Sample records for efficient qubit detection

  1. Trapped Ion Qubits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maunz, Peter; Wilhelm, Lukas

    Qubits can be encoded in clock states of trapped ions. These states are well isolated from the environment resulting in long coherence times [1] while enabling efficient high-fidelity qubit interactions mediated by the Coulomb coupled motion of the ions in the trap. Quantum states can be prepared with high fidelity and measured efficiently using fluorescence detection. State preparation and detection with 99.93% fidelity have been realized in multiple systems [1,2]. Single qubit gates have been demonstrated below rigorous fault-tolerance thresholds [1,3]. Two qubit gates have been realized with more than 99.9% fidelity [4,5]. Quantum algorithms have been demonstrated on systemsmore » of 5 to 15 qubits [6–8].« less

  2. Barium Qubit State Detection and Ba Ion-Photon Entanglement

    NASA Astrophysics Data System (ADS)

    Sosnova, Ksenia; Inlek, Ismail Volkan; Crocker, Clayton; Lichtman, Martin; Monroe, Christopher

    2016-05-01

    A modular ion-trap network is a promising framework for scalable quantum-computational devices. In this architecture, different ion-trap modules are connected via photonic buses while within one module ions interact locally via phonons. To eliminate cross-talk between photonic-link qubits and memory qubits, we use different atomic species for quantum information storage (171 Yb+) and intermodular communication (138 Ba+). Conventional deterministic Zeeman-qubit state detection schemes require additional stabilized narrow-linewidth lasers. Instead, we perform fast probabilistic state detection utilizing efficient detectors and high-NA lenses to detect emitted photons from circularly polarized 493 nm laser excitation. Our method is not susceptible to intensity and frequency noise, and we show single-shot detection efficiency of ~ 2%, meaning that we can discriminate between the two qubits states with 99% confidence after as little as 50 ms of averaging. Using this measurement technique, we report entanglement between a single 138 Ba+ ion and its emitted photon with 86% fidelity. This work is supported by the ARO with funding from the IARPA MQCO program, the DARPA Quiness program, the AFOSR MURI on Quantum Transduction, and the ARL Center for Distributed Quantum Information.

  3. The use of 133 Ba+ as a new candidate for trapped atomic ion qubits

    NASA Astrophysics Data System (ADS)

    Hucul, David; Christiansen, Justin; Campbell, Wesley; Hudson, Eric

    2016-05-01

    Trapped atomic ions are qubit standards in quantum information science because of their long coherence times and high fidelity entangling gates. Many different atomic ions have been used as qubits, each with strengths and weaknesses dictated by its atomic structure. We propose to use 133 Ba+ as an atomic qubit. 133 Ba+ is a nearly ideal, all-purpose candidate by combining many of the strengths of different workhorse atomic ions. 133 Ba+, like 171 Yb+, has a nuclear spin 1/2, allowing for a robust hyperfine qubit with simple state preparation and readout via differential fluorescence. The lack of a low-lying F-state, like in Ca+, simplifies high-fidelity qubit state detection that relies on shelving a qubit level to a meta-stable excited state. In addition, 133 Ba+ can be used for background-free qubit state detection where the wavelength of the qubit detection light differs from all excitation light by at least 50 THz. Unlike all other ions in use, the optical transitions of barium are in the visible spectrum, enabling the use of high power lasers, low-loss fibers, high quantum efficiency detectors, and other technologies developed for visible wavelengths of light to ease some requirements toward scaling a quantum system.

  4. Integrated System Technologies for Modular Trapped Ion Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Crain, Stephen G.

    Although trapped ion technology is well-suited for quantum information science, scalability of the system remains one of the main challenges. One of the challenges associated with scaling the ion trap quantum computer is the ability to individually manipulate the increasing number of qubits. Using micro-mirrors fabricated with micro-electromechanical systems (MEMS) technology, laser beams are focused on individual ions in a linear chain and steer the focal point in two dimensions. Multiple single qubit gates are demonstrated on trapped 171Yb+ qubits and the gate performance is characterized using quantum state tomography. The system features negligible crosstalk to neighboring ions (< 3e-4), and switching speeds comparable to typical single qubit gate times (< 2 mus). In a separate experiment, photons scattered from the 171Yb+ ion are coupled into an optical fiber with 63% efficiency using a high numerical aperture lens (0.6 NA). The coupled photons are directed to superconducting nanowire single photon detectors (SNSPD), which provide a higher detector efficiency (69%) compared to traditional photomultiplier tubes (35%). The total system photon collection efficiency is increased from 2.2% to 3.4%, which allows for fast state detection of the qubit. For a detection beam intensity of 11 mW/cm 2, the average detection time is 23.7 mus with 99.885(7)% detection fidelity. The technologies demonstrated in this thesis can be integrated to form a single quantum register with all of the necessary resources to perform local gates as well as high fidelity readout and provide a photon link to other systems.

  5. Towards a heralded eigenstate-preserving measurement of multi-qubit parity in circuit QED

    NASA Astrophysics Data System (ADS)

    Huembeli, Patrick; Nigg, Simon E.

    2017-07-01

    Eigenstate-preserving multi-qubit parity measurements lie at the heart of stabilizer quantum error correction, which is a promising approach to mitigate the problem of decoherence in quantum computers. In this work we explore a high-fidelity, eigenstate-preserving parity readout for superconducting qubits dispersively coupled to a microwave resonator, where the parity bit is encoded in the amplitude of a coherent state of the resonator. Detecting photons emitted by the resonator via a current biased Josephson junction yields information about the parity bit. We analyze theoretically the measurement back action in the limit of a strongly coupled fast detector and show that in general such a parity measurement, while approximately quantum nondemolition is not eigenstate preserving. To remediate this shortcoming we propose a simple dynamical decoupling technique during photon detection, which greatly reduces decoherence within a given parity subspace. Furthermore, by applying a sequence of fast displacement operations interleaved with the dynamical decoupling pulses, the natural bias of this binary detector can be efficiently suppressed. Finally, we introduce the concept of a heralded parity measurement, where a detector click guarantees successful multi-qubit parity detection even for finite detection efficiency.

  6. Signifying quantum benchmarks for qubit teleportation and secure quantum communication using Einstein-Podolsky-Rosen steering inequalities

    NASA Astrophysics Data System (ADS)

    Reid, M. D.

    2013-12-01

    The demonstration of quantum teleportation of a photonic qubit from Alice to Bob usually relies on data conditioned on detection at Bob's location. I show that Bohm's Einstein-Podolsky-Rosen (EPR) paradox can be used to verify that the quantum benchmark for qubit teleportation has been reached, without postselection. This is possible for scenarios insensitive to losses at the generation station, and with efficiencies of ηB>1/3 for the teleportation process. The benchmark is obtained if it is shown that Bob can “steer” Alice's record of the qubit as stored by Charlie. EPR steering inequalities involving m measurement settings can also be used to confirm quantum teleportation, for efficiencies ηB>1/m, if one assumes trusted detectors for Charlie and Alice. Using proofs of monogamy, I show that two-setting EPR steering inequalities can signify secure teleportation of the qubit state.

  7. Multipartite Entanglement Detection with Minimal Effort

    NASA Astrophysics Data System (ADS)

    Knips, Lukas; Schwemmer, Christian; Klein, Nico; Wieśniak, Marcin; Weinfurter, Harald

    2016-11-01

    Certifying entanglement of a multipartite state is generally considered a demanding task. Since an N qubit state is parametrized by 4N-1 real numbers, one might naively expect that the measurement effort of generic entanglement detection also scales exponentially with N . Here, we introduce a general scheme to construct efficient witnesses requiring a constant number of measurements independent of the number of qubits for states like, e.g., Greenberger-Horne-Zeilinger states, cluster states, and Dicke states. For four qubits, we apply this novel method to experimental realizations of the aforementioned states and prove genuine four-partite entanglement with two measurement settings only.

  8. Frequency Control of Single Quantum Emitters in Integrated Photonic Circuits

    NASA Astrophysics Data System (ADS)

    Schmidgall, Emma R.; Chakravarthi, Srivatsa; Gould, Michael; Christen, Ian R.; Hestroffer, Karine; Hatami, Fariba; Fu, Kai-Mei C.

    2018-02-01

    Generating entangled graph states of qubits requires high entanglement rates, with efficient detection of multiple indistinguishable photons from separate qubits. Integrating defect-based qubits into photonic devices results in an enhanced photon collection efficiency, however, typically at the cost of a reduced defect emission energy homogeneity. Here, we demonstrate that the reduction in defect homogeneity in an integrated device can be partially offset by electric field tuning. Using photonic device-coupled implanted nitrogen vacancy (NV) centers in a GaP-on-diamond platform, we demonstrate large field-dependent tuning ranges and partial stabilization of defect emission energies. These results address some of the challenges of chip-scale entanglement generation.

  9. Frequency Control of Single Quantum Emitters in Integrated Photonic Circuits.

    PubMed

    Schmidgall, Emma R; Chakravarthi, Srivatsa; Gould, Michael; Christen, Ian R; Hestroffer, Karine; Hatami, Fariba; Fu, Kai-Mei C

    2018-02-14

    Generating entangled graph states of qubits requires high entanglement rates with efficient detection of multiple indistinguishable photons from separate qubits. Integrating defect-based qubits into photonic devices results in an enhanced photon collection efficiency, however, typically at the cost of a reduced defect emission energy homogeneity. Here, we demonstrate that the reduction in defect homogeneity in an integrated device can be partially offset by electric field tuning. Using photonic device-coupled implanted nitrogen vacancy (NV) centers in a GaP-on-diamond platform, we demonstrate large field-dependent tuning ranges and partial stabilization of defect emission energies. These results address some of the challenges of chip-scale entanglement generation.

  10. Entanglement criterion for tripartite systems based on local sum uncertainty relations

    NASA Astrophysics Data System (ADS)

    Akbari-Kourbolagh, Y.; Azhdargalam, M.

    2018-04-01

    We propose a sufficient criterion for the entanglement of tripartite systems based on local sum uncertainty relations for arbitrarily chosen observables of subsystems. This criterion generalizes the tighter criterion for bipartite systems introduced by Zhang et al. [C.-J. Zhang, H. Nha, Y.-S. Zhang, and G.-C. Guo, Phys. Rev. A 81, 012324 (2010), 10.1103/PhysRevA.81.012324] and can be used for both discrete- and continuous-variable systems. It enables us to detect the entanglement of quantum states without having a complete knowledge of them. Its utility is illustrated by some examples of three-qubit, qutrit-qutrit-qubit, and three-mode Gaussian states. It is found that, in comparison with other criteria, this criterion is able to detect some three-qubit bound entangled states more efficiently.

  11. Direct measurement of nonlocal entanglement of two-qubit spin quantum states.

    PubMed

    Cheng, Liu-Yong; Yang, Guo-Hui; Guo, Qi; Wang, Hong-Fu; Zhang, Shou

    2016-01-18

    We propose efficient schemes of direct concurrence measurement for two-qubit spin and photon-polarization entangled states via the interaction between single-photon pulses and nitrogen-vacancy (NV) centers in diamond embedded in optical microcavities. For different entangled-state types, diversified quantum devices and operations are designed accordingly. The initial unknown entangled states are possessed by two spatially separated participants, and nonlocal spin (polarization) entanglement can be measured with the aid of detection probabilities of photon (NV center) states. This non-demolition entanglement measurement manner makes initial entangled particle-pair avoid complete annihilation but evolve into corresponding maximally entangled states. Moreover, joint inter-qubit operation or global qubit readout is not required for the presented schemes and the final analyses inform favorable performance under the current parameters conditions in laboratory. The unique advantages of spin qubits assure our schemes wide potential applications in spin-based solid quantum information and computation.

  12. Feedback control of persistent-current oscillation based on the atomic-clock technique

    NASA Astrophysics Data System (ADS)

    Yu, Deshui; Dumke, Rainer

    2018-05-01

    We propose a scheme of stabilizing the persistent-current Rabi oscillation based on the flux qubit-resonator-atom hybrid structure. The low-Q L C resonator weakly interacts with the flux qubit and maps the persistent-current Rabi oscillation of the flux qubit onto the intraresonator electric field. This oscillating electric field is further coupled to a Rydberg-Rydberg transition of the 87Rb atoms. The Rabi-frequency fluctuation of the flux qubit is deduced from measuring the atomic population via the fluorescence detection and stabilized by feedback controlling the external flux bias. Our numerical simulation indicates that the feedback-control method can efficiently suppress the background fluctuations in the flux qubit, especially in the low-frequency limit. This technique may be extensively applicable to different types of superconducting circuits, paving a way to long-term-coherence superconducting quantum information processing.

  13. Experimental Detection of Quantum Channel Capacities.

    PubMed

    Cuevas, Álvaro; Proietti, Massimiliano; Ciampini, Mario Arnolfo; Duranti, Stefano; Mataloni, Paolo; Sacchi, Massimiliano F; Macchiavello, Chiara

    2017-09-08

    We present an efficient experimental procedure that certifies nonvanishing quantum capacities for qubit noisy channels. Our method is based on the use of a fixed bipartite entangled state, where the system qubit is sent to the channel input. A particular set of local measurements is performed at the channel output and the ancilla qubit mode, obtaining lower bounds to the quantum capacities for any unknown channel with no need of quantum process tomography. The entangled qubits have a Bell state configuration and are encoded in photon polarization. The lower bounds are found by estimating the Shannon and von Neumann entropies at the output using an optimized basis, whose statistics is obtained by measuring only the three observables σ_{x}⊗σ_{x}, σ_{y}⊗σ_{y}, and σ_{z}⊗σ_{z}.

  14. Efficient creation of multipartite entanglement in flux qubits.

    PubMed

    Ferber, J; Wilhelm, F K

    2010-07-09

    We investigate three superconducting flux qubits coupled in a loop. In this setup, tripartite entanglement can be created in a natural, controllable, and stable way. Both generic kinds of tripartite entanglement--the W type as well as the GHZ type entanglement--can be identified among the eigenstates. We also discuss the violation of Bell inequalities in this system and show the impact of a limited measurement fidelity on the detection of entanglement and quantum nonlocality.

  15. Universal Three-Qubit Entanglement Generation Based on Linear Optical Elements and Quantum Non-Demolition Detectors

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Chang

    2017-02-01

    Recently, entanglement plays an important role in quantum information science. Here we propose an efficient and applicable method which transforms arbitrary three-qubit unknown state to a maximally entangled Greenberger-Horne-Zeilinger state, and the proposed method could be further generalized to multi-qubit case. The proposed setup exploits only linear optical elements and quantum non-demolition detectors using cross-Kerr media. As the quantum non-demolition detection could reveal us the output state of the photons without destroying them. This property may make our proposed setup flexible and can be widely used in current quantum information science and technology.

  16. Undoing measurement-induced dephasing in circuit QED

    NASA Astrophysics Data System (ADS)

    Frisk Kockum, A.; Tornberg, L.; Johansson, G.

    2012-05-01

    We analyze the backaction of homodyne detection and photodetection on superconducting qubits in circuit quantum electrodynamics. Although both measurement schemes give rise to backaction in the form of stochastic phase rotations, which leads to dephasing, we show that this can be perfectly undone provided that the measurement signal is fully accounted for. This result improves on an earlier one [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.012329 82, 012329 (2010)], showing that the method suggested can be made to realize a perfect two-qubit parity measurement. We propose a benchmarking experiment on a single qubit to demonstrate the method using homodyne detection. By analyzing the limited measurement efficiency of the detector and bandwidth of the amplifier, we show that the parameter values necessary to see the effect are within the limits of existing technology.

  17. Quantum non-demolition detection of an itinerant microwave photon

    NASA Astrophysics Data System (ADS)

    Kono, S.; Koshino, K.; Tabuchi, Y.; Noguchi, A.; Nakamura, Y.

    2018-06-01

    Photon detectors are an elementary tool to measure electromagnetic waves at the quantum limit1,2 and are heavily demanded in the emerging quantum technologies such as communication3, sensing4 and computing5. Of particular interest is a quantum non-demolition (QND)-type detector, which projects an electromagnetic wave onto the photon-number basis6-10. This is in stark contrast to conventional photon detectors2 that absorb a photon to trigger a `click'. The long-sought QND detection of a flying photon was recently demonstrated in the optical domain using a single atom in a cavity11,12. However, the counterpart for microwaves has been elusive despite the recent progress in microwave quantum optics using superconducting circuits13-19. Here, we implement a deterministic entangling gate between a superconducting qubit and an itinerant microwave photon reflected by a cavity containing the qubit. Using the entanglement and the high-fidelity qubit readout, we demonstrate a QND detection of a single photon with the quantum efficiency of 0.84 and the photon survival probability of 0.87. Our scheme can serve as a building block for quantum networks connecting distant qubit modules as well as a microwave-photon-counting device for multiple-photon signals.

  18. Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble.

    PubMed

    Vernaz-Gris, Pierre; Huang, Kun; Cao, Mingtao; Sheremet, Alexandra S; Laurat, Julien

    2018-01-25

    Quantum memory for flying optical qubits is a key enabler for a wide range of applications in quantum information. A critical figure of merit is the overall storage and retrieval efficiency. So far, despite the recent achievements of efficient memories for light pulses, the storage of qubits has suffered from limited efficiency. Here we report on a quantum memory for polarization qubits that combines an average conditional fidelity above 99% and efficiency around 68%, thereby demonstrating a reversible qubit mapping where more information is retrieved than lost. The qubits are encoded with weak coherent states at the single-photon level and the memory is based on electromagnetically-induced transparency in an elongated laser-cooled ensemble of cesium atoms, spatially multiplexed for dual-rail storage. This implementation preserves high optical depth on both rails, without compromise between multiplexing and storage efficiency. Our work provides an efficient node for future tests of quantum network functionalities and advanced photonic circuits.

  19. Qubit-loss-free fusion of atomic W states via photonic detection

    NASA Astrophysics Data System (ADS)

    Ding, Cheng-Yun; Kong, Fan-Zhen; Yang, Qing; Yang, Ming; Cao, Zhuo-Liang

    2018-06-01

    In this paper, we propose two new qubit-loss-free (QLF) fusion schemes for W states in cavity QED system. Resonant interactions between atoms and single cavity mode constitute the main fusion mechanism, with which atomic |W_{n+m}> and |W_{n+m+q}> states can be generated, respectively, from a |Wn> and a |Wm>; and from a |Wn>, a |Wm> and a |Wq>, by detecting the cavity mode. The QLF property of the schemes makes them more efficient and simpler than the currently existing ones, and fewer intermediate steps and memory resources are required for generating a target large-scale W state. Furthermore, the fusion of atomic states can be realized via the detection on cavity mode rather than the much complicated atomic detection, which makes our schemes feasible. In addition, the analyses of the optimal resource cost and the experimental feasibility indicate that the present schemes are simple and efficient, and maybe implementable within the current experimental techniques.

  20. Power of one nonclean qubit

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki; Fujii, Keisuke; Nishimura, Harumichi

    2017-04-01

    The one-clean qubit model (or the DQC1 model) is a restricted model of quantum computing where only a single qubit of the initial state is pure and others are maximally mixed. Although the model is not universal, it can efficiently solve several problems whose classical efficient solutions are not known. Furthermore, it was recently shown that if the one-clean qubit model is classically efficiently simulated, the polynomial hierarchy collapses to the second level. A disadvantage of the one-clean qubit model is, however, that the clean qubit is too clean: for example, in realistic NMR experiments, polarizations are not high enough to have the perfectly pure qubit. In this paper, we consider a more realistic one-clean qubit model, where the clean qubit is not clean, but depolarized. We first show that, for any polarization, a multiplicative-error calculation of the output probability distribution of the model is possible in a classical polynomial time if we take an appropriately large multiplicative error. The result is in strong contrast with that of the ideal one-clean qubit model where the classical efficient multiplicative-error calculation (or even the sampling) with the same amount of error causes the collapse of the polynomial hierarchy. We next show that, for any polarization lower-bounded by an inverse polynomial, a classical efficient sampling (in terms of a sufficiently small multiplicative error or an exponentially small additive error) of the output probability distribution of the model is impossible unless BQP (bounded error quantum polynomial time) is contained in the second level of the polynomial hierarchy, which suggests the hardness of the classical efficient simulation of the one nonclean qubit model.

  1. Deterministic quantum teleportation of photonic quantum bits by a hybrid technique.

    PubMed

    Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria; van Loock, Peter; Furusawa, Akira

    2013-08-15

    Quantum teleportation allows for the transfer of arbitrary unknown quantum states from a sender to a spatially distant receiver, provided that the two parties share an entangled state and can communicate classically. It is the essence of many sophisticated protocols for quantum communication and computation. Photons are an optimal choice for carrying information in the form of 'flying qubits', but the teleportation of photonic quantum bits (qubits) has been limited by experimental inefficiencies and restrictions. Main disadvantages include the fundamentally probabilistic nature of linear-optics Bell measurements, as well as the need either to destroy the teleported qubit or attenuate the input qubit when the detectors do not resolve photon numbers. Here we experimentally realize fully deterministic quantum teleportation of photonic qubits without post-selection. The key step is to make use of a hybrid technique involving continuous-variable teleportation of a discrete-variable, photonic qubit. When the receiver's feedforward gain is optimally tuned, the continuous-variable teleporter acts as a pure loss channel, and the input dual-rail-encoded qubit, based on a single photon, represents a quantum error detection code against photon loss and hence remains completely intact for most teleportation events. This allows for a faithful qubit transfer even with imperfect continuous-variable entangled states: for four qubits the overall transfer fidelities range from 0.79 to 0.82 and all of them exceed the classical limit of teleportation. Furthermore, even for a relatively low level of the entanglement, qubits are teleported much more efficiently than in previous experiments, albeit post-selectively (taking into account only the qubit subspaces), and with a fidelity comparable to the previously reported values.

  2. Fault-tolerant quantum error detection.

    PubMed

    Linke, Norbert M; Gutierrez, Mauricio; Landsman, Kevin A; Figgatt, Caroline; Debnath, Shantanu; Brown, Kenneth R; Monroe, Christopher

    2017-10-01

    Quantum computers will eventually reach a size at which quantum error correction becomes imperative. Quantum information can be protected from qubit imperfections and flawed control operations by encoding a single logical qubit in multiple physical qubits. This redundancy allows the extraction of error syndromes and the subsequent detection or correction of errors without destroying the logical state itself through direct measurement. We show the encoding and syndrome measurement of a fault-tolerantly prepared logical qubit via an error detection protocol on four physical qubits, represented by trapped atomic ions. This demonstrates the robustness of a logical qubit to imperfections in the very operations used to encode it. The advantage persists in the face of large added error rates and experimental calibration errors.

  3. Photon extraction and conversion for scalable ion-trap quantum computing

    NASA Astrophysics Data System (ADS)

    Clark, Susan; Benito, Francisco; McGuinness, Hayden; Stick, Daniel

    2014-03-01

    Trapped ions represent one of the most mature and promising systems for quantum information processing. They have high-fidelity one- and two-qubit gates, long coherence times, and their qubit states can be reliably prepared and detected. Taking advantage of these inherent qualities in a system with many ions requires a means of entangling spatially separated ion qubits. One architecture achieves this entanglement through the use of emitted photons to distribute quantum information - a favorable strategy if photon extraction can be made efficient and reliable. Here I present results for photon extraction from an ion in a cavity formed by integrated optics on a surface trap, as well as results in frequency converting extracted photons for long distance transmission or interfering with photons from other types of optically active qubits. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Fault-tolerant quantum error detection

    PubMed Central

    Linke, Norbert M.; Gutierrez, Mauricio; Landsman, Kevin A.; Figgatt, Caroline; Debnath, Shantanu; Brown, Kenneth R.; Monroe, Christopher

    2017-01-01

    Quantum computers will eventually reach a size at which quantum error correction becomes imperative. Quantum information can be protected from qubit imperfections and flawed control operations by encoding a single logical qubit in multiple physical qubits. This redundancy allows the extraction of error syndromes and the subsequent detection or correction of errors without destroying the logical state itself through direct measurement. We show the encoding and syndrome measurement of a fault-tolerantly prepared logical qubit via an error detection protocol on four physical qubits, represented by trapped atomic ions. This demonstrates the robustness of a logical qubit to imperfections in the very operations used to encode it. The advantage persists in the face of large added error rates and experimental calibration errors. PMID:29062889

  5. IBIC characterisation of novel detectors for single atom doping of quantum computer devices

    NASA Astrophysics Data System (ADS)

    Yang, Changyi; Jamieson, David N.; Pakes, Chris I.; George, Damien P.; Hearne, Sean M.; Dzurak, Andrew S.; Gauja, Eric; Stanley, F.; Clark, R. G.

    2003-09-01

    Single ion implantation and online detection is highly desirable for the emerging application, in which single 31P ions need to be inserted in prefabricated silicon cells to construct solid-state quantum bits (qubits). In order to fabricate qubit arrays, we have developed novel detectors that employ detector electrodes adjacent to the prefabricated cells that can detect single keV ion strikes appropriate for the fabrication of shallow phosphorus arrays. The method utilises a high purity silicon substrate with very high resistivity, a thin SiO 2 surface layer, nanometer masks for the lateral positioning single phosphorus implantation, biased electrodes applied to the surface of the silicon and sensitive electronics that can detect the charge transient from single keV ion strikes. A TCAD (Technology Computer Aided Design) software package was applied in the optimisation of the device design and simulation of the detector performance. Here we show the characterisation of these detectors using ion beam induced charge (IBIC) with a focused 2 MeV He ions in a nuclear microprobe. The IBIC imaging method in a nuclear microprobe allowed us to measure the dead-layer thickness of the detector structure (required to be very thin for successful detection of keV ions), and the spatial distribution of the charge collection efficiency around the entire region of the detector. We show that our detectors have near 100% charge collection efficiency for MeV ions, extremely thin dead-layer thickness (about 7 nm) and a wide active region extending laterally from the electrodes (10-20 μm) where qubit arrays can be constructed. We demonstrate that the device can be successfully applied in the detection of keV ionisation energy from single events of keV X-rays and keV 31P ions.

  6. High-efficiency tomographic reconstruction of quantum states by quantum nondemolition measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J. S.; Centre for Quantum Technologies and Department of Physics, National University of Singapore, 3 Science Drive 2, Singapore 117542; Wei, L. F.

    We propose a high-efficiency scheme to tomographically reconstruct an unknown quantum state by using a series of quantum nondemolition (QND) measurements. The proposed QND measurements of the qubits are implemented by probing the stationary transmissions through a driven dispersively coupled resonator. It is shown that only one kind of QND measurement is sufficient to determine all the diagonal elements of the density matrix of the detected quantum state. The remaining nondiagonal elements can be similarly determined by transferring them to the diagonal locations after a series of unitary operations. Compared with the tomographic reconstructions based on the usual destructive projectivemore » measurements (wherein one such measurement can determine only one diagonal element of the density matrix), the present reconstructive approach exhibits significantly high efficiency. Specifically, our generic proposal is demonstrated by the experimental circuit quantum electrodynamics systems with a few Josephson charge qubits.« less

  7. Detecting Lower Bounds to Quantum Channel Capacities.

    PubMed

    Macchiavello, Chiara; Sacchi, Massimiliano F

    2016-04-08

    We propose a method to detect lower bounds to quantum capacities of a noisy quantum communication channel by means of a few measurements. The method is easily implementable and does not require any knowledge about the channel. We test its efficiency by studying its performance for most well-known single-qubit noisy channels and for the generalized Pauli channel in an arbitrary finite dimension.

  8. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits

    PubMed Central

    Córcoles, A.D.; Magesan, Easwar; Srinivasan, Srikanth J.; Cross, Andrew W.; Steffen, M.; Gambetta, Jay M.; Chow, Jerry M.

    2015-01-01

    The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code. PMID:25923200

  9. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits.

    PubMed

    Córcoles, A D; Magesan, Easwar; Srinivasan, Srikanth J; Cross, Andrew W; Steffen, M; Gambetta, Jay M; Chow, Jerry M

    2015-04-29

    The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code.

  10. Quantum Computers

    DTIC Science & Technology

    2010-03-04

    and their sensitivity to charge and flux fluctuations. The first type of superconducting qubit , the charge qubit , omits the inductance . There is no...nanostructured NbN superconducting nanowire detectors have achieved high efficiency and photon number resolution16,17. One approach to a high-efficiency single...resemble classical high- speed integrated circuits and can be readily fabricated using existing technologies. The basic physics behind superconducting qubits

  11. Single-Shot Quantum Nondemolition Detection of Individual Itinerant Microwave Photons

    NASA Astrophysics Data System (ADS)

    Besse, Jean-Claude; Gasparinetti, Simone; Collodo, Michele C.; Walter, Theo; Kurpiers, Philipp; Pechal, Marek; Eichler, Christopher; Wallraff, Andreas

    2018-04-01

    Single-photon detection is an essential component in many experiments in quantum optics, but it remains challenging in the microwave domain. We realize a quantum nondemolition detector for propagating microwave photons and characterize its performance using a single-photon source. To this aim, we implement a cavity-assisted conditional phase gate between the incoming photon and a superconducting artificial atom. By reading out the state of this atom in a single shot, we reach an external (internal) photon-detection fidelity of 50% (71%), limited by transmission efficiency between the source and the detector (75%) and the coherence properties of the qubit. By characterizing the coherence and average number of photons in the field reflected off the detector, we demonstrate its quantum nondemolition nature. We envisage applications in generating heralded remote entanglement between qubits and for realizing logic gates between propagating microwave photons.

  12. Efficient quantum dialogue without information leakage

    NASA Astrophysics Data System (ADS)

    Yin, Ai-Han; Tang, Zhi-Hui; Chen, Dong

    2015-02-01

    A two-step quantum dialogue scheme is put forward with a class of three-qubit W state and quantum dense coding. Each W state can carry three bits of secret information and the measurement result is encrypted without information leakage. Furthermore, we utilize the entangle properties of W state and decoy photon checking technique to realize three-time channel detection, which can improve the efficiency and security of the scheme.

  13. Implementing N-quantum phase gate via circuit QED with qubit-qubit interaction

    NASA Astrophysics Data System (ADS)

    Said, T.; Chouikh, A.; Essammouni, K.; Bennai, M.

    2016-02-01

    We propose a method for realizing a quantum phase gate of one qubit simultaneously controlling N target qubits based on the qubit-qubit interaction. We show how to implement the proposed gate with one transmon qubit simultaneously controlling N transmon qubits in a circuit QED driven by a strong microwave field. In our scheme, the operation time of this phase gate is independent of the number N of qubits. On the other hand, this gate can be realized in a time of nanosecond-scale much smaller than the decoherence time and dephasing time both being the time of microsecond-scale. Numerical simulation of the occupation probabilities of the second excited lever shows that the scheme could be achieved efficiently within current technology.

  14. Characterizing a four-qubit planar lattice for arbitrary error detection

    NASA Astrophysics Data System (ADS)

    Chow, Jerry M.; Srinivasan, Srikanth J.; Magesan, Easwar; Córcoles, A. D.; Abraham, David W.; Gambetta, Jay M.; Steffen, Matthias

    2015-05-01

    Quantum error correction will be a necessary component towards realizing scalable quantum computers with physical qubits. Theoretically, it is possible to perform arbitrarily long computations if the error rate is below a threshold value. The two-dimensional surface code permits relatively high fault-tolerant thresholds at the ~1% level, and only requires a latticed network of qubits with nearest-neighbor interactions. Superconducting qubits have continued to steadily improve in coherence, gate, and readout fidelities, to become a leading candidate for implementation into larger quantum networks. Here we describe characterization experiments and calibration of a system of four superconducting qubits arranged in a planar lattice, amenable to the surface code. Insights into the particular qubit design and comparison between simulated parameters and experimentally determined parameters are given. Single- and two-qubit gate tune-up procedures are described and results for simultaneously benchmarking pairs of two-qubit gates are given. All controls are eventually used for an arbitrary error detection protocol described in separate work [Corcoles et al., Nature Communications, 6, 2015].

  15. Resource-Efficient Measurement-Device-Independent Entanglement Witness

    DOE PAGES

    Verbanis, E.; Martin, A.; Rosset, D.; ...

    2016-05-09

    Imperfections in experimental measurement schemes can lead to falsely identifying, or over estimating, entanglement in a quantum system. A recent solution to this is to define schemes that are robust to measurement imperfections—measurement-device-independent entanglement witness (MDI-EW). This approach can be adapted to witness all entangled qubit states for a wide range of physical systems and does not depend on detection efficiencies or classical communication between devices. In this paper, we extend the theory to remove the necessity of prior knowledge about the two-qubit states to be witnessed. Moreover, we tested this model via a novel experimental implementation for MDI-EW thatmore » significantly reduces the experimental complexity. Finally, by applying it to a bipartite Werner state, we demonstrate the robustness of this approach against noise by witnessing entanglement down to an entangled state fraction close to 0.4.« less

  16. Detecting Axion Dark Matter with Superconducting Qubits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Akash; Chou, Aaron; Schuster, David

    Axion dark matter haloscopes aim to detect dark matter axions converting to single photons in resonant cavities bathed in a uniform magnetic field. A qubit (two level system) operating as a single microwave photon detector is a viable readout system for such detectors and may offer advantages over the quantum limited amplifiers currently used. When weakly coupled to the detection cavity, the qubit transition frequency is shifted by an amount proportional to the cavity photon number. Through spectroscopy of the qubit, the frequency shift is measured and the cavity occupation number is extracted. At low enough temperatures, this would allowmore » sensitivities exceeding that of the standard quantum limit.« less

  17. niSWAP and NTCP gates realized in a circuit QED system

    NASA Astrophysics Data System (ADS)

    Essammouni, K.; Chouikh, A.; Said, T.; Bennai, M.

    Based on superconducting qubit coupled to a resonator driven by a strong microwave field, we propose a method to implement two quantum logic gates (niSWAP and NTCP gates) of one qubit simultaneously controlling n qubits selected from N qubits in a circuit QED (1 < n < N) by introducing qubit-qubit interaction. The interaction between the qubits and the circuit QED can be achieved by tuning the gate voltage and the external flux. The operation times of the logic gates are much smaller than the decoherence time and dephasing time. Moreover, the numerical simulation under the influence of the gates operations shows that the scheme could be achieved efficiently with presently available techniques.

  18. Quantum measurement of a rapidly rotating spin qubit in diamond.

    PubMed

    Wood, Alexander A; Lilette, Emmanuel; Fein, Yaakov Y; Tomek, Nikolas; McGuinness, Liam P; Hollenberg, Lloyd C L; Scholten, Robert E; Martin, Andy M

    2018-05-01

    A controlled qubit in a rotating frame opens new opportunities to probe fundamental quantum physics, such as geometric phases in physically rotating frames, and can potentially enhance detection of magnetic fields. Realizing a single qubit that can be measured and controlled during physical rotation is experimentally challenging. We demonstrate quantum control of a single nitrogen-vacancy (NV) center within a diamond rotated at 200,000 rpm, a rotational period comparable to the NV spin coherence time T 2 . We stroboscopically image individual NV centers that execute rapid circular motion in addition to rotation and demonstrate preparation, control, and readout of the qubit quantum state with lasers and microwaves. Using spin-echo interferometry of the rotating qubit, we are able to detect modulation of the NV Zeeman shift arising from the rotating NV axis and an external DC magnetic field. Our work establishes single NV qubits in diamond as quantum sensors in the physically rotating frame and paves the way for the realization of single-qubit diamond-based rotation sensors.

  19. Quantum measurement of a rapidly rotating spin qubit in diamond

    PubMed Central

    Fein, Yaakov Y.; Hollenberg, Lloyd C. L.; Scholten, Robert E.

    2018-01-01

    A controlled qubit in a rotating frame opens new opportunities to probe fundamental quantum physics, such as geometric phases in physically rotating frames, and can potentially enhance detection of magnetic fields. Realizing a single qubit that can be measured and controlled during physical rotation is experimentally challenging. We demonstrate quantum control of a single nitrogen-vacancy (NV) center within a diamond rotated at 200,000 rpm, a rotational period comparable to the NV spin coherence time T2. We stroboscopically image individual NV centers that execute rapid circular motion in addition to rotation and demonstrate preparation, control, and readout of the qubit quantum state with lasers and microwaves. Using spin-echo interferometry of the rotating qubit, we are able to detect modulation of the NV Zeeman shift arising from the rotating NV axis and an external DC magnetic field. Our work establishes single NV qubits in diamond as quantum sensors in the physically rotating frame and paves the way for the realization of single-qubit diamond-based rotation sensors. PMID:29736417

  20. Protecting entanglement by adjusting the velocities of moving qubits inside non-Markovian environments

    NASA Astrophysics Data System (ADS)

    Mortezapour, Ali; Ahmadi Borji, Mahdi; Lo Franco, Rosario

    2017-05-01

    Efficient entanglement preservation in open quantum systems is a crucial scope towards a reliable exploitation of quantum resources. We address this issue by studying how two-qubit entanglement dynamically behaves when two atom qubits move inside two separated identical cavities. The moving qubits independently interact with their respective cavity. As a main general result, we find that under resonant qubit-cavity interaction the initial entanglement between two moving qubits remains closer to its initial value as time passes compared to the case of stationary qubits. In particular, we show that the initial entanglement can be strongly protected from decay by suitably adjusting the velocities of the qubits according to the non-Markovian features of the cavities. Our results supply a further way of preserving quantum correlations against noise with a natural implementation in cavity-QED scenarios and are straightforwardly extendable to many qubits for scalability.

  1. Readout for phase qubits without Josephson junctions

    NASA Astrophysics Data System (ADS)

    Steffen, Matthias; Kumar, Shwetank; DiVincenzo, David; Keefe, George; Ketchen, Mark; Rothwell, Mary Beth; Rozen, Jim

    2010-03-01

    We present a readout scheme for phase qubits which eliminates the read-out superconducting quantum interference device so that the entire qubit and measurement circuitry only require a single Josephson junction. Our scheme capacitively couples the phase qubit directly to a transmission line and detects its state after the measurement pulse by determining a frequency shift observable in the forward scattering parameter of the readout microwaves. This readout is extendable to multiple phase qubits coupled to a common readout line and can in principle be used for other flux biased qubits having two quasistable readout configurations.

  2. Implementation of adiabatic geometric gates with superconducting phase qubits.

    PubMed

    Peng, Z H; Chu, H F; Wang, Z D; Zheng, D N

    2009-01-28

    We present an adiabatic geometric quantum computation strategy based on the non-degenerate energy eigenstates in (but not limited to) superconducting phase qubit systems. The fidelity of the designed quantum gate was evaluated in the presence of simulated thermal fluctuations in a superconducting phase qubits circuit and was found to be quite robust against random errors. In addition, it was elucidated that the Berry phase in the designed adiabatic evolution may be detected directly via the quantum state tomography developed for superconducting qubits. We also analyze the effects of control parameter fluctuations on the experimental detection of the Berry phase.

  3. Perfect joint remote state preparation of arbitrary six-qubit cluster-type states

    NASA Astrophysics Data System (ADS)

    Choudhury, Binayak S.; Samanta, Soumen

    2018-07-01

    In this paper, a joint remote state preparation protocol, which is applicable to six-qubit cluster states, is presented. The scheme is performed with the help of three quantum channels constituted by eight qubits. A new index of efficiency for JRSP protocols is defined. A comparison is made with the existing similar schemes from which it is concluded that the present scheme utilizes its resources more efficiently. The work is a part of the line of research on transfer and remote preparation of entanglement.

  4. A quantitative witness for Greenberger-Horne-Zeilinger entanglement.

    PubMed

    Eltschka, Christopher; Siewert, Jens

    2012-01-01

    Along with the vast progress in experimental quantum technologies there is an increasing demand for the quantification of entanglement between three or more quantum systems. Theory still does not provide adequate tools for this purpose. The objective is, besides the quest for exact results, to develop operational methods that allow for efficient entanglement quantification. Here we put forward an analytical approach that serves both these goals. We provide a simple procedure to quantify Greenberger-Horne-Zeilinger-type multipartite entanglement in arbitrary three-qubit states. For two qubits this method is equivalent to Wootters' seminal result for the concurrence. It establishes a close link between entanglement quantification and entanglement detection by witnesses, and can be generalised both to higher dimensions and to more than three parties.

  5. Ultrafast Pulse Sequencing for Fast Projective Measurements of Atomic Hyperfine Qubits

    NASA Astrophysics Data System (ADS)

    Ip, Michael; Ransford, Anthony; Campbell, Wesley

    2015-05-01

    Projective readout of quantum information stored in atomic hyperfine structure typically uses state-dependent CW laser-induced fluorescence. This method requires an often sophisticated imaging system to spatially filter out the background CW laser light. We present an alternative approach that instead uses simple pulse sequences from a mode-locked laser to affect the same state-dependent excitations in less than 1 ns. The resulting atomic fluorescence occurs in the dark, allowing the placement of non-imaging detectors right next to the atom to improve the qubit state detection efficiency and speed. We also discuss methods of Doppler cooling with mode-locked lasers for trapped ions, where the creation of the necessary UV light is often difficult with CW lasers.

  6. A quantitative witness for Greenberger-Horne-Zeilinger entanglement

    PubMed Central

    Eltschka, Christopher; Siewert, Jens

    2012-01-01

    Along with the vast progress in experimental quantum technologies there is an increasing demand for the quantification of entanglement between three or more quantum systems. Theory still does not provide adequate tools for this purpose. The objective is, besides the quest for exact results, to develop operational methods that allow for efficient entanglement quantification. Here we put forward an analytical approach that serves both these goals. We provide a simple procedure to quantify Greenberger-Horne-Zeilinger–type multipartite entanglement in arbitrary three-qubit states. For two qubits this method is equivalent to Wootters' seminal result for the concurrence. It establishes a close link between entanglement quantification and entanglement detection by witnesses, and can be generalised both to higher dimensions and to more than three parties. PMID:23267431

  7. Multi-target-qubit unconventional geometric phase gate in a multi-cavity system

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Cao, Xiao-Zhi; Su, Qi-Ping; Xiong, Shao-Jie; Yang, Chui-Ping

    2016-02-01

    Cavity-based large scale quantum information processing (QIP) may involve multiple cavities and require performing various quantum logic operations on qubits distributed in different cavities. Geometric-phase-based quantum computing has drawn much attention recently, which offers advantages against inaccuracies and local fluctuations. In addition, multiqubit gates are particularly appealing and play important roles in QIP. We here present a simple and efficient scheme for realizing a multi-target-qubit unconventional geometric phase gate in a multi-cavity system. This multiqubit phase gate has a common control qubit but different target qubits distributed in different cavities, which can be achieved using a single-step operation. The gate operation time is independent of the number of qubits and only two levels for each qubit are needed. This multiqubit gate is generic, e.g., by performing single-qubit operations, it can be converted into two types of significant multi-target-qubit phase gates useful in QIP. The proposal is quite general, which can be used to accomplish the same task for a general type of qubits such as atoms, NV centers, quantum dots, and superconducting qubits.

  8. Multi-target-qubit unconventional geometric phase gate in a multi-cavity system.

    PubMed

    Liu, Tong; Cao, Xiao-Zhi; Su, Qi-Ping; Xiong, Shao-Jie; Yang, Chui-Ping

    2016-02-22

    Cavity-based large scale quantum information processing (QIP) may involve multiple cavities and require performing various quantum logic operations on qubits distributed in different cavities. Geometric-phase-based quantum computing has drawn much attention recently, which offers advantages against inaccuracies and local fluctuations. In addition, multiqubit gates are particularly appealing and play important roles in QIP. We here present a simple and efficient scheme for realizing a multi-target-qubit unconventional geometric phase gate in a multi-cavity system. This multiqubit phase gate has a common control qubit but different target qubits distributed in different cavities, which can be achieved using a single-step operation. The gate operation time is independent of the number of qubits and only two levels for each qubit are needed. This multiqubit gate is generic, e.g., by performing single-qubit operations, it can be converted into two types of significant multi-target-qubit phase gates useful in QIP. The proposal is quite general, which can be used to accomplish the same task for a general type of qubits such as atoms, NV centers, quantum dots, and superconducting qubits.

  9. Local hidden-variable model for a recent experimental test of quantum nonlocality and local contextuality

    NASA Astrophysics Data System (ADS)

    La Cour, Brian R.

    2017-07-01

    An experiment has recently been performed to demonstrate quantum nonlocality by establishing contextuality in one of a pair of photons encoding four qubits; however, low detection efficiencies and use of the fair-sampling hypothesis leave these results open to possible criticism due to the detection loophole. In this Letter, a physically motivated local hidden-variable model is considered as a possible mechanism for explaining the experimentally observed results. The model, though not intrinsically contextual, acquires this quality upon post-selection of coincident detections.

  10. Quantum error correction for continuously detected errors with any number of error channels per qubit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Charlene; Wiseman, Howard; Jacobs, Kurt

    2004-08-01

    It was shown by Ahn, Wiseman, and Milburn [Phys. Rev. A 67, 052310 (2003)] that feedback control could be used as a quantum error correction process for errors induced by weak continuous measurement, given one perfectly measured error channel per qubit. Here we point out that this method can be easily extended to an arbitrary number of error channels per qubit. We show that the feedback protocols generated by our method encode n-2 logical qubits in n physical qubits, thus requiring just one more physical qubit than in the previous case.

  11. Efficient eigenvalue determination for arbitrary Pauli products based on generalized spin-spin interactions

    NASA Astrophysics Data System (ADS)

    Leibfried, D.; Wineland, D. J.

    2018-03-01

    Effective spin-spin interactions between ? qubits enable the determination of the eigenvalue of an arbitrary Pauli product of dimension N with a constant, small number of multi-qubit gates that is independent of N and encodes the eigenvalue in the measurement basis states of an extra ancilla qubit. Such interactions are available whenever qubits can be coupled to a shared harmonic oscillator, a situation that can be realized in many physical qubit implementations. For example, suitable interactions have already been realized for up to 14 qubits in ion traps. It should be possible to implement stabilizer codes for quantum error correction with a constant number of multi-qubit gates, in contrast to typical constructions with a number of two-qubit gates that increases as a function of N. The special case of finding the parity of N qubits only requires a small number of operations that is independent of N. This compares favorably to algorithms for computing the parity on conventional machines, which implies a genuine quantum advantage.

  12. 133 Ba+: a new ion qubit

    NASA Astrophysics Data System (ADS)

    Christensen, Justin; Hucul, David; Campbell, Wesley; Hudson, Eric

    2017-04-01

    133 Ba+ combines many of the advantages of commonly used trapped ion qubits. 133Ba+ has a nuclear spin 1/2, allowing for a robust hyperfine qubit with simple state preparation and readout. The existence of long-lived metastable D-states and a lack of low-lying F-states simplifies shelving, which will allow high fidelity state detection. The visible wavelength optical transitions enable the use of high-power lasers, low-loss fibers, high quantum efficiency detectors, and other optical technologies developed for visible wavelength light. Furthermore, background-free qubit readout, where the readout is insensitive to laser scatter, is possible in 133Ba+, and simplifies its use in small ion traps and the study of ions near surfaces. We report progress on realizing this qubit. We load barium ions into an ion trap using thermal ionization from a platinum ribbon. We experimentally demonstrate the isotopic purification of large numbers of barium ions using laser heating and cooling along with mass filtering to produce isotopically pure chains of any naturally-occurring barium isotope. This purification process has allowed us to laser cool rare, naturally-occurring barium isotopes 132Ba+and130Ba+, and we report the isotope shifts from 138Ba+ of the P1/2 to D3/2 transitions near 650 nm for the first time. In addition, we have developed an ion gun to produce high luminosity ion beams with adjustable mean kinetic energy by combining a surface ionization source and ion optics.

  13. A single-atom quantum memory.

    PubMed

    Specht, Holger P; Nölleke, Christian; Reiserer, Andreas; Uphoff, Manuel; Figueroa, Eden; Ritter, Stephan; Rempe, Gerhard

    2011-05-12

    The faithful storage of a quantum bit (qubit) of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing. The required optical quantum memory must be able to receive and recreate the photonic qubit; additionally, it must store an unknown quantum state of light better than any classical device. So far, these two requirements have been met only by ensembles of material particles that store the information in collective excitations. Recent developments, however, have paved the way for an approach in which the information exchange occurs between single quanta of light and matter. This single-particle approach allows the material qubit to be addressed, which has fundamental advantages for realistic implementations. First, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection; this can be used to combat inevitable losses and finite efficiencies. Second, it allows for individual qubit manipulations, opening up avenues for in situ processing of the stored quantum information. Here we demonstrate the most fundamental implementation of such a quantum memory, by mapping arbitrary polarization states of light into and out of a single atom trapped inside an optical cavity. The memory performance is tested with weak coherent pulses and analysed using full quantum process tomography. The average fidelity is measured to be 93%, and low decoherence rates result in qubit coherence times exceeding 180  microseconds. This makes our system a versatile quantum node with excellent prospects for applications in optical quantum gates and quantum repeaters.

  14. Lower bounds of concurrence for N-qubit systems and the detection of k-nonseparability of multipartite quantum systems

    NASA Astrophysics Data System (ADS)

    Qi, Xianfei; Gao, Ting; Yan, Fengli

    2017-01-01

    Concurrence, as one of the entanglement measures, is a useful tool to characterize quantum entanglement in various quantum systems. However, the computation of the concurrence involves difficult optimizations and only for the case of two qubits, an exact formula was found. We investigate the concurrence of four-qubit quantum states and derive analytical lower bound of concurrence using the multiqubit monogamy inequality. It is shown that this lower bound is able to improve the existing bounds. This approach can be generalized to arbitrary qubit systems. We present an exact formula of concurrence for some mixed quantum states. For even-qubit states, we derive an improved lower bound of concurrence using a monogamy equality for qubit systems. At the same time, we show that a multipartite state is k-nonseparable if the multipartite concurrence is larger than a constant related to the value of k, the qudit number and the dimension of the subsystems. Our results can be applied to detect the multipartite k-nonseparable states.

  15. Testing genuine tripartite quantum nonlocality with three two-level atoms in a driven cavity

    NASA Astrophysics Data System (ADS)

    Yuan, H.; Wei, L. F.

    2013-10-01

    It is known that the violation of Svetlichny's inequality (SI), rather than the usual Mermin's inequality (MI), is a robust criterion to confirm the existence of genuine multipartite quantum nonlocality. In this paper, we propose a feasible approach to test SI with three two-level atoms (TLAs) dispersively coupled to a driven cavity. The proposal is based on the joint measurements of the states of three TLAs by probing the steady-state transmission spectra of the driven cavity: each peak marks one of the computational basis states and its relative height corresponds to the probability superposed in the detected three-TLA state. With these kinds of joint measurements, the correlation functions in SI can be directly calculated, and thus the SI can be efficiently tested for typical tripartite entanglement, i.e., genuine tripartite entanglement [e.g., Greenberger-Horne-Zeilinger (GHZ) and W states] and biseparable three-qubit entangled states (e.g., |χ>12|ξ>3). Our numerical experiments show that the SI is violated only by three-qubit GHZ and W states, not by biseparable three-qubit entangled state |χ>12|ξ>3, while the MI can still be violated by biseparable three-qubit entangled states. Thus the violation of SI can be regarded as a robust criterion for the existence of genuine tripartite entanglement.

  16. Topological networks for quantum communication between distant qubits

    NASA Astrophysics Data System (ADS)

    Lang, Nicolai; Büchler, Hans Peter

    2017-11-01

    Efficient communication between qubits relies on robust networks, which allow for fast and coherent transfer of quantum information. It seems natural to harvest the remarkable properties of systems characterized by topological invariants to perform this task. Here, we show that a linear network of coupled bosonic degrees of freedom, characterized by topological bands, can be employed for the efficient exchange of quantum information over large distances. Important features of our setup are that it is robust against quenched disorder, all relevant operations can be performed by global variations of parameters, and the time required for communication between distant qubits approaches linear scaling with their distance. We demonstrate that our concept can be extended to an ensemble of qubits embedded in a two-dimensional network to allow for communication between all of them.

  17. Implementing a strand of a scalable fault-tolerant quantum computing fabric.

    PubMed

    Chow, Jerry M; Gambetta, Jay M; Magesan, Easwar; Abraham, David W; Cross, Andrew W; Johnson, B R; Masluk, Nicholas A; Ryan, Colm A; Smolin, John A; Srinivasan, Srikanth J; Steffen, M

    2014-06-24

    With favourable error thresholds and requiring only nearest-neighbour interactions on a lattice, the surface code is an error-correcting code that has garnered considerable attention. At the heart of this code is the ability to perform a low-weight parity measurement of local code qubits. Here we demonstrate high-fidelity parity detection of two code qubits via measurement of a third syndrome qubit. With high-fidelity gates, we generate entanglement distributed across three superconducting qubits in a lattice where each code qubit is coupled to two bus resonators. Via high-fidelity measurement of the syndrome qubit, we deterministically entangle the code qubits in either an even or odd parity Bell state, conditioned on the syndrome qubit state. Finally, to fully characterize this parity readout, we develop a measurement tomography protocol. The lattice presented naturally extends to larger networks of qubits, outlining a path towards fault-tolerant quantum computing.

  18. Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits.

    PubMed

    Chow, Jerry M; Gambetta, Jay M; Córcoles, A D; Merkel, Seth T; Smolin, John A; Rigetti, Chad; Poletto, S; Keefe, George A; Rothwell, Mary B; Rozen, J R; Ketchen, Mark B; Steffen, M

    2012-08-10

    We use quantum process tomography to characterize a full universal set of all-microwave gates on two superconducting single-frequency single-junction transmon qubits. All extracted gate fidelities, including those for Clifford group generators, single-qubit π/4 and π/8 rotations, and a two-qubit controlled-not, exceed 95% (98%), without (with) subtracting state preparation and measurement errors. Furthermore, we introduce a process map representation in the Pauli basis which is visually efficient and informative. This high-fidelity gate set serves as a critical building block towards scalable architectures of superconducting qubits for error correction schemes and pushes up on the known limits of quantum gate characterization.

  19. Entanglement measures in embedding quantum simulators with nuclear spins

    NASA Astrophysics Data System (ADS)

    Xin, Tao; Pedernales, Julen S.; Solano, Enrique; Long, Gui-Lu

    2018-02-01

    We implement an embedding quantum simulator (EQS) in nuclear spin systems. The experiment consists of a simulator of up to three qubits, plus a single ancillary qubit, where we are able to efficiently measure the concurrence and the three-tangle of two-qubit and three-qubit systems as they undergo entangling dynamics. The EQS framework allows us to drastically reduce the number of measurements needed for this task, which otherwise would require full-state reconstruction of the qubit system. Our simulator is built of the nuclear spins of four 13C atoms in a molecule of trans-crotonic acid manipulated with NMR techniques.

  20. Purification and switching protocols for dissipatively stabilized entangled qubit states

    NASA Astrophysics Data System (ADS)

    Hein, Sven M.; Aron, Camille; Türeci, Hakan E.

    2016-06-01

    Pure dephasing processes limit the fidelities achievable in driven-dissipative schemes for stabilization of entangled states of qubits. We propose a scheme which, combined with already existing entangling methods, purifies the desired entangled state by driving out of equilibrium auxiliary dissipative cavity modes coupled to the qubits. We lay out the specifics of our scheme and compute its efficiency in the particular context of two superconducting qubits in a cavity-QED architecture, where the strongly coupled auxiliary modes provided by collective cavity excitations can drive and sustain the qubits in maximally entangled Bell states with fidelities reaching 90% for experimentally accessible parameters.

  1. Multiplexing Superconducting Qubit Circuit for Single Microwave Photon Generation

    NASA Astrophysics Data System (ADS)

    George, R. E.; Senior, J.; Saira, O.-P.; Pekola, J. P.; de Graaf, S. E.; Lindström, T.; Pashkin, Yu A.

    2017-10-01

    We report on a device that integrates eight superconducting transmon qubits in λ /4 superconducting coplanar waveguide resonators fed from a common feedline. Using this multiplexing architecture, each resonator and qubit can be addressed individually, thus reducing the required hardware resources and allowing their individual characterisation by spectroscopic methods. The measured device parameters agree with the designed values, and the resonators and qubits exhibit excellent coherence properties and strong coupling, with the qubit relaxation rate dominated by the Purcell effect when brought in resonance with the resonator. Our analysis shows that the circuit is suitable for generation of single microwave photons on demand with an efficiency exceeding 80%.

  2. Universal Quantum Gate Set Approaching Fault-Tolerant Thresholds with Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Chow, Jerry M.; Gambetta, Jay M.; Córcoles, A. D.; Merkel, Seth T.; Smolin, John A.; Rigetti, Chad; Poletto, S.; Keefe, George A.; Rothwell, Mary B.; Rozen, J. R.; Ketchen, Mark B.; Steffen, M.

    2012-08-01

    We use quantum process tomography to characterize a full universal set of all-microwave gates on two superconducting single-frequency single-junction transmon qubits. All extracted gate fidelities, including those for Clifford group generators, single-qubit π/4 and π/8 rotations, and a two-qubit controlled-not, exceed 95% (98%), without (with) subtracting state preparation and measurement errors. Furthermore, we introduce a process map representation in the Pauli basis which is visually efficient and informative. This high-fidelity gate set serves as a critical building block towards scalable architectures of superconducting qubits for error correction schemes and pushes up on the known limits of quantum gate characterization.

  3. Observing Quantum State Diffusion by Heterodyne Detection of Fluorescence

    NASA Astrophysics Data System (ADS)

    Campagne-Ibarcq, P.; Six, P.; Bretheau, L.; Sarlette, A.; Mirrahimi, M.; Rouchon, P.; Huard, B.

    2016-01-01

    A qubit can relax by fluorescence, which prompts the release of a photon into its electromagnetic environment. By counting the emitted photons, discrete quantum jumps of the qubit state can be observed. The succession of states occupied by the qubit in a single experiment, its quantum trajectory, depends in fact on the kind of detector. How are the quantum trajectories modified if one measures continuously the amplitude of the fluorescence field instead? Using a superconducting parametric amplifier, we perform heterodyne detection of the fluorescence of a superconducting qubit. For each realization of the measurement record, we can reconstruct a different quantum trajectory for the qubit. The observed evolution obeys quantum state diffusion, which is characteristic of quantum measurements subject to zero-point fluctuations. Independent projective measurements of the qubit at various times provide a quantitative verification of the reconstructed trajectories. By exploring the statistics of quantum trajectories, we demonstrate that the qubit states span a deterministic surface in the Bloch sphere at each time in the evolution. Additionally, we show that when monitoring fluorescence field quadratures, coherent superpositions are generated during the decay from excited to ground state. Counterintuitively, measuring light emitted during relaxation can give rise to trajectories with increased excitation probability.

  4. Initialization by measurement of a superconducting quantum bit circuit.

    PubMed

    Ristè, D; van Leeuwen, J G; Ku, H-S; Lehnert, K W; DiCarlo, L

    2012-08-03

    We demonstrate initialization by joint measurement of two transmon qubits in 3D circuit quantum electrodynamics. Homodyne detection of cavity transmission is enhanced by Josephson parametric amplification to discriminate the two-qubit ground state from single-qubit excitations nondestructively and with 98.1% fidelity. Measurement and postselection of a steady-state mixture with 4.7% residual excitation per qubit achieve 98.8% fidelity to the ground state, thus outperforming passive initialization.

  5. Ultrafast state detection and 2D ion crystals in a Paul trap

    NASA Astrophysics Data System (ADS)

    Ip, Michael; Ransford, Anthony; Campbell, Wesley

    2016-05-01

    Projective readout of quantum information stored in atomic qubits typically uses state-dependent CW laser-induced fluorescence. This method requires an often sophisticated imaging system to spatially filter out the background CW laser light. We present an alternative approach that instead uses simple pulse sequences from a mode-locked laser to affect the same state-dependent excitations in less than 1 ns. The resulting atomic fluorescence occurs in the dark, allowing the placement of non-imaging detectors right next to the atom to improve the qubit state detection efficiency and speed. We also study 2D Coulomb crystals of atomic ions in an oblate Paul trap. We find that crystals with hundreds of ions can be held in the trap, potentially offering an alternative to the use of Penning traps for the quantum simulation of 2D lattice spin models. We discuss the classical physics of these crystals and the metastable states that are supported in 2D. This work is supported by the US Army Research Office.

  6. Concurrent remote entanglement with quantum error correction against photon losses

    NASA Astrophysics Data System (ADS)

    Roy, Ananda; Stone, A. Douglas; Jiang, Liang

    2016-09-01

    Remote entanglement of distant, noninteracting quantum entities is a key primitive for quantum information processing. We present a protocol to remotely entangle two stationary qubits by first entangling them with propagating ancilla qubits and then performing a joint two-qubit measurement on the ancillas. Subsequently, single-qubit measurements are performed on each of the ancillas. We describe two continuous variable implementations of the protocol using propagating microwave modes. The first implementation uses propagating Schr o ̈ dinger cat states as the flying ancilla qubits, a joint-photon-number-modulo-2 measurement of the propagating modes for the two-qubit measurement, and homodyne detections as the final single-qubit measurements. The presence of inefficiencies in realistic quantum systems limit the success rate of generating high fidelity Bell states. This motivates us to propose a second continuous variable implementation, where we use quantum error correction to suppress the decoherence due to photon loss to first order. To that end, we encode the ancilla qubits in superpositions of Schrödinger cat states of a given photon-number parity, use a joint-photon-number-modulo-4 measurement as the two-qubit measurement, and homodyne detections as the final single-qubit measurements. We demonstrate the resilience of our quantum-error-correcting remote entanglement scheme to imperfections. Further, we describe a modification of our error-correcting scheme by incorporating additional individual photon-number-modulo-2 measurements of the ancilla modes to improve the success rate of generating high-fidelity Bell states. Our protocols can be straightforwardly implemented in state-of-the-art superconducting circuit-QED systems.

  7. Entanglement between a Photonic Time-Bin Qubit and a Collective Atomic Spin Excitation.

    PubMed

    Farrera, Pau; Heinze, Georg; de Riedmatten, Hugues

    2018-03-09

    Entanglement between light and matter combines the advantage of long distance transmission of photonic qubits with the storage and processing capabilities of atomic qubits. To distribute photonic states efficiently over long distances several schemes to encode qubits have been investigated-time-bin encoding being particularly promising due to its robustness against decoherence in optical fibers. Here, we demonstrate the generation of entanglement between a photonic time-bin qubit and a single collective atomic spin excitation (spin wave) in a cold atomic ensemble, followed by the mapping of the atomic qubit onto another photonic qubit. A magnetic field that induces a periodic dephasing and rephasing of the atomic excitation ensures the temporal distinguishability of the two time bins and plays a central role in the entanglement generation. To analyze the generated quantum state, we use largely imbalanced Mach-Zehnder interferometers to perform projective measurements in different qubit bases and verify the entanglement by violating a Clauser-Horne-Shimony-Holt Bell inequality.

  8. Entanglement between a Photonic Time-Bin Qubit and a Collective Atomic Spin Excitation

    NASA Astrophysics Data System (ADS)

    Farrera, Pau; Heinze, Georg; de Riedmatten, Hugues

    2018-03-01

    Entanglement between light and matter combines the advantage of long distance transmission of photonic qubits with the storage and processing capabilities of atomic qubits. To distribute photonic states efficiently over long distances several schemes to encode qubits have been investigated—time-bin encoding being particularly promising due to its robustness against decoherence in optical fibers. Here, we demonstrate the generation of entanglement between a photonic time-bin qubit and a single collective atomic spin excitation (spin wave) in a cold atomic ensemble, followed by the mapping of the atomic qubit onto another photonic qubit. A magnetic field that induces a periodic dephasing and rephasing of the atomic excitation ensures the temporal distinguishability of the two time bins and plays a central role in the entanglement generation. To analyze the generated quantum state, we use largely imbalanced Mach-Zehnder interferometers to perform projective measurements in different qubit bases and verify the entanglement by violating a Clauser-Horne-Shimony-Holt Bell inequality.

  9. Multi-party quantum key agreement with five-qubit brown states

    NASA Astrophysics Data System (ADS)

    Cai, Tao; Jiang, Min; Cao, Gang

    2018-05-01

    In this paper, we propose a multi-party quantum key agreement protocol with five-qubit brown states and single-qubit measurements. Our multi-party protocol ensures each participant to contribute equally to the agreement key. Each party performs three single-qubit unitary operations on three qubits of each brown state. Finally, by measuring brown states and decoding the measurement results, all participants can negotiate a shared secret key without classical bits exchange between them. With the analysis of security, our protocol demonstrates that it can resist against both outsider and participant attacks. Compared with other schemes, it also possesses a higher information efficiency. In terms of physical operation, it requires single-qubit measurements only which weakens the hardware requirements of participant and has a better operating flexibility.

  10. Efficient universal blind quantum computation.

    PubMed

    Giovannetti, Vittorio; Maccone, Lorenzo; Morimae, Tomoyuki; Rudolph, Terry G

    2013-12-06

    We give a cheat sensitive protocol for blind universal quantum computation that is efficient in terms of computational and communication resources: it allows one party to perform an arbitrary computation on a second party's quantum computer without revealing either which computation is performed, or its input and output. The first party's computational capabilities can be extremely limited: she must only be able to create and measure single-qubit superposition states. The second party is not required to use measurement-based quantum computation. The protocol requires the (optimal) exchange of O(Jlog2(N)) single-qubit states, where J is the computational depth and N is the number of qubits needed for the computation.

  11. Controlled quantum perfect teleportation of multiple arbitrary multi-qubit states

    NASA Astrophysics Data System (ADS)

    Shi, Runhua; Huang, Liusheng; Yang, Wei; Zhong, Hong

    2011-12-01

    We present an efficient controlled quantum perfect teleportation scheme. In our scheme, multiple senders can teleport multiple arbitrary unknown multi-qubit states to a single receiver via a previously shared entanglement state with the help of one or more controllers. Furthermore, our scheme has a very good performance in the measurement and operation complexity, since it only needs to perform Bell state and single-particle measurements and to apply Controlled-Not gate and other single-particle unitary operations. In addition, compared with traditional schemes, our scheme needs less qubits as the quantum resources and exchanges less classical information, and thus obtains higher communication efficiency.

  12. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits

    NASA Astrophysics Data System (ADS)

    Lamata, Lucas

    2017-03-01

    We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits.

  13. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits

    PubMed Central

    Lamata, Lucas

    2017-01-01

    We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits. PMID:28256559

  14. Quantum storage of a photonic polarization qubit in a solid.

    PubMed

    Gündoğan, Mustafa; Ledingham, Patrick M; Almasi, Attaallah; Cristiani, Matteo; de Riedmatten, Hugues

    2012-05-11

    We report on the quantum storage and retrieval of photonic polarization quantum bits onto and out of a solid state storage device. The qubits are implemented with weak coherent states at the single photon level, and are stored for a predetermined time of 500 ns in a praseodymium doped crystal with a storage and retrieval efficiency of 10%, using the atomic frequency comb scheme. We characterize the storage by using quantum state tomography, and find that the average conditional fidelity of the retrieved qubits exceeds 95% for a mean photon number μ=0.4. This is significantly higher than a classical benchmark, taking into account the poissonian statistics and finite memory efficiency, which proves that our crystal functions as a quantum storage device for polarization qubits. These results extend the storage capabilities of solid state quantum light matter interfaces to polarization encoding, which is widely used in quantum information science.

  15. Adaptive recurrence quantum entanglement distillation for two-Kraus-operator channels

    NASA Astrophysics Data System (ADS)

    Ruan, Liangzhong; Dai, Wenhan; Win, Moe Z.

    2018-05-01

    Quantum entanglement serves as a valuable resource for many important quantum operations. A pair of entangled qubits can be shared between two agents by first preparing a maximally entangled qubit pair at one agent, and then sending one of the qubits to the other agent through a quantum channel. In this process, the deterioration of entanglement is inevitable since the noise inherent in the channel contaminates the qubit. To address this challenge, various quantum entanglement distillation (QED) algorithms have been developed. Among them, recurrence algorithms have advantages in terms of implementability and robustness. However, the efficiency of recurrence QED algorithms has not been investigated thoroughly in the literature. This paper puts forth two recurrence QED algorithms that adapt to the quantum channel to tackle the efficiency issue. The proposed algorithms have guaranteed convergence for quantum channels with two Kraus operators, which include phase-damping and amplitude-damping channels. Analytical results show that the convergence speed of these algorithms is improved from linear to quadratic and one of the algorithms achieves the optimal speed. Numerical results confirm that the proposed algorithms significantly improve the efficiency of QED.

  16. Observation of entanglement between itinerant microwave photons and a superconducting qubit.

    PubMed

    Eichler, C; Lang, C; Fink, J M; Govenius, J; Filipp, S; Wallraff, A

    2012-12-14

    A localized qubit entangled with a propagating quantum field is well suited to study nonlocal aspects of quantum mechanics and may also provide a channel to communicate between spatially separated nodes in a quantum network. Here, we report the on-demand generation and characterization of Bell-type entangled states between a superconducting qubit and propagating microwave fields composed of zero-, one-, and two-photon Fock states. Using low noise linear amplification and efficient data acquisition we extract all relevant correlations between the qubit and the photon states and demonstrate entanglement with high fidelity.

  17. Two methods for measuring Bell nonlocality via local unitary invariants of two-qubit systems in Hong-Ou-Mandel interferometers

    NASA Astrophysics Data System (ADS)

    Bartkiewicz, Karol; Chimczak, Grzegorz

    2018-01-01

    We describe a direct method to experimentally determine local two-qubit invariants by performing interferometric measurements on multiple copies of a given two-qubit state. We use this framework to analyze two different kinds of two-qubit invariants of Makhlin and Jing et al. These invariants allow us to fully reconstruct any two-qubit state up to local unitaries. We demonstrate that measuring three invariants is sufficient to find, e.g., the optimal Bell inequality violation. These invariants can be measured with local or nonlocal measurements. We show that the nonlocal strategy that follows from Makhlin's invariants is more resource efficient than local strategy following from the invariants of Jing et al. To measure all of the Makhlin's invariants directly one needs to use both two-qubit singlets and three-qubit W -state projections on multiple copies of the two-qubit state. This problem is equivalent to a coordinate system handedness measurement. We demonstrate that these three-qubit measurements can be performed by utilizing Hong-Ou-Mandel interference, which gives significant speedup in comparison to the classical handedness measurement. Finally, we point to potential applications of our results in quantum secret sharing.

  18. Coupling a single nitrogen-vacancy center with a superconducting qubit via the electro-optic effect

    NASA Astrophysics Data System (ADS)

    Li, Chang-Hao; Li, Peng-Bo

    2018-05-01

    We propose an efficient scheme for transferring quantum states and generating entangled states between two qubits of different nature. The hybrid system consists of a single nitrogen-vacancy (NV) center and a superconducting (SC) qubit, which couple to an optical cavity and a microwave resonator, respectively. Meanwhile, the optical cavity and the microwave resonator are coupled via the electro-optic effect. By adjusting the relative parameters, we can achieve high-fidelity quantum state transfer as well as highly entangled states between the NV center and the SC qubit. This protocol is within the reach of currently available techniques, and may provide interesting applications in quantum communication and computation with single NV centers and SC qubits.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verbanis, E.; Martin, A.; Rosset, D.

    Imperfections in experimental measurement schemes can lead to falsely identifying, or over estimating, entanglement in a quantum system. A recent solution to this is to define schemes that are robust to measurement imperfections—measurement-device-independent entanglement witness (MDI-EW). This approach can be adapted to witness all entangled qubit states for a wide range of physical systems and does not depend on detection efficiencies or classical communication between devices. In this paper, we extend the theory to remove the necessity of prior knowledge about the two-qubit states to be witnessed. Moreover, we tested this model via a novel experimental implementation for MDI-EW thatmore » significantly reduces the experimental complexity. Finally, by applying it to a bipartite Werner state, we demonstrate the robustness of this approach against noise by witnessing entanglement down to an entangled state fraction close to 0.4.« less

  20. Proposal and proof-of-principle demonstration of non-destructive detection of photonic qubits using a Tm:LiNbO3 waveguide

    PubMed Central

    Sinclair, N.; Heshami, K.; Deshmukh, C.; Oblak, D.; Simon, C.; Tittel, W.

    2016-01-01

    Non-destructive detection of photonic qubits is an enabling technology for quantum information processing and quantum communication. For practical applications, such as quantum repeaters and networks, it is desirable to implement such detection in a way that allows some form of multiplexing as well as easy integration with other components such as solid-state quantum memories. Here, we propose an approach to non-destructive photonic qubit detection that promises to have all the mentioned features. Mediated by an impurity-doped crystal, a signal photon in an arbitrary time-bin qubit state modulates the phase of an intense probe pulse that is stored during the interaction. Using a thulium-doped waveguide in LiNbO3, we perform a proof-of-principle experiment with macroscopic signal pulses, demonstrating the expected cross-phase modulation as well as the ability to preserve the coherence between temporal modes. Our findings open the path to a new key component of quantum photonics based on rare-earth-ion-doped crystals. PMID:27853153

  1. A Programmable Five Qubit Quantum Computer Using Trapped Atomic Ions

    NASA Astrophysics Data System (ADS)

    Debnath, Shantanu

    Quantum computers can solve certain problems more efficiently compared to conventional classical methods. In the endeavor to build a quantum computer, several competing platforms have emerged that can implement certain quantum algorithms using a few qubits. However, the demonstrations so far have been done usually by tailoring the hardware to meet the requirements of a particular algorithm implemented for a limited number of instances. Although such proof of principal implementations are important to verify the working of algorithms on a physical system, they further need to have the potential to serve as a general purpose quantum computer allowing the flexibility required for running multiple algorithms and be scaled up to host more qubits. Here we demonstrate a small programmable quantum computer based on five trapped atomic ions each of which serves as a qubit. By optically resolving each ion we can individually address them in order to perform a complete set of single-qubit and fully connected two-qubit quantum gates and alsoperform efficient individual qubit measurements. We implement a computation architecture that accepts an algorithm from a user interface in the form of a standard logic gate sequence and decomposes it into fundamental quantum operations that are native to the hardware using a set of compilation instructions that are defined within the software. These operations are then effected through a pattern of laser pulses that perform coherent rotations on targeted qubits in the chain. The architecture implemented in the experiment therefore gives us unprecedented flexibility in the programming of any quantum algorithm while staying blind to the underlying hardware. As a demonstration we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms on the five-qubit processor and achieve average success rates of 95 and 90 percent, respectively. We also implement a five-qubit coherent quantum Fourier transform and examine its performance in the period finding and phase estimation protocol. We find fidelities of 84 and 62 percent, respectively. While maintaining the same computation architecture the system can be scaled to more ions using resources that scale favorably (O(N. 2)) with the numberof qubits N.

  2. Generation of heralded entanglement between distant quantum dot hole spins

    NASA Astrophysics Data System (ADS)

    Delteil, Aymeric

    Entanglement plays a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, some of the major challenges are the efficient generation of entanglement between stationary (spin) and propagating (photon) qubits, the transfer of information from flying to stationary qubits, and the efficient generation of entanglement between distant stationary (spin) qubits. In this talk, I will present such experimental implementations achieved in our team with semiconductor self-assembled quantum dots.Not only are self-assembled quantum dots good single-photon emitters, but they can host an electron or a hole whose spin serves as a quantum memory, and then present spin-dependent optical selection rules leading to an efficient spin-photon quantum interface. Moreover InGaAs quantum dots grown on GaAs substrate can profit from the maturity of III-V semiconductor technology and can be embedded in semiconductor structures like photonic cavities and Schottky diodes.I will report on the realization of heralded quantum entanglement between two semiconductor quantum dot hole spins separated by more than five meters. The entanglement generation scheme relies on single photon interference of Raman scattered light from both dots. A single photon detection projects the system into a maximally entangled state. We developed a delayed two-photon interference scheme that allows for efficient verification of quantum correlations. Moreover the efficient spin-photon interface provided by self-assembled quantum dots allows us to reach an unprecedented rate of 2300 entangled spin pairs per second, which represents an improvement of four orders of magnitude as compared to prior experiments carried out in other systems.Our results extend previous demonstrations in single trapped ions or neutral atoms, in atom ensembles and nitrogen vacancy centers to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. This work lays the groundwork for the realization of quantum repeaters and quantum networks on a chip.

  3. Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities

    PubMed Central

    Wei, Hai-Rui; Lu Long, Gui

    2015-01-01

    Hybrid quantum gates hold great promise for quantum information processing since they preserve the advantages of different quantum systems. Here we present compact quantum circuits to deterministically implement controlled-NOT, Toffoli, and Fredkin gates between a flying photon qubit and diamond nitrogen-vacancy (NV) centers assisted by microcavities. The target qubits of these universal quantum gates are encoded on the spins of the electrons associated with the diamond NV centers and they have long coherence time for storing information, and the control qubit is encoded on the polarizations of the flying photon and can be easily manipulated. Our quantum circuits are compact, economic, and simple. Moreover, they do not require additional qubits. The complexity of our schemes for universal three-qubit gates is much reduced, compared to the synthesis with two-qubit entangling gates. These schemes have high fidelities and efficiencies, and they are feasible in experiment. PMID:26271899

  4. Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: II. Implementation

    NASA Astrophysics Data System (ADS)

    Blencowe, M. P.; Armour, A. D.

    2008-09-01

    We describe a possible implementation of the nanomechanical quantum superposition generation and detection scheme described in the preceding, companion paper (Armour A D and Blencowe M P 2008 New. J. Phys. 10 095004). The implementation is based on the circuit quantum electrodynamics (QED) set-up, with the addition of a mechanical degree of freedom formed out of a suspended, doubly-clamped segment of the superconducting loop of a dc SQUID located directly opposite the centre conductor of a coplanar waveguide (CPW). The relative merits of two SQUID based qubit realizations are addressed, in particular a capacitively coupled charge qubit and inductively coupled flux qubit. It is found that both realizations are equally promising, with comparable qubit-mechanical resonator mode as well as qubit-microwave resonator mode coupling strengths.

  5. Towards scalable quantum communication and computation: Novel approaches and realizations

    NASA Astrophysics Data System (ADS)

    Jiang, Liang

    Quantum information science involves exploration of fundamental laws of quantum mechanics for information processing tasks. This thesis presents several new approaches towards scalable quantum information processing. First, we consider a hybrid approach to scalable quantum computation, based on an optically connected network of few-qubit quantum registers. Specifically, we develop a novel scheme for scalable quantum computation that is robust against various imperfections. To justify that nitrogen-vacancy (NV) color centers in diamond can be a promising realization of the few-qubit quantum register, we show how to isolate a few proximal nuclear spins from the rest of the environment and use them for the quantum register. We also demonstrate experimentally that the nuclear spin coherence is only weakly perturbed under optical illumination, which allows us to implement quantum logical operations that use the nuclear spins to assist the repetitive-readout of the electronic spin. Using this technique, we demonstrate more than two-fold improvement in signal-to-noise ratio. Apart from direct application to enhance the sensitivity of the NV-based nano-magnetometer, this experiment represents an important step towards the realization of robust quantum information processors using electronic and nuclear spin qubits. We then study realizations of quantum repeaters for long distance quantum communication. Specifically, we develop an efficient scheme for quantum repeaters based on atomic ensembles. We use dynamic programming to optimize various quantum repeater protocols. In addition, we propose a new protocol of quantum repeater with encoding, which efficiently uses local resources (about 100 qubits) to identify and correct errors, to achieve fast one-way quantum communication over long distances. Finally, we explore quantum systems with topological order. Such systems can exhibit remarkable phenomena such as quasiparticles with anyonic statistics and have been proposed as candidates for naturally error-free quantum computation. We propose a scheme to unambiguously detect the anyonic statistics in spin lattice realizations using ultra-cold atoms in an optical lattice. We show how to reliably read and write topologically protected quantum memory using an atomic or photonic qubit.

  6. The Influences of Quantum Coherence on the Positive Work and the Efficiency of Quantum Heat Engine with Working Substance of Two-Qubit Heisenberg XXX Model

    NASA Astrophysics Data System (ADS)

    Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei

    2018-03-01

    We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.

  7. The Influences of Quantum Coherence on the Positive Work and the Efficiency of Quantum Heat Engine with Working Substance of Two-Qubit Heisenberg XXX Model

    NASA Astrophysics Data System (ADS)

    Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei

    2018-06-01

    We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.

  8. Resource-efficient generation of linear cluster states by linear optics with postselection

    DOE PAGES

    Uskov, D. B.; Alsing, P. M.; Fanto, M. L.; ...

    2015-01-30

    Here we report on theoretical research in photonic cluster-state computing. Finding optimal schemes of generating non-classical photonic states is of critical importance for this field as physically implementable photon-photon entangling operations are currently limited to measurement-assisted stochastic transformations. A critical parameter for assessing the efficiency of such transformations is the success probability of a desired measurement outcome. At present there are several experimental groups that are capable of generating multi-photon cluster states carrying more than eight qubits. Separate photonic qubits or small clusters can be fused into a single cluster state by a probabilistic optical CZ gate conditioned on simultaneousmore » detection of all photons with 1/9 success probability for each gate. This design mechanically follows the original theoretical scheme of cluster state generation proposed more than a decade ago by Raussendorf, Browne, and Briegel. The optimality of the destructive CZ gate in application to linear optical cluster state generation has not been analyzed previously. Our results reveal that this method is far from the optimal one. Employing numerical optimization we have identified that the maximal success probability of fusing n unentangled dual-rail optical qubits into a linear cluster state is equal to 1/2 n-1; an m-tuple of photonic Bell pair states, commonly generated via spontaneous parametric down-conversion, can be fused into a single cluster with the maximal success probability of 1/4 m-1.« less

  9. Restless Tuneup of High-Fidelity Qubit Gates

    NASA Astrophysics Data System (ADS)

    Rol, M. A.; Bultink, C. C.; O'Brien, T. E.; de Jong, S. R.; Theis, L. S.; Fu, X.; Luthi, F.; Vermeulen, R. F. L.; de Sterke, J. C.; Bruno, A.; Deurloo, D.; Schouten, R. N.; Wilhelm, F. K.; DiCarlo, L.

    2017-04-01

    We present a tuneup protocol for qubit gates with tenfold speedup over traditional methods reliant on qubit initialization by energy relaxation. This speedup is achieved by constructing a cost function for Nelder-Mead optimization from real-time correlation of nondemolition measurements interleaving gate operations without pause. Applying the protocol on a transmon qubit achieves 0.999 average Clifford fidelity in one minute, as independently verified using randomized benchmarking and gate-set tomography. The adjustable sensitivity of the cost function allows the detection of fractional changes in the gate error with a nearly constant signal-to-noise ratio. The restless concept demonstrated can be readily extended to the tuneup of two-qubit gates and measurement operations.

  10. Gate Set Tomography on two qubits

    NASA Astrophysics Data System (ADS)

    Nielsen, Erik; Blume-Kohout, Robin; Gamble, John; Rudinger, Kenneth

    Gate set tomography (GST) is a method for characterizing quantum gates that does not require pre-calibrated operations, and has been used to both certify and improve the operation of single qubits. We analyze the performance of GST applied to a simulated two-qubit system, and show that Heisenberg scaling is achieved in this case. We present a GST analysis of preliminary two-qubit experimental data, and draw comparisons with the simulated data case. Finally, we will discuss recent theoretical developments that have improved the efficiency of GST estimation procedures, and which are particularly beneficial when characterizing two qubit systems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  11. Generation of three-qubit Greenberger-Horne-Zeilinger states of superconducting qubits by using dressed states

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Chen, Ye-Hong; Shi, Zhi-Cheng; Shan, Wu-Jiang; Song, Jie; Xia, Yan

    2017-12-01

    Combining the advantages of the dressed states and superconducting quantum interference device (SQUID) qubits, we propose an efficient scheme to generate Greenberger-Horne-Zeilinger (GHZ) states for three SQUID qubits. Firstly, we elaborate how to generate GHZ states of three SQUID qubits by choosing a set of dressed states suitably. Then, we compare the scheme by using dressed states with that via the adiabatic passage. Lastly, the influence of various decoherence factors, such as cavity decay, spontaneous emission and dephasing, is analyzed numerically. All of the results show that the GHZ state can be obtained fast and with high fidelity and that the present scheme is robust against the cavity decay and spontaneous emission. In addition, our scheme is more stable against the dephasing than the adiabatic scheme.

  12. Efficient Nonlocal M-Control and N-Target Controlled Unitary Gate Using Non-symmetric GHZ States

    NASA Astrophysics Data System (ADS)

    Chen, Li-Bing; Lu, Hong

    2018-03-01

    Efficient local implementation of a nonlocal M-control and N-target controlled unitary gate is considered. We first show that with the assistance of two non-symmetric qubit(1)-qutrit(N) Greenberger-Horne-Zeilinger (GHZ) states, a nonlocal 2-control and N-target controlled unitary gate can be constructed from 2 local two-qubit CNOT gates, 2 N local two-qutrit conditional SWAP gates, N local qutrit-qubit controlled unitary gates, and 2 N single-qutrit gates. At each target node, the two third levels of the two GHZ target qutrits are used to expose one and only one initial computational state to the local qutrit-qubit controlled unitary gate, instead of being used to hide certain states from the conditional dynamics. This scheme can be generalized straightforwardly to implement a higher-order nonlocal M-control and N-target controlled unitary gate by using M non-symmetric qubit(1)-qutrit(N) GHZ states as quantum channels. Neither the number of the additional levels of each GHZ target particle nor that of single-qutrit gates needs to increase with M. For certain realistic physical systems, the total gate time may be reduced compared with that required in previous schemes.

  13. Generation and control of Greenberger-Horne-Zeilinger entanglement in superconducting circuits.

    PubMed

    Wei, L F; Liu, Yu-xi; Nori, Franco

    2006-06-23

    Going beyond the entanglement of microscopic objects (such as photons, spins, and ions), here we propose an efficient approach to produce and control the quantum entanglement of three macroscopic coupled superconducting qubits. By conditionally rotating, one by one, selected Josephson-charge qubits, we show that their Greenberger-Horne-Zeilinger (GHZ) entangled states can be deterministically generated. The existence of GHZ correlations between these qubits could be experimentally demonstrated by effective single-qubit operations followed by high-fidelity single-shot readouts. The possibility of using the prepared GHZ correlations to test the macroscopic conflict between the noncommutativity of quantum mechanics and the commutativity of classical physics is also discussed.

  14. Optimal remote preparation of arbitrary multi-qubit real-parameter states via two-qubit entangled states

    NASA Astrophysics Data System (ADS)

    Wei, Jiahua; Shi, Lei; Luo, Junwen; Zhu, Yu; Kang, Qiaoyan; Yu, Longqiang; Wu, Hao; Jiang, Jun; Zhao, Boxin

    2018-06-01

    In this paper, we present an efficient scheme for remote state preparation of arbitrary n-qubit states with real coefficients. Quantum channel is composed of n maximally two-qubit entangled states, and several appropriate mutually orthogonal bases including the real parameters of prepared states are delicately constructed without the introduction of auxiliary particles. It is noted that the successful probability is 100% by using our proposal under the condition that the parameters of prepared states are all real. Compared to general states, the probability of our protocol is improved at the cost of the information reduction in the transmitted state.

  15. Efficient teleportation between remote single-atom quantum memories.

    PubMed

    Nölleke, Christian; Neuzner, Andreas; Reiserer, Andreas; Hahn, Carolin; Rempe, Gerhard; Ritter, Stephan

    2013-04-05

    We demonstrate teleportation of quantum bits between two single atoms in distant laboratories. Using a time-resolved photonic Bell-state measurement, we achieve a teleportation fidelity of (88.0 ± 1.5)%, largely determined by our entanglement fidelity. The low photon collection efficiency in free space is overcome by trapping each atom in an optical cavity. The resulting success probability of 0.1% is almost 5 orders of magnitude larger than in previous experiments with remote material qubits. It is mainly limited by photon propagation and detection losses and can be enhanced with a cavity-based deterministic Bell-state measurement.

  16. Qubit absorption refrigerator at strong coupling

    NASA Astrophysics Data System (ADS)

    Mu, Anqi; Agarwalla, Bijay Kumar; Schaller, Gernot; Segal, Dvira

    2017-12-01

    We demonstrate that a quantum absorption refrigerator (QAR) can be realized from the smallest quantum system, a qubit, by coupling it in a non-additive (strong) manner to three heat baths. This function is un-attainable for the qubit model under the weak system-bath coupling limit, when the dissipation is additive. In an optimal design, the reservoirs are engineered and characterized by a single frequency component. We then obtain closed expressions for the cooling window and refrigeration efficiency, as well as bounds for the maximal cooling efficiency and the efficiency at maximal power. Our results agree with macroscopic designs and with three-level models for QARs, which are based on the weak system-bath coupling assumption. Beyond the optimal limit, we show with analytical calculations and numerical simulations that the cooling efficiency varies in a non-universal manner with model parameters. Our work demonstrates that strongly-coupled quantum machines can exhibit function that is un-attainable under the weak system-bath coupling assumption.

  17. An efficient quantum circuit analyser on qubits and qudits

    NASA Astrophysics Data System (ADS)

    Loke, T.; Wang, J. B.

    2011-10-01

    This paper presents a highly efficient decomposition scheme and its associated Mathematica notebook for the analysis of complicated quantum circuits comprised of single/multiple qubit and qudit quantum gates. In particular, this scheme reduces the evaluation of multiple unitary gate operations with many conditionals to just two matrix additions, regardless of the number of conditionals or gate dimensions. This improves significantly the capability of a quantum circuit analyser implemented in a classical computer. This is also the first efficient quantum circuit analyser to include qudit quantum logic gates.

  18. Quantum Image Processing and Its Application to Edge Detection: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Yao, Xi-Wei; Wang, Hengyan; Liao, Zeyang; Chen, Ming-Cheng; Pan, Jian; Li, Jun; Zhang, Kechao; Lin, Xingcheng; Wang, Zhehui; Luo, Zhihuang; Zheng, Wenqiang; Li, Jianzhong; Zhao, Meisheng; Peng, Xinhua; Suter, Dieter

    2017-07-01

    Processing of digital images is continuously gaining in volume and relevance, with concomitant demands on data storage, transmission, and processing power. Encoding the image information in quantum-mechanical systems instead of classical ones and replacing classical with quantum information processing may alleviate some of these challenges. By encoding and processing the image information in quantum-mechanical systems, we here demonstrate the framework of quantum image processing, where a pure quantum state encodes the image information: we encode the pixel values in the probability amplitudes and the pixel positions in the computational basis states. Our quantum image representation reduces the required number of qubits compared to existing implementations, and we present image processing algorithms that provide exponential speed-up over their classical counterparts. For the commonly used task of detecting the edge of an image, we propose and implement a quantum algorithm that completes the task with only one single-qubit operation, independent of the size of the image. This demonstrates the potential of quantum image processing for highly efficient image and video processing in the big data era.

  19. Universal non-adiabatic geometric manipulation of pseudo-spin charge qubits

    NASA Astrophysics Data System (ADS)

    Azimi Mousolou, Vahid

    2017-01-01

    Reliable quantum information processing requires high-fidelity universal manipulation of quantum systems within the characteristic coherence times. Non-adiabatic holonomic quantum computation offers a promising approach to implement fast, universal, and robust quantum logic gates particularly useful in nano-fabricated solid-state architectures, which typically have short coherence times. Here, we propose an experimentally feasible scheme to realize high-speed universal geometric quantum gates in nano-engineered pseudo-spin charge qubits. We use a system of three coupled quantum dots containing a single electron, where two computational states of a double quantum dot charge qubit interact through an intermediate quantum dot. The additional degree of freedom introduced into the qubit makes it possible to create a geometric model system, which allows robust and efficient single-qubit rotations through careful control of the inter-dot tunneling parameters. We demonstrate that a capacitive coupling between two charge qubits permits a family of non-adiabatic holonomic controlled two-qubit entangling gates, and thus provides a promising procedure to maintain entanglement in charge qubits and a pathway toward fault-tolerant universal quantum computation. We estimate the feasibility of the proposed structure by analyzing the gate fidelities to some extent.

  20. Efficient creation of dipolar coupled nitrogen-vacancy spin qubits in diamond

    NASA Astrophysics Data System (ADS)

    Jakobi, I.; Momenzadeh, S. A.; Fávaro de Oliveira, F.; Michl, J.; Ziem, F.; Schreck, M.; Neumann, P.; Denisenko, A.; Wrachtrup, J.

    2016-09-01

    Coherently coupled pairs or multimers of nitrogen-vacancy defect electron spins in diamond have many promising applications especially in quantum information processing (QIP) but also in nanoscale sensing applications. Scalable registers of spin qubits are essential to the progress of QIP. Ion implantation is the only known technique able to produce defect pairs close enough to allow spin coupling via dipolar interaction. Although several competing methods have been proposed to increase the resulting resolution of ion implantation, the reliable creation of working registers is still to be demonstrated. The current limitation are residual radiation-induced defects, resulting in degraded qubit performance as trade-off for positioning accuracy. Here we present an optimized estimation of nanomask implantation parameters that are most likely to produce interacting qubits under standard conditions. We apply our findings to a well-established technique, namely masks written in electron-beam lithography, to create coupled defect pairs with a reasonable probability. Furthermore, we investigate the scaling behavior and necessary improvements to efficiently engineer interacting spin architectures.

  1. Enhancing the absorption and energy transfer process via quantum entanglement

    NASA Astrophysics Data System (ADS)

    Zong, Xiao-Lan; Song, Wei; Zhou, Jian; Yang, Ming; Yu, Long-Bao; Cao, Zhuo-Liang

    2018-07-01

    The quantum network model is widely used to describe the dynamics of excitation energy transfer in photosynthesis complexes. Different from the previous schemes, we explore a specific network model, which includes both light-harvesting and energy transfer process. Here, we define a rescaled measure to manifest the energy transfer efficiency from external driving to the sink, and the external driving fields are used to simulate the energy absorption process. To study the role of initial state in the light-harvesting and energy transfer process, we assume the initial state of the donors to be two-qubit and three-qubit entangled states, respectively. In the two-qubit initial state case, we find that the initial entanglement between the donors can help to improve the absorption and energy transfer process for both the near-resonant and large-detuning cases. For the case of three-qubit initial state, we can see that the transfer efficiency will reach a larger value faster in the tripartite entanglement case compared to the bipartite entanglement case.

  2. Efficient schemes for deterministic joint remote preparation of an arbitrary four-qubit W-type entangled state

    NASA Astrophysics Data System (ADS)

    Fu, Hao; Ma, Peng-Cheng; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang

    2017-06-01

    We present three schemes for the joint remote state preparation (JRSP) of an arbitrary four-qubit W-type entangled state with complex coefficients via four and two three-qubit GHZ states as the quantum channel. In these schemes, two senders (or N senders) share the original state which they wish to help the receiver to remotely prepare. To complete the JRSP schemes, some novel sets of mutually orthogonal basis vectors are introduced. It is shown that, only if two senders (or N senders) collaborate with each other, and perform projective measurements under suitable measuring basis on their own qubits, the receiver can reconstruct the original state by means of some appropriate unitary operations. It is shown that, in all our schemes, the total success probability of the JRSP can reach 1. Specially, compared with the first scheme in our paper, the entanglement resource in the second scheme can be reduced. This means that the scheme is more efficient and economical.

  3. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Efficient One-Step Generation of Cluster State with Charge Qubits in Circuit QED

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Min; Li, Cheng-Zu

    2010-01-01

    We propose theoretical schemes to generate highly entangled cluster state with superconducting qubits in a circuit QED architecture. Charge qubits are located inside a superconducting transmission line, which serves as a quantum data bus. We show that large clusters state can be efficiently generated in just one step with the long-range Ising-like unitary operators. The quantum operations which are generally realized by two coupling mechanisms: either voltage coupling or current coupling, depend only on global geometric features and are insensitive not only to the thermal state of the transmission line but also to certain random operation errors. Thus high-fidelity one-way quantum computation can be achieved.

  4. Transversal Clifford gates on folded surface codes

    DOE PAGES

    Moussa, Jonathan E.

    2016-10-12

    Surface and color codes are two forms of topological quantum error correction in two spatial dimensions with complementary properties. Surface codes have lower-depth error detection circuits and well-developed decoders to interpret and correct errors, while color codes have transversal Clifford gates and better code efficiency in the number of physical qubits needed to achieve a given code distance. A formal equivalence exists between color codes and folded surface codes, but it does not guarantee the transferability of any of these favorable properties. However, the equivalence does imply the existence of constant-depth circuit implementations of logical Clifford gates on folded surfacemore » codes. We achieve and improve this result by constructing two families of folded surface codes with transversal Clifford gates. This construction is presented generally for qudits of any dimension. Lastly, the specific application of these codes to universal quantum computation based on qubit fusion is also discussed.« less

  5. Magnetic-field sensing with quantum error detection under the effect of energy relaxation

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Yuichiro; Benjamin, Simon

    2017-03-01

    A solid state spin is an attractive system with which to realize an ultrasensitive magnetic field sensor. A spin superposition state will acquire a phase induced by the target field, and we can estimate the field strength from this phase. Recent studies have aimed at improving sensitivity through the use of quantum error correction (QEC) to detect and correct any bit-flip errors that may occur during the sensing period. Here we investigate the performance of a two-qubit sensor employing QEC and under the effect of energy relaxation. Surprisingly, we find that the standard QEC technique to detect and recover from an error does not improve the sensitivity compared with the single-qubit sensors. This is a consequence of the fact that the energy relaxation induces both a phase-flip and a bit-flip noise where the former noise cannot be distinguished from the relative phase induced from the target fields. However, we have found that we can improve the sensitivity if we adopt postselection to discard the state when error is detected. Even when quantum error detection is moderately noisy, and allowing for the cost of the postselection technique, we find that this two-qubit system shows an advantage in sensing over a single qubit in the same conditions.

  6. Restless Tuneup of High-Fidelity Qubit Gates

    NASA Astrophysics Data System (ADS)

    Rol, M. A.; Bultink, C. C.; O'Brien, T. E.; de Jong, S. R.; Theis, L. S.; Fu, X.; Luthi, F.; Vermeulen, R. F. L.; de Sterke, J. C.; Bruno, A.; Deurloo, D.; Schouten, R. N.; Wilhelm, F. K.; Dicarlo, L.

    We present a tuneup protocol for qubit gates with tenfold speedup over traditional methods reliant on qubit initialization by energy relax- ation. This speedup is achieved by constructing a cost function for Nelder-Mead optimization from real-time correlation of non-demolition measurements interleaving gate operations without pause. Applying the protocol on a transmon qubit achieves 0.999 average Clifford fidelity in one minute, as independently verified using randomized benchmarking and gate set tomography. The adjustable sensitivity of the cost function allows detecting fractional reductions in gate error with constant signal- to-noise ratio. The restless concept here demonstrated can be readily extended to the tuneup of two-qubit gates and measurement operations. Research funded by IARPA, an ERC Synergy Grant, Microsoft Research, and the China Scholarship Council.

  7. Improving quantum state transfer efficiency and entanglement distribution in binary tree spin network through incomplete collapsing measurements

    NASA Astrophysics Data System (ADS)

    Behzadi, Naghi; Ahansaz, Bahram

    2018-04-01

    We propose a mechanism for quantum state transfer (QST) over a binary tree spin network on the basis of incomplete collapsing measurements. To this aim, we perform initially a weak measurement (WM) on the central qubit of the binary tree network where the state of our concern has been prepared on that qubit. After the time evolution of the whole system, a quantum measurement reversal (QMR) is performed on a chosen target qubit. By taking optimal value for the strength of QMR, it is shown that the QST quality from the sending qubit to any typical target qubit on the binary tree is considerably improved in terms of the WM strength. Also, we show that how high-quality entanglement distribution over the binary tree network is achievable by using this approach.

  8. Quantum computing with incoherent resources and quantum jumps.

    PubMed

    Santos, M F; Cunha, M Terra; Chaves, R; Carvalho, A R R

    2012-04-27

    Spontaneous emission and the inelastic scattering of photons are two natural processes usually associated with decoherence and the reduction in the capacity to process quantum information. Here we show that, when suitably detected, these photons are sufficient to build all the fundamental blocks needed to perform quantum computation in the emitting qubits while protecting them from deleterious dissipative effects. We exemplify this by showing how to efficiently prepare graph states for the implementation of measurement-based quantum computation.

  9. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-12-01

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.

  10. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities.

    PubMed

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-12-18

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.

  11. Nonuniform code concatenation for universal fault-tolerant quantum computing

    NASA Astrophysics Data System (ADS)

    Nikahd, Eesa; Sedighi, Mehdi; Saheb Zamani, Morteza

    2017-09-01

    Using transversal gates is a straightforward and efficient technique for fault-tolerant quantum computing. Since transversal gates alone cannot be computationally universal, they must be combined with other approaches such as magic state distillation, code switching, or code concatenation to achieve universality. In this paper we propose an alternative approach for universal fault-tolerant quantum computing, mainly based on the code concatenation approach proposed in [T. Jochym-O'Connor and R. Laflamme, Phys. Rev. Lett. 112, 010505 (2014), 10.1103/PhysRevLett.112.010505], but in a nonuniform fashion. The proposed approach is described based on nonuniform concatenation of the 7-qubit Steane code with the 15-qubit Reed-Muller code, as well as the 5-qubit code with the 15-qubit Reed-Muller code, which lead to two 49-qubit and 47-qubit codes, respectively. These codes can correct any arbitrary single physical error with the ability to perform a universal set of fault-tolerant gates, without using magic state distillation.

  12. Coupled qubits as a quantum heat switch

    NASA Astrophysics Data System (ADS)

    Karimi, B.; Pekola, J. P.; Campisi, M.; Fazio, R.

    2017-12-01

    We present a quantum heat switch based on coupled superconducting qubits, connected to two LC resonators that are terminated by resistors providing two heat baths. To describe the system, we use a standard second order master equation with respect to coupling to the baths. We find that this system can act as an efficient heat switch controlled by the applied magnetic flux. The flux influences the energy level separations of the system, and under some conditions, the finite coupling of the qubits enhances the transmitted power between the two baths, by an order of magnitude under realistic conditions. At the same time, the bandwidth at maximum power of the switch formed of the coupled qubits is narrowed.

  13. Dynamically protected cat-qubits: a new paradigm for universal quantum computation

    NASA Astrophysics Data System (ADS)

    Mirrahimi, Mazyar; Leghtas, Zaki; Albert, Victor V.; Touzard, Steven; Schoelkopf, Robert J.; Jiang, Liang; Devoret, Michel H.

    2014-04-01

    We present a new hardware-efficient paradigm for universal quantum computation which is based on encoding, protecting and manipulating quantum information in a quantum harmonic oscillator. This proposal exploits multi-photon driven dissipative processes to encode quantum information in logical bases composed of Schrödinger cat states. More precisely, we consider two schemes. In a first scheme, a two-photon driven dissipative process is used to stabilize a logical qubit basis of two-component Schrödinger cat states. While such a scheme ensures a protection of the logical qubit against the photon dephasing errors, the prominent error channel of single-photon loss induces bit-flip type errors that cannot be corrected. Therefore, we consider a second scheme based on a four-photon driven dissipative process which leads to the choice of four-component Schrödinger cat states as the logical qubit. Such a logical qubit can be protected against single-photon loss by continuous photon number parity measurements. Next, applying some specific Hamiltonians, we provide a set of universal quantum gates on the encoded qubits of each of the two schemes. In particular, we illustrate how these operations can be rendered fault-tolerant with respect to various decoherence channels of participating quantum systems. Finally, we also propose experimental schemes based on quantum superconducting circuits and inspired by methods used in Josephson parametric amplification, which should allow one to achieve these driven dissipative processes along with the Hamiltonians ensuring the universal operations in an efficient manner.

  14. Optimality of semiquantum nonlocality in the presence of high inconclusive rates

    DOE PAGES

    Lim, Charles Ci Wen

    2016-02-01

    Quantum nonlocality is a counterintuitive phenomenon that lies beyond the purview of causal influences. Recently, Bell inequalities have been generalized to the case of quantum inputs, leading to a powerful family of semiquantum Bell inequalities that are capable of detecting any entangled state. We focus on a different problem and investigate how the local indistinguishability of quantum inputs and postselection may affect the requirements to detect semiquantum nonlocality. Moreover, we consider a semiquantum nonlocal game based on locally indistinguishable qubit inputs, and derive its postselected local and quantum bounds by using a connection to the local distinguishability of quantum states.more » Interestingly, we find that the postselected local bound is independent of the measurement efficiency, and the achievable postselected Bell violation increases with decreasing measurement efficiency.« less

  15. Electrical detection of nuclear spin-echo signals in an electron spin injection system

    NASA Astrophysics Data System (ADS)

    Lin, Zhichao; Rasly, Mahmoud; Uemura, Tetsuya

    2017-06-01

    We demonstrated spin echoes of nuclear spins in a spin injection device with a highly polarized spin source by nuclear magnetic resonance (NMR). Efficient spin injection into GaAs from a half-metallic spin source of Co2MnSi enabled efficient dynamic nuclear polarization (DNP) and sensitive detection of NMR signals even at a low magnetic field of ˜0.1 T and a relatively high temperature of 4.2 K. The intrinsic coherence time T2 of 69Ga nuclear spins was evaluated from the spin-echo signals. The relation between T2 and the decay time of the Rabi oscillation suggests that the inhomogeneous effects in our system are not obvious. This study provides an all-electrical NMR system for nuclear-spin-based qubits.

  16. Experimental superposition of orders of quantum gates

    PubMed Central

    Procopio, Lorenzo M.; Moqanaki, Amir; Araújo, Mateus; Costa, Fabio; Alonso Calafell, Irati; Dowd, Emma G.; Hamel, Deny R.; Rozema, Lee A.; Brukner, Časlav; Walther, Philip

    2015-01-01

    Quantum computers achieve a speed-up by placing quantum bits (qubits) in superpositions of different states. However, it has recently been appreciated that quantum mechanics also allows one to ‘superimpose different operations'. Furthermore, it has been shown that using a qubit to coherently control the gate order allows one to accomplish a task—determining if two gates commute or anti-commute—with fewer gate uses than any known quantum algorithm. Here we experimentally demonstrate this advantage, in a photonic context, using a second qubit to control the order in which two gates are applied to a first qubit. We create the required superposition of gate orders by using additional degrees of freedom of the photons encoding our qubits. The new resource we exploit can be interpreted as a superposition of causal orders, and could allow quantum algorithms to be implemented with an efficiency unlikely to be achieved on a fixed-gate-order quantum computer. PMID:26250107

  17. Resonantly driven CNOT gate for electron spins.

    PubMed

    Zajac, D M; Sigillito, A J; Russ, M; Borjans, F; Taylor, J M; Burkard, G; Petta, J R

    2018-01-26

    Single-qubit rotations and two-qubit CNOT operations are crucial ingredients for universal quantum computing. Although high-fidelity single-qubit operations have been achieved using the electron spin degree of freedom, realizing a robust CNOT gate has been challenging because of rapid nuclear spin dephasing and charge noise. We demonstrate an efficient resonantly driven CNOT gate for electron spins in silicon. Our platform achieves single-qubit rotations with fidelities greater than 99%, as verified by randomized benchmarking. Gate control of the exchange coupling allows a quantum CNOT gate to be implemented with resonant driving in ~200 nanoseconds. We used the CNOT gate to generate a Bell state with 78% fidelity (corrected for errors in state preparation and measurement). Our quantum dot device architecture enables multi-qubit algorithms in silicon. Copyright © 2018, The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Thermodynamic fingerprints of non-Markovianity in a system of coupled superconducting qubits

    NASA Astrophysics Data System (ADS)

    Hamedani Raja, Sina; Borrelli, Massimo; Schmidt, Rebecca; Pekola, Jukka P.; Maniscalco, Sabrina

    2018-03-01

    The exploitation and characterization of memory effects arising from the interaction between system and environment is a key prerequisite for quantum reservoir engineering beyond the standard Markovian limit. In this paper we investigate a prototype of non-Markovian dynamics experimentally implementable with superconducting qubits. We rigorously quantify non-Markovianity, highlighting the effects of the environmental temperature on the Markovian to non-Markovian crossover. We investigate how memory effects influence, and specifically suppress, the ability to perform work on the driven qubit. We show that the average work performed on the qubit can be used as a diagnostic tool to detect the presence or absence of memory effects.

  19. Fast generation of three-qubit Greenberger-Horne-Zeilinger state based on the Lewis-Riesenfeld invariants in coupled cavities.

    PubMed

    Huang, Xiao-Bin; Chen, Ye-Hong; Wang, Zhe

    2016-05-24

    In this paper, we propose an efficient scheme to fast generate three-qubit Greenberger-Horne-Zeilinger (GHZ) state by constructing shortcuts to adiabatic passage (STAP) based on the "Lewis-Riesenfeld (LR) invariants" in spatially separated cavities connected by optical fibers. Numerical simulations illustrate that the scheme is not only fast, but robust against the decoherence caused by atomic spontaneous emission, cavity losses and the fiber photon leakages. This might be useful to realize fast and noise-resistant quantum information processing for multi-qubit systems.

  20. Hardware-efficient fermionic simulation with a cavity-QED system

    NASA Astrophysics Data System (ADS)

    Zhu, Guanyu; Subaşı, Yiǧit; Whitfield, James D.; Hafezi, Mohammad

    2018-03-01

    In digital quantum simulation of fermionic models with qubits, non-local maps for encoding are often encountered. Such maps require linear or logarithmic overhead in circuit depth which could render the simulation useless, for a given decoherence time. Here we show how one can use a cavity-QED system to perform digital quantum simulation of fermionic models. In particular, we show that highly nonlocal Jordan-Wigner or Bravyi-Kitaev transformations can be efficiently implemented through a hardware approach. The key idea is using ancilla cavity modes, which are dispersively coupled to a qubit string, to collectively manipulate and measure qubit states. Our scheme reduces the circuit depth in each Trotter step of the Jordan-Wigner encoding by a factor of N2, comparing to the scheme for a device with only local connectivity, where N is the number of orbitals for a generic two-body Hamiltonian. Additional analysis for the Fermi-Hubbard model on an N × N square lattice results in a similar reduction. We also discuss a detailed implementation of our scheme with superconducting qubits and cavities.

  1. Entanglement of remote material qubits through nonexciting interaction with single photons

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhang, Pengfei; Zhang, Tiancai

    2018-05-01

    We propose a scheme to entangle multiple material qubits through interaction with single photons via nonexciting processes associated with strongly coupling systems. The basic idea is based on the material state dependent reflection and transmission for the input photons. Thus, the material qubits in several systems can be entangled when one photon interacts with each system in cascade and the photon paths are mixed by the photon detection. The character of nonexciting of material qubits does not change the state of the material qubit and thus ensures the possibility of purifying entangled states by using more photons under realistic imperfect parameters. It also guarantees directly scaling up the scheme to entangle more qubits. Detailed analysis of fidelity and success probability of the scheme in the frame of an optical Fabry-Pérot cavity based strongly coupling system is presented. It is shown that a two-qubit entangled state with fidelity above 0.99 is promised with only two photons by using currently feasible experimental parameters. Our scheme can also be directly implemented on other strongly coupled system.

  2. Silicon based quantum dot hybrid qubits

    NASA Astrophysics Data System (ADS)

    Kim, Dohun

    2015-03-01

    The charge and spin degrees of freedom of an electron constitute natural bases for constructing quantum two level systems, or qubits, in semiconductor quantum dots. The quantum dot charge qubit offers a simple architecture and high-speed operation, but generally suffers from fast dephasing due to strong coupling of the environment to the electron's charge. On the other hand, quantum dot spin qubits have demonstrated long coherence times, but their manipulation is often slower than desired for important future applications. This talk will present experimental progress of a `hybrid' qubit, formed by three electrons in a Si/SiGe double quantum dot, which combines desirable characteristics (speed and coherence) in the past found separately in qubits based on either charge or spin degrees of freedom. Using resonant microwaves, we first discuss qubit operations near the `sweet spot' for charge qubit operation. Along with fast (>GHz) manipulation rates for any rotation axis on the Bloch sphere, we implement two independent tomographic characterization schemes in the charge qubit regime: traditional quantum process tomography (QPT) and gate set tomography (GST). We also present resonant qubit operations of the hybrid qubit performed on the same device, DC pulsed gate operations of which were recently demonstrated. We demonstrate three-axis control and the implementation of dynamic decoupling pulse sequences. Performing QPT on the hybrid qubit, we show that AC gating yields π rotation process fidelities higher than 93% for X-axis and 96% for Z-axis rotations, which demonstrates efficient quantum control of semiconductor qubits using resonant microwaves. We discuss a path forward for achieving fidelities better than the threshold for quantum error correction using surface codes. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), DOE (DE-FG02-03ER46028), and by the Laboratory Directed Research and Development program at Sandia National Laboratories under contract DE-AC04-94AL85000.

  3. Continuously monitoring the parity of superconducting qubits in a 2D cQED architecture

    NASA Astrophysics Data System (ADS)

    Blok, Machiel; Flurin, Emmanuel; Livingston, William; Colless, James; Dove, Allison; Siddiqi, Irfan

    Continuous measurements of joint qubit properties such as their parity can reveal insight into the collapse dynamics of entangled states and are a prerequisite for implementing continuous quantum error correction. Here it is crucial that the measurement collects no information other than the parity to avoid measurement induced dephasing. In a cQED architecture, a full-parity measurement can be implemented by strongly coupling two transmon qubits to a single high-Q planar resonator (χ >> κ). We will discuss the experimental implementation of this on-chip technique and the prospects to extend it to more qubits. This will allow us to monitor, in real-time, the projection into multi-partite entangled states and continuously detect errors on a logical qubit encoded in an entangled subspace. This work was supported by Army Research Office.

  4. Local unitary invariants for N-qubit pure states

    NASA Astrophysics Data System (ADS)

    Sharma, S. Shelly; Sharma, N. K.

    2010-11-01

    The concept of negativity font, a basic unit of multipartite entanglement, is introduced. Transformation properties of determinants of negativity fonts under local unitary (LU) transformations are exploited to obtain relevant N-qubit polynomial invariants and construct entanglement monotones from first principles. It is shown that entanglement monotones that detect the entanglement of specific parts of the composite system may be constructed to distinguish between states with distinct types of entanglement. The structural difference between entanglement monotones for an odd and even number of qubits is brought out.

  5. General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED

    NASA Astrophysics Data System (ADS)

    Bultink, C. C.; Tarasinski, B.; Haandbæk, N.; Poletto, S.; Haider, N.; Michalak, D. J.; Bruno, A.; DiCarlo, L.

    2018-02-01

    We present and demonstrate a general three-step method for extracting the quantum efficiency of dispersive qubit readout in circuit QED. We use active depletion of post-measurement photons and optimal integration weight functions on two quadratures to maximize the signal-to-noise ratio of the non-steady-state homodyne measurement. We derive analytically and demonstrate experimentally that the method robustly extracts the quantum efficiency for arbitrary readout conditions in the linear regime. We use the proven method to optimally bias a Josephson traveling-wave parametric amplifier and to quantify different noise contributions in the readout amplification chain.

  6. Method for universal detection of two-photon polarization entanglement

    NASA Astrophysics Data System (ADS)

    Bartkiewicz, Karol; Horodecki, Paweł; Lemr, Karel; Miranowicz, Adam; Życzkowski, Karol

    2015-03-01

    Detecting and quantifying quantum entanglement of a given unknown state poses problems that are fundamentally important for quantum information processing. Surprisingly, no direct (i.e., without quantum tomography) universal experimental implementation of a necessary and sufficient test of entanglement has been designed even for a general two-qubit state. Here we propose an experimental method for detecting a collective universal witness, which is a necessary and sufficient test of two-photon polarization entanglement. It allows us to detect entanglement for any two-qubit mixed state and to establish tight upper and lower bounds on its amount. A different element of this method is the sequential character of its main components, which allows us to obtain relatively complicated information about quantum correlations with the help of simple linear-optical elements. As such, this proposal realizes a universal two-qubit entanglement test within the present state of the art of quantum optics. We show the optimality of our setup with respect to the minimal number of measured quantities.

  7. Comment II on ''Dense coding in entangled states''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhavan, O.; Institute for Studies in Theoretical Physics and Mathematics; Rezakhani, A. T.

    2003-07-01

    In a recent Brief Report, L. Lee, D. Ahn, and S. W. Hwang [Phys. Rev. A 66, 024304 (2002)] have claimed that using pairwise entangled qubits gives rise to an exponentially more efficient dense coding when two parties are involved than using maximally entangled qubits shared among N parties. Here we show that their claim is not true.

  8. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits

    NASA Astrophysics Data System (ADS)

    Lamata, Lucas

    We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi-Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits. The author wishes to acknowledge discussions with I. Arrazola, A. Mezzacapo, J. S. Pedernales, and E. Solano, and support from Ramon y Cajal Grant RYC-2012-11391, Spanish MINECO/FEDER FIS2015-69983-P, UPV/EHU UFI 11/55 and Project EHUA14/04.

  9. Lower limits of spin detection efficiency for two-parameter two-qubit (TPTQ) states with non-ideal ferromagnetic detectors

    NASA Astrophysics Data System (ADS)

    Majd, Nayereh; Ghasemi, Zahra

    2016-10-01

    We have investigated a TPTQ state as an input state of a non-ideal ferromagnetic detectors. Minimal spin polarization required to demonstrate spin entanglement according to entanglement witness and CHSH inequality with respect to (w.r.t.) their two free parameters have been found, and we have numerically shown that the entanglement witness is less stringent than the direct tests of Bell's inequality in the form of CHSH in the entangled limits of its free parameters. In addition, the lower limits of spin detection efficiency fulfilling secure cryptographic key against eavesdropping have been derived. Finally, we have considered TPTQ state as an output of spin decoherence channel and the region of ballistic transmission time w.r.t. spin relaxation time and spin dephasing time has been found.

  10. Demonstration of analyzers for multimode photonic time-bin qubits

    NASA Astrophysics Data System (ADS)

    Jin, Jeongwan; Agne, Sascha; Bourgoin, Jean-Philippe; Zhang, Yanbao; Lütkenhaus, Norbert; Jennewein, Thomas

    2018-04-01

    We demonstrate two approaches for unbalanced interferometers as time-bin qubit analyzers for quantum communication, robust against mode distortions and polarization effects as expected from free-space quantum communication systems including wavefront deformations, path fluctuations, pointing errors, and optical elements. Despite strong spatial and temporal distortions of the optical mode of a time-bin qubit, entangled with a separate polarization qubit, we verify entanglement using the Negative Partial Transpose, with the measured visibility of up to 0.85 ±0.01 . The robustness of the analyzers is further demonstrated for various angles of incidence up to 0 .2∘ . The output of the interferometers is coupled into multimode fiber yielding a high system throughput of 0.74. Therefore, these analyzers are suitable and efficient for quantum communication over multimode optical channels.

  11. Deterministic Joint Remote Preparation of a Four-Qubit Cluster-Type State via GHZ States

    NASA Astrophysics Data System (ADS)

    Wang, Hai-bin; Zhou, Xiao-Yan; An, Xing-xing; Cui, Meng-Meng; Fu, De-sheng

    2016-08-01

    A scheme for the deterministic joint remote preparation of a four-qubit cluster-type state using only two Greenberger-Horne-Zeilinger (GHZ) states as quantum channels is presented. In this scheme, the first sender performs a two-qubit projective measurement according to the real coefficient of the desired state. Then, the other sender utilizes the measurement result and the complex coefficient to perform another projective measurement. To obtain the desired state, the receiver applies appropriate unitary operations to his/her own two qubits and two CNOT operations to the two ancillary ones. Most interestingly, our scheme can achieve unit success probability, i.e., P s u c =1. Furthermore, comparison reveals that the efficiency is higher than that of most other analogous schemes.

  12. Robust Distant Entanglement Generation Using Coherent Multiphoton Scattering

    NASA Astrophysics Data System (ADS)

    Chan, Ching-Kit; Sham, L. J.

    2013-02-01

    We describe a protocol to entangle two qubits at a distance by using resonance fluorescence. The scheme makes use of the postselection of large and distinguishable fluorescence signals corresponding to entangled and unentangled qubit states and has the merits of both high success probability and high entanglement fidelity owing to the multiphoton nature. Our result shows that the entanglement generation is robust against photon fluctuations in the fluorescence signals for a wide range of driving fields. We also demonstrate that this new protocol has an average entanglement duration within the decoherence time of corresponding qubit systems, based on current experimental photon efficiency.

  13. Efficient many-party controlled teleportation of multiqubit quantum information via entanglement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Chuiping; Department of Chemistry, University of Kansas, and Kansas Center for Advanced Scientific Computing, Lawrence, Kansas 66045; Chu, Shih-I

    2004-08-01

    We present a way to teleport multiqubit quantum information from a sender to a distant receiver via the control of many agents in a network. We show that the original state of each qubit can be restored by the receiver as long as all the agents collaborate. However, even if one agent does not cooperate, the receiver cannot fully recover the original state of each qubit. The method operates essentially through entangling quantum information during teleportation, in such a way that the required auxiliary qubit resources, local operation, and classical communication are considerably reduced for the present purpose.

  14. Time-reversal-symmetric single-photon wave packets for free-space quantum communication.

    PubMed

    Trautmann, N; Alber, G; Agarwal, G S; Leuchs, G

    2015-05-01

    Readout and retrieval processes are proposed for efficient, high-fidelity quantum state transfer between a matter qubit, encoded in the level structure of a single atom or ion, and a photonic qubit, encoded in a time-reversal-symmetric single-photon wave packet. They are based on controlling spontaneous photon emission and absorption of a matter qubit on demand in free space by stimulated Raman adiabatic passage. As these processes do not involve mode selection by high-finesse cavities or photon transport through optical fibers, they offer interesting perspectives as basic building blocks for free-space quantum-communication protocols.

  15. Stabilizing Entanglement via Symmetry-Selective Bath Engineering in Superconducting Qubits.

    PubMed

    Kimchi-Schwartz, M E; Martin, L; Flurin, E; Aron, C; Kulkarni, M; Tureci, H E; Siddiqi, I

    2016-06-17

    Bath engineering, which utilizes coupling to lossy modes in a quantum system to generate nontrivial steady states, is a tantalizing alternative to gate- and measurement-based quantum science. Here, we demonstrate dissipative stabilization of entanglement between two superconducting transmon qubits in a symmetry-selective manner. We utilize the engineered symmetries of the dissipative environment to stabilize a target Bell state; we further demonstrate suppression of the Bell state of opposite symmetry due to parity selection rules. This implementation is resource efficient, achieves a steady-state fidelity F=0.70, and is scalable to multiple qubits.

  16. Robust distant entanglement generation using coherent multiphoton scattering.

    PubMed

    Chan, Ching-Kit; Sham, L J

    2013-02-15

    We describe a protocol to entangle two qubits at a distance by using resonance fluorescence. The scheme makes use of the postselection of large and distinguishable fluorescence signals corresponding to entangled and unentangled qubit states and has the merits of both high success probability and high entanglement fidelity owing to the multiphoton nature. Our result shows that the entanglement generation is robust against photon fluctuations in the fluorescence signals for a wide range of driving fields. We also demonstrate that this new protocol has an average entanglement duration within the decoherence time of corresponding qubit systems, based on current experimental photon efficiency.

  17. Direct method for measuring and witnessing quantum entanglement of arbitrary two-qubit states through Hong-Ou-Mandel interference

    NASA Astrophysics Data System (ADS)

    Bartkiewicz, Karol; Chimczak, Grzegorz; Lemr, Karel

    2017-02-01

    We describe a direct method for experimental determination of the negativity of an arbitrary two-qubit state with 11 measurements performed on multiple copies of the two-qubit system. Our method is based on the experimentally accessible sequences of singlet projections performed on up to four qubit pairs. In particular, our method permits the application of the Peres-Horodecki separability criterion to an arbitrary two-qubit state. We explicitly demonstrate that measuring entanglement in terms of negativity requires three measurements more than detecting two-qubit entanglement. The reported minimal set of interferometric measurements provides a complete description of bipartite quantum entanglement in terms of two-photon interference. This set is smaller than the set of 15 measurements needed to perform a complete quantum state tomography of an arbitrary two-qubit system. Finally, we demonstrate that the set of nine Makhlin's invariants needed to express the negativity can be measured by performing 13 multicopy projections. We demonstrate both that these invariants are a useful theoretical concept for designing specialized quantum interferometers and that their direct measurement within the framework of linear optics does not require performing complete quantum state tomography.

  18. Spectral implementation of some quantum algorithms by one- and two-dimensional nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Das, Ranabir; Kumar, Anil

    2004-10-01

    Quantum information processing has been effectively demonstrated on a small number of qubits by nuclear magnetic resonance. An important subroutine in any computing is the readout of the output. "Spectral implementation" originally suggested by Z. L. Madi, R. Bruschweiler, and R. R. Ernst [J. Chem. Phys. 109, 10603 (1999)], provides an elegant method of readout with the use of an extra "observer" qubit. At the end of computation, detection of the observer qubit provides the output via the multiplet structure of its spectrum. In spectral implementation by two-dimensional experiment the observer qubit retains the memory of input state during computation, thereby providing correlated information on input and output, in the same spectrum. Spectral implementation of Grover's search algorithm, approximate quantum counting, a modified version of Berstein-Vazirani problem, and Hogg's algorithm are demonstrated here in three- and four-qubit systems.

  19. Silicon Qubits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladd, Thaddeus D.; Carroll, Malcolm S.

    2018-02-28

    Silicon is a promising material candidate for qubits due to the combination of worldwide infrastructure in silicon microelectronics fabrication and the capability to drastically reduce decohering noise channels via chemical purification and isotopic enhancement. However, a variety of challenges in fabrication, control, and measurement leaves unclear the best strategy for fully realizing this material’s future potential. In this article, we survey three basic qubit types: those based on substitutional donors, on metal-oxide-semiconductor (MOS) structures, and on Si/SiGe heterostructures. We also discuss the multiple schema used to define and control Si qubits, which may exploit the manipulation and detection of amore » single electron charge, the state of a single electron spin, or the collective states of multiple spins. Far from being comprehensive, this article provides a brief orientation to the rapidly evolving field of silicon qubit technology and is intended as an approachable entry point for a researcher new to this field.« less

  20. Usefulness of multiqubit W-type states in quantum information processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, P.; Adhikari, S.; Kumar, A., E-mail: atulk@iitj.ac.in

    We analyze the efficiency of multiqubit W-type states as resources for quantum information. For this, we identify and generalize four-qubit W-type states. Our results show that these states can be used as resources for deterministic quantum information processing. The utility of results, however, is limited by the availability of experimental setups to perform and distinguish multiqubit measurements. We therefore emphasize protocols where two users want to establish an optimal bipartite entanglement using the partially entangled W-type states. We find that for such practical purposes, four-qubit W-type states can be a better resource in comparison to three-qubit W-type states. For amore » dense coding protocol, our states can be used deterministically to send two bits of classical message by locally manipulating a single qubit. In addition, we also propose a realistic experimental method to prepare the four-qubit W-type states using standard unitary operations and weak measurements.« less

  1. Hardware-efficient Bell state preparation using Quantum Zeno Dynamics in superconducting circuits

    NASA Astrophysics Data System (ADS)

    Flurin, Emmanuel; Blok, Machiel; Hacohen-Gourgy, Shay; Martin, Leigh S.; Livingston, William P.; Dove, Allison; Siddiqi, Irfan

    By preforming a continuous joint measurement on a two qubit system, we restrict the qubit evolution to a chosen subspace of the total Hilbert space. This extension of the quantum Zeno effect, called Quantum Zeno Dynamics, has already been explored in various physical systems such as superconducting cavities, single rydberg atoms, atomic ensembles and Bose Einstein condensates. In this experiment, two superconducting qubits are strongly dispersively coupled to a high-Q cavity (χ >> κ) allowing for the doubly excited state | 11 〉 to be selectively monitored. The Quantum Zeno Dynamics in the complementary subspace enables us to coherently prepare a Bell state. As opposed to dissipation engineering schemes, we emphasize that our protocol is deterministic, does not rely direct coupling between qubits and functions only using single qubit controls and cavity readout. Such Quantum Zeno Dynamics can be generalized to larger Hilbert space enabling deterministic generation of many-body entangled states, and thus realizes a decoherence-free subspace allowing alternative noise-protection schemes.

  2. Multihop teleportation of two-qubit state via the composite GHZ-Bell channel

    NASA Astrophysics Data System (ADS)

    Zou, Zhen-Zhen; Yu, Xu-Tao; Gong, Yan-Xiao; Zhang, Zai-Chen

    2017-01-01

    A multihop teleportation protocol in quantum communication network is introduced to teleport an arbitrary two-qubit state, between two nodes without directly sharing entanglement pairs. Quantum channels are built among neighbor nodes based on a five-qubit entangled system composed of GHZ and Bell pairs. The von Neumann measurements in all intermediate nodes and the source node are implemented, and then the measurement outcomes are sent to the destination node independently. After collecting all the measurement outcomes at the destination node, an efficient method is proposed to calculate the unitary operations for transforming the receiver's states to the state teleported. Therefore, only adopting the proper unitary operations at the destination node, the desired quantum state can be recovered perfectly. The transmission flexibility and efficiency of quantum network with composite GHZ-Bell channel are improved by transmitting measurement outcomes of all nodes in parallelism and reducing hop-by-hop teleportation delay.

  3. Tunable, Flexible and Efficient Optimization of Control Pulses for Superconducting Qubits, part II - Applications

    NASA Astrophysics Data System (ADS)

    AsséMat, Elie; Machnes, Shai; Tannor, David; Wilhelm-Mauch, Frank

    In part I, we presented the theoretic foundations of the GOAT algorithm for the optimal control of quantum systems. Here in part II, we focus on several applications of GOAT to superconducting qubits architecture. First, we consider a control-Z gate on Xmons qubits with an Erf parametrization of the optimal pulse. We show that a fast and accurate gate can be obtained with only 16 parameters, as compared to hundreds of parameters required in other algorithms. We present numerical evidences that such parametrization should allow an efficient in-situ calibration of the pulse. Next, we consider the flux-tunable coupler by IBM. We show optimization can be carried out in a more realistic model of the system than was employed in the original study, which is expected to further simplify the calibration process. Moreover, GOAT reduced the complexity of the optimal pulse to only 6 Fourier components, composed with analytic wrappers.

  4. Qubit-qubit entanglement dynamics control via external classical pumping and Kerr nonlinearity mediated by a single detuned cavity field powered by two-photon processes

    NASA Astrophysics Data System (ADS)

    Ateto, M. S.

    2017-11-01

    The nonlinear time-dependent two-photon Hamiltonian of a couple of classically pumped independent qubits is analytically solved, and the corresponding time evolution unitary operator, in an exact form, is derived. Using the concurrence, entanglement dynamics between the qubits under the influence of a wide range of effective parameters are examined and, in detail, analyzed. Observations analysis is documented with aid of the field phase-space distribution Wigner function. A couple of initial qubit states is considered, namely similar excited states and a Bell-like pure state. It is demonstrated that an initial Bell-like pure state is as well typical initial qubits setting for robust, regular and a high degree of entanglement. Moreover, it is established that high-constant Kerr media represent an effective tool for generating periodical entanglement at fixed time cycles of maxima reach unity forever when qubits are initially in a Bell-like pure state. Further, it is showed that the medium strength of the classical pumping stimulates efficiently qubits entanglement, specially, when the interaction occurs off resonantly. However, the high-intensity pumping thermalizes the coherent distribution of photons, thus, the least photons number is used and, hence, the least minimum degree of qubits entanglement could be created. Furthermore, when the cavity field and external pumping are detuned, the external pumping acts like an auxiliary effective frequency for the cavity, as a result, the field Gaussian distribution acquires linear chirps, and consequently, more entanglement revivals appear in the same cycle during timescale.

  5. Efficient experimental design of high-fidelity three-qubit quantum gates via genetic programming

    NASA Astrophysics Data System (ADS)

    Devra, Amit; Prabhu, Prithviraj; Singh, Harpreet; Arvind; Dorai, Kavita

    2018-03-01

    We have designed efficient quantum circuits for the three-qubit Toffoli (controlled-controlled-NOT) and the Fredkin (controlled-SWAP) gate, optimized via genetic programming methods. The gates thus obtained were experimentally implemented on a three-qubit NMR quantum information processor, with a high fidelity. Toffoli and Fredkin gates in conjunction with the single-qubit Hadamard gates form a universal gate set for quantum computing and are an essential component of several quantum algorithms. Genetic algorithms are stochastic search algorithms based on the logic of natural selection and biological genetics and have been widely used for quantum information processing applications. We devised a new selection mechanism within the genetic algorithm framework to select individuals from a population. We call this mechanism the "Luck-Choose" mechanism and were able to achieve faster convergence to a solution using this mechanism, as compared to existing selection mechanisms. The optimization was performed under the constraint that the experimentally implemented pulses are of short duration and can be implemented with high fidelity. We demonstrate the advantage of our pulse sequences by comparing our results with existing experimental schemes and other numerical optimization methods.

  6. Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing

    NASA Astrophysics Data System (ADS)

    Yu, Kun-Fei; Gu, Jun; Hwang, Tzonelih; Gope, Prosanta

    2017-08-01

    This paper proposes a multi-party semi-quantum secret sharing (MSQSS) protocol which allows a quantum party (manager) to share a secret among several classical parties (agents) based on GHZ-like states. By utilizing the special properties of GHZ-like states, the proposed scheme can easily detect outside eavesdropping attacks and has the highest qubit efficiency among the existing MSQSS protocols. Then, we illustrate an efficient way to convert the proposed MSQSS protocol into a multi-party semi-quantum key distribution (MSQKD) protocol. The proposed approach is even useful to convert all the existing measure-resend type of semi-quantum secret sharing protocols into semi-quantum key distribution protocols.

  7. String order parameters for one-dimensional Floquet symmetry protected topological phases

    NASA Astrophysics Data System (ADS)

    Kumar, Ajesh; Dumitrescu, Philipp T.; Potter, Andrew C.

    2018-06-01

    Floquet symmetry protected topological (FSPT) phases are nonequilibrium topological phases enabled by time-periodic driving. FSPT phases of one-dimensional (1D) chains of bosons, spins, or qubits host dynamically protected edge states that can store quantum information without decoherence, making them promising for use as quantum memories. While FSPT order cannot be detected by any local measurement, here we construct nonlocal string order parameters that directly measure general 1D FSPT order. We propose a superconducting-qubit array based realization of the simplest Ising FSPT phase, which can be implemented with existing quantum computing hardware. We devise an interferometric scheme to directly measure the nonlocal string order using only simple one- and two-qubit operations and single-qubit measurements.

  8. One-step generation of multipartite entanglement among nitrogen-vacancy center ensembles

    PubMed Central

    Song, Wan-lu; Yin, Zhang-qi; Yang, Wan-li; Zhu, Xiao-bo; Zhou, Fei; Feng, Mang

    2015-01-01

    We describe a one-step, deterministic and scalable scheme for creating macroscopic arbitrary entangled coherent states (ECSs) of separate nitrogen-vacancy center ensembles (NVEs) that couple to a superconducting flux qubit. We discuss how to generate the entangled states between the flux qubit and two NVEs by the resonant driving. Then the ECSs of the NVEs can be obtained by projecting the flux qubit, and the entanglement detection can be realized by transferring the quantum state from the NVEs to the flux qubit. Our numerical simulation shows that even under current experimental parameters the concurrence of the ECSs can approach unity. We emphasize that this method is straightforwardly extendable to the case of many NVEs. PMID:25583623

  9. Minimal Entanglement Witness from Electrical Current Correlations.

    PubMed

    Brange, F; Malkoc, O; Samuelsson, P

    2017-01-20

    Despite great efforts, an unambiguous demonstration of entanglement of mobile electrons in solid state conductors is still lacking. Investigating theoretically a generic entangler-detector setup, we here show that a witness of entanglement between two flying electron qubits can be constructed from only two current cross correlation measurements, for any nonzero detector efficiencies and noncollinear polarization vectors. We find that all entangled pure states, but not all mixed ones, can be detected with only two measurements, except the maximally entangled states, which require three. Moreover, detector settings for optimal entanglement witnessing are presented.

  10. Minimal Entanglement Witness from Electrical Current Correlations

    NASA Astrophysics Data System (ADS)

    Brange, F.; Malkoc, O.; Samuelsson, P.

    2017-01-01

    Despite great efforts, an unambiguous demonstration of entanglement of mobile electrons in solid state conductors is still lacking. Investigating theoretically a generic entangler-detector setup, we here show that a witness of entanglement between two flying electron qubits can be constructed from only two current cross correlation measurements, for any nonzero detector efficiencies and noncollinear polarization vectors. We find that all entangled pure states, but not all mixed ones, can be detected with only two measurements, except the maximally entangled states, which require three. Moreover, detector settings for optimal entanglement witnessing are presented.

  11. Bell’s Nonlocality Can be Detected by the Violation of Einstein-Podolsky-Rosen Steering Inequality

    PubMed Central

    Chen, Jing-Ling; Ren, Changliang; Chen, Changbo; Ye, Xiang-Jun; Pati, Arun Kumar

    2016-01-01

    Recently quantum nonlocality has been classified into three distinct types: quantum entanglement, Einstein-Podolsky-Rosen steering, and Bell’s nonlocality. Among which, Bell’s nonlocality is the strongest type. Bell’s nonlocality for quantum states is usually detected by violation of some Bell’s inequalities, such as Clause-Horne-Shimony-Holt inequality for two qubits. Steering is a manifestation of nonlocality intermediate between entanglement and Bell’s nonlocality. This peculiar feature has led to a curious quantum phenomenon, the one-way Einstein-Podolsky-Rosen steering. The one-way steering was an important open question presented in 2007, and positively answered in 2014 by Bowles et al., who presented a simple class of one-way steerable states in a two-qubit system with at least thirteen projective measurements. The inspiring result for the first time theoretically confirms quantum nonlocality can be fundamentally asymmetric. Here, we propose another curious quantum phenomenon: Bell nonlocal states can be constructed from some steerable states. This novel finding not only offers a distinctive way to study Bell’s nonlocality without Bell’s inequality but with steering inequality, but also may avoid locality loophole in Bell’s tests and make Bell’s nonlocality easier for demonstration. Furthermore, a nine-setting steering inequality has also been presented for developing more efficient one-way steering and detecting some Bell nonlocal states. PMID:27966616

  12. Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal.

    PubMed

    O'Brien, Christopher; Lauk, Nikolai; Blum, Susanne; Morigi, Giovanna; Fleischhauer, Michael

    2014-08-08

    We propose a scheme to couple short single photon pulses to superconducting qubits. An optical photon is first absorbed into an inhomogeneously broadened rare-earth doped crystal using controlled reversible inhomogeneous broadening. The optical excitation is then mapped into a spin state using a series of π pulses and subsequently transferred to a superconducting qubit via a microwave cavity. To overcome the intrinsic and engineered inhomogeneous broadening of the optical and spin transitions in rare-earth doped crystals, we make use of a special transfer protocol using staggered π pulses. We predict total transfer efficiencies on the order of 90%.

  13. Impossibility of Classically Simulating One-Clean-Qubit Model with Multiplicative Error

    NASA Astrophysics Data System (ADS)

    Fujii, Keisuke; Kobayashi, Hirotada; Morimae, Tomoyuki; Nishimura, Harumichi; Tamate, Shuhei; Tani, Seiichiro

    2018-05-01

    The one-clean-qubit model (or the deterministic quantum computation with one quantum bit model) is a restricted model of quantum computing where all but a single input qubits are maximally mixed. It is known that the probability distribution of measurement results on three output qubits of the one-clean-qubit model cannot be classically efficiently sampled within a constant multiplicative error unless the polynomial-time hierarchy collapses to the third level [T. Morimae, K. Fujii, and J. F. Fitzsimons, Phys. Rev. Lett. 112, 130502 (2014), 10.1103/PhysRevLett.112.130502]. It was open whether we can keep the no-go result while reducing the number of output qubits from three to one. Here, we solve the open problem affirmatively. We also show that the third-level collapse of the polynomial-time hierarchy can be strengthened to the second-level one. The strengthening of the collapse level from the third to the second also holds for other subuniversal models such as the instantaneous quantum polynomial model [M. Bremner, R. Jozsa, and D. J. Shepherd, Proc. R. Soc. A 467, 459 (2011), 10.1098/rspa.2010.0301] and the boson sampling model [S. Aaronson and A. Arkhipov, STOC 2011, p. 333]. We additionally study the classical simulatability of the one-clean-qubit model with further restrictions on the circuit depth or the gate types.

  14. Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance.

    PubMed

    Baugh, J; Moussa, O; Ryan, C A; Nayak, A; Laflamme, R

    2005-11-24

    The counter-intuitive properties of quantum mechanics have the potential to revolutionize information processing by enabling the development of efficient algorithms with no known classical counterparts. Harnessing this power requires the development of a set of building blocks, one of which is a method to initialize the set of quantum bits (qubits) to a known state. Additionally, fresh ancillary qubits must be available during the course of computation to achieve fault tolerance. In any physical system used to implement quantum computation, one must therefore be able to selectively and dynamically remove entropy from the part of the system that is to be mapped to qubits. One such method is an 'open-system' cooling protocol in which a subset of qubits can be brought into contact with an external system of large heat capacity. Theoretical efforts have led to an implementation-independent cooling procedure, namely heat-bath algorithmic cooling. These efforts have culminated with the proposal of an optimal algorithm, the partner-pairing algorithm, which was used to compute the physical limits of heat-bath algorithmic cooling. Here we report the experimental realization of multi-step cooling of a quantum system via heat-bath algorithmic cooling. The experiment was carried out using nuclear magnetic resonance of a solid-state ensemble three-qubit system. We demonstrate the repeated repolarization of a particular qubit to an effective spin-bath temperature, and alternating logical operations within the three-qubit subspace to ultimately cool a second qubit below this temperature. Demonstration of the control necessary for these operations represents an important step forward in the manipulation of solid-state nuclear magnetic resonance qubits.

  15. Measurement-device-independent quantum key distribution.

    PubMed

    Lo, Hoi-Kwong; Curty, Marcos; Qi, Bing

    2012-03-30

    How to remove detector side channel attacks has been a notoriously hard problem in quantum cryptography. Here, we propose a simple solution to this problem--measurement-device-independent quantum key distribution (QKD). It not only removes all detector side channels, but also doubles the secure distance with conventional lasers. Our proposal can be implemented with standard optical components with low detection efficiency and highly lossy channels. In contrast to the previous solution of full device independent QKD, the realization of our idea does not require detectors of near unity detection efficiency in combination with a qubit amplifier (based on teleportation) or a quantum nondemolition measurement of the number of photons in a pulse. Furthermore, its key generation rate is many orders of magnitude higher than that based on full device independent QKD. The results show that long-distance quantum cryptography over say 200 km will remain secure even with seriously flawed detectors.

  16. Cryogenic setup for trapped ion quantum computing.

    PubMed

    Brandl, M F; van Mourik, M W; Postler, L; Nolf, A; Lakhmanskiy, K; Paiva, R R; Möller, S; Daniilidis, N; Häffner, H; Kaushal, V; Ruster, T; Warschburger, C; Kaufmann, H; Poschinger, U G; Schmidt-Kaler, F; Schindler, P; Monz, T; Blatt, R

    2016-11-01

    We report on the design of a cryogenic setup for trapped ion quantum computing containing a segmented surface electrode trap. The heat shield of our cryostat is designed to attenuate alternating magnetic field noise, resulting in 120 dB reduction of 50 Hz noise along the magnetic field axis. We combine this efficient magnetic shielding with high optical access required for single ion addressing as well as for efficient state detection by placing two lenses each with numerical aperture 0.23 inside the inner heat shield. The cryostat design incorporates vibration isolation to avoid decoherence of optical qubits due to the motion of the cryostat. We measure vibrations of the cryostat of less than ±20 nm over 2 s. In addition to the cryogenic apparatus, we describe the setup required for an operation with 40 Ca + and 88 Sr + ions. The instability of the laser manipulating the optical qubits in 40 Ca + is characterized by yielding a minimum of its Allan deviation of 2.4 ⋅ 10 -15 at 0.33 s. To evaluate the performance of the apparatus, we trapped 40 Ca + ions, obtaining a heating rate of 2.14(16) phonons/s and a Gaussian decay of the Ramsey contrast with a 1/e-time of 18.2(8) ms.

  17. Scalable digital hardware for a trapped ion quantum computer

    NASA Astrophysics Data System (ADS)

    Mount, Emily; Gaultney, Daniel; Vrijsen, Geert; Adams, Michael; Baek, So-Young; Hudek, Kai; Isabella, Louis; Crain, Stephen; van Rynbach, Andre; Maunz, Peter; Kim, Jungsang

    2016-12-01

    Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for loading, cooling, initialization, and detection of the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.

  18. Implementation of the semiclassical quantum Fourier transform in a scalable system.

    PubMed

    Chiaverini, J; Britton, J; Leibfried, D; Knill, E; Barrett, M D; Blakestad, R B; Itano, W M; Jost, J D; Langer, C; Ozeri, R; Schaetz, T; Wineland, D J

    2005-05-13

    We report the implementation of the semiclassical quantum Fourier transform in a system of three beryllium ion qubits (two-level quantum systems) confined in a segmented multizone trap. The quantum Fourier transform is the crucial final step in Shor's algorithm, and it acts on a register of qubits to determine the periodicity of the quantum state's amplitudes. Because only probability amplitudes are required for this task, a more efficient semiclassical version can be used, for which only single-qubit operations conditioned on measurement outcomes are required. We apply the transform to several input states of different periodicities; the results enable the location of peaks corresponding to the original periods. This demonstration incorporates the key elements of a scalable ion-trap architecture, suggesting the future capability of applying the quantum Fourier transform to a large number of qubits as required for a useful quantum factoring algorithm.

  19. Generation of three-qubit Greenberger-Horne-Zeilinger state of superconducting qubits via transitionless quantum driving

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Chen, Ye-Hong; Wu, Qi-Cheng; Shi, Zhi-Cheng; Song, Jie; Xia, Yan

    2017-01-01

    We present an efficient scheme to quickly generate three-qubit Greenberger-Horne-Zeilinger (GHZ) states by using three superconducting qubits (SQs) separated by two coplanar waveguide resonators (CPWRs) capacitively. The scheme is based on quantum Zeno dynamics and the approach of transitionless quantum driving to construct shortcuts to adiabatic passage. In order to highlight the advantages, we compare the present scheme with the traditional one with adiabatic passage. The comparison result shows the shortcut scheme is closely related to the adiabatic scheme but is better than it. Moreover, we discuss the influence of various decoherences with numerical simulation. The result proves that the present scheme is less sensitive to the energy relaxation, the decay of CPWRs and the deviations of the experimental parameters the same as the adiabatic passage. However, the shortcut scheme is effective and robust against the dephasing of SQs in comparison with the adiabatic scheme.

  20. Deterministic quantum teleportation of atomic qubits.

    PubMed

    Barrett, M D; Chiaverini, J; Schaetz, T; Britton, J; Itano, W M; Jost, J D; Knill, E; Langer, C; Leibfried, D; Ozeri, R; Wineland, D J

    2004-06-17

    Quantum teleportation provides a means to transport quantum information efficiently from one location to another, without the physical transfer of the associated quantum-information carrier. This is achieved by using the non-local correlations of previously distributed, entangled quantum bits (qubits). Teleportation is expected to play an integral role in quantum communication and quantum computation. Previous experimental demonstrations have been implemented with optical systems that used both discrete and continuous variables, and with liquid-state nuclear magnetic resonance. Here we report unconditional teleportation of massive particle qubits using atomic (9Be+) ions confined in a segmented ion trap, which aids individual qubit addressing. We achieve an average fidelity of 78 per cent, which exceeds the fidelity of any protocol that does not use entanglement. This demonstration is also important because it incorporates most of the techniques necessary for scalable quantum information processing in an ion-trap system.

  1. Reliable Channel-Adapted Error Correction: Bacon-Shor Code Recovery from Amplitude Damping

    NASA Astrophysics Data System (ADS)

    Piedrafita, Álvaro; Renes, Joseph M.

    2017-12-01

    We construct two simple error correction schemes adapted to amplitude damping noise for Bacon-Shor codes and investigate their prospects for fault-tolerant implementation. Both consist solely of Clifford gates and require far fewer qubits, relative to the standard method, to achieve exact correction to a desired order in the damping rate. The first, employing one-bit teleportation and single-qubit measurements, needs only one-fourth as many physical qubits, while the second, using just stabilizer measurements and Pauli corrections, needs only half. The improvements stem from the fact that damping events need only be detected, not corrected, and that effective phase errors arising due to undamped qubits occur at a lower rate than damping errors. For error correction that is itself subject to damping noise, we show that existing fault-tolerance methods can be employed for the latter scheme, while the former can be made to avoid potential catastrophic errors and can easily cope with damping faults in ancilla qubits.

  2. Optimization of a solid-state electron spin qubit using Gate Set Tomography

    DOE PAGES

    Dehollain, Juan P.; Muhonen, Juha T.; Blume-Kohout, Robin J.; ...

    2016-10-13

    Here, state of the art qubit systems are reaching the gate fidelities required for scalable quantum computation architectures. Further improvements in the fidelity of quantum gates demands characterization and benchmarking protocols that are efficient, reliable and extremely accurate. Ideally, a benchmarking protocol should also provide information on how to rectify residual errors. Gate Set Tomography (GST) is one such protocol designed to give detailed characterization of as-built qubits. We implemented GST on a high-fidelity electron-spin qubit confined by a single 31P atom in 28Si. The results reveal systematic errors that a randomized benchmarking analysis could measure but not identify, whereasmore » GST indicated the need for improved calibration of the length of the control pulses. After introducing this modification, we measured a new benchmark average gate fidelity of 99.942(8)%, an improvement on the previous value of 99.90(2)%. Furthermore, GST revealed high levels of non-Markovian noise in the system, which will need to be understood and addressed when the qubit is used within a fault-tolerant quantum computation scheme.« less

  3. Teleportation between distant qudits via scattering of mobile qubits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciccarello, Francesco; Zarcone, Michelangelo; Bose, Sougato

    2010-04-15

    We consider a one-dimensional structure where noninteracting spin-s scattering centers, such as quantum impurities or multilevel atoms, are embedded at given positions. We show that the injection into the structure of unpolarized flying qubits, such as electrons or photons, along with path detection suffice to accomplish spin-state teleportation between two centers via a third ancillary one. No action over the internal quantum state of both the spin-s particles and the flying qubits is required. The protocol enables the transfer of quantum information between well-separated static entities in nanostructures by exploiting a very low control mechanism, namely scattering.

  4. Entanglement routers via a wireless quantum network based on arbitrary two qubit systems

    NASA Astrophysics Data System (ADS)

    Metwally, N.

    2014-12-01

    A wireless quantum network is generated between multi-hops, where each hop consists of two entangled nodes. These nodes share a finite number of entangled two-qubit systems randomly. Different types of wireless quantum bridges (WQBS) are generated between the non-connected nodes. The efficiency of these WQBS to be used as quantum channels between its terminals to perform quantum teleportation is investigated. We suggest a theoretical wireless quantum communication protocol to teleport unknown quantum signals from one node to another, where the more powerful WQBS are used as quantum channels. It is shown that, by increasing the efficiency of the sources that emit the initial partial entangled states, one can increase the efficiency of the wireless quantum communication protocol.

  5. Efficient Polar Coding of Quantum Information

    NASA Astrophysics Data System (ADS)

    Renes, Joseph M.; Dupuis, Frédéric; Renner, Renato

    2012-08-01

    Polar coding, introduced 2008 by Arıkan, is the first (very) efficiently encodable and decodable coding scheme whose information transmission rate provably achieves the Shannon bound for classical discrete memoryless channels in the asymptotic limit of large block sizes. Here, we study the use of polar codes for the transmission of quantum information. Focusing on the case of qubit Pauli channels and qubit erasure channels, we use classical polar codes to construct a coding scheme that asymptotically achieves a net transmission rate equal to the coherent information using efficient encoding and decoding operations and code construction. Our codes generally require preshared entanglement between sender and receiver, but for channels with a sufficiently low noise level we demonstrate that the rate of preshared entanglement required is zero.

  6. Improving Qubit Phase Estimation in Amplitude-damping Channel by Partial-collapse Measurement

    NASA Astrophysics Data System (ADS)

    Liao, Xiang-Ping; Zhou, Xin; Fang, Mao-Fa

    2018-03-01

    An efficient method is proposed to improve qubit phase estimation in amplitude-damping channel by partial-collapse measurement in this paper. It is shown that the quantum Fisher information (QFI) can be distinctly enhanced under amplitude-damping decoherence with partial-collapse measurement. Moreover, the optimal QFI is approximately close to the maximum value 1 regardless of the decoherence parameter by choosing the appropriate measurement strengths.

  7. Utilizing photon number parity measurements to demonstrate quantum computation with cat-states in a cavity

    NASA Astrophysics Data System (ADS)

    Petrenko, A.; Ofek, N.; Vlastakis, B.; Sun, L.; Leghtas, Z.; Heeres, R.; Sliwa, K. M.; Mirrahimi, M.; Jiang, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-03-01

    Realizing a working quantum computer requires overcoming the many challenges that come with coupling large numbers of qubits to perform logical operations. These include improving coherence times, achieving high gate fidelities, and correcting for the inevitable errors that will occur throughout the duration of an algorithm. While impressive progress has been made in all of these areas, the difficulty of combining these ingredients to demonstrate an error-protected logical qubit, comprised of many physical qubits, still remains formidable. With its large Hilbert space, superior coherence properties, and single dominant error channel (single photon loss), a superconducting 3D resonator acting as a resource for a quantum memory offers a hardware-efficient alternative to multi-qubit codes [Leghtas et.al. PRL 2013]. Here we build upon recent work on cat-state encoding [Vlastakis et.al. Science 2013] and photon-parity jumps [Sun et.al. 2014] by exploring the effects of sequential measurements on a cavity state. Employing a transmon qubit dispersively coupled to two superconducting resonators in a cQED architecture, we explore further the application of parity measurements to characterizing such a hybrid qubit/cat state architecture. In so doing, we demonstrate the promise of integrating cat states as central constituents of future quantum codes.

  8. Physical realization of topological quantum walks on IBM-Q and beyond

    NASA Astrophysics Data System (ADS)

    Balu, Radhakrishnan; Castillo, Daniel; Siopsis, George

    2018-07-01

    We discuss an efficient physical realization of topological quantum walks on a one-dimensional finite lattice with periodic boundary conditions (circle). The N-point lattice is realized with {log}}2N qubits, and the quantum circuit utilizes a number of quantum gates that are polynomial in the number of qubits. In a certain scaling limit, we show that a large number of steps are implemented with a number of quantum gates which are independent of the number of steps. We ran the quantum algorithm on the IBM-Q five-qubit quantum computer, thus experimentally demonstrating topological features, such as boundary bound states, on a one-dimensional lattice with N = 4 points.

  9. Tunable, Flexible and Efficient Optimization of Control Pulses for Superconducting Qubits, part I - Theory

    NASA Astrophysics Data System (ADS)

    Machnes, Shai; AsséMat, Elie; Tannor, David; Wilhelm, Frank

    Quantum computation places very stringent demands on gate fidelities, and experimental implementations require both the controls and the resultant dynamics to conform to hardware-specific ansatzes and constraints. Superconducting qubits present the additional requirement that pulses have simple parametrizations, so they can be further calibrated in the experiment, to compensate for uncertainties in system characterization. We present a novel, conceptually simple and easy-to-implement gradient-based optimal control algorithm, GOAT, which satisfies all the above requirements. In part II we shall demonstrate the algorithm's capabilities, by using GOAT to optimize fast high-accuracy pulses for two leading superconducting qubits architectures - Xmons and IBM's flux-tunable couplers.

  10. Qubit transfer between photons at telecom and visible wavelengths in a slow-light atomic medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gogyan, A.

    We propose a method that enables efficient conversion of the quantum information frequency between different regions of a spectrum of light based on recently demonstrated strong parametric coupling between two narrow-band single-photon pulses propagating in a slow-light atomic medium [N. Sisakyan and Yu. Malakyan, Phys. Rev. A, 75, 063831 (2007)]. We show that an input qubit at telecom wavelength is transformed into another at a visible domain in a lossless and shape-conserving manner while keeping the initial quantum coherence and entanglement. These transformations can be realized with a quantum efficiency close to its maximum value.

  11. Measurements of quasiparticle tunneling dynamics in a band-gap-engineered transmon qubit.

    PubMed

    Sun, L; DiCarlo, L; Reed, M D; Catelani, G; Bishop, Lev S; Schuster, D I; Johnson, B R; Yang, Ge A; Frunzio, L; Glazman, L; Devoret, M H; Schoelkopf, R J

    2012-06-08

    We have engineered the band gap profile of transmon qubits by combining oxygen-doped Al for tunnel junction electrodes and clean Al as quasiparticle traps to investigate energy relaxation due to quasiparticle tunneling. The relaxation time T1 of the qubits is shown to be insensitive to this band gap engineering. Operating at relatively low-E(J)/E(C) makes the transmon transition frequency distinctly dependent on the charge parity, allowing us to detect the quasiparticles tunneling across the qubit junction. Quasiparticle kinetics have been studied by monitoring the frequency switching due to even-odd parity change in real time. It shows the switching time is faster than 10  μs, indicating quasiparticle-induced relaxation has to be reduced to achieve T1 much longer than 100  μs.

  12. Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state

    NASA Astrophysics Data System (ADS)

    Chang, Yan; Zhang, Shi-Bin; Yan, Li-Li; Han, Gui-Hua

    2015-05-01

    By using six-qubit decoherence-free (DF) states as quantum carriers and decoy states, a robust quantum secure direct communication and authentication (QSDCA) protocol against decoherence noise is proposed. Four six-qubit DF states are used in the process of secret transmission, however only the |0‧⟩ state is prepared. The other three six-qubit DF states can be obtained by permuting the outputs of the setup for |0‧⟩. By using the |0‧⟩ state as the decoy state, the detection rate and the qubit error rate reach 81.3%, and they will not change with the noise level. The stability and security are much higher than those of the ping-pong protocol both in an ideal scenario and a decoherence noise scenario. Even if the eavesdropper measures several qubits, exploiting the coherent relationship between these qubits, she can gain one bit of secret information with probability 0.042. Project supported by the National Natural Science Foundation of China (Grant No. 61402058), the Science and Technology Support Project of Sichuan Province of China (Grant No. 2013GZX0137), the Fund for Young Persons Project of Sichuan Province of China (Grant No. 12ZB017), and the Foundation of Cyberspace Security Key Laboratory of Sichuan Higher Education Institutions, China (Grant No. szjj2014-074).

  13. Preparation and measurement of three-qubit entanglement in a superconducting circuit.

    PubMed

    Dicarlo, L; Reed, M D; Sun, L; Johnson, B R; Chow, J M; Gambetta, J M; Frunzio, L; Girvin, S M; Devoret, M H; Schoelkopf, R J

    2010-09-30

    Traditionally, quantum entanglement has been central to foundational discussions of quantum mechanics. The measurement of correlations between entangled particles can have results at odds with classical behaviour. These discrepancies grow exponentially with the number of entangled particles. With the ample experimental confirmation of quantum mechanical predictions, entanglement has evolved from a philosophical conundrum into a key resource for technologies such as quantum communication and computation. Although entanglement in superconducting circuits has been limited so far to two qubits, the extension of entanglement to three, eight and ten qubits has been achieved among spins, ions and photons, respectively. A key question for solid-state quantum information processing is whether an engineered system could display the multi-qubit entanglement necessary for quantum error correction, which starts with tripartite entanglement. Here, using a circuit quantum electrodynamics architecture, we demonstrate deterministic production of three-qubit Greenberger-Horne-Zeilinger (GHZ) states with fidelity of 88 per cent, measured with quantum state tomography. Several entanglement witnesses detect genuine three-qubit entanglement by violating biseparable bounds by 830 ± 80 per cent. We demonstrate the first step of basic quantum error correction, namely the encoding of a logical qubit into a manifold of GHZ-like states using a repetition code. The integration of this encoding with decoding and error-correcting steps in a feedback loop will be the next step for quantum computing with integrated circuits.

  14. Tomography of a displacement photon counter for discrimination of single-rail optical qubits

    NASA Astrophysics Data System (ADS)

    Izumi, Shuro; Neergaard-Nielsen, Jonas S.; Andersen, Ulrik L.

    2018-04-01

    We investigate the performance of a detection strategy composed of a displacement operation and a photon counter, which is known as a beneficial tool in optical coherent communications, to the quantum state discrimination of the two superpositions of vacuum and single photon states corresponding to the {\\hat{σ }}x eigenstates in the single-rail encoding of photonic qubits. We experimentally characterize the detection strategy in vacuum-single photon two-dimensional space using quantum detector tomography and evaluate the achievable discrimination error probability from the reconstructed measurement operators. We furthermore derive the minimum error rate obtainable with Gaussian transformations and homodyne detection. Our proof-of-principle experiment shows that the proposed scheme can achieve a discrimination error surpassing homodyne detection.

  15. Observation of entanglement of a single photon with a trapped atom.

    PubMed

    Volz, Jürgen; Weber, Markus; Schlenk, Daniel; Rosenfeld, Wenjamin; Vrana, Johannes; Saucke, Karen; Kurtsiefer, Christian; Weinfurter, Harald

    2006-01-27

    We report the observation of entanglement between a single trapped atom and a single photon at a wavelength suitable for low-loss communication over large distances, thereby achieving a crucial step towards long range quantum networks. To verify the entanglement, we introduce a single atom state analysis. This technique is used for full state tomography of the atom-photon qubit pair. The detection efficiency and the entanglement fidelity are high enough to allow in a next step the generation of entangled atoms at large distances, ready for a final loophole-free Bell experiment.

  16. Trade-off between information and disturbance in qubit thermometry

    NASA Astrophysics Data System (ADS)

    Seveso, Luigi; Paris, Matteo G. A.

    2018-03-01

    We address the trade-off between information and disturbance in qubit thermometry from the perspective of quantum estimation theory. Given a quantum measurement, we quantify information via the Fisher information of the measurement and disturbance via four different figures of merit, which capture different aspects (statistical, thermodynamical, geometrical) of the trade-off. For each disturbance measure, the efficient measurements, i.e., the measurements that introduce a disturbance not greater than any other measurement extracting the same amount of information, are determined explicitly. The family of efficient measurements varies with the choice of the disturbance measure. On the other hand, commutativity between the elements of the probability operator-valued measure (POVM) and the equilibrium state of the thermometer is a necessary condition for efficiency with respect to any figure of disturbance.

  17. High-fidelity readout and control of a nuclear spin qubit in silicon.

    PubMed

    Pla, Jarryd J; Tan, Kuan Y; Dehollain, Juan P; Lim, Wee H; Morton, John J L; Zwanenburg, Floris A; Jamieson, David N; Dzurak, Andrew S; Morello, Andrea

    2013-04-18

    Detection of nuclear spin precession is critical for a wide range of scientific techniques that have applications in diverse fields including analytical chemistry, materials science, medicine and biology. Fundamentally, it is possible because of the extreme isolation of nuclear spins from their environment. This isolation also makes single nuclear spins desirable for quantum-information processing, as shown by pioneering studies on nitrogen-vacancy centres in diamond. The nuclear spin of a (31)P donor in silicon is very promising as a quantum bit: bulk measurements indicate that it has excellent coherence times and silicon is the dominant material in the microelectronics industry. Here we demonstrate electrical detection and coherent manipulation of a single (31)P nuclear spin qubit with sufficiently high fidelities for fault-tolerant quantum computing. By integrating single-shot readout of the electron spin with on-chip electron spin resonance, we demonstrate quantum non-demolition and electrical single-shot readout of the nuclear spin with a readout fidelity higher than 99.8 percent-the highest so far reported for any solid-state qubit. The single nuclear spin is then operated as a qubit by applying coherent radio-frequency pulses. For an ionized (31)P donor, we find a nuclear spin coherence time of 60 milliseconds and a one-qubit gate control fidelity exceeding 98 percent. These results demonstrate that the dominant technology of modern electronics can be adapted to host a complete electrical measurement and control platform for nuclear-spin-based quantum-information processing.

  18. On readout of vibrational qubits using quantum beats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shyshlov, Dmytro; Babikov, Dmitri, E-mail: Dmitri.Babikov@mu.edu; Berrios, Eduardo

    2014-12-14

    Readout of the final states of qubits is a crucial step towards implementing quantum computation in experiment. Although not scalable to large numbers of qubits per molecule, computational studies show that molecular vibrations could provide a significant (factor 2–5 in the literature) increase in the number of qubits compared to two-level systems. In this theoretical work, we explore the process of readout from vibrational qubits in thiophosgene molecule, SCCl{sub 2}, using quantum beat oscillations. The quantum beats are measured by first exciting the superposition of the qubit-encoding vibrational states to the electronically excited readout state with variable time-delay pulses. Themore » resulting oscillation of population of the readout state is then detected as a function of time delay. In principle, fitting the quantum beat signal by an analytical expression should allow extracting the values of probability amplitudes and the relative phases of the vibrational qubit states. However, we found that if this procedure is implemented using the standard analytic expression for quantum beats, a non-negligible phase error is obtained. We discuss the origin and properties of this phase error, and propose a new analytical expression to correct the phase error. The corrected expression fits the quantum beat signal very accurately, which may permit reading out the final state of vibrational qubits in experiments by combining the analytic fitting expression with numerical modelling of the readout process. The new expression is also useful as a simple model for fitting any quantum beat experiments where more accurate phase information is desired.« less

  19. Faithful state transfer between two-level systems via an actively cooled finite-temperature cavity

    NASA Astrophysics Data System (ADS)

    Sárkány, Lőrinc; Fortágh, József; Petrosyan, David

    2018-03-01

    We consider state transfer between two qubits—effective two-level systems represented by Rydberg atoms—via a common mode of a microwave cavity at finite temperature. We find that when both qubits have the same coupling strength to the cavity field, at large enough detuning from the cavity mode frequency, quantum interference between the transition paths makes the swap of the excitation between the qubits largely insensitive to the number of thermal photons in the cavity. When, however, the coupling strengths are different, the photon-number-dependent differential Stark shift of the transition frequencies precludes efficient transfer. Nevertheless, using an auxiliary cooling system to continuously extract the cavity photons, we can still achieve a high-fidelity state transfer between the qubits.

  20. Complete Bell-state analysis for superconducting-quantum-interference-device qubits with a transitionless tracking algorithm

    NASA Astrophysics Data System (ADS)

    Kang, Yi-Hao; Chen, Ye-Hong; Shi, Zhi-Cheng; Huang, Bi-Hua; Song, Jie; Xia, Yan

    2017-08-01

    We propose a protocol for complete Bell-state analysis for two superconducting-quantum-interference-device qubits. The Bell-state analysis could be completed by using a sequence of microwave pulses designed by the transitionless tracking algorithm, which is a useful method in the technique of shortcut to adiabaticity. After the whole process, the information for distinguishing four Bell states will be encoded on two auxiliary qubits, while the Bell states remain unchanged. One can read out the information by detecting the auxiliary qubits. Thus the Bell-state analysis is nondestructive. The numerical simulations show that the protocol possesses a high success probability of distinguishing each Bell state with current experimental technology even when decoherence is taken into account. Thus, the protocol may have potential applications for the information readout in quantum communications and quantum computations in superconducting quantum networks.

  1. Quantum teleportation from a propagating photon to a solid-state spin qubit

    NASA Astrophysics Data System (ADS)

    Gao, W. B.; Fallahi, P.; Togan, E.; Delteil, A.; Chin, Y. S.; Miguel-Sanchez, J.; Imamoğlu, A.

    2013-11-01

    A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.

  2. Quantum teleportation from a propagating photon to a solid-state spin qubit.

    PubMed

    Gao, W B; Fallahi, P; Togan, E; Delteil, A; Chin, Y S; Miguel-Sanchez, J; Imamoğlu, A

    2013-01-01

    A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.

  3. Scalable entanglement in trapped ions using optimal control of multimode couplings

    NASA Astrophysics Data System (ADS)

    Debnath, Shantanu; Choi, Taeyoung; Manning, T. Andrew; Figgatt, Caroline; Monroe, Chris

    2014-05-01

    We perform high fidelity multipartite entanglement of ion subsets in a chain of five Yb+ qubits using optimal pulse shaping. A focused mode-locked laser beam individually addresses qubits to couple them to multiple collective transverse modes of motion to perform entangling phase gates on pairs of adjacent qubits. Pulse shaping by modulating the amplitude and phase of the laser can drive high fidelity gates for certain pulse solutions that are relatively insensitive to detuning errors. We create entangled states in the GHZ class and witness genuine tripartite entanglement using individual state detection. This method of engineering the evolution of multiple modes scales well for large qubit registers by keeping gate times short. This work is supported by grants from the U.S. Army Research Office with funding from the DARPA OLE program, IARPA, and the MURI program; and the NSF Physics Frontier Center at JQI.

  4. Heralded entanglement between solid-state qubits separated by three metres.

    PubMed

    Bernien, H; Hensen, B; Pfaff, W; Koolstra, G; Blok, M S; Robledo, L; Taminiau, T H; Markham, M; Twitchen, D J; Childress, L; Hanson, R

    2013-05-02

    Quantum entanglement between spatially separated objects is one of the most intriguing phenomena in physics. The outcomes of independent measurements on entangled objects show correlations that cannot be explained by classical physics. As well as being of fundamental interest, entanglement is a unique resource for quantum information processing and communication. Entangled quantum bits (qubits) can be used to share private information or implement quantum logical gates. Such capabilities are particularly useful when the entangled qubits are spatially separated, providing the opportunity to create highly connected quantum networks or extend quantum cryptography to long distances. Here we report entanglement of two electron spin qubits in diamond with a spatial separation of three metres. We establish this entanglement using a robust protocol based on creation of spin-photon entanglement at each location and a subsequent joint measurement of the photons. Detection of the photons heralds the projection of the spin qubits onto an entangled state. We verify the resulting non-local quantum correlations by performing single-shot readout on the qubits in different bases. The long-distance entanglement reported here can be combined with recently achieved initialization, readout and entanglement operations on local long-lived nuclear spin registers, paving the way for deterministic long-distance teleportation, quantum repeaters and extended quantum networks.

  5. A Quantum Proxy Signature Scheme Based on Genuine Five-qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Huang, Jun; Yu, Yao-Feng; Jiang, Xiu-Li

    2014-09-01

    In this paper a very efficient and secure proxy signature scheme is proposed. It is based on controlled quantum teleportation. Genuine five-qubit entangled state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. Quantum key distribution and one-time pad are adopted in our scheme, which could guarantee not only the unconditional security of the scheme but also the anonymity of the messages owner.

  6. Parallelizing quantum circuit synthesis

    NASA Astrophysics Data System (ADS)

    Di Matteo, Olivia; Mosca, Michele

    2016-03-01

    Quantum circuit synthesis is the process in which an arbitrary unitary operation is decomposed into a sequence of gates from a universal set, typically one which a quantum computer can implement both efficiently and fault-tolerantly. As physical implementations of quantum computers improve, the need is growing for tools that can effectively synthesize components of the circuits and algorithms they will run. Existing algorithms for exact, multi-qubit circuit synthesis scale exponentially in the number of qubits and circuit depth, leaving synthesis intractable for circuits on more than a handful of qubits. Even modest improvements in circuit synthesis procedures may lead to significant advances, pushing forward the boundaries of not only the size of solvable circuit synthesis problems, but also in what can be realized physically as a result of having more efficient circuits. We present a method for quantum circuit synthesis using deterministic walks. Also termed pseudorandom walks, these are walks in which once a starting point is chosen, its path is completely determined. We apply our method to construct a parallel framework for circuit synthesis, and implement one such version performing optimal T-count synthesis over the Clifford+T gate set. We use our software to present examples where parallelization offers a significant speedup on the runtime, as well as directly confirm that the 4-qubit 1-bit full adder has optimal T-count 7 and T-depth 3.

  7. Efficient multiparty quantum key agreement with collective detection.

    PubMed

    Huang, Wei; Su, Qi; Liu, Bin; He, Yuan-Hang; Fan, Fan; Xu, Bing-Jie

    2017-11-10

    As a burgeoning branch of quantum cryptography, quantum key agreement is a kind of key establishing processes where the security and fairness of the established common key should be guaranteed simultaneously. However, the difficulty on designing a qualified quantum key agreement protocol increases significantly with the increase of the number of the involved participants. Thus far, only few of the existing multiparty quantum key agreement (MQKA) protocols can really achieve security and fairness. Nevertheless, these qualified MQKA protocols are either too inefficient or too impractical. In this paper, an MQKA protocol is proposed with single photons in travelling mode. Since only one eavesdropping detection is needed in the proposed protocol, the qubit efficiency and measurement efficiency of it are higher than those of the existing ones in theory. Compared with the protocols which make use of the entangled states or multi-particle measurements, the proposed protocol is more feasible with the current technologies. Security and fairness analysis shows that the proposed protocol is not only immune to the attacks from external eavesdroppers, but also free from the attacks from internal betrayers.

  8. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer

    NASA Astrophysics Data System (ADS)

    Coles, R. J.; Price, D. M.; Dixon, J. E.; Royall, B.; Clarke, E.; Kok, P.; Skolnick, M. S.; Fox, A. M.; Makhonin, M. N.

    2016-03-01

    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95+/-5% and have potential to serve as the basis of spin-logic and network implementations.

  9. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer

    PubMed Central

    Coles, R. J.; Price, D. M.; Dixon, J. E.; Royall, B.; Clarke, E.; Kok, P.; Skolnick, M. S.; Fox, A. M.; Makhonin, M. N.

    2016-01-01

    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95±5% and have potential to serve as the basis of spin-logic and network implementations. PMID:27029961

  10. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer.

    PubMed

    Coles, R J; Price, D M; Dixon, J E; Royall, B; Clarke, E; Kok, P; Skolnick, M S; Fox, A M; Makhonin, M N

    2016-03-31

    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95±5% and have potential to serve as the basis of spin-logic and network implementations.

  11. Telecom-Wavelength Atomic Quantum Memory in Optical Fiber for Heralded Polarization Qubits.

    PubMed

    Jin, Jeongwan; Saglamyurek, Erhan; Puigibert, Marcel lí Grimau; Verma, Varun; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang

    2015-10-02

    Polarization-encoded photons at telecommunication wavelengths provide a compelling platform for practical realizations of photonic quantum information technologies due to the ease of performing single qubit manipulations, the availability of polarization-entangled photon-pair sources, and the possibility of leveraging existing fiber-optic links for distributing qubits over long distances. An optical quantum memory compatible with this platform could serve as a building block for these technologies. Here we present the first experimental demonstration of an atomic quantum memory that directly allows for reversible mapping of quantum states encoded in the polarization degree of freedom of a telecom-wavelength photon. We show that heralded polarization qubits at a telecom wavelength are stored and retrieved with near-unity fidelity by implementing the atomic frequency comb protocol in an ensemble of erbium atoms doped into an optical fiber. Despite remaining limitations in our proof-of-principle demonstration such as small storage efficiency and storage time, our broadband light-matter interface reveals the potential for use in future quantum information processing.

  12. Efficient quantum pseudorandomness with simple graph states

    NASA Astrophysics Data System (ADS)

    Mezher, Rawad; Ghalbouni, Joe; Dgheim, Joseph; Markham, Damian

    2018-02-01

    Measurement based (MB) quantum computation allows for universal quantum computing by measuring individual qubits prepared in entangled multipartite states, known as graph states. Unless corrected for, the randomness of the measurements leads to the generation of ensembles of random unitaries, where each random unitary is identified with a string of possible measurement results. We show that repeating an MB scheme an efficient number of times, on a simple graph state, with measurements at fixed angles and no feedforward corrections, produces a random unitary ensemble that is an ɛ -approximate t design on n qubits. Unlike previous constructions, the graph is regular and is also a universal resource for measurement based quantum computing, closely related to the brickwork state.

  13. An approach for quantitatively analyzing the genuine tripartite nonlocality of general three-qubit states

    NASA Astrophysics Data System (ADS)

    Su, Zhaofeng; Li, Lvzhou; Ling, Jie

    2018-04-01

    Nonlocality is an important resource for quantum information processing. Genuine tripartite nonlocality, which is sufficiently confirmed by the violation of Svetlichny inequality, is a kind of more precious resource than the standard one. The genuine tripartite nonlocality is usually quantified by the amount of maximal violation of Svetlichny inequality. The problem of detecting and quantifying the genuine tripartite nonlocality of quantum states is of practical significance but still open for the case of general three-qubit quantum states. In this paper, we quantitatively investigate the genuine nonlocality of three-qubit states, which not only include pure states but also include mixed states. Firstly, we derive a simplified formula for the genuine nonlocality of a general three-qubit state, which is a function of the corresponding three correlation matrices. Secondly, we develop three properties of the genuine nonlocality which can help us to analyze the genuine nonlocality of complex states and understand the nature of quantum nonlocality. Further, we get analytical results of genuine nonlocality for two classes of three-qubit states which have special correlation matrices. In particular, the genuine nonlocality of generalized three-qubit GHZ states, which is derived by Ghose et al. (Phys. Rev. Lett. 102, 250404, 2009), and that of three-qubit GHZ-symmetric states, which is derived by Paul et al. (Phys. Rev. A 94, 032101, 2016), can be easily derived by applying the strategy and properties developed in this paper.

  14. One-norm geometric quantum discord and critical point estimation in the XY spin chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chang-Cheng; Wang, Yao; Guo, Jin-Liang, E-mail: guojinliang80@163.com

    2016-11-15

    In contrast with entanglement and quantum discord (QD), we investigate the thermal quantum correlation in terms of Schatten one-norm geometric quantum discord (GQD) in the XY spin chain, and analyze their capabilities in detecting the critical point of quantum phase transition. We show that the one-norm GQD can reveal more properties about quantum correlation between two spins, especially for the long-range quantum correlation at finite temperature. Under the influences of site distance, anisotropy and temperature, one-norm GQD and its first derivative make it possible to detect the critical point efficiently for a general XY spin chain. - Highlights: • Comparingmore » with entanglement and QD, one-norm GQD is more robust versus the temperature. • One-norm GQD is more efficient in characterization of long-range quantum correlation between two distant qubits. • One-norm GQD performs well in highlighting the critical point of QPT at zero or low finite temperature. • One-norm GQD has a number of advantages over QD in detecting the critical point of the spin chain.« less

  15. Hybrid quantum logic and a test of Bell's inequality using two different atomic isotopes.

    PubMed

    Ballance, C J; Schäfer, V M; Home, J P; Szwer, D J; Webster, S C; Allcock, D T C; Linke, N M; Harty, T P; Aude Craik, D P L; Stacey, D N; Steane, A M; Lucas, D M

    2015-12-17

    Entanglement is one of the most fundamental properties of quantum mechanics, and is the key resource for quantum information processing (QIP). Bipartite entangled states of identical particles have been generated and studied in several experiments, and post-selected or heralded entangled states involving pairs of photons, single photons and single atoms, or different nuclei in the solid state, have also been produced. Here we use a deterministic quantum logic gate to generate a 'hybrid' entangled state of two trapped-ion qubits held in different isotopes of calcium, perform full tomography of the state produced, and make a test of Bell's inequality with non-identical atoms. We use a laser-driven two-qubit gate, whose mechanism is insensitive to the qubits' energy splittings, to produce a maximally entangled state of one (40)Ca(+) qubit and one (43)Ca(+) qubit, held 3.5 micrometres apart in the same ion trap, with 99.8 ± 0.6 per cent fidelity. We test the CHSH (Clauser-Horne-Shimony-Holt) version of Bell's inequality for this novel entangled state and find that it is violated by 15 standard deviations; in this test, we close the detection loophole but not the locality loophole. Mixed-species quantum logic is a powerful technique for the construction of a quantum computer based on trapped ions, as it allows protection of memory qubits while other qubits undergo logic operations or are used as photonic interfaces to other processing units. The entangling gate mechanism used here can also be applied to qubits stored in different atomic elements; this would allow both memory and logic gate errors caused by photon scattering to be reduced below the levels required for fault-tolerant quantum error correction, which is an essential prerequisite for general-purpose quantum computing.

  16. Dynamics of tripartite quantum correlations and decoherence in flux qubit systems under local and non-local static noise

    NASA Astrophysics Data System (ADS)

    Arthur, Tsamouo Tsokeng; Martin, Tchoffo; Fai, Lukong Cornelius

    2018-06-01

    We investigate the dynamics of entanglement, decoherence and quantum discord in a system of three non-interacting superconducting flux qubits (fqubits) initially prepared in a Greenberger-Horne-Zeilinger (GHZ) state and subject to static noise in different, bipartite and common environments, since it is recognized that different noise configurations generally lead to completely different dynamical behavior of physical systems. The noise is modeled by randomizing the single fqubit transition amplitude. Decoherence and quantum correlations dynamics are strongly affected by the purity of the initial state, type of system-environment interaction and the system-environment coupling strength. Specifically, quantum correlations can persist when the fqubits are commonly coupled to a noise source, and reaches a saturation value respective to the purity of the initial state. As the number of decoherence channels increases (bipartite and different environments), decoherence becomes stronger against quantum correlations that decay faster, exhibiting sudden death and revival phenomena. The residual entanglement can be successfully detected by means of suitable entanglement witness, and we derive a necessary condition for entanglement detection related to the tunable and non-degenerated energy levels of fqubits. In accordance with the current literature, our results further suggest the efficiency of fqubits over ordinary ones, as far as the preservation of quantum correlations needed for quantum processing purposes is concerned.

  17. Single-step controlled-NOT logic from any exchange interaction

    NASA Astrophysics Data System (ADS)

    Galiautdinov, Andrei

    2007-11-01

    A self-contained approach to studying the unitary evolution of coupled qubits is introduced, capable of addressing a variety of physical systems described by exchange Hamiltonians containing Rabi terms. The method automatically determines both the Weyl chamber steering trajectory and the accompanying local rotations. Particular attention is paid to the case of anisotropic exchange with tracking controls, which is solved analytically. It is shown that, if computational subspace is well isolated, any exchange interaction can always generate high fidelity, single-step controlled-NOT (CNOT) logic, provided that both qubits can be individually manipulated. The results are then applied to superconducting qubit architectures, for which several CNOT gate implementations are identified. The paper concludes with consideration of two CNOT gate designs having high efficiency and operating with no significant leakage to higher-lying noncomputational states.

  18. Adiabatic quantum simulation of quantum chemistry.

    PubMed

    Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán

    2014-10-13

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.

  19. Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits

    NASA Astrophysics Data System (ADS)

    Machnes, Shai; Assémat, Elie; Tannor, David; Wilhelm, Frank K.

    2018-04-01

    Quantum computation places very stringent demands on gate fidelities, and experimental implementations require both the controls and the resultant dynamics to conform to hardware-specific constraints. Superconducting qubits present the additional requirement that pulses must have simple parameterizations, so they can be further calibrated in the experiment, to compensate for uncertainties in system parameters. Other quantum technologies, such as sensing, require extremely high fidelities. We present a novel, conceptually simple and easy-to-implement gradient-based optimal control technique named gradient optimization of analytic controls (GOAT), which satisfies all the above requirements, unlike previous approaches. To demonstrate GOAT's capabilities, with emphasis on flexibility and ease of subsequent calibration, we optimize fast coherence-limited pulses for two leading superconducting qubits architectures—flux-tunable transmons and fixed-frequency transmons with tunable couplers.

  20. Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity.

    PubMed

    Wei, Hai-Rui; Deng, Fu-Guo

    2013-07-29

    We investigate the possibility of achieving scalable photonic quantum computing by the giant optical circular birefringence induced by a quantum-dot spin in a double-sided optical microcavity as a result of cavity quantum electrodynamics. We construct a deterministic controlled-not gate on two photonic qubits by two single-photon input-output processes and the readout on an electron-medium spin confined in an optical resonant microcavity. This idea could be applied to multi-qubit gates on photonic qubits and we give the quantum circuit for a three-photon Toffoli gate. High fidelities and high efficiencies could be achieved when the side leakage to the cavity loss rate is low. It is worth pointing out that our devices work in both the strong and the weak coupling regimes.

  1. Efficient simultaneous dense coding and teleportation with two-photon four-qubit cluster states

    NASA Astrophysics Data System (ADS)

    Zhang, Cai; Situ, Haozhen; Li, Qin; He, Guang Ping

    2016-08-01

    We firstly propose a simultaneous dense coding protocol with two-photon four-qubit cluster states in which two receivers can simultaneously get their respective classical information sent by a sender. Because each photon has two degrees of freedom, the protocol will achieve a high transmittance. The security of the simultaneous dense coding protocol has also been analyzed. Secondly, we investigate how to simultaneously teleport two different quantum states with polarization and path degree of freedom using cluster states to two receivers, respectively, and discuss its security. The preparation and transmission of two-photon four-qubit cluster states is less difficult than that of four-photon entangled states, and it has been experimentally generated with nearly perfect fidelity and high generation rate. Thus, our protocols are feasible with current quantum techniques.

  2. Linear feedback stabilization of a dispersively monitored qubit

    NASA Astrophysics Data System (ADS)

    Patti, Taylor Lee; Chantasri, Areeya; García-Pintos, Luis Pedro; Jordan, Andrew N.; Dressel, Justin

    2017-08-01

    The state of a continuously monitored qubit evolves stochastically, exhibiting competition between coherent Hamiltonian dynamics and diffusive partial collapse dynamics that follow the measurement record. We couple these distinct types of dynamics together by linearly feeding the collected record for dispersive energy measurements directly back into a coherent Rabi drive amplitude. Such feedback turns the competition cooperative and effectively stabilizes the qubit state near a target state. We derive the conditions for obtaining such dispersive state stabilization and verify the stabilization conditions numerically. We include common experimental nonidealities, such as energy decay, environmental dephasing, detector efficiency, and feedback delay, and show that the feedback delay has the most significant negative effect on the feedback protocol. Setting the measurement collapse time scale to be long compared to the feedback delay yields the best stabilization.

  3. Efficient Measurement of Quantum Gate Error by Interleaved Randomized Benchmarking

    NASA Astrophysics Data System (ADS)

    Magesan, Easwar; Gambetta, Jay M.; Johnson, B. R.; Ryan, Colm A.; Chow, Jerry M.; Merkel, Seth T.; da Silva, Marcus P.; Keefe, George A.; Rothwell, Mary B.; Ohki, Thomas A.; Ketchen, Mark B.; Steffen, M.

    2012-08-01

    We describe a scalable experimental protocol for estimating the average error of individual quantum computational gates. This protocol consists of interleaving random Clifford gates between the gate of interest and provides an estimate as well as theoretical bounds for the average error of the gate under test, so long as the average noise variation over all Clifford gates is small. This technique takes into account both state preparation and measurement errors and is scalable in the number of qubits. We apply this protocol to a superconducting qubit system and find a bounded average error of 0.003 [0,0.016] for the single-qubit gates Xπ/2 and Yπ/2. These bounded values provide better estimates of the average error than those extracted via quantum process tomography.

  4. Witnessing entanglement without entanglement witness operators.

    PubMed

    Pezzè, Luca; Li, Yan; Li, Weidong; Smerzi, Augusto

    2016-10-11

    Quantum mechanics predicts the existence of correlations between composite systems that, although puzzling to our physical intuition, enable technologies not accessible in a classical world. Notwithstanding, there is still no efficient general method to theoretically quantify and experimentally detect entanglement of many qubits. Here we propose to detect entanglement by measuring the statistical response of a quantum system to an arbitrary nonlocal parametric evolution. We witness entanglement without relying on the tomographic reconstruction of the quantum state, or the realization of witness operators. The protocol requires two collective settings for any number of parties and is robust against noise and decoherence occurring after the implementation of the parametric transformation. To illustrate its user friendliness we demonstrate multipartite entanglement in different experiments with ions and photons by analyzing published data on fidelity visibilities and variances of collective observables.

  5. Adjustable Spin-Spin Interaction with 171Yb+ ions and Addressing of a Quantum Byte

    NASA Astrophysics Data System (ADS)

    Wunderlich, Christof

    2015-05-01

    Trapped atomic ions are a well-advanced physical system for investigating fundamental questions of quantum physics and for quantum information science and its applications. When contemplating the scalability of trapped ions for quantum information science one notes that the use of laser light for coherent operations gives rise to technical and also physical issues that can be remedied by replacing laser light by microwave (MW) and radio-frequency (RF) radiation employing suitably modified ion traps. Magnetic gradient induced coupling (MAGIC) makes it possible to coherently manipulate trapped ions using exclusively MW and RF radiation. After introducing the general concept of MAGIC, I shall report on recent experimental progress using 171Yb+ ions, confined in a suitable Paul trap, as effective spin-1/2 systems interacting via MAGIC. Entangling gates between non-neighbouring ions will be presented. The spin-spin coupling strength is variable and can be adjusted by variation of the secular trap frequency. In general, executing a quantum gate with a single qubit, or a subset of qubits, affects the quantum states of all other qubits. This reduced fidelity of the whole quantum register may preclude scalability. We demonstrate addressing of individual qubits within a quantum byte (eight qubits interacting via MAGIC) using MW radiation and measure the error induced in all non-addressed qubits (cross-talk) associated with the application of single-qubit gates. The measured cross-talk is on the order 10-5 and therefore below the threshold commonly agreed sufficient to efficiently realize fault-tolerant quantum computing. Furthermore, experimental results on continuous and pulsed dynamical decoupling (DD) for protecting quantum memories and quantum gates against decoherence will be briefly discussed. Finally, I report on using continuous DD to realize a broadband ultrasensitive single-atom magnetometer.

  6. Deterministic quantum teleportation with feed-forward in a solid state system.

    PubMed

    Steffen, L; Salathe, Y; Oppliger, M; Kurpiers, P; Baur, M; Lang, C; Eichler, C; Puebla-Hellmann, G; Fedorov, A; Wallraff, A

    2013-08-15

    Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates, the creation of complex entangled states and the demonstration of algorithms or error correction. Using different variants of low-noise parametric amplifiers, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous and discrete feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10(4) s(-1), exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.

  7. Four and Five-body non-local correlations in pure and mixed states

    NASA Astrophysics Data System (ADS)

    Sharma, Santosh Shelly; Sharma, Naresh Kumar

    2014-03-01

    In our earlier works, quantifiers of four and three-body correlations based on four qubit invariants had been constructed for pure states. The principal construction tools, local unitary invariance and notion of negativity fonts, make it possible to outline the process of selective construction of meaningful invariants that quanify N and N - 1 qubit correlations. It is found that, in general, starting from degree k invariants relevant to detection and quantifcation of specific type of non-local quantum correlations in (N - 1) (N > 2) qubit system, one can construct degree k coefficients of an N-qubit bilinear form. When k =2 N - 2 (N > 2), one of the invariants of degree 2 N - 1 quantifies N-body non-local correlations The process is recursive. While for few body systems it yields analytical expressions in terms of functions of state coefficients, for larger systems it can be the guiding principle to numerical caculations of invariants. To illustrate the process, an expression for a five qubit correlation quantifier for pure states is constructed. In addition, the extension to specific rank two mixed states through convex-roof extension is investigated. We gratefully acknowledge Financial support from CNPq Brazil and Fundacao Araucaria PR Brazil.

  8. General implementation of arbitrary nonlinear quadrature phase gates

    NASA Astrophysics Data System (ADS)

    Marek, Petr; Filip, Radim; Ogawa, Hisashi; Sakaguchi, Atsushi; Takeda, Shuntaro; Yoshikawa, Jun-ichi; Furusawa, Akira

    2018-02-01

    We propose general methodology of deterministic single-mode quantum interaction nonlinearly modifying single quadrature variable of a continuous-variable system. The methodology is based on linear coupling of the system to ancillary systems subsequently measured by quadrature detectors. The nonlinear interaction is obtained by using the data from the quadrature detection for dynamical manipulation of the coupling parameters. This measurement-induced methodology enables direct realization of arbitrary nonlinear quadrature interactions without the need to construct them from the lowest-order gates. Such nonlinear interactions are crucial for more practical and efficient manipulation of continuous quadrature variables as well as qubits encoded in continuous-variable systems.

  9. Entangling qubits by Heisenberg spin exchange and anyon braiding

    NASA Astrophysics Data System (ADS)

    Zeuch, Daniel

    As the discovery of quantum mechanics signified a revolution in the world of physics more than one century ago, the notion of a quantum computer in 1981 marked the beginning of a drastic change of our understanding of information and computability. In a quantum computer, information is stored using quantum bits, or qubits, which are described by a quantum-mechanical superposition of the quantum states 0 and 1. Computation then proceeds by acting with unitary operations on these qubits. These operations are referred to as quantum logic gates, in analogy to classical computation where bits are acted on by classical logic gates. In order to perform universal quantum computation it is, in principle, sufficient to carry out single-qubit gates and two-qubit gates, where the former act on individual qubits and the latter, acting on two qubits, are used to entangle qubits with each other. The present thesis is divided into two main parts. In the first, we are concerned with spin-based quantum computation. In a spin-based quantum computer, qubits are encoded into the Hilbert space spanned by spin-1/2 particles, such as electron spins trapped in semiconductor quantum dots. For a suitable qubit encoding, turning on-and-off, or "pulsing,'' the isotropic Heisenberg exchange Hamiltonian JSi · Sj allows for universal quantum computation and it is this scheme, known as exchange-only quantum computation, which we focus on. In the second part of this thesis, we consider a topological quantum computer in which qubits are encoded using so-called Fibonacci anyons, exotic quasiparticle excitations that obey non-Abelian statistics, and which may emerge in certain two-dimensional topological systems such as fractional quantum-Hall states. Quantum gates can then be carried out by moving these particles around one another, a process that can be viewed as braiding their 2+1 dimensional worldlines. The subject of the present thesis is the development and theoretical understanding of procedures used for entangling qubits. We begin by presenting analytical constructions of pulse sequences which can be used to carry out two-qubit gates that are locally equivalent to a controlled-PHASE gate. The corresponding phase can be arbitrarily chosen, and for one particular choice this gate is equivalent to controlled-NOT. While the constructions of these sequences are relatively lengthy and cumbersome, we further provide a straightforward and intuitive derivation of the shortest known two-qubit pulse sequence for carrying out a controlled-NOT gate. This derivation is carried out completely analytically through a novel "elevation'' of a simple three-spin pulse sequence to a more complicated five-spin pulse sequence. In the case of topological quantum computation with Fibonacci anyons, we present a new method for constructing entangling two-qubit braids. Our construction is based on an iterative procedure, established by Reichardt, which can be used to systematically generate braids whose corresponding operations quickly converge towards an operation that has a diagonal matrix representation in a particular natural basis. After describing this iteration procedure we show how the resulting braids can be used in two explicit constructions for two-qubit braids. Compared to two-qubit braids that can be found using other methods, the braids generated here are among the most efficient and can be obtained straightforwardly without computational overhead.

  10. Displacemon Electromechanics: How to Detect Quantum Interference in a Nanomechanical Resonator

    NASA Astrophysics Data System (ADS)

    Khosla, K. E.; Vanner, M. R.; Ares, N.; Laird, E. A.

    2018-04-01

    We introduce the "displacemon" electromechanical architecture that comprises a vibrating nanobeam, e.g., a carbon nanotube, flux coupled to a superconducting qubit. This platform can achieve strong and even ultrastrong coupling, enabling a variety of quantum protocols. We use this system to describe a protocol for generating and measuring quantum interference between trajectories of a nanomechanical resonator. The scheme uses a sequence of qubit manipulations and measurements to cool the resonator, to apply two effective diffraction gratings, and then to measure the resulting interference pattern. We demonstrate the feasibility of generating a spatially distinct quantum superposition state of motion containing more than 1 06 nucleons using a vibrating nanotube acting as a junction in this new superconducting qubit configuration.

  11. Realization of a Cascaded Quantum System: Heralded Absorption of a Single Photon Qubit by a Single-Electron Charged Quantum Dot.

    PubMed

    Delteil, Aymeric; Sun, Zhe; Fält, Stefan; Imamoğlu, Atac

    2017-04-28

    Photonic losses pose a major limitation for the implementation of a quantum state transfer between nodes of a quantum network. A measurement that heralds a successful transfer without revealing any information about the qubit may alleviate this limitation. Here, we demonstrate the heralded absorption of a single photonic qubit, generated by a single neutral quantum dot, by a single-electron charged quantum dot that is located 5 m away. The transfer of quantum information to the spin degree of freedom takes place upon the emission of a photon; for a properly chosen or prepared quantum dot, the detection of this photon yields no information about the qubit. We show that this process can be combined with local operations optically performed on the destination node by measuring classical correlations between the absorbed photon color and the final state of the electron spin. Our work suggests alternative avenues for the realization of quantum information protocols based on cascaded quantum systems.

  12. Locally indistinguishable subspaces spanned by three-qubit unextendible product bases

    NASA Astrophysics Data System (ADS)

    Duan, Runyao; Xin, Yu; Ying, Mingsheng

    2010-03-01

    We study the local distinguishability of general multiqubit states and show that local projective measurements and classical communication are as powerful as the most general local measurements and classical communication. Remarkably, this indicates that the local distinguishability of multiqubit states can be decided efficiently. Another useful consequence is that a set of orthogonal n-qubit states is locally distinguishable only if the summation of their orthogonal Schmidt numbers is less than the total dimension 2n. Employing these results, we show that any orthonormal basis of a subspace spanned by arbitrary three-qubit orthogonal unextendible product bases (UPB) cannot be exactly distinguishable by local operations and classical communication. This not only reveals another intrinsic property of three-qubit orthogonal UPB but also provides a class of locally indistinguishable subspaces with dimension 4. We also explicitly construct locally indistinguishable subspaces with dimensions 3 and 5, respectively. Similar to the bipartite case, these results on multipartite locally indistinguishable subspaces can be used to estimate the one-shot environment-assisted classical capacity of a class of quantum broadcast channels.

  13. Construction of a single atom trap for quantum information protocols

    NASA Astrophysics Data System (ADS)

    Shea, Margaret E.; Baker, Paul M.; Gauthier, Daniel J.; Duke Physics Department Team

    2016-05-01

    The field of quantum information science addresses outstanding problems such as achieving fundamentally secure communication and solving computationally hard problems. Great progress has been made in the field, particularly using photons coupled to ions and super conducting qubits. Neutral atoms are also interesting for these applications and though the technology for control of neutrals lags behind that of trapped ions, they offer some key advantages: primarily coupling to optical frequencies closer to the telecom band than trapped ions or superconducting qubits. Here we report progress on constructing a single atom trap for 87 Rb. This system is a promising platform for studying the technical problems facing neutral atom quantum computing. For example, most protocols destroy the trap when reading out the neutral atom's state; we will investigate an alternative non-destructive state detection scheme. We detail the experimental systems involved and the challenges addressed in trapping a single atom. All of our hardware components are off the shelf and relatively inexpensive. Unlike many other systems, we place a high numerical aperture lens inside our vacuum system to increase photon collection efficiency. We gratefully acknowledge the financial support of the ARO through Grant # W911NF1520047.

  14. Hyperbolic and semi-hyperbolic surface codes for quantum storage

    NASA Astrophysics Data System (ADS)

    Breuckmann, Nikolas P.; Vuillot, Christophe; Campbell, Earl; Krishna, Anirudh; Terhal, Barbara M.

    2017-09-01

    We show how a hyperbolic surface code could be used for overhead-efficient quantum storage. We give numerical evidence for a noise threshold of 1.3 % for the \\{4,5\\}-hyperbolic surface code in a phenomenological noise model (as compared with 2.9 % for the toric code). In this code family, parity checks are of weight 4 and 5, while each qubit participates in four different parity checks. We introduce a family of semi-hyperbolic codes that interpolate between the toric code and the \\{4,5\\}-hyperbolic surface code in terms of encoding rate and threshold. We show how these hyperbolic codes outperform the toric code in terms of qubit overhead for a target logical error probability. We show how Dehn twists and lattice code surgery can be used to read and write individual qubits to this quantum storage medium.

  15. Adiabatic Quantum Simulation of Quantum Chemistry

    PubMed Central

    Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán

    2014-01-01

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions. PMID:25308187

  16. Open Quantum Walks and Dissipative Quantum Computing

    NASA Astrophysics Data System (ADS)

    Petruccione, Francesco

    2012-02-01

    Open Quantum Walks (OQWs) have been recently introduced as quantum Markov chains on graphs [S. Attal, F. Petruccione, C. Sabot, and I. Sinayskiy, E-print: http://hal.archives-ouvertes.fr/hal-00581553/fr/]. The formulation of the OQWs is exclusively based upon the non-unitary dynamics induced by the environment. It will be shown that OQWs are a very useful tool for the formulation of dissipative quantum computing and quantum state preparation. In particular, it will be shown how to implement single qubit gates and the CNOT gate as OQWs on fully connected graphs. Also, OQWS make possible the dissipative quantum state preparation of arbitrary single qubit states and of all two-qubit Bell states. Finally, it will be shown how to reformulate efficiently a discrete time version of dissipative quantum computing in the language of OQWs.

  17. Deterministic implementations of single-photon multi-qubit Deutsch-Jozsa algorithms with linear optics

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Liu, Ji-Zhen

    2017-02-01

    It is very important to seek an efficient and robust quantum algorithm demanding less quantum resources. We propose one-photon three-qubit original and refined Deutsch-Jozsa algorithms with polarization and two linear momentums degrees of freedom (DOFs). Our schemes are constructed by solely using linear optics. Compared to the traditional ones with one DOF, our schemes are more economic and robust because the necessary photons are reduced from three to one. Our linear-optic schemes are working in a determinate way, and they are feasible with current experimental technology.

  18. Robust dynamical decoupling for quantum computing and quantum memory.

    PubMed

    Souza, Alexandre M; Alvarez, Gonzalo A; Suter, Dieter

    2011-06-17

    Dynamical decoupling (DD) is a popular technique for protecting qubits from the environment. However, unless special care is taken, experimental errors in the control pulses used in this technique can destroy the quantum information instead of preserving it. Here, we investigate techniques for making DD sequences robust against different types of experimental errors while retaining good decoupling efficiency in a fluctuating environment. We present experimental data from solid-state nuclear spin qubits and introduce a new DD sequence that is suitable for quantum computing and quantum memory.

  19. Time Division Multiplexing of Semiconductor Qubits

    NASA Astrophysics Data System (ADS)

    Jarratt, Marie Claire; Hornibrook, John; Croot, Xanthe; Watson, John; Gardner, Geoff; Fallahi, Saeed; Manfra, Michael; Reilly, David

    Readout chains, comprising resonators, amplifiers, and demodulators, are likely to be precious resources in quantum computing architectures. The potential to share readout resources is contingent on realising efficient means of time-division multiplexing (TDM) schemes that are compatible with quantum computing. Here, we demonstrate TDM using a GaAs quantum dot device with multiple charge sensors. Our device incorporates chip-level switches that do not load the impedance matching network. When used in conjunction with frequency multiplexing, each frequency tone addresses multiple time-multiplexed qubits, vastly increasing the capacity of a single readout line.

  20. Deterministic implementations of single-photon multi-qubit Deutsch–Jozsa algorithms with linear optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Hai-Rui, E-mail: hrwei@ustb.edu.cn; Liu, Ji-Zhen

    2017-02-15

    It is very important to seek an efficient and robust quantum algorithm demanding less quantum resources. We propose one-photon three-qubit original and refined Deutsch–Jozsa algorithms with polarization and two linear momentums degrees of freedom (DOFs). Our schemes are constructed by solely using linear optics. Compared to the traditional ones with one DOF, our schemes are more economic and robust because the necessary photons are reduced from three to one. Our linear-optic schemes are working in a determinate way, and they are feasible with current experimental technology.

  1. Resonantly driven CNOT gate for electron spins

    NASA Astrophysics Data System (ADS)

    Zajac, D. M.; Sigillito, A. J.; Russ, M.; Borjans, F.; Taylor, J. M.; Burkard, G.; Petta, J. R.

    2018-01-01

    To build a universal quantum computer—the kind that can handle any computational task you throw at it—an essential early step is to demonstrate the so-called CNOT gate, which acts on two qubits. Zajac et al. built an efficient CNOT gate by using electron spin qubits in silicon quantum dots, an implementation that is especially appealing because of its compatibility with existing semiconductor-based electronics (see the Perspective by Schreiber and Bluhm). To showcase the potential, the authors used the gate to create an entangled quantum state called the Bell state.

  2. Entanglement of atomic qubits using an optical frequency comb.

    PubMed

    Hayes, D; Matsukevich, D N; Maunz, P; Hucul, D; Quraishi, Q; Olmschenk, S; Campbell, W; Mizrahi, J; Senko, C; Monroe, C

    2010-04-09

    We demonstrate the use of an optical frequency comb to coherently control and entangle atomic qubits. A train of off-resonant ultrafast laser pulses is used to efficiently and coherently transfer population between electronic and vibrational states of trapped atomic ions and implement an entangling quantum logic gate with high fidelity. This technique can be extended to the high field regime where operations can be performed faster than the trap frequency. This general approach can be applied to more complex quantum systems, such as large collections of interacting atoms or molecules.

  3. Experimental demonstration of a BDCZ quantum repeater node.

    PubMed

    Yuan, Zhen-Sheng; Chen, Yu-Ao; Zhao, Bo; Chen, Shuai; Schmiedmayer, Jörg; Pan, Jian-Wei

    2008-08-28

    Quantum communication is a method that offers efficient and secure ways for the exchange of information in a network. Large-scale quantum communication (of the order of 100 km) has been achieved; however, serious problems occur beyond this distance scale, mainly due to inevitable photon loss in the transmission channel. Quantum communication eventually fails when the probability of a dark count in the photon detectors becomes comparable to the probability that a photon is correctly detected. To overcome this problem, Briegel, Dür, Cirac and Zoller (BDCZ) introduced the concept of quantum repeaters, combining entanglement swapping and quantum memory to efficiently extend the achievable distances. Although entanglement swapping has been experimentally demonstrated, the implementation of BDCZ quantum repeaters has proved challenging owing to the difficulty of integrating a quantum memory. Here we realize entanglement swapping with storage and retrieval of light, a building block of the BDCZ quantum repeater. We follow a scheme that incorporates the strategy of BDCZ with atomic quantum memories. Two atomic ensembles, each originally entangled with a single emitted photon, are projected into an entangled state by performing a joint Bell state measurement on the two single photons after they have passed through a 300-m fibre-based communication channel. The entanglement is stored in the atomic ensembles and later verified by converting the atomic excitations into photons. Our method is intrinsically phase insensitive and establishes the essential element needed to realize quantum repeaters with stationary atomic qubits as quantum memories and flying photonic qubits as quantum messengers.

  4. Quantum Otto heat engine with three-qubit XXZ model as working substance

    NASA Astrophysics Data System (ADS)

    Huang, X. L.; Sun, Qi; Guo, D. Y.; Yu, Qian

    2018-02-01

    A quantum Otto heat engine is established with a three-qubit Heisenberg XXZ model with Dzyaloshinskii-Moriya (DM) interaction under a homogeneous magnetic field as the working substance. The quantum Otto engine is composed of two quantum isochoric processes and two quantum adiabatic processes. Here we have restricted Bc /Bh =Jc /Jh = r in the two adiabatic processes, where r is the adiabatic compression ratio. The work output and efficiency are calculated for our cycle. The possible adiabatic compression ratios and the ratios of work output between our working substance and a single spin under the same external conditions in the Otto cycle are analyzed with different DM interaction parameters and anisotropic parameters. The effects of pairwise entanglements on the heat engine efficiency are discussed.

  5. Witnessing entanglement without entanglement witness operators

    PubMed Central

    Pezzè, Luca; Li, Yan; Li, Weidong; Smerzi, Augusto

    2016-01-01

    Quantum mechanics predicts the existence of correlations between composite systems that, although puzzling to our physical intuition, enable technologies not accessible in a classical world. Notwithstanding, there is still no efficient general method to theoretically quantify and experimentally detect entanglement of many qubits. Here we propose to detect entanglement by measuring the statistical response of a quantum system to an arbitrary nonlocal parametric evolution. We witness entanglement without relying on the tomographic reconstruction of the quantum state, or the realization of witness operators. The protocol requires two collective settings for any number of parties and is robust against noise and decoherence occurring after the implementation of the parametric transformation. To illustrate its user friendliness we demonstrate multipartite entanglement in different experiments with ions and photons by analyzing published data on fidelity visibilities and variances of collective observables. PMID:27681625

  6. Stabilized 1762 nm Laser for Barium Ion Qubit Readout via Adiabatic Passage

    NASA Astrophysics Data System (ADS)

    Salacka, Joanna

    2008-05-01

    Trapped ions are one of the most promising candidates for the implementation of quantum computation. We are trapping single ions of Ba^137 to serve as our qubit, because the hyperfine structure of its ground state and its various visible-wavelength transitions make it favorable for quantum computation. The two hyperfine ground levels will serve as our |1> and |0> qubit states. The readout of the qubit will be accomplished by first selectively shelving the ion directly to the metastable 5D5/2 state using a 1762 nm narrow band fiber laser. Next, the cooling and repumping lasers are turned on and the fluorescence of the ion is measured. Since the 5D5/2 state is decoupled from the laser cooling transitions, the ion will remain dark when shelved. Thus if fluorescence is seen we know that the qubit was in the |0> state, and if no fluorescence is seen it was in the |1> state. The laser is actively stabilized to a temperature-controlled, high-finesse 1.76 um Zerodur optical cavity. The shelving to the 5D5/2 state is most efficiently achieved with adiabatic passage, which requires a smooth scan of the laser frequency across the transition resonance. To accomplish this, the laser frequency is modulated by an AOM driven by a smooth frequency sweep of adjustable amplitude and duration.

  7. Quantum teleportation and information splitting via four-qubit cluster state and a Bell state

    NASA Astrophysics Data System (ADS)

    Ramírez, Marlon David González; Falaye, Babatunde James; Sun, Guo-Hua; Cruz-Irisson, M.; Dong, Shi-Hai

    2017-10-01

    Quantum teleportation provides a "bodiless" way of transmitting the quantum state from one object to another, at a distant location, using a classical communication channel and a previously shared entangled state. In this paper, we present a tripartite scheme for probabilistic teleportation of an arbitrary single qubit state, without losing the information of the state being teleported, via a fourqubit cluster state of the form | ϕ>1234 = α|0000>+ β|1010>+ γ|0101>- η|1111>, as the quantum channel, where the nonzero real numbers α, β, γ, and η satisfy the relation j αj2 + | β|2 + | γ|2 + | η|2 = 1. With the introduction of an auxiliary qubit with state |0>, using a suitable unitary transformation and a positive-operator valued measure (POVM), the receiver can recreate the state of the original qubit. An important advantage of the teleportation scheme demonstrated here is that, if the teleportation fails, it can be repeated without teleporting copies of the unknown quantum state, if the concerned parties share another pair of entangled qubit. We also present a protocol for quantum information splitting of an arbitrary two-particle system via the aforementioned cluster state and a Bell-state as the quantum channel. Problems related to security attacks were examined for both the cases and it was found that this protocol is secure. This protocol is highly efficient and easy to implement.

  8. Correlators in simultaneous measurement of non-commuting qubit observables

    NASA Astrophysics Data System (ADS)

    Atalaya, Juan; Hacohen-Gourgy, Shay; Martin, Leigh S.; Siddiqi, Irfan; Korotkov, Alexander N.

    We consider simultaneous continuous measurement of non-commuting qubit observables and analyze multi-time correlators 〈i κ1 (t1) ^i κN (tN) 〉 for output signals i κ (t) from the detectors. Both informational (''spooky'') and phase backactions from cQED-type measurements with phase-sensitive amplifiers are taken into account. We find an excellent agreement between analytical results and experimental data for two-time correlators of the output signals from simultaneous measurement of qubit observables σx and σφ =σx cosφ +σy sinφ . The correlators can be used to extract small deviations of experimental parameters, e.g., phase backaction and residual Rabi frequency. The multi-time correlators are important in analysis of Bacon-Shor error correction/detection codes, operated with continuous measurements.

  9. Theory of remote entanglement via quantum-limited phase-preserving amplification

    NASA Astrophysics Data System (ADS)

    Silveri, Matti; Zalys-Geller, Evan; Hatridge, Michael; Leghtas, Zaki; Devoret, Michel H.; Girvin, S. M.

    2016-06-01

    We show that a quantum-limited phase-preserving amplifier can act as a which-path information eraser when followed by heterodyne detection. This "beam splitter with gain" implements a continuous joint measurement on the signal sources. As an application, we propose heralded concurrent remote entanglement generation between two qubits coupled dispersively to separate cavities. Dissimilar qubit-cavity pairs can be made indistinguishable by simple engineering of the cavity driving fields providing further experimental flexibility and the prospect for scalability. Additionally, we find an analytic solution for the stochastic master equation, a quantum filter, yielding a thorough physical understanding of the nonlinear measurement process leading to an entangled state of the qubits. We determine the concurrence of the entangled states and analyze its dependence on losses and measurement inefficiencies.

  10. Robust distant-entanglement generation using coherent multiphoton scattering

    NASA Astrophysics Data System (ADS)

    Chan, Ching-Kit; Sham, L. J.

    2013-03-01

    The generation and controllability of entanglement between distant quantum states have been the heart of quantum computation and quantum information processing. Existing schemes for solid state qubit entanglement are based on the single-photon spectroscopy that has the merit of a high fidelity entanglement creation, but with a very limited efficiency. This severely restricts the scalability for a qubit network system. Here, we describe a new distant entanglement protocol using coherent multiphoton scattering. The scheme makes use of the postselection of large and distinguishable photon signals, and has both a high success probability and a high entanglement fidelity. Our result shows that the entanglement generation is robust against photon fluctuations, and has an average entanglement duration within the decoherence time in various qubit systems, based on existing experimental parameters. This research was supported by the U.S. Army Research Office MURI award W911NF0910406 and by NSF grant PHY-1104446.

  11. The relation between the quantum discord and quantum teleportation: The physical interpretation of the transition point between different quantum discord decay regimes

    NASA Astrophysics Data System (ADS)

    Roszak, K.; Cywiński, Ł.

    2015-10-01

    We study quantum teleportation via Bell-diagonal mixed states of two qubits in the context of the intrinsic properties of the quantum discord. We show that when the quantum-correlated state of the two qubits is used for quantum teleportation, the character of the teleportation efficiency changes substantially depending on the Bell-diagonal-state parameters, which can be seen when the worst-case-scenario or best-case-scenario fidelity is studied. Depending on the parameter range, one of two types of single-qubit states is hardest/easiest to teleport. The transition between these two parameter ranges coincides exactly with the transition between the range of classical correlation decay and quantum correlation decay characteristic for the evolution of the quantum discord. The correspondence provides a physical interpretation for the prominent feature of the decay of the quantum discord.

  12. A Novel Implementation of Efficient Algorithms for Quantum Circuit Synthesis

    NASA Astrophysics Data System (ADS)

    Zeller, Luke

    In this project, we design and develop a computer program to effectively approximate arbitrary quantum gates using the discrete set of Clifford Gates together with the T gate (π/8 gate). Employing recent results from Mosca et. al. and Giles and Selinger, we implement a decomposition scheme that outputs a sequence of Clifford, T, and Tt gates that approximate the input to within a specified error range ɛ. Specifically, the given gate is first rounded to an element of Z[1/2, i] with a precision determined by ɛ, and then exact synthesis is employed to produce the resulting gate. It is known that this procedure is optimal in approximating an arbitrary single qubit gate. Our program, written in Matlab and Python, can complete both approximate and exact synthesis of qubits. It can be used to assist in the experimental implementation of an arbitrary fault-tolerant single qubit gate, for which direct implementation isn't feasible.

  13. Optimal mode transformations for linear-optical cluster-state generation

    DOE PAGES

    Uskov, Dmitry B.; Lougovski, Pavel; Alsing, Paul M.; ...

    2015-06-15

    In this paper, we analyze the generation of linear-optical cluster states (LOCSs) via sequential addition of one and two qubits. Existing approaches employ the stochastic linear-optical two-qubit controlled-Z (CZ) gate with success rate of 1/9 per operation. The question of optimality of the CZ gate with respect to LOCS generation has remained open. We report that there are alternative schemes to the CZ gate that are exponentially more efficient and show that sequential LOCS growth is indeed globally optimal. We find that the optimal cluster growth operation is a state transformation on a subspace of the full Hilbert space. Finally,more » we show that the maximal success rate of postselected entangling n photonic qubits or m Bell pairs into a cluster is (1/2) n-1 and (1/4) m-1, respectively, with no ancilla photons, and we give an explicit optical description of the optimal mode transformations.« less

  14. A linear triple quantum dot system in isolated configuration

    NASA Astrophysics Data System (ADS)

    Flentje, Hanno; Bertrand, Benoit; Mortemousque, Pierre-André; Thiney, Vivien; Ludwig, Arne; Wieck, Andreas D.; Bäuerle, Christopher; Meunier, Tristan

    2017-06-01

    The scaling up of electron spin qubit based nanocircuits has remained challenging up till date and involves the development of efficient charge control strategies. Here, we report on the experimental realization of a linear triple quantum dot in a regime isolated from the reservoir. We show how this regime can be reached with a fixed number of electrons. Charge stability diagrams of the one, two, and three electron configurations where only electron exchange between the dots is allowed are observed. They are modeled with the established theory based on a capacitive model of the dot systems. The advantages of the isolated regime with respect to experimental realizations of quantum simulators and qubits are discussed. We envision that the results presented here will make more manipulation schemes for existing qubit implementations possible and will ultimately allow to increase the number of tunnel coupled quantum dots which can be simultaneously controlled.

  15. Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit.

    PubMed

    Song, Chao; Zheng, Shi-Biao; Zhang, Pengfei; Xu, Kai; Zhang, Libo; Guo, Qiujiang; Liu, Wuxin; Xu, Da; Deng, Hui; Huang, Keqiang; Zheng, Dongning; Zhu, Xiaobo; Wang, H

    2017-10-20

    Geometric phase, associated with holonomy transformation in quantum state space, is an important quantum-mechanical effect. Besides fundamental interest, this effect has practical applications, among which geometric quantum computation is a paradigm, where quantum logic operations are realized through geometric phase manipulation that has some intrinsic noise-resilient advantages and may enable simplified implementation of multi-qubit gates compared to the dynamical approach. Here we report observation of a continuous-variable geometric phase and demonstrate a quantum gate protocol based on this phase in a superconducting circuit, where five qubits are controllably coupled to a resonator. Our geometric approach allows for one-step implementation of n-qubit controlled-phase gates, which represents a remarkable advantage compared to gate decomposition methods, where the number of required steps dramatically increases with n. Following this approach, we realize these gates with n up to 4, verifying the high efficiency of this geometric manipulation for quantum computation.

  16. Scheme for Quantum Computing Immune to Decoherence

    NASA Technical Reports Server (NTRS)

    Williams, Colin; Vatan, Farrokh

    2008-01-01

    A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report that the derivation provides explicit constructions for finding the exchange couplings in the physical basis needed to implement any arbitrary 1-qubit gate. These constructions lead to spintronic encodings of quantum logic that are more efficient than those of a previously published scheme that utilizes a universal but fixed set of gates.

  17. Controlling qubit drift by recycling error correction syndromes

    NASA Astrophysics Data System (ADS)

    Blume-Kohout, Robin

    2015-03-01

    Physical qubits are susceptible to systematic drift, above and beyond the stochastic Markovian noise that motivates quantum error correction. This parameter drift must be compensated - if it is ignored, error rates will rise to intolerable levels - but compensation requires knowing the parameters' current value, which appears to require halting experimental work to recalibrate (e.g. via quantum tomography). Fortunately, this is untrue. I show how to perform on-the-fly recalibration on the physical qubits in an error correcting code, using only information from the error correction syndromes. The algorithm for detecting and compensating drift is very simple - yet, remarkably, when used to compensate Brownian drift in the qubit Hamiltonian, it achieves a stabilized error rate very close to the theoretical lower bound. Against 1/f noise, it is less effective only because 1/f noise is (like white noise) dominated by high-frequency fluctuations that are uncompensatable. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  18. Optimal attacks on qubit-based Quantum Key Recycling

    NASA Astrophysics Data System (ADS)

    Leermakers, Daan; Škorić, Boris

    2018-03-01

    Quantum Key Recycling (QKR) is a quantum cryptographic primitive that allows one to reuse keys in an unconditionally secure way. By removing the need to repeatedly generate new keys, it improves communication efficiency. Škorić and de Vries recently proposed a QKR scheme based on 8-state encoding (four bases). It does not require quantum computers for encryption/decryption but only single-qubit operations. We provide a missing ingredient in the security analysis of this scheme in the case of noisy channels: accurate upper bounds on the required amount of privacy amplification. We determine optimal attacks against the message and against the key, for 8-state encoding as well as 4-state and 6-state conjugate coding. We provide results in terms of min-entropy loss as well as accessible (Shannon) information. We show that the Shannon entropy analysis for 8-state encoding reduces to the analysis of quantum key distribution, whereas 4-state and 6-state suffer from additional leaks that make them less effective. From the optimal attacks we compute the required amount of privacy amplification and hence the achievable communication rate (useful information per qubit) of qubit-based QKR. Overall, 8-state encoding yields the highest communication rates.

  19. Efficient universal quantum channel simulation in IBM's cloud quantum computer

    NASA Astrophysics Data System (ADS)

    Wei, Shi-Jie; Xin, Tao; Long, Gui-Lu

    2018-07-01

    The study of quantum channels is an important field and promises a wide range of applications, because any physical process can be represented as a quantum channel that transforms an initial state into a final state. Inspired by the method of performing non-unitary operators by the linear combination of unitary operations, we proposed a quantum algorithm for the simulation of the universal single-qubit channel, described by a convex combination of "quasi-extreme" channels corresponding to four Kraus operators, and is scalable to arbitrary higher dimension. We demonstrated the whole algorithm experimentally using the universal IBM cloud-based quantum computer and studied the properties of different qubit quantum channels. We illustrated the quantum capacity of the general qubit quantum channels, which quantifies the amount of quantum information that can be protected. The behavior of quantum capacity in different channels revealed which types of noise processes can support information transmission, and which types are too destructive to protect information. There was a general agreement between the theoretical predictions and the experiments, which strongly supports our method. By realizing the arbitrary qubit channel, this work provides a universally- accepted way to explore various properties of quantum channels and novel prospect for quantum communication.

  20. Quantum Trajectories and Their Statistics for Remotely Entangled Quantum Bits

    NASA Astrophysics Data System (ADS)

    Chantasri, Areeya; Kimchi-Schwartz, Mollie E.; Roch, Nicolas; Siddiqi, Irfan; Jordan, Andrew N.

    2016-10-01

    We experimentally and theoretically investigate the quantum trajectories of jointly monitored transmon qubits embedded in spatially separated microwave cavities. Using nearly quantum-noise-limited superconducting amplifiers and an optimized setup to reduce signal loss between cavities, we can efficiently track measurement-induced entanglement generation as a continuous process for single realizations of the experiment. The quantum trajectories of transmon qubits naturally split into low and high entanglement classes. The distribution of concurrence is found at any given time, and we explore the dynamics of entanglement creation in the state space. The distribution exhibits a sharp cutoff in the high concurrence limit, defining a maximal concurrence boundary. The most-likely paths of the qubits' trajectories are also investigated, resulting in three probable paths, gradually projecting the system to two even subspaces and an odd subspace, conforming to a "half-parity" measurement. We also investigate the most-likely time for the individual trajectories to reach their most entangled state, and we find that there are two solutions for the local maximum, corresponding to the low and high entanglement routes. The theoretical predictions show excellent agreement with the experimental entangled-qubit trajectory data.

  1. Demonstration of a small programmable quantum computer with atomic qubits.

    PubMed

    Debnath, S; Linke, N M; Figgatt, C; Landsman, K A; Wright, K; Monroe, C

    2016-08-04

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  2. Demonstration of a small programmable quantum computer with atomic qubits

    NASA Astrophysics Data System (ADS)

    Debnath, S.; Linke, N. M.; Figgatt, C.; Landsman, K. A.; Wright, K.; Monroe, C.

    2016-08-01

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  3. Unconditionally verifiable blind quantum computation

    NASA Astrophysics Data System (ADS)

    Fitzsimons, Joseph F.; Kashefi, Elham

    2017-07-01

    Blind quantum computing (BQC) allows a client to have a server carry out a quantum computation for them such that the client's input, output, and computation remain private. A desirable property for any BQC protocol is verification, whereby the client can verify with high probability whether the server has followed the instructions of the protocol or if there has been some deviation resulting in a corrupted output state. A verifiable BQC protocol can be viewed as an interactive proof system leading to consequences for complexity theory. We previously proposed [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual Symposium on Foundations of Computer Science, Atlanta, 2009 (IEEE, Piscataway, 2009), p. 517] a universal and unconditionally secure BQC scheme where the client only needs to be able to prepare single qubits in separable states randomly chosen from a finite set and send them to the server, who has the balance of the required quantum computational resources. In this paper we extend that protocol with additional functionality allowing blind computational basis measurements, which we use to construct another verifiable BQC protocol based on a different class of resource states. We rigorously prove that the probability of failing to detect an incorrect output is exponentially small in a security parameter, while resource overhead remains polynomial in this parameter. This resource state allows entangling gates to be performed between arbitrary pairs of logical qubits with only constant overhead. This is a significant improvement on the original scheme, which required that all computations to be performed must first be put into a nearest-neighbor form, incurring linear overhead in the number of qubits. Such an improvement has important consequences for efficiency and fault-tolerance thresholds.

  4. Quantum Logic Networks for Probabilistic and Controlled Teleportation of Unknown Quantum States

    NASA Astrophysics Data System (ADS)

    Gao, Ting

    2004-08-01

    We present simplification schemes for probabilistic and controlled teleportation of the unknown quantum states of both one particle and two particles and construct efficient quantum logic networks for implementing the new schemes by means of the primitive operations consisting of single-qubit gates, two-qubit controlled-not gates, Von Neumann measurement, and classically controlled operations. In these schemes the teleportation are not always successful but with certain probability. The project supported by National Natural Science Foundation of China under Grant No. 10271081 and the Natural Science Foundation of Hebei Province of China under Grant No. A2004000141

  5. Composite pulses robust against charge noise and magnetic field noise for universal control of a singlet-triplet qubit

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Barnes, Edwin; Kestner, Jason P.; Bishop, Lev S.; Das Sarma, Sankar

    2013-03-01

    We generalize our SUPCODE pulse sequences for singlet-triplet qubits to correct errors from imperfect control. This yields gates that are simultaneously corrected for both charge noise and magnetic field gradient fluctuations, addressing the two dominant T2* processes. By using this more efficient version of SUPCODE, we are able to introduce this capability while also substantially reducing the overall pulse time compared to the previous sequence. We show that our sequence remains realistic under experimental constraints such as finite bandwidth. This work is supported by LPS-NSA-CMTC, IARPA-MQCO and CNAM.

  6. Deterministic secure quantum communication using a single d-level system.

    PubMed

    Jiang, Dong; Chen, Yuanyuan; Gu, Xuemei; Xie, Ling; Chen, Lijun

    2017-03-22

    Deterministic secure quantum communication (DSQC) can transmit secret messages between two parties without first generating a shared secret key. Compared with quantum key distribution (QKD), DSQC avoids the waste of qubits arising from basis reconciliation and thus reaches higher efficiency. In this paper, based on data block transmission and order rearrangement technologies, we propose a DSQC protocol. It utilizes a set of single d-level systems as message carriers, which are used to directly encode the secret message in one communication process. Theoretical analysis shows that these employed technologies guarantee the security, and the use of a higher dimensional quantum system makes our protocol achieve higher security and efficiency. Since only quantum memory is required for implementation, our protocol is feasible with current technologies. Furthermore, Trojan horse attack (THA) is taken into account in our protocol. We give a THA model and show that THA significantly increases the multi-photon rate and can thus be detected.

  7. Scalable randomized benchmarking of non-Clifford gates

    NASA Astrophysics Data System (ADS)

    Cross, Andrew; Magesan, Easwar; Bishop, Lev; Smolin, John; Gambetta, Jay

    Randomized benchmarking is a widely used experimental technique to characterize the average error of quantum operations. Benchmarking procedures that scale to enable characterization of n-qubit circuits rely on efficient procedures for manipulating those circuits and, as such, have been limited to subgroups of the Clifford group. However, universal quantum computers require additional, non-Clifford gates to approximate arbitrary unitary transformations. We define a scalable randomized benchmarking procedure over n-qubit unitary matrices that correspond to protected non-Clifford gates for a class of stabilizer codes. We present efficient methods for representing and composing group elements, sampling them uniformly, and synthesizing corresponding poly (n) -sized circuits. The procedure provides experimental access to two independent parameters that together characterize the average gate fidelity of a group element. We acknowledge support from ARO under Contract W911NF-14-1-0124.

  8. Comparative Study of Entanglement and Wigner Function for Multi-Qubit GHZ-Squeezed State

    NASA Astrophysics Data System (ADS)

    Siyouri, Fatima-Zahra

    2017-12-01

    In this paper we address the possibility of using the Wigner function to capture the quantum entanglement present in a multi-qubit system. For that purpose, we calculate both the degree of entanglement and the Wigner function for mixed tripartite squeezed states of Greenberger-Horne-Zeilinger (GHZ) type then we compare their behaviors. We show that the role of Wigner function in detecting and quantifying bipartite quantum correlation [Int. J. Mod. Phys. B 30 (2016) 1650187] may be generalized to the multipartite case.

  9. Generating single microwave photons in a circuit.

    PubMed

    Houck, A A; Schuster, D I; Gambetta, J M; Schreier, J A; Johnson, B R; Chow, J M; Frunzio, L; Majer, J; Devoret, M H; Girvin, S M; Schoelkopf, R J

    2007-09-20

    Microwaves have widespread use in classical communication technologies, from long-distance broadcasts to short-distance signals within a computer chip. Like all forms of light, microwaves, even those guided by the wires of an integrated circuit, consist of discrete photons. To enable quantum communication between distant parts of a quantum computer, the signals must also be quantum, consisting of single photons, for example. However, conventional sources can generate only classical light, not single photons. One way to realize a single-photon source is to collect the fluorescence of a single atom. Early experiments measured the quantum nature of continuous radiation, and further advances allowed triggered sources of photons on demand. To allow efficient photon collection, emitters are typically placed inside optical or microwave cavities, but these sources are difficult to employ for quantum communication on wires within an integrated circuit. Here we demonstrate an on-chip, on-demand single-photon source, where the microwave photons are injected into a wire with high efficiency and spectral purity. This is accomplished in a circuit quantum electrodynamics architecture, with a microwave transmission line cavity that enhances the spontaneous emission of a single superconducting qubit. When the qubit spontaneously emits, the generated photon acts as a flying qubit, transmitting the quantum information across a chip. We perform tomography of both the qubit and the emitted photons, clearly showing that both the quantum phase and amplitude are transferred during the emission. Both the average power and voltage of the photon source are characterized to verify performance of the system. This single-photon source is an important addition to a rapidly growing toolbox for quantum optics on a chip.

  10. A Bell inequality for a class of multilocal ring networks

    NASA Astrophysics Data System (ADS)

    Frey, Michael

    2017-11-01

    Quantum networks with independent sources of entanglement (hidden variables) and nodes that execute joint quantum measurements can create strong quantum correlations spanning the breadth of the network. Understanding of these correlations has to the present been limited to standard Bell experiments with one source of shared randomness, bilocal arrangements having two local sources of shared randomness, and multilocal networks with tree topologies. We introduce here a class of quantum networks with ring topologies comprised of subsystems each with its own internally shared source of randomness. We prove a Bell inequality for these networks, and to demonstrate violations of this inequality, we focus on ring networks with three-qubit subsystems. Three qubits are capable of two non-equivalent types of entanglement, GHZ and W-type. For rings of any number N of three-qubit subsystems, our inequality is violated when the subsystems are each internally GHZ-entangled. This violation is consistently stronger when N is even. This quantitative even-odd difference for GHZ entanglement becomes extreme in the case of W-type entanglement. When the ring size N is even, the presence of W-type entanglement is successfully detected; when N is odd, the inequality consistently fails to detect its presence.

  11. Quantum steganography and quantum error-correction

    NASA Astrophysics Data System (ADS)

    Shaw, Bilal A.

    Quantum error-correcting codes have been the cornerstone of research in quantum information science (QIS) for more than a decade. Without their conception, quantum computers would be a footnote in the history of science. When researchers embraced the idea that we live in a world where the effects of a noisy environment cannot completely be stripped away from the operations of a quantum computer, the natural way forward was to think about importing classical coding theory into the quantum arena to give birth to quantum error-correcting codes which could help in mitigating the debilitating effects of decoherence on quantum data. We first talk about the six-qubit quantum error-correcting code and show its connections to entanglement-assisted error-correcting coding theory and then to subsystem codes. This code bridges the gap between the five-qubit (perfect) and Steane codes. We discuss two methods to encode one qubit into six physical qubits. Each of the two examples corrects an arbitrary single-qubit error. The first example is a degenerate six-qubit quantum error-correcting code. We explicitly provide the stabilizer generators, encoding circuits, codewords, logical Pauli operators, and logical CNOT operator for this code. We also show how to convert this code into a non-trivial subsystem code that saturates the subsystem Singleton bound. We then prove that a six-qubit code without entanglement assistance cannot simultaneously possess a Calderbank-Shor-Steane (CSS) stabilizer and correct an arbitrary single-qubit error. A corollary of this result is that the Steane seven-qubit code is the smallest single-error correcting CSS code. Our second example is the construction of a non-degenerate six-qubit CSS entanglement-assisted code. This code uses one bit of entanglement (an ebit) shared between the sender (Alice) and the receiver (Bob) and corrects an arbitrary single-qubit error. The code we obtain is globally equivalent to the Steane seven-qubit code and thus corrects an arbitrary error on the receiver's half of the ebit as well. We prove that this code is the smallest code with a CSS structure that uses only one ebit and corrects an arbitrary single-qubit error on the sender's side. We discuss the advantages and disadvantages for each of the two codes. In the second half of this thesis we explore the yet uncharted and relatively undiscovered area of quantum steganography. Steganography is the process of hiding secret information by embedding it in an "innocent" message. We present protocols for hiding quantum information in a codeword of a quantum error-correcting code passing through a channel. Using either a shared classical secret key or shared entanglement Alice disguises her information as errors in the channel. Bob can retrieve the hidden information, but an eavesdropper (Eve) with the power to monitor the channel, but without the secret key, cannot distinguish the message from channel noise. We analyze how difficult it is for Eve to detect the presence of secret messages, and estimate rates of steganographic communication and secret key consumption for certain protocols. We also provide an example of how Alice hides quantum information in the perfect code when the underlying channel between Bob and her is the depolarizing channel. Using this scheme Alice can hide up to four stego-qubits.

  12. Gate-Sensing the Potential Landscape of a GaAs Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Croot, Xanthe; Mahoney, Alice; Pauka, Sebastian; Colless, James; Reilly, David; Watson, John; Fallahi, Saeed; Gardner, Geoff; Manfra, Michael; Lu, Hong; Gossard, Arthur

    In situ dispersive gate sensors hold potential as a means of enabling the scalable readout of quantum dot arrays. Sensitive to quantum capacitance, dispersive sensors have been used to detect inter- and intra-dot transitions in GaAs double quantum dots, and can distinguish the spin states of singlet triplet qubits. In addition, the gate-sensing technique is likely of value in probing the physics of Majorana zero modes in nanowire devices. Beyond the readout signatures associated with charge and spin configurations of qubits, gate-sensing is sensitive to trapped charge in the potential landscape. Here, we report gate-sensing signals arising from tunnelling of electrons between puddles of trapped charge in a GaAs 2DEG. We examine these signals in a family of different devices with varying mobilities, and as a function of temperature and bias. Implications for qubit readout using the gate-sensing technique are discussed.

  13. An Improved Protocol for Controlled Deterministic Secure Quantum Communication Using Five-Qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Kao, Shih-Hung; Lin, Jason; Tsai, Chia-Wei; Hwang, Tzonelih

    2018-03-01

    In early 2009, Xiu et al. (Opt. Commun. 282(2) 333-337 2009) presented a controlled deterministic secure quantum communication (CDSQC) protocol via a newly constructed five-qubit entangled quantum state. Later, Qin et al. (Opt. Commun. 282(13), 2656-2658 2009) pointed out two security loopholes in Xiu et al.'s protocol: (1) A correlation-elicitation (CE) attack can reveal the entire secret message; (2) A leakage of partial information for the receiver is noticed. Then, Xiu et al. (Opt. Commun. 283(2), 344-347 2010) presented a revised CDSQC protocol to remedy the CE attack problem. However, the information leakage problem still remains open. This work proposes a new CDSQC protocol using the same five-qubit entangled state which can work without the above mentioned security problems. Moreover, the Trojan Horse attacks can be automatically avoided without using detecting devices in the new CDSQC.

  14. An Improved Protocol for Controlled Deterministic Secure Quantum Communication Using Five-Qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Kao, Shih-Hung; Lin, Jason; Tsai, Chia-Wei; Hwang, Tzonelih

    2018-06-01

    In early 2009, Xiu et al. (Opt. Commun. 282(2) 333-337 2009) presented a controlled deterministic secure quantum communication (CDSQC) protocol via a newly constructed five-qubit entangled quantum state. Later, Qin et al. (Opt. Commun. 282(13), 2656-2658 2009) pointed out two security loopholes in Xiu et al.'s protocol: (1) A correlation-elicitation (CE) attack can reveal the entire secret message; (2) A leakage of partial information for the receiver is noticed. Then, Xiu et al. (Opt. Commun. 283(2), 344-347 2010) presented a revised CDSQC protocol to remedy the CE attack problem. However, the information leakage problem still remains open. This work proposes a new CDSQC protocol using the same five-qubit entangled state which can work without the above mentioned security problems. Moreover, the Trojan Horse attacks can be automatically avoided without using detecting devices in the new CDSQC.

  15. Electronic Entanglement Concentration for the Concatenated Greenberger-Horne-Zeilinger State

    NASA Astrophysics Data System (ADS)

    Ding, Shang-Ping; Zhou, Lan; Gu, Shi-Pu; Wang, Xing-Fu; Sheng, Yu-Bo

    2017-06-01

    Concatenated Greenberger-Horne-Zeilinger (C-GHZ) state, which encodes many physical qubits in a logic qubit will have important applications in both quantum communication and computation. In this paper, we will describe an entanglement concentration protocol (ECP) for electronic C-GHZ state, by exploiting the electronic polarization beam splitters (PBSs) and charge detection. This protocol has several advantages. First, the parties do not need to know the exact coefficients of the initial less-entangled C-GHZ state, which makes this protocol feasible. Second, with the help of charge detection, the distilled maximally entangled C-GHZ state can be remained for future application. Third, this protocol can be repeated to obtain a higher success probability. We hope that this protocol can be useful in future quantum computation based on electrons.

  16. Microscopic Description of Spontaneous Emission in Stark Chirped Rapid Adiabatic Passages

    NASA Astrophysics Data System (ADS)

    Shi, Xuan; Yuan, Hao; Zhao, Hong-Quan

    2018-01-01

    A microscopic approach describing the effect of spontaneous emission in the stark-chirped rapid adiabatic passages (SCRAPs) for quantum computation is presented. Apart from the phenomenological model, this microscopic one can investigate the dependence of the population dynamics both on the temperature of the environment and the decay rate γ. With flux-biased Josephson qubits as a specifical example, we study the efficiency of the SCRAP for realizing the basic Pauli-X and iSWAP gates. Our results show clearly that the behavior of the population transfer described by the microscopic model is similar with the phenomenological one at zero temperature. In the limit of very high temperature, the population probabilities of the qubit states exhibit strong stability properties. High efficiency for the quantum gate manipulations in SCRAPs is available against the weak decay rate γ ≪ 1 at low temperature.

  17. Deterministic realization of collective measurements via photonic quantum walks.

    PubMed

    Hou, Zhibo; Tang, Jun-Feng; Shang, Jiangwei; Zhu, Huangjun; Li, Jian; Yuan, Yuan; Wu, Kang-Da; Xiang, Guo-Yong; Li, Chuan-Feng; Guo, Guang-Can

    2018-04-12

    Collective measurements on identically prepared quantum systems can extract more information than local measurements, thereby enhancing information-processing efficiency. Although this nonclassical phenomenon has been known for two decades, it has remained a challenging task to demonstrate the advantage of collective measurements in experiments. Here, we introduce a general recipe for performing deterministic collective measurements on two identically prepared qubits based on quantum walks. Using photonic quantum walks, we realize experimentally an optimized collective measurement with fidelity 0.9946 without post selection. As an application, we achieve the highest tomographic efficiency in qubit state tomography to date. Our work offers an effective recipe for beating the precision limit of local measurements in quantum state tomography and metrology. In addition, our study opens an avenue for harvesting the power of collective measurements in quantum information-processing and for exploring the intriguing physics behind this power.

  18. Suppressing spectral diffusion of emitted photons with optical pulses

    DOE PAGES

    Fotso, H. F.; Feiguin, A. E.; Awschalom, D. D.; ...

    2016-01-22

    In many quantum architectures the solid-state qubits, such as quantum dots or color centers, are interfaced via emitted photons. However, the frequency of photons emitted by solid-state systems exhibits slow uncontrollable fluctuations over time (spectral diffusion), creating a serious problem for implementation of the photon-mediated protocols. Here we show that a sequence of optical pulses applied to the solid-state emitter can stabilize the emission line at the desired frequency. We demonstrate efficiency, robustness, and feasibility of the method analytically and numerically. Taking nitrogen-vacancy center in diamond as an example, we show that only several pulses, with the width of 1more » ns, separated by few ns (which is not difficult to achieve) can suppress spectral diffusion. As a result, our method provides a simple and robust way to greatly improve the efficiency of photon-mediated entanglement and/or coupling to photonic cavities for solid-state qubits.« less

  19. Simulating a transmon implementation of the surface code, Part II

    NASA Astrophysics Data System (ADS)

    O'Brien, Thomas; Tarasinski, Brian; Rol, Adriaan; Bultink, Niels; Fu, Xiang; Criger, Ben; Dicarlo, Leonardo

    The majority of quantum error correcting circuit simulations use Pauli error channels, as they can be efficiently calculated. This raises two questions: what is the effect of more complicated physical errors on the logical qubit error rate, and how much more efficient can decoders become when accounting for realistic noise? To answer these questions, we design a minimal weight perfect matching decoder parametrized by a physically motivated noise model and test it on the full density matrix simulation of Surface-17, a distance-3 surface code. We compare performance against other decoders, for a range of physical parameters. Particular attention is paid to realistic sources of error for transmon qubits in a circuit QED architecture, and the requirements for real-time decoding via an FPGA Research funded by the Foundation for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO/OCW), IARPA, an ERC Synergy Grant, the China Scholarship Council, and Intel Corporation.

  20. Dynamical evolution of entanglement of a three-qubit system driven by a classical environmental colored noise

    NASA Astrophysics Data System (ADS)

    Kenfack, Lionel Tenemeza; Tchoffo, Martin; Fouokeng, Georges Collince; Fai, Lukong Cornelius

    2018-04-01

    The effects of 1/f^{α } (α =1,2) noise stemming from one or a collection of random bistable fluctuators (RBFs), on the evolution of entanglement, of three non-interacting qubits are investigated. Three different initial configurations of the qubits are analyzed in detail: the Greenberger-Horne-Zeilinger (GHZ)-type states, W-type states and mixed states composed of a GHZ state and a W state (GHZ-W). For each initial configuration, the evolution of entanglement is investigated for three different qubit-environment (Q-E) coupling setups, namely independent environments, mixed environments and common environment coupling. With the help of tripartite negativity and suitable entanglement witnesses, we show that the evolution of entanglement is extremely influenced not only by the initial configuration of the qubits, the spectrum of the environment and the Q-E coupling setup considered, but also by the number of RBF modeling the environment. Indeed, we find that the decay of entanglement is accelerated when the number of fluctuators modeling the environment is increased. Furthermore, we find that entanglement can survive indefinitely to the detrimental effects of noise even for increasingly larger numbers of RBFs. On the other hand, we find that the proficiency of the tripartite entanglement witnesses to detect entanglement is weaker than that of the tripartite negativity and that the symmetry of the initial states is broken when the qubits are coupled to the noise in mixed environments. Finally, we find that the 1 / f noise is more harmful to the survival of entanglement than the 1/f2 noise and that the mixed GHZ-W states followed by the GHZ-type states preserve better entanglement than the W-type ones.

  1. Analysis of entanglement measures and LOCC maximized quantum Fisher information of general two qubit systems.

    PubMed

    Erol, Volkan; Ozaydin, Fatih; Altintas, Azmi Ali

    2014-06-24

    Entanglement has been studied extensively for unveiling the mysteries of non-classical correlations between quantum systems. In the bipartite case, there are well known measures for quantifying entanglement such as concurrence, relative entropy of entanglement (REE) and negativity, which cannot be increased via local operations. It was found that for sets of non-maximally entangled states of two qubits, comparing these entanglement measures may lead to different entanglement orderings of the states. On the other hand, although it is not an entanglement measure and not monotonic under local operations, due to its ability of detecting multipartite entanglement, quantum Fisher information (QFI) has recently received an intense attraction generally with entanglement in the focus. In this work, we revisit the state ordering problem of general two qubit states. Generating a thousand random quantum states and performing an optimization based on local general rotations of each qubit, we calculate the maximal QFI for each state. We analyze the maximized QFI in comparison with concurrence, REE and negativity and obtain new state orderings. We show that there are pairs of states having equal maximized QFI but different values for concurrence, REE and negativity and vice versa.

  2. Analysis of Entanglement Measures and LOCC Maximized Quantum Fisher Information of General Two Qubit Systems

    PubMed Central

    Erol, Volkan; Ozaydin, Fatih; Altintas, Azmi Ali

    2014-01-01

    Entanglement has been studied extensively for unveiling the mysteries of non-classical correlations between quantum systems. In the bipartite case, there are well known measures for quantifying entanglement such as concurrence, relative entropy of entanglement (REE) and negativity, which cannot be increased via local operations. It was found that for sets of non-maximally entangled states of two qubits, comparing these entanglement measures may lead to different entanglement orderings of the states. On the other hand, although it is not an entanglement measure and not monotonic under local operations, due to its ability of detecting multipartite entanglement, quantum Fisher information (QFI) has recently received an intense attraction generally with entanglement in the focus. In this work, we revisit the state ordering problem of general two qubit states. Generating a thousand random quantum states and performing an optimization based on local general rotations of each qubit, we calculate the maximal QFI for each state. We analyze the maximized QFI in comparison with concurrence, REE and negativity and obtain new state orderings. We show that there are pairs of states having equal maximized QFI but different values for concurrence, REE and negativity and vice versa. PMID:24957694

  3. Broken selection rule in the quantum Rabi model

    PubMed Central

    Forn-Díaz, P.; Romero, G.; Harmans, C. J. P. M.; Solano, E.; Mooij, J. E.

    2016-01-01

    Understanding the interaction between light and matter is very relevant for fundamental studies of quantum electrodynamics and for the development of quantum technologies. The quantum Rabi model captures the physics of a single atom interacting with a single photon at all regimes of coupling strength. We report the spectroscopic observation of a resonant transition that breaks a selection rule in the quantum Rabi model, implemented using an LC resonator and an artificial atom, a superconducting qubit. The eigenstates of the system consist of a superposition of bare qubit-resonator states with a relative sign. When the qubit-resonator coupling strength is negligible compared to their own frequencies, the matrix element between excited eigenstates of different sign is very small in presence of a resonator drive, establishing a sign-preserving selection rule. Here, our qubit-resonator system operates in the ultrastrong coupling regime, where the coupling strength is 10% of the resonator frequency, allowing sign-changing transitions to be activated and, therefore, detected. This work shows that sign-changing transitions are an unambiguous, distinctive signature of systems operating in the ultrastrong coupling regime of the quantum Rabi model. These results pave the way to further studies of sign-preserving selection rules in multiqubit and multiphoton models. PMID:27273346

  4. Quantum processing by remote quantum control

    NASA Astrophysics Data System (ADS)

    Qiang, Xiaogang; Zhou, Xiaoqi; Aungskunsiri, Kanin; Cable, Hugo; O'Brien, Jeremy L.

    2017-12-01

    Client-server models enable computations to be hosted remotely on quantum servers. We present a novel protocol for realizing this task, with practical advantages when using technology feasible in the near term. Client tasks are realized as linear combinations of operations implemented by the server, where the linear coefficients are hidden from the server. We report on an experimental demonstration of our protocol using linear optics, which realizes linear combination of two single-qubit operations by a remote single-qubit control. In addition, we explain when our protocol can remain efficient for larger computations, as well as some ways in which privacy can be maintained using our protocol.

  5. Detector-device-independent quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Charles Ci Wen; Korzh, Boris; Martin, Anthony

    2014-12-01

    Recently, a quantum key distribution (QKD) scheme based on entanglement swapping, called measurement-device-independent QKD (mdiQKD), was proposed to bypass all measurement side-channel attacks. While mdiQKD is conceptually elegant and offers a supreme level of security, the experimental complexity is challenging for practical systems. For instance, it requires interference between two widely separated independent single-photon sources, and the secret key rates are dependent on detecting two photons—one from each source. Here, we demonstrate a proof-of-principle experiment of a QKD scheme that removes the need for a two-photon system and instead uses the idea of a two-qubit single-photon to significantly simplify themore » implementation and improve the efficiency of mdiQKD in several aspects.« less

  6. Fast reconstruction of high-qubit-number quantum states via low-rate measurements

    NASA Astrophysics Data System (ADS)

    Li, K.; Zhang, J.; Cong, S.

    2017-07-01

    Due to the exponential complexity of the resources required by quantum state tomography (QST), people are interested in approaches towards identifying quantum states which require less effort and time. In this paper, we provide a tailored and efficient method for reconstructing mixed quantum states up to 12 (or even more) qubits from an incomplete set of observables subject to noises. Our method is applicable to any pure or nearly pure state ρ and can be extended to many states of interest in quantum information processing, such as a multiparticle entangled W state, Greenberger-Horne-Zeilinger states, and cluster states that are matrix product operators of low dimensions. The method applies the quantum density matrix constraints to a quantum compressive sensing optimization problem and exploits a modified quantum alternating direction multiplier method (quantum-ADMM) to accelerate the convergence. Our algorithm takes 8 ,35 , and 226 seconds, respectively, to reconstruct superposition state density matrices of 10 ,11 ,and12 qubits with acceptable fidelity using less than 1 % of measurements of expectation. To our knowledge it is the fastest realization that people can achieve using a normal desktop. We further discuss applications of this method using experimental data of mixed states obtained in an ion trap experiment of up to 8 qubits.

  7. Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles

    PubMed Central

    Zhong, Tian; Kindem, Jonathan M.; Rochman, Jake; Faraon, Andrei

    2017-01-01

    Ensembles of solid-state optical emitters enable broadband quantum storage and transduction of photonic qubits, with applications in high-rate quantum networks for secure communications and interconnecting future quantum computers. To transfer quantum states using ensembles, rephasing techniques are used to mitigate fast decoherence resulting from inhomogeneous broadening, but these techniques generally limit the bandwidth, efficiency and active times of the quantum interface. Here, we use a dense ensemble of neodymium rare-earth ions strongly coupled to a nanophotonic resonator to demonstrate a significant cavity protection effect at the single-photon level—a technique to suppress ensemble decoherence due to inhomogeneous broadening. The protected Rabi oscillations between the cavity field and the atomic super-radiant state enable ultra-fast transfer of photonic frequency qubits to the ions (∼50 GHz bandwidth) followed by retrieval with 98.7% fidelity. With the prospect of coupling to other long-lived rare-earth spin states, this technique opens the possibilities for broadband, always-ready quantum memories and fast optical-to-microwave transducers. PMID:28090078

  8. Non-stoquastic Hamiltonians in quantum annealing via geometric phases

    NASA Astrophysics Data System (ADS)

    Vinci, Walter; Lidar, Daniel A.

    2017-09-01

    We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show that this geometric effect leads to the appearance of non-stoquasticity in the effective quantum Ising Hamiltonians that are typically used to describe quantum annealing with flux qubits. We explicitly demonstrate the effect of this geometric non-stoquasticity when quantum annealing is performed with a system of one and two coupled flux qubits. The realization of non-stoquastic Hamiltonians has important implications from a computational complexity perspective, since it is believed that in many cases quantum annealing with stoquastic Hamiltonians can be efficiently simulated via classical algorithms such as Quantum Monte Carlo. It is well known that the direct implementation of non-stoquastic Hamiltonians with flux qubits is particularly challenging. Our results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes.

  9. Implementing universal nonadiabatic holonomic quantum gates with transmons

    NASA Astrophysics Data System (ADS)

    Hong, Zhuo-Ping; Liu, Bao-Jie; Cai, Jia-Qi; Zhang, Xin-Ding; Hu, Yong; Wang, Z. D.; Xue, Zheng-Yuan

    2018-02-01

    Geometric phases are well known to be noise resilient in quantum evolutions and operations. Holonomic quantum gates provide us with a robust way towards universal quantum computation, as these quantum gates are actually induced by non-Abelian geometric phases. Here we propose and elaborate how to efficiently implement universal nonadiabatic holonomic quantum gates on simpler superconducting circuits, with a single transmon serving as a qubit. In our proposal, an arbitrary single-qubit holonomic gate can be realized in a single-loop scenario by varying the amplitudes and phase difference of two microwave fields resonantly coupled to a transmon, while nontrivial two-qubit holonomic gates may be generated with a transmission-line resonator being simultaneously coupled to the two target transmons in an effective resonant way. Moreover, our scenario may readily be scaled up to a two-dimensional lattice configuration, which is able to support large scalable quantum computation, paving the way for practically implementing universal nonadiabatic holonomic quantum computation with superconducting circuits.

  10. Dynamically correcting two-qubit gates against any systematic logical error

    NASA Astrophysics Data System (ADS)

    Calderon Vargas, Fernando Antonio

    The reliability of quantum information processing depends on the ability to deal with noise and error in an efficient way. A significant source of error in many settings is coherent, systematic gate error. This work introduces a set of composite pulse sequences that generate maximally entangling gates and correct all systematic errors within the logical subspace to arbitrary order. These sequences are applica- ble for any two-qubit interaction Hamiltonian, and make no assumptions about the underlying noise mechanism except that it is constant on the timescale of the opera- tion. The prime use for our results will be in cases where one has limited knowledge of the underlying physical noise and control mechanisms, highly constrained control, or both. In particular, we apply these composite pulse sequences to the quantum system formed by two capacitively coupled singlet-triplet qubits, which is charac- terized by having constrained control and noise sources that are low frequency and of a non-Markovian nature.

  11. Quantum information processing with long-wavelength radiation

    NASA Astrophysics Data System (ADS)

    Murgia, David; Weidt, Sebastian; Randall, Joseph; Lekitsch, Bjoern; Webster, Simon; Navickas, Tomas; Grounds, Anton; Rodriguez, Andrea; Webb, Anna; Standing, Eamon; Pearce, Stuart; Sari, Ibrahim; Kiang, Kian; Rattanasonti, Hwanjit; Kraft, Michael; Hensinger, Winfried

    To this point, the entanglement of ions has predominantly been performed using lasers. Using long wavelength radiation with static magnetic field gradients provides an architecture to simplify construction of a large scale quantum computer. The use of microwave-dressed states protects against decoherence from fluctuating magnetic fields, with radio-frequency fields used for qubit manipulation. I will report the realisation of spin-motion entanglement using long-wavelength radiation, and a new method to efficiently prepare dressed-state qubits and qutrits, reducing experimental complexity of gate operations. I will also report demonstration of ground state cooling using long wavelength radiation, which may increase two-qubit entanglement fidelity. I will then report demonstration of a high-fidelity long-wavelength two-ion quantum gate using dressed states. Combining these results with microfabricated ion traps allows for scaling towards a large scale ion trap quantum computer, and provides a platform for quantum simulations of fundamental physics. I will report progress towards the operation of microchip ion traps with extremely high magnetic field gradients for multi-ion quantum gates.

  12. Nonlinear parity readout with a microwave photodetector

    NASA Astrophysics Data System (ADS)

    Schöndorf, M.; Wilhelm, F. K.

    2018-04-01

    Robust high-fidelity parity measurement is an important operation in many applications of quantum computing. In this work we show how in a circuit QED architecture, one can measure parity in a single shot at very high contrast by taking advantage of the nonlinear behavior of a strongly driven microwave cavity coupled to one or multiple qubits. We work in a nonlinear dispersive regime treated in an exact dispersive transformation. We show that appropriate tuning of experimental parameters leads to very high contrast in the cavity and therefore to a high-efficiency parity readout with a microwave photon counter or another amplitude detector. These tuning conditions are based on nonlinearity and are hence more robust than previously described linear tuning schemes. In the first part of the paper we show in detail how to achieve this for two-qubit parity measurements and extend this to N qubits in the second part of the paper. We also study the quantum nondemolition character of the protocol.

  13. Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles

    NASA Astrophysics Data System (ADS)

    Zhong, Tian; Kindem, Jonathan M.; Rochman, Jake; Faraon, Andrei

    2017-01-01

    Ensembles of solid-state optical emitters enable broadband quantum storage and transduction of photonic qubits, with applications in high-rate quantum networks for secure communications and interconnecting future quantum computers. To transfer quantum states using ensembles, rephasing techniques are used to mitigate fast decoherence resulting from inhomogeneous broadening, but these techniques generally limit the bandwidth, efficiency and active times of the quantum interface. Here, we use a dense ensemble of neodymium rare-earth ions strongly coupled to a nanophotonic resonator to demonstrate a significant cavity protection effect at the single-photon level--a technique to suppress ensemble decoherence due to inhomogeneous broadening. The protected Rabi oscillations between the cavity field and the atomic super-radiant state enable ultra-fast transfer of photonic frequency qubits to the ions (~50 GHz bandwidth) followed by retrieval with 98.7% fidelity. With the prospect of coupling to other long-lived rare-earth spin states, this technique opens the possibilities for broadband, always-ready quantum memories and fast optical-to-microwave transducers.

  14. Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity

    NASA Astrophysics Data System (ADS)

    Waseem, Muhammad; Irfan, Muhammad; Qamar, Shahid

    2015-06-01

    We propose a scheme to realize a three-qubit controlled phase gate and a multi-qubit controlled NOT gate of one qubit simultaneously controlling n-target qubits with a four-level quantum system in a cavity. The implementation time for multi-qubit controlled NOT gate is independent of the number of qubit. Three-qubit phase gate is generalized to n-qubit phase gate with multiple control qubits. The number of steps reduces linearly as compared to conventional gate decomposition method. Our scheme can be applied to various types of physical systems such as superconducting qubits coupled to a resonator and trapped atoms in a cavity. Our scheme does not require adjustment of level spacing during the gate implementation. We also show the implementation of Deutsch-Joza algorithm. Finally, we discuss the imperfections due to cavity decay and the possibility of physical implementation of our scheme.

  15. Improving the Teleportation Scheme of Three-Qubit State with a Four-Qubit Quantum Channel

    NASA Astrophysics Data System (ADS)

    Cai, Tao; Jiang, Min

    2018-01-01

    Recently, Zhao-Hui Wei et al. (Int. J. Theor. Phys. 55, 4687, 2016) proposed an improved quantum teleportation scheme for one three-qubit unknown state with a four-qubit quantum channel based on the original one proposed by Binayak S. Choudhury and Arpan Dhara (Int. J. Theor. Phys. 55, 3393, 2016). According to their schemes, the three-qubit entangled state could be teleported with one four-qubit cluster state and five-qubit joint measurements or four-qubit joint measurements. In this paper, we present an improved protocol only with single-qubit measurements and the same four-qubit quantum channel, lessening the difficulty and intensity of necessary operations.

  16. Tripartite Controlled Teleportation via a Seven-Qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Nie, Yi-you; Sang, Ming-huang; Li, Song-song

    2017-09-01

    We demonstrate that a seven-qubit entangled state can be used to realize the deterministic tripartite controlled teleportation by performing Bell-state measurements, where Alice wants to teleport an arbitrary single-qubit state of qubit a to Bob, Charlie wants to teleport an arbitrary single-qubit state of qubit b to David and at the same time Edison wants to teleport an arbitrary single-qubit state of qubit c to Ford via the control of the supervisor Tom.

  17. High-fidelity projective read-out of a solid-state spin quantum register.

    PubMed

    Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald

    2011-09-21

    Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved

  18. Experimental entanglement of a six-photon symmetric Dicke state.

    PubMed

    Wieczorek, Witlef; Krischek, Roland; Kiesel, Nikolai; Michelberger, Patrick; Tóth, Géza; Weinfurter, Harald

    2009-07-10

    We report on the experimental observation and characterization of a six-photon entangled Dicke state. We obtain a fidelity as high as 0.654+/-0.024 and prove genuine six-photon entanglement by, amongst others, a two-setting witness yielding -0.422+/-0.148. This state has remarkable properties; e.g., it allows obtaining inequivalent entangled states of a lower qubit number via projective measurements, and it possesses a high entanglement persistency against qubit loss. We characterize the properties of the six-photon Dicke state experimentally by detecting and analyzing the entanglement of a variety of multipartite entangled states.

  19. A two-qubit logic gate in silicon.

    PubMed

    Veldhorst, M; Yang, C H; Hwang, J C C; Huang, W; Dehollain, J P; Muhonen, J T; Simmons, S; Laucht, A; Hudson, F E; Itoh, K M; Morello, A; Dzurak, A S

    2015-10-15

    Quantum computation requires qubits that can be coupled in a scalable manner, together with universal and high-fidelity one- and two-qubit logic gates. Many physical realizations of qubits exist, including single photons, trapped ions, superconducting circuits, single defects or atoms in diamond and silicon, and semiconductor quantum dots, with single-qubit fidelities that exceed the stringent thresholds required for fault-tolerant quantum computing. Despite this, high-fidelity two-qubit gates in the solid state that can be manufactured using standard lithographic techniques have so far been limited to superconducting qubits, owing to the difficulties of coupling qubits and dephasing in semiconductor systems. Here we present a two-qubit logic gate, which uses single spins in isotopically enriched silicon and is realized by performing single- and two-qubit operations in a quantum dot system using the exchange interaction, as envisaged in the Loss-DiVincenzo proposal. We realize CNOT gates via controlled-phase operations combined with single-qubit operations. Direct gate-voltage control provides single-qubit addressability, together with a switchable exchange interaction that is used in the two-qubit controlled-phase gate. By independently reading out both qubits, we measure clear anticorrelations in the two-spin probabilities of the CNOT gate.

  20. Two-qubit gates and coupling with low-impedance flux qubits

    NASA Astrophysics Data System (ADS)

    Chow, Jerry; Corcoles, Antonio; Rigetti, Chad; Rozen, Jim; Keefe, George; Rothwell, Mary-Beth; Rohrs, John; Borstelmann, Mark; Divincenzo, David; Ketchen, Mark; Steffen, Matthias

    2011-03-01

    We experimentally demonstrate the coupling of two low-impedance flux qubits mediated via a transmission line resonator. We explore the viability of experimental coupling protocols which involve selective microwave driving on the qubits independently as well as fast frequency tuning through on-chip flux-bias. Pulse-shaping techniques for single-qubit and two-qubit gates are employed for reducing unwanted leakage and phase errors. A joint readout through the transmission line resonator is used for characterizing single-qubit and two-qubit states.

  1. Comparing Zeeman qubits to hyperfine qubits in the context of the surface code: +174Yb and +171Yb

    NASA Astrophysics Data System (ADS)

    Brown, Natalie C.; Brown, Kenneth R.

    2018-05-01

    Many systems used for quantum computing possess additional states beyond those defining the qubit. Leakage out of the qubit subspace must be considered when designing quantum error correction codes. Here we consider trapped ion qubits manipulated by Raman transitions. Zeeman qubits do not suffer from leakage errors but are sensitive to magnetic fields to first order. Hyperfine qubits can be encoded in clock states that are insensitive to magnetic fields to first order, but spontaneous scattering during the Raman transition can lead to leakage. Here we compare a Zeeman qubit (+174Yb) to a hyperfine qubit (+171Yb) in the context of the surface code. We find that the number of physical qubits required to reach a specific logical qubit error can be reduced by using +174Yb if the magnetic field can be stabilized with fluctuations smaller than 10 μ G .

  2. Tight upper bound for the maximal quantum value of the Svetlichny operators

    NASA Astrophysics Data System (ADS)

    Li, Ming; Shen, Shuqian; Jing, Naihuan; Fei, Shao-Ming; Li-Jost, Xianqing

    2017-10-01

    It is a challenging task to detect genuine multipartite nonlocality (GMNL). In this paper, the problem is considered via computing the maximal quantum value of Svetlichny operators for three-qubit systems and a tight upper bound is obtained. The constraints on the quantum states for the tightness of the bound are also presented. The approach enables us to give the necessary and sufficient conditions of violating the Svetlichny inequality (SI) for several quantum states, including the white and color noised Greenberger-Horne-Zeilinger (GHZ) states. The relation between the genuine multipartite entanglement concurrence and the maximal quantum value of the Svetlichny operators for mixed GHZ class states is also discussed. As the SI is useful for the investigation of GMNL, our results give an effective and operational method to detect the GMNL for three-qubit mixed states.

  3. Error-Transparent Quantum Gates for Small Logical Qubit Architectures

    NASA Astrophysics Data System (ADS)

    Kapit, Eliot

    2018-02-01

    One of the largest obstacles to building a quantum computer is gate error, where the physical evolution of the state of a qubit or group of qubits during a gate operation does not match the intended unitary transformation. Gate error stems from a combination of control errors and random single qubit errors from interaction with the environment. While great strides have been made in mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical qubit devices promise significant increases in logical state lifetime, but translating those improvements into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols for gates on and between small logical qubit devices which inherit the parent device's tolerance to single qubit errors which occur at any time before or during the gate. We consider two such devices, a passive implementation of the three-qubit bit flip code, and the author's own [E. Kapit, Phys. Rev. Lett. 116, 150501 (2016), 10.1103/PhysRevLett.116.150501] very small logical qubit (VSLQ) design, and propose error-tolerant gate sets for both. The effective logical gate error rate in these models displays superlinear error reduction with linear increases in single qubit lifetime, proving that passive error correction is capable of increasing gate fidelity. Using a standard phenomenological noise model for superconducting qubits, we demonstrate a realistic, universal one- and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for same-duration operations on single qubits or pairs of qubits. These developments further suggest that incorporating small logical qubits into a measurement based code could substantially improve code performance.

  4. Long coherence times in nuclear spin-free vanadyl qubits [Long coherence times in surface-compatible nuclear spin-free vanadium qubits

    DOE PAGES

    Yu, Chung -Jui; Graham, Michael J.; Zadrozny, Joseph M.; ...

    2016-10-31

    Quantum information processing (QIP) offers the potential to create new frontiers in fields ranging from quantum biology to cryptography. Two key figures of merit for electronic spin qubits, the smallest units of QIP, are the coherence time ( T2), the lifetime of the qubit, and the spin–lattice relaxation time ( T1), the thermally defined upper limit of T2. To achieve QIP, processable qubits with long coherence times are required. Recent studies on (Ph4P-d20)2[V(C8S8)3], a vanadium-based qubit, demonstrate that millisecond T2 times are achievable in transition metal complexes with nuclear spinfree environments. Applying these principles to vanadyl complexes offers a routemore » to combine the previously established surface compatibility of the flatter vanadyl structures with a long T2. Toward those ends, we investigated a series of four qubits, (Ph 4P) 2[VO(C 8S 8) 2] (1), (Ph 4P) 2[VO(β-C 3S 5) 2] (2), (Ph 4P) 2[VO(α-C 3S 5) 2] (3), and (Ph 4P) 2[VO(C 3S 4O) 2] (4), by pulsed electron paramagnetic resonance (EPR) spectroscopy and compared the performance of these species with our recently reported set of vanadium tris(dithiolene) complexes. Crucially we demonstrate that solutions of 1–4 in SO 2, a uniquely polar nuclear spinfree solvent, reveal T2 values of up to 152(6) μs, comparable to the best molecular qubit candidates. Upon transitioning to vanadyl species from the tris(dithiolene) analogues, we observe a remarkable order of magnitude increase in 12, attributed to stronger solute–solvent interactions with the polar vanadium-oxo moiety. Simultaneously, we detect a small decrease in T2 for the vanadyl analogues relative to the tris(dithiolene) complexes. We attribute this decrease to the absence of one nuclear spinfree ligand, which served to shield the vanadium centers against solvent nuclear spins. Lastly, our results highlight new design principles for long T1 and T2 times by demonstrating the efficacy of ligand-based tuning of solute–solvent interactions.« less

  5. Weight-4 Parity Checks on a Surface Code Sublattice with Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Takita, Maika; Corcoles, Antonio; Magesan, Easwar; Bronn, Nicholas; Hertzberg, Jared; Gambetta, Jay; Steffen, Matthias; Chow, Jerry

    We present a superconducting qubit quantum processor design amenable to the surface code architecture. In such architecture, parity checks on the data qubits, performed by measuring their X- and Z- syndrome qubits, constitute a critical aspect. Here we show fidelities and outcomes of X- and Z-parity measurements done on a syndrome qubit in a full plaquette consisting of one syndrome qubit coupled via bus resonators to four code qubits. Parities are measured after four code qubits are prepared into sixteen initial states in each basis. Results show strong dependence on ZZ between qubits on the same bus resonators. This work is supported by IARPA under Contract W911NF-10-1-0324.

  6. Genuine four tangle for four qubit states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S. Shelly; Sharma, N. K.

    We report a four qubit polynomial invariant that quantifies genuine four-body correlations. The four qubit invariants are obtained from transformation properties of three qubit invariants under a local unitary on the fourth qubit.

  7. Semiconductor adiabatic qubits

    DOEpatents

    Carroll, Malcolm S.; Witzel, Wayne; Jacobson, Noah Tobias; Ganti, Anand; Landahl, Andrew J.; Lilly, Michael; Nguyen, Khoi Thi; Bishop, Nathaniel; Carr, Stephen M.; Bussmann, Ezra; Nielsen, Erik; Levy, James Ewers; Blume-Kohout, Robin J.; Rahman, Rajib

    2016-12-27

    A quantum computing device that includes a plurality of semiconductor adiabatic qubits is described herein. The qubits are programmed with local biases and coupling terms between qubits that represent a problem of interest. The qubits are initialized by way of a tuneable parameter, a local tunnel coupling within each qubit, such that the qubits remain in a ground energy state, and that initial state is represented by the qubits being in a superposition of |0> and |1> states. The parameter is altered over time adiabatically or such that relaxation mechanisms maintain a large fraction of ground state occupation through decreasing the tunnel coupling barrier within each qubit with the appropriate schedule. The final state when tunnel coupling is effectively zero represents the solution state to the problem represented in the |0> and |1> basis, which can be accurately read at each qubit location.

  8. Quantum computing gates via optimal control

    NASA Astrophysics Data System (ADS)

    Atia, Yosi; Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2014-10-01

    We demonstrate the use of optimal control to design two entropy-manipulating quantum gates which are more complex than the corresponding, commonly used, gates, such as CNOT and Toffoli (CCNOT): A two-qubit gate called polarization exchange (PE) and a three-qubit gate called polarization compression (COMP) were designed using GRAPE, an optimal control algorithm. Both gates were designed for a three-spin system. Our design provided efficient and robust nuclear magnetic resonance (NMR) radio frequency (RF) pulses for 13C2-trichloroethylene (TCE), our chosen three-spin system. We then experimentally applied these two quantum gates onto TCE at the NMR lab. Such design of these gates and others could be relevant for near-future applications of quantum computing devices.

  9. On monogamy of four-qubit entanglement

    NASA Astrophysics Data System (ADS)

    Sharma, S. Shelly; Sharma, N. K.

    2018-07-01

    Our main result is a monogamy inequality satisfied by the entanglement of a focus qubit (one-tangle) in a four-qubit pure state and entanglement of subsystems. Analytical relations between three-tangles of three-qubit marginal states, two-tangles of two-qubit marginal states and unitary invariants of four-qubit pure state are used to obtain the inequality. The contribution of three-tangle to one-tangle is found to be half of that suggested by a simple extension of entanglement monogamy relation for three qubits. On the other hand, an additional contribution due to a two-qubit invariant which is a function of three-way correlations is found. We also show that four-qubit monogamy inequality conjecture of Regula et al. (Phys Rev Lett 113:110501, 2014), in which three-tangles are raised to the power 3/2, does not estimate the residual correlations, correctly, for certain subsets of four-qubit states. A lower bound on residual four-qubit correlations is obtained.

  10. Adiabatic two-qubit state preparation in a superconducting qubit system

    NASA Astrophysics Data System (ADS)

    Filipp, Stefan; Ganzhorn, Marc; Egger, Daniel; Fuhrer, Andreas; Moll, Nikolaj; Mueller, Peter; Roth, Marco; Schmidt, Sebastian

    The adiabatic transport of a quantum system from an initial eigenstate to its final state while remaining in the instantaneous eigenstate of the driving Hamiltonian can be used for robust state preparation. With control over both qubit frequencies and qubit-qubit couplings this method can be used to drive the system from initially trivial eigenstates of the uncoupled qubits to complex entangled multi-qubit states. In the context of quantum simulation, the final state may encode a non-trivial ground-state of a complex molecule or, in the context of adiabatic quantum computing, the solution to an optimization problem. Here, we present experimental results on a system comprising fixed-frequency superconducting transmon qubits and a tunable coupler to adjust the qubit-qubit coupling via parametric frequency modulation. We realize different types of interaction by adjusting the frequency of the modulation. A slow variation of drive amplitude and phase leads to an adiabatic steering of the system to its final state showing entanglement between the qubits.

  11. Observation of Entangled States of a Fully Controlled 20-Qubit System

    NASA Astrophysics Data System (ADS)

    Friis, Nicolai; Marty, Oliver; Maier, Christine; Hempel, Cornelius; Holzäpfel, Milan; Jurcevic, Petar; Plenio, Martin B.; Huber, Marcus; Roos, Christian; Blatt, Rainer; Lanyon, Ben

    2018-04-01

    We generate and characterize entangled states of a register of 20 individually controlled qubits, where each qubit is encoded into the electronic state of a trapped atomic ion. Entanglement is generated amongst the qubits during the out-of-equilibrium dynamics of an Ising-type Hamiltonian, engineered via laser fields. Since the qubit-qubit interactions decay with distance, entanglement is generated at early times predominantly between neighboring groups of qubits. We characterize entanglement between these groups by designing and applying witnesses for genuine multipartite entanglement. Our results show that, during the dynamical evolution, all neighboring qubit pairs, triplets, most quadruplets, and some quintuplets simultaneously develop genuine multipartite entanglement. Witnessing genuine multipartite entanglement in larger groups of qubits in our system remains an open challenge.

  12. Gatemon Benchmarking and Two-Qubit Operation

    NASA Astrophysics Data System (ADS)

    Casparis, Lucas; Larsen, Thorvald; Olsen, Michael; Petersson, Karl; Kuemmeth, Ferdinand; Krogstrup, Peter; Nygard, Jesper; Marcus, Charles

    Recent experiments have demonstrated superconducting transmon qubits with semiconductor nanowire Josephson junctions. These hybrid gatemon qubits utilize field effect tunability singular to semiconductors to allow complete qubit control using gate voltages, potentially a technological advantage over conventional flux-controlled transmons. Here, we present experiments with a two-qubit gatemon circuit. We characterize qubit coherence and stability and use randomized benchmarking to demonstrate single-qubit gate errors of ~0.5 % for all gates, including voltage-controlled Z rotations. We show coherent capacitive coupling between two gatemons and coherent SWAP operations. Finally, we perform a two-qubit controlled-phase gate with an estimated fidelity of ~91 %, demonstrating the potential of gatemon qubits for building scalable quantum processors. We acknowledge financial support from Microsoft Project Q and the Danish National Research Foundation.

  13. Detection of entanglement with few local measurements

    NASA Astrophysics Data System (ADS)

    Gühne, O.; Hyllus, P.; Bruß, D.; Ekert, A.; Lewenstein, M.; Macchiavello, C.; Sanpera, A.

    2002-12-01

    We introduce a general method for the experimental detection of entanglement by performing only few local measurements, assuming some prior knowledge of the density matrix. The idea is based on the minimal decomposition of witness operators into a pseudomixture of local operators. We discuss an experimentally relevant case of two qubits, and show an example how bound entanglement can be detected with few local measurements.

  14. Exact CNOT gates with a single nonlocal rotation for quantum-dot qubits

    NASA Astrophysics Data System (ADS)

    Pal, Arijeet; Rashba, Emmanuel I.; Halperin, Bertrand I.

    2015-09-01

    We investigate capacitively-coupled exchange-only two-qubit quantum gates based on quantum dots. For exchange-only coded qubits electron spin S and its projection Sz are exact quantum numbers. Capacitive coupling between qubits, as distinct from interqubit exchange, preserves these quantum numbers. We prove, both analytically and numerically, that conservation of the spins of individual qubits has a dramatic effect on the performance of two-qubit gates. By varying the level splittings of individual qubits, Ja and Jb, and the interqubit coupling time, t , we can find an infinite number of triples (Ja,Jb,t ) for which the two-qubit entanglement, in combination with appropriate single-qubit rotations, can produce an exact cnot gate. This statement is true for practically arbitrary magnitude and form of capacitive interqubit coupling. Our findings promise a large decrease in the number of nonlocal (two-qubit) operations in quantum circuits.

  15. Electro-optic routing of photons from a single quantum dot in photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Midolo, Leonardo; Hansen, Sofie L.; Zhang, Weili; Papon, Camille; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Lodahl, Peter; Stobbe, Søren

    2017-12-01

    Recent breakthroughs in solid-state photonic quantum technologies enable generating and detecting single photons with near-unity efficiency as required for a range of photonic quantum technologies. The lack of methods to simultaneously generate and control photons within the same chip, however, has formed a main obstacle to achieving efficient multi-qubit gates and to harness the advantages of chip-scale quantum photonics. Here we propose and demonstrate an integrated voltage-controlled phase shifter based on the electro-optic effect in suspended photonic waveguides with embedded quantum emitters. The phase control allows building a compact Mach-Zehnder interferometer with two orthogonal arms, taking advantage of the anisotropic electro-optic response in gallium arsenide. Photons emitted by single self-assembled quantum dots can be actively routed into the two outputs of the interferometer. These results, together with the observed sub-microsecond response time, constitute a significant step towards chip-scale single-photon-source de-multiplexing, fiber-loop boson sampling, and linear optical quantum computing.

  16. Deterministic secure quantum communication using a single d-level system

    PubMed Central

    Jiang, Dong; Chen, Yuanyuan; Gu, Xuemei; Xie, Ling; Chen, Lijun

    2017-01-01

    Deterministic secure quantum communication (DSQC) can transmit secret messages between two parties without first generating a shared secret key. Compared with quantum key distribution (QKD), DSQC avoids the waste of qubits arising from basis reconciliation and thus reaches higher efficiency. In this paper, based on data block transmission and order rearrangement technologies, we propose a DSQC protocol. It utilizes a set of single d-level systems as message carriers, which are used to directly encode the secret message in one communication process. Theoretical analysis shows that these employed technologies guarantee the security, and the use of a higher dimensional quantum system makes our protocol achieve higher security and efficiency. Since only quantum memory is required for implementation, our protocol is feasible with current technologies. Furthermore, Trojan horse attack (THA) is taken into account in our protocol. We give a THA model and show that THA significantly increases the multi-photon rate and can thus be detected. PMID:28327557

  17. Microwave Photon Detector in Circuit QED

    NASA Astrophysics Data System (ADS)

    Garcia-Ripoll, Juan Jose; Romero, Guillermo; Solano, Enrique

    2009-03-01

    In this work we propose a design for a microwave photodetector based on elements from circuit QED such as the ones used in qubit designs. Our proposal consists on a microwave guide in which we embed circuital elements that can absorb photons and irreversibly change state. These incoherent absorption processes constitute the measurement itself. We first model this design using a general master equation for the propagating photons and the absorbing elements. We find that the detection efficiency for a single absorber is limited to 50%, and that this efficiency can be quickly increased by adding more elements with a moderate separation, obtaining 80% and 90% for two and three absorbers. Our abstract design has at least one possible implementation in which the absorbers are current biased Josephson junction. We demonstrate that the coupling between the guide and the junctions is strong enough, irrespectively of the microwave guide size, and derivate realistic parameters for high fidelity operation with current experiments. Patent pending No. 200802933, Oficina Espanola de Patentes y Marcas, 17/10/2008.

  18. Experimental Methods for Trapping Ions Using Microfabricated Surface Ion Traps

    PubMed Central

    Hong, Seokjun; Lee, Minjae; Kwon, Yeong-Dae; Cho, Dong-il "Dan"; Kim, Taehyun

    2017-01-01

    Ions trapped in a quadrupole Paul trap have been considered one of the strong physical candidates to implement quantum information processing. This is due to their long coherence time and their capability to manipulate and detect individual quantum bits (qubits). In more recent years, microfabricated surface ion traps have received more attention for large-scale integrated qubit platforms. This paper presents a microfabrication methodology for ion traps using micro-electro-mechanical system (MEMS) technology, including the fabrication method for a 14 µm-thick dielectric layer and metal overhang structures atop the dielectric layer. In addition, an experimental procedure for trapping ytterbium (Yb) ions of isotope 174 (174Yb+) using 369.5 nm, 399 nm, and 935 nm diode lasers is described. These methodologies and procedures involve many scientific and engineering disciplines, and this paper first presents the detailed experimental procedures. The methods discussed in this paper can easily be extended to the trapping of Yb ions of isotope 171 (171Yb+) and to the manipulation of qubits. PMID:28872137

  19. Quantum Teleportation of a Three-qubit State using a Five-qubit Cluster State

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-min; Zhou, Lin

    2014-12-01

    Recently Muralidharan and Panigrahi (Phys. Rev. A 78, 062333 2008) had shown that using a five-qubit cluster state as quantum channel, it is possible to teleport an arbitrary single-qubit state and an arbitrary two-qubit state. In this paper, we investigate this channel for the teleportation of a special form of three-qubit state.

  20. High-Coherence Hybrid Superconducting Qubit

    NASA Astrophysics Data System (ADS)

    Steffen, Matthias; Kumar, Shwetank; Divincenzo, David P.; Rozen, J. R.; Keefe, George A.; Rothwell, Mary Beth; Ketchen, Mark B.

    2010-09-01

    We report quantum coherence measurements of a superconducting qubit whose design is a hybrid of several existing types. Excellent coherence times are found: T2*˜T1˜1.5μs. The topology of the qubit is that of a traditional three-junction flux qubit, but it has a large shunting capacitance, and the ratio of the junction critical currents is chosen so that the qubit potential has a single-well form. The qubit has a sizable nonlinearity, but its sign is reversed compared with most other popular qubit designs. The qubit is read out dispersively using a high-Q resonator in a λ/2 configuration.

  1. Engineering quantum hyperentangled states in atomic systems

    NASA Astrophysics Data System (ADS)

    Nawaz, Mehwish; -Islam, Rameez-ul; Abbas, Tasawar; Ikram, Manzoor

    2017-11-01

    Hyperentangled states have boosted many quantum informatics tasks tremendously due to their high information content per quantum entity. Until now, however, the engineering and manipulation of such states were limited to photonic systems only. In present article, we propose generating atomic hyperentanglement involving atomic internal states as well as atomic external momenta states. Hypersuperposition, hyperentangled cluster, Bell and Greenberger-Horne-Zeilinger states are engineered deterministically through resonant and off-resonant Bragg diffraction of neutral two-level atoms. Based on the characteristic parameters of the atomic Bragg diffraction, such as comparatively large interaction times and spatially well-separated outputs, such decoherence resistant states are expected to exhibit good overall fidelities and offer the evident benefits of full controllability, along with extremely high detection efficiency, over the counterpart photonic states comprised entirely of flying qubits.

  2. Experimental entanglement of 25 individually accessible atomic quantum interfaces.

    PubMed

    Pu, Yunfei; Wu, Yukai; Jiang, Nan; Chang, Wei; Li, Chang; Zhang, Sheng; Duan, Luming

    2018-04-01

    A quantum interface links the stationary qubits in a quantum memory with flying photonic qubits in optical transmission channels and constitutes a critical element for the future quantum internet. Entanglement of quantum interfaces is an important step for the realization of quantum networks. Through heralded detection of photon interference, we generate multipartite entanglement between 25 (or 9) individually addressable quantum interfaces in a multiplexed atomic quantum memory array and confirm genuine 22-partite (or 9-partite) entanglement. This experimental entanglement of a record-high number of individually addressable quantum interfaces makes an important step toward the realization of quantum networks, long-distance quantum communication, and multipartite quantum information processing.

  3. Transferring multiqubit entanglement onto memory qubits in a decoherence-free subspace

    NASA Astrophysics Data System (ADS)

    He, Xiao-Ling; Yang, Chui-Ping

    2017-03-01

    Different from the previous works on generating entangled states, this work is focused on how to transfer the prepared entangled states onto memory qubits for protecting them against decoherence. We here consider a physical system consisting of n operation qubits and 2 n memory qubits placed in a cavity or coupled to a resonator. A method is presented for transferring n-qubit Greenberger-Horne-Zeilinger (GHZ) entangled states from the operation qubits (i.e., information processing cells) onto the memory qubits (i.e., information memory elements with long decoherence time). The transferred GHZ states are encoded in a decoherence-free subspace against collective dephasing and thus can be immune from decoherence induced by a dephasing environment. In addition, the state transfer procedure has nothing to do with the number of qubits, the operation time does not increase with the number of qubits, and no measurement is needed for the state transfer. This proposal can be applied to a wide range of hybrid qubits such as natural atoms and artificial atoms (e.g., various solid-state qubits).

  4. Efficient state initialization by a quantum spectral filtering algorithm

    NASA Astrophysics Data System (ADS)

    Fillion-Gourdeau, François; MacLean, Steve; Laflamme, Raymond

    2017-04-01

    An algorithm that initializes a quantum register to a state with a specified energy range is given, corresponding to a quantum implementation of the celebrated Feit-Fleck method. This is performed by introducing a nondeterministic quantum implementation of a standard spectral filtering procedure combined with an apodization technique, allowing for accurate state initialization. It is shown that the implementation requires only two ancilla qubits. A lower bound for the total probability of success of this algorithm is derived, showing that this scheme can be realized using a finite, relatively low number of trials. Assuming the time evolution can be performed efficiently and using a trial state polynomially close to the desired states, it is demonstrated that the number of operations required scales polynomially with the number of qubits. Tradeoffs between accuracy and performance are demonstrated in a simple example: the harmonic oscillator. This algorithm would be useful for the initialization phase of the simulation of quantum systems on digital quantum computers.

  5. A SiGe Quadrature Pulse Modulator for Superconducting Qubit State Manipulation

    NASA Astrophysics Data System (ADS)

    Kwende, Randy; Bardin, Joseph

    Manipulation of the quantum states of microwave superconducting qubits typically requires the generation of coherent modulated microwave pulses. While many off-the-shelf instruments are capable of generating such pulses, a more integrated approach is likely required if fault-tolerant quantum computing architectures are to be implemented. In this work, we present progress towards a pulse generator specifically designed to drive superconducing qubits. The device is implemented in a commercial silicon process and has been designed with energy-efficiency and scalability in mind. Pulse generation is carried out using a unique approach in which modulation is applied directly to the in-phase and quadrature components of a carrier signal in the 1-10 GHz frequency range through a unique digital-analog conversion process designed specifically for this application. The prototype pulse generator can be digitally programmed and supports sequencing of pulses with independent amplitude and phase waveforms. These amplitude and phase waveforms can be digitally programmed through a serial programming interface. Detailed performance of the pulse generator at room temperature and 4 K will be presented.

  6. Pattern Classifications Using Grover's and Ventura's Algorithms in a Two-qubits System

    NASA Astrophysics Data System (ADS)

    Singh, Manu Pratap; Radhey, Kishori; Rajput, B. S.

    2018-03-01

    Carrying out the classification of patterns in a two-qubit system by separately using Grover's and Ventura's algorithms on different possible superposition, it has been shown that the exclusion superposition and the phase-invariance superposition are the most suitable search states obtained from two-pattern start-states and one-pattern start-states, respectively, for the simultaneous classifications of patterns. The higher effectiveness of Grover's algorithm for large search states has been verified but the higher effectiveness of Ventura's algorithm for smaller data base has been contradicted in two-qubit systems and it has been demonstrated that the unknown patterns (not present in the concerned data-base) are classified more efficiently than the known ones (present in the data-base) in both the algorithms. It has also been demonstrated that different states of Singh-Rajput MES obtained from the corresponding self-single- pattern start states are the most suitable search states for the classification of patterns |00>,|01 >, |10> and |11> respectively on the second iteration of Grover's method or the first operation of Ventura's algorithm.

  7. Novel approaches to optomechanical transduction

    NASA Astrophysics Data System (ADS)

    Cernotik, Ondrej; Hammerer, Klemens

    In recent years, mechanical oscillators received attention as a promising tool for frequency conversion between microwaves and light. A general, bi-directional transducer with high efficiency is still far from reach of current technology; finding new strategies for optomechanical transduction allows us to relax the requirements and bring these systems closer to an experimental realization. An interesting example is generation of entanglement between two superconducting qubits using measurement and postselection. Here, the mechanical oscillators interacts directly with the superconducting transmon qubit in such a way that it feels a qubit-state dependent force. This force can then be read out using a cavity field; reading out two such systems sequentially realizes an effective total spin measurement. Starting from a suitable initial state and employing postselection, entanglement can be generated. Another interesting approach is to use an array of optomechanical transducers in which the output fields of one transducer are fed into the input of the next. The periodicity of the array results in a joint dispersion relation for the propagating microwave and optical fields. The resulting structure can be used to control the conversion bandwidth and forward and backward scattering.

  8. High-fidelity entanglement swapping and generation of three-qubit GHZ state using asynchronous telecom photon pair sources.

    PubMed

    Tsujimoto, Yoshiaki; Tanaka, Motoki; Iwasaki, Nobuo; Ikuta, Rikizo; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki

    2018-01-23

    We experimentally demonstrate a high-fidelity entanglement swapping and a generation of the Greenberger-Horne-Zeilinger (GHZ) state using polarization-entangled photon pairs at telecommunication wavelength produced by spontaneous parametric down conversion with continuous-wave pump light. While spatially separated sources asynchronously emit photon pairs, the time-resolved photon detection guarantees the temporal indistinguishability of photons without active timing synchronizations of pump lasers and/or adjustment of optical paths. In the experiment, photons are sufficiently narrowed by fiber-based Bragg gratings with the central wavelengths of 1541 nm & 1580 nm, and detected by superconducting nanowire single-photon detectors with low timing jitters. The observed fidelities of the final states for entanglement swapping and the generated three-qubit state were 0.84 ± 0.04 and 0.70 ± 0.05, respectively.

  9. Composite multi-qubit gates dynamically corrected against charge noise and magnetic field noise for singlet-triplet qubits

    NASA Astrophysics Data System (ADS)

    Kestner, Jason; Barnes, Edwin; Wang, Xin; Bishop, Lev; Das Sarma, Sankar

    2013-03-01

    We use previously described single-qubit SUPCODE pulses on both intra-qubit and inter-qubit exchange couplings, integrated with existing strategies such as BB1, to theoretically construct a CNOT gate that is robust against both charge noise and magnetic field gradient fluctuations. We show how this allows scalable, high-fidelity implementation of arbitrary multi-qubit operations using singlet-triplet spin qubits in the presence of experimentally realistic noise. This work is supported by LPS-NSA-CMTC, IARPA-MQCO and CNAM.

  10. Error characterization and quantum control benchmarking in liquid state NMR using quantum information processing techniques

    NASA Astrophysics Data System (ADS)

    Laforest, Martin

    Quantum information processing has been the subject of countless discoveries since the early 1990's. It is believed to be the way of the future for computation: using quantum systems permits one to perform computation exponentially faster than on a regular classical computer. Unfortunately, quantum systems that not isolated do not behave well. They tend to lose their quantum nature due to the presence of the environment. If key information is known about the noise present in the system, methods such as quantum error correction have been developed in order to reduce the errors introduced by the environment during a given quantum computation. In order to harness the quantum world and implement the theoretical ideas of quantum information processing and quantum error correction, it is imperative to understand and quantify the noise present in the quantum processor and benchmark the quality of the control over the qubits. Usual techniques to estimate the noise or the control are based on quantum process tomography (QPT), which, unfortunately, demands an exponential amount of resources. This thesis presents work towards the characterization of noisy processes in an efficient manner. The protocols are developed from a purely abstract setting with no system-dependent variables. To circumvent the exponential nature of quantum process tomography, three different efficient protocols are proposed and experimentally verified. The first protocol uses the idea of quantum error correction to extract relevant parameters about a given noise model, namely the correlation between the dephasing of two qubits. Following that is a protocol using randomization and symmetrization to extract the probability that a given number of qubits are simultaneously corrupted in a quantum memory, regardless of the specifics of the error and which qubits are affected. Finally, a last protocol, still using randomization ideas, is developed to estimate the average fidelity per computational gates for single and multi qubit systems. Even though liquid state NMR is argued to be unsuitable for scalable quantum information processing, it remains the best test-bed system to experimentally implement, verify and develop protocols aimed at increasing the control over general quantum information processors. For this reason, all the protocols described in this thesis have been implemented in liquid state NMR, which then led to further development of control and analysis techniques.

  11. The Quantum Socket: Wiring for Superconducting Qubits - Part 3

    NASA Astrophysics Data System (ADS)

    Mariantoni, M.; Bejianin, J. H.; McConkey, T. G.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    The implementation of a quantum computer requires quantum error correction codes, which allow to correct errors occurring on physical quantum bits (qubits). Ensemble of physical qubits will be grouped to form a logical qubit with a lower error rate. Reaching low error rates will necessitate a large number of physical qubits. Thus, a scalable qubit architecture must be developed. Superconducting qubits have been used to realize error correction. However, a truly scalable qubit architecture has yet to be demonstrated. A critical step towards scalability is the realization of a wiring method that allows to address qubits densely and accurately. A quantum socket that serves this purpose has been designed and tested at microwave frequencies. In this talk, we show results where the socket is used at millikelvin temperatures to measure an on-chip superconducting resonator. The control electronics is another fundamental element for scalability. We will present a proposal based on the quantum socket to interconnect a classical control hardware to a superconducting qubit hardware, where both are operated at millikelvin temperatures.

  12. Two-qubit correlations revisited: average mutual information, relevant (and useful) observables and an application to remote state preparation

    NASA Astrophysics Data System (ADS)

    Giorda, Paolo; Allegra, Michele

    2017-07-01

    Understanding how correlations can be used for quantum communication protocols is a central goal of quantum information science. While many authors have linked the global measures of correlations such as entanglement or discord to the performance of specific protocols, in general the latter may require only correlations between specific observables. In this work, we first introduce a general measure of correlations for two-qubit states, based on the classical mutual information between local observables. Our measure depends on the state’s purity and the symmetry in the correlation distribution, according to which we provide a classification of maximally mixed marginal states (MMMS). We discuss the complementarity relation between correlations and coherence. By focusing on a simple yet paradigmatic example, i.e. the remote state preparation protocol, we introduce a method to systematically define the proper protocol-tailored measures of the correlations. The method is based on the identification of those correlations that are relevant (useful) for the protocol. On the one hand, the approach allows the role of the symmetry of the correlation distribution to be discussed in determining the efficiency of the protocol, both for MMMS and general two-qubit quantum states, and on the other hand, it allows an optimized protocol for non-MMMS to be devised, which is more efficient with respect to the standard one. Overall, our findings clarify how the key resources in simple communication protocols are the purity of the state used and the symmetry of the correlation distribution.

  13. High-fidelity gates towards a scalable superconducting quantum processor

    NASA Astrophysics Data System (ADS)

    Chow, Jerry M.; Corcoles, Antonio D.; Gambetta, Jay M.; Rigetti, Chad; Johnson, Blake R.; Smolin, John A.; Merkel, Seth; Poletto, Stefano; Rozen, Jim; Rothwell, Mary Beth; Keefe, George A.; Ketchen, Mark B.; Steffen, Matthias

    2012-02-01

    We experimentally explore the implementation of high-fidelity gates on multiple superconducting qubits coupled to multiple resonators. Having demonstrated all-microwave single and two qubit gates with fidelities > 90% on multi-qubit single-resonator systems, we expand the application to qubits across two resonators and investigate qubit coupling in this circuit. The coupled qubit-resonators are building blocks towards two-dimensional lattice networks for the application of surface code quantum error correction algorithms.

  14. 10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit

    NASA Astrophysics Data System (ADS)

    Song, Chao; Xu, Kai; Liu, Wuxin; Yang, Chui-ping; Zheng, Shi-Biao; Deng, Hui; Xie, Qiwei; Huang, Keqiang; Guo, Qiujiang; Zhang, Libo; Zhang, Pengfei; Xu, Da; Zheng, Dongning; Zhu, Xiaobo; Wang, H.; Chen, Y.-A.; Lu, C.-Y.; Han, Siyuan; Pan, Jian-Wei

    2017-11-01

    Here we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger states with up to ten qubits connecting to a bus resonator in a superconducting circuit, where the resonator-mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on different pairs of qubits in parallel. The resulting 10-qubit density matrix is probed by quantum state tomography, with a fidelity of 0.668 ±0.025 . Our results demonstrate the largest entanglement created so far in solid-state architectures and pave the way to large-scale quantum computation.

  15. Weakly-tunable transmon qubits in a multi-qubit architecture

    NASA Astrophysics Data System (ADS)

    Hertzberg, Jared; Bronn, Nicholas; Corcoles, Antonio; Brink, Markus; Keefe, George; Takita, Maika; Hutchings, M.; Plourde, B. L. T.; Gambetta, Jay; Chow, Jerry

    Quantum error-correction employing a 2D lattice of qubits requires a strong coupling between adjacent qubits and consistently high gate fidelity among them. In such a system, all-microwave cross-resonance gates offer simplicity of setup and operation. However, the relative frequencies of adjacent qubits must be carefully arranged in order to optimize gate rates and eliminate unwanted couplings. We discuss the incorporation of weakly-flux-tunable transmon qubits into such an architecture. Using DC tuning through filtered flux-bias lines, we adjust qubit frequencies while minimizing the effects of flux noise on decoherence.

  16. 10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit.

    PubMed

    Song, Chao; Xu, Kai; Liu, Wuxin; Yang, Chui-Ping; Zheng, Shi-Biao; Deng, Hui; Xie, Qiwei; Huang, Keqiang; Guo, Qiujiang; Zhang, Libo; Zhang, Pengfei; Xu, Da; Zheng, Dongning; Zhu, Xiaobo; Wang, H; Chen, Y-A; Lu, C-Y; Han, Siyuan; Pan, Jian-Wei

    2017-11-03

    Here we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger states with up to ten qubits connecting to a bus resonator in a superconducting circuit, where the resonator-mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on different pairs of qubits in parallel. The resulting 10-qubit density matrix is probed by quantum state tomography, with a fidelity of 0.668±0.025. Our results demonstrate the largest entanglement created so far in solid-state architectures and pave the way to large-scale quantum computation.

  17. Topological Quantum Buses: Coherent Quantum Information Transfer between Topological and Conventional Qubits

    NASA Astrophysics Data System (ADS)

    Bonderson, Parsa; Lutchyn, Roman M.

    2011-04-01

    We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems.

  18. Demonstration of universal parametric entangling gates on a multi-qubit lattice

    PubMed Central

    Reagor, Matthew; Osborn, Christopher B.; Tezak, Nikolas; Staley, Alexa; Prawiroatmodjo, Guenevere; Scheer, Michael; Alidoust, Nasser; Sete, Eyob A.; Didier, Nicolas; da Silva, Marcus P.; Acala, Ezer; Angeles, Joel; Bestwick, Andrew; Block, Maxwell; Bloom, Benjamin; Bradley, Adam; Bui, Catvu; Caldwell, Shane; Capelluto, Lauren; Chilcott, Rick; Cordova, Jeff; Crossman, Genya; Curtis, Michael; Deshpande, Saniya; El Bouayadi, Tristan; Girshovich, Daniel; Hong, Sabrina; Hudson, Alex; Karalekas, Peter; Kuang, Kat; Lenihan, Michael; Manenti, Riccardo; Manning, Thomas; Marshall, Jayss; Mohan, Yuvraj; O’Brien, William; Otterbach, Johannes; Papageorge, Alexander; Paquette, Jean-Philip; Pelstring, Michael; Polloreno, Anthony; Rawat, Vijay; Ryan, Colm A.; Renzas, Russ; Rubin, Nick; Russel, Damon; Rust, Michael; Scarabelli, Diego; Selvanayagam, Michael; Sinclair, Rodney; Smith, Robert; Suska, Mark; To, Ting-Wai; Vahidpour, Mehrnoosh; Vodrahalli, Nagesh; Whyland, Tyler; Yadav, Kamal; Zeng, William; Rigetti, Chad T.

    2018-01-01

    We show that parametric coupling techniques can be used to generate selective entangling interactions for multi-qubit processors. By inducing coherent population exchange between adjacent qubits under frequency modulation, we implement a universal gate set for a linear array of four superconducting qubits. An average process fidelity of ℱ = 93% is estimated for three two-qubit gates via quantum process tomography. We establish the suitability of these techniques for computation by preparing a four-qubit maximally entangled state and comparing the estimated state fidelity with the expected performance of the individual entangling gates. In addition, we prepare an eight-qubit register in all possible bitstring permutations and monitor the fidelity of a two-qubit gate across one pair of these qubits. Across all these permutations, an average fidelity of ℱ = 91.6 ± 2.6% is observed. These results thus offer a path to a scalable architecture with high selectivity and low cross-talk. PMID:29423443

  19. Flux qubits in a planar circuit quantum electrodynamics architecture: Quantum control and decoherence

    NASA Astrophysics Data System (ADS)

    Orgiazzi, J.-L.; Deng, C.; Layden, D.; Marchildon, R.; Kitapli, F.; Shen, F.; Bal, M.; Ong, F. R.; Lupascu, A.

    2016-03-01

    We report experiments on superconducting flux qubits in a circuit quantum electrodynamics (cQED) setup. Two qubits, independently biased and controlled, are coupled to a coplanar waveguide resonator. Dispersive qubit state readout reaches a maximum contrast of 72%. We measure energy relaxation times at the symmetry point of 5 and 10 μ s , corresponding to 7 and 20 μ s when relaxation through the resonator due to Purcell effect is subtracted out, and levels of flux noise of 2.6 and 2.7 μ Φ0/√{Hz} at 1 Hz for the two qubits. We discuss the origin of decoherence in the measured devices. The strong coupling between the qubits and the cavity leads to a large, cavity-mediated, qubit-qubit coupling. This coupling, which is characterized spectroscopically, reaches 38 MHz. These results demonstrate the potential of cQED as a platform for fundamental investigations of decoherence and quantum dynamics of flux qubits.

  20. Universal Stabilization of a Parametrically Coupled Qubit

    NASA Astrophysics Data System (ADS)

    Lu, Yao; Chakram, S.; Leung, N.; Earnest, N.; Naik, R. K.; Huang, Ziwen; Groszkowski, Peter; Kapit, Eliot; Koch, Jens; Schuster, David I.

    2017-10-01

    We autonomously stabilize arbitrary states of a qubit through parametric modulation of the coupling between a fixed frequency qubit and resonator. The coupling modulation is achieved with a tunable coupling design, in which the qubit and the resonator are connected in parallel to a superconducting quantum interference device. This allows for quasistatic tuning of the qubit-cavity coupling strength from 12 MHz to more than 300 MHz. Additionally, the coupling can be dynamically modulated, allowing for single-photon exchange in 6 ns. Qubit coherence times exceeding 20 μ s are maintained over the majority of the range of tuning, limited primarily by the Purcell effect. The parametric stabilization technique realized using the tunable coupler involves engineering the qubit bath through a combination of photon nonconserving sideband interactions realized by flux modulation, and direct qubit Rabi driving. We demonstrate that the qubit can be stabilized to arbitrary states on the Bloch sphere with a worst-case fidelity exceeding 80%.

  1. Microwave-driven coherent operation of a semiconductor quantum dot charge qubit

    DOE PAGES

    Kim, Dohun; Ward, D. R.; Simmons, C. B.; ...

    2015-02-16

    An intuitive realization of a qubit is an electron charge at two well-defined positions of a double quantum dot. The qubit is simple and has the potential for high-speed operation because of its strong coupling to electric fields. But, charge noise also couples strongly to this qubit, resulting in rapid dephasing at all but one special operating point called the ‘sweet spot’. In previous studies d.c. voltage pulses have been used to manipulate semiconductor charge qubits but did not achieve high-fidelity control, because d.c. gating requires excursions away from the sweet spot. Here, by using resonant a.c. microwave driving wemore » achieve fast (greater than gigahertz) and universal single qubit rotations of a semiconductor charge qubit. The Z-axis rotations of the qubit are well protected at the sweet spot, and we demonstrate the same protection for rotations about arbitrary axes in the X–Y plane of the qubit Bloch sphere. We characterize the qubit operation using two tomographic approaches: standard process tomography and gate set tomography. Moreover, both methods consistently yield process fidelities greater than 86% with respect to a universal set of unitary single-qubit operations.« less

  2. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.

    PubMed

    Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A

    2014-07-03

    The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).

  3. Efficient Remote Preparation of Four-Qubit Cluster-Type Entangled States with Multi-Party Over Partially Entangled Channels

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Hoehn, Ross D.; Ye, Liu; Kais, Sabre

    2016-07-01

    We present a strategy for realizing multiparty-controlled remote state preparation (MCRSP) for a family of four-qubit cluster-type states by taking a pair of partial entanglements as the quantum channels. In this scenario, the encoded information is transmitted from the sender to a spatially separated receiver with control of the transmission by multiple parties. Predicated on the collaboration of all participants, the desired state can be faithfully restored at the receiver's location with high success probability by application of additional appropriate local operations and necessary classical communication. Moreover, this proposal for MCRSP can be faithfully achieved with unit total success probability when the quantum channels are distilled to maximally entangled ones.

  4. Steering Quantum Dynamics of a Two-Qubit System via Optimal Bang-Bang Control

    NASA Astrophysics Data System (ADS)

    Hu, Juju; Ke, Qiang; Ji, Yinghua

    2018-02-01

    The optimization of control time for quantum systems has been an important field of control science attracting decades of focus, which is beneficial for efficiency improvement and decoherence suppression caused by the environment. Based on analyzing the advantages and disadvantages of the existing Lyapunov control, using a bang-bang optimal control technique, we investigate the fast state control in a closed two-qubit quantum system, and give three optimized control field design methods. Numerical simulation experiments indicate the effectiveness of the methods. Compared to the standard Lyapunov control or standard bang-bang control method, the optimized control field design methods effectively shorten the state control time and avoid high-frequency oscillation that occurs in bang-bang control.

  5. Deterministic Joint Remote Preparation of Arbitrary Four-Qubit Cluster-Type State Using EPR Pairs

    NASA Astrophysics Data System (ADS)

    Li, Wenqian; Chen, Hanwu; Liu, Zhihao

    2017-02-01

    Using four Einstein-Podolsky-Rosen (EPR) pairs as the pre-shared quantum channel, an economic and feasible scheme for deterministic joint remote preparation of the four-particle cluster-type state is presented. In the scheme, one of the senders performs a four-qubit projective measurement based on a set of ingeniously constructed vectors with real coefficients, while the other performs the bipartite projective measurements in terms of the imaginary coefficients. Followed with some appropriate unitary operations and controlled-NOT operations, the receiver can reconstruct the desired state. Compared with other analogous JRSP schemes, our scheme can not only reconstruct the original state (to be prepared remotely) with unit successful probability, but also ensure greater efficiency.

  6. Minimal tomography with entanglement witnesses

    NASA Astrophysics Data System (ADS)

    Zhu, Huangjun; Teo, Yong Siah; Englert, Berthold-Georg

    2010-05-01

    We introduce informationally complete measurements whose outcomes are entanglement witnesses and so answer the question of how many witnesses need to be measured to decide whether an arbitrary state is entangled or not: as many as the dimension of the state space. The witnesses can be measured successively; if all of them give an inconclusive result, one exploits their tomographic completeness for a reconstruction of the quantum state and can then determine its entanglement properties by data processing. There are witnesses that are optimal for this purpose. The optimized witness-based measurement can provide exponential improvement with respect to witness efficiency in high-dimensional Hilbert spaces, at the price of a reduction in the tomographic efficiency. We describe a systematic construction and illustrate the matter with the example of two qubits. For the case of two polarization qubits of photons, we show how existing technology can be used to implement the optimized witnesses in a very efficient way. Owing to the details of the implementation, which actually measures the eigenstate basis of the witness rather than solely determining the expectation value of the witness, one does not need to measure more than six witnesses in this example of a 16-dimensional state space.

  7. Topological quantum buses: coherent quantum information transfer between topological and conventional qubits.

    PubMed

    Bonderson, Parsa; Lutchyn, Roman M

    2011-04-01

    We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems. © 2011 American Physical Society

  8. 3D integrated superconducting qubits

    NASA Astrophysics Data System (ADS)

    Rosenberg, D.; Kim, D.; Das, R.; Yost, D.; Gustavsson, S.; Hover, D.; Krantz, P.; Melville, A.; Racz, L.; Samach, G. O.; Weber, S. J.; Yan, F.; Yoder, J. L.; Kerman, A. J.; Oliver, W. D.

    2017-10-01

    As the field of quantum computing advances from the few-qubit stage to larger-scale processors, qubit addressability and extensibility will necessitate the use of 3D integration and packaging. While 3D integration is well-developed for commercial electronics, relatively little work has been performed to determine its compatibility with high-coherence solid-state qubits. Of particular concern, qubit coherence times can be suppressed by the requisite processing steps and close proximity of another chip. In this work, we use a flip-chip process to bond a chip with superconducting flux qubits to another chip containing structures for qubit readout and control. We demonstrate that high qubit coherence (T1, T2,echo > 20 μs) is maintained in a flip-chip geometry in the presence of galvanic, capacitive, and inductive coupling between the chips.

  9. Quantum circuits for qubit fusion

    DOE PAGES

    Moussa, Jonathan Edward

    2015-12-01

    In this article, we consider four-dimensional qudits as qubit pairs and their qudit Pauli operators as qubit Cli ord operators. This introduces a nesting, C 2 1 C C 4 2 C C 2 3, where C m n is the n th level of the m-dimensional qudit Cli ord hierarchy. If we can convert between logical qubits and qudits, then qudit Cli ord operators are qubit non-Cli ord operators. Conversion is achieved by qubit fusion and qudit fission using stabilizer circuits that consume a resource state. This resource is a fused qubit stabilizer state with a fault-tolerant state preparationmore » using stabilizer circuits.« less

  10. Purification of Logic-Qubit Entanglement.

    PubMed

    Zhou, Lan; Sheng, Yu-Bo

    2016-07-05

    Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network.

  11. (1) Majorana fermions in pinned vortices; (2) Manipulating and probing Majorana fermions using superconducting circuits; and (3) Controlling a nanowire spin-orbit qubit via electric-dipole spin resonance

    NASA Astrophysics Data System (ADS)

    Nori, Franco

    2014-03-01

    We study a heterostructure which consists of a topological insulator and a superconductor with a hole. This system supports a robust Majorana fermion state bound to the vortex core. We study the possibility of using scanning tunneling spectroscopy (i) to detect the Majorana fermion in this setup and (ii) to study excited states bound to the vortex core. The Majorana fermion manifests itself as an H-dependent zero-bias anomaly of the tunneling conductance. The excited states spectrum differs from the spectrum of a typical Abrikosov vortex, providing additional indirect confirmation of the Majorana state observation. We also study how to manipulate and probe Majorana fermions using super-conducting circuits. In we consider a semiconductor nanowire quantum dot with strong spin-orbit coupling (SOC), which can be used to achieve a spin-orbit qubit. In contrast to a spin qubit, the spin-orbit qubit can respond to an external ac electric field, i.e., electric-dipole spin resonance. We develop a theory that can apply in the strong SOC regime. We find that there is an optimal SOC strength ηopt = √ 2/2, where the Rabi frequency induced by the ac electric field becomes maximal. Also, we show that both the level spacing and the Rabi frequency of the spin-orbit qubit have periodic responses to the direction of the external static magnetic field. These responses can be used to determine the SOC in the nanowire. FN is partly supported by the RIKEN CEMS, iTHES Project, MURI Center for Dynamic Magneto-Optics, JSPS-RFBR Contract No. 12-02-92100, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and the JSPS via its FIRST program.

  12. General form of genuine multipartite entanglement quantum channels for teleportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Pingxing; Key Laboratory of Quantum Communication and Quantum Computation, University of Science and Technology of China, Hefei 230026; Department of Physics, National University of Defense Technology, Changsha 410073

    2006-09-15

    Recently Yeo and Chua [Phys. Rev. Lett. 96, 060502 (2006)] presented an explicit protocol for faithfully teleporting an arbitrary two-qubit state via a genuine four-qubit entanglement channel. Here we generalize completely their results to teleporting an arbitrary N-qubit state via genuine N-qubit entanglement channels. And we present the general form of the genuine multipartite entanglement channels, namely, the sufficient and necessary condition the genuine N-qubit entanglement channels must satisfy to teleport an arbitrary N-qubit state.

  13. Bidirectional Teleportation of a Two-Qubit State by Using Eight-Qubit Entangled State as a Quantum Channel

    NASA Astrophysics Data System (ADS)

    Sadeghi Zadeh, Mohammad Sadegh; Houshmand, Monireh; Aghababa, Hossein

    2017-07-01

    In this paper, a new scheme of bidirectional quantum teleportation (BQT) making use of an eight-qubit entangled state as the quantum channel is presented. This scheme is the first protocol without controller by which the users can teleport an arbitrary two-qubit state to each other simultaneously. This protocol is based on the ControlledNOT operation, appropriate single-qubit unitary operations and single-qubit measurement in the Z-basis and X-basis.

  14. Entangling two transportable neutral atoms via local spin exchange.

    PubMed

    Kaufman, A M; Lester, B J; Foss-Feig, M; Wall, M L; Rey, A M; Regal, C A

    2015-11-12

    To advance quantum information science, physical systems are sought that meet the stringent requirements for creating and preserving quantum entanglement. In atomic physics, robust two-qubit entanglement is typically achieved by strong, long-range interactions in the form of either Coulomb interactions between ions or dipolar interactions between Rydberg atoms. Although such interactions allow fast quantum gates, the interacting atoms must overcome the associated coupling to the environment and cross-talk among qubits. Local interactions, such as those requiring substantial wavefunction overlap, can alleviate these detrimental effects; however, such interactions present a new challenge: to distribute entanglement, qubits must be transported, merged for interaction, and then isolated for storage and subsequent operations. Here we show how, using a mobile optical tweezer, it is possible to prepare and locally entangle two ultracold neutral atoms, and then separate them while preserving their entanglement. Ground-state neutral atom experiments have measured dynamics consistent with spin entanglement, and have detected entanglement with macroscopic observables; we are now able to demonstrate position-resolved two-particle coherence via application of a local gradient and parity measurements. This new entanglement-verification protocol could be applied to arbitrary spin-entangled states of spatially separated atoms. The local entangling operation is achieved via spin-exchange interactions, and quantum tunnelling is used to combine and separate atoms. These techniques provide a framework for dynamically entangling remote qubits via local operations within a large-scale quantum register.

  15. Structural Effects on the Spin Dynamics of Potential Molecular Qubits.

    PubMed

    Atzori, Matteo; Benci, Stefano; Morra, Elena; Tesi, Lorenzo; Chiesa, Mario; Torre, Renato; Sorace, Lorenzo; Sessoli, Roberta

    2018-01-16

    Control of spin-lattice magnetic relaxation is crucial to observe long quantum coherence in spin systems at reasonable temperatures. Such a control is most often extremely difficult to achieve, because of the coexistence of several relaxation mechanisms, that is direct, Raman, and Orbach. These are not always easy to relate to the energy states of the investigated system, because of the contribution to the relaxation of additional spin-phonon coupling phenomena mediated by intramolecular vibrations. In this work, we have investigated the effect of slight changes on the molecular structure of four vanadium(IV)-based potential spin qubits on their spin dynamics, studied by alternate current (AC) susceptometry. The analysis of the magnetic field dependence of the relaxation time correlates well with the low-energy vibrational modes experimentally detected by time-domain THz spectroscopy. This confirms and extends our preliminary observations on the role played by spin-vibration coupling in determining the fine structure of the spin-lattice relaxation time as a function of the magnetic field, for S = 1 / 2 potential spin qubits. This study represents a step forward in the use of low-energy vibrational spectroscopy as a prediction tool for the design of molecular spin qubits with long-lived quantum coherence. Indeed, quantum coherence times of ca. 4.0-6.0 μs in the 4-100 K range are observed for the best performing vanadyl derivatives identified through this multitechnique approach.

  16. Single-photon three-qubit quantum logic using spatial light modulators.

    PubMed

    Kagalwala, Kumel H; Di Giuseppe, Giovanni; Abouraddy, Ayman F; Saleh, Bahaa E A

    2017-09-29

    The information-carrying capacity of a single photon can be vastly expanded by exploiting its multiple degrees of freedom: spatial, temporal, and polarization. Although multiple qubits can be encoded per photon, to date only two-qubit single-photon quantum operations have been realized. Here, we report an experimental demonstration of three-qubit single-photon, linear, deterministic quantum gates that exploit photon polarization and the two-dimensional spatial-parity-symmetry of the transverse single-photon field. These gates are implemented using a polarization-sensitive spatial light modulator that provides a robust, non-interferometric, versatile platform for implementing controlled unitary gates. Polarization here represents the control qubit for either separable or entangling unitary operations on the two spatial-parity target qubits. Such gates help generate maximally entangled three-qubit Greenberger-Horne-Zeilinger and W states, which is confirmed by tomographical reconstruction of single-photon density matrices. This strategy provides access to a wide range of three-qubit states and operations for use in few-qubit quantum information processing protocols.Photons are essential for quantum information processing, but to date only two-qubit single-photon operations have been realized. Here the authors demonstrate experimentally a three-qubit single-photon linear deterministic quantum gate by exploiting polarization along with spatial-parity symmetry.

  17. Teleportation of a two-qubit arbitrary unknown state using a four-qubit genuine entangled state with the combination of bell-state measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Li; Xiu, Xiao-Ming, E-mail: xiuxiaomingdl@126.com; Ren, Yuan-Peng

    2013-01-15

    We propose a protocol transferring an arbitrary unknown two-qubit state using the quantum channel of a four-qubit genuine entangled state. Simplifying the four-qubit joint measurement to the combination of Bell-state measurements, it can be realized more easily with currently available technologies.

  18. Novel microwave readout for phase qubits

    NASA Astrophysics Data System (ADS)

    Kumar, Shwetank; Steffen, Matthias; Rothwell, Mary-Beth; Rozen, James; Keefe, George; Ketchen, Mark

    2010-03-01

    We present a novel microwave based readout for a phase qubit which circumvents loss mechanisms that have been shown to impact qubit coherence times. Additionally, this new technique facilitates multiplexing of qubits thereby reducing the number of cryogenic wires required for operating the qubits. The basic operation of the circuit will be discussed and compared with experimental data.

  19. Efficient multiparticle entanglement via asymmetric Rydberg blockade.

    PubMed

    Saffman, M; Mølmer, K

    2009-06-19

    We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles. On the basis of quantitative calculations, we predict that an entangled quantum superposition state of eight atoms can be produced with a fidelity of 84% in cold Rb atoms.

  20. Low-control and robust quantum refrigerator and applications with electronic spins in diamond

    NASA Astrophysics Data System (ADS)

    Mohammady, M. Hamed; Choi, Hyeongrak; Trusheim, Matthew E.; Bayat, Abolfazl; Englund, Dirk; Omar, Yasser

    2018-04-01

    We propose a general protocol for low-control refrigeration and thermometry of thermal qubits, which can be implemented using electronic spins in diamond. The refrigeration is implemented by a probe, consisting of a network of interacting spins. The protocol involves two operations: (i) free evolution of the probe; and (ii) a swap gate between one spin in the probe and the thermal qubit we wish to cool. We show that if the initial state of the probe falls within a suitable range, and the free evolution of the probe is both unital and conserves the excitation in the z direction, then the cooling protocol will always succeed, with an efficiency that depends on the rate of spin dephasing and the swap-gate fidelity. Furthermore, measuring the probe after it has cooled many qubits provides an estimate of their temperature. We provide a specific example where the probe is a Heisenberg spin chain, and suggest a physical implementation using electronic spins in diamond. Here, the probe is constituted of nitrogen vacancy (NV) centers, while the thermal qubits are dark spins. By using a novel pulse sequence, a chain of NV centers can be made to evolve according to a Heisenberg Hamiltonian. This proposal allows for a range of applications, such as NV-based nuclear magnetic resonance of photosensitive molecules kept in a dark spot on a sample, and it opens up possibilities for the study of quantum thermodynamics, environment-assisted sensing, and many-body physics.

  1. Modal and polarization qubits in Ti:LiNbO3 photonic circuits for a universal quantum logic gate.

    PubMed

    Saleh, Mohammed F; Di Giuseppe, Giovanni; Saleh, Bahaa E A; Teich, Malvin Carl

    2010-09-13

    Lithium niobate photonic circuits have the salutary property of permitting the generation, transmission, and processing of photons to be accommodated on a single chip. Compact photonic circuits such as these, with multiple components integrated on a single chip, are crucial for efficiently implementing quantum information processing schemes.We present a set of basic transformations that are useful for manipulating modal qubits in Ti:LiNbO(3) photonic quantum circuits. These include the mode analyzer, a device that separates the even and odd components of a state into two separate spatial paths; the mode rotator, which rotates the state by an angle in mode space; and modal Pauli spin operators that effect related operations. We also describe the design of a deterministic, two-qubit, single-photon, CNOT gate, a key element in certain sets of universal quantum logic gates. It is implemented as a Ti:LiNbO(3) photonic quantum circuit in which the polarization and mode number of a single photon serve as the control and target qubits, respectively. It is shown that the effects of dispersion in the CNOT circuit can be mitigated by augmenting it with an additional path. The performance of all of these components are confirmed by numerical simulations. The implementation of these transformations relies on selective and controllable power coupling among single- and two-mode waveguides, as well as the polarization sensitivity of the Pockels coefficients in LiNbO(3).

  2. Experimental entanglement of 25 individually accessible atomic quantum interfaces

    PubMed Central

    Jiang, Nan; Chang, Wei; Li, Chang; Zhang, Sheng

    2018-01-01

    A quantum interface links the stationary qubits in a quantum memory with flying photonic qubits in optical transmission channels and constitutes a critical element for the future quantum internet. Entanglement of quantum interfaces is an important step for the realization of quantum networks. Through heralded detection of photon interference, we generate multipartite entanglement between 25 (or 9) individually addressable quantum interfaces in a multiplexed atomic quantum memory array and confirm genuine 22-partite (or 9-partite) entanglement. This experimental entanglement of a record-high number of individually addressable quantum interfaces makes an important step toward the realization of quantum networks, long-distance quantum communication, and multipartite quantum information processing. PMID:29725621

  3. Robust interface between flying and topological qubits

    PubMed Central

    Xue, Zheng-Yuan; Gong, Ming; Liu, Jia; Hu, Yong; Zhu, Shi-Liang; Wang, Z. D.

    2015-01-01

    Hybrid architectures, consisting of conventional and topological qubits, have recently attracted much attention due to their capability in consolidating robustness of topological qubits and universality of conventional qubits. However, these two kinds of qubits are normally constructed in significantly different energy scales, and thus the energy mismatch is a major obstacle for their coupling, which can support the exchange of quantum information between them. Here we propose a microwave photonic quantum bus for a strong direct coupling between the topological and conventional qubits, where the energy mismatch is compensated by an external driving field. In the framework of tight-binding simulation and perturbation approach, we show that the energy splitting of Majorana fermions in a finite length nanowire, which we use to define topological qubits, is still robust against local perturbations due to the topology of the system. Therefore, the present scheme realizes a rather robust interface between the flying and topological qubits. Finally, we demonstrate that this quantum bus can also be used to generate multipartitie entangled states with the topological qubits. PMID:26216201

  4. Tunable inter-qubit coupling as a resource for gate based quantum computing with superconducting circuits

    NASA Astrophysics Data System (ADS)

    Chiaro, B.; Neill, C.; Chen, Z.; Dunsworth, A.; Foxen, B.; Quintana, C.; Wenner, J.; Martinis, J. M.; Google Quantum Hardware Team

    Fast, high fidelity two qubit gates are an essential requirement of a quantum processor. In this talk, we discuss how the tunable coupling of the gmon architecture provides a pathway for an improved two qubit controlled-Z gate. The maximum inter-qubit coupling strength gmax = 60 MHz is sufficient for fast adiabatic two qubit gates to be performed as quickly as single qubit gates, reducing dephasing errors. Additionally, the ability to turn the coupling off allows all qubits to idle at low magnetic flux sensitivity, further reducing susceptibility to noise. However, the flexibility that this platform offers comes at the expense of increased control complexity. We describe our strategy for addressing the control challenges of the gmon architecture and show experimental progress toward fast, high fidelity controlled-Z gates with gmon qubits.

  5. Experimental investigation of a four-qubit linear-optical quantum logic circuit

    NASA Astrophysics Data System (ADS)

    Stárek, R.; Mičuda, M.; Miková, M.; Straka, I.; Dušek, M.; Ježek, M.; Fiurášek, J.

    2016-09-01

    We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C3Z gate and several two-qubit and single-qubit gates. The C3Z gate introduces a sign flip if and only if all four qubits are in the computational state |1>. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses.

  6. Experimental investigation of a four-qubit linear-optical quantum logic circuit.

    PubMed

    Stárek, R; Mičuda, M; Miková, M; Straka, I; Dušek, M; Ježek, M; Fiurášek, J

    2016-09-20

    We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C(3)Z gate and several two-qubit and single-qubit gates. The C(3)Z gate introduces a sign flip if and only if all four qubits are in the computational state |1〉. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses.

  7. Tunable-cavity QED with phase qubits

    NASA Astrophysics Data System (ADS)

    Whittaker, Jed D.; da Silva, Fabio; Allman, Michael Shane; Lecocq, Florent; Cicak, Katarina; Sirois, Adam; Teufel, John; Aumentado, Jose; Simmonds, Raymond W.

    2014-03-01

    We describe a tunable-cavity QED architecture with an rf SQUID phase qubit inductively coupled to a single-mode, resonant cavity with a tunable frequency that allows for both tunneling and dispersive measurements. Dispersive measurement is well characterized by a three-level model, strongly dependent on qubit anharmonicity, qubit-cavity coupling and detuning. The tunable cavity frequency provides dynamic control over the coupling strength and qubit-cavity detuning helping to minimize Purcell losses and cavity-induced dephasing during qubit operation. The maximum decay time T1 = 1 . 5 μs is limited by dielectric losses from a design geometry similar to planar transmon qubits. This work supported by NIST and NSA grant EAO140639.

  8. Qubit Architecture with High Coherence and Fast Tunable Coupling.

    PubMed

    Chen, Yu; Neill, C; Roushan, P; Leung, N; Fang, M; Barends, R; Kelly, J; Campbell, B; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Megrant, A; Mutus, J Y; O'Malley, P J J; Quintana, C M; Sank, D; Vainsencher, A; Wenner, J; White, T C; Geller, Michael R; Cleland, A N; Martinis, John M

    2014-11-28

    We introduce a superconducting qubit architecture that combines high-coherence qubits and tunable qubit-qubit coupling. With the ability to set the coupling to zero, we demonstrate that this architecture is protected from the frequency crowding problems that arise from fixed coupling. More importantly, the coupling can be tuned dynamically with nanosecond resolution, making this architecture a versatile platform with applications ranging from quantum logic gates to quantum simulation. We illustrate the advantages of dynamical coupling by implementing a novel adiabatic controlled-z gate, with a speed approaching that of single-qubit gates. Integrating coherence and scalable control, the introduced qubit architecture provides a promising path towards large-scale quantum computation and simulation.

  9. TOPICAL REVIEW: Quantum information storage using tunable flux qubits

    NASA Astrophysics Data System (ADS)

    Steffen, Matthias; Brito, Frederico; DiVincenzo, David; Farinelli, Matthew; Keefe, George; Ketchen, Mark; Kumar, Shwetank; Milliken, Frank; Rothwell, Mary Beth; Rozen, Jim; Koch, Roger H.

    2010-02-01

    We present details and results for a superconducting quantum bit (qubit) design in which a tunable flux qubit is coupled strongly to a transmission line. Quantum information storage in the transmission line is demonstrated with a dephasing time of T2~2.5 µs. However, energy lifetimes of the qubit are found to be short (~10 ns) and not consistent with predictions. Several design and material changes do not affect qubit coherence times. In order to determine the cause of these short coherence times, we fabricated standard flux qubits based on a design which was previously successfully used by others. Initial results show significantly improved coherence times, possibly implicating losses associated with the large size of our qubit.

  10. Purification of Logic-Qubit Entanglement

    PubMed Central

    Zhou, Lan; Sheng, Yu-Bo

    2016-01-01

    Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network. PMID:27377165

  11. Proof of Monogamy of non-local correlations in three and four qubit states

    NASA Astrophysics Data System (ADS)

    Sharma, Santosh Shelly; Sharma, Naresh Kumar

    2015-03-01

    Recently, we used the process of selective construction of invariants to obtain physically meaningful polynomial invariants for three and four qubit pure states. In this article, we report the exact relations between the concurrence of a two qubit reduced state and corresponding three or four qubit pure state invariants. Firstly, we obtain an analytical expression for concurrence of a given mixed state of two qubits in terms of determinants of negativity fonts in the three or four qubit pure state. For three qubits, a comparison with three tangle and squared negativity expressed in terms of determinants of negativity fonts leads to three relations. These three conditions satisfied by the two-way and three-way correlations sum together and lead to well known CKW inequality. When a qubit pair is part of a four qubit pure state, it may be entangled to the rest of the system through two-way, three-way and four-way correlations. Monogamy equalities, satisfied by two-way, three-way and four-way non-local quantum correlatios are presented for states belonging to classes of four qubit pure states with distinct entanglement types. We gratefully acknowledge financial support from CNPq and Capes Brazil.

  12. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials.

    PubMed

    Ivić, Z; Lazarides, N; Tsironis, G P

    2016-07-12

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980's, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound "quantum breather" that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.

  13. From Three-Photon Greenberger-Horne-Zeilinger States to Ballistic Universal Quantum Computation.

    PubMed

    Gimeno-Segovia, Mercedes; Shadbolt, Pete; Browne, Dan E; Rudolph, Terry

    2015-07-10

    Single photons, manipulated using integrated linear optics, constitute a promising platform for universal quantum computation. A series of increasingly efficient proposals have shown linear-optical quantum computing to be formally scalable. However, existing schemes typically require extensive adaptive switching, which is experimentally challenging and noisy, thousands of photon sources per renormalized qubit, and/or large quantum memories for repeat-until-success strategies. Our work overcomes all these problems. We present a scheme to construct a cluster state universal for quantum computation, which uses no adaptive switching, no large memories, and which is at least an order of magnitude more resource efficient than previous passive schemes. Unlike previous proposals, it is constructed entirely from loss-detecting gates and offers a robustness to photon loss. Even without the use of an active loss-tolerant encoding, our scheme naturally tolerates a total loss rate ∼1.6% in the photons detected in the gates. This scheme uses only 3 Greenberger-Horne-Zeilinger states as a resource, together with a passive linear-optical network. We fully describe and model the iterative process of cluster generation, including photon loss and gate failure. This demonstrates that building a linear-optical quantum computer needs to be less challenging than previously thought.

  14. Generalized entanglement constraints in multi-qubit systems in terms of Tsallis entropy

    NASA Astrophysics Data System (ADS)

    Kim, Jeong San

    2016-10-01

    We provide generalized entanglement constraints in multi-qubit systems in terms of Tsallis entropy. Using quantum Tsallis entropy of order q, we first provide a generalized monogamy inequality of multi-qubit entanglement for q = 2 or 3. This generalization encapsulates the multi-qubit CKW-type inequality as a special case. We further provide a generalized polygamy inequality of multi-qubit entanglement in terms of Tsallis- q entropy for 1 ≤ q ≤ 2 or 3 ≤ q ≤ 4, which also contains the multi-qubit polygamy inequality as a special case.

  15. Upper bound on three-tangles of reduced states of four-qubit pure states

    NASA Astrophysics Data System (ADS)

    Sharma, S. Shelly; Sharma, N. K.

    2017-06-01

    Closed formulas for upper bounds on three-tangles of three-qubit reduced states in terms of three-qubit-invariant polynomials of pure four-qubit states are obtained. Our results offer tighter constraints on total three-way entanglement of a given qubit with the rest of the system than those used by Regula et al. [Phys. Rev. Lett. 113, 110501 (2014), 10.1103/PhysRevLett.113.110501 and Phys. Rev. Lett. 116, 049902(E) (2016)], 10.1103/PhysRevLett.116.049902 to verify monogamy of four-qubit quantum entanglement.

  16. Controlling bi-partite entanglement in multi-qubit systems

    NASA Astrophysics Data System (ADS)

    Plesch, Martin; Novotný, Jaroslav; Dzuráková, Zuzana; Buzek, Vladimír

    2004-02-01

    Bi-partite entanglement in multi-qubit systems cannot be shared freely. The rules of quantum mechanics impose bounds on how multi-qubit systems can be correlated. In this paper, we utilize a concept of entangled graphs with weighted edges in order to analyse pure quantum states of multi-qubit systems. Here qubits are represented by vertexes of the graph, while the presence of bi-partite entanglement is represented by an edge between corresponding vertexes. The weight of each edge is defined to be the entanglement between the two qubits connected by the edge, as measured by the concurrence. We prove that each entangled graph with entanglement bounded by a specific value of the concurrence can be represented by a pure multi-qubit state. In addition, we present a logic network with O(N2) elementary gates that can be used for preparation of the weighted entangled graphs of N qubits.

  17. A Novel Scheme for Bidirectional and Hybrid Quantum Information Transmission via a Seven-Qubit State

    NASA Astrophysics Data System (ADS)

    Fang, Sheng-hui; Jiang, Min

    2018-02-01

    In this paper, we present a novel scheme for bidirectional and hybrid quantum information transmission via a seven-qubit state. We demonstrate that under the control of the supervisor two distant participants can simultaneously and deterministically exchange their states with each other no matter whether they know the states or not. In our scheme, Alice can teleport an arbitrary single-qubit state (two-qubit state) to Bob and Bob can prepare a known two-qubit state (single-qubit state) for Alice simultaneously via the control of the supervisor Charlie. Compared with previous studies for single bidirectional quantum teleportation or single bidirectional remote state preparation schemes, our protocol is a kind of hybrid approach for quantum information transmission. Furthermore, it achieves success with unit probability. Notably, since only pauli operations and two-qubit and single-qubit measurements are used in our schemes, it is flexible in physical experiments.

  18. Semiconductor-inspired design principles for superconducting quantum computing.

    PubMed

    Shim, Yun-Pil; Tahan, Charles

    2016-03-17

    Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit-based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable super-semi junctions.

  19. Hybrid quantum systems: Outsourcing superconducting qubits

    NASA Astrophysics Data System (ADS)

    Cleland, Andrew

    Superconducting qubits offer excellent prospects for manipulating quantum information, with good qubit lifetimes, high fidelity single- and two-qubit gates, and straightforward scalability (admittedly with multi-dimensional interconnect challenges). One interesting route for experimental development is the exploration of hybrid systems, i.e. coupling superconducting qubits to other systems. I will report on our group's efforts to develop approaches that will allow interfacing superconducting qubits in a quantum-coherent fashion to spin defects in solids, to optomechanical devices, and to resonant nanomechanical structures. The longer term goals of these efforts include transferring quantum states between different qubit systems; generating and receiving ``flying'' acoustic phonon-based as well as optical photon-based qubits; and ultimately developing systems that can be used for quantum memory, quantum computation and quantum communication, the last in both the microwave and fiber telecommunications bands. Work is supported by Grants from AFOSR, ARO, DOE and NSF.

  20. Creation of Two-Particle Entanglement in Open Macroscopic Quantum Systems

    DOE PAGES

    Merkli, M.; Berman, G. P.; Borgonovi, F.; ...

    2012-01-01

    We considermore » an open quantum system of N not directly interacting spins (qubits) in contact with both local and collective thermal environments. The qubit-environment interactions are energy conserving. We trace out the variables of the thermal environments and N − 2 qubits to obtain the time-dependent reduced density matrix for two arbitrary qubits. We numerically simulate the reduced dynamics and the creation of entanglement (concurrence) as a function of the parameters of the thermal environments and the number of qubits, N . Our results demonstrate that the two-qubit entanglement generally decreases as N increases. We show analytically that, in the limit N → ∞ , no entanglement can be created. This indicates that collective thermal environments cannot create two-qubit entanglement when many qubits are located within a region of the size of the environment coherence length. We discuss possible relevance of our consideration to recent quantum information devices and biosystems.« less

  1. Crosstalk error correction through dynamical decoupling of single-qubit gates in capacitively coupled singlet-triplet semiconductor spin qubits

    NASA Astrophysics Data System (ADS)

    Buterakos, Donovan; Throckmorton, Robert E.; Das Sarma, S.

    2018-01-01

    In addition to magnetic field and electric charge noise adversely affecting spin-qubit operations, performing single-qubit gates on one of multiple coupled singlet-triplet qubits presents a new challenge: crosstalk, which is inevitable (and must be minimized) in any multiqubit quantum computing architecture. We develop a set of dynamically corrected pulse sequences that are designed to cancel the effects of both types of noise (i.e., field and charge) as well as crosstalk to leading order, and provide parameters for these corrected sequences for all 24 of the single-qubit Clifford gates. We then provide an estimate of the error as a function of the noise and capacitive coupling to compare the fidelity of our corrected gates to their uncorrected versions. Dynamical error correction protocols presented in this work are important for the next generation of singlet-triplet qubit devices where coupling among many qubits will become relevant.

  2. Tunable electromagnetically induced transparency and absorption with dressed superconducting qubits

    NASA Astrophysics Data System (ADS)

    Ian, Hou; Liu, Yu-Xi; Nori, Franco

    2010-06-01

    Electromagnetically induced transparency and absorption (EIT and EIA) are usually demonstrated using three-level atomic systems. In contrast to the usual case, we theoretically study the EIT and EIA in an equivalent three-level system: a superconducting two-level system (qubit) dressed by a single-mode cavity field. In this equivalent system, we find that both the EIT and the EIA can be tuned by controlling the level-spacing of the superconducting qubit and hence controlling the dressed system. This tunability is due to the dressed relaxation and dephasing rates which vary parametrically with the level-spacing of the original qubit and thus affect the transition properties of the dressed qubit and the susceptibility. These dressed relaxation and dephasing rates characterize the reaction of the dressed qubit to an incident probe field. Using recent experimental data on superconducting qubits (charge, phase, and flux qubits) to demonstrate our approach, we show the possibility of experimentally realizing this proposal.

  3. Dynamics of superconducting qubits in open transmission lines

    NASA Astrophysics Data System (ADS)

    Juan Jose, Garcia-Ripoll; Zueco, David; Porras, Diego; Peropadre, Borja

    2014-03-01

    The time and space resolved dynamics of a superconducting qubit with an Ohmic coupling to propagating 1D photons is studied, from weak coupling to the ultrastrong coupling regime (USC). A nonperturbative study based on Matrix Product States (MPS) shows the following results: (i) The ground state of the combined systems contains excitations of both the qubit and the surrounding bosonic field. (ii) An initially excited qubit equilibrates through spontaneous emission to a state, which under certain conditions, is locally close to that ground state, both in the qubit and the field. (iii) The resonances of the combined qubit-photon system match those of the spontaneous emission process and also the predictions of the adiabatic renormalisation. These results set the foundations for future studies and engineering of the interactions between superconducting qubits and propagating photons, as well as the design of photon-photon interactions based on artificial materials built from these qubits.

  4. Experimental investigation of a four-qubit linear-optical quantum logic circuit

    PubMed Central

    Stárek, R.; Mičuda, M.; Miková, M.; Straka, I.; Dušek, M.; Ježek, M.; Fiurášek, J.

    2016-01-01

    We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C3Z gate and several two-qubit and single-qubit gates. The C3Z gate introduces a sign flip if and only if all four qubits are in the computational state |1〉. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses. PMID:27647176

  5. Classification of multipartite entanglement via negativity fonts

    NASA Astrophysics Data System (ADS)

    Sharma, S. Shelly; Sharma, N. K.

    2012-04-01

    Partial transposition of state operator is a well-known tool to detect quantum correlations between two parts of a composite system. In this paper, the global partial transpose (GPT) is linked to conceptually multipartite underlying structures in a state—the negativity fonts. If K-way negativity fonts with nonzero determinants exist, then selective partial transposition of a pure state, involving K of the N qubits (K⩽N), yields an operator with negative eigenvalues, identifying K-body correlations in the state. Expansion of GPT in terms of K-way partially transposed (KPT) operators reveals the nature of intricate intrinsic correlations in the state. Classification criteria for multipartite entangled states based on the underlying structure of global partial transpose of canonical state are proposed. The number of N-partite entanglement types for an N-qubit system is found to be 2N-1-N+2, while the number of major entanglement classes is 2N-1-1. Major classes for three- and four-qubit states are listed. Subclasses are determined by the number and type of negativity fonts in canonical states.

  6. Experimental Demonstration of a Resonator-Induced Phase Gate in a Multiqubit Circuit-QED System.

    PubMed

    Paik, Hanhee; Mezzacapo, A; Sandberg, Martin; McClure, D T; Abdo, B; Córcoles, A D; Dial, O; Bogorin, D F; Plourde, B L T; Steffen, M; Cross, A W; Gambetta, J M; Chow, Jerry M

    2016-12-16

    The resonator-induced phase (RIP) gate is an all-microwave multiqubit entangling gate that allows a high degree of flexibility in qubit frequencies, making it attractive for quantum operations in large-scale architectures. We experimentally realize the RIP gate with four superconducting qubits in a three-dimensional circuit-QED architecture, demonstrating high-fidelity controlled-z (cz) gates between all possible pairs of qubits from two different 4-qubit devices in pair subspaces. These qubits are arranged within a wide range of frequency detunings, up to as large as 1.8 GHz. We further show a dynamical multiqubit refocusing scheme in order to isolate out 2-qubit interactions, and combine them to generate a 4-qubit Greenberger-Horne-Zeilinger state.

  7. Improving the gate fidelity of capacitively coupled spin qubits

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Barnes, Edwin

    2015-03-01

    Precise execution of quantum gates acting on two or multiple qubits is essential to quantum computation. For semiconductor spin qubits coupled via capacitive interaction, the best fidelity for a two-qubit gate demonstrated so far is around 70%, insufficient for fault-tolerant quantum computation. In this talk we present control protocols that may substantially improve the robustness of two-qubit gates against both nuclear noise and charge noise. Our pulse sequences incorporate simultaneous dynamical decoupling protocols and are simple enough for immediate experimental realization. Together with existing control protocols for single-qubit gates, our results constitute an important step toward scalable quantum computation using spin qubits. This work is done in collaboration with Sankar Das Sarma and supported by LPS-NSA-CMTC and IARPA-MQCO.

  8. Error budgeting single and two qubit gates in a superconducting qubit

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Chiaro, B.; Dunsworth, A.; Foxen, B.; Neill, C.; Quintana, C.; Wenner, J.; Martinis, John. M.; Google Quantum Hardware Team Team

    Superconducting qubits have shown promise as a platform for both error corrected quantum information processing and demonstrations of quantum supremacy. High fidelity quantum gates are crucial to achieving both of these goals, and superconducting qubits have demonstrated two qubit gates exceeding 99% fidelity. In order to improve gate fidelity further, we must understand the remaining sources of error. In this talk, I will demonstrate techniques for quantifying the contributions of control, decoherence, and leakage to gate error, for both single and two qubit gates. I will also discuss the near term outlook for achieving quantum supremacy using a gate-based approach in superconducting qubits. This work is supported Google Inc., and by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1605114.

  9. Experimental Demonstration of a Resonator-Induced Phase Gate in a Multiqubit Circuit-QED System

    NASA Astrophysics Data System (ADS)

    Paik, Hanhee; Mezzacapo, A.; Sandberg, Martin; McClure, D. T.; Abdo, B.; Córcoles, A. D.; Dial, O.; Bogorin, D. F.; Plourde, B. L. T.; Steffen, M.; Cross, A. W.; Gambetta, J. M.; Chow, Jerry M.

    2016-12-01

    The resonator-induced phase (RIP) gate is an all-microwave multiqubit entangling gate that allows a high degree of flexibility in qubit frequencies, making it attractive for quantum operations in large-scale architectures. We experimentally realize the RIP gate with four superconducting qubits in a three-dimensional circuit-QED architecture, demonstrating high-fidelity controlled-z (cz) gates between all possible pairs of qubits from two different 4-qubit devices in pair subspaces. These qubits are arranged within a wide range of frequency detunings, up to as large as 1.8 GHz. We further show a dynamical multiqubit refocusing scheme in order to isolate out 2-qubit interactions, and combine them to generate a 4-qubit Greenberger-Horne-Zeilinger state.

  10. Towards an acoustical platform for many-body spin emulation: Transmon qubits patterned on a piezoelectric material

    NASA Astrophysics Data System (ADS)

    Moores, Brad A.; Sletten, Lucas R.; Viennot, Jeremie; Lehnert, K. W.

    Man-made systems of interacting qubits are a promising and powerful way of exploring many-body spin physics beyond classical computation. Although transmon qubits are perhaps the most advanced quantum computing technology, building a system of such qubits designed to emulate a system of many interacting spins is hindered by the mismatch of scales between the transmons and the electromagnetic modes that couple them. We propose a strategy to overcome this mismatch by using surface acoustic waves, which couple to qubits piezoelectrically and have micron wavelengths at GHz frequencies. In this talk, we will present characterizations of transmon qubits fabricated on a piezoelectric material, and show that their coherence properties are sufficient to explore acoustically mediated qubit interactions.

  11. Bottom-up construction of artificial molecules for superconducting quantum processors

    NASA Astrophysics Data System (ADS)

    Poletto, Stefano; Rigetti, Chad; Gambetta, Jay M.; Merkel, Seth; Chow, Jerry M.; Corcoles, Antonio D.; Smolin, John A.; Rozen, Jim R.; Keefe, George A.; Rothwell, Mary B.; Ketchen, Mark B.; Steffen, Matthias

    2012-02-01

    Recent experiments on transmon qubits capacitively coupled to superconducting 3-dimensional cavities have shown coherence times much longer than transmons coupled to more traditional planar resonators. For the implementation of a quantum processor this approach has clear advantages over traditional techniques but it poses the challenge of scalability. We are currently implementing multi-qubits experiments based on a bottom-up scaling approach. First, transmon qubits are fabricated on individual chips and are independently characterized. Second, an artificial molecule is assembled by selecting a particular set of previously characterized single-transmon chips. We present recent data on a two-qubit artificial molecule constructed in this way. The two qubits are chosen to generate a strong Z-Z interaction by matching the 0-1 transition energy of one qubit with the 1-2 transition of the other. Single qubit manipulations and state tomography cannot be done with ``traditional'' single tone microwave pulses but instead specifically shaped pulses have to be simultaneously applied on both qubits. Coherence times, coupling strength, and optimal pulses for decoupling the two qubits and perform state tomography are presented

  12. Three-electron spin qubits

    NASA Astrophysics Data System (ADS)

    Russ, Maximilian; Burkard, Guido

    2017-10-01

    The goal of this article is to review the progress of three-electron spin qubits from their inception to the state of the art. We direct the main focus towards the exchange-only qubit (Bacon et al 2000 Phys. Rev. Lett. 85 1758-61, DiVincenzo et al 2000 Nature 408 339) and its derived versions, e.g. the resonant exchange (RX) qubit, but we also discuss other qubit implementations using three electron spins. For each three-spin qubit we describe the qubit model, the envisioned physical realization, the implementations of single-qubit operations, as well as the read-out and initialization schemes. Two-qubit gates and decoherence properties are discussed for the RX qubit and the exchange-only qubit, thereby completing the list of requirements for quantum computation for a viable candidate qubit implementation. We start by describing the full system of three electrons in a triple quantum dot, then discuss the charge-stability diagram, restricting ourselves to the relevant subsystem, introduce the qubit states, and discuss important transitions to other charge states (Russ et al 2016 Phys. Rev. B 94 165411). Introducing the various qubit implementations, we begin with the exchange-only qubit (DiVincenzo et al 2000 Nature 408 339, Laird et al 2010 Phys. Rev. B 82 075403), followed by the RX qubit (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 Phys. Rev. Lett. 111 050502), the spin-charge qubit (Kyriakidis and Burkard 2007 Phys. Rev. B 75 115324), and the hybrid qubit (Shi et al 2012 Phys. Rev. Lett. 108 140503, Koh et al 2012 Phys. Rev. Lett. 109 250503, Cao et al 2016 Phys. Rev. Lett. 116 086801, Thorgrimsson et al 2016 arXiv:1611.04945). The main focus will be on the exchange-only qubit and its modification, the RX qubit, whose single-qubit operations are realized by driving the qubit at its resonant frequency in the microwave range similar to electron spin resonance. Two different types of two-qubit operations are presented for the exchange-only qubits which can be divided into short-ranged and long-ranged interactions. Both of these interaction types are expected to be necessary in a large-scale quantum computer. The short-ranged interactions use the exchange coupling by placing qubits next to each other and applying exchange-pulses (DiVincenzo et al 2000 Nature 408 339, Fong and Wandzura 2011 Quantum Inf. Comput. 11 1003, Setiawan et al 2014 Phys. Rev. B 89 085314, Zeuch et al 2014 Phys. Rev. B 90 045306, Doherty and Wardrop 2013 Phys. Rev. Lett. 111 050503, Shim and Tahan 2016 Phys. Rev. B 93 121410), while the long-ranged interactions use the photons of a superconducting microwave cavity as a mediator in order to couple two qubits over long distances (Russ and Burkard 2015 Phys. Rev. B 92 205412, Srinivasa et al 2016 Phys. Rev. B 94 205421). The nature of the three-electron qubit states each having the same total spin and total spin in z-direction (same Zeeman energy) provides a natural protection against several sources of noise (DiVincenzo et al 2000 Nature 408 339, Taylor et al 2013 Phys. Rev. Lett. 111 050502, Kempe et al 2001 Phys. Rev. A 63 042307, Russ and Burkard 2015 Phys. Rev. B 91 235411). The price to pay for this advantage is an increase in gate complexity. We also take into account the decoherence of the qubit through the influence of magnetic noise (Ladd 2012 Phys. Rev. B 86 125408, Mehl and DiVincenzo 2013 Phys. Rev. B 87 195309, Hung et al 2014 Phys. Rev. B 90 045308), in particular dephasing due to the presence of nuclear spins, as well as dephasing due to charge noise (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 Phys. Rev. Lett. 111 050502, Shim and Tahan 2016 Phys. Rev. B 93 121410, Russ and Burkard 2015 Phys. Rev. B 91 235411, Fei et al 2015 Phys. Rev. B 91 205434), fluctuations of the energy levels on each dot due to noisy gate voltages or the environment. Several techniques are discussed which partly decouple the qubit from magnetic noise (Setiawan et al 2014 Phys. Rev. B 89 085314, West and Fong 2012 New J. Phys. 14 083002, Rohling and Burkard 2016 Phys. Rev. B 93 205434) while for charge noise it is shown that it is favorable to operate the qubit on the so-called ‘(double) sweet spots’ (Taylor et al 2013 Phys. Rev. Lett. 111 050502, Shim and Tahan 2016 Phys. Rev. B 93 121410, Russ and Burkard 2015 Phys. Rev. B 91 235411, Fei et al 2015 Phys. Rev. B 91 205434, Malinowski et al 2017 arXiv: 1704.01298), which are least susceptible to noise, thus providing a longer lifetime of the qubit.

  13. Control of electron spin and orbital resonances in quantum dots through spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Stano, Peter; Fabian, Jaroslav

    2008-01-01

    The influence of a resonant oscillating electromagnetic field on a single electron in coupled lateral quantum dots in the presence of phonon-induced relaxation and decoherence is investigated. Using symmetry arguments, it is shown that the spin and orbital resonances can be efficiently controlled by spin-orbit interactions. The control is possible due to the strong sensitivity of the Rabi frequency to the dot configuration (the orientation of the dot and the applied static magnetic field); the sensitivity is a result of the anisotropy of the spin-orbit interactions. The so-called easy passage configuration is shown to be particularly suitable for a magnetic manipulation of spin qubits, ensuring long spin relaxation times and protecting the spin qubits from electric field disturbances accompanying on-chip manipulations.

  14. Semiquantum key distribution with secure delegated quantum computation

    PubMed Central

    Li, Qin; Chan, Wai Hong; Zhang, Shengyu

    2016-01-01

    Semiquantum key distribution allows a quantum party to share a random key with a “classical” party who only can prepare and measure qubits in the computational basis or reorder some qubits when he has access to a quantum channel. In this work, we present a protocol where a secret key can be established between a quantum user and an almost classical user who only needs the quantum ability to access quantum channels, by securely delegating quantum computation to a quantum server. We show the proposed protocol is robust even when the delegated quantum server is a powerful adversary, and is experimentally feasible with current technology. As one party of our protocol is the most quantum-resource efficient, it can be more practical and significantly widen the applicability scope of quantum key distribution. PMID:26813384

  15. Polarisation-preserving photon frequency conversion from a trapped-ion-compatible wavelength to the telecom C-band

    NASA Astrophysics Data System (ADS)

    Krutyanskiy, V.; Meraner, M.; Schupp, J.; Lanyon, B. P.

    2017-09-01

    We demonstrate polarisation-preserving frequency conversion of single-photon-level light at 854 nm, resonant with a trapped-ion transition and qubit, to the 1550-nm telecom C band. A total photon in / fiber-coupled photon out efficiency of ˜30% is achieved, for a free-running photon noise rate of ˜60 Hz. This performance would enable telecom conversion of 854 nm polarisation qubits, produced in existing trapped-ion systems, with a signal-to-noise ratio greater than 1. In combination with near-future trapped-ion systems, our converter would enable the observation of entanglement between an ion and a photon that has travelled more than 100 km in optical fiber: three orders of magnitude further than the state-of-the-art.

  16. Entanglement and Metrology with Singlet-Triplet Qubits

    NASA Astrophysics Data System (ADS)

    Shulman, Michael Dean

    Electron spins confined in semiconductor quantum dots are emerging as a promising system to study quantum information science and to perform sensitive metrology. Their weak interaction with the environment leads to long coherence times and robust storage for quantum information, and the intrinsic tunability of semiconductors allows for controllable operations, initialization, and readout of their quantum state. These spin qubits are also promising candidates for the building block for a scalable quantum information processor due to their prospects for scalability and miniaturization. However, several obstacles limit the performance of quantum information experiments in these systems. For example, the weak coupling to the environment makes inter-qubit operations challenging, and a fluctuating nuclear magnetic field limits the performance of single-qubit operations. The focus of this thesis will be several experiments which address some of the outstanding problems in semiconductor spin qubits, in particular, singlet-triplet (S-T0) qubits. We use these qubits to probe both the electric field and magnetic field noise that limit the performance of these qubits. The magnetic noise bath is probed with high bandwidth and precision using novel techniques borrowed from the field of Hamiltonian learning, which are effective due to the rapid control and readout available in S-T 0 qubits. These findings allow us to effectively undo the undesired effects of the fluctuating nuclear magnetic field by tracking them in real-time, and we demonstrate a 30-fold improvement in the coherence time T2*. We probe the voltage noise environment of the qubit using coherent qubit oscillations, which is partially enabled by control of the nuclear magnetic field. We find that the voltage noise bath is frequency-dependent, even at frequencies as high as 1MHz, and it shows surprising and, as of yet, unexplained temperature dependence. We leverage this knowledge of the voltage noise environment, the nuclear magnetic field control, as well as new techniques for calibrated measurement of the density matrix in a singlet-triplet qubit to entangle two adjacent single-triplet qubits. We fully characterize the generated entangled states and prove that they are, indeed, entangled. This work opens new opportunities to use qubits as sensors for improved metrological capabilities, as well as for improved quantum information processing. The singlet-triplet qubit is unique in that it can be used to probe two fundamentally different noise baths, which are important for a large variety of solid state qubits. More specifically, this work establishes the singlet-triplet qubit as a viable candidate for the building block of a scalable quantum information processor.

  17. The Bravyi-Kitaev transformation for quantum computation of electronic structure

    NASA Astrophysics Data System (ADS)

    Seeley, Jacob T.; Richard, Martin J.; Love, Peter J.

    2012-12-01

    Quantum simulation is an important application of future quantum computers with applications in quantum chemistry, condensed matter, and beyond. Quantum simulation of fermionic systems presents a specific challenge. The Jordan-Wigner transformation allows for representation of a fermionic operator by O(n) qubit operations. Here, we develop an alternative method of simulating fermions with qubits, first proposed by Bravyi and Kitaev [Ann. Phys. 298, 210 (2002), 10.1006/aphy.2002.6254; e-print arXiv:quant-ph/0003137v2], that reduces the simulation cost to O(log n) qubit operations for one fermionic operation. We apply this new Bravyi-Kitaev transformation to the task of simulating quantum chemical Hamiltonians, and give a detailed example for the simplest possible case of molecular hydrogen in a minimal basis. We show that the quantum circuit for simulating a single Trotter time step of the Bravyi-Kitaev derived Hamiltonian for H2 requires fewer gate applications than the equivalent circuit derived from the Jordan-Wigner transformation. Since the scaling of the Bravyi-Kitaev method is asymptotically better than the Jordan-Wigner method, this result for molecular hydrogen in a minimal basis demonstrates the superior efficiency of the Bravyi-Kitaev method for all quantum computations of electronic structure.

  18. Efficient Z gates for quantum computing

    NASA Astrophysics Data System (ADS)

    McKay, David C.; Wood, Christopher J.; Sheldon, Sarah; Chow, Jerry M.; Gambetta, Jay M.

    2017-08-01

    For superconducting qubits, microwave pulses drive rotations around the Bloch sphere. The phase of these drives can be used to generate zero-duration arbitrary virtual Z gates, which, combined with two Xπ /2 gates, can generate any SU(2) gate. Here we show how to best utilize these virtual Z gates to both improve algorithms and correct pulse errors. We perform randomized benchmarking using a Clifford set of Hadamard and Z gates and show that the error per Clifford is reduced versus a set consisting of standard finite-duration X and Y gates. Z gates can correct unitary rotation errors for weakly anharmonic qubits as an alternative to pulse-shaping techniques such as derivative removal by adiabatic gate (DRAG). We investigate leakage and show that a combination of DRAG pulse shaping to minimize leakage and Z gates to correct rotation errors realizes a 13.3 ns Xπ /2 gate characterized by low error [1.95 (3 ) ×10-4] and low leakage [3.1 (6 ) ×10-6] . Ultimately leakage is limited by the finite temperature of the qubit, but this limit is two orders of magnitude smaller than pulse errors due to decoherence.

  19. Bell nonlocality and fully entangled fraction measured in an entanglement-swapping device without quantum state tomography

    NASA Astrophysics Data System (ADS)

    Bartkiewicz, Karol; Lemr, Karel; Černoch, Antonín; Miranowicz, Adam

    2017-03-01

    We propose and experimentally implement an efficient procedure based on entanglement swapping to determine the Bell nonlocality measure of Horodecki et al. [Phys. Lett. A 200, 340 (1995), 10.1016/0375-9601(95)00214-N] and the fully entangled fraction of Bennett et al. [Phys. Rev. A 54, 3824 (1996), 10.1103/PhysRevA.54.3824] of an arbitrary two-qubit polarization-encoded state. The nonlocality measure corresponds to the amount of the violation of the Clauser-Horne-Shimony-Holt (CHSH) optimized over all measurement settings. By using simultaneously two copies of a given state, we measure directly only six parameters. This is an experimental determination of these quantities without quantum state tomography or continuous monitoring of all measurement bases in the usual CHSH inequality tests. We analyze how well the measured degrees of Bell nonlocality and other entanglement witnesses (including the fully entangled fraction and a nonlinear entropic witness) of an arbitrary two-qubit state can estimate its entanglement. In particular, we measure these witnesses and estimate the negativity of various two-qubit Werner states. Our approach could especially be useful for quantum communication protocols based on entanglement swapping.

  20. Blind quantum computing with weak coherent pulses.

    PubMed

    Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony

    2012-05-18

    The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ϵ blindness for UBQC, in analogy to the concept of ϵ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ϵ-blind UBQC for any ϵ>0, even if the channel between the client and the server is arbitrarily lossy.

  1. Blind Quantum Computing with Weak Coherent Pulses

    NASA Astrophysics Data System (ADS)

    Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony

    2012-05-01

    The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ɛ blindness for UBQC, in analogy to the concept of ɛ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ɛ-blind UBQC for any ɛ>0, even if the channel between the client and the server is arbitrarily lossy.

  2. Multi-frequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings

    NASA Astrophysics Data System (ADS)

    Andersen, Christian Kraglund; Mølmer, Klaus

    2015-03-01

    A SQUID inserted in a superconducting waveguide resonator imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes acquire frequency side bands. We calculate the multi-frequency eigenmodes and these can couple resonantly to physical systems with different transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent quantum operations in hybrid quantum systems. As an example of the application, we determine their coupling to transmon qubits with different frequencies and we present a bi-chromatic scheme for entanglement and gate operations. In this calculation, we obtain a maximally entangled state with a fidelity F = 95 % . Our proposal is competitive with the achievements of other entanglement-gates with superconducting devices and it may offer some advantages: (i) There is no need for additional control lines and dephasing associated with the conventional frequency tuning of qubits. (ii) When our qubits are idle, they are far detuned with respect to each other and to the resonator, and hence they are immune to cross talk and Purcell-enhanced decay.

  3. Unconditional polarization qubit quantum memory at room temperature

    NASA Astrophysics Data System (ADS)

    Namazi, Mehdi; Kupchak, Connor; Jordaan, Bertus; Shahrokhshahi, Reihaneh; Figueroa, Eden

    2016-05-01

    The creation of global quantum key distribution and quantum communication networks requires multiple operational quantum memories. Achieving a considerable reduction in experimental and cost overhead in these implementations is thus a major challenge. Here we present a polarization qubit quantum memory fully-operational at 330K, an unheard frontier in the development of useful qubit quantum technology. This result is achieved through extensive study of how optical response of cold atomic medium is transformed by the motion of atoms at room temperature leading to an optimal characterization of room temperature quantum light-matter interfaces. Our quantum memory shows an average fidelity of 86.6 +/- 0.6% for optical pulses containing on average 1 photon per pulse, thereby defeating any classical strategy exploiting the non-unitary character of the memory efficiency. Our system significantly decreases the technological overhead required to achieve quantum memory operation and will serve as a building block for scalable and technologically simpler many-memory quantum machines. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801 and the Simons Foundation, Grant Number SBF241180. B. J. acknowledges financial assistance of the National Research Foundation (NRF) of South Africa.

  4. Faithful qubit transmission in a quantum communication network with heterogeneous channels

    NASA Astrophysics Data System (ADS)

    Chen, Na; Zhang, Lin Xi; Pei, Chang Xing

    2018-04-01

    Quantum communication networks enable long-distance qubit transmission and distributed quantum computation. In this paper, a quantum communication network with heterogeneous quantum channels is constructed. A faithful qubit transmission scheme is presented. Detailed calculations and performance analyses show that even in a low-quality quantum channel with serious decoherence, only modest number of locally prepared target qubits are required to achieve near-deterministic qubit transmission.

  5. Inversion of Qubit Energy Levels in Qubit-Oscillator Circuits in the Deep-Strong-Coupling Regime.

    PubMed

    Yoshihara, F; Fuse, T; Ao, Z; Ashhab, S; Kakuyanagi, K; Saito, S; Aoki, T; Koshino, K; Semba, K

    2018-05-04

    We report on experimentally measured light shifts of superconducting flux qubits deep-strongly coupled to LC oscillators, where the coupling constants are comparable to the qubit and oscillator resonance frequencies. By using two-tone spectroscopy, the energies of the six lowest levels of each circuit are determined. We find huge Lamb shifts that exceed 90% of the bare qubit frequencies and inversions of the qubits' ground and excited states when there are a finite number of photons in the oscillator. Our experimental results agree with theoretical predictions based on the quantum Rabi model.

  6. A two-qubit photonic quantum processor and its application to solving systems of linear equations

    PubMed Central

    Barz, Stefanie; Kassal, Ivan; Ringbauer, Martin; Lipp, Yannick Ole; Dakić, Borivoje; Aspuru-Guzik, Alán; Walther, Philip

    2014-01-01

    Large-scale quantum computers will require the ability to apply long sequences of entangling gates to many qubits. In a photonic architecture, where single-qubit gates can be performed easily and precisely, the application of consecutive two-qubit entangling gates has been a significant obstacle. Here, we demonstrate a two-qubit photonic quantum processor that implements two consecutive CNOT gates on the same pair of polarisation-encoded qubits. To demonstrate the flexibility of our system, we implement various instances of the quantum algorithm for solving of systems of linear equations. PMID:25135432

  7. Inversion of Qubit Energy Levels in Qubit-Oscillator Circuits in the Deep-Strong-Coupling Regime

    NASA Astrophysics Data System (ADS)

    Yoshihara, F.; Fuse, T.; Ao, Z.; Ashhab, S.; Kakuyanagi, K.; Saito, S.; Aoki, T.; Koshino, K.; Semba, K.

    2018-05-01

    We report on experimentally measured light shifts of superconducting flux qubits deep-strongly coupled to L C oscillators, where the coupling constants are comparable to the qubit and oscillator resonance frequencies. By using two-tone spectroscopy, the energies of the six lowest levels of each circuit are determined. We find huge Lamb shifts that exceed 90% of the bare qubit frequencies and inversions of the qubits' ground and excited states when there are a finite number of photons in the oscillator. Our experimental results agree with theoretical predictions based on the quantum Rabi model.

  8. Tunable Superconducting Qubits with Flux-Independent Coherence

    NASA Astrophysics Data System (ADS)

    Hutchings, M. D.; Hertzberg, J. B.; Liu, Y.; Bronn, N. T.; Keefe, G. A.; Brink, Markus; Chow, Jerry M.; Plourde, B. L. T.

    2017-10-01

    We study the impact of low-frequency magnetic flux noise upon superconducting transmon qubits with various levels of tunability. We find that qubits with weaker tunability exhibit dephasing that is less sensitive to flux noise. This insight is used to fabricate qubits where dephasing due to flux noise is suppressed below other dephasing sources, leading to flux-independent dephasing times T2*˜15 μ s over a tunable range of approximately 340 MHz. Such tunable qubits have the potential to create high-fidelity, fault-tolerant qubit gates and to fundamentally improve scalability for a quantum processor.

  9. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials

    PubMed Central

    Ivić, Z.; Lazarides, N.; Tsironis, G. P.

    2016-01-01

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980’s, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound ”quantum breather” that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing. PMID:27403780

  10. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials

    NASA Astrophysics Data System (ADS)

    Ivić, Z.; Lazarides, N.; Tsironis, G. P.

    2016-07-01

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980’s, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound ”quantum breather” that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.

  11. Spin-orbit qubit in a semiconductor nanowire.

    PubMed

    Nadj-Perge, S; Frolov, S M; Bakkers, E P A M; Kouwenhoven, L P

    2010-12-23

    Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to control spins electrically and thus lies at the foundation of spintronics. Even at the level of single electrons, the spin-orbit interaction has proven promising for coherent spin rotations. Here we implement a spin-orbit quantum bit (qubit) in an indium arsenide nanowire, where the spin-orbit interaction is so strong that spin and motion can no longer be separated. In this regime, we realize fast qubit rotations and universal single-qubit control using only electric fields; the qubits are hosted in single-electron quantum dots that are individually addressable. We enhance coherence by dynamically decoupling the qubits from the environment. Nanowires offer various advantages for quantum computing: they can serve as one-dimensional templates for scalable qubit registers, and it is possible to vary the material even during wire growth. Such flexibility can be used to design wires with suppressed decoherence and to push semiconductor qubit fidelities towards error correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, which can serve as a flying qubit for long-distance quantum communication.

  12. Mitigating the effects of charge noise and improving the coherence of a quantum dot hybrid qubit

    NASA Astrophysics Data System (ADS)

    Thorgrimsson, Brandur; Kim, Dohun; Yang, Yuan-Chi; Simmons, C. B.; Ward, Daniel R.; Foote, Ryan H.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.

    The quantum dot hybrid qubit, which can be viewed as a hybrid between a charge and spin qubit, is formed with three electrons in a double dot. The qubit is operated without any magnetic fields and exhibits both spin-qubit-like stability and charge-qubit-like speeds. Here we show that charge noise is the main source of decoherence for the hybrid qubit, and demonstrate that its effect can be mitigated in two ways: by modifying the qubit's internal parameters or by changing its operating regime. By combining these methods, we have increased a hybrid qubit's free induction decay time from 11 ns to 127 ns, and its Rabi decay time from 33 ns to over 1 μs. Additionally, we show that the longest Rabi decay times are not limited by fluctuations of the qubit energy but by fluctuations of the Rabi frequency (both of which arise from charge noise). This work was supported in part by ARO (W911NF-12-0607) and by NSF (DMR-1206915 and PHY-1104660). Development and maintenance of the growth facilities used for fabricating samples was supported by DOE (DE-FG02-03ER46028). This research utilized NSF-supported shared facilities at the University of Wisconsin-Madison.

  13. Mitigating leakage errors due to cavity modes in a superconducting quantum computer

    NASA Astrophysics Data System (ADS)

    McConkey, T. G.; Béjanin, J. H.; Earnest, C. T.; McRae, C. R. H.; Pagel, Z.; Rinehart, J. R.; Mariantoni, M.

    2018-07-01

    A practical quantum computer requires quantum bit (qubit) operations with low error probabilities in extensible architectures. We study a packaging method that makes it possible to address hundreds of superconducting qubits by means of coaxial Pogo pins. A qubit chip is housed in a superconducting box, where both box and chip dimensions lead to unwanted modes that can interfere with qubit operations. We analyze these interference effects in the context of qubit coherent leakage and qubit decoherence induced by damped modes. We propose two methods, half-wave fencing and antinode pinning, to mitigate the resulting errors by detuning the resonance frequency of the modes from the qubit frequency. We perform electromagnetic field simulations indicating that the resonance frequency of the modes increases with the number of installed pins and can be engineered to be significantly higher than the highest qubit frequency. We estimate that the error probabilities and decoherence rates due to suitably shifted modes in realistic scenarios can be up to two orders of magnitude lower than the state-of-the-art superconducting qubit error and decoherence rates. Our methods can be extended to different types of packages that do not rely on Pogo pins. Conductive bump bonds, for example, can serve the same purpose in qubit architectures based on flip chip technology. Metalized vias, instead, can be used to mitigate modes due to the increasing size of the dielectric substrate on which qubit arrays are patterned.

  14. Feedback-tuned, noise resilient gates for encoded spin qubits

    NASA Astrophysics Data System (ADS)

    Bluhm, Hendrik

    Spin 1/2 particles form native two level systems and thus lend themselves as a natural qubit implementation. However, encoding a single qubit in several spins entails benefits, such as reducing the resources necessary for qubit control and protection from certain decoherence channels. While several varieties of such encoded spin qubits have been implemented, accurate control remains challenging, and leakage out of the subspace of valid qubit states is a potential issue. Optimal performance typically requires large pulse amplitudes for fast control, which is prone to systematic errors and prohibits standard control approaches based on Rabi flopping. Furthermore, the exchange interaction typically used to electrically manipulate encoded spin qubits is inherently sensitive to charge noise. I will discuss all-electrical, high-fidelity single qubit operations for a spin qubit encoded in two electrons in a GaAs double quantum dot. Starting from a set of numerically optimized control pulses, we employ an iterative tuning procedure based on measured error syndromes to remove systematic errors.Randomized benchmarking yields an average gate fidelity exceeding 98 % and a leakage rate into invalid states of 0.2 %. These gates exhibit a certain degree of resilience to both slow charge and nuclear spin fluctuations due to dynamical correction analogous to a spin echo. Furthermore, the numerical optimization minimizes the impact of fast charge noise. Both types of noise make relevant contributions to gate errors. The general approach is also adaptable to other qubit encodings and exchange based two-qubit gates.

  15. High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion.

    PubMed

    Bock, Matthias; Eich, Pascal; Kucera, Stephan; Kreis, Matthias; Lenhard, Andreas; Becher, Christoph; Eschner, Jürgen

    2018-05-21

    Entanglement between a stationary quantum system and a flying qubit is an essential ingredient of a quantum-repeater network. It has been demonstrated for trapped ions, trapped atoms, color centers in diamond, or quantum dots. These systems have transition wavelengths in the blue, red or near-infrared spectral regions, whereas long-range fiber-communication requires wavelengths in the low-loss, low-dispersion telecom regime. A proven tool to interconnect flying qubits at visible/NIR wavelengths to the telecom bands is quantum frequency conversion. Here we use an efficient polarization-preserving frequency converter connecting 854 nm to the telecom O-band at 1310 nm to demonstrate entanglement between a trapped 40 Ca + ion and the polarization state of a telecom photon with a high fidelity of 98.2 ± 0.2%. The unique combination of 99.75 ± 0.18% process fidelity in the polarization-state conversion, 26.5% external frequency conversion efficiency and only 11.4 photons/s conversion-induced unconditional background makes the converter a powerful ion-telecom quantum interface.

  16. A voltage-controlled superconducting quantum bus

    NASA Astrophysics Data System (ADS)

    Casparis, Lucas; Pearson, Natalie; KringhøJ, Anders; Larsen, Thorvald; Kuemmeth, Ferdinand; Krogstrup, Peter; Nygard, Jesper; Petersson, Karl; Marcus, Charles

    Superconducting qubits couple strongly to microwave photons and can therefore be coupled over long distances through a superconducting cavity acting as a quantum bus. To avoid frequency-crowding it is desirable to turn qubit coupling off while rearranging qubit frequencies. Here, we present experiments with two gatemon qubits coupled through a cavity, which can be tuned by a voltage-controlled superconducting switch. We characterize the bus tunability and demonstrate switchable qubit coupling with an on/off ratio up to 8. We find that pulsing the bus switch on nanosecond timescales results in the apparent loss of qubit coherence. Further work is needed to understand how dynamic control of the tuneable bus affects qubit operation. We acknowledge financial support from Microsoft Project Q, the Danish National Research Foundation and the US Army Research Office.

  17. Large Dispersive Shift of Cavity Resonance Induced by a Superconducting Flux Qubit in the Straddling Regime

    NASA Astrophysics Data System (ADS)

    Inomata, Kunihiro; Yamamoto, Tsuyoshi; Billangeon, Pierre-M.; Lin, Zhirong; Nakamura, Yasunobu; Tsai, Jaw-Shen; Koshino, Kazuki

    2013-03-01

    We demonstrate enhancement of the dispersive frequency shift in a coplanar waveguide resonator induced by a capacitively coupled superconducting flux qubit in the straddling regime. The magnitude of the observed shift, 80 MHz for the qubit-resonator detuning of 5 GHz, is quantitatively explained by the generalized Rabi model which takes into account the contribution of the qubit higher energy levels. By applying the enhanced dispersive shift to the qubit readout, we achieved 90 % contrast of the Rabi oscillations which is mainly limited by the energy relaxation of the qubit. We also discuss the qubit readout using a Josephson parametric amplifier. This work was supported by the MEXT Kakenhi ``Quantum Cybernetics'', the JSPS through its FIRST Program, and the NICT Commissioned Research.

  18. Effect of correlated decay on fault-tolerant quantum computation

    NASA Astrophysics Data System (ADS)

    Lemberger, B.; Yavuz, D. D.

    2017-12-01

    We analyze noise in the circuit model of quantum computers when the qubits are coupled to a common bosonic bath and discuss the possible failure of scalability of quantum computation. Specifically, we investigate correlated (super-radiant) decay between the qubit energy levels from a two- or three-dimensional array of qubits without imposing any restrictions on the size of the sample. We first show that regardless of how the spacing between the qubits compares with the emission wavelength, correlated decay produces errors outside the applicability of the threshold theorem. This is because the sum of the norms of the two-body interaction Hamiltonians (which can be viewed as the upper bound on the single-qubit error) that decoheres each qubit scales with the total number of qubits and is unbounded. We then discuss two related results: (1) We show that the actual error (instead of the upper bound) on each qubit scales with the number of qubits. As a result, in the limit of large number of qubits in the computer, N →∞ , correlated decay causes each qubit in the computer to decohere in ever shorter time scales. (2) We find the complete eigenvalue spectrum of the exchange Hamiltonian that causes correlated decay in the same limit. We show that the spread of the eigenvalue distribution grows faster with N compared to the spectrum of the unperturbed system Hamiltonian. As a result, as N →∞ , quantum evolution becomes completely dominated by the noise due to correlated decay. These results argue that scalable quantum computing may not be possible in the circuit model in a two- or three- dimensional geometry when the qubits are coupled to a common bosonic bath.

  19. Delayed entanglement echo for individual control of a large number of nuclear spins

    PubMed Central

    Wang, Zhen-Yu; Casanova, Jorge; Plenio, Martin B.

    2017-01-01

    Methods to selectively detect and manipulate nuclear spins by single electrons of solid-state defects play a central role for quantum information processing and nanoscale nuclear magnetic resonance (NMR). However, with standard techniques, no more than eight nuclear spins have been resolved by a single defect centre. Here we develop a method that improves significantly the ability to detect, address and manipulate nuclear spins unambiguously and individually in a broad frequency band by using a nitrogen-vacancy (NV) centre as model system. On the basis of delayed entanglement control, a technique combining microwave and radio frequency fields, our method allows to selectively perform robust high-fidelity entangling gates between hardly resolved nuclear spins and the NV electron. Long-lived qubit memories can be naturally incorporated to our method for improved performance. The application of our ideas will increase the number of useful register qubits accessible to a defect centre and improve the signal of nanoscale NMR. PMID:28256508

  20. Delayed entanglement echo for individual control of a large number of nuclear spins.

    PubMed

    Wang, Zhen-Yu; Casanova, Jorge; Plenio, Martin B

    2017-03-03

    Methods to selectively detect and manipulate nuclear spins by single electrons of solid-state defects play a central role for quantum information processing and nanoscale nuclear magnetic resonance (NMR). However, with standard techniques, no more than eight nuclear spins have been resolved by a single defect centre. Here we develop a method that improves significantly the ability to detect, address and manipulate nuclear spins unambiguously and individually in a broad frequency band by using a nitrogen-vacancy (NV) centre as model system. On the basis of delayed entanglement control, a technique combining microwave and radio frequency fields, our method allows to selectively perform robust high-fidelity entangling gates between hardly resolved nuclear spins and the NV electron. Long-lived qubit memories can be naturally incorporated to our method for improved performance. The application of our ideas will increase the number of useful register qubits accessible to a defect centre and improve the signal of nanoscale NMR.

  1. Experimental entanglement and nonlocality of a two-photon six-qubit cluster state.

    PubMed

    Ceccarelli, Raino; Vallone, Giuseppe; De Martini, Francesco; Mataloni, Paolo; Cabello, Adán

    2009-10-16

    We create a six-qubit linear cluster state by transforming a two-photon hyperentangled state in which three qubits are encoded in each particle, one in the polarization and two in the linear momentum degrees of freedom. For this state, we demonstrate genuine six-qubit entanglement, persistency of entanglement against the loss of qubits, and higher violation than in previous experiments on Bell inequalities of the Mermin type.

  2. Controlled Quantum Operations of a Semiconductor Three-Qubit System

    NASA Astrophysics Data System (ADS)

    Li, Hai-Ou; Cao, Gang; Yu, Guo-Dong; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping

    2018-02-01

    In a specially designed semiconductor device consisting of three capacitively coupled double quantum dots, we achieve strong and tunable coupling between a target qubit and two control qubits. We demonstrate how to completely switch on and off the target qubit's coherent rotations by presetting two control qubits' states. A Toffoli gate is, therefore, possible based on these control effects. This research paves a way for realizing full quantum-logic operations in semiconductor multiqubit systems.

  3. Bidirectional Controlled Quantum Information Transmission by Using a Five-Qubit Cluster State

    NASA Astrophysics Data System (ADS)

    Sang, Zhi-wen

    2017-11-01

    We demonstrate that an entangled five-qubit cluster state can be used to realize the deterministic bidirectional controlled quantum information transmission by performing only Bell-state measurement and single-qubit measurements. In our protocol, Alice can teleport an arbitrary unknown single-qubit state to Bob and at the same time Bob can remotely prepare an arbitrary known single-qubit state for Alice via the control of the supervisor Charlie.

  4. Bidirectional Quantum Teleportation by Using Five-qubit Cluster State

    NASA Astrophysics Data System (ADS)

    Sang, Ming-huang

    2016-03-01

    We propose a scheme for bidirectional quantum teleportation by using a five-qubit cluster state. In our scheme, Alice can transmit an arbitrary two-qubit entangled state to Bob and at the same time Bob can teleport an arbitrary single-qubit state to Alice.

  5. Use of non-adiabatic geometric phase for quantum computing by NMR.

    PubMed

    Das, Ranabir; Kumar, S K Karthick; Kumar, Anil

    2005-12-01

    Geometric phases have stimulated researchers for its potential applications in many areas of science. One of them is fault-tolerant quantum computation. A preliminary requisite of quantum computation is the implementation of controlled dynamics of qubits. In controlled dynamics, one qubit undergoes coherent evolution and acquires appropriate phase, depending on the state of other qubits. If the evolution is geometric, then the phase acquired depend only on the geometry of the path executed, and is robust against certain types of error. This phenomenon leads to an inherently fault-tolerant quantum computation. Here we suggest a technique of using non-adiabatic geometric phase for quantum computation, using selective excitation. In a two-qubit system, we selectively evolve a suitable subsystem where the control qubit is in state |1, through a closed circuit. By this evolution, the target qubit gains a phase controlled by the state of the control qubit. Using the non-adiabatic geometric phase we demonstrate implementation of Deutsch-Jozsa algorithm and Grover's search algorithm in a two-qubit system.

  6. Steady-state entanglement and thermalization of coupled qubits in two common heat baths

    NASA Astrophysics Data System (ADS)

    Hu, Li-Zhen; Man, Zhong-Xiao; Xia, Yun-Jie

    2018-03-01

    In this work, we study the steady-state entanglement and thermalization of two coupled qubits embedded in two common baths with different temperatures. The common bath is relevant when the two qubits are difficult to be isolated to only contact with their local baths. With the quantum master equation constructed in the eigenstate representation of the coupled qubits, we have demonstrated the variations of steady-state entanglement with respect to various parameters of the qubits' system in both equilibrium and nonequilibrium cases of the baths. The coupling strength and energy detuning of the qubits as well as the temperature gradient of the baths are found to be beneficial to the enhancement of the entanglement. We note a dark state of the qubits that is free from time-evolution and its initial population can greatly influence the steady-state entanglement. By virtues of effective temperatures, we also study the thermalization of the coupled qubits and their variations with energy detuning.

  7. Coupling a single electron spin to a microwave resonator: Part I: controlling transverse and longitudinal couplings

    NASA Astrophysics Data System (ADS)

    Lachance-Quirion, Dany; Beaudoin, Félix; Camirand Lemyre, Julien; Coish, William A.; Pioro-Ladrière, Michel

    Novel quantum technologies can be combined within hybrid systems to benefit from the complementary capabilities of individual components. For example, microwave-frequency superconducting resonators are ideally suited to perform qubit readout and to mediate two-qubit gates, while spin qubits offer long coherence times and high-fidelity single-qubit gates. In this talk, we consider strong coupling between a microwave resonator and an electron-spin qubit in a double quantum dot due to an inhomogeneous magnetic field generated by a nearby nanomagnet.. Considering realistic parameters, we estimate spin-resonator couplings of order 1 MHz. Further, we show that the position of the double dot relative to the nanomagnet allows us to select between purely longitudinal and transverse couplings. While the transverse coupling may be used for quantum state transfer between the spin qubit and the resonator, the longitudinal coupling could be used in a new qubit readout scheme recently introduced for superconducting qubits.

  8. The flux qubit revisited to enhance coherence and reproducibility

    PubMed Central

    Yan, Fei; Gustavsson, Simon; Kamal, Archana; Birenbaum, Jeffrey; Sears, Adam P; Hover, David; Gudmundsen, Ted J.; Rosenberg, Danna; Samach, Gabriel; Weber, S; Yoder, Jonilyn L.; Orlando, Terry P.; Clarke, John; Kerman, Andrew J.; Oliver, William D.

    2016-01-01

    The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). Here, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad-frequency tunability, strong anharmonicity, high reproducibility and relaxation times in excess of 40 μs at its flux-insensitive point. Qubit relaxation times T1 across 22 qubits are consistently matched with a single model involving resonator loss, ohmic charge noise and 1/f-flux noise, a noise source previously considered primarily in the context of dephasing. We furthermore demonstrate that qubit dephasing at the flux-insensitive point is dominated by residual thermal-photons in the readout resonator. The resulting photon shot noise is mitigated using a dynamical decoupling protocol, resulting in T2≈85 μs, approximately the 2T1 limit. In addition to realizing an improved flux qubit, our results uniquely identify photon shot noise as limiting T2 in contemporary qubits based on transverse qubit–resonator interaction. PMID:27808092

  9. Thermodynamics of a periodically driven qubit

    NASA Astrophysics Data System (ADS)

    Donvil, Brecht

    2018-04-01

    We present a new approach to the open system dynamics of a periodically driven qubit in contact with a temperature bath. We are specifically interested in the thermodynamics of the qubit. It is well known that by combining the Markovian approximation with Floquet theory it is possible to derive a stochastic Schrödinger equation in for the state of the qubit. We follow here a different approach. We use Floquet theory to embed the time-non autonomous qubit dynamics into time-autonomous yet infinite dimensional dynamics. We refer to the resulting infinite dimensional system as the dressed-qubit. Using the Markovian approximation we derive the stochastic Schrödinger equation for the dressed-qubit. The advantage of our approach is that the jump operators are ladder operators of the Hamiltonian. This simplifies the formulation of the thermodynamics. We use the thermodynamics of the infinite dimensional system to recover the thermodynamical description for the driven qubit. We compare our results with the existing literature and recover the known results.

  10. Faithful conditional quantum state transfer between weakly coupled qubits

    NASA Astrophysics Data System (ADS)

    Miková, M.; Straka, I.; Mičuda, M.; Krčmarský, V.; Dušek, M.; Ježek, M.; Fiurášek, J.; Filip, R.

    2016-08-01

    One of the strengths of quantum information theory is that it can treat quantum states without referring to their particular physical representation. In principle, quantum states can be therefore fully swapped between various quantum systems by their mutual interaction and this quantum state transfer is crucial for many quantum communication and information processing tasks. In practice, however, the achievable interaction time and strength are often limited by decoherence. Here we propose and experimentally demonstrate a procedure for faithful quantum state transfer between two weakly interacting qubits. Our scheme enables a probabilistic yet perfect unidirectional transfer of an arbitrary unknown state of a source qubit onto a target qubit prepared initially in a known state. The transfer is achieved by a combination of a suitable measurement of the source qubit and quantum filtering on the target qubit depending on the outcome of measurement on the source qubit. We experimentally verify feasibility and robustness of the transfer using a linear optical setup with qubits encoded into polarization states of single photons.

  11. Coupling two spin qubits with a high-impedance resonator

    NASA Astrophysics Data System (ADS)

    Harvey, S. P.; Bøttcher, C. G. L.; Orona, L. A.; Bartlett, S. D.; Doherty, A. C.; Yacoby, A.

    2018-06-01

    Fast, high-fidelity single and two-qubit gates are essential to building a viable quantum information processor, but achieving both in the same system has proved challenging for spin qubits. We propose and analyze an approach to perform a long-distance two-qubit controlled phase (CPHASE) gate between two singlet-triplet qubits using an electromagnetic resonator to mediate their interaction. The qubits couple longitudinally to the resonator, and by driving the qubits near the resonator's frequency, they can be made to acquire a state-dependent geometric phase that leads to a CPHASE gate independent of the initial state of the resonator. Using high impedance resonators enables gate times of order 10 ns while maintaining long coherence times. Simulations show average gate fidelities of over 96% using currently achievable experimental parameters and over 99% using state-of-the-art resonator technology. After optimizing the gate fidelity in terms of parameters tuneable in situ, we find it takes a simple power-law form in terms of the resonator's impedance and quality and the qubits' noise bath.

  12. Demonstration of Weight-Four Parity Measurements in the Surface Code Architecture.

    PubMed

    Takita, Maika; Córcoles, A D; Magesan, Easwar; Abdo, Baleegh; Brink, Markus; Cross, Andrew; Chow, Jerry M; Gambetta, Jay M

    2016-11-18

    We present parity measurements on a five-qubit lattice with connectivity amenable to the surface code quantum error correction architecture. Using all-microwave controls of superconducting qubits coupled via resonators, we encode the parities of four data qubit states in either the X or the Z basis. Given the connectivity of the lattice, we perform a full characterization of the static Z interactions within the set of five qubits, as well as dynamical Z interactions brought along by single- and two-qubit microwave drives. The parity measurements are significantly improved by modifying the microwave two-qubit gates to dynamically remove nonideal Z errors.

  13. Dissipation, dephasing and quantum Darwinism in qubit systems with random unitary interactions

    NASA Astrophysics Data System (ADS)

    Balaneskovic, Nenad; Mendler, Marc

    2016-09-01

    We investigate the influence of dissipation and decoherence on quantum Darwinism by generalizing Zurek's original qubit model of decoherence and the establishment of pointer states [W.H. Zurek, Nat. Phys. 5, 181 (2009); see also arXiv: quant-ph/0707.2832v1, pp. 14-19.]. Our model allows for repeated multiple qubit-qubit couplings between system and environment which are described by randomly applied two-qubit quantum operations inducing entanglement, dissipation and dephasing. The resulting stationary qubit states of system and environment are investigated. They exhibit the intricate influence of entanglement generation, dissipation and dephasing on this characteristic quantum phenomenon.

  14. Concentric transmon qubit featuring fast tunability and site-selective Z coupling

    NASA Astrophysics Data System (ADS)

    Weides, Martin; Braumueller, Jochen; Sandberg, Martin; Vissers, Michael; Schneider, Andre; Schloer, Steffen; Gruenhaupt, Lukas; Rotzinger, Hannes; Marthaler, Michael; Lukashenko, Alexander; Dieter, Amadeus; Ustinov, Alexey; Pappas, David

    We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a simple fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10 μs. We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. The presented qubit design features a passive direct Z coupling between neighboring qubits, being a pending quest in the field of quantum simulation.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moussa, Jonathan Edward

    In this article, we consider four-dimensional qudits as qubit pairs and their qudit Pauli operators as qubit Cli ord operators. This introduces a nesting, C 2 1 C C 4 2 C C 2 3, where C m n is the n th level of the m-dimensional qudit Cli ord hierarchy. If we can convert between logical qubits and qudits, then qudit Cli ord operators are qubit non-Cli ord operators. Conversion is achieved by qubit fusion and qudit fission using stabilizer circuits that consume a resource state. This resource is a fused qubit stabilizer state with a fault-tolerant state preparationmore » using stabilizer circuits.« less

  16. Quasi-lattice of qubits and its mesoscopic features

    NASA Astrophysics Data System (ADS)

    Ian, Hou; Liu, Yu-Xi

    2014-03-01

    In a circuit quantum electrodynamic system, both the size of superconducting qubits and the length scale of the inter-qubit spacing in a chain of such qubits are mesoscopic. As a result, the qubit-field coupling is inhomogeneous. The excitation on the qubits is described by a projection-deformation model and this set of qubits exhibit unique mesoscopic features of what we termed a quasi-lattice. A quasi-lattice in a circuit cavity has a spacing-dependent excitation spectrum. Inhomogeneous coupling giving rise to asynchronously excited qubits, the probability of multi-photon resonance on the quasi-lattice as a whole has increased. This induces simultaneous generations of GHZ-type and W-type entanglements among the qubits. Moreover, the polaritons formed by the mixing of the quasi-lattice excitation and the cavity photon has a selective spontaneous radiation. The spectrum of the radiation has a periodicity governed by the spacing and the variation of the decay rate over the spacing coincides with the cooperation of atoms predicted by Dicke model. We present the theory behinds these effects of the quasi-lattice and discuss how the spacing affects the delay and life time of a superfluorescent pulse arising from it. Supported by Univ. of Macau and FDCT Macau.

  17. Volume monogamy of quantum steering ellipsoids for multiqubit systems

    NASA Astrophysics Data System (ADS)

    Cheng, Shuming; Milne, Antony; Hall, Michael J. W.; Wiseman, Howard M.

    2016-10-01

    The quantum steering ellipsoid can be used to visualize 2-qubit states, and thus provides a generalization of the Bloch picture for the single qubit. Recently, a monogamy relation for the volumes of steering ellipsoids has been derived for pure 3-qubit states and shown to be stronger than the celebrated Coffman-Kundu-Wootters inequality. We first demonstrate the close connection between this volume monogamy relation and the classification of pure 3-qubit states under stochastic local operations and classical communication. We then show that this monogamy relation does not hold for general mixed 3-qubit states and derive a weaker monogamy relation that does hold for such states. We also prove a volume monogamy relation for pure 4-qubit states (further conjectured to hold for the mixed case), and generalize our 3-qubit inequality to n qubits. Finally, we study the effect of noise on the quantum steering ellipsoid and find that the volume of any 2-qubit state is nonincreasing when the state is exposed to arbitrary local noise. This implies that any volume monogamy relation for a given class of multiqubit states remains valid under the addition of local noise. We investigate this quantitatively for the experimentally relevant example of isotropic noise.

  18. Superconducting quantum circuits theory and application

    NASA Astrophysics Data System (ADS)

    Deng, Xiuhao

    Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification. The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to an extra phase factor in wavefunction. We proposed a superconducting quantum Faraday cage to detect temporal interference effect as a consequence of scalar AB phase. Using the superconducting quantum circuit model, the physical system is solved and resulting AB effect is predicted. Further discussion in this chapter shows that treating the experimental apparatus quantum mechanically, spatial scalar AB effect, proposed by Aharanov-Bohm, can't be observed. Either a decoherent interference apparatus is used to observe spatial scalar AB effect, or a quantum Faraday cage is used to observe temporal scalar AB effect. The second study involves protecting a quantum system from losing coherence, which is crucial to any practical quantum computation scheme. We present a theory to encode any qubit, especially superconducting qubits, into a universal quantum degeneracy point (UQDP) where low frequency noise is suppressed significantly. Numerical simulations for superconducting charge qubit using experimental parameters show that its coherence time is prolong by two orders of magnitude using our universal degeneracy point approach. With this improvement, a set of universal quantum gates can be performed at high fidelity without losing too much quantum coherence. Starting in 2004, the use of circuit QED has enabled the manipulation of superconducting qubits with photons. We applied quantum optical approach to model coupled resonators and obtained a four-wave mixing toolbox to operate photons states. The model and toolbox are engineered with a superconducting quantum circuit where two superconducting resonators are coupled via the UQDP circuit. Using fourth order perturbation theory one can realize a complete set of quantum operations between these two photon modes. This helps open a new field to treat photon modes as qubits. Additional, a three-wave mixing scheme using phase qubits permits one to engineer the coupling Hamiltonian using a phase qubit as a tunable coupler. Along with Feynman's idea using quantum to simulate quantum, superconducting quantum simulators have been studied intensively recently. Taking the advantage of mesoscopic size of superconducting circuit and local tunability, we came out the idea to simulate quantum phase transition due to disorder. Our first paper was to propose a superconducting quantum simulator of Bose-Hubbard model to do site-wise manipulation and observe Mott-insulator to superfluid phase transition. The side-band cooling of an array of superconducting resonators is solved after the paper was published. In light of the developed technology in manipulating quantum information with superconducting circuit, one can couple other quantum oscillator system to superconducting resonators in order manipulation of its quantum states or parametric amplification of weak quantum signal. A theory that works for different coupling schemes has been studied in chapter 5. This will be a platform for further research.

  19. Four-qubit entanglement classification from string theory.

    PubMed

    Borsten, L; Dahanayake, D; Duff, M J; Marrani, A; Rubens, W

    2010-09-03

    We invoke the black-hole-qubit correspondence to derive the classification of four-qubit entanglement. The U-duality orbits resulting from timelike reduction of string theory from D=4 to D=3 yield 31 entanglement families, which reduce to nine up to permutation of the four qubits.

  20. High-fidelity gates in quantum dot spin qubits

    PubMed Central

    Koh, Teck Seng; Coppersmith, S. N.; Friesen, Mark

    2013-01-01

    Several logical qubits and quantum gates have been proposed for semiconductor quantum dots controlled by voltages applied to top gates. The different schemes can be difficult to compare meaningfully. Here we develop a theoretical framework to evaluate disparate qubit-gating schemes on an equal footing. We apply the procedure to two types of double-dot qubits: the singlet–triplet and the semiconducting quantum dot hybrid qubit. We investigate three quantum gates that flip the qubit state: a DC pulsed gate, an AC gate based on logical qubit resonance, and a gate-like process known as stimulated Raman adiabatic passage. These gates are all mediated by an exchange interaction that is controlled experimentally using the interdot tunnel coupling g and the detuning ϵ, which sets the energy difference between the dots. Our procedure has two steps. First, we optimize the gate fidelity (f) for fixed g as a function of the other control parameters; this yields an that is universal for different types of gates. Next, we identify physical constraints on the control parameters; this yields an upper bound that is specific to the qubit-gate combination. We show that similar gate fidelities should be attainable for singlet-triplet qubits in isotopically purified Si, and for hybrid qubits in natural Si. Considerably lower fidelities are obtained for GaAs devices, due to the fluctuating magnetic fields ΔB produced by nuclear spins. PMID:24255105

  1. A programmable two-qubit quantum processor in silicon

    NASA Astrophysics Data System (ADS)

    Watson, T. F.; Philips, S. G. J.; Kawakami, E.; Ward, D. R.; Scarlino, P.; Veldhorst, M.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.; Vandersypen, L. M. K.

    2018-03-01

    Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch–Josza algorithm and the Grover search algorithm—canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85–89 per cent and concurrences of 73–82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.

  2. A programmable two-qubit quantum processor in silicon.

    PubMed

    Watson, T F; Philips, S G J; Kawakami, E; Ward, D R; Scarlino, P; Veldhorst, M; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, M A; Vandersypen, L M K

    2018-03-29

    Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch-Josza algorithm and the Grover search algorithm-canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85-89 per cent and concurrences of 73-82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.

  3. Energy relaxation mechanisms in capacitively shunted flux qubits

    NASA Astrophysics Data System (ADS)

    Corcoles, Antonio; Rozen, Jim; Rothwell, Mary Beth; Keefe, George; di Vincenzo, David; Ketchen, Mark; Chow, Jerry; Rigetti, Chad; Rohrs, Jack; Borstelmann, Mark; Steffen, Matthias; IBM Quantum Computing Group Team

    2011-03-01

    Energy losses in superconducting qubits remain a major object of study in the road towards scalable, highly coherent qubit devices. The current understanding of the loss mechanisms in these devices is far from being complete and it is sometimes difficult to experimentally separate the different contributions to decoherence. Here we compare a traditional three Josephson-junction flux qubit to the recently implemented capacitively shunted flux qubit, whose energy decay is thought to be limited by dielectric losses arising from native oxides in the shunting capacitor. Keeping all parameters identical except for the shunting capacitance, we obtain energy relaxation times that are comparable for both types of qubit. This suggests that the energy relaxation time is not limited by junction losses in capacitively shunted flux qubits. We discuss some other possible loss mechanisms present in these devices.

  4. Excitation spectrum for an inhomogeneously dipole-field-coupled superconducting qubit chain

    NASA Astrophysics Data System (ADS)

    Ian, Hou; Liu, Yu-xi; Nori, Franco

    2012-05-01

    When a chain of N superconducting qubits couples to a coplanar resonator, each of the qubits experiences a different dipole-field coupling strength due to the wave form of the cavity field. We find that this inhomogeneous coupling leads to a dependence of the collective ladder operators of the qubit chain on the qubit-interspacing l. Varying the spacing l changes the transition amplitudes between the angular momentum levels. We derive an exact diagonalization of the general N-qubit Hamiltonian and, through the N=4 case, demonstrate how the l-dependent operators lead to a denser one-excitation spectrum and a probability redistribution of the eigenstates. Moreover, we show that the variation of l between its two limiting values coincides with the crossover between Frenkel- and Wannier-type excitons in the superconducting qubit chain.

  5. Efficient quantum circuits for one-way quantum computing.

    PubMed

    Tanamoto, Tetsufumi; Liu, Yu-Xi; Hu, Xuedong; Nori, Franco

    2009-03-13

    While Ising-type interactions are ideal for implementing controlled phase flip gates in one-way quantum computing, natural interactions between solid-state qubits are most often described by either the XY or the Heisenberg models. We show an efficient way of generating cluster states directly using either the imaginary SWAP (iSWAP) gate for the XY model, or the sqrt[SWAP] gate for the Heisenberg model. Our approach thus makes one-way quantum computing more feasible for solid-state devices.

  6. Entanglement detection in the vicinity of arbitrary Dicke states.

    PubMed

    Duan, L-M

    2011-10-28

    Dicke states represent a class of multipartite entangled states that can be generated experimentally with many applications in quantum information. We propose a method to experimentally detect genuine multipartite entanglement in the vicinity of arbitrary Dicke states. The detection scheme can be used to experimentally quantify the entanglement depth of many-body systems and is easy to implement as it requires measurement of only three collective spin operators. The detection criterion is strong as it heralds multipartite entanglement even in cases where the state fidelity goes down exponentially with the number of qubits.

  7. Quantum dynamics of a two-atom-qubit system

    NASA Astrophysics Data System (ADS)

    Van Hieu, Nguyen; Bich Ha, Nguyen; Linh, Le Thi Ha

    2009-09-01

    A physical model of the quantum information exchange between two qubits is studied theoretically. The qubits are two identical two-level atoms, the physical mechanism of the quantum information exchange is the mutual dependence of the reduced density matrices of two qubits generated by their couplings with a multimode radiation field. The Lehmberg-Agarwal master equation is exactly solved. The explicit form of the mutual dependence of two reduced density matrices is established. The application to study the entanglement of two qubits is discussed.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omkar, S.; Srikanth, R., E-mail: srik@poornaprajna.org; Banerjee, Subhashish

    A protocol based on quantum error correction based characterization of quantum dynamics (QECCD) is developed for quantum process tomography on a two-qubit system interacting dissipatively with a vacuum bath. The method uses a 5-qubit quantum error correcting code that corrects arbitrary errors on the first two qubits, and also saturates the quantum Hamming bound. The dissipative interaction with a vacuum bath allows for both correlated and independent noise on the two-qubit system. We study the dependence of the degree of the correlation of the noise on evolution time and inter-qubit separation.

  9. Hilbert-Schmidt Measure of Pairwise Quantum Discord for Three-Qubit X States

    NASA Astrophysics Data System (ADS)

    Daoud, M.; Laamara, R. Ahl; Seddik, S.

    2015-10-01

    The Hilbert-Schmidt distance between a mixed three-qubit state and its closest state is used to quantify the amount of pairwise quantum correlations in a tripartite system. Analytical expressions of geometric quantum discord are derived. A particular attention is devoted to two special classes of three-qubit X states. They include three-qubit states of W, GHZ and Bell type. We also discuss the monogamy property of geometric quantum discord in some mixed three-qubit systems.

  10. Kraus Operators for a Pair of Interacting Qubits: a Case Study

    NASA Astrophysics Data System (ADS)

    Arsenijević, M.; Jeknić-Dugić, J.; Dugić, M.

    2018-04-01

    The Kraus form of the completely positive dynamical maps is appealing from the mathematical and the point of the diverse applications of the open quantum systems theory. Unfortunately, the Kraus operators are poorly known for the two-qubit processes. In this paper, we derive the Kraus operators for a pair of interacting qubits, while the strength of the interaction is arbitrary. One of the qubits is subjected to the x-projection spin measurement. The obtained results are applied to calculate the dynamics of the entanglement in the qubits system. We obtain the loss of the correlations in the finite time interval; the stronger the inter-qubit interaction, the longer lasting entanglement in the system.

  11. Kraus Operators for a Pair of Interacting Qubits: a Case Study

    NASA Astrophysics Data System (ADS)

    Arsenijević, M.; Jeknić-Dugić, J.; Dugić, M.

    2018-06-01

    The Kraus form of the completely positive dynamical maps is appealing from the mathematical and the point of the diverse applications of the open quantum systems theory. Unfortunately, the Kraus operators are poorly known for the two-qubit processes. In this paper, we derive the Kraus operators for a pair of interacting qubits, while the strength of the interaction is arbitrary. One of the qubits is subjected to the x-projection spin measurement. The obtained results are applied to calculate the dynamics of the entanglement in the qubits system. We obtain the loss of the correlations in the finite time interval; the stronger the inter-qubit interaction, the longer lasting entanglement in the system.

  12. Coherent Coupled Qubits for Quantum Annealing

    NASA Astrophysics Data System (ADS)

    Weber, Steven J.; Samach, Gabriel O.; Hover, David; Gustavsson, Simon; Kim, David K.; Melville, Alexander; Rosenberg, Danna; Sears, Adam P.; Yan, Fei; Yoder, Jonilyn L.; Oliver, William D.; Kerman, Andrew J.

    2017-07-01

    Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times limited primarily by the use of large persistent currents Ip. Here, we examine an alternative approach using qubits with smaller Ip and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (approximately 50-nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.

  13. A CMOS silicon spin qubit

    PubMed Central

    Maurand, R.; Jehl, X.; Kotekar-Patil, D.; Corna, A.; Bohuslavskyi, H.; Laviéville, R.; Hutin, L.; Barraud, S.; Vinet, M.; Sanquer, M.; De Franceschi, S.

    2016-01-01

    Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal–oxide–semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform. PMID:27882926

  14. The small stellated dodecahedron code and friends.

    PubMed

    Conrad, J; Chamberland, C; Breuckmann, N P; Terhal, B M

    2018-07-13

    We explore a distance-3 homological CSS quantum code, namely the small stellated dodecahedron code, for dense storage of quantum information and we compare its performance with the distance-3 surface code. The data and ancilla qubits of the small stellated dodecahedron code can be located on the edges respectively vertices of a small stellated dodecahedron, making this code suitable for three-dimensional connectivity. This code encodes eight logical qubits into 30 physical qubits (plus 22 ancilla qubits for parity check measurements) in contrast with one logical qubit into nine physical qubits (plus eight ancilla qubits) for the surface code. We develop fault-tolerant parity check circuits and a decoder for this code, allowing us to numerically assess the circuit-based pseudo-threshold.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Authors.

  15. Hardware for dynamic quantum computing.

    PubMed

    Ryan, Colm A; Johnson, Blake R; Ristè, Diego; Donovan, Brian; Ohki, Thomas A

    2017-10-01

    We describe the hardware, gateware, and software developed at Raytheon BBN Technologies for dynamic quantum information processing experiments on superconducting qubits. In dynamic experiments, real-time qubit state information is fed back or fed forward within a fraction of the qubits' coherence time to dynamically change the implemented sequence. The hardware presented here covers both control and readout of superconducting qubits. For readout, we created a custom signal processing gateware and software stack on commercial hardware to convert pulses in a heterodyne receiver into qubit state assignments with minimal latency, alongside data taking capability. For control, we developed custom hardware with gateware and software for pulse sequencing and steering information distribution that is capable of arbitrary control flow in a fraction of superconducting qubit coherence times. Both readout and control platforms make extensive use of field programmable gate arrays to enable tailored qubit control systems in a reconfigurable fabric suitable for iterative development.

  16. A CMOS silicon spin qubit

    NASA Astrophysics Data System (ADS)

    Maurand, R.; Jehl, X.; Kotekar-Patil, D.; Corna, A.; Bohuslavskyi, H.; Laviéville, R.; Hutin, L.; Barraud, S.; Vinet, M.; Sanquer, M.; de Franceschi, S.

    2016-11-01

    Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal-oxide-semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform.

  17. Scheme for implementing perfect quantum teleportation with four-qubit entangled states in cavity quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Tang, Jing-Wu; Zhao, Guan-Xiang; He, Xiong-Hui

    2011-05-01

    Recently, Peng et al. [2010 Eur. Phys. J. D 58 403] proposed to teleport an arbitrary two-qubit state with a family of four-qubit entangled states, which simultaneously include the tensor product of two Bell states, linear cluster state and Dicke-class state. This paper proposes to implement their scheme in cavity quantum electrodynamics and then presents a new family of four-qubit entangled state |Ω4>1234. It simultaneously includes all the well-known four-qubit entangled states which can be used to teleport an arbitrary two-qubit state. The distinct advantage of the scheme is that it only needs a single setup to prepare the whole family of four-qubit entangled states, which will be very convenient for experimental realization. After discussing the experimental condition in detail, we show the scheme may be feasible based on present technology in cavity quantum electrodynamics.

  18. Implementability of two-qubit unitary operations over the butterfly network and the ladder network with free classical communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akibue, Seiseki; Murao, Mio

    2014-12-04

    We investigate distributed implementation of two-qubit unitary operations over two primitive networks, the butterfly network and the ladder network, as a first step to apply network coding for quantum computation. By classifying two-qubit unitary operations in terms of the Kraus-Cirac number, the number of non-zero parameters describing the global part of two-qubit unitary operations, we analyze which class of two-qubit unitary operations is implementable over these networks with free classical communication. For the butterfly network, we show that two classes of two-qubit unitary operations, which contain all Clifford, controlled-unitary and matchgate operations, are implementable over the network. For the laddermore » network, we show that two-qubit unitary operations are implementable over the network if and only if their Kraus-Cirac number do not exceed the number of the bridges of the ladder.« less

  19. A CMOS silicon spin qubit.

    PubMed

    Maurand, R; Jehl, X; Kotekar-Patil, D; Corna, A; Bohuslavskyi, H; Laviéville, R; Hutin, L; Barraud, S; Vinet, M; Sanquer, M; De Franceschi, S

    2016-11-24

    Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal-oxide-semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform.

  20. Driving qubit phase gates with sech shaped pulses

    NASA Astrophysics Data System (ADS)

    Long, Junling; Ku, Hsiang-Sheng; Wu, Xian; Lake, Russell; Barnes, Edwin; Economou, Sophia; Pappas, David

    As shown in 1932 by Rozen and Zener, the Rabi model has a unique solution whereby, for a given pulse length or amplitude, a sech(t/sigma) shaped pulse can be used to drive complete oscillations around the Bloch sphere that are independent of detuning with only a resultant detuning-dependent phase accumulation. Using this property, single qubit phase gates and two-qubit CZ gates have been proposed. In this work we explore the effect of different drive pulse shapes, i.e. square, Gaussian, and sech, as a function of detuning for Rabi oscillations of a superconducting transmon qubit. An arbitrary, single-qubit phase gate is demonstrated with the sech(t/sigma) pulse, and full tomography is performed to extract the fidelity. This is the first step towards high fidelity, low leakage two qubit CZ gates, and illustrates the efficacy of using analytic solutions of the qubit drive prior to optimal pulse shaping.

  1. Deterministic Joint Remote Preparation of an Arbitrary Sevenqubit Cluster-type State

    NASA Astrophysics Data System (ADS)

    Ding, MengXiao; Jiang, Min

    2017-06-01

    In this paper, we propose a scheme for joint remotely preparing an arbitrary seven-qubit cluster-type state by using several GHZ entangled states as the quantum channel. The coefficients of the prepared states can be not only real, but also complex. Firstly, Alice performs a three-qubit projective measurement according to the amplitude coefficients of the target state, and then Bob carries out another three-qubit projective measurement based on its phase coefficients. Next, one three-qubit state containing all information of the target state is prepared with suitable operation. Finally, the target seven-qubit cluster-type state can be prepared by introducing four auxiliary qubits and performing appropriate local unitary operations based on the prepared three-qubit state in a deterministic way. The receiver's all recovery operations are summarized into a concise formula. Furthermore, it's worth noting that our scheme is more novel and feasible with the present technologies than most other previous schemes.

  2. Single-shot readout of accumulation mode Si/SiGe spin qubits using RF reflectometry

    NASA Astrophysics Data System (ADS)

    Volk, Christian; Martins, Frederico; Malinowski, Filip; Marcus, Charles M.; Kuemmeth, Ferdinand

    Spin qubits based on gate-defined quantum dots are promising systems for realizing quantum computation. Due to their low concentration of nuclear-spin-carrying isotopes, Si/SiGe heterostructures are of particular interest. While high fidelities have been reported for single-qubit and two-qubit gate operations, qubit initialization and measurement times are relatively slow. In order to develop fast read-out techniques compatible with the operation of spin qubits, we characterize double and triple quantum dots confined in undoped Si/Si0.7Ge0.3 heterostructures using accumulation and depletion gates and a nearby RF charge sensor dot. We implement a RF reflectometry technique that allows single-shot charge read-out at integration times on the order of a few μs. We show our recent advancement towards implementing spin qubits in these structures, including spin-selective single-shot read-out.

  3. Ultracoherent operation of spin qubits with superexchange coupling

    NASA Astrophysics Data System (ADS)

    Rančić, Marko J.; Burkard, Guido

    2017-11-01

    With the use of nuclear-spin-free materials such as silicon and germanium, spin-based quantum bits (qubits) have evolved to become among the most coherent systems for quantum information processing. The new frontier for spin qubits has therefore shifted to the ubiquitous charge noise and spin-orbit interaction, which are limiting the coherence times and gate fidelities of solid-state qubits. In this paper we investigate superexchange, as a means of indirect exchange interaction between two single electron spin qubits, each embedded in a single semiconductor quantum dot (QD), mediated by an intermediate, empty QD. Our results suggest the existence of "supersweet spots", in which the qubit operations implemented by superexchange interaction are simultaneously first-order-insensitive to charge noise and to errors due to spin-orbit interaction. The proposed spin-qubit architecture is scalable and within the manufacturing capabilities of semiconductor industry.

  4. Entanglement-Assisted Weak Value Amplification

    NASA Astrophysics Data System (ADS)

    Pang, Shengshi; Dressel, Justin; Brun, Todd A.

    2014-07-01

    Large weak values have been used to amplify the sensitivity of a linear response signal for detecting changes in a small parameter, which has also enabled a simple method for precise parameter estimation. However, producing a large weak value requires a low postselection probability for an ancilla degree of freedom, which limits the utility of the technique. We propose an improvement to this method that uses entanglement to increase the efficiency. We show that by entangling and postselecting n ancillas, the postselection probability can be increased by a factor of n while keeping the weak value fixed (compared to n uncorrelated attempts with one ancilla), which is the optimal scaling with n that is expected from quantum metrology. Furthermore, we show the surprising result that the quantum Fisher information about the detected parameter can be almost entirely preserved in the postselected state, which allows the sensitive estimation to approximately saturate the relevant quantum Cramér-Rao bound. To illustrate this protocol we provide simple quantum circuits that can be implemented using current experimental realizations of three entangled qubits.

  5. Superconducting Qubit Optical Transducer (SQOT)

    DTIC Science & Technology

    2015-08-05

    2 2.2 Qubit- Photon Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.1 System...and a high Q will make this challenging. 3 2.2 QUBIT- PHOTON ENTANGLEMENT The parametric interaction enables interconversion between the microwave and...to observe entanglement between a qubit and optical photon and similar to experiments demonstrated solely in the microwave domain [4]: 1. Start with

  6. The gatemon: a transmon with a voltage-variable superconductor-semiconductor junction

    NASA Astrophysics Data System (ADS)

    Petersson, Karl

    We have developed a superconducting transmon qubit with a semiconductor-based Josephson junction element. The junction is made from an InAs nanowire with in situ molecular beam epitaxy-grown superconducting Al contacts. This gate-controlled transmon, or gatemon, allows simple tuning of the qubit transition frequency using a gate voltage to vary the density of carriers in the semiconductor region. In the first generations of devices we have measured coherence times up to ~10 μs. These coherence times, combined with stable qubit operation, permit single qubit rotations with fidelities of ~99.5 % for all gates including voltage-controlled Z rotations. Towards multi-qubit operation we have also implemented a two qubit voltage-controlled cPhase gate. In contrast to flux-tuned transmons, voltage-tunable gatemons may simplify the task of scaling to multi-qubit circuits and enable new means of control for many qubit architectures. In collaboration with T.W. Larsen, L. Casparis, M.S. Olsen, F. Kuemmeth, T.S. Jespersen, P. Krogstrup, J. Nygard and C.M. Marcus. Research was supported by Microsoft Project Q, Danish National Research Foundation and a Marie Curie Fellowship.

  7. Tenfold increase in the Rabi decay time of the quantum dot hybrid qubit

    NASA Astrophysics Data System (ADS)

    Thorgrimsson, Brandur; Kim, Dohun; Simmons, C. B.; Ward, Daniel R.; Foote, Ryan H.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.

    The quantum dot hybrid qubit is formed from three electrons in a double quantum dot. In previous work, we showed that the hybrid qubit has the speed of a charge qubit and the stability of a spin qubit. Here, we show that the hybrid qubit is also highly tunable, and can be tuned into regimes with desirable coherence properties. By changing the interdot tunnel rate by only 25%, from 5 GHz to 6.25 GHz, we are able to increase the Rabi decay time by a factor of ten, from 18 ns to 177 ns. We attribute this improvement to the refinement of an extended ``sweet spot'' in the energy dispersion of the hybrid qubit, where the qubit is less susceptible to charge noise, which is a dominant source of decoherence. This work was supported in part by ARO (W911NF-12-0607) and NSF (DMR-1206915 and PHY-1104660). Development and maintenance of the growth facilities used for fabricating samples is sup- ported by DOE (DE-FG02-03ER46028). This research utilized NSF-supported shared facilities at the University of Wisconsin-Madison.

  8. Coherent optical excitations in superconducting qubit chain

    NASA Astrophysics Data System (ADS)

    Ian, Hou; Liu, Yu-Xi

    2012-06-01

    In the recent years, the theories of quantum optics have been borrowed to study the flows of electron pairs and their interactions with the circuit photon in the superconducting qubit circuits. These studies bring about new theories of quantum optics, such as the tunable electromagnetically induced transparency effect, peculiar to the Cooper pairs in circuits. In this talk, we focus on a special type of superconducting qubit circuits: superconducting qubit chain (SQC), which comprises dozens of qubits linearly placed along a stripline resonator. Since the dimensions of the qubits and the stripline have made their interactions inhomogeneous, the SQC cannot be diagonalized using the usual Dicke model. We present a new theoretical method, the deformation-projection method, for the exact diagonalization of the collective excitations of the qubits. This method allows us to predict that these excitations emulate the behaviors of Wannier and Frenckel excitons in the solid-state systems. The spontaneous emissions from the individual qubits in SQC are relayed to their neighbors, eventually arriving at a coherent emission, known as superradiance. We present a quantum relay model, which is crucial to quantum information processing, based on this finding.

  9. Fan-out Estimation in Spin-based Quantum Computer Scale-up.

    PubMed

    Nguyen, Thien; Hill, Charles D; Hollenberg, Lloyd C L; James, Matthew R

    2017-10-17

    Solid-state spin-based qubits offer good prospects for scaling based on their long coherence times and nexus to large-scale electronic scale-up technologies. However, high-threshold quantum error correction requires a two-dimensional qubit array operating in parallel, posing significant challenges in fabrication and control. While architectures incorporating distributed quantum control meet this challenge head-on, most designs rely on individual control and readout of all qubits with high gate densities. We analysed the fan-out routing overhead of a dedicated control line architecture, basing the analysis on a generalised solid-state spin qubit platform parameterised to encompass Coulomb confined (e.g. donor based spin qubits) or electrostatically confined (e.g. quantum dot based spin qubits) implementations. The spatial scalability under this model is estimated using standard electronic routing methods and present-day fabrication constraints. Based on reasonable assumptions for qubit control and readout we estimate 10 2 -10 5 physical qubits, depending on the quantum interconnect implementation, can be integrated and fanned-out independently. Assuming relatively long control-free interconnects the scalability can be extended. Ultimately, the universal quantum computation may necessitate a much higher number of integrated qubits, indicating that higher dimensional electronics fabrication and/or multiplexed distributed control and readout schemes may be the preferredstrategy for large-scale implementation.

  10. Electrical control of a solid-state flying qubit.

    PubMed

    Yamamoto, Michihisa; Takada, Shintaro; Bäuerle, Christopher; Watanabe, Kenta; Wieck, Andreas D; Tarucha, Seigo

    2012-03-18

    Solid-state approaches to quantum information technology are attractive because they are scalable. The coherent transport of quantum information over large distances is a requirement for any practical quantum computer and has been demonstrated by coupling super-conducting qubits to photons. Single electrons have also been transferred between distant quantum dots in times shorter than their spin coherence time. However, until now, there have been no demonstrations of scalable 'flying qubit' architectures-systems in which it is possible to perform quantum operations on qubits while they are being coherently transferred-in solid-state systems. These architectures allow for control over qubit separation and for non-local entanglement, which makes them more amenable to integration and scaling than static qubit approaches. Here, we report the transport and manipulation of qubits over distances of 6 µm within 40 ps, in an Aharonov-Bohm ring connected to two-channel wires that have a tunable tunnel coupling between channels. The flying qubit state is defined by the presence of a travelling electron in either channel of the wire, and can be controlled without a magnetic field. Our device has shorter quantum gates (<1 µm), longer coherence lengths (∼86 µm at 70 mK) and higher operating frequencies (∼100 GHz) than other solid-state implementations of flying qubits.

  11. Electrically Driving Donor Spin Qubits in Silicon Using Photonic Bandgap Resonators

    NASA Astrophysics Data System (ADS)

    Sigillito, A. J.; Tyryshkin, A. M.; Lyon, S. A.

    In conventional experiments, donor nuclear spin qubits in silicon are driven using radiofrequency (RF) magnetic fields. However, magnetic fields are difficult to confine at the nanoscale, which poses major issues for individually addressable qubits and device scalability. Ideally one could drive spin qubits using RF electric fields, which are easy to confine, but spins do not naturally have electric dipole transitions. In this talk, we present a new method for electrically controlling nuclear spin qubits in silicon by modulating the hyperfine interaction between the nuclear spin qubit and the donor-bound electron. By fabricating planar superconducting photonic bandgap resonators, we are able to use pulsed electron-nuclear double resonance (ENDOR) techniques to selectively probe both electrically and magnetically driven transitions for 31P and 75As nuclear spin qubits. The electrically driven spin resonance mechanism allows qubits to be driven at either their transition frequency, or at one-half their transition frequency, thus reducing bandwidth requirements for future quantum devices. Moreover, this form of control allows for higher qubit densities and lower power requirements compared to magnetically driven schemes. In our proof-of-principle experiments we demonstrate electrically driven Rabi frequencies of approximately 50 kHz for widely spaced (10 μm) gates which should be extendable to MHz for nanoscale devices.

  12. Superfluid qubit systems with ring shaped optical lattices

    PubMed Central

    Amico, Luigi; Aghamalyan, Davit; Auksztol, Filip; Crepaz, Herbert; Dumke, Rainer; Kwek, Leong Chuan

    2014-01-01

    We study an experimentally feasible qubit system employing neutral atomic currents. Our system is based on bosonic cold atoms trapped in ring-shaped optical lattice potentials. The lattice makes the system strictly one dimensional and it provides the infrastructure to realize a tunable ring-ring interaction. Our implementation combines the low decoherence rates of neutral cold atoms systems, overcoming single site addressing, with the robustness of topologically protected solid state Josephson flux qubits. Characteristic fluctuations in the magnetic fields affecting Josephson junction based flux qubits are expected to be minimized employing neutral atoms as flux carriers. By breaking the Galilean invariance we demonstrate how atomic currents through the lattice provide an implementation of a qubit. This is realized either by artificially creating a phase slip in a single ring, or by tunnel coupling of two homogeneous ring lattices. The single qubit infrastructure is experimentally investigated with tailored optical potentials. Indeed, we have experimentally realized scaled ring-lattice potentials that could host, in principle, n ~ 10 of such ring-qubits, arranged in a stack configuration, along the laser beam propagation axis. An experimentally viable scheme of the two-ring-qubit is discussed, as well. Based on our analysis, we provide protocols to initialize, address, and read-out the qubit. PMID:24599096

  13. Experimental realization of quantum teleportation from a photon to the vibration modes of a millimeter-sized diamond

    NASA Astrophysics Data System (ADS)

    Huang, Yuanyuan; Hou, Panyu; Yuan, Xinxing; Chang, Xiuying; Zu, Chong; He, Li; Duan, Luming; CenterQuantum Information, IIIS, Tsinghua University, Beijing 100084, PR China Team; Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA Team

    2016-05-01

    Quantum teleportation is of great importance to various quantum technologies, and has been realized between light beams, trapped atoms, superconducting qubits, and defect spins in solids. Here we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. In our experiment, the ultrafast laser technology provides the key tool for fast processing and detection of quantum states within its short life time in macroscopic objects consisting of many strongly interacting atoms that are coupled to the environment, and finally we demonstrate an average teleportation fidelity (90 . 6 +/- 1 . 0) % , clearly exceeding the classical limit of 2/3. Quantum control of the optomechanical coupling may provide efficient ways for realization of transduction of quantum signals, processing of quantum information, and sensing of small mechanical vibrations. Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, PR China.

  14. Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks

    NASA Astrophysics Data System (ADS)

    Armstrong, Seiji; Wang, Meng; Teh, Run Yan; Gong, Qihuang; He, Qiongyi; Janousek, Jiri; Bachor, Hans-Albert; Reid, Margaret D.; Lam, Ping Koy

    2015-02-01

    Einstein, Podolsky and Rosen (EPR) pointed out in their famous paradox that two quantum-entangled particles can have perfectly correlated positions and momenta. Such correlations give evidence for the nonlocality of quantum mechanics and form the basis for quantum cryptography and teleportation. EPR steering is the nonlocality associated with the EPR paradox and has traditionally been investigated between only two parties. Using optical networks and efficient detection, we present experimental observations of multiparty EPR steering and of the genuine entanglement of three intense optical beams. We entangle the quadrature phase amplitudes of distinct fields, in analogy to the position-momentum entanglement of the original paradox. Our experiments complement tests of quantum mechanics that have entangled small systems or have demonstrated tripartite inseparability. Our methods establish principles for the development of multiparty quantum communication protocols with asymmetric observers, and can be extended to qubits, whether photonic, atomic, superconducting, or otherwise.

  15. High-fidelity gates in quantum dot spin qubits.

    PubMed

    Koh, Teck Seng; Coppersmith, S N; Friesen, Mark

    2013-12-03

    Several logical qubits and quantum gates have been proposed for semiconductor quantum dots controlled by voltages applied to top gates. The different schemes can be difficult to compare meaningfully. Here we develop a theoretical framework to evaluate disparate qubit-gating schemes on an equal footing. We apply the procedure to two types of double-dot qubits: the singlet-triplet and the semiconducting quantum dot hybrid qubit. We investigate three quantum gates that flip the qubit state: a DC pulsed gate, an AC gate based on logical qubit resonance, and a gate-like process known as stimulated Raman adiabatic passage. These gates are all mediated by an exchange interaction that is controlled experimentally using the interdot tunnel coupling g and the detuning [Symbol: see text], which sets the energy difference between the dots. Our procedure has two steps. First, we optimize the gate fidelity (f) for fixed g as a function of the other control parameters; this yields an f(opt)(g) that is universal for different types of gates. Next, we identify physical constraints on the control parameters; this yields an upper bound f(max) that is specific to the qubit-gate combination. We show that similar gate fidelities (~99:5%) should be attainable for singlet-triplet qubits in isotopically purified Si, and for hybrid qubits in natural Si. Considerably lower fidelities are obtained for GaAs devices, due to the fluctuating magnetic fields ΔB produced by nuclear spins.

  16. Fisher information of a single qubit interacts with a spin-qubit in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Metwally, N.

    2018-06-01

    In this contribution, quantum Fisher information is utilized to estimate the parameters of a central qubit interacting with a single-spin qubit. The effect of the longitudinal, transverse and the rotating strengths of the magnetic field on the estimation degree is discussed. It is shown that, in the resonance case, the number of peaks and consequently the size of the estimation regions increase as the rotating magnetic field strength increases. The precision estimation of the central qubit parameters depends on the initial state settings of the central and the spin-qubit, either encode classical or quantum information. It is displayed that, the upper bounds of the estimation degree are large if the two qubits encode classical information. In the non-resonance case, the estimation degree depends on which of the longitudinal/transverse strength is larger. The coupling constant between the central qubit and the spin-qubit has a different effect on the estimation degree of the weight and the phase parameters, where the possibility of estimating the weight parameter decreases as the coupling constant increases, while it increases for the phase parameter. For large number of spin-particles, namely, we have a spin-bath particles, the upper bounds of the Fisher information with respect to the weight parameter of the central qubit decreases as the number of the spin particle increases. As the interaction time increases, the upper bounds appear at different initial values of the weight parameter.

  17. Scalable quantum information processing with atomic ensembles and flying photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei Feng; Yu Yafei; Feng Mang

    2009-10-15

    We present a scheme for scalable quantum information processing with atomic ensembles and flying photons. Using the Rydberg blockade, we encode the qubits in the collective atomic states, which could be manipulated fast and easily due to the enhanced interaction in comparison to the single-atom case. We demonstrate that our proposed gating could be applied to generation of two-dimensional cluster states for measurement-based quantum computation. Moreover, the atomic ensembles also function as quantum repeaters useful for long-distance quantum state transfer. We show the possibility of our scheme to work in bad cavity or in weak coupling regime, which could muchmore » relax the experimental requirement. The efficient coherent operations on the ensemble qubits enable our scheme to be switchable between quantum computation and quantum communication using atomic ensembles.« less

  18. The Unruh quantum Otto engine

    NASA Astrophysics Data System (ADS)

    Arias, Enrique; de Oliveira, Thiago R.; Sarandy, M. S.

    2018-02-01

    We introduce a quantum heat engine performing an Otto cycle by using the thermal properties of the quantum vacuum. Since Hawking and Unruh, it has been established that the vacuum space, either near a black hole or for an accelerated observer, behaves as a bath of thermal radiation. In this work, we present a fully quantum Otto cycle, which relies on the Unruh effect for a single quantum bit (qubit) in contact with quantum vacuum fluctuations. By using the notions of quantum thermodynamics and perturbation theory we obtain that the quantum vacuum can exchange heat and produce work on the qubit. Moreover, we obtain the efficiency and derive the conditions to have both a thermodynamic and a kinematic cycle in terms of the initial populations of the excited state, which define a range of allowed accelerations for the Unruh engine.

  19. Emulation of complex open quantum systems using superconducting qubits

    NASA Astrophysics Data System (ADS)

    Mostame, Sarah; Huh, Joonsuk; Kreisbeck, Christoph; Kerman, Andrew J.; Fujita, Takatoshi; Eisfeld, Alexander; Aspuru-Guzik, Alán

    2017-02-01

    With quantum computers being out of reach for now, quantum simulators are alternative devices for efficient and accurate simulation of problems that are challenging to tackle using conventional computers. Quantum simulators are classified into analog and digital, with the possibility of constructing "hybrid" simulators by combining both techniques. Here we focus on analog quantum simulators of open quantum systems and address the limit that they can beat classical computers. In particular, as an example, we discuss simulation of the chlorosome light-harvesting antenna from green sulfur bacteria with over 250 phonon modes coupled to each electronic state. Furthermore, we propose physical setups that can be used to reproduce the quantum dynamics of a standard and multiple-mode Holstein model. The proposed scheme is based on currently available technology of superconducting circuits consist of flux qubits and quantum oscillators.

  20. Accurate calculation of the geometric measure of entanglement for multipartite quantum states

    NASA Astrophysics Data System (ADS)

    Teng, Peiyuan

    2017-07-01

    This article proposes an efficient way of calculating the geometric measure of entanglement using tensor decomposition methods. The connection between these two concepts is explored using the tensor representation of the wavefunction. Numerical examples are benchmarked and compared. Furthermore, we search for highly entangled qubit states to show the applicability of this method.

  1. Compressed Sensing Quantum Process Tomography for Superconducting Quantum Gates

    NASA Astrophysics Data System (ADS)

    Rodionov, Andrey

    An important challenge in quantum information science and quantum computing is the experimental realization of high-fidelity quantum operations on multi-qubit systems. Quantum process tomography (QPT) is a procedure devised to fully characterize a quantum operation. We first present the results of the estimation of the process matrix for superconducting multi-qubit quantum gates using the full data set employing various methods: linear inversion, maximum likelihood, and least-squares. To alleviate the problem of exponential resource scaling needed to characterize a multi-qubit system, we next investigate a compressed sensing (CS) method for QPT of two-qubit and three-qubit quantum gates. Using experimental data for two-qubit controlled-Z gates, taken with both Xmon and superconducting phase qubits, we obtain estimates for the process matrices with reasonably high fidelities compared to full QPT, despite using significantly reduced sets of initial states and measurement configurations. We show that the CS method still works when the amount of data is so small that the standard QPT would have an underdetermined system of equations. We also apply the CS method to the analysis of the three-qubit Toffoli gate with simulated noise, and similarly show that the method works well for a substantially reduced set of data. For the CS calculations we use two different bases in which the process matrix is approximately sparse (the Pauli-error basis and the singular value decomposition basis), and show that the resulting estimates of the process matrices match with reasonably high fidelity. For both two-qubit and three-qubit gates, we characterize the quantum process by its process matrix and average state fidelity, as well as by the corresponding standard deviation defined via the variation of the state fidelity for different initial states. We calculate the standard deviation of the average state fidelity both analytically and numerically, using a Monte Carlo method. Overall, we show that CS QPT offers a significant reduction in the needed amount of experimental data for two-qubit and three-qubit quantum gates.

  2. Ultrafast optical control of individual quantum dot spin qubits.

    PubMed

    De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa

    2013-09-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled with the spin, and these photons are then interfered. We review recent work demonstrating entanglement between a stationary spin qubit and a flying photonic qubit. These experiments utilize the polarization- and frequency-dependent spontaneous emission from the lowest charged exciton state to single spin Zeeman sublevels.

  3. Electrical Manipulation of Donor Spin Qubits in Silicon and Germanium

    NASA Astrophysics Data System (ADS)

    Sigillito, Anthony James

    Many proposals for quantum information devices rely on electronic or nuclear spins in semiconductors because of their long coherence times and compatibility with industrial fabrication processes. One of the most notable qubits is the electron spin bound to phosphorus donors in silicon, which offers coherence times exceeding seconds at low temperatures. These donors are naturally isolated from their environments to the extent that silicon has been coined a "semiconductor vacuum". While this makes for ultra-coherent qubits, it is difficult to couple two remote donors so quantum information proposals rely on high density arrays of qubits. Here, single qubit addressability becomes an issue. Ideally one would address individual qubits using electric fields which can be easily confined. Typically these schemes rely on tuning a donor spin qubit onto and off of resonance with a magnetic driving field. In this thesis, we measure the electrical tunability of phosphorus donors in silicon and use the extracted parameters to estimate the effects of electric-field noise on qubit coherence times. Our measurements show that donor ionization may set in before electron spins can be sufficiently tuned. We therefore explore two alternative options for qubit addressability. First, we demonstrate that nuclear spin qubits can be directly driven using electric fields instead of magnetic fields and show that this approach offers several advantages over magnetically driven spin resonance. In particular, spin transitions can occur at half the spin resonance frequency and double quantum transitions (magnetic-dipole forbidden) can occur. In a second approach to realizing tunable qubits in semiconductors, we explore the option of replacing silicon with germanium. We first measure the coherence and relaxation times for shallow donor spin qubits in natural and isotopically enriched germanium. We find that in isotopically enriched material, coherence times can exceed 1 ms and are limited by a single-phonon T1 process. At lower frequencies or lower temperatures the qubit coherence times should substantially increase. Finally, we measure the electric field tunability of donors in germanium and find a four order-of-magnitude enhancement in the spin-orbit Stark shift and confirm that the donors should be tunable by at least 4 times the electron spin ensemble linewidth (in isotopically enriched material). Germanium should therefore also be more sensitive to electrically driven nuclear magnetic resonance. Based on these results germanium is a promising alternative to silicon for spin qubits.

  4. Asymmetric Bidirectional Controlled Teleportation by Using Six-qubit Cluster State

    NASA Astrophysics Data System (ADS)

    Li, Yuan-hua; Nie, Li-ping; Li, Xiao-lan; Sang, Ming-huang

    2016-06-01

    We propose a scheme for asymmetric bidirectional controlled teleportation by using a six-qubit cluster state as quantum channel. In our scheme, Alice can transmit an arbitrary two-qubit entangled state to Bob and at the same time Bob can teleport an arbitrary single-qubit state to Alice under the control of the supervisor Charlie.

  5. All-versus-nothing proofs with n qubits distributed between m parties

    NASA Astrophysics Data System (ADS)

    Cabello, Adán; Moreno, Pilar

    2010-04-01

    All-versus-nothing (AVN) proofs show the conflict between Einstein, Podolsky, and Rosen’s elements of reality and the perfect correlations of some quantum states. Given an n-qubit state distributed between m parties, we provide a method with which to decide whether this distribution allows an m-partite AVN proof specific for this state using only single-qubit measurements. We apply this method to some recently obtained n-qubit m-particle states. In addition, we provide all inequivalent AVN proofs with less than nine qubits and a minimum number of parties.

  6. Protecting superconducting qubits from radiation

    NASA Astrophysics Data System (ADS)

    Córcoles, Antonio D.; Chow, Jerry M.; Gambetta, Jay M.; Rigetti, Chad; Rozen, J. R.; Keefe, George A.; Beth Rothwell, Mary; Ketchen, Mark B.; Steffen, M.

    2011-10-01

    We characterize a superconducting qubit before and after embedding it along with its package in an absorptive medium. We observe a drastic improvement in the effective qubit temperature and over a tenfold improvement in the relaxation time up to 5.7 μs. Our results suggest the presence of external radiation inside the cryogenic apparatus can be a limiting factor for both qubit initialization and coherence. Calculations support the hypothesis that the relaxation is not limited by direct coupling of thermal photons to the qubit prior to embedding, but by dissipation arising from quasiparticle generation.

  7. Experimental investigation of environment-induced entanglement using an all-optical setup

    NASA Astrophysics Data System (ADS)

    Passos, M. H. M.; Balthazar, W. F.; Khoury, A. Z.; Hor-Meyll, M.; Davidovich, L.; Huguenin, J. A. O.

    2018-02-01

    We investigate the generation of entanglement between two noninteracting qubits coupled to a common reservoir. An experimental setup was conceived to encode one qubit on the polarization of an optical beam and another qubit on its transverse mode. The action of the reservoir is implemented as conditional operations on these two qubits, controlled by the longitudinal path as an ancillary degree of freedom. An entanglement witness and the two-qubit concurrence are easily evaluated from direct intensity measurements showing an excellent agreement with the theoretical prediction.

  8. Qubits and quantum Hamiltonian computing performances for operating a digital Boolean 1/2-adder

    NASA Astrophysics Data System (ADS)

    Dridi, Ghassen; Faizy Namarvar, Omid; Joachim, Christian

    2018-04-01

    Quantum Boolean (1 + 1) digits 1/2-adders are designed with 3 qubits for the quantum computing (Qubits) and 4 quantum states for the quantum Hamiltonian computing (QHC) approaches. Detailed analytical solutions are provided to analyse the time operation of those different 1/2-adder gates. QHC is more robust to noise than Qubits and requires about the same amount of energy for running its 1/2-adder logical operations. QHC is faster in time than Qubits but its logical output measurement takes longer.

  9. General monogamy equalities of complementarity relation and distributive entanglement for multi-qubit pure states

    NASA Astrophysics Data System (ADS)

    Zha, Xinwei; Da, Zhang; Ahmed, Irfan; Zhang, Dan; Zhang, Yanpeng

    2018-02-01

    In this paper, we determine the complementarity relations for pure quantum states of N qubits by presenting the definition of local and non-local forms. By comparing the entanglement monogamy equality proposed by Coffman, Kundu, and Wootters, we prove that there exist strict monogamy laws for quantum correlations in all many-qubit systems. Further, the proper form of general entanglement monogamy equality for arbitrary quantum states is found with the characterization of total quantum correlation of qubits. These results may open a new window for multi-qubit entanglement.

  10. Demonstration of entanglement of electrostatically coupled singlet-triplet qubits.

    PubMed

    Shulman, M D; Dial, O E; Harvey, S P; Bluhm, H; Umansky, V; Yacoby, A

    2012-04-13

    Quantum computers have the potential to solve certain problems faster than classical computers. To exploit their power, it is necessary to perform interqubit operations and generate entangled states. Spin qubits are a promising candidate for implementing a quantum processor because of their potential for scalability and miniaturization. However, their weak interactions with the environment, which lead to their long coherence times, make interqubit operations challenging. We performed a controlled two-qubit operation between singlet-triplet qubits using a dynamically decoupled sequence that maintains the two-qubit coupling while decoupling each qubit from its fluctuating environment. Using state tomography, we measured the full density matrix of the system and determined the concurrence and the fidelity of the generated state, providing proof of entanglement.

  11. A Quantum Non-Demolition Parity measurement in a mixed-species trapped-ion quantum processor

    NASA Astrophysics Data System (ADS)

    Marinelli, Matteo; Negnevitsky, Vlad; Lo, Hsiang-Yu; Flühmann, Christa; Mehta, Karan; Home, Jonathan

    2017-04-01

    Quantum non-demolition measurements of multi-qubit systems are an important tool in quantum information processing, in particular for syndrome extraction in quantum error correction. We have recently demonstrated a protocol for quantum non-demolition measurement of the parity of two beryllium ions by detection of a co-trapped calcium ion. The measurement requires a sequence of quantum gates between the three ions, using mixed-species gates between beryllium hyperfine qubits and a calcium optical qubit. Our work takes place in a multi-zone segmented trap setup in which we have demonstrated high fidelity control of both species and multi-well ion shuttling. The advantage of using two species of ion is that we can individually manipulate and read out the state of each ion species without disturbing the internal state of the other. The methods demonstrated here can be used for quantum error correcting codes as well as quantum metrology and are key ingredients for realizing a hybrid universal quantum computer based on trapped ions. Mixed-species control may also enable the investigation of new avenues in quantum simulation and quantum state control. left the group and working in a company now.

  12. Qubit-flip-induced cavity mode squeezing in the strong dispersive regime of the quantum Rabi model

    PubMed Central

    Joshi, Chaitanya; Irish, Elinor K.; Spiller, Timothy P.

    2017-01-01

    Squeezed states of light are a set of nonclassical states in which the quantum fluctuations of one quadrature component are reduced below the standard quantum limit. With less noise than the best stabilised laser sources, squeezed light is a key resource in the field of quantum technologies and has already improved sensing capabilities in areas ranging from gravitational wave detection to biomedical applications. In this work we propose a novel technique for generating squeezed states of a confined light field strongly coupled to a two-level system, or qubit, in the dispersive regime. Utilising the dispersive energy shift caused by the interaction, control of the qubit state produces a time-dependent change in the frequency of the light field. An appropriately timed sequence of sudden frequency changes reduces the quantum noise fluctuations in one quadrature of the field well below the standard quantum limit. The degree of squeezing and the time of generation are directly controlled by the number of frequency shifts applied. Even in the presence of realistic noise and imperfections, our protocol promises to be capable of generating a useful degree of squeezing with present experimental capabilities. PMID:28358025

  13. No information flow using statistical fluctuations and quantum cryptography

    NASA Astrophysics Data System (ADS)

    Larsson, Jan-Åke

    2004-04-01

    The communication protocol of Home and Whitaker [

    Phys. Rev. A 67, 022306 (2003)
    ] is examined in some detail, and found to work equally well using a separable state. The protocol is in fact completely classical, based on postselection of suitable experimental runs. The quantum-cryptography protocol proposed in the same publication is also examined, and this protocol uses entanglement, a strictly quantum property of the system. An individual eavesdropping attack on each qubit pair would be detected by the security test proposed in the mentioned paper. However, the key is provided by groups of qubits, and there exists a coherent attack, internal to these groups, that will go unnoticed in that security test. A modified test is proposed here that will ensure security, even against such a coherent attack.

  14. Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet

    PubMed Central

    Lachance-Quirion, Dany; Tabuchi, Yutaka; Ishino, Seiichiro; Noguchi, Atsushi; Ishikawa, Toyofumi; Yamazaki, Rekishu; Nakamura, Yasunobu

    2017-01-01

    Combining different physical systems in hybrid quantum circuits opens up novel possibilities for quantum technologies. In quantum magnonics, quanta of collective excitation modes in a ferromagnet, called magnons, interact coherently with qubits to access quantum phenomena of magnonics. We use this architecture to probe the quanta of collective spin excitations in a millimeter-sized ferromagnetic crystal. More specifically, we resolve magnon number states through spectroscopic measurements of a superconducting qubit with the hybrid system in the strong dispersive regime. This enables us to detect a change in the magnetic moment of the ferromagnet equivalent to a single spin flipped among more than 1019 spins. Our demonstration highlights the strength of hybrid quantum systems to provide powerful tools for quantum sensing and quantum information processing. PMID:28695204

  15. Experimental test of fidelity limits in six-photon interferometry and of rotational invariance properties of the photonic six-qubit entanglement singlet state.

    PubMed

    Rådmark, Magnus; Zukowski, Marek; Bourennane, Mohamed

    2009-10-09

    Quantum multiphoton interferometry has now reached the six-photon stage. Thus far, the observed fidelities of entangled states never reached 2/3. We report a high fidelity (estimated at 88%) experiment in which six-qubit singlet correlations were observed. With such a high fidelity we are able to demonstrate the central property of these "singlet" correlations, their "rotational invariance," by performing a full set of measurements in three complementary polarization bases. The patterns are almost indistinguishable. The data reveal genuine six-photon entanglement. We also study several five-photon states, which result upon detection of one of the photons. Multiphoton singlet states survive some types of depolarization and are thus important in quantum communication schemes.

  16. Multipartite entanglement indicators based on monogamy relations of n-qubit symmetric states

    PubMed Central

    Liu, Feng; Gao, Fei; Qin, Su-Juan; Xie, Shu-Cui; Wen, Qiao-Yan

    2016-01-01

    Constructed from Bai-Xu-Wang-class monogamy relations, multipartite entanglement indicators can detect the entanglement not stored in pairs of the focus particle and the other subset of particles. We investigate the k-partite entanglement indicators related to the αth power of entanglement of formation (αEoF) for k ≤ n, αϵ and n-qubit symmetric states. We then show that (1) The indicator based on αEoF is a monotonically increasing function of k. (2) When n is large enough, the indicator based on αEoF is a monotonically decreasing function of α, and then the n-partite indicator based on works best. However, the indicator based on 2 EoF works better when n is small enough. PMID:26842264

  17. General monogamy of Tsallis q -entropy entanglement in multiqubit systems

    NASA Astrophysics Data System (ADS)

    Luo, Yu; Tian, Tian; Shao, Lian-He; Li, Yongming

    2016-06-01

    In this paper, we study the monogamy inequality of Tsallis q -entropy entanglement. We first provide an analytic formula of Tsallis q -entropy entanglement in two-qubit systems for 5/-√{13 } 2 ≤q ≤5/+√{13 } 2 . The analytic formula of Tsallis q -entropy entanglement in 2 ⊗d system is also obtained and we show that Tsallis q -entropy entanglement satisfies a set of hierarchical monogamy equalities. Furthermore, we prove the squared Tsallis q -entropy entanglement follows a general inequality in the qubit systems. Based on the monogamy relations, a set of multipartite entanglement indicators is constructed, which can detect all genuine multiqubit entangled states even in the case of N -tangle vanishes. Moreover, we study some examples in multipartite higher-dimensional system for the monogamy inequalities.

  18. Multipartite entanglement indicators based on monogamy relations of n-qubit symmetric states.

    PubMed

    Liu, Feng; Gao, Fei; Qin, Su-Juan; Xie, Shu-Cui; Wen, Qiao-Yan

    2016-02-04

    Constructed from Bai-Xu-Wang-class monogamy relations, multipartite entanglement indicators can detect the entanglement not stored in pairs of the focus particle and the other subset of particles. We investigate the k-partite entanglement indicators related to the αth power of entanglement of formation (αEoF) for k ≤ n, αϵ and n-qubit symmetric states. We then show that (1) The indicator based on αEoF is a monotonically increasing function of k. (2) When n is large enough, the indicator based on αEoF is a monotonically decreasing function of α, and then the n-partite indicator based on works best. However, the indicator based on 2 EoF works better when n is small enough.

  19. Multipartite entanglement indicators based on monogamy relations of n-qubit symmetric states

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Gao, Fei; Qin, Su-Juan; Xie, Shu-Cui; Wen, Qiao-Yan

    2016-02-01

    Constructed from Bai-Xu-Wang-class monogamy relations, multipartite entanglement indicators can detect the entanglement not stored in pairs of the focus particle and the other subset of particles. We investigate the k-partite entanglement indicators related to the αth power of entanglement of formation (αEoF) for k ≤ n, αɛ and n-qubit symmetric states. We then show that (1) The indicator based on αEoF is a monotonically increasing function of k. (2) When n is large enough, the indicator based on αEoF is a monotonically decreasing function of α, and then the n-partite indicator based on works best. However, the indicator based on 2 EoF works better when n is small enough.

  20. Ultrafast coherent excitation of a trapped ion qubit for fast gates and photon frequency qubits.

    PubMed

    Madsen, M J; Moehring, D L; Maunz, P; Kohn, R N; Duan, L-M; Monroe, C

    2006-07-28

    We demonstrate ultrafast coherent excitation of an atomic qubit stored in the hyperfine levels of a single trapped cadmium ion. Such ultrafast excitation is crucial for entangling networks of remotely located trapped ions through the interference of photon frequency qubits, and is also a key component for realizing ultrafast quantum gates between Coulomb-coupled ions.

  1. State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot

    NASA Astrophysics Data System (ADS)

    Ward, Daniel R.; Kim, Dohun; Savage, Donald E.; Lagally, Max G.; Foote, Ryan H.; Friesen, Mark; Coppersmith, Susan N.; Eriksson, Mark A.

    2016-10-01

    Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of double quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. We further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau-Zener-Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.

  2. Deterministic Joint Assisted Cloning of Unknown Two-Qubit Entangled States

    NASA Astrophysics Data System (ADS)

    Zhan, You-Bang

    2012-06-01

    We present two schemes for perfect cloning unknown two-qubit and general two-qubit entangled states with assistance from two state preparers, respectively. In the schemes, the sender wish to teleport an unknown two-qubit (or general two-qubit) entangled state which from two state preparers to a remote receiver, and then create a perfect copy of the unknown state at her place. The schemes include two stages. The first stage of the schemes requires usual teleportation. In the second stage, to help the sender realize the quantum cloning, two state preparers perform two-qubit projective measurements on their own qubits which from the sender, then the sender can acquire a perfect copy of the unknown state. To complete the assisted cloning schemes, several novel sets of mutually orthogonal basis vectors are introduced. It is shown that, only if two state preparers collaborate with each other, and perform projective measurements under suitable measuring basis on their own qubit respectively, the sender can create a copy of the unknown state by means of some appropriate unitary operations. The advantage of the present schemes is that the total success probability for assisted cloning a perfect copy of the unknown state can reach 1.

  3. Exploration of the Tavis-Cummings Model with Multiple Qubits in Circuit QED

    NASA Astrophysics Data System (ADS)

    Fink, J. M.; Blais, A.; Wallraff, A.

    2009-03-01

    Superconducting qubits in coplanar waveguide resonators provide an unprecedentedly large dipole coupling strength to microwave frequency photons confined in an on-chip waveguide resonator [1]. In contrast to atoms in traditional cavity QED a controlled number of qubits remain at fixed positions with constant coupling to the cavity field at all times. Utilizing these properties we have performed measurements with up to three independently flux-tunable qubits to study cavity mediated multi-qubit interactions. By tuning the qubits in resonance with the cavity field individually, we demonstrate the square root of N scaling of the collective dipole coupling strength with the number of resonant atoms N as described by the Tavis-Cummings model. To our knowledge this is the first observation of this nonlinearity in a system in which the atom number can be changed one by one in a discrete fashion. In addition, the energies of both bright and dark coupled multi-qubit / photon states are well explained by the Tavis-Cummings model over a wide range of detunings. On resonance we obtain an equal superposition of a photon and a Dicke state with an excitation equally shared among the N qubits.[1] J. M. Fink et al. Nature 454, 315 (2008).

  4. State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Daniel R.; Kim, Dohun; Savage, Donald E.

    Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of doublemore » quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. Finally, we further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau–Zener–Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.« less

  5. Speedup of quantum evolution of multiqubit entanglement states

    PubMed Central

    Zhang, Ying-Jie; Han, Wei; Xia, Yun-Jie; Tian, Jian-Xiang; Fan, Heng

    2016-01-01

    As is well known, quantum speed limit time (QSLT) can be used to characterize the maximal speed of evolution of quantum systems. We mainly investigate the QSLT of generalized N-qubit GHZ-type states and W-type states in the amplitude-damping channels. It is shown that, in the case N qubits coupled with independent noise channels, the QSLT of the entangled GHZ-type state is closely related to the number of qubits in the small-scale system. And the larger entanglement of GHZ-type states can lead to the shorter QSLT of the evolution process. However, the QSLT of the W-type states are independent of the number of qubits and the initial entanglement. Furthermore, by considering only M qubits among the N-qubit system respectively interacting with their own noise channels, QSLTs for these two types states are shorter than in the case N qubits coupled with independent noise channels. We therefore reach the interesting result that the potential speedup of quantum evolution of a given N-qubit GHZ-type state or W-type state can be realized in the case the number of the applied noise channels satisfying M < N. PMID:27283757

  6. State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot

    DOE PAGES

    Ward, Daniel R.; Kim, Dohun; Savage, Donald E.; ...

    2016-10-18

    Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of doublemore » quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. Finally, we further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau–Zener–Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.« less

  7. Preservation of Quantum Fisher Information and Geometric Phase of a Single Qubit System in a Dissipative Reservoir Through the Addition of Qubits

    NASA Astrophysics Data System (ADS)

    Guo, Y. N.; Tian, Q. L.; Mo, Y. F.; Zhang, G. L.; Zeng, K.

    2018-04-01

    In this paper, we have investigated the preservation of quantum Fisher information (QFI) of a single-qubit system coupled to a common zero temperature reservoir through the addition of noninteracting qubits. The results show that, the QFI is completely protected in both Markovian and non-Markovian regimes by increasing the number of additional qubits. Besides, the phenomena of QFI display monotonic decay or non-monotonic with revival oscillations depending on the number of additional qubits N - 1 in a common dissipative reservoir. If N < N c (a critical number depending on the reservoirs parameters), the behavior of QFI with monotonic decay occurs. However, if N ≥ N c , QFI exhibits non-monotonic behavior with revival oscillations. Moreover, we extend this model to investigate the effect of additional qubits and the initial conditions of the system on the geometric phase (GP). It is found that, the robustness of GP against the dissipative reservoir has been demonstrated by increasing gradually the number of additional qubits N - 1. Besides, the GP is sensitive to the initial parameter 𝜃, and possesses symmetric in a range regime [0,2 π].

  8. Dynamical decoupling of local transverse random telegraph noise in a two-qubit gate

    NASA Astrophysics Data System (ADS)

    D'Arrigo, A.; Falci, G.; Paladino, E.

    2015-10-01

    Achieving high-fidelity universal two-qubit gates is a central requisite of any implementation of quantum information processing. The presence of spurious fluctuators of various physical origin represents a limiting factor for superconducting nanodevices. Operating qubits at optimal points, where the qubit-fluctuator interaction is transverse with respect to the single qubit Hamiltonian, considerably improved single qubit gates. Further enhancement has been achieved by dynamical decoupling (DD). In this article we investigate DD of transverse random telegraph noise acting locally on each of the qubits forming an entangling gate. Our analysis is based on the exact numerical solution of the stochastic Schrödinger equation. We evaluate the gate error under local periodic, Carr-Purcell and Uhrig DD sequences. We find that a threshold value of the number, n, of pulses exists above which the gate error decreases with a sequence-specific power-law dependence on n. Below threshold, DD may even increase the error with respect to the unconditioned evolution, a behaviour reminiscent of the anti-Zeno effect.

  9. Hierarchical surface code for network quantum computing with modules of arbitrary size

    NASA Astrophysics Data System (ADS)

    Li, Ying; Benjamin, Simon C.

    2016-10-01

    The network paradigm for quantum computing involves interconnecting many modules to form a scalable machine. Typically it is assumed that the links between modules are prone to noise while operations within modules have a significantly higher fidelity. To optimize fault tolerance in such architectures we introduce a hierarchical generalization of the surface code: a small "patch" of the code exists within each module and constitutes a single effective qubit of the logic-level surface code. Errors primarily occur in a two-dimensional subspace, i.e., patch perimeters extruded over time, and the resulting noise threshold for intermodule links can exceed ˜10 % even in the absence of purification. Increasing the number of qubits within each module decreases the number of qubits necessary for encoding a logical qubit. But this advantage is relatively modest, and broadly speaking, a "fine-grained" network of small modules containing only about eight qubits is competitive in total qubit count versus a "course" network with modules containing many hundreds of qubits.

  10. Technology for On-Chip Qubit Control with Microfabricated Surface Ion Traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Highstrete, Clark; Scott, Sean Michael; Nordquist, Christopher D.

    2013-11-01

    Trapped atomic ions are a leading physical system for quantum information processing. However, scalability and operational fidelity remain limiting technical issues often associated with optical qubit control. One promising approach is to develop on-chip microwave electronic control of ion qubits based on the atomic hyperfine interaction. This project developed expertise and capabilities at Sandia toward on-chip electronic qubit control in a scalable architecture. The project developed a foundation of laboratory capabilities, including trapping the 171Yb + hyperfine ion qubit and developing an experimental microwave coherent control capability. Additionally, the project investigated the integration of microwave device elements with surface ionmore » traps utilizing Sandia’s state-of-the-art MEMS microfabrication processing. This effort culminated in a device design for a multi-purpose ion trap experimental platform for investigating on-chip microwave qubit control, laying the groundwork for further funded R&D to develop on-chip microwave qubit control in an architecture that is suitable to engineering development.« less

  11. Measurement-free implementations of small-scale surface codes for quantum-dot qubits

    NASA Astrophysics Data System (ADS)

    Ercan, H. Ekmel; Ghosh, Joydip; Crow, Daniel; Premakumar, Vickram N.; Joynt, Robert; Friesen, Mark; Coppersmith, S. N.

    2018-01-01

    The performance of quantum-error-correction schemes depends sensitively on the physical realizations of the qubits and the implementations of various operations. For example, in quantum-dot spin qubits, readout is typically much slower than gate operations, and conventional surface-code implementations that rely heavily on syndrome measurements could therefore be challenging. However, fast and accurate reset of quantum-dot qubits, without readout, can be achieved via tunneling to a reservoir. Here we propose small-scale surface-code implementations for which syndrome measurements are replaced by a combination of Toffoli gates and qubit reset. For quantum-dot qubits, this enables much faster error correction than measurement-based schemes, but requires additional ancilla qubits and non-nearest-neighbor interactions. We have performed numerical simulations of two different coding schemes, obtaining error thresholds on the orders of 10-2 for a one-dimensional architecture that only corrects bit-flip errors and 10-4 for a two-dimensional architecture that corrects bit- and phase-flip errors.

  12. Symmetric operation of the resonant exchange qubit

    NASA Astrophysics Data System (ADS)

    Malinowski, Filip K.; Martins, Frederico; Nissen, Peter D.; Fallahi, Saeed; Gardner, Geoffrey C.; Manfra, Michael J.; Marcus, Charles M.; Kuemmeth, Ferdinand

    2017-07-01

    We operate a resonant exchange qubit in a highly symmetric triple-dot configuration using IQ-modulated rf pulses. We find that the qubit splitting is an order of magnitude less sensitive to all relevant control voltages, compared to the conventional operating point, but we observe no significant improvement in the quality of Rabi oscillations. For weak driving this is consistent with Overhauser field fluctuations modulating the qubit splitting. For strong driving we infer that effective voltage noise modulates the coupling strength between rf drive and the qubit, thereby quickening Rabi decay. Application of CPMG dynamical decoupling sequences consisting of up to 32 π pulses significantly prolongs qubit coherence, leading to marginally longer dephasing times in the symmetric configuration. This is consistent with dynamical decoupling from low frequency noise, but quantitatively cannot be explained by effective gate voltage noise and Overhauser field fluctuations alone. Our results inform recent strategies for the utilization of symmetric configurations in the operation of triple-dot qubits.

  13. Quantum gates by inverse engineering of a Hamiltonian

    NASA Astrophysics Data System (ADS)

    Santos, Alan C.

    2018-01-01

    Inverse engineering of a Hamiltonian (IEH) from an evolution operator is a useful technique for the protocol of quantum control with potential applications in quantum information processing. In this paper we introduce a particular protocol to perform IEH and we show how this scheme can be used to implement a set of quantum gates by using minimal quantum resources (such as entanglement, interactions between more than two qubits or auxiliary qubits). Remarkably, while previous protocols request three-qubit interactions and/or auxiliary qubits to implement such gates, our protocol requires just two-qubit interactions and no auxiliary qubits. By using this approach we can obtain a large class of Hamiltonians that allow us to implement single and two-qubit gates necessary for quantum computation. To conclude this article we analyze the performance of our scheme against systematic errors related to amplitude noise, where we show that the free parameters introduced in our scheme can be useful for enhancing the robustness of the protocol against such errors.

  14. Designing quantum information processing via structural physical approximation.

    PubMed

    Bae, Joonwoo

    2017-10-01

    In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.

  15. Designing quantum information processing via structural physical approximation

    NASA Astrophysics Data System (ADS)

    Bae, Joonwoo

    2017-10-01

    In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.

  16. Interference of qubits in pure dephasing and almost pure dephasing environments

    NASA Astrophysics Data System (ADS)

    Łobejko, Marcin; Mierzejewski, Marcin; Dajka, Jerzy

    2015-07-01

    Two-path interference of quantum particles with internal spin (qubits) interacting on one arm of the interferometer with bosonic environment is studied. It is assumed that the energy exchange between the qubit and its environment is either absent, which is a pure dephasing (decoherence) model, or very weak. Both the amplitude and the position of maximum of an output intensity discussed as a function of a phase shift can serve as a quantifier of parameters describing coupling between qubit and its environment. The time evolution of the qubit-environment system is analyzed in the Schrödinger picture and the output intensity for qubit-environment interaction close to pure decoherence is analyzed by means of perturbation theory. Quality of the applied approximation is verified by comparison with numerical results.

  17. Simultaneous continuous measurement of non-commuting observables and correlation in qubit trajectories

    NASA Astrophysics Data System (ADS)

    Chantasri, Areeya; Jordan, Andrew

    We consider the continuous quantum measurement of two or more non-commuting observables of a single qubit. Examples are presented for the measurement of two observables which can be mapped to two measurement axes on the Bloch sphere; a special case being the measurement along the X and Z bases. The qubit dynamics is described by the stochastic master equations which include the effect of decoherence and measurement inefficiencies. We investigate the qubit trajectories, their most likely paths, and their correlation functions using the stochastic path integral formalism. The correlation functions in qubit trajectories can be derived exactly for a special case and perturbatively for general cases. The theoretical predictions are compared with numerical simulations, as well as with trajectory data from the transmon superconducting qubit experiments.

  18. Phase-Tuned Entangled State Generation between Distant Spin Qubits.

    PubMed

    Stockill, R; Stanley, M J; Huthmacher, L; Clarke, E; Hugues, M; Miller, A J; Matthiesen, C; Le Gall, C; Atatüre, M

    2017-07-07

    Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic Λ system and quantum erasure of the Raman-photon path information. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for |ψ^{(+)}⟩ and |ψ^{(-)}⟩ states of 61.6±2.3% and a record-high entanglement generation rate of 7.3 kHz between distant qubits.

  19. Phase-Tuned Entangled State Generation between Distant Spin Qubits

    NASA Astrophysics Data System (ADS)

    Stockill, R.; Stanley, M. J.; Huthmacher, L.; Clarke, E.; Hugues, M.; Miller, A. J.; Matthiesen, C.; Le Gall, C.; Atatüre, M.

    2017-07-01

    Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic Λ system and quantum erasure of the Raman-photon path information. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for |ψ(+)⟩ and |ψ(-)⟩ states of 61.6 ±2.3 % and a record-high entanglement generation rate of 7.3 kHz between distant qubits.

  20. Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED.

    PubMed

    Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan

    2016-01-25

    We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths.

Top