of this polymer makes it a suitable analytical tool for studying osteoclast behavior.
[Osteoclasts and early bone remodeling after orthodontic micro-implant placement].
Zhang, Wei; Guo, Jia-jia; Zhu, Wen-qian; Tang, Guo-hua
2013-08-01
To observe the incidence of osteoclasts during early bone remodeling after orthodontic micro-implant placement. Twenty New Zealand rabbits were randomly allotted into 4 groups. One micro-implant was implanted proximal to the epiphyseal plate of the tibia. Animals were sacrificed on day 3, 7, 14 and 28 (n=5). The sequence of histological changes around the micro-implants were evaluated by hematoxylin and eosin (HE) staining. Osteoclasts were identified by TRAP staining. The differences of the number of the osteoclasts among each time point were analyzed by one way ANOVA with SPSS 19.0 software package. After 3 days of implantation, a large number of erythrocytes, inflammatory cells, mesenchymal cells and bone debris were seen at the implant bone interfaces. Few osteoclasts were observed. On day 7, granular woven bone was formed and some osteoclasts were found in the Howship's lacunae. New bone formation and mineralization were apparent on day 14. Meanwhile, large amounts of osteoclasts were found in the latticed woven bone. On day 28, woven trabeculae with lamellate structures connected to lamellar bone and fewer osteoclasts were identified. Semi-quantitative analysis showed that the number of the osteoclasts was at peak on day 14. There were significant differences among each time point (P<0.01). Osteoclast activity is closely related to bone formation and remodeling after micro-implant insertion.
Pederson, Larry; Ruan, Ming; Westendorf, Jennifer J.; Khosla, Sundeep; Oursler, Merry Jo
2008-01-01
Under most conditions, resorbed bone is nearly precisely replaced in location and amount by new bone. Thus, it has long been recognized that bone loss through osteoclast-mediated bone resorption and bone replacement through osteoblast-mediated bone formation are tightly coupled processes. Abundant data conclusively demonstrate that osteoblasts direct osteoclast differentiation. Key questions remain, however, as to how osteoblasts are recruited to the resorption site and how the amount of bone produced is so precisely controlled. We hypothesized that osteoclasts play a crucial role in the promotion of bone formation. We found that osteoclast conditioned medium stimulates human mesenchymal stem (hMS) cell migration and differentiation toward the osteoblast lineage as measured by mineralized nodule formation in vitro. We identified candidate osteoclast-derived coupling factors using the Affymetrix microarray. We observed significant induction of sphingosine kinase 1 (SPHK1), which catalyzes the phosphorylation of sphingosine to form sphingosine 1-phosphate (S1P), in mature multinucleated osteoclasts as compared with preosteoclasts. S1P induces osteoblast precursor recruitment and promotes mature cell survival. Wnt10b and BMP6 also were significantly increased in mature osteoclasts, whereas sclerostin levels decreased during differentiation. Stimulation of hMS cell nodule formation by osteoclast conditioned media was attenuated by the Wnt antagonist Dkk1, a BMP6-neutralizing antibody, and by a S1P antagonist. BMP6 antibodies and the S1P antagonist, but not Dkk1, reduced osteoclast conditioned media-induced hMS chemokinesis. In summary, our findings indicate that osteoclasts may recruit osteoprogenitors to the site of bone remodeling through SIP and BMP6 and stimulate bone formation through increased activation of Wnt/BMP pathways. PMID:19075223
Mantoku, Akiko; Chatani, Masahiro; Aono, Kazushi; Inohaya, Keiji; Kudo, Akira
2016-01-15
Tooth replacement in polyphyodont is a well-organized system for maintenance of homeostasis of teeth, containing the dynamic structural change in skeletal tissues such as the attachment bone, which is the supporting element of teeth. Histological analyses have revealed the character of tooth replacement, however, the cellular mechanism of how skeletal tissues are modified during tooth replacement is largely unknown. Here, we showed the important role of osteoblasts for controlling osteoclasts to modify the attachment bone during tooth replacement in medaka pharyngeal teeth, coupled with an osterix-DsRed/TRAP-GFP transgenic line to visualize osteoblasts and osteoclasts. In the turnover of the row of attachment bones, these bones were resorbed at the posterior side where most developed functional teeth were located, and generated at the anterior side where teeth were newly erupted, which caused continuous tooth replacement. In the cellular analysis, osteoclasts and osteoblasts were located at attachment bones separately, since mature osteoclasts were localized at the resorbing side and osteoblasts gathered at the generating side. To demonstrate the role of osteoclasts in tooth replacement, we established medaka made deficient in c-fms-a by TALEN. c-fms-a deficient medaka showed hyperplasia of attachment bones along with reduced bone resorption accompanied by a low number of TRAP-positive osteoclasts, indicating an important role of osteoclasts in the turnover of attachment bones. Furthermore, nitroreductase-mediated osteoblast-specific ablation induced disappearance of osteoclasts, indicating that osteoblasts were essential for maintenance of osteoclasts for the proper turnover. Taken together, our results suggested that the medaka attachment bone provides the model to understand the cellular mechanism for tooth replacement, and that osteoblasts act in the coordination of bone morphology by supporting osteoclasts. Copyright © 2015 Elsevier Inc. All rights reserved.
Decursin from Angelica gigas suppresses RANKL-induced osteoclast formation and bone loss.
Wang, Xin; Zheng, Ting; Kang, Ju-Hee; Li, Hua; Cho, Hyewon; Jeon, Raok; Ryu, Jae-Ha; Yim, Mijung
2016-03-05
Osteoclasts are the only cells capable of breaking down bone matrix, and excessive activation of osteoclasts is responsible for bone-destructive diseases. In this study, we investigated the effects of decursin from extract of Angelica gigas root on receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast formation using mouse bone marrow-derived macrophages (BMMs). Decursin inhibited RANKL-induced osteoclast formation without cytotoxicity. In particular, decursin maintains the characteristics of macrophages by blocking osteoclast differentiation by RANKL. Furthermore, the RANKL-stimulated bone resorption was diminished by decursin. Mechanistically, decursin blocked the RANKL-triggered ERK mitogen-activated protein kinases (MAPK) phosphorylation, which results in suppression of c-Fos and the nuclear factor of activated T cells (NFATc1) expression. In accordance with the in vitro study, decursin reduced lipopolysaccharide (LPS)- or ovariectomy (OVX)-induced bone loss in vivo. Therefore, decursin exerted an inhibitory effect on osteoclast formation and bone loss in vitro and in vivo. Decursin could be useful for the treatment of bone diseases associated with excessive bone resorption. Copyright © 2016 Elsevier B.V. All rights reserved.
Smad4 is required to inhibit osteoclastogenesis and maintain bone mass.
Morita, Mayu; Yoshida, Shigeyuki; Iwasaki, Ryotaro; Yasui, Tetsuro; Sato, Yuiko; Kobayashi, Tami; Watanabe, Ryuichi; Oike, Takatsugu; Miyamoto, Kana; Takami, Masamichi; Ozato, Keiko; Deng, Chu-Xia; Aburatani, Hiroyuki; Tanaka, Sakae; Yoshimura, Akihiko; Toyama, Yoshiaki; Matsumoto, Morio; Nakamura, Masaya; Kawana, Hiromasa; Nakagawa, Taneaki; Miyamoto, Takeshi
2016-10-12
Bone homeostasis is maintained as a delicate balance between bone-resorption and bone-formation, which are coupled to maintain appropriate bone mass. A critical question is how bone-resorption is terminated to allow bone-formation to occur. Here, we show that TGFβs inhibit osteoclastogenesis and maintain bone-mass through Smad4 activity in osteoclasts. We found that latent-TGFβ1 was activated by osteoclasts to inhibit osteoclastogenesis. Osteoclast-specific Smad4 conditional knockout mice (Smad4-cKO) exhibited significantly reduced bone-mass and elevated osteoclast formation relative to controls. TGFβ1-activation induced expression of Irf8 and Bcl6, both of which encode factors inhibiting osteoclastogenesis, by blocking their negative regulator, Prdm1, in osteoclasts in a Smad4-dependent manner. Reduced bone-mass and accelerated osteoclastogenesis seen in Smad4-cKO were abrogated by Prdm1 deletion. Administration of latent-TGFβ1-Fc to wild-type mice antagonized LPS-induced bone destruction in a model of activated osteoclast-mediated bone destruction. Thus, latent-TGFβ1-Fc could serve as a promising new therapeutic agent in bone diseases marked by excessive resorption.
Deletion of Adseverin in Osteoclasts Affects Cell Structure But Not Bone Metabolism.
Cao, Yixuan; Wang, Yongqiang; Sprangers, Sara; Picavet, Daisy I; Glogauer, Michael; McCulloch, Christopher A; Everts, Vincent
2017-08-01
Adseverin is an actin-severing/capping protein that may contribute to osteoclast differentiation in vitro but its role in bone remodeling of healthy animals is not defined. We analyzed bone and osteoclast structure in adseverin conditional null mice at alveolar and long bone sites. In wild-type and adseverin null mice, as measured by dual-energy X-ray absorptiometry, there were no differences of bone mineral content or bone mineral density, indicating no change of bone metabolism. In tibiae, TRAcP + osteoclasts were formed in comparable numbers in adseverin null and wild-type mice. Ultrastructural analysis showed normal and similar abundance of ruffled borders, sealing zones, and mitochondria, and with no difference of osteoclast nuclear numbers. In contrast, analyses of long bone showed that in the absence of adseverin osteoclasts were smaller (120 ± 13 vs. 274 ± 19 µm 2 ; p < 0.05), as were nuclear size and the surface area of cytoplasm. The nuclei of adseverin null osteoclasts exhibited more heterochromatin (31 ± 3%) than wild-type cells (8 ± 1%), suggesting that adseverin affects cell differentiation. The data indicate that in healthy, developing tissues, adseverin contributes to the regulation of osteoclast structure but not to bone metabolism in vivo.
Junrui, Pei; Bingyun, Li; Yanhui, Gao; Xu, Jiaxun; Darko, Gottfried M; Dianjun, Sun
2016-09-01
Skeletal fluorosis is a metabolic bone disease caused by excessive accumulation of fluoride. Although the cause of this disease is known, the mechanism by which fluoride accumulates on the bone has not been clearly defined, thus there are no markers that can be used for screening skeletal fluorosis in epidemiology. In this study, osteoclasts were formed from bone marrow cells of C57BL/6 mice-treated with macrophage colony stimulating factor and receptor activator of nuclear factor kappa-B ligand. The mRNA expression of tartrate-resistant acid phosphatase 5b (TRAP5b), osteoclast-associated receptor (OSCAR), calcitonin receptor (CTR), matrix metalloproteinase 9 (MMP9) and cathepsin K (CK) were detected using real-time PCR (RT-PCR). Results showed that fluoride between 0.5 and 8mg/l had no effect on osteoclast formation. However fluoride at 0.5mg/l level significantly decreased the activity of osteoclast bone resorption. Fluoride concentration was negatively correlated with the activity of osteoclast bone resorption. On day 5 of osteoclast differentiation maturity, MMP9 and CK mRNA expression were not only negatively correlated with fluoride concentration, but directly correlated with the activity of osteoclast bone resorption. TRAP5b, CTR and OSCAR mRNA expression were positively correlated with the number of osteoclast and they had no correlation with the activity of osteoclast bone resorption. Thus, it can be seen that MMP9 and CK may reflect the change of activity of bone resorption as well the degree of fluoride exposure. TRAP5b, CTR and OSCAR can represent the change of number of osteoclast formed. Copyright © 2016 Elsevier B.V. All rights reserved.
Knee loading inhibits osteoclast lineage in a mouse model of osteoarthritis
Li, Xinle; Yang, Jing; Liu, Daquan; Li, Jie; Niu, Kaijun; Feng, Shiqing; Yokota, Hiroki; Zhang, Ping
2016-01-01
Osteoarthritis (OA) is a whole joint disorder that involves cartilage degradation and periarticular bone response. Changes of cartilage and subchondral bone are associated with development and activity of osteoclasts from subchondral bone. Knee loading promotes bone formation, but its effects on OA have not been well investigated. Here, we hypothesized that knee loading regulates subchondral bone remodeling by suppressing osteoclast development, and prevents degradation of cartilage through crosstalk of bone-cartilage in osteoarthritic mice. Surgery-induced mouse model of OA was used. Two weeks application of daily dynamic knee loading significantly reduced OARSI scores and CC/TAC (calcified cartilage to total articular cartilage), but increased SBP (subchondral bone plate) and B.Ar/T.Ar (trabecular bone area to total tissue area). Bone resorption of osteoclasts from subchondral bone and the differentiation of osteoclasts from bone marrow-derived cells were completely suppressed by knee loading. The osteoclast activity was positively correlated with OARSI scores and negatively correlated with SBP and B.Ar/T.Ar. Furthermore, knee loading exerted protective effects by suppressing osteoclastogenesis through Wnt signaling. Overall, osteoclast lineage is the hyper responsiveness of knee loading in osteoarthritic mice. Mechanical stimulation prevents OA-induced cartilage degeneration through crosstalk with subchondral bone. Knee loading might be a new potential therapy for osteoarthritis patients. PMID:27087498
Scheven, B A; Wassenaar, A M; Kawilarang-de Haas, E W; Nijweide, P J
1987-07-01
Hemopoietic stem and progenitor cells from different sources differ in radiosensitivity. Recently, we have demonstrated that the multinucleated cell responsible for bone resorption and marrow cavity formation, the osteoclast, is in fact of hemopoietic lineage. In this investigation we have studied the radiosensitivity of osteoclast formation from two different hemopoietic tissues: fetal liver and adult bone marrow. Development of osteoclasts from hemopoietic progenitors was induced by coculture of hemopoietic cell populations with fetal mouse long bones depleted of their own osteoclast precursor pool. During culture, osteoclasts developed from the exogenous cell population and invaded the calcified hypertrophic cartilage of the long bone model, thereby giving rise to the formation of a primitive marrow cavity. To analyze the radiosensitivity of osteoclast formation, either the hemopoietic cells or the bone rudiments were irradiated before coculture. Fetal liver cells were found to be less radiosensitive than bone marrow cells. The D0, Dq values and extrapolation numbers were 1.69 Gy, 5.30 Gy, and 24.40 for fetal liver cells and 1.01 Gy, 1.85 Gy, and 6.02 for bone marrow cells. Irradiation of the (pre)osteoclast-free long bone rudiments instead of the hemopoietic sources resulted in a significant inhibition of osteoclast formation at doses of 4 Gy or more. This indirect effect appeared to be more prominent in the cocultures with fetal than with adult hemopoietic cells. Furthermore, radiation doses of 8.0-10.0 Gy indirectly affected the appearance of other cell types (e.g., granulocytes) in the newly formed but underdeveloped marrow cavity. The results indicate that osteoclast progenitors from different hemopoietic sources exhibit a distinct sensitivity to ionizing irradiation. Radiation injury to long bone rudiments disturbs the osteoclast-forming capacity as well as the hemopoietic microenvironment.
Osteoclast-targeting small molecules for the treatment of neoplastic bone metastases.
Kawatani, Makoto; Osada, Hiroyuki
2009-11-01
Osteoclasts are highly specialized cells that resorb bone, and their abnormal activity is implicated in a variety of human bone diseases. In neoplastic bone metastasis, the bone destruction caused by osteoclasts is not only associated with the formation and progression of metastatic lesions, but also could contribute to frequent complications such as severe pain and pathological fractures, which greatly diminish the quality of life of patients. Bisphosphonates, potent antiresorptive drugs, have been shown to have efficacy for treating bone metastases in many types of cancer, and the development of various molecularly targeted agents is currently proceeding. Thus, inhibition of osteoclast function is now established as an important treatment strategy for bony metastases. This review focuses on promising small molecules that disrupt osteoclast function and introduces our chemical/biological approach for identifying osteoclast-targeting small molecular inhibitors.
Yang, Xiao; Gandhi, Chintan; Rahman, Md Mizanur; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu
2015-12-01
Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Previous studies have shown controversial results regarding the role of in situ AGEs accumulation in osteoclastic resorption. To address this issue, this study cultured human osteoclast cells directly on human cadaveric bone slices from different age groups (young and elderly) to warrant its relevance to in vivo conditions. The cell culture was terminated on the 3rd, 7th, and 10th day, respectively, to assess temporal changes in the number of differentiated osteoclasts, the number and size of osteoclastic resorption pits, the amount of bone resorbed, as well as the amount of matrix AGEs released in the medium by resorption. In addition, the in situ concentration of matrix AGEs at each resorption pit was also estimated based on its AGEs autofluorescent intensity. The results indicated that (1) osteoclastic resorption activities were significantly correlated with the donor age, showing larger but shallower resorption pits on the elderly bone substrates than on the younger ones; (2) osteoclast resorption activities were not significantly dependent on the in situ AGEs concentration in bone matrix, and (3) a correlation was observed between osteoclast activities and the concentration of AGEs released by the resorption. These results suggest that osteoclasts tend to migrate away from initial anchoring sites on elderly bone substrate during resorption compared to younger bone substrates. However, such behavior is not directly related to the in situ concentration of AGEs in bone matrix at the resorption sites.
Wei, Wei; Zeve, Daniel; Wang, Xueqian; Du, Yang; Tang, Wei; Dechow, Paul C.; Graff, Jonathan M.; Wan, Yihong
2011-01-01
Osteoclasts are bone-resorbing cells essential for skeletal development, homeostasis, and regeneration. They derive from hematopoietic progenitors in the monocyte/macrophage lineage and differentiate in response to RANKL. However, the precise nature of osteoclast progenitors is a longstanding and important question. Using inducible peroxisome proliferator-activated receptor γ (PPARγ)-tTA TRE-GFP (green fluorescent protein) reporter mice, we show that osteoclast progenitors reside specifically in the PPARγ-expressing hematopoietic bone marrow population and identify the quiescent PPARγ+ cells as osteoclast progenitors. Importantly, two PPARγ-tTA TRE-Cre-controlled genetic models provide compelling functional evidence. First, Notch activation in PPARγ+ cells causes high bone mass due to impaired osteoclast precursor proliferation. Second, selective ablation of PPARγ+ cells by diphtheria toxin also causes high bone mass due to decreased osteoclast numbers. Furthermore, PPARγ+ cells respond to both pathological and pharmacological resorption-enhancing stimuli. Mechanistically, PPARγ promotes osteoclast progenitors by activating GATA2 transcription. These findings not only identify the long-sought-after osteoclast progenitors but also establish unprecedented tools for their visualization, isolation, characterization, and genetic manipulation. PMID:21947280
Martin-Millan, Marta; Almeida, Maria; Ambrogini, Elena; Han, Li; Zhao, Haibo; Weinstein, Robert S.; Jilka, Robert L.; O'Brien, Charles A.; Manolagas, Stavros C.
2010-01-01
Estrogens attenuate osteoclastogenesis and stimulate osteoclast apoptosis, but the molecular mechanism and contribution of these effects to the overall antiosteoporotic efficacy of estrogens remain controversial. We selectively deleted the estrogen receptor (ER)α from the monocyte/macrophage cell lineage in mice (ERαLysM−/−) and found a 2-fold increase in osteoclast progenitors in the marrow and the number of osteoclasts in cancellous bone, along with a decrease in cancellous bone mass. After loss of estrogens these mice failed to exhibit the expected increase in osteoclast progenitors, the number of osteoclasts in bone, and further loss of cancellous bone. However, they lost cortical bone indistinguishably from their littermate controls. Mature osteoclasts from ERαLysM−/− were resistant to the proapoptotic effect of 17β-estradiol. Nonetheless, the effects of estrogens on osteoclasts were unhindered in mice bearing an ERα knock-in mutation that prevented binding to DNA. Moreover, a polymeric form of estrogen that is not capable of stimulating the nuclear-initiated actions of ERα was as effective as 17β-estradiol in inducing osteoclast apoptosis in cells with the wild-type ERα. We conclude that estrogens attenuate osteoclast generation and life span via cell autonomous effects mediated by DNA-binding-independent actions of ERα. Elimination of these effects is sufficient for loss of bone in the cancellous compartment in which complete perforation of trabeculae by osteoclastic resorption precludes subsequent refilling of the cavities by the bone-forming osteoblasts. However, additional effects of estrogens on osteoblasts, osteocytes, and perhaps other cell types are required for their protective effects on the cortical compartment, which constitutes 80% of the skeleton. PMID:20053716
Kukita, Akiko; Kukita, Toshio; Nagata, Kengo; Teramachi, Junpei; Li, Yin-Ji; Yoshida, Hiroki; Miyamoto, Hiroshi; Gay, Steffen; Pessler, Frank; Shobuike, Takeo
2011-09-01
Since transcription factors expressed in osteoclasts are possible targets for regulation of bone destruction in bone disorders, we investigated the expression of the transcription factor FBI-1/OCZF/LRF (in humans, factor that binds to inducer of short transcripts of human immunodeficiency virus type 1; in rats, osteoclast-derived zinc finger; in mice, leukemia/lymphoma-related factor) in patients with rheumatoid arthritis (RA), and assessed its role in osteoclastogenesis in vivo. Expression of FBI-1/OCZF was investigated in subchondral osteoclasts in human RA and in rat adjuvant-induced arthritis (AIA) using immunostaining and in situ hybridization, respectively. Transgenic mice overexpressing OCZF (OCZF-Tg) under the control of the cathepsin K promoter were generated, and bone mineral density and bone histomorphometric features were determined by peripheral quantitative computed tomography, calcein double-labeling, and specific staining for osteoclasts and osteoblasts. LRF/OCZF expression and the consequence of LRF inhibition were assessed in vitro with RANKL-induced osteoclast differentiation. FBI-1/OCZF was detected in the nuclei of osteoclasts in rat AIA and human RA. RANKL increased the levels of LRF messenger RNA and nuclear-localized LRF protein in primary macrophages. In OCZF-Tg mice, bone volume was significantly decreased, the number of osteoclasts, but not osteoblasts, was increased in long bones, and osteoclast survival was promoted. Conversely, inhibition of LRF expression suppressed the formation of osteoclasts from macrophages in vitro. FBI-1/OCZF/LRF regulates osteoclast formation and apoptosis in vivo, and may become a useful marker and target in treating disorders leading to reduced bone density, including chronic arthritis. Copyright © 2011 by the American College of Rheumatology.
Kular, Jasreen; Tickner, Jennifer C; Pavlos, Nathan J; Viola, Helena M; Abel, Tamara; Lim, Bay Sie; Yang, Xiaohong; Chen, Honghui; Cook, Robert; Hool, Livia C; Zheng, Ming Hao; Xu, Jiake
2015-01-16
The maintenance of bone homeostasis requires tight coupling between bone-forming osteoblasts and bone-resorbing osteoclasts. However, the precise molecular mechanism(s) underlying the differentiation and activities of these specialized cells are still largely unknown. Here, we identify choline kinase β (CHKB), a kinase involved in the biosynthesis of phosphatidylcholine, as a novel regulator of bone homeostasis. Choline kinase β mutant mice (flp/flp) exhibit a systemic low bone mass phenotype. Consistently, osteoclast numbers and activity are elevated in flp/flp mice. Interestingly, osteoclasts derived from flp/flp mice exhibit reduced sensitivity to excessive levels of extracellular calcium, which could account for the increased bone resorption. Conversely, supplementation of cytidine 5'-diphosphocholine in vivo and in vitro, a regimen that bypasses CHKB deficiency, restores osteoclast numbers to physiological levels. Finally, we demonstrate that, in addition to modulating osteoclast formation and function, loss of CHKB corresponds with a reduction in bone formation by osteoblasts. Taken together, these data posit CHKB as a new modulator of bone homeostasis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
TULA-2, a novel histidine phosphatase regulates bone remodeling by modulating osteoclast function
Back, Steven H.; Adapala, Naga Suresh; Barbe, Mary F.; Carpino, Nick C.; Tsygankov, Alexander Y.; Sanjay, Archana
2013-01-01
Bone is a dynamic tissue that depends on the intricate relationship between protein tyrosine kinases (PTK) and protein tyrosine phosphatases (PTP) for maintaining homeostasis. PTKs and PTPs act like molecular on and off switches and help modulate differentiation and the attachment of osteoclasts to bone matrix regulating bone resorption. The novel protein T-cell Ubiquitin Ligand-2 (TULA-2), which is abundantly expressed in osteoclasts, is a novel histidine phosphatase. Our results show that of the two family members only TULA-2 is expressed in osteoclasts and that its expression is sustained throughout the course of osteoclast differentiation suggesting that TULA-2 may play a role during early as well late stages of osteoclast differentiation. Skeletal analysis of mice that do not express TULA or TULA-2 proteins (DKO Mice) revealed that there was a decrease in bone volume due to increased osteoclast numbers and function. Furthermore, in vitro experiments indicated that bone marrow precursor cells from DKO mice have an increased potential to form osteoclasts. At the molecular level, the absence of TULA-2 in osteoclasts results in increased Syk phosphorylation at the Y352 and Y525/526 residues and activation of phospholipase C gamma 2 (PLCγ2) upon engagement of Immune-receptor-Tyrosine-based-Activation-Motif (ITAM)–mediated signaling. Furthermore, expression of a phosphatase-dead TULA-2 leads to increased osteoclast function. Taken together, these results suggest that TULA-2 negatively regulates osteoclast differentiation and function. PMID:23149425
TULA-2, a novel histidine phosphatase, regulates bone remodeling by modulating osteoclast function.
Back, Steven H; Adapala, Naga Suresh; Barbe, Mary F; Carpino, Nick C; Tsygankov, Alexander Y; Sanjay, Archana
2013-04-01
Bone is a dynamic tissue that depends on the intricate relationship between protein tyrosine kinases (PTK) and protein tyrosine phosphatases (PTP) for maintaining homeostasis. PTKs and PTPs act like molecular on and off switches and help modulate differentiation and the attachment of osteoclasts to bone matrix regulating bone resorption. The protein T cell ubiquitin ligand-2 (TULA-2), which is abundantly expressed in osteoclasts, is a novel histidine phosphatase. Our results show that of the two family members, only TULA-2 is expressed in osteoclasts and that its expression is sustained throughout the course of osteoclast differentiation, suggesting that TULA-2 may play a role during early as well late stages of osteoclast differentiation. Skeletal analysis of mice that do not express TULA or TULA-2 proteins (DKO mice) revealed that there was a decrease in bone volume due to increased osteoclast numbers and function. Furthermore, in vitro experiments indicated that bone marrow precursor cells from DKO mice have an increased potential to form osteoclasts. At the molecular level, the absence of TULA-2 in osteoclasts results in increased Syk phosphorylation at the Y352 and Y525/526 residues and activation of phospholipase C gamma 2 (PLCγ2) upon engagement of immune-receptor-tyrosine-based-activation-motif (ITAM)-mediated signaling. Furthermore, expression of a phosphatase-dead TULA-2 leads to increased osteoclast function. Taken together, these results suggest that TULA-2 negatively regulates osteoclast differentiation and function.
A crucial role for thiol antioxidants in estrogen-deficiency bone loss
Lean, Jenny M.; Davies, Julie T.; Fuller, Karen; Jagger, Christopher J.; Kirstein, Barrie; Partington, Geoffrey A.; Urry, Zoë L.; Chambers, Timothy J.
2003-01-01
The mechanisms through which estrogen prevents bone loss are uncertain. Elsewhere, estrogen exerts beneficial actions by suppression of reactive oxygen species (ROS). ROS stimulate osteoclasts, the cells that resorb bone. Thus, estrogen might prevent bone loss by enhancing oxidant defenses in bone. We found that glutathione and thioredoxin, the major thiol antioxidants, and glutathione and thioredoxin reductases, the enzymes responsible for maintaining them in a reduced state, fell substantially in rodent bone marrow after ovariectomy and were rapidly normalized by exogenous 17-β estradiol. Moreover, administration of N-acetyl cysteine (NAC) or ascorbate, antioxidants that increase tissue glutathione levels, abolished ovariectomy-induced bone loss, while L-buthionine-(S,R)-sulphoximine (BSO), a specific inhibitor of glutathione synthesis, caused substantial bone loss. The 17-β estradiol increased glutathione and glutathione and thioredoxin reductases in osteoclast-like cells in vitro. Furthermore, in vitro NAC prevented osteoclast formation and NF-κB activation. BSO and hydrogen peroxide did the opposite. Expression of TNF-α, a target for NF-κB and a cytokine strongly implicated in estrogen-deficiency bone loss, was suppressed in osteoclasts by 17-β estradiol and NAC. These observations strongly suggest that estrogen deficiency causes bone loss by lowering thiol antioxidants in osteoclasts. This directly sensitizes osteoclasts to osteoclastogenic signals and entrains ROS-enhanced expression of cytokines that promote osteoclastic bone resorption. PMID:12975476
Hong, Seong-Eun; Lee, Jiae; Seo, Dong-Hyun; In Lee, Hye; Ri Park, Doo; Lee, Gong-Rak; Jo, You-Jin; Kim, Narae; Kwon, Minjung; Shon, Hansem; Kyoung Seo, Eun; Kim, Han-Sung; Young Lee, Soo; Jeong, Woojin
2017-11-01
Excessive bone resorption caused by increased osteoclast number or activity leads to a variety of bone diseases including osteoporosis, rheumatoid arthritis and periodontitis. Thus, the therapeutic strategy for these diseases has been focused primarily on the inhibition of osteoclast formation and function. This study shows that euphorbia factor L1 (EFL1), a diterpenoid isolated from Euphorbia lathyris, inhibited osteoclastogenesis and induced osteoclast apoptosis. EFL1 suppressed osteoclast formation and bone resorption at both initial and terminal differentiation stages. EFL1 inhibited receptor activator of NF-κB ligand (RANKL)-induced NFATc1 induction with attenuated NF-κB activation and c-Fos expression. EFL1 decreased the level of reactive oxygen species by scavenging them or activating Nrf2, and inhibited PGC-1β that regulates mitochondria biogenesis. In addition, EFL1 induced apoptosis in differentiated osteoclasts by increasing Fas ligand expression followed by caspase activation. Moreover, EFL1 inhibited inflammation-induced bone erosion and ovariectomy-induced bone loss in mice. These findings suggest that EFL1 inhibits osteoclast differentiation by regulating cellular redox status and induces Fas-mediated apoptosis in osteoclast, and may provide therapeutic potential for preventing or treating bone-related diseases caused by excessive osteoclast. Copyright © 2017 Elsevier Inc. All rights reserved.
Matsuura, Yoshinobu; Kikuta, Junichi; Kishi, Yuika; Hasegawa, Tetsuo; Okuzaki, Daisuke; Hirano, Toru; Minoshima, Masafumi; Kikuchi, Kazuya; Kumanogoh, Atsushi; Ishii, Masaru
2018-04-28
Osteoclasts play critical roles in inflammatory bone destruction. Precursor cell migration, cell differentiation, and functional cell activation are all in play. Biological disease-modifying antirheumatic drugs (DMARDs) have been shown to significantly inhibit both bone erosion as well as synovitis, although how such agents reduce osteoclastic bone destruction in vivo has not been fully explained. Here, we used an intravital time-lapse imaging technique to directly visualise mature osteoclasts and their precursors, and explored how different biological DMARDs acted in vivo . Lipopolysaccharide (LPS) was injected into the calvarial periosteum of fluorescent reporter mice to induce inflammatory bone destruction. Time-lapse imaging was performed via intravital multiphoton microscopy 5 days after LPS injection. Biological DMARDs, including monoclonal antibodies (mAbs) against the interleukin (IL) 6 receptor (IL-6R) and tumour necrosis factor α (TNFα), or cytotoxic T-lymphocyte-associated protein 4 (CTLA4)-Ig, were intraperitoneally administered at the time of LPS injection. We determined CD80/86 expression levels in mature osteoclasts and their precursors by flow cytometry, quantitative PCR and immunohistochemistry. Of the biologicals tested, anti-IL-6R and anti-TNFα mAbs affected mature osteoclasts and switched bone-resorbing osteoclasts to non-resorbing cells. CTLA4-Ig had no action on mature osteoclasts but mobilised osteoclast precursors, eliminating their firm attachment to bone surfaces. In agreement with these results, CD80/86 (the target molecules of CTLA4-Ig) were prominently expressed only in osteoclast precursor cells, being suppressed during osteoclast maturation. Intravital imaging revealed that various biological DMARDs acted at specific therapeutic time points during osteoclastic bone destruction, with different efficacies. These results enable us to grasp the real modes of action of drugs, optimising the usage of drug regimens. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Hirozane, Toru; Tohmonda, Takahide; Yoda, Masaki; Shimoda, Masayuki; Kanai, Yae; Matsumoto, Morio; Morioka, Hideo; Nakamura, Masaya; Horiuchi, Keisuke
2016-09-28
Ataxia-telangiectasia mutated (ATM) kinase is a central component involved in the signal transduction of the DNA damage response (DDR) and thus plays a critical role in the maintenance of genomic integrity. Although the primary functions of ATM are associated with the DDR, emerging data suggest that ATM has many additional roles that are not directly related to the DDR, including the regulation of oxidative stress signaling, insulin sensitivity, mitochondrial homeostasis, and lymphocyte development. Patients and mice lacking ATM exhibit growth retardation and lower bone mass; however, the mechanisms underlying the skeletal defects are not fully understood. In the present study, we generated mutant mice in which ATM is specifically inactivated in osteoclasts. The mutant mice did not exhibit apparent developmental defects but showed reduced bone mass due to increased osteoclastic bone resorption. Osteoclasts lacking ATM were more resistant to apoptosis and showed a prolonged lifespan compared to the controls. Notably, the inactivation of ATM in osteoclasts resulted in enhanced NF-κB signaling and an increase in the expression of NF-κB-targeted genes. The present study reveals a novel function for ATM in regulating bone metabolism by suppressing the lifespan of osteoclasts and osteoclast-mediated bone resorption.
Response of human rheumatoid arthritis osteoblasts and osteoclasts to adiponectin.
Krumbholz, Grit; Junker, Susann; Meier, Florian M P; Rickert, Markus; Steinmeyer, Jürgen; Rehart, Stefan; Lange, Uwe; Frommer, Klaus W; Schett, Georg; Müller-Ladner, Ulf; Neumann, Elena
2017-01-01
Adiponectin is an effector molecule in the pathophysiology of rheumatoid arthritis, e.g. by inducing cytokines and matrix degrading enzymes in synovial fibroblasts. There is growing evidence that adiponectin affects osteoblasts and osteoclasts although the contribution to the aberrant bone metabolism in rheumatoid arthritis is unclear. Therefore, the adiponectin effects on rheumatoid arthritis-derived osteoblasts and osteoclasts were evaluated. Adiponectin and its receptors were examined in bone tissue. Primary human osteoblasts and osteoclasts were stimulated with adiponectin and analysed using realtime polymerase chain-reaction and immunoassays. Effects on matrix-production by osteoblasts and differentiation and resorptive activity of osteoclasts were examined. Immunohistochemistry of rheumatoid arthritis bone tissue showed adiponectin expression in key cells of bone remodelling. Adiponectin altered gene expression and cytokine release in osteoblasts and increased IL-8 secretion by osteoclasts. Adiponectin inhibited osterix and induced osteoprotegerin mRNA in osteoblasts. In osteoclasts, MMP-9 and tartrate resistant acid phosphatase expression was increased. Accordingly, mineralisation capacity of osteoblasts decreased whereas resorptive activity of osteoclasts increased. The results confirm the proinflammatory potential of adiponectin and support the idea that adiponectin influences rheumatoid arthritis bone remodelling through alterations in osteoblast and osteoclast.
Calcineurin/NFAT signaling in osteoblasts regulates bone mass.
Winslow, Monte M; Pan, Minggui; Starbuck, Michael; Gallo, Elena M; Deng, Lei; Karsenty, Gerard; Crabtree, Gerald R
2006-06-01
Development and repair of the vertebrate skeleton requires the precise coordination of bone-forming osteoblasts and bone-resorbing osteoclasts. In diseases such as osteoporosis, bone resorption dominates over bone formation, suggesting a failure to harmonize osteoclast and osteoblast function. Here, we show that mice expressing a constitutively nuclear NFATc1 variant (NFATc1(nuc)) in osteoblasts develop high bone mass. NFATc1(nuc) mice have massive osteoblast overgrowth, enhanced osteoblast proliferation, and coordinated changes in the expression of Wnt signaling components. In contrast, viable NFATc1-deficient mice have defects in skull bone formation in addition to impaired osteoclast development. NFATc1(nuc) mice have increased osteoclastogenesis despite normal levels of RANKL and OPG, indicating that an additional NFAT-regulated mechanism influences osteoclastogenesis in vivo. Calcineurin/NFATc signaling in osteoblasts controls the expression of chemoattractants that attract monocytic osteoclast precursors, thereby coupling bone formation and bone resorption. Our results indicate that NFATc1 regulates bone mass by functioning in both osteoblasts and osteoclasts.
Costa-Rodrigues, João; Silva, Ana; Santos, Catarina; Almeida, Maria Margarida; Costa, Maria Elisabete; Fernandes, Maria Helena
2014-12-01
Nanosized hydroxyapatite (HA) is a promising material in clinical applications targeting the bone tissue. NanoHA is able to modulate bone cellular events, which accounts for its potential utility, but also raises safety concerns regarding the maintenance of the bone homeostasis. This work analyses the effects of HA nanoparticles (HAnp) on osteoclastic differentiation and activity, an issue that has been barely addressed. Rod-like HAnp, produced by a hydrothermal precipitation method, were tested on peripheral blood mononuclear cells (PBMC), which contains the CD14+ osteoclastic precursors, in unstimulated or osteoclastogenic-induced conditions. HAnp were added at three time-points during the osteoclastic differentiation pathway, and cell response was evaluated for osteoclastic related parameters. Results showed that HAnp modulated the differentiation and function of osteoclastic cells in a dose- and time-dependent manner. In addition, the effects were dependent on the stage of osteoclastic differentiation. In unstimulated PBMC, HAnp significantly increased osteoclastogenesis, leading to the formation of mature osteoclasts, as evident by the significant increase of TRAP activity, number of TRAP-positive multinucleated cells, osteoclastic gene expression and resorbing ability. However, in a population of mature osteoclasts (formed in osteoclastogenic-induced PBMC cultures), HAnp caused a dose-dependent decrease on the osteoclastic-related parameters. These results highlight the complex effects of HAnp in osteoclastic differentiation and activity, and suggest the possibility of HAnp to modulate/disrupt osteoclastic behavior, with eventual imbalances in the bone metabolism. This should be carefully considered in bone-related and other established and prospective biomedical applications of HAnp.
Galectin-3 as a novel regulator of osteoblast-osteoclast interaction and bone homeostasis.
Simon, Dominic; Derer, Anja; Andes, Fabian T; Lezuo, Patrick; Bozec, Aline; Schett, Georg; Herrmann, Martin; Harre, Ulrike
2017-12-01
Bone tissue undergoes permanent and lifelong remodeling with a concerted action of bone-building osteoblasts and bone-resorbing osteoclasts. A precise cooperation between those two cell types is critical in the complex process of bone renewal. Galectin-3 is a member of the β-galactoside-binding lectin family playing multiple roles in cell growth, differentiation and aggregation. As it has been described to be expressed in bone, galectin-3 might influence bone homeostasis by regulating the function and/or interplay of osteoblasts and osteoclasts. Here, we investigated the role of galectin-3 in osteoclastogenesis and osteoblast-osteoclast interactions. Bone histomorphometric analysis and μCT measurements revealed a decreased trabecular bone volume and an increased osteoclast number in 12weeks old male galectin-3 knockout mice compared to wildtype littermates. Galectin-3 deficient bone marrow cells displayed a higher osteoclastogenic capacity in ex vivo differentiation assays, associated with elevated TRAF6 mRNA levels, suggesting an intrinsic inhibition of osteoclastogenesis by galectin-3 interfering with RANKL-mediated signaling. Furthermore, the addition of extracellular galectin-3 to murine or human osteoclastogenesis assays inhibited osteoclast formation and osteoclast numbers were higher in co-culture assays with galectin-3 deficient osteoblasts. In conclusion, our data suggest the secretion of galectin-3 as a novel mechanism for osteoblasts to control osteoclastogenesis and to maintain trabecular bone homeostasis independently of the RANKL/OPG-axis. Copyright © 2017 Elsevier Inc. All rights reserved.
Immunolocalization of matrix metalloproteinase-13 on bone surface under osteoclasts in rat tibia.
Nakamura, Hiroaki; Sato, Ginga; Hirata, Azumi; Yamamoto, Toshio
2004-01-01
Matrix metalloproteinase (MMP)-13 (an interstitial collagenase also called collagenase 3) is involved in degradation of extracellular matrix in various tissues. Using immunohistochemistry and Western blotting, we investigated localization of MMP-13 in rat tibia, to clarify the role of MMP-13 in bone resorption. MMP-13 reactivity was mainly seen on bone surfaces under osteoclasts, and in some osteocytes and their lacunae near osteoclasts. However, immunoreactivity was not seen in chondrocytes or osteoclasts. MMP-13 was also localized on cement lines in the epiphysis. In the growth plate erosion zone, perivascular cells showed MMP-13 reactivity. Immunoelectron microscopy revealed that MMP-13 was localized on the bone surfaces, under the ruffled borders and some clear zones of osteoclasts. Gold-labeled MMP-13 was closely associated with collagen fibrils. Gold labeling was also detected in Golgi apparatus of osteocytes adjacent to osteoclasts and bone lining cells. Western blotting showed that MMP-13 was mainly associated with mineralized bone matrix. These findings suggest that MMP-13 synthesized and secreted by osteoblast-lineage cells is localized under the ruffled borders of osteoclasts. MMP-13 may play an important role in degradation of type I collagen in bone matrix, acting in concert with cathepsin K and MMP-9 produced by osteoclasts. MMP-13 in perivascular cells may be involved in removal of cartilage matrix proteins such as type II collagen and aggrecan.
RNA therapeutics targeting osteoclast-mediated excessive bone resorption
Wang, Yuwei; Grainger, David W
2011-01-01
RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing technique developed with dramatically increasing utility for both scientific and therapeutic purposes. Short interfering RNA (siRNA) is currently exploited to regulate protein expression relevant to many therapeutic applications, and commonly used as a tool for elucidating disease-associated genes. Osteoporosis and their associated osteoporotic fragility fractures in both men and women are rapidly becoming a global healthcare crisis as average life expectancy increases worldwide. New therapeutics are needed for this increasing patient population. This review describes the diversity of molecular targets suitable for RNAi-based gene knock-down in osteoclasts to control osteoclast-mediated excessive bone resorption. We identify strategies for developing targeted siRNA delivery and efficient gene silencing, and describe opportunities and challenges of introducing siRNA as a therapeutic approach to hard and connective tissue disorders. PMID:21945356
[Effects of calcitonin on osteoclast].
Suzuki, H; Takahashi, N
2001-09-01
Osteoclasts are cells that resorb bone, and calcitonin potently inhibits this bone resorptive activity. While calcitonin does not affect primary osteoclastic differentiation, it does manifest an inhibitory effect on the bone resorptive activity of osteoclasts. It is believed that calcitonin, acting upon calcitonin receptors and through PKA and PKC signal transduction pathways, destroys cytoskeleton components such as podosomes. The "escape phenomenon" seen with osteoclasts is a known issue occurring with the use of calcitonin, and is also believed to arise due to calcitonin receptors and the PKA and PKC signal transduction pathways.
Osteoclast differentiation inhibitors: a patent review (2008 - 2012).
Kim, Seong Hwan; Moon, Seong-Hee
2013-12-01
Mononuclear macrophage/monocyte-lineage hematopoietic precursors differentiate into multinucleated osteoclasts. Abnormally increased numbers and/or overactivation of osteoclasts can lead to bone loss. Therefore, pharmaceutical inhibition of osteoclast differentiation is one therapeutic strategy for mitigating the occurrence of bone loss-associated disorders and related fractures. This review surveys the patents and patent applications from 2008 to 2012 that are related to inventions of therapeutics and/or methods for inhibiting osteoclast differentiation. Over the past 20 years, the identification and validation of signaling molecules involved in osteoclast differentiation has led to a better understanding of the molecular mechanism, and to the development of new therapeutic agents for treating bone loss-associated disorders. Since 2008, 34 WO patents or patent applications have been filed that relate to inventions of therapeutics and/or methods for chemical-based, natural product-based, or biological-based inhibitors of osteoclast differentiation. Here, analysis of these patents and patent applications is presented, and summarize the disclosed osteoclast differentiation-inhibiting target molecules. This report can support further advances in the development of anti-osteoclastogenic therapeutics for bone loss-associated disorders, including osteoporosis, rheumatoid arthritis, Paget's disease, periodontal disease, osteosarcoma, and cancer bone metastasis.
Toray, Hisashi; Hasegawa, Tomoka; Sakagami, Naoko; Tsuchiya, Erika; Kudo, Ai; Zhao, Shen; Moritani, Yasuhito; Abe, Miki; Yoshida, Taiji; Yamamoto, Tomomaya; Yamamoto, Tsuneyuki; Oda, Kimimitsu; Udagawa, Nobuyuki; Luiz de Freitas, Paulo Henrique; Li, Minqi
2017-01-01
Since osteoblastic activities are believed to be coupled with osteoclasts, we have attempted to histologically verify which of the distinct cellular circumstances, the presence of osteoclasts themselves or bone resorption by osteoclasts, is essential for coupled osteoblastic activity, by examining c-fos -/- or c-src -/- mice. Osteopetrotic c-fos deficient (c-fos -/- ) mice have no osteoclasts, while c-src deficient (c-src -/- ) mice, another osteopetrotic model, develop dysfunctional osteoclasts due to a lack of ruffled borders. c-fos -/- mice possessed no tartrate-resistant acid phosphatase (TRAPase)-reactive osteoclasts, and showed very weak tissue nonspecific alkaline phosphatase (TNALPase)-reactive mature osteoblasts. In contrast, c-src -/- mice had many TNALPase-positive osteoblasts and TRAPase-reactive osteoclasts. Interestingly, the parallel layers of TRAPase-reactive/osteopontin-positive cement lines were observed in the superficial region of c-src -/- bone matrix. This indicates the possibility that in c-src -/- mice, osteoblasts were activated to deposit new bone matrices on the surfaces that osteoclasts previously passed along, even without bone resorption. Transmission electron microscopy demonstrated cell-to-cell contacts between mature osteoblasts and neighboring ruffled border-less osteoclasts, and osteoid including many mineralized nodules in c-src -/- mice. Thus, it seems likely that osteoblastic activities would be maintained in the presence of osteoclasts, even if they are dysfunctional.
Osteoclast inhibition impairs chondrosarcoma growth and bone destruction.
Otero, Jesse E; Stevens, Jeff W; Malandra, Allison E; Fredericks, Douglas C; Odgren, Paul R; Buckwalter, Joseph A; Morcuende, Jose
2014-12-01
Because Chondrosarcoma is resistant to available chemotherapy and radiation regimens, wide resection is the mainstay in treatment, which frequently results in high morbidity and which may not prevent local recurrence. There is a clear need for improved adjuvant treatment of this malignancy. We have observed the presence of osteoclasts in the microenvironment of chondrosarcoma in human pathological specimens. We utilized the Swarm rat chondrosarcoma (SRC) model to test the hypothesis that osteoclasts affect chondrosarcoma pathogenesis. We implanted SRC tumors in tibia of Sprague-Dawley rats and analyzed bone histologically and radiographically for bone destruction and tumor growth. At three weeks, tumors invaded local bone causing cortical disruption and trabecular resorption. Bone destruction was accompanied by increased osteoclast number and resorbed bone surface. Treatment of rats with the zoledronic acid prevented cortical destruction, inhibited trabecular resorption, and resulted in decreased tumor volume in bone. To confirm that inhibition of osteoclasts per se, and not off-target effects of drug, was responsible for the prevention of tumor growth and bone destruction, we implanted SRC into osteopetrotic rat tibia. SRC-induced bone destruction and tumor growth were impaired in osteopetrotic bone compared with control bone. The results from our animal model demonstrate that osteoclasts contribute to chondrosarcoma-mediated bone destruction and tumor growth and may represent a therapeutic target in particular chondrosarcoma patients. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Gao, Ling; Deng, Hongju; Zhao, Haibo; Hirbe, Angela; Harding, John; Ratner, Lee; Weilbaecher, Katherine
2005-01-01
One in 20 carriers of human T-cell leukemia virus type 1 (HTLV-1) will develop adult T-cell leukemia/lymphoma (ATL), a disease frequently associated with hypercalcemia, bone destruction, and a fatal course refractory to current therapies. Overexpression of the HTLV-1–encoded Tax oncoprotein under the human granzyme B promoter causes large granular lymphocytic leukemia/lymphomas in mice. We found that Tax+ mice spontaneously developed hypercalcemia, high-frequency osteolytic bone metastases, and enhanced osteoclast activity. We evaluated Tax tumors for the production of osteoclast-activating factors. Purification of Tax+ tumor cells and nonmalignant tumor-infiltrating lymphocytes demonstrated that each of these populations expressed transcripts for distinct osteoclast-activating factors. We then evaluated the effect of osteoclast inhibition on tumor formation. Mice doubly transgenic for Tax and the osteoclast inhibitory factor, osteoprotegerin, were protected from osteolytic bone disease and developed fewer soft-tissue tumors. Likewise, osteoclast inhibition with bone-targeted zoledronic acid protected Tax+ mice from bone and soft-tissue tumors and prolonged survival. Tax+ mice represent the first animal model of high-penetrance spontaneous osteolytic bone metastasis and underscore the critical role of nonmalignant host cells recruited by tumor cells in the process of cancer progression and metastasis. PMID:16118323
Wu, Mengrui; Wang, Yiping; Deng, Lianfu; Chen, Wei; Li, Yi-Ping
2012-01-01
Osteoclasts are the principle bone-resorbing cells. Precise control of balanced osteoclast activity is indispensable for bone homeostasis. Osteoclast activation mediated by RANK-TRAF6 axis has been clearly identified. However, a negative regulation-machinery in osteoclast remains unclear. TRAF family member-associated NF-κB activator (TANK) is induced by about 10 folds during osteoclastogenesis, according to a genome-wide analysis of gene expression before and after osteoclast maturation, and confirmed by western blot and quantitative RT-PCR. Bone marrow macrophages (BMMs) transduced with lentivirus carrying tank-shRNA were induced to form osteoclast in the presence of RANKL and M-CSF. Tank expression was downregulated by 90% by Tank-shRNA, which is confirmed by western blot. Compared with wild-type (WT) cells, osteoclastogenesis of Tank-silenced BMMs was increased, according to tartrate-resistant acid phosphatase (TRAP) stain on day 5 and day 7. Number of bone resorption pits by Tank-silenced osteoclasts was increased by 176% compared with WT cells, as shown by wheat germ agglutinin (WGA) stain and scanning electronic microscope (SEM) analysis. Survival rate of Tank-silenced mature osteoclast is also increased. However, acid production of Tank-knockdown cells was not changed compared with control cells. IκBα phosphorylation is increased in tank-silenced cells, indicating that TANK may negatively regulate NF-κB activity in osteoclast. In conclusion, Tank, whose expression is increased during osteoclastogenesis, inhibits osteoclast formation, activity and survival, by regulating NF-κB activity and c-FLIP expression. Tank enrolls itself in a negative feedback loop in bone resorption. These results may provide means for therapeutic intervention in diseases of excessive bone resorption. PMID:23139637
Kitano, Victor J.; Shimada, Jun
2018-01-01
Inflammatory bone diseases, including rheumatoid arthritis, periodontitis and peri-implantitis, are associated not only with the production of inflammatory cytokines but also with local oxidative status, which is defined by intracellular reactive oxygen species (ROS). Osteoclast differentiation has been reported to be related to increased intracellular ROS levels in osteoclast lineage cells. Sudachitin, which is a polymethoxyflavone derived from Citrus sudachi, possesses antioxidant properties and regulates various functions in mammalian cells. However, the effects of sudachitin on inflammatory bone destruction and osteoclastogenesis remain unknown. In calvaria inflamed by a local lipopolysaccharide (LPS) injection, inflammation-induced bone destruction and the accompanying elevated expression of osteoclastogenesis-related genes were reduced by the co-administration of sudachitin and LPS. Moreover, sudachitin inhibited osteoclast formation in cultures of isolated osteoblasts and osteoclast precursors. However, sudachitin rather increased the expression of receptor activator of NF-κB ligand (RANKL), which is an important molecule triggering osteoclast differentiation, and the mRNA ratio of RANKL/osteoprotegerin that is a decoy receptor for RANKL, in the isolated osteoblasts, suggesting the presence of additional target cells. When osteoclast formation was induced from osteoclast precursors derived from bone marrow cells in the presence of soluble RANKL and macrophage colony-stimulating factor, sudachitin inhibited osteoclastogenesis without influencing cell viability. Consistently, the expression of osteoclast differentiation-related molecules including c-fos, NFATc1, cathepsin K and osteoclast fusion proteins such as DC-STAMP and Atp6v0d2 was reduced by sudachitin. In addition, sudachitin decreased activation of MAPKs such as Erk and JNK and the ROS production evoked by RANKL in osteoclast lineage cells. Our findings suggest that sudachitin is a useful agent for the treatment of anti-inflammatory bone destruction. PMID:29342179
Ohyama, Yoko; Ito, Junta; Kitano, Victor J; Shimada, Jun; Hakeda, Yoshiyuki
2018-01-01
Inflammatory bone diseases, including rheumatoid arthritis, periodontitis and peri-implantitis, are associated not only with the production of inflammatory cytokines but also with local oxidative status, which is defined by intracellular reactive oxygen species (ROS). Osteoclast differentiation has been reported to be related to increased intracellular ROS levels in osteoclast lineage cells. Sudachitin, which is a polymethoxyflavone derived from Citrus sudachi, possesses antioxidant properties and regulates various functions in mammalian cells. However, the effects of sudachitin on inflammatory bone destruction and osteoclastogenesis remain unknown. In calvaria inflamed by a local lipopolysaccharide (LPS) injection, inflammation-induced bone destruction and the accompanying elevated expression of osteoclastogenesis-related genes were reduced by the co-administration of sudachitin and LPS. Moreover, sudachitin inhibited osteoclast formation in cultures of isolated osteoblasts and osteoclast precursors. However, sudachitin rather increased the expression of receptor activator of NF-κB ligand (RANKL), which is an important molecule triggering osteoclast differentiation, and the mRNA ratio of RANKL/osteoprotegerin that is a decoy receptor for RANKL, in the isolated osteoblasts, suggesting the presence of additional target cells. When osteoclast formation was induced from osteoclast precursors derived from bone marrow cells in the presence of soluble RANKL and macrophage colony-stimulating factor, sudachitin inhibited osteoclastogenesis without influencing cell viability. Consistently, the expression of osteoclast differentiation-related molecules including c-fos, NFATc1, cathepsin K and osteoclast fusion proteins such as DC-STAMP and Atp6v0d2 was reduced by sudachitin. In addition, sudachitin decreased activation of MAPKs such as Erk and JNK and the ROS production evoked by RANKL in osteoclast lineage cells. Our findings suggest that sudachitin is a useful agent for the treatment of anti-inflammatory bone destruction.
Wu, Mengrui; Wang, Yiping; Deng, Lianfu; Chen, Wei; Li, Yi-Ping
2012-01-01
Osteoclasts are the principle bone-resorbing cells. Precise control of balanced osteoclast activity is indispensable for bone homeostasis. Osteoclast activation mediated by RANK-TRAF6 axis has been clearly identified. However, a negative regulation-machinery in osteoclast remains unclear. TRAF family member-associated NF-κB activator (TANK) is induced by about 10 folds during osteoclastogenesis, according to a genome-wide analysis of gene expression before and after osteoclast maturation, and confirmed by western blot and quantitative RT-PCR. Bone marrow macrophages (BMMs) transduced with lentivirus carrying tank-shRNA were induced to form osteoclast in the presence of RANKL and M-CSF. Tank expression was downregulated by 90% by Tank-shRNA, which is confirmed by western blot. Compared with wild-type (WT) cells, osteoclastogenesis of Tank-silenced BMMs was increased, according to tartrate-resistant acid phosphatase (TRAP) stain on day 5 and day 7. Number of bone resorption pits by Tank-silenced osteoclasts was increased by 176% compared with WT cells, as shown by wheat germ agglutinin (WGA) stain and scanning electronic microscope (SEM) analysis. Survival rate of Tank-silenced mature osteoclast is also increased. However, acid production of Tank-knockdown cells was not changed compared with control cells. IκBα phosphorylation is increased in tank-silenced cells, indicating that TANK may negatively regulate NF-κB activity in osteoclast. In conclusion, Tank, whose expression is increased during osteoclastogenesis, inhibits osteoclast formation, activity and survival, by regulating NF-κB activity and c-FLIP expression. Tank enrolls itself in a negative feedback loop in bone resorption. These results may provide means for therapeutic intervention in diseases of excessive bone resorption.
Osteoclastic miR-214 targets TRAF3 to contribute to osteolytic bone metastasis of breast cancer
Liu, Jin; Li, Defang; Dang, Lei; Liang, Chao; Guo, Baosheng; Lu, Cheng; He, Xiaojuan; Cheung, Hilda Y. S.; He, Bing; Liu, Biao; Li, Fangfei; Lu, Jun; Wang, Luyao; Shaikh, Atik Badshah; Jiang, Feng; Lu, Changwei; Peng, Songlin; Zhang, Zongkang; Zhang, Bao-Ting; Pan, Xiaohua; Xiao, Lianbo; Lu, Aiping; Zhang, Ge
2017-01-01
The role of osteoclastic miRNAs in regulating osteolytic bone metastasis (OBM) of breast cancer is still underexplored. Here, we examined the expression profiles of osteoclastogenic miRNAs in human bone specimens and identified that miR-214-3p was significantly upregulated in breast cancer patients with OBM. Consistently, we found increased miR-214-3p within osteoclasts, which was associated with the elevated bone resorption, during the development of OBM in human breast cancer xenografted nude mice (BCX). Furthermore, genetic ablation of osteoclastic miR-214-3p in nude mice prevent the development of OBM. Conditioned medium from MDA-MB-231 cells dramatically stimulated miR-214-3p expression to promote osteoclast differentiation. Mechanistically, a series of in vitro study showed that miR-214-3p directly targeted Traf3 to promote osteoclast activity and bone-resorbing activity. In addition, osteoclast-specific miR-214-3p knock-in mice showed remarkably increased bone resorption when compared to the littermate controls, which was attenuated after osteoclast-targeted treatment with Traf3 3′UTR-containing plasmid. In BCX nude mice, osteoclast-targeted antagomir-214-3p delivery could recover the TRAF3 protein expression and attenuate the development of OBM, respectively. Collectively, inhibition of osteoclastic miR-214-3p may be a potential therapeutic strategy for breast cancer patients with OBM. Meanwhile, the intraosseous TRAF3 could be a promising biomarker for evaluation of the treatment response of antagomir-214-3p. PMID:28071724
Lipid Osteoclastokines Regulate Breast Cancer Bone Metastasis
Krzeszinski, Jing Y.; Schwaid, Adam G.; Cheng, Wing Yin; Jin, Zixue; Gallegos, Zachary R.; Saghatelian, Alan
2017-01-01
Bone metastasis is a deadly consequence of cancers, in which osteoclast forms a vicious cycle with tumor cells. Bone metastasis attenuation by clinical usage of osteoclast inhibitors and in our osteopetrotic mouse genetic models with β-catenin constitutive activation or peroxisome proliferator-activated receptor γ deficiency fully support the important role of osteoclast in driving the bone metastatic niche. However, the mechanisms for this “partnership in crime” are underexplored. Here we show that osteoclasts reprogram their lipid secretion to support cancer cells. Metabolomic profiling reveals elevated prometastatic arachidonic acid (AA) but reduced antimetastatic lysophosphatidylcholines (LPCs). This shift in lipid osteoclastokines synergistically stimulates tumor cell proliferation, migration, survival, and expression of prometastatic genes. Pharmacologically, combined treatment with LPCs and BW-755C, an inhibitor of AA signaling via blocking lipoxygenase and cyclooxygenase, impedes breast cancer bone metastasis. Our findings elucidate key paracrine mechanisms for the osteoclast-cancer vicious cycle and uncover important therapeutic targets for bone metastasis. PMID:27967239
New methodology for evaluating osteoclastic activity induced by orthodontic load
ARAÚJO, Adriele Silveira; FERNANDES, Alline Birra Nolasco; MACIEL, José Vinicius Bolognesi; NETTO, Juliana de Noronha Santos; BOLOGNESE, Ana Maria
2015-01-01
Orthodontic tooth movement (OTM) is a dynamic process of bone modeling involving osteoclast-driven resorption on the compression side. Consequently, to estimate the influence of various situations on tooth movement, experimental studies need to analyze this cell. Objectives The aim of this study was to test and validate a new method for evaluating osteoclastic activity stimulated by mechanical loading based on the fractal analysis of the periodontal ligament (PDL)-bone interface. Material and Methods The mandibular right first molars of 14 rabbits were tipped mesially by a coil spring exerting a constant force of 85 cN. To evaluate the actual influence of osteoclasts on fractal dimension of bone surface, alendronate (3 mg/Kg) was injected weekly in seven of those rabbits. After 21 days, the animals were killed and their jaws were processed for histological evaluation. Osteoclast counts and fractal analysis (by the box counting method) of the PDL-bone interface were performed in histological sections of the right and left sides of the mandible. Results An increase in the number of osteoclasts and in fractal dimension after OTM only happened when alendronate was not administered. Strong correlation was found between the number of osteoclasts and fractal dimension. Conclusions Our results suggest that osteoclastic activity leads to an increase in bone surface irregularity, which can be quantified by its fractal dimension. This makes fractal analysis by the box counting method a potential tool for the assessment of osteoclastic activity on bone surfaces in microscopic examination. PMID:25760264
Andersen, Thomas L; Søe, Kent; Sondergaard, Teis E; Plesner, Torben; Delaisse, Jean-Marie
2010-02-01
Osteolytic lesions are a hallmark of multiple myeloma. They are due to the hyperactivity of bone resorbing osteoclasts and hypoactivity of bone forming osteoblasts, in response to neighbouring myeloma cells. This study identified a structure that deeply affects this response, because of its impact on the physical organisation of the myeloma cell microenvironment. The proximity between myeloma cells and osteoclasts or osteoblasts was shown to be conditioned by the recently discovered layer of flat cells that separates the osteoclasts and osteoblasts from the bone marrow, by forming a canopy over bone remodelling compartment (BRC). These canopies are frequently disrupted in myeloma, and this disruption correlates with increased proximity and density of myeloma cells. In vitro evidence indicates that this disruption may be due to direct contact between myeloma and BRC canopy cells. Importantly, this disruption and increased proximity and density of myeloma cells coincides with key myeloma-induced bone events, such as osteolytic lesions, impaired bone formation despite increased bone resorption, and fusion of myeloma cells with osteoclasts thereby forming myeloma-osteoclast hybrid cells. These findings strongly support a critical role of BRC canopies in myeloma-induced bone disease. BRC canopies could therefore be considered as a new therapeutic target.
David, Marion; Machuca-Gayet, Irma; Kikuta, Junichi; Ottewell, Penelope; Mima, Fuka; Leblanc, Raphael; Bonnelye, Edith; Ribeiro, Johnny; Holen, Ingunn; Vales, Rùben Lopez; Jurdic, Pierre; Chun, Jerold; Clézardin, Philippe; Ishii, Masaru; Peyruchaud, Olivier
2014-01-01
Lysophosphatidic acid (LPA) is a natural bioactive lipid that acts through six different G protein-coupled receptors (LPA1–6) with pleiotropic activities on multiple cell types. We have previously demonstrated that LPA is necessary for successful in vitro osteoclastogenesis of bone marrow cells. Bone cells controlling bone remodeling (i.e. osteoblasts, osteoclasts, and osteocytes) express LPA1, but delineating the role of this receptor in bone remodeling is still pending. Despite Lpar1−/− mice displaying a low bone mass phenotype, we demonstrated that bone marrow cell-induced osteoclastogenesis was reduced in Lpar1−/− mice but not in Lpar2−/− and Lpar3−/− animals. Expression of LPA1 was up-regulated during osteoclastogenesis, and LPA1 antagonists (Ki16425, Debio0719, and VPC12249) inhibited osteoclast differentiation. Blocking LPA1 activity with Ki16425 inhibited expression of nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) and dendritic cell-specific transmembrane protein and interfered with the fusion but not the proliferation of osteoclast precursors. Similar to wild type osteoclasts treated with Ki16425, mature Lpar1−/− osteoclasts had reduced podosome belt and sealing zone resulting in reduced mineralized matrix resorption. Additionally, LPA1 expression markedly increased in the bone of ovariectomized mice, which was blocked by bisphosphonate treatment. Conversely, systemic treatment with Debio0719 prevented ovariectomy-induced cancellous bone loss. Moreover, intravital multiphoton microscopy revealed that Debio0719 reduced the retention of CX3CR1-EGFP+ osteoclast precursors in bone by increasing their mobility in the bone marrow cavity. Overall, our results demonstrate that LPA1 is essential for in vitro and in vivo osteoclast activities. Therefore, LPA1 emerges as a new target for the treatment of diseases associated with excess bone loss. PMID:24429286
Ohno, Hiroaki; Kubo, Kazuo; Murooka, Hideko; Kobayashi, Yoshiko; Nishitoba, Tsuyoshi; Shibuya, Masabumi; Yoneda, Toshiyuki; Isoe, Toshiyuki
2006-11-01
In bone metastatic lesions, osteoclasts play a key role in the development of osteolysis. Previous studies have shown that macrophage colony-stimulating factor (M-CSF) is important for the differentiation of osteoclasts. In this study, we investigated whether an inhibitor of M-CSF receptor (c-Fms) suppresses osteoclast-dependent osteolysis in bone metastatic lesions. We developed small molecule inhibitors against ligand-dependent phosphorylation of c-Fms and examined the effects of these compounds on osteolytic bone destruction in a bone metastasis model. We discovered a novel quinoline-urea derivative, Ki20227 (N-{4-[(6,7-dimethoxy-4-quinolyl)oxy]-2-methoxyphenyl}-N'-[1-(1,3-thiazole-2-yl)ethyl]urea), which is a c-Fms tyrosine kinase inhibitor. The IC(50)s of Ki20227 to inhibit c-Fms, vascular endothelial growth factor receptor-2 (KDR), stem cell factor receptor (c-Kit), and platelet-derived growth factor receptor beta were found to be 2, 12, 451, and 217 nmol/L, respectively. Ki20227 did not inhibit other kinases tested, such as fms-like tyrosine kinase-3, epidermal growth factor receptor, or c-Src (c-src proto-oncogene product). Ki20227 was also found to inhibit the M-CSF-dependent growth of M-NFS-60 cells but not the M-CSF-independent growth of A375 human melanoma cells in vitro. Furthermore, in an osteoclast-like cell formation assay using mouse bone marrow cells, Ki20227 inhibited the development of tartrate-resistant acid phosphatase-positive osteoclast-like cells in a dose-dependent manner. In in vivo studies, oral administration of Ki20227 suppressed osteoclast-like cell accumulation and bone resorption induced by metastatic tumor cells in nude rats following intracardiac injection of A375 cells. Moreover, Ki20227 decreased the number of tartrate-resistant acid phosphatase-positive osteoclast-like cells on bone surfaces in ovariectomized (ovx) rats. These findings suggest that Ki20227 inhibits osteolytic bone destruction through the suppression of M-CSF-induced osteoclast accumulation in vivo. Therefore, Ki20227 may be a useful therapeutic agent for osteolytic disease associated with bone metastasis and other bone diseases.
Boraschi-Diaz, Iris; Komarova, Svetlana V
2016-01-01
Osteoclasts are responsible for physiological bone remodeling as well as pathological bone destruction in osteoporosis, periodontitis and rheumatoid arthritis, and thus represent a pharmacological target for drug development. We aimed to characterize and compare the cytokine-induced osteoclastogenesis of bone marrow and spleen precursors. Established protocols used to generate osteoclasts from bone marrow were modified to examine osteoclastogenesis of the spleen cells of healthy mice. Osteoclast formation was successfully induced from spleen precursors using receptor activator of nuclear factor κB ligand (50 ng/ml) and macrophage colony stimulating factor (50 ng/ml). Compared to bone marrow cultures, differentiation from spleen required a longer cultivation time (9 days for spleen, as compared to 5 days for marrow cultures) and a higher plating density of non-adherent cells (75,000/cm(2) for spleen, as compared to 50,000/cm(2) for bone marrow). Osteoclasts generated from spleen precursors expressed osteoclast marker genes calcitonin receptor, cathepsin K and matrix metalloproteinase 9 and were capable of resorbing hydroxyapatite. The differentiation capacity of spleen and bone marrow precursors was comparable for BALB/c, C57BL/6 and FVB mice. We also developed and tested a cryopreservation protocol for the osteoclast precursors. While 70-80 % of cells were lost during the first week of freezing, during the subsequent 5 weeks the losses were within 2-5 % per week. Osteoclastogenesis from the recovered bone marrow precursors was successful up to 5 weeks after freezing. Spleen precursors retained their osteoclastogenic capacity for 1 week after freezing, but not thereafter. The described protocol is useful for the studies of genetically modified animals as well as for screening new osteoclast-targeting therapeutics.
The emerging role of Hippo signaling pathway in regulating osteoclast formation.
Yang, Wanlei; Han, Weiqi; Qin, An; Wang, Ziyi; Xu, Jiake; Qian, Yu
2018-06-01
A delicate balance between osteoblastic bone formation and osteoclastic bone resorption is crucial for bone homeostasis. This process is regulated by the Hippo signaling pathway including key regulatory molecules RASSF2, NF2, MST1/2, SAV1, LATS1/2, MOB1, YAP, and TAZ. It is well established that the Hippo signaling pathway plays an important part in regulating osteoblast differentiation, but its role in osteoclast formation and activation remains poorly understood. In this review, we discuss the emerging role of Hippo-signaling pathway in osteoclast formation and bone homeostasis. It is revealed that specific molecules of the Hippo-signaling pathway take part in a stage specific regulation in pre-osteoclast proliferation, osteoclast differentiation and osteoclast apoptosis and survival. Upon activation, MST and LAST, transcriptional co-activators YAP and TAZ bind to the members of the TEA domain (TEAD) family transcription factors, and influence osteoclast differentiation via regulating the expression of downstream target genes such as connective tissue growth factor (CTGF/CCN2) and cysteine-rich protein 61 (CYR61/CCN1). In addition, through interacting or cross talking with RANKL-mediated signaling cascades including NF-κB, MAPKs, AP1, and NFATc1, Hippo-signaling molecules such as YAP/TAZ/TEAD complex, RASSF2, MST2, and Ajuba could also potentially modulate osteoclast differentiation and function. Elucidating the roles of the Hippo-signaling pathway in osteoclast development and specific molecules involved is important for understanding the mechanism of bone homeostasis and diseases. © 2017 Wiley Periodicals, Inc.
Al Mamun, Md Abdullah; Islam, Kamrul; Alam, Md Jahangir; Khatun, Amina; Alam, M Masihul; Al-Bari, Md Abdul Alim; Alam, Md Jahangir
2015-09-12
The Tridax procumbens flavonoids (TPF), are well known for their medicinal properties among local natives. The TPF are traditionally used for dropsy, anaemia, arthritis, gout, asthma, ulcer, piles, and urinary problems. It also used in treating gastric problems, body pain, and rheumatic pains of joints. The TPF have been reported to increase osteogenic functioning in mesenchymal stem cells. However, their effects on osteoclastogenesis remain unclear. The TPF isolated from T. procumbens and investigated the effects of the TPF inhibit on osteoclast differentiation and bone resorption activities using primary osteoclastic cells. Osteoclast formation was assessed by counting the number of tartrate resistant acid phosphatase (TRAP) positive multinucleated cells and by measuring both TRAP activities. The TPF significantly suppressed the RANKL-induced differentiation of osteoclasts and the formation of pits in primary osteoclastic cells. The TPF also decreased the expression of mRNAs related to osteoclast differentiation, including Trap, Cathepsin K, Mmp-9, and Mmp-13 in primary osteoclastic cells. The treatment of primary osteoclastic cells with the TPF decreased Cathepsin K, Mmp-9, and Mmp-13 proteins expression in primary osteoclastic cells. These results indicated that TPF inhibit osteoclastogenesis and pits formation activities. Our results suggest that the TPF could be a potential anti-bone resorptic agent to treat patients with bone loss-associated diseases such as osteoporosis.
Ma, Xiaojun; Liu, Yupeng; Zhang, Yao; Yu, Xiaobing; Wang, Weiming; Zhao, Dewei
2014-03-07
Osteoclasts together with osteoblasts play pivotal roles in bone remodeling. The unique function and ability of osteoclasts to resorb bone makes them critical in both normal bone homeostasis and pathologic bone diseases such as osteoporosis and rheumatoid arthritis. Thus, new compounds that may inhibit osteoclastogenesis and osteoclast function may be of great value in the treatment of osteoclast-related diseases. In the present study, we examined the effect of jolkinolide B (JB), isolated from the root of Euphorbia fischeriana Steud on receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation. We found that JB inhibited RANKL-induced osteoclast differentiation from bone marrow macrophages (BMMs) without cytotoxicity. Furthermore, the expression of osteoclastic marker genes, such as tartrate-resistant acid phosphatase (TRAP), cathepsin K (CtsK), and calcitonin receptor (CTR), was significantly inhibited. JB inhibited RANKL-induced activation of NF-κB by suppressing RANKL-mediated IκBα degradation. Moreover, JB inhibited RANKL-induced phosphorylation of mitogen-activated protein kinases (p38, JNK, and ERK). This study thus identifies JB as an inhibitor of osteoclast formation and provides evidence that JB might be an alternative medicine for preventing and treating osteolysis. Copyright © 2014 Elsevier Inc. All rights reserved.
Tai, Ta-Wei; Chen, Ching-Yu; Su, Fong-Chin; Tu, Yuan-Kun; Tsai, Tsung-Ting; Lin, Chiou-Feng; Jou, I.-Ming
2017-01-01
Inhibiting osteoclasts and osteoclast precursors to reduce bone resorption is an important strategy to treat osteoclast-related diseases, such as osteoporosis, inflammatory bone loss, and malignant bone metastasis. However, the mechanism by which apoptosis is induced in the osteoclasts and their precursors are not completely understood. Here, we used nitrogen-containing bisphosphonate zoledronic acid (ZA) to induce cell apoptosis in human and murine osteoclast precursors and mature osteoclast-like cells. Caspase-3-mediated cell apoptosis occurred following the ZA (100 μM) treatment. Reactive oxygen species (ROS) were also generated in a time-dependent manner. Following knock-down of the p47phox expression, which is required for ROS activation, or co-treatment with the ROS inhibitor, N-acetyl-L-cysteine, ZA-induced apoptosis was significantly suppressed in both osteoclast precursors and mature osteoclast-like cells. The ROS-activated mitogen-activated protein kinases pathways did not trigger cell apoptosis. However, a ROS-regulated Mcl-1 decrease simultaneously with glycogen synthase kinase (GSK)-3β promoted cell apoptosis. These findings show that ZA induces apoptosis in osteoclast precursors and mature osteoclast-like cells by triggering ROS- and GSK-3β-mediated Mcl-1 down-regulation. PMID:28281643
Chai, Ryan C; Kouspou, Michelle M; Lang, Benjamin J; Nguyen, Chau H; van der Kraan, A Gabrielle J; Vieusseux, Jessica L; Lim, Reece C; Gillespie, Matthew T; Benjamin, Ivor J; Quinn, Julian M W; Price, John T
2014-05-09
Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss.
The Foreign Body Giant Cell Cannot Resorb Bone, But Dissolves Hydroxyapatite Like Osteoclasts.
ten Harkel, Bas; Schoenmaker, Ton; Picavet, Daisy I; Davison, Noel L; de Vries, Teun J; Everts, Vincent
2015-01-01
Foreign body multinucleated giant cells (FBGCs) and osteoclasts share several characteristics, like a common myeloid precursor cell, multinuclearity, expression of tartrate-resistant acid phosphatase (TRAcP) and dendritic cell-specific transmembrane protein (DC-STAMP). However, there is an important difference: osteoclasts form and reside in the vicinity of bone, while FBGCs form only under pathological conditions or at the surface of foreign materials, like medical implants. Despite similarities, an important distinction between these cell types is that osteoclasts can resorb bone, but it is unknown whether FBGCs are capable of such an activity. To investigate this, we differentiated FBGCs and osteoclasts in vitro from their common CD14+ monocyte precursor cells, using different sets of cytokines. Both cell types were cultured on bovine bone slices and analyzed for typical osteoclast features, such as bone resorption, presence of actin rings, formation of a ruffled border, and characteristic gene expression over time. Additionally, both cell types were cultured on a biomimetic hydroxyapatite coating to discriminate between bone resorption and mineral dissolution independent of organic matrix proteolysis. Both cell types differentiated into multinucleated cells on bone, but FBGCs were larger and had a higher number of nuclei compared to osteoclasts. FBGCs were not able to resorb bone, yet they were able to dissolve the mineral fraction of bone at the surface. Remarkably, FBGCs also expressed actin rings, podosome belts and sealing zones--cytoskeletal organization that is considered to be osteoclast-specific. However, they did not form a ruffled border. At the gene expression level, FBGCs and osteoclasts expressed similar levels of mRNAs that are associated with the dissolution of mineral (e.g., anion exchange protein 2 (AE2), carbonic anhydrase 2 (CAII), chloride channel 7 (CIC7), and vacuolar-type H+-ATPase (v-ATPase)), in contrast the matrix degrading enzyme cathepsin K, which was hardly expressed by FBGCs. Functionally, the latter cells were able to dissolve a biomimetic hydroxyapatite coating in vitro, which was blocked by inhibiting v-ATPase enzyme activity. These results show that FBGCs have the capacity to dissolve the mineral phase of bone, similar to osteoclasts. However, they are not able to digest the matrix fraction of bone, likely due to the lack of a ruffled border and cathepsin K.
The Foreign Body Giant Cell Cannot Resorb Bone, But Dissolves Hydroxyapatite Like Osteoclasts
ten Harkel, Bas; Schoenmaker, Ton; Picavet, Daisy I.; Davison, Noel L.; de Vries, Teun J.; Everts, Vincent
2015-01-01
Foreign body multinucleated giant cells (FBGCs) and osteoclasts share several characteristics, like a common myeloid precursor cell, multinuclearity, expression of tartrate-resistant acid phosphatase (TRAcP) and dendritic cell-specific transmembrane protein (DC-STAMP). However, there is an important difference: osteoclasts form and reside in the vicinity of bone, while FBGCs form only under pathological conditions or at the surface of foreign materials, like medical implants. Despite similarities, an important distinction between these cell types is that osteoclasts can resorb bone, but it is unknown whether FBGCs are capable of such an activity. To investigate this, we differentiated FBGCs and osteoclasts in vitro from their common CD14+ monocyte precursor cells, using different sets of cytokines. Both cell types were cultured on bovine bone slices and analyzed for typical osteoclast features, such as bone resorption, presence of actin rings, formation of a ruffled border, and characteristic gene expression over time. Additionally, both cell types were cultured on a biomimetic hydroxyapatite coating to discriminate between bone resorption and mineral dissolution independent of organic matrix proteolysis. Both cell types differentiated into multinucleated cells on bone, but FBGCs were larger and had a higher number of nuclei compared to osteoclasts. FBGCs were not able to resorb bone, yet they were able to dissolve the mineral fraction of bone at the surface. Remarkably, FBGCs also expressed actin rings, podosome belts and sealing zones—cytoskeletal organization that is considered to be osteoclast-specific. However, they did not form a ruffled border. At the gene expression level, FBGCs and osteoclasts expressed similar levels of mRNAs that are associated with the dissolution of mineral (e.g., anion exchange protein 2 (AE2), carbonic anhydrase 2 (CAII), chloride channel 7 (CIC7), and vacuolar-type H+-ATPase (v-ATPase)), in contrast the matrix degrading enzyme cathepsin K, which was hardly expressed by FBGCs. Functionally, the latter cells were able to dissolve a biomimetic hydroxyapatite coating in vitro, which was blocked by inhibiting v-ATPase enzyme activity. These results show that FBGCs have the capacity to dissolve the mineral phase of bone, similar to osteoclasts. However, they are not able to digest the matrix fraction of bone, likely due to the lack of a ruffled border and cathepsin K. PMID:26426806
Disruption of c-Kit Signaling in Kit(W-sh/W-sh) Growing Mice Increases Bone Turnover.
Lotinun, Sutada; Krishnamra, Nateetip
2016-08-16
c-Kit tyrosine kinase receptor has been identified as a regulator of bone homeostasis. The c-Kit loss-of-function mutations in WBB6F1/J-Kit(W/W-v) mice result in low bone mass. However, these mice are sterile and it is unclear whether the observed skeletal phenotype is secondary to a sex hormone deficiency. In contrast, C57BL/6J-Kit(W-sh)/(W-sh) (W(sh)/W(sh)) mice, which carry an inversion mutation affecting the transcriptional regulatory elements of the c-Kit gene, are fertile. Here, we showed that W(sh)/W(sh) mice exhibited osteopenia with elevated bone resorption and bone formation at 6- and 9-week-old. The c-Kit W(sh) mutation increased osteoclast differentiation, the number of committed osteoprogenitors, alkaline phosphatase activity and mineralization. c-Kit was expressed in both osteoclasts and osteoblasts, and c-Kit expression was decreased in W(sh)/W(sh)osteoclasts, but not osteoblasts, suggesting an indirect effect of c-Kit on bone formation. Furthermore, the osteoclast-derived coupling factor Wnt10b mRNA was increased in W(sh)/W(sh) osteoclasts. Conditioned medium from W(sh)/W(sh) osteoclasts had elevated Wnt10b protein levels and induced increased alkaline phosphatase activity and mineralization in osteoblast cultures. Antagonizing Wnt10b signaling with DKK1 or Wnt10b antibody inhibited these effects. Our data suggest that c-Kit negatively regulates bone turnover, and disrupted c-Kit signaling couples increased bone resorption with bone formation through osteoclast-derived Wnt 10 b.
The Rho-GEF Kalirin regulates bone mass and the function of osteoblasts and osteoclasts
Huang, Su; Eleniste, Pierre P.; Wayakanon, Kornchanok; Mandela, Prashant; Eipper, Betty A.; Mains, Richard E.; Allen, Matthew R.; Bruzzaniti, Angela
2014-01-01
Bone homeostasis is maintained by the balance between bone resorption by osteoclasts and bone formation by osteoblasts. Dysregulation in the activity of the bone cells can lead to osteoporosis, a disease characterized by low bone mass and an increase in bone fragility and risk of fracture. Kalirin is a novel GTP-exchange factor protein that has been shown to play a role in cytoskeletal remodeling and dendritic spine formation in neurons. We examined Kalirin expression in skeletal tissue and found that it was expressed in osteoclasts and osteoblasts. Furthermore, micro-CT analyses of the distal femur of global Kalirin knockout (Kal-KO) mice revealed significantly reduced trabecular and cortical bone parameters in Kal-KO mice, compared to WT mice, with significantly reduced bone mass in 8, 14 and 36 week-old female Kal-KO mice. Male mice also exhibited a decrease in bone parameters but not to the level seen in female mice. Histomorphometric analyses also revealed decreased bone formation rate in 14 week-old female Kal-KO mice, as well as decreased osteoblast number/bone surface and increased osteoclast surface/bone surface. Consistent with our in vivo findings, the bone resorbing activity and differentiation of Kal-KO osteoclasts was increased in vitro. Although alkaline phosphatase activity by Kal-KO osteoblasts was increased in vitro, Kal-KO osteoblasts showed decreased mineralizing activity, as well as decreased secretion of OPG, which was inversely correlated with ERK activity. Taken together, our findings suggest that deletion of Kalirin directly affects osteoclast and osteoblast activity, leading to decreased OPG secretion by osteoblasts which is likely to alter the RANKL/OPG ratio and promote osteoclastogenesis. Therefore, Kalirin may play a role in paracrine and/or endocrine signaling events that control skeletal bone remodeling and the maintenance of bone mass. PMID:24380811
Callaway, Danielle A; Jiang, Jean X
2015-07-01
Osteoclasts are cells derived from bone marrow macrophages and are important in regulating bone resorption during bone homeostasis. Understanding what drives osteoclast differentiation and activity is important when studying diseases characterized by heightened bone resorption relative to formation, such as osteoporosis. In the last decade, studies have indicated that reactive oxygen species (ROS), including superoxide and hydrogen peroxide, are crucial components that regulate the differentiation process of osteoclasts. However, there are still many unanswered questions that remain. This review will examine the mechanisms by which ROS can be produced in osteoclasts as well as how it may affect osteoclast differentiation and activity through its actions on osteoclastogenesis signaling pathways. In addition, the contribution of ROS to the aging-associated disease of osteoporosis will be addressed and how targeting ROS may lead to the development of novel therapeutic treatment options.
Koide, M; Okahashi, N; Tanaka, R; Kazuno, K; Shibasaki, K; Yamazaki, Y; Kaneko, K; Ueda, N; Ohguchi, M; Ishihara, Y; Noguchi, T; Nishihara, T
1999-09-01
It is known that bone resorption is mediated by osteoclasts, and lipopolysaccharide (LPS) and inflammatory mediators such as interleukin-1 (IL-1) and prostaglandin E2 (PGE2) induce osteoclast differentiation from haemopoietic cells, 2-aminoethanesulphonic acid, which is known as taurine, is an important nutrient and is added to most synthetic human infant milk formulas. In this study, it was found that 2-aminoethanesulphonic acid inhibits the stimulation of bone resorption mediated by LPS of the periodontopathic microorganism Actinobacillus actinomycetemcomitans Y4 in organ cultures of newborn mouse calvaria. The effect of 2-aminoethanesulphonic acid on the development and survival of osteoclast-like multinucleated cells produced in a mouse bone-marrow culture system was also examined. 2-aminoethanesulphonic acid (100 microg/ml) suppressed the formation of these osteoclast-like cells in the presence of LPS of A. actinomycetemcomitans Y4, IL-1alpha or PGE2 in mouse marrow cultures. On the other hand, 2-aminoethanesulphonic acid did not inhibit 1alpha, 25-dihydroxyvitamin D3-mediated osteoclast differentiation. Although IL-1alpha elongated the survival of the osteoclast-like cells, 2-aminoethanesulphonic acid blocked the supportive effect of IL-1alpha on osteoclast survival. 2-aminoethanesulphonic acid showed no effect on the growth of mouse osteoblasts. Finally, it was found that 2-aminoethanesulphonic acid inhibited alveolar bone resorption in experimental periodontitis in hamsters. These results suggest that 2-aminoethanesulphonic acid is an effective agent in preventing inflammatory bone resorption in periodontal diseases.
Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells
Florencio-Silva, Rinaldo; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio
2015-01-01
Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling. PMID:26247020
Buchwald, Zachary S.; Yang, Chang; Nellore, Suman; Shashkova, Elena V.; Davis, Jennifer L.; Cline, Anna; Ko, Je; Novack, Deborah V.; DiPaolo, Richard; Aurora, Rajeev
2015-01-01
TNFα and IL-17 secreted by proinflammatory T-cells (TEFF) promote bone erosion by activating osteoclasts. We previously demonstrated that in addition to bone resorption, osteoclasts act as antigen presenting cells to induce FoxP3 in CD8 T-cells (TcREG). The osteoclast-induced regulatory CD8 T-cells limit bone resorption in ovariectomized mice (a murine model of postmenopausal osteoporosis). Here we show that while low-dose RANKL maximally induces TcREG via Notch signaling pathway to limit bone resorption, high-dose RANKL promotes bone resorption. In vitro, both TNFα and IL-17, cytokines that are abundant in ovariectomized animals, suppress TcREG induction by osteoclasts by repressing Notch ligand expression in osteoclasts but this effect can be counteracted by addition of RANKL. Ovariectomized mice treated with low-dose RANKL induced TcREG that suppressed bone resorption, decreased TEFF levels and increased bone formation. High dose RANKL had the expected osteolytic effect. Low dose RANKL administration in ovariectomized mice lacking CD8 T-cells was also osteolytic, confirming that TcREG mediate this bone anabolic effect. Our results show that while RANKL directly stimulates osteoclasts to resorb bone, it also controls the osteoclasts’ ability to induce regulatory T-cells, engaging an important negative feedback loop. In addition to the conceivable clinical relevance to treatment of osteoporosis, these observations have potential relevance to induction of tolerance and autoimmune diseases. PMID:25656537
Kikuta, Junichi; Ishii, Masaru
Bone is continually remodeled by bone-resorbing osteoclasts and bone-forming osteoblasts. Although it has long been believed that bone homeostasis is tightly regulated by communication between osteoclasts and osteoblasts, the fundamental process and dynamics have remained elusive. We originally established an advanced imaging system to visualize living bone tissues using intravital two-photon microscopy. By means of this system, we revealed the in vivo behavior of bone-resorbing osteoclasts and bone-forming osteoblasts in bone tissues. This approach facilitates investigation of cellular dynamics in the pathogenesis of musculoskeletal disorders, and would thus be useful for evaluating the efficacy of novel therapeutic agents.
A bone-resorption surface-targeting nanoparticle to deliver anti-miR214 for osteoporosis therapy
Zhang, Shufan; Liu, Jiafan; Sun, Yao; Wang, Xiaogang
2017-01-01
With increasing fracture risks due to fragility, osteoporosis is a global health problem threatening postmenopausal women. In these patients, osteoclasts play leading roles in bone loss and fracture. How to inhibit osteoclast activity is the key issue for osteoporosis treatment. In recent years, miRNA-based gene therapy through gene regulation has been considered a potential therapeutic method. However, in light of the side effects, the use of therapeutic miRNAs in osteoporosis treatment is still limited by the lack of tissue/cell-specific delivery systems. Here, we developed polyurethane (PU) nanomicelles modified by the acidic peptide Asp8. Our data showed that without overt toxicity or eliciting an immune response, this delivery system encapsulated and selectively deliver miRNAs to OSCAR+ osteoclasts at bone-resorption surface in vivo. With the Asp8-PU delivery system, anti-miR214 was delivered to osteoclasts, and bone microarchitecture and bone mass were improved in ovariectomized osteoporosis mice. Therefore, Asp8-PU could be a useful bone-resorption surface-targeting delivery system for treatment of osteoclast-induced bone diseases and aging-related osteoporosis. PMID:29075114
Matthews, Brya G; Roeder, Emilie; Wang, Xi; Aguila, Hector Leonardo; Lee, Sun-Kyeong; Grcevic, Danka; Kalajzic, Ivo
2017-10-01
Osteogenesis imperfecta (OI) is a disease caused by defects in type I collagen production that results in brittle bones. While the pathology is mainly caused by defects in the osteoblast lineage, there is also elevated bone resorption by osteoclasts resulting in high bone turnover in severe forms of the disease. Osteoclasts originate from hematopoietic myeloid cells, however changes in hematopoiesis have not been previously documented in OI. In this study, we evaluated hematopoietic lineage distribution and osteoclast progenitor cell frequency in bone marrow, spleen and peripheral blood of osteogenesis imperfecta murine (OIM) mice, a model of severe OI. We found splenomegaly in all ages examined, and expansion of myeloid lineage cells (CD11b + ) in bone marrow and spleen of 7-9week old male OIM animals. OIM spleens also showed an increased frequency of purified osteoclast progenitors. This phenotype is suggestive of chronic inflammation. Isolated osteoclast precursors from both spleen and bone marrow formed osteoclasts more rapidly than wild-type controls. We found that serum TNFα levels were increased in OIM, as was IL1α in OIM females. We targeted inflammation therapeutically by treating growing animals with murine TNFR2:Fc, a compound that blocks TNFα activity. Anti-TNFα treatment marginally decreased spleen mass in OIM females, but failed to reduce bone resorption, or improve bone parameters or fracture rate in OIM animals. We have demonstrated that OIM mice have changes in their hematopoietic system, and form osteoclasts more rapidly even in the absence of OI osteoblast signals, however therapy targeting TNFα did not improve disease parameters. Copyright © 2017 Elsevier Inc. All rights reserved.
Baek, Jong Min; Kim, Ju-Young; Ahn, Sung-Jun; Cheon, Yoon-Hee; Yang, Miyoung; Oh, Jaemin; Choi, Min Kyu
2016-03-01
Dendrobium moniliforme (DM) is a well-known plant-derived extract that is widely used in Oriental medicine. DM and its chemical constituents have been reported to have a variety of pharmacological effects, including anti-oxidative, anti-inflammatory, and anti-tumor activities; however, no reports discuss the beneficial effects of DM on bone diseases such as osteoporosis. Thus, we investigated the relationship between DM and osteoclasts, cells that function in bone resorption. We found that DM significantly reduced receptor activator of nuclear factor kappa-B ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP)-positive osteoclast formation; DM directly induced the down-regulation of c-Fos and nuclear factor of activated T cells c1 (NFATc1) without affecting other RANKL-dependent transduction pathways. In the later stages of osteoclast maturation, DM negatively regulated the organization of filamentous actin (F-actin), resulting in impaired bone-resorbing activity by the mature osteoclasts. In addition, micro-computed tomography (μ-CT) analysis of the murine model revealed that DM had a beneficial effect on lipopolysaccharide (LPS)-mediated bone erosion. Histological analysis showed that DM attenuated the degradation of trabecular bone matrix and formation of TRAP-positive osteoclasts in bone tissues. These results suggest that DM is a potential candidate for the treatment of metabolic bone disorders such as osteoporosis.
Mangiferin positively regulates osteoblast differentiation and suppresses osteoclast differentiation
Sekiguchi, Yuusuke; Mano, Hiroshi; Nakatani, Sachie; Shimizu, Jun; Kataoka, Aya; Ogura, Kana; Kimira, Yoshifumi; Ebata, Midori; Wada, Masahiro
2017-01-01
Mangiferin is a polyphenolic compound present in Salacia reticulata. It has been reported to reduce bone destruction and inhibit osteoclastic differentiation. This study aimed to determine whether mangiferin directly affects osteoblast and osteoclast proliferation and differentiation, and gene expression in MC3T3-E1 osteoblastic cells and osteoclast-like cells derived from primary mouse bone marrow macrophage cells. Mangiferin induced significantly greater WST-1 activity, indicating increased cell proliferation. Mangiferin induced significantly increased alkaline phosphatase staining, indicating greater cell differentiation. Reverse transcription-polymerase chain reaction (RT-PCR) demonstrated that mangiferin significantly increased the mRNA level of runt-related transcription factor 2 (RunX2), but did not affect RunX1 mRNA expression. Mangiferin significantly reduced the formation of tartrate-resistant acid phosphatase-positive multinuclear cells. RT-PCR demonstrated that mangiferin significantly increased the mRNA level of estrogen receptor β (ERβ), but did not affect the expression of other osteoclast-associated genes. Mangiferin may inhibit osteoclastic bone resorption by suppressing differentiation of osteoclasts and promoting expression of ERβ mRNA in mouse bone marrow macrophage cells. It also has potential to promote osteoblastic bone formation by promoting cell proliferation and inducing cell differentiation in preosteoblast MC3T3-E1 cells via RunX2. Mangiferin may therefore be useful in improving bone disease outcomes. PMID:28627701
Kim, A-Ram; Kim, Hyuk Soon; Lee, Jeong Min; Choi, Jung Ho; Kim, Se Na; Kim, Do Kyun; Kim, Ji Hyung; Mun, Se Hwan; Kim, Jie Wan; Jeon, Hyun Soo; Kim, Young Mi; Choi, Wahn Soo
2012-05-05
Osteoclasts, multinucleated bone-resorbing cells, are closely associated with bone diseases such as rheumatoid arthritis and osteoporosis. Osteoclasts are derived from hematopoietic precursor cells, and their differentiation is mediated by two cytokines, including macrophage colony stimulating factor and receptor activator of nuclear factor κB ligand (RANKL). Previous studies have shown that arctigenin exhibits an anti-inflammatory effect. However, the effect of arctigenin on osteoclast differentiation is yet to be elucidated. In this study, we found that arctigenin inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages in a dose-dependent manner and suppressed RANKL-mediated bone resorption. Additionally, the expression of typical marker proteins, such as NFATc1, c-Fos, TRAF6, c-Src, and cathepsin K, were significantly inhibited. Arctigenin inhibited the phosphorylation of Erk1/2, but not p38 and JNK, in a dose-dependent manner. Arctigenin also dramatically suppressed immunoreceptor tyrosine-based activation motif-mediated costimulatory signaling molecules, including Syk and PLCγ2, and Gab2. Notably, arctigenin inhibited the activation of Syk through RANKL stimulation. Furthermore, arctigenin prevented osteoclast differentiation in the calvarial bone of mice following stimulation with lipopolysaccharide. Our results show that arctigenin inhibits osteoclast differentiation in vitro and in vivo. Therefore, arctigenin may be useful for treating rheumatoid arthritis and osteoporosis. Copyright © 2012 Elsevier B.V. All rights reserved.
Tominari, Tsukasa; Ichimaru, Ryota; Yoshinouchi, Shosei; Matsumoto, Chiho; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M W; Inada, Masaki; Miyaura, Chisato
2017-12-01
(-)-Epigallocatechin-3- O -gallate (EGCG), present in green tea, exhibits antioxidant and antiallergy effects. EGCG3″Me, a 3- O -methylated derivative of EGCG, has been reported to show similar biological functions; the inhibitory activity of EGCG3″Me in a mouse allergy model was more potent than that of EGCG, probably due to the efficiency of absorption from the intestine. However, the functional potency of these EGCGs is controversial in each disease model. We previously observed that EGCG suppressed inflammatory bone resorption and prevented alveolar bone loss in a mouse model of periodontosis. In this study, we examined the role of EGCG3″Me in bone resorption using a mouse model of periodontitis. Lipopolysaccharide (LPS)-induced osteoclast formation was suppressed by adding EGCG3″Me to cocultures of osteoblasts and bone marrow cells, and LPS-induced bone resorption was also inhibited by EGCG3″Me in calvarial organ cultures. EGCG3″Me acted on osteoblasts and suppressed prostaglandin E (PGE) production, which is critical for inflammatory bone resorption, by inhibiting the expression of COX-2 and mPGES-1, key enzymes for PGE synthesis. In osteoclast precursor macrophages, EGCG3″Me suppressed RANKL-dependent differentiation into mature osteoclasts. In a mouse model of periodontitis, LPS-induced bone resorption was suppressed by EGCG3″Me in organ culture of mouse alveolar bone, and the alveolar bone loss was further attenuated by the treatment of EGCG3″Me in the lower gingiva in vivo . EGCG3″Me may be a potential natural compound for the protection of inflammatory bone loss in periodontitis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprangers, Sara, E-mail: s.l.sprangers@acta.nl; Schoenmaker, Ton, E-mail: t.schoenmaker@acta.nl; Department of Periodontology, Academic Centre for Dentistry Amsterdam
Bone-degrading osteoclasts are formed through fusion of their monocytic precursors. In the population of human peripheral blood monocytes, three distinct subsets have been identified: classical, intermediate and non-classical monocytes. We have previously shown that when the monocyte subsets are cultured on bone, significantly more osteoclasts are formed from classical monocytes than from intermediate or non-classical monocytes. Considering that this difference does not exist when monocyte subsets are cultured on plastic, we hypothesized that classical monocytes adhere better to the bone surface compared to intermediate and non-classical monocytes. To investigate this, the different monocyte subsets were isolated from human peripheral bloodmore » and cultured on slices of human bone in the presence of the cytokine M-CSF. We found that classical monocytes adhere better to bone due to a higher expression of the integrin αMβ2 and that their ability to attach to bone is significantly decreased when the integrin is blocked. This suggests that integrin αMβ2 mediates attachment of osteoclast precursors to bone and thereby enables the formation of osteoclasts.« less
Roy, Mangal; Bose, Susmita
2012-01-01
Bone substitute materials are required to support the remodeling process, which consists of osteoclastic resorption and osteoblastic synthesis. Osteoclasts, the bone resorbing cells, generate from differentiation of hemopoietic mononuclear cells. In the present study we have evaluated the effects of 1.0 wt% strontium (Sr) and 1.0 wt% magnesium (Mg) doping in beta-tricalcium phosphate (β-TCP) on the differentiation of mononuclear cells into osteoclast-like cells and its resorptive activity. In vitro osteoclast-like cell formation, adhesion, and resorption were studied using osteoclast precursor RAW 264.7 cell, supplemented with receptor activator of nuclear factor κβ ligand (RANKL). Osteoclast-like cell formation was noticed on pure and Sr doped β-TCP samples at day 8 which was absent on Mg doped β-TCP samples indicating decrease in initial osteoclast differentiation due to Mg doping. After 21 days of culture, osteoclast-like cell formation was evident on all samples with osteoclastic markers such as actin ring, multiple nuclei, and presence of vitronectin receptor αvβ3 integrin. After osteoclast differentiation, all substrates showed osteoclast-like cell mediated degradation, however; significantly restricted for Mg doped β-TCP samples. Our present results indicated substrate chemistry controlled osteoclast differentiation and resorptive activity which can be used in designing TCP based resorbable bone substitutes with controlled degradation properties. PMID:22566212
Roy, Mangal; Bose, Susmita
2012-09-01
Bone substitute materials are required to support the remodeling process, which consists of osteoclastic resorption and osteoblastic synthesis. Osteoclasts, the bone-resorbing cells, generate from differentiation of hemopoietic mononuclear cells. In the present study, we have evaluated the effects of 1.0 wt % strontium (Sr) and 1.0 wt % magnesium (Mg) doping in beta-tricalcium phosphate (β-TCP) on the differentiation of mononuclear cells into osteoclast-like cells and its resorptive activity. In vitro osteoclast-like cell formation, adhesion, and resorption were studied using osteoclast precursor RAW 264.7 cell, supplemented with receptor activator of nuclear factor κβ ligand (RANKL). Osteoclast-like cell formation was noticed on pure and Sr-doped β-TCP samples at day 8, which was absent on Mg-doped β-TCP samples indicating decrease in initial osteoclast differentiation due to Mg doping. After 21 days of culture, osteoclast-like cell formation was evident on all samples with osteoclastic markers such as actin ring, multiple nuclei, and presence of vitronectin receptor α(v)β(3) integrin. After osteoclast differentiation, all substrates showed osteoclast-like cell-mediated degradation, however, significantly restricted for Mg-doped β-TCP samples. Our present results indicated that substrate chemistry controlled osteoclast differentiation and resorptive activity, which can be used in designing TCP-based resorbable bone substitutes with controlled degradation properties. Copyright © 2012 Wiley Periodicals, Inc.
Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation
Raimondi, Lavinia; De Luca, Angela; Amodio, Nicola; Manno, Mauro; Raccosta, Samuele; Taverna, Simona; Bellavia, Daniele; Naselli, Flores; Fontana, Simona; Schillaci, Odessa; Giardino, Roberto; Fini, Milena; Tassone, Pierfrancesco; Santoro, Alessandra; De Leo, Giacomo; Giavaresi, Gianluca; Alessandro, Riccardo
2015-01-01
Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient's sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes. PMID:25944696
Adapala, Naga Suresh; Barbe, Mary F.; Tsygankov, Alexander Y.; Lorenzo, Joseph A.; Sanjay, Archana
2015-01-01
Cbl family proteins, Cbl and Cbl-b, are E3 ubiquitin ligases and adaptor proteins, which play important roles in bone-resorbing osteoclasts. Loss of Cbl in mice decreases osteoclast migration, resulting in delayed bone development where as absence of Cbl-b decreases bone volume due to hyper-resorptive osteoclasts. A major structural difference between Cbl and Cbl-b is tyrosine 737 (in YEAM motif) only on Cbl, which upon phosphorylation interacts with the p85 subunit of phosphatidylinositol-3 Kinase (PI3K). In contrast to Cbl−/− and Cbl-b−/−, mice lacking Cbl–PI3K interaction due to a Y737F (tyrosine to phenylalanine, YF) mutation showed enhanced osteoclast survival, but defective bone resorption. To investigate whether Cbl–PI3K interaction contributes to distinct roles of Cbl and Cbl-b in osteoclasts, mice bearing CblY737F mutation in the Cbl-b−/− background (YF/YF;Cbl-b−/−) were generated. The differentiation and survival were augmented similarly in YF/YF and YF/YF;Cbl-b−/− osteoclasts, associated with enhanced PI3K signaling suggesting an exclusive role of Cbl–PI3K interaction, independent of Cbl-b. In addition to PI3K, the small GTPase Ras also regulates osteoclast survival. In the absence of Cbl–PI3K interaction, increased Ras GTPase activity and Ras–PI3K binding were observed and inhibition of Ras activation attenuated PI3K mediated osteoclast survival. In contrast to differentiation and survival, increased osteoclast activity observed in Cbl-b−/− mice persisted even after introduction of the resorption-defective YF mutation in YF/YF;Cbl-b−/− mice. Hence, Cbl and Cbl-b play mutually exclusive roles in osteoclasts. Whereas Cbl–PI3K interaction regulates differentiation and survival, bone resorption is predominantly regulated by Cbl-b in osteoclasts. PMID:24470255
Adapala, Naga Suresh; Barbe, Mary F; Tsygankov, Alexander Y; Lorenzo, Joseph A; Sanjay, Archana
2014-07-01
Cbl family proteins, Cbl and Cbl-b, are E3 ubiquitin ligases and adaptor proteins, which play important roles in bone-resorbing osteoclasts. Loss of Cbl in mice decreases osteoclast migration, resulting in delayed bone development where as absence of Cbl-b decreases bone volume due to hyper-resorptive osteoclasts. A major structural difference between Cbl and Cbl-b is tyrosine 737 (in YEAM motif) only on Cbl, which upon phosphorylation interacts with the p85 subunit of phosphatidylinositol-3 Kinase (PI3K). In contrast to Cbl(-/-) and Cbl-b(-/-) , mice lacking Cbl-PI3K interaction due to a Y737F (tyrosine to phenylalanine, YF) mutation showed enhanced osteoclast survival, but defective bone resorption. To investigate whether Cbl-PI3K interaction contributes to distinct roles of Cbl and Cbl-b in osteoclasts, mice bearing CblY737F mutation in the Cbl-b(-/-) background (YF/YF;Cbl-b(-/-) ) were generated. The differentiation and survival were augmented similarly in YF/YF and YF/YF;Cbl-b(-/-) osteoclasts, associated with enhanced PI3K signaling suggesting an exclusive role of Cbl-PI3K interaction, independent of Cbl-b. In addition to PI3K, the small GTPase Ras also regulates osteoclast survival. In the absence of Cbl-PI3K interaction, increased Ras GTPase activity and Ras-PI3K binding were observed and inhibition of Ras activation attenuated PI3K mediated osteoclast survival. In contrast to differentiation and survival, increased osteoclast activity observed in Cbl-b(-/-) mice persisted even after introduction of the resorption-defective YF mutation in YF/YF;Cbl-b(-/-) mice. Hence, Cbl and Cbl-b play mutually exclusive roles in osteoclasts. Whereas Cbl-PI3K interaction regulates differentiation and survival, bone resorption is predominantly regulated by Cbl-b in osteoclasts. © 2014 Wiley Periodicals, Inc.
Impairment of osteoclastic bone resorption in rapidly growing female p47phox knockout mice
USDA-ARS?s Scientific Manuscript database
Bone formation is dependent on the activity and differentiation of osteoblasts; whereas resorption of preexisting mineralized bone matrix by osteoclasts is necessary not only for bone development but also for regeneration and remodeling. Bone remodeling is a process in which osteoblasts and osteocla...
Boulier, A; Schwarz, J; Lespesailles, E; Baniel, A; Tomé, D; Blais, A
2016-10-01
Nutritional approaches may help to preserve bone quality. The purpose of our study was to demonstrate the efficiency of an innovative bone health product (BHP) including micellar casein rich in calcium, vitamin D2 and vitamin K2, to improve bone mineral density. The aim of postmenopausal osteoporosis treatment is to decrease bone resorption and/or increase bone formation. Because of the slow bone turnover, osteoporosis prevention and therapies are long-lasting, implying great costs and poor compliance. Even if the effects of nutrition on bone are not as marked as that of pharmaceutical agents, it can be of great help. The purpose of our study was to demonstrate the efficiency of an innovative bone health product (BHP) containing micellar casein rich in calcium, vitamin D2 and vitamin K2, for the improvement of bone mineral density (BMD). An ovariectomized mice model was used to study the effect of different concentrations of the ingredient on BMD and microarchitectural parameters. Blood concentrations of C-terminal telopeptide of type I collagen (CTX), N-terminal propeptide of type 1 procollagene (PINP), alkaline phosphatase (ALP), osteocalcin (OC) and RANKL were also measured to evaluate bone remodelling, To evaluate the efficiency of the product to modulate osteoblast and osteoclast growth and differentiation, primary murine bone cells were used. In vivo studies showed that BMD and microarchitectural parameters were dose-dependently improved after ingestion of the supplement for 3 months. We also report increased osteoblast activity as shown by increased OC activity and decreased osteoclastogenesis as shown by reduced CTX activity. In vitro studies support that BHPs stimulate osteoblast differentiation and mineralization and inhibit osteoclast resorption activity. Our results show that, when chronically ingested, BHPs improve BMD of ovariectomized mice. This work supports that providing an ingredient including micellar casein rich in calcium, vitamin D2 and vitamin K2 is more efficient than the control diet to maintain bone quality.
Bone cell communication factors and Semaphorins
Negishi-Koga, Takako; Takayanagi, Hiroshi
2012-01-01
Bone tissue is continuously renewed throughout adult life by a process called 'remodeling', which involves a dynamic interplay among bone cells including osteoclasts, osteoblasts and osteocytes. For example, a tight coupling between bone resorption and formation is essential for the homeostasis of the skeletal system. Studies on the coupling mechanism in physiological and pathological settings have revealed that osteoclasts or osteoclastic bone resorption promote bone formation through the production of diverse coupling factors. The classical coupling factors are the molecules that promote bone formation after resorption, but there may be distinct mechanisms at work in various phases of bone remodeling. A recent study revealed that the Semaphorin 4D expressed by osteoclasts inhibits bone formation, which represents a mechanism by which coupling is dissociated. Furthermore, it has been demonstrated that osteoblastic expression of Semaphorin 3A exerts an osteoprotective effect by both suppressing bone resorption and increasing bone formation. Thus, recent advances have made it increasingly clear that bone remodeling is regulated by not only classical coupling factors, but also molecules that mediate cell–cell communication among bone cells. We propose that such factors be called bone cell communication factors, which control the delicate balance of the interaction of bone cells so as to maintain bone homeostasis. PMID:24171101
CD147 promotes the formation of functional osteoclasts through NFATc1 signalling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishioku, Tsuyoshi, E-mail: nishiokut@niu.ac.jp; Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180; Terasawa, Mariko
CD147, a membrane glycoprotein of the immunoglobulin superfamily, is highly upregulated during dynamic cellular events including tissue remodelling. Elevated CD147 expression is present in the joint of rheumatoid arthritis patients. However, the role of CD147 in bone destruction remains unclear. To determine whether CD147 is involved in osteoclastogenesis, we studied its expression in mouse osteoclasts and its role in osteoclast differentiation and function. CD147 expression was markedly upregulated during osteoclast differentiation. To investigate the role of CD147 in receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption activity, osteoclast precursor cells were transfected with CD147 siRNA. Decreasedmore » CD147 expression inhibited osteoclast formation and bone resorption, inhibited RANKL-induced nuclear translocation of the nuclear factor of activated T cells (NFAT) c1 and decreased the expression of the d2 isoform of vacuolar ATPase Vo domain and cathepsin K. Therefore, CD147 plays a critical role in the differentiation and function of osteoclasts by upregulating NFATc1 through the autoamplification of its expression in osteoclastogenesis. - Highlights: • CD147 expression was markedly upregulated during osteoclast differentiation. • Downregulation of CD147 expression inhibited osteoclastgenesis and bone resorption. • Decreased CD147 expression inhibited RANKL-induced nuclear translocation of NFATc1.« less
Baek, Jong Min; Kim, Ju-Young; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su
2016-01-01
Ebselen is a non-toxic seleno-organic drug with anti-inflammatory and antioxidant properties that is currently being examined in clinical trials to prevent and treat various diseases, including atherosclerosis, stroke, and cancer. However, no reports are available for verifying the pharmacological effects of ebselen on major metabolic bone diseases such as osteoporosis. In this study, we observed that ebselen suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in an osteoblast/osteoclast co-culture by regulating the ratio of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin secreted by osteoblasts. In addition, ebselen treatment in the early stage of osteoclast differentiation inhibited RANKL-dependent osteoclastogenesis by decreasing the phosphorylation of IκB, PI3K, and Akt in early signaling pathways and by subsequently inducing c-Fos and nuclear factor of activated T-cells c1. Further, ebselen induced apoptosis of osteoclasts in the late stage of osteoclast differentiation. In addition, ebselen treatment suppressed filamentous actin ring formation and bone resorption activity of mature osteoclasts. Reflecting these in vitro effects, administration of ebselen recovered bone loss and its µ-CT parameters in lipopolysaccharide-mediated mouse model. Histological analysis confirmed that ebselen prevented trabecular bone matrix degradation and osteoclast formation in the bone tissues. Finally, it was proved that the anti-osteoclastogenic action of ebselen is achieved through targeting N-methyl-D-aspartate (NMDA) receptor. These results indicate that ebselen is a potentially safe drug for treating metabolic bone diseases such as osteoporosis.
Tributyltin induces distinct effects on cortical and trabecular bone in female C57Bl/6J mice.
Watt, James; Baker, Amelia H; Meeks, Brett; Pajevic, Paola D; Morgan, Elise F; Gerstenfeld, Louis C; Schlezinger, Jennifer J
2018-09-01
The retinoid X receptors (RXR), peroxisome proliferator activated receptor gamma (PPARγ), and liver X receptors (LXR) all have been shown to regulate bone homeostasis. Tributyltin (TBT) is an environmental contaminant that is a dual RXRα/β and PPARγ agonist. TBT induces RXR, PPARγ, and LXR-mediated gene transcription and suppresses osteoblast differentiation in vitro. Bone marrow multipotent mesenchymal stromal cells derived from female C57BL/6J mice were more sensitive to suppression of osteogenesis by TBT than those derived from male mice. In vivo, oral gavage of 12 week old female, C57Bl/6J mice with 10 mg/kg TBT for 10 weeks resulted in femurs with a smaller cross-sectional area and thinner cortex. Surprisingly, TBT induced significant increases in trabecular thickness, number, and bone volume fraction. TBT treatment did not change the Rankl:Opg RNA ratio in whole bone, and histological analyses showed that osteoclasts in the trabecular space were minimally reduced. In contrast, expression of cardiotrophin-1, an osteoblastogenic cytokine secreted by osteoclasts, increased. In primary bone marrow macrophage cultures, TBT marginally inhibited the number of osteoclasts that differentiated, in spite of significantly suppressing expression of osteoclast markers Nfatc1, Acp5, and Ctsk and resorptive activity. TBT induced expression of RXR- and LXR-dependent genes in whole bone and in vitro osteoclast cultures. However, only an RXR antagonist, but not an LXR antagonist, significantly inhibited TBTs ability to suppress osteoclast differentiation. These results suggest that TBT has distinct effects on cortical versus trabecular bone, likely resulting from independent effects on osteoblast and osteoclast differentiation that are mediated through RXR. © 2018 Wiley Periodicals, Inc.
Adapala, Naga Suresh; Barbe, Mary F; Langdon, Wallace Y; Nakamura, Mary C; Tsygankov, Alexander Y; Sanjay, Archana
2010-11-19
Cbl is an adaptor protein and an E3 ligase that plays both positive and negative roles in several signaling pathways that affect various cellular functions. Tyrosine 737 is unique to Cbl and is phosphorylated by Syk and Src family kinases. Phosphorylated Cbl Tyr(737) creates a binding site for the p85 regulatory subunit of PI3K, which also plays an important role in the regulation of bone resorption by osteoclasts. To investigate the role of Cbl-PI3K interaction in bone homeostasis, we examined the knock-in mice (Cbl(YF/YF)) in which the PI3K binding site in Cbl is ablated due to the mutation in the regulatory tyrosine. We report that in Cbl(YF/YF) mice, despite increased numbers of osteoclasts, bone volume is increased due to defective osteoclast function. Additionally, in ex vivo cultures, mature Cbl(YF/YF) osteoclasts showed an increased ability to survive in the presence of RANKL due to delayed onset of apoptosis. RANKL-mediated signaling is perturbed in Cbl(YF/YF) osteoclasts, and most interestingly, AKT phosphorylation is up-regulated, suggesting that the lack of PI3K sequestration by Cbl results in increased survival and decreased bone resorption. Cumulatively, these in vivo and in vitro results show that, on one hand, binding of Cbl to PI3K negatively regulates osteoclast differentiation, survival, and signaling events (e.g. AKT phosphorylation), whereas on the other hand it positively influences osteoclast function.
Busse, Björn; Schilling, Arndt F.; Schinke, Thorsten; Amling, Michael; Lange, Tobias
2012-01-01
Bioactive bone substitute materials are a valuable alternative to autologous bone transplantations in the repair of skeletal defects. However, clinical studies have reported varying success rates for many commonly used biomaterials. While osteoblasts have traditionally been regarded as key players mediating osseointegration, increasing evidence suggests that bone-resorbing osteoclasts are of crucial importance for the longevity of applied biomaterials. As no standardized data on the resorbability of biomaterials exists, we applied an in vitro-assay to compare ten commonly used bone substitutes. Human peripheral blood mononuclear cells (PBMCs) were differentiated into osteoclasts in the co-presence of dentin chips and biomaterials or dentin alone (control) for a period of 28 days. Osteoclast maturation was monitored on day 0 and 14 by light microscopy, and material-dependent changes in extracellular pH were assessed twice weekly. Mature osteoclasts were quantified using TRAP stainings on day 28 and their resorptive activity was determined on dentin (toluidin blue staining) and biomaterials (scanning electron microscopy, SEM). The analyzed biomaterials caused specific changes in the pH, which were correlated with osteoclast multinuclearity (r = 0.942; p = 0.034) and activity on biomaterials (r = 0.594; p = 0.041). Perossal led to a significant reduction of pH, nuclei per osteoclast and dentin resorption, whereas Tutogen bovine and Tutobone human strikingly increased all three parameters. Furthermore, natural biomaterials were resorbed more rapidly than synthetic biomaterials leading to differential relative resorption coefficients, which indicate whether bone substitutes lead to a balanced resorption or preferential resorption of either the biomaterial or the surrounding bone. Taken together, this study for the first time compares the effects of widely used biomaterials on osteoclast formation and resorbability in an unbiased approach that may now aid in improving the preclinical evaluation of bone substitute materials. PMID:23071629
The Rho-GEF Kalirin regulates bone mass and the function of osteoblasts and osteoclasts.
Huang, Su; Eleniste, Pierre P; Wayakanon, Kornchanok; Mandela, Prashant; Eipper, Betty A; Mains, Richard E; Allen, Matthew R; Bruzzaniti, Angela
2014-03-01
Bone homeostasis is maintained by the balance between bone resorption by osteoclasts and bone formation by osteoblasts. Dysregulation in the activity of the bone cells can lead to osteoporosis, a disease characterized by low bone mass and an increase in bone fragility and risk of fracture. Kalirin is a novel GTP-exchange factor protein that has been shown to play a role in cytoskeletal remodeling and dendritic spine formation in neurons. We examined Kalirin expression in skeletal tissue and found that it was expressed in osteoclasts and osteoblasts. Furthermore, micro-CT analyses of the distal femur of global Kalirin knockout (Kal-KO) mice revealed significantly reduced trabecular and cortical bone parameters in Kal-KO mice, compared to WT mice, with significantly reduced bone mass in 8, 14 and 36week-old female Kal-KO mice. Male mice also exhibited a decrease in bone parameters but not to the level seen in female mice. Histomorphometric analyses also revealed decreased bone formation rate in 14week-old female Kal-KO mice, as well as decreased osteoblast number/bone surface and increased osteoclast surface/bone surface. Consistent with our in vivo findings, the bone resorbing activity and differentiation of Kal-KO osteoclasts was increased in vitro. Although alkaline phosphatase activity by Kal-KO osteoblasts was increased in vitro, Kal-KO osteoblasts showed decreased mineralizing activity, as well as decreased secretion of OPG, which was inversely correlated with ERK activity. Taken together, our findings suggest that deletion of Kalirin directly affects osteoclast and osteoblast activity, leading to decreased OPG secretion by osteoblasts which is likely to alter the RANKL/OPG ratio and promote osteoclastogenesis. Therefore, Kalirin may play a role in paracrine and/or endocrine signaling events that control skeletal bone remodeling and the maintenance of bone mass. Copyright © 2013 Elsevier Inc. All rights reserved.
Inhibition of bone resorption by Tanshinone VI isolated from Salvia miltiorrhiza Bunge.
Nicolin, V; Dal Piaz, F; Nori, S L; Narducci, P; De Tommasi, N
2010-05-10
During the last decade, a more detailed knowledge of molecular mechanisms involved in osteoclastogenesis has driven research efforts in the development and screening of compound libraries of several small molecules that specifically inhibit the pathway involved in the commitment of the osteoclast precursor cells. Natural compounds that suppress osteoclast differentiation may have therapeutic value in treating osteoporosis and other bone erosive diseases such as rheumatoid arthritis or metastasis associated with bone loss. In ongoing investigation into anti-osteoporotic compounds from natural products we have analyzed the effect of Tanshinone VI on osteoclasts differentiation, using a physiologic three-dimensional osteoblast/bone marrow model of cell co-culture. Tanshinone VI is an abietane diterpene extracted from the root of Salvia miltiorrhiza Bunge (Labiatae), a Chinese traditional crude drug, "Tan-Shen". Tashinone has been widely used in clinical practice for the prevention of cardiac diseases, arthritis and other inflammation-related disorders based on its pharmacological actions in multiple tissues. Although Tanshinone VI A has been used as a medicinal agent in the treatment of many diseases, its role in osteoclast-related bone diseases remains unknown. We showed previously that Tanshinone VI greatly inhibits osteoclast differentiation and suppresses bone resorption through disruption of the actin ring; subsequently, we intended to examine the precise inhibitory mechanism of Tanshinone VI on osteoclast differentiating factor. This study shows, for the first time, that Tanshinone VI prevents osteoclast differentiation by inhibiting RANKL expression and NFkB induction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chackalaparampil, I.; Mukherjee, B.B.; Peri, A.
1994-09-01
Osteopetrosis, affecting mice and humans alike, arises from reduced or impaired bone resorption, causing abnormally dense bone formation. Normal bone differentiation requires continuous resorption and remodeling by osteoclasts which are derived from monocyte/macrophage lineage in the bone marrow. It has been reported that targeted homozygous disruption of c-src proto-oncogene in mice results in the development of osteopetrosis due to impaired bone-resorbing function of osteoclast cells. However, the molecular mechanism(s) which leads to osteoclast dysfunction in c-src deficient (src{sup -/-}) mice remains unclear. Here, we report that in embryonic fibroblasts derived from homozygous Src{sup -/-} mice, the expression of the genemore » coding for osteopontin (OP), a phosphorylated glycoprotein involved in bone differentiation, is drastically repressed. OP gene expression is not, however, affected in the heterozygous (Src{sup +/-}) mutant cells of identical origin, or in the c-src expression and OP production. Moreover, OP expression in c-src-deficient cells could be rescued upon treatment with 12-0-tetradecanoyl phorbol-13-myristate-acetate or okadaic acid. These observations indicate that OP expression is regulated via an src-mediated protein kinase C signaling pathway. Since it is known that OP mediates osteoclast adherence to the bone matrix, a key event in bone differentiation, our data is most significant in that they strongly suggest that drastic inhibition of synthesis of OP prevents osteoclasts in Src{sup -/-} mice from anchoring to the bone matrix. Consequently, this disruption of osteoclast adherence impairs their ability to form bone-resorbing ruffled border, causing osteopetrosis.« less
Minoshima, Masafumi; Kikuchi, Kazuya
Fluorescent molecules are widely used as a tool to directly visualize target biomolecules in vivo. Fluorescent probes have the advantage that desired function can be rendered based on rational design. For bone-imaging fluorescent probes in vivo, they should be delivered to bone tissue upon administration. Recently, a fluorescent probe for detecting osteoclast activity was developed. The fluorescent probe has acid-sensitive fluorescence property, specific delivery to bone tissue, and durability against laser irradiation, which enabled real-time intravital imaging of bone-resorbing osteoclasts for a long period of time.
Bropirimine inhibits osteoclast differentiation through production of interferon-β
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Hiroaki; Mochizuki, Ayako; Yoshimura, Kentaro
Bropirimine is a synthetic agonist for toll-like receptor 7 (TLR7). In this study, we investigated the effects of bropirimine on differentiation and bone-resorbing activity of osteoclasts in vitro. Bropirimine inhibited osteoclast differentiation of mouse bone marrow-derived macrophages (BMMs) induced by receptor activator of nuclear factor κB ligand (RANKL) in a concentration-dependent manner. Furthermore, it suppressed the mRNA expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1), a master transcription factor for osteoclast differentiation, without affecting BMM viability. Bropirimine also inhibited osteoclast differentiation induced in co-cultures of mouse bone marrow cells (BMCs) and mouse osteoblastic UAMS-32 cells in the presencemore » of activated vitamin D{sub 3}. Bropirimine partially suppressed the expression of RANKL mRNA in UAMS-32 cells induced by activated vitamin D{sub 3}. Finally, the anti-interferon-β (IFN-β) antibody restored RANKL-dependent differentiation of BMMs into osteoclasts suppressed by bropirimine. These results suggest that bropirimine inhibits differentiation of osteoclast precursor cells into osteoclasts via TLR7-mediated production of IFN-β.« less
Song, Ruilong; Gu, Jianhong; Liu, Xuezhong; Zhu, Jiaqiao; Wang, Qichao; Gao, Qian; Zhang, Jiaming; Cheng, Laiyang; Tong, Xishuai; Qi, Xinyi; Yuan, Yan; Liu, Zongping
2014-09-01
Bone remodeling is dependent on the dynamic equilibrium between osteoclast-mediated bone resorption and osteoblast-mediated osteogenesis. The sealing zone is an osteoclast-specific cytoskeletal structure, the integrity of which is critical for osteoclast-mediated bone resorption. To date, studies have focused mainly on the osteoprotegerin (OPG)‑induced inhibition of osteoclast differentiation through the OPG/receptor activator of the nuclear factor kappa-B ligand (RANKL)/RANK system, which affects the bone resorption of osteoclasts. However, the effects of OPG on the sealing zone have not been reported to date. In this study, the formation of the sealing zone was observed by Hoffman modulation contrast (HMC) microscopy and confocal laser scanning microscopy. The effects of OPG on the existing sealing zone and osteoclast-mediated bone resorption activity, as well as the regulatory role of genes involved in the formation of the sealing zone were examined by immunofluorescence staining, HMC microscopy, quantitative reverse transcription polymerase chain reaction (RT-qPCR), western blot analysis and scanning electron microscopy. The sealing zone was formed on day 5, with belt-like protuberances at the cell edge and scattered distribution of cell nuclei, but no filopodia. The sealing zone was intact in the untreated control group. However, defects in the sealing zone were observed in the OPG-treated group (20 ng/ml) and the structure was absent in the groups treated with 40 and 80 ng/ml OPG. The podosomes showed a scattered or clustered distribution between the basal surface of the osteoclasts and the well surface. Furthermore, resorption lacunae were not detected in the 20 ng/ml OPG-treated group, indicating the loss of osteoclast-mediated bone resorption activity. Treatment with OPG resulted in a significant decrease in the expression of Arhgef8/Net1 and DOCK5 Rho guanine nucleotide exchange factors (RhoGEFs), 10 of 18 RhoGTPases (RhoA, RhoB, cdc42v1, cdc42v2, RhoU/Wrch1, RhoF/Rif, Rac2, RhoG, Rnd1 and RhoBTB1), ROCK1 and ROCK2. In conclusion, podosome distribution was affected by the OPG-induced inhibition of the expression of genes in the RhoGTPase signaling pathway. This resulted in damage to or destruction of the sealing zone, thus inhibiting osteoclast-mediated bone resorption activity.
2007-03-01
ligand), a membrane-bound cytokine expressed in osteoblasts/stromal cells, which binds to RANK, a cell- surface protein present on osteoclast...cocultures were incubated for 10 days and then the culture medium was employed in an ELISA to detect the osteoclast marker , tartrate- resistant acid...bone marrow stromal cells and osteoclast precursor cells. Ten days post-infection, expression of the osteoclast marker enzyme TRAP was determined
Kim, Yun-Ho; Kim, Jung-Lye; Lee, Eun-Jung; Park, Sin-Hye; Han, Seon-Young; Kang, Soon Ah; Kang, Young-Hee
2014-03-01
Osteoclastogenesis is comprised of several stage s including progenitor survival, differentiation to mononuclear preosteoclasts, cell fusion to multinuclear mature osteoclasts, and activation to osteoclasts with bone resorbing activity. Botanical antioxidants are now being increasingly investigated for their health-promoting effects on bone. This study investigated that fisetin, a flavonol found naturally in many fruits and vegetables, suppressed osteoclastogenesis by disturbing receptor activator of nuclear factor (NF)-κB ligand (RANKL)-mediated signaling pathway and demoting osteoclastogenic protein induction. Nontoxic fisetin at ≤10 μM inhibited the induction of RANK, tumor necrosis factor receptor associated factor 6 (TRAF6) and the activation of NF-κB in RANKL-stimulated RAW 264.7 macrophages. In RANKL-differentiated osteoclasts cell fusion protein of E-cadherin was induced, which was dampened by fisetin. The formation of tartrate-resistance acid phosphatase-positive multinucleated osteoclasts was suppressed by adding fisetin to RANKL-exposed macrophages. It was also found that fisetin reduced actin ring formation and gelsolin induction of osteclasts enhanced by RANKL through disturbing c-Src-proline-rich tyrosine kinase 2 signaling. Fisetin deterred preosteoclasts from the cell-cell fusion and the organization of the cytoskeleton to seal the resorbing area and to secret protons for bone resorption. Consistently, the 5 day-treatment of fisetin diminished RANKL-induced cellular expression of carbonic anhydrase II and integrin β3 concurrently with a reduction of osteoclast bone-resorbing activity. Therefore, fisetin was a natural therapeutic agent retarding osteoclast fusion and cytoskeletal organization such as actin rings and ruffled boarder, which is a property of mature osteoclasts and is required for osteoclasts to resorb bone. Copyright © 2014 Elsevier Inc. All rights reserved.
Izawa, Takashi; Arakaki, Rieko; Mori, Hiroki; Tsunematsu, Takaaki; Kudo, Yasusei; Tanaka, Eiji
2016-01-01
The aryl hydrocarbon receptor (AhR) pathway plays a key role in receptor activator of NF-κB ligand (RANKL)–mediated osteoclastogenesis. However, the mechanism underlying the regulation of AhR expression in osteoclasts and the signaling pathway through which AhR controls osteoclastogenesis remain unclear. We found that the expression of AhR in bone marrow–derived osteoclasts was upregulated by RANKL at an earlier stage than was the expression of signature osteoclast genes such as those encoding cathepsin K and NFAT, cytoplasmic, calcineurin-dependent 1. In response to RANKL, bone marrow macrophages isolated from AhR−/− mice exhibited impaired phosphorylation of Akt and MAPK as well as NF-κB, whereas their response to M-CSF remained unchanged. Osteoclast differentiation mediated by the AhR signaling pathway was also regulated in an RANKL/c-Fos–dependent manner. Furthermore, ligand activation of AhR by the smoke toxin benzo[a]pyrene accelerated osteoclast differentiation in a receptor-dependent manner, and AhR-dependent regulation of mitochondrial biogenesis in osteoclasts was observed. Moreover, AhR−/− mice exhibited impaired bone healing with delayed endochondral ossification. Taken together, the present results suggest that the RANKL/AhR/c-Fos signaling axis plays a critical role in osteoclastogenesis, thereby identifying the potential of AhR in treating pathological, inflammatory, or metabolic disorders of the bone. PMID:27849171
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Shaobo; Xu, Jiawei; Zhang, Chenghua
Receptor activator of nuclear factor (NF)-κB ligand (RANKL)-activated signaling is essential for osteoclast differentiation, activation, and survival. Salicortin is a phenolic glycoside that has been isolated from many plants such as Populus and Salix species, and has been shown to have anti-amnesic and anti-adipogenic effects. In this study, we investigated the effect of salicortin on RANKL-induced osteoclasts formation, bone resorption, and activation of osteoclast-related signaling pathways. Salicortin suppressed RANKL-induced osteoclastogenesis in bone marrow macrophage cultures in a dose-dependent manner, and inhibited osteoclastic bone resorption activity without any cytotoxicity. Salicortin inhibited RANKL-induced c-Jun N-terminal kinase and NF-κB activation, concomitant with retardedmore » IκBα phosphorylation and inhibition of p65 nuclear translocation, leading to impaired transcription of nuclear factor of activated T cells c1 (NFATc1) and expression of osteoclastic-specific genes. Taken together, our findings demonstrate that salicortin inhibits NF-κB and NFATc1 activation, leading to attenuation of osteoclastogenesis and bone resorption. Thus, salicortin may be of interest in developments of treatment for osteoclast related diseases. - Highlights: • Salicortin suppresses osteoclastogenesis in vitro. • Salicortin impairs the JNK and NF-κB/NFATc1 signaling pathway. • Salicortin may be of interest in developments of osteoporosis treatment.« less
Xu, Zhan; Greenblatt, Matthew B.; Yan, Guang; Feng, Heng; Sun, Jun; Lotinun, Sutada; Brady, Nicholas; Baron, Roland; Glimcher, Laurie H.; Zou, Weiguo
2017-01-01
Coordination between osteoblasts and osteoclasts is required for bone health and homeostasis. Here we show that mice deficient in SMURF2 have severe osteoporosis in vivo. This low bone mass phenotype is accompanied by a pronounced increase in osteoclast numbers, although Smurf2-deficient osteoclasts have no intrinsic alterations in activity. Smurf2-deficient osteoblasts display increased expression of RANKL, the central osteoclastogenic cytokine. Mechanistically, SMURF2 regulates RANKL expression by disrupting the interaction between SMAD3 and vitamin D receptor by altering SMAD3 ubiquitination. Selective deletion of Smurf2 in the osteoblast lineage recapitulates the phenotype of germline Smurf2-deficient mice, indicating that SMURF2 regulates osteoblast-dependent osteoclast activity rather than directly affecting the osteoclast. Our results reveal SMURF2 as an important regulator of the critical communication between osteoblasts and osteoclasts. Furthermore, the bone mass phenotype in Smurf2- and Smurf1-deficient mice is opposite, indicating that SMURF2 has a non-overlapping and, in some respects, opposite function to SMURF1. PMID:28216630
2015-01-01
Bone remodeling relies on the coordinated functioning of osteoblasts, bone-forming cells, and osteoclasts, bone-resorbing cells. The effects of specific chemical and physical bone features on the osteoclast adhesive apparatus, the sealing zone ring, and their relation to resorption functionality are still not well-understood. We designed and implemented a correlative imaging method that enables monitoring of the same area of bone surface by time-lapse light microscopy, electron microscopy, and atomic force microscopy before, during, and after exposure to osteoclasts. We show that sealing zone rings preferentially develop around surface protrusions, with lateral dimensions of several micrometers, and ∼1 μm height. Direct overlay of sealing zone rings onto resorption pits on the bone surface shows that the rings adapt to pit morphology. The correlative procedure presented here is noninvasive and performed under ambient conditions, without the need for sample labeling. It can potentially be applied to study various aspects of cell-matrix interactions. PMID:26682493
NASA Technical Reports Server (NTRS)
Miyauchi, A.; Hruska, K. A.; Greenfield, E. M.; Duncan, R.; Alvarez, J.; Barattolo, R.; Colucci, S.; Zambonin-Zallone, A.; Teitelbaum, S. L.; Teti, A.
1990-01-01
The mechanisms of Ca2+ entry and their effects on cell function were investigated in cultured chicken osteoclasts and putative osteoclasts produced by fusion of mononuclear cell precursors. Voltage-gated Ca2+ channels (VGCC) were detected by the effects of membrane depolarization with K+, BAY K 8644, and dihydropyridine antagonists. K+ produced dose-dependent increases of cytosolic calcium ([Ca2+]i) in osteoclasts on glass coverslips. Half-maximal effects were achieved at 70 mM K+. The effects of K+ were completely inhibited by dihydropyridine derivative Ca2+ channel blocking agents. BAY K 8644 (5 X 10(-6) M), a VGCC agonist, stimulated Ca2+ entry which was inhibited by nicardipine. VGCCs were inactivated by the attachment of osteoclasts to bone, indicating a rapid phenotypic change in Ca2+ entry mechanisms associated with adhesion of osteoclasts to their resorption substrate. Increasing extracellular Ca2+ ([Ca2+]e) induced Ca2+ release from intracellular stores and Ca2+ influx. The Ca2+ release was blocked by dantrolene (10(-5) M), and the influx by La3+. The effects of [Ca2+]e on [Ca2+]i suggests the presence of a Ca2+ receptor on the osteoclast cell membrane that could be coupled to mechanisms regulating cell function. Expression of the [Ca2+]e effect on [Ca2+]i was similar in the presence or absence of bone matrix substrate. Each of the mechanisms producing increases in [Ca2+]i, (membrane depolarization, BAY K 8644, and [Ca2+]e) reduced expression of the osteoclast-specific adhesion structure, the podosome. The decrease in podosome expression was mirrored by a 50% decrease in bone resorptive activity. Thus, stimulated increases of osteoclast [Ca2+]i lead to cytoskeletal changes affecting cell adhesion and decreasing bone resorptive activity.
NAMPT/PBEF1 enzymatic activity is indispensable for myeloma cell growth and osteoclast activity
Venkateshaiah, Sathisha Upparahalli; Khan, Sharmin; Ling, Wen; Bam, Rakesh; Li, Xin; van Rhee, Frits; Usmani, Saad; Barlogie, Bart; Epstein, Joshua; Yaccoby, Shmuel
2015-01-01
Multiple myeloma (MM) cells typically grow in focal lesions, stimulating osteoclasts that destroy bone and support MM. Osteoclasts and MM cells are hypermetabolic. The coenzyme nicotinamide adenine dinucleotide (NAD+) is not only essential for cellular metabolism; it also affects activity of NAD-dependent enzymes, such as PARP-1 and SIRT-1. Nicotinamide phos-phoribosyltransferase (NAMPT/PBEF/visfatin, encoded by PBEF1) is a rate-limiting enzyme in NAD+ biosynthesis from nicotinamide. Coculture of primary MM cells with osteoclasts induced PBEF1 upregulation in both cell types. PBEF1 expression was higher in experimental myelomatous bones than in nonmyelomatous bone and higher in MM patients’ plasma cells than in healthy donors’ counterparts. APO866 is a specific PBEF1 inhibitor known to deplete cellular NAD+, APO866 at low nanomolar concentrations inhibited growth of primary MM cells or MM cell lines cultured alone or cocultured with osteoclasts and induced apoptosis in these cells. PBEF1 activity and NAD+ content were reduced in MM cells by APO866, resulting in lower activity of PARP-1 and SIRT-1. The inhibitory effect of APO866 on MM cell growth was abrogated by supplementation of extracellular NAD+ or NAM. APO866 inhibited NF-κB activity in osteoclast precursors and suppressed osteoclast formation and activity. PBEF1 knockdown similarly inhibited MM cell growth and osteoclast formation. In the SCID-rab model, APO866 inhibited growth of primary MM and H929 cells and prevented bone disease. These findings indicate that MM cells and osteoclasts are highly sensitive to NAD+ depletion and that PBEF1 inhibition represents a novel approach to target cellular metabolism and inhibit PARP-1 and bone disease in MM. PMID:23435312
Kobayashi, Kanichiro; Takahashi, Naoyuki; Jimi, Eijiro; Udagawa, Nobuyuki; Takami, Masamichi; Kotake, Shigeru; Nakagawa, Nobuaki; Kinosaki, Masahiko; Yamaguchi, Kyoji; Shima, Nobuyuki; Yasuda, Hisataka; Morinaga, Tomonori; Higashio, Kanji; Martin, T. John; Suda, Tatsuo
2000-01-01
Osteoclast differentiation factor (ODF, also called RANKL/TRANCE/OPGL) stimulates the differentiation of osteoclast progenitors of the monocyte/macrophage lineage into osteoclasts in the presence of macrophage colony-stimulating factor (M-CSF, also called CSF-1). When mouse bone marrow cells were cultured with M-CSF, M-CSF–dependent bone marrow macrophages (M-BMMφ) appeared within 3 d. Tartrate-resistant acid phosphatase–positive osteoclasts were also formed when M-BMMφ were further cultured for 3 d with mouse tumor necrosis factor α (TNF-α) in the presence of M-CSF. Osteoclast formation induced by TNF-α was inhibited by the addition of respective antibodies against TNF receptor 1 (TNFR1) or TNFR2, but not by osteoclastogenesis inhibitory factor (OCIF, also called OPG, a decoy receptor of ODF/RANKL), nor the Fab fragment of anti–RANK (ODF/RANKL receptor) antibody. Experiments using M-BMMφ prepared from TNFR1- or TNFR2-deficient mice showed that both TNFR1- and TNFR2-induced signals were important for osteoclast formation induced by TNF-α. Osteoclasts induced by TNF-α formed resorption pits on dentine slices only in the presence of IL-1α. These results demonstrate that TNF-α stimulates osteoclast differentiation in the presence of M-CSF through a mechanism independent of the ODF/RANKL–RANK system. TNF-α together with IL-1α may play an important role in bone resorption of inflammatory bone diseases. PMID:10637272
Li, X; Ye, J-X; Xu, M-H; Zhao, M-D; Yuan, F-L
2017-07-01
Activated acid-sensing ion channel 1a (ASIC1a) is involved in acid-induced osteoclastogenesis by regulating activation of the transcription factor NFATc1. These results indicated that ASIC1a activation by extracellular acid may cause osteoclast migration and adhesion through Ca 2+ -dependent integrin/Pyk2/Src signaling pathway. Osteoclast adhesion and migration are responsible for osteoporotic bone loss. Acidic conditions promote osteoclastogenesis. ASIC1a in osteoclasts is associated with acid-induced osteoclastogenesis through modulating transcription factor NFATc1 activation. However, the influence and the detailed mechanism of ASIC1a in regulating osteoclast adhesion and migration, in response to extracellular acid, are not well characterized. In this study, knockdown of ASIC1a was achieved in bone marrow macrophage cells using small interfering RNA (siRNA). The adhesion and migration abilities of osteoclast precursors and osteoclasts were determined by adhesion and migration assays, in vitro. Bone resorption was performed to measure osteoclast function. Cytoskeletal changes were assessed by F-actin ring formation. αvβ3 integrin expression in osteoclasts was measured by flow cytometry. Western blotting and co-immunoprecipitation were performed to measure alterations in integrin/Pyk2/Src signaling pathway. Our results showed that blockade of ASIC1a using ASIC1a-siRNA inhibited acid-induced osteoclast precursor migration and adhesion, as well as osteoclast adhesion and bone resorption; we also demonstrated that inhibition of ASIC1a decreased the cell surface αvβ3 integrin and β3 protein expression. Moreover, blocking of ASIC1a inhibited acidosis-induced actin ring formation and reduced Pyk2 and Src phosphorylation in osteoclasts and also inhibited the acid-induced association of the αvβ3 integrin/Src/Pyk2. Together, these results highlight a key functional role of ASIC1a/αvβ3 integrin/Pyk2/Src signaling pathway in migration and adhesion of osteoclasts.
Non-Linear Pattern Formation in Bone Growth and Architecture
Salmon, Phil
2014-01-01
The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here – chaotic non-linear pattern formation (NPF) – which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of “group intelligence” exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called “particle swarm optimization” (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating “socially” in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or “feedback” between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent consequence of the latter. PMID:25653638
Non-linear pattern formation in bone growth and architecture.
Salmon, Phil
2014-01-01
The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here - chaotic non-linear pattern formation (NPF) - which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of "group intelligence" exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called "particle swarm optimization" (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating "socially" in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or "feedback" between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent consequence of the latter.
Baek, Jong Min; Kim, Ju-Young; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su
2016-01-01
Ebselen is a non-toxic seleno-organic drug with anti-inflammatory and antioxidant properties that is currently being examined in clinical trials to prevent and treat various diseases, including atherosclerosis, stroke, and cancer. However, no reports are available for verifying the pharmacological effects of ebselen on major metabolic bone diseases such as osteoporosis. In this study, we observed that ebselen suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in an osteoblast/osteoclast co-culture by regulating the ratio of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin secreted by osteoblasts. In addition, ebselen treatment in the early stage of osteoclast differentiation inhibited RANKL-dependent osteoclastogenesis by decreasing the phosphorylation of IκB, PI3K, and Akt in early signaling pathways and by subsequently inducing c-Fos and nuclear factor of activated T-cells c1. Further, ebselen induced apoptosis of osteoclasts in the late stage of osteoclast differentiation. In addition, ebselen treatment suppressed filamentous actin ring formation and bone resorption activity of mature osteoclasts. Reflecting these in vitro effects, administration of ebselen recovered bone loss and its µ-CT parameters in lipopolysaccharide-mediated mouse model. Histological analysis confirmed that ebselen prevented trabecular bone matrix degradation and osteoclast formation in the bone tissues. Finally, it was proved that the anti-osteoclastogenic action of ebselen is achieved through targeting N-methyl-D-aspartate (NMDA) receptor. These results indicate that ebselen is a potentially safe drug for treating metabolic bone diseases such as osteoporosis. PMID:27019631
Pereira, M; Jeyabalan, J; Jørgensen, C S; Hopkinson, M; Al-Jazzar, A; Roux, J P; Chavassieux, P; Orriss, I R; Cleasby, M E; Chenu, C
2015-12-01
Some anti-diabetic therapies can have adverse effects on bone health and increase fracture risk. In this study, we tested the skeletal effects of chronic administration of two Glucagon-like peptide-1 receptor agonists (GLP-1RA), increasingly used for type 2 diabetes treatment, in a model of osteoporosis associated bone loss and examined the expression and activation of GLP-1R in bone cells. Mice were ovariectomised (OVX) to induce bone loss and four weeks later they were treated with Liraglutide (LIR) 0.3mg/kg/day, Exenatide (Ex-4) 10 μg/kg/day or saline for four weeks. Mice were injected with calcein and alizarin red prior to euthanasia, to label bone-mineralising surfaces. Tibial micro-architecture was determined by micro-CT and bone formation and resorption parameters measured by histomorphometric analysis. Serum was collected to measure calcitonin and sclerostin levels, inhibitors of bone resorption and formation, respectively. GLP-1R mRNA and protein expression were evaluated in the bone, bone marrow and bone cells using RT-PCR and immunohistochemistry. Primary osteoclasts and osteoblasts were cultured to evaluate the effect of GLP-1RA on bone resorption and formation in vitro. GLP-1RA significantly increased trabecular bone mass, connectivity and structure parameters but had no effect on cortical bone. There was no effect of GLP-1RA on bone formation in vivo but an increase in osteoclast number and osteoclast surfaces was observed with Ex-4. GLP-1R was expressed in bone marrow cells, primary osteoclasts and osteoblasts and in late osteocytic cell line. Both Ex-4 and LIR stimulated osteoclastic differentiation in vitro but slightly reduced the area resorbed per osteoclast. They had no effect on bone nodule formation in vitro. Serum calcitonin levels were increased and sclerostin levels decreased by Ex-4 but not by LIR. Thus, GLP-1RA can have beneficial effects on bone and the expression of GLP-1R in bone cells may imply that these effects are exerted directly on the tissue. Copyright © 2015 Elsevier Inc. All rights reserved.
Tetraspanin 7 regulates sealing zone formation and the bone-resorbing activity of osteoclasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Jun-Oh; Lee, Yong Deok; Kim, Haemin
Tetraspanin family proteins regulate morphology, motility, fusion, and signaling in various cell types. We investigated the role of the tetraspanin 7 (Tspan7) isoform in the differentiation and function of osteoclasts. Tspan7 was up-regulated during osteoclastogenesis. When Tspan7 expression was reduced in primary precursor cells by siRNA-mediated gene knock-down, the generation of multinuclear osteoclasts was not affected. However, a striking cytoskeletal abnormality was observed: the formation of the podosome belt structure was inhibited and the microtubular network were disrupted by Tspan7 knock-down. Decreases in acetylated microtubules and levels of phosphorylated Src and Pyk2 in Tspan7 knock-down cells supported the involvement ofmore » Tspan7 in cytoskeletal rearrangement signaling in osteoclasts. This cytoskeletal defect interfered with sealing zone formation and subsequently the bone-resorbing activity of mature osteoclasts on dentin surfaces. Our results suggest that Tspan7 plays an important role in cytoskeletal organization required for the bone-resorbing function of osteoclasts by regulating signaling to Src, Pyk2, and microtubules. - Highlights: • Tspan7 expression is up-regulated during osteoclastogenesis. • Tspan7 regulates podosome belt organization in osteoclasts. • Tspan7 is crucial for sealing zone formation and bone-resorption by osteoclasts. • Src and Pyk2 phosphorylation and microtubule acetylation mediate Tspan7 function.« less
Sato, M; Grasser, W; Endo, N; Akins, R; Simmons, H; Thompson, D D; Golub, E; Rodan, G A
1991-01-01
Studies of the mode of action of the bisphosphonate alendronate showed that 1 d after the injection of 0.4 mg/kg [3H]alendronate to newborn rats, 72% of the osteoclastic surface, 2% of the bone forming, and 13% of all other surfaces were densely labeled. Silver grains were seen above the osteoclasts and no other cells. 6 d later the label was 600-1,000 microns away from the epiphyseal plate and buried inside the bone, indicating normal growth and matrix deposition on top of alendronate-containing bone. Osteoclasts from adult animals, infused with parathyroid hormone-related peptide (1-34) and treated with 0.4 mg/kg alendronate subcutaneously for 2 d, all lacked ruffled border but not clear zone. In vitro alendronate bound to bone particles with a Kd of approximately 1 mM and a capacity of 100 nmol/mg at pH 7. At pH 3.5 binding was reduced by 50%. Alendronate inhibited bone resorption by isolated chicken or rat osteoclasts when the amount on the bone surface was around 1.3 x 10(-3) fmol/microns 2, which would produce a concentration of 0.1-1 mM in the resorption space if 50% were released. At these concentrations membrane leakiness to calcium was observed. These findings suggest that alendronate binds to resorption surfaces, is locally released during acidification, the rise in concentration stops resorption and membrane ruffling, without destroying the osteoclasts. Images PMID:1661297
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shuo; Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410012; Li, Xianan
Tenuigenin, a major active component of polygala tenuifolia root, has been used to treat patients with insomnia, dementia, and neurosis. In this study, we aimed to investigate the effects of tenuigenin on osteoclastogenesis and clarify the possible mechanism. We showed that tenuigenin inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and bone resorption without cytotoxicity, which was further demonstrated by reduced osteoclast specific gene expression such as TRAP, c-Src, ATP6v0d2, etc. Moreover, the inhibitory effect of tenuigenin was associated with impaired NF-κB activity owing to delayed degradation/regeneration of IkBa and inhibition of p65 nuclear translocation. Consistent with themore » in vitro results, micro-ct scanning and analysis data showed that tenuigenin suppressed RANKL-induced bone loss in an animal model. Taken together, our data demonstrate that tenuigenin inhibit osteoclast formation and bone resorption both in vitro and in vivo, and comprise a potential therapeutic alternative for osteoclast-related disorders such as osteoporosis and cancer-induced bone destruction. - Highlights: • Tenuigenin suppresses osteoclasts formation, survival and function in vitro. • Tenuigenin impairs NF-κB activation. • Tenuigenin suppresses RANKL-induced bone lose in vivo. • Tenuigenin may be used for treating osteoclast related diseases.« less
Differences in responses to X-ray exposure between osteoclast and osteoblast cells
Zhang, Jian; Wang, Ziyang; Wu, Anqing; Nie, Jing; Pei, Hailong; Hu, Wentao; Wang, Bing; Shang, Peng; Li, Bingyan
2017-01-01
Abstract Radiation-induced bone loss is a potential health concern for cancer patients undergoing radiotherapy. Enhanced bone resorption by osteoclasts and decreased bone formation by osteoblasts were thought to be the main reasons. In this study, we showed that both pre-differentiating and differentiating osteoclasts were relatively sensitive to X-rays compared with osteoblasts. X-rays decreased cell viability to a greater degree in RAW264.7 cells and in differentiating cells than than in osteoblastic MC3T3-E1 cells. X-rays at up to 8 Gy had little effects on osteoblast mineralization. In contrast, X-rays at 1 Gy induced enhanced osteoclastogenesis by enhanced cell fusion, but had no effects on bone resorption. A higher dose of X-rays at 8 Gy, however, had an inhibitory effect on bone resorption. In addition, actin ring formation was disrupted by 8 Gy of X-rays and reorganized into clusters. An increased activity of Caspase 3 was found after X-ray exposure. Actin disorganization and increased apoptosis may be the potential effects of X-rays at high doses, by inhibiting osteoclast differentiation. Taken together, our data indicate high radiosensitivity of osteoclasts. X-ray irradiation at relatively low doses can activate osteoclastogenesis, but not osteogenic differentiation. The radiosensitive osteoclasts are the potentially responsive cells for X-ray-induced bone loss. PMID:28541506
Kajikawa, Shuhei; Taguchi, Yuu; Hayata, Tadayoshi; Ezura, Yoichi; Ueta, Ryo; Arimura, Sumimasa; Inoue, Jun-Ichiro; Noda, Masaki; Yamanashi, Yuji
2018-04-15
Bone mass is determined by coordinated acts of osteoblasts and osteoclasts, which control bone formation and resorption, respectively. Osteoclasts are multinucleated, macrophage/monocyte lineage cells from bone marrow. The Dok-family adaptors Dok-1, Dok-2 and Dok-3 are expressed in the macrophage/monocyte lineage and negatively regulate many signaling pathways, implying roles in osteoclastogenesis. Indeed, mice lacking Dok-1 and Dok-2, the closest homologues with redundant functions, develop osteopenia with increased osteoclast counts compared to the wild-type controls. Here, we demonstrate that Dok-3 knockout (KO) mice also develop osteopenia. However, Dok-3 KO, but not Dok-1/-2 double-KO (DKO), mice develop larger osteoclasts within the normal cell-count range, suggesting a distinctive role for Dok-3. Indeed, Dok-3 KO, but not Dok-1/-2 DKO, bone marrow-derived cells (BMDCs) generated larger osteoclasts with more nuclei due to augmented cell-to-cell fusion in vitro. In addition, while Dok-1/-2 DKO BMDCs generated more osteoclasts, Dok-1/-2/-3 triple-KO (TKO) BMDCs generated osteoclasts increased in both number and size. Furthermore, Dok-1/-2/-3 TKO mice showed the combined effects of Dok-3 and Dok-1/-2 deficiency: severe osteopenia with more and larger osteoclasts. Together, our findings demonstrate that Dok-3 and Dok-1/-2 play distinctive but cooperative roles in osteoclastogenesis and protect mice from osteopenia, providing physiological and pathophysiological insight into bone homeostasis. Copyright © 2018 Elsevier Inc. All rights reserved.
Emodin suppresses cadmium-induced osteoporosis by inhibiting osteoclast formation.
Chen, Xiao; Ren, Shuai; Zhu, Guoying; Wang, Zhongqiu; Wen, Xiaolin
2017-09-01
Environmental level of cadmium (Cd) exposure can induce bone loss. Emodin, a naturally compound found in Asian herbal medicines, could influence osteoblast/osteoclast differentiation. However, the effects of emodin on Cd-induced bone damage are not clarified. The aim of this study was to investigate the role of emodin on Cd-induced osteoporosis. Sprague-Dawley male rats were divided into three groups which were given 0mg/L, 50mg Cd/L and 50mg Cd/L plus emodin (50mg/kg body weight). Bone histological investigation, microCT analysis, metabolic biomarker determination and immunohistochemical staining were performed at the 12th week. The bone mass and bone microstructure index of rats treated with Cd were obviously lower than in control. Cd markedly enhanced the osteoclast formation compared with control. Emodin significantly abolished the Cd-induced bone microstructure damage (p<0.05), osteoclast formation and increase of tartrate-resistant acid phosphatase 5b level (p<0.05). Our data further showed that emodin attenuated the Cd-induced inhibition of osteoprotegerin expression and stimulation of receptor activator for nuclear factor-κ B ligand expression. Our data show that emodin suppresses the Cd-induced osteoporosis by inhibiting osteoclast formation. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, I-Ping
2014-01-01
More than 500 rare genetic bone disorders have been described, but for many of them only limited treatment options are available. Challenges for studying these bone diseases come from a lack of suitable animal models and unavailability of skeletal tissues for studies. Effectors for skeletal abnormalities of bone disorders may be abnormal bone formation directed by osteoblasts or anomalous bone resorption by osteoclasts, or both. Patient-specific induced pluripotent stem cells (iPSCs) can be generated from somatic cells of various tissue sources and in theory can be differentiated into any desired cell type. However, successful differentiation of hiPSCs into functional bone cells is still a challenge. Our group focuses on the use of human iPSCs (hiPSCs) to identify osteoclast defects in craniometaphyseal dysplasia. In this review, we describe the impact of stem cell technology on research for better treatment of such disorders, the generation of hiPSCs from patients with rare genetic bone disorders and current protocols for differentiating hiPSCs into osteoclasts. PMID:25621177
Surface microtopography modulates sealing zone development in osteoclasts cultured on bone
Addadi, Lia; Geiger, Benjamin
2017-01-01
Bone homeostasis is continuously regulated by the coordinated action of bone-resorbing osteoclasts and bone-forming osteoblasts. Imbalance between these two cell populations leads to pathological bone diseases such as osteoporosis and osteopetrosis. Osteoclast functionality relies on the formation of sealing zone (SZ) rings that define the resorption lacuna. It is commonly assumed that the structure and dynamic properties of the SZ depend on the physical and chemical properties of the substrate. Considering the unique complex structure of native bone, elucidation of the relevant parameters affecting SZ formation and stability is challenging. In this study, we examined in detail the dynamic response of the SZ to the microtopography of devitalized bone surfaces, taken from the same area in cattle femur. We show that there is a significant enrichment in large and stable SZs (diameter larger than 14 µm; lifespan of hours) in cells cultured on rough bone surfaces, compared with small and fast turning over SZ rings (diameter below 7 µm; lifespan approx. 7 min) formed on smooth bone surfaces. Based on these results, we propose that the surface roughness of the physiologically relevant substrate of osteoclasts, namely bone, affects primarily the local stability of growing SZs. PMID:28202594
Dynamin and PTP-PEST cooperatively regulate Pyk2 dephosphorylation in osteoclasts
Eleniste, Pierre P.; Du, Liping; Shivanna, Mahesh; Bruzzaniti, Angela
2012-01-01
Bone loss is caused by the dysregulated activity of osteoclasts which degrade the extracellular bone matrix. The tyrosine kinase Pyk2 is highly expressed in osteoclasts, and mice lacking Pyk2 exhibit an increase in bone mass, in part due to impairment of osteoclast function. Pyk2 is activated by phosphorylation at Y402 following integrin activation, but the mechanisms leading to Pyk2 dephosphorylation are poorly understood. In the current study, we examined the mechanism of action of the dynamin GTPase on Pyk2 dephosphorylation. Our studies reveal a novel mechanism for the interaction of Pyk2 with dynamin, which involves the binding of Pyk2’s FERM domain with dynamin’s plextrin homology domain. In addition, we demonstrate that the dephosphorylation of Pyk2 requires dynamin’s GTPase activity and is mediated by the tyrosine phosphatase PTP-PEST. The dephosphorylation of Pyk2 by dynamin and PTP-PEST may be critical for terminating outside-in integrin signaling, and for stabilizing cytoskeletal reorganization during osteoclast bone resorption. PMID:22342188
CD147 promotes the formation of functional osteoclasts through NFATc1 signalling.
Nishioku, Tsuyoshi; Terasawa, Mariko; Baba, Misaki; Yamauchi, Atsushi; Kataoka, Yasufumi
2016-04-29
CD147, a membrane glycoprotein of the immunoglobulin superfamily, is highly upregulated during dynamic cellular events including tissue remodelling. Elevated CD147 expression is present in the joint of rheumatoid arthritis patients. However, the role of CD147 in bone destruction remains unclear. To determine whether CD147 is involved in osteoclastogenesis, we studied its expression in mouse osteoclasts and its role in osteoclast differentiation and function. CD147 expression was markedly upregulated during osteoclast differentiation. To investigate the role of CD147 in receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption activity, osteoclast precursor cells were transfected with CD147 siRNA. Decreased CD147 expression inhibited osteoclast formation and bone resorption, inhibited RANKL-induced nuclear translocation of the nuclear factor of activated T cells (NFAT) c1 and decreased the expression of the d2 isoform of vacuolar ATPase Vo domain and cathepsin K. Therefore, CD147 plays a critical role in the differentiation and function of osteoclasts by upregulating NFATc1 through the autoamplification of its expression in osteoclastogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.
Inhibition of Osteoclast Differentiation and Bone Resorption by N-Methylpyrrolidone*
Ghayor, Chafik; Correro, Rita M.; Lange, Katrin; Karfeld-Sulzer, Lindsay S.; Grätz, Klaus W.; Weber, Franz E.
2011-01-01
Regulation of RANKL (receptor activator of nuclear factor κB ligand)-induced osteoclast differentiation is of current interest in the development of antiresorptive agents. Osteoclasts are multinucleated cells that play a crucial role in bone resorption. In this study, we investigated the effects of N-methylpyrrolidone (NMP) on the regulation of RANKL-induced osteoclastogenesis. NMP inhibited RANKL-induced tartrate-resistant acid phosphatase activity and the formation of tartrate-resistant acid phosphatase-positive multinucleated cells. The RANKL-induced expression of NFATc1 (nuclear factor of activated T cells, cytoplasmic 1) and c-Fos, which are key transcription factors for osteoclastogenesis, was also reduced by treatment with NMP. Furthermore, NMP induced disruption of the actin rings and decreased the mRNAs of cathepsin K and MMP-9 (matrix metalloproteinase-9), both involved in bone resorption. Taken together, these results suggest that NMP inhibits osteoclast differentiation and attenuates bone resorption. Therefore, NMP could prove useful for the treatment of osteoporosis or other bone diseases associated with excessive bone resorption. PMID:21613210
Izawa, Takashi; Arakaki, Rieko; Mori, Hiroki; Tsunematsu, Takaaki; Kudo, Yasusei; Tanaka, Eiji; Ishimaru, Naozumi
2016-12-15
The aryl hydrocarbon receptor (AhR) pathway plays a key role in receptor activator of NF-κB ligand (RANKL)-mediated osteoclastogenesis. However, the mechanism underlying the regulation of AhR expression in osteoclasts and the signaling pathway through which AhR controls osteoclastogenesis remain unclear. We found that the expression of AhR in bone marrow-derived osteoclasts was upregulated by RANKL at an earlier stage than was the expression of signature osteoclast genes such as those encoding cathepsin K and NFAT, cytoplasmic, calcineurin-dependent 1. In response to RANKL, bone marrow macrophages isolated from AhR -/- mice exhibited impaired phosphorylation of Akt and MAPK as well as NF-κB, whereas their response to M-CSF remained unchanged. Osteoclast differentiation mediated by the AhR signaling pathway was also regulated in an RANKL/c-Fos-dependent manner. Furthermore, ligand activation of AhR by the smoke toxin benzo[a]pyrene accelerated osteoclast differentiation in a receptor-dependent manner, and AhR-dependent regulation of mitochondrial biogenesis in osteoclasts was observed. Moreover, AhR -/- mice exhibited impaired bone healing with delayed endochondral ossification. Taken together, the present results suggest that the RANKL/AhR/c-Fos signaling axis plays a critical role in osteoclastogenesis, thereby identifying the potential of AhR in treating pathological, inflammatory, or metabolic disorders of the bone. Copyright © 2016 by The American Association of Immunologists, Inc.
Diamagnetic levitation promotes osteoclast differentiation from RAW264.7 cells.
Sun, Yu-Long; Chen, Zhi-Hao; Chen, Xiao-Hu; Yin, Chong; Li, Di-Jie; Ma, Xiao-Li; Zhao, Fan; Zhang, Ge; Shang, Peng; Qian, Ai-Rong
2015-03-01
The superconducting magnet with a high magnetic force field can levitate diamagnetic materials. In this study, a specially designed superconducting magnet with large gradient high magnetic field (LGHMF), which provides three apparent gravity levels (μg, 1 g, and 2 g), was used to study its influence on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation from preosteoclast cell line RAW264.7. The effects of LGHMF on the viability, nitric oxide (NO) production, morphology in RAW264.7 cells were detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, the Griess method, and the immunofluorescence staining, respectively. The changes induced by LGHMF in osteoclast formation, mRNA expression, and bone resorption were determined by tartrate-resistant acid phosphatase staining, semiquantity PCR, and bone resorption test, respectively. The results showed that: 1) LGHMF had no lethal effect on osteoclast precursors but attenuated NO release in RAW264.7 cells. 2) Diamagnetic levitation (μg) enhanced both the formation and bone resorption capacity of osteoclast. Moreover, diamagnetic levitation up-regulated mRNA expression of RANK, Cathepsin K, MMP-9, and NFATc1, while down-regulated RunX2 in comparison with controls. Furthermore, diamagnetic levitation induced obvious morphological alterations in osteoclast, including active cytoplasmic peripheral pseudopodial expansion, formation of pedosome belt, and aggregation of actin ring. 3) Magnetic field produced by LGHMF attenuated osteoclast resorption activity. Collectively, LGHMF with combined effects has multiple effects on osteoclast, which attenuated osteoclast resorption with magnetic field, whereas promoted osteoclast differentiation with diamagnetic levitation. Therefore, these findings indicate that diamagnetic levitation could be used as a novel ground-based microgravity simulator, which facilitates bone cell research of weightlessness condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yi; Zhang, Qing; Shen, Yi
Highlights: • Schisantherin A suppresses osteoclasts formation and function in vitro. • Schisantherin A impairs RANKL signaling pathway. • Schisantherin A suppresses osteolysis in vivo. • Schisantherin A may be used for treating osteoclast related diseases. - Abstract: Receptor activator of NF-κB ligand (RANKL) plays critical role in osteoclastogenesis. Targeting RANKL signaling pathways has been a promising strategy for treating osteoclast related bone diseases such as osteoporosis and aseptic prosthetic loosening. Schisantherin A (SA), a dibenzocyclooctadiene lignan isolated from the fruit of Schisandra sphenanthera, has been used as an antitussive, tonic, and sedative agent, but its effect on osteoclasts hasmore » been hitherto unknown. In the present study, SA was found to inhibit RANKL-induced osteoclast formation and bone resorption. The osteoclastic specific marker genes induced by RANKL including c-Src, SA inhibited OSCAR, cathepsin K and TRAP in a dose dependent manner. Further signal transduction studies revealed that SA down-regulate RANKL-induced nuclear factor-kappaB (NF-κB) signaling activation by suppressing the phosphorylation and degradation of IκBα, and subsequently preventing the NF-κB transcriptional activity. Moreover, SA also decreased the RANKL-induced MAPKs signaling pathway, including JNK and ERK1/2 posphorylation while had no obvious effects on p38 activation. Finally, SA suppressed the NF-κB and MAPKs subsequent gene expression of NFATc1 and c-Fos. In vivo studies, SA inhibited osteoclast function and exhibited bone protection effect in wear-particle-induced bone erosion model. Taken together, SA could attenuate osteoclast formation and wear particle-induced osteolysis by mediating RANKL signaling pathways. These data indicated that SA is a promising therapeutic natural compound for the treatment of osteoclast-related prosthesis loosening.« less
TGF-β Negatively Regulates Mitf-E Expression and Canine Osteoclastogenesis.
Asai, Kumiko; Hisasue, Masaharu; Shimokawa, Fumie; Funaba, Masayuki; Murakami, Masaru
2018-04-21
With longevity, the prevalence of osteoporosis, which occurs when the activity of osteoclast surpasses that of osteoblasts, has increased in dogs. However, limited information is available on canine osteoclastogenesis. We herein described culture conditions to induce osteoclasts from canine bone marrow cells, and identified factors affecting canine osteoclastogenesis. Tartrate-resistant acid phosphatase-positive multinucleated cells were efficiently formed in a culture of bone marrow mononuclear cells with macrophage colony-stimulating factor (M-CSF 25 ng/mL) for 3 days and a subsequent culture in the presence of M-CSF (25 ng/mL) and soluble receptor activator of NF-κB ligand (RANKL 50 ng/mL) for 4 days. We previously reported in a murine cell system that gene induction of the E isoform of microphthalmia-associated transcription factor (Mitf-E) was required and sufficient for osteoclastogenesis, while transforming growth factor-β (TGF-β) enhanced RANKL-induced Mitf-E expression and osteoclastogenesis. Mitf-E expression also increased during RANKL-induced osteoclastogenesis in canine cells; however, TGF-β down-regulated Mitf-E expression and osteoclastogenesis, indicating a species-dependent response. The results of the present study show that, consistent with murine cells, M-CSF and soluble RANKL enable canine bone marrow cells to differentiate into osteoclasts, and Mitf-E expression is induced during osteoclastogenesis. However, the role of TGF-β in osteoclast formation is distinct between murine and canine cells, suggesting the necessity of analyses using canine cells to examine the factors affecting canine osteoclastogenesis.
Osteoimmunology: Influence of the Immune System on Bone Regeneration and Consumption.
Limmer, Andreas; Wirtz, Dieter C
2017-06-01
Background Stimulating bone regeneration is a central aim in orthopaedic and trauma surgery. Although the replacement of bone with artificial materials like cement or apatite helps to keep up bone stability, new bone often cannot be regenerated. Increasing research efforts have led to the clinical application of growth factors stimulating bone growth (e.g. bone morphogenic protein, BMP) and inhibitors preventing bone consumption (e.g. RANKL blocking antibodies). These factors mostly concentrate on stimulating osteoblast or preventing osteoclast activity. Current Situation It is widely accepted that osteoblasts and osteoclasts are central players in bone regeneration. This concept assumes that osteoblasts are responsible for bone growth while osteoclasts cause bone consumption by secreting matrix-degrading enzymes such as cathepsin K and matrix metalloproteinases (MMP). However, according to new research results, bone growth or consumption are not regulated by single cell types. It is rather the interaction of various cell types that regulates bone metabolism. While factors secreted by osteoblasts are essential for osteoclast differentiation and activation, factors secreted by activated osteoclasts are essential for osteoblast activity. In addition, recent research results imply that the influence of the immune system on bone metabolism has long been neglected. Factors secreted by macrophages or T cells strongly influence bone growth or degradation, depending on the bone microenvironment. Infections, sterile inflammation or tumour metastases not only affect bone cells directly, but also influence immune cells such as T cells indirectly. Furthermore, immune cells and bone are mechanistically regulated by similar factors such as cytokines, chemokines and transcription factors, suggesting that the definition of bone and immune cells has to be thought over. Outlook Bone and the immune system are regulated by similar mechanisms. These newly identified similarities between bone and the immune system imply that medication developed for tumour and autoimmune patients could also be applied in bone diseases. Georg Thieme Verlag KG Stuttgart · New York.
The osteocyte: key player in regulating bone turnover
Goldring, Steven R
2015-01-01
Osteocytes are the most abundant cell type in bone and are distributed throughout the mineralised bone matrix forming an interconnected network that ideally positions them to sense and to respond to local biomechanical and systemic stimuli to regulate bone remodelling and adaptation. The adaptive process is dependent on the coordinated activity of osteoclasts and osteoblasts that form a so called bone multicellular unit that remodels cortical and trabecular bone through a process of osteoclast-mediated bone resorption, followed by a phase of bone formation mediated by osteoblasts. Osteocytes mediate their effects on bone remodelling via both cell–cell interactions with osteoclasts and osteoblasts, but also via signaling through the release of soluble mediators. The remodelling process provides a mechanism for adapting the skeleton to local biomechanical factors and systemic hormonal influences and for replacing bone that has undergone damage from repetitive mechanical loading. PMID:26557372
Rumpler, M; Würger, T; Roschger, P; Zwettler, E; Sturmlechner, I; Altmann, P; Fratzl, P; Rogers, M J; Klaushofer, K
2013-12-01
The main function of osteoclasts in vivo is the resorption of bone matrix, leaving behind typical resorption traces consisting of pits and trails. The mechanism of pit formation is well described, but less is known about trail formation. Pit-forming osteoclasts possess round actin rings. In this study we show that trail-forming osteoclasts have crescent-shaped actin rings and provide a model that describes the detailed mechanism. To generate a trail, the actin ring of the resorption organelle attaches with one side outside the existing trail margin. The other side of the ring attaches to the wall inside the trail, thus sealing that narrow part to be resorbed next (3–21 lm). This 3D configuration allows vertical resorption layer-by-layer from the surface to a depth in combination with horizontal cell movement. Thus, trails are not just traces of a horizontal translation of osteoclasts during resorption. Additionally, we compared osteoclastic resorption on bone and dentin since the latter is the most frequently used in vitro model and data are extrapolated to bone. Histomorphometric analyses revealed a material-dependent effect reflected by an 11-fold higher resorption area and a sevenfold higher number of pits per square centimeter on dentin compared to bone. An important material-independent aspect was reflected by comparable mean pit area (μm²) and podosome patterns. Hence, dentin promotes the generation of resorbing osteoclasts, but once resorption has started, it proceeds independently of material properties. Thus, dentin is a suitable model substrate for data acquisition as long as osteoclast generation is not part of the analyses.
Gallium modulates osteoclastic bone resorption in vitro without affecting osteoblasts
Verron, Elise; Masson, Martial; Khoshniat, Solmaz; Duplomb, Laurence; Wittrant, Yohann; Baud'huin, Marc; Badran, Zahi; Bujoli, Bruno; Janvier, Pascal; Scimeca, Jean-Claude; Bouler, Jean-Michel; Guicheux, Jérôme
2010-01-01
Background and purpose: Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including cancer-related hypercalcemia and Paget's disease. These clinical applications suggest that Ga could reduce bone resorption. However, few studies have studied the effects of Ga on osteoclastic resorption. Here, we have explored the effects of Ga on bone cells in vitro. Experimental approach: In different osteoclastic models [osteoclasts isolated from long bones of neonatal rabbits (RBC), murine RAW 264.7 cells and human CD14-positive cells], we have performed resorption activity tests, staining for tartrate resistant acid phosphatase (TRAP), real-time polymerase chain reaction analysis, viability and apoptotic assays. We also evaluated the effect of Ga on osteoblasts in terms of proliferation, viability and activity by using an osteoblastic cell line (MC3T3-E1) and primary mouse osteoblasts. Key results: Gallium dose-dependently (0–100 µM) inhibited the in vitro resorption activity of RBC and induced a significant decrease in the expression level of transcripts coding for osteoclastic markers in RAW 264.7 cells. Ga also dramatically reduced the formation of TRAP-positive multinucleated cells. Ga down-regulated in a dose-dependant manner the expression of the transcription factor NFATc1. However, Ga did not affect the viability or activity of primary and MC3T3-E1 osteoblasts. Conclusions and implications: Gallium exhibits a dose-dependent anti-osteoclastic effect by reducing in vitro osteoclastic resorption, differentiation and formation without negatively affecting osteoblasts. We provide evidence that this inhibitory mechanism involves down-regulation of NFATc1 expression, a master regulator of RANK-induced osteoclastic differentiation. PMID:20397300
Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function
Kara, Firas M.; Chitu, Violeta; Sloane, Jennifer; Axelrod, Matthew; Fredholm, Bertil B.; Stanley, E. Richard; Cronstein, Bruce N.
2010-01-01
Adenosine regulates a wide variety of physiological processes via interaction with one or more G-protein-coupled receptors (A1R, A2AR, A2BR, and A3R). Because A1R occupancy promotes fusion of human monocytes to form giant cells in vitro, we determined whether A1R occupancy similarly promotes osteoclast function and formation. Bone marrow cells (BMCs) were harvested from C57Bl/6 female mice or A1R-knockout mice and their wild-type (WT) littermates and differentiated into osteoclasts in the presence of colony stimulating factor-1 and receptor activator of NF-κB ligand in the presence or absence of the A1R antagonist 1,3-dipropyl-8-cyclopentyl xanthine (DPCPX). Osteoclast morphology was analyzed in tartrate-resistant acid phosphatase or F-actin-stained samples, and bone resorption was evaluated by toluidine blue staining of dentin. BMCs from A1R-knockout mice form fewer osteoclasts than BMCs from WT mice, and the A1R antagonist DPCPX inhibits osteoclast formation (IC50=1 nM), with altered morphology and reduced ability to resorb bone. A1R blockade increased ubiquitination and degradation of TRAF6 in RAW264.7 cells induced to differentiate into osteoclasts. These studies suggest a critical role for adenosine in bone homeostasis via interaction with adenosine A1R and further suggest that A1R may be a novel pharmacologic target to prevent the bone loss associated with inflammatory diseases and menopause.—Kara, F. M., Chitu, V., Sloane, J., Axelrod, M., Fredholm, B. B., Stanley, R., Cronstein, B. N. Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function. PMID:20181934
Kong, Xiangying; Wu, Wenbin; Yang, Yue; Wan, Hongye; Li, Xiaomin; Zhong, Michun; Zhao, Hongyan; Su, Xiaohui; Jia, Shiwei; Ju, Dahong; Lin, Na
2015-03-15
Osteoclasts, bone-specialized multinucleated cells, are responsible for bone destructive diseases such as rheumatoid arthritis and osteoporosis. Natural plant-derived products have received substantial attention given their potential therapeutic and preventive activities against bone destructive diseases. In the present study, we investigated the effects of total saponin (TS) from Anemone flaccida Fr. Schmidt, on receptor activator of nuclear factor-κB ligand (RANKL)-induced in vitro osteoclast differentiation. We observed that TS concentration-dependently inhibited RANKL-induced osteoclast formation from RAW 264.7 cell and bone marrow-derived macrophages (BMMs), as well as decreased extent of actin ring formation and lacunar resorption. The RANKL-stimulated expression of osteoclast-related transcription factors were also diminished by TS. Moreover, TS blocked the RANKL-triggered TRAF6 expression, phosphorylation of mitogen-activated protein kinases (MAPKs) and IκB-α, and inhibited NF-κB p65 DNA binding activity. Furthermore, TS almost abrogated the nuclear factor of activated T cells (NFATc1) and c-Fos expression. Taken together, our results demonstrated that TS suppresses RANKL-induced osteoclast differentiation and inflammatory bone loss via the down-regulation of TRAF6 level, suppression of JNK and p38 MAPKs and NF-κB activation, and subsequent decreased expression of c-Fos and NFATc1. Therefore, TS may be a potential agent and needs to be more evaluated in vivo or in clinical trials to become a therapeutic for lytic bone diseases.
Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption.
Wilson, Susan R; Peters, Christoph; Saftig, Paul; Brömme, Dieter
2009-01-23
Cathepsin K is responsible for the degradation of type I collagen in osteoclast-mediated bone resorption. Collagen fragments are known to be biologically active in a number of cell types. Here, we investigate their potential to regulate osteoclast activity. Mature murine osteoclasts were seeded on type I collagen for actin ring assays or dentine discs for resorption assays. Cells were treated with cathepsins K-, L-, or MMP-1-predigested type I collagen or soluble bone fragments for 24 h. The presence of actin rings was determined fluorescently by staining for actin. We found that the percentage of osteoclasts displaying actin rings and the area of resorbed dentine decreased significantly on addition of cathepsin K-digested type I collagen or bone fragments, but not with cathepsin L or MMP-1 digests. Counterintuitively, actin ring formation was found to decrease in the presence of the cysteine proteinase inhibitor LHVS and in cathepsin K-deficient osteoclasts. However, cathepsin L deficiency or the general MMP inhibitor GM6001 had no effect on the presence of actin rings. Predigestion of the collagen matrix with cathepsin K, but not by cathepsin L or MMP-1 resulted in an increased actin ring presence in cathepsin K-deficient osteoclasts. These studies suggest that cathepsin K interaction with type I collagen is required for 1) the release of cryptic Arg-Gly-Asp motifs during the initial attachment of osteoclasts and 2) termination of resorption via the creation of autocrine signals originating from type I collagen degradation.
Raghu Nadhanan, Rethi; Abimosleh, Suzanne M; Su, Yu-Wen; Scherer, Michaela A; Howarth, Gordon S; Xian, Cory J
2012-06-01
Cancer chemotherapy can cause osteopenia or osteoporosis, and yet the underlying mechanisms remain unclear, and currently, no preventative treatments are available. This study investigated damaging effects of 5-fluorouracil (5-FU) on histological, cellular, and molecular changes in the tibial metaphysis and potential protective benefits of emu oil (EO), which is known to possess a potent anti-inflammatory property. Female dark agouti rats were gavaged orally with EO or water (1 ml·day(-1)·rat(-1)) for 1 wk before a single ip injection of 5-FU (150 mg/kg) or saline (Sal) was given. The treatment groups were H(2)O + Sal, H(2)O + 5-FU, EO + 5-FU, and EO + Sal. Oral gavage was given throughout the whole period up to 1 day before euthanasia (days 3, 4, and 5 post-5-FU). Histological analysis showed that H(2)O + 5-FU significantly reduced heights of primary spongiosa on days 3 and 5 and trabecular bone volume of secondary spongiosa on days 3 and 4. It reduced density of osteoblasts slightly and caused an increase in the density of osteoclasts on trabecular bone surface on day 4. EO supplementation prevented reduction of osteoblasts and induction of osteoclasts and bone loss caused by 5-FU. Gene expression studies confirmed an inhibitory effect of EO on osteoclasts since it suppressed 5-FU-induced expression of proinflammatory and osteoclastogenic cytokine TNFα, osteoclast marker receptor activator of nuclear factor-κB, and osteoclast-associated receptor. Therefore, this study demonstrated that EO can counter 5-FU chemotherapy-induced inflammation in bone, preserve osteoblasts, suppress osteoclast formation, and potentially be useful in preventing 5-FU chemotherapy-induced bone loss.
The biodegradation of hydroxyapatite bone graft substitutes in vivo.
Rumpel, E; Wolf, E; Kauschke, E; Bienengräber, V; Bayerlein, T; Gedrange, T; Proff, P
2006-02-01
Hydroxyapatite (HA) ceramics are widely used for bone reconstruction. They are osteoconductive and serve as structural scaffolds for the deposition of new bone. Generally, scaffold materials should be degradable as they affect the mechanical properties of the reconstructed bone negatively. Degradation by osteoclasts during the bone remodelling process is desirable but often does not take place. In the current study we analysed by light microscopy the degradation of two granular HA implants in critically sized defects in the mandibula of Goettingen mini-pigs five weeks after implantation. Bio-Oss consists of sintered bovine bone and NanoBone is a synthetic HA produced in a sol-gel process in the presence of SiO2. We found that both biomaterials were degraded by osteoclasts with ruffled borders and acid phosphatase activity. The osteoclasts created resorption lacunae and resorptive trails and contained mineral particles. Frequently, resorption surfaces were in direct contact with bone formative surfaces on one granule. Granules, especially of NanoBone, were also covered by osteoclasts if located in vascularised connective tissue distant from bone tissue. However, this usually occurred without the creation of resorption lacunae. The former defect margins consisted of newly formed bone often without remnants of bone substitutes. Our results show that the degradation of both biomaterials corresponds to the natural bone degradation processes and suggest the possibility of complete resorption during bone remodelling.
da Cunha, Marcos Guilherme; Ramos-Junior, Erivan Schnaider; Franchin, Marcelo; Taira, Thaise Mayumi; Beutler, John A; Franco, Gilson Cesar Nobre; Ikegaki, Masaharu; de Alencar, Severino Matias; Fukada, Sandra Yasuyo; Rosalen, Pedro Luiz
2017-06-23
Bone-loss-related diseases such as rheumatoid arthritis, osteomyelitis, osteoporosis, and periodontitis are associated with high rates of morbidity worldwide. These disorders are characterized by an imbalance between the formation and activity of osteoblasts and osteoclasts, leading to bone loss. In this context, we evaluated the effect of cinnamoyloxy-mammeisin (CNM), an anti-inflammatory coumarin found in Melipona scutellaris geopropolis, on key targets related to bone remodeling. In the present study we investigated the in vitro effects of CNM on osteoclast differentiation and M-CSF+RANKL-induced osteoclastogenic marker expression. Additionally, the interference of CNM treatment on osteoclast activity was evaluated by zymography and resorption area. Finally, we assessed the capacity of the compound to mitigate alveolar bone loss in vivo in experimental murine periodontitis induced by Porphyromonas gingivalis. We observed that treatment with CNM impaired osteoclast differentiation, as evidenced by a reduced number of tartrate-resistant acid-phosphatase-positive multinucleated cells (TRAP+) as well as the expression of osteoclastogenic markers upon M-CSF+RANKL-induced stimulation. Similarly, we observed reduced gelatinolytic and resorption capacity in M-CSF+RANKL-induced cells in vitro. Lastly, CNM attenuated alveolar bone loss in an experimental murine periodontitis model. These findings indicate that CNM may be considered a promising treatment for bone loss diseases.
Khan, Kainat; Singh, Akanksha; Mittal, Monika; Sharan, Kunal; Singh, Nidhi; Dixit, Preety; Sanyal, Sabyasachi; Maurya, Rakesh; Chattopadhyay, Naibedya
2012-12-01
[6]-Gingerol, a major constituent of ginger, is considered to have several health beneficial effects. The effect of 6-gingerol on bone cells and skeleton of mice was investigated. The effects of 6-gingerol on mouse bone marrow macrophages and osteoblasts were studied. 6-Gingerol-stimulated osteoclast differentiation of bone marrow macrophages but had no effect on osteoblasts. Capsazepine, an inhibitor of TRPV1 (transient receptor potential vanilloid 1) channel, attenuated the pro-osteoclastogenic effect of 6-gingerol or capsaicin (an agonist of TRPV1). Similar to capsaicin, 6-gingerol stimulated Ca(2) + influx in osteoclasts. The effect of daily feeding of 6-gingerol for 5 wk on the skeleton of adult female Balb/cByJ mice was investigated. Mice treated with capsaicin and ovariectomized (OVx) mice served as controls for osteopenia. 6-Gingerol caused increase in trabecular osteoclast number, microarchitectural erosion at all trabecular sites and loss of vertebral stiffness, and these effects were comparable to capsaicin or OVx group. Osteoclast-specific serum and gene markers of 6-gingerol-treated mice were higher than the OVx group. Bone formation was unaffected by 6-gingerol. Daily feeding of 6-gingerol to skeletally mature female mice caused trabecular osteopenia, and the mechanism appeared to be activation of osteoclast formation via the TRPV1 channel. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Jung-Lye; Kang, Min-Kyung; Gong, Ju-Hyun; Park, Sin-Hye; Han, Seon-Young; Kang, Young-Hee
2012-08-01
Bone-remodeling imbalance resulting in more bone resorption than bone formation is known to cause skeletal diseases such as osteoporosis. Phloretin, a natural dihydrochalcone compound largely present in apple peels, possesses antiphotoaging, and antiinflammatory activity. Phloretin inhibited receptor activator of NF-κB ligand (RANKL)-induced formation of multinucleated osteoclasts and diminished bone resorption area produced during the osteoclast differentiation process. It was also found that ≥ 10 μM phloretin reduced RANKL-enhanced tartrate-resistance acid phosphatase activity and matrix metalloproteinase-9 secretion in a dose-dependent manner. The phloretin treatment retarded RANKL-induced expression of carbonic anhydrase II, vacuolar-type H(+) -ATPase D2 and β3 integrin, all involved in the bone resorption. Furthermore, submicromolar phloretin diminished the expression and secretion of cathepsin K elevated by RANKL, being concurrent with inhibition of TRAF6 induction and NF-κB activation. RANKL-induced activation of nuclear factor of activated T cells c1 (NFATc1) and microphthalmia-associated transcription factor was also suppressed by phloretin. These results demonstrate that the inhibition of osteoclast differentiation and bone resorption by phloretin entail a disturbance of TRAF6-NFATc1-NF-κB pathway triggered by RANKL. Therefore, phloretin may be a potential therapeutic agent targeting osteoclast differentiation and bone resorption in skeletal diseases such as osteoporosis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thiolloy, Sophie; Edwards, James R; Fingleton, Barbara; Rifkin, Daniel B; Matrisian, Lynn M; Lynch, Conor C
2012-01-01
Breast to bone metastases frequently induce a "vicious cycle" in which osteoclast mediated bone resorption and proteolysis results in the release of bone matrix sequestered factors that drive tumor growth. While osteoclasts express numerous proteinases, analysis of human breast to bone metastases unexpectedly revealed that bone forming osteoblasts were consistently positive for the proteinase, MMP-2. Given the role of MMP-2 in extracellular matrix degradation and growth factor/cytokine processing, we tested whether osteoblast derived MMP-2 contributed to the vicious cycle of tumor progression in the bone microenvironment. To test our hypothesis, we utilized murine models of the osteolytic tumor-bone microenvironment in immunocompetent wild type and MMP-2 null mice. In longitudinal studies, we found that host MMP-2 significantly contributed to tumor progression in bone by protecting against apoptosis and promoting cancer cell survival (caspase-3; immunohistochemistry). Our data also indicate that host MMP-2 contributes to tumor induced osteolysis (μCT, histomorphometry). Further ex vivo/in vitro experiments with wild type and MMP-2 null osteoclast and osteoblast cultures identified that 1) the absence of MMP-2 did not have a deleterious effect on osteoclast function (cd11B isolation, osteoclast differentiation, transwell migration and dentin resorption assay); and 2) that osteoblast derived MMP-2 promoted tumor survival by regulating the bioavailability of TGFβ, a factor critical for cell-cell communication in the bone (ELISA, immunoblot assay, clonal and soft agar assays). Collectively, these studies identify a novel "mini-vicious cycle" between the osteoblast and metastatic cancer cells that is key for initial tumor survival in the bone microenvironment. In conclusion, the findings of our study suggest that the targeted inhibition of MMP-2 and/or TGFβ would be beneficial for the treatment of bone metastases.
Hambli, Ridha
2014-01-01
Bone adaptation occurs as a response to external loadings and involves bone resorption by osteoclasts followed by the formation of new bone by osteoblasts. It is directly triggered by the transduction phase by osteocytes embedded within the bone matrix. The bone remodeling process is governed by the interactions between osteoblasts and osteoclasts through the expression of several autocrine and paracrine factors that control bone cell populations and their relative rate of differentiation and proliferation. A review of the literature shows that despite the progress in bone remodeling simulation using the finite element (FE) method, there is still a lack of predictive models that explicitly consider the interaction between osteoblasts and osteoclasts combined with the mechanical response of bone. The current study attempts to develop an FE model to describe the bone remodeling process, taking into consideration the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain-damage stimulus function is proposed, which controls the level of autocrine and paracrine factors. The cellular behavior is based on Komarova et al.'s (2003) dynamic law, which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cells dynamic rather than adaptive elasticity approaches. The proposed FE model has been implemented in the FE code Abaqus (UMAT routine). An example of human proximal femur is investigated using the model developed. The model was able to predict final human proximal femur adaptation similar to the patterns observed in a human proximal femur. The results obtained reveal complex spatio-temporal bone adaptation. The proposed FEM model gives insight into how bone cells adapt their architecture to the mechanical and biological environment.
Curcumol suppresses RANKL-induced osteoclast formation by attenuating the JNK signaling pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Mingxiang, E-mail: yu.mingxiang@zs-hospital.sh.cn; Chen, Xianying; Lv, Chaoyang
Highlights: • Curcumol suppresses osteoclasts differentiation in vitro. • Curcumol impairs JNK/AP-1 signaling pathway. • Curcumol may be used for treating osteoclast related diseases. - Abstract: Osteoclasts, derived from hemopoietic progenitors of the monocyte/macrophage lineage, have a unique role in bone resorption, and are considered a potential therapeutic target in the treatment of such pathologic bone diseases as osteoporosis, rheumatoid arthritis, and periodontitis. In the present study, we demonstrate that curcumol, one of the major components of the essential oil of Rhizoma Curcumae, exhibits an inhibitory effect on receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast differentiation with bothmore » bone marrow-derived macrophages and RAW264.7 cells in a dose-dependent manner. In addition, RANKL-induced mRNA expression of osteoclast-specific genes, such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K, is prominently reduced in the presence of curcumol. Furthermore, the molecular mechanism of action was investigated, and curcumol inhibited osteoclastogenesis by specifically impairing RANKL-induced c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling, which was further identified in rescue studies by means of anisomycin, a JNK signaling-specific activator. Taken together, these findings suggest that curcumol suppresses RANKL-induced osteoclast differentiation through the JNK/AP-1 signaling pathway, and may be useful as a therapeutic treatment for bone resorption-associated diseases.« less
Dual Role of Cyanidin-3-glucoside on the Differentiation of Bone Cells.
Park, K H; Gu, D R; So, H S; Kim, K J; Lee, S H
2015-12-01
Cyanidin-3-glucoside (C3G) is one of the major components of anthocyanin, a water-soluble phytochemical. Recent studies demonstrated the chemopreventive and chemotherapeutic activities of C3G in various conditions, including cancer, although the precise effects of C3G on osteoclast and osteoblast differentiation remain unclear. Here, we investigated the role of C3G in the differentiation of bone-associated cells and its underlying mechanism. C3G inhibited receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated osteoclast differentiation and formation in a dose-dependent manner and downregulated the expression of osteoclast differentiation marker genes. Pretreatment with C3G considerably reduced the induction of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated kinases activation by RANKL in osteoclast precursor cells. Furthermore, C3G dramatically inhibited the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1, which are important transcription factors for osteoclast differentiation and activation. The formation of osteoclasts in coculture of bone marrow cells and calvaria-derived osteoblasts was also inhibited by C3G treatment, although the expression of macrophage colony-stimulating factor and RANKL (master factors for osteoclast differentiation and formation) and osteoprotegerin (a decoy receptor for RANKL) on osteoblasts was unaffected. The inhibitory effect of C3G on osteoclastogenesis is therefore targeted specifically to osteoclasts but not osteoblasts. Moreover, analysis of the expression levels of osteoblast differentiation marker genes and alizarin red staining showed that osteoblast differentiation and matrix formation increased after C3G treatment. Taken together, these results strongly suggest that C3G has a dual role in bone metabolism, as an effective inhibitor of osteoclast differentiation but also as an activator of osteoblast differentiation. Therefore, C3G may be used as a potent preventive or therapeutic agent for bone-related diseases, such as osteoporosis, rheumatoid arthritis, and periodontitis. © International & American Associations for Dental Research 2015.
Swamy, N; Ghosh, S; Schneider, G B; Ray, R
2001-01-01
Vitamin D-binding protein (DBP) is a multi-functional serum protein that is converted to vitamin D-binding protein-macrophage activating factor (DBP-maf) by post-translational modification. DBP-maf is a new cytokine that mediates bone resorption by activating osteoclasts, which are responsible for resorption of bone. Defective osteoclast activation leads to disorders like osteopetrosis, characterized by excessive accumulation of bone mass. Previous studies demonstrated that two nonallelic mutations in the rat with osteopetrosis have independent defects in the cascade involved in the conversion of DBP to DBP-maf. The skeletal defects associated with osteopetrosis are corrected in these mutants with in vivo DBP-maf treatment. This study evaluates the effects of various forms of DBP-maf (native, recombinant, and 25-hydroxyvitamin D(3) bound) on osteoclast function in vitro in order to determine some of the structural requirements of this protein that relate to bone resorbing activities. Osteoclast activity was determined by evaluating pit formation using osteoclasts, isolated from the long bones of newborn rats, incubated on calcium phosphate coated, thin film, Ostologic MultiTest Slides. Incubation of osteoclasts with ex vivo generated native DBP-maf resulted in a dose dependent, statistically significant, activation of the osteoclasts. The activation was similar whether or not the vitamin D binding site of the DBP-maf was occupied. The level of activity in response to DBP-maf was greater than that elicited by optimal doses of other known stimulators (PTH and 1,25(OH(2)D(3)) of osteoclast function. Furthermore, another potent macrophage activating factor, interferon--gamma, had no effect on osteoclast activity. The activated form of a full length recombinant DBP, expressed in E. coli showed no activity in the in vitro assay. Contrary to this finding, baculovirus-expressed recombinant DBP-maf demonstrated significant osteoclast activating activity. The normal conversion of DBP to DBP-maf requires the selective removal of galactose and sialic acid from the third domain of the protein. Hence, the differential effects of the two recombinant forms of DBP-maf is most likely related to glycosylation; E. coli expressed recombinant DBP is non-glycosylated, whereas the baculovirus expressed form is glycosylated. These data support the essential role of glycosylation for the osteoclast activating property of DBP-maf. Copyright 2001 Wiley-Liss, Inc.
Global deletion of tetraspanin CD82 attenuates bone growth and enhances bone marrow adipogenesis.
Bergsma, Alexis; Ganguly, Sourik S; Dick, Daniel; Williams, Bart O; Miranti, Cindy K
2018-05-18
CD82 is a widely expressed member of the tetraspanin family of transmembrane proteins known to control cell signaling, adhesion, and migration. Tetraspanin CD82 is induced over 9-fold during osteoclast differentiation in vitro; however, its role in bone homeostasis is unknown. A globally deleted CD82 mouse model was used to assess the bone phenotype. Based on microCT and 4-point bending tests, CD82-deficient bones are smaller in diameter and weaker, but display no changes in bone density. Histomorphometry shows a decrease in size, erosion perimeter, and number of osteoclasts in situ, with a corresponding increase in trabecular surface area, specifically in male mice. Male-specific alterations are observed in trabecular structure by microCT and in vitro differentiated osteoclasts are morphologically abnormal. Histomorphometry did not reveal a significant reduction in osteoblast number; however, dynamic labeling reveals a significant decrease in bone growth. Consistent with defects in OB function, OB differentiation and mineralization are defective in vitro, whereas adipogenesis is enhanced. There is a corresponding increase in bone marrow adipocytes in situ. Thus, combined defects in both osteoclasts and osteoblasts can account for the observed bone phenotypes, and suggests a role for CD82 in both bone mesenchyme and myeloid cells. Copyright © 2018 Elsevier Inc. All rights reserved.
The gut microbiota regulates bone mass in mice
Sjögren, Klara; Engdahl, Cecilia; Henning, Petra; Lerner, Ulf H; Tremaroli, Valentina; Lagerquist, Marie K; Bäckhed, Fredrik; Ohlsson, Claes
2012-01-01
The gut microbiota modulates host metabolism and development of immune status. Here we show that the gut microbiota is also a major regulator of bone mass in mice. Germ-free (GF) mice exhibit increased bone mass associated with reduced number of osteoclasts per bone surface compared with conventionally raised (CONV-R) mice. Colonization of GF mice with a normal gut microbiota normalizes bone mass. Furthermore, GF mice have decreased frequency of CD4+ T cells and CD11b+/GR 1 osteoclast precursor cells in bone marrow, which could be normalized by colonization. GF mice exhibited reduced expression of inflammatory cytokines in bone and bone marrow compared with CONV-R mice. In summary, the gut microbiota regulates bone mass in mice, and we provide evidence for a mechanism involving altered immune status in bone and thereby affected osteoclast-mediated bone resorption. Further studies are required to evaluate the gut microbiota as a novel therapeutic target for osteoporosis. © 2012 American Society for Bone and Mineral Research. PMID:22407806
Hydroxychloroquine affects bone resorption both in vitro and in vivo.
Both, Tim; Zillikens, M Carola; Schreuders-Koedam, Marijke; Vis, Marijn; Lam, Wai-Kwan; Weel, Angelique E A M; van Leeuwen, Johannes P T M; van Hagen, P Martin; van der Eerden, Bram C J; van Daele, Paul L A
2018-02-01
We recently showed that patients with primary Sjögren syndrome (pSS) have significantly higher bone mineral density (BMD) compared to healthy controls. The majority of those patients (69%) was using hydroxychloroquine (HCQ), which may have favorable effects on BMD. The aim of the study was to evaluate whether HCQ modulates osteoclast function. Osteoclasts were cultured from PBMC-sorted monocytes for 14 days and treated with different HCQ doses (controls 1 and 5 μg/ml). TRAP staining and resorption assays were performed to evaluate osteoclast differentiation and activity, respectively. Staining with an acidification marker (acridine orange) was performed to evaluate intracellular pH at multiple timepoints. Additionally, a fluorescent cholesterol uptake assay was performed to evaluate cholesterol trafficking. Serum bone resorption marker β-CTx was evaluated in rheumatoid arthritis patients. HCQ inhibits the formation of multinuclear osteoclasts and leads to decreased bone resorption. Continuous HCQ treatment significantly decreases intracellular pH and significantly enhanced cholesterol uptake in mature osteoclasts along with increased expression of the lowdensity lipoprotein receptor. Serum β-CTx was significantly decreased after 6 months of HCQ treatment. In agreement with our clinical data, we demonstrate that HCQ suppresses bone resorption in vitro and decreases the resorption marker β-CTx in vivo. We also showed that HCQ decreases the intracellular pH in mature osteoclasts and stimulates cholesterol uptake, suggesting that HCQ induces osteoclastic lysosomal membrane permeabilization (LMP) leading to decreased resorption without changes in apoptosis. We hypothesize that skeletal health of patients with increased risk of osteoporosis and fractures may benefit from HCQ by preventing BMD loss. © 2017 Wiley Periodicals, Inc.
Inhibition of differentiation and function of osteoclasts by dimethyl sulfoxide (DMSO).
Yang, Chunxi; Madhu, Vedavathi; Thomas, Candace; Yang, Xinlin; Du, Xeujun; Dighe, Abhijit S; Cui, Quanjun
2015-12-01
Dimethyl sulfoxide (DMSO) is an FDA-approved organosulfur solvent that is reported to have therapeutic value in osteoarthritis and osteopenia. DMSO is used as a cryoprotectant for the cryopreservation of bone grafts and mesenchymal stem cells which are later used for bone repair. It is also used as a solvent in the preparation of various scaffolds used for bone tissue engineering purposes. DMSO has been reported to inhibit osteoclast formation in vitro but the mechanism involved has remained elusive. We investigated the effect of DMSO on osteoclast differentiation and function using a conventional model system of RAW 264.7 cells. The differentiation of RAW 264.7 cells was induced by adding 50 ng/ml RANKL and the effect of DMSO (0.01 and 1% v/v) on RANKL-induced osteoclastogenesis was investigated. Addition of 1% DMSO significantly inhibited RANKL-induced formation of TRAP+, multinucleated, mature osteoclasts and osteoclast late-stage precursors (c-Kit(-) c-Fms(+) Mac-1(+) RANK(+)). While DMSO did not inhibit proliferation per se, it did inhibit the effect of RANKL on proliferation of RAW 264.7 cells. Key genes related to osteoclast function (TRAP, Integrin αVβ3, Cathepsin K and MMP9) were significantly down-regulated by DMSO. RANKL-induced expression of RANK gene was significantly reduced in the presence of DMSO. Our data, and reports from other investigators, that DMSO enhances osteoblastic differentiation of mesenchymal stem cells and also prevents bone loss in ovarietcomized rats, suggest that DMSO has tremendous potential in the treatment of osteoporosis and bone diseases arising from uncontrolled activities of the osteoclasts.
Zach, Frank; Mueller, Alexandra; Gessner, André
2015-01-01
In vitro differentiation into functional osteoclasts is routinely achieved by incubation of embryonic stem cells, induced pluripotent stem cells, or primary as well as cryopreserved spleen and bone marrow-derived cells with soluble receptor activator of nuclear factor kappa-B ligand and macrophage colony-stimulating factor. Additionally, osteoclasts can be derived from co-cultures with osteoblasts or by direct administration of soluble receptor activator of nuclear factor kappa-B ligand to RAW 264.7 macrophage lineage cells. However, despite their benefits for osteoclast-associated research, these different methods have several drawbacks with respect to differentiation yields, time and animal consumption, storage life of progenitor cells or the limited potential for genetic manipulation of osteoclast precursors. In the present study, we therefore established a novel protocol for the differentiation of osteoclasts from murine ER-Hoxb8-immortalized myeloid stem cells. We isolated and immortalized bone marrow cells from wild type and genetically manipulated mouse lines, optimized protocols for osteoclast differentiation and compared these cells to osteoclasts derived from conventional sources. In vitro generated ER-Hoxb8 osteoclasts displayed typical osteoclast characteristics such as multi-nucleation, tartrate-resistant acid phosphatase staining of supernatants and cells, F-actin ring formation and bone resorption activity. Furthermore, the osteoclast differentiation time course was traced on a gene expression level. Increased expression of osteoclast-specific genes and decreased expression of stem cell marker genes during differentiation of osteoclasts from ER-Hoxb8-immortalized myeloid progenitor cells were detected by gene array and confirmed by semi-quantitative and quantitative RT-PCR approaches. In summary, we established a novel method for the quantitative production of murine bona fide osteoclasts from ER-Hoxb8 stem cells generated from wild type or genetically manipulated mouse lines. These cells represent a standardized and theoretically unlimited source for osteoclast-associated research projects.
Combined Effects of Simulated Microgravity and Radiation Exposure on Osteoclast Cell Fusion.
Shanmugarajan, Srinivasan; Zhang, Ye; Moreno-Villanueva, Maria; Clanton, Ryan; Rohde, Larry H; Ramesh, Govindarajan T; Sibonga, Jean D; Wu, Honglu
2017-11-18
The loss of bone mass and alteration in bone physiology during space flight are one of the major health risks for astronauts. Although the lack of weight bearing in microgravity is considered a risk factor for bone loss and possible osteoporosis, organisms living in space are also exposed to cosmic radiation and other environmental stress factors. As such, it is still unclear as to whether and by how much radiation exposure contributes to bone loss during space travel, and whether the effects of microgravity and radiation exposure are additive or synergistic. Bone is continuously renewed through the resorption of old bone by osteoclast cells and the formation of new bone by osteoblast cells. In this study, we investigated the combined effects of microgravity and radiation by evaluating the maturation of a hematopoietic cell line to mature osteoclasts. RAW 264.7 monocyte/macrophage cells were cultured in rotating wall vessels that simulate microgravity on the ground. Cells under static 1g or simulated microgravity were exposed to γ rays of varying doses, and then cultured in receptor activator of nuclear factor-κB ligand (RANKL) for the formation of osteoclast giant multinucleated cells (GMCs) and for gene expression analysis. Results of the study showed that radiation alone at doses as low as 0.1 Gy may stimulate osteoclast cell fusion as assessed by GMCs and the expression of signature genes such as tartrate resistant acid phosphatase ( Trap ) and dendritic cell-specific transmembrane protein ( Dcstamp ). However, osteoclast cell fusion decreased for doses greater than 0.5 Gy. In comparison to radiation exposure, simulated microgravity induced higher levels of cell fusion, and the effects of these two environmental factors appeared additive. Interestingly, the microgravity effect on osteoclast stimulatory transmembrane protein ( Ocstamp ) and Dcstamp expressions was significantly higher than the radiation effect, suggesting that radiation may not increase the synthesis of adhesion molecules as much as microgravity.
Giant cells around bone biomaterials: Osteoclasts or multi-nucleated giant cells?
Miron, Richard J; Zohdi, Hamoon; Fujioka-Kobayashi, Masako; Bosshardt, Dieter D
2016-12-01
Recently accumulating evidence has put into question the role of large multinucleated giant cells (MNGCs) around bone biomaterials. While cells derived from the monocyte/macrophage lineage are one of the first cell types in contact with implanted biomaterials, it was originally thought that specifically in bone tissues, all giant cells were bone-resorbing osteoclasts whereas foreign body giant cells (FBGCs) were found associated with a connective tissue foreign body reaction resulting in fibrous encapsulation and/or material rejection. Despite the great majority of bone grafting materials routinely found with large osteoclasts, a special subclass of bone biomaterials has more recently been found surrounded by large giant cells virtually incapable of resorbing bone grafts even years after their implantation. While original hypotheses believed that a 'foreign body reaction' may be taking place, histological data retrieved from human samples years after their implantation have put these original hypotheses into question by demonstrating better and more stable long-term bone volume around certain bone grafts. Exactly how or why this 'special' subclass of giant cells is capable of maintaining long-term bone volume, or methods to scientifically distinguish them from osteoclasts remains extremely poorly studied. The aim of this review article was to gather the current available literature on giant cell markers and differences in expression patterns between osteoclasts and MNGCs utilizing 19 specific markers including an array of CD-cell surface markers. Furthermore, the concept of now distinguishing between pro-inflammatory M1-MNGCs (previously referred to as FBGCs) as well as wound-healing M2-MNGCs is introduced and discussed. This review article presents 19 specific cell-surface markers to distinguish between osteoclasts and MNGCs including an array of CD-cell surface markers. Furthermore, the concept of now distinguishing between pro-inflammatory M1-MNGCs (often previously referred to as FBGCs) as well as wound-healing M2-MNGCs is introduced and discussed. The proposed concepts and guidelines aims to guide the next wave of research facilitating the differentiation between osteoclast/MNGCs formation, as well as provides the basis for increasing our understanding of the exact function of MNGCs in bone tissue/biomaterial homeostasis. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Peripheral cannabinoid receptor, CB2, regulates bone mass
Ofek, Orr; Karsak, Meliha; Leclerc, Nathalie; Fogel, Meirav; Frenkel, Baruch; Wright, Karen; Tam, Joseph; Attar-Namdar, Malka; Kram, Vardit; Shohami, Esther; Mechoulam, Raphael; Zimmer, Andreas; Bab, Itai
2006-01-01
The endogenous cannabinoids bind to and activate two G protein-coupled receptors, the predominantly central cannabinoid receptor type 1 (CB1) and peripheral cannabinoid receptor type 2 (CB2). Whereas CB1 mediates the cannabinoid psychotropic, analgesic, and orectic effects, CB2 has been implicated recently in the regulation of liver fibrosis and atherosclerosis. Here we show that CB2-deficient mice have a markedly accelerated age-related trabecular bone loss and cortical expansion, although cortical thickness remains unaltered. These changes are reminiscent of human osteoporosis and may result from differential regulation of trabecular and cortical bone remodeling. The CB2–/– phenotype is also characterized by increased activity of trabecular osteoblasts (bone-forming cells), increased osteoclast (the bone-resorbing cell) number, and a markedly decreased number of diaphyseal osteoblast precursors. CB2 is expressed in osteoblasts, osteocytes, and osteoclasts. A CB2-specific agonist that does not have any psychotropic effects enhances endocortical osteoblast number and activity and restrains trabecular osteoclastogenesis, apparently by inhibiting proliferation of osteoclast precursors and receptor activator of NF-κB ligand expression in bone marrow-derived osteoblasts/stromal cells. The same agonist attenuates ovariectomy-induced bone loss and markedly stimulates cortical thickness through the respective suppression of osteoclast number and stimulation of endocortical bone formation. These results demonstrate that the endocannabinoid system is essential for the maintenance of normal bone mass by osteoblastic and osteoclastic CB2 signaling. Hence, CB2 offers a molecular target for the diagnosis and treatment of osteoporosis, the most prevalent degenerative disease in developed countries. PMID:16407142
Adenosine A2A Receptor Activation Prevents Wear Particle-Induced Osteolysis
Mediero, Aránzazu; Frenkel, Sally R.; Wilder, Tuere; He, Wenjie; Mazumder, Amitabha; Cronstein, Bruce N.
2012-01-01
Prosthesis loosening, associated with wear-particle–induced inflammation and osteoclast-mediated bone destruction, is a common cause for joint implant failure, leading to revision surgery. Adenosine A2A receptors (A2AR) mediate potent anti-inflammatory effects in many tissues and prevent osteoclast differentiation. We tested the hypothesis that an A2AR agonist could reduce osteoclast-mediated bone resorption in a murine calvaria model of wear-particle–induced bone resorption. C57Bl/6 and A2A knockout (A2ARKO) mice received ultrahigh-molecular weight polyethylene particles (UHMWPE) and were treated daily with either saline or the A2AR agonist CGS21680. After 2 weeks, micro-computed tomography of calvaria demonstrated that CGS21680 reduced particle-induced bone pitting and porosity in a dose-dependent manner, increasing cortical bone and bone volume compared to control mice. Histological examination demonstrated diminished inflammation after treatment with CGS21680. In A2AKO mice, CGS21680 did not affect osteoclast-mediated bone resorption or inflammation. Levels of bone-resorption markers receptor activator of nuclear factor-kB (RANK), RANK ligand (RANKL), cathepsin K, CD163, and osteopontin were reduced following CGS21680 treatment, together with a reduction in osteoclasts. Secretion of interleukin 1β (IL-1β) and TNFα was significantly decreased, whereas IL-10 was markedly increased in bone by CGS21680. These results in mice suggest that site-specific delivery of an adenosine A2AR agonist could enhance implant survival, delaying or eliminating the need for revision arthroplastic surgery. PMID:22623741
Hutami, Islamy Rahma; Izawa, Takashi; Mino-Oka, Akiko; Shinohara, Takehiro; Mori, Hiroki; Iwasa, Akihiko; Tanaka, Eiji
2017-09-02
Enhanced turnover of subchondral trabecular bone is a hallmark of rheumatoid arthritis (RA) and it results from an imbalance between bone resorption and bone formation activities. To investigate the formation and activation of osteoclasts which mediate bone resorption, a Fas-deficient MRL/lpr mouse model which spontaneously develops autoimmune arthritis and exhibits decreased bone mass was studied. Various assays were performed on subchondral trabecular bone of the temporomandibular joint (TMJ) from MRL/lpr mice and MRL+/+ mice. Initially, greater osteoclast production was observed in vitro from bone marrow macrophages obtained from MRL/lpr mice due to enhanced phosphorylation of NF-κB, as well as Akt and MAPK, to receptor activator of nuclear factor-κB ligand (RANKL). Expression of sphingosine 1-phosphate receptor 1 (S1P 1 ) was also significantly upregulated in the condylar cartilage. S1P 1 was found to be required for S1P-induced migration of osteoclast precursor cells and downstream signaling via Rac1. When SN50, a synthetic NF-κB-inhibitory peptide, was applied to the MRL/lpr mice, subchondral trabecular bone loss was reduced and both production of osteoclastogenesis markers and sphingosine kinase (Sphk) 1/S1P 1 signaling were reduced. Thus, the present results suggest that Fas/S1P 1 signaling via activation of NF-κB in osteoclast precursor cells is a key factor in the pathogenesis of RA in the TMJ. Copyright © 2017 Elsevier Inc. All rights reserved.
Role of Bruton’s tyrosine kinase in myeloma cell migration and induction of bone disease
Bam, Rakesh; Ling, Wen; Khan, Sharmin; Pennisi, Angela; Venkateshaiah, Sathisha Upparahalli; Li, Xin; van Rhee, Frits; Usmani, Saad; Barlogie, Bart; Shaughnessy, John; Epstein, Joshua; Yaccoby, Shmuel
2014-01-01
Myeloma cells typically grow in bone, recruit osteoclast precursors and induce their differentiation and activity in areas adjacent to tumor foci. Bruton’s tyrosine kinase (BTK), of the TEC family, is expressed in hematopoietic cells and is particularly involved in B-lymphocyte function and osteoclastogenesis. We demonstrated BTK expression in clinical myeloma plasma cells, interleukin (IL) –6– or stroma–dependent cell lines and osteoclasts. SDF-1 induced BTK activation in myeloma cells and BTK inhibition by small hairpin RNA or the small molecule inhibitor, LFM-A13, reduced their migration toward stromal cell-derived factor-1 (SDF-1). Pretreatment with LFM-A13 also reduced in vivo homing of myeloma cells to bone using bioluminescence imaging in the SCID-rab model. Enforced expression of BTK in myeloma cell line enhanced cell migration toward SDF-1 but had no effect on short-term growth. BTK expression was correlated with cell-surface CXCR4 expression in myeloma cells (n = 33, r = 0.81, P < 0.0001), and BTK gene and protein expression was more profound in cell-surface CXCR4-expressing myeloma cells. BTK was not upregulated by IL-6 while its inhibition had no effect on IL-6 signaling in myeloma cells. Human osteoclast precursors also expressed BTK and cell-surface CXCR4 and migrated toward SDF-1. LFM-A13 suppressed migration and differentiation of osteoclast precursors as well as bone-resorbing activity of mature osteoclasts. In primary myeloma-bearing SCID-rab mice, LFM-A13 inhibited osteoclast activity, prevented myeloma-induced bone resorption and moderately suppressed myeloma growth. These data demonstrate BTK and cell-surface CXCR4 association in myeloma cells and that BTK plays a role in myeloma cell homing to bone and myeloma-induced bone disease. PMID:23456977
Activation of NF-kappa B Signaling Promotes Growth of Prostate Cancer Cells in Bone
Jin, Renjie; Sterling, Julie A.; Edwards, James R.; DeGraff, David J.; Lee, Changki; Park, Serk In; Matusik, Robert J.
2013-01-01
Patients with advanced prostate cancer almost invariably develop osseous metastasis. Although many studies indicate that the activation of NF-κB signaling appears to be correlated with advanced cancer and promotes tumor metastasis by influencing tumor cell migration and angiogenesis, the influence of altered NF-κB signaling in prostate cancer cells within boney metastatic lesions is not clearly understood. While C4-2B and PC3 prostate cancer cells grow well in the bone, LNCaP cells are difficult to grow in murine bone following intraskeletal injection. Our studies show that when compared to LNCaP, NF-κB activity is significantly higher in C4-2B and PC3, and that the activation of NF-κB signaling in prostate cancer cells resulted in the increased expression of the osteoclast inducing genes PTHrP and RANKL. Further, conditioned medium derived from NF-κB activated LNCaP cells induce osteoclast differentiation. In addition, inactivation of NF-κB signaling in prostate cancer cells inhibited tumor formation in the bone, both in the osteolytic PC3 and osteoblastic/osteoclastic mixed C4-2B cells; while the activation of NF-κB signaling in LNCaP cells promoted tumor establishment and proliferation in the bone. The activation of NF-κB in LNCaP cells resulted in the formation of an osteoblastic/osteoclastic mixed tumor with increased osteoclasts surrounding the new formed bone, similar to metastases commonly seen in patients with prostate cancer. These results indicate that osteoclastic reaction is required even in the osteoblastic cancer cells and the activation of NF-κB signaling in prostate cancer cells increases osteoclastogenesis by up-regulating osteoclastogenic genes, thereby contributing to bone metastatic formation. PMID:23577181
Middleton, K; Al-Dujaili, S; Mei, X; Günther, A; You, L
2017-07-05
Bone cells exist in a complex environment where they are constantly exposed to numerous dynamic biochemical and mechanical stimuli. These stimuli regulate bone cells that are involved in various bone disorders, such as osteoporosis. Knowledge of how these stimuli affect bone cells have been utilised to develop various treatments, such as pharmaceuticals, hormone therapy, and exercise. To investigate the role that bone loading has on these disorders in vitro, bone cell mechanotransduction studies are typically performed using parallel plate flow chambers (PPFC). However, these chambers do not allow for dynamic cellular interactions among different cell populations to be investigated. We present a microfluidic approach that exposes different cell populations, which are located at physiologically relevant distances within adjacent channels, to different levels of fluid shear stress, and promotes cell-cell communication between the different channels. We employed this microfluidic system to assess mechanically regulated osteocyte-osteoclast communication. Osteoclast precursors (RAW264.7 cells) responded to cytokine gradients (e.g., RANKL, OPG, PGE-2) developed by both mechanically stimulated (fOCY) and unstimulated (nOCY) osteocyte-like MLO-Y4 cells simultaneously. Specifically, we observed increased osteoclast precursor cell densities and osteoclast differentiation towards nOCY. We also used this system to show an increased mechanoresponse of osteocytes when in co-culture with osteoclasts. We envision broad applicability of the presented approach for microfluidic perfusion co-culture of multiple cell types in the presence of fluid flow stimulation, and as a tool to investigate osteocyte mechanotransduction, as well as bone metastasis extravasation. This system could also be applied to any multi-cell population cross-talk studies that are typically performed using PPFCs (e.g. endothelial cells, smooth muscle cells, and fibroblasts). Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhao, Ji-Jun; Wu, Zhao-Feng; Yu, Ying-Hao; Wang, Ling; Cheng, Li
2018-09-01
To explore the effects of IL-7/IL-7R on the RANKL-mediated osteoclast differentiation in vitro and OVX-induced bone loss in vivo. BMMs and RAW264.7 were transfected with IL-7, IL-7R siRNA, c-Fos siRNA, and c-jun siRNA and later stimulated by RANKL. TRAP and toluidine blue staining were used to observe osteoclast formation and bone resorption, respectively. HE and TRAP staining were used to detect trabecular bone microstructure and osteoclasts of mice, respectively. qRT-PCR and Western blot analysis were used to examine expression. IL-7 unregulated the expression of CTSK, NFATc1, MMP9, and the phosphorylation of p38 and Akt by activating the c-Fos/c-Jun pathway, which increased osteoclast numbers and bone resorption in RANKL-stimulated macrophages. While IL-7R siRNA and c-Fos siRNA decreased the expression, as well as and the phosphorylation of p38 and Akt.IL-7 decreased the BMD and OPG expression in OVX-induced mice and increased the TRAP positive cells, the mRNA expression of c-fos, c-jun, and RANKL, which was contradictory to IL-7R siRNA, and c-Fos siRNA. Furthermore, IL-7R siRNA and c-Fos siRNA caused thicker trabeculae, increased trabecular number, and decreased osteolysis in OVX mice. IL-7/IL-7R can promote RANKL-mediated osteoclast formation and bone resorption by activating the c-Fos/c-Jun pathway, as well as inducing bone loss in OVX mice. © 2018 Wiley Periodicals, Inc.
IFN-γ stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation
Gao, Yuhao; Grassi, Francesco; Ryan, Michaela Robbie; Terauchi, Masakazu; Page, Karen; Yang, Xiaoying; Weitzmann, M. Neale; Pacifici, Roberto
2006-01-01
T cell–produced cytokines play a pivotal role in the bone loss caused by inflammation, infection, and estrogen deficiency. IFN-γ is a major product of activated T helper cells that can function as a pro- or antiresorptive cytokine, but the reason why IFN-γ has variable effects in bone is unknown. Here we show that IFN-γ blunts osteoclast formation through direct targeting of osteoclast precursors but indirectly stimulates osteoclast formation and promotes bone resorption by stimulating antigen-dependent T cell activation and T cell secretion of the osteoclastogenic factors RANKL and TNF-α. Analysis of the in vivo effects of IFN-γ in 3 mouse models of bone loss — ovariectomy, LPS injection, and inflammation via silencing of TGF-β signaling in T cells — reveals that the net effect of IFN-γ in these conditions is that of stimulating bone resorption and bone loss. In summary, IFN-γ has both direct anti-osteoclastogenic and indirect pro-osteoclastogenic properties in vivo. Under conditions of estrogen deficiency, infection, and inflammation, the net balance of these 2 opposing forces is biased toward bone resorption. Inhibition of IFN-γ signaling may thus represent a novel strategy to simultaneously reduce inflammation and bone loss in common forms of osteoporosis. PMID:17173138
Di Ceglie, Irene; Ascone, Giuliana; Cremers, Niels A J; Sloetjes, Annet W; Walgreen, Birgitte; Vogl, Thomas; Roth, Johannes; Verbeek, J Sjef; van de Loo, Fons A J; Koenders, Marije I; van der Kraan, Peter M; Blom, Arjen B; van den Bosch, Martijn H J; van Lent, Peter L E M
2018-05-02
Osteoclast-mediated bone erosion is a central feature of rheumatoid arthritis (RA). Immune complexes, present in a large percentage of patients, bind to Fcγ receptors (FcγRs), thereby modulating the activity of immune cells. In this study, we investigated the contribution of FcγRs, and FcγRIV in particular, during antigen-induced arthritis (AIA). AIA was induced in knee joints of wild-type (WT), FcγRI,II,III -/- , and FcγRI,II,III,IV -/- mice. Bone destruction, numbers of tartrate-resistant acid phosphatase-positive (TRAP + ) osteoclasts, and inflammation were evaluated using histology; expression of the macrophage marker F4/80, neutrophil marker NIMPR14, and alarmin S100A8 was evaluated using immunohistochemistry. The percentage of osteoclast precursors in the bone marrow was determined using flow cytometry. In vitro osteoclastogenesis was evaluated with TRAP staining, and gene expression was assessed using real-time PCR. FcγRI,II,III,IV -/- mice showed decreased bone erosion compared with WT mice during AIA, whereas both the humoral and cellular immune responses against methylated bovine serum albumin were not impaired in FcγRI,II,III,IV -/- mice. The percentage of osteoclast precursors in the bone marrow of arthritic mice and their ability to differentiate into osteoclasts in vitro were comparable between FcγRI,II,III,IV -/- and WT mice. In line with these observations, numbers of TRAP + osteoclasts on the bone surface during AIA were comparable between the two groups. Inflammation, a process that strongly activates osteoclast activity, was reduced in FcγRI,II,III,IV -/- mice, and of note, mainly decreased numbers of neutrophils were present in the joint. In contrast to FcγRI,II,III,IV -/- mice, AIA induction in knee joints of FcγRI,II,III -/- mice resulted in increased bone erosion, inflammation, and numbers of neutrophils, suggesting a crucial role for FcγRIV in the joint pathology by the recruitment of neutrophils. Finally, significant correlations were found between bone erosion and the number of neutrophils present in the joint as well as between bone erosion and the number of S100A8-positive cells, with S100A8 being an alarmin strongly produced by neutrophils that stimulates osteoclast resorbing activity. FcγRs play a crucial role in the development of bone erosion during AIA by inducing inflammation. In particular, FcγRIV mediates bone erosion in AIA by inducing the influx of S100A8/A9-producing neutrophils into the arthritic joint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek, Jong Min; Park, Sun-Hyang; Cheon, Yoon-Hee
Esculetin exerts various biological effects on anti-oxidation, anti-tumors, and anti-inflammation. However, the involvement of esculetin in the bone metabolism process, particularly osteoclast differentiation has not yet been investigated. In the present study, we first confirmed the inhibitory effect of esculetin on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. We then revealed the relationship between esculetin and the expression of osteoclast-specific molecules to elucidate its underlying mechanisms. Esculetin interfered with the expression of c-Fos and nuclear factor of activated T cell c1 (NFATc1) both at the mRNA and protein level with no involvement in osteoclast-associated early signaling pathways, suppressingmore » the expression of various transcription factors exclusively expressed in osteoclasts such as tartrate-resistant acid phosphatase (Trap), osteoclast-associated receptor (Oscar), dendritic cell-specific transmembrane protein (Dcstamp), osteoclast stimulatory transmembrane protein (Ocstamp), cathepsin K, αvβ3 integrin, and calcitonin receptor (Ctr). Additionally, esculetin inhibited the formation of filamentous actin (F-actin) ring-positive osteoclasts during osteoclast differentiation. However, the development of F-actin structures and subsequent bone resorbing activity of mature osteoclasts, which are observed in osteoclast/osteoblast co-culture systems were not affected by esculetin. Taken together, our results indicate for the first time that esculetin inhibits RANKL-mediated osteoclastogenesis via direct suppression of c-Fos and NFATc1 expression and exerts an inhibitory effect on actin ring formation during osteoclastogenesis. - Highlights: • We first investigated the effects of esculetin on osteoclast differentiation and function. • Our data demonstrate for the first time that esculetin can suppress osteoclastogenesis in vitro. • Esculetin acts as an inhibitor of c-Fos and NFATc1 activation. • Esculetin acts a negative regulator of actin ring formation during osteoclast differentiation. • Esculetin deserves new evaluation as a potential treatment target in various bone diseases.« less
Li, Anna; Cong, Qian; Xia, Xuechun; Leong, Wai Fook; Yeh, James; Miao, Dengshun; Mishina, Yuji; Liu, Huijuan; Li, Baojie
2017-07-01
Vitamin D is involved in a range of physiological processes and its active form and analogs have been used to treat diseases such as osteoporosis. Yet how vitamin D executes its function remains unsolved. Here we show that the active form of vitamin D calcitriol increases the peak bone mass in mice by inhibiting osteoclastogenesis and bone resorption. Although calcitriol modestly promoted osteoclast maturation, it strongly inhibited osteoclast lineage commitment from its progenitor monocyte by increasing Smad1 transcription via the vitamin D receptor and enhancing BMP-Smad1 activation, which in turn led to increased IκBα expression and decreased NF-κB activation and NFATc1 expression, with IκBα being a Smad1 target gene. Inhibition of BMP type I receptor or ablation of Bmpr1a in monocytes alleviated the inhibitory effects of calcitriol on osteoclast commitment, bone resorption, and bone mass augmentation. These findings uncover crosstalk between the BMP-Smad1 and RANKL-NF-κB pathways during osteoclastogenesis that underlies the action of active vitamin D on bone health. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
Sekiguchi, Yuusuke; Mano, Hiroshi; Nakatani, Sachie; Shimizu, Jun; Kataoka, Aya; Ogura, Kana; Kimira, Yoshifumi; Ebata, Midori; Wada, Masahiro
2017-08-01
Mangiferin is a polyphenolic compound present in Salacia reticulata. It has been reported to reduce bone destruction and inhibit osteoclastic differentiation. This study aimed to determine whether mangiferin directly affects osteoblast and osteoclast proliferation and differentiation, and gene expression in MC3T3‑E1 osteoblastic cells and osteoclast‑like cells derived from primary mouse bone marrow macrophage cells. Mangiferin induced significantly greater WST‑1 activity, indicating increased cell proliferation. Mangiferin induced significantly increased alkaline phosphatase staining, indicating greater cell differentiation. Reverse transcription‑polymerase chain reaction (RT‑PCR) demonstrated that mangiferin significantly increased the mRNA level of runt‑related transcription factor 2 (RunX2), but did not affect RunX1 mRNA expression. Mangiferin significantly reduced the formation of tartrate‑resistant acid phosphatase‑positive multinuclear cells. RT‑PCR demonstrated that mangiferin significantly increased the mRNA level of estrogen receptor β (ERβ), but did not affect the expression of other osteoclast‑associated genes. Mangiferin may inhibit osteoclastic bone resorption by suppressing differentiation of osteoclasts and promoting expression of ERβ mRNA in mouse bone marrow macrophage cells. It also has potential to promote osteoblastic bone formation by promoting cell proliferation and inducing cell differentiation in preosteoblast MC3T3‑E1 cells via RunX2. Mangiferin may therefore be useful in improving bone disease outcomes.
Rachner, Tilman D.; Khosla, Sundeep; Hofbauer, Lorenz C.
2013-01-01
Summary Osteoporosis is a common disease characterised by a systemic impairment of bone mass and microarchitecture that results in fragility fractures. With an ageing population, the medical and socioeconomic impact of osteoporosis in general and postmenopausal osteoporosis in particular, will increase further. A detailed knowledge of bone biology with molecular insights into the communication between bone-forming osteoblasts and bone-resorbing osteoclasts and the orchestrating signalling network has led to the identification of novel therapeutic targets. Based on this, therapeutic strategies have been developed aimed at (I) inhibiting excessive bone resorption and by (II) increasing bone formation. The most promising novel treatments include denosumab, a monoclonal antibody against receptor activator of NF-κB ligand, a key osteoclast cytokine, odanacatib, a specific inhibitor of the osteoclast protease cathepsin K, and antibodies against the proteins sclerostin and dickkopf-1, two endogenous inhibitors of bone formation. This review provides an overview on these novel therapies and explains their underlying physiology. PMID:21450337
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Fei; Zhai, Zanjing; Jiang, Chuan
Wear particle-induced osteolysis and subsequent aseptic loosening remains the most common complication that limits the longevity of prostheses. Wear particle-induced osteoclastogenesis is known to be responsible for extensive bone erosion that leads to prosthesis failure. Thus, inhibition of osteoclastic bone resorption may serve as a therapeutic strategy for the treatment of wear particle induced osteolysis. In this study, we demonstrated for the first time that geraniin, an active natural compound derived from Geranium thunbergii, ameliorated particle-induced osteolysis in a Ti particle-induced mouse calvaria model in vivo. We also investigated the mechanism by which geraniin exerts inhibitory effects on osteoclasts. Geraniinmore » inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner, evidenced by reduced osteoclast formation and suppressed osteoclast specific gene expression. Specially, geraniin inhibited actin ring formation and bone resorption in vitro. Further molecular investigation demonstrated geraniin impaired osteoclast differentiation via the inhibition of the RANKL-induced NF-κB and ERK signaling pathways, as well as suppressed the expression of key osteoclast transcriptional factors NFATc1 and c-Fos. Collectively, our data suggested that geraniin exerts inhibitory effects on osteoclast differentiation in vitro and suppresses Ti particle-induced osteolysis in vivo. Geraniin is therefore a potential natural compound for the treatment of wear particle induced osteolysis in prostheses failure. - Highlights: • Geraniin suppresses osteoclasts formation and function in vitro. • Geraniin impairs RANKL-induced nuclear factor-κB and ERK signaling pathway. • Geraniin suppresses osteolysis in vivo. • Geraniin may be used for treating osteoclast related diseases.« less
Natural uranium impairs the differentiation and the resorbing function of osteoclasts.
Gritsaenko, Tatiana; Pierrefite-Carle, Valérie; Lorivel, Thomas; Breuil, Véronique; Carle, Georges F; Santucci-Darmanin, Sabine
2017-04-01
Uranium is a naturally occurring radionuclide ubiquitously present in the environment. The skeleton is the main site of uranium long-term accumulation. While it has been shown that natural uranium is able to perturb bone metabolism through its chemical toxicity, its impact on bone resorption by osteoclasts has been poorly explored. Here, we examined for the first time in vitro effects of natural uranium on osteoclasts. The effects of uranium on the RAW 264.7 monocyte/macrophage mouse cell line and primary murine osteoclastic cells were characterized by biochemical, molecular and functional analyses. We observed a cytotoxicity effect of uranium on osteoclast precursors. Uranium concentrations in the μM range are able to inhibit osteoclast formation, mature osteoclast survival and mineral resorption but don't affect the expression of the osteoclast gene markers Nfatc1, Dc-stamp, Ctsk, Acp5, Atp6v0a3 or Atp6v0d2 in RAW 274.7 cells. Instead, we observed that uranium induces a dose-dependent accumulation of SQSTM1/p62 during osteoclastogenesis. We show here that uranium impairs osteoclast formation and function in vitro. The decrease in available precursor cells, as well as the reduced viability of mature osteoclasts appears to account for these effects of uranium. The SQSTM1/p62 level increase observed in response to uranium exposure is of particular interest since this protein is a known regulator of osteoclast formation. A tempting hypothesis discussed herein is that SQSTM1/p62 dysregulation contributes to uranium effects on osteoclastogenesis. We describe cellular and molecular effects of uranium that potentially affect bone homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.
Nishikawa, Keizo; Iwamoto, Yoriko; Ishii, Masaru
2014-05-01
The development of methods for differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cell (iPSCs) into functional cells have helped to analyze the mechanism regulating cellular processes and to explore cell-based assays for drug discovery. Although several reports have demonstrated methods for differentiation of mouse ESCs into osteoclast-like cells, it remains unclear whether these methods are applicable for differentiation of iPSCs to osteoclasts. In this study, we developed a simple method for stepwise differentiation of mouse ESCs and iPSCs into bone-resorbing osteoclasts based upon a monoculture approach consisting of three steps. First, based on conventional hanging-drop methods, embryoid bodies (EBs) were produced from mouse ESCs or iPSCs. Second, EBs were cultured in medium supplemented with macrophage colony-stimulating factor (M-CSF), and differentiated to osteoclast precursors, which expressed CD11b. Finally, ESC- or iPSC-derived osteoclast precursors stimulated with receptor activator of nuclear factor-B ligand (RANKL) and M-CSF formed large multinucleated osteoclast-like cells that expressed tartrate-resistant acid phosphatase and were capable of bone resorption. Molecular analysis showed that the expression of osteoclast marker genes such as Nfatc1, Ctsk, and Acp5 are increased in a RANKL-dependent manner. Thus, our procedure is simple and easy and would be helpful for stem cell-based bone research.
Osteoimmunology and the influence of pro-inflammatory cytokines on osteoclasts
Zupan, Janja; Jeras, Matjaž; Marc, Janja
2013-01-01
Bone and immune system are functionally interconnected. Immune and bone cells derive from same progenitors in the bone marrow, they share a common microenvironment and are being influenced by similar mediators. The evidence on increased bone resorption associated with inappropriate activation of T cells such as during inflammation, is well established. However, the molecular mechanisms beyond this clinical observation have begun to be intensively studied with the advancement of osteoimmunology. Now days, we have firm evidence on the influence of numerous proinflammatory cytokines on bone cells, with the majority of data focused on osteoclasts, the bone resorbing cells. It has been shown that some proinflammatory cytokines could possess osteoclastogenic and/or anti-osteoclastogenic properties and can target osteoclasts directly or via receptor activator of nuclear factor κB (RANK)/RANK ligand(RANKL)/osteoprotegerin (OPG) system. Several studies have reported opposing data regarding (anti)osteoclastogenic properties of these cytokines. Therefore, the first part of this review is summarizing current evidence on the influence of pro-inflammatory cytokines on osteoclasts and thus on bone resorption. In the second part, the evidence on the role of pro-inflammatory cytokines in osteoporosis and osteoarthritis is reviewed to show that unravelling the mechanisms beyond such complex bone diseases, is almost impossible without considering skeletal and immune systems as an indivisible integrated system. PMID:23457765
NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis
Goettsch, Claudia; Babelova, Andrea; Trummer, Olivia; Erben, Reinhold G.; Rauner, Martina; Rammelt, Stefan; Weissmann, Norbert; Weinberger, Valeska; Benkhoff, Sebastian; Kampschulte, Marian; Obermayer-Pietsch, Barbara; Hofbauer, Lorenz C.; Brandes, Ralf P.; Schröder, Katrin
2013-01-01
ROS are implicated in bone diseases. NADPH oxidase 4 (NOX4), a constitutively active enzymatic source of ROS, may contribute to the development of such disorders. Therefore, we studied the role of NOX4 in bone homeostasis. Nox4–/– mice displayed higher bone density and reduced numbers and markers of osteoclasts. Ex vivo, differentiation of monocytes into osteoclasts with RANKL and M-CSF induced Nox4 expression. Loss of NOX4 activity attenuated osteoclastogenesis, which was accompanied by impaired activation of RANKL-induced NFATc1 and c-JUN. In an in vivo model of murine ovariectomy–induced osteoporosis, pharmacological inhibition or acute genetic knockdown of Nox4 mitigated loss of trabecular bone. Human bone obtained from patients with increased osteoclast activity exhibited increased NOX4 expression. Moreover, a SNP of NOX4 was associated with elevated circulating markers of bone turnover and reduced bone density in women. Thus, NOX4 is involved in bone loss and represents a potential therapeutic target for the treatment of osteoporosis. PMID:24216508
Li, Xiaofeng; Xue, Chunchun; Wang, Libo; Tang, Dezhi; Huang, Jian; Zhao, Yongjian; Chen, Yan; Zhao, Dongfeng; Shi, Qi; Wang, Yongjun; Shu, Bing
2016-10-01
The present study aimed to investigate the effects of osthole on osteoclast formation and bone loss in a mouse model of 5/6 nephrectomy. The mice in control and osthole groups were treated 1 month following 5/6 nephrectomy with either a placebo or osthole, respectively. At 2 months post‑nephrectomy, the L4 vertebrae were harvested. The bone mineral density (BMD) of cancellous bone was measured using micro‑CT and tartrate‑resistant acid phosphatase (TRAP) staining was performed to evaluate osteoclast formation. Immunohistochemistry staining and reverse transcription‑quantitative polymerase chain reaction were performed to detect the expression of nuclear factor of activated T‑cells, cytoplasmic‑1 (NFATc‑1), c‑Fos, cathepsin K, Trap, matrix metalloproteinase 9 (Mmp9), osteoprotegerin (Opg) and receptor activator for nuclear factor‑κB ligand (Rankl). Bone marrow cells were cultured with osthole, and osteoclast formation was shown by TRAP staining. Primary calvaria osteoblasts were cultured with osthole, and expression levels of Opg and Rankl were detected. Compared with the sham group, the BMD of mice in model group was significantly reduced. The numbers of osteoclasts and the expression levels of NFATc‑1, c‑Fos, cathepsin K and Mmp9 were significantly increased. Compared with the control group, the mice in the osthole group exhibited increased BMD of the L4 vertebrae, a reduction in osteoclast numbers and decreased expression levels of NFATc‑1, c‑Fos, cathepsin K and Mmp9. In vitro experiments also showed that osteoclast formation was decreased following treatment with osthole. Osteoprotegerin (Opg)/receptor activator for nuclear factor‑κB ligand (Rankl) was upregulated by osthole treatment in the L4 vertebrae and in primary cultures of calvarial osteoblasts. Osthole inhibited osteoclast formation and partially reversed the bone loss induced by 5/6 nephrectomy in mice through the upregulation of OPG/RANKL.
Bernhardt, Anne; Schamel, Martha; Gbureck, Uwe; Gelinsky, Michael
2017-01-01
Biologically active metal ions in low doses have the potential to accelerate bone defect healing. For successful remodelling the interaction of bone graft materials with both bone-forming osteoblasts and bone resorbing osteoclasts is crucial. In the present study brushite forming calcium phosphate cements (CPC) were doped with Co2+, Cu2+ and Cr3+ and the influence of these materials on osteoclast differentiation and activity was examined. Human osteoclasts were differentiated from human peripheral blood mononuclear cells (PBMC) both on the surface and in indirect contact to the materials on dentin discs. Release of calcium, phosphate and bioactive metal ions was determined using ICP-MS both in the presence and absence of the cells. While Co2+ and Cu2+ showed a burst release, Cr3+ was released steadily at very low concentrations (below 1 μM) and both calcium and phosphate release of the cements was considerably changed in the Cr3+ modified samples. Direct cultivation of PBMC/osteoclasts on Co2+ cements showed lower attached cell number compared to the reference but high activity of osteoclast specific enzymes tartrate resistant acid phosphatase (TRAP), carbonic anhydrase II (CAII) and cathepsin K (CTSK) and significantly increased gene expression of vitronectin receptor. Indirect cultivation with diluted Co2+ cement extracts revealed highest resorbed area compared to all other modifications and the reference. Cu2+ cements had cytotoxic effect on PBMC/osteoclasts during direct cultivation, while indirect cultivation with diluted extracts from Cu2+ cements did not provoke cytotoxic effects but a strictly inhibited resorption. Cr3+ doped cements did not show cytotoxic effects at all. Gene expression and enzyme activity of CTSK was significantly increased in direct culture. Indirect cultivation with Cr3+ doped cements revealed significantly higher resorbed area compared to the reference. In conclusion Cr3+ doped calcium phosphate cements are an innovative cement modification because of their high cytocompatibility and support of active resorption by osteoclasts.
Ahmed, Gazi Jased; Tatsukawa, Eri; Morishita, Kota; Shibata, Yasuaki; Suehiro, Fumio; Kamitakahara, Masanobu; Yokoi, Taishi; Koji, Takehiko; Umeda, Masahiro; Nishimura, Masahiro; Ikeda, Tohru
2016-01-01
The implantation of biomaterials induces a granulomatous reaction accompanied by foreign body giant cells (FBGCs). The characterization of multinucleated giant cells (MNGCs) around bone substitutes implanted in bone defects is more complicated because of healing with bone admixed with residual bone substitutes and their hybrid, and the appearance of two kinds of MNGCs, osteoclasts and FBGCs. Furthermore, the clinical significance of osteoclasts and FBGCs in the healing of implanted regions remains unclear. The aim of the present study was to characterize MNGCs around bone substitutes using an extraskeletal implantation model and evaluate the clinical significance of osteoclasts and FBGCs. Beta-tricalcium phosphate (β-TCP) granules were implanted into rat subcutaneous tissue with or without bone marrow mesenchymal cells (BMMCs), which include osteogenic progenitor cells. We also compared the biological significance of plasma and purified fibrin, which were used as binders for implants. Twelve weeks after implantation, osteogenesis was only detected in specimens implanted with BMMCs. The expression of two typical osteoclast markers, tartrate-resistant acid phosphatase (TRAP) and cathepsin-K (CTSK), was analyzed, and TRAP-positive and CTSK-positive osteoclasts were only detected beside bone. In contrast, most of the MNGCs in specimens without the implantation of BMMCs were FBGCs that were negative for TRAP, whereas the degradation of β-TCP was detected. In the region implanted with β-TCP granules with plasma, FBGCs tested positive for CTSK, and when β-TCP granules were implanted with purified fibrin, FBGCs tested negative for CTSK. These results showed that osteogenesis was essential to osteoclastogenesis, two kinds of FBGCs, CTSK-positive and CTSK-negative, were induced, and the expression of CTSK was plasma-dependent. In addition, the implantation of BMMCs was suggested to contribute to osteogenesis and the replacement of implanted β-TCP granules to bone. PMID:27462135
Mahoney, David J.; Mikecz, Katalin; Ali, Tariq; Mabilleau, Guillaume; Benayahu, Dafna; Plaas, Anna; Milner, Caroline M.; Day, Anthony J.; Sabokbar, Afsaneh
2008-01-01
TSG-6 is an inflammation-induced protein that is produced at pathological sites, including arthritic joints. In animal models of arthritis, TSG-6 protects against joint damage; this has been attributed to its inhibitory effects on neutrophil migration and plasmin activity. Here we investigated whether TSG-6 can directly influence bone erosion. Our data reveal that TSG-6 inhibits RANKL-induced osteoclast differentiation/activation from human and murine precursor cells, where elevated dentine erosion by osteoclasts derived from TSG-6-/- mice is consistent with the very severe arthritis seen in these animals. However, the long bones from unchallenged TSG-6-/- mice were found to have higher trabecular mass than controls, suggesting that in the absence of inflammation TSG-6 has a role in bone homeostasis; we have detected expression of the TSG-6 protein in the bone marrow of unchallenged wild type mice. Furthermore, we have observed that TSG-6 can inhibit bone morphogenetic protein-2 (BMP-2)-mediated osteoblast differentiation. Interaction analysis revealed that TSG-6 binds directly to RANKL and to BMP-2 (as well as other osteogenic BMPs but not BMP-3) via composite surfaces involving its Link and CUB modules. Consistent with this, the full-length protein is required for maximal inhibition of osteoblast differentiation and osteoclast activation, although the isolated Link module retains significant activity in the latter case. We hypothesize that TSG-6 has dual roles in bone remodeling; one protective, where it inhibits RANKL-induced bone erosion in inflammatory diseases such as arthritis, and the other homeostatic, where its interactions with BMP-2 and RANKL help to balance mineralization by osteoblasts and bone resorption by osteoclasts. PMID:18586671
Gallium, a promising candidate to disrupt the vicious cycle driving osteolytic metastases.
Strazic-Geljic, Ivana; Guberovic, Iva; Didak, Blanka; Schmid-Antomarchi, Heidy; Schmid-Alliana, Annie; Boukhechba, Florian; Bouler, Jean-Michel; Scimeca, Jean-Claude; Verron, Elise
2016-09-15
Bone metastases of breast cancer typically lead to a severe osteolysis due to an excessive osteoclastic activity. On the other hand, the semi-metallic element gallium (Ga) displays an inhibitory action on osteoclasts, and therefore on bone resorption, as well as antitumour properties. Thus, we explored in vitro Ga effects on osteoclastogenesis in an aggressive bone metastatic environment based on the culture of pre-osteoclast RAW 264.7 cells with conditioned medium from metastatic breast tumour cells, i.e. the breast tumour cell line model MDA-MB-231 and its bone-seeking clone MDA-231BO. We first observed that Ga dose-dependently inhibited the tumour cells-induced osteoclastic differentiation of RAW 264.7 cells. To mimic a more aggressive environment where pro-tumourigenic factors are released from bone matrix due to osteoclastic resorption, metastatic breast tumour cells were stimulated with TGF-β, a mayor cytokine in bone metastasis vicious cycle. In these conditions, we observed that Ga still inhibited cancer cells-driven osteoclastogenesis. Lastly, we evidenced that Ga affected directly and strongly the proliferation/viability of both cancer cell lines, as well as the expression of major osteolytic factors in MDA-231BO cells. With the exception of two small scale clinical studies from 1980s, this is the first time that antitumour properties of Ga have been specifically studied in the context of bone metastases. Our data strongly suggest that, through its action against the vicious cycle involving bone cells and tumour cells, Ga represents a relevant and promising candidate for the local treatment of bone metastases in patients with breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Inoue, D; Santiago, P; Horne, W C; Baron, R
1997-10-03
Transgenic mice expressing human T cell leukemia virus type I (HTLV-I)-tax under the control of HTLV-I-long terminal repeat (LTR) promoter develop skeletal abnormalities with high bone turnover and myelofibrosis. In these animals, Tax is highly expressed in bone with a pattern of expression restricted to osteoclasts and spindle-shaped cells within the endosteal myelofibrosis. To test the hypothesis that lineage-specific transcription factors promote transgene expression from the HTLV-I-LTR in osteoclasts, we first examined tax expression in transgenic bone marrow cultures. Expression was dependent on 1alpha,25-dihydroxycholecalciferol and coincided with tartrate-resistant acid phosphatase (TRAP) expression, a marker of osteoclast differentiation. Furthermore, Tax was expressed in vitronectin receptor-positive mononuclear precursors as well as in mature osteoclast-like cells (OCLs). Consistent with our hypothesis, electrophoretic mobility shift assays revealed the presence of an OCL nuclear factor (NFOC-1) that binds to the LTR 21-base pair direct repeat, a region critical for the promoter activity. This binding is further enhanced by Tax. Since NFOC-1 is absent in macrophages and conserved in osteoclasts among species including human, such a factor may play a role in lineage determination and/or in expression of the differentiated osteoclast phenotype.
Kinetic examination of femoral bone modeling in broilers.
Prisby, R; Menezes, T; Campbell, J; Benson, T; Samraj, E; Pevzner, I; Wideman, R F
2014-05-01
Lameness in broilers can be associated with progressive degeneration of the femoral head leading to femoral head necrosis and osteomyelitis. Femora from clinically healthy broilers were dissected at 7 (n = 35, 2), 14 (n = 32), 21 (n = 33), 28 (n = 34), and 42 (n = 28) d of age, and were processed for bone histomorphometry to examine bone microarchitecture and bone static and dynamic properties in the secondary spongiosa (IISP) of the proximal femoral metaphysis. Body mass increased rapidly with age, whereas the bone volume to tissue volume ratio remained relatively consistent. The bone volume to tissue volume ratio values generally reflected corresponding values for both mean trabecular thickness and mean trabecular number. Bone metabolism was highest on d 7 when significant osteoblast activity was reflected by increased osteoid surface to bone surface and mineralizing surface per bone surface ratios. However, significant declines in osteoblast activity and bone formative processes occurred during the second week of development, such that newly formed but unmineralized bone tissue (osteoid) and the percentages of mineralizing surfaces both were diminished. Osteoclast activity was elevated to the extent that measurement was impossible. Intense osteoclast activity presumably reflects marked bone resorption throughout the experiment. The overall mature trabecular bone volume remained relatively low, which may arise from extensive persistence of chondrocyte columns in the metaphysis, large areas in the metaphysis composed of immature bone, destruction of bone tissue in the primary spongiosa, and potentially reduced bone blood vessel penetration that normally would be necessary for robust development. Delayed bone development in the IISP was attributable to an uncoupling of osteoblast and osteoclast activity, whereby bone resorption (osteoclast activity) outpaced bone formation (osteoblast activity). Insufficient maturation and mineralization of the IISP may contribute to subsequent pathology of the femoral head in fast-growing broilers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Liang; Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai; Kang, Hui
Wear particles liberated from the surface of prostheses are considered to be main reason for osteoclast bone resorption and that extensive osteoclastogenesis leads to peri-implant osteolysis and subsequent prosthetic loosening. The aim of this study was to assess the effect of rifampin on osteoclastogenesis and titanium (Ti) particle-induced osteolysis. The Ti particle-induced osteolysis mouse calvarial model and bone marrow-derived macrophages (BMMs) were used. Rifampin, at dose of 10 or 50 mg/kg/day, was respectively given intraperitoneally for 14 days in vivo. The calvariae were removed and processed for Further histological analysis. In vitro, osteoclasts were generated from mouse BMMs with receptor activator of nuclearmore » factor-κB ligand (RANKL) and the macrophage colony stimulating factor. Rifampin at different concentrations was added to the medium. The cell viability, tartrate-resistant acid phosphatase (TRAP) staining, TRAP activity and resorption on bone slices were analysis. Osteoclast-specific genes and RANKL-induced MAPKs signaling were tested for further study of the mechanism. Rifampin inhibited Ti-induced osteolysis and osteoclastogenesis in vivo. In vitro data indicated that rifampin suppressed osteoclast differentiation and bone resorption in a dose-dependent manner. Moreover, rifampin significantly reduced the expression of osteoclast-specific markers, including TRAP, cathepsin K, V-ATPase d2, V-ATPase a3, c-Fos, and nuclear factor of activated T cells (NFAT) c1. Further investigation revealed that rifampin inhibited osteoclast formation by specifically abrogating RANKL-induced p38 and NF-κB signaling. Rifampin had significant potential for the treatment of particle-induced peri-implant osteolysis and other diseases caused by excessive osteoclast formation and function. - Highlights: • Rifampin inhibited Ti-induced osteolysis and osteoclastogenesis in vivo. • Rifampin suppressed osteoclast differentiation and bone resorption in a dose-dependent manner. • Rifampin significantly reduced the expression of osteoclast-specific markers in vitro. • RANKL-induced p38 and NF-κB signaling may be involved behind the effects of rifampin treatment on osteoclastogenesis.« less
Keller, Johannes; Catala-Lehnen, Philip; Huebner, Antje K.; Jeschke, Anke; Heckt, Timo; Lueth, Anja; Krause, Matthias; Koehne, Till; Albers, Joachim; Schulze, Jochen; Schilling, Sarah; Haberland, Michael; Denninger, Hannah; Neven, Mona; Hermans-Borgmeyer, Irm; Streichert, Thomas; Breer, Stefan; Barvencik, Florian; Levkau, Bodo; Rathkolb, Birgit; Wolf, Eckhard; Calzada-Wack, Julia; Neff, Frauke; Gailus-Durner, Valerie; Fuchs, Helmut; de Angelis, Martin Hrabĕ; Klutmann, Susanne; Tsourdi, Elena; Hofbauer, Lorenz C.; Kleuser, Burkhard; Chun, Jerold; Schinke, Thorsten; Amling, Michael
2014-01-01
The hormone calcitonin (CT) is primarily known for its pharmacologic action as an inhibitor of bone resorption, yet CT-deficient mice display increased bone formation. These findings raised the question about the underlying cellular and molecular mechanism of CT action. Here we show that either ubiquitous or osteoclast-specific inactivation of the murine CT receptor (CTR) causes increased bone formation. CT negatively regulates the osteoclast expression of Spns2 gene, which encodes a transporter for the signalling lipid sphingosine 1-phosphate (S1P). CTR-deficient mice show increased S1P levels, and their skeletal phenotype is normalized by deletion of the S1P receptor S1P3. Finally, pharmacologic treatment with the nonselective S1P receptor agonist FTY720 causes increased bone formation in wild-type, but not in S1P3-deficient mice. This study redefines the role of CT in skeletal biology, confirms that S1P acts as an osteoanabolic molecule in vivo and provides evidence for a pharmacologically exploitable crosstalk between osteoclasts and osteoblasts. PMID:25333900
Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function
Charles, Julia F.; Hsu, Lih-Yun; Niemi, Erene C.; Weiss, Arthur; Aliprantis, Antonios O.; Nakamura, Mary C.
2012-01-01
Increased osteoclastic bone resorption leads to periarticular erosions and systemic osteoporosis in RA patients. Although a great deal is known about how osteoclasts differentiate from precursors and resorb bone, the identity of an osteoclast precursor (OCP) population in vivo and its regulatory role in RA remains elusive. Here, we report the identification of a CD11b–/loLy6Chi BM population with OCP activity in vitro and in vivo. These cells, which can be distinguished from previously characterized precursors in the myeloid lineage, display features of both M1 and M2 monocytes and expand in inflammatory arthritis models. Surprisingly, in one mouse model of RA (adoptive transfer of SKG arthritis), cotransfer of OCP with SKG CD4+ T cells diminished inflammatory arthritis. Similar to monocytic myeloid-derived suppressor cells (M-MDSCs), OCPs suppressed CD4+ and CD8+ T cell proliferation in vitro through the production of NO. This study identifies a BM myeloid precursor population with osteoclastic and T cell–suppressive activity that is expanded in inflammatory arthritis. Therapeutic strategies that prevent the development of OCPs into mature bone-resorbing cells could simultaneously prevent bone resorption and generate an antiinflammatory milieu in the RA joint. PMID:23114597
Thiolloy, Sophie; Edwards, James R.; Fingleton, Barbara; Rifkin, Daniel B.; Matrisian, Lynn M.; Lynch, Conor C.
2012-01-01
Background Breast to bone metastases frequently induce a “vicious cycle” in which osteoclast mediated bone resorption and proteolysis results in the release of bone matrix sequestered factors that drive tumor growth. While osteoclasts express numerous proteinases, analysis of human breast to bone metastases unexpectedly revealed that bone forming osteoblasts were consistently positive for the proteinase, MMP-2. Given the role of MMP-2 in extracellular matrix degradation and growth factor/cytokine processing, we tested whether osteoblast derived MMP-2 contributed to the vicious cycle of tumor progression in the bone microenvironment. Methodology/Principal Findings To test our hypothesis, we utilized murine models of the osteolytic tumor-bone microenvironment in immunocompetent wild type and MMP-2 null mice. In longitudinal studies, we found that host MMP-2 significantly contributed to tumor progression in bone by protecting against apoptosis and promoting cancer cell survival (caspase-3; immunohistochemistry). Our data also indicate that host MMP-2 contributes to tumor induced osteolysis (μCT, histomorphometry). Further ex vivo/in vitro experiments with wild type and MMP-2 null osteoclast and osteoblast cultures identified that 1) the absence of MMP-2 did not have a deleterious effect on osteoclast function (cd11B isolation, osteoclast differentiation, transwell migration and dentin resorption assay); and 2) that osteoblast derived MMP-2 promoted tumor survival by regulating the bioavailability of TGFβ, a factor critical for cell-cell communication in the bone (ELISA, immunoblot assay, clonal and soft agar assays). Conclusion/Significance Collectively, these studies identify a novel “mini-vicious cycle” between the osteoblast and metastatic cancer cells that is key for initial tumor survival in the bone microenvironment. In conclusion, the findings of our study suggest that the targeted inhibition of MMP-2 and/or TGFβ would be beneficial for the treatment of bone metastases. PMID:22238668
Feng, Wei; Liu, Bo; Liu, Di; Hasegawa, Tomoka; Wang, Wei; Han, Xiuchun; Cui, Jian; Yimin; Oda, Kimimitsu; Amizuka, Norio; Li, Minqi
2015-01-01
In this study, we aimed to evaluate the influence of diet-induced obesity on IL-6 deficiency-induced bone remodeling abnormality. Seven-week-old IL-6-/- mice and their wild type (WT) littermates were fed a standard diet (SD) or high-fat diet (HFD) for 25 weeks. Lipid formation and bone metabolism in mice tibiae were investigated by histochemical analysis. Both IL-6-/- and WT mice fed the HFD showed notable body weight gain, thickened cortical bones, and adipose accumulation in the bone marrow. Notably, the HFD normalized the bone phenotype of IL-6-/- mice to that of their WT counterpart, as characterized by a decrease in bone mass and the presence of an obliquely arranged, plate-like morphology in the trabecular bone. Alkaline phosphatase and osteocalcin expressions were attenuated in both genotypes after HFD feeding, especially for the IL-6-/- mice. Meanwhile, tartrate-resistant acid phosphatase staining was inhibited, osteoclast apoptosis rate down-regulated (revealed by TUNEL assay), and the proportion of cathepsin K (CK)-positive osteoclasts significantly increased in IL-6-/- mice on a HFD as compared with IL-6-/- mice on standard chow. Our results demonstrate that HFD-induced obesity reverses IL-6 deficiency-associated bone metabolic disorders by suppressing osteoblast activity, upregulating osteoclastic activity, and inhibiting osteoclast apoptosis. PMID:26416243
Cong, Qian; Jia, Hao; Li, Ping; Qiu, Shoutao; Yeh, James; Wang, Yibin; Zhang, Zhen-Lin; Ao, Junping; Li, Baojie; Liu, Huijuan
2017-01-01
Bone mass is determined by the balance between bone formation, carried out by mesenchymal stem cell-derived osteoblasts, and bone resorption, carried out by monocyte-derived osteoclasts. Here we investigated the potential roles of p38 MAPKs, which are activated by growth factors and cytokines including RANKL and BMPs, in osteoclastogenesis and bone resorption by ablating p38α MAPK in LysM+monocytes. p38α deficiency promoted monocyte proliferation but regulated monocyte osteoclastic differentiation in a cell-density dependent manner, with proliferating p38α−/− cultures showing increased differentiation. While young mutant mice showed minor increase in bone mass, 6-month-old mutant mice developed osteoporosis, associated with an increase in osteoclastogenesis and bone resorption and an increase in the pool of monocytes. Moreover, monocyte-specific p38α ablation resulted in a decrease in bone formation and the number of bone marrow mesenchymal stem/stromal cells, likely due to decreased expression of PDGF-AA and BMP2. The expression of PDGF-AA and BMP2 was positively regulated by the p38 MAPK-Creb axis in osteoclasts, with the promoters of PDGF-AA and BMP2 having Creb binding sites. These findings uncovered the molecular mechanisms by which p38α MAPK regulates osteoclastogenesis and coordinates osteoclastogenesis and osteoblastogenesis. PMID:28382965
Hypergravity suppresses bone resorption in ovariectomized rats
NASA Astrophysics Data System (ADS)
Ikawa, Tesshu; Kawaguchi, Amu; Okabe, Takahiro; Ninomiya, Tadashi; Nakamichi, Yuko; Nakamura, Midori; Uehara, Shunsuke; Nakamura, Hiroaki; Udagawa, Nobuyuki; Takahashi, Naoyuki; Nakamura, Hiroaki; Wakitani, Shigeyuki
2011-04-01
The effects of gravity on bone metabolism are unclear, and little has been reported about the effects of hypergravity on the mature skeleton. Since low gravity has been shown to decrease bone volume, we hypothesized that hypergravity increases bone volume. To clarify this hypothesis, adult female rats were ovariectomized and exposed to hypergravity (2.9G) using a centrifugation system. The rats were killed 28 days after the start of loading, and the distal femoral metaphysis of the rats was studied. Bone architecture was assessed by micro-computed tomography (micro-CT) and bone mineral density was measured using peripheral quantitative CT (pQCT). Hypergravity increased the trabecular bone volume of ovariectomized rats. Histomorphometric analyses revealed that hypergravity suppressed both bone formation and resorption and increased bone volume in ovariectomized rats. Further, the cell morphology, activity, proliferation, and differentiation of osteoclasts and osteoblasts exposed to hypergravity were evaluated in vitro. Hypergravity inhibited actin ring formation in mature osteoclasts, which suggested that the osteoclast activity was suppressed. However, hypergravity had no effect on osteoblasts. These results suggest that hypergravity can stimulate an increase in bone volume by suppressing bone resorption in ovariectomized rats.
Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation.
Glass, Donald A; Bialek, Peter; Ahn, Jong Deok; Starbuck, Michael; Patel, Millan S; Clevers, Hans; Taketo, Mark M; Long, Fanxin; McMahon, Andrew P; Lang, Richard A; Karsenty, Gerard
2005-05-01
Inactivation of beta-catenin in mesenchymal progenitors prevents osteoblast differentiation; inactivation of Lrp5, a gene encoding a likely Wnt coreceptor, results in low bone mass (osteopenia) by decreasing bone formation. These observations indicate that Wnt signaling controls osteoblast differentiation and suggest that it may regulate bone formation in differentiated osteoblasts. Here, we study later events and find that stabilization of beta-catenin in differentiated osteoblasts results in high bone mass, while its deletion from differentiated osteoblasts leads to osteopenia. Surprisingly, histological analysis showed that these mutations primarily affect bone resorption rather than bone formation. Cellular and molecular studies showed that beta-catenin together with TCF proteins regulates osteoblast expression of Osteoprotegerin, a major inhibitor of osteoclast differentiation. These findings demonstrate that beta-catenin, and presumably Wnt signaling, promote the ability of differentiated osteoblasts to inhibit osteoclast differentiation; thus, they broaden our knowledge of the functions Wnt proteins have at various stages of skeletogenesis.
Takegahara, Noriko; Kim, Hyunsoo; Mizuno, Hiroki; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Tomura, Michio; Kanagawa, Osami; Ishii, Masaru; Choi, Yongwon
2016-02-12
Osteoclasts are specialized polyploid cells that resorb bone. Upon stimulation with receptor activator of nuclear factor-κB ligand (RANKL), myeloid precursors commit to becoming polyploid, largely via cell fusion. Polyploidization of osteoclasts is necessary for their bone-resorbing activity, but the mechanisms by which polyploidization is controlled remain to be determined. Here, we demonstrated that in addition to cell fusion, incomplete cytokinesis also plays a role in osteoclast polyploidization. In in vitro cultured osteoclasts derived from mice expressing the fluorescent ubiquitin-based cell cycle indicator (Fucci), RANKL induced polyploidy by incomplete cytokinesis as well as cell fusion. Polyploid cells generated by incomplete cytokinesis had the potential to subsequently undergo cell fusion. Nuclear polyploidy was also observed in osteoclasts in vivo, suggesting the involvement of incomplete cytokinesis in physiological polyploidization. Furthermore, RANKL-induced incomplete cytokinesis was reduced by inhibition of Akt, resulting in impaired multinucleated osteoclast formation. Taken together, these results reveal that RANKL-induced incomplete cytokinesis contributes to polyploidization of osteoclasts via Akt activation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Takegahara, Noriko; Kim, Hyunsoo; Mizuno, Hiroki; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Tomura, Michio; Kanagawa, Osami; Ishii, Masaru; Choi, Yongwon
2016-01-01
Osteoclasts are specialized polyploid cells that resorb bone. Upon stimulation with receptor activator of nuclear factor-κB ligand (RANKL), myeloid precursors commit to becoming polyploid, largely via cell fusion. Polyploidization of osteoclasts is necessary for their bone-resorbing activity, but the mechanisms by which polyploidization is controlled remain to be determined. Here, we demonstrated that in addition to cell fusion, incomplete cytokinesis also plays a role in osteoclast polyploidization. In in vitro cultured osteoclasts derived from mice expressing the fluorescent ubiquitin-based cell cycle indicator (Fucci), RANKL induced polyploidy by incomplete cytokinesis as well as cell fusion. Polyploid cells generated by incomplete cytokinesis had the potential to subsequently undergo cell fusion. Nuclear polyploidy was also observed in osteoclasts in vivo, suggesting the involvement of incomplete cytokinesis in physiological polyploidization. Furthermore, RANKL-induced incomplete cytokinesis was reduced by inhibition of Akt, resulting in impaired multinucleated osteoclast formation. Taken together, these results reveal that RANKL-induced incomplete cytokinesis contributes to polyploidization of osteoclasts via Akt activation. PMID:26670608
Tanaka, Hideki; Tanabe, Natsuko; Kawato, Takayuki; Nakai, Kumiko; Kariya, Taro; Matsumoto, Sakurako; Zhao, Ning; Motohashi, Masafumi; Maeno, Masao
2013-01-01
Tobacco smoking is an important risk factor for the development of several cancers, osteoporosis, and inflammatory diseases such as periodontitis. Nicotine is one of the major components of tobacco. In previous study, we showed that nicotine inhibits mineralized nodule formation by osteoblasts, and the culture medium from osteoblasts containing nicotine and lipopolysaccharide increases osteoclast differentiation. However, the direct effect of nicotine on the differentiation and function of osteoclasts is poorly understood. Thus, we examined the direct effects of nicotine on the expression of nicotine receptors and bone resorption-related enzymes, mineral resorption, actin organization, and bone resorption using RAW264.7 cells and bone marrow cells as osteoclast precursors. Cells were cultured with 10−5, 10−4, or 10−3 M nicotine and/or 50 µM α-bungarotoxin (btx), an 7 nicotine receptor antagonist, in differentiation medium containing the soluble RANKL for up 7 days. 1–5, 7, 9, and 10 nicotine receptors were expressed on RAW264.7 cells. The expression of 7 nicotine receptor was increased by the addition of nicotine. Nicotine suppressed the number of tartrate-resistant acid phosphatase positive multinuclear osteoclasts with large nuclei(≥10 nuclei), and decreased the planar area of each cell. Nicotine decreased expression of cathepsin K, MMP-9, and V-ATPase d2. Btx inhibited nicotine effects. Nicotine increased CA II expression although decreased the expression of V-ATPase d2 and the distribution of F-actin. Nicotine suppressed the planar area of resorption pit by osteoclasts, but did not affect mineral resorption. These results suggest that nicotine increased the number of osteoclasts with small nuclei, but suppressed the number of osteoclasts with large nuclei. Moreover, nicotine reduced the planar area of resorption pit by suppressing the number of osteoclasts with large nuclei, V-ATPase d2, cathepsin K and MMP-9 expression and actin organization. PMID:23555029
Lee, Eun-Jung; Kim, Jung-Lye; Kim, Yun-Ho; Kang, Min-Kyung; Gong, Ju-Hyun; Kang, Young-Hee
2014-09-15
Bone-remodeling imbalance induced by increased osteoclast formation and bone resorption is known to cause skeletal diseases such as osteoporosis. The reduction of estrogen levels at menopause is one of the strongest risk factors developing postmenopausal osteoporosis. This study investigated osteoprotective effects of the dihydrochalcone phloretin found in apple tree leaves on bone loss in ovariectomized (OVX) C57BL/6 female mice as a model for postmenopausal osteoporosis. OVX demoted bone mineral density (BMD) of mouse femurs, reduced serum 17β-estradiol level and enhanced serum receptor activator of NF-κB ligand (RANKL)/osteoprotegerin ratio with uterine atrophy. Oral administration of 10 mg/kg phloretin to OVX mice for 8 weeks improved such effects, compared to sham-operated mice. Phloretin attenuated TRAP activity and cellular expression of β3 integrin and carbonic anhydrase II augmented in femoral bone tissues of OVX mice. This study further examined that osteogenic activity of phloretin in RANKL-differentiated Raw 264.7 macrophages into mature osteoclasts. Phloretin at 1-20 μM stimulated Smac expression and capase-3 activation concurrently with nuclear fragmentation of multi-nucleated osteoclasts, indicating that this compound promoted osteoclast apoptosis. Consistently, phloretin enhanced bcl-2 induction but diminished bax expression. Furthermore, phloretin activated ASK-1-diverged JNK and p38 MAPK signaling pathways in mature osteoclasts, whereas it dose-dependently inhibited the RANKL-stimulated activation of ERK. Therefore, phloretin manipulated ASK-1-MAPK signal transduction leading to transcription of apoptotic genes. Phloretin was effective in preventing estrogen deficiency-induced osteoclastogenic resorption. Copyright © 2014 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Huixian; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294; Shi, Zhenqi
2013-11-01
Highlights: •IL-3 treatment of bone marrow cells generates a population of hematopoietic cells. •IL-3-dependent hematopoietic cells are capable of differentiating into osteoclasts. •Osteoclasts derived from IL-3-dependent hematopoietic cells are functional. •IL-3 promotes the development of osteoclast progenitors. •IL-3 inhibits the osteoclastogenic process. -- Abstract: Interleukin (IL)-3, a multilineage hematopoietic growth factor, is implicated in the regulation of osteoclastogenesis. However, the role of IL-3 in osteoclastogenesis remains controversial; whereas early studies showed that IL-3 stimulates osteoclastogenesis, recent investigations demonstrated that IL-3 inhibits osteoclast formation. The objective of this work is to further address the role of IL-3 in osteoclastogenesis. We foundmore » that IL-3 treatment of bone marrow cells generated a population of cells capable of differentiating into osteoclasts in tissue culture dishes in response to the stimulation of the monocyte/macrophage-colony stimulating factor (M-CSF) and the receptor activator of nuclear factor kappa B ligand (RANKL). The IL-3-dependent hematopoietic cells were able to further proliferate and differentiate in response to M-CSF stimulation and the resulting cells were also capable of forming osteoclasts with M-CSF and RANKL treatment. Interestingly, IL-3 inhibits M-CSF-/RANKL-induced differentiation of the IL-3-dependent hematopoietic cells into osteoclasts. The flow cytometry analysis indicates that while IL-3 treatment of bone marrow cells slightly affected the percentage of osteoclast precursors in the surviving populations, it considerably increased the percentage of osteoclast precursors in the populations after subsequent M-CSF treatment. Moreover, osteoclasts derived from IL-3-dependent hematopoietic cells were fully functional. Thus, we conclude that IL-3 plays dual roles in osteoclastogenesis by promoting the development of osteoclast progenitors but inhibiting the osteoclastogenic process. These findings provide a better understanding of the role of IL-3 in osteoclastogenesis.« less
Effect of Zoledronate on Oral Wound Healing in Rats
Yamashita, Junro; Koi, Kiyono; Yang, Dong-Ye; McCauley, Laurie K.
2010-01-01
Purpose Osteonecrosis of the jaw (ONJ) is a growing concern in patients who receive bisphosphonates which target osteoclasts. Since osteoclasts play multifunctional roles in the bone marrow, their suppression likely affects bone homeostasis and alters wound healing of the jaw. The objective was to delineate the impact of osteoclast suppression in the bone marrow and wound healing of the jaw. Experimental Design Zoledronate was administered to senile rats for 14 weeks. A portion of the gingiva was removed to denude the palatal bone. Gene expression in the bone marrow was assessed and histologic sections analyzed to determine the wound healing status. Results Angiogenesis-related genes, CD31 and VEGF-A, were not altered by zoledronate. VEGF-C, which plays a role in lymphangiogenesis, was suppressed. There was a decrease in gene expression of Tcirg1 and MMP-13. Bone denudation caused extensive osteocyte death indicative of bone necrosis. In zoledronate-treated rats, the necrotic bone was retained in the wound while, in controls, osteoclastic resorption of the necrotic bone was prominent. Even though large necrotic bone areas existed in zoledronate-treated rats, overlaying soft tissue healed clinically. Immunohistochemical staining showed rich vascularity in the overlaying soft tissue. Conclusions Zoledronate therapy impacts bone marrow by suppressing genes associated with lymphoangiogenesis and tissue remodeling, such as VEGF-C and MMP-13. Zoledronate was associated with impaired osseous wound healing but had no effect on angiogenic markers in the bone marrow or soft tissue wound healing. Zoledronate selectively blunts healing in bone but does not effect soft tissue healing in the oral cavity. PMID:21149614
Absence of bone sialoprotein (BSP) impairs cortical defect repair in mouse long bone.
Malaval, Luc; Monfoulet, Laurent; Fabre, Thierry; Pothuaud, Laurent; Bareille, Reine; Miraux, Sylvain; Thiaudiere, Eric; Raffard, Gerard; Franconi, Jean-Michel; Lafage-Proust, Marie-Hélène; Aubin, Jane E; Vico, Laurence; Amédée, Joëlle
2009-11-01
Matrix proteins of the SIBLING family interact with bone cells and with bone mineral and are thus in a key position to regulate bone development, remodeling and repair. Within this family, bone sialoprotein (BSP) is highly expressed by osteoblasts, hypertrophic chondrocytes and osteoclasts. We recently reported that mice lacking BSP (BSP-/-) have very low trabecular bone turnover. In the present study, we set up an experimental model of bone repair by drilling a 1 mm diameter hole in the cortical bone of femurs in both BSP-/- and +/+ mice. A non-invasive MRI imaging and bone quantification procedure was designed to follow bone regeneration, and these data were extended by microCT imaging and histomorphometry on undecalcified sections for analysis at cellular level. These combined approaches revealed that the repair process as reflected in defect-refilling in the cortical area was significantly delayed in BSP-/- mice compared to +/+ mice. Concomitantly, histomorphometry showed that formation, mineralization and remodeling of repair (primary) bone in the medulla were delayed in BSP-/- mice, with lower osteoid and osteoclast surfaces at day 15. In conclusion, the absence of BSP delays bone repair at least in part by impairing both new bone formation and osteoclast activity.
Ping, Zichuan; Wang, Zhirong; Shi, Jiawei; Wang, Liangliang; Guo, Xiaobin; Zhou, Wei; Hu, Xuanyang; Wu, Xiexing; Liu, Yu; Zhang, Wen; Yang, Huilin; Xu, Yaozeng; Gu, Ye; Geng, Dechun
2017-10-15
Wear debris-induced peri-implant osteolysis challenges the longevity of implants. The host response to wear debris causes chronic inflammation, promotes bone resorption, and impairs bone formation. We previously demonstrated that melatonin enhances bone formation and attenuates wear debris-induced bone loss in vivo. However, whether melatonin inhibits chronic inflammation and bone resorption at sites of wear debris-induced osteolysis remains unclear. In this study, we examined the potential inhibitory effects of melatonin on titanium particle-induced inflammatory osteolysis in a murine calvarial model and on RANKL-induced osteoclastic formation in bone marrow-derived macrophages. We found that the exogenous administration of melatonin significantly inhibited wear debris-induced bone resorption and the expression of inflammatory cytokines in vivo. Additionally, melatonin inhibited RANKL-induced osteoclast differentiation, F-actin ring formation, and osteoclastic resorption in a concentration-dependent manner in vitro. We also showed that melatonin blocked the phosphorylation of IκB-α and p65, but not IKKα, and significantly inhibited the expression of NFATc1 and c-Fos. However, melatonin had no effect on MAPK or PI3K/AKT signaling pathways. These results provide novel mechanistic insight into the anti-inflammatory and anti-bone resorptive effects of melatonin on wear debris-induced bone loss and provide an evidence-based rationale for the protective effects of melatonin as a treatment for peri-implant osteolysis. Wear debris-induced chronic inflammation, osteoclastic activation and osteoblastic inhibition have been identified as critical factors of peri-implant bone loss. We previously demonstrated that melatonin, a bioactive indolamine secreted mainly by the pineal gland, activates Wnt/β-catenin signaling pathway and enhances bone regeneration at osteolytic site in vivo. In the current study, we further demonstrated that melatonin significantly suppresses wear debris-induced bone resorption and inflammatory cytokine expression in vivo. In addition, melatonin inhibits receptor activator of nuclear factor kappa-B ligand induced osteoclast formation and osteoclastic bone resorption in vitro. Meanwhile, we found that melatonin mediates its anti-inflammation and anti-bone resorption effects by abrogating nuclear factor kappa-B activation. These results further support the protective effects of melatonin on wear debris-induced peri-implant bone loss, and strongly suggest that melatonin could be considered as a potential candidate for the prevention and treatment of wear debris-induced osteolysis and subsequent aseptic loosening. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Xiong, Jinhu; Piemontese, Marilina; Onal, Melda; Campbell, Josh; Goellner, Joseph J.; Dusevich, Vladimir; Bonewald, Lynda; Manolagas, Stavros C.; O’Brien, Charles A.
2015-01-01
The cytokine receptor activator of nuclear factor kappa B ligand (RANKL), encoded by the Tnfsf11 gene, is essential for osteoclastogenesis and previous studies have shown that deletion of the Tnfsf11 gene using a Dmp1-Cre transgene reduces osteoclast formation in cancellous bone by more than 70%. However, the Dmp1-Cre transgene used in those studies leads to recombination in osteocytes, osteoblasts, and lining cells making it unclear whether one or more of these cell types produce the RANKL required for osteoclast formation in cancellous bone. Because osteoblasts, osteocytes, and lining cells have distinct locations and functions, distinguishing which of these cell types are sources of RANKL is essential for understanding the orchestration of bone remodeling. To distinguish between these possibilities, we have now created transgenic mice expressing the Cre recombinase under the control of regulatory elements of the Sost gene, which is expressed in osteocytes but not osteoblasts or lining cells in murine bone. Activity of the Sost-Cre transgene in osteocytes, but not osteoblast or lining cells, was confirmed by crossing Sost-Cre transgenic mice with tdTomato and R26R Cre-reporter mice, which express tdTomato fluorescent protein or LacZ, respectively, only in cells expressing the Cre recombinase or their descendants. Deletion of the Tnfsf11 gene in Sost-Cre mice led to a threefold decrease in osteoclast number in cancellous bone and increased cancellous bone mass, mimicking the skeletal phenotype of mice in which the Tnfsf11 gene was deleted using the Dmp1-Cre transgene. These results demonstrate that osteocytes, not osteoblasts or lining cells, are the main source of the RANKL required for osteoclast formation in remodeling cancellous bone. PMID:26393791
Role of RANKL in bone diseases.
Anandarajah, Allen P
2009-03-01
Bone remodeling is a tightly regulated process of osteoclast-mediated bone resorption, balanced by osteoblast-mediated bone formation. Disruption of this balance can lead to increased bone turnover, resulting in excessive bone loss or extra bone formation and consequent skeletal disease. The receptor activator of nuclear factor kappaB ligand (RANKL) (along with its receptor), the receptor activator of nuclear factor kappaB and its natural decoy receptor, osteoprotegerin, are the final effector proteins of osteoclastic bone resorption. Here, I provide an overview of recent studies that highlight the key role of RANKL in the pathophysiology of several bone diseases and discuss the novel therapeutic approaches afforded by the modulation of RANKL.
Walker, Emma C.; McGregor, Narelle E.; Poulton, Ingrid J.; Solano, Melissa; Pompolo, Sueli; Fernandes, Tania J.; Constable, Matthew J.; Nicholson, Geoff C.; Zhang, Jian-Guo; Nicola, Nicos A.; Gillespie, Matthew T.; Martin, T. John; Sims, Natalie A.
2010-01-01
Effective osteoporosis therapy requires agents that increase the amount and/or quality of bone. Any modification of osteoclast-mediated bone resorption by disease or drug treatment, however, elicits a parallel change in osteoblast-mediated bone formation because the processes are tightly coupled. Anabolic approaches now focus on uncoupling osteoblast action from osteoclast formation, for example, by inhibiting sclerostin, an inhibitor of bone formation that does not influence osteoclast differentiation. Here, we report that oncostatin M (OSM) is produced by osteoblasts and osteocytes in mouse bone and that it has distinct effects when acting through 2 different receptors, OSM receptor (OSMR) and leukemia inhibitory factor receptor (LIFR). Specifically, mouse OSM (mOSM) inhibited sclerostin production in a stromal cell line and in primary murine osteoblast cultures by acting through LIFR. In contrast, when acting through OSMR, mOSM stimulated RANKL production and osteoclast formation. A key role for OSMR in bone turnover was confirmed by the osteopetrotic phenotype of mice lacking OSMR. Furthermore, in contrast to the accepted model, in which mOSM acts only through OSMR, mOSM inhibited sclerostin expression in Osmr–/– osteoblasts and enhanced bone formation in vivo. These data reveal what we believe to be a novel pathway by which bone formation can be stimulated independently of bone resorption and provide new insights into OSMR and LIFR signaling that are relevant to other medical conditions, including cardiovascular and neurodegenerative diseases and cancer. PMID:20051625
van't Hof, R. J.; Armour, K. J.; Smith, L. M.; Armour, K. E.; Wei, X. Q.; Liew, F. Y.; Ralston, S. H.
2000-01-01
Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study, we investigated the role that the iNOS pathway plays in mediating the bone-resorbing effects of IL-1 by studying mice with targeted disruption of the iNOS gene. Studies in vitro and in vivo showed that iNOS-deficient mice exhibited profound defects of IL-1-induced osteoclastic bone resorption but responded normally to calciotropic hormones such as 1,25 dihydroxyvitamin D3 and parathyroid hormone. Immunohistochemical studies and electrophoretic mobility shift assays performed on bone marrow cocultures from iNOS-deficient mice showed abnormalities in IL-1-induced nuclear translocation of the p65 component of NFκB and in NFκB-DNA binding, which were reversed by treatment with the NO donor S-nitroso-acetyl penicillamine. These results show that the iNOS pathway is essential for IL-1-induced bone resorption and suggest that the effects of NO may be mediated by modulating IL-1-induced nuclear activation of NFκB in osteoclast precursors. PMID:10869429
Fluorosis increases the risk of postmenopausal osteoporosis by stimulating interferon γ.
Lv, Yun-Gang; Kang, Li; Wu, Guangyao
2016-10-14
Estrogen deficiency in postmenopausal women frequently activates osteoclasts (OC), accelerates bone resorption, and leads to osteoporosis (OP). Previous studies have demonstrated that interferon γ (IFNγ) could increase bone resorption and may be involved in postmenopausal OP. Fluorosis also increased the risk of fractures and dental fluorosis, and fluoride may enhance osteoclast formation and induce osteoclastic bone destruction in postmenopausal women, but the underlying mechanisms are as yet unknown. Here, we show that serum fluoride and IFNγ levels are negatively correlated with bone mineral density (BMD) in postmenopausal women residing in a fluorotic area. Estrogen suppresses IFNγ, which is elevated by fluoride, playing a pivotal role in triggering bone loss in estrogen-deficient conditions. In vitro, IFNγ is inhibited by estrogen treatment and increased by fluoride in Raw264.7 cell, an osteoclast progenitor cell line. In ovariectomized (Ovx) mice, estrogen loss and IFNγ promote OC activation and subsequent bone loss in vivo. However, IFNγ deficiency prevents bone loss in Ovx mice even in fluoride conditions. Interestingly, fluoride fails to increase IFNγ expression in estrogen receptor α (ERα)-deficient conditions, but not in ERβ-deficient conditions. These findings demonstrate that fluorosis increases the bone loss in postmenopausal OP through an IFNγ-dependent mechanism. IFNγ signaling activates OC and aggravates estrogen deficiency inducing OP. Thus, stimulation of IFNγ production is a pivotal ''upstream'' mechanism by which fluoride promotes bone loss. Suppression of IFNγ levels may constitute a therapeutic approach for preventing bone loss. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhang, Kun; Niu, Liang-Chen; Yuan, Fu-Jie; Liu, Shen-Peng
2017-08-25
Traditional Chinese medicine is widely used in the treatment of fractures, osteoporosis, other bone related diseases for thousands of years. There are many animal experiments and clinical trials demonstrating that the traditional Chinese medicine such as epimedium, Drynaria and other traditional Chinese medicine can stimulate bone regeneration and inhibit bone resorption, accelerating the fracture healing. In recent years many cell experiments have shown that these herbal ingredients up-regulated the expression of intracellular osteogenic transcription factors and osteogenic related genes, and then induced osteoblastic differentiation and stimulated the proliferation of osteoblasts, bone nodule formation and matrix mineralization. Meanwhile these herbal ingredients up-regulated the expression of intracellular osteoclastic transcription factors and osteoclast related genes, inhibited osteoclast differentiation and bone resorption of osteoclasts. In addition, intracellular signaling pathways regulated these herbal ingredients by might be involved in the above effects. We can have a conclusion that the genes expression regulated by transcription factors in pre-osteoblast and pre-osteoclast and these signaling pathways are the major molecular mechanisms and research hotspots of traditional Chinese medicine in promoting fracture healing. Based on these molecular mechanisms to review, this review provides not only the foundation for the study of traditional Chinese medicine in promoting fracture healing, but also the basis for clinical treatment of fracture. Copyright© 2017 by the China Journal of Orthopaedics and Traumatology Press.
Lehmann, Giorgia; Cacciotti, Ilaria; Palmero, Paola; Montanaro, Laura; Bianco, Alessandra; Campagnolo, Luisa; Camaioni, Antonella
2012-10-01
Calcium phosphate-based materials should show excellent bone-bonding and cell-mediated resorption characteristics at the same time, in order to be employed for bone replacement. In this perspective, pure (HAp) and silicon-substituted hydroxyapatite (Si-HAp, 1.4% wt) porous cylinders were prepared starting from synthesized powders and polyethylene spheres used as porogens, and investigated as supports for osteoblast and osteoclast progenitor differentiation. A systematic and detailed biological characterization is reported, in terms of cell adhesion, viability, proliferation, differentiation and bioresorption, aimed at proposing a complete and reliable picture of bone cell in vitro behavior, comprehensive of both the osteogenesis and the bone resorption processes. In order to achieve this purpose, cytocompatibility, differentiation and gene expression by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) were carried out using parietal bone-derived pre-osteoblasts obtained from neonatal mice and the bioresorption capability was assessed by seeding human peripheral blood monocytes, as osteoclast precursors. It resulted that both pure and Si-substituted HAps were able to promote differentiation of precursor cells in mature osteoblasts and osteoclasts. In particular, the Si-HAps enhanced the pre-osteoblast proliferation and showed higher osteoclast-mediated bioresorption capability, as supported by the presence of larger and more numerous resorption lacunae, whereas HAps promoted a more robust cell differentiation in terms of both osteocalcin gene expression by qRT-PCR and cell morphological evaluation by SEM analysis.
Role of TGF-β in a mouse model of high turnover renal osteodystrophy.
Liu, Shiguang; Song, Wenping; Boulanger, Joseph H; Tang, Wen; Sabbagh, Yves; Kelley, Brian; Gotschall, Russell; Ryan, Susan; Phillips, Lucy; Malley, Katie; Cao, Xiaohong; Xia, Tai-He; Zhen, Gehua; Cao, Xu; Ling, Hong; Dechow, Paul C; Bellido, Teresita M; Ledbetter, Steven R; Schiavi, Susan C
2014-01-01
Altered bone turnover is a key pathologic feature of chronic kidney disease-mineral and bone disorder (CKD-MBD). Expression of TGF-β1, a known regulator of bone turnover, is increased in bone biopsies from individuals with CKD. Similarly, TGF-β1 mRNA and downstream signaling is increased in bones from jck mice, a model of high-turnover renal osteodystrophy. A neutralizing anti-TGF-β antibody (1D11) was used to explore TGF-β's role in renal osteodystrophy. 1D11 administration to jck significantly attenuated elevated serum osteocalcin and type I collagen C-telopeptides. Histomorphometric analysis indicated that 1D11 administration increased bone volume and suppressed the elevated bone turnover in a dose-dependent manner. These effects were associated with reductions in osteoblast and osteoclast surface areas. Micro-computed tomography (µCT) confirmed the observed increase in trabecular bone volume and demonstrated improvements in trabecular architecture and increased cortical thickness. 1D11 administration was associated with significant reductions in expression of osteoblast marker genes (Runx2, alkaline phosphatase, osteocalcin) and the osteoclast marker gene, Trap5. Importantly, in this model, 1D11 did not improve kidney function or reduce serum parathyroid hormone (PTH) levels, indicating that 1D11 effects on bone are independent of changes in renal or parathyroid function. 1D11 also significantly attenuated high-turnover bone disease in the adenine-induced uremic rat model. Antibody administration was associated with a reduction in pSMAD2/SMAD2 in bone but not bone marrow as assessed by quantitative immunoblot analysis. Immunostaining revealed pSMAD staining in osteoblasts and osteocytes but not osteoclasts, suggesting 1D11 effects on osteoclasts may be indirect. Immunoblot and whole genome mRNA expression analysis confirmed our previous observation that repression of Wnt/β-catenin expression in bone is correlated with increased osteoclast activity in jck mice and bone biopsies from CKD patients. Furthermore, our data suggest that elevated TGF-β may contribute to the pathogenesis of high-turnover disease partially through inhibition of β-catenin signaling. © 2014 American Society for Bone and Mineral Research.
Sims, Natalie A
2016-10-01
Bone renews itself and changes shape throughout life to account for the changing needs of the body; this requires co-ordinated activities of bone resorbing cells (osteoclasts), bone forming cells (osteoblasts) and bone's internal cellular network (osteocytes). This review focuses on paracrine signaling by the IL-6 family of cytokines between bone cells, bone marrow, and skeletal muscle in normal physiology and in pathological states where their levels may be locally or systemically elevated. These functions include the support of osteoclast formation by osteoblast lineage cells in response to interleukin 6 (IL-6), interleukin 11 (IL-11), oncostatin M (OSM) and cardiotrophin 1 (CT-1). In addition it will discuss how bone-resorbing osteoclasts promote osteoblast activity by secreting CT-1, which acts as a "coupling factor" on osteocytes, osteoblasts, and their precursors to promote bone formation. OSM, produced by osteoblast lineage cells and macrophages, stimulates bone formation via osteocytes. IL-6 family cytokines also mediate actions of other bone formation stimuli like parathyroid hormone (PTH) and mechanical loading. CT-1, OSM and LIF suppress marrow adipogenesis by shifting commitment of pluripotent precursors towards osteoblast differentiation. Ciliary neurotrophic factor (CNTF) is released as a myokine from skeletal muscle and suppresses osteoblast differentiation and bone formation on the periosteum (outer bone surface in apposition to muscle). Finally, IL-6 acts directly on marrow-derived osteoclasts to stimulate release of "osteotransmitters" that act through the cortical osteocyte network to stimulate bone formation on the periosteum. Each will be discussed as illustrations of how the extended family of IL-6 cytokines acts within the skeleton in physiology and may be altered in pathological conditions or by targeted therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Role of TGF-β in a Mouse Model of High Turnover Renal Osteodystrophy†
Liu, Shiguang; Song, Wenping; Boulanger, Joseph H; Tang, Wen; Sabbagh, Yves; Kelley, Brian; Gotschall, Russell; Ryan, Susan; Phillips, Lucy; Malley, Katie; Cao, Xiaohong; Xia, Tai-He; Zhen, Gehua; Cao, Xu; Ling, Hong; Dechow, Paul C; Bellido, Teresita M; Ledbetter, Steven R; Schiavi, Susan C
2014-01-01
Altered bone turnover is a key pathologic feature of chronic kidney disease-mineral and bone disorder (CKD-MBD). Expression of TGF-β1, a known regulator of bone turnover, is increased in bone biopsies from individuals with CKD. Similarly, TGF-β1 mRNA and downstream signaling is increased in bones from jck mice, a model of high-turnover renal osteodystropy. A neutralizing anti-TGF-β antibody (1D11) was used to explore TGF-βs role in renal osteodystrophy. 1D11 administration to jck significantly attenuated elevated serum osteocalcin and type I collagen C-telopeptides. Histomorphometric analysis indicated that 1D11 administration increased bone volume and suppressed the elevated bone turnover in a dose-dependent manner. These effects were associated with reductions in osteoblast and osteoclast surface areas. μCT confirmed the observed increase in trabecular bone volume and demonstrated improvements in trabecular architecture and increased cortical thickness. 1D11 administration was associated with significant reductions in expression of osteoblast marker genes (Runx2, alkaline phosphatase, osteocalcin) and the osteoclast marker gene, Trap5. Importantly, in this model, 1D11 did not improve kidney function or reduce serum PTH levels indicating that 1D11 effects on bone are independent of changes in renal or parathyroid function. 1D11 also significantly attenuated high turnover bone disease in the adenine-induced uremic rat model. Antibody administration was associated with a reduction in pSMAD2/SMAD2 in bone but not bone marrow as assessed by quantitative immunoblot analysis. Immunostaining revealed pSMAD staining in osteoblasts and osteocytes but not osteoclasts, suggesting 1D11 effects on osteoclasts may be indirect. Immunoblot and whole genome mRNA expression analysis confirmed our previous observation that repression of Wnt/β catenin expression in bone is correlated with increased osteoclast activity in jck mice and bone biopsies from CKD patients. Furthermore, our data suggests that elevated TGF-β may contribute to the pathogenesis of high turnover disease partially through inhibition of β-catenin signaling. PMID:24166835
Diabetes mellitus related bone metabolism and periodontal disease
Wu, Ying-Ying; Xiao, E; Graves, Dana T
2015-01-01
Diabetes mellitus and periodontal disease are chronic diseases affecting a large number of populations worldwide. Changed bone metabolism is one of the important long-term complications associated with diabetes mellitus. Alveolar bone loss is one of the main outcomes of periodontitis, and diabetes is among the primary risk factors for periodontal disease. In this review, we summarise the adverse effects of diabetes on the periodontium in periodontitis subjects, focusing on alveolar bone loss. Bone remodelling begins with osteoclasts resorbing bone, followed by new bone formation by osteoblasts in the resorption lacunae. Therefore, we discuss the potential mechanism of diabetes-enhanced bone loss in relation to osteoblasts and osteoclasts. PMID:25857702
Sakai, Eiko; Aoki, Yuri; Yoshimatsu, Masako; Nishishita, Kazuhisa; Iwatake, Mayumi; Fukuma, Yutaka; Okamoto, Kuniaki; Tanaka, Takashi; Tsukuba, Takayuki
2016-07-15
Osteoclasts are multinucleated bone-resorbing cells that differentiate in response to receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL). Enhanced osteoclastogenesis contributes to bone diseases, such as osteoporosis and rheumatoid arthritis. Rubus parvifolius L. is traditionally used as an herbal medicine for rheumatism; however, its detailed chemical composition and the molecular mechanisms responsible for its biological action have not been elucidated. To investigate the mechanisms by which R. parvifolius L. extract and its major constituent sanguiin H-6, inhibit osteoclastogenesis and bone resorption. Cell proliferation, cell differentiation, and bone resorption were detected in vitro. Inhibition of signaling pathways, marker protein expression, and protein nuclear translocation were evaluated by western blot analysis. Tumor necrosis factor-α (TNF-α)-mediated osteoclastogenesis was examined in vivo. R. parvifolius L. extract inhibited the bone-resorption activity of osteoclasts. In addition, sanguiin H-6 markedly inhibited RANKL-induced osteoclast differentiation and bone resorption, reduced reactive oxygen species production, and inhibited the phosphorylation of inhibitor of NF-κB alpha (IκBα) and p38 mitogen-activated protein kinase. Sanguiin H-6 also decreased the protein levels of nuclear factor of activated T cells cytoplasmic-1 (NFATc1), cathepsin K, and c-Src. Moreover, sanguiin H-6 inhibited the nuclear translocation of NFATc1, c-Fos, and NF-κB in vitro, as well as TNF-α-mediated osteoclastogenesis in vivo. Our data revealed that R. parvifolius L. has anti-bone resorption activity and suggest that its constituent, sanguiin H-6, can potentially be used for the prevention and treatment of bone diseases associated with excessive osteoclast formation and subsequent bone destruction. Copyright © 2016 Elsevier GmbH. All rights reserved.
Commensal Microbiota Enhance Both Osteoclast and Osteoblast Activities.
Uchida, Yoko; Irie, Koichiro; Fukuhara, Daiki; Kataoka, Kota; Hattori, Takako; Ono, Mitsuaki; Ekuni, Daisuke; Kubota, Satoshi; Morita, Manabu
2018-06-23
Recent studies suggest that the commensal microbiota affects not only host energy metabolism and development of immunity but also bone remodeling by positive regulation of osteoclast activity. However, the mechanism of regulation of bone cells by the commensal microbiota has not been elucidated. In this study, 8-week-old specific pathogen-free (SPF) and germ-free (GF) mice were compared in terms of alveolar bones and primary osteoblasts isolated from calvarias. Micro-CT analysis showed that SPF mice had larger body size associated with lower bone mineral density and bone volume fraction in alveolar bones compared with GF mice. Greater numbers of osteoclasts in alveolar bone and higher serum levels of tartrate-resistant acid phosphatase 5b were observed in SPF mice. Tissue extracts from SPF alveolar bone showed higher levels of cathepsin K, indicating higher osteoclast activity. SPF alveolar extracts also showed elevated levels of γ-carboxylated glutamic acid⁻osteocalcin as a marker of mature osteoblasts compared with GF mice. Polymerase chain reaction (PCR) array analysis of RNA directly isolated from alveolar bone showed that in SPF mice, expression of mRNA of osteocalcin , which also acts as an inhibitor of bone mineralization, was strongly enhanced compared with GF mice. Cultured calvarial osteoblasts from SPF mice showed reduced mineralization but significantly enhanced expression of mRNAs of osteocalcin, alkaline phosphatase, insulin-like growth factor-I/II , and decreased ratio of osteoprotegerin/receptor activator of nuclear factor-kappa B ligand compared with GF mice. Furthermore, PCR array analyses of transcription factors in cultured calvarial osteoblasts showed strongly upregulated expression of Forkhead box g1 . In contrast, Gata-binding protein 3 was strongly downregulated in SPF osteoblasts. These results suggest that the commensal microbiota prevents excessive mineralization possibly by stimulating osteocalcin expression in osteoblasts, and enhances both osteoblast and osteoclast activity by regulating specific transcription factors.
Osteopetroses, emphasizing potential approaches to treatment.
Teti, Anna; Econs, Michael J
2017-09-01
Osteopetroses are a heterogeneous group of rare genetic bone diseases sharing the common hallmarks of reduced osteoclast activity, increased bone mass and high bone fragility. Osteoclasts are bone resorbing cells that contribute to bone growth and renewal through the erosion of the mineralized matrix. Alongside the bone forming activity by osteoblasts, osteoclasts allow the skeleton to grow harmonically and maintain a healthy balance between bone resorption and formation. Osteoclast impairment in osteopetroses prevents bone renewal and deteriorates bone quality, causing atraumatic fractures. Osteopetroses vary in severity and are caused by mutations in a variety of genes involved in bone resorption or in osteoclastogenesis. Frequent signs and symptoms include osteosclerosis, deformity, dwarfism and narrowing of the bony canals, including the nerve foramina, leading to hematological and neural failures. The disease is autosomal, with only one extremely rare form associated so far to the X-chromosome, and can have either recessive or dominant inheritance. Recessive ostepetroses are generally lethal in infancy or childhood, with a few milder forms clinically denominated intermediate osteopetroses. Dominant osteopetrosis is so far associated only with mutations in the CLCN7 gene and, although described as a benign form, it can be severely debilitating, although not at the same level as recessive forms, and can rarely result in reduced life expectancy. Severe osteopetroses due to osteoclast autonomous defects can be treated by Hematopoietic Stem Cell Transplant (HSCT), but those due to deficiency of the pro-osteoclastogenic cytokine, RANKL, are not suitable for this procedure. Likewise, it is unclear as to whether HSCT, which has high intrinsic risks, results in clinical improvement in autosomal dominant osteopetrosis. Therefore, there is an unmet medical need to identify new therapies and studies are currently in progress to test gene and cell therapies, small interfering RNA approach and novel pharmacologic treatments. Copyright © 2017 Elsevier Inc. All rights reserved.
Su, Nan; Sun, Qidi; Li, Can; Lu, Xiumin; Qi, Huabing; Chen, Siyu; Yang, Jing; Du, Xiaolan; Zhao, Ling; He, Qifen; Jin, Min; Shen, Yue; Chen, Di; Chen, Lin
2010-01-01
Achondroplasia (ACH) is a short-limbed dwarfism resulting from gain-of-function mutations in fibroblast growth factor receptor 3 (FGFR3). Previous studies have shown that ACH patients have impaired chondrogenesis, but the effects of FGFR3 on bone formation and bone remodeling at adult stages of ACH have not been fully investigated. Using micro-computed tomography and histomorphometric analyses, we found that 2-month-old Fgfr3G369C/+ mice (mouse model mimicking human ACH) showed decreased bone mass due to reduced trabecular bone volume and bone mineral density, defect in bone mineralization and increased osteoclast numbers and activity. Compared with primary cultures of bone marrow stromal cells (BMSCs) from wild-type mice, Fgfr3G369C/+ cultures showed decreased cell proliferation, increased osteogenic differentiation including up-regulation of alkaline phosphatase activity and expressions of osteoblast marker genes, and reduced bone matrix mineralization. Furthermore, our studies also suggest that decreased cell proliferation and enhanced osteogenic differentiation observed in Fgfr3G369C/+ BMSCs are caused by up-regulation of p38 phosphorylation and that enhanced Erk1/2 activity is responsible for the impaired bone matrix mineralization. In addition, in vitro osteoclast formation and bone resorption assays demonstrated that osteoclast numbers and bone resorption area were increased in cultured bone marrow cells derived from Fgfr3G369C/+ mice. These findings demonstrate that gain-of-function mutation in FGFR3 leads to decreased bone mass by regulating both osteoblast and osteoclast activities. Our studies provide new insight into the mechanism underlying the development of ACH. PMID:20053668
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawata, Shigehisa; Suzuki, Jun; Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871
2006-11-10
Osteoclast precursor cells (OPCs) have previously been established from bone marrow cells of SV40 temperature-sensitive T antigen-expressing transgenic mice. Here, we use retrovirus-mediated gene transfer to conditionally immortalize OPCs by expressing temperature-sensitive large T antigen (tsLT) from wild type bone marrow cells. The immortalized OPCs proliferated at the permissive temperature of 33.5 deg. C, but stopped growing at the non-permissive temperature of 39 deg. C. In the presence of receptor activator of NF{kappa}B ligand (RANKL), the OPCs differentiated into tartrate-resistant acid phosphatase (TRAP)-positive cells and formed multinucleate osteoclasts at 33.5 deg. C. From these OPCs, we cloned two types ofmore » cell lines. Both differentiated into TRAP-positive cells, but one formed multinucleate osteoclasts while the other remained unfused in the presence of RANKL. These results indicate that the established cell lines are useful for analyzing mechanisms of differentiation, particularly multinucleate osteoclast formation. Retrovirus-mediated conditional immortalization should be a useful method to immortalize OPCs from primary bone marrow cells.« less
Alpinia officinarum Stimulates Osteoblast Mineralization and Inhibits Osteoclast Differentiation.
Shim, Ki-Shuk; Lee, Chung-Jo; Yim, Nam-Hui; Gu, Min Jung; Ma, Jin Yeul
2016-01-01
Alpinia officinarum rhizome has been used as a traditional herbal remedy to treat inflammatory and internal diseases. Based on the previously observed inhibitory effect of A. officinarum rhizome in an arthritis model, we evaluated whether a water extract of A. officinarum rhizome (WEAO) would enhance in vitro osteoblast mineralization using calvarial osteoblast precursor cells or would inhibit in vitro osteoclast differentiation and bone resorption using bone marrow derived macrophages. In osteoblasts, WEAO enhanced the mRNA levels of transcription factor (runt-related transcription factor 2, smad1, smad5, and junB) and marker (bone morphogenetic protein-2, collagen type 1alpha1, and osteocalcin) genes related to osteoblast mineralization, consistent with increased alizarin red S staining intensity. WEAO markedly inhibited osteoclast differentiation by suppressing the receptor activator for nuclear factor-[Formula: see text]B ligand-induced downregulation of inhibitor of DNA binding 2 and V-maf musculoaponeurotic fibrosarcoma oncogene homolog B and the phosphorylation of c-Jun N-terminal kinase, p38, nuclear factor-[Formula: see text]B, c-Src, and Bruton's tyrosine kinase to induce nuclear factor of activated T cells cytoplasmic 1 expression. WEAO also suppressed the resorbing activity of mature osteoclasts by altering actin ring formation. Therefore, the results of this study demonstrate that WEAO stimulates osteoblast mineralization and inhibits osteoclast differentiation. Thus, WEAO may be a promising herbal candidate to treat or prevent pathological bone diseases by regulating the balance between osteoclast and osteoblast activity.
Ucer, Serra; Iyer, Srividhya; Bartell, Shoshana M; Martin-Millan, Marta; Han, Li; Kim, Ha-Neui; Weinstein, Robert S; Jilka, Robert L; O’Brien, Charles A; Almeida, Maria; Manolagas, Stavros C
2016-01-01
In men, androgens are critical for the acquisition and maintenance of bone mass in both the cortical and cancellous bone compartment. Male mice with targeted deletion of the androgen receptor (AR) in mature osteoblasts or osteocytes have lower cancellous bone mass, but no cortical bone phenotype. We have investigated the possibility that the effects of androgens on the cortical compartment result from AR signaling in osteoprogenitors or cells of the osteoclast lineage; or via estrogen receptor alpha (ERα) signaling in either or both of these two cell types upon conversion of testosterone to estradiol. To this end, we generated mice with targeted deletion of an AR or an ERα allele in the mesenchymal (ARf/y;Prx1-Cre or ERαf/f;Osx1-Cre) or myeloid cell lineage (ARf/y; LysM-Cre or ERαf/f;LysM-Cre) and their descendants. Male ARf/y;Prx1-Cre mice exhibited decreased bone volume and trabecular number, and increased osteoclast number in the cancellous compartment. Moreover, they did not undergo the loss of cancellous bone volume and trabecular number caused by orchidectomy (ORX) in their littermate controls. In contrast, ARf/y;LysM-Cre, ERαf/f; Osx1-Cre, or ERαf/f;LysM-Cre mice had no cancellous bone phenotype at baseline and lost the same amount of cancellous bone as their controls following ORX. Most unexpectedly, adult males of all four models had no discernible cortical bone phenotype at baseline, and lost the same amount of cortical bone as their littermate controls after ORX. Recapitulation of the effects of ORX by AR deletion only in the ARf/y;Prx1-Cre mice indicates that the effects of androgens on cancellous bone result from AR signaling in osteoblasts—not on osteoclasts or via aromatization. The effects of androgens on cortical bone mass, on the other hand, do not require AR or ERα signaling in any cell type across the osteoblast or osteoclast differentiation lineage. Therefore, androgens must exert their effects indirectly by actions on some other cell type(s) or tissue(s). PMID:25704845
Bernhardt, Anne; Schamel, Martha; Gbureck, Uwe; Gelinsky, Michael
2017-01-01
Biologically active metal ions in low doses have the potential to accelerate bone defect healing. For successful remodelling the interaction of bone graft materials with both bone-forming osteoblasts and bone resorbing osteoclasts is crucial. In the present study brushite forming calcium phosphate cements (CPC) were doped with Co2+, Cu2+ and Cr3+ and the influence of these materials on osteoclast differentiation and activity was examined. Human osteoclasts were differentiated from human peripheral blood mononuclear cells (PBMC) both on the surface and in indirect contact to the materials on dentin discs. Release of calcium, phosphate and bioactive metal ions was determined using ICP-MS both in the presence and absence of the cells. While Co2+ and Cu2+ showed a burst release, Cr3+ was released steadily at very low concentrations (below 1 μM) and both calcium and phosphate release of the cements was considerably changed in the Cr3+ modified samples. Direct cultivation of PBMC/osteoclasts on Co2+ cements showed lower attached cell number compared to the reference but high activity of osteoclast specific enzymes tartrate resistant acid phosphatase (TRAP), carbonic anhydrase II (CAII) and cathepsin K (CTSK) and significantly increased gene expression of vitronectin receptor. Indirect cultivation with diluted Co2+ cement extracts revealed highest resorbed area compared to all other modifications and the reference. Cu2+ cements had cytotoxic effect on PBMC/osteoclasts during direct cultivation, while indirect cultivation with diluted extracts from Cu2+ cements did not provoke cytotoxic effects but a strictly inhibited resorption. Cr3+ doped cements did not show cytotoxic effects at all. Gene expression and enzyme activity of CTSK was significantly increased in direct culture. Indirect cultivation with Cr3+ doped cements revealed significantly higher resorbed area compared to the reference. In conclusion Cr3+ doped calcium phosphate cements are an innovative cement modification because of their high cytocompatibility and support of active resorption by osteoclasts. PMID:28763481
Valverde, Paloma; Zhang, Jin; Fix, Amanda; Zhu, Ji; Ma, Wenli; Tu, Qisheng; Chen, Jake
2008-11-01
The purpose of this study was to determine the effects of bone sialoprotein (BSP) overexpression in bone metabolism in vivo by using a homozygous transgenic mouse line that constitutively overexpresses mouse BSP cDNA driven by the cytomegalovirus (CMV) promoter. CMV-BSP transgenic (TG) mice and wildtype mice were weighed, and their length, BMD, and trabecular bone volume were measured. Serum levels of RANKL, osteocalcin, osteoprotegerin (OPG), TRACP5b, and PTH were determined. Bone histomorphometry, von Kossa staining, RT-PCR analysis, Western blot, MTS assay, in vitro mineralization assay, and TRACP staining were also performed to delineate phenotypes of this transgenic mouse line. Compared with wildtype mice, adult TG mice exhibit mild dwarfism, lower values of BMD, and lower trabecular bone volume. TG mice serum contained increased calcium levels and decreased PTH levels, whereas the levels of phosphorus and magnesium were within normal limits. TG mice serum also exhibited lower levels of osteoblast differentiation markers and higher levels of markers, indicating osteoclastic activity and bone resorption. H&E staining, TRACP staining, and bone histomorphometry showed that adult TG bones were thinner and the number of giant osteoclasts in TG mice was higher, whereas there were no significant alterations in osteoblast numbers between TG mice and WT mice. Furthermore, the vertical length of the hypertrophic zone in TG mice was slightly enlarged. Moreover, ex vivo experiments indicated that overexpression of BSP decreased osteoblast population and increased osteoclastic activity. Partly because of its effects in enhancing osteoclastic activity and decreasing osteoblast population, BSP overexpression leads to an uncoupling of bone formation and resorption, which in turn results in osteopenia and mild dwarfism in mice. These findings are expected to help the development of therapies to metabolic bone diseases characterized by high serum level of BSP.
Expression profiling of microRNAs in human bone tissue from postmenopausal women.
De-Ugarte, Laura; Serra-Vinardell, Jenny; Nonell, Lara; Balcells, Susana; Arnal, Magdalena; Nogues, Xavier; Mellibovsky, Leonardo; Grinberg, Daniel; Diez-Perez, Adolfo; Garcia-Giralt, Natalia
2018-01-01
Bone tissue is composed of several cell types, which express their own microRNAs (miRNAs) that will play a role in cell function. The set of total miRNAs expressed in all cell types configures the specific signature of the bone tissue in one physiological condition. The aim of this study was to explore the miRNA expression profile of bone tissue from postmenopausal women. Tissue was obtained from trabecular bone and was analyzed in fresh conditions (n = 6). Primary osteoblasts were also obtained from trabecular bone (n = 4) and human osteoclasts were obtained from monocyte precursors after in vitro differentiation (n = 5). MicroRNA expression profiling was obtained for each sample by microarray and a global miRNA analysis was performed combining the data acquired in all the microarray experiments. From the 641 miRNAs detected in bone tissue samples, 346 (54%) were present in osteoblasts and/or osteoclasts. The other 46% were not identified in any of the bone cells analyzed. Intersection of osteoblast and osteoclast arrays identified 101 miRNAs shared by both cell types, which accounts for 30-40% of miRNAs detected in these cells. In osteoblasts, 266 miRNAs were detected, of which 243 (91%) were also present in the total bone array, representing 38% of all bone miRNAs. In osteoclasts, 340 miRNAs were detected, of which 196 (58%) were also present in the bone tissue array, representing 31% of all miRNAs detected in total bone. These analyses provide an overview of miRNAs expressed in bone tissue, broadening our knowledge in the microRNA field.
Gao, Aichao; Wang, Xichao; Yu, Haiyan; Li, Na; Hou, Yubo; Yu, Weixian
2016-02-01
Porphyromonas gingivalis (Pg) as the major pathogenic bacterium of chronic periodontitis can cause alveolar bone resorption. Lipopolysaccharide (LPS) is its main virulence factor. The Eph family plays an important role in maintaining bone homeostasis. In this study, the effects of P. gingivalis lipopolysaccharide (Pg-LPS) on the expression of EphA2 in osteoblasts and osteoclasts were investigated. MC3T3-E1 cells and RAW264.7 cells were separately cultured in osteoblast-conditioned medium and osteoclast-conditioned medium to induce their differentiation into osteoblasts and osteoclasts, respectively. MC3T3-E1 cells were treated with 1 μg/mL of Pg-LPS 3, 7, and 14 d later, while RAW264.7 cells were treated with 10 μg/mL of Pg-LPS 1, 3, and 5 d later. The results have shown that Pg-LPS increased the expression of EphA2 both in osteoblasts and osteoclasts, decreased the expression of osteogenic-related genes (ALP, Sp7), and increased the expression of osteoclast-related genes (MMP9, c-fos, ACP5, CtsK, and NFATc1). Tartrate-resistant acid phosphatase (TRAP) staining illustrated that Pg-LPS promoted osteoclast differentiation and decreased the activity of alkaline phosphatase. Therefore, analysis indicates that, when treated with Pg-LPS, the expression of EphA2 is upregulated while the activity of osteoblasts and osteoclasts was reduced and increased, respectively. Our data suggest that EphA2 is closely related to the formation of osteoblasts and resorption of osteoclast and is likely to play an role in bone resorption induced in chronic periodontitis. These findings may provide information on new targets for prevention and treatment of chronic periodontitis.
Schneider, G B; Benis, K A; Flay, N W; Ireland, R A; Popoff, S N
1995-06-01
Osteopetrosis is a heterogeneous group of bone diseases characterized by an excess accumulation of bone and a variety of immune defects. Osteopetrosis (op) and incisors absent (ia) are two nonallelic mutations in the rat which demonstrated these skeletal defects as a result of reduced bone resorption. Osteopetrotic (op) rats have severe sclerosis as a result of reduced numbers of osteoclasts which are structurally abnormal. The sclerosis in ia rats is not as severe as in op mutants; they have elevated numbers of osteoclasts, but they are also morphologically abnormal, lacking a ruffled border. Both of these mutations have defects in the inflammation-primed activation of macrophages. They demonstrate independent defects in the cascade involved in the conversion of vitamin D binding protein (DBP) to a potent macrophage activating factor (DBP-MAF). Because this factor may also play a role in the pathogenesis of osteoclastic dysfunction, the effects of ex vivo-generated DBP-MAF were evaluated on the skeletal system of these two mutations. Newborn ia and op rats and normal littermate controls were injected with DBP-MAF or vehicle once every 4 days from birth until 2 weeks of age, at which time bone samples were collected to evaluate a number of skeletal parameters. DBP-MAF treated op rats had an increased number of osteoclasts and the majority of them exhibited normal structure. There was also reduced bone volume in the treated op animals and an associated increased cellularity of the marrow spaces. The skeletal sclerosis was also corrected in the ia rats; the bone marrow cavity size was significantly enlarged and the majority of the osteoclasts appeared normal with extensive ruffled borders.
Kim, Hyunsoo; Walsh, Matthew C.; Takegahara, Noriko; ...
2017-03-15
Excessive bone resorption by osteoclasts (OCs) can result in serious clinical outcomes, including bone loss that may weaken skeletal or periodontal strength. Proper bone homeostasis and skeletal strength are maintained by balancing OC function with the bone-forming function of osteoblasts. Unfortunately, current treatments that broadly inhibit OC differentiation or function may also interfere with coupled bone formation. We therefore identified a factor, the purinergic receptor P2X5 that is highly expressed during the OC maturation phase, and which we show here plays no apparent role in early bone development and homeostasis, but which is required for osteoclast-mediated inflammatory bone loss andmore » hyper-multinucleation of OCs. We further demonstrate that P2X5 is required for ATP-mediated inflammasome activation and IL-1β production by OCs, and that P2X5-deficient OC maturation is rescued in vitro by addition of exogenous IL-1β. These findings identify a mechanism by which OCs react to inflammatory stimuli, and may identify purinergic signaling as a therapeutic target for bone loss related inflammatory conditions.« less
OSTEOCLAST-INDUCED FOXP3+ CD8 T-CELLS LIMIT BONE LOSS IN MICE
Buchwald, Zachary S.; Kiesel, Jennifer R.; Yang, Chang; DiPaolo, Richard; Novack, Deborah V.; Aurora, Rajeev
2014-01-01
Osteoimmunology is the crosstalk between the skeletal and immune system. We have previously shown in vitro that osteoclasts (OC) crosspresent antigens to induce FoxP3 in CD8 T-cells (OCiTcREG), which then suppress osteoclast activity. Here we assessed the ability of OC-iTcREG to limit bone resorption in vivo. Mice lacking CD8 T-cells lose more bone in response to RANKL (Tnfsf11) administration. Using adoptive transfer experiments we demonstrate that FoxP3+ CD8 T-cells limit bone loss by RANKL administration. In ovariectomized mice, a murine model of postmenopausal osteoporosis, OC-iTcREG limited bone loss and increased bone density as assessed by serum markers, micro computed tomography (μCT) and histomorphometry. Indeed, OC-iTcREG—treated ovariectomized mice had decreased levels of effector T-cells in the bone marrow compared to untreated mice, and increased bone formation rates relative to bisphosphonate-treated mice. Our results provide the first in vivo evidence that OC-iTcREG have anti-resorptive activity and repress the immune system, thus extending the purview of osteoimmunology. PMID:23756229
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyunsoo; Walsh, Matthew C.; Takegahara, Noriko
Excessive bone resorption by osteoclasts (OCs) can result in serious clinical outcomes, including bone loss that may weaken skeletal or periodontal strength. Proper bone homeostasis and skeletal strength are maintained by balancing OC function with the bone-forming function of osteoblasts. Unfortunately, current treatments that broadly inhibit OC differentiation or function may also interfere with coupled bone formation. We therefore identified a factor, the purinergic receptor P2X5 that is highly expressed during the OC maturation phase, and which we show here plays no apparent role in early bone development and homeostasis, but which is required for osteoclast-mediated inflammatory bone loss andmore » hyper-multinucleation of OCs. We further demonstrate that P2X5 is required for ATP-mediated inflammasome activation and IL-1β production by OCs, and that P2X5-deficient OC maturation is rescued in vitro by addition of exogenous IL-1β. These findings identify a mechanism by which OCs react to inflammatory stimuli, and may identify purinergic signaling as a therapeutic target for bone loss related inflammatory conditions.« less
Epithelium-derived Wnt ligands are essential for maintenance of underlying digit bone
Takeo, Makoto; Hale, Christopher S.; Ito, Mayumi
2018-01-01
Clinically, many nail disorders accompany bone deformities, but whether the two defects are causally related is under debate. To investigate the potential interactions between the two tissue types, we analyzed epithelial-specific β-catenin deficient mice, in which nail differentiation is abrogated. These mice showed regression of not only the nail plate but also of the underlying digit bone. Characterization of these bone defects revealed active bone resorption, which is suppressed by Wnt activation in osteoblast and osteoclast precursors. Furthermore, we found that Wntless (Wls) expression, essential for Wnt ligand secretion, was lacking in the β-catenin deficient nail epithelium and that genetic deletion of Wls in the nail epithelium led to the lack of Wnt activation in osteoblast and osteoclast precursors and subsequently led to defective regression of the underlying digit bone. Together, these data show epithelial Wnt ligands can ultimately regulate Wnt signaling in osteoblasts and osteoclast precursors, known to regulate bone homeostasis. These results reveal a critical role for the nail epithelium on the digit bone during homeostatic regeneration and show that Wnt/β-catenin signaling is critical for this interaction. PMID:27021406
Zarrinkalam, M R; Mulaibrahimovic, A; Atkins, G J; Moore, R J
2012-04-01
Histomorphometric assessment of trabecular bone in osteoporotic sheep showed that bone volume, osteoid surface area, bone formation rate, and osteocyte density were reduced. In contrast, eroded surface area and empty lacunae density were increased. Changes in osteocyte density correlated with changes in osteoblast and osteoclast activity. Osteocytes contribute to the regulation of the activity of osteoclasts and osteoblasts that together control bone mass. Osteocytes therefore likely play a role in the loss of bone mass associated with osteoporosis. The purpose of this study was to investigate the relationships between osteocyte lacunar density and other bone histomorphometric parameters in the iliac crest (IC) and lumbar spine (LS) of osteoporotic sheep. Osteoporosis was induced in ten mature ewes by an established protocol involving a combination of ovariectomy, dexamethasone injection, and low calcium diet for 6 months. Five ewes were used as controls. Post-mortem IC and LS biopsies were collected and processed for further histomorphometric assessment. Bone volume, osteoid surface, and bone formation rate in the IC and LS of osteoporotic sheep were reduced compared to those of the controls. In contrast, eroded surface area was increased in osteoporotic sheep. In the osteoporotic group, osteocyte density was reduced in the LS region and to a greater extent in the IC region. The empty osteocyte lacunae were increased 1.7-fold in LS and 2.1-fold in IC in the osteoporotic group. The osteocyte density correlated positively with markers of osteoblast activity and negatively with those of osteoclast activity. Depletion of osteocytes and an increase in the empty lacunae could be important factors contributing to bone loss in this model since they may adversely affect intercellular communication between osteoblasts and osteoclasts. The regional differences in histology suggest that there may be different pathological mechanisms operating at different anatomical sites.
Zhou, Jian; Ye, Shiqiao; Fujiwara, Toshifumi; Manolagas, Stavros C.; Zhao, Haibo
2013-01-01
Iron is essential for osteoclast differentiation, and iron overload in a variety of hematologic diseases is associated with excessive bone resorption. Iron uptake by osteoclast precursors via the transferrin cycle increases mitochondrial biogenesis, reactive oxygen species production, and activation of cAMP response element-binding protein, a critical transcription factor downstream of receptor activator of NF-κB-ligand-induced calcium signaling. These changes are required for the differentiation of osteoclast precursors to mature bone-resorbing osteoclasts. However, the molecular mechanisms regulating cellular iron metabolism in osteoclasts remain largely unknown. In this report, we provide evidence that Steap4, a member of the six-transmembrane epithelial antigen of prostate (Steap) family proteins, is an endosomal ferrireductase with a critical role in cellular iron utilization in osteoclasts. Specifically, we show that Steap4 is the only Steap family protein that is up-regulated during osteoclast differentiation. Knocking down Steap4 expression in vitro by lentivirus-mediated short hairpin RNAs inhibits osteoclast formation and decreases cellular ferrous iron, reactive oxygen species, and the activation of cAMP response element-binding protein. These results demonstrate that Steap4 is a critical enzyme for cellular iron uptake and utilization in osteoclasts and, thus, indispensable for osteoclast development and function. PMID:23990467
Saxena, Ritu; Pan, George; Dohm, Erik D.; McDonald, Jay M.
2010-01-01
Mechanical forces are essential to maintain skeletal integrity, and microgravity exposure leads to bone loss. The underlying molecular mechanisms leading to the changes in osteoblasts and osteoclast differentiation and function remain be to fully elucidated. Due to the infrequency of spaceflights and payload constraints, establishing in vitro and in vivo systems that mimic microgravity conditions becomes necessary. We have established a simulated microgravity (modeled microgravity, MMG) system to study the changes induced in osteoclast precursors. We observed that MMG, on its own was unable to induce osteoclastogenesis of osteoclast precursors, however, 24h of MMG activates osteoclastogenesis-related signaling molecules ERK, p38, PLCγ2, and NFATc1. RANKL (and/or M-CSF) stimulation for 3-4 days in gravity of cells that had been exposed to MMG for 24h, enhanced the formation of very large TRAP positive multinucleated (>30 nuclei) osteoclasts accompanied by an upregulation of osteoclast marker genes- TRAP and cathepsin K. To validate the in vitro system, we established the hindlimb unloading system using BALB/c mice and observed a decrease in BMD of femurs and a loss of 3D microstructure of both cortical and trabecular bone as determined by microCT. There was a marked stimulation of osteoclastogenesis as determined by the total number of TRAP positive multinucleated osteoclasts formed and also an increase in RANKL stimulated osteoclastogenesis from precursors removed from the tibias of mice after 28 days of hindlimb unloading. Contrary to earlier reported findings, we did not observe any histomorphometrical changes in the bone formation parameters. Thus, the above observations indicate that microgravity sensitizes osteoclast precursors for increased differentiation. The in vitro model system described here is potentially a valid system for testing drugs for preventing microgravity induced bone loss by targeting the molecular events occurring in microgravity-induced enhanced osteoclastogenesis. PMID:20589403
Bone Loss from High Repetitive High Force Loading is Prevented by Ibuprofen Treatment
Jain, Nisha X.; Barr-Gillespie, Ann E.; Clark, Brian D.; Kietrys, David M.; Wade, Christine K.; Litvin, Judith; Popoff, Steven N.; Barbe, Mary F.
2014-01-01
We examined roles of loading and inflammation on forearm bones in a rat model of upper extremity overuse. Trabecular structure in distal radius and ulna was examined in three groups of young adult rats: 1) 5% food-restricted that underwent an initial training period of 10 min/day for 5 weeks to learn the repetitive task (TRHF); 2) rats that underwent the same training before performing a high repetition high force task, 2 hours/day for 12 weeks (HRHF); and 3) food-restricted only (FRC). Subsets were treated with oral ibuprofen (IBU). TRHF rats had increased trabecular bone volume and numbers, osteoblasts, and serum osteocalcin, indicative of bone adaptation. HRHF rats had constant muscle pulling forces, showed limited signs of bone adaptation, but many signs of bone resorption, including decreased trabecular bone volume and bone mineral density, increased osteoclasts and bone inflammatory cytokines, and reduced median nerve conduction velocity (15%). HRHF+IBU rats showed no trabecular resorptive changes, no increased osteoclasts or bone inflammatory cytokines, no nerve inflammation, preserved nerve conduction, and increased muscle voluntary pulling forces. Ibuprofen treatment preserved trabecular bone quality by reducing osteoclasts and bone inflammatory cytokines, and improving muscle pulling forces on bones as a result of reduced nerve inflammation. PMID:24583543
Zhang, Qiao; Jing, Dai; Zhang, Yufeng; Miron, Richard J
Bone grafting materials are frequently utilized in oral surgery and periodontology to fill bone defects and augment lost or missing bone. The purpose of this study was to compare new bone formation in bone defects created in both normal and osteoporotic animals loaded with three types of bone grafts from different origins. Forty-eight female Wistar rats were equally divided into control normal and ovariectomized animals. Bilateral 2.5-mm femur defects were created and filled with an equal weight of (1) natural bone mineral (NBM, BioOss) of bovine origin, (2) demineralized freeze-dried bone allograft (DFDBA, LifeNet), or (3) biphasic calcium phosphate (BCP, Vivoss). Following 3 and 6 weeks of healing, hematoxylin and eosin and TRAP staining was performed to determine new bone formation, material degradation, and osteoclast activity. All bone substitutes demonstrated osteoconductive potential at 3 and 6 weeks with higher osteoclast numbers observed in all ovariectomized animals. NBM displayed continual new bone formation with little to no sign of particle degradation, even in osteoporotic animals. DFDBA particles showed similar levels of new bone formation but rapid particle degradation rates with lower levels of mineralized tissue. BCP bone grafts demonstrated significantly higher new bone formation when compared with both NBM and DFDBA particles; however, the material was associated with higher osteoclast activity and particle degradation. Interestingly, in osteoporotic animals, BCP displayed synergistically and markedly more rapid rates of particle degradation. Recent modifications to synthetically fabricated materials were shown to be equally or more osteopromotive than NBM and DFDBA. However, the current BCP utilized demonstrated much faster resorption properties in osteoporotic animals associated with a decrease in total bone volume when compared with the slowly/nonresorbing NBM. The results from this study point to the clinical relevance of minimizing fast-resorbing bone grafting materials in osteoporotic phenotypes due to the higher osteoclastic activity and greater material resorption.
Nakashima, Tomoki
Recent studies of mouse genetics and human gene mutations has greatly contributed to clarifying the molecular mechanism of bone metabolism. Bone is constantly renewed by the balanced action of osteoblastic bone formation and osteoclastic bone resorption both of which mainly occur at the bone surface. This restructuring process called "bone remodeling" is important not only for normal bone mass and strength, but also for mineral homeostasis. Bone remodeling is stringently regulated by communication among bone component cells such as osteoclasts, osteoblasts, osteocytes and endothelial cells. An imbalance of this process is often linked to various bone diseases. Thus, the elucidation of the molecular mechanisms involved in bone remodeling is critical for a deeper understanding of the maintenance of healthy skeleton and bone disease.
Osteoclast Inhibitory Peptide-1 Therapy for Paget’s Disease
2012-08-01
1 (SQSTM1/p62) gene have been widely identified in PDB patients. We previously detected expression of measles virus nucleocapsid (MVNP) transcripts...high bone turnover in PDB. 15. SUBJECT TERMS Paget’s Disease, measles virus nucleocapsid, sequestosome1 , osteoclast, osteoclast inhibitory peptide...detected expression of measles virus nucleocapsid (MVNP) transcripts in osteoclasts from patients with PDB. Also, we have shown that MVNP gene
WAIF1 Is a Cell-Surface CTHRC1 Binding Protein Coupling Bone Resorption and Formation.
Matsuoka, Kazuhiko; Kohara, Yukihiro; Naoe, Yoshinori; Watanabe, Atsushi; Ito, Masako; Ikeda, Kyoji; Takeshita, Sunao
2018-04-06
The osteoclast-derived collagen triple helix repeat containing 1 (CTHRC1) protein stimulates osteoblast differentiation, but the underlying mechanism remains unclear. Here, we identified Wnt-activated inhibitory factor 1 (WAIF1)/5T4 as a cell-surface protein binding CTHRC1. The WAIF1-encoding Trophoblast glycoprotein (Tpbg) gene, which is abundantly expressed in the brain and bone but not in other tissues, showed the same expression pattern as Cthrc1. Tpbg downregulation in marrow stromal cells reduced CTHRC1 binding and CTHRC1-stimulated alkaline phosphatase activity through PKCδ activation of MEK/ERK, suggesting a novel WAIF1/PKCδ/ERK pathway triggered by CTHRC1. Unexpectedly, osteoblast lineage-specific deletion of Tpbg downregulated Rankl expression in mouse bones and reduced both bone formation and resorption; importantly, it impaired bone mass recovery following RANKL-induced resorption, reproducing the phenotype of osteoclast-specific Cthrc1 deficiency. Thus, the binding of osteoclast-derived CTHRC1 to WAIF1 in stromal cells activates PKCδ-ERK osteoblastogenic signaling and serves as a key molecular link between bone resorption and formation during bone remodeling. © 2018 American Society for Bone and Mineral Research. © 2018 American Society for Bone and Mineral Research.
A toxicity profile of osteoprotegerin in the cynomolgus monkey.
Smith, Brenda B; Cosenza, Mary Ellen; Mancini, Audrey; Dunstan, Colin; Gregson, Richard; Martin, Steven W; Smith, Susan Y; Davis, Harold
2003-01-01
Osteoprotegerin (OPG) is a novel secreted glycoprotein of the tumor necrosis factor (TNF) receptor superfamily that acts as an antiresorptive agent inhibiting osteoclast maturation. OPG acts by competitively inhibiting the association of the OPG ligand with the RANK receptor on osteoclasts and osteoclast precursors. This inhibition of osteoclasts can lead to excess accumulation of newly synthesized bone and cartilage in vivo. The purpose of this study was to investigate the potential toxicity of a human recombinant form of OPG in the young cynomolgus monkey. OPG was administered by intravenous (i.v.) or subcutaneous (s.c.) injection three times per week for either 4 or 13 weeks. There were no deaths during the study, no clinical signs related to treatment, no effect on body weight, appetence, or ophthalmology. No toxicologically relevant changes in routine laboratory investigations, organ weights, or gross or histopathological findings were observed. Serum ionized calcium and phosphorus were decreased at all dose levels. Evaluations were performed to monitor biochemical markers of bone resorption (N-telopeptide [NTx], deoxypyridinoline [DPD]), bone formation (skeletal alkaline phosphatase [sALP], osteocalcin [OC]), parathyroid hormone [PTH], and bone density of the proximal tibia and distal radius in vivo. Dose-related decreases in NTx and/or DPD were observed at each dose level, with up to a 90% decrease in NTx noted for animals treated i.v. or s.c. at 15 mg/kg. Similar decreases were observed for sALP and OC. PTH was increased for animals treated at 5 and 15 mg/kg (i.v. or s.c.). Trabecular bone density was increased for the majority of males and females treated i.v. or s.c. at 15 mg/kg and males treated i.v. at 5 mg/kg. Microscopic examination of the sternebrae revealed corresponding increases in bone. Decreases in markers of bone turnover, and corresponding increases in bone density, were consistent with the pharmacological action of OPG as an osteoclast inhibitor. The no-observable-adverse-effect level (NOAEL) of OPG was 15 mg/kg.
Siebelt, M; Waarsing, J H; Groen, H C; Müller, C; Koelewijn, S J; de Blois, E; Verhaar, J A N; de Jong, M; Weinans, H
2014-09-01
Osteoarthritis (OA) is a non-rheumatoid joint disease characterized by progressive degeneration of extra-cellular cartilage matrix (ECM), enhanced subchondral bone remodeling, osteophyte formation and synovial thickening. Alendronate (ALN) is a potent inhibitor of osteoclastic bone resorption and results in reduced bone remodeling. This study investigated the effects of pre-emptive use of ALN on OA related osteoclastic subchondral bone resorption in an in vivo rat model for severe OA. Using multi-modality imaging we measured effects of ALN treatment within cartilage and synovium. Severe osteoarthritis was induced in left rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with subcutaneous ALN injections and compared to twenty untreated controls. Animals were longitudinally monitored for 12weeks with in vivo μCT to measure subchondral bone changes and SPECT/CT to determine synovial macrophage activation using a folate-based radiotracer. Articular cartilage was analyzed at 6 and 12weeks with ex vivo contrast enhanced μCT and histology to measure sulfated-glycosaminoglycan (sGAG) content and cartilage thickness. ALN treatment successfully inhibited subchondral bone remodeling. As a result we found less subchondral plate porosity and reduced osteophytosis. ALN treatment did not reduce subchondral sclerosis. However, after the OA induction phase, ALN treatment protected cartilage ECM from degradation and reduced synovial macrophage activation. Surprisingly, ALN treatment also improved sGAG content of tibia cartilage in healthy joints. Our data was consistent with the hypothesis that osteoclastic bone resorption might play an important role in OA and may be a driving force for progression of the disease. However, our study suggest that this effect might not solely be effects on osteoclastic activity, since ALN treatment also influenced macrophage functioning. Additionally, ALN treatment and physical activity exercised a positive effect in healthy control joints, which increased cartilage sGAG content. More research on this topic might lead to novel insights as to improve cartilage quality. Copyright © 2014 Elsevier Inc. All rights reserved.
Koskinen, Cecilia; Persson, Emelie; Baldock, Paul; Stenberg, Åsa; Boström, Ingrid; Matozaki, Takashi; Oldenborg, Per-Arne; Lundberg, Pernilla
2013-01-01
Here, we investigated whether the cell surface glycoprotein CD47 was required for normal formation of osteoblasts and osteoclasts and to maintain normal bone formation activity in vitro and in vivo. In parathyroid hormone or 1α,25(OH)2-vitamin D3 (D3)-stimulated bone marrow cultures (BMC) from CD47−/− mice, we found a strongly reduced formation of multinuclear tartrate-resistant acid phosphatase (TRAP)+ osteoclasts, associated with reduced expression of osteoclastogenic genes (nfatc1, Oscar, Trap/Acp, ctr, catK, and dc-stamp). The production of M-CSF and RANKL (receptor activator of nuclear factor κβ ligand) was reduced in CD47−/− BMC, as compared with CD47+/+ BMC. The stromal cell phenotype in CD47−/− BMC involved a blunted expression of the osteoblast-associated genes osterix, Alp/Akp1, and α-1-collagen, and reduced mineral deposition, as compared with that in CD47+/+ BMC. CD47 is a ligand for SIRPα (signal regulatory protein α), which showed strongly reduced tyrosine phosphorylation in CD47−/− bone marrow stromal cells. In addition, stromal cells lacking the signaling SIRPα cytoplasmic domain also had a defect in osteogenic differentiation, and both CD47−/− and non-signaling SIRPα mutant stromal cells showed a markedly reduced ability to support osteoclastogenesis in wild-type bone marrow macrophages, demonstrating that CD47-induced SIRPα signaling is critical for stromal cell support of osteoclast formation. In vivo, femoral bones of 18- or 28-week-old CD47−/− mice showed significantly reduced osteoclast and osteoblast numbers and exhibited an osteopenic bone phenotype. In conclusion, lack of CD47 strongly impairs SIRPα-dependent osteoblast differentiation, deteriorate bone formation, and cause reduced formation of osteoclasts. PMID:23990469
Casarrubios, Laura; Matesanz, María Concepción; Sánchez-Salcedo, Sandra; Arcos, Daniel; Vallet-Regí, María; Portolés, María Teresa
2016-11-15
Silicon substituted hydroxyapatites (SiHA) are highly crystalline bioceramics treated at high temperatures (about 1200°C) which have been approved for clinical use with spinal, orthopedic, periodontal, oral and craniomaxillofacial applications. The preparation of SiHA with lower temperature methods (about 700°C) provides nanocrystalline SiHA (nano-SiHA) with enhanced bioreactivity due to higher surface area and smaller crystal size. The aim of this study has been to know the nanocrystallinity effects on the response of both osteoblasts and osteoclasts (the two main cell types involved in bone remodelling) to silicon substituted hydroxyapatite. Saos-2 osteoblasts and osteoclast-like cells (differentiated from RAW-264.7 macrophages) have been cultured on the surface of nano-SiHA and SiHA disks and different cell parameters have been evaluated: cell adhesion, proliferation, viability, intracellular content of reactive oxygen species, cell cycle phases, apoptosis, cell morphology, osteoclast-like cell differentiation and resorptive activity. This comparative in vitro study evidences that nanocrystallinity of SiHA affects the cell/biomaterial interface inducing bone cell apoptosis by loss of cell anchorage (anoikis), delaying osteoclast-like cell differentiation and decreasing the resorptive activity of this cell type. These results suggest the potential use of nano-SiHA biomaterial for preventing bone resorption in treatment of osteoporotic bone. Copyright © 2016 Elsevier Inc. All rights reserved.
Chatani, Masahiro; Morimoto, Hiroya; Takeyama, Kazuhiro; Mantoku, Akiko; Tanigawa, Naoki; Kubota, Koji; Suzuki, Hiromi; Uchida, Satoko; Tanigaki, Fumiaki; Shirakawa, Masaki; Gusev, Oleg; Sychev, Vladimir; Takano, Yoshiro; Itoh, Takehiko; Kudo, Akira
2016-01-01
Bone loss is a serious problem in spaceflight; however, the initial action of microgravity has not been identified. To examine this action, we performed live-imaging of animals during a space mission followed by transcriptome analysis using medaka transgenic lines expressing osteoblast and osteoclast-specific promoter-driven GFP and DsRed. In live-imaging for osteoblasts, the intensity of osterix- or osteocalcin-DsRed fluorescence in pharyngeal bones was significantly enhanced 1 day after launch; and this enhancement continued for 8 or 5 days. In osteoclasts, the signals of TRAP-GFP and MMP9-DsRed were highly increased at days 4 and 6 after launch in flight. HiSeq from pharyngeal bones of juvenile fish at day 2 after launch showed up-regulation of 2 osteoblast- and 3 osteoclast- related genes. Gene ontology analysis for the whole-body showed that transcription of genes in the category “nucleus” was significantly enhanced; particularly, transcription-regulators were more up-regulated at day 2 than at day 6. Lastly, we identified 5 genes, c-fos, jun-B-like, pai-1, ddit4 and tsc22d3, which were up-regulated commonly in the whole-body at days 2 and 6, and in the pharyngeal bone at day 2. Our results suggested that exposure to microgravity immediately induced dynamic alteration of gene expression levels in osteoblasts and osteoclasts. PMID:28004797
Suppression of bone resorption by miR-141 in aged rhesus monkeys.
Yang, Shihua; Zhang, Wenhui; Cai, Mingxiang; Zhang, Yuanxu; Jin, Fujun; Yan, Sen; Baloch, Zulqurain; Fang, Zhihao; Xue, Senren; Tang, Rongping; Xiao, Jia; Huang, Qunshan; Sun, Yao; Wang, Xiaogang
2018-05-31
Aging-related osteoporosis is considered as serious public health concern. Approximately 30% of postmenopausal women suffer from osteoporosis, and more than 40% of them risk fragility fractures. Multiple types of drugs have been applied to treat osteoporosis, but they are not ideal due to insufficient curing and adverse side effects. miRNA-based gene therapy is a rapidly developed strategy in disease treatment that presents certain advantages, such as large-scale production, genetic safety and rapid effects. Until now, miRNA drugs have been used in investigations of cancer treatments. However, in primates, miRNA drugs have not yet been reported as candidates for osteoclast-targeting osteoporosis treatment. In addition, the therapeutic efficacy was limited by several shortcomings, such as low efficiency of selective delivery, insufficient expression levels in targeting cells, and unexpected side effects. Here, we identify miR-141 as a critical suppressor of osteoclastogenesis and bone resorption. The expression levels of miR-141 are positively correlated with bone mineral density and negatively correlated with aging of bones in both aged rhesus monkeys (Macaca mulatta) and osteoporotic patients. Selective delivery of miR-141 into osteoclasts of aged rhesus monkeys via a nucleic acid delivery system allowed for a gradual increase in bone mass without significant effects on health behavior and function of primary organs. Furthermore, we found that the functional mechanism of miR-141 is targeting two osteoclast differentiation players, Calcr (calcitonin receptors) and EphA2 (Ephrin type-A receptor 2 precursor). Our study suggests that miRNAs such as miR-141 could play a crucial role in suppressing bone resorption in primates and provide reliable experimental evidence for the clinical application of miRNA in osteoporosis treatment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
BAR Proteins PSTPIP1/2 Regulate Podosome Dynamics and the Resorption Activity of Osteoclasts
Sztacho, Martin; Segeletz, Sandra; Sanchez-Fernandez, Maria Arantzazu; Czupalla, Cornelia; Niehage, Christian; Hoflack, Bernard
2016-01-01
Bone resorption in vertebrates relies on the ability of osteoclasts to assemble F-actin-rich podosomes that condense into podosomal belts, forming sealing zones. Sealing zones segregate bone-facing ruffled membranes from other membrane domains, and disassemble when osteoclasts migrate to new areas. How podosome/sealing zone dynamics is regulated remains unknown. We illustrate the essential role of the membrane scaffolding F-BAR-Proline-Serine-Threonine Phosphatase Interacting Proteins (PSTPIP) 1 and 2 in this process. Whereas PSTPIP2 regulates podosome assembly, PSTPIP1 regulates their disassembly. PSTPIP1 recruits, through its F-BAR domain, the protein tyrosine phosphatase non-receptor type 6 (PTPN6) that de-phosphophorylates the phosphatidylinositol 5-phosphatases SHIP1/2 bound to the SH3 domain of PSTPIP1. Depletion of any component of this complex prevents sealing zone disassembly and increases osteoclast activity. Thus, our results illustrate the importance of BAR domain proteins in podosome structure and dynamics, and identify a new PSTPIP1/PTPN6/SHIP1/2-dependent negative feedback mechanism that counterbalances Src and PI(3,4,5)P3 signalling to control osteoclast cell polarity and activity during bone resorption. PMID:27760174
Kittaka, Mizuho; Mayahara, Kotoe; Mukai, Tomoyuki; Yoshimoto, Tetsuya; Yoshitaka, Teruhito; Gorski, Jeffrey P; Ueki, Yasuyoshi
2018-01-01
Currently, it is believed that osteoclasts positive for tartrate-resistant acid phosphatase (TRAP+) are the exclusive bone-resorbing cells responsible for focal bone destruction in inflammatory arthritis. Recently, a mouse model of cherubism (Sh3bp2 KI/KI ) with a homozygous gain-of-function mutation in the SH3-domain binding protein 2 (SH3BP2) was shown to develop auto-inflammatory joint destruction. Here, we demonstrate that Sh3bp2 KI/KI mice also deficient in the FBJ osteosarcoma oncogene (c-Fos) still exhibit noticeable bone erosion at the distal tibia even in the absence of osteoclasts at 12 weeks old. Levels of serum collagen I C-terminal telopeptide (ICTP), a marker of bone resorption generated by matrix metalloproteinases (MMPs), were elevated, whereas levels of serum cross-linked C-telopeptide (CTX), another resorption marker produced by cathepsin K, were not increased. Collagenolytic MMP levels were increased in the inflamed joints of the Sh3bp2 KI/KI mice deficient in c-Fos. Resorption pits contained a large number of F4/80+ macrophages and genetic depletion of macrophages rescued these erosive changes. Importantly, administration of NSC405020, an MMP14 inhibitor targeted to the hemopexin (PEX) domain, suppressed bone erosion in c-Fos-deficient Sh3bp2 KI/KI mice. After activation of the NF-κB pathway, macrophage colony-stimulating factor (M-CSF)-dependent macrophages from c-Fos-deficient Sh3bp2 KI/KI mice expressed increased amounts of MMP14 compared with wild-type macrophages. Interestingly, receptor activator of NF-κB ligand (RANKL)-deficient Sh3bp2 KI/KI mice failed to show notable bone erosion, whereas c-Fos deletion did restore bone erosion to the RANKL-deficient Sh3bp2 KI/KI mice, suggesting that osteolytic transformation of macrophages requires both loss-of-function of c-Fos and gain-of-function of SH3BP2 in this model. These data provide the first genetic evidence that cells other than osteoclasts can cause focal bone destruction in inflammatory bone disease and suggest that MMP14 is a key mediator conferring pathological bone-resorbing capacity on c-Fos-deficient Sh3bp2 KI/KI macrophages. In summary, the paradigm that osteoclasts are the exclusive cells executing inflammatory bone destruction may need to be reevaluated based on our findings with c-Fos-deficient cherubism mice lacking osteoclasts. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
Responds of Bone Cells to Microgravity: Ground-Based Research
NASA Astrophysics Data System (ADS)
Zhang, Jian; Li, Jingbao; Xu, Huiyun; Yang, Pengfei; Xie, Li; Qian, Airong; Zhao, Yong; Shang, Peng
2015-11-01
Severe loss of bone occurs due to long-duration spaceflight. Mechanical loading stimulates bone formation, while bone degradation happens under mechanical unloading. Bone remodeling is a dynamic process in which bone formation and bone resorption are tightly coupled. Increased bone resorption and decreased bone formation caused by reduced mechanical loading, generally result in disrupted bone remodeling. Bone remodeling is orchestrated by multiple bone cells including osteoblast, osteocyte, osteoclast and mesenchymal stem cell. It is yet not clear that how these bone cells sense altered gravity, translate physical stimulus into biochemical signals, and then regulate themselves structurally and functionally. In this paper, studies elucidating the bioeffects of microgravity on bone cells (osteoblast, osteocyte, osteoclast, mesenchymal stem cell) using various platforms including spaceflight and ground-based simulated microgravity were summarized. Promising gravity-sensitive signaling pathways and protein molecules were proposed.
Oleoyl serine, an endogenous N-acyl amide, modulates bone remodeling and mass
Smoum, Reem; Bar, Arik; Tan, Bo; Milman, Garry; Attar-Namdar, Malka; Ofek, Orr; Stuart, Jordyn M.; Bajayo, Alon; Tam, Joseph; Kram, Vardit; O'Dell, David; Walker, Michael J.; Bradshaw, Heather B.; Bab, Itai; Mechoulam, Raphael
2010-01-01
Bone mass is determined by a continuous remodeling process, whereby the mineralized matrix is being removed by osteoclasts and subsequently replaced with newly formed bone tissue produced by osteoblasts. Here we report the presence of endogenous amides of long-chain fatty acids with amino acids or with ethanolamine (N-acyl amides) in mouse bone. Of these compounds, N-oleoyl-l-serine (OS) had the highest activity in an osteoblast proliferation assay. In these cells, OS triggers a Gi-protein-coupled receptor and Erk1/2. It also mitigates osteoclast number by promoting osteoclast apoptosis through the inhibition of Erk1/2 phosphorylation and receptor activator of nuclear-κB ligand (RANKL) expression in bone marrow stromal cells and osteoblasts. In intact mice, OS moderately increases bone volume density mainly by inhibiting bone resorption. However, in a mouse ovariectomy (OVX) model for osteoporosis, OS effectively rescues bone loss by increasing bone formation and markedly restraining bone resorption. The differential effect of exogenous OS in the OVX vs. intact animals is apparently a result of an OVX-induced decrease in skeletal OS levels. These data show that OS is a previously unexplored lipid regulator of bone remodeling. It represents a lead to antiosteoporotic drug discovery, advantageous to currently available therapies, which are essentially either proformative or antiresorptive. PMID:20876113
Oleoyl serine, an endogenous N-acyl amide, modulates bone remodeling and mass.
Smoum, Reem; Bar, Arik; Tan, Bo; Milman, Garry; Attar-Namdar, Malka; Ofek, Orr; Stuart, Jordyn M; Bajayo, Alon; Tam, Joseph; Kram, Vardit; O'Dell, David; Walker, Michael J; Bradshaw, Heather B; Bab, Itai; Mechoulam, Raphael
2010-10-12
Bone mass is determined by a continuous remodeling process, whereby the mineralized matrix is being removed by osteoclasts and subsequently replaced with newly formed bone tissue produced by osteoblasts. Here we report the presence of endogenous amides of long-chain fatty acids with amino acids or with ethanolamine (N-acyl amides) in mouse bone. Of these compounds, N-oleoyl-l-serine (OS) had the highest activity in an osteoblast proliferation assay. In these cells, OS triggers a Gi-protein-coupled receptor and Erk1/2. It also mitigates osteoclast number by promoting osteoclast apoptosis through the inhibition of Erk1/2 phosphorylation and receptor activator of nuclear-κB ligand (RANKL) expression in bone marrow stromal cells and osteoblasts. In intact mice, OS moderately increases bone volume density mainly by inhibiting bone resorption. However, in a mouse ovariectomy (OVX) model for osteoporosis, OS effectively rescues bone loss by increasing bone formation and markedly restraining bone resorption. The differential effect of exogenous OS in the OVX vs. intact animals is apparently a result of an OVX-induced decrease in skeletal OS levels. These data show that OS is a previously unexplored lipid regulator of bone remodeling. It represents a lead to antiosteoporotic drug discovery, advantageous to currently available therapies, which are essentially either proformative or antiresorptive.
Quint, Patrick; Ruan, Ming; Pederson, Larry; Kassem, Moustapha; Westendorf, Jennifer J.; Khosla, Sundeep; Oursler, Merry Jo
2013-01-01
Normal bone turnover requires tight coupling of bone resorption and bone formation to preserve bone quantity and structure. With aging and during several pathological conditions, this coupling breaks down, leading to either net bone loss or excess bone formation. To preserve or restore normal bone metabolism, it is crucial to determine the mechanisms by which osteoclasts and osteoblast precursors interact and contribute to coupling. We showed that osteoclasts produce the chemokine sphingosine 1-phosphate (S1P), which stimulates osteoblast migration. Thus, osteoclast-derived S1P may recruit osteoblasts to sites of bone resorption as an initial step in replacing lost bone. In this study we investigated the mechanisms by which S1P stimulates mesenchymal (skeletal) cell chemotaxis. S1P treatment of mesenchymal (skeletal) cells activated RhoA GTPase, but this small G protein did not contribute to migration. Rather, two S1P receptors, S1PR1 and S1PR2, coordinately promoted migration through activation of the JAK/STAT3 and FAK/PI3K/AKT signaling pathways, respectively. These data demonstrate that the chemokine S1P couples bone formation to bone resorption through activation of kinase signaling pathways. PMID:23300082
Dapunt, Ulrike; Giese, Thomas; Maurer, Susanne; Stegmaier, Sabine; Prior, Birgit; Hänsch, G Maria; Gaida, Matthias M
2015-10-01
Bone infections of patients with joint replacement by endoprosthesis (so called "periprosthetic joint infection") pose a severe problem in the field of orthopedic surgery. The diagnosis is often difficult, and treatment is, in most cases, complicated and prolonged. Patients often require an implant exchange surgery, as the persistent infection and the accompanying inflammation lead to tissue damage with bone degradation and consequently, to a loosening of the implant. To gain insight into the local inflammatory process, expression of the proinflammatory cytokine MRP-14, a major content of neutrophils, and its link to subsequent bone degradation was evaluated. We found MRP-14 prominently expressed in the affected tissue of patients with implant-associated infection, in close association with the chemokine CXCL8 and a dense infiltrate of neutrophils and macrophages. In addition, the number of MRP-14-positive cells correlated with the presence of bone-resorbing osteoclasts. MRP-14 plasma concentrations were significantly higher in patients with implant-associated infection compared with patients with sterile inflammation or healthy individuals, advocating MRP-14 as a novel diagnostic marker. A further biologic activity of MRP-14 was detected: rMRP-14 directly induced the differentiation of monocytes to osteoclasts, thus linking the inflammatory response in implant infections with osteoclast generation, bone degradation, and implant loosening. © Society for Leukocyte Biology.
What is the impact of immunosuppressive treatment on the post-transplant renal osteopathy?
Blaslov, Kristina; Katalinic, Lea; Kes, Petar; Spasovski, Goce; Smalcelj, Ruzica; Basic-Jukic, Nikolina
2014-05-01
Although glucocorticoid therapy is considered to be the main pathogenic factor, a consistent body of evidence suggests that other immunosuppressants might also play an important role in the development of the post-transplant renal osteopathy (PRO) through their pleiotropic pharmacological effects. Glucocorticoids seem to induce osteoclasts' activity suppressing the osteoblasts while data regarding other immunosuppressive drugs are still controversial. Mycophenolate mofetil and azathioprine appear to be neutral regarding the bone metabolism. However, the study analyzing any independent effect of antimetabolites on bone turnover has not been conducted yet. Calcineurin inhibitors (CNIs) induce trabecular bone loss in rodent, with contradictory results in renal transplant recipients. Suppression of vitamin D receptor is probably the underlying mechanism of renal calcium wasting in renal transplant recipients receiving CNI. In spite of an increased 1,25(OH)2 vitamin D level, the kidney is not able to reserve calcium, suggesting a role of vitamin D resistance that may be related to bone loss. More efforts should be invested to determine the role of CNI in PRO. In particular, data regarding the role of mammalian target of rapamycin inhibitors (mTORi), such as sirolimus and everolimus, in the PRO development are still controversial. Rapamycin markedly decreases bone longitudinal growth as well as callus formation in experimental models, but also lowers the rate of bone resorption markers and glomerular filtration in clinical studies. Everolimus potently inhibits primary mouse and human osteoclast activity as well as the osteoclast differentiation. It also prevents the ovariectomy-induced loss of cancellous bone by 60 %, an effect predominantly associated with a decreased osteoclast-mediated bone resorption, resulting in a partial preservation of the cancellous bone. At present, there is no clinical study analyzing the effect of everolimus on bone turnover in renal transplant recipients or comparing sirolimus versus everolimus impact on bone, so only general conclusions could be drawn. Hence, the use of mTORi might be useful in patients with PRO due to their possible potential to inhibit osteoclast activity which might lead to a decreased rate of bone resorption. In addition, it should be also emphasized that they might inhibit osteoblast activity which may lead to a decreased bone formation and adynamic bone disease. Further studies are urgently needed to solve these important clinical dilemmas.
Ucer, Serra; Iyer, Srividhya; Bartell, Shoshana M; Martin-Millan, Marta; Han, Li; Kim, Ha-Neui; Weinstein, Robert S; Jilka, Robert L; O'Brien, Charles A; Almeida, Maria; Manolagas, Stavros C
2015-07-01
In men, androgens are critical for the acquisition and maintenance of bone mass in both the cortical and cancellous bone compartment. Male mice with targeted deletion of the androgen receptor (AR) in mature osteoblasts or osteocytes have lower cancellous bone mass, but no cortical bone phenotype. We have investigated the possibility that the effects of androgens on the cortical compartment result from AR signaling in osteoprogenitors or cells of the osteoclast lineage; or via estrogen receptor alpha (ERα) signaling in either or both of these two cell types upon conversion of testosterone to estradiol. To this end, we generated mice with targeted deletion of an AR or an ERα allele in the mesenchymal (AR(f/y);Prx1-Cre or ERα(f/f);Osx1-Cre) or myeloid cell lineage (AR(f/y);LysM-Cre or ERα(f/f);LysM-Cre) and their descendants. Male AR(f/y);Prx1-Cre mice exhibited decreased bone volume and trabecular number, and increased osteoclast number in the cancellous compartment. Moreover, they did not undergo the loss of cancellous bone volume and trabecular number caused by orchidectomy (ORX) in their littermate controls. In contrast, AR(f/y);LysM-Cre, ERα(f/f);Osx1-Cre, or ERα(f/f);LysM-Cre mice had no cancellous bone phenotype at baseline and lost the same amount of cancellous bone as their controls following ORX. Most unexpectedly, adult males of all four models had no discernible cortical bone phenotype at baseline, and lost the same amount of cortical bone as their littermate controls after ORX. Recapitulation of the effects of ORX by AR deletion only in the AR(f/y);Prx1-Cre mice indicates that the effects of androgens on cancellous bone result from AR signaling in osteoblasts-not on osteoclasts or via aromatization. The effects of androgens on cortical bone mass, on the other hand, do not require AR or ERα signaling in any cell type across the osteoblast or osteoclast differentiation lineage. Therefore, androgens must exert their effects indirectly by actions on some other cell type(s) or tissue(s). © 2015 American Society for Bone and Mineral Research.
Generation of avian cells resembling osteoclasts from mononuclear phagocytes
NASA Technical Reports Server (NTRS)
Alvarez, J. I.; Teitelbaum, S. L.; Blair, H. C.; Greenfield, E. M.; Athanasou, N. A.; Ross, F. P.
1991-01-01
Several lines of indirect evidence suggest that a monocyte family precursor gives rise to the osteoclast, although this hypothesis is controversial. Starting with a uniform population of nonspecific esterase positive, tartrate-sensitive, acid phosphatase-producing, mannose receptor-bearing mononuclear cells, prepared from dispersed marrow of calcium-deprived laying hens by cell density separation and selective cellular adherence, we generated multinucleated cells in vitro. When cultured with devitalized bone, these cells show, by electron microscopy, the characteristic osteoclast morphology in that they are mitochondria-rich, multinucleated, and, most importantly, develop characteristic ruffled membranes at the matrix attachment site. Moreover, as documented by scanning electron microscopy, these cells pit bone slices in a manner identical to freshly isolated osteoclasts. In addition, isoenzymes of acid phosphatase from generated osteoclasts, separated by 7.5% polyacrylamide gel electrophoresis at pH 4, are identical to those of mature osteoclasts in migration pattern and tartrate resistance, although the precursor cells from which the osteoclasts are generated produce an entirely different isoenzyme, which is tartrate-sensitive and migrates less rapidly at pH 4. The fused cells also exhibit a cAMP response to prostaglandin E2. Therefore, osteoclast-like cells can be derived by in vitro culture of a marrow-derived monocyte cell population.
Laitala, T; Väänänen, H K
1994-01-01
The bone resorbing cells, osteoclasts, express high levels of carbonic anhydrase II (CA II) and vacuolar H(+)-ATPase (V-ATPase) during bone resorption. We have used antisense RNA and DNA molecules targeted against CA II, and against 16- and 60-kD subunits of vacuolar H(+)-ATPase (V-ATPase), to block the expression of these proteins in vitro. Osteoclastic bone resorption was studied in two in vitro culture systems: release of 45Calcium from prelabeled newborn mouse calvaria cultures, and resorption pit assays performed with rat osteoclasts cultured on bovine bone slices. Both antisense RNA and DNA against CA II and the V-ATPase were used to compare their specificities as regards inhibiting bone resorption in vitro. The antisense molecules inhibited the synthesis of these proteins by decreasing the amounts of mRNA in the cells in a highly specific manner. In osteoclast cultures treated with the 16-kD V-ATPase antisense RNA, acidification of an unknown population of intracellular vesicles was highly stimulated. The acidification of these vesicles was not sensitive to amiloride or bafilomycin A1. This suggests the existence of a back-up system for acidification of intracellular vesicles, when the expression of the V-ATPase is blocked. Our results further indicate that blocking the expression of CA II and V-ATPase with antisense RNA or DNA leads to decreased bone resorption. Images PMID:8200964
Yu, Chunxiao; Zhang, Xu; Zhang, Haiqing; Guan, Qingbo; Zhao, Jiajun; Xu, Jin
2015-01-01
Objective The objectives of this study were to observe the changes in follicle-stimulating hormone (FSH) and bone mineral density (BMD) in postmenopausal women, to research the relationship between FSH and postmenopausal osteoporosis, and to observe the effects of FSH on osteoclast differentiation in RAW264.7 cells. Methods We analyzed 248 postmenopausal women with normal bone metabolism. A radioimmunoassay (RIA) was used to detect serum FSH, luteinizing hormone (LH), and estradiol (E2). Dual-energy X-ray absorptiometry was used to measure forearm BMD. Then, we analyzed the age-related changes in serum FSH, LH and E2. Additionally, FSH serum concentrations were compared between a group of postmenopausal women with osteoporosis and a control group. Osteoclasts were induced from RAW264.7 cells in vitro by receptor activator of nuclear factor kappa B ligand (RANKL), and these cells were treated with 0, 5, 10, and 20 ng/ml FSH. After the osteoclasts matured, tartrate-resistant acid phosphatase (TRAP) staining was used to identify osteoclasts, and the mRNA expression levels of genes involved in osteoclastic phenotypes and function, such as receptor activator of NF-κB (Rank), Trap, matrix metalloproteinase-9 (Mmp-9) and Cathepsin K, were detected in different groups using real-time PCR (polymerase chain reaction). Results 1. FSH serum concentrations in postmenopausal women with osteoporosis increased notably compared with the control group. 2. RANKL induced RAW264.7 cell differentiation into mature osteoclasts in vitro. 3. FSH increased mRNA expression of genes involved in osteoclastic phenotypes and function, such as Rank, Trap, Mmp-9 and Cathepsin K, in a dose-dependent manner. Conclusions The circulating concentration of FSH may play an important role in the acceleration of bone loss in postmenopausal women. FSH increases osteoclastogenesis in vitro. PMID:26241313
Wang, Jie; Zhang, Wenwen; Yu, Chunxiao; Zhang, Xu; Zhang, Haiqing; Guan, Qingbo; Zhao, Jiajun; Xu, Jin
2015-01-01
The objectives of this study were to observe the changes in follicle-stimulating hormone (FSH) and bone mineral density (BMD) in postmenopausal women, to research the relationship between FSH and postmenopausal osteoporosis, and to observe the effects of FSH on osteoclast differentiation in RAW264.7 cells. We analyzed 248 postmenopausal women with normal bone metabolism. A radioimmunoassay (RIA) was used to detect serum FSH, luteinizing hormone (LH), and estradiol (E2). Dual-energy X-ray absorptiometry was used to measure forearm BMD. Then, we analyzed the age-related changes in serum FSH, LH and E2. Additionally, FSH serum concentrations were compared between a group of postmenopausal women with osteoporosis and a control group. Osteoclasts were induced from RAW264.7 cells in vitro by receptor activator of nuclear factor kappa B ligand (RANKL), and these cells were treated with 0, 5, 10, and 20 ng/ml FSH. After the osteoclasts matured, tartrate-resistant acid phosphatase (TRAP) staining was used to identify osteoclasts, and the mRNA expression levels of genes involved in osteoclastic phenotypes and function, such as receptor activator of NF-κB (Rank), Trap, matrix metalloproteinase-9 (Mmp-9) and Cathepsin K, were detected in different groups using real-time PCR (polymerase chain reaction). 1. FSH serum concentrations in postmenopausal women with osteoporosis increased notably compared with the control group. 2. RANKL induced RAW264.7 cell differentiation into mature osteoclasts in vitro. 3. FSH increased mRNA expression of genes involved in osteoclastic phenotypes and function, such as Rank, Trap, Mmp-9 and Cathepsin K, in a dose-dependent manner. The circulating concentration of FSH may play an important role in the acceleration of bone loss in postmenopausal women. FSH increases osteoclastogenesis in vitro.
An essential role for the association of CD47 to SHPS-1 in skeletal remodeling.
Maile, Laura A; DeMambro, Victoria E; Wai, Christine; Lotinun, Sutada; Aday, Ariel W; Capps, Byron E; Beamer, Wesley G; Rosen, Clifford J; Clemmons, David R
2011-09-01
Integrin-associated protein (IAP/CD47) has been implicated in macrophage-macrophage fusion. To understand the actions of CD47 on skeletal remodeling, we compared Cd47(-/-) mice with Cd47(+/+) controls. Cd47(-/-) mice weighed less and had decreased areal bone mineral density compared with controls. Cd47(-/-) femurs were shorter in length with thinner cortices and exhibited lower trabecular bone volume owing to decreased trabecular number and thickness. Histomorphometry revealed reduced bone-formation and mineral apposition rates, accompanied by decreased osteoblast numbers. No differences in osteoclast number were observed despite a nonsignificant but 40% decrease in eroded surface/bone surface in Cd47(-/-) mice. In vitro, the number of functional osteoclasts formed by differentiating Cd47(-/-) bone marrow cells was significantly decreased compared with wild-type cultures and was associated with a decrease in bone-resorption capacity. Furthermore, by disrupting the CD47-SHPS-1 association, we found that osteoclastogenesis was markedly impaired. Assays for markers of osteoclast maturation suggested that the defect was at the point of fusion and not differentiation and was associated with a lack of SHPS-1 phosphorylation, SHP-1 phosphatase recruitment, and subsequent dephosphorylation of non-muscle cell myosin IIA. We also demonstrated a significant decrease in osteoblastogenesis in bone marrow stromal cells derived from Cd47(-/-) mice. Our finding of cell-autonomous defects in Cd47(-/-) osteoblast and osteoclast differentiation coupled with the pronounced skeletal phenotype of Cd47(-/-) mice support the conclusion that CD47 plays an important role in regulating skeletal acquisition and maintenance through its actions on both bone formation and bone resorption. Copyright © 2011 American Society for Bone and Mineral Research.
Webb, Emma A; Balasubramanian, Meena; Fratzl-Zelman, Nadja; Cabral, Wayne A; Titheradge, Hannah; Alsaedi, Atif; Saraff, Vrinda; Vogt, Julie; Cole, Trevor; Stewart, Susan; Crabtree, Nicola J; Sargent, Brandi M; Gamsjaeger, Sonja; Paschalis, Eleftherios P; Roschger, Paul; Klaushofer, Klaus; Shaw, Nick J; Marini, Joan C; Högler, Wolfgang
2017-06-01
Recessive mutations in TMEM38B cause type XIV osteogenesis imperfecta (OI) by dysregulating intracellular calcium flux. Clinical and bone material phenotype description and osteoblast differentiation studies. Natural history study in pediatric research centers. Eight patients with type XIV OI. Clinical examinations included bone mineral density, radiographs, echocardiography, and muscle biopsy. Bone biopsy samples (n = 3) were analyzed using histomorphometry, quantitative backscattered electron microscopy, and Raman microspectroscopy. Cellular differentiation studies were performed on proband and control osteoblasts and normal murine osteoclasts. Type XIV OI clinical phenotype ranges from asymptomatic to severe. Previously unreported features include vertebral fractures, periosteal cloaking, coxa vara, and extraskeletal features (muscular hypotonia, cardiac abnormalities). Proband lumbar spine bone density z score was reduced [median -3.3 (range -4.77 to +0.1; n = 7)] and increased by +1.7 (1.17 to 3.0; n = 3) following bisphosphonate therapy. TMEM38B mutant bone has reduced trabecular bone volume, osteoblast, and particularly osteoclast numbers, with >80% reduction in bone resorption. Bone matrix mineralization is normal and nanoporosity low. We demonstrate a complex osteoblast differentiation defect with decreased expression of early markers and increased expression of late and mineralization-related markers. Predominance of trimeric intracellular cation channel type B over type A expression in murine osteoclasts supports an intrinsic osteoclast defect underlying low bone turnover. OI type XIV has a bone histology, matrix mineralization, and osteoblast differentiation pattern that is distinct from OI with collagen defects. Probands are responsive to bisphosphonates and some show muscular and cardiovascular features possibly related to intracellular calcium flux abnormalities. Copyright © 2017 Endocrine Society
Wu, Song-Hui; Zhong, Zhao-Ming; Chen, Jian-Ting
2012-01-01
Osteoclasts are the key participants in regulation of bone mass. Low-magnitude high-frequency vibration (LMHFV) has been found to be anabolic to bone in vivo. This study aimed to investigate the effect of LMHFV on osteoclast differentiation in vitro. Murine monocyte cell line RAW264.7 cells in the presence of receptor activator of nuclear factor-kappaB ligand (RANKL) were treated with or without LMHFV at 45 Hz (0.3 g) for 15 min day−1. Tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs) and actin ring formation were evaluated. Expression of the osteoclast-specific genes, such as cathepsin K, matrix metallopeptidase-9 (MMP-9) and TRAP, were analyzed using real time-PCR. c-Fos, an osteoclast-specific transcription factor, was determined using Western blot. We found that LMHFV significantly decreased the number of RANKL-induced TRAP-positive MNCs (P<0.01), and inhibited the actin ring formation. The mRNA expression of the cathepsin K, MMP-9 and TRAP were down-regulated by LMHFV intervention (all P<0.001). Furthermore, LMHFV also inhibited the expression of c-Fos protein in the RANKL-treated RAW264.7 cells (P<0.05). Our results suggest that LMHFV can inhibit the RANKL-induced osteoclast differentiation of RAW264.7 cells, which give some new insight into the anabolic effects of LMHFV on bone. PMID:23136544
Kurabayashi, Masahiko
2014-07-01
Vascular calcification is the major cause of cardiovascular morbidity and mortality in the patients with type 2 diabetes, chronic kidney disease and in aging patients. Regardless of the morphology and location, most evidence indicates that vascular calcification involves an organized process recapitulating many cellular and molecular events that govern skeletal bone formation. While the large body of evidence that osteoblastic and osteochondrocytic cells contribute to vascular calcification, it remains unclear how osteoclasts are differentiated from their precursors and how osteoclasts play a role in calcium reabsorption in calcifying arteries. It is reassuring that calcium paradox is not merely due to the calcium shift from bone to artery wall, but is likely due to the differential response of both osteoblasts and osteoclasts to oxidative stress between bone and artery. To date, many studies have highlighted the important role for RANK/RANKL/OPG axis as unifying theme for the apparently opposite regulation of calcification between two tissues.
Reactivation of Breast Cancer Micrometastases by Senescent Bone Marrow Stroma
2011-07-01
Strep, 0.28 mM L-Ascorbic Acid 2-Phosphate and 10 mM β- Glycerophosphate and 1 ml was added on to each Disc placed in a 24 well dish and incubated at... Glycerophosphate . Mouse osteoclasts produced numerous, measurable lacunae at a high efficiency while MC3T3 E1 (Preosteoblasts) and MCF-7 did not produce
Regulation of bone by the adaptive immune system in arthritis
2011-01-01
Studies on the immune regulation of osteoclasts in rheumatoid arthritis have promoted the new research field of 'osteoimmunology', which investigates the interplay between the skeletal and immune systems at the molecular level. Accumulating evidence lends support to the theory that bone destruction associated with rheumatoid arthritis is caused by the enhanced activity of osteoclasts, resulting from the activation of a unique helper T cell subset, 'Th17 cells'. Understanding the interaction between osteoclasts and the adaptive immune system in rheumatoid arthritis and the molecular mechanisms of Th17 development will lead to the development of potentially effective therapeutic strategies. PMID:21635718
Epithelium-Derived Wnt Ligands Are Essential for Maintenance of Underlying Digit Bone.
Takeo, Makoto; Hale, Christopher S; Ito, Mayumi
2016-07-01
Clinically, many nail disorders accompany bone deformities, but whether the two defects are causally related is under debate. To investigate the potential interactions between the two tissue types, we analyzed epithelial-specific β-catenin-deficient mice, in which nail differentiation is abrogated. These mice showed regression of not only the nail plate but also of the underlying digit bone. Characterization of these bone defects revealed active bone resorption, which is suppressed by Wnt activation in osteoblast and osteoclast precursors. Furthermore, we found that Wntless expression, essential for Wnt ligand secretion, was lacking in the β-catenin-deficient nail epithelium and that genetic deletion of Wntless (Wls) in the nail epithelium led to the lack of Wnt activation in osteoblast and osteoclast precursors and subsequently led to defective regression of the underlying digit bone. Together, these data show that epithelial Wnt ligands can ultimately regulate Wnt signaling in osteoblast and osteoclast precursors, known to regulate bone homeostasis. These results reveal a critical role for the nail epithelium on the digit bone during homeostatic regeneration and show that Wnt/β-catenin signaling is critical for this interaction. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Takano, H; Takahashi, T; Nakata, A; Nogami, S; Yusa, K; Kuwajima, S; Yamazaki, M; Fukuda, M
2016-05-01
The aim of this study was to investigate the bone resorption effect of the mediators delivered in joint cavity of patients with mandibular condyle fractures by detecting osteoclast markers using cellular biochemistry methods, and by analysing bone resorption activities via inducing osteoclast differentiation of the infiltrated cells from arthrocentesis. Sixteen joints in 10 patients with mandibular condyle fractures were evaluated. The control group consisted of synovial fluid (SF) samples from seven joints of four volunteers who had no clinical signs or symptoms involving the temporomandibular joint (TMJ) or disc displacement. We collected SF cells from all patients during therapeutic arthrocentesis. The infiltrating cells from TMJ SF were cultured, differentiated into tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and examined bone resorption activities. We also investigated factors related to osteoclast induction of SF, using ELISA procedures. Osteoclast-like cells were induced from the SF cells obtained from all patients with condylar fractures. These multinucleated giant cells were positive for TRAP and actin, and had the ability to absorb dentin slices. The levels of macrophage colony-stimulating factor (M-CSF), prostaglandin E2 (PGE2), soluble form of receptor activator of nuclear factor kappa-B ligand (sRANKL) and osteoprotegerin (OPG), in SF samples from the patients, were significantly higher than in the controls. These findings indicate that bone resorption activities in SF from patients with mandibular condyle fractures were upregulated and may participate in the pathogenesis and wound healing. © 2016 The Authors. Journal of Oral Rehabilitation Published by John Wiley & Sons Ltd.
Kurabayashi, Atsushi; Inoue, Keiji; Fukuhara, Hideo; Karashima, Takashi; Fukata, Satoshi; Kawada, Chiaki; Shuin, Taro; Furihata, Mutsuo
2015-08-01
The aim of this study was to investigate whether the third-generation nitrogen-containing bisphosphonate (YM529) can inhibit the progression of established bone renal cell carcinoma (RCC) and to elucidate its mechanism. Antiproliferative effect and apoptosis induction of RCC cells and mouse osteoclasts by YM529 and/or interferon-alpha (IFN-α) were evaluated in vitro using cell counting and in vivo using soft X-ray, the TUNEL method and tartrate-resistant acid phosphatase stain. For the in vivo study, male athymic BALB/cA Jc1-nu nude mice bearing human RCC cell line RBM1-IT4 cells were treated with YM529 and/or IFN-α. The biological activity of osteoclasts was evaluated using the pit formation assay. The antiangiogenetic effect by YM529 and/or IFN-α was analyzed using micro-vessel density and in situ mRNA hybridization. Osteoclast number in bone tumors was decreased in YM529-treated mouse. YM529 also inhibited osteoclast activity and proliferation in vitro, whereas basic fibroblast growth factor expressions and micro-vessel density within tumors were inhibited by IFN-α. Neither YM529 nor IFN-α alone significantly inhibited the growth of established bone metastatic tumors. Combined treatment with YM529 and IFN-α may be beneficial in patients with human RCC bone metastasis. Their effects are mediated by osteoclast recruitment inhibition and inactivation by YM529 and antiangiogenesis by IFN-α. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
Mitochondria related peptide MOTS-c suppresses ovariectomy-induced bone loss via AMPK activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ming, Wei, E-mail: weiming@xiyi.edu.cn; Department of Pharmacology, Xi’an Medical University, Xi’an 710021; Lu, Gan, E-mail: leonming99@163.com
Therapeutic targeting bone loss has been the focus of the study in osteoporosis. The present study is intended to evaluate whether MOTS-c, a novel mitochondria related 16 aa peptide, can protect mice from ovariectomy-induced osteoporosis. After ovary removal, the mice were injected with MOTS-c at a dose of 5 mg/kg once a day for 12 weeks. Our results showed that MOTS-c treatment significantly alleviated bone loss, as determined by micro-CT examination. Mechanistically, we found that the receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclast differentiation was remarkably inhibited by MOTS-c. Moreover, MOTS-c increased phosphorylated AMPK levels, and compound C, anmore » AMPK inhibitor, could partially abrogate the effects of the MOTS-c on osteoclastogenesis. Thus, our findings provide evidence that MOTS-c may exert as an inhibitor of osteoporosis via AMPK dependent inhibition of osteoclastogenesis. -- Highlights: •MOTS-c decreases OVX-induced bone loss in vivo. •MOTS-c inhibits RANKL-induced osteoclast formation. •MOTS-c inhibits RANKL-induced osteoclast-specific gene expression. •MOTS-c represses osteoclast differentiation via the activation of AMPK.« less
Margulies, B S; DeBoyace, S D; Damron, T A; Allen, M J
2015-10-01
Ewing's sarcoma of bone is a primary childhood malignancy of bone that is treated with X-radiation therapy in combination with surgical excision and chemotherapy. To better study Ewing's sarcoma of bone we developed a novel model of primary Ewing's sarcoma of bone and then treated animals with X-radiation therapy. We identified that uncontrolled tumor resulted in lytic bone destruction while X-radiation therapy decreased lytic bone destruction and increased limb-length asymmetry, a common, crippling complication of X-radiation therapy. Osteoclasts were indentified adjacent to the tumor, however, we were unable to detect RANK-ligand in the Ewing's tumor cells in vitro, which lead us to investigate alternate mechanisms for osteoclast formation. Ewing's sarcoma tumor cells and archival Ewing's sarcoma of bone tumor biopsy samples were shown to express MCSF, which could promote osteoclast formation. Increased monocyte numbers were detected in peripheral blood and spleen in animals with untreated Ewing's sarcoma tumor while monocyte number in animals treated with x-radiation had normal numbers of monocytes. Our data suggest that our Ewing's sarcoma of bone model will be useful in the study Ewing's sarcoma tumor progression in parallel with the effects of chemotherapy and X-radiation therapy. Copyright © 2015 Elsevier Inc. All rights reserved.
Margulies, BS; DeBoyace, SD; Damron, TA; Allen, MJ
2015-01-01
Ewing's sarcoma of bone is a primary childhood malignancy of bone that is treated with X-radiation therapy in combination with surgical excision and chemotherapy. To better study Ewing's sarcoma of bone we developed a novel model of primary Ewing's sarcoma of bone and then treated animals with X-radiation therapy. We identified that uncontrolled tumor resulted in lytic bone destruction while X-radiation therapy decreased lytic bone destruction and increased limb-length asymmetry, a common, crippling complication of X-radiation therapy. Osteoclasts were indentified adjacent to the tumor, however, we were unable to detect RANK-ligand in the Ewing's tumor cells in vitro, which lead us to investigate alternate mechanisms for osteoclast formation. Ewing's sarcoma tumor cells and archival Ewing's sarcoma of bone tumor biopsy samples were shown to express MCSF, which could promote osteoclast formation. Increased monocyte numbers were detected in peripheral blood and spleen in animals with untreated Ewing's sarcoma tumor while monocyte number in animals treated with x-radiation had normal numbers of monocytes. Our data suggest that our Ewing's sarcoma of bone model will be useful in the study Ewing's sarcoma tumor progression in parallel with the effects of chemotherapy and X-radiation therapy. PMID:26051470
Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia
Tamma, Roberto; Sun, Li; Cuscito, Concetta; Lu, Ping; Corcelli, Michelangelo; Li, Jianhua; Colaianni, Graziana; Moonga, Surinder S.; Di Benedetto, Adriana; Grano, Maria; Colucci, Silvia; Yuen, Tony; New, Maria I.; Zallone, Alberta; Zaidi, Mone
2013-01-01
Although hyponatremia is known to be associated with osteoporosis and a high fracture risk, the mechanism through which bone loss ensues has remained unclear. As hyponatremic patients have elevated circulating arginine-vasopressin (AVP) levels, we examined whether AVP can affect the skeleton directly as yet another component of the pituitary-bone axis. Here, we report that the two Avp receptors, Avpr1α and Avpr2, coupled to Erk activation, are expressed in osteoblasts and osteoclasts. AVP injected into wild-type mice enhanced and reduced, respectively, the formation of bone-resorbing osteoclasts and bone-forming osteoblasts. Conversely, the exposure of osteoblast precursors to Avpr1α or Avpr2 antagonists, namely SR49059 or ADAM, increased osteoblastogenesis, as did the genetic deletion of Avpr1α. In contrast, osteoclast formation and bone resorption were both reduced in Avpr1α−/− cultures. This process increased bone formation and reduced resorption resulted in a profound enhancement of bone mass in Avpr1α−/− mice and in wild-type mice injected with SR49059. Collectively, the data not only establish a primary role for Avp signaling in bone mass regulation, but also call for further studies on the skeletal actions of Avpr inhibitors used commonly in hyponatremic patients. PMID:24167258
Leptin regulation of bone resorption by the sympathetic nervous system and CART.
Elefteriou, Florent; Ahn, Jong Deok; Takeda, Shu; Starbuck, Michael; Yang, Xiangli; Liu, Xiuyun; Kondo, Hisataka; Richards, William G; Bannon, Tony W; Noda, Masaki; Clement, Karine; Vaisse, Christian; Karsenty, Gerard
2005-03-24
Bone remodelling, the mechanism by which vertebrates regulate bone mass, comprises two phases, namely resorption by osteoclasts and formation by osteoblasts; osteoblasts are multifunctional cells also controlling osteoclast differentiation. Sympathetic signalling via beta2-adrenergic receptors (Adrb2) present on osteoblasts controls bone formation downstream of leptin. Here we show, by analysing Adrb2-deficient mice, that the sympathetic nervous system favours bone resorption by increasing expression in osteoblast progenitor cells of the osteoclast differentiation factor Rankl. This sympathetic function requires phosphorylation (by protein kinase A) of ATF4, a cell-specific CREB-related transcription factor essential for osteoblast differentiation and function. That bone resorption cannot increase in gonadectomized Adrb2-deficient mice highlights the biological importance of this regulation, but also contrasts sharply with the increase in bone resorption characterizing another hypogonadic mouse with low sympathetic tone, the ob/ob mouse. This discrepancy is explained, in part, by the fact that CART ('cocaine amphetamine regulated transcript'), a neuropeptide whose expression is controlled by leptin and nearly abolished in ob/ob mice, inhibits bone resorption by modulating Rankl expression. Our study establishes that leptin-regulated neural pathways control both aspects of bone remodelling, and demonstrates that integrity of sympathetic signalling is necessary for the increase in bone resorption caused by gonadal failure.
Chen, Chun-Liang; Lee, Chia-Chung; Liu, Fei-Lan; Chen, Tsung-Chih; Ahmed Ali, Ahmed Atef; Chang, Deh-Ming; Huang, Hsu-Shan
2016-07-19
Inhibiting osteoclastogenesis is a promising therapeutic target for treating osteoclast-related diseases. Herein, we synthesized a series of modified salicylanilides and their corresponding 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione and 10-phenyldibenzo[b,f][1,4]oxazepin-11(10H)-one derivatives, and investigated the effects of such compounds on RANKL-induced osteoclast formation. Among them, a salicylanilide derivative (A04) and its 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione derivative (B04) markedly suppressed RANKL-induced osteoclast differentiation and showed no significant cytotoxic effects at doses higher than that required to inhibit osteoclast formation. Both compounds reduced osteoclast formation and bone resorptive activity of osteoclasts in a dose-dependent manner. Further, the anti-osteoclastogenic effects of A04 and B04 may operate through reducing the RANKL-induced nuclear translocation of NFATc1. Accordingly, we present the potent anti-osteoclastogenic compounds A04 and B04 as promising candidates for further optimization as anti-resorptive agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Fujihara, Yuko; Kondo, Hisataka; Noguchi, Toshihide; Togari, Akifumi
2014-04-01
Circadian rhythms are prevalent in bone metabolism. However, the molecular mechanisms involved are poorly understood. Recently, we suggested that output signals from the suprachiasmatic nucleus (SCN) are transmitted from the master circadian rhythm to peripheral osteoblasts through β-adrenergic and glucocorticoid signaling. In this study, we examined how the master circadian rhythm is transmitted to peripheral osteoclasts and the role of clock gene in osteoclast. Mice were maintained under 12-hour light/dark periods and sacrificed at Zeitgeber times 0, 4, 8, 12, 16 and 20. mRNA was extracted from femur (cancellous bone) and analyzed for the expression of osteoclast-related genes and clock genes. Osteoclast-related genes such as cathepsin K (CTSK) and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) showed circadian rhythmicity like clock genes such as period 1 (PER1), PER2 and brain and muscle Arnt-like protein 1 (BMAL1). In an in vitro study, not β-agonist but glucocorticoid treatment remarkably synchronized clock and osteoclast-related genes in cultured osteoclasts. Chromatin immunoprecipitation (ChIP) assay showed the interaction between BMAL1 proteins and promoter region of CTSK and NFATc1. To examine whether endogenous glucocorticoids influence the osteoclast circadian rhythms, mice were adrenalectomized (ADX) and maintained under 12-hour light/dark periods at least two weeks before glucocorticoid injection. A glucocorticoid injection restarted the circadian expression of CTSK and NFATc1 in ADX mice. These results suggest that glucocorticoids mediate circadian timing to peripheral osteoclasts and osteoclast clock contributes to the circadian expression of osteoclast-related genes such as CTSK and NFATc1. Copyright © 2014 Elsevier Inc. All rights reserved.
PLEKHM1/DEF8/RAB7 complex regulates lysosome positioning and bone homeostasis
Fujiwara, Toshifumi; Ye, Shiqiao; Winchell, Caylin G.; Andrews, Norma W.; Voth, Daniel E.; Varughese, Kottayil I.; Mackintosh, Samuel G.; Feng, Yunfeng; Nakamura, Takashi; Manolagas, Stavros C.
2016-01-01
Mutations of the Plekhm1 gene in humans and rats cause osteopetrosis, an inherited bone disease characterized by diminished bone resorption by osteoclasts. PLEKHM1 binds to RAB7 and is critical for lysosome trafficking. However, the molecular mechanisms by which PLEKHM1 regulates lysosomal pathways remain unknown. Here, we generated germline and conditional Plekhm1-deficient mice. These mice displayed no overt abnormalities in major organs, except for an increase in trabecular bone mass. Furthermore, loss of PLEKHM1 abrogated the peripheral distribution of lysosomes and bone resorption in osteoclasts. Mechanistically, we indicated that DEF8 interacts with PLEKHM1 and promotes its binding to RAB7, whereas the binding of FAM98A and NDEL1 with PLEKHM1 connects lysosomes to microtubules. Importantly, suppression of these proteins results in lysosome positioning and bone resorption defects similar to those of Plekhm1-null osteoclasts. Thus, PLHKEM1, DEF8, FAM98A, and NDEL1 constitute a molecular complex that regulates lysosome positioning and secretion through RAB7. PMID:27777970
Bone marrow Th17 TNFα cells induce osteoclast differentiation, and link bone destruction to IBD.
Ciucci, Thomas; Ibáñez, Lidia; Boucoiran, Agathe; Birgy-Barelli, Eléonore; Pène, Jérôme; Abou-Ezzi, Grazia; Arab, Nadia; Rouleau, Matthieu; Hébuterne, Xavier; Yssel, Hans; Blin-Wakkach, Claudine; Wakkach, Abdelilah
2015-07-01
Under both physiological and pathological conditions, bone volume is determined by the rate of bone formation by osteoblasts and bone resorption by osteoclasts. Excessive bone loss is a common complication of human IBD whose mechanisms are not yet completely understood. Despite the role of activated CD4(+) T cells in inflammatory bone loss, the nature of the T cell subsets involved in this process in vivo remains unknown. The aim of the present study was to identify the CD4(+) T cell subsets involved in the process of osteoclastogenesis in vivo, as well as their mechanism of action. CD4(+) T cells were studied in IL10-/- mice and Rag1-/- mice adoptively transferred with naive CD4(+)CD45RB(high) T cells, representing two well-characterised animal models of IBD and in patients with Crohn's disease. They were phenotypically and functionally characterised by flow cytometric and gene expression analysis, as well as in in vitro cocultures with osteoclast precursors. In mice, we identified bone marrow (BM) CD4(+) T cells producing interleukin (IL)-17 and tumour necrosis factor (TNF)-α as an osteoclastogenic T cell subset referred to as Th17 TNF-α(+) cells. During chronic inflammation, these cells migrate to the BM where they survive in an IL-7-dependent manner and where they promote the recruitment of inflammatory monocytes, the main osteoclast progenitors. A population equivalent to the Th17 TNF-α(+) cells was also detected in patients with Crohn's disease. Our results highlight the osteoclastogenic function of the Th17 TNF-α(+) cells that contribute to bone loss in vivo in IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Valverde, Paloma; Zhang, Jin; Fix, Amanda; Zhu, Ji; Ma, Wenli; Tu, Qisheng; Chen, Jake
2008-01-01
The purpose of this study was to determine the effects of bone sialoprotein (BSP) overexpression in bone metabolism in vivo by using a homozygous transgenic mouse line that constitutively overexpresses mouse BSP cDNA driven by the cytomegalovirus (CMV) promoter. CMV-BSP transgenic (TG) mice and wildtype mice were weighed, and their length, BMD, and trabecular bone volume were measured. Serum levels of RANKL, osteocalcin, osteoprotegerin (OPG), TRACP5b, and PTH were determined. Bone histomorphometry, von Kossa staining, RT-PCR analysis, Western blot, MTS assay, in vitro mineralization assay, and TRACP staining were also performed to delineate phenotypes of this transgenic mouse line. Compared with wildtype mice, adult TG mice exhibit mild dwarfism, lower values of BMD, and lower trabecular bone volume. TG mice serum contained increased calcium levels and decreased PTH levels, whereas the levels of phosphorus and magnesium were within normal limits. TG mice serum also exhibited lower levels of osteoblast differentiation markers and higher levels of markers, indicating osteoclastic activity and bone resorption. H&E staining, TRACP staining, and bone histomorphometry showed that adult TG bones were thinner and the number of giant osteoclasts in TG mice was higher, whereas there were no significant alterations in osteoblast numbers between TG mice and WT mice. Furthermore, the vertical length of the hypertrophic zone in TG mice was slightly enlarged. Moreover, ex vivo experiments indicated that overexpression of BSP decreased osteoblast population and increased osteoclastic activity. Partly because of its effects in enhancing osteoclastic activity and decreasing osteoblast population, BSP overexpression leads to an uncoupling of bone formation and resorption, which in turn results in osteopenia and mild dwarfism in mice. These findings are expected to help the development of therapies to metabolic bone diseases characterized by high serum level of BSP. PMID:18597627
Zhang, Zhifang; Shively, John E
2010-11-15
Bone generation and maintenance involve osteoblasts, osteoclasts, and osteocytes which originate from unique precursors and rely on key growth factors for differentiation. However, an incomplete understanding of bone forming cells during wound healing has led to an unfilled clinical need such as nonunion of bone fractures. Since circulating monocytes are often recruited to sites of injury and may differentiate into various cell types including osteoclasts, we investigated the possibility that circulating monocytes in the context of tissue injury may also contribute to bone repair. In particular, we hypothesized that LL-37 (produced from hCAP-18, cathelicidin), which recruits circulating monocytes during injury, may play a role in bone repair. Treatment of monocytes from blood with LL-37 for 6 days resulted in their differentiation to large adherent cells. Growth of LL-37-differentiated monocytes on osteologic discs reveals bone-like nodule formation by scanning electron microscopy (SEM). In vivo transplantation studies in NOD/SCID mice show that LL-37-differentiated monocytes form bone-like structures similar to endochondral bone formation. Importantly, LL-37-differentiated monocytes are distinct from conventional monocyte-derived osteoclasts, macrophages, and dendritic cells and do not express markers of the mesenchymal stem cells (MSC) lineage, distinguishing them from the conventional precursors of osteoblasts. Furthermore, LL-37 differentiated monocytes express intracellular proteins of both the osteoblast and osteoclast lineage including osteocalcin (OC), osteonectin (ON), bone sialoprotein II (BSP II), osteopontin (OP), RANK, RANKL, MMP-9, tartrate resistant acid phosphatase (TRAP), and cathepsin K (CK). Blood derived monocytes treated with LL-37 can be differentiated into a novel bone forming cell that functions both in vitro and in vivo. We propose the name monoosteophil to indicate their monocyte derived lineage and their bone forming phenotype. These cells may have wide ranging implications in the clinic including repair of broken bones and treatment of osteoporosis.
Layh-Schmitt, Gerlinde; Yang, Eva Y.; Kwon, Grace; Colbert, Robert A.
2013-01-01
Objective To determine whether HLA-B27 expression alters the response of bone marrow monocytes (BMMo) from HLA-B27/human β2-microglobulin transgenic (B27-Tg) rats to tumor necrosis factor-α (TNFα), and whether this affects cells involved in bone homeostasis. Methods BMMo were treated with receptor activator of NF-κB ligand or TNFα to promote osteoclast formation. Osteoclasts were quantified by counting. Gene expression was measured using quantitative polymerase chain reaction, and protein was detected by enzyme-linked immunosorbent assay, immunoblotting, or immunofluorescence. Effects of endogenously produced cytokines on osteoclast formation were determined with neutralizing antibodies. Results TNFα enhanced osteoclast formation 2.5-fold in HLA-B27-expressing cells compared to either wild type or HLA-B7/human β2-microglobulin expressing monocytes. TNFα induced approximately 4-fold upregulation of HLA-B27, which was associated with accumulation of misfolded heavy chains, binding of the ER chaperone BiP, and activation of an ER stress response, which was not seen with HLA-B7. No differences were seen with RANKL-induced osteoclastogenesis. Enhanced interleukin-1α (IL-1α) production from ER stressed B27-Tg BMMo was found to be necessary and sufficient for enhanced osteoclast formation. However, B27-Tg BMMo also produced more interferon-β (IFNβ), which attenuated the effect of IL-1α on osteoclast formation. Conclusions HLA-B27-induced ER stress alters the response of BMMo from B27-Tg rats to TNFα, which is associated with enhanced production of IL-1α and IFNβ, cytokines that exhibit opposing effects on osteoclast formation. The altered response of cells expressing HLA-B27 to pro-inflammatory cytokines suggests that this MHC class I allele may contribute to the pathogenesis of spondyloarthritis and its unique phenotype through downstream effects involving alterations in bone homeostasis. PMID:23666508
Jacome-Galarza, Christian E; Lee, Sun-Kyeong; Lorenzo, Joseph A; Aguila, Hector Leonardo
2011-01-01
Parathyroid hormone (PTH) increases both the number of osteoclast in bone and the number of early hematopoietic stem cells (HSCs) in bone marrow. We previously characterized the phenotype of multiple populations of bone marrow cells with in vitro osteoclastogenic potential in mice. Here we examined whether intermittent administration of PTH influences these osteoclast progenitor (OCP) populations. C57BL/6 mice were treated with daily injections of bPTH(1–34) (80 μg/kg/day) for 7 or 14 days. We found that PTH caused a significant increase in the percentage of TN/CD115+CD117high and TN/CD115+CD117int cells ( p <.05) in bone marrow on day 7. In contrast, PTH decreased the absolute number of TN/CD115+CD117low cells by 39% on day 7 ( p <.05). On day 14, there was no effect of PTH on osteoclast progenitor distribution in vivo. However, PTH treatment for 7 and 14 days did increase receptor activator of NF-κB ligand (RANKL)– and macrophage colony-stimulating factor (M-CSF)–stimulated in vitro osteoclastogenesis and bone resorption in TN/CD115+ cells. In the periphery, 14 days of treatment increased the percentage and absolute numbers of HSCs (Lin−CD117+Sca-1+) in the spleen ( p <.05). These data correlated with an increase in the percent and absolute numbers of HSCs in bone marrow on day 14 ( p <.05). Interestingly, the effects on hematopoietic progenitors do not depend on osteoclast resorption activity. These results suggest that in vivo PTH treatment increased in vitro osteoclastogenesis and resorption without altering the number of osteoclast precursors. This implies that in vivo PTH induces sustained changes, possibly through an epigenetic mechanism, in the in vitro responsiveness of the cells to M-CSF and RANKL. PMID:21611963
Germaini, Marie-Michèle; Detsch, Rainer; Grünewald, Alina; Magnaudeix, Amandine; Lalloue, Fabrice; Boccaccini, Aldo R; Champion, Eric
2017-06-06
The influence of carbonate substitution (4.4 wt%, mixed A/B type) in hydroxyapatite ceramics for bone remodeling scaffolds was investigated by separately analyzing the response of pre-osteoblasts and osteoclast-like cells. Carbonated hydroxyapatite (CHA) (Ca 9.5 (PO 4 ) 5.5 (CO 3 ) 0.5 (OH)(CO 3 ) 0.25 -CHA), mimicking the chemical composition of natural bone mineral, and pure hydroxyapatite (HA) (Ca 10 (PO 4 ) 6 (OH) 2 -HA) porous ceramics were processed to obtain a similar microstructure and surface physico-chemical properties (grain size, porosity ratio and pore size, surface roughness and zeta potential). The biological behavior was studied using MC3T3-E1 pre-osteoblastic and RAW 264.7 monocyte/macrophage cell lines. Chemical dissolution in the culture media and resorption lacunae produced by osteoclasts occur with both HA and CHA ceramics, but CHA exhibits much higher dissolution and greater bioresorption ability. CHA ceramics promoted a significantly higher level of pre-osteoblast proliferation. Osteoblastic differentiation, assessed by qRT-PCR of RUNX2 and COLIA2, and pre-osteoclastic proliferation and differentiation were not significantly different on CHA or HA ceramics but cell viability and metabolism were significantly greater on CHA ceramics. Thus, the activity of both osteoclast-like and osteoblastic cells was influenced by the carbonate substitution in the apatite structure. Furthermore, CHA showed a particularly interesting balance between biodegradation, by osteoclasts and chemical dissolution, and osteogenesis through osteoblasts' activity, to stimulate bone regeneration. It is hypothesized that this amount of 4.4 wt% carbonate substitution leads to an adapted concentration of calcium in the fluid surrounding the ceramic to stimulate the activity of cells. These results highlight the superior biological behavior of microporous 4.4 wt% A/B CHA ceramics that could beneficially replace the commonly used HA of biphasic calcium phosphates for future applications in bone tissue engineering.
do Reis, Luciene Machado; Kessler, Catherine B.; Adams, Douglas J.; Lorenzo, Joseph; Jorgetti, Vanda; Delany, Anne M.
2008-01-01
Matricellular proteins play a unique role in the skeleton as regulators of bone remodeling, and the matricellular protein osteonectin (SPARC, BM-40) is the most abundant non-collagenous protein in bone. In the absence of osteonectin, mice develop progressive low turnover osteopenia, particularly affecting trabecular bone. Polymorphisms in a regulatory region of the osteonectin gene are associated with bone mass in a subset of idiopathic osteoporosis patients, and these polymorphisms likely regulate osteonectin expression. Thus it is important to determine how osteonectin gene dosage affects skeletal function. Moreover, intermittent administration of parathyroid hormone (PTH) (1-34) is the only anabolic therapy approved for the treatment of osteoporosis, and it is critical to understand how modulators of bone remodeling, such as osteonectin, affect skeletal response to anabolic agents. In this study, 10 week old female wild type, osteonectin-haploinsufficient, and osteonectin-null mice (C57Bl/6 genetic background) were given 80 μg/kg body weight/day PTH(1-34) for 4 weeks. Osteonectin gene dosage had a profound effect on bone microarchitecture. The connectivity density of trabecular bone in osteonectin-haploinsufficient mice was substantially decreased compared with that of wild type mice, suggesting compromised mechanical properties. Whereas mice of each genotype had a similar osteoblastic response to PTH treatment, the osteoclastic response was accentuated in osteonectin-haploinsufficient and osteonectin-null mice. Eroded surface and osteoclast number were significantly higher in PTH-treated osteonectin-null mice, as was endosteal area. In vitro studies confirmed that PTH induced the formation of more osteoclast-like cells in marrow from osteonectin-null mice compared with wild type. PTH treated osteonectin-null bone marrow cells expressed more RANKL mRNA compared with wild type. However, the ratio of RANKL:OPG mRNA was somewhat lower in PTH treated osteonectin-null cultures. Increased expression of RANKL in response to PTH could contribute to the accentuated osteoclastic response in osteonectin-/- mice, but other mechanisms are also likely to be involved. The molecular mechanisms by which PTH elicits bone anabolic vs. bone catabolic effects remain poorly understood. Our results imply that osteonectin levels may play a role in modulating the balance of bone formation and resorption in response to PTH. PMID:18499553
Benis, K A; Schneider, G B
1996-10-15
Osteopetrosis is a heterogeneous group of bone disorders characterized by the failure of osteoclasts to resorb bone and by several immunological defects including macrophage dysfunction. Two compounds, colony-stimulating factor-1 (CSF-1) and vitamin D-binding protein-macrophage activating factor (DBP-MAF) were used in the present study to evaluate their effects on the peritoneal population of cells and on cells within the bone marrow microenvironment in normal and incisors absent (ia) osteopetrotic rats. Previous studies in this laboratory have demonstrated that administration of DBP-MAF to newborn ia animals results in a substantial increase in bone marrow cavity size due to upregulated osteoclast function. To study the effects of these compounds on the macrophage/osteoclast precursors, DBP-MAF, CSF-1, and the combination of these compounds were given to newborn ia and normal littermate animals. Both the normal and mutant phenotypes responded similarly when treated with these compounds. Rats exhibited a profound shift toward the macrophage lineage from the neutrophil lineage when compared with vehicle-treated control animals after treatment with these compounds. In the in vivo peritoneal lavage study, animals received injections of CSF-1, DBP-MAF or DBP-MAF/CSF-1 over a 4-week period. The various types of cells in the peritoneal cavity were then enumerated. The in vitro study consisted of cells isolated from the bone marrow microenvironment and cultured on feeder layers of CSF-1, DBP-MAF, or DBP-MAF/CSF-1 for colony enumeration. The increase in macrophage numbers at the expense of neutrophil numbers could be seen in both the in vivo and in vitro experiments. The macrophage/osteoclast and neutrophil lineages have a common precursor, the granulocyte/macrophage colony-forming cell (GM-CFC). With the addition of CSF-1, the GM-CFC precursor may be induced into the macrophage/osteoclast lineage rather than the granulocyte lineage. This increased pool of cells in the macrophage/osteoclast lineage can be functionally upregulated with the subsequent addition of DBP-MAF to perform the activities of phagocytosis and bone resorption. The in vitro data also showed that DBP-MAF did not support colony development as in CSF-1 or the combination treatment. The recruitment and activation of cells into the macrophage/ osteoclast lineage may help to correct the bone and immune defects found in diseases demonstrating a significant lack of myeloid cells, as well as neutrophilia disorders and the disease, osteopetrosis.
Regulatory mechanism of food factors in bone metabolism and prevention of osteoporosis.
Yamaguchi, Masayoshi
2006-11-01
Aging induces a decrease in bone mass, and osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public health problem. Bone loss with increasing age may be due to decreased bone formation and increased bone resorption. Pharmacologic and nutritional factors may prevent bone loss with aging, although chemical compounds in food and plants which act on bone metabolism are poorly understood. We have found that isoflavones (including genistein and daidzein), which are contained in soybeans, have a stimulatory effect on osteoblastic bone formation and an inhibitory effect on osteoclastic bone resorption, thereby increasing bone mass. Menaquinone-7, an analogue of vitamin K(2) which is abundant in fermented soybeans, has been demonstrated to stimulate osteoblastic bone formation and to inhibit osteoclastic bone resorption. Of various carotenoids, beta-cryptoxanthin, which is abundant in Satsuma mandarin (Citrus unchiu MARC), has a stimulatory effect on osteoblastic bone formation and an inhibitory effect on osteoclastic bone resorption. The supplementation of these factors has a preventive effect on bone loss induced by ovariectomy in rats, which are an animal model of osteoporosis, and their intake has been shown to have a stimulatory effect on bone mass in humans. Factors with an anabolic effect on bone metabolism were found in extracts obtained from wasabi leafstalk (Wasabi japonica MATSUM), the marine alga Sargassum horneri, and bee pollen Cistus ladaniferus. Phytocomponent p-hydroxycinnamic acid was also found to have an anabolic effect on bone metabolism. Food chemical factors thus play a role in bone health and may be important in the prevention of bone loss with increasing age.
Miyamoto, Takeshi
2013-07-01
Macrophages play a pivotal role in host defense against multiple foreign materials such as bacteria, parasites and artificial devices. Some macrophage lineage cells, namely osteoclasts and foreign body giant cells (FBGCs), form multi-nuclear giant cells by the cell-cell fusion of mono-nuclear cells. Osteoclasts are bone-resorbing cells, and are formed in the presence of RANKL on the surface of bones, while FBGCs are formed in the presence of IL-4 or IL-13 on foreign materials such as artificial joints, catheters and parasites. Recently, fusiogenic mechanisms and the molecules required for the cell-cell fusion of these macrophage lineage cells were, at least in part, clarified. Dendritic cell specific transmembrane protein (DC-STAMP) and osteoclast stimulatory transmembrane protein (OC-STAMP), both of which comprise seven transmembrane domains, are required for both osteoclast and FBGC cell-cell fusion. STAT6 was demonstrated to be required for the cell-cell fusion of FBGCs but not osteoclasts. In this review, advances in macrophage cell-cell fusion are discussed.
Microgravity promotes osteoclast activity in medaka fish reared at the international space station.
Chatani, Masahiro; Mantoku, Akiko; Takeyama, Kazuhiro; Abduweli, Dawud; Sugamori, Yasutaka; Aoki, Kazuhiro; Ohya, Keiichi; Suzuki, Hiromi; Uchida, Satoko; Sakimura, Toru; Kono, Yasushi; Tanigaki, Fumiaki; Shirakawa, Masaki; Takano, Yoshiro; Kudo, Akira
2015-09-21
The bone mineral density (BMD) of astronauts decreases specifically in the weight-bearing sites during spaceflight. It seems that osteoclasts would be affected by a change in gravity; however, the molecular mechanism involved remains unclear. Here, we show that the mineral density of the pharyngeal bone and teeth region of TRAP-GFP/Osterix-DsRed double transgenic medaka fish was decreased and that osteoclasts were activated when the fish were reared for 56 days at the international space station. In addition, electron microscopy observation revealed a low degree of roundness of mitochondria in osteoclasts. In the whole transcriptome analysis, fkbp5 and ddit4 genes were strongly up-regulated in the flight group. The fish were filmed for abnormal behavior; and, interestingly, the medaka tended to become motionless in the late stage of exposure. These results reveal impaired physiological function with a change in mechanical force under microgravity, which impairment was accompanied by osteoclast activation.
Microgravity promotes osteoclast activity in medaka fish reared at the international space station
Chatani, Masahiro; Mantoku, Akiko; Takeyama, Kazuhiro; Abduweli, Dawud; Sugamori, Yasutaka; Aoki, Kazuhiro; Ohya, Keiichi; Suzuki, Hiromi; Uchida, Satoko; Sakimura, Toru; Kono, Yasushi; Tanigaki, Fumiaki; Shirakawa, Masaki; Takano, Yoshiro; Kudo, Akira
2015-01-01
The bone mineral density (BMD) of astronauts decreases specifically in the weight-bearing sites during spaceflight. It seems that osteoclasts would be affected by a change in gravity; however, the molecular mechanism involved remains unclear. Here, we show that the mineral density of the pharyngeal bone and teeth region of TRAP-GFP/Osterix-DsRed double transgenic medaka fish was decreased and that osteoclasts were activated when the fish were reared for 56 days at the international space station. In addition, electron microscopy observation revealed a low degree of roundness of mitochondria in osteoclasts. In the whole transcriptome analysis, fkbp5 and ddit4 genes were strongly up-regulated in the flight group. The fish were filmed for abnormal behavior; and, interestingly, the medaka tended to become motionless in the late stage of exposure. These results reveal impaired physiological function with a change in mechanical force under microgravity, which impairment was accompanied by osteoclast activation. PMID:26387549
Kassem, Ali; Lindholm, Catharina; Lerner, Ulf H
2016-01-01
Severe Staphylococcus aureus (S. aureus) infections pose an immense threat to population health and constitute a great burden for the health care worldwide. Inter alia, S. aureus septic arthritis is a disease with high mortality and morbidity caused by destruction of the infected joints and systemic bone loss, osteoporosis. Toll-Like receptors (TLRs) are innate immune cell receptors recognizing a variety of microbial molecules and structures. S. aureus recognition via TLR2 initiates a signaling cascade resulting in production of various cytokines, but the mechanisms by which S. aureus causes rapid and excessive bone loss are still unclear. We, therefore, investigated how S. aureus regulates periosteal/endosteal osteoclast formation and bone resorption. S. aureus stimulation of neonatal mouse parietal bone induced ex vivo bone resorption and osteoclastic gene expression. This effect was associated with increased mRNA and protein expression of receptor activator of NF-kB ligand (RANKL) without significant change in osteoprotegerin (OPG) expression. Bone resorption induced by S. aureus was abolished by OPG. S. aureus increased the expression of osteoclastogenic cytokines and prostaglandins in the parietal bones but the stimulatory effect of S. aureus on bone resorption and Tnfsf11 mRNA expression was independent of these cytokines and prostaglandins. Stimulation of isolated periosteal osteoblasts with S. aureus also resulted in increased expression of Tnfsf11 mRNA, an effect lost in osteoblasts from Tlr2 knockout mice. S. aureus stimulated osteoclastogenesis in isolated periosteal cells without affecting RANKL-stimulated resorption. In contrast, S. aureus inhibited RANKL-induced osteoclast formation in bone marrow macrophages. These data show that S. aureus enhances bone resorption and periosteal osteoclast formation by increasing osteoblast RANKL production through TLR2. Our study indicates the importance of using different in vitro approaches for studies of how S. aureus regulates osteoclastogenesis to obtain better understanding of the complex mechanisms of S. aureus induced bone destruction in vivo. PMID:27311019
Mousa, Aisha; Cui, Cui; Song, Aimei; Myneni, Vamsee D; Sun, Huifang; Li, Jin Jin; Murshed, Monzur; Melino, Gerry; Kaartinen, Mari T
2017-01-01
Appropriate bone mass is maintained by bone-forming osteoblast and bone-resorbing osteoclasts. Mesenchymal stem cell (MSC) lineage cells control osteoclastogenesis via expression of RANKL and OPG (receptor activator of nuclear factor κB ligand and osteoprotegerin), which promote and inhibit bone resorption, respectively. Protein crosslinking enzymes transglutaminase 2 (TG2) and Factor XIII-A (FXIII-A) have been linked to activity of myeloid and MSC lineage cells; however, in vivo evidence has been lacking to support their function. In this study, we show in mice that TG2 and FXIII-A control monocyte-macrophage cell differentiation into osteoclasts as well as RANKL production in MSCs and in adipocytes. Long bones of mice lacking TG2 and FXIII-A transglutaminases, show compromised biomechanical properties and trabecular bone loss in axial and appendicular skeleton. This was caused by increased osteoclastogenesis, a cellular phenotype that persists in vitro. The increased potential of TG2 and FXIII-A deficient monocytes to form osteoclasts was reversed by chemical inhibition of TG activity, which revealed the presence of TG1 in osteoclasts and assigned different roles for the TGs as regulators of osteoclastogenesis. TG2- and FXIII-A-deficient mice had normal osteoblast activity, but increased bone marrow adipogenesis, MSCs lacking TG2 and FXIII-A showed high adipogenic potential and significantly increased RANKL expression as well as upregulated TG1 expression. Chemical inhibition of TG activity in the null cells further increased adipogenic potential and RANKL production. Altered differentiation of TG2 and FXIII-A null MSCs was associated with plasma fibronectin (FN) assembly defect in cultures and FN retention in serum and marrow in vivo instead of assembly into bone. Our findings provide new functions for TG2, FXIII-A and TG1 in bone cells and identify them as novel regulators of bone mass, plasma FN homeostasis, RANKL production and myeloid and MSC cell differentiation. PMID:28387755
Evaluation of bone remodeling in regard to the age of scaphoid non-unions.
Rein, Susanne; Hanisch, Uwe; Schaller, Hans-Eberhard; Zwipp, Hans; Rammelt, Stefan; Weindel, Stefan
2016-07-18
To analyse bone remodeling in regard to the age of scaphoid non-unions (SNU) with immunohistochemistry. Thirty-six patients with symptomatic SNU underwent surgery with resection of the pseudarthrosis. The resected material was evaluated histologically after staining with hematoxylin-eosin (HE), tartrate resistant acid phosphatase (TRAP), CD 68, osteocalcin (OC) and osteopontin (OP). Histological examination was performed in a blinded fashion. The number of multinuclear osteoclasts in the TRAP-staining correlated with the age of the SNU and was significantly higher in younger SNU (P = 0.034; r = 0.75). A higher number of OP-immunoreactive osteoblasts significantly correlated with a higher number of OC-immunoreactive osteoblasts (P = 0.001; r = 0.55). Furthermore, a greater number of OP-immunoreactive osteoblasts correlated significantly with a higher number of OP-immunoreactive multinuclear osteoclasts (P = 0.008; r = 0.43). SNU older than 6 mo showed a significant decrease of the number of fibroblasts (P = 0.04). Smoking and the age of the patients had no influence on bone remodeling in SNU. Multinuclear osteoclasts showed a significant decrease in relation to the age of SNU. However, most of the immunhistochemical findings of bone remodeling do not correlate with the age of the SNU. This indicates a permanent imbalance of bone formation and resorption as indicated by a concurrent increase in both osteoblast and osteoclast numbers. A clear histological differentiation into phases of bone remodeling in SNU is not possible.
Evaluation of bone remodeling in regard to the age of scaphoid non-unions
Rein, Susanne; Hanisch, Uwe; Schaller, Hans-Eberhard; Zwipp, Hans; Rammelt, Stefan; Weindel, Stefan
2016-01-01
AIM: To analyse bone remodeling in regard to the age of scaphoid non-unions (SNU) with immunohistochemistry. METHODS: Thirty-six patients with symptomatic SNU underwent surgery with resection of the pseudarthrosis. The resected material was evaluated histologically after staining with hematoxylin-eosin (HE), tartrate resistant acid phosphatase (TRAP), CD 68, osteocalcin (OC) and osteopontin (OP). Histological examination was performed in a blinded fashion. RESULTS: The number of multinuclear osteoclasts in the TRAP-staining correlated with the age of the SNU and was significantly higher in younger SNU (P = 0.034; r = 0.75). A higher number of OP-immunoreactive osteoblasts significantly correlated with a higher number of OC-immunoreactive osteoblasts (P = 0.001; r = 0.55). Furthermore, a greater number of OP-immunoreactive osteoblasts correlated significantly with a higher number of OP-immunoreactive multinuclear osteoclasts (P = 0.008; r = 0.43). SNU older than 6 mo showed a significant decrease of the number of fibroblasts (P = 0.04). Smoking and the age of the patients had no influence on bone remodeling in SNU. CONCLUSION: Multinuclear osteoclasts showed a significant decrease in relation to the age of SNU. However, most of the immunhistochemical findings of bone remodeling do not correlate with the age of the SNU. This indicates a permanent imbalance of bone formation and resorption as indicated by a concurrent increase in both osteoblast and osteoclast numbers. A clear histological differentiation into phases of bone remodeling in SNU is not possible. PMID:27458552
Duan, Xiaohong; Liu, Jin; Zheng, Xueni; Wang, Zhe; Zhang, Yanli; Hao, Ying; Yang, Tielin; Deng, Hongwen
2016-01-01
Vacuolar-type H +-ATPase (V-ATPase) is a highly conserved, ancient enzyme that couples the energy of ATP hydrolysis to proton transport across vesicular and plasma membranes of eukaryotic cells. Previously reported mutations of various V-ATPase subunits are associated with increased bone density. We now show that haploinsufficiency for the H subunit of the V1 domain (ATP6V1H) is associated with osteoporosis in humans and mice. A genome-wide SNP array analysis of 1625 Han Chinese found that 4 of 15 tag SNPs (26.7%) within ATP6V1H were significantly associated with low spine bone mineral density. Atp6v1h+/- knockout mice generated by the CRISPR/Cas9 technique had decreased bone remodeling and a net bone matrix loss. Atp6v1h+/- osteoclasts showed impaired bone formation and increased bone resorption. The increased intracellular pH of Atp6v1h+/- osteoclasts downregulated TGF-β1 activation, thereby reducing induction of osteoblast formation but the bone mineralization was not altered. However, bone formation was reduced more than bone resorption. Our data provide evidence that partial loss of ATP6V1H function results in osteoporosis/osteopenia. We propose that defective osteoclast formation triggers impaired bone formation by altering bone remodeling. In the future, ATP6V1H might, therefore, serve as a target for the therapy of osteoporosis. PMID:27924156
Complex osteoclastogenic inductive effects of nicotine over hydroxyapatite.
Costa-Rodrigues, Joao; Rocha, Isabel; Fernandes, Maria H
2018-02-01
Cigarette smoke is associated to pathological weakening of bone tissue, being considered an important playmaker in conditions such as osteoporosis and periodontal bone loss. In addition, it is also associated with an increased risk of failure in bone regeneration strategies. The present work aimed to characterize the effects of nicotine on human osteoclastogenesis over a hydroxyapatite substrate. Osteoclast precursors were maintained in the absence or presence of the osteoclastogenesis enhancers M-CSF and RANKL, and were further treated with nicotine levels representative of the concentrations observed in the plasma and saliva of smokers. It was observed that nicotine at low concentrations elicit an increase in osteoclast differentiation, but only in the presence of M-CSF and RANKL it was also able to significantly increase the resorbing ability of osteoclasts. A slight downregulation of NFkB pathway and an increase in the production of TNF-α and, particularly PGE2, were involved in the observed effects of nicotine. At high concentrations, nicotine revealed cytotoxic effects, causing a decrease in cell density. In conclusion, nicotine at levels found in the plasma of the smokers, has the ability to act directly on osteoclast precursors, inducing its osteoclastogenic differentiation. The stimulatory behavior appears to be dependent on the stage of osteoclastic differentiation of the precursor cells, which means, in the absence of M-CSF and RANKL, it only favors the initial stages of osteoclast differentiation, while in the presence of the growth factors, a significant increase in their resorbing ability is also achieved. © 2017 Wiley Periodicals, Inc.
Heervä, Eetu; Alanne, Maria H; Peltonen, Sirkku; Kuorilehto, Tommi; Hentunen, Teuvo; Väänänen, Kalervo; Peltonen, Juha
2010-09-01
Neurofibromatosis 1 syndrome (NF1) presents with skeletal involvement suggesting that altered bone dynamics is associated with NF1. Histological analysis of three cases of NF1-related pseudarthrosis revealed numerous osteoclasts in contact with adjacent bone, and within the pseudarthrosis tissue itself. These findings prompted us to evaluate the differentiation and resorption capacity of NF1-osteoclast like cells (OLCs) in vitro. Osteoclast progenitors were isolated from peripheral blood of 17 patients with NF1 and allowed to differentiate into OLCs on bone slices. The following differences were found between NF1 and control samples: samples from NF1 patients resulted in a higher number of resorbing OLCs; NF1 OLCs were larger in size; their nuclei were more numerous; actin rings were more frequent; and the resorption pits in NF1 samples were more numerous and larger. Bone resorption markers revealed that the resorption activity in NF1 OLC cultures was approximately two times higher than in controls. Following deprivation from serum, the number of NF1 OLCs remained essentially the same during 24h, whereas the number of control OLCs was dramatically reduced during the same time. Three patients had NF1-related lytic bone lesions, and their in vitro results differed from those of other patients. Our results demonstrate that OLCs derived from blood of patients with NF1 display elevated resorption activity under conditions isolated from microenvironment operative in vivo. Thus, increased osteoclast activity may be a phenotypic property of the NF1 syndrome, and at least in part explain selected skeletal findings in NF1, such as osteoporosis/osteopenia. Copyright 2010 Elsevier Inc. All rights reserved.
Jin, Zixue; Wei, Wei; Yang, Marie; Du, Yang; Wan, Yihong
2014-01-01
SUMMARY Mitochondrial complex I (CI) deficiency is associated with multiple neurological and metabolic disorders. However, its effect on innate immunity and bone remodeling is unclear. Using deletion of the essential CI subunit Ndufs4 as a model for mitochondrial dysfunction, we report that mitochondria suppress macrophage activation and inflammation while promoting osteoclast differentiation and bone resorption via both cell-autonomous and systemic regulation. Global Ndufs4 deletion causes systemic inflammation and osteopetrosis. Hematopoietic Ndufs4 deletion causes an intrinsic lineage shift from osteoclast to macrophage. Liver Ndufs4 deletion causes a metabolic shift from fatty acid oxidation to glycolysis, accumulating fatty acids and lactate (FA/LAC) in circulation. FA/LAC further activates Ndufs4−/− macrophages via ROS induction, and diminishes osteoclast lineage commitment in Ndufs4−/− progenitors; both inflammation and osteopetrosis in Ndufs4−/− mice are attenuated by TLR4/2 deletion. Together, these findings reveal mitochondrial CI as a critical rheostat of innate immunity and skeletal homeostasis. PMID:25130399
Yamaguchi, Masayoshi
2016-10-01
Bone homeostasis is maintained through a balance between osteoblastic bone formation and osteoclastic bone resorption. Bone loss with aging is induced by decreasing in osteoblastic bone formation and increasing in osteoclastic bone resorption, thereby leading to osteoporosis. Osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public heath problem. Pharmacologic and nutritional factors may play a role in the prevention and treatment of bone loss with aging. p-Hydroxycinnamic acid (HCA), which stimulates bone mineralization in mouse bone tissues in vitro, has been found to be present in the leafstalk of wasabi (Wasabi japonica MATSUM) among various food and plants. Other phenolic acids including cinnamic acid, ferulic acid, caffeic acid and 3,4-dimethoxycinnamic acid did not have osteogenic effects. HCA was demonstrated to stimulate osteoblastic bone formation and suppresses osteoclastic bone resorption in vitro by antagonizing activation of the nuclear factor kappa B. Oral administration of HCA was found to exhibit restorative effects on bone loss induced by ovariectomy and diabetic states, supporting a role in the treatment of osteoporosis. Moreover, HCA was demonstrated to prevent the suppressed osteoblastic mineralization and the enhanced osteoclastogenesis in mouse bone marrow cells cocultured with bone metastatic MDA-MB-231 human breast cancer cells in vitro. The botanical molecule HCA, as a new osteogenic agent, is suggested to play a role in the treatment of cancer bone metastases. This review will discuss an advanced recent finding that HCA may be a useful agent to treat bone metabolic disorder.
Bone formation: roles of genistein and daidzein
USDA-ARS?s Scientific Manuscript database
Bone remodeling consists of a balance between bone formation by osteoblasts and bone resorption by osteoclasts. Osteoporosis is the result of increased bone resorption and decreased bone formation causing a decreased bone mass density, loss of bone microarchitecture, and an increased risk of fractu...
Role of nutritional zinc in the prevention of osteoporosis.
Yamaguchi, Masayoshi
2010-05-01
Zinc is known as an essential nutritional factor in the growth of the human and animals. Bone growth retardation is a common finding in various conditions associated with dietary zinc deficiency. Bone zinc content has been shown to decrease in aging, skeletal unloading, and postmenopausal conditions, suggesting its role in bone disorder. Zinc has been demonstrated to have a stimulatory effect on osteoblastic bone formation and mineralization; the metal directly activates aminoacyl-tRNA synthetase, a rate-limiting enzyme at translational process of protein synthesis, in the cells, and it stimulates cellular protein synthesis. Zinc has been shown to stimulate gene expression of the transcription factors runt-related transcription factor 2 (Runx2) that is related to differentiation into osteoblastic cells. Moreover, zinc has been shown to inhibit osteoclastic bone resorption due to inhibiting osteoclast-like cell formation from bone marrow cells and stimulating apoptotic cell death of mature osteoclasts. Zinc has a suppressive effect on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-induced osteoclastogenesis. Zinc transporter has been shown to express in osteoblastic and osteoclastic cells. Zinc protein is involved in transcription. The intake of dietary zinc causes an increase in bone mass. beta-Alanyl-L: -histidinato zinc (AHZ) is a zinc compound, in which zinc is chelated to beta-alanyl-L: -histidine. The stimulatory effect of AHZ on bone formation is more intensive than that of zinc sulfate. Zinc acexamate has also been shown to have a potent-anabolic effect on bone. The oral administration of AHZ or zinc acexamate has the restorative effect on bone loss under various pathophysiologic conditions including aging, skeletal unloading, aluminum bone toxicity, calcium- and vitamin D-deficiency, adjuvant arthritis, estrogen deficiency, diabetes, and fracture healing. Zinc compounds may be designed as new supplementation factor in the prevention and therapy of osteoporosis.
Incorporation of RANKL promotes osteoclast formation and osteoclast activity on β-TCP ceramics.
Choy, John; Albers, Christoph E; Siebenrock, Klaus A; Dolder, Silvia; Hofstetter, Wilhelm; Klenke, Frank M
2014-12-01
β-Tricalcium phosphate (β-TCP) ceramics are approved for the repair of osseous defects. In large defects, however, the substitution of the material by authentic bone is inadequate to provide sufficient long-term mechanical stability. We aimed to develop composites of β-TCP ceramics and receptor activator of nuclear factor κ-B ligand (RANKL) to enhance the formation of osteoclasts and promote cell mediated calcium phosphate resorption. RANKL was adsorbed superficially onto β-TCP ceramics or incorporated into a crystalline layer of calcium phosphate by the use of a co-precipitation technique. Murine osteoclast precursors were seeded onto the ceramics. After 15 days, the formation of osteoclasts was quantified cytologically and colorimetrically with tartrate-resistant acidic phosphatase (TRAP) staining and TRAP activity measurements, respectively. Additionally, the expression of transcripts encoding the osteoclast gene products cathepsin K, calcitonin receptor, and of the sodium/hydrogen exchanger NHA2 were quantified by real-time PCR. The activity of newly formed osteoclasts was evaluated by means of a calcium phosphate resorption assay. Superficially adsorbed RANKL did not induce the formation of osteoclasts on β-TCP ceramics. When co-precipitated onto β-TCP ceramics RANKL supported the formation of mature osteoclasts. The development of osteoclast lineage cells was further confirmed by the increased expression of cathepsin K, calcitonin receptor, and NHA2. Incorporated RANKL stimulated the cells to resorb crystalline calcium phosphate. Our in vitro study shows that RANKL incorporated into β-TCP ceramics induces the formation of active, resorbing osteoclasts on the material surface. Once formed, osteoclasts mediate the release of RANKL thereby perpetuating their differentiation and activation. In vivo, the stimulation of osteoclast-mediated resorption may contribute to a coordinated sequence of material resorption and bone formation. Further in vivo studies are needed to confirm the current in vitro findings. Copyright © 2014 Elsevier Inc. All rights reserved.
Algate, K; Haynes, D R; Bartold, P M; Crotti, T N; Cantley, M D
2016-10-01
Periodontitis is the most common bone loss pathology in adults and if left untreated is responsible for premature tooth loss. Cytokines, such as tumour necrosis factor-α (TNFα), involved in the chronic inflammatory response within the periodontal gingiva, significantly influence the normal bone remodelling processes. In this review, the effects of TNFα on bone metabolism in periodontitis are evaluated in relation to its direct and indirect actions on bone cells including osteoclasts, osteoblasts and osteocytes. Evidence published to date suggests a potent catabolic role for TNFα through the stimulation of osteoclastic bone resorption as well as the suppression of osteoblastic bone formation and osteocytic survival. However, the extent and timing of TNFα exposure in vitro and in vivo greatly influences its effect on skeletal cells, with contradictory anabolic activity observed with TNFα in a number of studies. None the less, it is evident that managing the chronic inflammatory response in addition to the deregulated bone metabolism is required to improve periodontal and inflammatory bone loss treatments. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
2004-10-01
Anderson DC, Sharpe PT. 1992. Canine distemper virus transcripts sequenced from pagetic bone. Bone Miner 19:159–174. Gori F, Hofbauer LC, Dunstan CR...clast formation in Paget’s disease. QJM 95:233–240. Ooi CG, Walsh CA, Gallagher JA, Fraser WD. 2000. Absence of measles virus and canine distemper virus...techniques. Furthermore, it has also been de- monstrated that infecting canine bone marrow cells with CDV results in development of multi- nucleated cells
NASA Astrophysics Data System (ADS)
Bosco, Ruggero; Iafisco, Michele; Tampieri, Anna; Jansen, John A.; Leeuwenburgh, Sander C. G.; van den Beucken, Jeroen J. J. P.
2015-02-01
The integration of bone implants within native bone tissue depends on periprosthetic bone quality, which is severely decreased in osteoporotic patients. In this work, we have synthesized bone-like hydroxyapatite nanocrystals (nHA) using an acid-base neutralization reaction and analysed their physicochemical properties. Subsequently, we have functionalized the nHA with alendronate (nHAALE), a well-known bisphosphonate drug used for the treatment of osteoporosis. An in vitro osteoclastogenesis test was carried out to evaluate the effect of nHAALE on the formation of osteoclast-like cells from monocytic precursor cells (i.e. RAW264.7 cell line) showing that nHAALE significantly promoted apoptosis of osteoclast-like cells. Subsequently, nHA and nHAALE were deposited on titanium disks using electrospray deposition (ESD), for which characterisation of the deposited coatings confirmed the presence of alendronate in nHAALE coatings with nanoscale thickness of about 700 nm. These results indicate that alendronate linked to hydroxyapatite nanocrystals has therapeutic potential and nHAALE can be considered as an appealing coating constituent material for orthopaedic and oral implants for application in osteoporotic patients.
FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation
Bartell, Shoshana M.; Kim, Ha-Neui; Ambrogini, Elena; Han, Li; Iyer, Srividhya; Serra Ucer, S.; Rabinovitch, Peter; Jilka, Robert L.; Weinstein, Robert S.; Zhao, Haibo; O’Brien, Charles A.; Manolagas, Stavros C.; Almeida, Maria
2014-01-01
Besides their cell-damaging effects in the setting of oxidative stress, reactive oxygen species (ROS) play an important role in physiological intracellular signalling by triggering proliferation and survival. FoxO transcription factors counteract ROS generation by upregulating antioxidant enzymes. Here we show that intracellular H2O2 accumulation is a critical and purposeful adaptation for the differentiation and survival of osteoclasts, the bone cells responsible for the resorption of mineralized bone matrix. Using mice with conditional loss or gain of FoxO transcription factor function, or mitochondria-targeted catalase in osteoclasts, we demonstrate this is achieved, at least in part, by downregulating the H2O2-inactivating enzyme catalase. Catalase downregulation results from the repression of the transcriptional activity of FoxO1, 3 and 4 by RANKL, the indispensable signal for the generation of osteoclasts, via an Akt-mediated mechanism. Notably, mitochondria-targeted catalase prevented the loss of bone caused by loss of oestrogens, suggesting that decreasing H2O2 production in mitochondria may represent a rational pharmacotherapeutic approach to diseases with increased bone resorption. PMID:24781012
Song, Dezhi; Cao, Zhen; Tickner, Jennifer; Qiu, Heng; Wang, Chao; Chen, Kai; Wang, Ziyi; Guo, Chunyu; Dong, Shiwu; Xu, Jiake
2018-06-01
Pathological fractures caused by osteolytic lesions seriously threaten the health of patients. Osteoclasts play important roles in bone resorption whose hyperfunction are closely related to osteolytic lesions. Studies on osteoclast differentiation and function assist in the prevention of excessive bone loss associated diseases. We screened a variety of natural compounds with anti-inflammatory effect and found that poria cocos polysaccharide (PCP) inhibited RANKL-induced osteoclast formation and bone resorption via TRAcP staining, immunofluorescence, RT-PCR and western blot. PCP down-regulated phosphorylation of STAT3, P38, ERK and JNK, and thus repressed the expression of NFAcT1 and c-Fos during RANKL-induced osteoclastogenesis. Besides, the expression of bone resorption related genes such as TRAcP and CTSK was suppressed by PCP. The results suggest that PCP can be invoked as a candidate for the treatment of osteolytic diseases by inhibiting osteoclastogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bo; PLA General Hospital Cancer Center and PLA Cancer Research Institute, PLA Postgraduate School of Medicine, 28 Fuxing Road, Beijing; Dai, Jianxin
Highlight: • We first report that anti-osteopontin mAb could protect osteoporosis in mice. • Anti-osteopontin mAb could promote the osteoclast apoptosis. • Targeting osteopontin might have therapeutic potentials for osteoporosis. - Abstract: Osteopontin (OPN) is abundant in mineralized tissues and has long been implicated in bone remodeling. However, the therapeutic effect of targeting OPN in bone loss diseases and the underlying molecular mechanism remain largely unknown. Here, we reported that anti-OPN mAb (23C3) could protect against ovariectomy-induced osteoporosis in mice, demonstrated by microcomputed tomography analysis and histopathology evaluation. In vitro assay showed that 23C3 mAb reduced osteoclasts (OCs)-mediated bone resorptionmore » through promotion of mature OC apoptosis. Thus, the study has important implications for understanding the role of OPN in OC bone resorption and survival, and OPN antagonists may have therapeutic potential for osteoporosis and other osteopenic diseases.« less
[Bone remodeling and modeling/mini-modeling.
Hasegawa, Tomoka; Amizuka, Norio
Modeling, adapting structures to loading by changing bone size and shapes, often takes place in bone of the fetal and developmental stages, while bone remodeling-replacement of old bone into new bone-is predominant in the adult stage. Modeling can be divided into macro-modeling(macroscopic modeling)and mini-modeling(microscopic modeling). In the cellular process of mini-modeling, unlike bone remodeling, bone lining cells, i.e., resting flattened osteoblasts covering bone surfaces will become active form of osteoblasts, and then, deposit new bone onto the old bone without mediating osteoclastic bone resorption. Among the drugs for osteoporotic treatment, eldecalcitol(a vitamin D3 analog)and teriparatide(human PTH[1-34])could show mini-modeling based bone formation. Histologically, mature, active form of osteoblasts are localized on the new bone induced by mini-modeling, however, only a few cell layer of preosteoblasts are formed over the newly-formed bone, and accordingly, few osteoclasts are present in the region of mini-modeling. In this review, histological characteristics of bone remodeling and modeling including mini-modeling will be introduced.
Bone apatite composition of necrotic trabecular bone in the femoral head of immature piglets.
Aruwajoye, Olumide O; Kim, Harry K W; Aswath, Pranesh B
2015-04-01
Ischemic osteonecrosis of the femoral head (IOFH) can lead to excessive resorption of the trabecular bone and collapse of the femoral head as a structure. A well-known mineral component to trabecular bone is hydroxyapatite, which can be present in many forms due to ionic substitution, thus altering chemical composition. Unfortunately, very little is known about the chemical changes to bone apatite following IOFH. We hypothesized that the apatite composition changes in necrotic bone possibly contribute to increased osteoclast resorption and structural collapse of the femoral head. The purpose of this study was to assess the macroscopic and local phosphate composition of actively resorbed necrotic trabecular bone to isolate differences between areas of increased osteoclast resorption and normal bone formation. A piglet model of IOFH was used. Scanning electron microscopy (SEM), histology, X-ray absorbance near edge structure (XANES), and Raman spectroscopy were performed on femoral heads to characterize normal and necrotic trabecular bone. Backscattered SEM, micro-computed tomography and histology showed deformity and active resorption of necrotic bone compared to normal. XANES and Raman spectroscopy obtained from actively resorbed necrotic bone and normal bone showed increased carbonate-to-phosphate content in the necrotic bone. The changes in the apatite composition due to carbonate substitution may play a role in the increased resorption of necrotic bone due to its increase in solubility. Indeed, a better understanding of the apatite composition of necrotic bone could shed light on osteoclast activity and potentially improve therapeutic treatments that target excessive resorption of bone.
Steenblock, Charlotte; Heckel, Tobias; Czupalla, Cornelia; Espírito Santo, Ana Isabel; Niehage, Christian; Sztacho, Martin; Hoflack, Bernard
2014-06-27
The initial step of bone digestion is the adhesion of osteoclasts onto bone surfaces and the assembly of podosomal belts that segregate the bone-facing ruffled membrane from other membrane domains. During bone digestion, membrane components of the ruffled border also need to be recycled after macropinocytosis of digested bone materials. How osteoclast polarity and membrane recycling are coordinated remains unknown. Here, we show that the Cdc42-guanine nucleotide exchange factor FGD6 coordinates these events through its Src-dependent interaction with different actin-based protein networks. At the plasma membrane, FGD6 couples cell adhesion and actin dynamics by regulating podosome formation through the assembly of complexes comprising the Cdc42-interactor IQGAP1, the Rho GTPase-activating protein ARHGAP10, and the integrin interactors Talin-1/2 or Filamin A. On endosomes and transcytotic vesicles, FGD6 regulates retromer-dependent membrane recycling through its interaction with the actin nucleation-promoting factor WASH. These results provide a mechanism by which a single Cdc42-exchange factor controlling different actin-based processes coordinates cell adhesion, cell polarity, and membrane recycling during bone degradation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Matsumoto, Shigeru; Tominari, Tsukasa; Matsumoto, Chiho; Yoshinouchi, Shosei; Ichimaru, Ryota; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M W; Miyaura, Chisato; Inada, Masaki
2018-01-20
Polymethoxyflavonoids (PMFs) are a family of the natural compounds that mainly compise nobiletin, tangeretin, heptamethoxyflavone (HMF), and tetramethoxyflavone (TMF) in citrus fruits. PMFs have shown various biological functions, including anti-oxidative effects. We previously showed that nobiletin, tangeretin, and HMF all inhibited interleukin (IL)-1-mediated osteoclast differentiation via the inhibition of prostaglandin E2 synthesis. In this study, we created an original mixture of PMFs (nobiletin, tangeretin, HMF, and TMF) and examined whether or not PMFs exhibit co-operative inhibitory effects on osteoclastogenesis and bone resorption. In a coculture of bone marrow cells and osteoblasts, PMFs dose-dependently inhibited IL-1-induced osteoclast differentiation and bone resorption. The optimum concentration of PMFs was lower than that of nobiletin alone in the suppression of osteoclast differentiation, suggesting that the potency of PMFs was stronger than that of nobiletin in vitro. The oral administration of PMFs recovered the femoral bone loss induced by estrogen deficiency in ovariectomized mice. We further tested the effects of PMFs on lipopolysaccharide-induced bone resorption in mouse alveolar bone. In an ex vivo experimental model for periodontitis, PMFs significantly suppressed the bone-resorbing activity in organ cultures of mouse alveolar bone. These results indicate that a mixture of purified nobiletin, tangeretin, HMF, and TMF exhibits a co-operative inhibitory effect for the protection against bone loss in a mouse model of bone disease, suggesting that PMFs may be potential candidates for the prevention of bone resorption diseases, such as osteoporosis and periodontitis.
Hanaka, Megumi; Iba, Kousuke; Dohke, Takayuki; Kanaya, Kumiko; Okazaki, Shunichiro; Yamashita, Toshihiko
2018-05-01
Our recent studies demonstrated that regional bone loss in the unloaded hind limbs of tail-suspended mice triggered pain-like behaviors due to the acidic environment in the bone induced by osteoclast activation. The aims of the present study were to examine whether TRPV1, ASIC and P2X (known as nociceptors) are expressed in bone, and whether the antagonists to those receptors affect the expression of osteoblast and osteoclast regulators, and prevent the triggering of not only pain-like behaviors but also high bone turnover conditions in tail-suspension model mice. The hind limb-unloaded mice were subjected to tail suspension with the hind limbs elevated for 14days. The effects of the TRPV1, ASIC3, P2X2/3 antagonists on pain-like behaviors as assessed by the von Frey test, paw flick test and spontaneous pain scale; the expressions of TRPV1, ASICs, and P2X2 in the bone; and the effects of those antagonists on osteoblast and osteoclast regulators were examined. In addition, we evaluated the preventive effect of continuous treatment with a TRPV1 antagonist on the trigger for pain-like behavior and bone loss in tail-suspended mice. Pain-like behaviors were significantly improved by the treatment with TRPV1, ASIC, P2X antagonists; TRPV1, ASICs and P2X were expressed in the bone tissues; and the antagonists to these receptors down-regulated the expression of osteoblast and osteoclast regulators in tail-suspended mice. In addition, continuous treatment with a TRPV1 antagonist during tail-suspension prevented the induction of pain-like behaviors and regional bone loss in the unloaded hind limbs. We, therefore, believe that those receptor antagonists have a potential role in preventing the triggering of skeletal pain with associated regional bone metabolic disorder. Copyright © 2018 Elsevier Inc. All rights reserved.
Chellaiah, Meenakshi A; Schaller, Michael D
2009-08-01
PTP-PEST is involved in the regulation of sealing ring formation in osteoclasts. In this article, we have shown a regulatory role for PTP-PEST on dephosphorylation of c-Src at Y527 and phosphorylation at Y418 in the catalytic site. Activation of Src in osteoclasts by over-expression of PTP-PEST resulted in the phosphorylation of cortactin at Y421 and WASP at Y294. Also enhanced as a result, is the interaction of Src, cortactin, and Arp2 with WASP. Moreover, the number of osteoclasts displaying sealing ring and bone resorbing activity was increased in response to PTP-PEST over-expression as compared with control osteoclasts. Cells expressing constitutively active-Src (527YDeltaF) simulate the effects mediated by PTP-PEST. Treatment of osteoclasts with a bisphosphonate alendronate or a potent PTP inhibitor PAO decreased the activity and phosphorylation of Src at Y418 due to reduced dephosphorylation state at Y527. Therefore, Src-mediated phosphorylation of cortactin and WASP as well as the formation of WASP.cortactin.Arp2 complex and sealing ring were reduced in these osteoclasts. Similar effects were observed in osteoclasts treated with an Src inhibitor PP2. We have shown that bisphosphonates could modulate the function of osteoclasts by inhibiting downstream signaling mediated by PTP-PEST/Src, in addition to its effect on the inhibition of the post-translational modification of small GTP-binding proteins such as Rab, Rho, and Rac as shown by others. The promising effects of the inhibitors PP2 and PAO on osteoclast function suggest a therapeutic approach for patients with bone metastases and osteoporosis as an alternative to bisphosphonates.
Miyazaki, Tatsuya; Miyauchi, Satoshi; Anada, Takahisa; Tawada, Akira; Suzuki, Osamu
2015-10-01
Integrins and their ligands have been suggested to be associated with osteoclast-mediated bone resorption. The present study was designed to investigate whether chondroitin sulfate E (CS-E), which is one of the sulfated glycosaminoglycans (GAGs), is involved in osteoactivin (OA) activity, and osteoclast differentiation. The binding affinity of sulfated GAGs to integrin and its ligand was measured using biotin-labeled CS-E, and the osteoclast differentiation was evaluated by tartrate-resistant acid phosphatase staining and a pit formation assay. CS-E as well as CS-B, synthetic chondroitin polysulfate, and heparin inhibited osteoclast differentiation of bone marrow-derived macrophages. Pre-coating of OA to synthetic calcium phosphate-coated plates enhanced the osteoclastic differentiation of RAW264 cells, and addition of a neutralizing antibody to OA inhibited its differentiation. CS-E bound not only to OA, fibronectin, and vitronectin, but also to its receptor integrin αVβ3, and inhibited the direct binding of OA to integrin αVβ3. Furthermore, CS-E blocked the binding of OA to cells and inhibited OA-induced osteoclastic differentiation. On the other hand, heparinase treatment of RAW264 cells inhibited osteoclastic differentiation. Since binding of OA to the cells was inhibited by the presence of heparan sulfate or heparinase treatment of cells, heparan sulfate proteoglycan (HSPG) was also considered to be an OA receptor. Taken together, the present results suggest that CS-E is capable of inhibiting OA-induced osteoclast differentiation by blocking the interaction of OA to integrin αVβ3 and HSPG. © 2015 Wiley Periodicals, Inc.
RANKL-induced DC-STAMP Is Essential for Osteoclastogenesis
Kukita, Toshio; Wada, Naohisa; Kukita, Akiko; Kakimoto, Takashi; Sandra, Ferry; Toh, Kazuko; Nagata, Kengo; Iijima, Tadahiko; Horiuchi, Madoka; Matsusaki, Hiromi; Hieshima, Kunio; Yoshie, Osamu; Nomiyama, Hisayuki
2004-01-01
Osteoclasts are bone-resorbing, multinucleated giant cells that are essential for bone remodeling and are formed through cell fusion of mononuclear precursor cells. Although receptor activator of nuclear factor–κB ligand (RANKL) has been demonstrated to be an important osteoclastogenic cytokine, the cell surface molecules involved in osteoclastogenesis are mostly unknown. Here, we report that the seven-transmembrane receptor-like molecule, dendritic cell–specific transmembrane protein (DC-STAMP) is involved in osteoclastogenesis. Expression of DC-STAMP is rapidly induced in osteoclast precursor cells by RANKL and other osteoclastogenic stimulations. Targeted inhibition of DC-STAMP by small interfering RNAs and specific antibody markedly suppressed the formation of multinucleated osteoclast-like cells. Overexpression of DC-STAMP enhanced osteoclastogenesis in the presence of RANKL. Furthermore, DC-STAMP directly induced the expression of the osteoclast marker tartrate-resistant acid phosphatase. These data demonstrate for the first time that DC-STAMP has an essential role in osteoclastogenesis. PMID:15452179
Harvey, L; Gray, T; Beneton, M N; Douglas, D L; Kanis, J A; Russell, R G
1982-01-01
The ultrastructure of the osteocytes, osteoblasts, osteoclasts, haemopoietic and other connective tissue cells was examined in 27 biopsies from 22 patients with Paget's disease of bone. Electron microscopy showed characteristic nuclear and cytoplasmic inclusions in the osteoclasts of all of the 25 biopsies exhibiting histological evidence of Paget's disease. Such inclusions were absent from all the other types examined. The intranuclear inclusions consisted of stacked rows or complex whorls of tubular filaments with an individual filament diameter of 12-15 nm, often arranged in a paracrystalline array. The frequency of occurrence of inclusions in the osteoclasts and their individual nuclei measured quantitatively in 18 of the biopsies was related to the histological severity of the disease process. The similarity of the observed inclusions to those of paramyxovirus inclusion bodies (particularly measles) support the hypothesis that Paget's disease is a slow virus infection. Images PMID:7096600
Li, Fengbo; Sun, Xiaolei; Ma, Jianxiong; Ma, Xinlong; Zhao, Bin; Zhang, Yang; Tian, Peng; Li, Yanjun; Han, Zhe
2014-09-26
Naringin, the primary active compound of the traditional Chinese medicine Rhizoma drynariae, possesses many pharmacological activities. The present study is an effort to explore the anti-osteoporosis potential of naringin in vivo and in vitro. In vivo, we used ovariectomized rats to clarify the mechanisms by which naringin anti-osteoporosis. In vitro, we used osteoclasts to investigate naringin promotes osteoclasts apoptosis. Naringin was effective at enhancing BMD, trabecular thickness, bone mineralization, and mechanical strength in a dose-dependent manner. The result of RT-PCR analysis revealed that naringin down-regulated the mRNA expression levels of BCL-2 and up-regulated BAX, caspase-3 and cytochrome C. In addition, naringin significantly reduced the bone resorption area in vitro. These findings suggest that naringin promotes the apoptosis of osteoclasts by regulating the activity of the mitochondrial apoptosis pathway and prevents OVX-induced osteoporosis in rats. Copyright © 2014 Elsevier Inc. All rights reserved.
Chu, Yajing; Zhao, Zhigang; Wayne Sant, David; Zhu, Ganqian; Greenblatt, Sarah M; Liu, Lin; Wang, Jinhuan; Cao, Zeng; Cheng Tho, Jeanette; Chen, Shi; Liu, Xiaochen; Zhang, Peng; Maciejewski, Jaroslaw P; Nimer, Stephen; Wang, Gaofeng; Yuan, Weiping; Yang, Feng-Chun; Xu, Mingjiang
2018-06-13
As a dioxygenase, Ten-eleven translocation 2 (TET2) catalyzes subsequent steps of 5-methylcytosine (5mC) oxidation. Tet2 plays a critical role in the self-renewal, proliferation, and differentiation of hematopoietic stem cells, but its impact on mature hematopoietic cells is not well-characterized. Here we show that Tet2 plays an essential role in osteoclastogenesis. Deletion of Tet2 impairs the differentiation of osteoclast precursor cells (macrophages) and their maturation into bone-resorbing osteoclasts in vitro. Furthermore, Tet2 -/- mice exhibit mild osteopetrosis, accompanied by decreased number of osteoclasts in vivo. Tet2 loss in macrophages results in the altered expression of a set of genes implicated in osteoclast differentiation, such as Cebpa, Mafb, and Nfkbiz. Tet2 deletion also leads to a genome-wide alteration in the level of 5-hydroxymethylcytosine (5hmC) and altered expression of a specific subset of macrophage genes associated with osteoclast differentiation. Furthermore, Tet2 interacts with Runx1 and negatively modulates its transcriptional activity. Our studies demonstrate a novel molecular mechanism controlling osteoclast differentiation and function by Tet2, that is, through interactions with Runx1 and the maintenance of genomic 5hmC. Targeting Tet2 and its pathway could be a potential therapeutic strategy for the prevention and treatment of abnormal bone mass caused by the deregulation of osteoclast activities. Copyright © 2018. Production and hosting by Elsevier B.V.
Concise Review: Stem Cells in Osteoimmunology.
Fierro, Fernando A; Nolta, Jan A; Adamopoulos, Iannis E
2017-06-01
Bone remodeling is a lifelong process in which mature bone tissue is removed from the skeleton by bone resorption and is replenished by new during ossification or bone formation. The remodeling cycle requires both the differentiation and activation of two cell types with opposing functions; the osteoclast, which orchestrates bone resorption, and the osteoblast, which orchestrates bone formation. The differentiation of these cells from their respective precursors is a process which has been overshadowed by enigma, particularly because the precise osteoclast precursor has not been identified and because the identification of skeletal stem cells, which give rise to osteoblasts, is very recent. Latest advances in the area of stem cell biology have enabled us to gain a better understanding of how these differentiation processes occur in physiological and pathological conditions. In this review we postulate that modulation of stem cells during inflammatory conditions is a necessary prerequisite of bone remodeling and therefore an essential new component to the field of osteoimmunology. In this context, we highlight the role of transcription factor nuclear factor of activated T cells cytoplasmic 1 (NFATc1), because it directly links inflammation with differentiation of osteoclasts and osteoblasts. Stem Cells 2017;35:1461-1467. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
CHIP regulates bone mass by targeting multiple TRAF family members in bone marrow stromal cells.
Wang, Tingyu; Li, Shan; Yi, Dan; Zhou, Guang-Qian; Chang, Zhijie; Ma, Peter X; Xiao, Guozhi; Chen, Di
2018-01-01
Carboxyl terminus of Hsp70-interacting protein (CHIP or STUB1) is an E3 ligase and regulates the stability of several proteins which are involved in different cellular functions. Our previous studies demonstrated that Chip deficient mice display bone loss phenotype due to increased osteoclast formation through enhancing TRAF6 activity in osteoclasts. In this study we provide novel evidence about the function of CHIP. We found that osteoblast differentiation and bone formation were also decreased in Chip KO mice. In bone marrow stromal (BMS) cells derived from Chip -/- mice, expression of a panel of osteoblast marker genes was significantly decreased. ALP activity and mineralized bone matrix formation were also reduced in Chip- deficient BMS cells. We also found that in addition to the regulation of TRAF6, CHIP also inhibits TNFα-induced NF-κB signaling through promoting TRAF2 and TRAF5 degradation. Specific deletion of Chip in BMS cells downregulated expression of osteoblast marker genes which could be reversed by the addition of NF-κB inhibitor. These results demonstrate that the osteopenic phenotype observed in Chip -/- mice was due to the combination of increased osteoclast formation and decreased osteoblast differentiation. Taken together, our findings indicate a significant role of CHIP in bone remodeling.
Watkins, Marcus P.; Norris, Jin Yi; Grimston, Susan K.; Zhang, Xiaowen; Phipps, Roger J.; Ebetino, Frank H.; Civitelli, Roberto
2012-01-01
The gap junction protein, connexin43 (Cx43) controls both bone formation and osteoclastogenesis via osteoblasts and/or osteocytes. Cx43 has also been proposed to mediate an anti-apoptotic effect of bisphosphonates, potent inhibitors of bone resorption. We studied whether bisphosphonates are effective in protecting mice with a conditional Cx43 gene deletion in osteoblasts and osteocytes (cKO) from the consequences of ovariectomy on bone mass and strength. Ovariectomy resulted in rapid loss of trabecular bone followed by a slight recovery in wild type (WT) mice, and a similar degree of trabecular bone loss, albeit slightly delayed, occurred in cKO mice. Treatment with either risedronate (20µg/kg) or alendronate (40µg/kg) prevented ovariectomy-induced bone loss in both genotypes. In basal conditions, bones of cKO mice have larger marrow area, higher endocortical osteoclast number, and lower cortical thickness and strength relative to WT. Ovariectomy increased endocortical osteoclast number in WT but not in cKO mice. Both bisphosphonates prevented these increases in WT mice, and normalized endocortical osteoclast number, cortical thickness and bone strength in cKO mice. Thus, lack of osteoblast/osteocyte Cx43 does not alter bisphosphonate action on bone mass and strength in estrogen deficiency. These results support the notion that one of the main functions of Cx43 in cortical bone is to restrain osteoblast and/or osteocytes from inducing osteoclastogenesis at the endocortical surface. PMID:22750450
Ward, L M; Rauch, F; Travers, R; Roy, M; Montes, J; Chabot, G; Glorieux, F H
2004-08-15
Osteopathia striata with cranial sclerosis (OS-CS) is a rare skeletal dysplasia characterized by linear striations of the long bones, osteosclerosis of the cranium, and extra-skeletal anomalies. We provide a comprehensive description of the skeletal phenotype in a French-Canadian girl with a moderate to severe form of sporadic OS-CS. Multiple medical problems, including anal stenosis and the Pierre-Robin sequence, were evident in the first few years of life. At 14 years, she was fully mobile, with normal intellect and stature. She suffered chronic lower extremity pain in the absence of fractures, as well as severe headaches, unilateral facial paralysis, and bilateral mixed hearing loss. Biochemical indices of bone and mineral metabolism were within normal limits. Bone densitometry showed increased areal bone mineral density in the skull, trunk, and pelvis, but not in the upper and lower extremities. An iliac bone biopsy specimen revealed an increased amount of trabecular bone. Trabeculae were abnormally thick, but there was no evidence of disturbed bone remodeling. In a cranial bone specimen, multiple layers of periosteal bone were found that covered a compact cortical compartment containing tightly packed haversian canals. Bone lamellation was normal in both the iliac and skull samples. Osteoclast differentiation studies showed that peripheral blood osteoclast precursors from this patient formed functional osteoclasts in vitro. Thus, studies of bone metabolism did not explain why bone mass is increased in most skeletal areas of this patient. Cranial histology points to exuberant periosteal bone formation as a potential cause of the cranial sclerosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santiago, Francisco; Oguma, Junya; Brown, Anthony M.C.
Highlights: Black-Right-Pointing-Pointer First demonstration of direct role for noncanonical Wnt in osteoclast differentiation. Black-Right-Pointing-Pointer Demonstration of Ryk as a Wnt5a/b receptor in inhibition of canonical Wnt signaling. Black-Right-Pointing-Pointer Modulation of noncanonical Wnt signaling by a clinically important drug, ritonavir. Black-Right-Pointing-Pointer Establishes a mechanism for an important clinical problem: HIV-associated bone loss. -- Abstract: Wnt proteins that signal via the canonical Wnt/{beta}-catenin pathway directly regulate osteoblast differentiation. In contrast, most studies of Wnt-related effects on osteoclasts involve indirect changes. While investigating bone mineral density loss in the setting of human immunodeficiency virus (HIV) infection and its treatment with the protease inhibitormore » ritonavir (RTV), we observed that RTV decreased nuclear localization of {beta}-catenin, critical to canonical Wnt signaling, in primary human and murine osteoclast precursors. This occurred in parallel with upregulation of Wnt5a and Wnt5b transcripts. These Wnts typically stimulate noncanonical Wnt signaling, and this can antagonize the canonical Wnt pathway in many cell types, dependent upon Wnt receptor usage. We now document RTV-mediated upregulation of Wnt5a/b protein in osteoclast precursors. Recombinant Wnt5b and retrovirus-mediated expression of Wnt5a enhanced osteoclast differentiation from human and murine monocytic precursors, processes facilitated by RTV. In contrast, canonical Wnt signaling mediated by Wnt3a suppressed osteoclastogenesis. Both RTV and Wnt5b inhibited canonical, {beta}-catenin/T cell factor-based Wnt reporter activation in osteoclast precursors. RTV- and Wnt5-induced osteoclast differentiation were dependent upon the receptor-like tyrosine kinase Ryk, suggesting that Ryk may act as a Wnt5a/b receptor in this context. This is the first demonstration of a direct role for Wnt signaling pathways and Ryk in regulation of osteoclast differentiation, and its modulation by a clinically important drug, ritonavir. These studies also reveal a potential role for noncanonical Wnt5a/b signaling in acceleration of bone mineral density loss in HIV-infected individuals, and illuminate a potential means of influencing such processes in disease states that involve enhanced osteoclast activity.« less
Levaot, Noam; Ottolenghi, Aner; Mann, Mati; Guterman-Ram, Gali; Kam, Zvi; Geiger, Benjamin
2015-10-01
Osteoclasts are multinucleated, bone-resorbing cells formed via fusion of monocyte progenitors, a process triggered by prolonged stimulation with RANKL, the osteoclast master regulator cytokine. Monocyte fusion into osteoclasts has been shown to play a key role in bone remodeling and homeostasis; therefore, aberrant fusion may be involved in a variety of bone diseases. Indeed, research in the last decade has led to the discovery of genes regulating osteoclast fusion; yet the basic cellular regulatory mechanism underlying the fusion process is poorly understood. Here, we applied a novel approach for tracking the fusion processes, using live-cell imaging of RANKL-stimulated and non-stimulated progenitor monocytes differentially expressing dsRED or GFP, respectively. We show that osteoclast fusion is initiated by a small (~2.4%) subset of precursors, termed "fusion founders", capable of fusing either with other founders or with non-stimulated progenitors (fusion followers), which alone, are unable to initiate fusion. Careful examination indicates that the fusion between a founder and a follower cell consists of two distinct phases: an initial pairing of the two cells, typically lasting 5-35 min, during which the cells nevertheless maintain their initial morphology; and the fusion event itself. Interestingly, during the initial pre-fusion phase, a transfer of the fluorescent reporter proteins from nucleus to nucleus was noticed, suggesting crosstalk between the founder and follower progenitors via the cytoplasm that might directly affect the fusion process, as well as overall transcriptional regulation in the developing heterokaryon. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jian-hui, E-mail: jianhui_yangxa@163.com; Li, Bing; Wu, Qiong
Receptor activator of nuclear factor-κB ligand (RANKL) is a key factor in the differentiation and activation of osteoclasts. Echinocystic acid (EA), a pentacyclic triterpene isolated from the fruits of Gleditsia sinensis Lam, was reported to prevent reduction of bone mass and strength and improve the cancellous bone structure and biochemical properties in ovariectomy rats. However, the molecular mechanism of EA on the osteoclast formation has not been reported. The purpose of this study was to investigate the effects and mechanism of EA on RANKL-induced osteoclastogenesis. Our results showed that EA inhibited the formation of osteoclast, as well as the expressionmore » of osteoclastogenesis-related marker proteins in bone marrow macrophages (BMMs). At molecular levels, EA inhibited RANKL-induced NF-κB activation and ERK phosphorylation in BMMs. In conclusion, the present study demonstrated that EA can suppress osteoclastogenesis in vitro. Moreover, we clarified that these inhibitory effects of EA occur through suppression of NF-κB and ERK activation. Therefore, EA may be a potential agent in the treatment of osteoclast-related diseases such as osteoporosis. - Highlights: • EA inhibited the formation of osteoclast in BMMs. • EA inhibits the expression of osteoclastogenesis-related marker proteins in BMMs. • EA inhibits RANKL-induced NF-κB activation in BMMs. • EA inhibits RANKL-induced ERK phosphorylation in BMMs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fengbo; Graduate School of Tianjin Medical University, No. 22, Qixiangtai Street, Heping District, Tianjin 300070; Sun, Xiaolei
Highlights: • Naringin possesses many pharmacological activities, promotes the proliferation of osteoblast. • Undecalcified histological obtain dynamic parameters of callus formation and remodeling. • Naringin regulate osteoclast apoptosis by mitochondrial pathway. - Abstract: Naringin, the primary active compound of the traditional Chinese medicine Rhizoma drynariae, possesses many pharmacological activities. The present study is an effort to explore the anti-osteoporosis potential of naringin in vivo and in vitro. In vivo, we used ovariectomized rats to clarify the mechanisms by which naringin anti-osteoporosis. In vitro, we used osteoclasts to investigate naringin promotes osteoclasts apoptosis. Naringin was effective at enhancing BMD, trabecular thickness,more » bone mineralization, and mechanical strength in a dose-dependent manner. The result of RT-PCR analysis revealed that naringin down-regulated the mRNA expression levels of BCL-2 and up-regulated BAX, caspase-3 and cytochrome C. In addition, naringin significantly reduced the bone resorption area in vitro. These findings suggest that naringin promotes the apoptosis of osteoclasts by regulating the activity of the mitochondrial apoptosis pathway and prevents OVX-induced osteoporosis in rats.« less
Kruppke, Benjamin; Farack, Jana; Wagner, Alena-Svenja; Beckmann, Sarah; Heinemann, Christiane; Glenske, Kristina; Rößler, Sina; Wiesmann, Hans-Peter; Wenisch, Sabine; Hanke, Thomas
2016-03-01
Calcium phosphate phases are increasingly used for bone tissue substitution, and the load bearing properties of these inherently brittle biomaterials are increased by inclusion of organic components. Monetite prepared using mineralization of gelatine pre-structured through phosphate leads to a significantly increased biaxial strength and indirect tensile strength compared to gelatine-free monetite. Besides the mechanical properties, degradation in physiological solutions and osteoblast and osteoclast cell response were investigated. Human bone marrow stromal cells (hBMSCs) showed considerably higher proliferation rates on the gelatine modified monetite than on polystyrene reference material in calcium-free as well as standard cell culture medium (α-MEM). Osteogenic differentiation on the material was comparable to polystyrene in both medium types. Osteoclast-like cells derived from monocytes were able to actively resorb the biomaterial. Osteoblastic differentiation and perhaps even more important the cellular resorption of the biomaterial indicate that it can be actively involved in the bone remodeling process. Thus the behavior of osteoblasts and osteoclasts as well as the adequate degradation and mechanical properties are strong indicators for bone biocompatibility, although in vivo studies are still required to prove this. New and unique? A low temperature precipitationprocessforcalcium anhydrous hydrogen phosphateallows for the first time to produce monolithic compact composites of monetite and gelatine. The composite is degradable and resorbable. To prove that, the question arises: what is bone biocompatibility? The reaction of both mayor cell types of bone represents this biocompatibility. Therefore, human bone marrow stromal cells were seeded revealing the materials pro-osteogenic properties. Monocyte cultivation, becoming recently focus of interest, revealed the capability of the biomaterial to be actively resorbed by derived osteoclast-like cells. Not new but necessary ismechanical characterization, which is often only investigated as uniaxial property. Here, a biaxial method is applied, to characterize the materials properties closer to its application loads. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Pharmacological management of osteogenesis
Nardone, Valeria; D'Asta, Federica; Brandi, Maria Luisa
2014-01-01
Osteogenesis and bone remodeling are complex biological processes that are essential for the formation of new bone tissue and its correct functioning. When the balance between bone resorption and formation is disrupted, bone diseases and disorders such as Paget's disease, fibrous dysplasia, osteoporosis and fragility fractures may result. Recent advances in bone cell biology have revealed new specific targets for the treatment of bone loss that are based on the inhibition of bone resorption by osteoclasts or the stimulation of bone formation by osteoblasts. Bisphosphonates, antiresorptive agents that reduce bone resorption, are usually recommended as first-line therapy in women with postmenopausal osteoporosis. Numerous studies have shown that bisphosphonates are able to significantly reduce the risk of femoral and vertebral fractures. Other antiresorptive agents indicated for the treatment of osteoporosis include selective estrogen receptor modulators, such as raloxifene. Denosumab, a human monoclonal antibody, is another antiresorptive agent that has been approved in Europe and the USA. This agent blocks the RANK/RANKL/OPG system, which is responsible for osteoclastic activation, thus reducing bone resorption. Other approved agents include bone anabolic agents, such as teriparatide, a recombinant parathyroid hormone that improves bone microarchitecture and strength, and strontium ranelate, considered to be a dual-action drug that acts by both osteoclastic inhibition and osteoblastic stimulation. Currently, anti-catabolic drugs that act through the Wnt-β catenin signaling pathway, serving as Dickkopf-related protein 1 inhibitors and sclerostin antagonists, are also in development. This concise review provides an overview of the drugs most commonly used for the control of osteogenesis in bone diseases. PMID:24964310
Bone Tumor Environment as a Potential Therapeutic Target in Ewing Sarcoma
Redini, Françoise; Heymann, Dominique
2015-01-01
Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, Ewing sarcoma is an aggressive, rapidly fatal malignancy that mainly develops not only in osseous sites (85%) but also in extra-skeletal soft tissue. It spreads naturally to the lungs, bones, and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases) tumors are characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast activation and subsequent bone resorption are responsible for the clinical features of bone tumors, including pain, vertebral collapse, and spinal cord compression. Based on the “vicious cycle” concept of tumor cells and bone resorbing cells, drugs, which target osteoclasts, may be promising agents as adjuvant setting for treating bone tumors, including Ewing sarcoma. There is also increasing evidence that cellular and molecular protagonists present in the bone microenvironment play a part in establishing a favorable “niche” for tumor initiation and progression. The purpose of this review is to discuss the potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing sarcoma. The first part of the review will focus on targeting the bone resorbing function of osteoclasts by means of bisphosphonates or drugs blocking the pro-resorbing cytokine receptor activator of NF-kappa B ligand. Second, the role of this peculiar hypoxic microenvironment will be discussed in the context of resistance to chemotherapy, escape from the immune system, or neo-angiogenesis. Therapeutic interventions based on these specificities could be then proposed in the context of Ewing sarcoma. PMID:26779435
Bone Tumor Environment as a Potential Therapeutic Target in Ewing Sarcoma.
Redini, Françoise; Heymann, Dominique
2015-01-01
Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, Ewing sarcoma is an aggressive, rapidly fatal malignancy that mainly develops not only in osseous sites (85%) but also in extra-skeletal soft tissue. It spreads naturally to the lungs, bones, and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases) tumors are characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast activation and subsequent bone resorption are responsible for the clinical features of bone tumors, including pain, vertebral collapse, and spinal cord compression. Based on the "vicious cycle" concept of tumor cells and bone resorbing cells, drugs, which target osteoclasts, may be promising agents as adjuvant setting for treating bone tumors, including Ewing sarcoma. There is also increasing evidence that cellular and molecular protagonists present in the bone microenvironment play a part in establishing a favorable "niche" for tumor initiation and progression. The purpose of this review is to discuss the potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing sarcoma. The first part of the review will focus on targeting the bone resorbing function of osteoclasts by means of bisphosphonates or drugs blocking the pro-resorbing cytokine receptor activator of NF-kappa B ligand. Second, the role of this peculiar hypoxic microenvironment will be discussed in the context of resistance to chemotherapy, escape from the immune system, or neo-angiogenesis. Therapeutic interventions based on these specificities could be then proposed in the context of Ewing sarcoma.
A novel role for cathepsin K in periosteal osteoclast precursors during fracture repair.
Walia, Bhavita; Lingenheld, Elizabeth; Duong, Le; Sanjay, Archana; Drissi, Hicham
2018-03-01
Osteoporosis management is currently centered around bisphosphonates, which inhibit osteoclast (OC) bone resorption but do not affect bone formation. This reduces fracture risk, but fails to restore healthy bone remodeling. Studies in animal models showed that cathepsin K (CatK) inhibition by genetic deletion or chemical inhibitors maintained bone formation while abrogating resorption during bone remodeling and stimulated periosteal bone modeling. Recently, periosteal mononuclear tartrate-resistant acid phosphatase-positive (TRAP + ) osteoclast precursors (OCPs) were shown to augment angiogenesis-coupled osteogenesis. CatK gene deletion increased osteoblast differentiation via enhanced OCP and OC secretion of platelet-derived growth factor (PDGF)-BB and sphingosine 1 phosphate. The effects of periosteum-derived OCPs on bone remodeling are unknown, particularly with regard to fracture repair. We hypothesized that periosteal OCPs derived from CatK-null (Ctsk -/- ) mice may enhance periosteal bone formation during fracture repair. We found fewer periosteal OCPs in Ctsk -/- mice under homeostatic conditions; however, after fracture, this population increased in number relative to that seen in wild-type (WT) mice. Enhanced TRAP staining and greater expression of PDGF-BB were observed in fractured Ctsk -/- femurs relative to WT femurs. This early pattern of augmented PDGF-BB expression in Ctsk -/- mice may contribute to improved fracture healing by enhancing callus mineralization in Ctsk -/- mice. © 2018 New York Academy of Sciences.
Hajdu Cheney Mouse Mutants Exhibit Osteopenia, Increased Osteoclastogenesis, and Bone Resorption.
Canalis, Ernesto; Schilling, Lauren; Yee, Siu-Pok; Lee, Sun-Kyeong; Zanotti, Stefano
2016-01-22
Notch receptors are determinants of cell fate and function and play a central role in skeletal development and bone remodeling. Hajdu Cheney syndrome, a disease characterized by osteoporosis and fractures, is associated with NOTCH2 mutations resulting in a truncated stable protein and gain-of-function. We created a mouse model reproducing the Hajdu Cheney syndrome by introducing a 6955C→T mutation in the Notch2 locus leading to a Q2319X change at the amino acid level. Notch2(Q2319X) heterozygous mutants were smaller and had shorter femurs than controls; and at 1 month of age they exhibited cancellous and cortical bone osteopenia. As the mice matured, cancellous bone volume was restored partially in male but not female mice, whereas cortical osteopenia persisted in both sexes. Cancellous bone histomorphometry revealed an increased number of osteoclasts and bone resorption, without a decrease in osteoblast number or bone formation. Osteoblast differentiation and function were not affected in Notch2(Q2319X) cells. The pre-osteoclast cell pool, osteoclast differentiation, and bone resorption in response to receptor activator of nuclear factor κB ligand in vitro were increased in Notch2(Q2319X) mutants. These effects were suppressed by the γ-secretase inhibitor LY450139. In conclusion, Notch2(Q2319X) mice exhibit cancellous and cortical bone osteopenia, enhanced osteoclastogenesis, and increased bone resorption. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Jilka, Robert L.; Noble, Brendon; Weinstein, Robert S.
2012-01-01
Apoptotic death of osteocytes was recognized over 15 years ago, but its significance for bone homeostasis has remained elusive. A new paradigm has emerged that invokes osteocyte apoptosis as a critical event in the recruitment of osteoclasts to a specific site in response to skeletal unloading, fatigue damage, estrogen deficiency and perhaps in other states where bone must be removed. This is accomplished by yet to be defined signals emanating from dying osteocytes, which stimulate neighboring viable osteocytes to produce osteoclastogenic cytokines. The osteocyte apoptosis caused by chronic glucocorticoid administration does not increase osteoclasts; however, it does negatively impact maintenance of bone hydration, vascularity, and strength. PMID:23238124
Niclosamide suppresses RANKL-induced osteoclastogenesis and prevents LPS-induced bone loss
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheon, Yoon-Hee; Kim, Ju-Young; Baek, Jong Min
Niclosamide (5-chloro-salicyl-(2-chloro-4-nitro) anilide) is an oral anthelmintic drug used for treating intestinal infection of most tapeworms. Recently, niclosamide was shown to have considerable efficacy against some tumor cell lines, including colorectal, prostate, and breast cancers, and acute myelogenous leukemia. Specifically, the drug was identified as a potent inhibitor of signal transducer and activator of transcription 3 (STAT3), which is associated with osteoclast differentiation and function. In this study, we assessed the effect of niclosamide on osteoclastogenesis in vitro and in vivo. Our in vitro study showed that receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast differentiation was inhibited by niclosamide, due to inhibitionmore » of serine–threonine protein kinase (Akt) phosphorylation, inhibitor of nuclear factor-kappaB (IκB), and STAT3 serine{sup 727}. Niclosamide decreased the expression of the major transcription factors c-Fos and NFATc1, and thereafter abrogated the mRNA expression of osteoclast-specific genes, including TRAP, OSCAR, αv/β3 integrin (integrin αv, integrin β3), and cathepsin K (CtsK). In an in vivo model, niclosamide prevented lipopolysaccharide-induced bone loss by diminishing osteoclast activity. Taken together, our results show that niclosamide is effective in suppressing osteoclastogenesis and may be considered as a new and safe therapeutic candidate for the clinical treatment of osteoclast-related diseases such as osteoporosis. - Highlights: • We first investigated the anti-osteoclastogenic effects of niclosamide in vitro and in vivo. • Niclosamide impairs the activation of the Akt-IκB-STAT3 ser{sup 727} signaling axis. • Niclosamide acts a negative regulator of actin ring formation during osteoclast differentiation. • Niclosamide suppresses LPS-induced bone loss in vivo. • Niclosamide deserves new evaluation as a potential treatment target in various bone diseases.« less
Alkaline biodegradable implants for osteoporotic bone defects--importance of microenvironment pH.
Liu, W; Wang, T; Yang, C; Darvell, B W; Wu, J; Lin, K; Chang, J; Pan, H; Lu, W W
2016-01-01
Change of microenvironment pH by biodegradable implants may ameliorate unbalanced osteoporotic bone remodeling. The present work demonstrated that a weak alkaline condition stimulated osteoblasts differentiation while suppressed osteoclast generation. In vivo, implants with an alkaline microenvironment pH (monitored by a pH microelectrode) exhibited a promising healing effect for the repair of osteoporotic bone defects. Under osteoporotic conditions, the response of the bone microenvironment to an endosseous implant is significantly impaired, and this substantially increases the risk of fracture, non-union and aseptic implant loosening. Acid-base equilibrium is an important factor influencing bone cell behaviour. The present purpose was to study the effect of a series of alkaline biodegradable implant materials on regeneration of osteoporotic bone defect, monitoring the microenvironment pH (μe-pH) over time. The proliferation and differentiation potential of osteoporotic rat bone marrow stromal cells and RAW 264.7 cells were examined under various pH conditions. Ovariectomized rat bone defects were filled with specific biodegradable materials, and μe-pH was measured by pH microelectrode. New osteoid and tartrate-resistant acid phosphatase-positive osteoclast-like cells were examined by Goldner's trichrome and TRAP staining, respectively. The intermediate layer between implants and new bone were studied using energy-dispersive X-ray spectroscopy (EDX) linear scanning. In vitro, weak alkaline conditions stimulated osteoporotic rat bone marrow stromal cells (oBMSC) differentiation, while inhibiting the formation of osteoclasts. In vivo, μe-pH differs from that of the homogeneous peripheral blood and exhibits variations over time particular to each material. Higher initial μe-pH was associated with more new bone formation, late response of TRAP-positive osteoclast-like cells and the development of an intermediate 'apatitic' layer in vivo. EDX suggested that residual material may influence μe-pH even 9 weeks post-surgery. The pH microelectrode is suitable for in vivo μe-pH detection. Alkaline biodegradable materials generate an in vivo microenvironmental pH which is higher than the normal physiological value and show promising healing effects in the context of osteoporotic bone defects.
Lee, Jongsung; Nho, Youn Hwa; Yun, Seok Kyun; Hwang, Young Sun
2017-02-16
The fruit of the Terminalia chebula tree has been widely used for the treatment of various disorders. Its anti-diabetic, anti-mutagenic, anti-oxidant, anti-bacterial, anti-fungal, and anti-viral effects have been studied. Dental plaque bacteria (DPB) are intimately associated with gingivitis and periodontitis. In the quest for materials that will prove useful in the treatment and prevention of periodontal disease, we investigated the preventive effects of an ethanol extract of Terminalia chebula (EETC) on DPB-induced inflammation and bone resorption. The anti-bacterial effect of EETC was analyzed using the disc diffusion method. The anti-inflammatory effect of EETC was determined by molecular biological analysis of the DPB-mediated culture cells. Prevention of osteoclastic bone resorption by EETC was explored using osteoclast formation and pit formation assays. EETC suppressed the growth of oral bacteria and reduced the induction of inflammatory cytokines and proteases, abolishing the expression of PGE2 and COX-2 and inhibiting matrix damage. By stimulating the DPB-derived lipopolysaccharides, EETC inhibited both osteoclast formation in osteoclast precursors and RANKL expression in osteoblasts, thereby contributing to the prevention of bone resorption. EETC may be a beneficial supplement to help prevent DPB-mediated periodontal disease.
Suppression of T cell-induced osteoclast formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karieb, Sahar; Fox, Simon W., E-mail: Simon.fox@plymouth.ac.uk
2013-07-12
Highlights: •Genistein and coumestrol prevent activated T cell induced osteoclast formation. •Anti-TNF neutralising antibodies prevent the pro-osteoclastic effect of activated T cells. •Phytoestrogens inhibit T cell derived TNF alpha and inflammatory cytokine production. •Phytoestrogens have a broader range of anti-osteoclastic actions than other anti-resorptives. -- Abstract: Inhibition of T cell derived cytokine production could help suppress osteoclast differentiation in inflammatory skeletal disorders. Bisphosphonates are typically prescribed to prevent inflammatory bone loss but are not tolerated by all patients and are associated with an increased risk of osteonecrosis of the jaw. In light of this other anti-resorptives such as phytoestrogens aremore » being considered. However the effect of phytoestrogens on T cell-induced osteoclast formation is unclear. The effect of genistein and coumestrol on activated T cell-induced osteoclastogenesis and cytokine production was therefore examined. Concentrations of genistein and coumestrol (10{sup −7} M) previously shown to directly inhibit osteoclast formation also suppressed the formation of TRAP positive osteoclast induced by con A activated T cells, which was dependent on inhibition of T cell derived TNF-α. While both reduced osteoclast formation their mechanism of action differed. The anti-osteoclastic effect of coumestrol was associated with a dual effect on con A induced T cell proliferation and activation; 10{sup −7} M coumestrol significantly reducing T cell number (0.36) and TNF-α (0.47), IL-1β (0.23) and IL-6 (0.35) expression, whereas genistein (10{sup −7} M) had no effect on T cell number but a more pronounced effect on T cell differentiation reducing expression of TNF-α (0.49), IL-1β (0.52), IL-6 (0.71) and RANKL (0.71). Phytoestrogens therefore prevent the pro-osteoclastic action of T cells suggesting they may have a role in the control of inflammatory bone loss.« less
Fas Binding to Calmodulin Regulates Apoptosis in Osteoclasts*
Wu, Xiaojun; Ahn, Eun-Young; McKenna, Margaret A.; Yeo, Hyeonju; McDonald, Jay M.
2005-01-01
Promotion of osteoclast apoptosis is one therapeutic approach to osteoporosis. Calmodulin, the major intracellular Ca2+ receptor, modulates both osteoclastogenesis and bone resorption. The calmodulin antagonist, trifluoperazine, rescues bone loss in ovariectomized mice (Zhang, L., Feng, X., and McDonald, J. M. (2003) Endocrinology 144, 4536–4543). We show here that a 3-h treatment of mouse osteoclasts with either of the calmodulin antagonists, tamoxifen or trifluoperazine, induces osteoclast apoptosis dose-dependently. Tamoxifen, 10 μm, and trifluoperazine, 10 μm, induce 7.3 ± 1.8-fold and 5.3 ± 0.9-fold increases in osteoclast apoptosis, respectively. In Jurkat cells, calmodulin binds to Fas, the death receptor, and this binding is regulated during Fas-mediated apoptosis (Ahn, E. Y., Lim, S. T., Cook, W. J., and McDonald, J. M. (2004) J. Biol. Chem. 279, 5661–5666). In osteoclasts, calmodulin also binds Fas. When osteoclasts are treated with 10 μm trifluoperazine, the binding between Fas and calmodulin is dramatically decreased at 15 min and gradually recovers by 60 min. A point mutation of the Fas death domain in the Lpr−cg mouse renders Fas inactive. Using glutathione S-transferase fusion proteins, the human Fas cytoplasmic domain is shown to bind calmodulin, whereas a point mutation (V254N) comparable with the Lpr−cg mutation in mice has markedly reduced calmodulin binding. Osteoclasts derived from Lpr−cg mice have diminished calmodulin/Fas binding and are more sensitive to calmodulin antagonist-induced apoptosis than those from wild-type mice. Both tamoxifen- and trifluoperazine-induced apoptosis are increased 1.6 ± 0.2-fold in Lpr−cg-derived osteoclasts compared with osteoclasts derived from wild-type mice. In summary, calmodulin antagonists induce apoptosis in osteoclasts by a mechanism involving interference with calmodulin binding to Fas. The effects of calmodulin/Fas binding on calmodulin antagonist-induced apoptosis may open a new avenue for therapy for osteoporosis. PMID:15965236
Dopamine D2-like receptor signaling suppresses human osteoclastogenesis.
Hanami, Kentaro; Nakano, Kazuhisa; Saito, Kazuyoshi; Okada, Yosuke; Yamaoka, Kunihiro; Kubo, Satoshi; Kondo, Masahiro; Tanaka, Yoshiya
2013-09-01
Dopamine, a major neurotransmitter, transmits signals via five different seven-transmembrane G protein-coupled receptors termed D1 to D5. Although the relevance of neuroendocrine system to bone metabolism has been emerging, the precise effects of dopaminergic signaling upon osteoclastogenesis remain unknown. Here, we demonstrate that human monocyte-derived osteoclast precursor cells express all dopamine-receptor subtypes. Dopamine and dopamine D2-like receptor agonists such as pramipexole and quinpirole reduced the formation of TRAP-positive multi-nucleated cells, cathepsin K mRNA expression, and pit formation area in vitro. These inhibitory effects were reversed by pre-treatment with a D2-like receptor antagonist haloperidol or a Gαi inhibitor pertussis toxin, but not with the D1-like receptor antagonist SCH-23390. Dopamine and dopamine D2-like receptor agonists, but not a D1-like receptor agonist, suppressed intracellular cAMP concentration as well as RANKL-meditated induction of c-Fos and NFATc1 mRNA expression in human osteoclast precursor cells. Finally, the dopamine D2-like receptor agonist suppressed LPS-induced osteoclast formation in murine bone marrow culture ex vivo. These findings indicate that dopaminergic signaling plays an important role in bone homeostasis via direct effects upon osteoclast differentiation and further suggest that the clinical use of neuroleptics is likely to affect bone mass. Copyright © 2013 Elsevier Inc. All rights reserved.
Robaszkiewicz, Agnieszka; Qu, Chao; Wisnik, Ewelina; Ploszaj, Tomasz; Mirsaidi, Ali; Kunze, Friedrich A.; Richards, Peter J.; Cinelli, Paolo; Mbalaviele, Gabriel; Hottiger, Michael O.
2016-01-01
While ADP-ribosyltransferase diphtheria toxin-like 1 (ARTD1, formerly PARP1) and its enzymatic activity have been shown to be important for reprogramming and differentiation of cells, such as during adipogenesis, their role and mechanism in regulating osteoclastogenesis and bone homeostasis are largely unknown. Here, in cell culture-based RANKL-induced osteoclastogenesis models, we show that silencing of ARTD1 or inhibition of its enzymatic activity enhances osteoclast differentiation and function. As a consequence of ARTD1 silencing or inhibition, the recruitment of p65/RelA to the IL-1β promoter, which is associated with transcriptionally active histone marks, IL-1β expression and inflammasome-dependent secretion of IL-1β are enhanced. This subsequently promotes sustained induction of the transcription factor Nfatc1/A and osteoclastogenesis in an autocrine manner via the IL-1 receptor. In vivo, Artd1-deficient mice display significantly decreased bone mass as a consequence of increased osteoclast differentiation. Accordingly, the expression of osteoclast markers is enhanced in mutant compared to wild-type mice. Together, these results indicate that ARTD1 controls osteoclast development and bone remodelling via its enzymatic activity by modulating the epigenetic marks surrounding the IL-1β promoter and expression of IL-1β and subsequently also Nfatc1/A. PMID:26883084
Rodriguez, Douglas E.; Thula-Mata, Taili; Toro, Edgardo J.; Yeh, Ya-Wen; Holt, Carl; Holliday, L. Shannon; Gower, Laurie B.
2013-01-01
Mineralized collagen composites are of interest because they have the potential to provide a bone-like scaffold that stimulates the natural processes of resorption and remodeling. Working toward this goal, our group has previously shown that the nanostructure of bone can be reproduced using a polymer-induced liquid-precursor (PILP) process, which enables intrafibrillar mineralization of collagen with hydroxyapatite (HA) to be achieved. This prior work used polyaspartic acid (pASP), a simple mimic for acidic non-collagenous proteins (NCPs), to generate nanodroplets/nanoparticles of an amorphous mineral precursor which can infiltrate the interstices of type-I collagen fibrils. In this study we show that osteopontin (OPN) can similarly serve as a process-directing agent for the intrafibrillar mineralization of collagen, even though OPN is generally considered a mineralization inhibitor. We also found that inclusion of OPN in the mineralization process promotes the interaction of mouse marrow-derived osteoclasts with PILP-remineralized bone that was previously demineralized, as measured by actin ring formation. While osteoclast activation occurred when pASP was used as the process-directing agent, using OPN resulted in a dramatic effect on osteoclast activation, presumably because of the inherent arginine-glycine-aspartate acid (RGD) ligands of OPN. By capitalizing on the multifunctionality of OPN, these studies may lead the way to producing biomimetic bone substitutes with the capability of tailorable bioresorption rates. PMID:24140612
Cappariello, Alfredo; Paone, Riccardo; Maurizi, Antonio; Capulli, Mattia; Rucci, Nadia; Muraca, Maurizio; Teti, Anna
2015-01-01
Deficiency of Receptor Activator of NF-κB Ligand (RANKL) prevents osteoclast formation causing osteopetrosis. RANKL is a membrane-bound protein cleaved into active soluble (s)RANKL by metalloproteinase 14 (MMP14). We created a bio-device that harbors primary osteoblasts, cultured on 3D hydroxyapatite scaffolds carrying immobilized MMP14 catalytic domain. Scaffolds were sealed in diffusion chambers and implanted in RANKL-deficient mice. Mice received 1 or 2 diffusion chambers, once or twice and were sacrificed after 1 or 2 months from implants. A progressive increase of body weight was observed in the implanted groups. Histological sections of tibias of non-implanted mice were negative for the osteoclast marker Tartrate-Resistant Acid Phosphatase (TRAcP), consistent with the lack of osteoclasts. In contrast, tibias excised from implanted mice showed TRAcP-positive cells in the bone marrow and on the bone surface, these latter morphologically similar to mature osteoclasts. In mice implanted with 4 diffusion chambers total, we noted the highest number and size of TRAcP-positive cells, with quantifiable eroded bone surface and significant reduction of trabecular bone volume. These data demonstrate that our bio-device delivers effective sRANKL, inducing osteoclastogenesis in RANKL-deficient mice, supporting the feasibility of an innovative experimental strategy to treat systemic cytokine deficiencies. PMID:25678116
Cappariello, Alfredo; Paone, Riccardo; Maurizi, Antonio; Capulli, Mattia; Rucci, Nadia; Muraca, Maurizio; Teti, Anna
2015-04-01
Deficiency of Receptor Activator of NF-κB Ligand (RANKL) prevents osteoclast formation causing osteopetrosis. RANKL is a membrane-bound protein cleaved into active soluble (s)RANKL by metalloproteinase 14 (MMP14). We created a bio-device that harbors primary osteoblasts, cultured on 3D hydroxyapatite scaffolds carrying immobilized MMP14 catalytic domain. Scaffolds were sealed in diffusion chambers and implanted in RANKL-deficient mice. Mice received 1 or 2 diffusion chambers, once or twice and were sacrificed after 1 or 2 months from implants. A progressive increase of body weight was observed in the implanted groups. Histological sections of tibias of non-implanted mice were negative for the osteoclast marker Tartrate-Resistant Acid Phosphatase (TRAcP), consistent with the lack of osteoclasts. In contrast, tibias excised from implanted mice showed TRAcP-positive cells in the bone marrow and on the bone surface, these latter morphologically similar to mature osteoclasts. In mice implanted with 4 diffusion chambers total, we noted the highest number and size of TRAcP-positive cells, with quantifiable eroded bone surface and significant reduction of trabecular bone volume. These data demonstrate that our bio-device delivers effective sRANKL, inducing osteoclastogenesis in RANKL-deficient mice, supporting the feasibility of an innovative experimental strategy to treat systemic cytokine deficiencies. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Panwar, Preety; Lamour, Guillaume; Mackenzie, Neil C. W.; Yang, Heejae; Ko, Frank; Li, Hongbin; Brömme, Dieter
2015-01-01
During aging, changes occur in the collagen network that contribute to various pathological phenotypes in the skeletal, vascular, and pulmonary systems. The aim of this study was to investigate the consequences of age-related modifications on the mechanical stability and in vitro proteolytic degradation of type I collagen. Analyzing mouse tail and bovine bone collagen, we found that collagen at both fibril and fiber levels varies in rigidity and Young's modulus due to different physiological changes, which correlate with changes in cathepsin K (CatK)-mediated degradation. A decreased susceptibility to CatK-mediated hydrolysis of fibrillar collagen was observed following mineralization and advanced glycation end product-associated modification. However, aging of bone increased CatK-mediated osteoclastic resorption by ∼27%, and negligible resorption was observed when osteoclasts were cultured on mineral-deficient bone. We observed significant differences in the excavations generated by osteoclasts and C-terminal telopeptide release during bone resorption under distinct conditions. Our data indicate that modification of collagen compromises its biomechanical integrity and affects CatK-mediated degradation both in bone and tissue, thus contributing to our understanding of extracellular matrix aging. PMID:26224630
Madeira, Mila Fernandes Moreira; Queiroz-Junior, Celso Martins; Costa, Graciela Mitre; Santos, Patrícia Campi; Silveira, Elcia Maria; Garlet, Gustavo Pompermaier; Cisalpino, Patrícia Silva; Teixeira, Mauro Martins; Silva, Tarcília Aparecida; Souza, Daniele da Glória
2012-02-01
Periodontal disease (PD) is a chronic inflammatory and alveolar bone destructive disease triggered by microorganisms from the oral biofilm. Oral inoculation of mice with the periodontopathogen Aggregatibacter actinomycetemcomitans (Aa) induces marked alveolar bone loss and local production of inflammatory mediators, including Macrophage Migration Inhibitory Factor (MIF). The role of MIF for alveolar bone resorption during PD is not known. In the present study, experimental PD was induced in BALB/c wild-type mice (WT) and MIF knockout mice (MIF⁻/⁻) through oral inoculation of Aa. Despite enhanced number of bacteria, MIF⁻/⁻ mice had reduced infiltration of TRAP-positive cells and reduced alveolar bone loss. This was associated with decreased neutrophil accumulation and increased levels of IL-10 in periodontal tissues. TNF-α production was similar in both groups. In vitro, LPS from Aa enhanced osteoclastic activity in a MIF-dependent manner. In conclusion, MIF has role in controlling bacterial growth in the context of PD but contributes more significantly to the progression of bone loss during PD by directly affecting differentiation and activity of osteoclasts. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
De Wilde, Anne; Maria Rassi, Claudia; Cournot, Giulia; Colin, Colette; Lacroix, Herminie C; Chaumaz, Gilles; Coxam, Veronique; Bennetau-Pelissero, Catherine; Pointillart, Alain; Lieberherr, Michele
2007-07-01
Food containing soybeans provide isoflavone phytoestrogens that can preserve bone mass in postmenopausal women, and prevent bone loss in ovariectomized rats. But their effects on bone remain unclear, particularly on bone formation during growth. Two groups of eight pre-pubertal piglets were fed a basal or an isoflavone-enriched (S800) diet for 6 weeks. The S800 diet contained 800 mg SoyLifetrade mark/kg, providing 2.8 mg isoflavones/kg body weight/day. Several bones were collected and tested for bone strength and density. Bone marrow was collected from humeri together with blood samples and genital tracts. The plasma concentrations of isoflavones were increased in the pigs fed S800, but growth rate, body weight, plasma bone markers, bone mineral density, and strength were all unaffected. In contrast, cultured stromal cells from S800 pigs had more alkaline phosphatase-rich cells and mineralized nodules, secreted more osteocalcin, osteoprotegerin and RANK-L, synthesized more osteoprotegerin, and RANK-L. Cultured mononucleated nonadherent bone marrow cells from S800 pigs developed fewer tartrate-resistant acid phosphatase mononucleated cells (osteoclast progenitors) when cultured with 1,25(OH)(2)D(3), and resorbed a smaller area of dentine slices. Freshly isolated bone marrow osteoclast progenitors from S800 pigs had more caspase-3 cleavage activity, and synthesized less RANK. Both osteoclast and osteoblast progenitors had ERalpha and ERbeta, whose syntheses were stimulated by the S800 diet. The S800 piglets had heavier ovaries with more follicles, but their uterus weight was unaffected. We conclude that dietary isoflavones have no detectable effect on the bone mass of growing female piglets, but act on bone marrow osteoprogenitors via ERs--mainly ERbeta, and stimulate ovary development.
Risedronate Prevents Early Radiation-Induced Osteoporosis in Mice at Multiple Skeletal Locations
Willey, Jeffrey S.; Livingston, Eric W.; Robbins, Michael E.; Bourland, J. Daniel; Tirado-Lee, Leidamarie; Smith-Sielicki, Hope; Bateman, Ted A.
2009-01-01
Introduction Irradiation of normal, non-malignant bone during cancer therapy can lead to atrophy and increased risk of fracture at several skeletal sites, particularly the hip. This bone loss has been largely attributed to damaged osteoblasts. Little attention has been given to increased bone resorption as a contributor to radiation-induced osteoporosis. Our aims were to identify if radiation increases bone resorption resulting in acute bone loss, and if bone loss could be prevented by administering risedronate. Methods Twenty-week old female C57BL/6 mice were either: not irradiated and treated with placebo (NR+PL); whole-body irradiated with 2 Gy X-rays and treated with placebo (IR+PL); or irradiated and treated with risedronate (IR+RIS; 30μg/kg every other day). Calcein injections were administered 7 and 2 days before sacrifice. Bones were collected 1, 2, and 3 weeks after exposure. MicroCT analysis was performed at 3 sites: proximal tibial metaphysis; distal femoral metaphysis; and the body of the 5th lumbar vertebra (L5). Osteoclasts were identified from TRAP-stained histological sections. Dynamic histomorphometry of cortical and trabecular bone was performed. Circulating TRAP5b and osteocalcin concentrations were quantified. Results In animals receiving IR+PL, significant (P < 0.05) reduction in trabecular volume fraction relative to non-irradiated controls was observed at all three skeletal sites and time points. Likewise, radiation-induced loss of connectivity and trabecular number relative to NR+PL were observed at all skeletal sites throughout the study. Bone loss primarily occurred during the first week post-exposure. Trabecular and endocortical bone formation was not reduced until Week 2. Loss of bone volume was absent in animals receiving IR+RIS. Histology indicated greater osteoclast numbers at Week 1 within IR+PL mice. Serum TRAP5b concentration was increased in IR+PL mice only at Week 1 compared to NR+PL (P = 0.05). Risedronate treatment prevented the radiation-induced increase in osteoclast number, surface, and TRAP5b. Conclusion This study demonstrated a rapid loss of trabecular bone at several skeletal sites after whole-body irradiation. Changes were accompanied by an increase in osteoclast number and serum markers of bone loss. Risedronate entirely prevented bone loss, providing further evidence that an increase in bone resorption likely caused this radiation-induced bone loss. PMID:19747571
Volejnikova, S.; Laskari, M.; Marks, S. C.; Graves, D. T.
1997-01-01
Tooth eruption is defined as the movement of a tooth from its site of development within the alveolar bone to its position of function in the oral cavity. It represents an excellent model to examine osseous metabolism as bone resorption and bone formation occur simultaneously and are spatially separated. Bone resorption occurs in the coronal (occlusal) area, whereas bone formation occurs in the basal area. Monocytes are thought to have a significant role in the regulation of osseous metabolism. The goal of this study was to examine the recruitment of monocytes to bone in C57BL/6J mice that are undergoing developmentally regulated bone remodeling. Monocytes were detected by immunohistochemistry and osteoclasts were counted as bone-associated multi-nucleated, tartrate-resistant acid phosphatase (TRAP)-positive cells. Cell numbers were obtained from histological sections of animals sacrificed daily for 14 days after birth; an image analysis system was used for quantification. The results demonstrated that, immediately after birth, there were relatively few monocytic cells. In the area of bone resorption, the number of monocytes increased with time, reaching peaks at 5 and 9 days, and decreased thereafter. A similar pattern was observed for osteoclasts. In the area of bone formation, there was a time-dependent increase in the number of monocytes. In contrast, the number of osteoclasts in this area was highest at the earliest time points and decreased after day 3. To investigate potential mechanisms for the recruitment of monocytes, expression of monocyte chemoattractant protein (MCP)-1 was assessed. The number of MCP-1-positive cells increased with time and was generally proportional to the recruitment of mononuclear phagocytes. Osteoblasts were the principal bone cell type expressing MCP-1. The results demonstrate that the recruitment of mononuclear cells in the occlusal area is associated with bone resorption. In contrast, recruitment of monocytes in the basal area is associated with bone formation and a decrease in the number of osteoclasts. These results suggest that monocytes have different functional roles in areas of bone formation compared with bone resorption. Furthermore, the expression of MCP-1 is developmentally regulated and may provide a mechanistic basis to explain the recruitment of monocytic cells. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9137095
Aoki, Kazuhiro; Saito, Hiroaki; Itzstein, Cecile; Ishiguro, Masaji; Shibata, Tatsuya; Blanque, Roland; Mian, Anower Hussain; Takahashi, Mariko; Suzuki, Yoshifumi; Yoshimatsu, Masako; Yamaguchi, Akira; Deprez, Pierre; Mollat, Patrick; Murali, Ramachandran; Ohya, Keiichi; Horne, William C.; Baron, Roland
2006-01-01
Activating receptor activator of NF-κB (RANK) and TNF receptor (TNFR) promote osteoclast differentiation. A critical ligand contact site on the TNFR is partly conserved in RANK. Surface plasmon resonance studies showed that a peptide (WP9QY) that mimics this TNFR contact site and inhibits TNF-α–induced activity bound to RANK ligand (RANKL). Changing a single residue predicted to play an important role in the interaction reduced the binding significantly. WP9QY, but not the altered control peptide, inhibited the RANKL-induced activation of RANK-dependent signaling in RAW 264.7 cells but had no effect on M-CSF–induced activation of some of the same signaling events. WP9QY but not the control peptide also prevented RANKL-induced bone resorption and osteoclastogenesis, even when TNFRs were absent or blocked. In vivo, where both RANKL and TNF-α promote osteoclastogenesis, osteoclast activity, and bone loss, WP9QY prevented the increased osteoclastogenesis and bone loss induced in mice by ovariectomy or low dietary calcium, in the latter case in both wild-type and TNFR double-knockout mice. These results suggest that a peptide that mimics a TNFR ligand contact site blocks bone resorption by interfering with recruitment and activation of osteoclasts by both RANKL and TNF. PMID:16680194
Konermann, A; Staubwasser, M; Dirk, C; Keilig, L; Bourauel, C; Götz, W; Jäger, A; Reichert, C
2014-04-01
The aim of this study was to determine the material composition and cell-mediated remodelling of different calcium phosphate-based bone substitutes. Osteoclasts were cultivated on bone substitutes (Cerabone, Maxresorb, and NanoBone) for up to 5 days. Bafilomycin A1 addition served as the control. To determine cellular activity, the supernatant content of calcium and phosphate was measured by inductively coupled plasma optical emission spectrometry. Cells were visualized on the materials by scanning electron microscopy. Material composition and surface characteristics were assessed by energy-dispersive X-ray spectroscopy. Osteoclast-induced calcium and phosphate release was material-specific. Maxresorb exhibited the highest ion release to the medium (P = 0.034; calcium 40.25mg/l day 5, phosphate 102.08 mg/l day 5) and NanoBone the lowest (P = 0.021; calcium 8.43 mg/l day 5, phosphate 15.15 mg/l day 5); Cerabone was intermediate (P = 0.034; calcium 16.34 mg/l day 5, phosphate 30.6 mg/l day 5). All investigated materials showed unique resorption behaviours. The presented methodology provides a new perspective on the investigation of bone substitute biodegradation, maintaining the material-specific micro- and macrostructure. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Ishizu, Hidenori; Sekiguchi, Toshio; Ikari, Takahiro; Kitamura, Kei-Ichiro; Kitani, Yoichiro; Endo, Masato; Urata, Makoto; Kinoshita, Yasuko; Hattori, Atsuhiko; Srivastav, Ajai K; Mishima, Hiroyuki; Mizusawa, Kanta; Takahashi, Akiyoshi; Suzuki, Nobuo
2018-06-01
We examined the effects of α-melanocyte-stimulating hormone (α-MSH) on bone metabolism using regenerating goldfish scales. Normally developed scales on the bodies of goldfish were removed to allow the regeneration of scales under anesthesia. Thereafter, the influence of α-MSH on the regeneration of goldfish scales was investigated in vivo. In brief, α-MSH was injected at a low dose (0.1 μg/g body weight) or a high dose (1 μg/g body weight) into goldfish every other day. Ten days after removing the scales, we collected regenerating scales and analyzed osteoblastic and osteoclastic activities as respective marker enzyme (alkaline phosphatase for osteoblasts, tartrate-resistant acid phosphatase for osteoclasts) activity in the regenerating scales as well as plasma calcium levels. At both doses, osteoblastic and osteoclastic activities in the regenerating scales increased significantly. Plasma calcium concentrations in the α-MSH-treated group (high doses) were significantly higher than those in the control group. Next, in vitro experiments were performed to confirm the results of in vivo experiments. In the cultured regenerating scales, osteoblastic and osteoclastic activities significantly increased with α-MSH (10 -7 and 10 -6 M) treatment. In addition, real-time PCR analysis indicated that osteoclastogenesis in α-MSH-treated scales was induced by the receptor activator of the NF-κB/receptor activator of the NF-κB ligand/osteoprotegerin pathway. Furthermore, we found that α-MSH receptors (melanocortin receptors 4 and 5) were detected in the regenerating scales. Thus, in teleosts, we are the first to demonstrate that α-MSH functions in bone metabolism and promotes bone resorption via melatonin receptors 4 and/or 5. Copyright © 2018 Elsevier Inc. All rights reserved.
Aubin, Guillaume Ghislain; Baud’huin, Marc; Lavigne, Jean-Philippe; Brion, Régis; Gouin, François; Lepelletier, Didier; Jacqueline, Cédric; Heymann, Dominique; Asehnoune, Karim; Corvec, Stéphane
2017-01-01
Cutibacterium acnes (formerly Propionibacterium acnes) is recognized as a pathogen in foreign-body infections (arthroplasty or spinal instrumentation). To date, the direct impact of C. acnes on bone cells has never been explored. The clade of 11 C. acnes clinical isolates was determined by MLST. Human osteoblasts and osteoclasts were infected by live C. acnes. The whole genome sequence of six isolates of this collection was analyzed. CC36 C. acnes strains were significantly less internalized by osteoblasts and osteoclasts than CC18 and CC28 C. acnes strains (p ≤ 0.05). The CC18 C. acnes ATCC6919 isolate could survive intracellularly for at least 96 hours. C. acnes significantly decreased the resorption ability of osteoclasts with a major impact by the CC36 strain (p ≤ 0.05). Genome analysis revealed 27 genes possibly linked to these phenotypic behaviors. We showed a direct impact of C. acnes on bone cells, providing new explanations about the development of C. acnes foreign-body infections. PMID:28218305
Page, A E; Fuller, K; Chambers, T J; Warburton, M J
1993-11-01
Tripeptidyl peptidase I (EC 3.4.14.9), which cleaves tripeptides from the N-terminus of synthetic substrates, has been purified from human osteoclastomas (a bone tumor containing large numbers of normal osteoclasts). The enzyme has an M(r) of 48 kDa but forms aggregates with an M(r) of about 700 kDa. The tripeptidyl peptidase has an acidic pH optimum (approximately pH 5.0), suggesting that it has a lysosomal localization and prefers substrates with a hydrophobic amino acid in the P1 position. There is an absolute requirement for a nonsubstituted N-terminus. The enzyme is inhibited by reagents which modify serine and histidine residues. Lysosomal tripeptidyl peptidase is known to be capable of cleaving Gly-Pro-X triplets from synthetic collagen-like polypeptides. Ala-Ala-Phe-CH2Cl, a potent inhibitor of osteoclastoma tripeptidyl peptidase, inhibits osteoclastic bone resorption in an in vitro test system. This suggests that tripeptidyl peptidase I, secreted by osteoclasts, is involved at some stage in the degradation of bone collagen.
Tian, Ye; Lu, Teliang; He, Fupo; Xu, Yubin; Shi, Haishan; Shi, Xuetao; Zuo, Fei; Wu, Shanghua; Ye, Jiandong
2018-04-13
β-tricalcium phosphate (β-TCP) is well known as a resorbable bone repair material due to its inherent excellent biocompatibility and osteoconductivity. However, β-TCP is encountered with osteostimulation-deficiency and poor mechanical strength because of poor sinterability. Herein, we prepared novel β-TCP composite ceramics (TCP/SPGs) by introducing strontium-containing phosphate-based glass (SPG; 45P 2 O 5 -32SrO-23Na 2 O) as sintering additive. The SPG helped to achieve efficient liquid-phase sintering of β-TCP at 1100 °C. The compressive strength of TCP/SPGs with 15 wt.% SPG (TCP/SPG15) was 2.65 times as high as that of plain β-TCP ceramic. The SPG reacted with β-TCP, and the Sr 2+ and Na 2+ from SPG replaced Ca 2+ in the lattice structure of β-TCP, enabling the sustained release of strontium from TCP/SPGs. In vitro cytological test indicated that TCP/SPGs with certain amount of SPG were highly biocompatible, and noticeably promoted osteogenesis, and inhibited osteoclastic activities. Our results suggested that the TCP/SPG15 might be potential high-strength bone grafts used for bone defect repair, especially in the osteoporotic condition. Copyright © 2018 Elsevier B.V. All rights reserved.
Qu, Bo; Xia, Xun; Yan, Ming; Gong, Kai; Deng, Shaolin; Huang, Gang; Ma, Zehui; Pan, Xianming
2015-10-15
The increased osteoclastic activity accounts for pathological bone loss in diseases including osteoporosis. MicroRNAs are widely accepted to be involved in the regulation of osteopenic diseases. Recently, the low expression of miR-218 was demonstrated in CD14(+) peripheral blood mononuclear cells (PBMCs) from patients with postmenopausal osteoporosis. However, its role and the underlying mechanism in osteoporosis are still undefined. Here, an obvious decrease in miR-218 expression was observed during osteoclastogenesis under receptor activator of nuclear factor κB ligand (RANKL) stimulation, in both osteoclast precursors of bone marrow macrophages (BMMs) and RAW 264.7. Further analysis confirmed that overexpression of miR-218 obviously attenuated the formation of multinuclear mature osteoclasts, concomitant with the decrease in Trap and Cathepsin K levels, both the master regulators of osteoclastogenesis. Moreover, miR-218 up-regulation dramatically inhibited osteoclast precursor migration, actin ring formation and bone resorption. Mechanism assay demonstrated that miR-218 overexpression attenuated the expression of p38MAPK, c-Fos and NFATc1 signaling molecules. Following preconditioning with P79350, an agonist of p38MAPK, the inhibitor effect of miR-218 on osteoclastogenesis and bone-resorbing activity was strikingly ameliorated. Together, this study revealed a crucial role of miR-218 as a negative regulator for osteoclastogenesis and bone resorption by suppressing the p38MAPK-c-Fos-NFATc1 pathway. Accordingly, this research will provide a promising therapeutic agent against osteopenic diseases including osteoporosis. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, Xiaohong; Schröder, Heinz C.; Feng, Qingling; Draenert, Florian; Müller, Werner E. G.
2013-01-01
Bone defects in human, caused by fractures/nonunions or trauma, gain increasing impact and have become a medical challenge in the present-day aging population. Frequently, those fractures require surgical intervention which ideally relies on autografts or suboptimally on allografts. Therefore, it is pressing and likewise challenging to develop bone substitution materials to heal bone defects. During the differentiation of osteoblasts from their mesenchymal progenitor/stem cells and of osteoclasts from their hemopoietic precursor cells, a lineage-specific release of growth factors and a trans-lineage homeostatic cross-talk via signaling molecules take place. Hence, the major hurdle is to fabricate a template that is functioning in a way mimicking the morphogenetic, inductive role(s) of the native extracellular matrix. In the last few years, two naturally occurring polymers that are produced by deep-sea sponges, the biogenic polyphosphate (bio-polyP) and biogenic silica (bio-silica) have also been identified as promoting morphogenetic on both osteoblasts and osteoclasts. These polymers elicit cytokines that affect bone mineralization (hydroxyapatite formation). In this manner, bio-silica and bio-polyP cause an increased release of BMP-2, the key mediator activating the anabolic arm of the hydroxyapatite forming cells, and of RANKL. In addition, bio-polyP inhibits the progression of the pre-osteoclasts to functionally active osteoclasts. Based on these findings, new bioinspired strategies for the fabrication of bone biomimetic templates have been developed applying 3D-printing techniques. Finally, a strategy is outlined by which these two morphogenetically active polymers might be used to develop a novel functionally active polymer. PMID:23528950
Liu, Jess; Czernick, Drew; Lin, Shih-Chun; Alasmari, Abeer; Serge, Dibart; Salih, Erdjan
2013-09-01
Egg yolk phosvitin is one of the most highly phosphorylated extracellular matrix proteins known in nature with unique physico-chemical properties deemed to be critical during ex-vivo egg embryo development. We have utilized our unique live mouse calvarial bone organ culture models under conditions which dissociates the two bone remodeling stages, viz., resorption by osteoclasts and formation by osteoblasts, to highlight important and to date unknown critical biological functions of egg phosvitin. In our resorption model live bone cultures were grown in the absence of ascorbate and were stimulated by parathyroid hormone (PTH) to undergo rapid osteoclast formation/differentiation with bone resorption. In this resorption model native phosvitin potently inhibited PTH-induced osteoclastic bone resorption with simultaneous new osteoid/bone formation in the absence of ascorbate (vitamin C). These surprising and critical observations were extended using the bone formation model in the absence of ascorbate and in the presence of phosvitin which supported the above results. The results were corroborated by analyses for calcium release or uptake, tartrate-resistant acid phosphatase activity (marker for osteoclasts), alkaline phosphatase activity (marker for osteoblasts), collagen and hydroxyproline composition, and histological and quantitative histomorphometric evaluations. The data revealed that the discovered bioactivity of phosvitin mirrors that of ascorbate during collagen synthesis and the formation of new osteoid/bone. Complementing those studies use of the synthetic collagen peptide analog and cultured calvarial osteoblasts in conjunction with mass spectrometric analysis provided results that augmented the bone organ culture work and confirmed the capacity of phosvitin to stimulate differentiation of osteoblasts, collagen synthesis, hydroxyproline formation, and biomineralization. There are striking implications and interrelationships of this affect that relates to the evolutionary inactivation of the gene of an enzyme L-gulono-γ-lactone oxidase, which is involved in the final step of ascorbate biosynthesis, in many vertebrate species including passeriform birds, reptiles and teleost fish whose egg yolk contain phosvitin. These represent examples of how developing ex-vivo embryos of such species can achieve connective tissue and skeletal system formation in the absence of ascorbate. Copyright © 2013 Elsevier Inc. All rights reserved.
Common endocrine control of body weight, reproduction, and bone mass
NASA Technical Reports Server (NTRS)
Takeda, Shu; Elefteriou, Florent; Karsenty, Gerard
2003-01-01
Bone mass is maintained constant between puberty and menopause by the balance between osteoblast and osteoclast activity. The existence of a hormonal control of osteoblast activity has been speculated for years by analogy to osteoclast biology. Through the search for such humoral signal(s) regulating bone formation, leptin has been identified as a strong inhibitor of bone formation. Furthermore, intracerebroventricular infusion of leptin has shown that the effect of this adipocyte-derived hormone on bone is mediated via a brain relay. Subsequent studies have led to the identification of hypothalamic groups of neurons involved in leptin's antiosteogenic function. In addition, those neurons or neuronal pathways are distinct from neurons responsible for the regulation of energy metabolism. Finally, the peripheral mediator of leptin's antiosteogenic function has been identified as the sympathetic nervous system. Sympathomimetics administered to mice decreased bone formation and bone mass. Conversely, beta-blockers increased bone formation and bone mass and blunted the bone loss induced by ovariectomy.
Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone
Tu, Xiaolin; Delgado-Calle, Jesus; Condon, Keith W.; Maycas, Marta; Zhang, Huajia; Carlesso, Nadia; Taketo, Makoto M.; Burr, David B.; Plotkin, Lilian I.; Bellido, Teresita
2015-01-01
Osteocytes, >90% of the cells in bone, lie embedded within the mineralized matrix and coordinate osteoclast and osteoblast activity on bone surfaces by mechanisms still unclear. Bone anabolic stimuli activate Wnt signaling, and human mutations of components along this pathway underscore its crucial role in bone accrual and maintenance. However, the cell responsible for orchestrating Wnt anabolic actions has remained elusive. We show herein that activation of canonical Wnt signaling exclusively in osteocytes [dominant active (da)βcatOt mice] induces bone anabolism and triggers Notch signaling without affecting survival. These features contrast with those of mice expressing the same daß-catenin in osteoblasts, which exhibit decreased resorption and perinatal death from leukemia. daßcatOt mice exhibit increased bone mineral density in the axial and appendicular skeleton, and marked increase in bone volume in cancellous/trabecular and cortical compartments compared with littermate controls. daßcatOt mice display increased resorption and formation markers, high number of osteoclasts and osteoblasts in cancellous and cortical bone, increased bone matrix production, and markedly elevated periosteal bone formation rate. Wnt and Notch signaling target genes, osteoblast and osteocyte markers, and proosteoclastogenic and antiosteoclastogenic cytokines are elevated in bones of daßcatOt mice. Further, the increase in RANKL depends on Sost/sclerostin. Thus, activation of osteocytic β-catenin signaling increases both osteoclasts and osteoblasts, leading to bone gain, and is sufficient to activate the Notch pathway. These findings demonstrate disparate outcomes of β-catenin activation in osteocytes versus osteoblasts and identify osteocytes as central target cells of the anabolic actions of canonical Wnt/β-catenin signaling in bone. PMID:25605937
Chung, Hwa-Jin; Kyung Kim, Won; Joo Park, Hyen; Cho, Lan; Kim, Me-Riong; Kim, Min Jeong; Shin, Joon-Shik; Ho Lee, Jin; Ha, In-Hyuk; Kook Lee, Sang
2016-02-17
Harpagide, an iridoid glucoside, is a constituent of the root of Harpagophytum procumbens var. sublobatum (Engl.) Stapf, Devil's claw which has been used in patients with osteoarthritis (OA). In the present study, we investigated the anti-osteoporotic potential of harpagide and its underlying mechanism of action in in vitro cell culture and in vivo bone loss animal models. Harpagide was obtained from the alkalic hydrolysis of harpagoside, a major constituent of H. procumbens var. sublobatum Analysis of biomarkers for bone formation in osteoblastic MC3T3-E1 cells and bone resorption in osteoclast cells derived from mouse bone marrow cells was performed to evaluate the mechanism of action. The protective activity of harpagide against bone loss was also evaluated in ovariectomized (OVX) mouse model. Harpagide improved bone properties by stimulating the process of differentiation and maturation of osteoblast cells and suppressing the process of RANKL-induced differentiation of osteoclast cells. In OVX-induced bone loss mouse model, oral administration of harpagide significantly improved recovery of bone mineral density, trabecular bone volume, and trabecular number in the femur. Harpagide also prevented increase of trabecular separation and structure model index induced by OVX. Harpagide effectively inhibited the serum levels of biochemical markers of bone loss, including alkaline phosphatase, osteocalcin, C-terminal telopeptide, and tartrate-resistant acid phosphatase. Taken together, the present study demonstrates that harpagide has a potential for prevention of bone loss in OVX mice by regulating the stimulation of osteoblast differentiation and the suppression of osteoclast formation. Therefore, these findings suggest that harpagide might serve as a bioactive compound derived from H. procumbens var. sublobatum for improvement of age-dependent bone destruction disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Whyte, Michael P; Wenkert, Deborah; McAlister, William H; Novack, Deborah V; Nenninger, Angie R; Zhang, Xiafang; Huskey, Margaret; Mumm, Steven
2010-01-01
Dysosteosclerosis (DSS), an extremely rare dense bone disease, features short stature and fractures and sometimes optic atrophy, cranial nerve palsy, developmental delay, and failure of tooth eruption in infancy or early childhood consistent with osteopetrosis (OPT). Bone histology during childhood shows unresorbed primary spongiosa from deficient osteoclast action. Additionally, there is remarkable progressive flattening of all vertebrae and, by adolescence, paradoxical metaphyseal osteopenia with thin cortical bone. Reports of consanguinity indicate autosomal recessive inheritance, yet more affected males than females suggest X-linked recessive inheritance. We investigated a nonconsanguineous girl with DSS. Osteosclerosis was discovered at age 7 months. Our studies, spanning ages 11 to 44 months, showed weight at approximately 50th percentile, and length diminishing from approximately 30th percentile to –2.3 SD. Head circumference was +4 SD. The patient had frontal bossing, blue sclera, normal teeth, genu valgum, and unremarkable joints. Radiographs showed orbital and facial sclerosis, basilar thickening, bone-in-bone appearance of the pelvis, sclerotic long bone ends, and fractures of ribs and extremities. Progressive metaphyseal widening occurred as vertebrae changed from ovoid to flattened and became beaked anteriorly. A hemogram was normal. Consistent with OPT, serum parathyroid hormone (PTH) concentrations reflected dietary calcium levels. Serum bone alkaline phosphatase, osteocalcin, and TRACP-5b were subnormal. The iliac crest contained excessive primary spongiosa and no osteoclasts. No mutations were identified in the splice sites or exons for the genes encoding chloride channel 7, T-cell immune regulator 1, OPT-associated transmembrane protein 1, and monocyte colony-stimulating factor (M-CSF) and its receptor C-FMS, ANKH, OPG, RANK, and RANKL. Genomic copy-number microarray was unrevealing. Hence, DSS is a distinctive OPT of unknown etiology featuring osteoclast deficiency during early childhood. How osteopenia follows is an enigma of human skeletal pathobiology. © 2010 American Society for Bone and Mineral Research. PMID:20499338
Shanmugarajan, Srinivasan; Swoboda, Kathryn J.; Iannaccone, Susan T.; Ries, William L.; Maria, Bernard L.; Reddy, Sakamuri V.
2009-01-01
Spinal muscular atrophy is the second most common fatal childhood disorder. Core clinical features include muscle weakness caused by degenerating lower motor neurons and a high incidence of bone fractures and hypercalcemia. Fractures further compromise quality of life by progression of joint contractures or additional loss of motor function. Recent observations suggest that bone disease in spinal muscular atrophy may not be attributed entirely to lower motor neuron degeneration. The presence of the spinal muscular atrophy disease-determining survival motor neuron gene (SMN), SMN expression, and differential splicing in bone-resorbing osteoclasts was recently discovered. Its ubiquitous expression and the differential expression of splice variants suggest that SMN has specific roles in bone cell function. SMN protein also interacts with osteoclast stimulatory factor. Mouse models of human spinal muscular atrophy disease suggest a potential role of SMN protein in skeletal development. Dual energy x-ray absorptiometry analysis demonstrated a substantial decrease in total bone area and poorly developed caudal vertebra in the mouse model. These mice also had pelvic bone fractures. Studies delineating SMN signaling mechanisms and gene transcription in a cell-specific manner will provide important molecular insights into the pathogenesis of bone disease in children with spinal muscular atrophy. Moreover, understanding bone remodeling in spinal muscular atrophy may lead to novel therapeutic approaches to enhance skeletal health and quality of life. This article reviews the skeletal complications associated with spinal muscular atrophy and describes a functional role for SMN protein in osteoclast development and bone resorption activity. PMID:17761651
2012-01-01
Background Bone grafts from bone banks might be mixed with bisphosphonates to inhibit the osteoclastic response. This inhibition prevents the osteoclasts to resorb the allograft bone before new bone has been formed by the osteoblasts, which might prevent instability. Since bisphosphonates may not only inhibit osteoclasts, but also osteoblasts and thus bone formation, we studied different bisphosphonate concentrations combined with allograft bone. We investigated whether locally applied alendronate has an optimum dose with respect to bone resorption and formation. Further, we questioned whether the addition of demineralized bone matrix (DBM), would stimulate bone formation. Finally, we studied the effect of high levels of antibiotics on bone allograft healing, since mixing allograft bone with antibiotics might reduce the infection risk. Methods 25 goats received eight bone conduction chambers in the cortical bone of the proximal medial tibia. Five concentrations of alendronate (0, 0.5 mg/mL, 1 mg/mL, 2 mg/mL, and 10 mg/mL) were tested in combination with allograft bone and supplemented with cefazolin (200 μg/mL). Allograft not supplemented with alendronate and cefazolin served as control. In addition, allograft mixed with demineralized bone matrix, with and without alendronate, was tested. After 12 weeks, graft bone area and new bone area were determined with manual point counting. Results Graft resorption decreased significantly (p < 0.001) with increasing alendronate concentration. The area of new bone in the 1 mg/mL alendronate group was significantly (p = 0.002) higher when compared to the 10 mg/mL group. No differences could be observed between the group without alendronate, but with demineralized bone, and the control groups. Conclusions A dose-response relationship for local application of alendronate has been shown in this study. Most new bone was present at 1 mg/mL alendronate. Local application of cefazolin had no effect on bone remodelling. PMID:22443362
Zhen, Ruixin; Yang, Jianing; Wang, Yu; Li, Yubo; Chen, Bin; Song, Youxin; Ma, Guiyun; Yang, Bo
2018-04-01
Bone regeneration is an important process associated with the treatment of osteonecrosis, which is caused by various factors. Hepatocyte growth factor (HGF) is an active biological factor that has multifunctional roles in cell biology, life sciences and clinical medicine. It has previously been suggested that bone morphogenetic protein (BMP)‑2 exerts beneficial roles in bone formation, repair and angiogenesis in the femoral head. The present study aimed to investigate the benefits and molecular mechanisms of HGF in bone regeneration. The viability of osteoblasts and osteoclasts were studied in vitro. In addition, the expression levels of tumor necrosis factor (TNF)‑α, monocyte chemotactic protein (MCP)‑1, interleukin (IL)‑1 and IL‑6 were detected in a mouse fracture model following treatment with HGF. The expression and activity of nuclear factor (NF)‑κB were also analyzed in osteocytes post‑treatment with HGF. Histological analysis was used to determine the therapeutic effects of HGF on mice with fractures. The migration and differentiation of osteoblasts and osteoclasts were investigated in HGF‑incubated cells. Furthermore, angiogenesis and BMP‑2 expression were analyzed in the mouse fracture model post‑treatment with HGF. The results indicated that HGF regulates the cell viability of osteoblasts and osteoclasts, and also balanced the ratio between osteoblasts and osteoclasts. In addition, HGF decreased the serum expression levels of TNF‑α, MCP‑1, IL‑1 and IL‑6 in experimental mice. The results of a mechanistic analysis demonstrated that HGF upregulated p65, IκB kinase‑β and IκBα expression in osteoblasts from experimental mice. In addition, the expression levels of vascular endothelial growth factor, BMP‑2 receptor, receptor activator of NF‑κB ligand and macrophage colony‑stimulating factor were upregulated by HGF, which may effectively promote blood vessel regeneration, and contribute to the formation and revascularization of tissue‑engineered bone. Furthermore, HGF promoted BMP‑2 expression and enhanced angiogenesis at the fracture location. These results suggested that HGF treatment may significantly promote bone regeneration in a mouse fracture model. In conclusion, these results indicated that HGF is involved in bone regeneration, angiogenesis and the balance between osteoblasts and osteoclasts, thus suggesting that HGF may be considered a potential agent for the treatment of fractures via the promotion of bone regeneration through regulation of the BMP‑2‑mediated NF‑κB signaling pathway.
Sato, Nobuaki; Takahashi, Naoyuki; Suda, Koji; Nakamura, Midori; Yamaki, Mariko; Ninomiya, Tadashi; Kobayashi, Yasuhiro; Takada, Haruhiko; Shibata, Kenichiro; Yamamoto, Masahiro; Takeda, Kiyoshi; Akira, Shizuo; Noguchi, Toshihide; Udagawa, Nobuyuki
2004-01-01
Myeloid differentiation factor 88 (MyD88) plays essential roles in the signaling of the Toll/interleukin (IL)-1 receptor family. Toll–IL-1 receptor domain-containing adaptor inducing interferon-β (TRIF)-mediated signals are involved in lipopolysaccharide (LPS)-induced MyD88-independent pathways. Using MyD88-deficient (MyD88−/−) mice and TRIF-deficient (TRIF−/−) mice, we examined roles of MyD88 and TRIF in osteoclast differentiation and function. LPS, diacyl lipopeptide, and IL-1α stimulated osteoclastogenesis in cocultures of osteoblasts and hemopoietic cells obtained from TRIF−/− mice, but not MyD88−/− mice. These factors stimulated receptor activator of nuclear factor-κB ligand mRNA expression in TRIF−/− osteoblasts, but not MyD88−/− osteoblasts. LPS stimulated IL-6 production in TRIF−/− osteoblasts, but not TRIF−/− macrophages. LPS and IL-1α enhanced the survival of TRIF−/− osteoclasts, but not MyD88−/− osteoclasts. Diacyl lipopeptide did not support the survival of osteoclasts because of the lack of Toll-like receptor (TLR)6 in osteoclasts. Macrophages expressed both TRIF and TRIF-related adaptor molecule (TRAM) mRNA, whereas osteoblasts and osteoclasts expressed only TRIF mRNA. Bone histomorphometry showed that MyD88−/− mice exhibited osteopenia with reduced bone resorption and formation. These results suggest that the MyD88-mediated signal is essential for the osteoclastogenesis and function induced by IL-1 and TLR ligands, and that MyD88 is physiologically involved in bone turnover. PMID:15353553
Eskinazi-Budge, Aaron; Manickavasagam, Dharani; Czech, Tori; Novak, Kimberly; Kunzler, James; Oyewumi, Moses O
2018-05-30
Simvastatin (Sim) is a widely known drug in the treatment of hyperlipidemia that has attracted so much attention in bone regeneration based on its potential osteoanabolic effect. However, repurposing of Sim in bone regeneration will require suitable delivery systems that can negate undesirable off-target/side effects. In this study, we have investigated a new lipid nanoparticle (NP) platform that was fabricated using a binary blend of emulsifying wax (Ewax) and glyceryl monooleate (GMO). Using the binary matrix materials, NPs loaded with Sim (0-500 µg/mL) were prepared and showed an average particle size of about 150 nm. NP size stability was dependent on Sim concentration loaded in NPs. The suitability of NPs prepared with the binary matrix materials in Sim delivery for potential application in bone regeneration was supported by biocompatibility in pre-osteoclastic and pre-osteoblastic cells. Additional data demonstrated that biofunctional Sim was released from NPs that facilitated differentiation of osteoblasts (cells that form bones) while inhibiting differentiation of osteoclasts (cells that resorb bones). The overall work demonstrated the preparation of NPs from Ewax/GMO blends and characterization to ascertain potential suitability in Sim delivery for bone regeneration. Additional studies on osteoblast and osteoclast functions are warranted to fully evaluate the efficacy simvastatin-loaded Ewax/GMO NPs using in-vitro and in-vivo approaches.
Slavin, R E; Swedo, J; Cartwright, J; Viegas, S; Custer, E M
1988-02-01
Bullet wounds causing lead synovitis in the wrist and knee are reported in two patients, one of whom also developed clinical plumbism. Very high lead levels in the synovial fluid are believed to be responsible for toxicity changes that occurred in the synovium and bone. Ultrastructurally, these alterations included the formation of nuclear lead inclusions, dilation, and degranulation of the rough endoplasmic reticulum and deposition of crystalline precipitates in the matrix of the mitochondria in macrophages, osteoclasts, and synoviocytes, as well as the development of cytoplasmic lead inclusions in osteoclasts. Energy-dispersive x-ray elemental analysis (EDXEA) indicated that the nuclear inclusions contained only lead, whereas precipitates within the mitochondria and elsewhere in the cytoplasm were composed of complexes containing lead, calcium, and phosphorus. Similarly constituted extracellular complexes were incorporated into newly formed trabecular bone laid down as a physiologic response to the bullet lodged within the wrist bones. This bone subsequently exhibited defects in bone resorption, which were characterized by depressed osteoclastic function and a unique lesion termed incomplete osteocytic osteolysis. The genesis of this latter lesion is uncertain. The sequestration of the partially degraded bone fragments containing lead complexes into the marrow and eventually into the joint spaces and synovium permitted the recycling of bone lead, and this may have played an important role in inducing clinical plumbism in one of the patients in this study.
Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis.
Langdahl, Bente; Ferrari, Serge; Dempster, David W
2016-12-01
The adult skeleton is renewed by remodeling throughout life. Bone remodeling is a process where osteoclasts and osteoblasts work sequentially in the same bone remodeling unit. After the attainment of peak bone mass, bone remodeling is balanced and bone mass is stable for one or two decades until age-related bone loss begins. Age-related bone loss is caused by increases in resorptive activity and reduced bone formation. The relative importance of cortical remodeling increases with age as cancellous bone is lost and remodeling activity in both compartments increases. Bone modeling describes the process whereby bones are shaped or reshaped by the independent action of osteoblast and osteoclasts. The activities of osteoblasts and osteoclasts are not necessarily coupled anatomically or temporally. Bone modeling defines skeletal development and growth but continues throughout life. Modeling-based bone formation contributes to the periosteal expansion, just as remodeling-based resorption is responsible for the medullary expansion seen at the long bones with aging. Existing and upcoming treatments affect remodeling as well as modeling. Teriparatide stimulates bone formation, 70% of which is remodeling based and 20-30% is modeling based. The vast majority of modeling represents overflow from remodeling units rather than de novo modeling. Denosumab inhibits bone remodeling but is permissive for modeling at cortex. Odanacatib inhibits bone resorption by inhibiting cathepsin K activity, whereas modeling-based bone formation is stimulated at periosteal surfaces. Inhibition of sclerostin stimulates bone formation and histomorphometric analysis demonstrated that bone formation is predominantly modeling based. The bone-mass response to some osteoporosis treatments in humans certainly suggests that nonremodeling mechanisms contribute to this response and bone modeling may be such a mechanism. To date, this has only been demonstrated for teriparatide, however, it is clear that rediscovering a phenomenon that was first observed more half a century ago will have an important impact on our understanding of how new antifracture treatments work.
Rossi, Francesca; Perrotta, Silverio; Bellini, Giulia; Luongo, Livio; Tortora, Chiara; Siniscalco, Dario; Francese, Matteo; Torella, Marco; Nobili, Bruno; Di Marzo, Vincenzo; Maione, Sabatino
2014-01-01
The pathogenesis of bone resorption in β-thalassemia major is multifactorial and our understanding of the underlying molecular and cellular mechanisms remains incomplete. Considering the emerging importance of the endocannabinoid/endovanilloid system in bone metabolism, it may be instructive to examine a potential role for this system in the development of osteoporosis in patients with β-thalassemia major and its relationship with iron overload and iron chelation therapy. This study demonstrates that, in thalassemic-derived osteoclasts, tartrate-resistant acid phosphatase expression inversely correlates with femoral and lumbar bone mineral density, and directly correlates with ferritin levels and liver iron concentration. The vanilloid agonist resiniferatoxin dramatically reduces cathepsin K levels and osteoclast numbers in vitro, without affecting tartrate-resistant acid phosphatase expression. The iron chelators deferoxamine, deferiprone and deferasirox decrease both tartrate-resistant acid phosphatase and cathepsin K expression, as well as osteoclast activity. Taken together, these data show that transient receptor potential vanilloid type 1 activation/desensitization influences tartrate-resistant acid phosphatase expression and activity, and this effect is dependent on iron, suggesting a pivotal role for iron overload in the dysregulation of bone metabolism in patients with thalassemia major. Our applied pharmacology provides evidence for the potential of iron chelators to abrogate these effects by reducing osteoclast activity. Whether iron chelation therapy is capable of restoring bone health in humans requires further study, but the potential to provide dual benefits for patients with β-thalassemia major –preventing iron-overload and alleviating associated osteoporotic changes – is exciting. PMID:25216685
Effects of a mesoporous bioactive glass on osteoblasts, osteoclasts and macrophages.
Gómez-Cerezo, N; Casarrubios, L; Morales, I; Feito, M J; Vallet-Regí, M; Arcos, D; Portolés, M T
2018-05-29
A mesoporous bioactive glass (MBG) of molar composition 75SiO 2 -20CaO-5P 2 O 5 (MBG-75S) has been synthetized as a potential bioceramic for bone regeneration purposes. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), nitrogen adsorption studies and transmission electron microscopy (TEM) demonstrated that MBG-75S possess a highly ordered mesoporous structure with high surface area and porosity, which would explain the high ionic exchange rate (mainly calcium and silicon soluble species) with the surrounded media. MBG-75S showed high biocompatibility in contact with Saos-2 osteoblast-like cells. Concentrations up to 1 mg/ml did not lead to significant alterations on either morphology or cell cycle. Regarding the effects on osteoclasts, MBG-75S allowed the differentiation of RAW-264.7 macrophages into osteoclast-like cells but exhibiting a decreased resorptive activity. These results point out that MBG-75S does not inhibit osteoclastogenesis but reduces the osteoclast bone-resorbing capability. Finally, in vitro studies focused on the innate immune response, evidenced that MBG-75S allows the proliferation of macrophages without inducing their polarization towards the M1 pro-inflammatory phenotype. This in vitro behavior is indicative that MBG-75S would just induce the required innate immune response without further inflammatory complications under in vivo conditions. The overall behavior respect to osteoblasts, osteoclasts and macrophages, makes this MBG a very interesting candidate for bone grafting applications in osteoporotic patients. Copyright © 2018. Published by Elsevier Inc.
Modulation of bone resorption by phosphorylation state of bone sialoprotein.
Curtin, Paul; McHugh, Kevin P; Zhou, Hai-Yan; Flückiger, Rudolf; Goldhaber, Paul; Oppenheim, Frank G; Salih, Erdjan
2009-07-28
We have determined transmembrane protein tyrosine phosphorylation (outside-in signaling) in cultured osteoclasts and macrophages in response to added native purified bone sialoprotein (nBSP) and its dephosphorylated form (dBSP). There were selective/differential and potent inhibitory effects by dBSP and minimal effect by nBSP on intracellular tyrosine phosphorylation in macrophages and osteoclasts. Further studies on the downstream gene expression effects led to identification of a large number of differentially expressed genes in response to nBSP relative to dBSP in both macrophages and osteoclasts. These studies were extended to a bone resorption model using live mouse neonatal calvarial bone organ cultures stimulated by parathyroid hormone (PTH) to undergo bone resorption. Inclusion of nBSP in such cultures showed no effect on type I collagen telopeptide fragment release, hence overall bone resorption, whereas addition of dBSP abolished the PTH-induced bone resorption. The inhibition of bone resorption by dBSP was shown to be unique since in complementary experiments use of integrin receptor binding ligand, GRGDS peptide, offered only partial reduction on overall bone resorption. Quantitative RANKL analysis indicated that mechanistically the PTH-induced bone resorption was inhibited by dBSP via down-regulation of the osteoblastic RANKL production. This conclusion was supported by the RANKL analysis in cultured MC3T3-E1 osteoblast cells. Overall, these studies provided direct evidence for the involvement of covalently bound phosphates on BSP in receptor mediated "outside-in" signaling via transmembrane tyrosine phosphorylation with concurrent effects on downstream gene expressions. The use of a live bone organ culture system augmented these results with further evidence that links the observed in vivo variable state of phosphorylation with bone remodeling.
Dong, X Neil; Qin, An; Xu, Jiake; Wang, Xiaodu
2011-08-01
Advanced glycation end products (AGEs) have been observed to accumulate in bone with increasing age and may impose effects on bone resorption activities. However, the underlying mechanism of AGEs accumulation in bone is still poorly understood. In this study, human cortical bone specimens from young (31±6years old), middle-aged (51±3years old) and elderly (76±4years old) groups were examined to determine the spatial-temporal distribution of AGEs in bone matrix and its effect on bone resorption activities by directly culturing osteoclastic cells on bone slices. The results of this study indicated that the fluorescence intensity (excitation wave length 360nm and emission wave length 470±40nm) could be used to estimate the relative distribution of AGEs in bone (pentosidine as its marker) under an epifluorescence microscope. Using the fluorescence intensity as the relative measure of AGEs concentration, it was found that the concentration of AGEs varied with biological tissue ages, showing the greatest amount in the interstitial tissue, followed by the old osteons, and the least amount in newly formed osteons. In addition, AGEs accumulation was found to be dependent on donor ages, suggesting that the younger the donor the less AGEs were accumulated in the tissue. Most interestingly, AGEs accumulation appeared to initiate from the region of cement lines, and spread diffusively to the other parts as the tissue aged. Finally, it was observed that the bone resorption activities of osteoclasts were positively correlated with the in situ concentration of AGEs and such an effect was enhanced with increasing donor age. These findings may help elucidate the mechanism of AGEs accumulation in bone and its association with bone remodeling process. Copyright © 2011 Elsevier Inc. All rights reserved.
Dong, X. Neil; Qin, An; Xu, Jiake; Wang, Xiaodu
2011-01-01
Advanced glycation end products (AGEs) have been observed to accumulate in bone with increasing age and may impose effects on bone resorption activities. However, the underlying mechanism of AGEs accumulation in bone is still poorly understood. In this study, human cortical bone specimens from young (31±6 years old), middle-aged (51±3 years old) and elderly (76±4 years old) groups were examined to determine the spatial-temporal distribution of AGEs in bone matrix and its effect on bone resorption activities by directly culturing osteoclastic cells on bone slices. The results of this study indicated that the fluorescence intensity (excitation wave length 360 nm and emission wave length 470±40 nm) could be used to estimate the relative distribution of AGEs in bone (pentosidine as its marker) under an epifluorescence microscope. Using the fluorescence intensity as the relative measure of AGEs concentration, it was found that the concentration of AGEs varied with biological tissue ages, showing the greatest amount in the interstitial tissue, followed by the old osteons, and the least amount in newly formed osteons. In addition, AGEs accumulation was found to be dependent on donor ages, suggesting that the younger the donor the less AGEs were accumulated in the tissue. Most interestingly, AGEs accumulation appeared to initiate from the region of cement lines, and spread diffusively to the other parts as the tissue aged. Finally, it was observed that the bone resorption activities of osteoclasts were positively correlated with the in situ concentration of AGEs and such an effect was enhanced with increasing donor age. These findings may help elucidate the mechanism of AGEs accumulation in bone and its association with bone remodeling process. PMID:21530698
Morshed, Syed; Latif, Rauf; Zaidi, Mone; Davies, Terry F.
2011-01-01
Background We have shown that thyroid-stimulating hormone (TSH) has a direct inhibitory effect on osteoclastic bone resorption and that TSH receptor (TSHR) null mice display osteoporosis. To determine the stage of osteoclast development at which TSH may exert its effect, we examined the influence of TSH and agonist TSHR antibodies (TSHR-Ab) on osteoclast differentiation from murine embryonic stem (ES) cells to gain insight into bone remodeling in hyperthyroid Graves' disease. Methods Osteoclast differentiation was initiated in murine ES cell cultures through exposure to macrophage colony stimulation factor, receptor activator of nuclear factor кB ligand, vitamin D, and dexamethasone. Results Tartrate resistant acid phosphatase (TRAP)-positive osteoclasts formed in ∼12 days. This coincided with the expected downregulation of known markers of self renewal and pluripotency (including Oct4, Sox2, and REX1). Both TSH and TSHR-Abs inhibited osteoclastogenesis as evidenced by decreased development of TRAP-positive cells (∼40%–50% reduction, p = 0.0047), and by decreased expression, in a concentration-dependent manner, of osteoclast differentiation markers (including the calcitonin receptor, TRAP, cathepsin K, matrix metallo-proteinase-9, and carbonic anhydrase II). Similar data were obtained using serum immunoglobulin-Gs (IgGs) from patients with hyperthyroid Graves' disease and known TSHR-Abs. TSHR stimulators inhibited tumor necrosis factor-alpha mRNA and protein expression, but increased the expression of osteoprotegerin (OPG), an antiosteoclastogenic human soluble receptor activator of nuclear factor кB ligand receptor. Neutralizing antibody to OPG reversed the inhibitory effect of TSH on osteoclast differentiation evidencing that the TSH effect was at least in part mediated by increased OPG. Conclusion These data establish ES-derived osteoclastogenesis as an effective model system to study the regulation of osteoclast differentiation in early development. The results support the observations that TSH has a bone protective action by negatively regulating osteoclastogenesis. Further, our results implicate TSHR-Abs in offering skeletal protection in hyperthyroid Graves' disease, even in the face of high thyroid hormone and low TSH levels. PMID:21745106
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurmio, Mirja, E-mail: Mirja.Nurmio@utu.fi; Department of Pediatrics, University of Turku; Joki, Henna, E-mail: Henna.Joki@utu.fi
During postnatal skeletal growth, adaptation to mechanical loading leads to cellular activities at the growth plate. It has recently become evident that bone forming and bone resorbing cells are affected by the receptor tyrosine kinase (RTK) inhibitor imatinib mesylate (STI571, Gleevec (registered)) . Imatinib targets PDGF, ABL-related gene, c-Abl, c-Kit and c-Fms receptors, many of which have multiple functions in the bone microenvironment. We therefore studied the effects of imatinib in growing bone. Young rats were exposed to imatinib (150 mg/kg on postnatal days 5-7, or 100 mg/kg on postnatal days 5-13), and the effects of RTK inhibition on bonemore » physiology were studied after 8 and 70 days (3-day treatment), or after 14 days (9-day treatment). X-ray imaging, computer tomography, histomorphometry, RNA analysis and immunohistochemistry were used to evaluate bone modeling and remodeling in vivo. Imatinib treatment eliminated osteoclasts from the metaphyseal osteochondral junction at 8 and 14 days. This led to a resorption arrest at the growth plate, but also increased bone apposition by osteoblasts, thus resulting in local osteopetrosis at the osteochondral junction. The impaired bone remodelation observed on day 8 remained significant until adulthood. Within the same bone, increased osteoclast activity, leading to bone loss, was observed at distal bone trabeculae on days 8 and 14. Peripheral quantitative computer tomography (pQCT) and micro-CT analysis confirmed that, at the osteochondral junction, imatinib shifted the balance from bone resorption towards bone formation, thereby altering bone modeling. At distal trabecular bone, in turn, the balance was turned towards bone resorption, leading to bone loss. - Research Highlights: > 3-Day imatinib treatment. > Causes growth plate anomalies in young rats. > Causes biomechanical changes and significant bone loss at distal trabecular bone. > Results in loss of osteoclasts at osteochondral junction.« less
Kulkarni, R.N.; Voglewede, P.A.; Liu, D.
2014-01-01
It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP), and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20 ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1 hour of mechanical vibration with 20 µm displacement at a frequency of 4 Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5 days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells were determined after 1 hour mechanical vibration, while protein production of the DC-STAMP was determined after 6 hours of post incubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduce DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation. PMID:23994170
Kresnoadi, Utari; Ariani, Maretaningtias Dwi; Djulaeha, Eha; Hendrijantini, Nike
2017-01-01
Following the extraction of a tooth, bone resorption can cause significant problems for a subsequent denture implant and restorative dentistry. Thus, the tooth extraction socket needs to be maintained to reduce the chance of any alveolar ridge bone resorption. The objective of this study is to determine whether the administration of mangosteen peel extracts (MPEs), combined with demineralized freeze-dried bovine bone xenograft (DFBBX) materials for tooth extraction socket preservation, could potentially reduce inflammation by decreased the expression of nuclear factor κβ (NfKb) and receptor activator of nuclear factor-κβ ligand (RANKL), to inhibit alveolar bone resorption, and increased of bone morphogenetic protein-2 (BMP2) expressions to accelerate alveolar bone regeneration. This study consists of several stages. First, a dosage of MPE combined with graft materials was applied to a preserved tooth extraction socket of a Cavia cobaya . Second, the C. cobaya was examined using immune histochemical expression of NfKb, RANKL, BMP2, as well as histology of osteoblasts and osteoclasts. The research was statistically analyzed, using an analysis of variance test and Tukey honest significant difference test. The results of this research were that it was determined that MPEs combined with graft materials on a preserved tooth extraction socket can reduce NfKb, RANK, and osteoclasts also increase of BMP2 and osteoblast. The induction of MPEs and DFBBX is effective in reducing inflammation, lowering osteoclasts, decreasing alveolar bone resorption, and also increasing BMP2 expression and alveolar bone regeneration.
Choi, Joo-Hee; Lim, Seul-Ki; Kim, Dong-Il; Park, Min-Jung; Kim, Young-Kuk; Lee, An-Chul; Kim, Young-Min; Yang, Soo-Jin; Park, Jong-Hwan
2017-10-15
The powder and extract of safflower seeds are known to be effective in the prevention of bone loss in ovariectomized animals. However, the inhibitory effect and molecular mechanisms of safflower bud (SB), the germinated safflower, on bone destruction is unclear. The present study was designed to investigate the inhibitory effect and molecular mechanism of SB on osteoclastic differentiation and on bone loss in ovarietomized (OVX) mice. Osteoclastogenesis was determined by TRAP staining, F-actin ring formation, and bone resorption assay. NF-κB and MAPKs activation was analyzed by transfection assay and Western blot, respectively. Real-time PCR was performed to examine the expression of osteoclastogenesis-related genes. Histological changes, increases in TRAP-positive cells, and cathepsin K expression were examined in the metaphysis of OVX mice. Density of bone marrow was evaluated by µCT. SB inhibited the RANKL-induced differentiation of BMDMs into osteoclasts in a dose-dependent manner. F-actin ring formation and bone resorption were also reduced by SB in RANKL-treated BMDMs. In addition, SB decreased the activation of NF-κB and MAPKs and the expression of osteoclastogenesis-related genes in BMDMs treated with RANKL. Feeding of SB-included diet prevented bone loss in OVX mice. The number of TRAP-positive cells and level of protein expression of cathepsin K was reduced and bone mineral density was increased in the metaphysis of mice fed SB compared with OVX mice. These findings suggest that SB can be a preventive and therapeutic candidate for destructive bone diseases. Copyright © 2017. Published by Elsevier GmbH.
Yamakawa, Yasuaki; Tazawa, Hiroshi; Hasei, Joe; Osaki, Shuhei; Omori, Toshinori; Sugiu, Kazuhisa; Komatsubara, Tadashi; Uotani, Kouji; Fujiwara, Tomohiro; Yoshida, Aki; Kunisada, Toshiyuki; Urata, Yasuo; Kagawa, Shunsuke; Ozaki, Toshifumi; Fujiwara, Toshiyoshi
2017-09-01
Osteosarcoma is an aggressive malignant bone tumor that causes bone destruction. Although tumor-specific replicating oncolytic adenovirus OBP-301 induces an antitumor effect in an osteosarcoma tumor, it cannot prevent bone destruction. Zoledronic acid (ZOL) is a clinically available agent that inhibits bone destruction. In this study, we investigated the potential of combination therapy with OBP-301 and ZOL against osteosarcomas with bone destruction. The antitumor activity of OBP-301 and ZOL in monotherapy or combination therapy was assessed using three human osteosarcoma cell lines (143B, MNNG/HOS, SaOS-2). The cytotoxic effect of OBP-301 and/or ZOL was measured by assay of cell apoptosis. The effect of OBP-301 and ZOL on osteoclast activation was investigated. The potential of combination therapy against tumor growth and bone destruction was analyzed using an orthotopic 143B osteosarcoma xenograft tumor model. OBP-301 and ZOL decreased the viability of human osteosarcoma cells. Combination therapy with OBP-301 and ZOL displayed a synergistic antitumor effect, in which OBP-301 promoted apoptosis through suppression of anti-apoptotic myeloid cell leukemia 1 (MCL1). Combination therapy significantly inhibited tumor-mediated osteoclast activation, tumor growth and bone destruction compared to monotherapy. These results suggest that combination therapy of OBP-301 and ZOL suppresses osteosarcoma progression via suppression of MCL1 and osteoclast activation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Lapmanee, Sarawut; Charoenphandhu, Narattaphol; Aeimlapa, Ratchaneevan; Suntornsaratoon, Panan; Wongdee, Kannikar; Tiyasatkulkovit, Wacharaporn; Kengkoom, Kanchana; Chaimongkolnukul, Khuanjit; Seriwatanachai, Dutmanee; Krishnamra, Nateetip
2014-10-01
Type 2 diabetes mellitus (T2DM) often occurs concurrently with high blood cholesterol or dyslipidemia. Although T2DM has been hypothesized to impair bone microstructure, several investigations showed that, when compared to age-matched healthy individuals, T2DM patients had normal or relatively high bone mineral density (BMD). Since cholesterol and lipids profoundly affect the function of osteoblasts and osteoclasts, it might be cholesterol that obscured the changes in BMD and bone microstructure in T2DM. The present study, therefore, aimed to determine bone elongation, epiphyseal histology, and bone microstructure in non-obese T2DM Goto-Kakizaki rats treated with normal (GK-ND) and high cholesterol diet. We found that volumetric BMD was lower in GK-ND rats than the age-matched wild-type controls. In histomorphometric study of tibial metaphysis, T2DM evidently suppressed osteoblast function as indicated by decreases in osteoblast surface, mineral apposition rate, and bone formation rate in GK-ND rats. Meanwhile, the osteoclast surface and eroded surface were increased in GK-ND rats, thus suggesting an activation of bone resorption. T2DM also impaired bone elongation, presumably by retaining the chondrogenic precursor cells in the epiphyseal resting zone. Interestingly, several bone changes in GK rats (e.g., increased osteoclast surface) disappeared after high cholesterol treatment as compared to wild-type rats fed high cholesterol diet. In conclusion, high cholesterol diet was capable of masking the T2DM-induced osteopenia and changes in several histomorphometric parameters that indicated bone microstructural defect. Cholesterol thus explained, in part, why a decrease in BMD was not observed in T2DM, and hence delayed diagnosis of the T2DM-associated bone disease.
Mechanisms Inducing Low Bone Density in Duchenne Muscular Dystrophy in Mice and Humans
Rufo, Anna; Del Fattore, Andrea; Capulli, Mattia; Carvello, Francesco; De Pasquale, Loredana; Ferrari, Serge; Pierroz, Dominique; Morandi, Lucia; De Simone, Michele; Rucci, Nadia; Bertini, Enrico; Bianchi, Maria Luisa; De Benedetti, Fabrizio; Teti, Anna
2011-01-01
Patients affected by Duchenne muscular dystrophy (DMD) and dystrophic MDX mice were investigated in this study for their bone phenotype and systemic regulators of bone turnover. Micro–computed tomographic (µCT) and histomorphometric analyses showed reduced bone mass and higher osteoclast and bone resorption parameters in MDX mice compared with wild-type mice, whereas osteoblast parameters and mineral apposition rate were lower. In a panel of circulating pro-osteoclastogenic cytokines evaluated in the MDX sera, interleukin 6 (IL-6) was increased compared with wild-type mice. Likewise, DMD patients showed low bone mineral density (BMD) Z-scores and high bone-resorption marker and serum IL-6. Human primary osteoblasts from healthy donors incubated with 10% sera from DMD patients showed decreased nodule mineralization. Many osteogenic genes were downregulated in these cultures, including osterix and osteocalcin, by a mechanism blunted by an IL-6-neutralizing antibody. In contrast, the mRNAs of osteoclastogenic cytokines IL6, IL11, inhibin-βA, and TGFβ2 were increased, although only IL-6 was found to be high in the circulation. Consistently, enhancement of osteoclastogenesis was noted in cultures of circulating mononuclear precursors from DMD patients or from healthy donors cultured in the presence of DMD sera or IL-6. Circulating IL-6 also played a dominant role in osteoclast formation because ex vivo wild-type calvarial bones cultured with 10% sera of MDX mice showed increase osteoclast and bone-resorption parameters that were dampen by treatment with an IL-6 antibody. These results point to IL-6 as an important mediator of bone loss in DMD and suggest that targeted anti-IL-6 therapy may have a positive impact on the bone phenotype in these patients. © 2011 American Society for Bone and Mineral Research PMID:21509823
Osteogenic Activity of Locally Applied Small Molecule Drugs in a Rat Femur Defect Model
Cottrell, Jessica A.; Vales, Francis M.; Schachter, Deborah; Wadsworth, Scott; Gundlapalli, Rama; Kapadia, Rasesh; O'Connor, J. Patrick
2010-01-01
The long-term success of arthroplastic joints is dependent on the stabilization of the implant within the skeletal site. Movement of the arthroplastic implant within the bone can stimulate osteolysis, and therefore methods which promote rigid fixation or bone growth are expected to enhance implant stability and the long-term success of joint arthroplasty. In the present study, we used a simple bilateral bone defect model to analyze the osteogenic activity of three small-molecule drug implants via microcomputerized tomography (micro-CT) and histomorphometry. In this study, we show that local delivery of alendronate, but not lovastatin or omeprazole, led to significant new bone formation at the defect site. Since alendronate impedes osteoclast-development, it is theorized that alendronate treatment results in a net increase in bone formation by preventing osteoclast mediated remodeling of the newly formed bone and upregulating osteoblasts. PMID:20625499
Histological and compositional responses of bone to immobilization and other experimental conditions
NASA Technical Reports Server (NTRS)
Brown, R. J.; Niklowitz, W. J.
1985-01-01
Histological techniques were utilized for evaluating progressive changes in tibial compact bone in adult male monkeys during chronic studies of immobilization-associated osteopenia. The animals were restrained in a semirecumbent position which reduces normally occurring stresses in the lower extremities and results in bone mass loss. The longest immobilization studies were of seven months duration. Losses of haversian bone tended to occur predominatly in the proximal tibia and were characterized by increased activation with excessive depth of penetration of osteoclastic activity. There was no apparent regulation of the size and orientation of resorption cavities. Rapid bone loss seen during 10 weeks of immobilization appeared to be due to unrestrained osteoclastic activity without controls and regulation which are characteristic of adaptive systems. The general pattern of loss persisted throughout 7 months of immobilization. Clear cut evidence of a formation phase in haversian bone was seen only after two months of reambulation.
Reichert, Christoph; Götz, Werner; Reimann, Susanne; Keilig, Ludger; Hagner, Martin; Bourauel, Christoph; Jäger, Andreas
2013-03-01
To develop an in vitro assay for quantitative analysis of the degradation to which a bone substitute is exposed by osteoclasts. The aim of establishing this method was to improve the predictability of carrying out tooth movements via bone substitutes and to provide a basis for verification in exemplary clinical cases. After populating a bone substitute (NanoBone®; ArtOss, Germany) with osteoclastic cells, inductively-coupled mass spectrometry was used to evaluate changing calcium levels in the culture medium as a marker of resorption activity. It was observed that calcium levels increased substantially in the culture medium with the cells populating the bone substitute. This in vitro assay is a valid method that can assist clinicians in selecting the appropriate materials for certain patients. While tooth movements occurring through this material were successful, uncertainty about the approach will remain as long-term results are not available.
The phase state of NiTi implant material affects osteoclastic attachment.
Muhonen, V; Heikkinen, R; Danilov, A; Jämsä, T; Ilvesaro, J; Tuukkanen, J
2005-12-01
In the present work, the responses of mature osteoclasts cultured on austenite and martensite phases of NiTi shape memory implant material were studied. We used the sensitivity of osteoclasts to the underlying substrate and actin ring formation as an indicator of the adequacy of the implant surface. The results showed osteoclasts with actin ring on both NiTi phases. However, significantly more osteoclasts were present on the austenitic NiTi than on the martensitic NiTi. We also analyzed the surface free energy of the samples but found no significant difference between austenite and martensite phases. The results revealed that osteoclasts tolerated well the austenite phase of NiTi. The chemically identical martensitic NiTi was not as well tolerated by osteoclasts (e.g., indicated by diminished actin ring formation). This leads to the conclusion that certain physical properties specific to the martensitic NiTi have an adverse effect to the surviving of osteoclasts on this NiTi phase. These results confirm that mature, authentic osteoclasts can act as cell probes in experiments concerning aspects of biocompatibility of bone implant materials. (c) 2005 Wiley Periodicals, Inc.
Changes in functional activity of bone tissue cells under space flight conditions.
NASA Astrophysics Data System (ADS)
Rodionova, Natalia; Nesterenko, Olga; Kabitskaya, Olga
The space flight conditions affect considerably the state of bone tissue, leading to the development of osteoporosis and osteopenia. Many aspects of reactions of bone tissue cells still remain unclear until now. With the use of electron microscopy we studied the samples gathered from the femoral bones metaphyses of rats flown on board the space laboratory (Spacelab - 2) during 2 weeks and samples from tibial bones of mice C57 Black ( Bion M-1). It was established, that under microgravity conditions there occur remodelling processes in a spongy bone related with a deficit of support load. In this work the main attention is focused on studying the ultrastructure of osteogenetic cells and osteoclasts. The degree of differentiation and functional state are evaluated according to the degree of development of organelles for specific biosynthesis: rough endoplasmic reticulum (RER), Golgy complex (GC), as well as the state of mitochondria and cell nucleus. As compared with a synchronous control, the population of osteogenetic cells from zones of bone reconstruction shows a decrease in the number of functionally active forms. We can judge of this from the reduction of a specific volume of RER, GC, mitochondria in osteoblasts. RER loses architectonics typical for osteoblasts and, as against the control, is represented by short narrow canaliculi distributed throughout the cytoplasm; some canals disintegrate. GC is slightly pronounced, mitochondria become smaller in size and acquire an optically dark matrix. These phenomena are supposed to be associated with the desorganization of microtubules and microfilaments in the cells under microgravity conditions. The population of osteogenetic cells shows a decrease in the number of differentiating osteoblasts and an increase in the number of little-differentiated stromal cells. In the population of osteoblasts, degrading and apoptotic cells are sometimes encountered. Such zones show a numerical increase of monocytic cells and osteoclasts. Among them are typical osteoclasts with 3 to 4 nuclei on a section, as well as the "giant" cells with 5 to 6 nuclei and a highly developed zone 2, in which organelles and structures are concentrated, providing for specific functions (primary and secondary lysosomes, heterophagous vacuoles, fibrous layer and "brush border"). The availability of these functionally active osteoclasts testify to the intensification of resorptive processes in remodelling zones. To confirm the obtained electronmicroscopic findings, the experiments were conducted on albino rats under model microgravity conditions ("tail suspension" method) with the use of radionuclides. The experiments with 3H-glycine demonstrated a lower isotope uptake in the osteogenetic cells compared with the control. The autoradiographic studies employing 3H-thymidine, showed that hind limbs unloading leads to a significant acceleration of osteoclast formation in zones of spongy bone reconstruction. Considering the obtained results, the cell mechanisms of osteoclast - osteoblast remodelling and bone tissue loss under the action of space flight factors are discussed.
Effect of space flight factors on osteogenetic processes in the bone skeleton
NASA Astrophysics Data System (ADS)
Rodionova, Natalia Vasilievna; Oganov, Victor Sumbatovich
The space flight factors (space radiation, magnetic fields etc.) affect considerably the state of bone tissue, leading to the development of osteoporosis and osteopenia in the bone skeleton. Many aspects of reactions of bone tissue cells still remain unclear until now. With the use of electron microscopy we studied the samples gathered from the femoral bone epiphyses and metaphyses of rats flown on board the space laboratory (Spacelab - 2) during 2 weeks. It was established, that under microgravity conditions there occur remodelling processes in a spongy bone related with a deficit of support load. In this work the main attention is focused on studying the ultrastructure of osteogenetic cells and osteoclasts. The degree of differentiation and functional state are evaluated according to the degree of development of organelles for specific biosynthesis: rough endoplasmic reticulum (RER), Golgy complex (GC), as well as the state of mitochondria and cell nucleus. As compared with a synchronous control, the population of osteogenetic cells from zones of bone reconstruction shows a decrease in the number of functionally active forms. We can judge of this from the reduction of a specific volume of RER, GC, mitochondria in osteoblasts. RER loses architectonics typical for osteoblasts and, as against the control, is represented by short narrow canaliculi distributed throughout the cytoplasm; some canals disintegrate. GC is slightly pronounced, mitochondria become smaller in size and acquire an optically dark matrix. These phenomena are supposed to be associated with the desorganization of microtubules and microfilaments in the cells under microgravity conditions. The population of osteogenetic cells shows a decrease in the number of differentiating osteoblasts and an increase in the number of little-differentiated stromal cells. In the population of osteoblasts, degrading and apoptotic cells are sometimes encountered. Such zones show a numerical increase of monocytic cells and osteoclasts. Among them are typical osteoclasts with 3 to 4 nuclei on a section, as well as the "giant" cells with 5 to 6 nuclei and a highly developed zone 2, in which organelles and structures are concentrated, providing for specific functions (primary and secondary lysosomes, heterophagous vacuoles, fibrous layer and "brush border"). The availability of these functionally active osteoclasts testify to the intensification of resorptive processes in remodelling zones. To confirm the obtained electronmicroscopic findings, the experiments were conducted on albino rats under model microgravity conditions ("tail suspension" method) with the use of radionuclides. The experiments with 3H-glycine demonstrated a lower isotope uptake in the osteogenetic cells compared with the control. The autoradiographic studies employing 3H-thymidine, showed that hind limbs unloading leads to a significant acceleration of osteoclast formation in zones of spongy bone reconstruction. To conclude, the cell mechanisms of osteoclast - osteoblast remodelling and bone tissue loss under the action of space flight factors are discussed.
Sirtuin 3 (SIRT3) maintains bone homeostasis by regulating AMPK-PGC-1β axis in mice
Huh, Jeong-Eun; Shin, Ji Hye; Jang, Eun Sun; Park, So Jeong; Park, Doo Ri; Ko, Ryeojin; Seo, Dong-Hyun; Kim, Han-Sung; Lee, Seoung Hoon; Choi, Yongwon; Kim, Hyun Seok; Lee, Soo Young
2016-01-01
The mitochondrial sirtuin 3 (SIRT3) is involved in suppressing the onset of multiple pathologies, including cardiovascular disease, fatty liver, age-related hearing loss, and breast cancer. But a physiological role of SIRT3 in bone metabolism is not known. Here we show that SIRT3 is a key regulatory molecule to maintain bone homeostasis. Mice deficient in SIRT3 exhibited severe osteopenia owing to increased numbers of osteoclasts. Osteoclast precursors from Sirt3−/− mice underwent increased osteoclastogenesis in response to receptor activator of nuclear factor-κB ligand (RANKL), an essential cytokine for osteoclast differentiation. SIRT3 expression from RANKL induction depended on the transcription coactivator PGC-1β (peroxisome proliferator-activated receptor-γ co-activator-1β) and the nuclear receptor ERRα (estrogen receptor-related receptor α), and that SIRT3 inhibited the differentiation by interfering with the RANKL-induced expression of PGC-1β. Thus an auto-regulatory feedback mechanism operates to induce its own inhibitor SIRT3 by PGC-1β. Moreover, Sirt3−/− osteoclast precursors reduced AMP-activated protein kinase (AMPK) phosphorylation through down-regulating the expression of AMPK. Our results suggest that a mitochondrial SIRT3 is an intrinsic inhibitor for RANKL-mediated osteoclastogenesis. PMID:26928655
Impaired Vibration of Auditory Ossicles in Osteopetrotic Mice
Kanzaki, Sho; Takada, Yasunari; Niida, Shumpei; Takeda, Yoshihiro; Udagawa, Nobuyuki; Ogawa, Kaoru; Nango, Nobuhito; Momose, Atsushi; Matsuo, Koichi
2011-01-01
In the middle ear, a chain of three tiny bones (ie, malleus, incus, and stapes) vibrates to transmit sound from the tympanic membrane to the inner ear. Little is known about whether and how bone-resorbing osteoclasts play a role in the vibration of auditory ossicles. We analyzed hearing function and morphological features of auditory ossicles in osteopetrotic mice, which lack osteoclasts because of the deficiency of either cytokine RANKL or transcription factor c-Fos. The auditory brainstem response showed that mice of both genotypes experienced hearing loss, and laser Doppler vibrometry revealed that the malleus behind the tympanic membrane failed to vibrate. Histological analysis and X-ray tomographic microscopy using synchrotron radiation showed that auditory ossicles in osteopetrotic mice were thicker and more cartilaginous than those in control mice. Most interestingly, the malleal processus brevis touched the medial wall of the tympanic cavity in osteopetrotic mice, which was also the case for c-Src kinase–deficient mice (with normal numbers of nonresorbing osteoclasts). Osteopetrotic mice showed a smaller volume of the tympanic cavity but had larger auditory ossicles compared with controls. These data suggest that osteoclastic bone resorption is required for thinning of auditory ossicles and enlargement of the tympanic cavity so that auditory ossicles vibrate freely. PMID:21356377
Lu, Sheng-Hua; Chen, Tso-Hsiao; Chou, Tz-Chong
2015-01-23
Magnolol (1) isolated from Magnolia officinalis exhibits many beneficial effects such as anti-inflammatory and antioxidant activity. The aim of this study was to evaluate the effects of magnolol (1) on RANKL-induced osteoclast differentiation and investigate the underlying molecular mechanisms. Treatment with magnolol (1) significantly inhibited osteoclast differentiation of RAW 264.7 macrophages and bone-resorbing activity of osteoclasts in the RANKL-induced system. Moreover, RANKL-activated JNK/ERK/AP-1 and NF-κB signaling, ROS formation, and NFATc1 activation were attenuated by magnolol (1). A novel finding of this study is that magnolol (1) can increase heme oxygenase-1 (HO-1) expression and Nrf2 activation in RANKL-stimulated cells. Blocking HO-1 activity with tin protoporphyrin IX markedly reversed magnolol (1)-mediated inhibition of osteoclast differentiation, NFATc1 nuclear translocation, and MMP-9 activity, suggesting that HO-1 contributes to the attenuation of NFATc1-mediated osteoclastogenesis by magnolol (1). Therefore, the inhibitory effect of magnolol (1) on osteoclast differentiation is due to inhibition of MAPK/c-fos/AP-1 and NF-κB signaling as well as ROS production and up-regulation of HO-1 expression, which ultimately suppresses NFATc1 induction. These findings indicate that magnolol (1) may have potential to treat bone diseases associated with excessive osteoclastogenesis.
Cho, Kyung-Ah; Park, Minhwa; Kim, Yu-Hee; Ryu, Kyung-Ha; Woo, So-Youn
2017-01-01
Th17 cells play a critical role in several autoimmune diseases, including psoriasis and psoriatic arthritis (PsA). Psoriasis is a chronic inflammatory skin disease associated with systemic inflammation and comorbidities, such as PsA. PsA develops in nearly 70% of patients with psoriasis, and osteoclasts associated bone erosion is a hallmark of the disease. Thus far, the effect of Th17 cells on osteoclastogenesis via direct cell-to-cell interactions is less understood. In this study, we observed that Th17 cells directly promote osteoclast differentiation and maturation via expression of receptor activator of nuclear factor-κ β ligand (RANKL) in vitro. We investigated the impact of conditioned medium obtained from human palatine tonsil-derived mesenchymal stem cells (T-CM) on the interactions between osteoclasts and Th17 cells. T-CM effectively blunted the RANK-RANKL interaction between the osteoclast precursor cell line RAW 264.7 and Th17 cells via osteoprotegerin (OPG) activity. The frequency of tartrate-resistant acid phosphatase (TRAP)-positive cells in the bone marrow of an imiquimod (IMQ)-induced psoriasis mouse model was decreased following T-CM injection. Therefore, our data provide novel insight into the therapeutic potential of tonsil-derived mesenchymal stem cell-mediated therapy (via OPG production) for the treatment of pathophysiologic processes induced by osteoclasts under chronic inflammatory conditions such as psoriasis. PMID:29137353
Monasterio, G; Castillo, F; Rojas, L; Cafferata, E A; Alvarez, C; Carvajal, P; Núñez, C; Flores, G; Díaz, W; Vernal, R
2018-05-15
It is well accepted that the presence of cytokines belonging to the Th1/Th17/Th22 axis of immuno-inflammatory response in the joint environment, such as IL-1β, IL-17 and IL-22, respectively, are associated with pathogenesis of several synovial joint degenerative disorders. During temporomandibular joint osteoarthritis (TMJ-OA), IL-1β and IL-17 have been implicated in the inflammation and resorption of sub-chondral bone; however, the role of Th22 response in the TMJ-OA pathophysiology has not been established. This study aimed to compare the expression of Th1/Th17/Th22-type cytokines, chemokines and chemokine receptors in synovial fluid samples obtained from TMJ-OA or disk displacement with reduction (DDWR) patients. In addition, it aimed to associate these levels with joint pain, imagenological signs of bone degeneration, RANKL production, osteoclastogenesis and osteoclast-induced bone resorption. Higher levels of IL-1β, IL-17 and IL-22 were expressed in TMJ-OA compared with DDWR subjects, and these increased levels significantly correlated with RANKL expression, joint pain and articular bone degeneration. Higher levels of CCR5, CCR6 and CCR7, as well as their respective ligands CCL5 and CCL20, responsible for recruitment of IL-1β, IL-17 and IL-22-producing cells, were over-expressed in TMJ-OA compared with DDWR subjects. Osteoclastogenesis and osteoclast-induced bone resorption were significantly greater in presence of synovial fluid from TMJ-OA compared with DDWR subjects. These data demonstrate that cytokines, CCLs and CCRs associated with the Th1/Th17/Th22 axis of immuno-inflammatory response are involved in TMJ-OA pathogenesis. These findings suggest that IL-22 is involved in the RANKL expression in TMJ-OA, which in turn induces differentiation of osteoclasts and subsequent resorption of sub-chondral bone. © 2018 John Wiley & Sons Ltd.
Non-canonical Wnt4 prevents skeletal aging and inflammation by inhibiting NF-κB
Yu, Bo; Chang, Jia; Liu, Yunsong; Li, Jiong; Kevork, Kareena; Al-Hezaimi, Khalid; Graves, Dana T; Park, No-Hee; Wang, Cun-Yu
2014-01-01
Aging-related bone loss and osteoporosis affect millions of patients worldwide. Chronic inflammation associated with aging and arthritis promotes bone resorption and impairs bone formation. Here we show that Wnt4 attenuated bone loss in osteoporosis and skeletal aging by inhibiting nuclear factor-kappa B (NF-κB) via non-canonical Wnt signaling. Transgenic mice expressing Wnt4 from osteoblasts were significantly protected from bone loss and chronic inflammation induced by ovariectomy, tumor necrosis factor or natural aging. In addition to promoting bone formation, Wnt4 could inhibit osteoclast formation and bone resorption. Mechanistically, Wnt4 inhibited transforming growth factor beta-activated kinase 1-mediated NF-κB activation in macrophages and osteoclast precursors independent of β-catenin. Moreover, recombinant Wnt4 proteins were able to alleviate osteoporotic bone loss and inflammation by inhibiting NF-κB in vivo. Taken together, our results suggest that Wnt4 might be used as a therapeutic agent for treating osteoporosis by attenuating NF-κB. PMID:25108526
Denosumab: an investigational drug for the management of postmenopausal osteoporosis
Lewiecki, E Michael
2008-01-01
Denosumab (AMG 162) is an investigational fully human monoclonal antibody with a high affinity and specificity for receptor activator of nuclear factor-κB ligand (RANKL), a cytokine member of the tumor necrosis factor family. RANKL, the principal mediator of osteoclastic bone resorption, plays a major role in the pathogenesis of postmenopausal osteoporosis and other skeletal disorders associated with bone loss. Denosumab inhibits the action of RANKL, thereby reducing the differentiation, activity, and survival of osteoclasts, and lowering the rate of bone resorption. Clinical trials have shown that denosumab increases bone mineral density (BMD) and reduces bone turnover in postmenopausal women with low BMD. Studies to evaluate the fracture risk benefit and long-term safety of denosumab in women with postmenopausal osteoporosis (PMO) are ongoing. Denosumab is a potential treatment for PMO and other skeletal disorders. PMID:19707445
Human mesenchymal stem cells inhibit osteoclastogenesis through osteoprotegerin production.
Oshita, Koichi; Yamaoka, Kunihiro; Udagawa, Nobuyuki; Fukuyo, Shunsuke; Sonomoto, Koshiro; Maeshima, Keisuke; Kurihara, Ryuji; Nakano, Kazuhisa; Saito, Kazuyoshi; Okada, Yosuke; Chiba, Kenji; Tanaka, Yoshiya
2011-06-01
Mesenchymal stem cells (MSCs) have been proposed to be a useful tool for treatment of rheumatoid arthritis (RA), not only because of their multipotency but also because of their immunosuppressive effect on lymphocytes, dendritic cells, and other proinflammatory cells. Since bone destruction caused by activated osteoclasts occurs in RA, we undertook the present study to investigate the effect of MSCs on osteoclast function and differentiation in order to evaluate their potential use in RA therapy. Human MSCs and peripheral blood mononuclear cells were cultured under cell-cell contact-free conditions with osteoclast induction medium. Differentiation into osteoclast-like cells was determined by tartrate-resistant acid phosphatase staining and expression of osteoclast differentiation markers. The number of osteoclast-like cells was decreased and expression of cathepsin K and nuclear factor of activated T cells c1 (NF-ATc1) was down-regulated by the addition of either MSCs or a conditioned medium obtained from MSCs. Osteoprotegerin (OPG) was constitutively produced by MSCs and inhibited osteoclastogenesis. However, osteoclast differentiation was not fully recovered upon treatment with either anti-OPG antibody or OPG small interfering RNA, suggesting that OPG had only a partial role in the inhibitory effect of MSCs. Moreover, bone-resorbing activity of osteoclast-like cells was partially recovered by addition of anti-OPG antibody into the conditioned medium. The present results indicate that human MSCs constitutively produce OPG, resulting in inhibition of osteoclastogenesis and expression of NF-ATc1 and cathepsin K in the absence of cell-cell contact. Therefore, we conclude that human MSCs exert a suppressive effect on osteoclastogenesis, which may be beneficial in inhibition of joint damage in RA. Copyright © 2011 by the American College of Rheumatology.
Yeh, Chih-Chang; Su, Yu-Han; Lin, Yu-Jhe; Chen, Pin-Jyun; Shi, Chung-Sheng; Chen, Cheng-Nan; Chang, Hsin-I
2015-01-01
Curcumin (Cur) and bisdemethoxycurcumin (BDMC), extracted from Curcuma longa, are poorly water-soluble polyphenol compounds that have shown anti-inflammatory potential for the treatment of osteoarthritis. To increase cellular uptake of Cur and BDMC in bone tissue, soybean phosphatidylcholines were used for liposome formulation. In this study, curcuminoid (Cur and BDMC)-loaded liposomes were characterized in terms of particle size, encapsulation efficiency, liposome stability, and cellular uptake. The results show that there is about 70% entrapment efficiency of Cur and BDMC in liposomes and that particle sizes are stable after liposome formation. Both types of liposome can inhibit macrophage inflammation and osteoclast differential activities. In comparison with free drugs (Cur and BDMC), curcuminoid-loaded liposomes were less cytotoxic and expressed high cellular uptake of the drugs. Of note is that Cur-loaded liposomes can prevent liposome-dependent inhibition of osteoblast differentiation and mineralization, but BDMC-loaded liposomes could not. With interleukin (IL)-1β stimulation, curcuminoid-loaded liposomes can successfully downregulate the expression of inflammatory markers on osteoblasts, and show a high osteoprotegerin (OPG)/receptor activator of nuclear factor κB ligand (RANKL) ratio to prevent osteoclastogenesis. In the present study, we demonstrated that Cur and BDMC can be successfully encapsulated in liposomes and can reduce osteoclast activity and maintain osteoblast functions. Therefore, curcuminoid-loaded liposomes may slow osteoarthritis progression.
Yang, Tao; Grafe, Ingo; Bae, Yangjin; Chen, Shan; Chen, Yuqing; Bertin, Terry K; Jiang, Ming-Ming; Ambrose, Catherine G; Lee, Brendan
2013-04-30
TGF-β is abundantly produced in the skeletal system and plays a crucial role in skeletal homeostasis. E-selectin ligand-1 (ESL-1), a Golgi apparatus-localized protein, acts as a negative regulator of TGF-β bioavailability by attenuating maturation of pro-TGF-β during cartilage homeostasis. However, whether regulation of intracellular TGF-β maturation by ESL-1 is also crucial during bone homeostasis has not been well defined. Here, we show that Esl-1(-/-) mice exhibit a severe osteopenia with elevated bone resorption and decreased bone mineralization. In primary culture, Esl-1(-/-) osteoclast progenitors show no difference in osteoclastogenesis. However, Esl-1(-/-) osteoblasts show delayed differentiation and mineralization and stimulate osteoclastogenesis more potently in the osteoblast-osteoclast coculture, suggesting that ESL-1 primarily acts in osteoblasts to regulate bone homeostasis. In addition, Esl-1(-/-) calvaria exhibit an elevated mature TGF-β/pro-TGF-β ratio, with increased expression of TGF-β downstream targets (plasminogen activator inhibitor-1, parathyroid hormone-related peptide, connective tissue growth factor, and matrix metallopeptidase 13, etc.) and a key regulator of osteoclastogenesis (receptor activator of nuclear factor κB ligand). Moreover, in vivo treatment with 1D11, a pan-TGF-β antibody, significantly improved the low bone mass of Esl-1(-/-) mice, suggesting that elevated TGF-β signaling is the major cause of osteopenia in Esl-1(-/-) mice. In summary, our study identifies ESL-1 as an important regulator of bone remodeling and demonstrates that the modulation of TGF-β maturation is pivotal in the maintenance of a homeostatic bone microenvironment and for proper osteoblast-osteoclast coupling.
Maruyama, Kenta; Kawagoe, Tatsukata; Kondo, Takeshi; Akira, Shizuo; Takeuchi, Osamu
2012-08-17
The differentiation of bone-resorbing osteoclasts is induced by RANKL signaling, and leads to the activation of NF-κB via TRAF6 activation. TRAF family member-associated NF-κB activator (TANK) acts as a negative regulator of Toll-like receptors (TLRs) and B-cell receptor (BCR) signaling by inhibiting TRAF6 activation. Tank(-/-) mice spontaneously develop autoimmune glomerular nephritis in an IL-6-dependent manner. Despite its importance in the TCRs and BCR-activated TRAF6 inhibition, the involvement of TANK in RANKL signaling is poorly understood. Here, we report that TANK is a negative regulator of osteoclast differentiation. The expression levels of TANK mRNA and protein were up-regulated during RANKL-induced osteoclastogenesis, and overexpression of TANK in vitro led to a decrease in osteoclast formation. The in vitro osteoclastogenesis of Tank(-/-) cells was significantly increased, accompanied by increased ubiquitination of TRAF6 and enhanced canonical NF-κB activation in response to RANKL stimulation. Tank(-/-) mice showed severe trabecular bone loss, but increased cortical bone mineral density, because of enhanced bone erosion and formation. TANK mRNA expression was induced during osteoblast differentiation and Tank(-/-) osteoblasts exhibited enhaced NF-κB activation, IL-11 expression, and bone nodule formation than wild-type control cells. Finally, wild-type mice transplanted with bone marrow cells from Tank(-/-) mice showed trabecular bone loss analogous to that in Tank(-/-) mice. These findings demonstrate that TANK is critical for osteoclastogenesis by regulating NF-κB, and is also important for proper bone remodeling.
Maruyama, Kenta; Kawagoe, Tatsukata; Kondo, Takeshi; Akira, Shizuo; Takeuchi, Osamu
2012-01-01
The differentiation of bone-resorbing osteoclasts is induced by RANKL signaling, and leads to the activation of NF-κB via TRAF6 activation. TRAF family member-associated NF-κB activator (TANK) acts as a negative regulator of Toll-like receptors (TLRs) and B-cell receptor (BCR) signaling by inhibiting TRAF6 activation. Tank−/− mice spontaneously develop autoimmune glomerular nephritis in an IL-6-dependent manner. Despite its importance in the TCRs and BCR-activated TRAF6 inhibition, the involvement of TANK in RANKL signaling is poorly understood. Here, we report that TANK is a negative regulator of osteoclast differentiation. The expression levels of TANK mRNA and protein were up-regulated during RANKL-induced osteoclastogenesis, and overexpression of TANK in vitro led to a decrease in osteoclast formation. The in vitro osteoclastogenesis of Tank−/− cells was significantly increased, accompanied by increased ubiquitination of TRAF6 and enhanced canonical NF-κB activation in response to RANKL stimulation. Tank−/− mice showed severe trabecular bone loss, but increased cortical bone mineral density, because of enhanced bone erosion and formation. TANK mRNA expression was induced during osteoblast differentiation and Tank−/− osteoblasts exhibited enhaced NF-κB activation, IL-11 expression, and bone nodule formation than wild-type control cells. Finally, wild-type mice transplanted with bone marrow cells from Tank−/− mice showed trabecular bone loss analogous to that in Tank−/− mice. These findings demonstrate that TANK is critical for osteoclastogenesis by regulating NF-κB, and is also important for proper bone remodeling. PMID:22773835
Alves, C Henrique; Farrell, Eric; Vis, Marijn; Colin, Edgar M; Lubberts, Erik
2016-08-01
Throughout life, bone is continuously remodelled. Bone is formed by osteoblasts, from mesenchymal origin, while osteoclasts induce bone resorption. This process is tightly regulated. During inflammation, several growth factors and cytokines are increased inducing osteoclast differentiation and activation, and chronic inflammation is a condition that initiates systemic bone loss. Rheumatoid arthritis (RA) is a chronic inflammatory auto-immune disease that is characterised by active synovitis and is associated with early peri-articular bone loss. Peri-articular bone loss precedes focal bone erosions, which may progress to bone destruction and disability. The incidence of generalised osteoporosis is associated with the severity of arthritis in RA and increased osteoporotic vertebral and hip fracture risk. In this review, we will give an overview of different animal models of inflammatory arthritis related to RA with focus on bone erosion and involvement of pro-inflammatory cytokines. In addition, a humanised endochondral ossification model will be discussed, which can be used in a translational approach to answer osteoimmunological questions.
Muller, Joséphine; Bolomsky, Arnold; Dubois, Sophie; Duray, Elodie; Stangelberger, Kathrin; Plougonven, Erwan; Lejeune, Margaux; Léonard, Angélique; Marty, Caroline; Hempel, Ute; Baron, Frédéric; Beguin, Yves; Cohen-Solal, Martine; Ludwig, Heinz; Heusschen, Roy; Caers, Jo
2018-05-10
Multiple myeloma bone disease is characterized by an uncoupling of bone remodeling in the multiple myeloma microenvironment, resulting in the development of lytic bone lesions. Most myeloma patients suffer from these bone lesions, which not only causes morbidity but also negatively impacts survival. The development of novel therapies, ideally with a combined anti-resorptive and bone-anabolic effect, is of great interest because lesions persist with the current standard of care, even in patients in complete remission. We have previously shown that MELK plays a central role in proliferation-associated high-risk multiple myeloma and its inhibition with OTSSP167 resulted in decreased tumor load. MELK inhibition in bone cells has not yet been explored, although some reports suggest factors downstream of MELK stimulate osteoclast activity and inhibit osteoblast activity, which makes MELK inhibition a promising therapeutic approach. Therefore, we assessed the effect of OTSSP167 on bone cell activity and the development of myeloma-induced bone disease. OTSSP167 inhibited osteoclast activity in vitro by decreasing progenitor viability as well as via a direct anti-resorptive effect on mature osteoclasts. In addition, OTSSP167 stimulated matrix deposition and mineralization by osteoblasts in vitro. This combined anti-resorptive and osteoblast-stimulating effect of OTSSP167 resulted in the complete prevention of lytic lesions and bone loss in myeloma-bearing mice. Immunohistomorphometric analyses corroborated our in vitro findings. In conclusion, we show that OTSSP167 has a direct effect on myeloma-induced bone disease in addition to its anti-multiple myeloma effect, which warrants further clinical development of MELK inhibition in multiple myeloma. Copyright © 2018, Ferrata Storti Foundation.
Kondo, Hisataka; Searby, Nancy D; Mojarrab, Rose; Phillips, Jonathan; Alwood, Joshua; Yumoto, Kenji; Almeida, Eduardo A C; Limoli, Charles L; Globus, Ruth K
2009-03-01
Ionizing radiation can cause substantial tissue degeneration, which may threaten the long-term health of astronauts and radiotherapy patients. To determine whether a single dose of radiation acutely compromises structural integrity in the postpubertal skeleton, 18-week-old male mice were exposed to (137)Cs gamma radiation (1 or 2 Gy). The structure of high-turnover, cancellous bone was analyzed by microcomputed tomography (microCT) 3 or 10 days after irradiation and in basal controls (tissues harvested at the time of irradiation) and age-matched controls. Irradiation (2 Gy) caused a 20% decline in tibial cancellous bone volume fraction (BV/TV) within 3 days and a 43% decline within 10 days, while 1 Gy caused a 28% reduction 10 days later. The BV/TV decrement was due to increased spacing and decreased thickness of trabeculae. Radiation also increased ( approximately 150%) cancellous surfaces lined with tartrate-resistant, acid phosphatase-positive osteoclasts, an index of increased bone resorption. Radiation decreased lumbar vertebral BV/TV 1 month after irradiation, showing the persistence of cancellous bone loss, although mechanical properties in compression were unaffected. In sum, a single dose of gamma radiation rapidly increased osteoclast surface in cancellous tissue and compromised cancellous microarchitecture in the remodeling appendicular and axial skeleton of postpubertal mice.
BIOCHEMICAL ANALYSIS AND BONE REMODELING IN RESPONSE TO OOPHORECTOMY AND AQUATIC TRAINING
SOUZA, HELENA RIBEIRO; GIROL, ANA PAULA; SCHIAVETO, ADRIANA PAULA SANCHEZ; GEROMEL, MAIRTO ROBERIS; IYOMASA, MELINA MIZUSAKI; ARRUDA, MAURÍCIO FERRAZ DE
2016-01-01
ABSTRACT Objective: To investigate whether swimming could prevent bone loss and could be indicated to assist in treatment of osteoporosis. Methods: Female rats were divided into 4 groups (n=6), two of them were oophorectomized. Animals from two groups, one oophorectomized and another not oophorectomized, underwent aquatic training for eight weeks. After training, the animals were sacrificed and their blood was collected for calcium and alkaline phosphatase serum dosage; the femur was removed and subjected to radiological and histological densitometry analysis to assess bone loss and osteoclast counting on femoral head and neck. Results: Increase in serum calcium was not observed. There was an increasing activity of alkaline phosphatase in the oophorectomized groups. The radiographs suggest that there was a greater bone mass density in the trained groups. Concerning histology, the trained groups had better tissue structural organization than the sedentary groups. In the oophorectomized and sedentary group, higher presence of osteoclasts was observed a. Conclusion: Exercise and oophorectomy did not promote changes in serum calcium levels. The decrease of sex steroids caused by oophorectomy was responsible for severe bone loss, but swimming exercise was able to reduce this loss. Oophorectomy promoted the proliferation of osteoclasts and the exercise proved to be able to diminish it. Level of Evidence I, Experimental Study. PMID:28149187
Transgenic Mouse Model for Reducing Oxidative Damage in Bone
NASA Technical Reports Server (NTRS)
Schreurs, Ann-Sofie; Torres, S.; Truong, T.; Moyer, E. L.; Kumar, A.; Tahimic, Candice C. G.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.
2016-01-01
Bone loss can occur due to many challenges such age, radiation, microgravity, and Reactive Oxygen Species (ROS) play a critical role in bone resorption by osteoclasts (Bartell et al. 2014). We hypothesize that suppression of excess ROS in skeletal cells, both osteoblasts and osteoclasts, regulates skeletal growth and remodeling. To test our hypothesis, we used transgenic mCAT mice which overexpress the human anti-oxidant catalase gene targeted to the mitochondria, the main site for endogenous ROS production. mCAT mice have a longer life-span than wildtype controls and have been used to study various age-related disorders. To stimulate remodeling, 16 week old mCAT mice or wildtype mice were exposed to treatment (hindlimb-unloading and total body-irradiation) or sham treatment conditions (control). Tissues were harvested 2 weeks later for skeletal analysis (microcomputed tomography), biochemical analysis (gene expression and oxidative damage measurements), and ex vivo bone marrow derived cell culture (osteoblastogenesis and osteoclastogenesis). mCAT mice expressed the transgene and displayed elevated catalase activity in skeletal tissue and marrow-derived osteoblasts and osteoclasts grown ex vivo. In addition, when challenged with treatment, bone tissues from wildtype mice showed elevated levels of malondialdehyde (MDA), indicating oxidative damage) whereas mCAT mice did not. Correlation analysis revealed that increased catalase activity significantly correlated with decreased MDA levels and that increased oxidative damage correlated with decreased percent bone volume (BVTV). In addition, ex-vivo cultured osteoblast colony growth correlated with catalase activity in the osteoblasts. Thus, we showed that these transgenic mice can be used as a model to study the relationship between markers of oxidative damage and skeletal properties. mCAT mice displayed reduced BVTV and trabecular number relative to wildtype mice, as well as increased structural model index in the cancellous tibia. Treatment caused bone loss in wildtype mice, as expected. Treatment also caused deficits in microarchitecture of mCAT mice, although less severe than wildtype mice in some parameters (percent bone volume, structural model index and cortical area). In conclusion, our results indicate that endogenous ROS signaling in both osteoblast and osteoclast lineage cells contributes to skeletal growth and remodeling, and quenching oxidative damage could play a role in bone loss prevention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Changyu; Guan, Hanfeng; Cai, Cong
Lipoxin A4 (LXA4; 5S, 6R, 15Strihydroxy- 7,9,13-trans-11-eicosatetraenoic acid) is a metabolic product of arachidonic acid under the action of lipoxidase. This lipid molecule plays important roles in several biological functions, especially inflammatory processes. In vivo, LXA4 regulates the inflammatory response through several signaling pathways. Its mechanism suggests that it might have an effect on osteoclastogenesis and bone loss. Using both in vitro and in vivo studies, it was here observed that LXA4 could significantly inhibit the formation and function of osteoclasts and these effects could be blocked by Boc-2, the specific inhibitor of FPR2/ALX (the receptor of LXA4). Meanwhile, LXA4more » reduce the amount of ovariectomy-induced bone loss. These protective effects was found to be associated with inhibition of nuclear factor-κB (NF-κB), activator protein-1 (AP-1), PI3K-AKT, and p-38, ERK, and JNK in MAPKs. The expression of the receptor activator of the NF-κB ligand RANKL:osteoprotegerin ratio and serum levels of TNF-α, IL-1β, and IL-6 were decreased by LXA4. Moreover, LXA4 prevented the production of reactive oxygen species (ROS), the expression of osteoclast-specific genes, including tartrate-resistant acid phosphatase (TRAP), cathepsin K (CK), matrix metalloproteinase (MMP)-9, RANK, and osteoclastic related transcription factors of c-Fos, NFATc1 could also be significantly inhibited by LXA4 in a dose-dependent manner. Studies have demonstrated that LXA4 can inhibit the formation and function of osteoclasts through modulation of several pathways both upstream and downstream of RANKL signaling and FPR2/ALX was involved in the procedures. This shows that LXA4 may be used as a new strategy for the treatment of osteoclast-related diseases. - Highlights: • Lipoxin A4 can significantly inhibit the formation and function of osteoclasts. • Several pathways both upstream and downstream of RANKL signaling can be inhibit by Lipoxin A4. • Lipoxin A4 can alleviate ovariectomy-induced bone loss effectively.« less
Peculiarities of the bone tissue resorption under microgravity conditions
NASA Astrophysics Data System (ADS)
Rodionova, N.; Oganov, V.; Polkovenko, O.; Nitsevich, T.
The actual problem - peculiarities of resorptive processes in the spongiose of thingbones - we studied with the use of tranmissive electron microscopy in experiments on rats (American space station SLS-2) and on monkeys Macaca mulatt? (BION-11). Animals were onboard during 2 weeks. There was established, that the resorption happen with osteoclasts participation. They can create groups of cells. In the osteoclasts population we indicated not typical for the control (ground experiment) "giant" cells, which have on ultrathin sections 5-6 nuclei, many lysosomes, well developed "light" zone and "brush-border". The destruction of minera lized matrix in bone lacunas also happens by the way of osteolytic activity of osteocytes. Lysosome ferments of osteocytes are secreted by the eczocytosis. The osteocytic osteolysis, as well as the osteoclastic one can be seen as a physiological, gormon-dependent mechanism of resorption. The presence of a considerable number of neutrophiles, which enter in some zones of resorption is also typical. When these neutrophiles destruct, they release lysosomic ferments that dissolve the bone matrix. In some zones of resorption we noted the presence of the row from collagen fibrils, which loosed crystals , on mineralized matrix borders. The cell detritus is noted in zones of surface dissolving among crystallic conglomerates. It certificates the processes of osteogenic cells destruction that happen here. So, under the microgravity conditions in zones of adaptive remodeling of the spongiose the processes of the bone tissue resorption happen by some ways, namely: by the functional activization of osteoclasts; by the osteocytic osteolysis increasing; as a result of hydrolytic activity of neutrophiles, entering in these zones, and also by the local demineralization and further destruction of bone matrix surface zones.
Nicotine effect on bone remodeling during orthodontic tooth movement: Histological study in rats
Shintcovsk, Ricardo Lima; Knop, Luégya; Tanaka, Orlando Motohiro; Maruo, Hiroshi
2014-01-01
Introduction Nicotine is harmful to angiogenesis, osteogenesis and synthesis of collagen. Objective The aim of this study was to investigate the effect of nicotine on bone remodeling during orthodontic movement in rats. Methods Eighty male Wistar rats were randomly divided into three groups: Group C (control), group CM (with orthodontic movement) and group NM (nicotine with orthodontic movement) groups. The animals comprising groups C and CM received 0.9% saline solution while group NM received nicotine solution (2 mg/kg). A nickel-titanium closed-coil spring was used to induce tooth movement. The animals were euthanized and tissue specimens were processed histologically. We quantified blood vessels, Howship's lacunae and osteoclast-like cells present in the tension and compression areas of periodontal ligaments. The extent of bone formation was evaluated under polarized light to determine the percentage of immature/mature collagen. Results We observed lower blood vessel densities in the NM group in comparison to the CM group, three (p < 0.001) and seven (p < 0.05) days after force application. Osteoclast-like cells and Howship's lacunae in the NM group presented lower levels of expression in comparison to the CM group, with significant differences on day 7 (p < 0.05 for both variables) and day 14 (p < 0.05 for osteoclast-like cells and p < 0.01 for Howship's lacunae). The percentage of immature collagen increased in the NM group in comparison to the CM group with a statistically significant difference on day 3 (p < 0.05), day 7 (p < 0.001), day 14 (p < 0.001) and day 21 (p < 0.001). Conclusions Nicotine affects bone remodeling during orthodontic movement, reducing angiogenesis, osteoclast-like cells and Howship's lacunae, thereby delaying the collagen maturation process in developed bone matrix. PMID:24945520
Tanida, Atsushi; Kishimoto, Yuji; Okano, Toru; Hagino, Hiroshi
2013-01-01
Background Various clinical reports suggest etanercept (ETN) has some efficacy in bone formation in rheumatoid arthritis (RA). To examine this effect, we investigated the gene expression of cytokines relevant to osteoblast/osteoclast differentiation, and evaluated histomorphometric findings in mature rats with collagen-induced arthritis (CIA). Methods Total RNA was extracted from knee joints with CIA after ETN or placebo administration. Subsequently, realtime-PCR was carried out to quantify the mRNAs encoding Wnt-1, Dickkopf-1 (DKK-1), receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegelin (OPG) and TNF (tumor necrosis factor)-alpha. In histomorphometric analysis, the infiltrating pannus volume and pannus surface, and the following items in contact with pannus surface were measured: osteoclast number, osteoid surface, osteoid volume and labeling surface. These were evaluated in the distal femur with CIA with or without ETN administration. Results TNF-alpha, RANKL and OPG mRNA expressions, linked to osteoclastogenesis, were not significantly different with or without ETN administration. ETN administration significantly increased Wnt-1 mRNA expression, the osteoblast promoter, and decreased DKK-1 mRNA expression, the Wnt signal inhibitor. In histomorphometric analysis, pannus volume, pannus surface and osteoclast number, parameters of bone destruction, were not significantly different among groups. Osteoid volume, osteoid surface and labeling surface, parameters of bone formation, increased significantly with ETN administration. Conclusion Our results suggest that ETN suppresses DDK-1 expression, and, as a result, Wnt expression is promoted and osteoblastogenesis becomes more active, independent of the regulation of osteoclast activity. Marked bone formation is attributed to the fact that ETN directly promotes osteoblastogenesis, not as a result of suppressing osteoclastogenesis. PMID:24031147
Queiroz-Junior, C M; Silveira, K D; de Oliveira, C R; Moura, A P; Madeira, M F M; Soriani, F M; Ferreira, A J; Fukada, S Y; Teixeira, M M; Souza, D G; da Silva, T A
2015-12-01
The angiotensin type 1 (AT1) receptor has been implicated in the pathogenesis of inflammatory bone disorders. This study aimed to investigate the effect of an AT1 receptor antagonist in infection-induced and arthritis-associated alveolar bone loss in mice. Mice were subjected to Aggregatibacter actinomycetemcomitans oral infection or antigen-induced arthritis and treated daily with 10 mg/kg of the prototype AT1 antagonist, losartan. Treatment was conducted for 30 d in the infectious condition and for 17 d and 11 d in the preventive or therapeutic regimens in the arthritic model, respectively. The mice were then killed, and the maxillae, serum and knee joints were collected for histomorphometric and immunoenzymatic assays. In vitro osteoclast assays were performed using RAW 264.7 cells stimulated with A. actinomycetemcomitans lipopolysacharide (LPS). Arthritis and A. actinomycetemcomitans infection triggered significant alveolar bone loss in mice and increased the levels of myeloperoxidase and of TRAP(+) osteoclasts in periodontal tissues. Losartan abolished such a phenotype, as well as the arthritis joint inflammation. Both arthritis and A. actinomycetemcomitans conditions were associated with the release of tumor necrosis factor alpha (TNF-α), interferon-gamma, interleukin-17 and chemokine (C-X-C motif) ligand 1 and an increased RANKL/osteoprotegerin ratio in periodontal tissues, but such expression decreased after losartan treatment, except for TNF-α. The therapeutic approach was as beneficial as the preventive one. In vitro, losartan prevented LPS-induced osteoclast differentiation and activity. The blockade of AT1 receptor exerts anti-inflammatory and anti-osteoclastic effects, thus protecting periodontal tissues in distinct pathophysiological conditions of alveolar bone loss. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Salie, Rishard; Kneissel, Michaela; Vukevic, Mirko; Zamurovic, Natasa; Kramer, Ina; Evans, Glenda; Gerwin, Nicole; Mueller, Matthias; Kinzel, Bernd; Susa, Mira
2010-03-01
The transcription factor Hey1, a known Notch target gene of the HES family, has recently been described as a target gene of bone morphogenetic protein-2 (BMP-2) during osteoblastic differentiation in vitro. As the role of Hey1 in skeletal physiology is unknown, we analyzed bones of mice ubiquitously lacking or overexpressing Hey1. This strategy enabled us to evaluate whether Hey1 modulation in the whole organism could serve as a drug or antibody target for therapy of diseases associated with bone loss. Hey1 deficiency resulted in modest osteopenia in vivo and increased number and activity of osteoclasts generated ex vivo. Hey1 overexpression resulted in distinct progressive osteopenia and inhibition of osteoblasts ex vivo, an effect apparently dominant to a mild inhibition of osteoclasts. In both Hey1 deficient and overexpressing mice, males were less affected than females and skeleton was not affected during development. Bone histomorphometry did not reveal major changes in animals at 20 weeks, suggesting that modulation had occurred before. Adult Hey1 transgenics also displayed increased type X collagen expression and an enlarged hypertrophic zone in the growth plate. Taken together, our data suggest that ubiquitous in vivo Hey1 regulation affects osteoblasts, osteoclasts and chondrocytes. Due to the complex role of Hey1 in bone, inhibition of Hey1 does not appear to be a straightforward therapeutic strategy to increase the bone mass.
Jimi, Eijiro; Fukushima, Hidefumi
2016-02-01
The transcriptional factor nuclear factor κB(NF-κB)regulates the expression of a wide variety of genes that are involved in immune and inflammatory responses, proliferation, and tumorigenesis. NF-κB consists of five members, such as p65(RelA), RelB, c-Rel, p50/p105(NF-κB1), and p52/p100(NF-κB2). There are two distinct NF-κB activation pathways, termed the classical and alternative NF-κB signaling pathways. Since mice lacking both p50 and p52 subunits developed typical osteopetrosis, due to total lack of osteoclasts, NF-κB is also important osteoclast differentiation. A selective NF-κB inhibitor blocked receptor activator of NF-κB ligand(RANKL)-induced osteoclastogenesis both in vitro and in vivo. Recent findings have shown that inactivation of NF-κB enhances osteoblast differentiation in vitro and bone formation in vivo. NF-κB is constitutively activated in many cancers including oral squamous cell carcinoma(OSCC), and is involved in the invasive characteristics of OSCC. A selective NF-κB inhibitor also prevented jaw bone destruction by OSCC by reduced osteoclast numbers in animal model. Thus the inhibition of NF-κB might useful for the treatment of bone diseases, such as arthritis, osteoporosis, periodontitis, and bone invasion by OSCC by inhibiting bone resorption and by stimulating bone formation.
Arriero, María del Mar; Ramis, Joana M.; Perelló, Joan; Monjo, Marta
2012-01-01
Background Inoxitol hexakisphosphate (IP6) has been found to have an important role in biomineralization and a direct effect inhibiting mineralization of osteoblasts in vitro without impairing extracellular matrix production and expression of alkaline phosphatase. IP6 has been proposed to exhibit similar effects to those of bisphosphonates on bone resorption, however, its direct effect on osteoclasts (OCL) is presently unknown. Methodology/Principal Findings The aim of the present study was to investigate the effect of IP6 on the RAW 264.7 monocyte/macrophage mouse cell line and on human primary osteoclasts. On one hand, we show that IP6 decreases the osteoclastogenesis in RAW 264.7 cells induced by RANKL, without affecting cell proliferation or cell viability. The number of TRAP positive cells and mRNA levels of osteoclast markers such as TRAP, calcitonin receptor, cathepsin K and MMP-9 was decreased by IP6 on RANKL-treated cells. On the contrary, when giving IP6 to mature osteoclasts after RANKL treatment, a significant increase of bone resorption activity and TRAP mRNA levels was found. On the other hand, we show that 1 µM of IP6 inhibits osteoclastogenesis of human peripheral blood mononuclear cells (PBMNC) and their resorption activity both, when given to undifferentiated and to mature osteoclasts. Conclusions/Significance Our results demonstrate that IP6 inhibits osteoclastogenesis on human PBMNC and on the RAW264.7 cell line. Thus, IP6 may represent a novel type of selective inhibitor of osteoclasts and prove useful for the treatment of osteoporosis. PMID:22905230
Tai, Ta-Wei; Su, Fong-Chin; Chen, Ching-Yu; Jou, I-Ming; Lin, Chiou-Feng
2014-10-01
The nitrogen-containing bisphosphonate zoledronic acid (ZA) induces apoptosis in osteoclasts and inhibits osteoclast-mediated bone resorption. It is widely used to treat osteoporosis. However, some patients are less responsive to ZA treatment, and the mechanisms of resistance are still unclear. Here, we identified that murine osteoclast precursors may develop resistance to ZA-induced apoptosis. These resistant cells survived the apoptotic effect of ZA following an increase in anti-apoptotic Bcl-xL. Pharmacologically inhibiting Bcl-xL facilitated ZA-induced apoptosis. Treatment with ZA activated p38 MAPK, increasing Bcl-xL expression and cell survival. Nuclear import of β-catenin regulated by p38 MAPK determined Bcl-xL mRNA expression and cell survival in response to ZA. ZA also inactivated glycogen synthase kinase (GSK)-3β, a negative upstream regulator of β-catenin, in a p38 MAPK-mediated manner. Synergistic pharmacological inhibition of p38 MAPK with ZA attenuated receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation and facilitated ZA-induced apoptosis. These results demonstrate that elevated Bcl-xL expression mediated by p38 MAPK-regulated GSK-3β/β-catenin signaling is required for cell survival of ZA-induced apoptosis in both osteoclast precursors and osteoclasts. Finally, we demonstrated that inhibiting p38 MAPK-mediated pathway enhanced ZA effect on increasing the bone mineral density of ovariectomized mice. This result suggests that targeting these pathways may represent a potential therapeutic strategy. Copyright © 2014 Elsevier Inc. All rights reserved.
Mukherjee, Kakoli; Chattopadhyay, Naibedya
2016-10-01
Osteoporosis is a metabolic bone disease that is characterized by heightened state of bone resorption accompanied by diminished bone formation, leading to a reduction of bone mineral density (BMD) and deterioration of bone quality, thus increasing the risk of developing fractures. Molecular insight into bone biology identified cathepsin K (CatK) as a novel therapeutic target. CatK is a lysosomal cysteine protease secreted by activated osteoclasts during bone resorption, whose primary substrate is type I collagen, the major component of organic bone matrix. Available anti-resorptive drugs affect osteoclast survival and influence both resorption and formation of bone. CatK inhibitors are distinct from the existing anti-resorptives as they only target the resorption process itself without impairing osteoclast differentiation and do not interfere with bone formation. An inhibitor of CatK, odanacatib, robustly increased both trabecular and cortical BMD in postmenopausal osteoporosis patients. The phase III fracture prevention trial with odanacatib ended early due to good efficacy and a favorable benefit/risk profile, thus, enhancing the opportunity for CatK as a pharmacological target for osteoporosis. So far, all the inhibitors that reached to the stage of clinical trial targeted active site of CatK to abrogate the entire proteolytic activity of the enzyme in addition to the desired blockage of excessive elastin and collagen degradation, and could thus pose safety concerns with long term use. Identification of selective exosite inhibitors that inhibit CatK's elastase and/or collagenase activity but do not affect the hydrolysis of other physiologically relevant substrates of CatK would be an improved strategy to inhibit this enzyme. Copyright © 2016 Elsevier Inc. All rights reserved.
[Encounter of cancer cells with bone. Histological examination of bone metastasis].
Kanda, Hiroaki
2011-03-01
Management of the cancer bone metastasis is important clinical problem. The mechanism (s) of bone metastasis has been studied mainly by animal models and in vitro system. There might be discrepancy between model systems and in vivo human clinical materials. But there is surprisingly rare study of histological examination of human skeletal metastasis, since it is hard to obtain human materials without modification by chemotherapy or irradiation. There are many surgical materials suitable for this examination in our hospital and we have been examined histological features of them. Stromal cells between metastatic cancer cells and OCs (osteoclasts) and÷or OBs (osteoblasts) might play a role in bone metastasis, since these cells are frequently accompanied with OCs÷OBs. We called these stromal cells as "fibroblast-like cells" and examined their nature and roles in bone metastasis. We hope these fibroblast-like cells might become the target of anti bone metastasis therapy, same as osteoclasts targeted by bisphosphonates.
NASA Technical Reports Server (NTRS)
Globus, Ruth K.; Searby, Nancy D.; Almeida, Eduardo A. C.; Sutijono, Darrell; Yu, Joon-Ho; Malouvier, Alexander; Doty, Steven B.; Morey-Holton, Emily; Weinstein, Steven L.; Dalton, Bonnie P. (Technical Monitor)
2000-01-01
Mechanical loading helps define the architecture of weight-bearing bone via the tightly regulated process of skeletal turnover. Turnover occurs by the concerted activity of osteoblasts, responsible for bone formation. and osteoclasts, responsible for bone resorption. Osteoclasts are specialized megakaryon macrophages, which differentiate from monocytes in response to resorption stimuli, such as reduced weight-bearing. Habitation in space dramatically alters musculoskeletal loading, which modulates both cell function and bone structure. Our long-term objective is to define the molecular and cellular mechanisms that mediate skeletal adaptations to altered gravity environments. Our experimental approach is to apply hypergravity loads by centrifugation to rodents and cultured cells. As a first step, we examined the influence of centrifugation on the structure of cancellous bone in rats to test the ability of hypergravity to change skeletal architecture. Since cancellous bone undergoes rapid turnover we expected the most dramatic structural changes to occur in the shape of trabeculae of weight-bearing, cancellous bone. To define the cellular responses to hypergravity loads, we exposed cultured osteoblasts and macrophages to centrifugation. The intraosseous and intramedullary pressures within long bones in vivo reportedly range from 12-40 mm Hg, which would correspond to 18-59 gravity (g) in our cultures. We assumed that hydrostatic pressure from the medium above the cell layer is at least one major component of the mechanical load generated by centrifuging cultured cells. and therefore we exposed the cells to 10-50g. In osteoblasts, we examined the structure of their actin and microtubule networks, production of prostaglandin E2 (PGE2), and cell survival. Analysis of the shape of the cytoskeletal networks provides evidence for the ability of centrifugation to affect cell structure, while the production of PGE2 serves as a convenient marker for mechanical stimulation. We examined cell survival, reasoning that osteoblasts might mold skeletal structure in a hypergravity environment in part by regulating apoptosis and thus the duration of osteoblast productivity. Finally, we tested the influence of centrifugation on microbial activation of a macrophage cell line (RAW264.7). In response to the appropriate hormonal stimulation, this cell line is reportedly capable of undergoing differentiation to express osteoclast markers. In addition, a component of the cell wall of gram-negative bacteria, lipopolysaccaride (LPS), stimulates the formation of osteoclasts in vivo. Thus we tested the influence on centrifugation on RAW264.7 cells stimulated with LPS to provide an index of the function of osteoclast precursors.
USDA-ARS?s Scientific Manuscript database
Studies have demonstrated that obesity induced by high-fat diets increases bone resorption, decreases trabecular bone mass, and reduces bone strength in various animal models. This study investigated whether N-acetylcysteine (NAC), an antioxidant and a glutathione precursor, alters glutathione statu...
BMP-2 and titanium particles synergistically activate osteoclast formation
Sun, S.X.; Guo, H.H.; Zhang, J.; Yu, B.; Sun, K.N.; Jin, Q.H.
2014-01-01
A previous study showed that BMP-2 (bone morphogenetic protein-2) and wear debris can separately support osteoclast formation induced by the receptor activator of NF-κB ligand (RANKL). However, the effect of BMP-2 on wear debris-induced osteoclast formation is unclear. In this study, we show that neither titanium particles nor BMP-2 can induce osteoclast formation in RAW 264.7 mouse leukemic monocyte macrophage cells but that BMP-2 synergizes with titanium particles to enhance osteoclast formation in the presence of RANKL, and that at a low concentration, BMP-2 has an optimal effect to stimulate the size and number of multinuclear osteoclasts, expression of osteoclast genes, and resorption area. Our data also clarify that the effects caused by the increase in BMP-2 on phosphorylated SMAD levels such as c-Fos expression increased throughout the early stages of osteoclastogenesis. BMP-2 and titanium particles stimulate the expression of p-JNK, p-P38, p-IkB, and P50 compared with the titanium group. These data suggested that BMP-2 may be a crucial factor in titanium particle-mediated osteoclast formation. PMID:24820069
Terpos, Evangelos; Dimopoulos, Meletios A; Berenson, James
2011-02-01
Patients with advanced multiple myeloma (MM) often have increased osteolytic activity of osteoclasts and impaired osteogenesis by osteoblasts, resulting in osteolytic bone lesions that increase the risk of skeletal-related events (SREs) including pathologic fracture, the need for radiotherapy or surgery to bone, and spinal cord compression. Such SREs are potentially life-limiting, and can reduce patients' functional independence and quality of life. Bisphosphonates (e.g., oral clodronate and intravenous pamidronate and zoledronic acid) can inhibit osteoclast-mediated osteolysis, thereby reducing the risk of SREs, ameliorating bone pain, and potentially prolonging survival in patients with MM. Extensive clinical experience demonstrates that bisphosphonates are generally well tolerated, and common adverse events are typically mild and manageable. Studies are ongoing to optimize the timing and duration of bisphosphonate therapy in patients with bone lesions from MM. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Kcnn4 Is a Regulator of Macrophage Multinucleation in Bone Homeostasis and Inflammatory Disease
Kang, Heeseog; Kerloc’h, Audrey; Rotival, Maxime; Xu, Xiaoqing; Zhang, Qing; D’Souza, Zelpha; Kim, Michael; Scholz, Jodi Carlson; Ko, Jeong-Hun; Srivastava, Prashant K.; Genzen, Jonathan R.; Cui, Weiguo; Aitman, Timothy J.; Game, Laurence; Melvin, James E.; Hanidu, Adedayo; Dimock, Janice; Zheng, Jie; Souza, Donald; Behera, Aruna K.; Nabozny, Gerald; Cook, H. Terence; Bassett, J.H. Duncan; Williams, Graham R.; Li, Jun; Vignery, Agnès; Petretto, Enrico; Behmoaras, Jacques
2014-01-01
Summary Macrophages can fuse to form osteoclasts in bone or multinucleate giant cells (MGCs) as part of the immune response. We use a systems genetics approach in rat macrophages to unravel their genetic determinants of multinucleation and investigate their role in both bone homeostasis and inflammatory disease. We identify a trans-regulated gene network associated with macrophage multinucleation and Kcnn4 as being the most significantly trans-regulated gene in the network and induced at the onset of fusion. Kcnn4 is required for osteoclast and MGC formation in rodents and humans. Genetic deletion of Kcnn4 reduces macrophage multinucleation through modulation of Ca2+ signaling, increases bone mass, and improves clinical outcome in arthritis. Pharmacological blockade of Kcnn4 reduces experimental glomerulonephritis. Our data implicate Kcnn4 in macrophage multinucleation, identifying it as a potential therapeutic target for inhibition of bone resorption and chronic inflammation. PMID:25131209
Morimoto, Yoshitaka; Hoshino, Hironobu; Sakurai, Takashi; Terakawa, Susumu; Nagano, Akira
2009-04-01
Quantitative evaluation of the ability of bone resorption activity in live osteoclast-like cells (OCLs) has not yet been reported on. In this study, we observed the sequential morphological change of OCLs and measured the resorbing calcium phosphate (CP) area made by OCLs alone and with the addition of elcatonin utilizing incubator facilitated video-enhanced microscopy. OCLs, which were obtained from a coculture of ddy-mouse osteoblastic cells and bone marrow cells, were cultured on CP-coated quartz cover slips. The CP-free area increased constantly in the OCLs alone, whereas it did not increase after the addition of elcatonin. This study showed that analysis of the resorbed areas under the OCL body using this method enables the sequential quantitative evaluation of the bone resorption activity and the effect of several therapeutic agents on bone resorption in vitro.
Costa, Daniel O; Prowse, Paul D H; Chrones, Tom; Sims, Stephen M; Hamilton, Douglas W; Rizkalla, Amin S; Dixon, S Jeffrey
2013-10-01
The behavior of bone cells is influenced by the surface chemistry and topography of implants and scaffolds. Our purpose was to investigate how the topography of biomimetic hydroxyapatite (HA) coatings influences the attachment and differentiation of osteoblasts, and the resorptive activity of osteoclasts. Using strategies reported previously, we directly controlled the surface topography of HA coatings on polycaprolactone discs. Osteoblasts and osteoclasts were incubated on HA coatings having distinct isotropic topographies with submicrometer and micro-scale features. Osteoblast attachment and differentiation were greater on more complex, micro-rough HA surfaces (Ra ~2 μm) than on smoother topographies (Ra ~1 μm). In contrast, activity of the osteoclast marker tartrate-resistant acid phosphatase was greater on smoother than on micro-rough surfaces. Furthermore, scanning electron microscopy revealed the presence of resorption lacunae exclusively on smoother HA coatings. Inhibition of resorption on micro-rough surfaces was associated with disruption of filamentous actin sealing zones. In conclusion, HA coatings can be prepared with distinct topographies, which differentially regulate responses of osteoblasts, as well as osteoclastic activity and hence susceptibility to resorption. Thus, it may be possible to design HA coatings that induce optimal rates of bone formation and degradation specifically tailored for different applications in orthopedics and dentistry. Copyright © 2013 Elsevier Ltd. All rights reserved.
Li, Yin-Ji; Kukita, Akiko; Kyumoto-Nakamura, Yukari; Kukita, Toshio
2016-09-01
Wilms' tumor 1 (WT1), a zinc-finger transcription regulator of the early growth response family, identified as the product of a tumor suppressor gene of Wilms' tumors, bears potential ability to induce macrophage differentiation in blood cell differentiation. Herein, we examined the involvement of WT1 in the regulation of osteoclastogenesis. We detected a high level of WT1 protein expression in osteoclast precursors; however, WT1 expression was markedly suppressed during osteoclastogenesis. We examined expression of WT1 transcripts in bone tissue by RNA in situ hybridization. We found a high level of antisense transcripts in osteoclasts actively resorbing bone in mandible of newborn rats. Expression of antisense WT1 RNA in mandible was also confirmed by Northern blot analysis and strand-specific RT-PCR. Overexpression of antisense WT1 RNA in RAW-D cells, an osteoclast precursor cell line, resulted in a marked enhancement of osteoclastogenesis, suggesting that antisense WT1 RNA functions to suppress expression of WT1 protein in osteoclastogenesis. High level expression of antisense WT1 RNA may contribute to commitment to osteoclastogenesis, and may allow osteoclasts to maintain or stabilize their differentiation state. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Functional Role of HSP47 in the Periodontal Ligament Subjected to Occlusal Overload in Mice.
Mimura, Hiroaki; Takaya, Tatsuo; Matsuda, Saeka; Nakano, Keisuke; Muraoka, Rina; Tomida, Mihoko; Okafuji, Norimasa; Fujii, Takeo; Kawakami, Toshiyuki
2016-01-01
We carried out an experiment to induce traumatic occlusion in mice periodontal tissue and analyzed the expression of HSP47. Continuous traumatic occlusion resulted to damage and remodeling of periodontal ligament as well as increase in osteoclasts and bone resorption. Four days after traumatic occlusion, osteoclasts did not increase but Howship's lacunae became enlarged. That is, the persistent occlusal overload can destroy collagen fibers in the periodontal ligament. This was evident by the increased in HSP47 expression with the occlusal overload. HSP47 is maintained in fibroblasts for repair of damaged collagen fibers. On the other hand, osteoclasts continue to increase although the load was released. The osteoclasts that appeared on the alveolar bone surface were likely due to sustained activity. The increase in osteoclasts was estimated to occur after load application at day 4. HSP47 continued to increase until day 6 in experiment 2 but then reduced at day 10. Therefore, HSP47 appears after a period of certain activities to repair damaged collagen fibers, and the activity was returned to a state of equilibrium at day 30 with significantly diminished expression. Thus, the results suggest that HSP47 is actively involved in homeostasis of periodontal tissue subjected to occlusal overload.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qiang; Zhao, Zhi-Ning; Cheng, Jing-Tao
2011-01-07
Research highlights: {yields} Ibandronate significantly promote the proliferation of PDLSC cells. {yields} Ibandronate enhanced the expression of ALP, COL-1, OPG, OCN, Runx2. {yields} The expression of a class of miRNAs, e.g., miR-18a, miR-133a, miR-141 and miR-19a, was significantly modified in PDLSC cells cultured with ibandronate. {yields} Ibandronate regulates the expression of diverse bone formation-related genes via miRNAs in PDLSCs. {yields} Ibandronate can suppress the activity of osteoclast while promoting the proliferation of osteoblast by regulating the expression of microRNAs. -- Abstract: Bisphosphonates (BPs) have a profound effect on bone resorption and are widely used to treat osteoclast-mediated bone diseases. Theymore » suppress bone resorption by inhibiting the activity of mature osteoclasts and/or the formation of new osteoclasts. Osteoblasts may be an alternative target for BPs. Periodontal ligament stem cells (PDLSCs) exhibit osteoblast-like features and are capable of differentiating into osteoblasts or cementoblasts. This study aimed to determine the effects of ibandronate, a nitrogen-containing BP, on the proliferation and the differentiation of PDLSCs and to identify the microRNAs (miRNAs) that mediate these effects. The PDLSCs were treated with ibandronate, and cell proliferation was measured using the MTT (3-dimethylthiazol-2,5-diphenyltetrazolium bromide) assay. The expression of genes and miRNAs involved in osteoblastic differentiation was assayed using quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). Ibandronate promoted the proliferation of PDLSCs and enhanced the expression of alkaline phosphatase (ALP), type I collagen (COL-1), osteoprotegerin (OPG), osteocalcin (OCN), and Runx2. The expression of miRNAs, including miR-18a, miR-133a, miR-141 and miR-19a, was significantly altered in the PDLSCs cultured with ibandronate. In PDLSCs, ibandronate regulates the expression of diverse bone formation-related genes via miRNAs. The exact mechanism underlying the role of ibandronate in osteoblasts has not been completely understood. Ibandronate may suppress the activity of osteoclasts while promoting the proliferation of osteoblasts by regulating the expression of miRNAs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Se Young; Kim, Hyun-Jeong; Kim, Ki Rim
Many breast cancer patients experience bone metastases and suffer skeletal complications. The present study provides evidence on the protective and therapeutic potential of betulinic acid on cancer-associated bone diseases. Betulinic acid is a naturally occurring triterpenoid with the beneficial activity to limit the progression and severity of cancer, diabetes, cardiovascular diseases, atherosclerosis, and obesity. We first investigated its effect on breast cancer cells, osteoblastic cells, and osteoclasts in the vicious cycle of osteolytic bone metastasis. Betulinic acid reduced cell viability and the production of parathyroid hormone-related protein (PTHrP), a major osteolytic factor, in MDA-MB-231 human metastatic breast cancer cells stimulatedmore » with or without tumor growth factor-β. Betulinic acid blocked an increase in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin ratio by downregulating RANKL protein expression in PTHrP-treated human osteoblastic cells. In addition, betulinic acid inhibited RANKL-induced osteoclastogenesis in murine bone marrow macrophages and decreased the production of resorbed area in plates with a bone biomimetic synthetic surface by suppressing the secretion of matrix metalloproteinase (MMP)-2, MMP-9, and cathepsin K in RANKL-induced osteoclasts. Furthermore, oral administration of betulinic acid inhibited bone loss in mice intra-tibially inoculated with breast cancer cells and in ovariectomized mice causing estrogen deprivation, as supported by the restored bone morphometric parameters and serum bone turnover markers. Taken together, these findings suggest that betulinic acid may have the potential to prevent bone loss in patients with bone metastases and cancer treatment-induced estrogen deficiency. - Highlights: • Betulinic acid reduced PTHrP production in human metastatic breast cancer cells. • Betulinic acid blocked RANKL/OPG ratio in PTHrP-stimulated human osteoblastic cells. • Betulinic acid inhibited RANKL-induced osteoclastogenesis in bone marrow macrophages. • Betulinic acid decreased bone resorption by suppressing osteoclast activity. • Orally administered betulinic acid inhibited cancer-associated bone diseases in mice.« less
Shakespeare, William; Yang, Michael; Bohacek, Regine; Cerasoli, Franklin; Stebbins, Karin; Sundaramoorthi, Raji; Azimioara, Mihai; Vu, Chi; Pradeepan, Selvi; Metcalf, Chester; Haraldson, Chad; Merry, Taylor; Dalgarno, David; Narula, Surinder; Hatada, Marcos; Lu, Xiaode; van Schravendijk, Marie Rose; Adams, Susan; Violette, Shelia; Smith, Jeremy; Guan, Wei; Bartlett, Catherine; Herson, Jay; Iuliucci, John; Weigele, Manfred; Sawyer, Tomi
2000-01-01
Targeted disruption of the pp60src (Src) gene has implicated this tyrosine kinase in osteoclast-mediated bone resorption and as a therapeutic target for the treatment of osteoporosis and other bone-related diseases. Herein we describe the discovery of a nonpeptide inhibitor (AP22408) of Src that demonstrates in vivo antiresorptive activity. Based on a cocrystal structure of the noncatalytic Src homology 2 (SH2) domain of Src complexed with citrate [in the phosphotyrosine (pTyr) binding pocket], we designed 3′,4′-diphosphonophenylalanine (Dpp) as a pTyr mimic. In addition to its design to bind Src SH2, the Dpp moiety exhibits bone-targeting properties that confer osteoclast selectivity, hence minimizing possible undesired effects on other cells that have Src-dependent activities. The chemical structure AP22408 also illustrates a bicyclic template to replace the post-pTyr sequence of cognate Src SH2 phosphopeptides such as Ac-pTyr-Glu-Glu-Ile (1). An x-ray structure of AP22408 complexed with Lck (S164C) SH2 confirmed molecular interactions of both the Dpp and bicyclic template of AP22408 as predicted from molecular modeling. Relative to the cognate phosphopeptide, AP22408 exhibits significantly increased Src SH2 binding affinity (IC50 = 0.30 μM for AP22408 and 5.5 μM for 1). Furthermore, AP22408 inhibits rabbit osteoclast-mediated resorption of dentine in a cellular assay, exhibits bone-targeting properties based on a hydroxyapatite adsorption assay, and demonstrates in vivo antiresorptive activity in a parathyroid hormone-induced rat model. PMID:10944210
USDA-ARS?s Scientific Manuscript database
Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-i...
Pre-osteoblastic MC3T3-E1 promote breast cancer cell growth in bone in a murine xenograft model
USDA-ARS?s Scientific Manuscript database
The bones are the most common sites of breast cancer metastasis. Upon arrival within the bone microenvironment, breast cancer cells coordinate the activities of stromal cells, resulting in an increase in osteoclast activity and bone matrix degradation. In late stages of bone metastasis, breast cance...
Yang, Tao; Grafe, Ingo; Bae, Yangjin; Chen, Shan; Chen, Yuqing; Bertin, Terry K.; Jiang, Ming-Ming; Ambrose, Catherine G.; Lee, Brendan
2013-01-01
TGF-β is abundantly produced in the skeletal system and plays a crucial role in skeletal homeostasis. E-selectin ligand-1 (ESL-1), a Golgi apparatus-localized protein, acts as a negative regulator of TGF-β bioavailability by attenuating maturation of pro–TGF-β during cartilage homeostasis. However, whether regulation of intracellular TGF-β maturation by ESL-1 is also crucial during bone homeostasis has not been well defined. Here, we show that Esl-1−/− mice exhibit a severe osteopenia with elevated bone resorption and decreased bone mineralization. In primary culture, Esl-1−/− osteoclast progenitors show no difference in osteoclastogenesis. However, Esl-1−/− osteoblasts show delayed differentiation and mineralization and stimulate osteoclastogenesis more potently in the osteoblast–osteoclast coculture, suggesting that ESL-1 primarily acts in osteoblasts to regulate bone homeostasis. In addition, Esl-1−/− calvaria exhibit an elevated mature TGF-β/pro–TGF-β ratio, with increased expression of TGF-β downstream targets (plasminogen activator inhibitor-1, parathyroid hormone-related peptide, connective tissue growth factor, and matrix metallopeptidase 13, etc.) and a key regulator of osteoclastogenesis (receptor activator of nuclear factor κB ligand). Moreover, in vivo treatment with 1D11, a pan–TGF-β antibody, significantly improved the low bone mass of Esl-1−/− mice, suggesting that elevated TGF-β signaling is the major cause of osteopenia in Esl-1−/− mice. In summary, our study identifies ESL-1 as an important regulator of bone remodeling and demonstrates that the modulation of TGF-β maturation is pivotal in the maintenance of a homeostatic bone microenvironment and for proper osteoblast–osteoclast coupling. PMID:23589896
Ramoglu, Sabri Ilhan; Sonmez, Mehmet Fatih
2016-01-01
Summary Background/objective: The aim of this study was to investigate the effects of different concentrations of ozone (O3) therapy on bone regeneration in response to an expansion of the inter-premaxillary suture in rats. Materials and methods: Forty-eight Wistar rats were randomly divided into four groups (n = 12). In groups I, II, and III, 1ml of O3 at 10, 25, and 40 µg/ml was injected at the premaxillary suture, respectively. In group IV (control group), 1ml of saline solution was injected at the same point during the expansion procedure for 5 days. Bone regeneration in the suture was evaluated histomorphometrically. The area of new bone and fibrotic area, the number of osteoblasts and osteoclasts, and the amount of vascularity were measured and compared. The density of the newly formed bone in the expansion area was measured by using cone beam computed tomography. Data were analyzed using the Kruskal–Wallis one-way analysis of variance and post hoc Student-Newman–Keuls tests. Results: New bone area, fibrotic area, osteoblast and osteoclast numbers, and the amount of vascularity were significantly higher in experimental groups compared with the control group (P < 0.001). The density of newly formed bone (P < 0.001), new bone formation (P = 0.009), number of capillaries (P < 0.001), number of osteoclasts (P = 0.016), and number of osteoblasts (P < 0.001) in the maxillary sutures were highest in the 25 μg/ml O3 group compared with the other experimental groups and control group. Conclusions/implications: The application of O3 therapy can stimulate bone regeneration in an orthopedically expanded inter-premaxillary suture during both the expansion and retention periods. PMID:26136437
Herrera, Bruno S.; Martins-Porto, Rodrigo; Maia-Dantas, Aline; Campi, Paula; Spolidorio, Luis C.; Costa, Soraia K.P.; Van Dyke, Thomas E.; Gyurko, Robert; Muscara, Marcelo N.
2012-01-01
Background Inflammatory stimuli activate inducible nitric oxide synthase (iNOS) in a variety of cell types, including osteoclasts (OC) and osteoblasts, resulting in sustained NO production. In this study, we evaluate the alveolar bone loss in rats with periodontitis under long-term iNOS inhibition, and the differentiation and activity of OC from iNOS-knockout (KO) mice in vitro. Methods Oral aminoguanidine (an iNOS inhibitor) or water treatment was started 2 weeks before induction of periodontitis. Rats were sacrificed 3, 7, or 14 days after ligature placement, and alveolar bone loss was evaluated. In vitro OC culture experiments were also performed to study the differentiation of freshly isolated bone marrow cells from both iNOS KO and wild-type C57BL/6 mice. OC were counted 6 days later after tartrate-resistant acid phosphatase staining (a marker of osteoclast identity), and bone resorption activity was assessed by counting the number of resorption pits on dentin disks. Results Rats with ligature showed progressive and significant alveolar bone loss compared to sham animals, and aminoguanidine treatment significantly inhibited ligature-induced bone loss at 7 and 14 days after the induction. In comparison to bone marrow cells from wild-type mice, cells from iNOS KO mice showed decreased OC growth and the resulting OC covered a smaller culture dish area and generated fewer resorption pit counts. Conclusion Our results demonstrate that iNOS inhibition prevents alveolar bone loss in a rat model of ligature-induced periodontitis, thus confirming that iNOS-derived NO plays a crucial role in the pathogenesis of periodontitis, probably by stimulating OC differentiation and activity. PMID:21417589
Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts
Lau, Esther; Al-Dujaili, Saja; Guenther, Axel; Liu, Dawei; Wang, Liyun; You, Lidan
2010-01-01
Osteocytes are well evidenced to be the major mechanosensor in bone, responsible for sending signals to the effector cells (osteoblasts and osteoclasts) that carry out bone formation and resorption. Consistent with this hypothesis, it has been shown that osteocytes release various soluble factors (e.g. transforming growth factor-β, nitric oxide, and prostaglandins) that influence osteoblastic and osteoclastic activities when subjected to a variety of mechanical stimuli, including fluid flow, hydrostatic pressure, and mechanical stretching. Recently, low-magnitude, high-frequency (LMHF) vibration (e.g., acceleration less than <1g, where g=9.98 m/s2, at 20-90 Hz) has gained much interest as studies have shown that such mechanical stimulation can positively influence skeletal homeostasis in animals and humans. Although the anabolic and anti-resorptive potential of LMHF vibration is becoming apparent, the signaling pathways that mediate bone adaptation to LMHF vibration are unknown. We hypothesize that osteocytes are the mechanosensor responsible for detecting the vibration stimulation and producing soluble factors that modulate the activity of effector cells. Hence, we applied low-magnitude (0.3g) vibrations to osteocyte-like MLO-Y4 cells at various frequencies (30, 60, 90 Hz) for 1 hour. We found that osteocytes were sensitive to this vibration stimulus at the transcriptional level: COX-2 maximally increased by 344% at 90 Hz, while RANKL decreased most significantly (-55%, p<0.01) at 60 Hz. Conditioned medium collected from the vibrated MLO-Y4 cells attenuated the formation of large osteoclasts (≥10 nuclei) by 36% (p<0.05) and the amount of osteoclastic resorption by 20% (p=0.07). The amount of soluble RANKL (sRANKL) in the conditioned medium was found to be 53% lower in the vibrated group (p<0.01), while PGE2 release was also significantly decreased (-61%, p<0.01). We conclude that osteocytes are able to sense LMHF vibration and respond by producing soluble factors that inhibit osteoclast formation. PMID:20211285
Liu, Xiao-li; Song, Jing; Liu, Ke-jian; Wang, Wen-peng; Xu, Chang; Zhang, Yu-zeng; Liu, Yun
2015-10-01
Skeletal fluorosis is a chronically metabolic bone disease with extensive hyperostosis osteosclerosis caused by long time exposure to fluoride. Skeletal fluorosis brings about a series of abnormal changes of the extremity, such as joint pain, joint stiffness, bone deformity, etc. Differentiation and maturation of osteoblasts were regulated by osteoclasts via Sema4D/Plexin-B1 signaling pathway. Furthermore, the differentiation and maturation of osteoclasts are conducted by osteoblasts via RANKL/RANK/OPG pathway. Both of these processes form a feedback circuit which is a key link in skeletal fluorosis. In this study, an osteoblast-osteoclast co-culture model in vitro was developed to illustrate the mechanism of skeletal fluorosis. With the increase of fluoride concentration, the expression level of Sema4D was decreased and TGF-β1 was increased continuously. OPG/RANKL mRNA level, however, increased gradually. On the basis of that, the inhibition of Sema4D/Plexin-B1/RhoA/ROCK signaling pathway caused by fluoride promoted the level of TGF-β1 and activated the proliferation of osteoblasts. In addition, osteroprotegerin (OPG) secreted by osteoblasts was up-regulated by fluoride. The competitive combination of OPG and RANKL was strengthened and the combination of RANKL and RANK was hindered. And then the differentiation and maturation of osteoclasts were inhibited, and bone absorption was weakened, leading to skeletal fluorosis.
Wang, Xuping; Zheng, Rongzong; Huang, Xiaowen; Mao, Zhujun; Wang, Nani; Li, Hongyu; Wen, Chengping; Shou, Dan
2018-03-25
Chronic osteomyelitis is primarily caused by infection with Staphylococcus aureus (S. aureus). Antibiotics are commonly administered; however, it is a challenge to promote bone healing. The aim of this study was to investigate the in vitro effects of alkaloids from the herbal remedy Sophora flavescens (ASF) on rat calvarial osteoblasts (ROBs) infected with S. aureus and healthy osteoclasts. Cell proliferation and alkaline phosphatase, interleukin-6, and tumour necrosis factor-α activity was measured in infected ROBs; tartrate-resistant acid phosphatase was evaluated in osteoclasts via enzyme-linked immunosorbent assay. The mRNA and protein expression levels of bone morphogenetic protein 2, runt-related transcription factor 2, osteoprotegerin, and receptor activator of nuclear factor kappa-B ligand were assessed in infected ROBs through reverse transcription-polymerase chain reaction and western blotting analysis, respectively. Results indicated that ASF increased the viability of uninfected ROBs and infected ROBs treated with vancomycin via regulation of bone morphogenetic protein 2, runt-related transcription factor, osteoprotegerin, and receptor activator of nuclear factor kappa-B ligand mRNA and protein expression levels. In addition, the secretion of the inflammatory factor tumour necrosis factor-α was decreased and alkaline phosphatase activity was increased, inhibiting the viability of osteoclasts and tartrate-resistant acid phosphatase activity. Therefore, the herbal remedy ASF has potential as a new treatment for chronic osteomyelitis. Copyright © 2018 John Wiley & Sons, Ltd.
Al-Sebaei, Maisa O; Daukss, Dana M; Belkina, Anna C; Kakar, Sanjeev; Wigner, Nathan A; Cusher, Daniel; Graves, Dana; Einhorn, Thomas; Morgan, Elise; Gerstenfeld, Louis C
2014-01-01
Previous studies showed that loss of tumor necrosis factor α (TNFα) signaling delayed fracture healing by delaying chondrocyte apoptosis and cartilage resorption. Mechanistic studies showed that TNFα induced Fas expression within chondrocytes; however, the degree to which chondrocyte apoptosis is mediated by TNFα alone or dependent on the induction of Fas is unclear. This question was addressed by assessing fracture healing in Fas-deficient B6.MRL/Faslpr/J mice. Loss of Fas delayed cartilage resorption but also lowered bone fraction in the calluses. The reduced bone fraction was related to elevated rates of coupled bone turnover in the B6.MRL/Faslpr/J calluses, as evidenced by higher osteoclast numbers and increased osteogenesis. Analysis of the apoptotic marker caspase 3 showed fewer positive chondrocytes and osteoclasts in calluses of B6.MRL/Faslpr/J mice. To determine if an active autoimmune state contributed to increased bone turnover, the levels of activated T cells and Treg cells were assessed. B6.MRL/Faslpr/J mice had elevated Treg cells in both spleens and bones of B6.MRL/Faslpr/J but decreased percentage of activated T cells in bone tissues. Fracture led to ∼30% to 60% systemic increase in Treg cells in both wild-type and B6.MRL/Faslpr/J bone tissues during the period of cartilage formation and resorption but either decreased (wild type) or left unchanged (B6.MRL/Faslpr/J) the numbers of activated T cells in bone. These results show that an active autoimmune state is inhibited during the period of cartilage resorption and suggest that iTreg cells play a functional role in this process. These data show that loss of Fas activity specifically in chondrocytes prolonged the life span of chondrocytes and that Fas synergized with TNFα signaling to mediate chondrocyte apoptosis. Conversely, loss of Fas systemically led to increased osteoclast numbers during later periods of fracture healing and increased osteogenesis. These findings suggest that retention of viable chondrocytes locally inhibits osteoclast activity or matrix proteolysis during cartilage resorption. © 2014 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research. PMID:24677136
Tsentidis, C; Gourgiotis, D; Kossiva, L; Doulgeraki, A; Marmarinos, A; Galli-Tsinopoulou, A; Karavanaki, K
2016-04-01
Simultaneous lower bone mineral density, metabolic bone markers, parathyroid hormone (PTH), magnesium, insulin-like growth factor 1 (IGF1), and higher levels of total soluble receptor activator of nuclear factor-kappa B ligand (s-RANKL), osteoprotegerin (OPG), and alkaline phosphatase (ALP) are indicative of lower osteoblast and increased osteoclast signaling in children and adolescents with type 1 diabetes mellitus, predisposing to adult osteopenia and osteoporosis. Type 1 diabetes mellitus (T1DM) is a risk factor for reduced bone mass, disrupting several bone metabolic pathways. We aimed at identifying association patterns between bone metabolic markers, particularly OPG, s-RANKL, and bone mineral density (BMD) in T1DM children and adolescents, in order to study possible underlying pathophysiologic mechanisms of bone loss. We evaluated 40 children and adolescents with T1DM (mean ± SD age 13.04 ± 3.53 years, T1DM duration 5.15 ± 3.33 years) and 40 healthy age- and gender-matched controls (aged12.99 ± 3.3 years). OPG, s-RANKL, osteocalcin, C-telopeptide cross-links (CTX), IGF1, electrolytes, PTH, and total 25(OH)D were measured, and total body along with lumbar spine BMD were evaluated with dual energy X-ray absorptiometry (DXA). Multivariate regression and factor analysis were performed after classic inference. Patients had significantly lower BMD, with lower bone turnover markers, PTH, magnesium, and IGF1 than controls, indicating lower osteoblast signaling. Higher levels of total s-RANKL, OPG, and total ALP were observed in patients, with log(s-RANKL) and OPG correlation found only in controls, possibly indicating increased osteoclast signaling in patients. Coupling of bone resorption and formation was observed in both groups. Multivariate regression confirmed simultaneous lower bone turnover, IGF1, magnesium, and higher total s-RANKL, OPG, and ALP in patients, while factor analysis indicated possible activation of RANK/RANKL/OPG system in patients and its association with magnesium and IGF1. Patients with longer disease duration or worse metabolic control had lower BMD. T1DM children and adolescents have impaired bone metabolism which seems to be multifactorial. Reduced osteoblast and increased osteoclast signaling, resulting from multiple simultaneous disturbances, could lead to reduced peak bone accrual in early adulthood, predisposing to adult osteopenia and osteoporosis.
Bis-enoxacin Inhibits Bone Resorption and Orthodontic Tooth Movement
Toro, E.J.; Zuo, J.; Guiterrez, A.; La Rosa, R.L.; Gawron, A.J.; Bradaschia-Correa, V.; Arana-Chavez, V.; Dolce, C.; Rivera, M.F.; Kesavalu, L.; Bhattacharyya, I.; Neubert, J.K.; Holliday, L.S.
2013-01-01
Enoxacin inhibits binding between the B-subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments, and also between osteoclast formation and bone resorption in vitro. We hypothesized that a bisphosphonate derivative of enoxacin, bis-enoxacin (BE), which was previously studied as a bone-directed antibiotic, might have similar activities. BE shared a number of characteristics with enoxacin: It blocked binding between the recombinant B-subunit and microfilaments and inhibited osteoclastogenesis in cell culture with IC50s of about 10 µM in each case. BE did not alter the relative expression levels of various osteoclast-specific proteins. Even though tartrate-resistant acid phosphatase 5b was expressed, proteolytic activation of the latent pro-enzyme was inhibited. However, unlike enoxacin, BE stimulated caspase-3 activity. BE bound to bone slices and inhibited bone resorption by osteoclasts on BE-coated bone slices in cell culture. BE reduced the amount of orthodontic tooth movement achieved in rats after 28 days. Analysis of these data suggests that BE is a novel anti-resorptive molecule that is active both in vitro and in vivo and may have clinical uses. Abbreviations: BE, bis-enoxacin; V-ATPase, vacuolar H+-ATPase; TRAP, tartrate-resistant acid phosphatase; αMEM D10, minimal essential media, alpha modification with 10% fetal bovine serum; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; RANKL, receptor activator of nuclear factor kappa B-ligand; NFATc1, nuclear factor of activated T-cells; ADAM, a disintegrin and metalloprotease domain; OTM, orthodontic tooth movement. PMID:23958763
Osteocyte Alterations Induce Osteoclastogenesis in an In Vitro Model of Gaucher Disease.
Bondar, Constanza; Ormazabal, Maximiliano; Crivaro, Andrea; Ferreyra-Compagnucci, Malena; Delpino, María Victoria; Rozenfeld, Paula Adriana; Mucci, Juan Marcos
2017-01-13
Gaucher disease (GD) is caused by mutations in the glucosylceramidase β ( GBA 1 ) gene that confer a deficient level of activity of glucocerebrosidase (GCase). This deficiency leads to the accumulation of the glycolipid glucocerebroside in the lysosomes of cells, mainly in the monocyte/macrophage lineage. Its mildest form is Type I GD, characterized by non-neuronopathic involvement. Bone compromise is the most disabling aspect of the Gaucher disease. However, the pathophysiological aspects of skeletal alterations are not yet fully understood. The bone tissue homeostasis is maintained by a balance between resorption of old bone by osteoclasts and new bone formation by osteoblasts. A central player in this balance is the osteocyte as it controls both processes. We studied the involvement of osteocytes in an in vitro chemical model of Gaucher disease. The osteocyte cell line MLO-Y4 was exposed to conduritol-β-epoxide (CBE), an inhibitor of GCase, for a period of 7, 14 and 21 days. Conditioned media from CBE-treated osteocytes was found to induce osteoclast differentiation. GCase inhibition caused alterations in Cx43 expression and distribution pattern and an increase in osteocyte apoptosis. Osteoclast differentiation involved osteocyte apoptotic bodies, receptor activator of nuclear factor κ-B ligand (RANKL) and soluble factors. Thus, our results indicate that osteocytes may have a role to play in the bone pathophysiology of GD.
Effect of supplementary zinc on orthodontic tooth movement in a rat model
Sadegh, Ahmad Akhoundi Mohammad; Rezvaneh, Ghazanfari; Shahroo, Etemad-Moghadam; Mojgan, Alaeddini; Azam, Khorshidian; Shahram, Rabbani; Reza, Shamshiri Ahmad; Nafiseh, Momeni
2016-01-01
ABSTRACT Introduction: Osteoclasts and osteoblasts are responsible for regulating bone homeostasis during which the trace element zinc has been shown to exert a cumulative effect on bone mass by stimulating osteoblastic bone formation and inhibiting osteoclastic bone resorption. Objective: The aim of the present study was to investigate the effects of zinc (Zn) on orthodontic tooth movement (OTM) in a rat model. Material and Methods: A total of 44 male Wistar rats were divided into four groups of 11 animals each and received 0, 1.5, 20 and 50 ppm Zn in distilled water for 60 days. In the last 21 days of the study, nickel-titanium closed coil springs were ligated between maxillary right incisors and first molars of all rats, and tooth movement was measured at the end of this period. Histological analysis of hematoxylin/eosin slides was performed to assess root resorption lacunae, osteoclast number and periodontal ligament (PDL) width. Results: Mean OTM was calculated as 51.8, 49.1, 35.5 and 45 µm in the 0, 1.5, 20 and 50 ppm zinc-receiving groups, respectively. There were no significant differences in neither OTM nor histological parameters among the study groups (p > 0.05). Conclusion: According to the results obtained in the current investigation, increase in supplementary zinc up to 50 ppm does not affect the rate of OTM neither bone and root resorption in rats. PMID:27275614
A theoretical framework for strain-related trabecular bone maintenance and adaptation.
Ruimerman, R; Hilbers, P; van Rietbergen, B; Huiskes, R
2005-04-01
It is assumed that density and morphology of trabecular bone is partially controlled by mechanical forces. How these effects are expressed in the local metabolic functions of osteoclast resorption and osteoblast formation is not known. In order to investigate possible mechano-biological pathways for these mechanisms we have proposed a mathematical theory (Nature 405 (2000) 704). This theory is based on hypothetical osteocyte stimulation of osteoblast bone formation, as an effect of elevated strain in the bone matrix, and a role for microcracks and disuse in promoting osteoclast resorption. Applied in a 2-D Finite Element Analysis model, the theory explained the formation of trabecular patterns. In this article we present a 3-D FEA model based on the same theory and investigated its potential morphological predictability of metabolic reactions to mechanical loads. The computations simulated the development of trabecular morphological details during growth, relative to measurements in growing pigs, reasonably realistic. They confirmed that the proposed mechanisms also inherently lead to optimal stress transfer. Alternative loading directions produced new trabecular orientations. Reduction of load reduced trabecular thickness, connectivity and mass in the simulation, as is seen in disuse osteoporosis. Simulating the effects of estrogen deficiency through increased osteoclast resorption frequencies produced osteoporotic morphologies as well, as seen in post-menopausal osteoporosis. We conclude that the theory provides a suitable computational framework to investigate hypothetical relationships between bone loading and metabolic expressions.
Multiple melanocortin receptors are expressed in bone cells
NASA Technical Reports Server (NTRS)
Zhong, Qing; Sridhar, Supriya; Ruan, Ling; Ding, Ke-Hong; Xie, Ding; Insogna, Karl; Kang, Baolin; Xu, Jianrui; Bollag, Roni J.; Isales, Carlos M.
2005-01-01
Melanocortin receptors belong to the seven transmembrane domain, G-protein coupled family of receptors. There are five members of this receptor family labeled MC1R-MC5R. These receptors are activated by fragments derived from a larger molecule, proopiomelanocortin (POMC) and include ACTH, alpha beta and gamma-MSH and beta-endorphin. Because of in vitro and in vivo data suggesting direct effects of these POMC molecules on bone and bone turnover, we examined bone and bone derived cells for the presence of the various members of the melanocortin receptor family. We report that the five known melanocortin receptors are expressed to varying degrees in osteoblast-like and osteoclastic cells. POMC fragments increased proliferation and expression of a variety of genes in osteoblastic cells. Furthermore, POMC mRNA was detected in osteoclastic cells. These data demonstrate that POMC-derived peptide hormones acting through high affinity melanocortin receptors have specific effects on bone cells. Thus, in addition to the indirect effects of POMC-derived hormones on bone turnover through their modulation of steroid hormone secretion, POMC fragments may have direct and specific effects on bone cell subpopulations.
Smink, Jeske J; Leutz, Achim
2010-03-01
Lytic bone diseases and in particular osteoporosis are common age-related diseases characterized by enhanced bone fragility due to loss of bone density. Increasingly, osteoporosis poses a major global health-care problem due to the growth of the elderly population. Recently, it was found that the gene regulatory transcription factor CCAAT/enhancer binding protein beta (C/EBPbeta) is involved in bone metabolism. C/EBPbeta occurs as different protein isoforms of variable amino terminal length, and regulation of the C/EBPbeta isoform ratio balance was found to represent an important factor in osteoclast differentiation and bone homeostasis. Interestingly, adjustment of the C/EBPbeta isoform ratio by the process of translational control is downstream of the mammalian target of rapamycin kinase (mTOR), a sensor of the nutritional status and a target of immunosuppressive and anticancer drugs. The findings imply that modulating the process of translational control of C/EBPbeta isoform expression could represent a novel therapeutic approach in osteolytic bone diseases, including cancer and infection-induced bone loss.
Wang, Jun; Rouse, Clay; Jasper, Jeff S.; Pendergast, Ann Marie
2016-01-01
Bone metastases occur in up to 70% of advanced breast cancer. For most patients with breast cancer, bone metastases are predominantly osteolytic. Interactions between tumor cells and stromal cells in the bone microenvironment drive osteolytic bone metastasis, a process that requires the activation of osteoclasts, cells that break down bone. Here, we report that ABL kinases promoted metastasis of breast cancer cells to bone by regulating the crosstalk between tumor and the bone microenvironment. ABL kinases protected tumor cells from apoptosis induced by TRAIL (TNF-related apoptosis-inducing ligand), activated the transcription factor STAT5, and promoted osteolysis through the STAT5-dependent expression of genes encoding the osteoclast activating factors interleukin 6 (IL6) and matrix metalloproteinase-1 (MMP1). Furthermore, ABL kinases increased the abundance of the Hippo pathway mediator TAZ and the expression of TAZ-dependent target genes that promote bone metastasis. Knockdown of ABL kinases or treatment with ABL-specific allosteric inhibitor impaired osteolytic metastasis of breast cancer cells in mice. These findings revealed a role for ABL kinases in regulating tumor-bone interactions and provide a rationale for targeting both tumor and the bone microenvironment with ABL-specific inhibitors. PMID:26838548
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyun-Ju, E-mail: biohjk@knu.ac.kr; Yoon, Hye-Jin; Yoon, Kyung-Ae
Lipocalin-2 (LCN2) is a member of the lipocalin superfamily and plays a critical role in the regulation of various physiological processes, such as inflammation and obesity. In this study, we report that LCN2 negatively modulates the proliferation and differentiation of osteoclast precursors, resulting in impaired osteoclast formation. The overexpression of LCN2 in bone marrow-derived macrophages or the addition of recombinant LCN2 protein inhibits the formation of multinuclear osteoclasts. LCN2 suppresses macrophage colony-stimulating factor (M-CSF)-induced proliferation of osteoclast precursor cells without affecting their apoptotic cell death. Interestingly, LCN2 decreases the expression of the M-CSF receptor, c-Fms, and subsequently blocks its downstreammore » signaling cascades. In addition, LCN2 inhibits RANKL-induced osteoclast differentiation and attenuates the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are important modulators in osteoclastogenesis. Mechanistically, LCN2 inhibits NF-κB signaling pathways, as demonstrated by the suppression of IκBα phosphorylation, nuclear translocation of p65, and NF-κB transcriptional activity. Thus, LCN2 is an anti-osteoclastogenic molecule that exerts its effects by retarding the proliferation and differentiation of osteoclast lineage cells. - Highlights: • LCN2 expression is regulated during osteoclast development. • LCN2 suppresses M-CSF-mediated osteoclast precursor proliferation. • LCN2 inhibits RANKL-induced osteoclast differentiation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schindeler, Aaron; Little, David G.; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney
2005-12-16
Bisphosphonates are potent inhibitors of osteoclast-mediated bone resorption. Recent interest has centered on the effects of bisphosphonates on osteoblasts. Chronic dosing of osteoblasts with solubilized bisphosphonates has been reported to enhance osteogenesis and mineralization in vitro. However, this methodology poorly reflects the in vivo situation, where free bisphosphonate becomes rapidly bound to mineralized bone surfaces. To establish a more clinically relevant cell culture model, we cultured bone cells on calcium phosphate coated quartz discs pre-treated with the potent nitrogen-containing bisphosphonate, zoledronic acid (ZA). Binding studies utilizing [{sup 14}C]-labeled ZA confirmed that the bisphosphonate bound in a concentration-dependent manner over themore » 1-50 {mu}M dose range. When grown on ZA-treated discs, the viability of bone-marrow derived osteoclasts was greatly reduced, while the viability and mineralization of the osteoblastic MC3T3-E1 cell line were largely unaffected. This suggests that only bone resorbing cells are affected by bound bisphosphonate. However, this system does not account for transient exposure to unbound bisphosphonate in the hours following a clinical dosing. To model this event, we transiently treated osteoblasts with ZA in the absence of a calcified surface. Osteoblasts proved highly resistant to all transitory treatment regimes, even when utilizing ZA concentrations that prevented mineralization and/or induced cell death when dosed chronically. This study represents a pharmacologically more relevant approach to modeling bisphosphonate treatment on cultured bone cells and implies that bisphosphonate therapies may not directly affect osteoblasts at bone surfaces.« less
Denosumab in Postmenopausal Osteoporosis: What the Clinician Needs to Know
Lewiecki, E. Michael
2009-01-01
Denosumab is a subcutaneously (SC) administered investigational fully human monoclonal antibody to receptor activator of nuclear factor-kB ligand (RANKL), a cytokine member of the tumor necrosis factor family that is the principal mediator of osteoclastic bone resorption. RANKL stimulates the formation, activity, and survival of osteoclasts, and is implicated in the pathogenesis of postmenopausal osteoporosis and other skeletal disorders associated with increased bone remodeling. Denosumab binds RANKL, preventing it from binding to RANK, thereby reducing the formation, activity, and survival of osteoclasts and slowing the rate of bone resorption. Postmenopausal women with low bone mineral density (BMD) treated with denosumab have a reduction of bone turnover markers and an increase in BMD that is rapid, sustained, and reversible. In postmenopausal women with osteoporosis, denosumab reduces the risk of vertebral, hip, and nonvertebral fractures. In postmenopausal women with low BMD randomized to receive denosumab or alendronate, denosumab is associated with a significantly greater increase in BMD and further reduction in bone turnover markers compared with alendronate. In postmenopausal women with low BMD who were previously treated with alendronate, those who switched to denosumab have a significantly greater BMD increase and further reduction in bone turnover markers compared with those continuing alendronate. Denosumab is well tolerated with a favorable safety profile. It is a promising emerging drug for the prevention and treatment of osteoporosis, offering a long dosing interval of every 6 months and convenient SC dosing, with the potential of improving long-term adherence to therapy compared with current oral treatments. PMID:22870424
Regulation of osteoclastogenesis by gap junction communication.
Matemba, Stephen F; Lie, Anita; Ransjö, Maria
2006-10-01
Receptor activator of NF-kappaB ligand (RANKL) is crucial in osteoclastogenesis but signaling events involved in osteoclast differentiation are far from complete and other signals may play a role in osteoclastogenesis. A more direct pathway for cellular crosstalk is provided by gap junction intercellular channel, which allows adjacent cells to exchange second messengers, ions, and cellular metabolites. Here we have investigated the role of gap junction communication in osteoclastogenesis in mouse bone marrow cultures. Immunoreactive sites for the gap junction protein connexin 43 (Cx43) were detected in the marrow stromal cells and in mature osteoclasts. Carbenoxolone (CBX) functionally blocked gap junction communication as demonstrated by a scrape loading Lucifer Yellow dye transfer technique. CBX caused a dose-dependent inhibition (significant > or = 90 microM) of the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells formed in 7- to 8-day marrow cultures stimulated by parathyroid hormone (PTH; 10 nM) or forskolin (FSK; 1 microM). Furthermore, CBX (100 microM) significantly inhibited prostaglandin E2 (PGE2; 10 microM) and 1,25(OH)2-vitamin D3 stimulated osteoclast differentiation in the mouse bone marrow cultures. Consequently, quantitative real-time polymerase chain reaction (PCR) analysis demonstrated that CBX downregulated the expression of osteoclast phenotypic markers, but without having any significant effects on RANK, RANKL, and osteoprotegerin (OPG) mRNA expression. However, the results demonstrated that CBX significantly inhibits RANKL-stimulated (100 ng/ml) osteoclastogenesis in the mouse bone marrow cultures. Taken together, our results suggests that gap junctional diffusion of messenger molecules interacts with signaling pathways downstream RANKL in osteoclast differentiation. Further studies are required to define the precise mechanisms and molecular targets involved. Copyright 2006 Wiley-Liss, Inc.
Imbalanced expression of RANKL and osteoprotegerin mRNA in pannus tissue of rheumatoid arthritis.
Ainola, M; Mandelin, J; Liljeström, M; Konttinen, Y T; Salo, J
2008-01-01
To test if the pannus tissue is characterized by a high receptor activator of nuclear factor kappaB ligand to osteoprotegerin (RANKL:OPG) ratio, which could explain local osteoclastogenesis and formation of bony erosions. Messenger RNA and protein expressions of RANKL and OPG in rheumatoid and osteoarthritic tissue samples were measured using quantitative real-time RT-PCR and Western blot/densitometry. Pannus and synovitis fibroblasts explanted from tissue samples were cultured in vitro without and with TNF-alpha, IL-1Beta or IL-17 and analyzed quantitatively for RANKL expression. The ability of pannus fibroblasts to induce formation of multinuclear osteoclast-like cells from human monocytes, with macrophage-colony stimulating factor (M-CSF) but without RANKL added, was tested. Histochemical staining was used to assess the eventual presence of RANKL and tartrate resistant acid phosphatase positive osteoclast-like cells at the pannus-bone interface. RANKL:OPG ratios of messenger RNA (p<0.05) and protein level were high in pannus (2.06+/-0.73 and 2.2+/-0.65) compared to rheumatoid (0.62+/-0.13 and 1.31+/-0.69) and osteoarthritis (0.62+/-0.32 and 0.52+/-0.16) synovial membranes. Resting and stimulated (p dependent on the cytokine used) pannus fibroblasts produced RANKL in excess (p=0.0005) and unstimulated pannus fibroblasts also effectively induced osteoclast-like cell formation from monocytes in vitro without any exogenous RANKL added. Compatible with these findings, multinuclear osteoclasts-like cells were frequent in the fibroblast- and macrophage-rich pannus tissue at the soft tissue-to-bone interface. The high RANKL:OPG ratio, together with close fibroblast-to-monocyte contacts in pannus tissue, probably favor local generation of bone resorbing osteoclasts at the site of erosion in rheumatoid arthritis.
Vahabzadeh, Sahar; Roy, Mangal; Bose, Susmita
2015-12-14
Calcium phosphate cements (CPCs) are being widely used for treating small scale bone defects. Among the various CPCs, brushite (dicalcium phosphate dihydrate, DCPD) cement is widely used due to its superior solubility and ability to form new bone. In the present study, we have studied the physical, mechanical, osteoclast-like-cells differentiation and in vivo osteogenic and vasculogenic properties of silicon (Si) doped brushite cements. Addition of Si did not alter the phase composition of final product and regardless of Si level, all samples included β-tricalcium phosphate (β-TCP) and DCPD. 1.1 wt. % Si addition increased the compressive strength of undoped brushite cement from 4.78±0.21 MPa to 5.53±0.53 MPa, significantly. Cellular activity was studied using receptor activator of nuclear factor κβ ligand (RANKL) supplemented osteoclast-like-cells precursor RAW 264.7 cell. Phenotypic expressions of the cells confirmed successful differentiation of RAW264.7 monocytes to osteoclast-like-cells on undoped and doped brushite cements. An increased activity of osteoclast-like cells was noticed due to Si doping in the brushite cement. An excellent new bone formation was found in all cement compositions, with significant increase in Si doped brushite samples as early as 4 weeks post implantation in rat femoral model. After 4 weeks of implantation, no significant difference was found in blood vessel formation between the undoped and doped cements, however, a significant increase in vasculgenesis was found in 0.8 and 1.1 wt. % Si doped brushite cements after 8 weeks. These results show the influence of Si dopant on physical, mechanical, in vitro osteoclastogenesis and in vivo osteogenic and vasculogenic properties of brushite cements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, R.-W.; Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Chen, C.-H.
People who regularly drink tea have been found to have a higher bone mineral density (BMD) and to be at less risk of hip fractures than those who do not drink it. Green tea catechins such as (-)-epigallocatechin gallate (EGCG) have been reported to increase osteogenic functioning in mesenchymal stem cells. However, its effect on osteoclastogenesis remains unclear. In this study, we investigated the effect of EGCG on RANKL-activation osteoclastogenesis and NF-{kappa}B in RAW 264.7, a murine preosteoclast cell line. EGCG (10-100 {mu}M) significantly suppressed the RANKL-induced differentiation of osteoclasts and the formation of pits in murine RAW 264.7 cellsmore » and bone marrow macrophages (BMMs). EGCG appeared to target osteoclastic differentiation at an early stage but had no cytotoxic effect on osteoclast precursors. In addition, it significantly inhibited RANKL-induced NF-{kappa}B transcriptional activity and nuclear translocation. We conclude that EGCG inhibits osteoclastogenesis through its activation of NF-{kappa}B.« less
Role of Oxidative Damage in Radiation-Induced Bone Loss
NASA Technical Reports Server (NTRS)
Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.
2014-01-01
During prolonged spaceflight, astronauts are exposed to both microgravity and space radiation, and are at risk for increased skeletal fragility due to bone loss. Evidence from rodent experiments demonstrates that both microgravity and ionizing radiation can cause bone loss due to increased bone-resorbing osteoclasts and decreased bone-forming osteoblasts, although the underlying molecular mechanisms for these changes are not fully understood. We hypothesized that excess reactive oxidative species (ROS), produced by conditions that simulate spaceflight, alter the tight balance between osteoclast and osteoblast activities, leading to accelerated skeletal remodeling and culminating in bone loss. To test this, we used the MCAT mouse model; these transgenic mice over-express the human catalase gene targeted to mitochondria, the major organelle contributing free radicals. Catalase is an anti-oxidant that converts reactive species, hydrogen peroxide into water and oxygen. This animal model was selected as it displays extended lifespan, reduced cardiovascular disease and reduced central nervous system radio-sensitivity, consistent with elevated anti-oxidant activity conferred by the transgene. We reasoned that mice overexpressing catalase in mitochondria of osteoblast and osteoclast lineage cells would be protected from the bone loss caused by simulated spaceflight. Over-expression of human catalase localized to mitochondria caused various skeletal phenotypic changes compared to WT mice; this includes greater bone length, decreased cortical bone area and moment of inertia, and indications of altered microarchitecture. These findings indicate mitochondrial ROS are important for normal bone-remodeling and skeletal integrity. Catalase over-expression did not fully protect skeletal tissue from structural decrements caused by simulated spaceflight; however there was significant protection in terms of cellular oxidative damage (MDA levels) to the skeletal tissue. Furthermore, we used an array of countermeasures (Antioxidant diets and injections) to prevent the radiation-induced bone loss, although these did not prevent bone loss, analysis is ongoing to determine if these countermeasure protected radiation-induced damage to other tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zawawi, M.S.F.; Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005; Dharmapatni, A.A.S.S.K.
2012-10-19
Highlights: Black-Right-Pointing-Pointer Calcineurin/NFAT inhibitors FK506 and VIVIT treated human PBMC derived osteoclasts in vitro. Black-Right-Pointing-Pointer Differential regulation of ITAM receptors and adaptor molecules by calcineurin/NFAT inhibitors. Black-Right-Pointing-Pointer FK506 and VIVIT suppress ITAM factors during late phase osteoclast differentiation. -- Abstract: Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway inmore » osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcR{gamma}) and DNAX-activating protein 12 kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin ({beta}3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10 days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that FK506 treatment significantly (p < 0.05) reduced the expression of NFATc1, CathK, OSCAR, FcR{gamma}, TREM2 and DAP12 during the terminal stage of osteoclast formation. VIVIT treatment significantly (p < 0.05) decreased CathK, OSCAR, FcR{gamma}, and AnnVIII, gene expression. This data suggest FK506 and VIVIT act differently in targeting the calcineurin-NFAT signalling cascade to suppress key mediators of the ITAM pathway during late stage osteoclast differentiation and this is associated with a reduction in both osteoclast differentiation and activity.« less
Blockade of Dickkopf (DKK)-1 induces fusion of sacroiliac joints.
Uderhardt, S; Diarra, D; Katzenbeisser, J; David, J-P; Zwerina, J; Richards, W; Kronke, G; Schett, G
2010-03-01
To study whether Dickkopf (DKK)-1, an inhibitor of wingless (Wnt) signalling, is involved in the fusion of sacroiliac joints. Mice transgenic for tumour necrosis factor (TNFtg mice), which develop bilateral sacroiliitis, were treated with vehicle, anti-TNF antibody or anti-DKK1 antibody. Sacroiliac joints were analysed for histological signs of inflammation, bone erosion, osteoclast formation and ankylosis. Moreover, expression of collagen type X, beta-catenin and DKK-1 was assessed by immunohistochemistry. There were no signs of spontaneous ankylosis of the sacroiliac joints in TNFtg mice. TNF blockade effectively reduced inflammation, bone erosion and osteoclast numbers in the sacroiliac joints, but did not lead to ankylosis. Blockade of DKK1 had no effect on inflammatory signs of sacroiliitis, but significantly reduced bone erosions and osteoclast counts. Moreover, DKK1 blockade promoted expression of collagen type X, the formation of hypertrophic chondrocytes and ankylosis of sacroiliac joints. DKK1 influences inflammatory remodelling of sacroiliac joints by prevention of joint ankylosis. This may indicate an important role of the Wnt signalling pathway in the structural bone changes of axial joint disease. Although this model does not reflect the entire spectrum of ankylosing spondylitis in humans, it helps to explain the pathophysiological processes of sacroiliac joint ankylosis, which is a hallmark of the spondyloarthritides.
Yamaguchi, Masayoshi; Weitzmann, M Neale
2011-01-01
Several bone protective factors are reported to exhibit stimulatory activities on bone formation coupled with inhibitory effects on bone resorption; one such factor is vitamin K2. Vitamin K species [K1 (phylloquinone) and K2 (menaquinone)] have long been associated with bone protective activities and are receiving intense interest as nutritional supplements for the prevention or amelioration of bone disease in humans. However, the mechanisms of vitamin K action on the skeleton are poorly defined. Activation of the nuclear factor κB (NF-κB) signal transduction pathway is essential for osteoclast formation and resorption. By contrast, NF-κB signaling potently antagonizes osteoblast differentiation and function, prompting us to speculate that NF-κB antagonists may represent a novel class of dual anti-catabolic and pro-anabolic agents. We now show that vitamin K2 action on osteoblast and osteoclast formation and activity is accomplished by down-regulating basal and cytokine-induced NF-κB activation, by increasing IκB mRNA, in a γ-carboxylation-independent manner. Furthermore, vitamin K2 prevented repression by tumor necrosis factor α (TNFα) of SMAD signaling induced by either transforming growth factor ß (TGFß) or bone morphogenetic protein-2 (BMP-2). Vitamin K2 further antagonized receptor activator of NF-κB (RANK) ligand (RANKL)-induced NF-κB activation in osteoclast precursors. Our data provide a novel mechanism to explain the dual pro-anabolic and anti-catabolic activities of vitamin K2, and may further support the concept that pharmacological modulation of NF-κB signal transduction may constitute an effective mechanism for ameliorating pathological bone loss and for promoting bone health.
NASA Technical Reports Server (NTRS)
McAllister, T. N.; Du, T.; Frangos, J. A.
2000-01-01
Bone is a porous tissue that is continuously perfused by interstitial fluid. Fluid flow, driven by both vascular pressure and mechanical loading, may generate significant shear stresses through the canaliculi as well as along the bone lining at the endosteal surface. Both osteoblasts and osteocytes produce signaling factors such as prostaglandins and nitric in response to fluid shear stress (FSS); however, these humoral agents appear to have more profound affects on osteoclast activity at the endosteal surface. We hypothesized that osteoclasts and preosteoclasts may also be mechanosensitive and that osteoclast-mediated autocrine signaling may be important in bone remodeling. In this study, we investigated the effect of FSS on nitric oxide (NO), prostaglandin E(2) (PGE(2)), and prostacyclin (PGI(2)) release by neonatal rat bone marrow-derived preosteoclast-like cells. These cells were tartrate-resistant acid phosphatase (TRAP) positive, weakly nonspecific esterase (NSE) positive, and capable of fusing into calcitonin-responsive, bone-resorbing, multinucleated cells. Bone marrow-derived preosteoclast-like cells exposed for 6 h to a well-defined FSS of 16 dynes/cm(2) produced NO at a rate of 7.5 nmol/mg protein/h, which was 10-fold that of static controls. This response was completely abolished by 100 microM N(G)-amino-L-arginine (L-NAA). Flow also stimulated PGE(2) production (3.9 microg/mg protein/h) and PGI(2) production (220 pg/mg protein/h). L-NAA attenuated flow-induced PGE(2) production by 30%, suggesting that NO may partially modulate PGE(2) production. This is the first report demonstrating that marrow derived cells are sensitive to FSS and that autocrine signaling in these cells may play an important role in load-induced remodeling and signal transduction in bone. Copyright 2000 Academic Press.
Klünter, Tim; Schulz, Peter; Deisinger, Ulrike; Diez, Claudius; Waiss, Waltraud; Kirschneck, Christian; Reichert, Torsten E.; Detsch, Rainer
2017-01-01
Background: The aim of the present study was to evaluate the degradation pattern of highly porous bioceramics as well as the bone formation in presence of bone morphogenetic protein 7 (BMP-7) in an ectopic site. Methods: Novel calcium phosphate ceramic cylinders sintered at 1,300°C with a total porosity of 92–94 vol%, 45 pores per inch, and sized 15 mm (Ø) × 5 mm were grafted on the musculus latissimus dorsi bilaterally in 10 Göttingen minipigs: group I (n = 5): hydroxyapatite (HA) versus biphasic calcium phosphate (BCP), a mixture of HA and tricalcium phosphate (TCP) in a ratio of 60/40 wt%; group II (n = 5): TCP versus BCP. A test side was supplied in situ with 250 μg BMP-7. Fluorochrome bone labeling and computed tomography were performed in vivo. Specimens were evaluated 14 weeks after surgery by environmental scanning electron microscopy, fluorescence microscopy, tartrate-resistant acid phosphatase, and pentachrome staining. Results: Bone formation was enhanced in the presence of BMP-7 in all ceramics (P = 0.001). Small spots of newly formed bone were observed in all implants in the absence of BMP-7. Degradation of HA and BCP was enhanced in the presence of BMP-7 (P = 0.001). In those ceramics, osteoclasts were observed. TCP ceramics were almost completely degraded independently of the effect of BMP-7 after 14 weeks (P = 0.76), osteoclasts were not observed. Conclusions: BMP-7 enhanced bone formation and degradation of HA and BCP ceramics via osteoclast resorption. TCP degraded via dissolution. All ceramics were osteoinductive. Novel degradable HA and BCP ceramics in the presence of BMP-7 are promising bone substitutes in the growing individual. PMID:28740783
Sphene ceramics for orthopedic coating applications: an in vitro and in vivo study.
Ramaswamy, Yogambha; Wu, Chengtie; Dunstan, Colin R; Hewson, Benjamin; Eindorf, Tanja; Anderson, Gail I; Zreiqat, Hala
2009-10-01
The host response to titanium alloy (Ti-6Al-4V) is not always favorable as a fibrous layer may form at the skeletal tissue-device interface, causing aseptic loosening. Recently, sphene (CaTiSiO(5)) ceramics were developed by incorporating Ti in the Ca-Si system, and found to exhibit improved chemical stability. The aim of this study is to evaluate the in vitro response of human osteoblast-like cells, human osteoclasts and human microvascular endothelial cells to sphene ceramics and determine whether coating Ti-6Al-4V implants with sphene enhances anchorage to surrounding bone. The study showed that sphene ceramics support human osteoblast-like cell attachment with organized cytoskeleton structure and express increased mRNA levels of osteoblast-related genes. Sphene ceramics were able to induce the differentiation of monocytes to form functional osteoclasts with the characteristic features of f-actin and alpha(v)beta(3) integrin, and express osteoclast-related genes. Human endothelial cells were also able to attach and express the endothelial cell markers ZO-1 and VE-Cadherin when cultured on sphene ceramics. Histological staining, enzyme histochemistry and immunolabelling were used for identification of mineralized bone and bone remodelling around the coated implants. Ti-6Al-4V implants coated with sphene showed new bone formation and filled the gap between the implants and existing bone in a manner comparable to that of the hydroxyapatite coatings used as control. The new bone was in direct contact with the implants, whereas fibrous tissue formed between the bone and implant with uncoated Ti-6Al-4V. The in vivo assessment of sphene-coated implants supports our in vitro observation and suggests that they have the ability to recruit osteogenic cells, and thus support bone formation around the implants and enhance osseointegration.
Koskela, A; Koponen, J; Lehenkari, P; Viluksela, M; Korkalainen, M; Tuukkanen, J
2017-07-28
Perfluoroalkyl substances (PFAS), including two most commonly studied compounds perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are widely distributed environmental pollutants, used extensively earlier. Due to their toxicological effects the use of PFAS is now regulated. Based on earlier studies on PFOA's distribution in bone and bone marrow in mice, we investigated PFAS levels and their possible link to bone microarchitecture of human femoral bone samples (n = 18). Soft tissue and bone biopsies were also taken from a 49-year old female cadaver for PFAS analyses. We also studied how PFOA exposure affects differentiation of human osteoblasts and osteoclasts. PFAS were detectable from all dry bone and bone marrow samples, PFOS and PFOA being the most prominent. In cadaver biopsies, lungs and liver contained the highest concentrations of PFAS, whereas PFAS were absent in bone marrow. Perfluorononanoic acid (PFNA) was present in the bones, PFOA and PFOS were absent. In vitro results showed no disturbance in osteogenic differentiation after PFOA exposure, but in osteoclasts, lower concentrations led to increased resorption, which eventually dropped to zero after increase in PFOA concentration. In conclusion, PFAS are present in bone and have the potential to affect human bone cells partly at environmentally relevant concentrations.
CXCL2 synthesized by oral squamous cell carcinoma is involved in cancer-associated bone destruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oue, Erika; Section of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University; Global Center of Excellence
Highlights: Black-Right-Pointing-Pointer Oral cancer cells synthesize CXCL2. Black-Right-Pointing-Pointer CXCL2 synthesized by oral cancer is involved in osteoclastogenesis. Black-Right-Pointing-Pointer CXCL2-neutralizing antibody inhibited osteoclastogenesis induced by oral cancer cells. Black-Right-Pointing-Pointer We first report the role of CXCL2 in cancer-associated bone destruction. -- Abstract: To explore the mechanism of bone destruction associated with oral cancer, we identified factors that stimulate osteoclastic bone resorption in oral squamous cell carcinoma. Two clonal cell lines, HSC3-C13 and HSC3-C17, were isolated from the maternal oral cancer cell line, HSC3. The conditioned medium from HSC3-C13 cells showed the highest induction of Rankl expression in the mouse stromal cellmore » lines ST2 and UAMS-32 as compared to that in maternal HSC3 cells and HSC3-C17 cells, which showed similar activity. The conditioned medium from HSC3-C13 cells significantly increased the number of osteoclasts in a co-culture with mouse bone marrow cells and UAMS-32 cells. Xenograft tumors generated from these clonal cell lines into the periosteal region of the parietal bone in athymic mice showed that HSC3-C13 cells caused extensive bone destruction and a significant increase in osteoclast numbers as compared to HSC3-C17 cells. Gene expression was compared between HSC3-C13 and HSC3-C17 cells by using microarray analysis, which showed that CXCL2 gene was highly expressed in HSC3-C13 cells as compared to HSC3-C17 cells. Immunohistochemical staining revealed the localization of CXCL2 in human oral squamous cell carcinomas. The increase in osteoclast numbers induced by the HSC3-C13-conditioned medium was dose-dependently inhibited by addition of anti-human CXCL2-neutralizing antibody in a co-culture system. Recombinant CXCL2 increased the expression of Rankl in UAMS-32 cells. These results indicate that CXCL2 is involved in bone destruction induced by oral cancer. This is the first report showing the role of CXCL2 in cancer-associated bone destruction.« less
Adapala, Naga Suresh; Barbe, Mary F; Langdon, Wallace Y; Tsygankov, Alexander Y; Sanjay, Archana
2010-03-01
The Cbl protein is a key player in macrophage colony-stimulating factor (M-CSF)-induced signaling. To examine the role of Cbl in M-CSF-mediated cellular events, we used Cbl(YF/YF) knockin mice in which the regulatory tyrosine 737, which when phosphorylated binds to the p85 subunit of phosphatidylinositol 3 kinase (PI3K), is substituted to phenylalanine. In ex vivo cultures, M-CSF and receptor activator of nuclear factor-kappaB ligand-mediated differentiation of bone marrow precursors from Cbl(YF/YF) mice generated increased number of osteoclasts; however, osteoclast numbers in Cbl(YF/YF) cultures were unchanged with increasing doses of M-CSF. We found that Cbl(YF/YF) osteoclasts have enhanced intrinsic ability to survive, and this response was further augmented upon exposure to M-CSF. Treatment of osteoclasts with M-CSF-induced actin reorganization and lamellipodia formation in wild-type osteoclasts; however, in Cbl(YF/YF) osteoclasts lamellipodia formation was compromised. Collectively, these results indicate that abrogation of the Cbl-PI3K interaction, although not affecting M-CSF-induced proliferation and differentiation of precursors, is required for regulation of survival and actin cytoskeletal reorganization of mature osteoclasts.
[Separation of osteoclasts by lectin affinity chromatography].
Itokazu, M; Tan, A; Tanaka, S
1991-09-01
Newborn rat calvaria bone cells obtained by digestion were fractionated on columns of wheat-germ agglutinin (WGA) sepharose 6MB for osteoclast isolation. The initial nonspecific binding cells which were passed through the WGA sepharose column by a buffer acquired a high enzyme activity of alkaline phosphatase, but not that of acid phosphatase. However, elution of cells using a buffer with the addition of N-acetyl-D-glucosamine resulted in a high acid phosphatase activity but no alkaline phosphatase activity. The former WGA binding negative fraction enriched osteoblasts averaging 30 microns in size. The latter WGA binding positive fraction enriched osteoclasts ranging from 20 microns to 60 microns in size. The electron-microscope clearly demonstrated the cellular details of osteoclasts. Isolated cell counts showed a ratio of six to four. These results indicate that our method of osteoclast isolation is simple and useful in lectin affinity chromatography because all cells have sugar moieties on their surface and the binding of osteoclasts can be reversed by the addition of specific lectin-binding sugars to the eluting buffer.
Decreased bone formation and increased osteoclastogenesis cause bone loss in mucolipidosis II
Kollmann, Katrin; Pestka, Jan Malte; Kühn, Sonja Christin; Schöne, Elisabeth; Schweizer, Michaela; Karkmann, Kathrin; Otomo, Takanobu; Catala-Lehnen, Philip; Failla, Antonio Virgilio; Marshall, Robert Percy; Krause, Matthias; Santer, Rene; Amling, Michael; Braulke, Thomas; Schinke, Thorsten
2013-01-01
Mucolipidosis type II (MLII) is a severe multi-systemic genetic disorder caused by missorting of lysosomal proteins and the subsequent lysosomal storage of undegraded macromolecules. Although affected children develop disabling skeletal abnormalities, their pathogenesis is not understood. Here we report that MLII knock-in mice, recapitulating the human storage disease, are runted with accompanying growth plate widening, low trabecular bone mass and cortical porosity. Intralysosomal deficiency of numerous acid hydrolases results in accumulation of storage material in chondrocytes and osteoblasts, and impaired bone formation. In osteoclasts, no morphological or functional abnormalities are detected whereas osteoclastogenesis is dramatically increased in MLII mice. The high number of osteoclasts in MLII is associated with enhanced osteoblastic expression of the pro-osteoclastogenic cytokine interleukin-6, and pharmacological inhibition of bone resorption prevented the osteoporotic phenotype of MLII mice. Our findings show that progressive bone loss in MLII is due to the presence of dysfunctional osteoblasts combined with excessive osteoclastogenesis. They further underscore the importance of a deep skeletal phenotyping approach for other lysosomal diseases in which bone loss is a prominent feature. PMID:24127423
Kiuru, Maija; Solomon, Jason; Ghali, Bassem; van der Meulen, Marjolein; Crystal, Ronald G; Hidaka, Chisa
2009-01-01
Bone formation and remodeling involve coordinated interactions between osteoblasts and osteoclasts through signaling networks involving a variety of molecular pathways. We hypothesized that overexpression of Sonic hedgehog (Shh), a morphogen with a crucial role in skeletal development, would stimulate osteoblastogenesis and bone formation in adult animals in vivo. Systemic administration of adenovirus expressing the N-terminal form of Shh into adult mice resulted in a primary increase in osteoblasts and their precursors. Surprisingly, however, this was associated with altered trabecular morphology, decreased bone volume, and decreased compressive strength in the vertebrae. Whereas no change was detected in the number of osteoclast precursors, bone marrow stromal cells from Shh-treated mice showed enhanced osteoclastogenic potential in vitro. These effects were mediated by the PTH/PTH-related protein (PTHrP) pathway as evidenced by increased sensitivity to PTH stimulation and upregulation of the PTH/PTHrP receptor (PPR). Together, these data show that Shh has stimulatory effects on osteoprogenitors and osteoblasts in adult animals in vivo, which results in bone remodeling and reduced bone strength because of a secondary increase in osteoclastogenesis. PMID:19338448
Bruzzaniti, Angela; Neff, Lynn; Sanjay, Archana; Horne, William C.; De Camilli, Pietro; Baron, Roland
2005-01-01
Podosomes are highly dynamic actin-containing adhesion structures found in osteoclasts, macrophages, and Rous sarcoma virus (RSV)-transformed fibroblasts. After integrin engagement, Pyk2 recruits Src and the adaptor protein Cbl, forming a molecular signaling complex that is critical for cell migration, and deletion of any molecule in this complex disrupts podosome ring formation and/or decreases osteoclast migration. Dynamin, a GTPase essential for endocytosis, is also involved in actin cytoskeleton remodeling and is localized to podosomes where it has a role in actin turnover. We found that dynamin colocalizes with Cbl in the actin-rich podosome belt of osteoclasts and that dynamin forms a complex with Cbl in osteoclasts and when overexpressed in 293VnR or SYF cells. The association of dynamin with Cbl in osteoclasts was decreased by Src tyrosine kinase activity and we found that destabilization of the dynamin-Cbl complex involves the recruitment of Src through the proline-rich domain of Cbl. Overexpression of dynamin increased osteoclast bone resorbing activity and migration, whereas overexpression of dynK44A decreased osteoclast resorption and migration. These studies suggest that dynamin, Cbl, and Src coordinately participate in signaling complexes that are important in the assembly and remodeling of the actin cytoskeleton, leading to changes in osteoclast adhesion, migration, and resorption. PMID:15872089
Park, Ji-Wan; Yoon, Hye-Jin; Kang, Woo Youl; Cho, Seungil; Seong, Sook Jin; Lee, Hae Won; Yoon, Young-Ran; Kim, Hyun-Ju
2018-02-01
GPR84, a member of the G protein-coupled receptor family, is found predominantly in immune cells, such as macrophages, and functions as a pivotal modulator of inflammatory responses. In this study, we investigated the role of GPR84 in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. Our microarray data showed that GPR84 was significantly downregulated in osteoclasts compared to in their precursors, macrophages. The overexpression of GPR84 in bone marrow-derived macrophages suppressed the formation of multinucleated osteoclasts without affecting precursor proliferation. In addition, GPR84 overexpression attenuated the induction of c-Fos and nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), which are transcription factors that are critical for osteoclastogenesis. Furthermore, knockdown of GPR84 using a small hairpin RNA promoted RANKL-mediated osteoclast differentiation and gene expression of osteoclastogenic markers. Mechanistically, GPR84 overexpression blocked RANKL-stimulated phosphorylation of IκBα and three MAPKs, JNK, ERK, and p38. GPR84 also suppressed NF-κB transcriptional activity mediated by RANKL. Conversely, GPR84 knockdown enhanced RANKL-induced activation of IκBα and the three MAPKs. Collectively, our results revealed that GPR84 functions as a negative regulator of osteoclastogenesis, suggesting that it may be a potential therapeutic target for osteoclast-mediated bone-destructive diseases. © 2017 Wiley Periodicals, Inc.
Qi, Bing; Cong, Qian; Li, Ping; Ma, Gang; Guo, Xizhi; Yeh, James; Xie, Min; Schneider, Michael D; Liu, Huijuan; Li, Baojie
2014-11-24
Tak1 is a MAPKKK that can be activated by growth factors and cytokines such as RANKL and BMPs and its downstream pathways include NF-κB and JNK/p38 MAPKs. Tak1 is essential for mouse embryonic development and plays critical roles in tissue homeostasis. Previous studies have shown that Tak1 is a positive regulator of osteoclast maturation, yet its roles in bone growth and remodeling have not been assessed, as mature osteoclast-specific Tak1 deletion with Cstk-Cre resulted in runtedness and postnatal lethality. Here we generated osteoclast progenitor (monocyte)-specific Tak1 knockout mice and found that these mice show normal body weight, limb size and fertility, and osteopetrosis with severity similar to that of RANK or RANKL deficient mice. Mechanistically, Tak1 deficiency altered the signaling of NF-κB, p38MAPK, and Smad1/5/8 and the expression of PU.1, MITF, c-Fos, and NFATc1, suggesting that Tak1 regulates osteoclast differentiation at multiple stages via multiple signaling pathways. Moreover, the Tak1 mutant mice showed defects in skull, articular cartilage, and mesenchymal stromal cells. Ex vivo Tak1-/- monocytes also showed enhanced ability in promoting osteogenic differentiation of mesenchymal stromal cells. These findings indicate that Tak1 functions in osteoclastogenesis in a cell-autonomous manner and in osteoblastogenesis and chondrogenesis in non-cell-autonomous manners.
USDA-ARS?s Scientific Manuscript database
Obesity is associated with chronic up-regulation of inflammatory cytokines which stimulate osteoclast activity and bone resorption. Osteopenia or low bone mass is observed in a variety of physiological conditions with chronic inflammation including aging and post-menopause with estrogen deficiency. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koskela, A., E-mail: antti.koskela@oulu.fi
Perfluorooctanoic acid (PFOA) is a ubiquitous and persistent environmental chemical, which has been used extensively due to its stability and surface tension-lowering properties. Toxicological effects include induction of neonatal mortality and reproductive toxicity. In this study, pregnant C57BL/6 mice were exposed orally to 0.3 mg PFOA/kg/day throughout pregnancy, and female offspring were studied at the age of 13 or 17 months. Morphometrical and biomechanical properties of femurs and tibias were analyzed with micro-computed tomography and 3-point bending, and bone PFOA concentrations were determined by mass spectrometry. The effects of PFOA on bone cell differentiation were studied in osteoclasts from C57BL/6more » mice and in the MC3T3 pre-osteoblast cell line. PFOA exposed mice showed increased femoral periosteal area as well as decreased mineral density of tibias. Biomechanical properties of these bones were not affected. Bone PFOA concentrations were clearly elevated even at the age of 17 months. In osteoblasts, low concentrations of PFOA increased osteocalcin (OCN) expression and calcium secretion, but at PFOA concentrations of 100 μM and above osteocalcin (OCN) expression and calcium secretion were decreased. The number of osteoclasts was increased at all PFOA concentrations tested and resorption activity dose-dependently increased from 0.1–1.0 μM, but decreased at higher concentrations. The results show that PFOA accumulates in bone and is present in bones until the old age. PFOA has the potential to influence bone turnover over a long period of time. Therefore bone is a target tissue for PFOA, and altered bone geometry and mineral density seem to persist throughout the life of the animal. - Highlights: • Bone is a target tissue for PFOA both in vivo and in vitro. • Maternal exposure during pregnancy results in PFOA accumulation in bone of the offspring. • PFOA is present in bones until the old age. • PFOA causes mild alterations in bone morphometry and decreases bone mineral density. • Low PFOA concentrations stimulate the resorption activity of osteoclasts.« less
Carpio, Lomeli R.; Bradley, Elizabeth W.; McGee-Lawrence, Meghan E.; Weivoda, Megan M.; Poston, Daniel D.; Dudakovic, Amel; Xu, Ming; Tchkonia, Tamar; Kirkland, James L.; van Wijnen, Andre J.; Oursler, Merry Jo; Westendorf, Jennifer J.
2017-01-01
Histone deacetylase (HDAC) inhibitors are efficacious epigenetic-based therapies for some cancers and neurological disorders; however, each of these drugs inhibits multiple HDACs and has detrimental effects on the skeleton. To better understand how HDAC inhibitors affect endochondral bone formation, we conditionally deleted one of their targets, Hdac3, pre- and postnatally in type II collagen α1 (Col2α1)–expressing chondrocytes. Embryonic deletion was lethal, but postnatal deletion of Hdac3 delayed secondary ossification center formation, altered maturation of growth plate chondrocytes, and increased osteoclast activity in the primary spongiosa. HDAC3-deficient chondrocytes exhibited increased expression of cytokine and matrix-degrading genes (Il-6, Mmp3, Mmp13, and Saa3) and a reduced abundance of genes related to extracellular matrix production, bone development, and ossification (Acan, Col2a1, Ihh, and Col10a1). Histone acetylation increased at and near genes that had increased expression. The acetylation and activation of nuclear factor κB (NF-κB) were also increased in HDAC3-deficient chondrocytes. Increased cytokine signaling promoted autocrine activation of Janus kinase (JAK)–signal transducer and activator of transcription (STAT) and NF-κB pathways to suppress chondrocyte maturation, as well as paracrine activation of osteoclasts and bone resorption. Blockade of interleukin-6 (IL-6)–JAK–STAT signaling, NF-κB signaling, and bromodomain extraterminal proteins, which recognize acetylated lysines and promote transcriptional elongation, significantly reduced Il-6 and Mmp13 expression in HDAC3-deficient chondrocytes and secondary activation in osteoclasts. The JAK inhibitor ruxolitinib also reduced osteoclast activity in Hdac3 conditional knockout mice. Thus, HDAC3 controls the temporal and spatial expression of tissue-remodeling genes and inflammatory responses in chondrocytes to ensure proper endochondral ossification during development. PMID:27507649
Kirschneck, Christian; Fanghänel, Jochen; Wahlmann, Ulrich; Wolf, Michael; Roldán, J Camilo; Proff, Peter
2017-03-01
Many adult orthodontic patients suffer from chronic periodontitis with recurrent episodes of active periodontal inflammation. As their number is steadily increasing, orthodontists are more and more frequently challenged by respective treatment considerations. However, little is currently known regarding interactive effects on undesired dental root resorption (DRR), tooth movement velocity, periodontal bone loss and the underlying cellular and tissue reactions. A total of 63 male Fischer344 rats were used in three consecutive experiments employing 21 animals each (A/B/C), randomly assigned to 3 experimental groups (n=7, 1/2/3), respectively: (A) CBCT; (B) histology/serology; (C) RT-qPCR-(1) control; (2) orthodontic tooth movement (OTM) of the first/second upper left molars (NiTi coil spring, 0.25N); (3) OTM with experimentally induced periodontitis (cervical silk ligature). After 14days of OTM, we quantified blood leukocyte level, DRR, osteoclast activity and relative gene expression of inflammatory and osteoclast marker genes within the dental-periodontal tissue as well as tooth movement velocity and periodontal bone loss after 14 and 28 days. The experimentally induced periodontal bone loss was significantly increased by concurrent orthodontic force application. Periodontal inflammation during OTM on the other hand significantly augmented the extent of DRR, relative expression of inflammatory/osteoclast marker genes, blood leukocyte level and periodontal osteoclast activity. In addition, contrary to previous studies, we observed a significant increase in tooth movement velocity. Although accelerated tooth movement would be favourable for orthodontic treatment, our results suggest that orthodontic interventions should only be performed after successful systematic periodontal therapy and paused in case of recurrent active inflammation. Copyright © 2016 Elsevier GmbH. All rights reserved.
Feng, Wei; Liu, Hongrui; Luo, Tingting; Liu, Di; Du, Juan; Sun, Jing; Wang, Wei; Han, Xiuchun; Yang, Kaiyun; Guo, Jie; Amizuka, Norio; Li, Minqi
2017-01-27
Interleukin (IL)-6 is known to indirectly enhance osteoclast formation by promoting receptor activator of nuclear factor kappa-B ligand (RANKL) production by osteoblastic/stromal cells. However, little is known about the direct effect of IL-6 on osteoclastogenesis. Here, we determined the direct effects of IL-6 and its soluble receptor (sIL-6R) on RANKL-induced osteoclast formation by osteoclast precursors in vitro. We found IL-6/sIL-6R significantly promoted and suppressed osteoclast differentiation induced by low- (10 ng/ml) and high-level (50 ng/ml) RANKL, respectively. Using a bone resorption pit formation assay, expression of osteoclastic marker genes and transcription factors confirmed differential regulation of RANKL-induced osteoclastogenesis by IL-6/sIL-6R. Intracellular signaling transduction analysis revealed IL-6/sIL-6R specifically upregulated and downregulated the phosphorylation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), ERK (extracellular signal-regulated kinase) and JNK (c-Jun N-terminal kinase) induced by low- and high level RANKL, respectively. Taken together, our findings demonstrate that IL-6/sIL-6R differentially regulate RANKL-induced osteoclast differentiation and activity through modulation of NF-κB, ERK and JNK signaling pathways. Thus, IL-6 likely plays a dual role in osteoclastogenesis either as a pro-resorption factor or as a protector of bone, depending on the level of RANKL within the local microenvironment.
Razawy, Wida; van Driel, Marjolein
2018-01-01
Abstract The IL‐23/Th17 axis has been implicated in the development of autoimmune diseases, such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA). RA and PsA are heterogeneous diseases with substantial burden on patients. Increasing evidence suggests that the IL‐23 signaling pathway may be involved in the development of autoimmunity and erosive joint damage. IL‐23 can act either directly or indirectly on bone forming osteoblasts as well as on bone resorbing osteoclasts. As IL‐23 regulates the activity of cells of the bone, it is conceivable that in addition to inflammation‐mediated joint erosion, IL‐23 may play a role in physiological bone remodeling. In this review, we focus on the role of IL‐23 in autoimmune arthritis in patients and murine models, and provide an overview of IL‐23 producing and responding cells in autoimmune arthritic joints. In addition, we discuss the role of IL‐23 on bone forming osteoblasts and bone resorbing osteoclasts regarding inflammation‐mediated joint damage and bone remodeling. At last, we briefly discuss the clinical implications of targeting this pathway for joint damage and systemic bone loss in autoimmune arthritis. PMID:29148561
[Sclerostin expression in periodontal ligaments during movement of orthodontic teeth in rats].
Yiwen, Chen; Shang, Gao; Tongtong, Xu; Jiahui, Zhang; Jincheng, Li; Huiyan, Zhang; Jinjin, Lu; Min, Hu; Zhihui, Liu
2016-06-01
This study aims to observe the expression of Sclerostin during movement of orthodontic teeth and determine the effect of this protein on remodeling of periodontal tissues. Twenty-four Wistar rats were chosen. Orthodontic forces were applied between the bilateral incisor and first molar to achieve mesial movement. Rats in each group were executed at different time points (0, 1, 3, 5, 7, 14 d). Morphology of periodontal tissue was observed by hematoxylin-eosin (HE) staining. The number of osteoclasts were observed by tartrate-resistant acid phosphatase (TRAP) staining. Sclerostin expression were observed by immunohistochemical staining. HE staining revealed that the resorption of alveolar bone intensified with prolonged movement. Results of immunohistochemical and TRAP staining revealed that Sclerostin expression and number of osteoclasts were related to duration of movement of orthodontic tooth. After staining for 5 days, the number of osteoclasts and Sclerostin expression reached their peak and then began to decline. The numbers of osteoclasts and the expression level of Sclerostin were higher at the compressive side than those at the tensive side. Sclerostin affected orthodontic tooth movement by inhibiting the Wnt signaling pathway and by indirectly or directly controlling bone morphogenetic protein.
Ikeda, Tohru; Kasai, Michiyuki; Tatsukawa, Eri; Kamitakahara, Masanobu; Shibata, Yasuaki; Yokoi, Taishi; Nemoto, Takayuki K; Ioku, Koji
2014-01-01
The biological activity of osteoblasts and osteoclasts is regulated not only by hormones but also by local growth factors, which are expressed in neighbouring cells or included in bone matrix. Previously, we developed hydroxyapatite (HA) composed of rod-shaped particles using applied hydrothermal methods (HHA), and it revealed mild biodegradability and potent osteoclast homing activity. Here, we compared serum proteins adsorbed to HHA with those adsorbed to conventional HA composed of globular-shaped particles (CHA). The two ceramics adsorbed serum albumin and γ-globulin to similar extents, but affinity for γ-globulin was much greater than that to serum albumin. The chemotactic activity for macrophages of serum proteins adsorbed to HHA was significantly higher than that of serum proteins adsorbed to CHA. Quantitative proteomic analysis of adsorbed serum proteins revealed preferential binding of vitamin D-binding protein (DBP) and complements C3 and C4B with HHA. When implanted with the femur of 8-week-old rats, HHA contained significantly larger amount of DBP than CHA. The biological activity of DBP was analysed and it was found that the chemotactic activity for macrophages was weak. However, DBP-macrophage activating factor, which is generated by the digestion of sugar chains of DBP, stimulated osteoclastogenesis. These results confirm that the microstructure of hydroxyapatite largely affects the affinity for serum proteins, and suggest that DBP preferentially adsorbed to HA composed of rod-shaped particles influences its potent osteoclast homing activity and local bone metabolism. PMID:24286277
Normalization of periodontal tissues in osteopetrotic mib mutant rats, treated with CSF-1
NASA Technical Reports Server (NTRS)
Wojtowicz, A.; Yamauchi, M.; Sotowski, R.; Ostrowski, K.
1998-01-01
The osteopetrotic mib mutation in rats causes defects in the skeletal bone tissue in young animals. These defects, i.e. slow bone remodelling, changes in both crystallinity and mineral content, are transient and undergo normalization, even without any treatment in 6-wk-old animals. Treatment with CSF-1 (colony stimulating factor-1) accelerates the normalization process in skeletal bones. The periodontal tissues around the apices of incisors show abnormalities caused by the slow remodelling process of the mandible bone tissue, the deficiency of osteoclasts and their abnormal morphology, as well as the disorganization of periodontal ligament fibres. In contrast to the skeletal tissues, these abnormalities would not undergo spontaneous normalization. Under treatment with colony stimulating factor 1 (CSF-1), the primitive bone trabeculae of mandible are resorbed and the normalization of the number of osteoclasts and their cytology occurs. The organization of the periodontal ligament fibres is partially restored, resembling the histological structure of the normal one.
Maridas, David E; Rendina-Ruedy, Elizabeth; Le, Phuong T; Rosen, Clifford J
2018-01-06
Bone marrow stromal cells (BMSCs) constitute a cell population routinely used as a representation of mesenchymal stem cells in vitro. They reside within the bone marrow cavity alongside hematopoietic stem cells (HSCs), which can give rise to red blood cells, immune progenitors, and osteoclasts. Thus, extractions of cell populations from the bone marrow results in a very heterogeneous mix of various cell populations, which can present challenges in experimental design and confound data interpretation. Several isolation and culture techniques have been developed in laboratories in order to obtain more or less homogeneous populations of BMSCs and HSCs invitro. Here, we present two methods for isolation of BMSCs and HSCs from mouse long bones: one method that yields a mixed population of BMSCs and HSCs and one method that attempts to separate the two cell populations based on adherence. Both methods provide cells suitable for osteogenic and adipogenic differentiation experiments as well as functional assays.
Kim, Ju-Young; Lee, Myeung Su; Baek, Jong Min; Park, Jongtae; Youn, Byung-Soo; Oh, Jaemin
2015-12-01
Osteoporosis is an aging-associated disease requiring better therapeutic modality. Eupatilin is a major flavonoid from Artemisia plants such as Artemisia princeps and Artemisia argyi which has been reported to possess various beneficial biological effects including anti-inflammation, anti-tumor, anti-cancer, anti-allergy, and anti-oxidation activity. Complete blockade of RANK-dependent osteoclastogenesis was accomplished upon stimulation prior to the receptor activator of nuclear factor κB (RANK)-ligand (RANKL) treatment or post-stimulation of bone marrow macrophages (BMCs) in the presence of RANKL with eupatilin. This blockade was accompanied by inhibition of rapid phosphorylation of Akt, GSK3β, ERK and IκB as well as downregulation of c-Fos and NFATc1 at protein, suggesting that transcriptional suppression is a key mechanism for anti-osteoclastogenesis. Transient reporter assays or gain of function assays confirmed that eupatilin was a potent transcriptional inhibitor in osteoclasts (OC). Surprisingly, when mature osteoclasts were cultured on bone scaffolds in the presence of eupatilin, bone resorption activity was also completely blocked by dismantling the actin rings, suggesting that another major acting site of eupatilin is cytoskeletal rearrangement. The eupatilin-treated mature osteoclasts revealed a shrunken cytoplasm and accumulation of multi-nuclei, eventually becoming fibroblast-like cells. No apoptosis occurred. Inhibition of phosphorylation of cofilin by eupatilin suggests that actin may play an important role in the morphological change of multinucleated cells (MNCs). Human OC similarly responded to eupatilin. However, eupatilin has no effects on osteoblast differentiation and shows cytotoxicity on osteoblast in the concentration of 50 μM. When eupatilin was administered to LPS-induced osteoporotic mice after manifestation of osteoporosis, it prevented bone loss. Ovariectomized (OVX) mice remarkably exhibited bone protection effects. Taken together, eupatilin is an effective versatile therapeutic intervention for osteoporosis via; 1) transcriptional suppression of c-Fos and NFATc1 of differentiating OC and 2) inhibition of actin rearrangement of pathogenic MNCs.
Sakuma, Yoko; Tanaka, Kiyoshi; Suda, Michio; Komatsu, Yasato; Yasoda, Akihiro; Miura, Masako; Ozasa, Ami; Narumiya, Shuh; Sugimoto, Yukihiko; Ichikawa, Atsushi; Ushikubi, Fumitaka; Nakao, Kazuwa
2000-01-01
In a previous study we showed that the involvement of EP4 subtype of the prostaglandin E (PGE) receptor is crucial for lipopolysaccharide (LPS)-induced osteoclast formation in vitro. The present study was undertaken to test whether EP4 is actually associated with LPS-induced bone resorption in vivo. In wild-type (WT) mice, osteoclast formation in vertebrae and tibiae increased 5 days after systemic LPS injection, and urinary excretion of deoxypyridinoline, a sensitive marker for bone resorption, statistically increased 10 days after injection. In EP4 knockout (KO) mice, however, LPS injection caused no significant changes in these parameters throughout the experiment. LPS exposure for 4 h strongly induced osteoclast differentiation factor (ODF) mRNA expression in primary osteoblastic cells (POB) both from WT and EP4 KO mice, and this expression was not inhibited by indomethacin, suggesting prostaglandin (PG) independence. LPS exposure for 24 h further induced ODF expression in WT POB, but not in EP4 KO POB. Indomethacin partially inhibited ODF expression in WT POB, but not in EP4 KO POB. These data suggest that ODF is induced both PG dependently and PG independently. LPS exposure for 24 h induced slightly greater osteoclastgenesis inhibitory factor (OCIF) mRNA expression in EP4 KO than in WT POB. These findings suggest that the reduced ODF expression and apparently increased OCIF expression also are responsible for the markedly reduced LPS-induced osteoclast formation in EP4 KO mice. Our results show that the EP4 subtype of the PGE receptor is involved in LPS-induced bone resorption in vivo also. Since LPS is considered to be largely involved in bacterially induced bone loss, such as in periodontitis and osteomyelitis, our study is expected to help broaden our understanding of the pathophysiology of these conditions. PMID:11083800
Song, Chao; Tan, Peng; Zhang, Zheng; Wu, Wei; Dong, Yonghui; Zhao, Liming; Liu, Huiyong; Guan, Hanfeng; Li, Feng
2018-01-22
REV-ERBs (REV-ERBα and REV-ERBβ) are transcription repressors and circadian regulators. Previous investigations have shown that REV-ERBs repress the expression of target genes, including MMP9 and CX3CR1, in macrophages. Because MMP9 and CX3CR1 reportedly participate in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis, we inferred that REV-ERBs might play a role in osteoclastogenesis. In the present study, we found that the REV-ERBα level decreased significantly during RANKL-induced osteoclast differentiation from primary bone marrow-derived macrophages (BMMs). REV-ERBα knockdown by small interfering RNA in BMMs resulted in the enhanced formation of osteoclasts, whereas REV-ERBβ knockdown showed no effect on osteoclast differentiation. Moreover, the REV-ERB agonist SR9009 inhibited osteoclast differentiation and bone resorption. Intraperitoneal SR9009 administration prevented ovariectomy-induced bone loss; this effect was accompanied by decreased serum RANKL and C-terminal telopeptide of type I collagen levels and increased osteoprotegerin levels. Further investigation revealed that NF-κB and MAPK activation and nuclear factor of activated T cells, cytoplasmic 1, and c-fos expression were suppressed by SR9009. The level of reactive oxygen species was also decreased by SR9009, with NADPH oxidase subunits also being down-regulated. In addition, an expression microarray showed that FABP4, an intracellular lipid-binding protein, was up-regulated by REV-ERB agonism. BMS309403, an inhibitor of FABP4, partially prevented the suppression of osteoclastogenesis by SR9009 through stabilizing phosphorylation of p65. To summarize, our results proved that the REV-ERB agonism inhibited osteoclastogenesis partially via FABP4 up-regulation.-Song, C., Tan, P., Zhang, Z., Wu, W., Dong, Y., Zhao, L., Liu, H., Guan, H., Li, F. REV-ERBs agonism suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss partially via FABP4 upregulation.
Osteoprotegerin in bone metastases: mathematical solution to the puzzle.
Ryser, Marc D; Qu, Yiding; Komarova, Svetlana V
2012-01-01
Bone is a common site for cancer metastasis. To create space for their growth, cancer cells stimulate bone resorbing osteoclasts. Cytokine RANKL is a key osteoclast activator, while osteoprotegerin (OPG) is a RANKL decoy receptor and an inhibitor of osteoclastogenesis. Consistently, systemic application of OPG decreases metastatic tumor burden in bone. However, OPG produced locally by cancer cells was shown to enhance osteolysis and tumor growth. We propose that OPG produced by cancer cells causes a local reduction in RANKL levels, inducing a steeper RANKL gradient away from the tumor and towards the bone tissue, resulting in faster resorption and tumor expansion. We tested this hypothesis using a mathematical model of nonlinear partial differential equations describing the spatial dynamics of OPG, RANKL, PTHrP, osteoclasts, tumor and bone mass. We demonstrate that at lower expression rates, tumor-derived OPG enhances the chemotactic RANKL gradient and osteolysis, whereas at higher expression rates OPG broadly inhibits RANKL and decreases osteolysis and tumor burden. Moreover, tumor expression of a soluble mediator inducing RANKL in the host tissue, such as PTHrP, is important for correct orientation of the RANKL gradient. A meta-analysis of OPG, RANKL and PTHrP expression in normal prostate, carcinoma and metastatic tissues demonstrated an increase in expression of OPG, but not RANKL, in metastatic prostate cancer, and positive correlation between OPG and PTHrP in metastatic prostate cancer. The proposed mechanism highlights the importance of the spatial distribution of receptors, decoys and ligands, and can be applied to other systems involving regulation of spatially anisotropic processes.
Mushroom Extracts Decrease Bone Resorption and Improve Bone Formation.
Erjavec, Igor; Brkljacic, Jelena; Vukicevic, Slobodan; Jakopovic, Boris; Jakopovich, Ivan
2016-01-01
Mushroom extracts have shown promising effects in the treatment of cancer and various chronic diseases. Osteoporosis is considered one of the most widespread chronic diseases, for which currently available therapies show mixed results. In this research we investigated the in vitro effects of water extracts of the culinary-medicinal mushrooms Trametes versicolor, Grifola frondosa, Lentinus edodes, and Pleurotus ostreatus on a MC3T3-E1 mouse osteoblast-like cell line, primary rat osteoblasts, and primary rat osteoclasts. In an animal osteoporosis model, rats were ovariectomized and then fed 2 mushroom blends of G. frondosa and L. edodes for 42 days. Bone loss was monitored using densitometry (dual-energy X-ray absorptiometry) and micro computed tomography. In the concentration test, mushroom extracts showed no toxic effect on MC3T3-E1 cells; a dose of 24 µg/mL showed the most proliferative effect. Mushroom extracts of T. versicolor, G. frondosa, and L. edodes inhibited osteoclast activity, whereas the extract of L. edodes increased osteoblast mineralization and the production of osteocalcin, a specific osteoblastic marker. In animals, mushroom extracts did not prevent trabecular bone loss in the long bones. However, we show for the first time that the treatment with a combination of extracts from L. edodes and G. frondosa significantly reduced trabecular bone loss at the lumbar spine. Inhibitory properties of extracts from L. edodes on osteoclasts and the promotion of osteoblasts in vitro, together with the potential to decrease lumbar spine bone loss in an animal osteoporosis model, indicate that medicinal mushroom extracts can be considered as a preventive treatment and/or a supplement to pharmacotherapy to enhance its effectiveness and ameliorate its harmful side effects.
Danilin, Sabrina; Merkel, Alyssa R.; Johnson, Joshua R.; Johnson, Rachelle W.; Edwards, James R.; Sterling, Julie A.
2012-01-01
Myeloid-derived suppressor cells (MDSCs), identified as Gr1+CD11b+ cells in mice, expand during cancer and promote tumor growth, recurrence and burden. However, little is known about their role in bone metastases. We hypothesized that MDSCs may contribute to tumor-induced bone disease, and inoculated breast cancer cells into the left cardiac ventricle of nude mice. Disease progression was monitored weekly by X-ray and fluorescence imaging and MDSCs expansion by fluorescence-activated cell sorting. To explore the contribution of MDSCs to bone metastasis, we co-injected mice with tumor cells or PBS into the left cardiac ventricle and Gr1+CD11b+ cells isolated from healthy or tumor-bearing mice into the left tibia. MDSCs didn’t induce bone resorption in normal mice, but increased resorption and tumor burden significantly in tumor-bearing mice. In vitro experiments showed that Gr1+CD11b+ cells isolated from normal and tumor-bearing mice differentiate into osteoclasts when cultured with RANK ligand and macrophage colony-stimulating factor, and that MDSCs from tumor-bearing mice upregulate parathyroid hormone-related protein (PTHrP) mRNA levels in cancer cells. PTHrP upregulation is likely due to the 2-fold increase in transforming growth factor β expression that we observed in MDSCs isolated from tumor-bearing mice. Importantly, using MDSCs isolated from GFP-expressing animals, we found that MDSCs differentiate into osteoclast-like cells in tumor-bearing mice as evidenced by the presence of GFP+TRAP+ cells. These results demonstrate that MDSCs expand in breast cancer bone metastases and induce bone destruction. Furthermore, our data strongly suggest that MDSCs are able to differentiate into osteoclasts in vivo and that this is stimulated in the presence of tumors. PMID:23264895
CHIP Regulates Osteoclast Formation through Promoting TRAF6 Protein Degradation
Li, Shan; Shu, Bing; Zhang, Yanquan; Li, Jia; Guo, Junwei; Wang, Yinyin; Ren, Fangli; Xiao, Guozhi; Chang, Zhijie; Chen, Di
2014-01-01
Objective Carboxyl terminus of Hsp70-interacting protein (CHIP or STUB1) is an E3 ligase and regulates the stability of several proteins which are involved in tumor growth and metastasis. However, the role of CHIP in bone growth and bone remodeling in vivo has not been reported. The objective of this study is to investigate the role and mechanism of CHIP in regulation of bone mass and bone remodeling. Methods The bone phenotype of Chip−/− mice was examined by histology, histomorphometry and micro-CT analyses. The regulatory mechanism of CHIP on the degradation of TRAF6 and the inhibition of NF-κB signaling was examined by immunoprecipitation (IP), western blotting and luciferase reporter assays. Results In this study, we found that deletion of the Chip gene leads to osteopenic phenotype and increased osteoclast formation. We further found that TRAF6, as a novel substrate of CHIP, is up-regulated in Chip−/− osteoclasts. TRAF6 is critical for RANKL-induced osteoclastogenesis. TRAF6 is an adaptor protein which functions as an E3 ligase to regulate the activation of TAK1 and the I-κB kinase (IKK) and is a key regulator of NF-κB signaling. CHIP interacts with TRAF6 to promote TRAF6 ubiquitination and proteasome degradation. CHIP inhibits p65 nuclear translocation, leading to the repression of the TRAF6-mediated NF-κB transcription. Conclusion CHIP inhibits NF-κB signaling via promoting TRAF6 degradation and plays an important role in osteoclastogenesis and bone remodeling, suggesting that it may be a novel therapeutic target for the treatment of bone loss associated diseases. PMID:24578159
Nataf, Serge; Anginot, Adrienne; Vuaillat, Carine; Malaval, Luc; Fodil, Nassima; Chereul¶, Emmanuel; Langlois¶, Jean-Baptiste; Dumontel, Christiane; Cavillon, Gaelle; Confavreux, Christian; Mazzorana, Marlène; Vico, Laurence; Belin, Marie-Franaçoise; Vivier, Eric; Tomasello, Elena; Jurdic, Pierre
2005-01-01
Human polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy, also known as Nasu-Hakola disease, has been described to be associated with mutations affecting the immunoreceptor tyrosine-based activation motif-bearing KARAP/DAP12 immunoreceptor gene. Patients present bone fragilities and severe neurological alterations leading to presenile dementia. Here we investigated whether the absence of KARAP/DAP12-mediated signals in loss-of-function (KΔ75) mice also leads to bone and central nervous system pathological features. Histological analysis of adult KΔ75 mice brains revealed a diffuse hypomyelination predominating in anterior brain regions. As this was not accompanied by oligodendrocyte degeneration or microglial cell activation it suggests a developmental defect of myelin formation. Interestingly, in postnatal KΔ75 mice, we observed a dramatic reduction in microglial cell numbers similar to in vitro microglial cell differentiation impairment. Our results raise the intriguing possibility that defective microglial cell differentiation might be responsible for abnormal myelin development. Histomorphometry revealed that bone remodeling is also altered, because of a resorption defect, associated with a severe block of in vitro osteoclast differentiation. In addition, we show that, among monocytic lineages, KARAP/DAP12 specifically controls microglial and osteoclast differentiation. Our results confirm that KARAP/DAP12-mediated signals play an important role in the regulation of both brain and bone homeostasis. Yet, important differences exist between the symptoms observed in Nasu-Hakola patients and KΔ75 mice. PMID:15632019
Dankbar, Berno; Fennen, Michelle; Brunert, Daniela; Hayer, Silvia; Frank, Svetlana; Wehmeyer, Corinna; Beckmann, Denise; Paruzel, Peter; Bertrand, Jessica; Redlich, Kurt; Koers-Wunrau, Christina; Stratis, Athanasios; Korb-Pap, Adelheid; Pap, Thomas
2015-09-01
Myostatin (also known as growth and differentiation factor 8) is a secreted member of the transforming growth factor-β (TGF-β) family that is mainly expressed in skeletal muscle, which is also its primary target tissue. Deletion of the myostatin gene (Mstn) in mice leads to muscle hypertrophy, and animal studies support the concept that myostatin is a negative regulator of muscle growth and regeneration. However, myostatin deficiency also increases bone formation, mainly through loading-associated effects on bone. Here we report a previously unknown direct role for myostatin in osteoclastogenesis and in the progressive loss of articular bone in rheumatoid arthritis (RA). We demonstrate that myostatin is highly expressed in the synovial tissues of RA subjects and of human tumor necrosis factor (TNF)-α transgenic (hTNFtg) mice, a model for human RA. Myostatin strongly accelerates receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclast formation in vitro through transcription factor SMAD2-dependent regulation of nuclear factor of activated T-cells (NFATC1). Myostatin deficiency or antibody-mediated inhibition leads to an amelioration of arthritis severity in hTNFtg mice, chiefly reflected by less bone destruction. Consistent with these effects in hTNFtg mice, the lack of myostatin leads to increased grip strength and less bone erosion in the K/BxN serum-induced arthritis model in mice. The results strongly suggest that myostatin is a potent therapeutic target for interfering with osteoclast formation and joint destruction in RA.
Scheiner, S; Pivonka, P; Smith, D W; Dunstan, C R; Hellmich, C
2014-01-01
Denosumab, a fully human monoclonal antibody, has been approved for the treatment of postmenopausal osteoporosis. The therapeutic effect of denosumab rests on its ability to inhibit osteoclast differentiation. Here, we present a computational approach on the basis of coupling a pharmacokinetics model of denosumab with a pharmacodynamics model for quantifying the effect of denosumab on bone remodeling. The pharmacodynamics model comprises an integrated systems biology-continuum micromechanics approach, including a bone cell population model, considering the governing biochemical factors of bone remodeling (including the action of denosumab), and a multiscale micromechanics-based bone mechanics model, for implementing the mechanobiology of bone remodeling in our model. Numerical studies of postmenopausal osteoporosis show that denosumab suppresses osteoclast differentiation, thus strongly curtailing bone resorption. Simulation results also suggest that denosumab may trigger a short-term bone volume gain, which is, however, followed by constant or decreasing bone volume. This evolution is accompanied by a dramatic decrease of the bone turnover rate by more than one order of magnitude. The latter proposes dominant occurrence of secondary mineralization (which is not anymore impeded through cellular activity), leading to higher mineral concentration per bone volume. This explains the overall higher bone mineral density observed in denosumab-related clinical studies. Copyright © 2013 John Wiley & Sons, Ltd. PMID:24039120
Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity
Sun, Weijia; Zhao, Chenyang; Li, Yuheng; Wang, Liang; Nie, Guangjun; Peng, Jiang; Wang, Aiyuan; Zhang, Pengfei; Tian, Weiming; Li, Qi; Song, Jinping; Wang, Cheng; Xu, Xiaolong; Tian, Yanhua; Zhao, Dingsheng; Xu, Zi; Zhong, Guohui; Han, Bingxing; Ling, Shukuan; Chang, Yan-Zhong; Li, Yingxian
2016-01-01
MicroRNAs have an important role in bone homeostasis. However, the detailed mechanism of microRNA-mediated intercellular communication between bone cells remains elusive. Here, we report that osteoclasts secrete microRNA-enriched exosomes, by which miR-214 is transferred into osteoblasts to inhibit their function. In a coculture system, inhibition of exosome formation and secretion prevented miR-214 transportation. Exosomes specifically recognized osteoblasts through the interaction between ephrinA2 and EphA2. In osteoclast-specific miR-214 transgenic mice, exosomes were secreted into the serum, and miR-214 and ephrinA2 levels were elevated. Therefore, these exosomes have an inhibitory role in osteoblast activity. miR-214 and ephrinA2 levels in serum exosomes from osteoporotic patients and mice were upregulated substantially. These exosomes may significantly inhibit osteoblast activity. Inhibition of exosome secretion via Rab27a small interfering RNA prevented ovariectomized-induced osteoblast dysfunction in vivo. Taken together, these findings suggest that exosome-mediated transfer of microRNA plays an important role in the regulation of osteoblast activity. Circulating miR-214 in exosomes not only represents a biomarker for bone loss but could selectively regulate osteoblast function. PMID:27462462
Tsujigiwa, Hidetsugu; Hirata, Yasuhisa; Katase, Naoki; Buery, Rosario Rivera; Tamamura, Ryo; Ito, Satoshi; Takagi, Shin; Iida, Seiji; Nagatsuka, Hitoshi
2013-03-01
Bone healing is a complex and multistep process in which the origin of the cells participating in bone repair is still unknown. The involvement of bone marrow-derived cells in tissue repair has been the subject of recent studies. In the present study, bone marrow-derived cells in bone healing were traced using the GFP bone marrow transplantation model. Bone marrow cells from C57BL/6-Tg (CAG-EGFP) were transplanted into C57BL/6 J wild mice. After transplantation, bone injury was created using a 1.0-mm drill. Bone healing was histologically assessed at 3, 7, 14, and 28 postoperative days. Immunohistochemistry for GFP; double-fluorescent immunohistochemistry for GFP-F4/80, GFP-CD34, and GFP-osteocalcin; and double-staining for GFP and tartrate-resistant acid phosphatase were performed. Bone marrow transplantation successfully replaced the hematopoietic cells into GFP-positive donor cells. Immunohistochemical analyses revealed that osteoblasts or osteocytes in the repair stage were GFP-negative, whereas osteoclasts in the repair and remodeling stages and hematopoietic cells were GFP-positive. The results indicated that bone marrow-derived cells might not differentiate into osteoblasts. The role of bone marrow-derived cells might be limited to adjustment of the microenvironment by differentiating into inflammatory cells, osteoclasts, or endothelial cells in immature blood vessels.
Effect of electrical polarization of hydroxyapatite ceramics on new bone formation.
Itoh, S; Nakamura, S; Kobayashi, T; Shinomiya, K; Yamashita, K; Itoh, S
2006-03-01
Large surface charges can be induced on hydroxyapatite (HAp) ceramics by proton transport polarization, but this does not affect beta-tricalcium phosphate (TCP) because of its low polarizability. We wished to examine differences in osteogenic cell activity and new bone growth between positively or negatively surface-charged HAp and HAp/TCP plates using a calvarial bone defect model. In the first group of rats, test pieces were placed with their positively charged surfaces face down on the dura mater. In the second group, test pieces were placed with their negatively charged surfaces face down on the dura mater. A third group received noncharged test pieces. Histological examination, including enzymatic staining for osteoblasts and osteoclasts, was carried out. While no bone formation was observed at the pericranium, direct bone formation on the cranial bone debris and new bone growth expanded from the margins of the sites of injury to bridge across both the positively and negatively charged surfaces of HAp and HAp/TCP plates occurred. Electrical polarization of implanted plates, including positive charge, led to enhanced osteoblast activity, though decreased osteoclast activity was seen on the positively charged plate surface. Thus, polarization of HAp ceramics may modulate new bone formation and resorption.
Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin
Wu, Colleen; Rankin, Erinn B.; Castellini, Laura; Fernandez-Alcudia, Javier; LaGory, Edward L.; Andersen, Rebecca; Rhodes, Steven D.; Wilson, Tremika L.S.; Mohammad, Khalid S.; Castillo, Alesha B.; Guise, Theresa A.; Schipani, Ernestina
2015-01-01
The bone microenvironment is composed of niches that house cells across variable oxygen tensions. However, the contribution of oxygen gradients in regulating bone and blood homeostasis remains unknown. Here, we generated mice with either single or combined genetic inactivation of the critical oxygen-sensing prolyl hydroxylase (PHD) enzymes (PHD1–3) in osteoprogenitors. Hypoxia-inducible factor (HIF) activation associated with Phd2 and Phd3 inactivation drove bone accumulation by modulating osteoblastic/osteoclastic cross-talk through the direct regulation of osteoprotegerin (OPG). In contrast, combined inactivation of Phd1, Phd2, and Phd3 resulted in extreme HIF signaling, leading to polycythemia and excessive bone accumulation by overstimulating angiogenic–osteogenic coupling. We also demonstrate that genetic ablation of Phd2 and Phd3 was sufficient to protect ovariectomized mice against bone loss without disrupting hematopoietic homeostasis. Importantly, we identify OPG as a HIF target gene capable of directing osteoblast-mediated osteoclastogenesis to regulate bone homeostasis. Here, we show that coordinated activation of specific PHD isoforms fine-tunes the osteoblastic response to hypoxia, thereby directing two important aspects of bone physiology: cross-talk between osteoblasts and osteoclasts and angiogenic–osteogenic coupling. PMID:25846796
Dou, C; Ding, N; Xing, J; Zhao, C; Kang, F; Hou, T; Quan, H; Chen, Y; Dai, Q; Luo, F; Xu, J; Dong, S
2016-01-01
Dihydroartemisinin (DHA) is a widely used antimalarial drug isolated from the plant Artemisia annua. Recent studies suggested that DHA has antitumor effects utilizing its reactive oxygen species (ROS) yielding mechanism. Here, we reported that DHA is inhibitory on lipopolysaccharide (LPS)-induced osteoclast (OC) differentiation, fusion and bone-resorption activity in vitro. Intracellular ROS detection revealed that DHA could remarkably increase ROS accumulation during LPS-induced osteoclastogenesis. Moreover, cell apoptosis was also increased by DHA treatment. We found that DHA-activated caspase-3 increased Bax/Bcl-2 ratio during LPS-induced osteoclastogenesis. Meanwhile, the translocation of apoptotic inducing factor (AIF) and the release of cytochrome c from the mitochondria into the cytosol were observed, indicating that ROS-mediated mitochondrial dysfunction is crucial in DHA-induced apoptosis during LPS-induced osteoclastogenesis. In vivo study showed that DHA treatment decreased OC number, prevents bone loss, rescues bone microarchitecture and restores bone strength in LPS-induced bone-loss mouse model. Together, our findings indicate that DHA is protective against LPS-induced bone loss through apoptosis induction of osteoclasts via ROS accumulation and the mitochondria-dependent apoptosis pathway. Therefore, DHA may be considered as a new therapeutic candidate for treating inflammatory bone loss. PMID:27031959
Design, synthesis, and osteogenic activity of daidzein analogs on human mesenchymal stem cells
USDA-ARS?s Scientific Manuscript database
Osteoporosis, defined by the loss of bone mass and strength, results in the loss of structural and mechanical support in bone, and leads to an increased risk of fractures. In the adult skeleton, the bone undergoes continuous resorption carried out by osteoclast cells, and formation by osteoblast cel...
Effects of alkylphenols on bone metabolism in vivo and in vitro.
Hagiwara, Hiromi; Sugizaki, Toshinori; Tsukamoto, Yu; Senoh, Emi; Goto, Tadashi; Ishihara, Yoko
2008-09-01
Alkylphenols are endocrine disruptors that show estrogen-like effects in various wildlife species. However, little information is available about the action of these chemicals on bone metabolism. We investigated the effects of alkylphenols, such as nonylphenol (NP) and octylphenol (OP), on the formation of bone using several culture systems for osteoclasts and osteoblasts, as well as in vivo experiments. NP and OP dose-dependently inhibited the formation of tartrate-resistant acid phosphatase-positive multinucleated cells (osteoclasts) in cocultures of mouse spleen cells or mouse bone marrow cells with ST2 cells. However, beta-estradiol at 10(-9)M to 10(-6)M did not affect this process. In contrast, neither compound affected the proliferation and differentiation of rat calvarial osteoblast-like cells (ROB cells). When NP or OP (0.1mg/kg body weight) was administered subcutaneously to pregnant mice at 10 days, 12 days and 14 days post-coitus, fetuses at 17.5 days post-coitus showed stimulation of sternebrae bone calcification. Our findings suggest that alkylphenols have critical effects on the formation of bone by non-estrogenic effects.
Mineralized three-dimensional bone constructs
NASA Technical Reports Server (NTRS)
Pellis, Neal R. (Inventor); Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor)
2011-01-01
The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.
Mineralized Three-Dimensional Bone Constructs
NASA Technical Reports Server (NTRS)
Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)
2013-01-01
The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.
A New Insight to Bone Turnover: Role of ω-3 Polyunsaturated Fatty Acids
López-Frías, Magdalena; López-Aliaga, Inmaculada; Ochoa, Julio J.
2013-01-01
Background. Evidence has shown that long-chain polyunsaturated fatty acids (LCPUFA), especially the ω-3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are beneficial for bone health and turnover. Objectives. This review summarizes findings from both in vivo and in vitro studies and the effects of LC PUFA on bone metabolism, as well as the relationship with the oxidative stress, the inflammatory process, and obesity. Results. Some studies in humans indicate that LCPUFA can increase bone formation, affect peak bone mass in adolescents, and reduce bone loss. However, the cellular mechanisms of action of the LCPUFA are complex and involve modulation of fatty acid metabolites such as prostaglandins, resolvins and protectins, several signaling pathways, cytokines, and growth factors, although in certain aspects there is still some controversy. LCPUFA affect receptor activator of nuclear factor κ β (RANK), a receptor found on the osteoclast, causing bone resorption, which controls osteoclast formation. Conclusions. Since fatty acids are an endogenous source of reactive oxygen species, free radicals alter the process of bone turnover; however, although there are clinical evidences linking bone metabolism and dietary lipids, more clinical trials are necessary to prove whether ω-3 PUFA supplementation plays a major role in bone health. PMID:24302863
Syberg, Susanne; Brandao-Burch, Andrea; Patel, Jessal J; Hajjawi, Mark; Arnett, Timothy R; Schwarz, Peter; Jorgensen, Niklas R; Orriss, Isabel R
2012-11-01
Clopidogrel (Plavix), a selective P2Y(12) receptor antagonist, is widely prescribed to reduce the risk of heart attack and stroke and acts via the inhibition of platelet aggregation. Accumulating evidence now suggests that extracellular nucleotides, signaling through P2 receptors, play a significant role in bone, modulating both osteoblast and osteoclast function. In this study, we investigated the effects of clopidogrel treatment on (1) bone cell formation, differentiation, and activity in vitro; and (2) trabecular and cortical bone parameters in vivo. P2Y(12) receptor expression by osteoblasts and osteoclasts was confirmed using qPCR and Western blotting. Clopidogrel at 10 µM and 25 µM inhibited mineralized bone nodule formation by 50% and >85%, respectively. Clopidogrel slowed osteoblast proliferation with dose-dependent decreases in cell number (25% to 40%) evident in differentiating osteoblasts (day 7). A single dose of 10 to 25 µM clopidogrel to mature osteoblasts also reduced cell viability. At 14 days, ≥10 µM clopidogrel decreased alkaline phosphatase (ALP) activity by ≤70% and collagen formation by 40%, while increasing adipocyte formation. In osteoclasts, ≥1 µM clopidogrel inhibited formation, viability and resorptive activity. Twenty-week-old mice (n = 10-12) were ovariectomized or sham treated and dosed orally with clopidogrel (1 mg/kg) or vehicle (NaCl) daily for 4 weeks. Dual-energy X-ray absorptiometry (DXA) analysis showed clopidogrel-treated animals had decreases of 2% and 4% in whole-body and femoral bone mineral density (BMD), respectively. Detailed analysis of trabecular and cortical bone using micro-computed tomography (microCT) showed decreased trabecular bone volume in the tibia (24%) and femur (18%) of clopidogrel-treated mice. Trabecular number was reduced 20%, while trabecular separation was increased up to 15%. Trabecular thickness and cortical bone parameters were unaffected. Combined, these findings indicate that long-term exposure of bone cells to clopidogrel in vivo could negatively impact bone health. Copyright © 2012 American Society for Bone and Mineral Research.
Evidence for reduced cancellous bone mass in the spontaneously hypertensive rat
NASA Technical Reports Server (NTRS)
Wang, T. M.; Hsu, J. F.; Jee, W. S.; Matthews, J. L.
1993-01-01
The histomorphometric changes in the proximal tibial metaphysis and epiphyseal growth plate and midtibial shaft of 26-week-old spontaneously hypertensive rats (SHR) compared with those of the corresponding normotensive Wistar-Kyoto (WKY) rats were studied. A decrease in body weight, growth plate thickness, and longitudinal growth rate of the proximal tibial epiphysis, trabecular bone volume, trabecular thickness and number, the number of osteoblasts and osteoprogenitor cells per millimeter square surface of the proximal tibial metaphysis, periosteal and endocortical apposition rate and bone formation rate of the tibial diaphysis were observed in the SHR. Additionally, systolic blood pressure, the number of osteoclasts per millimeter square surface and average number of nuclei per osteoclast of the proximal tibial metaphysis were significantly increased. Thus, osteoclastic activity is dominant over osteoblastic and chondroblastic activity in the SHR that results in a cancellous bone deficit in the skeleton. It will require additional work to ascertain the underlying cause for this condition as several factors in the SHR with a potential for causing this change are present, including elevated parathyroid hormone (PTH), depressed 1,25-(OH)2D3, low calcium absorption, reduced body weight (reduced loading) elevated blood pressure and possibly other direct cell differences in the mutant strain. At present elevated PTH and adaptation to underloading from reduced weight are postulated to be a likely cause, but additional studies are required to test this interpretation.
Modulation of human osteoclastogenesis and osteoblastogenesis by lycopene.
Costa-Rodrigues, João; Fernandes, Maria Helena; Pinho, Olívia; Monteiro, Pedro Ribeiro Rocha
2018-03-15
Lycopene is a lipid-soluble pigment that is mainly found in tomato. It is the carotenoid that presents the highest antioxidant potential, and due to that, it has been implicated in a decrease of the risk of several oxidative-stress-related disorders, such as cancer, inflammatory diseases and osteoporosis. Nevertheless, at the present, there is no detailed information about how lycopene affects bone metabolism. The aim of the present work was to characterize the cellular and molecular effects of lycopene on human osteoclast and osteoblast differentiation and function. It was observed that lycopene, at levels found in plasma after the ingestion of lycopene-containing products, decreased osteoclast differentiation but did not affect cell density/survival; calcium-phosphate resorbing ability was also decreased. On the other hand, osteoblast proliferation (via a decrease on apoptosis) and differentiation were increased in the presence of lycopene. The observed effects in both cell types appeared to be related to significant changes in MEK signaling pathway, but also in protein kinase C pathway in osteoclasts and NFkB signaling in osteoblasts. In conclusion, lycopene appears to promote an anabolic state of bone metabolism, stimulating osteoblastogenesis and inhibiting osteoclastogenesis, which may contribute to the promotion of a proper health status of bone tissue. This information might be relevant for the prevention and delay in the progression of osteolytic bone conditions. Copyright © 2017 Elsevier Inc. All rights reserved.
Dlx homeobox gene family expression in osteoclasts.
Lézot, F; Thomas, B L; Blin-Wakkach, C; Castaneda, B; Bolanos, A; Hotton, D; Sharpe, P T; Heymann, D; Carles, G F; Grigoriadis, A E; Berdal, A
2010-06-01
Skeletal growth and homeostasis require the finely orchestrated secretion of mineralized tissue matrices by highly specialized cells, balanced with their degradation by osteoclasts. Time- and site-specific expression of Dlx and Msx homeobox genes in the cells secreting these matrices have been identified as important elements in the regulation of skeletal morphology. Such specific expression patterns have also been reported in osteoclasts for Msx genes. The aim of the present study was to establish the expression patterns of Dlx genes in osteoclasts and identify their function in regulating skeletal morphology. The expression patterns of all Dlx genes were examined during the whole osteoclastogenesis using different in vitro models. The results revealed that Dlx1 and Dlx2 are the only Dlx family members with a possible function in osteoclastogenesis as well as in mature osteoclasts. Dlx5 and Dlx6 were detected in the cultures but appear to be markers of monocytes and their derivatives. In vivo, Dlx2 expression in osteoclasts was examined using a Dlx2/LacZ transgenic mouse. Dlx2 is expressed in a subpopulation of osteoclasts in association with tooth, brain, nerve, and bone marrow volumetric growths. Altogether the present data suggest a role for Dlx2 in regulation of skeletal morphogenesis via functions within osteoclasts. (c) 2010 Wiley-Liss, Inc.
Andrews, Rebecca E; Shah, Karan M; Wilkinson, J Mark; Gartland, Alison
2011-10-01
Metal-on-metal hip replacement (MOMHR) using large diameter bearings has become a popular alternative to conventional total hip arthroplasty, but is associated with elevated local tissue and circulating levels of chromium (Cr) and cobalt (Co) ions that may affect bone health. We examined the effects of acute and chronic exposure to these metals on human osteoblast and osteoclast formation and function over a clinically relevant concentration range previously reported in serum and within hip synovial fluid in patients after MOMHR. SaOS-2 cells were cultured with Co(2+), Cr(3+) and Cr(6+) for 3 days after which an MTS assay was used to assess cell viability, for 13 days after which alkaline phosphatase and cell viability were assessed and for 21 days after which nodule formation was assessed. Monocytes were isolated from human peripheral blood and settled onto dentine disks then cultured with M-CSF and RANKL plus either Co(2+), Cr(3+) or Cr(6+) ions for 21 days from day 0 or between days 14 and 21. Cells were fixed and stained for TRAP and osteoclast number and amount of resorption per dentine disk determined. Co(2+) and Cr(3+) did not affect osteoblast survival or function over the clinically equivalent concentration range, whilst Cr(6+) reduced osteoblast survival and function at concentrations within the clinically equivalent serum range after MOMHR (IC(50) =2.2 μM). In contrast, osteoclasts were more sensitive to metal ions exposure. At serum levels a mild stimulatory effect on resorption in forming osteoclasts was found for Co(2+) and Cr(3+), whilst at higher serum and synovial equivalent concentrations, and with Cr(6+), a reduction in cell number and resorption was observed. Co(2+) and Cr(6+) within the clinical range reduced cell number and resorption in mature osteoclasts. Our data suggest that metal ions at equivalent concentrations to those found in MOMHR affect bone cell health and may contribute to the observed bone-related complications of these prostheses. Copyright © 2011 Elsevier Inc. All rights reserved.
Wu, Lili; Feyerabend, Frank; Schilling, Arndt F; Willumeit-Römer, Regine; Luthringer, Bérengère J C
2015-11-01
Coculture of osteoblasts and osteoclasts is a subject of interest in the understanding of how magnesium (Mg)-based implants influence the bone metabolism and remodeling upon degradation. Human telomerase reverse transcriptase (hTERT) transduced mesenchymal stem cells (SCP-1) were first differentiated into osteoblasts with osteogenic supplements and then further cocultured with peripheral blood mononucleated cells (PBMC) without the addition of osteoclastogenesis promoting factors. Concomitantly, the cultures were exposed to variable Mg extract dilutions (0, 30×, 10×, 5×, 3×, 2× and 1×). Phenotype characterization documented that while 2× dilution of Mg extract was extremely toxic to osteoclast monoculture, monocytes in coculture with osteoblasts exhibited a greater tolerance to higher Mg extract concentration. The dense growth of osteoblasts in cultures with 1× dilution of Mg extract suggested that high concentration of Mg extract promoted osteoblast proliferation/differentiation behavior. The results of intracellular alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) activities as well as protein and gene expressions of receptor activator of nuclear factor kappa-B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and osteoclast-associated receptor (OSCAR) revealed significantly enhanced formation of osteoblasts whereas decreased osteoclastogenesis in the cultures with high concentrations of Mg extract (2× and 1× dilutions). In conclusion, while an increased osteoinductivity has been demonstrated, the impact of potentially decreased osteoclastogenesis around the Mg-based implants should be also taken into account. Cocultures containing both bone-forming osteoblasts and bone-resorbing osteoclasts should be preferentially performed for in vitro cytocompatibility assessment of Mg-based implants as they more closely mimic the in vivo environment. An attractive human osteoblasts and osteoclasts cocultivation regime was developed as an in vitro cytocompatibility model for magnesium implants. Parameters in terms of cellular proliferation and differentiation behaviors were investigated and we conclude that high concentration of magnesium extract could lead to a promotion in osteoblastogenesis but an inhibition in osteoclastogenesis. It could contribute to the repeated observations of enhanced bone growth adjacent to degradable magnesium alloys. More interestingly, it demonstrates that compared to monoculture, osteoclasts in cocultures with osteoblasts exhibited higher tolerance to the culture environment with high magnesium extract. It might attribute to the neutralization process of the alkaline medium by acid generated by increased amount of osteoblasts in the condition with high concentration of Mg extract. The submitted work could be of significant importance to other researchers working in the related field(s), thus appealing to the readership of Acta Biomaterialia. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Rictor is required for optimal bone accrual in response to anti-sclerostin therapy in the mouse.
Sun, Weiwei; Shi, Yu; Lee, Wen-Chih; Lee, Seung-Yon; Long, Fanxin
2016-04-01
Wnt signaling has emerged as a major target pathway for the development of novel bone anabolic therapies. Neutralizing antibodies against the secreted Wnt antagonist sclerostin (Scl-Ab) increase bone mass in both animal models and humans. Because we have previously shown that Rictor-dependent mTORC2 activity contributes to Wnt signaling, we test here whether Rictor is required for Scl-Ab to promote bone anabolism. Mice with Rictor deleted in the early embryonic limb mesenchyme (Prx1-Cre;Rictor(f/f), hereafter RiCKO) were subjected to Scl-Ab treatment for 5weeks starting at 4months of age. In vivo micro-computed tomography (μCT) analyses before the treatment showed that the RiCKO mice displayed normal trabecular, but less cortical bone mass than the littermate controls. After 5weeks of treatment, Scl-Ab dose-dependently increased trabecular and cortical bone mass in both control and RiCKO mice, but the increase was significantly blunted in the latter. Dynamic histomorphometry revealed that the RiCKO mice formed less bone than the control in response to Scl-Ab. In addition, the RiCKO mice possessed fewer osteoclasts than normal under the basal condition and exhibited lesser suppression in osteoclast number by Scl-Ab. Consistent with the fewer osteoclasts in vivo, bone marrow stromal cells (BMSC) from the RiCKO mice expressed less Rankl but normal levels of Opg or M-CSF, and were less effective than the control cells in supporting osteoclastogenesis in vitro. The reliance of Rankl on Rictor appeared to be independent of Wnt-β-catenin or Wnt-mTORC2 signaling as Wnt3a had no effect on Rankl expression by BMSC from either control or RICKO mice. Overall, Rictor in the limb mesenchymal lineage is required for the normal response to the anti-sclerostin therapy in both bone formation and resorption. Copyright © 2016 Elsevier Inc. All rights reserved.
Inhibition of SDF-1α/CXCR4 Signalling in Subchondral Bone Attenuates Post-Traumatic Osteoarthritis
Dong, Yonghui; Liu, Hui; Zhang, Xuejun; Xu, Fei; Qin, Liang; Cheng, Peng; Huang, Hui; Guo, Fengjing; Yang, Qing; Chen, Anmin
2016-01-01
Previous studies showed that SDF-1α is a catabolic factor that can infiltrate cartilage, decrease proteoglycan content, and increase MMP-13 activity. Inhibiting the SDF-1α/CXCR4 signalling pathway can attenuate the pathogenesis of osteoarthritis (OA). Recent studies have also shown that SDF-1α enhances chondrocyte proliferation and maturation. These results appear to be contradictory. In the current study, we used a destabilisation OA animal model to investigate the effects of SDF-1α/CXCR4 signalling in the tibial subchondral bone and the OA pathological process. Post-traumatic osteoarthritis (PTOA) mice models were prepared by transecting the anterior cruciate ligament (ACLT), or a sham surgery was performed, in a total of 30 mice. Mice were treated with phosphate buffer saline (PBS) or AMD3100 (an inhibitor of CXCR4) and sacrificed at 30 days post ACLT or sham surgery. Tibial subchondral bone status was quantified by micro-computed tomography (μCT). Knee-joint histology was analysed to examine the articular cartilage and joint degeneration. The levels of SDF-1α and collagen type I c-telopeptidefragments (CTX-I) were quantified by ELISA. Bone marrow mononuclear cells (BMMCs) were used to clarify the effects of SDF-1α on osteoclast formation and activity in vivo. μCT analysis revealed significant loss of trabecular bone from tibial subchondral bone post-ACLT, which was effectively prevented by AMD3100. AMD3100 could partially prevent bone loss and articular cartilage degeneration. Serum biomarkers revealed an increase in SDF-1α and bone resorption, which were also reduced by AMD3100. SDF-1α can promote osteoclast formation and the expression oftartrate resistant acid phosphatase (TRAP), cathepsin K (CK), and matrix metalloproteinase (MMP)-9 in osteoclasts by activating the MAPK pathway, including ERK and p38, but not JNK. In conclusion, inhibition of SDF-1α/CXCR4signalling was able to prevent trabecular bone loss and attenuated cartilage degeneration in PTOA mice. PMID:27322244