Sample records for efficient second-harmonic generation

  1. Non-phase-matched enhancement of second-harmonic generation in multilayer nonlinear structures with internal reflections.

    PubMed

    Centini, Marco; D'Aguanno, Giuseppe; Sciscione, Letizia; Sibilia, Concita; Bertolotti, Mario; Scalora, Michael; Bloemer, Mark J

    2004-08-15

    Traditional notions of second-harmonic generation rely on phase matching or quasi phase matching to achieve good conversion efficiencies. We present an entirely new concept for efficient second-harmonic generation that is based on the interference of counterpropagating waves in multilayer structures. Conversion efficiencies are an order of magnitude larger than with phase-matched second-harmonic generation in similar multilayer structures.

  2. Efficient second to ninth harmonic generation using megawatt peak power microchip laser.

    PubMed

    Bhandari, R; Tsuji, N; Suzuki, T; Nishifuji, M; Taira, T

    2013-11-18

    We report the design and use of a megawatt peak power Nd:YAG/Cr4+:YAG microchip laser for efficient second to ninth harmonic generation. We show that the sub-nanosecond pulse width region, between 100 ps and 1 ns, is ideally suited for efficient wavelength conversion. Using this feature, we report 85% second harmonic generation efficiency using lithium triborate (LBO), 60% fourth harmonic generation efficiency usingß-barium borate, and 44% IR to UV third harmonic generation efficiency using Type I and Type II LBO. Finally, we report the first demonstration of 118 nm VUV generation in xenon gas using a microchip laser.

  3. Experimental demonstration of efficient and robust second harmonic generation using the adiabatic temperature gradient method

    NASA Astrophysics Data System (ADS)

    Dimova, E.; Steflekova, V.; Karatodorov, S.; Kyoseva, E.

    2018-03-01

    We propose a way of achieving efficient and robust second-harmonic generation. The technique proposed is similar to the adiabatic population transfer in a two-state quantum system with crossing energies. If the phase mismatching changes slowly, e.g., due to a temperature gradient along the crystal, and makes the phase match for second-harmonic generation to occur, then the energy would be converted adiabatically to the second harmonic. As an adiabatic technique, the second-harmonic generation scheme presented is stable to variations in the crystal parameters, as well as in the input light, crystal length, input intensity, wavelength and angle of incidence.

  4. Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate.

    PubMed

    Tovstonog, Sergey V; Kurimura, Sunao; Suzuki, Ikue; Takeno, Kohei; Moriwaki, Shigenori; Ohmae, Noriaki; Mio, Norikatsu; Katagai, Toshio

    2008-07-21

    We investigated thermal behaviors of single-pass second-harmonic generation of continuous wave green radiation with high efficiency by quasi-phase matching in periodically poled Mg-doped stoichiometric lithium tantalate (PPMgSLT). Heat generation turned out to be directly related to the green light absorption in the material. Strong relation between an upper limit of the second harmonic power and confocal parameter was found. Single-pass second-harmonic generation of 16.1 W green power was achieved with 17.6% efficiency in Mg:SLT at room temperature.

  5. Biological Effects of Laser Radiation. Volume IV. Optical Second Harmonic Generation in Biological Tissues.

    DTIC Science & Technology

    1978-10-17

    characteristics for optical second- harmonic generation. The collage component of conective tissue may be the principal site for the observed harmonic...Generation in Tissue ; Second Harmonic Generation in Collage; Glutathione, 5MB; Mechanisms; Conversion Efficiency; Significance of order UL AIM UY#m~wmev...sclera, and skin on 694 im. Q-switched ruby laser irradiation. A possible source of this second-harmonic generation was tissue collagen; because of

  6. Enhanced second-harmonic generation from resonant GaAs gratings.

    PubMed

    de Ceglia, D; D'Aguanno, G; Mattiucci, N; Vincenti, M A; Scalora, M

    2011-03-01

    We theoretically study second harmonic generation in nonlinear, GaAs gratings. We find large enhancement of conversion efficiency when the pump field excites the guided mode resonances of the grating. Under these circumstances the spectrum near the pump wavelength displays sharp resonances characterized by dramatic enhancements of local fields and favorable conditions for second-harmonic generation, even in regimes of strong linear absorption at the harmonic wavelength. In particular, in a GaAs grating pumped at 1064 nm, we predict second-harmonic conversion efficiencies approximately 5 orders of magnitude larger than conversion rates achievable in either bulk or etalon structures of the same material.

  7. Enhancement and inhibition of second-harmonic generation and absorption in a negative index cavity.

    PubMed

    de Ceglia, Domenico; D'Orazio, Antonella; De Sario, Marco; Petruzzelli, Vincenzo; Prudenzano, Francesco; Centini, Marco; Cappeddu, Mirko G; Bloemer, Mark J; Scalora, Michael

    2007-02-01

    We study second-harmonic generation in a negative-index material cavity. The transmission spectrum shows a bandgap between the electric and magnetic plasma frequencies. The nonlinear process is made efficient by local phase-matching conditions between a forward-propagating pump and a backward-propagating second-harmonic signal. By simultaneously exciting the cavity with counterpropagating pulses, and by varying their relative phase difference, one is able to enhance or inhibit linear absorption and the second-harmonic conversion efficiency.

  8. NONLINEAR OPTICS PHENOMENA: Second harmonic generation from DF laser radiation in ZnGeP2

    NASA Astrophysics Data System (ADS)

    Andreev, Yu M.; Velikanov, S. D.; Yerutin, A. S.; Zapol'skiĭ, A. F.; Konkin, D. V.; Mishkin, S. N.; Smirnov, S. V.; Frolov, Yu N.; Shchurov, V. V.

    1992-11-01

    We have succeeded in generating the second harmonic of the radiation from a DF laser for the first time, using single crystals of ZnGeP2. For crystals with lengths of 10.1 and 13.6 mm, the overall external efficiencies of the entire oscillator system were 4 and 6.2%. The internal efficiencies of second-harmonic generation in the crystals were 7.6 and 11.8%, respectively.

  9. Frequency doubling in poled polymers using anomalous dispersion phase-matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalczyk, T.C.; Singer, K.D.; Cahill, P.A.

    1995-10-01

    The authors report on a second harmonic generation in a poled polymer waveguide using anomalous dispersion phase-matching. Blue light ({lambda} = 407 nm) was produced by phase-matching the lowest order fundamental and harmonic modes over a distance of 32 {micro}m. The experimental conversion efficiency was {eta} = 1.2 {times} 10{sup {minus}4}, in agreement with theory. Additionally, they discuss a method of enhancing the conversion efficiency for second harmonic generation using anomalous dispersion phase-matching to optimize Cerenkov second harmonic generation. The modeling shows that a combination of phase-matching techniques creates larger conversion efficiencies and reduces critical fabrication requirements of the individualmore » phase-matching techniques.« less

  10. Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas.

    PubMed

    de Ceglia, Domenico; Vincenti, Maria Antonietta; De Angelis, Costantino; Locatelli, Andrea; Haus, Joseph W; Scalora, Michael

    2015-01-26

    We study optical second harmonic generation from metallic dipole antennas with narrow gaps. Enhancement of the fundamental-frequency field in the gap region plays a marginal role on conversion efficiency. In the symmetric configuration, i.e., with the gap located at the center of the antenna axis, reducing gap size induces a significant red-shift of the maximum conversion efficiency peak. Either enhancement or inhibition of second-harmonic emission may be observed as gap size is decreased, depending on the antenna mode excited at the harmonic frequency. The second-harmonic signal is extremely sensitive to the asymmetry introduced by gap's displacements with respect to the antenna center. In this situation, second-harmonic light can couple to all the available antenna modes. We perform a multipolar analysis that allows engineering the far-field SH emission and find that the interaction with quasi-odd-symmetry modes generates radiation patterns with a strong dipolar component.

  11. Kolakoski sequence as an element to radiate giant forward and backward second harmonic signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parvini, T. S.; Tehranchi, M. M., E-mail: m-hamidi@sbu.ac.ir, E-mail: teranchi@sbu.ac.ir; Laser and Plasma Research Institute, Shahid Beheshti University, Tehran

    2015-11-14

    We propose a novel type of aperiodic one-dimensional photonic crystal structures which can be used for generating giant forward and backward second harmonic signals. The studied structure is formed by stacking together the air and nonlinear layers according to the Kolakoski self-generation scheme in which each nonlinear layer contains a pair of antiparallel 180° poled LiNbO{sub 3} crystal layers. For different generation stages of the structure, conversion efficiencies of forward and backward second harmonic waves have been calculated by nonlinear transfer matrix method. Numerical simulations show that conversion efficiencies in the Kolakoski-based multilayer are larger than the perfect ones formore » at least one order of magnitude. Especially for 33rd and 39th generation stages, forward second harmonic wave are 42 and 19 times larger, respectively. In this paper, we validate the strong fundamental field enhancement and localization within Kolakoski-based multilayer due to periodicity breaking which consequently leads to very strong radiation of backward and forward second harmonic signals. Following the applications of analogous aperiodic structures, we expect that Kolakosi-based multilayer can play a role in optical parametric devices such as multicolor second harmonic generators with high efficiency.« less

  12. Phase-matched second- and third-harmonic generation in plasmas with density ripple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahiya, Deepak; Sajal, Vivek; Sharma, A. K.

    The generation of second and third harmonics by the interaction of an ultrashort laser pulse with underdense plasma having a density ripple is studied at intensities I{lambda}{sup 2}=10{sup 16}-10{sup 19} W cm{sup -2} {mu}m{sup 2} using fully relativistic two-dimensional particle-in-cell simulations with high spectral resolution. A theoretical model is developed for second- and third-harmonic conversion efficiencies. When the laser is plane polarized in the simulation plane even and odd harmonics are excited in the same polarization as the laser polarization. The highest efficiency of generation of a specific harmonic occurs when the ripple wave vector value k{sub q} satisfies phase-matchingmore » conditions. The efficiency of phase-matched harmonic generation is an order of magnitude higher than the one without phase matching. The efficiency increases rapidly in weak and moderate relativistic regime and tends to saturate in strong relativistic regime. At moderately relativistic intensities and low plasma densities, the simulation and recent experimental results are fairly reproduced by an analytical theory.« less

  13. Efficient second harmonic generation by para-nitroaniline embedded in electro-spun polymeric nanofibres

    NASA Astrophysics Data System (ADS)

    Gonçalves, Hugo; Saavedra, Inês; Ferreira, Rute AS; Lopes, PE; de Matos Gomes, Etelvina; Belsley, Michael

    2018-03-01

    Intense well polarized second harmonic light was generated by poly(methyl methacrylate) nanofibres with embedded para-nitroaniline nanocrystals. Subwavelength diameter fibres were electro-spun using a 1:2 weight ratio of chromophore to polymer. Analysis of the generated second harmonic light indicates that the para-nitroaniline molecules, which nominally crystalize in the centrosymmetric space group, were organized into noncentrosymmetric structures leading to a second order susceptibility dominated by a single tensor element. Under the best deposition conditions, the nanofibrers display an effective nonlinear optical susceptibility approximately two orders of magnitude greater than that of potassium dihydrogen phosphate. Generalizing this approach to a broad range of organic molecules with strong individual molecular second order nonlinear responses, but which nominally form centrosymmetric organic crystals, could open a new pathway for the fabrication of efficient sub-micron sized second harmonic light generators.

  14. Improved Efficiency Type II Second Harmonic Generation

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Walsh, Brian M.; Reichle, Donald J., Jr.

    2009-01-01

    Second harmonic efficiency is limited by lateral and temporal separation of the ordinary and extraordinary components of the fundamental. A mode locked dual beam laser demonstrated these effects and a novel method to minimize them.

  15. Dynamics of short pulses and phase matched second harmonic generation in negative index materials.

    PubMed

    Scalora, Michael; D'Aguanno, Giuseppe; Bloemer, Mark; Centini, Marco; de Ceglia, Domenico; Mattiucci, Nadia; Kivshar, Yuri S

    2006-05-29

    We study pulsed second harmonic generation in metamaterials under conditions of significant absorption. Tuning the pump in the negative index range, a second harmonic signal is generated in the positive index region, such that the respective indices of refraction have the same magnitudes but opposite signs. This insures that a forward-propagating pump is exactly phase matched to the backward-propagating second harmonic signal. Using peak intensities of ~500 MW/cm(2), assuming chi((2))~80pm/V, we predict conversion efficiencies of 12% and 0.2% for attenuation lengths of 50 and 5microm, respectively.

  16. Efficient 2(nd) and 4(th) harmonic generation of a single-frequency, continuous-wave fiber amplifier.

    PubMed

    Sudmeyer, Thomas; Imai, Yutaka; Masuda, Hisashi; Eguchi, Naoya; Saito, Masaki; Kubota, Shigeo

    2008-02-04

    We demonstrate efficient cavity-enhanced second and fourth harmonic generation of an air-cooled, continuous-wave (cw), single-frequency 1064 nm fiber-amplifier system. The second harmonic generator achieves up to 88% total external conversion efficiency, generating more than 20-W power at 532 nm wavelength in a diffraction-limited beam (M(2) < 1.05). The nonlinear medium is a critically phase-matched, 20-mm long, anti-reflection (AR) coated LBO crystal operated at 25 degrees C. The fourth harmonic generator is based on an AR-coated, Czochralski-grown beta-BaB(2)O(4) (BBO) crystal optimized for low loss and high damage threshold. Up to 12.2 W of 266-nm deep-UV (DUV) output is obtained using a 6-mm long critically phase-matched BBO operated at 40 degrees C. This power level is more than two times higher than previously reported for cw 266-nm generation. The total external conversion efficiency from the fundamental at 1064 nm to the fourth harmonic at 266 nm is >50%.

  17. Efficient forward second-harmonic generation from planar archimedean nanospirals

    DOE PAGES

    Davidson, II, Roderick B.; Ziegler, Jed I.; Vargas, Guillermo; ...

    2015-05-01

    Here, the enhanced electric field at plasmonic resonances in nanoscale antennas can lead to efficient harmonic generation, especially when the plasmonic geometry is asymmetric on either inter-particle or intra-particle levels. The planar Archimedean nanospiral offers a unique geometrical asymmetry for second-harmonic generation (SHG) because the SHG results neither from arranging centrosymmetric nanoparticles in asymmetric groupings, nor from non-centrosymmetric nanoparticles that retain a local axis of symmetry. Here, we report forward SHG from planar arrays of Archimedean nanospirals using 15 fs pulses from a Ti:sapphire oscillator tuned to 800 nm wavelength.

  18. Second-harmonic generation in single crystals of 2-(N,N-dimethylamino)-5-nitroacetanilide (DAN) at 1.3 micron

    NASA Astrophysics Data System (ADS)

    Kolinsky, P. V.; Chad, R. J.; Jones, R. J.; Hall, S. R.; Norman, P. A.

    1987-07-01

    Measurements are reported on efficiency phase-matched second-harmonic generation in a single crystal of the organic material 2-(N,N-dimethylamino)-5-nitroacetanilide at the technologically important communications wavelength of 1.3 micron. Using 0.5 mJ pulses, a conversion efficiency of 18 percent has been achieved for a sample 2 mm thick.

  19. Role of phase matching in pulsed second-harmonic generation: Walk-off and phase-locked twin pulses in negative-index media

    NASA Astrophysics Data System (ADS)

    Roppo, Vito; Centini, Marco; Sibilia, Concita; Bertolotti, Mario; de Ceglia, Domenico; Scalora, Michael; Akozbek, Neset; Bloemer, Mark J.; Haus, Joseph W.; Kosareva, Olga G.; Kandidov, Valery P.

    2007-09-01

    The present investigation is concerned with the study of pulsed second-harmonic generation under conditions of phase and group velocity mismatch, and generally low conversion efficiencies and pump intensities. In positive-index, nonmetallic materials, we generally find qualitative agreement with previous reports regarding the presence of a double-peaked second harmonic signal, which comprises a pulse that walks off and propagates at the nominal group velocity one expects at the second-harmonic frequency, and a second pulse that is “captured” and propagates under the pump pulse. We find that the origin of the double-peaked structure resides in a phase-locking mechanism that characterizes not only second-harmonic generation, but also χ(3) processes and third-harmonic generation. The phase-locking mechanism that we describe occurs for arbitrarily small pump intensities, and so it is not a soliton effect, which usually relies on a threshold mechanism, although multicolor solitons display similar phase locking characteristics. Thus, in second harmonic generation a phase-matched component is always generated, even under conditions of material phase mismatch: This component is anomalous, because the material does not allow energy exchange between the pump and the second-harmonic beam. On the other hand, if the material is phase matched, phase locking and phase matching are indistinguishable, and the conversion process becomes efficient. We also report a similar phase-locking phenomenon in negative index materials. A spectral analysis of the pump and the generated signals reveals that the phase-locking phenomenon causes the forward moving, phase-locked second-harmonic pulse to experience the same negative index as the pump pulse, even though the index of refraction at the second-harmonic frequency is positive. Our analysis further shows that the reflected second-harmonic pulse generated at the interface and the forward-moving, phase-locked pulse appear to be part of the same pulse initially generated at the surface, part of which is immediately back-reflected, while the rest becomes trapped and dragged along by the pump pulse. These pulses thus constitute twin pulses generated at the interface, having the same negative wave vector, but propagating in opposite directions. Almost any break of the longitudinal symmetry, even an exceedingly small χ(2) discontinuity, releases the trapped pulse which then propagates in the backward direction. These dynamics are indicative of very rich and intricate interactions that characterize ultrashort pulse propagation phenomena.

  20. Role of phase matching in pulsed second-harmonic generation: Walk-off and phase-locked twin pulses in negative-index media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roppo, Vito; Centini, Marco; Sibilia, Concita

    The present investigation is concerned with the study of pulsed second-harmonic generation under conditions of phase and group velocity mismatch, and generally low conversion efficiencies and pump intensities. In positive-index, nonmetallic materials, we generally find qualitative agreement with previous reports regarding the presence of a double-peaked second harmonic signal, which comprises a pulse that walks off and propagates at the nominal group velocity one expects at the second-harmonic frequency, and a second pulse that is 'captured' and propagates under the pump pulse. We find that the origin of the double-peaked structure resides in a phase-locking mechanism that characterizes not onlymore » second-harmonic generation, but also {chi}{sup (3)} processes and third-harmonic generation. The phase-locking mechanism that we describe occurs for arbitrarily small pump intensities, and so it is not a soliton effect, which usually relies on a threshold mechanism, although multicolor solitons display similar phase locking characteristics. Thus, in second harmonic generation a phase-matched component is always generated, even under conditions of material phase mismatch: This component is anomalous, because the material does not allow energy exchange between the pump and the second-harmonic beam. On the other hand, if the material is phase matched, phase locking and phase matching are indistinguishable, and the conversion process becomes efficient. We also report a similar phase-locking phenomenon in negative index materials. A spectral analysis of the pump and the generated signals reveals that the phase-locking phenomenon causes the forward moving, phase-locked second-harmonic pulse to experience the same negative index as the pump pulse, even though the index of refraction at the second-harmonic frequency is positive. Our analysis further shows that the reflected second-harmonic pulse generated at the interface and the forward-moving, phase-locked pulse appear to be part of the same pulse initially generated at the surface, part of which is immediately back-reflected, while the rest becomes trapped and dragged along by the pump pulse. These pulses thus constitute twin pulses generated at the interface, having the same negative wave vector, but propagating in opposite directions. Almost any break of the longitudinal symmetry, even an exceedingly small {chi}{sup (2)} discontinuity, releases the trapped pulse which then propagates in the backward direction. These dynamics are indicative of very rich and intricate interactions that characterize ultrashort pulse propagation phenomena.« less

  1. Near-IR, blue, and UV generation by frequency conversion of a Tm:YAP laser

    NASA Astrophysics Data System (ADS)

    Cole, Brian; Goldberg, Lew; Chinn, Steve

    2018-02-01

    We describe generation of near-infrared (944nm, 970nm), blue (472nm, 485nm), and UV (236 nm) light by frequency up-conversion of 2 μm output of a compact and efficient passively Q-switched Tm:YAP laser. The Tm:YAP laser source was near diffraction limited with maximum Q-switched pulse peak power of 190 kW. For second harmonic generation (SHG) of NIR, both periodically poled lithium niobate (PPLN) and lithium tri-borate (LBO) were evaluated, with 58% conversion efficiency and 3.1 W of 970 nm power achieved with PPLN. The PPLN 970nm emission was frequency doubled in 20mm long type I LBO, generating 1.1 W at 485nm with a conversion efficiency of 34%. With LBO used for frequency doubling of 2.3 W of 1888 nm Tm:YAP output to 944nm, 860mW was generated, with 37% conversion efficiency. Using a second LBO crystal to generate the 4th harmonic, 545mW of 472nm power was generated, corresponding to 64% conversion efficiency. To generate the 8th harmonic of Tm:YAP laser emission, the 472nm output of the second LBO was frequency doubled in a 7mm long BBO crystal, generating 110 mW at 236nm, corresponding to 21% conversion efficiency.

  2. Second-harmonic generation using tailored whispering gallery modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumeige, Yannick; Feron, Patrice

    It has been shown that whispering gallery modes can be used to obtain a combination of modal and geometrical quasi-phase-matching in second-harmonic generation. This could be achieved in isotropic, nonferroelectric, strongly dispersive and highly nonlinear materials such as III-V semiconductors. Unfortunately the poor overlap between the second-harmonic field and second order nonlinear polarization limits the conversion efficiency. In this paper we show that by engineering the refractive index it is possible to increase field overlap and to enhance effective second order nonlinear polarization of semiconductor microdisks.

  3. Automatic computation and solution of generalized harmonic balance equations

    NASA Astrophysics Data System (ADS)

    Peyton Jones, J. C.; Yaser, K. S. A.; Stevenson, J.

    2018-02-01

    Generalized methods are presented for generating and solving the harmonic balance equations for a broad class of nonlinear differential or difference equations and for a general set of harmonics chosen by the user. In particular, a new algorithm for automatically generating the Jacobian of the balance equations enables efficient solution of these equations using continuation methods. Efficient numeric validation techniques are also presented, and the combined algorithm is applied to the analysis of dc, fundamental, second and third harmonic response of a nonlinear automotive damper.

  4. Thermal dephasing in second-harmonic generation of an amplified copper-vapor laser beam in beta barium borate.

    PubMed

    Prakash, Om; Dixit, Sudhir Kumar; Bhatnagar, Rajiva

    2005-03-20

    The conversion efficiency in second-harmonic generation of an amplified beam in a master-oscillator power amplifier copper-vapor laser (CVL) is lower than that of the oscillator beam alone. This lower efficiency is often vaguely attributed to wave-front degradation in the amplifier. We investigate the role of wave-front degradation and thermal dephasing in the second-harmonic generation of a CVL from a beta-barium borate crystal. Choosing two beams with constant intrapulse divergence, one from a generalized diffraction filtered resonator master oscillator alone and other obtained by amplifying oscillator by use of a power amplifier, we show that at low flux levels the decrease in efficiency is due to wave-front degradation. At a fundamental power above the critical power for thermal dephasing, the decrease is due to increased UV absorption and consequent thermal dephasing. Thermal dephasing is higher for the beam with the lower coherence width.

  5. Probing Graphene χ((2)) Using a Gold Photon Sieve.

    PubMed

    Lobet, Michaël; Sarrazin, Michaël; Cecchet, Francesca; Reckinger, Nicolas; Vlad, Alexandru; Colomer, Jean-François; Lis, Dan

    2016-01-13

    Nonlinear second harmonic optical activity of graphene covering a gold photon sieve was determined for different polarizations. The photon sieve consists of a subwavelength gold nanohole array placed on glass. It combines the benefits of efficient light trapping and surface plasmon propagation to unravel different elements of graphene second-order susceptibility χ((2)). Those elements efficiently contribute to second harmonic generation. In fact, the graphene-coated photon sieve produces a second harmonic intensity at least two orders of magnitude higher compared with a bare, flat gold layer and an order of magnitude coming from the plasmonic effect of the photon sieve; the remaining enhancement arises from the graphene layer itself. The measured second harmonic generation yield, supplemented by semianalytical computations, provides an original method to constrain the graphene χ((2)) elements. The values obtained are |d31 + d33| ≤ 8.1 × 10(3) pm(2)/V and |d15| ≤ 1.4 × 10(6) pm(2)/V for a second harmonic signal at 780 nm. This original method can be applied to any kind of 2D materials covering such a plasmonic structure.

  6. Large enhancement of interface second-harmonic generation near the zero-n(-) gap of a negative-index Bragg grating.

    PubMed

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Bloemer, Mark J; Scalora, Michael

    2006-03-01

    We predict a large enhancement of interface second-harmonic generation near the zero-n(-) gap of a Bragg grating made of alternating layers of negative- and positive-index materials. Field localization and coherent oscillations of the nonlinear dipoles located at the structure's interfaces conspire to yield conversion efficiencies at least an order of magnitude greater than those achievable in the same length of nonlinear, phase-matched bulk material. These findings thus point to a new class of second-harmonic-generation devices made of standard centrosymmetric materials.

  7. Ultrafast Plasmonic Control of Second Harmonic Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Roderick B.; Yanchenko, Anna; Ziegler, Jed I.

    Efficient frequency conversion techniques are crucial to the development of plasmonic metasurfaces for information processing and signal modulation. In principle, nanoscale electric-field confinement in nonlinear materials enables higher harmonic conversion efficiencies per unit volume than those attainable in bulk materials. Here we demonstrate efficient second-harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients on a dielectric metasurface. An ultrafast control pulse is used to control plasmon-induced electric fields in a thin-film material with inversion symmetry that, without plasmonic enhancement, does not exhibit an even-order nonlinear optical response. The temporal evolution of the plasmonic near-fieldmore » is characterized with ~100 as resolution using a novel nonlinear interferometric technique. The serrated nanogap is a unique platform in which to investigate optically controlled, plasmonically enhanced harmonic generation in dielectric materials on an ultrafast time scale. Lastly, this metamaterial geometry can also be readily extended to all-optical control of other nonlinear phenomena, such as four-wave mixing and sum- and difference-frequency generation, in a wide variety of dielectric materials.« less

  8. Ultrafast Plasmonic Control of Second Harmonic Generation

    DOE PAGES

    Davidson, Roderick B.; Yanchenko, Anna; Ziegler, Jed I.; ...

    2016-06-01

    Efficient frequency conversion techniques are crucial to the development of plasmonic metasurfaces for information processing and signal modulation. In principle, nanoscale electric-field confinement in nonlinear materials enables higher harmonic conversion efficiencies per unit volume than those attainable in bulk materials. Here we demonstrate efficient second-harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients on a dielectric metasurface. An ultrafast control pulse is used to control plasmon-induced electric fields in a thin-film material with inversion symmetry that, without plasmonic enhancement, does not exhibit an even-order nonlinear optical response. The temporal evolution of the plasmonic near-fieldmore » is characterized with ~100 as resolution using a novel nonlinear interferometric technique. The serrated nanogap is a unique platform in which to investigate optically controlled, plasmonically enhanced harmonic generation in dielectric materials on an ultrafast time scale. Lastly, this metamaterial geometry can also be readily extended to all-optical control of other nonlinear phenomena, such as four-wave mixing and sum- and difference-frequency generation, in a wide variety of dielectric materials.« less

  9. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation

    NASA Astrophysics Data System (ADS)

    Celebrano, Michele; Wu, Xiaofei; Baselli, Milena; Großmann, Swen; Biagioni, Paolo; Locatelli, Andrea; de Angelis, Costantino; Cerullo, Giulio; Osellame, Roberto; Hecht, Bert; Duò, Lamberto; Ciccacci, Franco; Finazzi, Marco

    2015-05-01

    Boosting nonlinear frequency conversion in extremely confined volumes remains a challenge in nano-optics research, but can enable applications in nanomedicine, photocatalysis and background-free biosensing. To obtain brighter nonlinear nanoscale sources, approaches that enhance the electromagnetic field intensity and counter the lack of phase matching in nanoplasmonic systems are often employed. However, the high degree of symmetry in the crystalline structure of plasmonic materials (metals in particular) and in nanoantenna designs strongly quenches second harmonic generation. Here, we describe doubly-resonant single-crystalline gold nanostructures with no axial symmetry displaying spatial mode overlap at both the excitation and second harmonic wavelengths. The combination of these features allows the attainment of a nonlinear coefficient for second harmonic generation of ˜5 × 10-10 W-1, enabling a second harmonic photon yield higher than 3 × 106 photons per second. Theoretical estimations point toward the use of our nonlinear plasmonic nanoantennas as efficient platforms for label-free molecular sensing.

  10. Theoretical study on second-harmonic generation of focused vortex beams

    NASA Astrophysics Data System (ADS)

    Tang, Daolong; Wang, Jing; Ma, Jingui; Zhou, Bingjie; Yuan, Peng; Xie, Guoqiang; Zhu, Heyuan; Qian, Liejia

    2018-03-01

    Second-harmonic generation (SHG) provides a promising route for generating vortex beams of both short wavelength and large topological charge. Here we theoretically investigate the efficiency optimization and beam characteristics of focused vortex-beam SHG. Owing to the increasing beam divergence, vortex beams have distinct features in SHG optimization compared with a Gaussian beam. We show that, under the noncritical phase-matching condition, the Boyd and Kleinman prediction of the optimal focusing parameter for Gaussian-beam SHG remains valid for vortex-beam SHG. However, under the critical phase-matching condition, which is sensitive to the beam divergence, the Boyd and Kleinman prediction is no longer valid. In contrast, the optimal focusing parameter for maximizing the SHG efficiency strongly depends on the vortex order. We also investigate the effects of focusing and phase-matching conditions on the second-harmonic beam characteristics.

  11. Concept for power scaling second harmonic generation using a cascade of nonlinear crystals.

    PubMed

    Hansen, A K; Tawfieq, M; Jensen, O B; Andersen, P E; Sumpf, B; Erbert, G; Petersen, P M

    2015-06-15

    Within the field of high-power second harmonic generation (SHG), power scaling is often hindered by adverse crystal effects such as thermal dephasing arising from the second harmonic (SH) light, which imposes limits on the power that can be generated in many crystals. Here we demonstrate a concept for efficient power scaling of single-pass SHG beyond such limits using a cascade of nonlinear crystals, in which the first crystal is chosen for high nonlinear efficiency and the subsequent crystal(s) are chosen for power handling ability. Using this highly efficient single-pass concept, we generate 3.7 W of continuous-wave diffraction-limited (M(2)=1.25) light at 532 nm from 9.5 W of non-diffraction-limited (M(2)=7.7) light from a tapered laser diode, while avoiding significant thermal effects. Besides constituting the highest SH power yet achieved using a laser diode, this demonstrates that the concept successfully combines the high efficiency of the first stage with the good power handling properties of the subsequent stages. The concept is generally applicable and can be expanded with more stages to obtain even higher efficiency, and extends also to other combinations of nonlinear media suitable for other wavelengths.

  12. Transmit beamforming for optimal second-harmonic generation.

    PubMed

    Hoilund-Kaupang, Halvard; Masoy, Svein-Erik

    2011-08-01

    A simulation study of transmit ultrasound beams from several transducer configurations is conducted to compare second-harmonic imaging at 3.5 MHz and 11 MHz. Second- harmonic generation and the ability to suppress near field echoes are compared. Each transducer configuration is defined by a chosen f-number and focal depth, and the transmit pressure is estimated to not exceed a mechanical index of 1.2. The medium resembles homogeneous muscle tissue with nonlinear elasticity and power-law attenuation. To improve computational efficiency, the KZK equation is utilized, and all transducers are circular-symmetric. Previous literature shows that second-harmonic generation is proportional to the square of the transmit pressure, and that transducer configurations with different transmit frequencies, but equal aperture and focal depth in terms of wavelengths, generate identical second-harmonic fields in terms of shape. Results verify this for a medium with attenuation f1. For attenuation f1.1, deviations are found, and the high frequency subsequently performs worse than the low frequency. The results suggest that high frequencies are less able to suppress near-field echoes in the presence of a heterogeneous body wall than low frequencies.

  13. Efficient Second-Harmonic Generation in Nanocrystalline Silicon Nanoparticles.

    PubMed

    Makarov, Sergey V; Petrov, Mihail I; Zywietz, Urs; Milichko, Valentin; Zuev, Dmitry; Lopanitsyna, Natalia; Kuksin, Alexey; Mukhin, Ivan; Zograf, George; Ubyivovk, Evgeniy; Smirnova, Daria A; Starikov, Sergey; Chichkov, Boris N; Kivshar, Yuri S

    2017-05-10

    Recent trends to employ high-index dielectric particles in nanophotonics are motivated by their reduced dissipative losses and large resonant enhancement of nonlinear effects at the nanoscale. Because silicon is a centrosymmetric material, the studies of nonlinear optical properties of silicon nanoparticles have been targeting primarily the third-harmonic generation effects. Here we demonstrate, both experimentally and theoretically, that resonantly excited nanocrystalline silicon nanoparticles fabricated by an optimized laser printing technique can exhibit strong second-harmonic generation (SHG) effects. We attribute an unexpectedly high yield of the nonlinear conversion to a nanocrystalline structure of nanoparticles supporting the Mie resonances. The demonstrated efficient SHG at green light from a single silicon nanoparticle is 2 orders of magnitude higher than that from unstructured silicon films. This efficiency is significantly higher than that of many plasmonic nanostructures and small silicon nanoparticles in the visible range, and it can be useful for a design of nonlinear nanoantennas and silicon-based integrated light sources.

  14. Second-harmonic generation in AlGaAs microdisks in the telecom range.

    PubMed

    Mariani, S; Andronico, A; Lemaître, A; Favero, I; Ducci, S; Leo, G

    2014-05-15

    We report on second-harmonic generation in whispering-gallery-mode AlGaAs microcavities suspended on a GaAs pedestal. Frequency doubling of a 1.58 μm pump is observed with 7×10(-4)   W(-1) conversion efficiency. This device can be integrated in a monolithic photonic chip for classical and quantum applications in the telecom band.

  15. Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities

    NASA Technical Reports Server (NTRS)

    Kozlovsky, William J.; Nabors, C. D.; Byer, Robert L.

    1988-01-01

    56-percent efficient external-cavity-resonant second-harmonic generation of a diode-laser pumped, CW single-axial-mode Nd:YAG laser is reported. A theory of external doubling with a resonant fundamental is presented and compared to experimental results for three monolithic cavities of nonlinear MgO:LiNbO3. The best conversion efficiency was obtained with a 12.5-mm-long monolithic ring cavity doubler, which produced 29.7 mW of CW, single-axial model 532-nm radiation from an input of 52.5 mW.

  16. Imaging with Second-Harmonic Generation Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hsieh, Chia-Lung

    Second-harmonic generation nanoparticles show promise as imaging probes due to their coherent and stable signal with a broad flexibility in the choice of excitation wavelength. In this thesis, we developed and demonstrated barium titanate nanoparticles as second-harmonic radiation imaging probes. We studied the absolute second-harmonic generation efficiency of the nanoparticles on single-particle level. The polarization dependent second-harmonic signal of single nanoparticles was studied in detail. From the measured polar response, we were able to find the orientation of the nanoparticle. We developed a biochemical interface for using the second-harmonic nanoprobes as biomarkers, including in vitro cellular imaging and in vivo live animal imaging. The nanoparticles were surface functionalized with primary amine groups for stable colloidal dispersion. We achieved specific labeling of the second-harmonic nanoprobes via immunostaining where the antibodies were covalently conjugated onto the nanoparticles. We observed no toxicity of the functionalized nanoparticles to biological cells. The coherent second-harmonic signal radiated from the nanoparticles offers opportunities for new imaging techniques. Using interferometric detection, namely harmonic holography, both amplitude and phase of the second-harmonic field can be captured. Through digital beam propagation, three-dimensional field distribution, reflecting three-dimensional distribution of the nanoparticles, can be reconstructed. We achieved a scan-free three-dimensional imaging of nanoparticles in biological cells with sub-micron spatial resolution by using the harmonic holographic microscope. We further exploited the coherent second-harmonic signal for imaging through scattering media by performing optical phase conjugation of the second-harmonic signal. We demonstrated an all-digital optical phase conjugation of the second-harmonic signal originated from a nanoparticle by combining harmonic holography and dynamic computer generated holography using a spatial light modulator. The phase-conjugated second-harmonic scattered field retraced the scattering trajectory and formed a clean focus on the nanoparticle placed inside a scattering medium. The nanoparticle acted as a beacon of light; it helped us find the tailored wavefront for concentrating light at the nanoparticle inside the scattering medium. We also demonstrated imaging through a thin scattering medium by raster-scanning the phase-conjugated focus in the vicinity of the beacon nanoparticle, in which a clear image of a target placed behind a ground glass diffuser was obtained.

  17. Field localization and enhancement of phase-locked second- and third-order harmonic generation in absorbing semiconductor cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roppo, V.; Charles M. Bowden Research Facility, US Army RDECOM, Redstone Arsenal, Alabama 35803; Cojocaru, C.

    We predict and experimentally observe the enhancement by three orders of magnitude of phase mismatched second and third harmonic generation in a GaAs cavity at 650 and 433 nm, respectively, well above the absorption edge. Phase locking between the pump and the harmonics changes the effective dispersion of the medium and inhibits absorption. Despite hostile conditions the harmonics resonate inside the cavity and become amplified leading to relatively large conversion efficiencies. Field localization thus plays a pivotal role despite the presence of absorption, and ushers in a new class of semiconductor-based devices in the visible and uv ranges.

  18. Harmonic generation in metallic, GaAs-filled nanocavities in the enhanced transmission regime at visible and UV wavelengths.

    PubMed

    Vincenti, M A; de Ceglia, D; Roppo, V; Scalora, M

    2011-01-31

    We have conducted a theoretical study of harmonic generation from a silver grating having slits filled with GaAs. By working in the enhanced transmission regime, and by exploiting phase-locking between the pump and its harmonics, we guarantee strong field localization and enhanced harmonic generation under conditions of high absorption at visible and UV wavelengths. Silver is treated using the hydrodynamic model, which includes Coulomb and Lorentz forces, convection, electron gas pressure, plus bulk χ(3) contributions. For GaAs we use nonlinear Lorentz oscillators, with characteristic χ(2) and χ(3) and nonlinear sources that arise from symmetry breaking and Lorentz forces. We find that: (i) electron pressure in the metal contributes to linear and nonlinear processes by shifting/reshaping the band structure; (ii) TE- and TM-polarized harmonics can be generated efficiently; (iii) the χ(2) tensor of GaAs couples TE- and TM-polarized harmonics that create phase-locked pump photons having polarization orthogonal compared to incident pump photons; (iv) Fabry-Perot resonances yield more efficient harmonic generation compared to plasmonic transmission peaks, where most of the light propagates along external metal surfaces with little penetration inside its volume. We predict conversion efficiencies that range from 10(-6) for second harmonic generation to 10(-3) for the third harmonic signal, when pump power is 2 GW/cm2.

  19. Second-harmonic generation in substoichiometric silicon nitride layers

    NASA Astrophysics Data System (ADS)

    Pecora, Emanuele; Capretti, Antonio; Miano, Giovanni; Dal Negro, Luca

    2013-03-01

    Harmonic generation in optical circuits offers the possibility to integrate wavelength converters, light amplifiers, lasers, and multiple optical signal processing devices with electronic components. Bulk silicon has a negligible second-order nonlinear optical susceptibility owing to its crystal centrosymmetry. Silicon nitride has its place in the microelectronic industry as an insulator and chemical barrier. In this work, we propose to take advantage of silicon excess in silicon nitride to increase the Second Harmonic Generation (SHG) efficiency. Thin films have been grown by reactive magnetron sputtering and their nonlinear optical properties have been studied by femtosecond pumping over a wide range of excitation wavelengths, silicon nitride stoichiometry and thermal processes. We demonstrate SHG in the visible range (375 - 450 nm) using a tunable 150 fs Ti:sapphire laser, and we optimize the SH emission at a silicon excess of 46 at.% demonstrating a maximum SHG efficiency of 4x10-6 in optimized films. Polarization properties, generation efficiency, and the second order nonlinear optical susceptibility are measured for all the investigated samples and discussed in terms of an effective theoretical model. Our findings show that the large nonlinear optical response demonstrated in optimized Si-rich silicon nitride materials can be utilized for the engineering of nonlinear optical functions and devices on a Si chip.

  20. Third harmonic frequency generation by type-I critically phase-matched LiB3O5 crystal by means of optically active quartz crystal.

    PubMed

    Gapontsev, Valentin P; Tyrtyshnyy, Valentin A; Vershinin, Oleg I; Davydov, Boris L; Oulianov, Dmitri A

    2013-02-11

    We present a method of third harmonic generation at 355 nm by frequency mixing of fundamental and second harmonic radiation of an ytterbium nanosecond pulsed all-fiber laser in a type-I phase-matched LiB(3)O(5) (LBO) crystal where originally orthogonal polarization planes of the fundamental and second harmonic beams are aligned by an optically active quartz crystal. 8 W of ultraviolet light at 355 nm were achieved with 40% conversion efficiency from 1064 nm radiation. The conversion efficiency obtained in a type-I phase-matched LBO THG crystal was 1.6 times higher than the one achieved in a type-II LBO crystal at similar experimental conditions. In comparison to half-wave plates traditionally used for polarization alignment the optically active quartz crystal has much lower temperature dependence and requires simpler optical alignment.

  1. High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer.

    PubMed

    Grinblat, Gustavo; Rahmani, Mohsen; Cortés, Emiliano; Caldarola, Martín; Comedi, David; Maier, Stefan A; Bragas, Andrea V

    2014-11-12

    We introduce a plasmonic-semiconductor hybrid nanosystem, consisting of a ZnO nanowire coupled to a gold pentamer oligomer by crossing the hot-spot. It is demonstrated that the hybrid system exhibits a second harmonic (SH) conversion efficiency of ∼3 × 10(-5)%, which is among the highest values for a nanoscale object at optical frequencies reported so far. The SH intensity was found to be ∼1700 times larger than that from the same nanowire excited outside the hot-spot. Placing high nonlinear susceptibility materials precisely in plasmonic confined-field regions to enhance SH generation opens new perspectives for highly efficient light frequency up-conversion on the nanoscale.

  2. Simultaneously phase-matched second- and third-harmonic generation from 1.55 microm radiation in annealed proton-exchanged periodically poled lithium niobate waveguides.

    PubMed

    Marangoni, M; Lobino, M; Ramponi, R

    2006-09-15

    Third-harmonic generation (THG) in the cw regime from C-band radiation was achieved in annealed proton-exchanged periodically poled lithium niobate (PPLN) waveguides. By suitable design of fabrication parameters and operating conditions, quasi-phase-matching (QPM) is obtained simultaneously for the second-harmonic generation process (omega-->2omega, first-order QPM) and for the sum-frequency-generation process (omega+2omega-->3omega, third-order QPM), which provides the third harmonic of the pump field. The high overlap between the field profiles of the interacting modes--TM00 at omega and TM10 at 2omega and 3omega--results in what is believed to be the highest ever reported normalized conversion efficiency for THG from telecommunication wavelengths, equal to 0.72%W(-2) cm(-4).

  3. Controlling Second Harmonic Efficiency of Laser Beam Interactions

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)

    2011-01-01

    A method is provided for controlling second harmonic efficiency of laser beam interactions. A laser system generates two laser beams (e.g., a laser beam with two polarizations) for incidence on a nonlinear crystal having a preferred direction of propagation. Prior to incidence on the crystal, the beams are optically processed based on the crystal's beam separation characteristics to thereby control a position in the crystal along the preferred direction of propagation at which the beams interact.

  4. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    PubMed Central

    Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.

    2015-01-01

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s−1 is generated at 22.3 eV, with 5 × 10−5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications. PMID:26067922

  5. Cross-phase-modulation-induced instability in photonic-crystal fibers.

    PubMed

    Serebryannikov, E E; Konorov, S O; Ivanov, A A; Alfimov, M V; Scalora, M; Zheltikov, A M

    2005-08-01

    Cross-phase-modulation-induced instability is identified as a significant mechanism for efficient parametric four-wave-mixing frequency conversion in photonic-crystal fibers. Fundamental-wavelength femtosecond pulses of a Cr, forsterite laser are used in our experiments to transform the spectrum of copropagating second-harmonic pulses of the same laser in a photonic-crystal fiber. Efficient generation of sidebands shifted by more than 80 THz with respect to the central frequency of the second harmonic is observed in the output spectrum of the probe field.

  6. Second harmonic generation of q-Gaussian laser beam in preformed collisional plasma channel with nonlinear absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Naveen, E-mail: naveens222@rediffmail.com; Singh, Arvinder, E-mail: arvinder6@lycos.com; Singh, Navpreet, E-mail: navpreet.nit@gmail.com

    2015-11-15

    This paper presents a scheme for second harmonic generation of an intense q-Gaussian laser beam in a preformed parabolic plasma channel, where collisional nonlinearity is operative with nonlinear absorption. Due to nonuniform irradiance of intensity along the wavefront of the laser beam, nonuniform Ohmic heating of plasma electrons takes place. Due to this nonuniform heating of plasma, the laser beam gets self-focused and produces strong density gradients in the transverse direction. The generated density gradients excite an electron plasma wave at pump frequency that interacts with the pump beam to produce its second harmonics. The formulation is based on amore » numerical solution of the nonlinear Schrodinger wave equation in WKB approximation followed by moment theory approach. A second order nonlinear differential equation governing the propagation dynamics of the laser beam with distance of propagation has been obtained and is solved numerically by Runge Kutta fourth order technique. The effect of nonlinear absorption on self-focusing of the laser beam and conversion efficiency of its second harmonics has been investigated.« less

  7. Experimental and theoretical debate on efficient second harmonic generation in Bis (Cinnamic acid): Hexamine cocrystal

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, S.; Kalyanaraman, S.; Ravindran, T. R.

    2014-02-01

    Second harmonic generation (SHG) in Bis (Cinnamic acid): Hexamine cocrystal was extensively analyzed through charge transfer (CT). The CT interactions through hydrogen bonding were well established with the aid of vibrational analysis and Natural Bond Orbital (NBO) analysis. The retentivity of coplanar nature of the cinnamic acid in the cocrystal was confirmed through UV-Visible spectroscopy and supported by Raman studies. Structural analysis indicated the quinoidal character of the given material presenting a high SHG efficiency. The first order hyperpolarizability value was calculated theoretically by density functional theory (DFT) and Hartree-Fock (HF) methods in support for the large value of SHG.

  8. Efficient nonlinear optical conversion of 1.319-micron laser radiation

    NASA Astrophysics Data System (ADS)

    Byer, Robert L.; Eckardt, Robert C.

    1993-01-01

    The accomplishments of this program are in the development and application of periodically poled nonlinear optical materials for nonlinear frequency-conversion. We have demonstrated the use of periodically poled lithium niobate (PPLN) as a bulk material for external resonant cavity second-harmonic generation with continuous-wave (cw) output power of 1.7 W. Work that is following this investigation is showing that planar waveguides of PPLN may well be the most satisfactory method of generation of 10's of mW of the 659-nm harmonic of the 1.32-micrometer Nd:YAG laser. We encountered major obstacles obtaining multilayer dielectric coatings necessary to pursue our proposed design of monolithic bulk optical harmonic generators. Additional alternative approaches such as discrete component resonant second harmonic generation employing single domain and periodically poled bulk crystals and monolithic single domain resonators formed by total internal reflection remain under investigation.

  9. Second-harmonic generation from a positive-negative index material heterostructure.

    PubMed

    Mattiucci, Nadia; D'Aguanno, Giuseppe; Bloemer, Mark J; Scalora, Michael

    2005-12-01

    Resonant cavities have been widely used in the past to enhance material, nonlinear response. Traditional mirrors include metallic films and distributed Bragg reflectors. In this paper we propose negative index material mirrors as a third alternative. With the help of a rigorous Green function approach, we investigate second harmonic generation from single and coupled cavities, and theoretically prove that negative index material mirrors can raise the nonlinear conversion efficiency of a bulk material by at least four orders of magnitude compared to a bulk medium.

  10. Second and third order nonlinear optical properties of conjugated molecules and polymers

    NASA Technical Reports Server (NTRS)

    Perry, Joseph W.; Stiegman, Albert E.; Marder, Seth R.; Coulter, Daniel R.; Beratan, David N.; Brinza, David E.

    1988-01-01

    Second- and third-order nonlinear optical properties of some newly synthesized organic molecules and polymers are reported. Powder second-harmonic-generation efficiencies of up to 200 times urea have been realized for asymmetric donor-acceptor acetylenes. Third harmonic generation chi(3)s have been determined for a series of small conjugated molecules in solution. THG chi(3)s have also been determined for a series of soluble conjugated copolymers prepared using ring-opening metathesis polymerization. The results are discussed in terms of relevant molecular and/or macroscopic structural features of these conjugated organic materials.

  11. Impact of the phase-mismatch in the SHG crystal and consequential self-action of the fundamental wave by cascaded second-order effects on the THG efficiency of a Q-switched 1342 nm Nd:YVO₄ laser.

    PubMed

    Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A

    2015-05-18

    We report on the influence of self-focusing and self-defocusing in the phase-mismatched frequency doubling crystal on the third harmonic generation (THG) efficiency in a two crystal frequency tripling scheme. By detuning the temperature of the doubling crystal, the impact of a phase-mismatch in second harmonic generation (SHG) on the subsequent sum frequency mixing process was investigated. It was found that adjusting the temperature not only affected the power ratio of the second harmonic to the fundamental but also the beam diameter of the fundamental beam in the THG crystal, which was caused by self-focusing and self-defocusing of the fundamental beam, respectively. This self-action was induced by a cascaded χ(2) : χ(2) process in the phase-mismatched SHG crystal. Self-defocusing was observable for positive detuning and self-focusing for negative detuning of the phase-matching temperature. Hence, the THG efficiency was not symmetric with respect to the point of optimum phase-matching. Optimum THG was obtained for positive detuning and the resulting self-defocusing in combination with the focusing lens in front of the THG stage was also beneficial for the beam quality of the third harmonic.

  12. Second-harmonic generation at angular incidence in a negative-positive index photonic band-gap structure.

    PubMed

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Scalora, Michael; Bloemer, Mark J

    2006-08-01

    In the spectral region where the refractive index of the negative index material is approximately zero, at oblique incidence, the linear transmission of a finite structure composed of alternating layers of negative and positive index materials manifests the formation of a new type of band gap with exceptionally narrow band-edge resonances. In particular, for TM-polarized (transverse magnetic) incident waves, field values that can be achieved at the band edge may be much higher compared to field values achievable in standard photonic band-gap structures. We exploit the unique properties of these band-edge resonances for applications to nonlinear frequency conversion, second-harmonic generation, in particular. The simultaneous availability of high field localization and phase matching conditions may be exploited to achieve second-harmonic conversion efficiencies far better than those achievable in conventional photonic band-gap structures. Moreover, we study the role played by absorption within the negative index material, and find that the process remains efficient even for relatively high values of the absorption coefficient.

  13. Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism.

    PubMed

    Zhuo, G-Y; Lee, H; Hsu, K-J; Huttunen, M J; Kauranen, M; Lin, Y-Y; Chu, S-W

    2014-03-01

    Chirality is one of the most fundamental and essential structural properties of biological molecules. Many important biological molecules including amino acids and polysaccharides are intrinsically chiral. Conventionally, chiral species can be distinguished by interaction with circularly polarized light, and circular dichroism is one of the best-known approaches for chirality detection. As a linear optical process, circular dichroism suffers from very low signal contrast and lack of spatial resolution in the axial direction. It has been demonstrated that by incorporating nonlinear interaction with circularly polarized excitation, second-harmonic generation circular dichroism can provide much higher signal contrast. However, previous circular dichroism and second-harmonic generation circular dichroism studies are mostly limited to probe chiralities at surfaces and interfaces. It is known that second-harmonic generation, as a second-order nonlinear optical effect, provides excellent optical sectioning capability when combined with a laser-scanning microscope. In this work, we combine the axial resolving power of second-harmonic generation and chiral sensitivity of second-harmonic generation circular dichroism to realize three-dimensional chiral detection in biological tissues. Within the point spread function of a tight focus, second-harmonic generation circular dichroism could arise from the macroscopic supramolecular packing as well as the microscopic intramolecular chirality, so our aim is to clarify the origins of second-harmonic generation circular dichroism response in complicated three-dimensional biological systems. The sample we use is starch granules whose second-harmonic generation-active molecules are amylopectin with both microscopic chirality due to its helical structure and macroscopic chirality due to its crystallized packing. We found that in a starch granule, the second-harmonic generation for right-handed circularly polarized excitation is significantly different from second-harmonic generation for left-handed one, offering excellent second-harmonic generation circular dichroism contrast that approaches 100%. In addition, three-dimensional visualization of second-harmonic generation circular dichroism distribution with sub-micrometer spatial resolution is realized. We observed second-harmonic generation circular dichroism sign change across the starch granules, and the result suggests that in thick biological tissue, second-harmonic generation circular dichroism arises from macroscopic molecular packing. Our result provides a new method to visualize the organization of three-dimensional structures of starch granules. The second-harmonic generation circular dichroism imaging method expands the horizon of nonlinear chiroptical studies from simplified surface/solution environments to complicated biological tissues. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  14. Efficiency of different methods of extra-cavity second harmonic generation of continuous wave single-frequency radiation.

    PubMed

    Khripunov, Sergey; Kobtsev, Sergey; Radnatarov, Daba

    2016-01-20

    This work presents for the first time to the best of our knowledge a comparative efficiency analysis among various techniques of extra-cavity second harmonic generation (SHG) of continuous-wave single-frequency radiation in nonperiodically poled nonlinear crystals within a broad range of power levels. Efficiency of nonlinear radiation transformation at powers from 1 W to 10 kW was studied in three different configurations: with an external power-enhancement cavity and without the cavity in the case of single and double radiation pass through a nonlinear crystal. It is demonstrated that at power levels exceeding 1 kW, the efficiencies of methods with and without external power-enhancement cavities become comparable, whereas at even higher powers, SHG by a single or double pass through a nonlinear crystal becomes preferable because of the relatively high efficiency of nonlinear transformation and fairly simple implementation.

  15. Guided-wave phase-matched second-harmonic generation in KTiOPO4 waveguide produced by swift heavy-ion irradiation

    NASA Astrophysics Data System (ADS)

    Cheng, Yazhou; Jia, Yuechen; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2014-11-01

    We report on the guided-wave second-harmonic generation in a KTiOPO4 nonlinear optical waveguide fabricated by a 17 MeV O5+ ion irradiation at a fluence of 1.5×1015 ions/cm2. The waveguide guides light along both TE and TM polarizations, which is suitable for phase-matching frequency doubling. Second harmonics of green light at a wavelength of 532 nm have been generated through the KTiOPO4 waveguide platform under an optical pump of fundamental wave at 1064 nm in both continuous-wave and pulsed regimes, reaching optical conversion efficiencies of 5.36%/W and 11.5%, respectively. The propagation losses have been determined to be ˜3.1 and ˜5.7 dB/cm for the TE and TM polarizations at a wavelength of 632.8 nm, respectively.

  16. High-power, continuous-wave, second-harmonic generation at 532 nm in periodically poled KTiOPO(4).

    PubMed

    Samanta, G K; Kumar, S Chaitanya; Mathew, M; Canalias, C; Pasiskevicius, V; Laurell, F; Ebrahim-Zadeh, M

    2008-12-15

    We report efficient generation of high-power, cw, single-frequency radiation in the green in a simple, compact configuration based on single-pass, second-harmonic generation of a cw ytterbium fiber laser at 1064 nm in periodically poled KTiOPO(4). Using a crystal containing a 17 mm single grating with period of 9.01 microm, we generate 6.2 W of cw radiation at 532 nm for a fundamental power of 29.75 W at a single-pass conversion efficiency of 20.8%. Over the entire range of pump powers, the generated green output is single frequency with a linewidth of 8.5 MHz and has a TEM(00) spatial profile with M(2)<1.34. The demonstrated green power can be further improved by proper thermal management of crystal heating effects at higher pump powers and also by optimized design of the grating period to include thermal issues.

  17. Photo-induced second-order nonlinearity in stoichiometric silicon nitride waveguides

    NASA Astrophysics Data System (ADS)

    Porcel, Marco A. G.; Mak, Jesse; Taballione, Caterina; Schermerhorn, Victoria K.; Epping, Jörn P.; van der Slot, Peter J. M.; Boller, Klaus-J.

    2017-12-01

    We report the observation of second-harmonic generation in stoichiometric silicon nitride waveguides grown via low-pressure chemical vapour deposition. Quasi-rectangular waveguides with a large cross section were used, with a height of 1 {\\mu}m and various different widths, from 0.6 to 1.2 {\\mu}m, and with various lengths from 22 to 74 mm. Using a mode-locked laser delivering 6-ps pulses at 1064 nm wavelength with a repetition rate of 20 MHz, 15% of the incoming power was coupled through the waveguide, making maximum average powers of up to 15 mW available in the waveguide. Second-harmonic output was observed with a delay of minutes to several hours after the initial turn-on of pump radiation, showing a fast growth rate between 10$^{-4}$ to 10$^{-2}$ s$^{-1}$, with the shortest delay and highest growth rate at the highest input power. After this first, initial build-up, the second-harmonic became generated instantly with each new turn-on of the pump laser power. Phase matching was found to be present independent of the used waveguide width, although the latter changes the fundamental and second-harmonic phase velocities. We address the presence of a second-order nonlinearity and phase matching, involving an initial, power-dependent build-up, to the coherent photogalvanic effect. The effect, via the third-order nonlinearity and multiphoton absorption leads to a spatially patterned charge separation, which generates a spatially periodic, semi-permanent, DC-field-induced second-order susceptibility with a period that is appropriate for quasi-phase matching. The maximum measured second-harmonic conversion efficiency amounts to 0.4% in a waveguide with 0.9 x 1 {\\mu}m$^2$ cross section and 36 mm length, corresponding to 53 {\\mu}W at 532 nm with 13 mW of IR input coupled into the waveguide. The according $\\chi^{(2)}$ amounts to 3.7 pm/V, as retrieved from the measured conversion efficiency.

  18. Effect of composition and temperature on the second harmonic generation in silver phosphate glasses

    NASA Astrophysics Data System (ADS)

    Konidakis, I.; Psilodimitrakopoulos, S.; Kosma, K.; Lemonis, A.; Stratakis, E.

    2018-01-01

    We herein employ nonlinear laser imaging microscopy to explicitly study the dynamics of second harmonic generation (SHG) in silver iodide phosphate glasses. While glasses of this family have gained extensive scientific attention over the years due to their superior conducting properties, considerably less attention has been paid to their unique nonlinear optical characteristics. In the present study, firstly, it is demonstrated that SHG signal intensity is enhanced upon increasing silver content due to the random formation of silver microstructures within the glass network. Secondly, the SHG temperature dynamics were explored near the glass transition temperature (Tg) regime, where significant glass relaxation phenomena occur. It is found that heating towards the Tg improves the SHG efficiency, whereas above Tg, the capacity of glasses to generate second harmonic radiation is drastically suppressed. The novel findings of this work are considered important in terms of the potential employment of these glasses for the realization of advanced photonic applications like optical-switches and wavelength conversion devices.

  19. Non-critical phase-matching fourth harmonic generation of a 1053-nm laser in an ADP crystal

    PubMed Central

    Ji, Shaohua; Wang, Fang; Zhu, Lili; Xu, Xinguang; Wang, Zhengping; Sun, Xun

    2013-01-01

    In current inertial confinement fusion (ICF) facilities, KDP and DKDP crystals are the second harmonic generation (SHG) and third harmonic generation (THG) materials for the Nd:glass laser (1053 nm). Based on the trend for the development of short wavelengths for ICF driving lasers, technical solutions for fourth harmonic generation (FHG) will undoubtedly attract more and more attention. In this paper, the rapid growth of an ADP crystal and non-critical phase-matching (NCPM) FHG of a 1053-nm laser using an ADP crystal are reported. The NCPM temperature is 33.7°C. The conversion efficiency from 526 to 263 nm is 70%, and the angular acceptance range is 55.4 mrad; these results are superior to those for the DKDP crystals. This research has shown that ADP crystals will be a competitive candidate in future ICF facilities when the utilisation of high-energy, high-efficiency UV lasers at wavelengths shorter than the present 351 nm is of interest. PMID:23549389

  20. Non-critical phase-matching fourth harmonic generation of a 1053-nm laser in an ADP crystal.

    PubMed

    Ji, Shaohua; Wang, Fang; Zhu, Lili; Xu, Xinguang; Wang, Zhengping; Sun, Xun

    2013-01-01

    In current inertial confinement fusion (ICF) facilities, KDP and DKDP crystals are the second harmonic generation (SHG) and third harmonic generation (THG) materials for the Nd:glass laser (1053 nm). Based on the trend for the development of short wavelengths for ICF driving lasers, technical solutions for fourth harmonic generation (FHG) will undoubtedly attract more and more attention. In this paper, the rapid growth of an ADP crystal and non-critical phase-matching (NCPM) FHG of a 1053-nm laser using an ADP crystal are reported. The NCPM temperature is 33.7°C. The conversion efficiency from 526 to 263 nm is 70%, and the angular acceptance range is 55.4 mrad; these results are superior to those for the DKDP crystals. This research has shown that ADP crystals will be a competitive candidate in future ICF facilities when the utilisation of high-energy, high-efficiency UV lasers at wavelengths shorter than the present 351 nm is of interest.

  1. Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk.

    PubMed

    Liu, Shijie; Zheng, Yuanlin; Chen, Xianfeng

    2017-09-15

    Whispering-gallery-mode (WGM) microcavities are very important in both fundamental science and practical applications, among which on-chip second-order nonlinear microresonators play an important role in integrated photonic functionalities. Here we demonstrate resonant second-harmonic generation (SHG) and cascaded third-harmonic generation (THG) in a lithium niobate-on-insulator (LNOI) microdisk resonator. Efficient SHG in the visible range was obtained with only several mW input powers at telecom wavelengths. THG was also observed through a cascading process, which reveals simultaneous phase matching and strong mode coupling in the resonator. Cascading of second-order nonlinear processes gives rise to an effectively large third-order nonlinearity, which makes on-chip second-order nonlinear microresonators a promising frequency converter for integrated nonlinear photonics.

  2. Plasmonic modes in nanowire dimers: A study based on the hydrodynamic Drude model including nonlocal and nonlinear effects

    NASA Astrophysics Data System (ADS)

    Moeferdt, Matthias; Kiel, Thomas; Sproll, Tobias; Intravaia, Francesco; Busch, Kurt

    2018-02-01

    A combined analytical and numerical study of the modes in two distinct plasmonic nanowire systems is presented. The computations are based on a discontinuous Galerkin time-domain approach, and a fully nonlinear and nonlocal hydrodynamic Drude model for the metal is utilized. In the linear regime, these computations demonstrate the strong influence of nonlocality on the field distributions as well as on the scattering and absorption spectra. Based on these results, second-harmonic-generation efficiencies are computed over a frequency range that covers all relevant modes of the linear spectra. In order to interpret the physical mechanisms that lead to corresponding field distributions, the associated linear quasielectrostatic problem is solved analytically via conformal transformation techniques. This provides an intuitive classification of the linear excitations of the systems that is then applied to the full Maxwell case. Based on this classification, group theory facilitates the determination of the selection rules for the efficient excitation of modes in both the linear and nonlinear regimes. This leads to significantly enhanced second-harmonic generation via judiciously exploiting the system symmetries. These results regarding the mode structure and second-harmonic generation are of direct relevance to other nanoantenna systems.

  3. A new mode of contrast in biological second harmonic generation microscopy.

    PubMed

    Green, Nicola H; Delaine-Smith, Robin M; Askew, Hannah J; Byers, Robert; Reilly, Gwendolen C; Matcher, Stephen J

    2017-10-17

    Enhanced image contrast in biological second harmonic imaging microscopy (SHIM) has previously been reported via quantitative assessments of forward- to epi-generated signal intensity ratio and by polarization analysis. Here we demonstrate a new form of contrast: the material-specific, wavelength-dependence of epi-generated second harmonic generation (SHG) excitation efficiency, and discriminate collagen and myosin by ratiometric epi-generated SHG images at 920 nm and 860 nm. Collagen shows increased SHG intensity at 920 nm, while little difference is detected between the two for myosin; allowing SHIM to characterize different SHG-generating components within a complex biological sample. We propose that momentum-space mapping of the second-order non-linear structure factor is the source of this contrast and develop a model for the forward and epi-generated SHG wavelength-dependence. Our model demonstrates that even very small changes in the assumed material fibrillar structure can produce large changes in the wavelength-dependency of epi-generated SHG. However, in the case of forward SHG, although the same changes impact upon absolute intensity at a given wavelength, they have very little effect on wavelength-dependency beyond the expected monotonic fall. We also propose that this difference between forward and epi-generated SHG provides an explanation for many of the wavelength-dependency discrepancies in the published literature.

  4. Symmetry properties of second harmonics generated by antisymmetric Lamb waves

    NASA Astrophysics Data System (ADS)

    Zhu, Wujun; Xiang, Yanxun; Liu, Chang-Jun; Deng, Mingxi; Xuan, Fu-Zhen

    2018-03-01

    Symmetry properties of second harmonics generated by antisymmetric primary Lamb waves are systematically studied in this work. In theory, the acoustic field of second harmonic Lamb waves is obtained by using the perturbation approximation and normal modal method, and the energy flux transfer from the primary Lamb waves to second harmonics is mainly explored. Symmetry analyses indicate that either the symmetric or antisymmetric Lamb waves can merely generate the symmetric second harmonics. Finite element simulations are performed on the nonlinear Lamb wave propagation of the antisymmetric A0 mode in the low frequency region. The signals of the second harmonics and the symmetric second harmonic s0 mode are found to be exactly equivalent in the time domain. The relative acoustic nonlinearity parameter A2/A12 oscillates with the propagation distance, and the oscillation amplitude and spatial period are well consistent with the theoretical prediction of the A0-s0 mode pair, which means that only the second harmonic s0 mode is generated by the antisymmetric primary A0 mode. Experiments are further conducted to examine the cumulative generation of symmetric second harmonics for the antisymmetric-symmetric mode pair A3-s6. Results show that A2/A12 increases linearly with the propagation distance, which means that the symmetric second harmonic s6 mode is generated cumulatively by the antisymmetric primary A3 mode. The present investigation systematically corroborates the proposed theory that only symmetric second harmonics can be generated accompanying the propagation of antisymmetric primary Lamb waves in a plate.

  5. Geometric effect on second harmonic generation from gold grating

    NASA Astrophysics Data System (ADS)

    Lu, Jiao; Ding, Baoyong; Huo, Yanyan; Ning, Tingyin

    2018-05-01

    We numerically investigate second harmonic generation from gold gratings of an ideal rectangular and ladder-shaped cross-section. The SHG efficiency from the gold gratings of the ladder-shaped cross-section is significantly enhanced compared with that from the ideal rectangular cross-section with a maximum enhancement factor of around two. The enhancement is ascribe to the nanostructure dependent local fundamental electric field, the nonlinear sources and thus the far field radiation. Our results have a practical meaning in the explanation of experimental SHG measurement, and the modulation of SHG response in the metallic nanostructure.

  6. Second harmonic generation and crystal growth of new chalcone derivatives

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Dharmaprakash, S. M.; Ramakrishna, K.; Fun, Hoong-Kun; Sai Santosh Kumar, R.; Narayana Rao, D.

    2007-05-01

    We report on the synthesis, crystal structure and optical characterization of chalcone derivatives developed for second-order nonlinear optics. The investigation of a series of five chalcone derivatives with the second harmonic generation powder test according to Kurtz and Perry revealed that these chalcones show efficient second-order nonlinear activity. Among them, high-quality single crystals of 3-Br-4'-methoxychalcone (3BMC) were grown by solvent evaporation solution growth technique. Grown crystals were characterized by X-ray powder diffraction (XRD), laser damage threshold, UV-vis-NIR and refractive index measurement studies. Infrared spectroscopy, thermogravimetric analysis and differential thermal analysis measurements were performed to study the molecular vibration and thermal behavior of 3BMC crystal. Thermal analysis does not show any structural phase transition.

  7. Solid-state lasers for coherent communication and remote sensing

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1990-01-01

    Laser development, high efficiency, high power second harmonic generation, operation of optical parametric oscillators for wavelength diversity and tunability, and studies in coherent communications are reviewed.

  8. Selective suppression of high-order harmonics within phase-matched spectral regions.

    PubMed

    Lerner, Gavriel; Diskin, Tzvi; Neufeld, Ofer; Kfir, Ofer; Cohen, Oren

    2017-04-01

    Phase matching in high-harmonic generation leads to enhancement of multiple harmonics. It is sometimes desired to control the spectral structure within the phase-matched spectral region. We propose a scheme for selective suppression of high-order harmonics within the phase-matched spectral region while weakly influencing the other harmonics. The method is based on addition of phase-mismatched segments within a phase-matched medium. We demonstrate the method numerically in two examples. First, we show that one phase-mismatched segment can significantly suppress harmonic orders 9, 15, and 21. Second, we show that two phase-mismatched segments can efficiently suppress circularly polarized harmonics with one helicity over the other when driven by a bi-circular field. The new method may be useful for various applications, including the generation of highly helical bright attosecond pulses.

  9. Second harmonic generation efficiency affected by radiation force of a high-energy laser beam through stress within a mounted potassium dihydrogen phosphate crystal

    NASA Astrophysics Data System (ADS)

    Su, Ruifeng; Zhu, Mingzhi; Huang, Zhan; Wang, Baoxu; Wu, Wenkai

    2018-01-01

    Influence of radiation force of a high-energy laser beam on the second harmonic generation (SHG) efficiency through stress within a mounted potassium dihydrogen phosphate (KDP) crystal is studied, as well as an active method of improving the SHG efficiency by controlling the stress is proposed. At first, the model for studying the influence of the radiation force on the SHG efficiency is established, where the radiation force is theoretically analyzed, the stress caused by the radiation force is theoretically analyzed and numerically calculated using the finite-element method, and the influence of the stress on the SHG efficiency is theoretically analyzed. Then, a method of improving the SHG efficiency by controlling the stress through adjusting the structural parameters of the mounting set of the KDP crystal is examined. It demonstrates that the radiation force causes stress within the KDP crystal and further militates against the SHG efficiency; however, the SHG efficiency could be improved by controlling the stress through adjusting the structural parameters of the mounting set of the KDP crystal.

  10. Enhanced Second-Harmonic Generation Using Broken Symmetry III–V Semiconductor Fano Metasurfaces

    DOE PAGES

    Vabishchevich, Polina P.; Liu, Sheng; Sinclair, Michael B.; ...

    2018-01-27

    All-dielectric metasurfaces, two-dimensional arrays of subwavelength low loss dielectric inclusions, can be used not only to control the amplitude and phase of optical beams, but also to generate new wavelengths through enhanced nonlinear optical processes that are free from some of the constraints dictated by the use of bulk materials. Recently, high quality factor (Q) resonances in these metasurfaces have been revealed and utilized for applications such as sensing and lasing. The origin of these resonances stems from the interference of two nanoresonator modes with vastly different Q. Here we show that nonlinear optical processes can be further enhanced bymore » utilizing these high-Q resonances in broken symmetry all-dielectric metasurfaces. As a result, we study second harmonic generation from broken symmetry metasurfaces made from III–V semiconductors and observe nontrivial spectral shaping of second-harmonic and multifold efficiency enhancement induced by high field localization and enhancement inside the nanoresonators.« less

  11. Second harmonic generation at fatigue cracks by low-frequency Lamb waves: Experimental and numerical studies

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei; Sohn, Hoon; Lim, Hyung Jin

    2018-01-01

    This paper presents experimental and theoretical analyses of the second harmonic generation due to non-linear interaction of Lamb waves with a fatigue crack. Three-dimensional (3D) finite element (FE) simulations and experimental studies are carried out to provide physical insight into the mechanism of second harmonic generation. The results demonstrate that the 3D FE simulations can provide a reasonable prediction on the second harmonic generated due to the contact nonlinearity at the fatigue crack. The effect of the wave modes on the second harmonic generation is also investigated in detail. It is found that the magnitude of the second harmonic induced by the interaction of the fundamental symmetric mode (S0) of Lamb wave with the fatigue crack is much higher than that by the fundamental anti-symmetric mode (A0) of Lamb wave. In addition, a series of parametric studies using 3D FE simulations are conducted to investigate the effect of the fatigue crack length to incident wave wavelength ratio, and the influence of the excitation frequency on the second harmonic generation. The outcomes show that the magnitude and directivity pattern of the generated second harmonic depend on the fatigue crack length to incident wave wavelength ratio as well as the ratio of S0 to A0 incident Lamb wave amplitude. In summary, the findings of this study can further advance the use of second harmonic generation in damage detection.

  12. Promoting Spontaneous Second Harmonic Generation through Organogelation.

    PubMed

    Marco, A Belén; Aparicio, Fátima; Faour, Lara; Iliopoulos, Konstantinos; Morille, Yohann; Allain, Magali; Franco, Santiago; Andreu, Raquel; Sahraoui, Bouchta; Gindre, Denis; Canevet, David; Sallé, Marc

    2016-07-27

    An organogelator based on the Disperse Red nonlinear optical chromophore was synthesized according to a simple and efficient three-step procedure. The supramolecular gel organization leads to xerogels which display a spontaneous second harmonic generation (SHG) response without any need for preprocessing, and this SHG activity appears to be stable over several months. These findings, based on an intrinsic structural approach, are supported by favorable intermolecular supramolecular interactions, which promote a locally non-centrosymmetric NLO-active organization. This is in sharp contrast with most materials designed for SHG purposes, which generally require the use of expensive or heavy-to-handle external techniques for managing the dipoles' alignment.

  13. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    Recent progress in the development of highly efficient coherent optical sources is reviewed. This work focusses on nonlinear frequency conversion of the highly coherent output of the Non-Planar Ring Laser Oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  14. Second and Third Harmonic Generation in Metal-Based Nanostructures

    DTIC Science & Technology

    2010-01-01

    Prudenzano, D. de Ceglia, N. Akozbek, M.J. Bloemer, P. Ashley, and M. Scalora , "Enhanced transmission and second harmonic generation from...Fazio, C. Sibilia, M. J. Bloemer, and M. Scalora , "Second-harmonic generation from metallodielectric multilayer photonic-band-gap structures", Phys...harmonic generation", Phys. Rev. B 38, 7985 (1988). [50] M. A. Vincenti, D. de Ceglia, M. Buncick, N. Akozbek, M. J. Bloemer, and M. Scalora

  15. High-power picosecond pulses by SPM-induced spectral compression in a fiber amplifier

    NASA Astrophysics Data System (ADS)

    Schreiber, T.; Liem, A.; Roeser, F.; Zellmer, H.; Tuennermann, A.; Limpert, J.; Deguil-Robin, N.; Manek-Honninger, I.; Salin, F.; Courjaud, A.; Honninger, C.; Mottay, E.

    2005-04-01

    The fiber based generation of nearly transform-limited 10-ps pulses with 200 kW peak power (97 W average power) based on SPM-induced spectral compression is reported. Efficient second harmonic generation applying this source is also discussed.

  16. IR Bandwidth and Crystal Thickness Effects on THG Efficiency and Temporal Shaping of Quasi-Rectangular UV Pulses: Part II - Incident IR Ripple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolton, Paul R.; Limborg-Deprey, Cecile; /SLAC

    We have investigated the effect of incident ir spectral bandwidth and crystal thickness, on uv pulses produced by third harmonic generation (THG) in a crystal pair. Our focus is on the third harmonic generation efficiency and longitudinal uv intensity profile parameters of SNLO predictions that are evaluated for three incident ir spectral bandwidths and a range of crystal thicknesses. These results represent a continuation of earlier work in which the effects of the same selected ir bandwidths and range of crystal thicknesses were investigated using a pair of BBO Type I crystals in a simplistic geometry for which the longitudinalmore » intensity plateau has a zero slope, 'flattop' profile. The current work is distinguished from the previous work by an imposed ripple on the ir intensity longitudinal profile and constitutes a portion of a Part II effort to which we have made reference. As with preceding work, all third harmonic data are net results at the exit of the second BBO crystal. Predictions are obtained with the modified SNLO code developed by Arlee Smith at the Sandia National Laboratories. This modification has allowed us to pursue the 'coupled' case in which the output of the first BBO crystal is used as input to the second one. This includes both the fundamental and second harmonic light. Defined parameters are consistent with previous work. The presented cases are best results. The criteria for selection of these reported cases are highest THG efficiency combined with minimum intensity ripple in the plateau. The incident ir pulse is quasi-rectangular with an imposed 5.2 % (rms) intensity ripple added to the plateau. The ir pulse bandwidth is centered at 800 nm. Second harmonic generation occurs in the first BBO crystal and THG occurs in the second crystal as a consequence of sum frequency generation. Type I phase matching is used throughout, so that for a negative uniaxial crystal: n{sub 2}{sup e}({theta}) = n{sub 1}{sup o};(SHG) (1.1) 3n{sub 3}{sup 3}({theta}) = 2n{sub 2}{sup o} + n{sub 1}{sup o};(THG) where n{sub 2}{sup e}({theta}) and n{sub 3}{sup e}({theta}) are the angle dependent extraordinary refractive indices for the second and third harmonics respectively, and n{sub 1}{sup 1} and n{sub 2}{sup o} are the ordinary refractive indices for the fundamental and second harmonic respectively. Although our goal at this stage has not been to comply with all the LCLS injector laser specifications, the results provided here represent a parameter study that can be used to determine candidate bandwidth dependent, crystal thickness combinations for the detailed design of compliant THG subsystems. This simplistic geometry better elucidates acceptance bandwidth limitations that are intrinsic to the crystal material.« less

  17. Giant enhancement of second harmonic generation in nonlinear photonic crystals with distributed Bragg reflector mirrors.

    PubMed

    Ren, Ming-Liang; Li, Zhi-Yuan

    2009-08-17

    We theoretically investigate second harmonic generation (SHG) in one-dimensional multilayer nonlinear photonic crystal (NPC) structures with distributed Bragg reflector (DBR) as mirrors. The NPC structures have periodic modulation on both the linear and second-order susceptibility. Three major physical mechanisms, quasi-phase matching (QPM) effect, slow light effect at photonic band gap edges, and cavity effect induced by DBR mirrors can be harnessed to enhance SHG. Selection of appropriate structural parameters can facilitate coexistence of these mechanisms to act collectively and constructively to create very high SHG conversion efficiency with an enhancement by up to seven orders of magnitude compared with the ordinary NPC where only QPM works. (c) 2009 Optical Society of America

  18. Design of compact dispersion interferometer with a high efficiency nonlinear crystal and a low power CO2 laser

    NASA Astrophysics Data System (ADS)

    Akiyama, T.; Yoshimura, S.; Tomita, K.; Shirai, N.; Murakami, T.; Urabe, K.

    2017-12-01

    When the electron density of a plasma generated in high pressure environment is measured by a conventional interferometer, the phase shifts due to changes of the neutral gas density cause significant measurement errors. A dispersion interferometer, which measures the phase shift that arises from dispersion of medium between the fundamental and the second harmonic wavelengths of laser light, can suppress the measured phase shift due to the variations of neutral gas density. In recent years, the CO2 laser dispersion interferometer has been applied to the atmospheric pressure plasmas and its feasibility has been demonstrated. By combining a low power laser and a high efficiency nonlinear crystal for the second harmonic component generation, a compact dispersion interferometer can be designed. The optical design and preliminary experiments are conducted.

  19. Size dependence of second-harmonic generation at the surface of microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viarbitskaya, Sviatlana; Meulen, Peter van der; Hansson, Tony

    2010-05-15

    The resonance-enhanced surface second-harmonic generation (SHG) from a suspension of polystyrene microspheres was investigated as a function of particle size in a range of the order of the fundamental wavelength for two different second-harmonic-enhancing dyes--malachite green and pyridine 1. The two dyes gave the same strongly modulated pattern of the forward second-harmonic scattering efficiency. Direct comparison to the nonlinear Rayleigh-Gans-Debye (NLRGD) and nonlinear Wentzel-Kramers-Brillouin (NLWKB) model predictions showed that the NLWKB model reproduces the overall trend in the size dependence but fails with respect to the strong modulations. The standard NLRGD model was found to fail altogether in the presentmore » particle size range, which was well beyond the observed upper particle size for which the NLRGD and NLWKB models give comparable results. A generalization of the NLRGD model to allow for dispersion and to use the particle refractive indices instead of those of the surrounding medium extended its applicability range by almost an order of magnitude in particle size. There is a pronounced maximal SHG efficiency for particles with a radius that is close to the fundamental wavelength inside the particle. The optically soft particle approximation is inadequate to describe the SHG in this particle size range, as refraction and reflection of the waves at the particle surface have a decisive influence. Dispersion of the media plays a negligible role for particle sizes up to about twice the optimal one for SHG.« less

  20. High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier

    NASA Astrophysics Data System (ADS)

    Mu, Xiaodong; Steinvurzel, Paul; Rose, Todd S.; Lotshaw, William T.; Beck, Steven M.; Clemmons, James H.

    2016-03-01

    We demonstrate high power, deep ultraviolet (DUV) conversion to 266 nm through frequency quadrupling of a nanosecond pulse width 1064 nm fiber master oscillator power amplifier (MOPA). The MOPA system uses an Yb-doped double-clad polarization-maintaining large mode area tapered fiber as the final gain stage to generate 0.5-mJ, 10 W, 1.7- ns single mode pulses at a repetition rate of 20 kHz with measured spectral bandwidth of 10.6 GHz (40 pm), and beam qualities of Mx 2=1.07 and My 2=1.03, respectively. Using LBO and BBO crystals for the second-harmonic generation (SHG) and fourth-harmonic generation (FHG), we have achieved 375 μJ (7.5 W) and 92.5 μJ (1.85 W) at wavelengths of 532 nm and 266 nm, respectively. To the best of our knowledge these are the highest narrowband infrared, green and UV pulse energies obtained to date from a fully spliced fiber amplifier. We also demonstrate high efficiency SHG and FHG with walk-off compensated (WOC) crystal pairs and tightly focused pump beam. An SHG efficiency of 75%, FHG efficiency of 47%, and an overall efficiency of 35% from 1064 nm to 266 nm are obtained.

  1. Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Y.; Roland, I.; Checoury, X.

    We demonstrate second harmonic generation in a gallium nitride photonic crystal cavity embedded in a two-dimensional free-standing photonic crystal platform on silicon. The photonic crystal nanocavity is optically pumped with a continuous-wave laser at telecom wavelengths in the transparency window of the nitride material. The harmonic generation is evidenced by the spectral range of the emitted signal, the quadratic power dependence vs. input power, and the spectral dependence of second harmonic signal. The harmonic emission pattern is correlated to the harmonic polarization generated by the second-order nonlinear susceptibilities χ{sub zxx}{sup (2)}, χ{sub zyy}{sup (2)} and the electric fields of the fundamentalmore » cavity mode.« less

  2. Self-Action of Second Harmonic Generation and Longitudinal Temperature Gradient in Nonlinear-Optical Crystals

    NASA Astrophysics Data System (ADS)

    Baranov, A. I.; Konyashkin, A. V.; Ryabushkin, O. A.

    2015-09-01

    Model of second harmonic generation with thermal self-action was developed. Second harmonic generation temperature phase matching curves were measured and calculated for periodically polled lithium niobate crystal. Both experimental and calculated data show asymmetrical shift of temperature tuning curves with pump power.

  3. Reflection second harmonic generation on a z -cut congruent lithium niobate crystal

    NASA Astrophysics Data System (ADS)

    Sono, T. J.; Scott, J. G.; Sones, C. L.; Valdivia, C. E.; Mailis, S.; Eason, R. W.; Frey, J. G.; Danos, L.

    2006-11-01

    Reflection second harmonic generation experiments were performed on z -cut congruent lithium niobate crystals (LiNbO3) to reveal the interfacial layer symmetry as the crystal is rotated around the z axis. To suppress the bulk contribution, the fundamental wavelength was selected to be 532nm , resulting in second harmonic generation at a wavelength within the absorption region of the crystal. The polarity of the direction of the y -axis was determined from second harmonic generation data and used to show that this direction also inverts during domain inversion.

  4. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    Recent progress in the development of highly efficient coherent optical sources was reviewed. This work has focused on nonlinear frequency conversion of the highly coherent output of the non-planar ring laser oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  5. Singularity-driven second- and third-harmonic generation at {epsilon}-near-zero crossing points

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincenti, M. A.; Ceglia, D. de; Ciattoni, A.

    We show an alternative path to efficient second- and third-harmonic generation in proximity of the zero crossing points of the dielectric permittivity in conjunction with low absorption. Under these circumstances, any material, either natural or artificial, will show similar degrees of field enhancement followed by strong harmonic generation, without resorting to any resonant mechanism. The results presented in this paper provide a general demonstration of the potential that the zero-crossing-point condition holds for nonlinear optical phenomena. We investigate a generic Lorentz medium and demonstrate that a singularity-driven enhancement of the electric field may be achieved even in extremely thin layersmore » of material. We also discuss the role of nonlinear surface sources in a realistic scenario where a 20-nm layer of CaF{sub 2} is excited at 21 {mu}m, where {epsilon}{approx} 0. Finally, we show similar behavior in an artificial composite material that includes absorbing dyes in the visible range, provide a general tool for the improvement of harmonic generation using the {epsilon}{approx} 0 condition, and illustrate that this singularity-driven enhancement of the field lowers the thresholds for a plethora of nonlinear optical phenomena.« less

  6. Harmonic magneto-electric response in GaFeO3

    NASA Astrophysics Data System (ADS)

    Naiya, Amit Kumar; Awasthi, A. M.

    2018-04-01

    GaFeO3 is a well-known multiferroic material. Like optical second harmonic generation, it also generates radio frequency (RF) second harmonic due to its non-centrosymmetric orthorhombic structure. The harmonic RF response also features a magneto-electric character comparable in prominence to that of the fundamental response. We measured complex parts of the fundamental and the second harmonic over 80 K to 300 K. The second harmonic permittivity and its phase angle change sign at the spin glass transition temperature Tg = 200 K and becomes dispersive above ˜280 K.

  7. Enhancement of second harmonic generation in NaNO{sub 2}-infiltrated opal photonic crystal using structural light focusing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaytsev, Kirill I., E-mail: kirzay@gmail.com; Yurchenko, Stanislav O., E-mail: st.yurchenko@mail.ru

    Experimental and numerical results for second harmonic generation (SHG) in photonic crystal (PC) based on NaNO{sub 2}-infiltrated opal matrix are presented. SHG is performed in reflection mode; thus, the direction of the SHG maximum is equal to the angle of mirror reflection. The PC was pumped with femtosecond optical pulses at different angles of incidence, allowing the dependence of the SHG efficiency on the location of the fundamental wavelength toward the PC band gap (BG) to be examined. The most efficient SHG was observed when pumping the BG of the PC. To interpret the experimental results, finite-difference time-domain numerical simulationsmore » of the light interaction with the PC were conducted. The observed effect of highly efficient SHG is associated with structural light focusing, and, as a consequence, with strong optical field localization within certain near-surface PC regions. Thus, SHG enhancement based on structural light focusing in PC was demonstrated.« less

  8. Nonlinear optical properties of flux growth KTiOPO4

    NASA Astrophysics Data System (ADS)

    Stolzenberger, Richard A.

    1988-09-01

    The properties of large flux grown KTiOPO4 second harmonic generators were measured. A technique which provides a sensitive assessment of crystal uniformity is described. Optically perfect second harmonic generation crystals of up to 1 cu cm were found to have nonlinear optical properties comparable with those grown by other methods. A Q-switched Nd:YAG laser was used to determine temperature acceptance width-length product (20 C cm), angular acceptance width-length product (13 mrad cm), and doubling efficiency (50 percent). Spectral bandwidth (4.5 A cm) and wavefront distortion (1/4 wave at 633 nm) were also measured. The dependence of these properties on crystal homogeneity is demonstrated.

  9. Thermal optimization of second harmonic generation at high pump powers.

    PubMed

    Sahm, Alexander; Uebernickel, Mirko; Paschke, Katrin; Erbert, Götz; Tränkle, Günther

    2011-11-07

    We measure the temperature distribution of a 3 cm long periodically poled LiNbO₃ crystal in a single-pass second harmonic generation (SHG) setup at 488 nm. By means of three resistance heaters and directly mounted Pt100 sensors the crystal is subdivided in three sections. 9.4 W infrared pump light and 1.3 W of SHG light cause a de-homogenized temperature distribution of 0.2 K between the middle and back section. A sectional offset heating is used to homogenize the temperature in those two sections and thus increasing the conversion efficiency. A 15% higher SHG output power matching the prediction of our theoretical model is achieved.

  10. Second-harmonic generation of ZnO nanoparticles synthesized by laser ablation of solids in liquids

    NASA Astrophysics Data System (ADS)

    Rocha-Mendoza, Israel; Camacho-López, Santiago; Luna-Palacios, Yryx Y.; Esqueda-Barrón, Yasmín; Camacho-López, Miguel A.; Camacho-López, Marco; Aguilar, Guillermo

    2018-02-01

    We report the synthesis of small zinc oxide nanoparticles (ZnO NPs) based colloidal suspensions and the study of second-harmonic generation from aggregated ZnO NPs deposited on glass substrates. The colloidal suspensions were obtained using the laser ablation of solids in liquids technique, ablating a Zn solid target immersed in acetone as the liquid medium, with ns-laser pulses (1064 nm) of a Nd-YAG laser. The per pulse laser fluence, the laser repetition rate frequency and the ablation time were kept constant. The absorption evolution of the obtained suspensions was optically characterized through absorption spectroscopy until stabilization. Raman spectroscopy, SEM and HRTEM were used to provide evidence of the ZnO NPs structure. HRTEM results showed that 5-8 nm spheroids ZnO NPs were obtained. Strong second-harmonic signal is obtained from random ZnO monocrystalline NPs and from aggregated ZnO NPs, suggesting that the high efficiency of the nonlinear process may not depend on the NPs size or aggregation state.

  11. Plasmon-Enhanced Photocleaving Dynamics in Colloidal MicroRNA-Functionalized Silver Nanoparticles Monitored with Second Harmonic Generation.

    PubMed

    Kumal, Raju R; Abu-Laban, Mohammad; Landry, Corey R; Kruger, Blake; Zhang, Zhenyu; Hayes, Daniel J; Haber, Louis H

    2016-10-11

    The photocleaving dynamics of colloidal microRNA-functionalized nanoparticles are studied using time-dependent second harmonic generation (SHG) measurements. Model drug-delivery systems composed of oligonucleotides attached to either silver nanoparticles or polystyrene nanoparticles using a nitrobenzyl photocleavable linker are prepared and characterized. The photoactivated controlled release is observed to be most efficient on resonance at 365 nm irradiation, with pseudo-first-order rate constants that are linearly proportional to irradiation powers. Additionally, silver nanoparticles show a 6-fold plasmon enhancement in photocleaving efficiency over corresponding polystyrene nanoparticle rates, while our previous measurements on gold nanoparticles show a 2-fold plasmon enhancement compared to polystyrene nanoparticles. Characterizations including extinction spectroscopy, electrophoretic mobility, and fluorimetry measurements confirm the analysis from the SHG results. The real-time SHG measurements are shown to be a highly sensitive method for investigating plasmon-enhanced photocleaving dynamics in model drug delivery systems.

  12. Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering at flame temperatures using a second-harmonic bandwidth-compressed probe.

    PubMed

    Kearney, Sean P; Scoglietti, Daniel J

    2013-03-15

    We demonstrate an approach for picosecond probe-beam generation that enables hybrid femtosecond/picosecond pure-rotational coherent anti-Stokes Raman scattering (CARS) measurements in flames. Sum-frequency generation of bandwidth-compressed picosecond radiation from femtosecond pumps with phase-conjugate chirps provides probe pulses with energies in excess of 1 mJ that are temporally locked to the femtosecond pump/Stokes preparation. This method overcomes previous limitations on hybrid femtosecond/picosecond rotational CARS techniques, which have relied upon less efficient bandwidth-reduction processes that have generally resulted in prohibitively low probe energy for flame measurements. We provide the details of the second-harmonic approach and demonstrate the technique in near-adiabatic hydrogen/air flames.

  13. Generation of vacuum ultraviolet radiation by intracavity high-harmonic generation toward state detection of single trapped ions

    NASA Astrophysics Data System (ADS)

    Wakui, Kentaro; Hayasaka, Kazuhiro; Ido, Tetsuya

    2014-12-01

    Vacuum ultraviolet (VUV) radiation around 159 nm is obtained toward direct excitation of a single trapped ion. An efficient fluoride-based VUV output coupler is employed for intracavity high-harmonic generation of a Ti:S oscillator. Using this coupler, where we measured its reflectance to be about 90 %, an average power reaching 6.4 W is coupled out from a modest fundamental power of 650 mW. When a single comb component out of 1.9 10 teeth is resonant to the atomic transition, 100s of fluorescence photons per second will be detectable under a realistic condition.

  14. Enhanced efficiency of the second harmonic inhomogeneous component in an opaque cavity.

    PubMed

    Roppo, V; Raineri, F; Raj, R; Sagnes, I; Trull, J; Vilaseca, R; Scalora, M; Cojocaru, C

    2011-05-15

    In this Letter, we experimentally demonstrate the enhancement of the inhomogeneous second harmonic conversion in the opaque region of a GaAs cavity with efficiencies of the order of 0.1% at 612 nm, using 3 ps pump pulses having peak intensities of the order of 10 MW/cm(2). We show that the conversion efficiency of the inhomogeneous, phase-locked second harmonic component is a quadratic function of the cavity factor Q. © 2011 Optical Society of America

  15. Spin current and second harmonic generation in non-collinear magnetic systems: the hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Karashtin, E. A.; Fraerman, A. A.

    2018-04-01

    We report a theoretical study of the second harmonic generation in a noncollinearly magnetized conductive medium with equilibrium spin current. The hydrodynamic model is used to unravel the mechanism of a novel effect of the double frequency signal generation that is attributed to the spin current. According to our calculations, this second harmonic response appears due to the ‘non-adiabatic’ spin polarization of the conduction electrons induced by the oscillations in the non-uniform magnetization forced by the electric field of the electromagnetic wave. Together with the linear velocity response this leads to the generation of the double frequency spin current. This spin current is converted to the electric current via the inverse spin Hall effect, and the double-frequency electric current emits the second harmonic radiation. Possible experiment for detection of the new second harmonic effect is proposed.

  16. Optical system design of a speckle-free ultrafast Red-Green-Blue (RGB) source based on angularly multiplexed second harmonic generation from a TZDW source

    NASA Astrophysics Data System (ADS)

    Yao, Yuhong; Knox, Wayne H.

    2015-03-01

    We report the optical system design of a novel speckle-free ultrafast Red-Green-Blue (RGB) source based on angularly multiplexed simultaneous second harmonic generation from the efficiently generated Stokes and anti-Stokes pulses from a commercially available photonic crystal fiber (PCF) with two zero dispersion wavelengths (TZDW). We describe the optimized configuration of the TZDW fiber source which supports excitations of dual narrow-band pulses with peak wavelengths at 850 nm, 1260 nm and spectral bandwidths of 23 nm, 26 nm, respectively within 12 cm of commercially available TZDW PCF. The conversion efficiencies are as high as 44% and 33% from the pump source (a custom-built Yb:fiber master-oscillator-power-amplifier). As a result of the nonlinear dynamics of propagation, the dual pulses preserve their ultrashort pulse width (with measured autocorrelation traces of 200 fs and 227 fs,) which eliminates the need for dispersion compensation before harmonic generation. With proper optical design of the free-space harmonic generation system, we achieve milli-Watt power level red, green and blue pulses at 630 nm, 517 nm and 425 nm. Having much broader spectral bandwidths compared to picosecond RGB laser sources, the source is inherently speckle-free due to the ultra-short coherence length (<37 μm) while still maintaining an excellent color rendering capability with >99.4% excitation purities of the three primaries, leading to the coverage of 192% NTSC color gamut (CIE 1976). The reported RGB source features a very simple system geometry, its potential for power scaling is discussed with currently available technologies.

  17. Prediction of Metastasis Using Second Harmonic Generation

    DTIC Science & Technology

    2016-07-01

    extracellular matrix through which metastasizing cells must travel. We and others have demonstrated that tumor collagen structure, as measured with the...algorithm using separate training and validation sets, etc. Keywords: metastasis, overtreatment, extracellular matrix , collagen , second harmonic...optical process called second harmonic generation (SHG), influences tumor metastasis. This suggests that collagen structure may provide prognostic

  18. Periodically poled potassium niobate for second-harmonic generation at 463 nm.

    PubMed

    Meyn, J P; Klein, M E; Woll, D; Wallenstein, R; Rytz, D

    1999-08-15

    We report on the fabrication and characterization of quasi-phase-matched potassium niobate crystals for second-harmonic generation. Periodic 30-mum -pitch antiparallel ferroelectric domains are fabricated by means of poling in an electrical field. Both birefrigence and periodic phase shift of the generated second harmonic contribute to phase matching when the d(31) nonlinear optical tensor element is used. 3.8 mW of second-harmonic radiation at 463 nm is generated by frequency doubling of the output of master-oscillator power-amplifier diode laser in a 5-mm-long crystal. The measured effective nonlinear coefficient is 3.7pm/V. The measured spectral acceptance bandwidth of 0.25 nm corresponds to the theoretical value.

  19. Three-dimensional image formation in fiber-optical second-harmonic-generation microscopy.

    PubMed

    Gu, Min; Fu, Ling

    2006-02-06

    Three-dimensional (3-D) image formation in fiber-optical second-harmonic-generation microscopy is revealed to be purely coherent and therefore can be described by a 3-D coherent transfer function (CTF) that exhibits the same spatial frequency passband as that of fiber-optical reflection-mode non-fluorescence microscopy. When the numerical aperture of the fiber is much larger than the angle of convergence of the illumination on the fiber aperture, the performance of fiber-optical second-harmonic-generation microscopy behaves as confocal second-harmonic-generation microscopy. The dependence of axial resolution on fiber coupling parameters shows an improvement of approximately 7%, compared with that in fiber-optical two-photon fluorescence microscopy.

  20. High efficiency and output power from second- and third-harmonic millimeter-wave InP-TED oscillators at frequencies above 170 GHz

    NASA Astrophysics Data System (ADS)

    Rydberg, Anders

    1990-10-01

    InP TED (transferred electron device) oscillators have been experimentally investigated for frequencies between 170 and 279 GHz. It has been found that output powers of more than 7 and 0.2 mW are possible at 180 and 272 GHz using second- and third-harmonic mode operation, respectively. Conversion efficiencies of more than 13 percent and 0.3 percent between fundamental and second harmonic and fundamental and third harmonic, respectively, have been found. The conversion efficiencies are comparable to GaAs TEDs. The output powers, conversion efficiencies, and tuning ranges (more than 22 percent) are the largest reported for InP TEDs at these frequencies. The output power at third harmonic was sufficient for supplying a superconducting mixer with local oscillator power.

  1. Second Harmonic Correlation Spectroscopy: Theory and Principles for Determining Surface Binding Kinetics.

    PubMed

    Sly, Krystal L; Conboy, John C

    2017-06-01

    A novel application of second harmonic correlation spectroscopy (SHCS) for the direct determination of molecular adsorption and desorption kinetics to a surface is discussed in detail. The surface-specific nature of second harmonic generation (SHG) provides an efficient means to determine the kinetic rates of adsorption and desorption of molecular species to an interface without interference from bulk diffusion, which is a significant limitation of fluorescence correlation spectroscopy (FCS). The underlying principles of SHCS for the determination of surface binding kinetics are presented, including the role of optical coherence and optical heterodyne mixing. These properties of SHCS are extremely advantageous and lead to an increase in the signal-to-noise (S/N) of the correlation data, increasing the sensitivity of the technique. The influence of experimental parameters, including the uniformity of the TEM00 laser beam, the overall photon flux, and collection time are also discussed, and are shown to significantly affect the S/N of the correlation data. Second harmonic correlation spectroscopy is a powerful, surface-specific, and label-free alternative to other correlation spectroscopic methods for examining surface binding kinetics.

  2. The Dual Wavelength UV Transmitter Development for Space Based Ozone DIAL Measurements

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2008-01-01

    The objective of this research is to develop efficient 1-micron to UV wavelength conversion technology to generate tunable, single mode, pulsed UV wavelengths of 320 nm and 308 nm. The 532 nm wavelength radiation is generated by a 1064 nm Nd:YAG laser through second harmonic generation. The 532 nm pumps an optical parametric oscillator (OPO) to generate 803 nm. The 320 nm is generated by sum frequency generation (SFG) of 532 nm and 803 nm wavelengths The hardware consists of a conductively cooled, 1 J/pulse, single mode Nd:YAG pump laser coupled to an efficient RISTRA OPO and SFG assembly-Both intra and extra-cavity approaches are examined for efficiency.

  3. Optical nonlinearities of excitons in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Soh, Daniel B. S.; Rogers, Christopher; Gray, Dodd J.; Chatterjee, Eric; Mabuchi, Hideo

    2018-04-01

    We calculate linear and nonlinear optical susceptibilities arising from the excitonic states of monolayer MoS2 for in-plane light polarizations, using second-quantized bound and unbound exciton operators. Optical selection rules are critical for obtaining the susceptibilities. We derive the valley-chirality rule for the second-order harmonic generation in monolayer MoS2 and find that the third-order harmonic process is efficient only for linearly polarized input light while the third-order two-photon process (optical Kerr effect) is efficient for circularly polarized light using a higher order exciton state. The absence of linear absorption due to the band gap and the unusually strong two-photon third-order nonlinearity make the monolayer MoS2 excitonic structure a promising resource for coherent nonlinear photonics.

  4. Polarization anisotropy in fiber-optic second harmonic generation microscopy.

    PubMed

    Fu, Ling; Gu, Min

    2008-03-31

    We report the investigation and implementation of a compact second harmonic generation microscope that uses a single-mode fiber coupler and a double-clad photonic crystal fiber. Second harmonic polarization anisotropy through the fiber-optic microscope systems is quantitatively measured with KTP microcrystals, fish scale and rat tail tendon. It is demonstrated that the polarized second harmonic signals can be excited and collected through the single-mode fiber coupler to analyze the molecular orientations of structural proteins. It has been discovered that a double-clad photonic crystal fiber can preserve the linear polarization in the core, although a depolarization effect is observed in the inner cladding region. The feasibility of polarization anisotropy measurements in fiber-optic second harmonic generation microscopy will benefit the in vivo study of collagen-related diseases with a compact imaging probe.

  5. Deep-subwavelength waveguiding via inhomogeneous second-harmonic generation.

    PubMed

    Roppo, Vito; Vincenti, Maria Antonietta; de Ceglia, Domenico; Scalora, Michael

    2012-08-01

    We theoretically investigate second-harmonic generation in extremely narrow, subwavelength semiconductor and dielectric waveguides. We discuss a guiding mechanism characterized by the inhibition of diffraction and the suppression of cutoff limits in the context of a light trapping phenomenon that sets in under conditions of general phase and group velocity mismatch between the fundamental and the generated harmonic.

  6. The role of ferroelectric domain structure in second harmonic generation in random quadratic media.

    PubMed

    Roppo, Vito; Wang, W; Kalinowski, K; Kong, Y; Cojocaru, C; Trull, J; Vilaseca, R; Scalora, M; Krolikowski, W; Kivshar, Yu

    2010-03-01

    We study theoretically and numerically the second harmonic generation in a nonlinear crystal with random distribution of ferroelectric domains. We show that the specific features of disordered domain structure greatly affect the emission pattern of the generated harmonics. This phenomena can be used to characterize the degree of disorder in nonlinear photonic structures.

  7. High-power 671  nm laser by second-harmonic generation with 93% efficiency in an external ring cavity.

    PubMed

    Cui, Xing-Yang; Shen, Qi; Yan, Mei-Chen; Zeng, Chao; Yuan, Tao; Zhang, Wen-Zhuo; Yao, Xing-Can; Peng, Cheng-Zhi; Jiang, Xiao; Chen, Yu-Ao; Pan, Jian-Wei

    2018-04-15

    Second-harmonic generation (SHG) is useful for obtaining single-frequency continuous-wave laser sources at various wavelengths for applications ranging from biology to fundamental physics. Using an external power-enhancement cavity is an effective approach to improve the frequency conversion efficiency. However, thermal effects limit the efficiency, particularly, in high-power operation. Therefore, reducing thermal effects is important when designing a cavity. This Letter reports the use of an external ring cavity for SHG, yielding a 5.2 W, 671 nm laser light with a conversion efficiency of 93.8±0.8% which, to the best of our knowledge, is a new record of conversion efficiency for an external ring cavity. It is achieved using a 10 mm length periodically poled potassium titanyl phosphate crystal and a 65 μm radius beam waist in the cavity so as to minimize thermal dephasing and thermal lensing. Furthermore, a method is developed to determine a conversion efficiency more accurately based on measuring the pump depletion using a photodiode detector and a maximum pump depletion up to 97% is recorded. In this method, the uncertainty is much less than that achieved in a common method by direct measuring with a power meter.

  8. Optical Manifestations of the Electron-Electron Interaction

    NASA Astrophysics Data System (ADS)

    Portengen, Taco

    1995-01-01

    In this thesis, two optical manifestations of the electron-electron interaction are studied: the Fermi -edge singularity in doped quantum wells and quantum wires, and second-harmonic generation in mixed-valent compounds. First, we construct a theory of the Fermi-edge singularity that can systematically account for the finite mass of a hole created in the valence subband of a quantum well or quantum wire. The dynamical response for finite hole mass depends crucially on the dimensionality of the Fermi sea. Whereas in three dimensions the infrared divergence is suppressed, in two dimensions a one-over-square-root singularity survives, while in one dimension the spectrum is even more singular with recoil than without recoil. This explains the large optical singularities observed in quantum wires. Correlations change the prefactor, but not the exponent of the threshold behaviour in two and in three dimensions, while in one dimension, they affect neither the prefactor nor the exponent. Second, we apply our theory to the Frohlich polaron, a manifestation of the electron-phonon rather than the electron-electron interaction. The new method of calculating the Green's function removes unphysical features of the conventional cumulant expansion that had remained unnoticed in the literature up to now. Third, in an effort to investigate the impact of coherence on optical properties, we calculate the linear and nonlinear optical characteristics of mixed-valent compounds. Second -harmonic generation can only occur for solutions of the theoretical Falicov-Kimball model that have a built-in coherence between the itinerant d-electrons and localized f-holes. By contrast, second-harmonic generation cannot occur for solutions with f-site occupation as a good quantum number. The interaction between optically created quasiparticles leads to a threshold singularity in the absorption spectrum, and greatly enhances the second-harmonic conversion efficiency at half the gap frequency. As an experimental test of coherence we propose the measurement of the second-harmonic susceptibility of SmB_6..

  9. Harmonic generation in magnetized quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Punit; Singh, Abhisek Kumar; Singh, Shiv

    2016-05-06

    A study of second harmonic generation by propagation of a linearly polarized electromagnetic wave through homogeneous high density quantum plasma in the presence of transverse magnetic field. The nonlinear current density and dispersion relations for the fundamental and second harmonic frequencies have been obtained using the recently developed quantum hydrodynamic (QHD) model. The effect of quantum Bohm potential, Fermi pressure and the electron spin have been taken into account. The second harmonic is found to be less dispersed than the first.

  10. Temperature nonuniformity occurring during the cooling process of a KDP crystal and its effects on second-harmonic generation.

    PubMed

    Liang, Yingchun; Su, Ruifeng; Lu, Lihua; Liu, Haitao

    2014-08-10

    The temperature nonuniformity occurring during the cooling process of a KDP crystal is studied, along with its effects on the second-harmonic generation (SHG) of a high-average-power laser. A comprehensive model is proposed incorporating principles of thermodynamics, mechanics, and optics, and it is applied to investigate the temperature nonuniformity and its effects. The temperature rise caused by linear absorption is calculated, while the temperature nonuniformity occurring during the cooling process is analyzed using the finite-element method (FEM). The stress induced by the nonuniformity is then studied using the FEM, and the trend of its change is determined. Moreover, the changes in refractive index caused by the stress are calculated, the results of which are used to determine the variations in the induced phase mismatch. The SHG efficiency considering the phase mismatch is eventually obtained by solving the coupling wave equations. The results demonstrate that the temperature nonuniformity has negative effects on the SHG efficiency.

  11. Cavity-enhanced generation of 6 W cw second-harmonic power at 532 nm in periodically-poled MgO:LiTaO3.

    PubMed

    Ricciardi, Iolanda; De Rosa, Maurizio; Rocco, Alessandra; Ferraro, Pietro; De Natale, Paolo

    2010-05-24

    We report on efficient cw high-power second harmonic generation in a periodically poled LiTaO3 crystal placed in a resonant enhancement cavity. We tested three configurations, differing in the coupling mirror reflectivity, and a maximum conversion efficiency of about 76%, corresponding to 6.1 W of green light with 8.0 W of fundamental power, was achieved. This is, to the best of our knowledge, the highest cw power ever reported using a periodically-poled crystal in an external cavity. We observed photo-thermal effect induced by photon absorption at the mirrors and in the crystal, which however does not affect stable operation of the cavity. A further effect arises for two out of the three configurations, at higher values of the input power, which degrades the performance of the locked cavity. We suggest this effect is due to the onset of competing nonlinearities in the same crystal.

  12. Effect of Li and NH4 doping on the crystal perfection, second harmonic generation efficiency and laser damage threshold of potassium pentaborate crystals

    NASA Astrophysics Data System (ADS)

    Vigneshwaran, A. N.; Kalainathan, S.; Raja, C. Ramachandra

    2018-03-01

    Potassium pentaborate (KB5) is an excellent nonlinear optical material especially in the UV region. In this work, Li and NH4 doped KB5 crystals were grown using slow evaporation solution growth method. The incorporation of dopant has been confirmed and analysed by Energy dispersive X-ray analysis (EDAX), Inductively coupled plasma (ICP) analysis and Raman spectroscopy. The crystalline perfection of pure and doped KB5 crystals was studied by High resolution X-ray diffraction (HRXRD) analysis. Structural grain boundaries were observed in doped crystals. Second harmonic generation was confirmed for pure and doped crystals and output values revealed the enhancement of SHG efficiency in doped crystals. Resistance against laser damage was carried out using 1064 nm Nd-YAG laser of pulse width 10 ns. The laser damage threshold value is increased in Li doped crystal and decreased in NH4 doped crystal when compared to pure KB5 crystal.

  13. The effect of an infinite plane-wave approximation on calculations for second-harmonic generation in a one-dimensional nonlinear crystal

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Zhao, Li-Ming

    2012-05-01

    In this paper, the second-harmonic generation (SHG) in a one-dimensional nonlinear crystal that is embedded in air is investigated. Previously, the identical configuration was studied in Li Z. Y. et al., Phys. Rev. B, 60 (1999) 10644, without the use of the slowly varying amplitude approximation (SVAA), but by adopting the infinite plane-wave approximation (PWA), despite the fact that this approximation is not quite applicable to such a system. We calculate the SHG conversion efficiency without a PWA, and compare the results with those from the quoted reference. The investigation reveals that conversion efficiencies of SHG as calculated by the two methods appear to exhibit significant differences, and that the SHG may be modulated by the field of a fundamental wave (FW). The ratio between SHG conversion efficiencies as produced by the two methods shows a periodic variation, and this oscillatory behavior is fully consistent with the variation in transmittance of the FW. Quasi-phase matching (QPM) is also studied, and we find that the location of the peak for SHG conversion efficiency deviates from Δd=0, which differs from the conventional QPM results.

  14. Surface plasma wave assisted second harmonic generation of laser over a metal film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Santosh; Parashar, J., E-mail: j.p.parashar@gmail.com

    2015-01-15

    Second harmonic generation of laser mode converted surface plasma wave (SPW) over a corrugated metal film is studied. The laser, impinged on the metal film, under attenuated total reflection configuration, excites SPW over the metal–vacuum interface. The excited SPW extends over a much wider surface area than the laser spot cross-section. It exerts a second harmonic ponderomotive force on metal electrons, imparting them velocity that beats with the surface ripple to produce a nonlinear current, driving resonant second harmonic surface plasma wave.

  15. Efficient high-power frequency doubling of distributed Bragg reflector tapered laser radiation in a periodically poled MgO-doped lithium niobate planar waveguide.

    PubMed

    Jedrzejczyk, Daniel; Güther, Reiner; Paschke, Katrin; Jeong, Woo-Jin; Lee, Han-Young; Erbert, Götz

    2011-02-01

    We report on efficient single-pass, high-power second-harmonic generation in a periodically poled MgO-doped LiNbO3 planar waveguide using a distributed Bragg reflector tapered diode laser as a pump source. A coupling efficiency into the planar waveguide of 73% was realized, and 1.07 W of visible laser light at 532 nm was generated. Corresponding optical and electro-optical conversion efficiencies of 26% and 8.4%, respectively, were achieved. Good agreement between the experimental data and the theoretical predictions was observed.

  16. Efficient high-harmonic generation from a stable and compact ultrafast Yb-fiber laser producing 100 μJ, 350 fs pulses based on bendable photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Feehan, James S.; Price, Jonathan H. V.; Butcher, Thomas J.; Brocklesby, William S.; Frey, Jeremy G.; Richardson, David J.

    2017-01-01

    The development of an Yb3+-fiber-based chirped-pulse amplification system and the performance in the generation of extreme ultraviolet (EUV) radiation by high-harmonic generation is reported. The fiber laser produced 100 μJ, 350 fs output pulses with diffraction-limited beam quality at a repetition rate of 16.7 kHz. The system used commercial single-mode, polarization maintaining fiber technology. This included a 40 μm core, easily packaged, bendable final amplifier fiber in order to enable a compact system, to reduce cost, and provide reliable and environmentally stable long-term performance. The system enabled the generation of 0.4 μW of EUV at wavelengths between 27 and 80 nm with a peak at 45 nm using xenon gas. The EUV flux of 1011 photons per second for a driving field power of 1.67 W represents state-of-the-art generation efficiency for single-fiber amplifier CPA systems, corresponding to a maximum calculated energy conversion efficiency of 2.4 × 10-7 from the infrared to the EUV. The potential for high average power operation at increased repetition rates and further suggested technical improvements are discussed. Future applications could include coherent diffractive imaging in the EUV, and high-harmonic spectroscopy.

  17. Multiple copies of orbital angular momentum states through second-harmonic generation in a two-dimensional periodically poled LiTaO{sub 3} crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Xinyuan; Wei, Dunzhao; Liu, Dongmei

    We experimentally demonstrate multiple copies of optical orbital angular momentum (OAM) states through quasi-phase-matched (QPM) second-harmonic (SH) generation in a 2D periodically poled LiTaO{sub 3} (PPLT) crystal. Since the QPM condition is satisfied by involving different reciprocal vectors in the 2D PPLT crystal, collinear and noncollinear SH beams carrying OAMs of l{sub 2} are simultaneously generated by the input fundamental beam with an OAM of l{sub 1}. The OAM conservation law (i.e., l{sub 2} = 2l{sub 1}) holds well in the experiment, which can tolerate certain phase-mismatch between the interacting waves. Our results provide an efficient way to obtain multiple copies ofmore » the wavelength-converted OAM states, which can be used to enhance the capacity in optical communications.« less

  18. Kerr-like behaviour of second harmonic generation in the far-off resonant regime

    NASA Astrophysics Data System (ADS)

    Peřinová, Vlasta; Lukš, Antonín; Křepelka, Jaromír; Leoński, Wiesław; Peřina, Jan

    2018-05-01

    We separate the Kerr-like behaviour of the second-harmonic generation in the far-off resonant regime from the oscillations caused by the time-dependence of the interaction energy. To this purpose, we consider the approximation obtained from the exact dynamics by the method of small rotations. The Floquet-type decomposition of the approximate dynamics comprises the Kerr-like dynamics and oscillations of the same order of magnitude as those assumed for the exact dynamics of the second-harmonic generation. We have found that a superposition of two states of concentrated quantum phase arises in the fundamental mode in the second-harmonic generation in the far-off resonant limit at a later time than a superposition of two coherent states in the corresponding Kerr medium and the difference is larger for higher initial coherent amplitudes. The quantum phase fluctuation is higher for the same initial coherent amplitudes in the fundamental mode in the second-harmonic generation in the far-off resonant limit than in the corresponding Kerr medium and the difference is larger for higher initial coherent amplitudes.

  19. Demonstration of high-energy 2 omega (526.5 nm) operation on the National Ignition Facility Laser System.

    PubMed

    Heestand, G M; Haynam, C A; Wegner, P J; Bowers, M W; Dixit, S N; Erbert, G V; Henesian, M A; Hermann, M R; Jancaitis, K S; Knittel, K; Kohut, T; Lindl, J D; Manes, K R; Marshall, C D; Mehta, N C; Menapace, J; Moses, E; Murray, J R; Nostrand, M C; Orth, C D; Patterson, R; Sacks, R A; Saunders, R; Shaw, M J; Spaeth, M; Sutton, S B; Williams, W H; Widmayer, C C; White, R K; Whitman, P K; Yang, S T; Van Wonterghem, B M

    2008-07-01

    A single beamline of the National Ignition Facility (NIF) has been operated at a wavelength of 526.5 nm (2 omega) by frequency converting the fundamental 1053 nm (1 omega) wavelength with an 18.2 mm thick type-I potassium dihydrogen phosphate (KDP) second-harmonic generator (SHG) crystal. Second-harmonic energies of up to 17.9 kJ were measured at the final optics focal plane with a conversion efficiency of 82%. For a similarly configured 192-beam NIF, this scales to a total 2 omega energy of 3.4 MJ full NIF equivalent (FNE).

  20. Enhanced second-harmonic-generation detection of collagen by means of optical wavefront shaping

    NASA Astrophysics Data System (ADS)

    Thompson, Jonathan V.; Throckmorton, Graham A.; Hokr, Brett H.; Yakovlev, Vladislav V.

    2016-03-01

    Second-harmonic generation (SHG) has proven to be an effective method to both image and detect structural variations in fibrillar collagen. The ability to detect these differences is especially useful in studying diseases like cancer and fibrosis.1 SHG techniques have historically been limited by their ability to penetrate and image through strongly scattering tissues. Recently, optical wavefront shaping has enabled light to be focused through highly scattering media such as biological tissue.2-4 This technology also enables us to examine the dependence of second harmonic generation on the spatial phase of the pump laser. Here, we demonstrate that wavefront shaping can be used to enhance the generation of second harmonic light from collagen fibrils even when scattering is low or non-existent.

  1. Second-harmonic generation of practical Bessel beams

    NASA Astrophysics Data System (ADS)

    Huang, Jin H.; Ding, Desheng; Hsu, Yin-Sung

    2009-11-01

    A fast Gaussian expansion approach is used to investigate fundamental and second-harmonic generation in practical Bessel beams of finite aperture. The analysis is based on the integral solutions of the KZK equation under the quasilinear approximation. The influence of the medium's attenuation on the beam profile is considered. Analysis results show that the absorption parameter has a significant effect on the far-field beam profile of the second harmonic. Under certain circumstances, the second harmonic of a practical Bessel beam still has the main properties of an ideal Bessel beam of infinite aperture when it propagates within its depth of field.

  2. Towards improved NDE and SHM methodologies incorporating nonlinear structural features

    NASA Astrophysics Data System (ADS)

    Chillara, Vamshi Krishna

    Ultrasound is widely employed in Nondestructive Evaluation (NDE) and Structural Health Monitoring (SHM) applications to detect and characterize damage/defects in materials. In particular, ultrasonic guided waves are considered a foremost candidate for in-situ monitoring applications. Conventional ultrasonic techniques rely on changes/discontinuities in linear elastic material properties, namely the Young's modulus and shear modulus to detect damage. On the other hand, nonlinear ultrasonic techniques that rely on micro-scale nonlinear material/structural behavior are proven to be sensitive to damage induced microstructural changes that precede macro-scale damage and are hence capable of early damage detection. The goal of this thesis is to investigate the capabilities of nonlinear guided waves --- a fusion of nonlinear ultrasonic techniques with the guided wave methodologies for early damage detection. To that end, the thesis focuses on two important aspects of the problem: 1. Wavemechanics - deals with ultrasonic guided wave propagation in nonlinear waveguides; 2. Micromechanics - deals with correlating ultrasonic response with micro-scale nonlinear material behavior. For the development of efficient NDE and SHM methodologies that incorporate nonlinear structural features, a detailed understanding of the above aspects is indispensable. In this thesis, the wavemechanics aspect of the problem is dealt with from both theoretical and numerical standpoints. A generalized theoretical framework is developed to study higher harmonic guided waves in plates. This was employed to study second harmonic guided waves in pipes using a large-radius asymptotic approximation. Second harmonic guided waves in plates are studied from a numerical standpoint. Theoretical predictions are validated and some key aspects of higher harmonic generation in waveguides are outlined. Finally, second harmonic guided waves in plates with inhomogeneous and localized nonlinearities are studied and some important aspects of guided wave mode selection are addressed. The other part of the work focused on developing a micromechanics based understanding of ultrasonic higher harmonic generation. Three important aspects of micro-scale material behavior, namely tension-compression asymmetry, shearnormal coupling and deformation induced asymmetry are identified and their role in ultrasonic higher harmonic generation is discussed. Tension-compression asymmetry is identified to cause second (even) harmonic generation in materials. Then, shearnormal coupling is identified to cause generation of secondary waves of different polarity than the primary waves. In addition, deformation induced anisotropy due to the presence of residual stress/strain and its contribution to ultrasonic higher harmonic generation is qualitatively discussed. Also, the tension-compression asymmetry in the material is quantified using an energy based measure. The above measure is employed to develop a homogenization based approach amenable to multi-scale analysis to correlate microstructure with ultrasonic higher harmonic generation. Finally, experimental investigations concerning third harmonic SH wave generation in plates are carried out and the effect of load and temperature changes on nonlinear ultrasonic measurements are discussed in the context of SHM. It was found that while nonlinear ultrasound is sensitive to micro-scale damage, the relative nonlinearity parameter may not always be the best measure to quantify the nonlinearity as it is subject to spurious effects from changes in environmental factors such as loads and temperature.

  3. Thin-thick quadrature frequency conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eimerl, D.

    1985-02-07

    The quadrature conversion scheme is a method of generating the second harmonic. The scheme, which uses two crystals in series, has several advantages over single-crystal or other two crystal schemes. The most important is that it is capable of high conversion efficiency over a large dynamic range of drive intensity and detuning angle.

  4. Third harmonic generation of a short pulse laser in a plasma density ripple created by a machining beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C. S.; Tripathi, V. K.

    An intense machining laser beam, impinged on a gas jet target, causes space periodic ionization of the gas and heats the electrons. The nonuniform plasma pressure leads to atomic density redistribution. When, after a suitable time delay, a second more intense laser pulse is launched along the periodicity wave vector q-vector, a plasma density ripple n{sub q} is instantly created, leading to resonant third harmonic generation when q=4{omega}{sub p}{sup 2}/(3{omega}c{gamma}{sub 0}), where {omega}{sub p} is the plasma frequency, {omega} is the laser frequency, and {gamma}{sub 0} is the electron Lorentz factor. The third harmonic is produced through the beating ofmore » ponderomotive force induced second harmonic density oscillations and the quiver velocity of electrons at the fundamental. The relativistic mass nonlinearity plays no role in resonant coupling. The energy conversion efficiency scales as the square of plasma density and square of depth of density ripple, and is {approx}0.2% for normalized laser amplitude a{sub o}{approx}1 in a plasma of 1% critical density with 20% density ripple. The theory explains several features of a recent experiment.« less

  5. Second harmonic generation from metallo-dielectric multilayered structures in the plasmonic regime.

    PubMed

    Mattiucci, Nadia; D'Aguanno, Giuseppe; Bloemer, Mark J

    2010-11-08

    We present a theoretical study on second harmonic generation from metallo-dielectric multilayered structures in the plasmonic regime. In particular we analyze the behavior of structures made of Ag (silver) and MgF2 (magnesium-fluoride) due to the straightforward procedure to grow these materials with standard sputtering or thermal evaporation techniques. A systematic study is performed which analyzes four different kinds of elementary cells--namely (Ag/MgF2)N, (MgF2/Ag)N, (Ag/MgF2/Ag)N and (MgF2/Ag/MgF2)N--as function of the number of periods (N) and the thickness of the layers. We predict the conversion efficiency to be up to three orders of magnitude greater than the conversion efficiency found in the non-plasmonic regime and we point out the best geometries to achieve these conversion efficiencies. We also underline the role played by the short-range/long-range plasmons and leaky waves in the generation process. We perform a statistical study to demonstrate the robustness of the SH process in the plasmonic regime against the inevitable variations in the thickness of the layers. Finally, we show that a proper choice of the output medium can further improve the conversion efficiency reaching an enhancement of almost five orders of magnitude with respect to the non plasmonic regime.

  6. Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation

    NASA Astrophysics Data System (ADS)

    Vuillemin, Nelly; Mahou, Pierre; Débarre, Delphine; Gacoin, Thierry; Tharaux, Pierre-Louis; Schanne-Klein, Marie-Claire; Supatto, Willy; Beaurepaire, Emmanuel

    2016-07-01

    Second-harmonic generation (SHG) is the most specific label-free indicator of collagen accumulation in widespread pathologies such as fibrosis, and SHG-based measurements hold important potential for biomedical analyses. However, efficient collagen SHG scoring in histological slides is hampered by the limited depth-of-field of usual nonlinear microscopes relying on focused Gaussian beam excitation. In this work we analyze theoretically and experimentally the use of Bessel beam excitation to address this issue. Focused Bessel beams can provide an axially extended excitation volume for nonlinear microscopy while preserving lateral resolution. We show that shaping the focal volume has consequences on signal level and scattering directionality in the case of coherent signals (such as SHG) which significantly differ from the case of incoherent signals (two-photon excited fluorescence, 2PEF). We demonstrate extended-depth SHG-2PEF imaging of fibrotic mouse kidney histological slides. Finally, we show that Bessel beam excitation combined with spatial filtering of the harmonic light in wave vector space can be used to probe collagen accumulation more efficiently than the usual Gaussian excitation scheme. These results open the way to SHG-based histological diagnoses.

  7. Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation

    PubMed Central

    Vuillemin, Nelly; Mahou, Pierre; Débarre, Delphine; Gacoin, Thierry; Tharaux, Pierre-Louis; Schanne-Klein, Marie-Claire; Supatto, Willy; Beaurepaire, Emmanuel

    2016-01-01

    Second-harmonic generation (SHG) is the most specific label-free indicator of collagen accumulation in widespread pathologies such as fibrosis, and SHG-based measurements hold important potential for biomedical analyses. However, efficient collagen SHG scoring in histological slides is hampered by the limited depth-of-field of usual nonlinear microscopes relying on focused Gaussian beam excitation. In this work we analyze theoretically and experimentally the use of Bessel beam excitation to address this issue. Focused Bessel beams can provide an axially extended excitation volume for nonlinear microscopy while preserving lateral resolution. We show that shaping the focal volume has consequences on signal level and scattering directionality in the case of coherent signals (such as SHG) which significantly differ from the case of incoherent signals (two-photon excited fluorescence, 2PEF). We demonstrate extended-depth SHG-2PEF imaging of fibrotic mouse kidney histological slides. Finally, we show that Bessel beam excitation combined with spatial filtering of the harmonic light in wave vector space can be used to probe collagen accumulation more efficiently than the usual Gaussian excitation scheme. These results open the way to SHG-based histological diagnoses. PMID:27435390

  8. Investigation of Second- and Third-Harmonic Generation in Few-Layer Gallium Selenide by Multiphoton Microscopy

    PubMed Central

    Karvonen, Lasse; Säynätjoki, Antti; Mehravar, Soroush; Rodriguez, Raul D.; Hartmann, Susanne; Zahn, Dietrich R. T.; Honkanen, Seppo; Norwood, Robert A.; Peyghambarian, N.; Kieu, Khanh; Lipsanen, Harri; Riikonen, Juha

    2015-01-01

    Gallium selenide (GaSe) is a layered semiconductor and a well-known nonlinear optical crystal. The discovery of graphene has created a new vast research field focusing on two-dimensional materials. We report on the nonlinear optical properties of few-layer GaSe using multiphoton microscopy. Both second- and third-harmonic generation from few-layer GaSe flakes were observed. Unexpectedly, even the peak at the wavelength of 390 nm, corresponding to the fourth-harmonic generation or the sum frequency generation from third-harmonic generation and pump light, was detected during the spectral measurements in thin GaSe flakes. PMID:25989113

  9. High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT.

    PubMed

    Kumar, S Chaitanya; Samanta, G K; Ebrahim-Zadeh, M

    2009-08-03

    Characteristics of high-power, narrow-linewidth, continuous-wave (cw) green radiation obtained by simple single-pass second-harmonic-generation (SHG) of a cw ytterbium fiber laser at 1064 nm in the nonlinear crystals of PPKTP and MgO:sPPLT are studied and compared. Temperature tuning and SHG power scaling up to nearly 10 W for input fundamental power levels up to 30 W are performed. Various contributions to thermal effects in both crystals, limiting the SHG conversion efficiency, are studied. Optimal focusing conditions and thermal management schemes are investigated to maximize SHG performance in MgO:sPPLT. Stable green output power and high spatial beam quality with M(2)<1.33 and M(2)<1.34 is achieved in MgO:sPPLT and PPKTP, respectively.

  10. Role of polytypism and degree of hexagonality on the photoinduced optical second harmonic generation in SiC nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Semenov, A.; Puziko, V.; Skorik, S.; Wojciechowski, A.; Fedorchuk, A. O.; Maciąg, A.

    2015-05-01

    Photoinduced optiсal second harmonic generation was studied in nanocrystalline SiC films prepared by the method of direct ion deposition. For the studies were chosen three types of polytypes (with different degree of hexagonality) - 24R with degree hexagonality G=25, 27R-G=44, 33R with - G=36. The bicolor photoinduced treatment was performed by the wavelengths 1064nm/532 nm by 15 ns YAG:Nd laser. The efficiency of the output SHG was evaluated by ratio of the corresponding signal intensities with respect to the references and by the time delay between the SHG and the fundamental maxima. Explanation of the observed effect is given within a framework of the occurrence of the nano-trapping levels in the film crystalline interfaces.

  11. Current-driven second-harmonic domain wall resonance in ferromagnetic metal/nonmagnetic metal bilayers: A field-free method for spin Hall angle measurements

    NASA Astrophysics Data System (ADS)

    Hajiali, M. R.; Hamdi, M.; Roozmeh, S. E.; Mohseni, S. M.

    2017-10-01

    We study the ac current-driven domain wall motion in bilayer ferromagnetic metal (FM)/nonmagnetic metal (NM) nanowires. The solution of the modified Landau-Lifshitz-Gilbert equation including all the spin transfer torques is used to describe motion of the domain wall in the presence of the spin Hall effect. We show that the domain wall center has a second-harmonic frequency response in addition to the known first-harmonic excitation. In contrast to the experimentally observed second-harmonic response in harmonic Hall measurements of spin-orbit torque in magnetic thin films, this second-harmonic response directly originates from spin-orbit torque driven domain wall dynamics. Based on the spin current generated by domain wall dynamics, the longitudinal spin motive force generated voltage across the length of the nanowire is determined. The second-harmonic response introduces additionally a practical field-free and all-electrical method to probe the effective spin Hall angle for FM/NM bilayer structures that could be applied in experiments. Our results also demonstrate the capability of utilizing FM/NM bilayer structures in domain wall based spin-torque signal generators and resonators.

  12. Optical harmonic generator

    DOEpatents

    Summers, M.A.; Eimerl, D.; Boyd, R.D.

    1982-06-10

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The extraordinary or e directions of the crystal elements are oriented in the integral assembly to be in quadrature (90/sup 0/). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude o and e components. For a third-harmonic generation, the input fundamental wave has o and e components whose amplitudes are in a ratio of 2:1 (o:e reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10/sup 0/. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axeses (o).

  13. Optical harmonic generator

    DOEpatents

    Summers, Mark A.; Eimerl, David; Boyd, Robert D.

    1985-01-01

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The "extraordinary" or "e" directions of the crystal elements are oriented in the integral assembly to be in quadrature (90.degree.). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude "o" and "e" components. For a third-harmonic generation, the input fundamental wave has "o" and "e" components whose amplitudes are in a ratio of 2:1 ("o":"e" reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10.degree.. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axes ("o").

  14. Second harmonic generation by self-focusing of intense hollow Gaussian laser beam in collisionless plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purohit, Gunjan, E-mail: gunjan75@gmail.com; Rawat, Priyanka; Gauniyal, Rakhi

    2016-01-15

    The effect of self focused hollow Gaussian laser beam (HGLB) (carrying null intensity in center) on the excitation of electron plasma wave (EPW) and second harmonic generation (SHG) has been investigated in collisionless plasma, where relativistic-ponderomotive and only relativistic nonlinearities are operative. The relativistic change of electron mass and the modification of the background electron density due to ponderomotive nonlinearity lead to self-focusing of HGLB in plasma. Paraxial ray theory has been used to derive coupled equations for the self focusing of HGLB in plasma, generation of EPW, and second harmonic. These coupled equations are solved analytically and numerically tomore » study the laser intensity in the plasma, electric field associated with the excited EPW, and the power of SHG. Second harmonic emission is generated due to nonlinear coupling between incident HGLB and EPW satisfying the proper phase matching conditions. The results show that the effect of including the ponderomotive nonlinearity is significant on the generation of EPW and second harmonic. The electric field associated with EPW and the power of SHG are found to be highly sensitive to the order of the hollow Gaussian beam.« less

  15. Inhibition of linear absorption in opaque materials using phase-locked harmonic generation.

    PubMed

    Centini, Marco; Roppo, Vito; Fazio, Eugenio; Pettazzi, Federico; Sibilia, Concita; Haus, Joseph W; Foreman, John V; Akozbek, Neset; Bloemer, Mark J; Scalora, Michael

    2008-09-12

    We theoretically predict and experimentally demonstrate inhibition of linear absorption for phase and group velocity mismatched second- and third-harmonic generation in strongly absorbing materials, GaAs, in particular, at frequencies above the absorption edge. A 100-fs pump pulse tuned to 1300 nm generates 650 and 435 nm second- and third-harmonic pulses that propagate across a 450-microm-thick GaAs substrate without being absorbed. We attribute this to a phase-locking mechanism that causes the pump to trap the harmonics and to impress on them its dispersive properties.

  16. Second harmonic generation: Effects of the multiple reflections of the fundamental and the second harmonic waves on the Maker fringes

    NASA Astrophysics Data System (ADS)

    Tellier, Gildas; Boisrobert, Christian

    2007-11-01

    The Maker fringes technique is commonly used for the determination of nonlinear optical coefficients. In this article, we present a new formulation of Maker fringes in parallel-surface samples, using boundary conditions taking into account the anisotropy of the crystal, the refractive-index dispersion, and the reflections of the fundamental and the second harmonic waves inside the material. Complete expressions for the generated second harmonic intensity are given for birefringent crystals for the case of no pump depletion. A comparison between theory and experimental results is made, showing the accuracy of our theoretical expressions.

  17. Effects of electromagnetic fields on the nonlinear optical properties of asymmetric double quantum well under intense laser field

    NASA Astrophysics Data System (ADS)

    Yesilgul, U.; Sari, H.; Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Sökmen, I.

    2017-03-01

    In this study, the effects of electric and magnetic fields on the optical rectification and second and third harmonic generation in asymmetric double quantum well under the intense non-resonant laser field is theoretically investigated. We calculate the optical rectification and second and third harmonic generation within the compact density-matrix approach. The theoretical findings show that the influence of electric, magnetic, and intense laser fields leads to significant changes in the coefficients of nonlinear optical rectification, second and third harmonic generation.

  18. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription

    PubMed Central

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R.; Chen, Feng

    2016-01-01

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions. PMID:26924255

  19. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription.

    PubMed

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng

    2016-02-29

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.

  20. Phase-matching directions, refined Sellmeier equations, and second-order nonlinear coefficient of the infrared Langatate crystal La₃Ga(5.5)Ta(0.5)O₁₄.

    PubMed

    Boursier, Elodie; Segonds, Patricia; Boulanger, Benoit; Félix, Corinne; Debray, Jérôme; Jegouso, David; Ménaert, Bertrand; Roshchupkin, Dmitry; Shoji, Ichiro

    2014-07-01

    We directly measured phase-matching directions of second harmonic, sum, and difference frequency generations in the Langatate La₃Ga(5.5)Ta(0.5)O₁₄ (LGT) uniaxial crystal. The simultaneous fit of the data enabled us to refine the Sellmeier equations of the ordinary and extraordinary principal refractive indices over the entire transparency range of the crystal, and to calculate the phase-matching curves and efficiencies of LGT for infrared optical parametric generation.

  1. Complete spatial and temporal locking in phase-mismatched second-harmonic generation.

    PubMed

    Fazio, Eugenio; Pettazzi, Federico; Centini, Marco; Chauvet, Mathieu; Belardini, Alessandro; Alonzo, Massimo; Sibilia, Concita; Bertolotti, Mario; Scalora, Micheal

    2009-03-02

    We experimentally demonstrate simultaneous phase and group velocity locking of fundamental and generated second harmonic pulses in Lithium Niobate, under conditions of material phase mismatch. In phase-mismatched, pulsed second harmonic generation in addition to a reflected signal two forward-propagating pulses are also generated at the interface between a linear and a second order nonlinear material: the first pulse results from the solution of the homogeneous wave equation, and propagates at the group velocity expected from material dispersion; the second pulse is the solution of the inhomogeneous wave equation, is phase-locked and trapped by the pump pulse, and follows the pump trajectory. At normal incidence, the normal and phase locked pulses simply trail each other. At oblique incidence, the consequences can be quite dramatic. The homogeneous pulse refracts as predicted by material dispersion and Snell's law, yielding at least two spatially separate second harmonic spots at the medium's exit. We thus report the first experimental results showing that, at oblique incidence, fundamental and phase-locked second harmonic pulses travel with the same group velocity and follow the same trajectory. This is direct evidence that, at least up to first order, the effective dispersion of the phase-locked pulse is similar to the dispersion of the pump pulse.

  2. High Power Klystrons for Efficient Reliable High Power Amplifiers.

    DTIC Science & Technology

    1980-11-01

    techniques to obtain high overall efficiency. One is second harmonic space charge bunching. This is a process whereby the fundamental and second harmonic...components of the space charge waves in the electron beam of a microwave tube are combined to produce more highly concentrated electron bunches raising the...the drift lengths to enhance the 2nd harmonic component in the space charge waves. The latter method was utilized in the VKC-7790. Computer

  3. Resonantly enhanced second-harmonic generation using III–V semiconductor all-dielectric metasurfaces

    DOE PAGES

    Liu, Sheng; Sinclair, Michael B.; Saravi, Sina; ...

    2016-08-08

    Nonlinear optical phenomena in nanostructured materials have been challenging our perceptions of nonlinear optical processes that have been explored since the invention of lasers. For example, the ability to control optical field confinement, enhancement, and scattering almost independently allows nonlinear frequency conversion efficiencies to be enhanced by many orders of magnitude compared to bulk materials. Also, the subwavelength length scale renders phase matching issues irrelevant. Compared with plasmonic nanostructures, dielectric resonator metamaterials show great promise for enhanced nonlinear optical processes due to their larger mode volumes. Here, we present, for the first time, resonantly enhanced second-harmonic generation (SHG) using galliummore » arsenide (GaAs) based dielectric metasurfaces. Using arrays of cylindrical resonators we observe SHG enhancement factors as large as 10 4 relative to unpatterned GaAs. At the magnetic dipole resonance, we measure an absolute nonlinear conversion efficiency of ~2 × 10 –5 with ~3.4 GW/cm 2 pump intensity. In conclusion, the polarization properties of the SHG reveal that both bulk and surface nonlinearities play important roles in the observed nonlinear process.« less

  4. Laser-induced nonlinear crystalline waveguide on glass fiber format and diode-pumped second harmonic generation

    NASA Astrophysics Data System (ADS)

    Shi, Jindan; Feng, Xian

    2018-03-01

    We report a diode pumped self-frequency-doubled nonlinear crystalline waveguide on glass fiber. A ribbon fiber has been drawn on the glass composition of 50GeO2-25B2O3-25(La,Yb)2O3. Surface channel waveguides have been written on the surface of the ribbon fiber, using space-selective laser heating method with the assistance of a 244 nm CW UV laser. The Raman spectrum of the written area indicates that the waveguide is composed of structure-deformed nonlinear (La,Yb)BGeO5 crystal. The laser-induced surface wavy cracks have also been observed and the forming mechanism of the wavy cracks has been discussed. Efficient second harmonic generation has been observed from the laser-induced crystalline waveguide, using a 976 nm diode pump. 13 μW of 488 nm output has been observed from a 17 mm long waveguide with 26.0 mW of launched diode pump power, corresponding to a normalized conversion efficiency of 4.4%W-1.

  5. Second harmonic generation in a molecular magnetic chain

    NASA Astrophysics Data System (ADS)

    Cavigli, L.; Sessoli, R.; Gurioli, M.; Bogani, L.

    2006-05-01

    A setup for the determination of all the components of the second harmonic generation tensor in molecular materials is presented. It allows overcoming depletion problems, which one can expect to be common in molecular systems. A preliminary characterization of the nonlinear properties of the single chain magnet CoPhOMe is carried out. We observe a high second harmonic signal, comparable to that of urea, and show that the bulk contributions are dominant over the surface ones.

  6. Effect of skew angle on second harmonic guided wave measurement in composite plates

    NASA Astrophysics Data System (ADS)

    Cho, Hwanjeong; Choi, Sungho; Lissenden, Cliff J.

    2017-02-01

    Waves propagating in anisotropic media are subject to skewing effects due to the media having directional wave speed dependence, which is characterized by slowness curves. Likewise, the generation of second harmonics is sensitive to micro-scale damage that is generally not detectable from linear features of ultrasonic waves. Here, the effect of skew angle on second harmonic guided wave measurement in a transversely isotropic lamina and a quasi-isotropic laminate are numerically studied. The strain energy density function for a nonlinear transversely isotropic material is formulated in terms of the Green-Lagrange strain invariants. The guided wave mode pairs for cumulative second harmonic generation in the plate are selected in accordance with the internal resonance criteria - i.e., phase matching and non-zero power flux. Moreover, the skew angle dispersion curves for the mode pairs are obtained from the semi-analytical finite element method using the derivative of the slowness curve. The skew angles of the primary and secondary wave modes are calculated and wave propagation simulations are carried out using COMSOL. Numerical simulations revealed that the effect of skew angle mismatch can be significant for second harmonic generation in anisotropic media. The importance of skew angle matching on cumulative second harmonic generation is emphasized and the accompanying issue of the selection of internally resonant mode pairs for both a unidirectional transversely isotropic lamina and a quasi-isotropic laminate is demonstrated.

  7. On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies

    PubMed Central

    Hermans, Artur; Kieninger, Clemens; Koskinen, Kalle; Wickberg, Andreas; Solano, Eduardo; Dendooven, Jolien; Kauranen, Martti; Clemmen, Stéphane; Wegener, Martin; Koos, Christian; Baets, Roel

    2017-01-01

    The determination of the second-order susceptibility (χ(2)) of thin film samples can be a delicate matter since well-established χ(2) measurement methodologies such as the Maker fringe technique are best suited for nonlinear materials with large thicknesses typically ranging from tens of microns to several millimeters. Here we compare two different second-harmonic generation setups and the corresponding measurement methodologies that are especially advantageous for thin film χ(2) characterization. This exercise allows for cross-checking the χ(2) obtained for identical samples and identifying the main sources of error for the respective techniques. The development of photonic integrated circuits makes nonlinear thin films of particular interest, since they can be processed into long waveguides to create efficient nonlinear devices. The investigated samples are ABC-type nanolaminates, which were reported recently by two different research groups. However, the subsequent analysis can be useful for all researchers active in the field of thin film χ(2) characterization. PMID:28317938

  8. Multipolar second harmonic generation in a symmetric nonlinear metamaterial

    DOE PAGES

    Wolf, Omri; Campione, Salvatore; Yang, Yuanmu; ...

    2017-08-14

    Optical nonlinearities are intimately related to the spatial symmetry of the nonlinear media. For example, the second order susceptibility vanishes for centrosymmetric materials under the dipole approximation. The latter concept has been naturally extended to the metamaterials’ realm, sometimes leading to the (erroneous) hypothesis that second harmonic (SH) generation is negligible in highly symmetric meta-atoms. In this work we aim to show that such symmetric meta-atoms can radiate SH light efficiently. In particular, we investigate in-plane centrosymmetric meta-atom designs where the approximation for meta-atoms breaks down. In a periodic array this building block allows us to control the directionality ofmore » the SH radiation. We conclude by showing that the use of symmetry considerations alone allows for the manipulation of the nonlinear multipolar response of a meta-atom, resulting in e.g. dipolar, quadrupolar, or multipolar emission on demand. This is because the size of the meta-atom is comparable with the free-space wavelength, thus invalidating the dipolar approximation for meta-atoms.« less

  9. Nonresonant Local Fields Enhance Second-Harmonic Generation from Metal Nanoislands with Dielectric Cover

    NASA Astrophysics Data System (ADS)

    Chervinskii, Semyon; Koskinen, Kalle; Scherbak, Sergey; Kauranen, Martti; Lipovskii, Andrey

    2018-03-01

    We study second-harmonic generation from gold nanoislands covered with amorphous titanium oxide (TiO2 ) films. As the TiO2 thickness increases, the plasmon resonance of the nanoislands shifts away from the second-harmonic wavelength of 532 nm, diminishing the resonant enhancement of the process at this wavelength. Nevertheless, the second-harmonic signal is enhanced by up to a factor of 45 with increasing TiO2 thickness. This unexpected effect arises from the scaling of local fields at the fundamental wavelength of 1064 nm—which is at the far tail of the resonance—due to a change in the dielectric environment of the nanoislands.

  10. Second-harmonic generation in shear wave beams with different polarizations

    NASA Astrophysics Data System (ADS)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  11. Synthesis, growth and characterization of 3-nitroacetanilide—A new organic nonlinear optical crystal by Bridgman technique

    NASA Astrophysics Data System (ADS)

    Lenin, M.; Ramasamy, P.

    2008-10-01

    Single crystals of 3-nitroacetanilide, an organic nonlinear optical material has been grown by the Bridgman-Stockbarger method. The single crystal X-ray diffraction (XRD) data revealed the noncentrosymmetric crystal structure, which is an essential criterion for second harmonic generation. The crystalline nature of the grown crystals was confirmed using powder XRD techniques. The functional group of the compound is identified by FTIR spectrum. The thermal stability and its tendency to grow as single crystal in solution and in melt have been identified for the new title compound. The UV-vis spectrum of mNAA shows the lower optical cut off at 400 nm and was transparent in the visible region. The second harmonic generation efficiency was found using Kurtz powder technique. The dielectric constant and dielectric loss of the crystal were measured as a function of frequency and temperature, and the results are discussed.

  12. Strong second harmonic generation in two-dimensional ferroelectric IV-monochalcogenides

    NASA Astrophysics Data System (ADS)

    Panday, Suman Raj; Fregoso, Benjamin M.

    2017-11-01

    The two-dimensional ferroelectrics GeS, GeSe, SnS and SnSe are expected to have large spontaneous in-plane electric polarization and enhanced shift-current response. Using density functional methods, we show that these materials also exhibit the largest effective second harmonic generation reported so far. It can reach magnitudes up to 10~nm~V-1 which is about an order of magnitude larger than that of prototypical GaAs. To rationalize this result we model the optical response with a simple one-dimensional two-band model along the spontaneous polarization direction. Within this model the second-harmonic generation tensor is proportional to the shift-current response tensor. The large shift current and second harmonic responses of GeS, GeSe, SnS and SnSe make them promising non-linear materials for optoelectronic applications.

  13. Second harmonic generation in photonic crystal cavities in (111)-oriented GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, Sonia, E-mail: bucklesm@stanford.edu; Radulaski, Marina; Vučković, Jelena

    2013-11-18

    We demonstrate second harmonic generation at telecommunications wavelengths in photonic crystal cavities in (111)-oriented GaAs. We fabricate 30 photonic crystal structures in both (111)- and (100)-oriented GaAs and observe an increase in generated second harmonic power in the (111) orientation, with the mean power increased by a factor of 3, although there is a large scatter in the measured values. We discuss possible reasons for this increase, in particular, the reduced two photon absorption for transverse electric modes in (111) orientation, as well as a potential increase due to improved mode overlap.

  14. Determination of collagen fibril size via absolute measurements of second-harmonic generation signals

    NASA Astrophysics Data System (ADS)

    Bancelin, Stéphane; Aimé, Carole; Gusachenko, Ivan; Kowalczuk, Laura; Latour, Gaël; Coradin, Thibaud; Schanne-Klein, Marie-Claire

    2014-09-01

    The quantification of collagen fibril size is a major issue for the investigation of pathological disorders associated with structural defects of the extracellular matrix. Second-harmonic generation microscopy is a powerful technique to characterize the macromolecular organization of collagen in unstained biological tissues. Nevertheless, due to the complex coherent building of this nonlinear optical signal, it has never been used to measure fibril diameter so far. Here we report absolute measurements of second-harmonic signals from isolated fibrils down to 30 nm diameter, via implementation of correlative second-harmonic-electron microscopy. Moreover, using analytical and numerical calculations, we demonstrate that the high sensitivity of this technique originates from the parallel alignment of collagen triple helices within fibrils and the subsequent constructive interferences of second-harmonic radiations. Finally, we use these absolute measurements as a calibration for ex vivo quantification of fibril diameter in the Descemet’s membrane of a diabetic rat cornea.

  15. Two-Color Laser High-Harmonic Generation in Cavitated Plasma Wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric

    2016-10-03

    A method is proposed for producing coherent x-rays via high-harmonic generation using a laser interacting with highly-stripped ions in cavitated plasma wakefields. Two laser pulses of different colors are employed: a long-wavelength pulse for cavitation and a short-wavelength pulse for harmonic generation. This method enables efficient laser harmonic generation in the sub-nm wavelength regime.

  16. Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power.

    PubMed

    Rivoire, Kelley; Lin, Ziliang; Hatami, Fariba; Masselink, W Ted; Vucković, Jelena

    2009-12-07

    We demonstrate second harmonic generation in photonic crystal nanocavities fabricated in the semiconductor gallium phosphide. We observe second harmonic radiation at 750 nm with input powers of only nanowatts coupled to the cavity and conversion effciency P(out)/P(2)(in,coupled)=430%/W. The large electronic band gap of GaP minimizes absorption loss, allowing effcient conversion. Our results are promising for integrated, low-power light sources and on-chip reduction of input power in other nonlinear processes.

  17. Efficient Second Harmonic Generation From 2-(N,N-Dimethylamino)-5-Nitroacetanilide (DAN) Crystal Cored Fibres

    NASA Astrophysics Data System (ADS)

    Rush, James D.; Holdcroft, Geoffrey E.; Dunn, Peter L.

    1989-03-01

    The growth and characterisation of fibres containing a crystalline core of the nonlinear organic compound DAN in silica and higher refractive index capillaries is described. In addition to measuring the optical properties in transmission a method is described of measuring the sideways scatter from such fibres in order that a fuller understanding be made of factors which limit the achievement of very high SHG efficiencies.

  18. Nonlinear viscous higher harmonics generation due to incident and reflecting internal wave beam collision

    NASA Astrophysics Data System (ADS)

    Aksu, Anil A.

    2017-09-01

    In this paper, we have considered the non-linear effects arising due to the collision of incident and reflected internal wave beams. It has already been shown analytically [Tabaei et al., "Nonlinear effects in reflecting and colliding internal wave beams," J. Fluid Mech. 526, 217-243 (2005)] and numerically [Rodenborn et al., "Harmonic generation by reflecting internal waves," Phys. Fluids 23, 026601 (2011)] that the internal wave beam collision generates the higher harmonics and mean flow in a linear stratification. In this paper, similar to previous analytical work, small amplitude wave theory is employed; however, it is formulated from energetics perspective which allows considering internal wave beams as the product of slowly varying amplitude and fast complex exponential. As a result, the mean energy propagation equation for the second harmonic wave is obtained. Finally, a similar dependence on the angle of incidence is obtained for the non-linear energy transfer to the second harmonic with previous analyses. A possible physical mechanism for this angle dependence on the second harmonic generation is also discussed here. In addition to previous studies, the viscous effects are also included in the mean energy propagation equation for the incident, the reflecting, and the second harmonic waves. Moreover, even though the mean flow obtained here is only confined to the interaction region, it is also affected by viscosity via the decay in the incident and the reflecting internal wave beams. Furthermore, a framework for the non-linear harmonic generation in non-linear stratification is also proposed here.

  19. Efficient second-harmonic conversion of CW single-frequency Nd:YAG laser light by frequency locking to a monolithic ring frequency doubler

    NASA Technical Reports Server (NTRS)

    Gerstenberger, D. C.; Tye, G. E.; Wallace, R. W.

    1991-01-01

    Efficient second-harmonic conversion of the 1064-nm output of a diode-pumped CW single-frequency Nd:YAG laser to 532 nm was obtained by frequency locking the laser to a monolithic ring resonator constructed of magnesium-oxide-doped lithium niobate. The conversion efficiency from the fundamental to the second harmonic was 65 percent. Two hundred milliwatts of CW single-frequency 532-nm light were produced from 310 mW of power of 1064-nm light. This represents a conversion efficiency of 20 percent from the 1-W diode laser used to pump the Nd:YAG laser to single-frequency 532-nm output. No signs of degradation were observed for over 500 h of operation.

  20. On energy harvesting for augmented tags

    NASA Astrophysics Data System (ADS)

    Allane, Dahmane; Duroc, Yvan; Andia Vera, Gianfranco; Touhami, Rachida; Tedjini, Smail

    2017-02-01

    In this paper, the harmonic signals generated by UHF RFID chips, usually considered as spurious effects and unused, are exploited. Indeed, the harmonic signals are harvested to feed a supplementary circuitry associated with a passive RFID tag. Two approaches are presented and compared. In the first one, the third-harmonic signal is combined with an external 2.45-GHz Wi-Fi signal. The integration is done in such a way that the composite signal boosts the conversion efficiency of the energy harvester. In the second approach, the third-harmonic signal is used as the only source of a harvester that energizes a commercial temperature sensor associated with the tag. The design procedures of the two "augmented-tag" approaches are presented. The performance of each system is simulated with ADS software, and using Harmonic Balance tool (HB), the results obtained in simulation and measurements are compared also. xml:lang="fr"

  1. Suppression and nonlinear excitation of parasitic modes in second harmonic gyrotrons operating in a very high order mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nusinovich, Gregory S.; Pu, Ruifeng; Granatstein, Victor L.

    2015-07-06

    In recent years, there was an active development of high-power, sub-terahertz (sub-THz) gyrotrons for numerous applications. For example, a 0.67 THz gyrotron delivering more than 200 kW with about 20% efficiency was developed. This record high efficiency was achieved because the gyrotron operated in a high-order TE{sub 31,8}-mode with the power of ohmic losses less than 10% of the power of outgoing radiation. That gyrotron operated at the fundamental cyclotron resonance, and a high magnetic field of about 27 T was created by a pulse solenoid. For numerous applications, it is beneficial to use gyrotrons at cyclotron harmonics which can operate inmore » available cryomagnets with fields not exceeding 15 T. However, typically, the gyrotron operation at harmonics faces severe competition from parasitic modes at the fundamental resonance. In the present paper, we consider a similar 0.67 THz gyrotron designed for operation in the same TE{sub 31,8}-mode, but at the second harmonic. We focus on two nonlinear effects typical for interaction between the fundamental and second harmonic modes, viz., the mode suppression and the nonlinear excitation of the mode at the fundamental harmonic by the second harmonic oscillations. Our study includes both the analytical theory and numerical simulations performed with the self-consistent code MAGY. The simulations show that stable second harmonic operation in the TE{sub 31,8} mode is possible with only modest sacrifice of efficiency and power.« less

  2. Fully-resonant, tunable, monolithic frequency conversion as a coherent UVA source.

    PubMed

    Zielińska, Joanna A; Zukauskas, Andrius; Canalias, Carlota; Noyan, Mehmet A; Mitchell, Morgan W

    2017-01-23

    We demonstrate a monolithic frequency converter incorporating up to four tuning degrees of freedom, three temperature and one strain, allowing resonance of pump and generated wavelengths simultaneous with optimal phase-matching. With a Rb-doped periodically-poled potassium titanyl phosphate (KTP) implementation, we demonstrate efficient continuous-wave second harmonic generation from 795 to 397, with low-power efficiency of 72% and high-power slope efficiency of 4.5%. The measured performance shows good agreement with theoretical modeling of the device. We measure optical bistability effects, and show how they can be used to improve the stability of the output against pump frequency and amplitude variations.

  3. Multifunctional pulse generator for high-intensity focused ultrasound system

    NASA Astrophysics Data System (ADS)

    Tamano, Satoshi; Yoshizawa, Shin; Umemura, Shin-Ichiro

    2017-07-01

    High-intensity focused ultrasound (HIFU) can achieve high spatial resolution for the treatment of diseases. A major technical challenge in implementing a HIFU therapeutic system is to generate high-voltage high-current signals for effectively exciting a multichannel HIFU transducer at high efficiencies. In this paper, we present the development of a multifunctional multichannel generator/driver. The generator can produce a long burst as well as an extremely high-voltage short pulse of pseudosinusoidal waves (trigger HIFU) and second-harmonic superimposed waves for HIFU transmission. The transmission timing, waveform, and frequency can be controlled using a field-programmable gate array (FPGA) via a universal serial bus (USB) microcontroller. The hardware is implemented in a compact printed circuit board. The test results of trigger HIFU reveal that the power consumption and the temperature rise of metal-oxide semiconductor field-effect transistors were reduced by 19.9% and 38.2 °C, respectively, from the previous design. The highly flexible performance of the novel generator/driver is demonstrated in the generation of second-harmonic superimposed waves, which is useful for cavitation-enhanced HIFU treatment, although the previous design exhibited difficulty in generating it.

  4. Optical bistability and second-harmonic generation in thin film coupled cavity photonic crystal structures

    NASA Astrophysics Data System (ADS)

    Diao, Liyong

    This thesis deals with design, fabrication and modeling of bistable and multi-stable switching dynamics and second-harmonic generation in two groups of thin film coupled cavity photonic crystal structures. The first component studies optical bistability and multistability in such structures. Optical bistability and multistability are modelled by a nonlinear transfer matrix method. The second component is focused on the modelling and experimental measurement of second-harmonic generation in such structures. It is found that coupled cavity structures can reduce the threshold and index change for bistable operation, but single cavity structures can do the same. However, there is a clear advantage in using coupled cavity structures for multistability in that the threshold for multistability can be reduced. Second-harmonic generation is enhanced by field localization due to the resonant effect at the fundamental wavelength in single and coupled cavity structures by simulated and measured results. The work in this thesis makes three significant contributions. First, in the successful fabrication of thin film coupled cavity structures, the simulated linear transmissions of such structures match those of the fabricated structures almost exactly. Second, the newly defined figure of merit at the maximum transmission point on the bistable curve can be used to compare the material damage tolerance to any other Kerr effect nonlinear gate. Third, the simulated second-harmonic generation agrees excellently with experimental results. More generally optical thin film fabrication has commercial applications in many industry sections, such as electronics, opto-electronics, optical coating, solar cell and MEMS.

  5. Quasi-phase-matched second-harmonic generation of 532 nm radiation in 25 degrees -rotated, x-cut, near-stoichiometric, lithium tantalate fabricated by vapor transport equilibration.

    PubMed

    Hum, D S; Route, R K; Fejer, M M

    2007-04-15

    Quasi-phase-matched second-harmonic generation of 532 nm radiation in 25 degrees -rotated, x-cut, near-stoichiometric lithium tantalate has been performed. Using a face-normal topology for frequency conversion applications allows scalable surface area to avoid surface and volume damage in high-power interactions. First-order, quasi-phase-matched second-harmonic generation was achieved using near-stoichiometric lithium tantalate fabricated by vapor transport equilibration. These crystals supported 1 J of 1064 nm radiation and generated 21 mJ of 532 nm radiation from a 7 ns, Q-switched Nd:YAG laser within a factor of 4.2 of expectation.

  6. Wiggler magnetic field assisted third harmonic generation in expanding clusters

    NASA Astrophysics Data System (ADS)

    Vij, Shivani

    2018-04-01

    A simple theoretical model is constructed to study the wiggler magnetic field assisted third harmonic generation of intense short pulse laser in a cluster in its expanding phase. The ponderomotive force of laser causes density perturbations in cluster electron density which couples with wiggler magnetic field to produce a nonlinear current that generates transverse third harmonic. An intense short pulse laser propagating through a gas embedded with atomic clusters, converts it into hot plasma balls via tunnel ionization. Initially, the electron plasma frequency inside the clusters ω pe > \\sqrt{3}{ω }1 (with ω 1 being the frequency of the laser). As the cluster expands under Coulomb force and hydrodynamic pressure, ω pe decreases to \\sqrt{3}{ω }1. At this time, there is resonant enhancement in the efficiency of the third harmonic generation. The efficiency of third harmonic generation is enhanced due to cluster plasmon resonance and by phase matching due to wiggler magnetic field. The effect of cluster size on the expansion rate is studied to observe that the clusters of different radii would expand differently. The impact of laser intensity and wiggler magnetic field on the efficiency of third harmonic generation is also explored.

  7. Modeling of second-harmonic generation of circumferential guided wave propagation in a composite circular tube

    NASA Astrophysics Data System (ADS)

    Li, Mingliang; Deng, Mingxi; Gao, Guangjian; Xiang, Yanxun

    2018-05-01

    This paper investigated modeling of second-harmonic generation (SHG) of circumferential guided wave (CGW) propagation in a composite circular tube, and then analyzed the influences of interfacial properties on the SHG effect of primary CGW. Here the effect of SHG of primary CGW propagation is treated as a second-order perturbation to its linear wave response. Due to the convective nonlinearity and the inherent elastic nonlinearity of material, there are second-order bulk driving forces and surface/interface driving stresses in the interior and at the surface/interface of a composite circular tube, when a primary CGW mode propagates along its circumference. Based on the approach of modal expansion analysis for waveguide excitation, the said second-order driving forces/stresses are regarded as the excitation sources to generate a series of double-frequency CGW modes that constitute the second-harmonic field of the primary CGW propagation. It is found that the modal expansion coefficient of each double-frequency CGW mode is closely related to the interfacial stiffness constants that are used to describe the interfacial properties between the inner and outer circular parts of the composite tube. Furthermore, changes in the interfacial stiffness constants essentially influence the dispersion relation of CGW propagation. This will remarkably affect the efficiency of cumulative SHG of primary CGW propagation. Some finite element simulations have been implemented of response characteristics of cumulative SHG to the interfacial properties. Both the theoretical analyses and numerical simulations indicate that the effect of cumulative SHG is found to be much more sensitive to changes in the interfacial properties than primary CGW propagation. The potential of using the effect of cumulative SHG by primary CGW propagation to characterize a minor change in the interfacial properties is considered.

  8. Large enhancement of second harmonic generation from transition-metal dichalcogenide monolayer on grating near bound states in the continuum.

    PubMed

    Wang, Tiecheng; Zhang, Shihao

    2018-01-08

    Second harmonic generation from the two-layer structure where a transition-metal dichalcogenide monolayer is put on a one-dimensional grating has been studied. This grating supports bound states in the continuum which have no leakage lying within the continuum of radiation modes, we can enhance the second harmonic generation from the transition-metal dichalcogenide monolayer by more than four orders of magnitude based on the critical field enhancement near the bound states in the continuum. In order to complete this calculation, the scattering matrix theory has been extended to include the nonlinear effect and the scattering matrix of a two-dimensional material including nonlinear terms; furthermore, two methods to observe the bound states in the continuum are considered, where one is tuning the thickness of the grating and the other is changing the incident angle of the electromagnetic wave. We have also discussed various modulation of the second harmonic generation enhancement by adjusting the azimuthal angle of the transition-metal dichalcogenide monolayer.

  9. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trull, J.; Wang, B.; Parra, A.

    2015-06-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system.

  10. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1987-01-01

    Diode-laser-pumped solid-state laser oscillators and nonlinear processes were investigated. A new generation on nonplanar oscillator was fabricated, and it is anticipated that passive linewidths will be pushed to the kilohertz regime. A number of diode-pumped laser transitions were demonstrated in the rod configuration. Second-harmonic conversion efficiencies as high as 15% are routinely obtained in a servo-locked external resonant doubling crystal at 15 mW cw input power levels at 1064 nm.

  11. Harmonic generation and parametric decay in the ion cyclotron frequency range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skiff, F.N.; Wong, K.L.; Ono, M.

    1984-06-01

    Harmonic generation and parametric decay are examined in a toroidal ACT-I plasma using electrostatic plate antennas. The harmonic generation, which is consistent with sheath rectification, is sufficiently strong that the nonlinearly generated harmonic modes themselves decay parametrically. Resonant and nonresonant parametric decay of the second harmonic are observed and compared with uniform pump theory. Resonant decay of lower hybrid waves into lower hybrid waves and slow ion cyclotron waves is seen for the first time. Surprisingly, the decay processes are nonlinearly saturated, indicating absolute instability.

  12. Quasi-phase-matching and second-harmonic generation enhancement in a semiconductor microresonator array using slow-light effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumeige, Yannick

    We theoretically analyze the second-harmonic generation process in a sequence of unidirectionnaly coupled doubly resonant whispering gallery mode semiconductor resonators. By using a convenient design, it is possible to coherently sum the second-harmonic fields generated inside each resonator. We show that resonator coupling allows the bandwidth of the phase-matching curve to be increased with respect to single-resonator configurations simultaneously taking advantage of the resonant feature of the resonators. This quasi-phase-matching technique could be applied to obtain small-footprint nonlinear devices with large bandwidth and limited nonlinear losses. The results are discussed in the framework of the slow-light-effect enhancement of second-order opticalmore » nonlinearities.« less

  13. Selective Coupling Enhances Harmonic Generation of Whispering-Gallery Modes

    NASA Astrophysics Data System (ADS)

    Trainor, Luke S.; Sedlmeir, Florian; Peuntinger, Christian; Schwefel, Harald G. L.

    2018-02-01

    We demonstrate second-harmonic generation (SHG) in an x -cut congruent lithium niobate (LN) whispering-gallery mode (WGM) resonator. First, we show theoretically that independent control of the coupling of the pump and signal modes is optimal for high conversion rates. A coupling scheme based on our earlier work [F. Sedlmeir et al., Phys. Rev. Applied 7, 024029 (2017), 10.1103/PhysRevApplied.7.024029] is then implemented experimentally to verify this improvement. Thereby, we are able to improve on the efficiency of SHG by more than an order of magnitude by selectively outcoupling using a LN prism, utilizing the birefringence of it and the resonator in kind. This method is also applicable to other nonlinear processes in WGM resonators.

  14. Frequency-doubled microwave waveforms generation using a dual-polarization quadrature phase shift keying modulator driven by a single frequency radio frequency signal

    NASA Astrophysics Data System (ADS)

    Zhu, Zihang; Zhao, Shanghong; Li, Xuan; Qu, Kun; Lin, Tao

    2018-01-01

    A photonic approach to generate frequency-doubled microwave waveforms using an integrated dual-polarization quadrature phase shift keying (DP-QPSK) modulator driven by a sinusoidal radio frequency (RF) signal is proposed. By adjusting the dc bias points of the DP-QPSK modulator, the obtained second-order and six-order harmonics are in phase while the fourth-order harmonics are complementary when the orthogonal polarized outputs of the modulator are photodetected. After properly setting the modulation indices of the modulator, the amplitude of the second-order harmonic is 9 times of that of the six-order harmonic, indicating a frequency-doubled triangular waveform is generated. If a broadband 90° microwave phase shifter is attached after the photodetector (PD) to introduce a 90° phase shift, a frequency-doubled square waveform can be obtained after adjusting the amplitude of the second-order harmonic 3 times of that of the six-order harmonic. The proposal is first theoretically analyzed and then validated by simulation. Simulation results show that a 10 GHz triangular and square waveform sequences are successfully generated from a 5 GHz sinusoidal RF drive signal.

  15. Studying the effect of photodynamic therapy (PDT) to enhance healing of femur fractures using polarimetric second-harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Golaraei, Ahmad; Raja, Vaishnavi; Akens, Margarete K.; Wilson, Brian C.; Barzda, Virginijus

    2017-07-01

    Linear polarization-in, polarization-out second-harmonic generation microscopy was used to study the effect of Photodynamic therapy treatment on enhancing the healing of femur fracture by investigating the ultrastructure of collagen as a major component of bone matrix.

  16. Two-pass-internal second-harmonic generation using a prism coupler.

    NASA Technical Reports Server (NTRS)

    Gonzalez, D. G.; Nieh, S. T. K.; Steier, W. H.

    1973-01-01

    A dispersive quartz prism is used to couple the total second harmonic generated in both directions by an internal cavity frequency doubler. The study shows that the dispersion of air and mirror reflection phase shifts can be compensated for by a slight nonphase match condition in the doubler.

  17. Ultrahigh contrast from a frequency-doubled chirped-pulse-amplification beamline.

    PubMed

    Hillier, David; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hopps, Nicholas; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-06-20

    This paper describes frequency-doubled operation of a high-energy chirped-pulse-amplification beamline. Efficient type-I second-harmonic generation was achieved using a 3 mm thick 320 mm aperture KDP crystal. Shots were fired at a range of energies achieving more than 100 J in a subpicosecond, 527 nm laser pulse with a power contrast of 10(14).

  18. The analysis of harmonic generation coefficients in the ablative Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Fan, Zhengfeng; Lu, Xinpei; Ye, Wenhua; Zou, Changlin; Zhang, Ziyun; Zhang, Wen

    2017-10-01

    In this research, we use the numerical simulation method to investigate the generation coefficients of the first three harmonics and the zeroth harmonic in the Ablative Rayleigh-Taylor Instability. It is shown that the interface shifts to the low temperature side during the ablation process. In consideration of the third-order perturbation theory, the first three harmonic amplitudes of the weakly nonlinear regime are calculated and then the harmonic generation coefficients are obtained by curve fitting. The simulation results show that the harmonic generation coefficients changed with time and wavelength. Using the higher-order perturbation theory, we find that more and more harmonics are generated in the later weakly nonlinear stage, which is caused by the negative feedback of the later higher harmonics. Furthermore, extending the third-order theory to the fifth-order theory, we find that the second and the third harmonics coefficients linearly depend on the wavelength, while the feedback coefficients are almost constant. Further analysis also shows that when the fifth-order theory is considered, the normalized effective amplitudes of second and third harmonics can reach about 25%-40%, which are only 15%-25% in the frame of the previous third-order theory. Therefore, the third order perturbation theory is needed to be modified by the higher-order theory when ηL reaches about 20% of the perturbation wavelength.

  19. Variable Asymmetric Chains in Transition Metal Oxyfluorides: Structure-Second-Harmonic-Generation Property Relationships.

    PubMed

    Ahmed, Belal; Jo, Hongil; Oh, Seung-Jin; Ok, Kang Min

    2018-05-15

    Four novel transition metal oxyfluorides, [Zn(pz) 3 ][MoO 2 F 4 ]·0.1H 2 O (1), [Zn(pz) 2 F 2 ][Zn(pz) 3 ] 2 [WO 2 F 4 ] 2 (2), [Cd(pz) 4 ][Cd(pz) 4 (H 2 O)][MoO 2 F 4 ] 2 ·0.625H 2 O (3), and [Zn(mpz) 3 ] 2 [MoO 2 F 4 ] 2 (4) (pz = pyrazole; mpz = 3-methyl pyrazole) have been synthesized. Compounds 1 and 4 contain helical chains. Compound 2 accommodates zigzag chains, and compound 3 has quasi-one-dimensional linear chains. The variable chain structures are found to be attributable to the different structure-directing anionic groups and hydrogen bonding interactions. Compound 4 crystallized in the noncentrosymmetric (NCS) polar space group, Pna2 1 , is nonphase-matchable (Type I), and reveals a moderate second-harmonic-generation (SHG) efficiency (10 × α-SiO 2 ). The observed SHG efficiency of compound 4 is due to the small net polarization occurring from the arrangement of ZnN 3 F 2 trigonal bipyramids. Spectroscopic and thermal characterizations along with calculations for the title materials are reported.

  20. Multiple layer optical memory system using second-harmonic-generation readout

    DOEpatents

    Boyd, Gary T.; Shen, Yuen-Ron

    1989-01-01

    A novel optical read and write information storage system is described which comprises a radiation source such as a laser for writing and illumination, the radiation source being capable of radiating a preselected first frequency; a storage medium including at least one layer of material for receiving radiation from the radiation source and capable of being surface modified in response to said radiation source when operated in a writing mode and capable of generating a pattern of radiation of the second harmonic of the preselected frequency when illuminated by the radiation source at the preselected frequency corresponding to the surface modifications on the storage medium; and a detector to receive the pattern of second harmonic frequency generated.

  1. Design considerations for quasi-phase-matching in doubly resonant lithium niobate hexagonal micro-resonators

    NASA Astrophysics Data System (ADS)

    Sono, Tleyane J.; Riziotis, Christos; Mailis, Sakellaris; Eason, Robert W.

    2017-09-01

    Fabrication capabilities of high optical quality hexagonal superstructures by chemical etching of inverted ferroelectric domains in lithium niobate platform suggests a route for efficient implementation of compact hexagonal microcavities. Such nonlinear optical hexagonal micro-resonators are proposed as a platform for second harmonic generation (SHG) by the combined mechanisms of total internal reflection (TIR) and quasi-phase-matching (QPM). The proposed scheme for SHG via TIR-QPM in a hexagonal microcavity can improve the efficiency and also the compactness of SHG devices compared to traditional linear-type based devices. A simple theoretical model based on six-bounce trajectory and phase matching conditions was capable for obtaining the optimal cavity size. Furthermore numerical simulation results based on finite difference time domain beam propagation method analysis confirmed the solutions obtained by demonstrating resonant operation of the microcavity for the second harmonic wave produced by TIR-QPM. Design aspects, optimization issues and characteristics of the proposed nonlinear device are presented.

  2. Achromatic phase-matching second harmonic generation for a tunable laser

    DOEpatents

    Jacobson, A.G.; Bisson, S.; Trebino, R.

    1998-01-20

    An optical system uses a nonlinear optical medium to alter the frequency of a relatively narrow band light source tunable over a plurality of different frequencies using an optical system for passively directing light to the nonlinear medium at a correct phase matching angle. In this manner, the light from the tunable light source can be efficiently frequency-doubled or frequency-tripled without the need of moving parts. An all prism design provides a system of optimal efficiency. 6 figs.

  3. Achromatic phase-matching second harmonic generation for a tunable laser

    DOEpatents

    Jacobson, Alexander Gerson; Bisson, Scott; Trebino, Rick

    1998-01-01

    An optical system uses a nonlinear optical medium to alter the frequency of a relatively narrow band light source tunable over a plurality of different frequencies using an optical system for passively directing light to the nonlinear medium at a correct phase matching angle. In this manner, the light from the tunable light source can be efficiently frequency-doubled or frequency-tripled without the need of moving parts. An all prism design provides a system of optimal efficiency.

  4. L-Nitroargininium picrate

    NASA Astrophysics Data System (ADS)

    Apreyan, R. A.; Fleck, M.; Atanesyan, A. K.; Sukiasyan, R. P.; Petrosyan, A. M.

    2015-12-01

    L-Nitroargininium picrate has been obtained from an aqueous solution containing equimolar quantities of L-nitroarginine and picric acid by slow evaporation. Single crystal was grown by evaporation method. Crystal structure was determined at room temperature. The salt crystallizes in monoclinic crystal system (space group P21). Vibrational spectra and thermal properties were studied. Second harmonic generation efficiency measured by powder method is found to be four times higher than in L-nitroarginine, which in turn is ten times more efficient than KDP (KH2PO4).

  5. Effect of structural modification on second harmonic generation in collagen

    NASA Astrophysics Data System (ADS)

    Stoller, Patrick C.; Reiser, Karen M.; Celliers, Peter M.; Rubenchik, Alexander M.

    2003-07-01

    The effects of structural perturbation on second harmonic generation in collagen were investigated. Type I collagen fascicles obtained from rat tails were structurally modified by increasing nonenzymatic cross-linking, by thermal denaturation, by collagenase digestion, or by dehydration. Changes in polarization dependence were observed in the dehydrated samples. Surprisingly, no changes in polarization dependence were observed in highly crosslinked samples, despite significant alterations in packing structure. Complete thermal denaturation and collagenase digestion produced samples with no detectable second harmonic signal. Prior to loss of signal, no change in polarization dependence was observed in partially heated or digested collagen.

  6. Application of mid-infrared pulses for quasi-phase-matching of high-order harmonics in silver plasma.

    PubMed

    Ganeev, Rashid A; Husakou, Anton; Suzuki, Masayuki; Kuroda, Hiroto

    2016-02-22

    We demonstrate the quasi-phase-matching of a group of harmonics generated in Ag multi-jet plasma using tunable pulses in the region of 1160 - 1540 nm and their second harmonic emission. The numerical treatment of this effect includes microscopic description of the harmonic generation, propagation of the pump pulse, and the propagation of the generated harmonics. We obtained more than 30-fold growth of harmonics at the conditions of quasi-phase-matching in the region of 35 nm using eight-jet plasma compared with the case of imperforated plasma.

  7. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response.

    PubMed

    Shcherbakov, Maxim R; Neshev, Dragomir N; Hopkins, Ben; Shorokhov, Alexander S; Staude, Isabelle; Melik-Gaykazyan, Elizaveta V; Decker, Manuel; Ezhov, Alexander A; Miroshnichenko, Andrey E; Brener, Igal; Fedyanin, Andrey A; Kivshar, Yuri S

    2014-11-12

    We observe enhanced third-harmonic generation from silicon nanodisks exhibiting both electric and magnetic dipolar resonances. Experimental characterization of the nonlinear optical response through third-harmonic microscopy and spectroscopy reveals that the third-harmonic generation is significantly enhanced in the vicinity of the magnetic dipole resonances. The field localization at the magnetic resonance results in two orders of magnitude enhancement of the harmonic intensity with respect to unstructured bulk silicon with the conversion efficiency limited only by the two-photon absorption in the substrate.

  8. Second-harmonic generation studies in the B2 and B4 phases of a banana-shaped liquid crystal.

    PubMed

    Ortega, J; Pereda, N; Folcia, C L; Etxebarria, J; Ros, M B

    2001-01-01

    Second-harmonic generation (SHG) measurements have been performed in the B2 phase of the achiral banana-shaped molecule with n=12 alkoxy end chains (P-12-O-PIMB). A quantitative value of the nonlinear efficiency has been obtained from SHG curves at oblique incidences, taking into account that the signal is generated by a random orientation of different domains. In the B4 phase, circular dichroism, optical absorption and SHG studies have been carried out. It has been found that there are no simple helical arrangements giving rise to selective reflection in the visible region of the spectrum. In addition, some unusual features of the SHG behavior are pointed out. It is concluded that the phase is intrinsically inactive for the SHG process. The detected signal is due to the presence of some birefringent inclusions that are created at the B2 to B4 transition and slowly disappear while the sample is maintained within the B4 phase. A structural model for these inclusions is presented.

  9. Second-harmonic generation studies in the B2 and B4 phases of a banana-shaped liquid crystal

    NASA Astrophysics Data System (ADS)

    Ortega, J.; Pereda, N.; Folcia, C. L.; Etxebarria, J.; Ros, M. B.

    2001-01-01

    Second-harmonic generation (SHG) measurements have been performed in the B2 phase of the achiral banana-shaped molecule with n=12 alkoxy end chains (P-12-O-PIMB). A quantitative value of the nonlinear efficiency has been obtained from SHG curves at oblique incidences, taking into account that the signal is generated by a random orientation of different domains. In the B4 phase, circular dichroism, optical absorption and SHG studies have been carried out. It has been found that there are no simple helical arrangements giving rise to selective reflection in the visible region of the spectrum. In addition, some unusual features of the SHG behavior are pointed out. It is concluded that the phase is intrinsically inactive for the SHG process. The detected signal is due to the presence of some birefringent inclusions that are created at the B2 to B4 transition and slowly disappear while the sample is maintained within the B4 phase. A structural model for these inclusions is presented.

  10. Generation of 46 W green-light by frequency doubling of 96 W picosecond unpolarized Yb-doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Qi, Yaoyao; Yu, Haijuan; Zhang, Jingyuan; Zhang, Ling; He, Chaojian; Lin, Xuechun

    2018-05-01

    We demonstrated a high efficiency and high average power picosecond green light source based on SHG (second harmonic generation) of an unpolarized ytterbium-doped fiber amplifier chain. Using single-pass frequency doubling in two temperature-tuned type-I phase-matching LBO crystals, we were able to generate 46 W, >70 ps pulses at 532 nm from a fundamental beam at 1064 nm, whose output is 96 W, 4.8 μJ, with a repetition frequency of 20 MHz and nearly diffraction limited. The optical conversion efficiency was ∼48% in a highly compact design. To the best of our knowledge, this is the first reported on ps green source through SHG of an unpolarized fiber laser with such a high output and high efficiency.

  11. Layer-Dependent Third-Harmonic Generation in Graphene

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Guan, Honghua; Dadap, Jerry; Osgood, Richard; Richard Osgood Team

    Graphene has become a subject of intense interest and study because of its remarkable 2D electronic properties. Multilayer graphene also offers an array of properties that are also of interest for optical physics and devices. Despite its second-order-nonlinear optical response is intrinsically weak, third-order nonlinear optical effects in graphene are symmetry-allowed thus leading to studies of several third-order process in few-layer graphene. In this work, we report third-harmonic generation in multilayer graphene mounted on fused silica and with thicknesses which approach the bulk continuum. THG signals show cubic power dependence with respect to the intensity of fundamental beam. Third-harmonic generation spectroscopy enables a good fit using linear optical detection, which shows strong contrast for different layer number graphene. The maximum THG efficiency appears at layer number around 30. Two models are used for describing this layer dependent phenomenon and shows absorption plays a key role in THG of multilayer graphene. This work also provides a new imaging technology for graphene detection and identification with better contrast and resolution. U.S. Department of Energy under Contract No. DE-FG 02-04-ER-46157.

  12. Generation of high-field narrowband terahertz radiation by counterpropagating plasma wakefields

    NASA Astrophysics Data System (ADS)

    Timofeev, I. V.; Annenkov, V. V.; Volchok, E. P.

    2017-10-01

    It is found that nonlinear interaction of plasma wakefields driven by counterpropagating laser or particle beams can efficiently generate high-power electromagnetic radiation at the second harmonic of the plasma frequency. Using a simple analytical theory and particle-in-cell simulations, we show that this phenomenon can be attractive for producing high-field ( ˜10 MV/cm) tunable terahertz radiation with a narrow line width. For laser drivers produced by existing petawatt-class systems, this nonlinear process opens the way to the generation of gigawatt, multi-millijoule terahertz pulses which are not presently available for any other generating schemes.

  13. Polarization control of high order harmonics in the EUV photon energy range.

    PubMed

    Vodungbo, Boris; Barszczak Sardinha, Anna; Gautier, Julien; Lambert, Guillaume; Valentin, Constance; Lozano, Magali; Iaquaniello, Grégory; Delmotte, Franck; Sebban, Stéphane; Lüning, Jan; Zeitoun, Philippe

    2011-02-28

    We report the generation of circularly polarized high order harmonics in the extreme ultraviolet range (18-27 nm) from a linearly polarized infrared laser (40 fs, 0.25 TW) focused into a neon filled gas cell. To circularly polarize the initially linearly polarized harmonics we have implemented a four-reflector phase-shifter. Fully circularly polarized radiation has been obtained with an efficiency of a few percents, thus being significantly more efficient than currently demonstrated direct generation of elliptically polarized harmonics. This demonstration opens up new experimental capabilities based on high order harmonics, for example, in biology and materials science. The inherent femtosecond time resolution of high order harmonic generating table top laser sources renders these an ideal tool for the investigation of ultrafast magnetization dynamics now that the magnetic circular dichroism at the absorption M-edges of transition metals can be exploited.

  14. Continuous-wave, single-frequency 229  nm laser source for laser cooling of cadmium atoms.

    PubMed

    Kaneda, Yushi; Yarborough, J M; Merzlyak, Yevgeny; Yamaguchi, Atsushi; Hayashida, Keitaro; Ohmae, Noriaki; Katori, Hidetoshi

    2016-02-15

    Continuous-wave output at 229 nm for the application of laser cooling of Cd atoms was generated by the fourth harmonic using two successive second-harmonic generation stages. Employing a single-frequency optically pumped semiconductor laser as a fundamental source, 0.56 W of output at 229 nm was observed with a 10-mm long, Brewster-cut BBO crystal in an external cavity with 1.62 W of 458 nm input. Conversion efficiency from 458 nm to 229 nm was more than 34%. By applying a tapered amplifier (TA) as a fundamental source, we demonstrated magneto-optical trapping of all stable Cd isotopes including isotopes Cd111 and Cd113, which are applicable to optical lattice clocks.

  15. Energy exchange properties during second-harmonic generation in finite one-dimensional photonic band-gap structures with deep gratings.

    PubMed

    D'Aguanno, Giuseppe; Centini, Marco; Scalora, Michael; Sibilia, Concita; Bertolotti, Mario; Bloemer, Mark J; Bowden, Charles M

    2003-01-01

    We study second-harmonic generation in finite, one-dimensional, photonic band-gap structures with large index contrast in the regime of pump depletion and global phase-matching conditions. We report a number of surprising results: above a certain input intensity, field dynamics resemble a multiwave mixing process, where backward and forward components compete for the available energy; the pump field is mostly reflected, revealing a type of optical limiting behavior; and second-harmonic generation becomes balanced in both directions, showing unusual saturation effects with increasing pump intensity. This dynamics was unexpected, and it is bound to influence the way one goes about thinking and designing nonlinear frequency conversion devices in a practical way.

  16. Development of high repetition rate nitric oxide planar laser induced fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Jiang, Naibo

    This thesis has documented the development of a MHz repitition rate pulse burst laser system. Second harmonic and third harmonic efficiencies are improved by adding a Phase Conjugate Mirror to the system. Some high energy fundamental, second harmonic, and third harmonic burst sequences consisting of 1--12 pulses separated in time by between 4 and 12 microseconds are now routinely obtained. The reported burst envelopes are quite uniform. We have also demonstrated the ability to generate ultra-high frequency sequences of broadly wavelength tunable, high intensity laser pulses using a home built injection seeded Optical Parametric Oscillator (OPO), pumped by the second and third harmonic output of the pulse burst laser. Typical OPO output burst sequences consist of 6--10 pulses, separated in time by between 6 and 10 microseconds. With third harmonic pumping of the OPO system, we studied four conditions, two-crystal Singly Resonant OPO (SRO) cavity, three-crystal OPO cavity, single pass two-crystal Doubly Resonant OPO (DRO) cavity and double pass two-crystal OPO cavity. The double pass two-crystal OPO cavity gives the best operation in burst mode. For single pass OPO, the average total OPO conversion efficiency is approximately 25%. For double pass OPO, the average total OPO conversion efficiency is approximately 35%. As a preliminary work, we studied 532nm pumping of a single crystal OPO cavity. With single pulse pumping, the conversion efficiency can reach 30%. For both 355nm and 532nm pumping OPO, we have demonstrated injection seeding. The OPO output light linewidth is significantly narrowed. Some preliminary etalon traces are also reported. By mixing the OPO signal output at 622nm with residual third harmonic at 355nm, we obtained 226nm burst sequences with average pulse energy of ˜0.2 mJ. Injection seeding of the OPO increases the energy achieved by a factor of ˜2. 226nm burst sequences with reasonably uniform burst envelopes are reported. Using the system we have obtained, for the first time by any known optical method, Planar Laser Induced Fluorescence (PLIF) image sequences at ultrahigh (≥100kHz) frame rates, in particular NO PLIF image sequences, have been obtained in a Mach 2 jet. We also studied the possibility of utilizing a 250 kHz pulsed Nd:YVO 4 laser as the master oscillator. 10-pulse-10-mus spacing burst sequences with reasonably uniform burst envelope have been obtained. The total energy of the burst sequence is ˜2.5J.

  17. Generation of coherent terahertz radiation in ultrafast laser-gas interactionsa)

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Yong

    2009-05-01

    The generation of intense terahertz radiation in ultrafast laser-gas interactions is studied on a basis of transient electron current model. When an ultrashort pulse laser's fundamental and its second harmonic fields are mixed to ionize a gas, a nonvanishing, directional photoelectron current can be produced, which simultaneously emits terahertz radiation in the far field. Here, the generation mechanism is examined with an analytic derivation and numerical simulations, in which tunneling ionization and subsequent electron motion in the combined laser field play a key role. In the simulations, three types of laser-gas interactions are considered: (i) mixing the fundamental and its second harmonic fields, (ii) mixing nonharmonic, two-color fields, and (iii) focusing single-color, few-cycle pulses. In these interactions, terahertz generation and other nonlinear effects driven by the transient current are investigated. In particular, anticorrelation between terahertz and second (or third) harmonic generation is observed and analyzed.

  18. Second harmonic generation in resonant optical structures

    DOEpatents

    Eichenfield, Matt; Moore, Jeremy; Friedmann, Thomas A.; Olsson, Roy H.; Wiwi, Michael; Padilla, Camille; Douglas, James Kenneth; Hattar, Khalid Mikhiel

    2018-01-09

    An optical second-harmonic generator (or spontaneous parametric down-converter) includes a microresonator formed of a nonlinear optical medium. The microresonator supports at least two modes that can be phase matched at different frequencies so that light can be converted between them: A first resonant mode having substantially radial polarization and a second resonant mode having substantially vertical polarization. The first and second modes have the same radial order. The thickness of the nonlinear medium is less than one-half the pump wavelength within the medium.

  19. Conversion of the optical orbital angular momentum in a plasmon-assisted second-harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yongmei; Wei, Dunzhao; Zhu, Yunzhi

    We experimentally demonstrate the plasmon-assisted second-harmonic generation of an optical orbital angular momentum (OAM) beam. Because of the shape resonance, the plasmons in a periodic array of rectangular metal holes greatly enhance the nonlinear optical conversion of an OAM state. The OAM conservation (i.e., 2l{sub 1} = l{sub 2} with l{sub 1} and l{sub 2} being the OAM numbers of the fundamental and second-harmonic waves, respectively) holds well under our experimental configuration. Our results provide a potential way to realize nonlinear optical manipulation of an OAM mode in a nano-photonic device.

  20. High-power continuous-wave tunable 544- and 272-nm beams based on a diode-oscillator fiber-amplifier for calcium spectroscopy

    NASA Astrophysics Data System (ADS)

    Ko, Kwang-Hoon; Kim, Yonghee; Park, Hyunmin; Cha, Yong-Ho; Kim, Taek-Soo; Lee, Lim; Lim, Gwon; Han, Jaemin; Ko, Kwang-Hee; Jeong, Do-Young

    2015-08-01

    Continuous-wave single-frequency tunable 544- and 272-nm beams have been demonstrated by the second- and fourth-harmonic conversions of a 1088-nm fundamental beam from a diode-oscillator fiber-amplifier. The single-pass second-harmonic generation with a MgO-doped periodically poled stoichiometric LiTaO3 crystal and the external-cavity frequency-doubling technique with a bulk BBO crystal were employed to achieve an approximately 6-W 544-nm beam and a 1.5-W 272-nm beam, respectively. We characterized the second- and fourth-harmonic generations and discussed their applications to calcium spectroscopy.

  1. Growth and characterization of crystals for IR detectors and second harmonic gereration devices

    NASA Technical Reports Server (NTRS)

    Lal, Ravi B.; Batra, Ashok K.; Rao, Sistla M.; Bhatia, S. S.; Chunduru, Kunar P.; Paulson, Ron; Moorkherji, Tripty K.

    1989-01-01

    Two types of materials, L-arginine phosphate (LAP) and doped triglycine sulfate (TGS), are examined for their growth characteristics and relevant properties for second harmonic generation and IR detector applications, respectively.

  2. Effect of Precipitation Morphology on the Second Harmonic Generation of Ultrasonic Wave During Tempering in P92 Steel

    NASA Astrophysics Data System (ADS)

    Sahu, Minati Kumari; Swaminathan, J.; Bandyopadhyay, Nil Ratan; Sagar, Sarmistha Palit

    2017-10-01

    This paper reports the generation of second harmonic of ultrasound wave and the variation of its amplitude with the precipitation morphology in P92 steel. P92 steel samples were normalized at 1075 °C and tempered in a range of 715-835 °C at a step of 30 °C to study the effect of nucleation and growth of precipitates on the amplitude of second harmonic of ultrasound wave. It has been observed that the non linear ultrasonic (NLU) parameter which is defined as the ratio of the amplitude of second harmonic to the square of the amplitude of the transmitted signal frequency increases with the nucleation and growth of precipitates. Whereas when the growth of precipitate is restricted and fine secondary precipitates start to nucleate, it decreases. The maximum of NLU parameter corresponds to the optimum tempering temperature for the studied material.

  3. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy.

    PubMed

    Loganathan, Muthukumaran; Bristow, Douglas A

    2014-04-01

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  4. Highly efficient 400  W near-fundamental-mode green thin-disk laser.

    PubMed

    Piehler, Stefan; Dietrich, Tom; Rumpel, Martin; Graf, Thomas; Ahmed, Marwan Abdou

    2016-01-01

    We report on the efficient generation of continuous-wave, high-brightness green laser radiation. Green lasers are particularly interesting for reliable and reproducible deep-penetration welding of copper or for pumping Ti:Sa oscillators. By intracavity second-harmonic generation in a thin-disk laser resonator designed for fundamental-mode operation, an output power of up to 403 W is demonstrated at a wavelength of 515 nm with almost diffraction-limited beam quality. The unprecedented optical efficiency of 40.7% of green output power with respect to the pump power of the thin-disk laser is enabled by the intracavity use of a highly efficient grating waveguide mirror, which combines the functions of wavelength stabilization and spectral narrowing, as well as polarization selection in a single element.

  5. Bernstein wave aided laser third harmonic generation in a plasma

    NASA Astrophysics Data System (ADS)

    Tyagi, Yachna; Tripathi, Deepak; Kumar, Ashok

    2016-09-01

    The process of Bernstein wave aided resonant third harmonic generation of laser in a magnetized plasma is investigated. The extra-ordinary mode (X-mode) laser of frequency ω 0 and wave number k → 0 , travelling across the magnetic field in a plasma, exerts a second harmonic ponderomotive force on the electrons imparting them an oscillatory velocity v → 2 ω0 , 2 k → 0 . This velocity beats with the density perturbation due to the Bernstein wave to produce a density perturbation at cyclotron frequency shifted second harmonic. The density perturbation couples with the oscillatory velocity v → ω0 , k → 0 of X-mode of the laser to produce the cyclotron frequency shifted third harmonic current density leading to harmonic radiation. The phase matching condition for the up shifted frequency is satisfied when the Bernstein wave is nearly counter-propagating to the laser. As the transverse wave number of the Bernstein wave is large, it is effective in the phase matched third harmonic generation, when the laser frequency is not too far from the upper hybrid frequency.

  6. Evidence of multipolar response of Bacteriorhodopsin by noncollinear second harmonic generation.

    PubMed

    Bovino, F A; Larciprete, M C; Sibilia, C; Váró, G; Gergely, C

    2012-06-18

    Noncollinear second harmonic generation from a Bacteriorhodopsin (BR) oriented multilayer film was systematically investigated by varying the polarization state of both fundamental beams. Both experimental results and theoretical simulations, show that the resulting polarization mapping is an useful tool to put in evidence the optical chirality of the investigated film as well as the corresponding multipolar contributions to the nonlinear.

  7. Second-harmonic generation from a thin spherical layer and No-generation conditions

    NASA Astrophysics Data System (ADS)

    Kapshai, V. N.; Shamyna, A. A.

    2017-09-01

    In the Rayleigh-Gans-Debye approximation, we solve the problem of second-harmonic generation by an elliptically polarized electromagnetic wave incident on the surface of a spherical particle that is coated by an optically nonlinear layer and is placed in a dielectric. The formulas obtained characterize the spatial distribution of the electric field of the second harmonic in the far-field zone. The most general form of the second-order dielectric susceptibility tensor is considered, which contains four independent components, with three of them being nonchiral and one, chiral. Consistency and inconsistencies between the obtained solution and formulas from works of other authors are found. We analyze the directivity patterns that characterize the spatial distribution of the generated radiation for the nonchiral layer and their dependences on the anisotropy and ellipticity coefficients of the incident wave. It is found that, with increasing radius of the nonlinear layer, the generated radiation becomes more directional. Combinations of parameters for which no radiation is generated are revealed. Based on this, we propose methods for experimental determination of the anisotropy coefficients.

  8. Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation.

    PubMed

    Li, Guixin; Wu, Lin; Li, King F; Chen, Shumei; Schlickriede, Christian; Xu, Zhengji; Huang, Siya; Li, Wendi; Liu, Yanjun; Pun, Edwin Y B; Zentgraf, Thomas; Cheah, Kok W; Luo, Yu; Zhang, Shuang

    2017-12-13

    The spin and orbital angular momentum (SAM and OAM) of light is providing a new gateway toward high capacity and robust optical communications. While the generation of light with angular momentum is well studied in linear optics, its further integration into nonlinear optical devices will open new avenues for increasing the capacity of optical communications through additional information channels at new frequencies. However, it has been challenging to manipulate the both SAM and OAM of nonlinear signals in harmonic generation processes with conventional nonlinear materials. Here, we report the generation of spin-controlled OAM of light in harmonic generations by using ultrathin photonic metasurfaces. The spin manipulation of OAM mode of harmonic waves is experimentally verified by using second harmonic generation (SHG) from gold meta-atom with 3-fold rotational symmetry. By introducing nonlinear phase singularity into the metasurface devices, we successfully generate and measure the topological charges of spin-controlled OAM mode of SHG through an on-chip metasurface interferometer. The nonlinear photonic metasurface proposed in this work not only opens new avenues for manipulating the OAM of nonlinear optical signals but also benefits the understanding of the nonlinear spin-orbit interaction of light in nanoscale devices.

  9. Analysis of Even Harmonics Generation in an Isolated Electric Power System

    NASA Astrophysics Data System (ADS)

    Kanao, Norikazu; Hayashi, Yasuhiro; Matsuki, Junya

    Harmonics bred from loads are mainly odd order because the current waveform has half-wave symmetry. Since the even harmonics are negligibly small, those are not generally measured in electric power systems. However, even harmonics were measured at a 500/275/154kV substation in Hokuriku Electric Power Company after removal of a transmission line fault. The even harmonics caused malfunctions of protective digital relays because the relays used 4th harmonics at the input filter as automatic supervisory signal. This paper describes the mechanism of generation of the even harmonics by comparing measured waveforms with ATP-EMTP simulation results. As a result of analysis, it is cleared that even harmonics are generated by three causes. The first cause is a magnetizing current of transformers due to flux deviation by DC component of a fault current. The second one is due to harmonic conversion of a synchronous machine which generates even harmonics when direct current component or even harmonic current flow into the machine. The third one is that increase of harmonic impedance due to an isolated power system produces harmonic voltages. The design of the input filter of protective digital relays should consider even harmonics generation in an isolated power system.

  10. Studies in nonlinear optics and functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Dai, Tehui

    There are two parts in this thesis. The first part will involve a study in the anomalous dispersion phase matched second-harmonic generation, and the second part will be a study in functional magnetic resonance imaging (fMRI) and a biophysical model of the human muscle. In part I, we report on a series of tricyanovinylaniline chromophores for use as dopants in poled poly(methyl methacrylate) waveguides for anomalous-dispersion phase- matched second-harmonic generation. Second-harmonic generation measurements as a function of mode index confirmed anomalous dispersion phase-matching efficiencies as large as 245%/Wcm2 over a propagation length of ~35 μm. The waveguide coupling technique limited the interaction length. The photostability of the chromophores was measured directly and found to agree qualitatively with second-harmonic measurements over time and was found to be improved over previously reported materials. In part II, we designed a system that could record joint force and surface electromyography (EMG) simultaneously with fMRI data. I-Egh quality force and EMG data were obtained at the same time that excellent fMRI brain images were achieved. Using this system we determined the relationship between the fMRI-measured brain activation and the handgrip force, and between the fMRI-measured brain activation and the EMG of finger flexor muscles. We found that in the whole brain and in the majority of motor function-related cortical fields, the degree of muscle activation is directly proportional to the amplitude of the brain signal determined by the fMRI measurement. The similarity in the relationship between muscle output and fMRI signal in a number of brain areas suggests that multiple cortical fields are involved in controlling muscle force. The factors that may contribute to the fMRI signals are discussed. A biophysical twitch force model was developed to predict force response under electrical stimulation. Comparison between experimental and modeled force profiles, peak forces, and force duration shows excellent agreement between the model and the experimental data. It is concluded that the present model allows us to reproduce the main features of muscle activation under stimulation.

  11. Effect of laser polarization and pulse energy on therapeutic, femtosecond laser-induced second harmonic generation in corneal tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Calhoun, William R.; Ilev, Ilko K.

    2016-03-01

    Some of the most commonly performed surgical operations in the world, including laser-assisted in-situ keratomileusis (LASIK), lens replacement (e.g. cataract surgery), and keratoplasty (cornea transplant), now employ therapeutic infrared femtosecond lasers (FSLs) for their extreme precision, low energy delivered into tissue and advanced ablation characteristics. Although the widely exploited applications of FSLs in medical therapeutics offer significant benefits, FSLs must generate very high intensities in order to achieve optical breakdown, the predominant tissue ablative mechanism, which can also stimulate nonlinear optical effects such as harmonic generation, an effect that generates coherent visible and UV light in the case of second- (SHG) and third-harmonic generation (THG), respectively. In order to improve the understanding of HG in corneal tissue, the effect of FSL polarization and pulse energy were investigated. FSL stimulated SHG intensity in corneal tissue was measured as the laser polarization was rotated 360 degrees. Further, the pulse energy at the SHG wavelength were measured for single FSL pulses as the pulse energy at the fundamental wavelength was varied through a range of clinically relevant values. The results of this study revealed SHG intensity oscillated with laser polarization, having a variation greater than 20%. This relationship seems to due to the intrinsic anisotropy of collagen fibril hyperpolarizability, not related to tissue birefringence. SHG pulse energy measurements showed an increase in SHG pulse energy with increasing FSL pulse energy, however conversion efficiency decreased. This may be related to the dynamic relationship between optical breakdown leading to tissue destruction and HG evolution.

  12. Observation of photorefractive simultons in lithium niobate.

    PubMed

    Fazio, Eugenio; Belardini, Alessandro; Alonzo, Massimo; Centini, Marco; Chauvet, Mathieu; Devaux, Fabrice; Scalora, Michael

    2010-04-12

    Spatial and temporal locking of fundamental and second harmonic pulses was realized by means of photorefractive nonlinearity and highly mismatched harmonic generation. Due to the presence of both phase-locked and unlocked second harmonic pulses, a twin simultonic state was observed. Simultonic filamentation occurring at high pumping rates allowed us to determine a relation between the simulton's waist and its intensity.

  13. Continuum generation in ultra high numerical aperture fiber with application to multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Sayler, Nicholas

    Nonlinear microscopy benefits from broadband laser sources, enabling efficient excitation of an array of fluorophores, for example. This work demonstrates broadening of a narrow band input pulse (6 nm to 40 nm) centered at 1040 nm with excellent shot-to-shot stability. In a preliminary demonstration, multiphoton imaging with pulses from the fiber is performed. In particular second harmonic imaging of corn starch is performed.

  14. Continuous-wave operation of a room-temperature, diode-laser-pumped, 946-nm Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Fan, T. Y.; Byer, Robert L.

    1987-01-01

    Single-stripe diode-laser-pumped operation of a continuous-wave 946-nm Nd:YAG laser with less than 10-mW threshold has been demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. KNbO3 and periodically poled LiNbO3 appear to be the most promising.

  15. Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces.

    PubMed

    Ye, Weimin; Li, Xin; Liu, Juan; Zhang, Shuang

    2016-10-31

    Benefiting from efficient local phase and amplitude control at the subwavelength scale, metasurfaces offer a new platform for computer generated holography with high spatial resolution. Three-dimensional and high efficient holograms have been realized by metasurfaces constituted by subwavelength meta-atoms with spatially varying geometries or orientations. Metasurfaces have been recently extended to the nonlinear optical regime to generate holographic images in harmonic generation waves. Thus far, there has been no vector field simulation of nonlinear metasurface holograms because of the tremendous computational challenge in numerically calculating the collective nonlinear responses of the large number of different subwavelength meta-atoms in a hologram. Here, we propose a general phenomenological method to model nonlinear metasurface holograms based on the assumption that every meta-atom could be described by a localized nonlinear polarizability tensor. Applied to geometric nonlinear metasurfaces, we numerically model the holographic images formed by the second-harmonic waves of different spins. We show that, in contrast to the metasurface holograms operating in the linear optical regime, the wavelength of incident fundamental light should be slightly detuned from the fundamental resonant wavelength to optimize the efficiency and quality of nonlinear holographic images. The proposed modeling provides a general method to simulate nonlinear optical devices based on metallic metasurfaces.

  16. Optical second-harmonic-generation probe of two-dimensional ferroelectricity.

    PubMed

    Aktsipetrov, O A; Misuryaev, T V; Murzina, T V; Blinov, L M; Fridkin, V M; Palto, S P

    2000-03-15

    Optical second-harmonic generation (SHG) is used as a noninvasive probe of two-dimensional (2D) ferroelectricity in Langmuir-Blodgett (LB) films of the copolymer vinylidene fluoride with trifluoroethylene. The surface 2D ferroelectric-paraelectric phase transition in the topmost layer of the LB films and a thickness-independent (almost 2D) transition in the bulk of these films are observed in temperature studies of SHG.

  17. Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Huttunen, Mikko J.; Rasekh, Payman; Boyd, Robert W.; Dolgaleva, Ksenia

    2018-05-01

    Collective responses of localized surface plasmon resonances, known as surface lattice resonances (SLRs) in metal nanoparticle arrays, can lead to high quality factors (˜100 ), large local-field enhancements, and strong light-matter interactions. SLRs have found many applications in linear optics, but little work of the influence of SLRs on nonlinear optics has been reported. Here we show how SLRs could be utilized to enhance nonlinear optical interactions. We devote special attention to the sum-frequency, difference-frequency, and third-harmonic generation processes because of their potential for the realization of novel sources of light. We also demonstrate how such arrays could be engineered to enhance higher-order nonlinear optical interactions through cascaded nonlinear processes. In particular, we demonstrate how the efficiency of third-harmonic generation could be engineered via cascaded second-order responses.

  18. Thermal characteristics of second harmonic generation by phase matched calorimetry.

    PubMed

    Lim, Hwan Hong; Kurimura, Sunao; Noguchi, Keisuke; Shoji, Ichiro

    2014-07-28

    We analyze a solution of the heat equation for second harmonic generation (SHG) with a focused Gaussian beam and simulate the temperature rise in SHG materials as a function of the second harmonic power and the focusing conditions. We also propose a quantitative value of the heat removal performance of SHG devices, referred to as the effective heat capacity Cα in phase matched calorimetry. We demonstrate the inverse relation between Cα and the focusing parameter ξ, and propose the universal quantity of the product of Cα and ξ for characterizing the thermal property of SHG devices. Finally, we discuss the strategy to manage thermal dephasing in SHG using the results from simulations.

  19. Simulation of 100-300 GHz solid-state harmonic sources

    NASA Technical Reports Server (NTRS)

    Zybura, Michael F.; Jones, J. Robert; Jones, Stephen H.; Tait, Gregory B.

    1995-01-01

    Accurate and efficient simulations of the large-signal time-dependent characteristics of second-harmonic Transferred Electron Oscillators (TEO's) and Heterostructure Barrier Varactor (HBV) frequency triplers have been obtained. This is accomplished by using a novel and efficient harmonic-balance circuit analysis technique which facilitates the integration of physics-based hydrodynamic device simulators. The integrated hydrodynamic device/harmonic-balance circuit simulators allow TEO and HBV circuits to be co-designed from both a device and a circuit point of view. Comparisons have been made with published experimental data for both TEO's and HBV's. For TEO's, excellent correlation has been obtained at 140 GHz and 188 GHz in second-harmonic operation. Excellent correlation has also been obtained for HBV frequency triplers operating near 200 GHz. For HBV's, both a lumped quasi-static equivalent circuit model and the hydrodynamic device simulator have been linked to the harmonic-balance circuit simulator. This comparison illustrates the importance of representing active devices with physics-based numerical device models rather than analytical device models.

  20. Investigation about relationships between the symmetries of ferroelectric crystal Ca0.28Ba0.72Nb2O6 and second-harmonic patterns

    NASA Astrophysics Data System (ADS)

    Xu, Tianxiang; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2015-08-01

    The broadband quasi-phase matching (QPM) process in a uniaxial ferroelectric crystal Ca0.28Ba0.72Nb2O6 (CBN-28) was demonstrated with the second-harmonic wavelength range from 450 nm to 650 nm, and the relationship between the symmetries of CBN-28 and the second-harmonic patterns was experimentally and theoretically investigated based on the random anti-parallel domains in the crystal and QPM conditions. The dependences of frequency-doubled patterns on the wavelength and anisotropy of the nonlinear crystal were also studied, and the frequency-doubled photons were found to be trapped on circles. By analyzing the light-matter interacting Hamiltonians, the trapping force for second-harmonic photons was found to be centripetal and tunable by the fundamental lasers, and the variation tendencies of the rotational velocity of second-harmonic generation photons could also be predicated. The results indicate that the CBN-28 ferroelectric crystal is a promising nonlinear optical material for the generation of broadband frequency-doubled waves, and the analysis on centripetal force based on the interaction Hamiltonians may provide a novel recognition for the investigation of QPM process to be further studied.

  1. Generation of 369.4 nm Radiation by Efficient Doubling of a Diode Laser

    NASA Technical Reports Server (NTRS)

    Williams, A.; Seidel, D. J.; Maleki, J.

    1993-01-01

    A resonant cavity second harmonic generation system has been developed to produce 369.4 nm radiation from a 738.8 nm diode laser with 10 mW nominal output power. This system utilizes a polarization technique to lock the cavity to the laser frequency. In this paper we report on an evaluation of the system using a Titanium:Sapphire laser as the input source, and preliminary results with a diode laser source. To our knowledge, this is the deepest uv light ever produced by frequency-doubling a diode laser.

  2. Generation of 14  W at 589  nm by frequency doubling of high-power CW linearly polarized Raman fiber laser radiation in MgO:sPPLT crystal.

    PubMed

    Surin, A A; Borisenko, T E; Larin, S V

    2016-06-01

    We introduce an efficient, single-mode, linearly polarized continuous wave (CW) Raman fiber laser (RFL), operating at 1178 nm, with 65 W maximum output power and a narrow linewidth of 0.1 nm. Single-pass second-harmonic generation was demonstrated using a 20 mm long MgO-doped stoichiometric periodically polled lithium tantalate (MgO:sPPLT) crystal pumped by RFL radiation. Output power of 14 W at 589 nm with 22% conversion efficiency was achieved. The possibility of further power scaling is considered, as no crystal degradation was observed at these power levels.

  3. Waveforms for optimal sub-keV high-order harmonics with synthesized two- or three-colour laser fields.

    PubMed

    Jin, Cheng; Wang, Guoli; Wei, Hui; Le, Anh-Thu; Lin, C D

    2014-05-30

    High-order harmonics extending to the X-ray region generated in a gas medium by intense lasers offer the potential for providing tabletop broadband light sources but so far are limited by their low conversion efficiency. Here we show that harmonics can be enhanced by one to two orders of magnitude without an increase in the total laser power if the laser's waveform is optimized by synthesizing two- or three-colour fields. The harmonics thus generated are also favourably phase-matched so that radiation is efficiently built up in the gas medium. Our results, combined with the emerging intense high-repetition MHz lasers, promise to increase harmonic yields by several orders to make harmonics feasible in the near future as general bright tabletop light sources, including intense attosecond pulses.

  4. Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovino, F. A.; Larciprete, M. C.; Belardini, A.

    2009-06-22

    We investigated noncollinear second harmonic generation form zinc oxide films, grown on glass substrates by dual ion beam sputtering technique. At a fixed incidence angle, the generated signal is investigated by scanning the polarization state of both fundamental beams. We show that the map of the generated signal as a function of polarization states of both pump beams, together with the analytical curves, allows to retrieve the orientation of the optical axis and eventually, its angular tilt, with respect to the surface normal.

  5. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  6. Third order harmonic imaging for biological tissues using three phase-coded pulses.

    PubMed

    Ma, Qingyu; Gong, Xiufen; Zhang, Dong

    2006-12-22

    Compared to the fundamental and the second harmonic imaging, the third harmonic imaging shows significant improvements in image quality due to the better resolution, but it is degraded by the lower sound pressure and signal-to-noise ratio (SNR). In this study, a phase-coded pulse technique is proposed to selectively enhance the sound pressure of the third harmonic by 9.5 dB whereas the fundamental and the second harmonic components are efficiently suppressed and SNR is also increased by 4.7 dB. Based on the solution of the KZK nonlinear equation, the axial and lateral beam profiles of harmonics radiated from a planar piston transducer were theoretically simulated and experimentally examined. Finally, the third harmonic images using this technique were performed for several biological tissues and compared with the images obtained by the fundamental and the second harmonic imaging. Results demonstrate that the phase-coded pulse technique yields a dramatically cleaner and sharper contrast image.

  7. Bismuth ferrite dielectric nanoparticles excited at telecom wavelengths as multicolor sources by second, third, and fourth harmonic generation.

    PubMed

    Riporto, Jérémy; Demierre, Alexis; Kilin, Vasyl; Balciunas, Tadas; Schmidt, Cédric; Campargue, Gabriel; Urbain, Mathias; Baltuska, Andrius; Le Dantec, Ronan; Wolf, Jean-Pierre; Mugnier, Yannick; Bonacina, Luigi

    2018-05-03

    We demonstrate the simultaneous generation of second, third, and fourth harmonics from a single dielectric bismuth ferrite nanoparticle excited using a telecom fiber laser at 1560 nm. We first characterize the signals associated with different nonlinear orders in terms of spectrum, excitation intensity dependence, and relative signal strengths. Successively, on the basis of the polarization-resolved emission curves of the three harmonics, we discuss the interplay of susceptibility tensor components at different orders and show how polarization can be used as an optical handle to control the relative frequency conversion properties.

  8. Self-Phase-Matched Second-Harmonic and White-Light Generation in a Biaxial Zinc Tungstate Single Crystal

    PubMed Central

    Osewski, Pawel; Belardini, Alessandro; Petronijevic, Emilija; Centini, Marco; Leahu, Grigore; Diduszko, Ryszard; Pawlak, Dorota A.; Sibilia, Concita

    2017-01-01

    Second-order nonlinear optical materials are used to generate new frequencies by exploiting second-harmonic generation (SHG), a phenomenon where a nonlinear material generates light at double the optical frequency of the input beam. Maximum SHG is achieved when the pump and the generated waves are in phase, for example through birefringence in uniaxial crystals. However, applying these materials usually requires a complicated cutting procedure to yield a crystal with a particular orientation. Here we demonstrate the first example of phase matching under the normal incidence of SHG in a biaxial monoclinic single crystal of zinc tungstate. The crystal was grown by the micro-pulling-down method with the (102) plane perpendicular to the growth direction. Additionally, at the same time white light was generated as a result of stimulated Raman scattering and multiphoton luminescence induced by higher-order effects such as three-photon luminescence enhanced by cascaded third-harmonic generation. The annealed crystal offers SHG intensities approximately four times larger than the as grown one; optimized growth and annealing conditions may lead to much higher SHG intensities. PMID:28338074

  9. Self-Phase-Matched Second-Harmonic and White-Light Generation in a Biaxial Zinc Tungstate Single Crystal

    NASA Astrophysics Data System (ADS)

    Osewski, Pawel; Belardini, Alessandro; Petronijevic, Emilija; Centini, Marco; Leahu, Grigore; Diduszko, Ryszard; Pawlak, Dorota A.; Sibilia, Concita

    2017-03-01

    Second-order nonlinear optical materials are used to generate new frequencies by exploiting second-harmonic generation (SHG), a phenomenon where a nonlinear material generates light at double the optical frequency of the input beam. Maximum SHG is achieved when the pump and the generated waves are in phase, for example through birefringence in uniaxial crystals. However, applying these materials usually requires a complicated cutting procedure to yield a crystal with a particular orientation. Here we demonstrate the first example of phase matching under the normal incidence of SHG in a biaxial monoclinic single crystal of zinc tungstate. The crystal was grown by the micro-pulling-down method with the (102) plane perpendicular to the growth direction. Additionally, at the same time white light was generated as a result of stimulated Raman scattering and multiphoton luminescence induced by higher-order effects such as three-photon luminescence enhanced by cascaded third-harmonic generation. The annealed crystal offers SHG intensities approximately four times larger than the as grown one; optimized growth and annealing conditions may lead to much higher SHG intensities.

  10. Nonlinear optical effects on the surface of acridine yellow-doped lead-tin fluorophosphate glass

    NASA Technical Reports Server (NTRS)

    He, K. X.; Bryant, William; Venkateswarlu, Putcha

    1991-01-01

    The second- and third-order nonlinear optical properties of acridine yellow-doped lead-tin fluorophosphate (LTF) glass have been directly studied by measurement of surface enhanced second harmonic generation and third harmonic generation. The three photon excitation fluorescence is also observed. Based on these results, the large nonlinearities of the acridine LTF system which is a new nonlinear optical material are experimentally demonstrated.

  11. Harmonics Generation by Surface Plasmon Polaritons on Single Nanowires.

    PubMed

    de Hoogh, Anouk; Opheij, Aron; Wulf, Matthias; Rotenberg, Nir; Kuipers, L

    2016-08-17

    We present experimental observations of visible wavelength second- and third-harmonic generation on single plasmonic nanowires of variable widths. We identify that near-infrared surface plasmon polaritons, which are guided along the nanowire, act as the source of the harmonics generation. We discuss the underlying mechanism of this nonlinear process, using a combination of spatially resolved measurements and numerical simulations to show that the visible harmonics are generated via a combination of both local and propagating plasmonic modes. Our results provide the first demonstration of nanoscale nonlinear optics with guided, propagating plasmonic modes on a lithographically defined chip, opening up new routes toward integrated optical circuits for information processing.

  12. Contrast-enhanced harmonic ultrasound imaging in ablation therapy for primary hepatocellular carcinoma.

    PubMed

    Minami, Yasunori; Kudo, Masatoshi

    2009-12-31

    The success rate of percutaneous radiofrequency (RF) ablation for hepatocellular carcinoma (HCC) depends on correct targeting via an imaging technique. However, RF electrode insertion is not completely accurate for residual HCC nodules because B-mode ultrasound (US), color Doppler, and power Doppler US findings cannot adequately differentiate between treated and viable residual tumor tissue. Electrode insertion is also difficult when we must identify the true HCC nodule among many large regenerated nodules in cirrhotic liver. Two breakthroughs in the field of US technology, harmonic imaging and the development of second-generation contrast agents, have recently been described and have demonstrated the potential to dramatically broaden the scope of US diagnosis of hepatic lesions. Contrast-enhanced harmonic US imaging with an intravenous contrast agent can evaluate small hypervascular HCC even when B-mode US cannot adequately characterize tumor. Therefore, contrast-enhanced harmonic US can facilitate RF ablation electrode placement in hypervascular HCC, which is poorly depicted by B-mode US. The use of contrast-enhanced harmonic US in ablation therapy for liver cancer is an efficient approach.

  13. Efficient yellow-green light generation at 561 nm by frequency-doubling of a QD-FBG laser diode in a PPLN waveguide.

    PubMed

    Fedorova, Ksenia A; Sokolovskii, Grigorii S; Khomylev, Maksim; Livshits, Daniil A; Rafailov, Edik U

    2014-12-01

    A compact high-power yellow-green continuous wave (CW) laser source based on second-harmonic generation (SHG) in a 5% MgO doped periodically poled congruent lithium niobate (PPLN) waveguide crystal pumped by a quantum-dot fiber Bragg grating (QD-FBG) laser diode is demonstrated. A frequency-doubled power of 90.11 mW at the wavelength of 560.68 nm with a conversion efficiency of 52.4% is reported. To the best of our knowledge, this represents the highest output power and conversion efficiency achieved to date in this spectral region from a diode-pumped PPLN waveguide crystal, which could prove extremely valuable for the deployment of such a source in a wide range of biomedical applications.

  14. Engineered second-harmonic diffraction from highly transmissive metasurfaces composed of complementary split-ring resonators.

    PubMed

    Yang, Xin; Zhang, Chi; Wan, Mingjie; Chen, Zhuo; Wang, Zhenlin

    2016-07-01

    We theoretically and experimentally investigated the optical second-harmonic (SH) diffraction from metasurfaces based on gold complementary split-ring resonators (CSRRs). We have demonstrated that the generated SH currents are mostly parallel to the incident polarization and are asymmetric with respect to the base of a CSRR, thus allowing us to impose the phase change of π on the SH radiation by reversing the CSRR's orientation. We verified this concept of geometry-induced nonlinear phase by designing and fabricating a nonlinear metasurface consisting of supercells of CSRRs with opposite orientations that can function as a SH beam splitter. The ability to control the phase of the local nonlinearity coupled with the high transmittance at both fundamental and SHG wavelengths makes the CSRRs good candidates for the construction of highly efficient three-dimensional nonlinear metamaterials and suitable for applications in nonlinear beam shaping.

  15. Novel D-π-A-π-D type organic chromophores for second harmonic generation and multi-photon absorption applications

    NASA Astrophysics Data System (ADS)

    Aditya, Pusala; Kumar, Hari; Kumar, Sunil; Rajashekar, Muralikrishna, M.; Muthukumar, V. Sai; Kumar, B. Siva; Sai, S. Siva Sankara; Rao, G. Nageshwar

    2013-06-01

    We report here the optical and non-linear optical properties of six different novel bis-chalcones of D-π-A-π-D derivatives of diarylideneacetone (DBA). These derivatives have been synthesized by Claisen-Schmidt condensation reaction and were well characterized by using FTIR, 1HNMR, 13CNMR, UV-Visible absorption and mass spectroscopic techniques. The optical bandgap for each of the DBA derivatives were determined both experimentally (UV-Visible spectra & Tauc Plot) and theoretically by ab intio DFT calculations using SIESTA software package. They were found to be in close agreement with each other. The Second Harmonic Generation from these organic chromophores were studied by standard Kurtz and Perry Powder SHG method at 1064 nm. They were found to have superior SHG conversion efficiency when compared to urea (standard sample). Further, we investigated the Multi-Photon absorption properties were using conventional open aperture z-scan technique. These DBA derivatives exhibited strong two photon absorption in the order of 1e-11m/W. Hence, these are potential candidate for various photonic applications like optical power limiting, photonic switching and frequency conversion.

  16. Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks

    NASA Astrophysics Data System (ADS)

    Lake, David P.; Mitchell, Matthew; Jayakumar, Harishankar; dos Santos, Laís Fujii; Curic, Davor; Barclay, Paul E.

    2016-01-01

    Resonant second harmonic generation between 1550 nm and 775 nm with normalized outside efficiency > 3.8 × 10 - 4 mW - 1 is demonstrated in a gallium phosphide microdisk supporting high-Q modes at visible ( Q ˜ 10 4 ) and infrared ( Q ˜ 10 5 ) wavelengths. The double resonance condition is satisfied for a specific pump power through intracavity photothermal temperature tuning using ˜ 360 μ W of 1550 nm light input to a fiber taper and coupled to a microdisk resonance. Power dependent efficiency consistent with a simple model for thermal tuning of the double resonance condition is observed.

  17. Low- and high-order harmonic generation in the extended plasmas produced by laser ablation of zinc and manganese targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganeev, R. A., E-mail: rashid-ganeev@mail.ru; Physical Department, Voronezh State University, Voronezh 394006; Baba, M.

    The systematic studies of the harmonic generation of ultrashort laser pulses in the 5-mm-long Zn and Mn plasmas (i.e., application of nanosecond, picosecond, and femtosecond pulses for ablation, comparison of harmonic generation from atomic, ionic, and cluster-contained species of plasma, variation of plasma length, two-color pump of plasmas, etc.) are presented. The conversion efficiency of the 11th–19th harmonics generated in the Zn plasma was ∼5 × 10{sup −5}. The role of the ionic resonances of Zn near the 9th and 10th harmonics on the enhancement of harmonics is discussed. The enhancement of harmonics was also analyzed using the two-color pump of extendedmore » plasmas, which showed similar intensities of the odd and even harmonics along the whole range of generation. The harmonics up to the 107th order were demonstrated in the case of manganese plasma. The comparison of harmonic generation in the 5-mm-long and commonly used short (≤0.5 mm) plasma plumes showed the advanced properties of extended media.« less

  18. Nonlinear dynamics of nanoscale systems

    NASA Astrophysics Data System (ADS)

    Hodas, Nathan Oken

    This work builds theoretical tools to better understand nanoscale systems, and it ex- plores experimental techniques to probe nanoscale dynamics using nonlinear optical microscopy. In both the theory and experiment, this work harnesses nonlinearity to explore new boundaries in the ongoing attempts to understand the amazing world that is much smaller than we can see. In particular, the first part of this work proves the upper-bounds on the number and quality of oscillations when the sys- tem in question is homogeneously driven and has discrete states, a common way of describing nanoscale motors and chemical systems, although it has application to networked systems in general. The consequences of this limit are explored in the context of chemical clocks and limit cycles. This leads to the analysis of sponta- neous oscillations in GFPmut2, where we postulate that the oscillations must be due to coordinated rearrangement of the beta-barrel. Next, we utilize nonlinear optics to probe the constituent structures of zebrafish muscle. By comparing experimental observations with computational models, we show how second harmonic generation differs from fluorescence for confocal imaging. We use the wavelength dependence of the second harmonic generation conversion efficiency to extract information about the microscopic organization of muscle fibers, using the coherent nature of second ix harmonic generation as an analytical probe. Finally, existing experiments have used a related technique, sum-frequency generation, to directly probe the dynamics of free OH bonds at the water-vapor boundary. Using molecular dynamic simulations of the water surface and by designating surface-sensitive free OH bonds on the water surface, many aspects of the sum-frequency generation measurements were calcu- lated and compared with those inferred from experiment. The method utilizes results available from independent IR and Raman experiments to obtain some of the needed quantities, rather than calculating them ab initio. The results provide insight into the microscopic dynamics at the air-water interface and have useful application in the field of on-water catalysis.

  19. Effects of electron relaxation on multiple harmonic generation from metal surfaces with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Karatzas, N. E.; Georges, A. T.

    2006-11-01

    Calculations are presented for the first four (odd and even) harmonics of an 800 nm laser from a gold surface, with pulse widths ranging from 100 down to 14 fs. For peak laser intensities above 1 GW/cm 2 the harmonics are enhanced because of a partial depletion of the initial electron states. At 10 11 W/cm 2 of peak laser intensity the calculated conversion efficiency for 2nd-harmonic generation is 3 × 10 -9, while for the 5th-harmonic it is 10 -10. The generated harmonic pulses are broadened and delayed relative to the laser pulse because of the finite relaxation times of the excited electronic states. The finite electron relaxation times cause also the broadening of the autocorrelations of the laser pulses obtained from surface harmonic generation by two time-delayed identical pulses. Comparison with recent experimental results shows that the response time of an autocorrelator using nonlinear optical processes in a gold surface is shorter than the electron relaxation times. This seems to indicate that for laser pulses shorter than ˜30 fs, the fast nonresonant channel for multiphoton excitation via continuum-continuum transitions in metals becomes important as the resonant channel becomes slow (relative to the laser pulse) and less efficient.

  20. Compact double-bunch x-ray free electron lasers for fresh bunch self-seeding and harmonic lasing

    DOE PAGES

    Emma, C.; Feng, Y.; Nguyen, D. C.; ...

    2017-03-03

    This study presents a novel method to improve the longitudinal coherence, efficiency and maximum photon energy of x-ray free electron lasers (XFELs). The method is equivalent to having two separate concatenated XFELs. The first uses one bunch of electrons to reach the saturation regime, generating a high power self-amplified spontaneous emission x-ray pulse at the fundamental and third harmonic. The x-ray pulse is filtered through an attenuator/monochromator and seeds a different electron bunch in the second FEL, using the fundamental and/or third harmonic as an input signal. In our method we combine the two XFELs operating with two bunches, separatedmore » by one or more rf cycles, in the same linear accelerator. We discuss the advantages and applications of the proposed system for present and future XFELs.« less

  1. SPECIAL ISSUE DEVOTED TO THE 80TH BIRTHDAY OF S.A. AKHMANOV: Selective generation of a higher harmonic in plasma

    NASA Astrophysics Data System (ADS)

    Kulagin, I. A.; Usmanov, T.

    2009-07-01

    It is shown for the first time that the use of autoionisation states for phase matching leads to the efficient selection of a single harmonic generated in a plateau region in plasma. The selected harmonic frequency can be tuned by changing the relative concentration of plasma components and tuning the fundamental radiation frequency. It is shown that the contrast of the selected harmonic can exceed 104.

  2. High second-harmonic generation of antiferromagnetic/ionic-crystal composite medium with negative refraction

    NASA Astrophysics Data System (ADS)

    Song, Yu-Ling; Ta, Jin-Xing; Wang, Xuan-Zhang

    2012-03-01

    Second harmonic generation (SHG) from a short-period structure composed of alternating antiferromagnetic (AF) and ionic-crystal layers is investigated, where the generated harmonic waves are situated in the far-infrared range and attributed to the magnetically nonlinear interaction in AF layers. The presence of a kind of appropriate ionic-crystal layers in the structure can support negative refraction for the pumping wave and positive refraction for the SH wave, so the SHG is greatly amplified in the vicinity of each AF resonant frequency. For the composite structure FeF2/TlBr, we found that the SH output is about 8 times higher than that of the FeF2 bulk in the same frequency range.

  3. Soft X-Ray Second Harmonic Generation as an Interfacial Probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, R. K.; Raj, S. L.; Pascal, T. A.

    Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (~284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from themore » first atomic layer at the open surface. This technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.« less

  4. Soft X-Ray Second Harmonic Generation as an Interfacial Probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, R. K.; Raj, S. L.; Pascal, T. A.

    Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (~284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from themore » first atomic layer at the open surface. Here, this technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.« less

  5. Soft X-Ray Second Harmonic Generation as an Interfacial Probe

    DOE PAGES

    Lam, R. K.; Raj, S. L.; Pascal, T. A.; ...

    2018-01-08

    Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (~284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from themore » first atomic layer at the open surface. Here, this technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.« less

  6. Soft X-Ray Second Harmonic Generation as an Interfacial Probe

    NASA Astrophysics Data System (ADS)

    Lam, R. K.; Raj, S. L.; Pascal, T. A.; Pemmaraju, C. D.; Foglia, L.; Simoncig, A.; Fabris, N.; Miotti, P.; Hull, C. J.; Rizzuto, A. M.; Smith, J. W.; Mincigrucci, R.; Masciovecchio, C.; Gessini, A.; Allaria, E.; De Ninno, G.; Diviacco, B.; Roussel, E.; Spampinati, S.; Penco, G.; Di Mitri, S.; Trovò, M.; Danailov, M.; Christensen, S. T.; Sokaras, D.; Weng, T.-C.; Coreno, M.; Poletto, L.; Drisdell, W. S.; Prendergast, D.; Giannessi, L.; Principi, E.; Nordlund, D.; Saykally, R. J.; Schwartz, C. P.

    2018-01-01

    Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (˜284 eV ) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from the first atomic layer at the open surface. This technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.

  7. Investigation about relationships between the symmetries of ferroelectric crystal Ca{sub 0.28}Ba{sub 0.72}Nb{sub 2}O{sub 6} and second-harmonic patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tianxiang; Yu, Haohai, E-mail: haohaiyu@sdu.edu.cn; Zhang, Huaijin, E-mail: huaijinzhang@sdu.edu.cn

    2015-08-07

    The broadband quasi-phase matching (QPM) process in a uniaxial ferroelectric crystal Ca{sub 0.28}Ba{sub 0.72}Nb{sub 2}O{sub 6} (CBN-28) was demonstrated with the second-harmonic wavelength range from 450 nm to 650 nm, and the relationship between the symmetries of CBN-28 and the second-harmonic patterns was experimentally and theoretically investigated based on the random anti-parallel domains in the crystal and QPM conditions. The dependences of frequency-doubled patterns on the wavelength and anisotropy of the nonlinear crystal were also studied, and the frequency-doubled photons were found to be trapped on circles. By analyzing the light-matter interacting Hamiltonians, the trapping force for second-harmonic photons was found tomore » be centripetal and tunable by the fundamental lasers, and the variation tendencies of the rotational velocity of second-harmonic generation photons could also be predicated. The results indicate that the CBN-28 ferroelectric crystal is a promising nonlinear optical material for the generation of broadband frequency-doubled waves, and the analysis on centripetal force based on the interaction Hamiltonians may provide a novel recognition for the investigation of QPM process to be further studied.« less

  8. Coherence-domain imaging with harmonic holography

    NASA Astrophysics Data System (ADS)

    Pu, Ye; Psaltis, Demetri

    2017-08-01

    Observing the fast dynamics of specific molecules or targets in three-dimensional (3D) space and time inside a crowded and complex environment, such as living cells or tissues, remain one of the grand open challenges in modern science. Harmonic holography tackle this challenge by combining the 3D imaging capability of holography with the ultrafast, coherent optical contrast offered by second-harmonic radiating imaging probes (SHRIMPs). Similar to fluorescence, the second-harmonic signal emitted from SHRIMPs provides a color contrast against the uninterested background scattering, which can be efficiently suppressed by an optical filter. We review the latest developments in SHRIMPs and harmonic holography and discuss their further applications in fluidics and biofluidics.

  9. Multi-wavelength generation based on cascaded Raman scattering and self-frequency-doubling in KTA

    NASA Astrophysics Data System (ADS)

    Zhong, K.; Li, J. S.; Xu, D. G.; Ding, X.; Zhou, R.; Wen, W. Q.; Li, Z. Y.; Xu, X. Y.; Wang, P.; Yao, J. Q.

    2010-04-01

    A multi-wavelength laser is developed based on cascaded stimulated Raman scattering (SRS) and self-frequency-doubling in an x-cut KTA crystal pumped by an A-O Q-switched Nd:YAG laser. The generation of 1178 nm from cascaded SRS of 234 and 671 cm-1 Raman modes is observed. The six wavelengths, including the fundamental 1064 nm, four Stokes waves at 1091, 1120, 1146, 1178 nm, and the second harmonic generation (SHG) of 1146 nm, are tens to hundreds of millwatts for each at 10 kHz, corresponding to a total conversion efficiency of 8.72%.

  10. Record fifth-harmonic-generation efficiency producing 211 nm, joule-level pulses using cesium lithium borate

    DOE PAGES

    Begishev, I. A.; Bromage, J.; Yang, S. T.; ...

    2018-05-16

    The fifth harmonic of a pulsed Nd:YLF laser has been realized in a cascade of nonlinear crystals with a record efficiency of 30%. Cesium lithium borate is used in a Type-I configuration for sum-frequency mixing of 1053 nm and 266 nm, producing 211-nm pulses. Flattopped beam profiles and pulse shapes optimize efficiency. Furthermore, energies of the fifth harmonic up to 335 mJ in 2.4 ns pulses were demonstrated.

  11. Record fifth-harmonic-generation efficiency producing 211  nm, joule-level pulses using cesium lithium borate

    DOE PAGES

    Begishev, I. A.; Bromage, J.; Yang, S. T.; ...

    2018-01-01

    The fifth harmonic of a pulsed Nd:YLF laser has been realized in a cascade of nonlinear crystals with a record efficiency of 30%. Cesium lithium borate is used in a Type-I configuration for sum-frequency mixing of 1053 nm and 266 nm, producing 211-nm pulses. Flattopped beam profiles and pulse shapes optimize efficiency. Energies of the fifth harmonic up to 335 mJ in 2.4 ns pulses were demonstrated.

  12. Record fifth-harmonic-generation efficiency producing 211 nm, joule-level pulses using cesium lithium borate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begishev, I. A.; Bromage, J.; Yang, S. T.

    The fifth harmonic of a pulsed Nd:YLF laser has been realized in a cascade of nonlinear crystals with a record efficiency of 30%. Cesium lithium borate is used in a Type-I configuration for sum-frequency mixing of 1053 nm and 266 nm, producing 211-nm pulses. Flattopped beam profiles and pulse shapes optimize efficiency. Furthermore, energies of the fifth harmonic up to 335 mJ in 2.4 ns pulses were demonstrated.

  13. Nonlinear chiro-optical amplification by plasmonic nanolens arrays formed via directed assembly of gold nanoparticles.

    PubMed

    Biswas, Sushmita; Liu, Xiaoying; Jarrett, Jeremy W; Brown, Dean; Pustovit, Vitaliy; Urbas, Augustine; Knappenberger, Kenneth L; Nealey, Paul F; Vaia, Richard A

    2015-03-11

    Metal nanoparticle assemblies are promising materials for nanophotonic applications due to novel linear and nonlinear optical properties arising from their plasmon modes. However, scalable fabrication approaches that provide both precision nano- and macroarchitectures, and performance commensurate with design and model predictions, have been limiting. Herein, we demonstrate controlled and efficient nanofocusing of the fundamental and second harmonic frequencies of incident linearly and circularly polarized light using reduced symmetry gold nanoparticle dimers formed by surface-directed assembly of colloidal nanoparticles. Large ordered arrays (>100) of these C∞v heterodimers (ratio of radii R1/R2 = 150 nm/50 nm = 3; gap distance l = 1 ± 0.5 nm) exhibit second harmonic generation and structure-dependent chiro-optic activity with the circular dichroism ratio of individual heterodimers varying less than 20% across the array, demonstrating precision and uniformity at a large scale. These nonlinear optical properties were mediated by interparticle plasmon coupling. Additionally, the versatility of the fabrication is demonstrated on a variety of substrates including flexible polymers. Numerical simulations guide architecture design as well as validating the experimental results, thus confirming the ability to optimize second harmonic yield and induce chiro-optical responses for compact sensors, optical modulators, and tunable light sources by rational design and fabrication of the nanostructures.

  14. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Operating the SDUV-FEL with the echo-enabled harmonic generation scheme

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Hui; Deng, Hai-Xiao; Gu, Qiang; Li, Dong-Guo; Wang, Dong; Zhang, Meng; Zhao, Zhen-Tang

    2009-08-01

    Using the recently proposed echo-enabled harmonic generation (EEHG) free-electron laser (FEL) scheme, it is shown that operating the Shanghai deep ultraviolet FEL (SDUV-FEL) with single-stage to higher harmonics is very promising, with higher frequency up-conversion efficiency, higher harmonic selectivity and lower power requirement of the seed laser. The considerations on a proof-of-principle experiment and expected performance in SDUV-FEL are given.

  15. Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler.

    PubMed

    Kardaś, Tomasz M; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr

    2017-02-22

    Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.

  16. Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler

    NASA Astrophysics Data System (ADS)

    Kardaś, Tomasz M.; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr

    2017-02-01

    Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.

  17. In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.

    PubMed

    Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko

    2015-03-23

    The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.

  18. Discrete retardance second harmonic generation ellipsometry.

    PubMed

    Dehen, Christopher J; Everly, R Michael; Plocinik, Ryan M; Hedderich, Hartmut G; Simpson, Garth J

    2007-01-01

    A new instrument was constructed to perform discrete retardance nonlinear optical ellipsometry (DR-NOE). The focus of the design was to perform second harmonic generation NOE while maximizing sample and application flexibility and minimizing data acquisition time. The discrete retardance configuration results in relatively simple computational algorithms for performing nonlinear optical ellipsometric analysis. NOE analysis of a disperse red 19 monolayer yielded results that were consistent with previously reported values for the same surface system, but with significantly reduced acquisition times.

  19. Collagen analysis by second-harmonic generation microscopy predicts outcome of luminal breast cancer.

    PubMed

    Natal, Rodrigo A; Vassallo, José; Paiva, Geisilene R; Pelegati, Vitor B; Barbosa, Guilherme O; Mendonça, Guilherme R; Bondarik, Caroline; Derchain, Sophie F; Carvalho, Hernandes F; Lima, Carmen S; Cesar, Carlos L; Sarian, Luís Otávio

    2018-04-01

    Second-harmonic generation microscopy represents an important tool to evaluate extracellular matrix collagen structure, which undergoes changes during cancer progression. Thus, it is potentially relevant to assess breast cancer development. We propose the use of second-harmonic generation images of tumor stroma selected on hematoxylin and eosin-stained slides to evaluate the prognostic value of collagen fibers analyses in peri and intratumoral areas in patients diagnosed with invasive ductal breast carcinoma. Quantitative analyses of collagen parameters were performed using ImageJ software. These parameters presented significantly higher values in peri than in intratumoral areas. Higher intratumoral collagen uniformity was associated with high pathological stages and with the presence of axillary lymph node metastasis. In patients with immunohistochemistry-based luminal subtype, higher intratumoral collagen uniformity and quantity were independently associated with poorer relapse-free and overall survival, respectively. A multivariate response recursive partitioning model determined 12.857 and 11.894 as the best cut-offs for intratumoral collagen quantity and uniformity, respectively. These values have shown high sensitivity and specificity to differentiate distinct outcomes. Values of intratumoral collagen quantity and uniformity exceeding the cut-offs were strongly associated with poorer relapse-free and overall survival. Our findings support a promising prognostic value of quantitative evaluation of intratumoral collagen by second-harmonic generation imaging mainly in the luminal subtype breast cancer.

  20. A look-up-table digital predistortion technique for high-voltage power amplifiers in ultrasonic applications.

    PubMed

    Gao, Zheng; Gui, Ping

    2012-07-01

    In this paper, we present a digital predistortion technique to improve the linearity and power efficiency of a high-voltage class-AB power amplifier (PA) for ultrasound transmitters. The system is composed of a digital-to-analog converter (DAC), an analog-to-digital converter (ADC), and a field-programmable gate array (FPGA) in which the digital predistortion (DPD) algorithm is implemented. The DPD algorithm updates the error, which is the difference between the ideal signal and the attenuated distorted output signal, in the look-up table (LUT) memory during each cycle of a sinusoidal signal using the least-mean-square (LMS) algorithm. On the next signal cycle, the error data are used to equalize the signal with negative harmonic components to cancel the amplifier's nonlinear response. The algorithm also includes a linear interpolation method applied to the windowed sinusoidal signals for the B-mode and Doppler modes. The measurement test bench uses an arbitrary function generator as the DAC to generate the input signal, an oscilloscope as the ADC to capture the output waveform, and software to implement the DPD algorithm. The measurement results show that the proposed system is able to reduce the second-order harmonic distortion (HD2) by 20 dB and the third-order harmonic distortion (HD3) by 14.5 dB, while at the same time improving the power efficiency by 18%.

  1. Diode pumped Yb:CN laser at 1082 nm and intracavity doubling to the green spectral range

    NASA Astrophysics Data System (ADS)

    Liu, B.; Li, Y. L.; Jiang, H. L.

    2011-08-01

    A diode pumped Yb:CaNb2O6 (Yb:CN) laser at 1082 nm with a maximum output of 1.35 W at 13.3 W pump power has been demonstrated. The slope efficiency was 12.4%. Moreover, intracavity second-harmonic generation (SHG) has also been achieved with a maximum green power of 374 mW by using a LiB3O5 (LBO) nonlinear crystal. To the best of our knowledge, this is the first report on continuous wave (CW) green generation by intracavity frequency doubling Yb:CN laser.

  2. Ultra-wideband and high-gain parametric amplification in telecom wavelengths with an optimally mode-matched PPLN waveguide.

    PubMed

    Sua, Yong Meng; Chen, Jia-Yang; Huang, Yu-Ping

    2018-06-15

    We report a wideband optical parametric amplification (OPA) over 14 THz covering telecom S, C, and L bands with observed maximum parametric gain of 38.3 dB. The OPA is realized through cascaded second-harmonic generation and difference-frequency generation (cSHG-DFG) in a 2 cm periodically poled LiNbO 3 (PPLN) waveguide. With tailored cross section geometry, the waveguide is optimally mode matched for efficient cascaded nonlinear wave mixing. We also identify and study the effect of competing nonlinear processes in this cSHG-DFG configuration.

  3. High-power waveguide resonator second harmonic device with external conversion efficiency up to 75%

    NASA Astrophysics Data System (ADS)

    Stefszky, M.; Ricken, R.; Eigner, C.; Quiring, V.; Herrmann, H.; Silberhorn, C.

    2018-06-01

    We report on a highly efficient waveguide resonator device for the production of 775 nm light using a titanium indiffused LiNbO3 waveguide resonator. When scanning the resonance, the device produces up to 110 mW of second harmonic power with 140 mW incident on the device—an external conversion efficiency of 75%. The cavity length is also locked, using a Pound–Drever–Hall type locking scheme, involving feedback to either the cavity temperature or the laser frequency. With laser frequency feedback, a stable output power of approximately 28 mW from a 52 mW pump is seen over one hour.

  4. a Fascinating Two-Photon Process: Magnetically Induced Quadrupole Second Harmonic Genaration

    NASA Astrophysics Data System (ADS)

    Matsuoka, Masahiro

    1990-10-01

    After a short prologue, recalling the memory of the first meeting with Professor Bloembergen, the author reviews a topic of a second harmonic generation in centrosymmetric medium, that is, magnetically induced quadrupole SHG. A pictorial description of the process is presented together with a few suggestions for future experiment.

  5. Theoretical Analysis About Quantum Noise Squeezing of Optical Fields From an Intracavity Frequency-Doubled Laser

    NASA Technical Reports Server (NTRS)

    Zhang, Kuanshou; Xie, Changde; Peng, Kunchi

    1996-01-01

    The dependence of the quantum fluctuation of the output fundamental and second-harmonic waves upon cavity configuration has been numerically calculated for the intracavity frequency-doubled laser. The results might provide a direct reference for the design of squeezing system through the second-harmonic-generation.

  6. Plasmonic enhancement of second-harmonic generation of dielectric layer embedded in metal-dielectric-metal structure

    NASA Astrophysics Data System (ADS)

    Kang, Byungjun; Imakita, Kenji; Fujii, Minoru; Hayashi, Shinji

    2018-03-01

    The enhancement of second-harmonic generation from a dielectric layer embedded in a metal-dielectric-metal structure upon excitation of surface plasmon polaritons is demonstrated experimentally. The metal-dielectric-metal structure consisting of a Gex(SiO2)1-x layer sandwiched by two Ag layers was prepared, and the surface plasmon polaritons were excited in an attenuated total reflection geometry. The measured attenuated total reflection spectra exhibited two reflection dips corresponding to the excitation of two different surface plasmon polariton modes. Strong second-harmonic signals were observed under the excitation of these surface plasmon polariton modes. The results demonstrate that the second-harmonic intensity of the Gex(SiO2)1-x layer is highly enhanced relative to that of the single layer deposited on a substrate. Under the excitation of one of the two surface plasmon polariton modes, the estimated enhancement factor falls in a range between 39.9 and 171, while under the excitation of the other surface plasmon polariton mode, it falls in a range between 3.96 and 84.6.

  7. Advanced properties of extended plasmas for efficient high-order harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganeev, R. A.; Physics Department, Voronezh State University, Voronezh 394006; Suzuki, M.

    We demonstrate the advanced properties of extended plasma plumes (5 mm) for efficient harmonic generation of laser radiation compared with the short lengths of plasmas (∼0.3–0.5 mm) used in previous studies. The harmonic conversion efficiency quadratically increased with the growth of plasma length. The studies of this process along the whole extreme ultraviolet range using the long plasma jets produced on various metal surfaces, particularly including the resonance-enhanced laser frequency conversion and two-color pump, are presented. Such plasmas could be used for the quasi-phase matching experiments by proper modulation of the spatial characteristics of extended ablating area and formation of separated plasmamore » jets.« less

  8. Apparatus and methods for using achromatic phase matching at high orders of dispersion

    DOEpatents

    Richman, Bruce; Trebino, Rick; Bisson, Scott; Sidick, Erkin

    2001-01-01

    Achromatic phase-matching (APM) is used for efficiently multiplying the frequency of broad bandwidth light by using a nonlinear optical medium comprising a second-harmonic generation (SHG) crystal. Stationary optical elements whose configuration, properties, and arrangement have been optimized to match the dispersion characteristics of the SHG crystal to at least the second order. These elements include a plurality of prismatic elements for directing an input light beam onto the SHG crystal such that each ray wavelength is aligned to match the phase-matching angle for the crystal at each wavelength of light to at least the second order and such that every ray wavelength overlap within the crystal.

  9. High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator.

    PubMed

    Gu, Chenglin; Hu, Minglie; Zhang, Limeng; Fan, Jintao; Song, Youjian; Wang, Chingyue; Reid, Derryck T

    2013-06-01

    We report on the highly efficient generation of widely tunable femtosecond pulses based on intracavity second harmonic generation (SHG) and sum frequency generation (SFG) in a MgO-doped periodically poled LiNbO(3) optical parametric oscillator (OPO), which is pumped by a Yb-doped large-mode-area photonics crystal fiber femtosecond laser. Red and near infrared from intracavity SHG and SFG and infrared signals were directly obtained from the OPO. A 2 mm β-BaB(2)O(4) is applied for Type I (oo → e) intracavity SHG and SFG, and then femtosecond laser pulses over 610 nm ~ 668 nm from SFG and 716 nm ~ 970 nm from SHG are obtained with high efficiency. In addition, the oscillator simultaneously generates signal and idler femtosecond pulses over 1450 nm ~ 2200 nm and 2250 nm ~ 4000 nm, respectively.

  10. 303 nm continuous wave ultraviolet laser generated by intracavity frequency-doubling of diode-pumped Pr3+:LiYF4 laser

    NASA Astrophysics Data System (ADS)

    Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi

    2018-03-01

    We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.

  11. Corneal imaging by second and third harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Brocas, Arnaud; Jay, Louis; Mottay, Eric; Brunette, Isabelle; Ozaki, Tsuneyuki

    2008-02-01

    Advanced imaging methods are essential tools for improved outcome of refractive surgery. Second harmonic generation (SHG) and third harmonic generation (THG) microscopy are noninvasive high-resolution imaging methods, which can discriminate the different layers of the cornea, thus having strong impact on the outcome of laser surgery. In this work, we use an Ytterbium femtosecond laser as the laser source, the longer wavelength of which reduces scattering, and allows simultaneous SHG and THG imaging. We present SHG and THG images and profiles of pig corneas that clearly show the anterior surface of the cornea, the entry in the stroma and its end, and the posterior surface of the cornea. These observations allow localizing the epithelium, the stroma and the endothelium. Other experiments give information about the structure and cytology of the corneal layers.

  12. Comparison of simulated and measured nonlinear ultrasound fields

    NASA Astrophysics Data System (ADS)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-03-01

    In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are first compared with the linear simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound field is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both fundamental and second harmonic fields. The focused piston transducer with a center frequency of 5 MHz is excited by a waveform generator emitting a 6-cycle sine wave. The hydrophone is mounted in the focal plane 118 mm from the transducer. The point spread functions at the focal depth from Field II and measurements are illustrated. The FWHM (full width at half maximum) values are 1.96 mm for the measurement and 1.84 mm for the Field II simulation. The fundamental and second harmonic components of the experimental results are plotted compared with the AS simulations. The RMS (root mean square) errors of the AS simulations are 7.19% and 10.3% compared with the fundamental and second harmonic components of the measurements.

  13. Harmonic generation with a dual frequency pulse.

    PubMed

    Keravnou, Christina P; Averkiou, Michalakis A

    2014-05-01

    Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.

  14. Investigation of Optical Cavity Modes and Ultrafast Carrier Dynamics in Zinc Oxide Rods Using Second-Harmonic Generation and Transient Absorption Pump-Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Mehl, Brian Peter

    The polydispersity intrinsic to nanoscale and microscale semiconductor materials poses a major challenge to using individual objects as building blocks for device applications. The ability to manipulate the shape of ZnO structures is enormous, making it an ideal material for studying shape-dependent phenomena. We have built a nonlinear microscope used to directly image optical cavity modes in ZnO rods using second-harmonic generation. Images of second-harmonic generation in needle-shaped ZnO rods obtained from individual structures show areas of enhanced second-harmonic intensity along the longitudinal axis of the rod that are periodically distributed and symmetrically situated relative to the rod midpoint. The spatial modulation is a direct consequence of the fundamental optical field coupling into standing wave resonator modes of the ZnO structure, leading to an enhanced backscattered second-harmonic condition that cannot be achieved in bulk ZnO. A more complicated second-harmonic image is observed when excitation is below the band gap, which is attributed to whispering gallery modes. Additionally, the nonlinear microscope was combined with transient absorption pump-probe to follow the electron-hole recombination dynamics at different points within individual needle-shaped ZnO rods to characterize spatial differences in dynamical behavior. The results from pump-probe experiments are correlated with spatially resolved ultrafast emission measurements, and scanning electron microscopy provides structural details. Dramatically different electron-hole recombination dynamics are observed in the narrow tips compared to the interior, with the ends exhibiting a greater propensity for electron-hole plasma formation and faster recombination of carriers across the band gap that stem from a physical confinement of the charge carriers. In the interior of the rod, a greater fraction of the electron-hole recombination is trap-mediated and occurs on a significantly longer time scale.

  15. Observations of z-dependent microbunching harmonic intensities using COTR in a SASE FEL.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Biedron, S. G.; Dejus, R. J.

    The nonlinear generation of harmonics in a self-amplified spontaneous emission (SASE) free-electron laser (FEL) continues to be of interest. Complementary to such studies is the search for information on the electron beam microbunching harmonic components, which are revealed by coherent optical transition radiation (COTR) experiments. An initial z-dependent set of data has been obtained with the fundamental at 530 nm and the second harmonic at 265 nm. The latter data were collected after every other undulator in a nine-undulator string. These results are compared to estimates based on GINGER and an analytical model for nonlinear harmonic generation.

  16. Second-harmonic generation microscopy of tooth

    NASA Astrophysics Data System (ADS)

    Kao, Fu-Jen; Wang, Yung-Shun; Huang, Mao-Kuo; Huang, Sheng-Lung; Cheng, Ping C.

    2000-07-01

    In this study, we have developed a high performance microscopic system to perform second-harmonic (SH)imaging on a tooth. The high sensitivity of the system allows an acquisition rate of 300 seconds/frame with a resolution at 512x512 pixels. The surface SH signal generated from the tooth is also carefully verified through micro-spectroscopy, polarization rotation, and wavelength tuning. In this way, we can ensure the authenticity of the signal. The enamel that encapsulates the dentine is known to possess highly ordered structures. The anisotrophy of the structure is revealed in the microscopic SH images of the tooth sample.

  17. Accessing quadratic nonlinearities of metals through metallodielectric photonic-band-gap structures.

    PubMed

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Bloemer, Mark J; Scalora, Michael

    2006-09-01

    We study second harmonic generation in a metallodielectric photonic-band-gap structure made of alternating layers of silver and a generic, dispersive, linear, dielectric material. We find that under ideal conditions the conversion efficiency can be more than two orders of magnitude greater than the maximum conversion efficiency achievable in a single layer of silver. We interpret this enhancement in terms of the simultaneous availability of phase matching conditions over the structure and good field penetration into the metal layers. We also give a realistic example of a nine-period, Si3/N4Ag stack, where the backward conversion efficiency is enhanced by a factor of 50 compared to a single layer of silver.

  18. Modal method for Second Harmonic Generation in nanostructures

    NASA Astrophysics Data System (ADS)

    Héron, S.; Pardo, F.; Bouchon, P.; Pelouard, J.-L.; Haïdar, R.

    2015-05-01

    Nanophotonic devices show interesting features for nonlinear response enhancement but numerical tools are mandatory to fully determine their behaviour. To address this need, we present a numerical modal method dedicated to nonlinear optics calculations under the undepleted pump approximation. It is brie y explained in the frame of Second Harmonic Generation for both plane waves and focused beams. The nonlinear behaviour of selected nanostructures is then investigated to show comparison with existing analytical results and study the convergence of the code.

  19. In vivo polarization dependant Second and Third harmonic generation imaging of Caenorhabditis elegans pharyngeal muscles

    NASA Astrophysics Data System (ADS)

    Filippidis, G.; Troulinaki, K.; Fotakis, C.; Tavernarakis, N.

    2009-07-01

    In this study Second and Third harmonic generation (SHG-THG) imaging measurements were performed to the pharyngeal muscles of the nematode Caenorhabditis elegans, in vivo with linearly polarized laser beam. Complementary information about the anatomy of the pharynx and the morphology of the anterior part of the worm were extracted. THG signals proved to have no dependence on incident light polarization, while SHG images are highly sensitive to the changes of the incident linearly polarized light.

  20. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    NASA Astrophysics Data System (ADS)

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-08-01

    We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕinterface with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  1. Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation.

    PubMed

    Larciprete, M C; Bovino, F A; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V

    2009-07-15

    We present a method, based on noncollinear second-harmonic generation, to evaluate the nonzero elements of the nonlinear optical susceptibility. At a fixed incidence angle, the generated signal is investigated by varying the polarization state of both fundamental beams. The resulting polarization charts allows us to verify if Kleinman's symmetry rules can be applied to a given material or to retrieve the absolute value of the nonlinear optical tensor terms, from a reference measurement. Experimental measurements obtained from gallium nitride layers are reported. The proposed method does not require an angular scan and thus is useful when the generated signal is strongly affected by sample rotation.

  2. Optical second harmonic images of 90 deg domain structure in BaTiO3 and periodically inverted antiparallel domains in LiTaO3

    NASA Astrophysics Data System (ADS)

    Uesu, Y.; Kurimura, S.; Yamamoto, Y.

    1995-04-01

    Applied is a microscope to observations of 90 deg ferroelectric domain structure in BaTiO3 and inverted periodically are ferroelectric domains in LiTaO3. It is founded that the second harmonic generation microscope gives information which cannot be obtained by ordinary optical microscopes. The developed nonlinear optical microscope builds two dimensional second harmonic image of a specimen with inhomogenous distribution of d(sub ijk) and applied the microscope to observations of inhomogeneity in some nonlinear-optical organic microcrystals.

  3. Angle-Resolved Second-Harmonic Light Scattering from Colloidal Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, N.; Angerer, W. E.; Yodh, A. G.

    2001-09-03

    We report angle-resolved second-harmonic generation (SHG) measurements from suspensions of centrosymmetric micron-size polystyrene spheres with surface-adsorbed dye (malachite green). The second-harmonic scattering profiles differ qualitatively from linear light scattering profiles of the same particles. We investigated these radiation patterns using several polarization configurations and particle diameters. We introduce a simple Rayleigh-Gans-Debye model to account for the SHG scattering anisotropy. The model compares favorably with our experimental data. Our measurements suggest scattering anisotropy may be used to isolate particle nonlinear optics from other bulk nonlinear optical effects in suspension.

  4. Harmonic Power Generation of IMPATT Diodes.

    DTIC Science & Technology

    1985-09-01

    Performance of Si and GaAs Diodes Taking into Account the Thermal Effect (f = 23 GHz). 136 2.8 CW Results for Second-Harmonic Performance of the Si Uniform...Diode Obtained by Matching l-. Resistance (f = 23 GHz). 138 2.9 CW Results for Second-Harmonic Performance of the Si Uniform Diode Taking into Account ...at V = 28 V, V = 8 V, and Jdc = kA/cm 3. 1 3 181 2.21 Power Output for pin Diode . Taking into Account Circuit Matching Only. 194 2.22 CW Power

  5. The effect of thermal de-phasing on the beam quality of a high-power single-pass second harmonic generation

    NASA Astrophysics Data System (ADS)

    Sadat Hashemi, Somayeh; Ghavami Sabouri, Saeed; Khorsandi, Alireza

    2018-04-01

    We present a theoretical model in order to study the effect of a thermally loaded crystal on the quality of a second-harmonic (SH) beam generated in a high-power pumping regime. The model is provided based on using a particular structure of oven considered for MgO:PPsLT nonlinear crystal to compensate for the thermal de-phasing effect that as the pumping power reaches up to 50 W degrades the conversion efficiency and beam quality of the interacting beams. Hereupon, the quality of fundamental beam is involved in the modeling to investigate the final effect on the beam quality of generated SH beam. Beam quality evaluation is subsequently simulated using Hermite-Gaussian modal decomposition approach for a range of fundamental beam qualities varied from 1 to 3 and for different levels of input powers. To provide a meaningful comparison numerical simulation is correlated with real data deduced from a high-power SH generation (SHG) experimental device. It is found that when using the open-top oven scheme and fixing the fundamental M 2-factor at nearly 1, for a range of input powers changing from 15 to 30 W, the M 2-factor of SHG beam is degraded from 9% to 24%, respectively, confirming very good consistency with the reported experimental results.

  6. Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch.

    PubMed

    Bache, Morten; Nielsen, Hanne; Laegsgaard, Jesper; Bang, Ole

    2006-06-01

    We consider an index-guiding silica photonic crystal fiber with a triangular hole pattern and a periodically poled quadratic nonlinearity. By tuning the pitch and the relative hole size, second-harmonic generation with zero group-velocity mismatch is found for any fundamental wavelength above 780 nm. The nonlinear strength is optimized when the fundamental has maximum confinement in the core. The conversion bandwidth allows for femtosecond-pulse conversion, and 4%-180%W(-1)cm(-2) relative efficiencies were found.

  7. Vibrational, calorimetric and nonlinear optical studies of melaminium-bis(trichloroacetate) monohydrate molecular ionic crystal

    NASA Astrophysics Data System (ADS)

    Debrus, S.; Marchewka, M. K.; Drozd, M.; Ratajczak, H.

    2007-04-01

    The efficiency of second harmonic generation for melaminium bis(trichloroacetate) was estimated relatively to KDP: deff = 3.09 deff (KDP). Room temperature FT IR and FT Raman spectra were recorded. Some spectral features of this new crystal are referred to corresponding one for melamine crystal as well as for other trichloroacetates. Differential scanning calorimetric measurements performed on powder sample indicate the phase transition point at approximately 276 and 239 K for heating and cooling, respectively.

  8. Second and third harmonic generation associated to infrared transitions in a Morse quantum well under applied electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Restrepo, R. L.; Kasapoglu, E.; Sakiroglu, S.; Ungan, F.; Morales, A. L.; Duque, C. A.

    2017-09-01

    The effects of electric and magnetic fields on the second and third harmonic generation coefficients in a Morse potential quantum well are theoretically studied. The energy levels and corresponding wave functions are obtained by solving the Schrödinger equation for the electron in the parabolic band scheme and effective mass approximations and the envelope function approach. The results show that both the electric and the magnetic fields have significant influence on the magnitudes and resonant peak energy positions of the second and third harmonic generation responses. In general, the Morse potential profile becomes wider and shallower as γ -parameter increases and so the energies of the bound states will be functions of this parameter. Therefore, we can conclude that the effects of the electric and magnetic fields can be used to tune and control the optical properties of interest in the range of the infrared electromagnetic spectrum.

  9. Multipolar second-harmonic generation by Mie-resonant dielectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Smirnova, Daria; Smirnov, Alexander I.; Kivshar, Yuri S.

    2018-01-01

    By combining analytical and numerical approaches, we study resonantly enhanced second-harmonic generation by individual high-index dielectric nanoparticles made of centrosymmetric materials. Considering both bulk and surface nonlinearities, we describe second-harmonic nonlinear scattering from a silicon nanoparticle optically excited in the vicinity of the magnetic and electric dipolar resonances. We discuss the contributions of different nonlinear sources and the effect of the low-order optical Mie modes on the characteristics of the generated far field. We demonstrate that the multipolar expansion of the radiated field is dominated by dipolar and quadrupolar modes (two axially symmetric electric quadrupoles, an electric dipole, and a magnetic quadrupole) and the interference of these modes can ensure directivity of the nonlinear scattering. The developed multipolar analysis can be instructive for interpreting the far-field measurements of the nonlinear scattering and it provides prospective insights into a design of complementary metal-oxide-semiconductor compatible nonlinear nanoantennas fully integrated with silicon-based photonic circuits, as well as methods of nonlinear diagnostics.

  10. Linear and nonlinear Biot waves in a noncohesive granular medium slab: transfer function, self-action, second harmonic generation.

    PubMed

    Legland, J-B; Tournat, V; Dazel, O; Novak, A; Gusev, V

    2012-06-01

    Experimental results are reported on second harmonic generation and self-action in a noncohesive granular medium supporting wave energy propagation both in the solid frame and in the saturating fluid. The acoustic transfer function of the probed granular slab can be separated into two main frequency regions: a low frequency region where the wave propagation is controlled by the solid skeleton elastic properties, and a higher frequency region where the behavior is dominantly due to the air saturating the beads. Experimental results agree well with a recently developed nonlinear Biot wave model applied to granular media. The linear transfer function, second harmonic generation, and self-action effect are studied as a function of bead diameter, compaction step, excitation amplitude, and frequency. This parametric study allows one to isolate different propagation regimes involving a range of described and interpreted linear and nonlinear processes that are encountered in granular media experiments. In particular, a theoretical interpretation is proposed for the observed strong self-action effect.

  11. Towards a Compact Fiber Laser for Multimodal Imaging

    NASA Astrophysics Data System (ADS)

    Nie, Bai; Saytashev, Ilyas; Dantus, Marcos

    We report on multimodal depth-resolved imaging of unstained living Drosophila Melanogaster larva using sub-50 fs pulses centered at 1060 nm wavelength. Both second harmonic and third harmonic generation imaging modalities are demonstrated.

  12. Towards a compact fiber laser for multimodal imaging

    NASA Astrophysics Data System (ADS)

    Nie, Bai; Saytashev, Ilyas; Dantus, Marcos

    2014-03-01

    We report on multimodal depth-resolved imaging of unstained living Drosophila Melanogaster larva using sub-50 fs pulses centered at 1060 nm wavelength. Both second harmonic and third harmonic generation imaging modalities are demonstrated.

  13. Quasi-phase-matching of high-order harmonics in plasma plumes: theory and experiment.

    PubMed

    Strelkov, V V; Ganeev, R A

    2017-09-04

    We theoretically analyze the phase-matching of high-order harmonic generation (HHG) in multi-jet plasmas and find the harmonic orders for which the quasi-phase-matching (QPM) is achieved depending on the parameters of the plasma and the generating beam. HHG by single- and two-color generating fields is analyzed. The QMP is studied experimentally for silver, indium and manganese plasmas using near IR and mid-IR laser fields. The theory is validated by comparison with our experimental observations, as well as published experimental data. In particular, the plasma densities and the harmonic phase coefficients reconstructed from the observed harmonic spectra using our theory agree with the corresponding parameters found using other methods. Our theory allows defining the plasma jet and the generating field properties, which can maximize the HHG efficiency due to QPM.

  14. Ex vivo imaging and quantification of liver fibrosis using second-harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Tzu-Lin; Liu, Yuan; Sung, Ming-Chin; Chen, Hsiao-Ching; Yang, Chun-Hui; Hovhannisyan, Vladimir; Lin, Wei-Chou; Jeng, Yung-Ming; Chen, Wei-Liang; Chiou, Ling-Ling; Huang, Guan-Tarn; Kim, Ki-Hean; So, Peter T. C.; Chen, Yang-Fang; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2010-05-01

    Conventionally, liver fibrosis is diagnosed using histopathological techniques. The traditional method is time-consuming in that the specimen preparation procedure requires sample fixation, slicing, and labeling. Our goal is to apply multiphoton microscopy to efficiently image and quantitatively analyze liver fibrosis specimens bypassing steps required in histological preparation. In this work, the combined imaging modality of multiphoton autofluorescence (MAF) and second-harmonic generation (SHG) was used for the qualitative imaging of liver fibrosis of different METAVIR grades under label-free, ex vivo conditions. We found that while MAF is effective in identifying cellular architecture in the liver specimens, it is the spectrally distinct SHG signal that allows the characterization of the extent of fibrosis. We found that qualitative SHG imaging can be used for the effective identification of the associated features of liver fibrosis specimens graded METAVIR 0 to 4. In addition, we attempted to associate quantitative SHG signal to the different METAVIR grades and found that an objective determination of the extent of disease progression can be made. Our approach demonstrates the potential of using multiphoton imaging in rapid classification of ex vivo liver fibrosis in the clinical setting and investigation of liver fibrosis-associated physiopathology in animal models in vivo.

  15. Ex vivo imaging and quantification of liver fibrosis using second-harmonic generation microscopy.

    PubMed

    Sun, Tzu-Lin; Liu, Yuan; Sung, Ming-Chin; Chen, Hsiao-Ching; Yang, Chun-Hui; Hovhannisyan, Vladimir; Lin, Wei-Chou; Jeng, Yung-Ming; Chen, Wei-Liang; Chiou, Ling-Ling; Huang, Guan-Tarn; Kim, Ki-Hean; So, Peter T C; Chen, Yang-Fang; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2010-01-01

    Conventionally, liver fibrosis is diagnosed using histopathological techniques. The traditional method is time-consuming in that the specimen preparation procedure requires sample fixation, slicing, and labeling. Our goal is to apply multiphoton microscopy to efficiently image and quantitatively analyze liver fibrosis specimens bypassing steps required in histological preparation. In this work, the combined imaging modality of multiphoton autofluorescence (MAF) and second-harmonic generation (SHG) was used for the qualitative imaging of liver fibrosis of different METAVIR grades under label-free, ex vivo conditions. We found that while MAF is effective in identifying cellular architecture in the liver specimens, it is the spectrally distinct SHG signal that allows the characterization of the extent of fibrosis. We found that qualitative SHG imaging can be used for the effective identification of the associated features of liver fibrosis specimens graded METAVIR 0 to 4. In addition, we attempted to associate quantitative SHG signal to the different METAVIR grades and found that an objective determination of the extent of disease progression can be made. Our approach demonstrates the potential of using multiphoton imaging in rapid classification of ex vivo liver fibrosis in the clinical setting and investigation of liver fibrosis-associated physiopathology in animal models in vivo.

  16. Photovoltaic power converter system with a controller configured to actively compensate load harmonics

    DOEpatents

    de Rooij, Michael Andrew; Steigerwald, Robert Louis; Delgado, Eladio Clemente

    2008-12-16

    Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.

  17. Label-free imaging of acanthamoeba using multimodal nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tsubasa; Cha, Yu-Rok; Kaji, Yuichi; Oshika, Tetsuro; Leproux, Philippe; Couderc, Vincent; Kano, Hideaki

    2018-02-01

    Acanthamoeba keratitis is a disease in which amoebae named Acanthamoeba invade the cornea of an eye. To diagnose this disease before it becomes serious, it is important to detect the cyst state of Acanthamoeba in the early stage of infection. In the present study, we explored spectroscopic signitures of the cyst state of Acanthamoeba using multimodal nonlinear optical microscopy with the channels of multiplex coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), and third harmonic generation (THG). A sharp band at around 1603 cm-1 in the CARS (Im[χ(3)]) spectrum was found at the cyst state of Acanthamoeba, which possibly originates from ergosterol and/or 7-dehydrostigmasterol. It can be used as a maker band of Acanthamoeba for medical treatment. Keyword: Acanthamoeba keratitis, coherent anti-Stokes Raman scattering, CARS, second harmonic generation, SHG, microspectroscopy, multiphoton microscopy

  18. Second- and third-harmonic generation in metal-based structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scalora, M.; Akozbek, N.; Bloemer, M. J.

    We present a theoretical approach to the study of second- and third-harmonic generation from metallic structures and nanocavities filled with a nonlinear material in the ultrashort pulse regime. We model the metal as a two-component medium, using the hydrodynamic model to describe free electrons and Lorentz oscillators to account for core electron contributions to both the linear dielectric constant and harmonic generation. The active nonlinear medium that may fill a metallic nanocavity, or be positioned between metallic layers in a stack, is also modeled using Lorentz oscillators and surface phenomena due to symmetry breaking are taken into account. We studymore » the effects of incident TE- and TM-polarized fields and show that a simple reexamination of the basic equations reveals additional, exploitable dynamical features of nonlinear frequency conversion in plasmonic nanostructures.« less

  19. Phononic Crystal Waveguide Transducers for Nonlinear Elastic Wave Sensing.

    PubMed

    Ciampa, Francesco; Mankar, Akash; Marini, Andrea

    2017-11-07

    Second harmonic generation is one of the most sensitive and reliable nonlinear elastic signatures for micro-damage assessment. However, its detection requires powerful amplification systems generating fictitious harmonics that are difficult to discern from pure nonlinear elastic effects. Current state-of-the-art nonlinear ultrasonic methods still involve impractical solutions such as cumbersome signal calibration processes and substantial modifications of the test component in order to create material-based tunable harmonic filters. Here we propose and demonstrate a valid and sensible alternative strategy involving the development of an ultrasonic phononic crystal waveguide transducer that exhibits both single and multiple frequency stop-bands filtering out fictitious second harmonic frequencies. Remarkably, such a sensing device can be easily fabricated and integrated on the surface of the test structure without altering its mechanical and geometrical properties. The design of the phononic crystal structure is supported by a perturbative theoretical model predicting the frequency band-gaps of periodic plates with sinusoidal corrugation. We find our theoretical findings in excellent agreement with experimental testing revealing that the proposed phononic crystal waveguide transducer successfully attenuates second harmonics caused by the ultrasonic equipment, thus demonstrating its wide range of potential applications for acousto/ultrasonic material damage inspection.

  20. Yellow light generation by frequency doubling of a diode-pumped Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Jia, Fu-qiang; Zheng, Quan; Xue, Qing-hua; Bu, Yi-kun; Qian, Long-sheng

    2006-03-01

    We demonstrate the generation of TEM00 mode yellow light in critically type II phase-matched KTiOPO4 (KTP) with intracavity frequency doubling of a diode-pumped Nd:YAG laser at room temperature. After a 150 μm thick etalon have been inserted into the cavity, the stability and beam quality of the second harmonic generation (SHG) is enhanced. A continuous wave (CW) TEM00 mode output power of 1.67 W at 556 nm is obtained at a pump level of 16 W. The total optical to optical conversion efficiency is about 10.44%. To the best of our knowledge, this is the first Watt-level yellow light generation by frequency doubling of Nd:YAG laser.

  1. A robust collagen scoring method for human liver fibrosis by second harmonic microscopy.

    PubMed

    Guilbert, Thomas; Odin, Christophe; Le Grand, Yann; Gailhouste, Luc; Turlin, Bruno; Ezan, Frédérick; Désille, Yoann; Baffet, Georges; Guyader, Dominique

    2010-12-06

    Second Harmonic Generation (SHG) microscopy offers the opportunity to image collagen of type I without staining. We recently showed that a simple scoring method, based on SHG images of histological human liver biopsies, correlates well with the Metavir assessment of fibrosis level (Gailhouste et al., J. Hepatol., 2010). In this article, we present a detailed study of this new scoring method with two different objective lenses. By using measurements of the objectives point spread functions and of the photomultiplier gain, and a simple model of the SHG intensity, we show that our scoring method, applied to human liver biopsies, is robust to the objective's numerical aperture (NA) for low NA, the choice of the reference sample and laser power, and the spatial sampling rate. The simplicity and robustness of our collagen scoring method may open new opportunities in the quantification of collagen content in different organs, which is of main importance in providing diagnostic information and evaluation of therapeutic efficiency.

  2. Realization of a mW-level 10.7-eV (λ = 115.6 nm) laser by cascaded third harmonic generation of a Yb:fiber CPA laser at 1-MHz.

    PubMed

    Zhao, Zhigang; Kobayashi, Yohei

    2017-06-12

    We demonstrate a 10.7-eV (λ = 115.6 nm) laser with mW levels of average power and a 1-MHz repetition rate, which was driven by the third harmonic radiation (THG), at 347 nm, of an Yb:fiber chirped pulse amplifier (CPA) laser. The 347 nm ultraviolet radiation was obtained by frequency conversion of the high power output of a 1-MHz Yb:fiber CPA, using beta barium borate (BBO) nonlinear crystals. The frequency converted output was focused down into a gas cell filled with a mixture of Ar and Xe, and was subjected to a second THG frequency conversion. The generated 10.7-eV laser was separated from the fundamental beam using a LiF prism and no further separation from other harmonic waves was required. The highest measured output power was ~80 μW, which corresponded to an average power of ~1.25 mW inside the gas cell when the transmission coefficients of the LiF optics were taken into account. The corresponding conversion efficiency from 347 nm down to 115.6 nm was ~2.5 × 10 -4 .

  3. Synthesis and optical properties of polycrystalline Li2Al2B2O7 (LABO)

    NASA Astrophysics Data System (ADS)

    Dagdale, S. R.; Muley, G. G.

    2016-05-01

    A polycrystalline lithium aluminum borate (Li2Al2B2O7, LABO) has been synthesized by using simple solid-state technique. The obtained LABO polycrystalline was characterized by powder X-ray diffraction; Fourier transform infrared (FT-IR) spectroscopy and second harmonic generation (SHG) efficiency measurement. The functional groups were identified using the FT-IR spectroscopic data. The SHG efficiency of the polycrystalline material was obtained by the classic Kurtz powder technique using a fundamental wavelength 1064 nm of Nd:YAG laser and it is found to be 1.4 times that of potassium dihydrogen phosphate (KDP).

  4. Maximum imaging depth comparison in porcine vocal folds using 776-nm vs. 1552-nm excitation wavelengths

    NASA Astrophysics Data System (ADS)

    Yildirim, Murat; Ferhanoglu, Onur; Kobler, James B.; Zeitels, Steven M.; Ben-Yakar, Adela

    2013-02-01

    Vocal fold scarring is one of the major causes of voice disorders and may arise from overuse or post-surgical wound healing. One promising treatment utilizes the injection of soft biomaterials aimed at restoring viscoelasticity of the outermost vibratory layer of the vocal fold, superficial lamina propria (SLP). However, the density of the tissue and the required injection pressure impair proper localization of the injected biomaterial in SLP. To enhance treatment effectiveness, we are investigating a technique to image and ablate sub-epithelial planar voids in vocal folds using ultrafast laser pulses to better localize the injected biomaterial. It is challenging to optimize the excitation wavelength to perform imaging and ablation at depths suitable for clinical use. Here, we compare maximum imaging depth using two photon autofluorescence and second harmonic generation with third-harmonic generation imaging modalities for healthy porcine vocal folds. We used a home-built inverted nonlinear scanning microscope together with a high repetition rate (2 MHz) ultrafast fiber laser (Raydiance Inc.). We acquired both two-photon autofluorescence and second harmonic generation signals using 776 nm wavelength and third harmonic generation signals using 1552 nm excitation wavelength. We observed that maximum imaging depth with 776 nm wavelength is significantly improved from 114 μm to 205 μm when third harmonic generation is employed using 1552 nm wavelength, without any observable damage in the tissue.

  5. Multipass OPCPA system at 100 kHz pumped by a CPA-free solid-state amplifier.

    PubMed

    Ahrens, J; Prochnow, O; Binhammer, T; Lang, T; Schulz, B; Frede, M; Morgner, U

    2016-04-18

    We present a compact few-cycle 100 kHz OPCPA system pumped by a CPA-free picosecond Nd:YVO4 solid-state amplifier with all-optical synchronization to an ultra-broadband Ti:sapphire oscillator. This pump approach shows an exceptional conversion rate into the second harmonic of almost 78%. Efficient parametric amplification was realized by a two stage double-pass scheme with following chirped mirror compressor. The amount of superfluorescence was measured by an optical cross-correlation. Pulses with a duration of 8.7 fs at energies of 18 µJ are demonstrated. Due to the peak power of 1.26 GW, this simple OPCPA approach forms an ideal high repetition rate driving source for high-order harmonic generation.

  6. 80-W green KTP laser used in photoselective laser vaporization of the prostrate by frequency doubling of Yb 3+ -doped large-mode area fiber laser

    NASA Astrophysics Data System (ADS)

    Xia, Hongxing; Li, Zhengjia

    2007-05-01

    Photoselective laser vaporization of the prostate (PVP) is the most promising method for the treatment of benign prostatic hyperplasia (BPH), but KTP lasers used in PVP with lamp-pumped are low efficient .To increase the efficiency , we develop a 80-W, 400kHz, linearly polarized green laser based on a frequency-doubled fiber laser. A polarization-maintaining large-mode area (LMA) fiber amplifier generate polarized 1064nm fundamental wave by amplifying the seed signal from a composite Cr 4+:YAG-Nd 3+:YAG crystal fiber laser. The fundamental wave is injected into a KTP crystal with confined temperature management to achieve second harmonic generation (SHG). The overall electrical efficiency to the green portion of the spectrum is 10%.80-W maintenance-free long-lifetime KTP laser obtained can well satisfy the need of PVP.

  7. Linking high harmonics from gases and solids.

    PubMed

    Vampa, G; Hammond, T J; Thiré, N; Schmidt, B E; Légaré, F; McDonald, C R; Brabec, T; Corkum, P B

    2015-06-25

    When intense light interacts with an atomic gas, recollision between an ionizing electron and its parent ion creates high-order harmonics of the fundamental laser frequency. This sub-cycle effect generates coherent soft X-rays and attosecond pulses, and provides a means to image molecular orbitals. Recently, high harmonics have been generated from bulk crystals, but what mechanism dominates the emission remains uncertain. To resolve this issue, we adapt measurement methods from gas-phase research to solid zinc oxide driven by mid-infrared laser fields of 0.25 volts per ångström. We find that when we alter the generation process with a second-harmonic beam, the modified harmonic spectrum bears the signature of a generalized recollision between an electron and its associated hole. In addition, we find that solid-state high harmonics are perturbed by fields so weak that they are present in conventional electronic circuits, thus opening a route to integrate electronics with attosecond and high-harmonic technology. Future experiments will permit the band structure of a solid to be tomographically reconstructed.

  8. Low-frequency approximation for high-order harmonic generation by a bicircular laser field

    NASA Astrophysics Data System (ADS)

    Milošević, D. B.

    2018-01-01

    We present low-frequency approximation (LFA) for high-order harmonic generation (HHG) process. LFA represents the lowest-order term of an expansion of the final-state interaction matrix element in powers of the laser-field frequency ω . In this approximation the plane-wave recombination matrix element which appears in the strong-field approximation is replaced by the exact laser-free recombination matrix element calculated for the laser-field dressed electron momenta. First, we have shown that the HHG spectra obtained using the LFA agree with those obtained solving the time-dependent Schrödinger equation. Next, we have applied this LFA to calculate the HHG rate for inert gases exposed to a bicircular field. The bicircular field, which consists of two coplanar counter-rotating fields having different frequencies (usually ω and 2 ω ), is presently an important subject of scientific research since it enables efficient generation of circularly polarized high-order harmonics (coherent soft x rays). Analyzing the photorecombination matrix element we have found that the HHG rate can efficiently be calculated using the angular momentum basis with the states oriented in the direction of the bicircular field components. Our numerical results show that the HHG rate for atoms having p ground state, for higher high-order harmonic energies, is larger for circularly polarized harmonics having the helicity -1 . For lower energies the harmonics having helicity +1 prevails. The transition between these two harmonic energy regions can appear near the Cooper minimum, which, in the case of Ar atoms, makes the selection of high-order harmonics having the same helicity much easier. This is important for applications (for example, for generation of attosecond pulse trains of circularly polarized harmonics).

  9. Third harmonic from air breakdown plasma induced by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Stafe, M.; Negutu, C.; Puscas, N. N.

    2018-06-01

    Harmonic generation is a nonlinear optical effect consisting in frequency up-conversion of intense laser radiation when phase-matching conditions are fulfilled. Here, we study the mechanisms involved in the third harmonic (TH) generation process, the conversion efficiency, and the properties of TH radiation generated in air by focusing infrared linearly polarized nanosecond laser pulses at intensities of the order of TW/cm2. By analyzing the emission from the air breakdown plasma, we demonstrate that filamentary breakdown plasma containing molecular nitrogen ions acts as an optical nonlinear medium enabling generation of TH radiation in the axial direction. The data reveal important properties of the TH radiation: maximum conversion efficiency of 0.04%, sinc2 dependence of the TH intensity on the square root of the pump intensity, and three times smaller divergence and pulse duration of TH as compared to the pump radiation.

  10. Field-controllable second harmonic generation at a graphene oxide heterointerface

    NASA Astrophysics Data System (ADS)

    Fernandes, Gustavo E.; Kim, Jin Ho; Osgood, Richard, III; Xu, Jimmy

    2018-03-01

    We report on the voltage-dependent SHG signal obtained in a reduced-graphene oxide (rGO)/p-type Si heterointerface. A simple qualitative model considering the interaction between the heterointerface depletion region potential and the naturally occurring surface dipole layer on the rGO is introduced to account for the characteristics of the SHG signal, specifically, a minimum point at ≈ -3 V bias on the rGO side of the interface. This feature-rich system has the potential to provide field-controllable surface-dipole moments and second-order nonlinearities, which may find applications in tunable nonlinear photonic devices for realizing second-harmonic generation and optical-rectification.

  11. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues.

    PubMed Central

    Campagnola, Paul J; Millard, Andrew C; Terasaki, Mark; Hoppe, Pamela E; Malone, Christian J; Mohler, William A

    2002-01-01

    We find that several key endogenous protein structures give rise to intense second-harmonic generation (SHG)-nonabsorptive frequency doubling of an excitation laser line. Second-harmonic imaging microscopy (SHIM) on a laser-scanning system proves, therefore, to be a powerful and unique tool for high-resolution, high-contrast, three-dimensional studies of live cell and tissue architecture. Unlike fluorescence, SHG suffers no inherent photobleaching or toxicity and does not require exogenous labels. Unlike polarization microscopy, SHIM provides intrinsic confocality and deep sectioning in complex tissues. In this study, we demonstrate the clarity of SHIM optical sectioning within unfixed, unstained thick specimens. SHIM and two-photon excited fluorescence (TPEF) were combined in a dual-mode nonlinear microscopy to elucidate the molecular sources of SHG in live cells and tissues. SHG arose not only from coiled-coil complexes within connective tissues and muscle thick filaments, but also from microtubule arrays within interphase and mitotic cells. Both polarization dependence and a local symmetry cancellation effect of SHG allowed the signal from species generating the second harmonic to be decoded, by ratiometric correlation with TPEF, to yield information on local structure below optical resolution. The physical origin of SHG within these tissues is addressed and is attributed to the laser interaction with dipolar protein structures that is enhanced by the intrinsic chirality of the protein helices. PMID:11751336

  12. Generation of µW level plateau harmonics at high repetition rate.

    PubMed

    Hädrich, S; Krebs, M; Rothhardt, J; Carstens, H; Demmler, S; Limpert, J; Tünnermann, A

    2011-09-26

    The process of high harmonic generation allows for coherent transfer of infrared laser light to the extreme ultraviolet spectral range opening a variety of applications. The low conversion efficiency of this process calls for optimization or higher repetition rate intense ultrashort pulse lasers. Here we present state-of-the-art fiber laser systems for the generation of high harmonics up to 1 MHz repetition rate. We perform measurements of the average power with a calibrated spectrometer and achieved µW harmonics between 45 nm and 61 nm (H23-H17) at a repetition rate of 50 kHz. Additionally, we show the potential for few-cycle pulses at high average power and repetition rate that may enable water-window harmonics at unprecedented repetition rate. © 2011 Optical Society of America

  13. Second-harmonic patterned polarization-analyzed reflection confocal microscope

    NASA Astrophysics Data System (ADS)

    Okoro, Chukwuemeka; Toussaint, Kimani C.

    2017-08-01

    We introduce the second-harmonic patterned polarization-analyzed reflection confocal (SPPARC) microscope-a multimodal imaging platform that integrates Mueller matrix polarimetry with reflection confocal and second-harmonic generation (SHG) microscopy. SPPARC microscopy provides label-free three-dimensional (3-D), SHG-patterned confocal images that lend themselves to spatially dependent, linear polarimetric analysis for extraction of rich polarization information based on the Mueller calculus. To demonstrate its capabilities, we use SPPARC microscopy to analyze both porcine tendon and ligament samples and find differences in both circular degree-of-polarization and depolarization parameters. Moreover, using the collagen-generated SHG signal as an endogenous counterstain, we show that the technique can be used to provide 3-D polarimetric information of the surrounding extrafibrillar matrix plus cells or EFMC region. The unique characteristics of SPPARC microscopy holds strong potential for it to more accurately and quantitatively describe microstructural changes in collagen-rich samples in three spatial dimensions.

  14. Type-I non-critically phase-matched second-harmonic generation in Gd1-xYxCa4O(BO3)3

    NASA Astrophysics Data System (ADS)

    Burmester, P. B. W.; Kellner, T.; Petermann, K.; Huber, G.; Uecker, R.; Reiche, P.

    Second-harmonic generation was z-cut observed Gd1-xYxCa4O(BO3)3 (Gd1-xYxCOB) and the dependence of the phase-matching wavelength on the mixing ratio x has been investigated. The dependence on both temperature and angle tuning was examined as well. We found the suitable composition for noncritical frequency doubling at 930 nm, which is the lasing wavelength of Nd:YAlO3 on the 4F3/2?4I9/2 transition.

  15. The Effects of Atmospheric Water Vapor Absorption on Infrared Laser Propagation in the 5 Micrometer Band.

    DTIC Science & Technology

    1983-05-01

    which allows for thermal linedr expansion of the structure. 32 1 I 2. Second Harmonic Generation The second harmonic generation was achieved by mounting a...filter unit and then to the reference channel lock-in amplifier. C. TESTS 1 . DC Amplifier and A/D Calibration The Ectron DC amplifiers and the Altair A/D...AD-A130 788 THE EFFECTS OF ATMOSPHERIC WATER VAPOR ABSORPTION ON 1 / INFRARED LASER PRUPA..(U) OHIO STATE UNIV COLUMBUS ELECTROSCIENCE LAB L G WALTER

  16. Polarization-insensitive ultralow-power second-harmonic generation frequency-resolved optical gating.

    PubMed

    Miao, Houxun; Weiner, Andrew M; Langrock, Carsten; Roussev, Rostislav V; Fejer, Martin M

    2007-04-01

    We demonstrate polarization-insensitive ultralow-power second-harmonic generation frequency-resolved optical gating (FROG) measurements with a fiber-pigtailed, aperiodically poled lithium niobate waveguide. By scrambling the polarization much faster than the measurement integration time, we eliminate the impairment that frequency-independent random polarization fluctuations induce in FROG measurements. As a result we are able to retrieve intensity and phase profiles of few hundred femtosecond optical pulses with 50 MHz repetition rates at 5.2 nW coupled average power without control of the input polarization.

  17. Improving liver fibrosis diagnosis based on forward and backward second harmonic generation signals

    NASA Astrophysics Data System (ADS)

    Peng, Qiwen; Zhuo, Shuangmu; So, Peter T. C.; Yu, Hanry

    2015-02-01

    The correlation of forward second harmonic generation (SHG) signal and backward SHG signal in different liver fibrosis stages was investigated. We found that three features, including the collagen percentage for forward SHG, the collagen percentage for backward SHG, and the average intensity ratio of two kinds of SHG signals, can quantitatively stage liver fibrosis in thioacetamide-induced rat model. We demonstrated that the combination of all three features by using a support vector machine classification algorithm can provide a more accurate prediction than each feature alone in fibrosis diagnosis.

  18. Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch

    NASA Astrophysics Data System (ADS)

    König, Friedrich; Wong, Franco N. C.

    2004-03-01

    Under extended phase-matching conditions, the first frequency derivative of the wave-vector mismatch is zero and the phase-matching bandwidth is greatly increased. We present extensive three-wave mixing measurements of the wave-vector mismatch and obtain improved Sellmeier equations for KTiOPO4. We observed a type-II extended phase-matching bandwidth of 100 nm for second-harmonic generation in periodically poled KTiOPO4, centered at the fundamental wavelength of 1584 nm. Applications in quantum entanglement and frequency metrology are discussed.

  19. Nonlinear optical response of the collagen triple helix and second harmonic microscopy of collagen liquid crystals

    NASA Astrophysics Data System (ADS)

    Deniset-Besseau, A.; De Sa Peixoto, P.; Duboisset, J.; Loison, C.; Hache, F.; Benichou, E.; Brevet, P.-F.; Mosser, G.; Schanne-Klein, M.-C.

    2010-02-01

    Collagen is characterized by triple helical domains and plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) and SHG microscopy proved to be a sensitive tool to score fibrotic pathologies. However, the nonlinear optical response of fibrillar collagen is not fully characterized yet and quantitative data are required to further process SHG images. We therefore performed Hyper-Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its amino-acid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro-Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagen liquid solutions by achieving liquid crystalline ordering of the collagen triple helices.

  20. Spectral control of high harmonics from relativistic plasmas using bicircular fields

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu

    2018-04-01

    We introduce two-color counterrotating circularly polarized laser fields as a way to spectrally control high harmonic generation (HHG) from relativistic plasma mirrors. Through particle-in-cell simulations, we show that only a selected group of harmonic orders can appear owing to the symmetry of the laser fields and the related conservation laws. By adjusting the intensity ratio of the two driving field components, we demonstrate the overall HHG efficiency, the relative intensity of allowed neighboring harmonic orders, and that the polarization state of the harmonic source can be tuned. The HHG efficiency of this scheme can be as high as that driven by a linearly polarized laser field.

  1. High-order-harmonic generation from H2+ molecular ions near plasmon-enhanced laser fields

    NASA Astrophysics Data System (ADS)

    Yavuz, I.; Tikman, Y.; Altun, Z.

    2015-08-01

    Simulations of plasmon-enhanced high-order-harmonic generation are performed for a H2+ molecular cation near the metallic nanostructures. We employ the numerical solution of the time-dependent Schrödinger equation in reduced coordinates. We assume that the main axis of H2+ is aligned perfectly with the polarization direction of the plasmon-enhanced field. We perform systematic calculations on plasmon-enhanced harmonic generation based on an infinite-mass approximation, i.e., pausing nuclear vibrations. Our simulations show that molecular high-order-harmonic generation from plasmon-enhanced laser fields is possible. We observe the dispersion of a plateau of harmonics when the laser field is plasmon enhanced. We find that the maximum kinetic energy of the returning electron follows 4 Up . We also find that when nuclear vibrations are enabled, the efficiency of the harmonics is greatly enhanced relative to that of static nuclei. However, the maximum kinetic energy 4 Up is largely maintained.

  2. Strategic placement of stereogenic centers in molecular materials for second harmonic generation.

    PubMed

    Gangopadhyay, P; Rao, D Narayana; Agranat, Israel; Radhakrishnan, T P

    2002-01-01

    Basic aspects of the nonlinear optical phenomenon of second harmonic generation (SHG) and the assembly of molecular materials for SHG are reviewed. Extensive use of chirality as a convenient tool to generate noncentrosymmetricity in molecular lattices, an essential requirement for the development of quadratic nonlinear optical materials, is noted. An overview of our investigations of chiral diaminodicyanoquinodimethanes is presented, which provides insight into a systematic approach to the effective deployment of chirality to achieve optimal molecular orientations for enhanced solid state SHG. Extension of these ideas to the realization of strong SHG in materials based on helical superstructures is outlined.

  3. The design of a multi-harmonic step-tunable gyrotron

    NASA Astrophysics Data System (ADS)

    Qi, Xiang-Bo; Du, Chao-Hai; Zhu, Juan-Feng; Pan, Shi; Liu, Pu-Kun

    2017-03-01

    The theoretical study of a step-tunable gyrotron controlled by successive excitation of multi-harmonic modes is presented in this paper. An axis-encircling electron beam is employed to eliminate the harmonic mode competition. Physics images are depicted to elaborate the multi-harmonic interaction mechanism in determining the operating parameters at which arbitrary harmonic tuning can be realized by magnetic field sweeping to achieve controlled multiband frequencies' radiation. An important principle is revealed that a weak coupling coefficient under a high-harmonic interaction can be compensated by a high Q-factor. To some extent, the complementation between the high Q-factor and weak coupling coefficient makes the high-harmonic mode potential to achieve high efficiency. Based on a previous optimized magnetic cusp gun, the multi-harmonic step-tunable gyrotron is feasible by using harmonic tuning of first-to-fourth harmonic modes. Multimode simulation shows that the multi-harmonic gyrotron can operate on the 34 GHz first-harmonic TE11 mode, 54 GHz second-harmonic TE21 mode, 74 GHz third-harmonic TE31 mode, and 94 GHz fourth-harmonic TE41 mode, corresponding to peak efficiencies of 28.6%, 35.7%, 17.1%, and 11.4%, respectively. The multi-harmonic step-tunable gyrotron provides new possibilities in millimeter-terahertz source development especially for advanced terahertz applications.

  4. Second Harmonic Hectometric Radio Emission at Jupiter

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Gurnett, D. A.; Groene, J. B.

    1998-01-01

    Galileo has been in orbit around Jupiter since December 1995. The plasma wave instrument on board the spacecraft has occasionally detected a rotationally modulated attenuation band in the hectometric (HOM) emission that most likely is due to scattering of the radiation from density fluctuations along the Io L-shell, as reported earlier. The occurrence of the attenuation band is likely to be dependent on Io activity and the presence of density scattering centers along the Io-L-shell as well as the location of the source region. Some of the attenuation bands show clear indications of second harmonic emission. Without polarization measurements, it is difficult to place constraints on the local generation conditions based on the cyclotron maser instability, but the results imply that second harmonic emission could be present in the decametric (DAM) radiation as well. A survey of the data has revealed about 30 examples of second harmonic HOM.

  5. Second Harmonic Hectometric Radio Emission at Jupiter

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Gurnett, D. A.; Groene, J. B.

    1998-01-01

    Galileo has been in orbit around Jupiter since December 1995. The plasma wave instrument on board the spacecraft has occasionally detected a rotationally modulated attenuation band in the hectometric (HOM) emission that most likely is due to scattering of the radiation from density fluctuations along the Io L-shell, as reported earlier. The occurrence of the attenuation band is likely to be dependent on Io activity and the presence of density scattering centers along the Io L-shell as well as the location of the source region. Some of the attenuation bands show clear indications of second harmonic emission. Without polarization measurements, it is difficult to place constraints on the local generation conditions based on the cyclotron maser instability, but the results imply that second harmonic emission could be present in the decametric (DAM) radiation as well. A survey of the data has revealed about 30 examples of second harmonic HOM.

  6. Current-Nonlinear Hall Effect and Spin-Orbit Torque Magnetization Switching in a Magnetic Topological Insulator

    NASA Astrophysics Data System (ADS)

    Yasuda, K.; Tsukazaki, A.; Yoshimi, R.; Kondou, K.; Takahashi, K. S.; Otani, Y.; Kawasaki, M.; Tokura, Y.

    2017-09-01

    The current-nonlinear Hall effect or second harmonic Hall voltage is widely used as one of the methods for estimating charge-spin conversion efficiency, which is attributed to the magnetization oscillation by spin-orbit torque (SOT). Here, we argue the second harmonic Hall voltage under a large in-plane magnetic field with an in-plane magnetization configuration in magnetic-nonmagnetic topological insulator (TI) heterostructures, Crx (Bi1 -ySby )2 -xTe3 /(Bi1 -ySby )2Te3 , where it is clearly shown that the large second harmonic voltage is governed not by SOT but mainly by asymmetric magnon scattering without macroscopic magnetization oscillation. Thus, this method does not allow an accurate estimation of charge-spin conversion efficiency in TI. Instead, the SOT contribution is exemplified by current pulse induced nonvolatile magnetization switching, which is realized with a current density of 2.5 ×1010 A m-2 , showing its potential as a spintronic material.

  7. Current-Nonlinear Hall Effect and Spin-Orbit Torque Magnetization Switching in a Magnetic Topological Insulator.

    PubMed

    Yasuda, K; Tsukazaki, A; Yoshimi, R; Kondou, K; Takahashi, K S; Otani, Y; Kawasaki, M; Tokura, Y

    2017-09-29

    The current-nonlinear Hall effect or second harmonic Hall voltage is widely used as one of the methods for estimating charge-spin conversion efficiency, which is attributed to the magnetization oscillation by spin-orbit torque (SOT). Here, we argue the second harmonic Hall voltage under a large in-plane magnetic field with an in-plane magnetization configuration in magnetic-nonmagnetic topological insulator (TI) heterostructures, Cr_{x}(Bi_{1-y}Sb_{y})_{2-x}Te_{3}/(Bi_{1-y}Sb_{y})_{2}Te_{3}, where it is clearly shown that the large second harmonic voltage is governed not by SOT but mainly by asymmetric magnon scattering without macroscopic magnetization oscillation. Thus, this method does not allow an accurate estimation of charge-spin conversion efficiency in TI. Instead, the SOT contribution is exemplified by current pulse induced nonvolatile magnetization switching, which is realized with a current density of 2.5×10^{10}  A m^{-2}, showing its potential as a spintronic material.

  8. Synthesis and Characterization of Electroresponsive Materials with Applications In: Part I. Second Harmonic Generation. Part II. Organic-Lanthanide Ion Complexes for Electroluminescence and Optical Amplifiers.

    NASA Astrophysics Data System (ADS)

    Claude, Charles

    1995-01-01

    Materials for optical waveguides were developed from two different approaches, inorganic-organic composites and soft gel polymers. Inorganic-organic composites were developed from alkoxysilane and organically modified silanes based on nonlinear optical chromophores. Organically modified silanes based on N-((3^' -trialkoxysilyl)propyl)-4-nitroaniline were synthesized and sol-gelled with trimethoxysilane. After a densification process at 190^circC with a corona discharge, the second harmonic of the film was measured with a Nd:YAG laser with a fundamental wavelength of 1064nm, d_{33} = 13pm/V. The decay of the second harmonic was expressed by a stretched bi-exponential equation. The decay time (tau _2) was equal to 3374 hours, and was comparable to nonlinear optical systems based on epoxy/Disperse Orange 1. The processing temperature of the organically modified silane was limited to 200^circC due to the decomposition of the organic chromophore. Soft gel polymers were synthesized and characterized for the development of optical waveguides with dc-electrical field assisted phase-matching. Polymers based on 4-nitroaniline terminated poly(ethylene oxide-co-propylene oxide) were shown to exhibit second harmonic generation that were optically phase-matched in an electrical field. The optical signals were stable and reproducible. Siloxane polymers modified with 1-mercapto-4-nitrobenzene and 1-mercapto-4-methylsulfonylstilbene nonlinear optical chromophores were synthesized. The physical and the linear and nonlinear optical properties of the polymers were characterized. Waveguides were developed from the polymers which were optically phase -matched and had an efficiency of 8.1%. The siloxane polymers exhibited optical phase-matching in an applied electrical field and can be used with a semiconductor laser. Organic lanthanide ion complexes for electroluminescence and optical amplifiers were synthesized and characterized. The complexes were characterized for their thermal and oxidative stability and for their optical properties. Organic-europium ion complexes based on derivatives of 2-benzoyl benzoate are stable to a temperature 70^circ C higher than the europium beta -diketonate complexes. The optical and fluorescence properties of the organic-europium ion complexes were characterized. The methoxy and the t-butyl derivatives of the europium 2-benzoylbenzoate complexes exhibited fluorescence quantum efficiencies that were comparable to europium tris(thenoyl trifluoroacetonate) in methylene chloride but the extinction coefficient was two-thirds of the europium thenoyltrifluoroacetonate complexes. The last complex characterized was the europium bis(diphenylphosphino)imine complex. The complex exhibited thermal stability to 550 ^circC under nitrogen.

  9. Experimental observation of attosecond control over relativistic electron bunches with two-colour fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeung, M.; Rykovanov, S.; Bierbach, J.

    2016-12-05

    Energy coupling during relativistically intense laser–matter interactions is encoded in the attosecond motion of strongly driven electrons at the pre-formed plasma–vacuum boundary. Studying and controlling this motion can reveal details about the microscopic processes that govern a vast array of light–matter interaction phenomena, including those at the forefront of extreme laser–plasma science such as laser-driven ion acceleration, bright attosecond pulse generation and efficient energy coupling for the generation and study of warm dense matter. Here in this paper, we experimentally demonstrate that by precisely adjusting the relative phase of an additional laser beam operating at the second harmonic of themore » driving laser it is possible to control the trajectories of relativistic electron bunches formed during the interaction with a solid target at the attosecond scale. Finally, we observe significant enhancements in the resulting high-harmonic yield, suggesting potential applications for sources of ultra-bright, extreme ultraviolet attosecond radiation to be used in atomic and molecular pump–probe experiments« less

  10. Echo-Enabled X-Ray Vortex Generation

    NASA Astrophysics Data System (ADS)

    Hemsing, E.; Marinelli, A.

    2012-11-01

    A technique to generate high-brightness electromagnetic vortices with tunable topological charge at extreme ultraviolet and x-ray wavelengths is described. Based on a modified version of echo-enabled harmonic generation for free-electron lasers, the technique uses two lasers and two chicanes to produce high-harmonic microbunching of a relativistic electron beam with a corkscrew distribution that matches the instantaneous helical phase structure of the x-ray vortex. The strongly correlated electron distribution emerges from an efficient three-dimensional recoherence effect in the echo-enabled harmonic generation transport line and can emit fully coherent vortices in a downstream radiator for access to new research in x-ray science.

  11. Harmonic Structure Predicts the Enjoyment of Uplifting Trance Music.

    PubMed

    Agres, Kat; Herremans, Dorien; Bigo, Louis; Conklin, Darrell

    2016-01-01

    An empirical investigation of how local harmonic structures (e.g., chord progressions) contribute to the experience and enjoyment of uplifting trance (UT) music is presented. The connection between rhythmic and percussive elements and resulting trance-like states has been highlighted by musicologists, but no research, to our knowledge, has explored whether repeated harmonic elements influence affective responses in listeners of trance music. Two alternative hypotheses are discussed, the first highlighting the direct relationship between repetition/complexity and enjoyment, and the second based on the theoretical inverted-U relationship described by the Wundt curve. We investigate the connection between harmonic structure and subjective enjoyment through interdisciplinary behavioral and computational methods: First we discuss an experiment in which listeners provided enjoyment ratings for computer-generated UT anthems with varying levels of harmonic repetition and complexity. The anthems were generated using a statistical model trained on a corpus of 100 uplifting trance anthems created for this purpose, and harmonic structure was constrained by imposing particular repetition structures (semiotic patterns defining the order of chords in the sequence) on a professional UT music production template. Second, the relationship between harmonic structure and enjoyment is further explored using two computational approaches, one based on average Information Content, and another that measures average tonal tension between chords. The results of the listening experiment indicate that harmonic repetition does in fact contribute to the enjoyment of uplifting trance music. More compelling evidence was found for the second hypothesis discussed above, however some maximally repetitive structures were also preferred. Both computational models provide evidence for a Wundt-type relationship between complexity and enjoyment. By systematically manipulating the structure of chord progressions, we have discovered specific harmonic contexts in which repetitive or complex structure contribute to the enjoyment of uplifting trance music.

  12. Harmonic Structure Predicts the Enjoyment of Uplifting Trance Music

    PubMed Central

    Agres, Kat; Herremans, Dorien; Bigo, Louis; Conklin, Darrell

    2017-01-01

    An empirical investigation of how local harmonic structures (e.g., chord progressions) contribute to the experience and enjoyment of uplifting trance (UT) music is presented. The connection between rhythmic and percussive elements and resulting trance-like states has been highlighted by musicologists, but no research, to our knowledge, has explored whether repeated harmonic elements influence affective responses in listeners of trance music. Two alternative hypotheses are discussed, the first highlighting the direct relationship between repetition/complexity and enjoyment, and the second based on the theoretical inverted-U relationship described by the Wundt curve. We investigate the connection between harmonic structure and subjective enjoyment through interdisciplinary behavioral and computational methods: First we discuss an experiment in which listeners provided enjoyment ratings for computer-generated UT anthems with varying levels of harmonic repetition and complexity. The anthems were generated using a statistical model trained on a corpus of 100 uplifting trance anthems created for this purpose, and harmonic structure was constrained by imposing particular repetition structures (semiotic patterns defining the order of chords in the sequence) on a professional UT music production template. Second, the relationship between harmonic structure and enjoyment is further explored using two computational approaches, one based on average Information Content, and another that measures average tonal tension between chords. The results of the listening experiment indicate that harmonic repetition does in fact contribute to the enjoyment of uplifting trance music. More compelling evidence was found for the second hypothesis discussed above, however some maximally repetitive structures were also preferred. Both computational models provide evidence for a Wundt-type relationship between complexity and enjoyment. By systematically manipulating the structure of chord progressions, we have discovered specific harmonic contexts in which repetitive or complex structure contribute to the enjoyment of uplifting trance music. PMID:28119641

  13. Highly coherent vacuum ultraviolet radiation at the 15th harmonic with echo-enabled harmonic generation technique

    NASA Astrophysics Data System (ADS)

    Hemsing, E.; Dunning, M.; Hast, C.; Raubenheimer, T. O.; Weathersby, S.; Xiang, D.

    2014-07-01

    X-ray free-electron lasers are enabling access to new science by producing ultrafast and intense x rays that give researchers unparalleled power and precision in examining the fundamental nature of matter. In the quest for fully coherent x rays, the echo-enabled harmonic generation technique is one of the most promising methods. In this technique, coherent radiation at the high harmonic frequencies of two seed lasers is generated from the recoherence of electron beam phase space memory. Here we report on the generation of highly coherent and stable vacuum ultraviolet radiation at the 15th harmonic of an infrared seed laser with this technique. The experiment demonstrates two distinct advantages that are intrinsic to the highly nonlinear phase space gymnastics of echo-enabled harmonic generation in a new regime, i.e., high frequency up-conversion efficiency and insensitivity to electron beam phase space imperfections. Our results allow comparison and confirmation of predictive models and scaling laws, and mark a significant step towards fully coherent x-ray free-electron lasers that will open new scientific research.

  14. Atomic-like high-harmonic generation from two-dimensional materials.

    PubMed

    Tancogne-Dejean, Nicolas; Rubio, Angel

    2018-02-01

    The generation of high-order harmonics from atomic and molecular gases enables the production of high-energy photons and ultrashort isolated pulses. Obtaining efficiently similar photon energy from solid-state systems could lead, for instance, to more compact extreme ultraviolet and soft x-ray sources. We demonstrate from ab initio simulations that it is possible to generate high-order harmonics from free-standing monolayer materials, with an energy cutoff similar to that of atomic and molecular gases. In the limit in which electrons are driven by the pump laser perpendicularly to the monolayer, they behave qualitatively the same as the electrons responsible for high-harmonic generation (HHG) in atoms, where their trajectories are described by the widely used semiclassical model, and exhibit real-space trajectories similar to those of the atomic case. Despite the similarities, the first and last steps of the well-established three-step model for atomic HHG are remarkably different in the two-dimensional materials from gases. Moreover, we show that the electron-electron interaction plays an important role in harmonic generation from monolayer materials because of strong local-field effects, which modify how the material is ionized. The recombination of the accelerated electron wave packet is also found to be modified because of the infinite extension of the material in the monolayer plane, thus leading to a more favorable wavelength scaling of the harmonic yield than in atomic HHG. Our results establish a novel and efficient way of generating high-order harmonics based on a solid-state device, with an energy cutoff and a more favorable wavelength scaling of the harmonic yield similar to those of atomic and molecular gases. Two-dimensional materials offer a unique platform where both bulk and atomic HHG can be investigated, depending on the angle of incidence. Devices based on two-dimensional materials can extend the limit of existing sources.

  15. High-order harmonic generation of CO and N2 molecules under linearly- and bi circularly-polarized laser pulses by TD-DFT

    NASA Astrophysics Data System (ADS)

    Koushki, A. M.; Sadighi-Bonabi, R.; Mohsen-Nia, M.; Irani, E.

    2018-07-01

    We present a method for high-order harmonics generation of N2 and CO molecules under two-color circularly polarized counter-rotating laser pulses at frequencies of and 2. Pulse envelope in this investigation is sin-squared and the intensity of each laser beam is with ten-optical cycle (o.c.). We show that an isolated pulse with a pulse duration shorter than 20 attosecond from the superposition of several harmonics can be generated. Both two-color linearly- and bicircularly-polarized laser pulses are considered. Our results have also been compared with the outcomes of the previous theoretical works as well as experiment observations. It is found that for CO molecule, the bicircularly-polarized laser pulses are superior and more efficient, and it can generate narrower attosecond pulses than the linearly-polarized pulses. While for N2 molecule, the two-color linearly-polarized pulses are more efficient, and it can generate narrower attosecond pulses than the bicircularly-polarized pulses. Furthermore, in order to demonstrate the origin of red- and blue-shifts in high-harmonic spectra, the effect of pulse duration on the high-order harmonics spectra is investigated. In addition, to obtain imaging on the temporal dependence of the electron densities, the time dependent electron localization function is used. Moreover, in order to study of the quantum trajectory of electrons, time-frequency analysis is utilized.

  16. Integrating solids and gases for attosecond pulse generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, T. J.; Monchoce, Sylvain; Zhang, Chunmei

    Here, control of the field of few-cycle optical pulses has had an enormous impact on attosecond science. Subcycle pulses open the potential for non-adiabatic phase matching while concentrating the electric field so it can be used most efficiently. However, subcycle field transients have been difficult to generate. We exploit the perturbative response of a sub-100 µm thick monocrystalline quartz plate irradiated by an intense few-cycle 1.8 µm pulse, which creates a phase-controlled supercontinuum spectrum. Within the quartz, the pulse becomes space–time coupled as it generates a parallel second harmonic. Vacuum propagation naturally leads to a subcycle electric-field transient whose envelopemore » is sculpted by the carrier envelope phase of the incident radiation. We show that a second medium (either gas or solid) can generate isolated attosecond pulses in the extreme ultraviolet region. With no optical elements between the components, the process is scalable to very high energy pulses and allows the use of diverse media.« less

  17. Integrating solids and gases for attosecond pulse generation

    DOE PAGES

    Hammond, T. J.; Monchoce, Sylvain; Zhang, Chunmei; ...

    2017-08-21

    Here, control of the field of few-cycle optical pulses has had an enormous impact on attosecond science. Subcycle pulses open the potential for non-adiabatic phase matching while concentrating the electric field so it can be used most efficiently. However, subcycle field transients have been difficult to generate. We exploit the perturbative response of a sub-100 µm thick monocrystalline quartz plate irradiated by an intense few-cycle 1.8 µm pulse, which creates a phase-controlled supercontinuum spectrum. Within the quartz, the pulse becomes space–time coupled as it generates a parallel second harmonic. Vacuum propagation naturally leads to a subcycle electric-field transient whose envelopemore » is sculpted by the carrier envelope phase of the incident radiation. We show that a second medium (either gas or solid) can generate isolated attosecond pulses in the extreme ultraviolet region. With no optical elements between the components, the process is scalable to very high energy pulses and allows the use of diverse media.« less

  18. High-frequency harmonic imaging of the eye.

    PubMed

    Silverman, Ronald H; Coleman, D Jackson; Ketterling, Jeffrey A; Lizzi, Frederic L

    2005-01-01

    PURPOSE: Harmonic imaging has become a well-established technique for ultrasonic imaging at fundamental frequencies of 10 MHz or less. Ophthalmology has benefited from the use of fundamentals of 20 MHz to 50 MHz. Our aim was to explore the ability to generate harmonics for this frequency range, and to generate harmonic images of the eye. METHODS: The presence of harmonics was determined in both water and bovine vitreous propagation media by pulse/echo and hydrophone at a series of increasing excitation pulse intensities and frequencies. Hydrophone measurements were made at the focal point and in the near- and far-fields of 20 MHz and 40 MHz transducers. Harmonic images of the anterior segment of the rabbit eye were obtained by a combination of analog filtering and digital post-processing. RESULTS: Harmonics were generated nearly identically in both water and vitreous. Hydrophone measurements showed the maximum second harmonic to be -5 dB relative to the 35 MHz fundamental at the focus, while in pulse/echo the maximum harmonic amplitude was -15dB relative to the fundamental. Harmonics were absent in the near-field, but present in the far-field. Harmonic images of the eye showed improved resolution. CONCLUSION: Harmonics can be readily generated at very high frequencies, and at power levels compliant with FDA guidelines for ophthalmology. This technique may yield further improvements to the already impressive resolutions obtainable in this frequency range. Improved imaging of the macular region, in particular, may provide significant improvements in diagnosis of retinal disease.

  19. High-frequency harmonic imaging of the eye

    NASA Astrophysics Data System (ADS)

    Silverman, Ronald H.; Coleman, D. Jackson; Ketterling, Jeffrey A.; Lizzi, Frederic L.

    2005-04-01

    Purpose: Harmonic imaging has become a well-established technique for ultrasonic imaging at fundamental frequencies of 10 MHz or less. Ophthalmology has benefited from the use of fundamentals of 20 MHz to 50 MHz. Our aim was to explore the ability to generate harmonics for this frequency range, and to generate harmonic images of the eye. Methods: The presence of harmonics was determined in both water and bovine vitreous propagation media by pulse/echo and hydrophone at a series of increasing excitation pulse intensities and frequencies. Hydrophone measurements were made at the focal point and in the near- and far-fields of 20 MHz and 40 MHz transducers. Harmonic images of the anterior segment of the rabbit eye were obtained by a combination of analog filtering and digital post-processing. Results: Harmonics were generated nearly identically in both water and vitreous. Hydrophone measurements showed the maximum second harmonic to be -5 dB relative to the 35 MHz fundamental at the focus, while in pulse/echo the maximum harmonic amplitude was -15dB relative to the fundamental. Harmonics were absent in the near-field, but present in the far-field. Harmonic images of the eye showed improved resolution. Conclusion: Harmonics can be readily generated at very high frequencies, and at power levels compliant with FDA guidelines for ophthalmology. This technique may yield further improvements to the already impressive resolutions obtainable in this frequency range. Improved imaging of the macular region, in particular, may provide significant improvements in diagnosis of retinal disease.

  20. 0.4-1.4 μm Visible to Near-Infrared Widely Broadened Super Continuum Generation with Er-doped Ultrashort Pulse Fiber Laser System

    NASA Astrophysics Data System (ADS)

    Nishizawa, Norihiko; Mitsuzawa, Hideyuki; Sumimura, Kazuhiko

    2009-03-01

    Visible to near-infrared widely broadened super continuum generation is demonstrated using ultrashort-pulse fiber laser system. Er-doped fiber chirped-pulse amplification system operated at 1550 nm in wavelength is used for the amplifier system, which generated ultrashort-pulse of 112 fs in FWHM with output power of 160 mW, on average. Almost pedestal free 200 fs second harmonic generation pulse is generated at 780 nm region using periodically poled LiNbO3 and conversion efficiency is as high as 37%. 0.45-1.40 μm widely broadened super continuum is generated in highly nonlinear photonic crystal fiber and spectrum flatness is within ±6 dB. All of the fiber devices are fusion spliced so that this system shows a good stability.

  1. Frequency modulation of high-order harmonic generation in an orthogonally polarized two-color laser field.

    PubMed

    Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin

    2016-08-08

    We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale.

  2. Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics.

    PubMed

    Monat, Christelle; Grillet, Christian; Corcoran, Bill; Moss, David J; Eggleton, Benjamin J; White, Thomas P; Krauss, Thomas F

    2010-03-29

    Using Fourier optics, we retrieve the wavevector dependence of the third-harmonic (green) light generated in a slow light silicon photonic crystal waveguide. We show that quasi-phase matching between the third-harmonic signal and the fundamental mode is provided in this geometry by coupling to the continuum of radiation modes above the light line. This process sustains third-harmonic generation with a relatively high efficiency and a substantial bandwidth limited only by the slow light window of the fundamental mode. The results give us insights into the physics of this nonlinear process in the presence of strong absorption and dispersion at visible wavelengths where bandstructure calculations are problematic. Since the characteristics (e.g. angular pattern) of the third-harmonic light primarily depend on the fundamental mode dispersion, they could be readily engineered.

  3. Influence of crack opening and incident wave angle on second harmonic generation of Lamb waves

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei

    2018-05-01

    Techniques utilising second harmonic generation (SHG) have proven their great potential in detecting contact-type damage. However, the gap between the practical applications and laboratory studies is still quite large. The current work is aimed to bridge this gap by investigating the effects of the applied load and incident wave angle on the detectability of fatigue cracks at various lengths. Both effects are critical for practical implementations of these techniques. The present experimental study supported by three-dimensional (3D) finite element (FE) modelling has demonstrated that the applied load, which changes the crack opening and, subsequently, the contact nonlinearity, significantly affects the amplitude of the second harmonic generated by the fundamental symmetric mode (S0) of Lamb wave. This amplitude is also dependent on the length of the fatigue crack as well as the incident wave angle. The experimental and FE results correlate well, so the modelling approach can be implemented for practical design of damage monitoring systems as well as for the evaluation of the severity of the fatigue cracks.

  4. Second Harmonic Generation Optical Rotation Solely Attributable to Chirality in Plasmonic Metasurfaces.

    PubMed

    Collins, Joel T; Hooper, David C; Mark, Andrew G; Kuppe, Christian; Valev, Ventsislav Kolev

    2018-05-31

    Chiral plasmonic nanostructures, those lacking mirror symmetry, can be designed to manipulate the polarization of incident light resulting in chiroptical (chiral optical) effects such as circular dichroism (CD) and optical rotation (OR). Due to high symmetry sensitivity, corresponding effects in second harmonic generation (SHG-CD and SHG-OR) are typically much stronger in comparison. These nonlinear effects have long been used for chiral molecular analysis and characterization, however both linear and nonlinear optical rotation can occur even in achiral structures, if the structure is birefringent due to anisotropy. Crucially, chiroptical effects resulting from anisotropy typically exhibit a strong dependence on structural orientation. Here we report large second-harmonic generation optical rotation of ±45°, due to intrinsic chirality in a highly anisotropic helical metamaterial. The SHG intensity is found to strongly relate to the structural anisotropy, however the angle of SHG-OR is invariant under sample rotation. We show that by tuning the geometry of anisotropic nanostructures, the interaction between anisotropy, chirality, and experiment geometry can allow even greater control over the chiroptical properties of plasmonic metamaterials.

  5. Third-harmonic generation from Mie-type resonances of isolated all-dielectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Melik-Gaykazyan, Elizaveta V.; Shcherbakov, Maxim R.; Shorokhov, Alexander S.; Staude, Isabelle; Brener, Igal; Neshev, Dragomir N.; Kivshar, Yuri S.; Fedyanin, Andrey A.

    2017-03-01

    Subwavelength silicon nanoparticles are known to support strongly localized Mie-type modes, including those with resonant electric and magnetic dipolar polarizabilities. Here we compare experimentally the efficiency of the third-harmonic generation from isolated silicon nanodiscs for resonant excitation at the two types of dipolar resonances. Using nonlinear spectroscopy, we observe that the magnetic dipolar mode yields more efficient third-harmonic radiation in contrast to the electric dipolar (ED) mode. This is further supported by full-wave numerical simulations, where the volume-integrated local fields and the directly simulated nonlinear response are shown to be negligible at the ED resonance compared with the magnetic one. This article is part of the themed issue 'New horizons for nanophotonics'.

  6. High-harmonic generation by quantum-dot nanorings

    NASA Astrophysics Data System (ADS)

    Bâldea, Ioan; Gupta, Ashish K.; Cederbaum, Lorenz S.; Moiseyev, Nimrod

    2004-06-01

    Exact numerical results are obtained within the extended Hubbard Hamiltonian for nanorings consisting of Ag quantum dots (QD’s) with C6v symmetry which interact with a circularly polarized light. The results show that the high-harmonic generation (HHG) spectra obtained from such artificial “molecules” are more pronounced than the HHG spectra obtained from a real molecule such as benzene. Our studies show that the HHG spectra obtained from the QD nanorings consist of two plateaus while only one plateau appears for benzene. The role of electron correlations in the generation of the high-order harmonics is studied, and it is shown that it can increase the intensity of the high-order harmonics. Mainly affected are the harmonics which are located in the second plateau. Selection rules for the produced high harmonics and a new “synergetic” selection rule for the symmetry of the states contributing to the HHG spectrum, a combined effect of spatial and charge conjugation symmetries, are discussed.

  7. > 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser.

    PubMed

    Bhandari, Rakesh; Taira, Takunori

    2011-09-26

    Megawatt peak power, giant pulse microchip lasers are attractive for wavelength conversion, provided their output is linearly polarized. We use a [110] cut Cr(4+):YAG for passively Q-switched Nd:YAG microchip laser to obtain a stable, linearly polarized output. Further, we optimize the conditions for second harmonic generation at 532 nm wavelength to achieve > 6 MW peak power, 1.7 mJ, 265 ps, 100 Hz pulses with a conversion efficiency of 85%. © 2011 Optical Society of America

  8. Photon energy conversion by near-zero permittivity nonlinear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luk, Ting S.; Sinclair, Michael B.; Campione, Salvatore

    Efficient harmonic light generation can be achieved with ultrathin films by coupling an incident pump wave to an epsilon-near-zero (ENZ) mode of the thin film. As an example, efficient third harmonic generation from an indium tin oxide nanofilm (.lamda./42 thick) on a glass substrate for a pump wavelength of 1.4 .mu.m was demonstrated. A conversion efficiency of 3.3.times.10.sup.-6 was achieved by exploiting the field enhancement properties of the ENZ mode with an enhancement factor of 200. This nanoscale frequency conversion method is applicable to other plasmonic materials and reststrahlen materials in proximity of the longitudinal optical phonon frequencies.

  9. Quasi-phase-matching of only even-order high harmonics.

    PubMed

    Diskin, Tzvi; Cohen, Oren

    2014-03-24

    High harmonic spectrum of a quasi-monochromatic pump that interacts with isotropic media consists of only odd-order harmonics. Addition of a secondary pump, e.g. a static field or the second harmonic of the primary pump, can results with generation of both odd and even harmonics of the primary pump. We propose a method for quasi-phase matching of only the even-order harmonics of the primary pump. We formulate a theory for this process and demonstrate it numerically. We also show that it leads to attosecond pulse trains with constant carrier envelop phase and high repetition rate.

  10. Multi-Photon Micro-Spectroscopy of Biological Specimens

    DTIC Science & Technology

    2000-07-01

    Micro-spectroscopy, multi-photon fluorescence spectroscopy, second harmonic generation, plant tissues, stem, chloroplast, protoplast, maize, Arabidopsis...harmonic generation (SHG) in the plant cell 5wall. In this case, micro-spectroscopy provides a means of verification that, indeed, SHG occurs in plant ...fluorescence microscopy -the response of plant cells to high intensity illumination," Micron (in press) 2000. 3. H.-C. Huang and C. -C Chen, "Genome

  11. Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luk, Ting S.; De Ceglia, Domenico; Liu, Sheng

    We demonstrate, through our experimentation, efficient third harmonic generation from an indium tin oxide nanofilm (λ/42 thick) on a glass substrate for a pump wavelength of 1.4 μm. A conversion efficiency of 3.3 × 10 -6 is achieved by exploiting the field enhancement properties of the epsilon-near-zero mode with an enhancement factor of 200. Furthermore, this nanoscale frequency conversion method is applicable to other plasmonic materials and reststrahlen materials in proximity of the longitudinal optical phonon frequencies.

  12. Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luk, Ting S., E-mail: tsluk@sandia.gov; Liu, Sheng; Campione, Salvatore

    We experimentally demonstrate efficient third harmonic generation from an indium tin oxide nanofilm (λ/42 thick) on a glass substrate for a pump wavelength of 1.4 μm. A conversion efficiency of 3.3 × 10{sup −6} is achieved by exploiting the field enhancement properties of the epsilon-near-zero mode with an enhancement factor of 200. This nanoscale frequency conversion method is applicable to other plasmonic materials and reststrahlen materials in proximity of the longitudinal optical phonon frequencies.

  13. Micro-Welding of Copper Plate by Frequency Doubled Diode Pumped Pulsed Nd:YAG Laser

    NASA Astrophysics Data System (ADS)

    Nakashiba, Shin-Ichi; Okamoto, Yasuhiro; Sakagawa, Tomokazu; Takai, Sunao; Okada, Akira

    A pulsed laser of 532 nm wavelength with ms range pulse duration was newly developed by second harmonic generation of diode pumped pulsed Nd:YAG laser. High electro-optical conversion efficiency more than 13% could be achieved, and 1.5 kW peak power green laser pulse was put in optical fiber of 100 μm in diameter. In micro- welding of 1.0 mm thickness copper plate, a keyhole welding was successfully performed by 1.0 kW peak power at spot diameter less than 200 μm. The frequency doubled pulsed laser improved the processing efficiency of copper welding, and narrow and deep weld bead was stably obtained.

  14. Dielectric Characterization of a Nonlinear Optical Material

    PubMed Central

    Lunkenheimer, P.; Krohns, S.; Gemander, F.; Schmahl, W. W.; Loidl, A.

    2014-01-01

    Batisite was reported to be a nonlinear optical material showing second harmonic generation. Using dielectric spectroscopy and polarization measurements, we provide a thorough investigation of the dielectric and charge-transport properties of this material. Batisite shows the typical characteristics of a linear lossy dielectric. No evidence for ferro- or antiferroelectric polarization is found. As the second-harmonic generation observed in batisite points to a non-centrosymmetric structure, this material is piezoelectric, but most likely not ferroelectric. In addition, we found evidence for hopping charge transport of localized charge carriers and a relaxational process at low temperatures. PMID:25109553

  15. Absorption, fluorescence and second harmonic generation in Cr3+-doped BiB3O6 glasses

    NASA Astrophysics Data System (ADS)

    Kuznik, W.; Fuks-Janczarek, I.; Wojciechowski, A.; Kityk, I. V.; Kiisk, V.; Majchrowski, A.; Jaroszewicz, L. R.; Brik, M. G.; Nagy, G. U. L.

    2015-06-01

    Synthesis, spectral properties and photoinduced nonlinear optical effects of chromium-doped BiB3O6 glass are studied in the present paper. Absorption, excitation and time resolved luminescence spectra are presented and luminescence decay behavior is discussed. Detailed analysis of the obtained spectra (assignment of the most prominent spectral features in terms of the corresponding Cr3+ energy levels, crystal field strength Dq, Racah parameters B and C) was performed. A weak photostimulated second harmonic generation signal was found to increase drastically due to poling by proton implantation in the investigated sample.

  16. Optical second harmonic generation from V-shaped chromium nanohole arrays

    NASA Astrophysics Data System (ADS)

    Khoa Quang, Ngo; Miyauchi, Yoshihiro; Mizutani, Goro; Charlton, Martin D.; Chen, Ruiqi; Boden, Stuart; Rutt, Harvey

    2014-02-01

    We observed rotational anisotropy of optical second harmonic generation (SHG) from an array of V-shaped chromium nanoholes fabricated by electron beam lithography. Phenomenological analysis indicated that the effective nonlinear susceptibility element \\chi _{313}^{(2)} had a characteristic contribution to the observed anisotropic SHG intensity patterns. Here, coordinate 1 is in the direction of the tip of V shapes in the substrate plane, and 3 indicates the direction perpendicular to the sample surface. The SHG intensity for the S-polarized output light was very weak, probably owing to the cancellation effect of the image dipoles generated at the metal-air boundary. The possible origin of the observed nonlinearity is discussed in terms of the susceptibility elements obtained.

  17. Improved heating efficiency with High-Intensity Focused Ultrasound using a new ultrasound source excitation.

    PubMed

    Bigelow, Timothy A

    2009-01-01

    High-Intensity Focused Ultrasound (HIFU) is quickly becoming one of the best methods to thermally ablate tissue noninvasively. Unlike RF or Laser ablation, the tissue can be destroyed without inserting any probes into the body minimizing the risk of secondary complications such as infections. In this study, the heating efficiency of HIFU sources is improved by altering the excitation of the ultrasound source to take advantage of nonlinear propagation. For ultrasound, the phase velocity of the ultrasound wave depends on the amplitude of the wave resulting in the generation of higher harmonics. These higher harmonics are more efficiently converted into heat in the body due to the frequency dependence of the ultrasound absorption in tissue. In our study, the generation of the higher harmonics by nonlinear propagation is enhanced by transmitting an ultrasound wave with both the fundamental and a higher harmonic component included. Computer simulations demonstrated up to a 300% increase in temperature increase compared to transmitting at only the fundamental for the same acoustic power transmitted by the source.

  18. Spatial properties of odd and even low order harmonics generated in gas.

    PubMed

    Lambert, G; Andreev, A; Gautier, J; Giannessi, L; Malka, V; Petralia, A; Sebban, S; Stremoukhov, S; Tissandier, F; Vodungbo, B; Zeitoun, Ph

    2015-01-14

    High harmonic generation in gases is developing rapidly as a soft X-ray femtosecond light-source for applications. This requires control over all the harmonics characteristics and in particular, spatial properties have to be kept very good. In previous literature, measurements have always included several harmonics contrary to applications, especially spectroscopic applications, which usually require a single harmonic. To fill this gap, we present here for the first time a detailed study of completely isolated harmonics. The contribution of the surrounding harmonics has been totally suppressed using interferential filtering which is available for low harmonic orders. In addition, this allows to clearly identify behaviors of standard odd orders from even orders obtained by frequency-mixing of a fundamental laser and of its second harmonic. Comparisons of the spatial intensity profiles, of the spatial coherence and of the wavefront aberration level of 5ω at 160 nm and 6ω at 135 nm have then been performed. We have established that the fundamental laser beam aberrations can cause the appearance of a non-homogenous donut-shape in the 6ω spatial intensity distribution. This undesirable effect can be easily controlled. We finally conclude that the spatial quality of an even harmonic can be as excellent as in standard generation.

  19. High-power microwave production by gyroharmonic conversion and co-generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaPointe, M.A.; Yoder, R.B.; Wang, M.

    1997-03-01

    An rf accelerator that adds significant gyration energy to a relativistic electron beam, and mechanisms for extracting coherent radiation from the beam, are described. The accelerator is a cyclotron autoresonance accelerator (CARA), underlying theory and experimental tests of which are reviewed. The measurements illustrate the utility of CARA in preparing beams for high harmonic gyro interactions. Examples of preparation of gyrating axis-encircling beams of {approximately}400kV, 25 A with 1{lt}a{lt}2 using a 2.856 GHz CARA are discussed. Generation of MW-level harmonic power emanating from a beam prepared in CARA into an output cavity structure is predicted by theory. First measurements ofmore » intense superradiant 2nd through 6th harmonic emission from a CARA beam are described. Gyroharmonic conversion (GHC) at MW power levels into an appropriate resonator can be anticipated, in view of the results described here. Another radiation mechanism, closely related to GHC, is also described. This mechanism, dubbed {open_quotes}co-generation,{close_quotes} is based on the fact that the lowest TE{sub sm} mode in a cylindrical waveguide at frequency sw with group velocity nearly identical to group velocity for the TE{sub 11} mode at frequency w is that with s=7, m=2. This allows coherent radiation to be generated at the 7th harmonic co-existent with CARA and in the self-same rf structure. Conditions are found where co-generation of 7th harmonic power at 20 GHz is possible with overall efficiency greater than 80{percent}. It is shown that operation of a cw co-generator can take place without need of a power supply for the gun. Efficiency for a multi-MW 20 GHz co-generator is predicted to be high enough to compete with other sources, even after taking into account the finite efficiency of the rf driver required for CARA. {copyright} {ital 1997 American Institute of Physics.}« less

  20. Theoretical extension and experimental demonstration of spectral compression in second-harmonic generation by Fresnel-inspired binary phase shaping

    NASA Astrophysics Data System (ADS)

    Li, Baihong; Dong, Ruifang; Zhou, Conghua; Xiang, Xiao; Li, Yongfang; Zhang, Shougang

    2018-05-01

    Selective two-photon microscopy and high-precision nonlinear spectroscopy rely on efficient spectral compression at the desired frequency. Previously, a Fresnel-inspired binary phase shaping (FIBPS) method was theoretically proposed for spectral compression of two-photon absorption and second-harmonic generation (SHG) with a square-chirped pulse. Here, we theoretically show that the FIBPS can introduce a negative quadratic frequency phase (negative chirp) by analogy with the spatial-domain phase function of Fresnel zone plate. Thus, the previous theoretical model can be extended to the case where the pulse can be transformed limited and in any symmetrical spectral shape. As an example, we experimentally demonstrate spectral compression in SHG by FIBPS for a Gaussian transform-limited pulse and show good agreement with the theory. Given the fundamental pulse bandwidth, a narrower SHG bandwidth with relatively high intensity can be obtained by simply increasing the number of binary phases. The experimental results also verify that our method is superior to that proposed in [Phys. Rev. A 46, 2749 (1992), 10.1103/PhysRevA.46.2749]. This method will significantly facilitate the applications of selective two-photon microscopy and spectroscopy. Moreover, as it can introduce negative dispersion, hence it can also be generalized to other applications in the field of dispersion compensation.

  1. Tumor-associated macrophages and stromal TNF-α regulate collagen structure in a breast tumor model as visualized by second harmonic generation

    NASA Astrophysics Data System (ADS)

    Burke, Ryan M.; Madden, Kelley S.; Perry, Seth W.; Zettel, Martha L.; Brown, Edward B.

    2013-08-01

    Collagen fibers can be imaged with second harmonic generation (SHG) and are associated with efficient tumor cell locomotion. Preferential locomotion along these fibers correlates with a more aggressively metastatic phenotype, and changes in SHG emission properties accompany changes in metastatic outcome. We therefore attempted to elucidate the cellular and molecular machinery that influences SHG in order to understand how the microstructure of tumor collagen fibers is regulated. By quantifying SHG and immunofluorescence (IF) from tumors grown in mice with and without stromal tumor necrosis factor (TNF)-α and in the presence or absence of tumor-associated macrophages (TAMs), we determined that depletion of TAMs alters tumor collagen fibrillar microstructure as quantified by SHG and IF. Furthermore, we determined that abrogation of TNF-α expression by tumor stromal cells also alters fibrillar microstructure and that subsequent depletion of TAMs has no further effect. In each case, metastatic burden correlated with optical readouts of collagen microstructure. Our results implicate TAMs and stromal TNF-α as regulators of breast tumor collagen microstructure and suggest that this regulation plays a role in tumor metastasis. Furthermore, these results indicate that quantification of SHG represents a useful strategy for evaluating the cells and molecular pathways responsible for manipulating fibrillar collagen in breast tumor models.

  2. Effect of polarizable lone pair cations on the second-harmonic generation (SHG) properties of noncentrosymmetric (NCS) Bi(2-x)Y(x)TeO₅ (x = 0-0.2).

    PubMed

    Jo, Hongil; Kim, Yeong Hun; Lee, Dong Woo; Ok, Kang Min

    2014-08-14

    Y(3+)-doped noncentrosymmetric (NCS) bismuth tellurite materials, Bi(2-x)Y(x)TeO5 (x = 0, 0.1, and 0.2), have been synthesized through standard solid-state reactions and structurally characterized by powder neutron diffraction. The reported NCS materials crystallize in the orthorhombic space group Abm2 (no. 39), and exhibit pseudo-three-dimensional frameworks that are composed of BiO3, BiO5, and TeO3 polyhedra. Detailed diffraction studies show that the cell volume of Bi(2-x)Y(x)TeO5 decreases with an increasing amount of Y(3+)on the Bi(3+) sites. However, no ordering between Bi(3+) and Y(3+) was observed in the Bi(2-x)Y(x)TeO5. Powder second-harmonic generation (SHG) measurements, using 1064 nm radiation, reveal that Bi2TeO5, Bi(1.9)Y(0.1)TeO5, and Bi(1.8)Y(0.2)TeO5 exhibit SHG efficiencies of approximately 300, 200, and 60 times that of α-SiO2, respectively. The reduction in SHG for Y(3+)-doped materials is consistent with the lack of net moment originating from polyhedra with a polarizable Bi(3+) cation.

  3. Efficient optical nonlinear Langmuir-Blodgett films: roles of matrix molecules

    NASA Astrophysics Data System (ADS)

    Ma, Shihong; Lu, Xingze; Liu, Liying; Han, Kui; Wang, Wencheng; Zhang, Zhi-Ming

    1996-10-01

    A novel bifat-chain amphiphilic molecule nitrogencrown (NC) was adopted as an inert material for fabrication of optical nonlinear Langmuir-Blodgett (LB) multilayers. Structural improvement in the Z-type mixed fullerene derivative (C60-Be)/NC LB multilayers samples was realized by insertion of the C60-Be molecules between two hydrophobic chains of the NC molecules. The relatively large third-order susceptibility (chi) (3)xxxx(- 3(omega) ;(omega) ,(omega) ,(omega) ) equals 2.9 multiplied by 10-19 M2V-2 (or 2.1 multiplied by 10-11 esu) was deduced by measuring third harmonic generation (THG) from the C60-Be samples. The second harmonic generation (SHG) intensity increased quadratically with the bilayer number (up to 116 bilayers) in Y-type hemicyanine (HEM)/NC interleaving LB multilayers due to improvement of the structural properties by insertion of the long hydrophobic tail of HEM molecules between two chains of NC molecules. The second-order susceptibility (chi) (2)zxx(-2(omega) ;(omega) ,(omega) ) equals 18 pM V-1 (or 4.35 multiplied by 10-8 esu) was obtained by measuring SHG from the HEM samples. The NC molecule has attractive features as a matrix material in fabrications of LB multilayers made from optically nonlinear materials with hydrophobic long tails or ball-like molecules.

  4. Hydrogen bonded nonlinear optical γ-glycine: Crystal growth and characterization

    NASA Astrophysics Data System (ADS)

    Narayana Moolya, B.; Jayarama, A.; Sureshkumar, M. R.; Dharmaprakash, S. M.

    2005-07-01

    Single crystals of γ-glycine(GG) were grown by solvent evaporation technique from a mixture of aqueous solutions of glycine and ammonium nitrate at ambient temperature. X-ray diffraction, thermogravimetric/differential thermal analysis, Fourier transform infrared spectral techniques were employed to characterize the crystal. The lattice parameters were calculated and they agree well with the reported values. GG exists as dipolar ions in which the carboxyl group is present as a carboxylate ion and the amino group as an ammonium ion. Due to this dipolar nature, glycine has a high decomposition temperature. The UV cutoff of GG is below 300 nm and has a wide transparency window, which is suitable for second harmonic generation of laser in the blue region. Nonlinear optical characteristics of GG were studied using Q switched Nd:YAG laser ( λ=1064 nm). The second harmonic generation conversion efficiency of GG is 1.5 times that of potassium dihydrogen phosphate . The X-ray diffraction and Fourier transform infrared spectral studies show the presence of strong hydrogen bonds which create and stabilize the crystal structure in GG. The main contributions to the nonlinear optical properties in GG results from the presence of the hydrogen bond and from the vibrational part due to very intense infrared bands of the hydrogen bond vibrations. GG is thermally stable up to 441 K.

  5. The control of electron quantum trajectories on the high-order harmonic generation of CO and N2 molecules in the presence of a low frequency field.

    PubMed

    Koushki, A M; Sadighi-Bonabi, R; Mohsen-Nia, M; Irani, E

    2018-04-14

    In the present work, an efficient method is theoretically investigated for extending high-order harmonics and ultrashort attosecond pulse generation in N 2 and CO molecules by using the time-dependent density functional theory approach. Our results show that by utilizing chirped laser field in the presence of a low frequency field, not only is the harmonic cutoff extended remarkably but also the single short quantum trajectory is selected to contribute to the harmonic spectra. When a low frequency field is added to the two-color chirped laser field, the long quantum trajectories are suppressed and only the short quantum trajectories contribute to the higher harmonic emission mechanism. As a result, the spectral modulation is significantly decreased and an intense ultrashort pulse can be generated from the supercontinuum region of high harmonics. With such a scheme, the isolated ultrashort attosecond pulses can be generated in length, velocity, and acceleration gauges. Furthermore, these results are explained by using the classical and quantum time-frequency analyses.

  6. The control of electron quantum trajectories on the high-order harmonic generation of CO and N2 molecules in the presence of a low frequency field

    NASA Astrophysics Data System (ADS)

    Koushki, A. M.; Sadighi-Bonabi, R.; Mohsen-Nia, M.; Irani, E.

    2018-04-01

    In the present work, an efficient method is theoretically investigated for extending high-order harmonics and ultrashort attosecond pulse generation in N2 and CO molecules by using the time-dependent density functional theory approach. Our results show that by utilizing chirped laser field in the presence of a low frequency field, not only is the harmonic cutoff extended remarkably but also the single short quantum trajectory is selected to contribute to the harmonic spectra. When a low frequency field is added to the two-color chirped laser field, the long quantum trajectories are suppressed and only the short quantum trajectories contribute to the higher harmonic emission mechanism. As a result, the spectral modulation is significantly decreased and an intense ultrashort pulse can be generated from the supercontinuum region of high harmonics. With such a scheme, the isolated ultrashort attosecond pulses can be generated in length, velocity, and acceleration gauges. Furthermore, these results are explained by using the classical and quantum time-frequency analyses.

  7. Intracavity frequency doubling of a continuous-wave, diode-laser-pumped neodymium lanthanum scandium borate laser.

    PubMed

    Meyn, J P; Huber, G

    1994-09-15

    Neodymium-doped lanthanum scandium borate [Nd:LaSc(3)(BO(3))(4)] is a new material for efficient and compact diode-pumped solid-state lasers. A simple plane-plane 3-mm-long resonator is formed by a coated Nd(10%):LaSc(3)(BO(3))(4) crystal and a coated potassium titanyl phosphate (KTP) crystal. The second-harmonic output power at 531 nm is 522 mW at 2.05-W incident pump power of the diode laser. The corresponding optical efficiency is 25%, and the conversion efficiency from the fundamental to the second harmonic is 55%. The wellknown chaotic power fluctuations of intracavity frequency-doubled lasers (green problem) are avoided by use of a short KTP crystal, between 0.5 and 2 mm in length.

  8. Extending the high-order-harmonic spectrum using surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Ebadian, H.; Mohebbi, M.

    2017-08-01

    Nanoparticle assisted high-order-harmonic generation by low-intensity ultrashort laser pulses in hydrogen atomic gas is studied. This work is based on surface plasmon-polariton coupling in metal-insulator-metal structures. The necessary laser intensity is provided by enhancement of the incident laser power in the vicinity of bowtie nanoparticles installed on an insulator-metal structure. The inhomogeneous electric field distribution in the Au nanobowtie gap region is investigated. Simulations show that the insulator layer installed on the Au metal film that supports the plasmon-polariton interactions has a dramatic effect on the field enhancement factor. High-order-harmonic generation cutoffs for different arrangements are calculated and results show that the metal-insulator-metal structure is an excellent device for high-order-harmonic generation purposes. Also, the harmonic cutoff order is extended to more than 170, which is a considerable value and will be an efficient source for extreme ultraviolet radiation.

  9. Shaping the third-harmonic radiation from silicon nanodimers

    DOE PAGES

    Wang, Lei; Kruk, Sergey; Xu, Lei; ...

    2017-01-23

    Recent progress in the study of resonant light confinement in high-index dielectric nanostructures suggests a new route for achieving efficient control of both electric and magnetic components of light. It also leads to the enhancement of nonlinear effects near electric and magnetic Mie resonances with an engineered radiation directionality. Furthermore we study the third-harmonic generation from dimers composed of pairs of two identical silicon nanoparticles and demonstrate, both numerically and experimentally, that the multipolar harmonic modes generated by the dimers near the Mie resonances allow the shaping of the directionality of nonlinear radiation.

  10. Transient regime in second harmonic generation

    NASA Astrophysics Data System (ADS)

    Szeftel, Jacob; Sandeau, Laure; Sandeau, Nicolas; Delezoide, Camille; Khater, Antoine

    2013-09-01

    The time growth of the electromagnetic field at the fundamental and double frequencies is studied from the very onset of the second harmonic generation (SHG) process for a set of dipoles lacking a symmetry centre and exhibiting a nonresonant coupling with a classical electromagnetic field. This approach consists first of solving the Schrödinger equation by applying a generalised Rabi rotation to the Hamiltonian describing the light-dipole interaction. This rotation has been devised for the resulting Hamiltonian to show up time-independent for both components of the electromagnetic field at the fundamental frequency and the second harmonic one. Then an energy conservation argument, derived from the Poynting theorem, is introduced to work out an additional relationship between the electromagnetic field and its associated electric polarisation. Finally this analysis yields the full time behaviour of all physical quantities of interest. The calculated results reproduce accurately both the observed spatial oscillations of the SHG intensity (Maker's fringes) and its power law dependence on the intensity of the incoming light at the fundamental frequency.

  11. Raman parametric excitation effect upon the third harmonic generation by a metallic nanoparticle lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepehri Javan, N., E-mail: sepehri-javan@uma.ac.ir

    2015-08-21

    This work is a theoretical study on third harmonic generation in the nonlinear propagation of an intense laser pulse through a periodic three-dimensional lattice of nanoparticles. Using a perturbative method, the nonlinear equations that describe the laser–nanoparticle interaction in the weakly relativistic regime are derived. Additionally, the nonlinear dispersion relation and the amplitude of the third harmonic are obtained. Finally, the effects of the nanoparticle radius and separation length, the distribution of the nanoparticle electron density, and the laser frequency upon the third harmonic efficiency are investigated. In addition to the expected resonance that occurs when the third harmonic resonatesmore » with the plasmon wave, another resonance appears when the nonlinear interaction of the fundamental mode with the third harmonic excites a longitudinal collective plasmon wave via the parametric Raman mechanism.« less

  12. Pulsed Traveling-wave Quadrature Squeezing Using Quasi-phase Matched Lithium Niobate Crystals

    NASA Astrophysics Data System (ADS)

    Chen, Chao-Hsiang

    Interests in generating higher quantum noise squeezing in order to develop methods to enhance optical measurement below the shot-noise limit in various applications has grown in recent years. The noise suppression from squeezing can improve the SNR in coherent optical systems when the returning signal power is weak, such as optical coherence tomography, LADAR, confocal microscopy and low-light coherent imaging. Unlike the generation of squeezing with a continuous wave, which is currently developed mainly for gravitational wave detection in LIGO project, the study of pulsed-traveling waves is focused on industrial, medical and other commercial interests. This dissertation presents the experimental results of pulsed traveling wave squeezing. The intention of the study is to explore the possibility of using quasi-phase matched crystals to generate the highest possible degree of quadrature squeezing. In order to achieve this goal, efforts to test the various effects from spatial Gaussian modes and relative beam waist placement for the second-harmonic pump were carried out in order to further the understanding of limiting factors to pulsed traveling wave squeezing. 20mm and 30mm-long periodically poled lithium noibate (PPLN) crystals were used in the experiment to generate a squeezed vacuum state. A maximum of 4.2+/-0.2dB quadrature squeezing has been observed, and the measured anti-squeezing exceeds 20dB.The phase sensitive amplification (PSA) gain and de-gain performance were also measured to compare the results of measured squeezing. The PPLN crystals can produce high conversion efficiency of second-harmonic generation (SHG) without a cavity. When a long PPLN crystal is used in a squeezer, the beam propagation in the nonlinear medium does not follow the characteristics in thin crystals. Instead, it is operated under the long-crystal criteria, which the crystal length is multiple times longer than the Rayleigh range of the injected beam i n the crystals. Quasi-phase matching was developed to overcome the limiting factor of both phase-mismatch and electric displacement walk off in second-harmonic generation. By using PPLN, the photorefractive damage threshold is the only limiting factor. For quantum noise squeezing with pulsed traveling-wave, the inhomogeneous nature of spatial and temporal modes are the constraining factors for further noise reduction.

  13. Monitoring fibrous scaffold guidance of three-dimensional collagen organisation using minimally-invasive second harmonic generation.

    PubMed

    Delaine-Smith, Robin M; Green, Nicola H; Matcher, Stephen J; MacNeil, Sheila; Reilly, Gwendolen C

    2014-01-01

    The biological and mechanical function of connective tissues is largely determined by controlled cellular alignment and therefore it seems appropriate that tissue-engineered constructs should be architecturally similar to the in vivo tissue targeted for repair or replacement. Collagen organisation dictates the tensile properties of most tissues and so monitoring the deposition of cell-secreted collagen as the construct develops is essential for understanding tissue formation. In this study, electrospun fibres with a random or high degree of orientation, mimicking two types of tissue architecture found in the body, were used to culture human fibroblasts for controlling cell alignment. The minimally-invasive technique of second harmonic generation was used with the aim of monitoring and profiling the deposition and organisation of collagen at different construct depths over time while construct mechanical properties were also determined over the culture period. It was seen that scaffold fibre organisation affected cell migration and orientation up to 21 days which in turn had an effect on collagen organisation. Collagen in random fibrous constructs was deposited in alternating configurations at different depths however a high degree of organisation was observed throughout aligned fibrous constructs orientated in the scaffold fibre direction. Three-dimensional second harmonic generation images showed that deposited collagen was more uniformly distributed in random constructs but aligned constructs were more organised and had higher intensities. The tensile properties of all constructs increased with increasing collagen deposition and were ultimately dictated by collagen organisation. This study highlights the importance of scaffold architecture for controlling the development of well-organised tissue engineered constructs and the usefulness of second harmonic generation imaging for monitoring collagen maturation in a minimally invasive manner.

  14. Electromagnetic probes of molecular motors in the electron transport chains of mitochondria and chloroplasts

    NASA Astrophysics Data System (ADS)

    Miller, J. H., Jr.; Nawarathna, D.; Vajrala, V.; Gardner, J.; Widger, W. R.

    2005-12-01

    We report on measurements of harmonics generated by whole cells, mitochondria, and chloroplasts in response to applied sinusoidal electric fields. The frequency- and amplitude-dependence of the induced harmonics exhibit features that correlate with physiological processes. Budding yeast (S. cerevisiae) cells produce numerous harmonics, the amplitudes of which depend strongly on frequency. When the second or third harmonic amplitude is plotted vs. applied frequency, we observe two peaks, around 3 kHz and 12 kHz, which are suppressed by respiratory inhibitors. We observe similar peaks when measuring the harmonic response of B. indicas, a relative of the mitochondrial ancestor. In uncoupled mitochondria, in which most of the electron transport chain is active but the ATP-synthase molecular turbine is inactive, only one (lower frequency) of the two peaks is present. Finally, we find that harmonics generated by chloroplasts depend dramatically on incident light, and vanish in the absence of light.

  15. Attosecond twin-pulse control by generalized kinetic heterodyne mixing.

    PubMed

    Raith, Philipp; Ott, Christian; Pfeifer, Thomas

    2011-01-15

    Attosecond double-pulse (twin-pulse) production in high-order harmonic generation is manipulated by a combination of two-color and carrier-envelope phase-control methods. As we show in numerical simulations, both relative amplitude and phase of the double pulse can be independently set by making use of multidimensional parameter control. Two technical implementation routes are discussed: kinetic heterodyning using second-harmonic generation and split-spectrum phase-step control.

  16. Scaling high-order harmonic generation from laser-solid interactions to ultrahigh intensity.

    PubMed

    Dollar, F; Cummings, P; Chvykov, V; Willingale, L; Vargas, M; Yanovsky, V; Zulick, C; Maksimchuk, A; Thomas, A G R; Krushelnick, K

    2013-04-26

    Coherent x-ray beams with a subfemtosecond (<10(-15)  s) pulse duration will enable measurements of fundamental atomic processes in a completely new regime. High-order harmonic generation (HOHG) using short pulse (<100  fs) infrared lasers focused to intensities surpassing 10(18)  W cm(-2) onto a solid density plasma is a promising means of generating such short pulses. Critical to the relativistic oscillating mirror mechanism is the steepness of the plasma density gradient at the reflection point, characterized by a scale length, which can strongly influence the harmonic generation mechanism. It is shown that for intensities in excess of 10(21)  W cm(-2) an optimum density ramp scale length exists that balances an increase in efficiency with a growth of parametric plasma wave instabilities. We show that for these higher intensities the optimal scale length is c/ω0, for which a variety of HOHG properties are optimized, including total conversion efficiency, HOHG divergence, and their power law scaling. Particle-in-cell simulations show striking evidence of the HOHG loss mechanism through parametric instabilities and relativistic self-phase modulation, which affect the produced spectra and conversion efficiency.

  17. Crystal growth of organics for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Mazelsky, R.

    1993-01-01

    The crystal growth and characterization of organic and inorganic nonlinear optical materials were extensively studied. For example, inorganic crystals such as thallium arsenic selenide were studied in our laboratory for several years and crystals in sizes over 2.5 cm in diameter are available. Organic crystals are suitable for the ultraviolet and near infrared region, but are relatively less developed than their inorganic counterparts. Very high values of the second harmonic conversion efficiency and the electro-optic coefficient were reported for organic compounds. Single crystals of a binary organic alloy based on m.NA and CNA were grown and higher second harmonic conversion efficiency than the values reported for m.NA were observed.

  18. Nanoengineering of strong field processes in solids

    NASA Astrophysics Data System (ADS)

    Almalki, S.; Parks, A. M.; Brabec, T.; McDonald, C. R.

    2018-04-01

    We present a theoretical investigation of the effect of quantum confinement on high harmonic generation in semiconductor materials by systematically varying the confinement width along one or two directions transverse to the laser polarization. Our analysis shows a growth in high harmonic efficiency concurrent with a reduction of ionization. This decrease in ionization comes as a consequence of an increased band gap resulting from the confinement. The increase in harmonic efficiency results from a restriction of wave packet spreading, leading to greater recollision probability. Consequently, nanoengineering of one and two-dimensional nanosystems may prove to be a viable means to increase harmonic yield and photon energy in semiconductor materials driven by intense laser fields.

  19. In situ SHG monitoring of dipolar orientation and relaxation in Disperse Red type/derivative urethane-urea copolymer

    NASA Astrophysics Data System (ADS)

    Samoc, A.; Holland, A.; Tsuchimori, M.; Watanabe, O.; Samoc, M.; Luther-Davies, B.; Kolev, V. Z.

    2005-09-01

    We investigated linear optical and second-order nonlinear optical (NLO) properties of films of urethane-urea copolymer (UU2) functionalised with a high concentration of an azobenzene chromophore. The polymer films on ITO-coated substrate were corona poled to induce a noncentrosymmetric organization of chromophore dipoles and data on the second harmonic generated with the laser beam (the fundamental wavelength 1053 nm, 6 ps/pulse, 20 Hz repetition rate) was acquired as a function of time and temperature. Second harmonic generation (SHG) was used to monitor in situ the polar alignment and relaxation of orientation of the side-chain Disperse Red-like chromophore molecules in the films poled at room temperature and high above the glass transition temperature (Tg 140-150oC). The deff coefficient was determined from the Maker-fringe method and corrected for absorption. A strong second harmonic effect with a fast relaxation was observed in "cold" (room temperature) poling experiments. A large second-order resonantly enhanced optical nonlinearity (d33 of the order of 200 pm/V) was obtained in high temperature poling. A strong and stable nonlinearity has persisted for years after the films were high-temperature poled.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, S.; McNulty, I.; Shimada, T.

    We investigate use of an APPLE-type undulator for generating Laguerre-Gaussian (LG) and Hermite-Gaussian (HG) mode beams. We find that the second harmonic radiation in the circular mode corresponds to an LG beam with l=1, and the second harmonic in the linear mode corresponds to an HG beam with l=1. The combination of an APPLE undulator and conventional monochromator optics may provide an opportunity for a new type of experimental research in the synchrotron radiation community.

  1. Measurement of the quadratic hyperpolarizability of the collagen triple helix and application to second harmonic imaging of natural and biomimetic collagenous tissues

    NASA Astrophysics Data System (ADS)

    Deniset-Besseau, A.; Strupler, M.; Duboisset, J.; De Sa Peixoto, P.; Benichou, E.; Fligny, C.; Tharaux, P.-L.; Mosser, G.; Brevet, P.-F.; Schanne-Klein, M.-C.

    2009-09-01

    Collagen is a major protein of the extracellular matrix that is characterized by triple helical domains. It plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) so that SHG microscopy proved to be a sensitive tool to probe the three-dimensional architecture of fibrillar collagen and to assess the progression of fibrotic pathologies. We obtained sensitive and reproducible measurements of the fibrosis extent, but we needed quantitative data at the molecular level to further process SHG images. We therefore performed Hyper- Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its aminoacid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro- Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagenous biomimetic matrices.

  2. High-order nonlinear optical processes in ablated carbon-containing materials: Recent approaches in development of the nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range

    NASA Astrophysics Data System (ADS)

    Ganeev, R. A.

    2017-08-01

    The nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range became a versatile tool for the analysis of the optical, structural and morphological properties of matter. The carbon-contained materials have shown the advanced properties among other studied species, which allowed both the definition of the role of structural properties on the nonlinear optical response and the analysis of the fundamental features of carbon as the attractive material for generation of coherent short-wavelength radiation. We review the studies of the high-order harmonic generation by focusing ultrashort pulses into the plasmas produced during laser ablation of various organic compounds. We discuss the role of ionic transitions of ablated carbon-containing molecules on the harmonic yield. We also show the similarities and distinctions of the harmonic and plasma spectra of organic compounds and graphite. We discuss the studies of the generation of harmonics up to the 27th order (λ = 29.9 nm) of 806 nm radiation in the boron carbide plasma and analyze the advantages and disadvantages of this target compared with the ingredients comprising B4C (solid boron and graphite) by comparing plasma emission and harmonic spectra from three species. We also show that the coincidence of harmonic and plasma emission wavelengths in most cases does not cause the enhancement or decrease of the conversion efficiency of this harmonic.

  3. Quasi-phase-matching of the dual-band nonlinear left-handed metamaterial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yahong, E-mail: yhliu@nwpu.edu.cn; Song, Kun; Gu, Shuai

    2014-11-17

    We demonstrate a type of nonlinear meta-atom creating a dual-band nonlinear left-handed metamaterial (DNLHM). The DNLHM operates at two distinct left-handed frequency bands where there is an interval of one octave between the two center frequencies. Under the illumination of a high-power signal at the first left-handed frequency band corresponding to fundamental frequency (FF), second-harmonic generation (SHG) is observed at the second left-handed band. This means that our DNLHM supports backward-propagating waves both at FF and second-harmonic (SH) frequency. We also experimentally demonstrate quasi-phase-matching configurations for the backward SHG. This fancy parametric process can significantly transmits the SH generated bymore » an incident FF wave.« less

  4. Electrical control of second-harmonic generation in a WSe 2 monolayer transistor

    DOE PAGES

    Seyler, Kyle L.; Schaibley, John R.; Gong, Pu; ...

    2015-04-20

    Nonlinear optical frequency conversion, in which optical fields interact with a nonlinear medium to produce new field frequencies, is ubiquitous in modern photonic systems. However, the nonlinear electric susceptibilities that give rise to such phenomena are often challenging to tune in a given material and, so far, dynamical control of optical nonlinearities remains confined to research laboratories as a spectroscopic tool. In this paper, we report a mechanism to electrically control second-order optical nonlinearities in monolayer WSe 2, an atomically thin semiconductor. We show that the intensity of second-harmonic generation at the A-exciton resonance is tunable by over an ordermore » of magnitude at low temperature and nearly a factor of four at room temperature through electrostatic doping in a field-effect transistor. Such tunability arises from the strong exciton charging effects in monolayer semiconductors, which allow for exceptional control over the oscillator strengths at the exciton and trion resonances. The exciton-enhanced second-harmonic generation is counter-circularly polarized to the excitation laser due to the combination of the two-photon and one-photon valley selection rules, which have opposite helicity in the monolayer. Finally, our study paves the way towards a new platform for chip-scale, electrically tunable nonlinear optical devices based on two-dimensional semiconductors.« less

  5. Magnetization-induced second- and third-harmonic generation in transparent magnetic films

    NASA Astrophysics Data System (ADS)

    Ohkoshi, Shin-Ichi; Shimura, Jusuke; Ikeda, Katsuyoshi; Hashimoto, Kazuhito

    2005-01-01

    We describe the magnetization-induced second-harmonic (SH) generation in (FeIIxCrII1-x)1.5[CrIII(CN)6]. 7.5H2O and the magnetization-induced third-harmonic (TH) generation in Y1.5Bi1.5Fe3.8Al1.2O12 (Bi, Al:YIG). The polarization plane of a SH wave from a (FeIIxCrII1-x)1.5[CrIII(CN)6].7.5H2O film was rotated by an applied external magnetic field. This SH rotation is ascribed to the interaction between the electric polarization along the out-of-plane and spontaneous magnetizations. In particular, the magnetic linear term χijkLmagn(1) contributed to the SH rotation. Applying a longitudinal external magnetic field to a Bi,Al:YIG magnetic film rotated the polarization plane of the TH wave. This TH rotation is understood by the contribution of the magnetic term of χyxxxZmagn(1) in a third-order nonlinear optical susceptibility.

  6. QED effects induced harmonics generation in extreme intense laser foil interaction

    NASA Astrophysics Data System (ADS)

    Yu, J. Y.; Yuan, T.; Liu, W. Y.; Chen, M.; Luo, W.; Weng, S. M.; Sheng, Z. M.

    2018-04-01

    A new mechanism of harmonics generation (HG) induced by quantum electrodynamics (QED) effects in extreme intense laser foil interaction is found and investigated by particle-in-cell (PIC) simulations. When two laser pulses with identical intensities of 1.6× {10}24 {{W}} {{{cm}}}-2 are counter-incident on a thin foil target, harmonics emission is observed in their reflected electromagnetic waves. Such harmonics radiation is excited due to transversely oscillating electric currents coming from the vibration of QED effect generated {e}-{e}+ pairs. The effects of laser intensity and polarization were studied. By distinguishing the cascade depth of generated photons and pairs, the influence of QED cascades on HG was analyzed. Although the current HG is not an efficient way for radiation source applications, it may provide a unique way to detect the QED processes in the near future ultra-relativistic laser solid interactions.

  7. Method for determining surface properties of microparticles

    DOEpatents

    Eisenthal, Kenneth B.

    2000-01-01

    Second harmonic generation (SHG), sum frequency generation (SFG) and difference frequency generation (DFG) can be used for surface analysis or characterization of microparticles having a non-metallic surface feature. The microparticles can be centrosymmetric or such that non-metallic molecules of interest are centrosymmetrically distributed inside and outside the microparticles but not at the surface of the microparticles where the asymmetry aligns the molecules. The signal is quadratic in incident laser intensity or proportional to the product of two incident laser intensities for SFG, it is sharply peaked at the second harmonic wavelength, quadratic in the density of molecules adsorbed onto the microparticle surface, and linear in microparticles density. In medical or pharmacological applications, molecules of interest may be of drugs or toxins, for example.

  8. Efficient generation of 1.9  W yellow light by cascaded frequency doubling of a distributed Bragg reflector tapered diode.

    PubMed

    Hansen, A K; Christensen, M; Noordegraaf, D; Heist, P; Papastathopoulos, E; Loyo-Maldonado, V; Jensen, O B; Skovgaard, P M W

    2016-11-10

    Watt-level yellow emitting lasers are interesting for medical applications, due to their high hemoglobin absorption, and for efficient detection of certain fluorophores. In this paper, we demonstrate a compact and robust diode-based laser system in the yellow spectral range. The system generates 1.9 W of single-frequency light at 562.4 nm by cascaded single-pass frequency doubling of the 1124.8 nm emission from a distributed Bragg reflector (DBR) tapered laser diode. The absence of a free-space cavity makes the system stable over a base-plate temperature range of 30 K. At the same time, the use of a laser diode enables the modulation of the pump wavelength by controlling the drive current. This is utilized to achieve a power modulation depth above 90% for the second harmonic light, with a rise time below 40  μs.

  9. Two color laser driven THz generation in clustered plasma

    NASA Astrophysics Data System (ADS)

    Malik, Rakhee; Uma, R.; Kumar, Pawan

    2017-07-01

    A scheme of terahertz (THz) generation, using nonlinear mixing of two color laser (fundamental ω1 and slightly frequency shifted second harmonic ω2 ) in clustered plasma, is investigated. The lasers exert ponderomotive force on cluster electrons and drive density perturbations at 2 ω1 and ω2-ω1 . The density perturbations beat with the oscillatory velocities to produce nonlinear current at ω2-2 ω1 , generating THz radiation. The radiation is enhanced due to cluster plasmon resonance and by phase matching introduced through a density ripple. The generation involves third order nonlinearity and does not require a magnetic field or inhomogeneity to sustain it. We report THz power conversion efficiency ˜ 10-4 at 1 μm and 0.5 μm wavelengths with intensity ˜ 3 ×1014W/cm 2 .

  10. Narrow-bandwidth tunable picosecond pulses in the visible produced by noncollinear optical parametric amplification with a chirped blue pump.

    PubMed

    Co, Dick T; Lockard, Jenny V; McCamant, David W; Wasielewski, Michael R

    2010-04-01

    Narrow-bandwidth (approximately 27 cm(-1)) tunable picosecond pulses from 480 nm-780 nm were generated from the output of a 1 kHz femtosecond titanium:sapphire laser system using a type I noncollinear optical parametric amplifier (NOPA) with chirped second-harmonic generation (SHG) pumping. Unlike a femtosecond NOPA, this system utilizes a broadband pump beam, the chirped 400 nm SHG of the Ti:sapphire fundamental, to amplify a monochromatic signal beam (spectrally-filtered output of a type II collinear OPA). Optimum geometric conditions for simultaneous phase- and group-velocity matching were calculated in the visible spectrum. This design is an efficient and simple method for generating tunable visible picosecond pulses that are synchronized to the femtosecond pulses.

  11. Probing mixed tetragonal/rhombohedral-like monoclinic phases in strained bismuth ferrite films by optical second harmonic generation

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Denev, Sava; Zeches, Robert J.; Vlahos, Eftihia; Podraza, Nikolas J.; Melville, Alexander; Schlom, Darrell G.; Ramesh, R.; Gopalan, Venkatraman

    2010-09-01

    Epitaxial strain can induce the formation of morphotropic phase boundary in lead free ferroelectrics like bismuth ferrite, thereby enabling the coexistence of tetragonal and rhombohedral phases in the same film. The relative ratio of these phases is governed by the film thickness and theoretical studies suggest that there exists a monoclinic distortion of both the tetragonal as well as the rhombohedral unit cells due to imposed epitaxial strain. In this work we show that optical second harmonic generation can distinguish the tetragonal-like phase from the rhombohedral-like phase and enable detection of monoclinic distortion in only a pure tetragonal-like phase.

  12. Second Harmonic Generation characterization of SOI wafers: Impact of layer thickness and interface electric field

    NASA Astrophysics Data System (ADS)

    Damianos, D.; Vitrant, G.; Lei, M.; Changala, J.; Kaminski-Cachopo, A.; Blanc-Pelissier, D.; Cristoloveanu, S.; Ionica, I.

    2018-05-01

    In this work, we investigate Second Harmonic Generation (SHG) as a non-destructive characterization method for Silicon-On-Insulator (SOI) materials. For thick SOI stacks, the SHG signal is related to the thickness variations of the different layers. However, in thin SOI films, the comparison between measurements and optical modeling suggests a supplementary SHG contribution attributed to the electric fields at the SiO2/Si interfaces. The impact of the electric field at each interface of the SOI on the SHG is assessed. The SHG technique can be used to evaluate interfacial electric fields and consequently interface charge density in SOI materials.

  13. Quantitative biomarkers of colonic dysplasia based on intrinsic second-harmonic generation signal

    NASA Astrophysics Data System (ADS)

    Zhuo, Shuangmu; Zhu, Xiaoqin; Wu, Guizhu; Chen, Jianxin; Xie, Shusen

    2011-12-01

    Most colorectal cancers arise from dysplastic lesions, such as adenomatous polyps, and these lesions are difficult to be detected by the current endoscopic screening approaches. Here, we present the use of an intrinsic second-harmonic generation (SHG) signal as a novel means to differentiate between normal and dysplastic human colonic tissues. We find that the SHG signal can quantitatively identify collagen change associated with colonic dysplasia that is indiscernible by conventional pathologic techniques. By comparing normal with dysplastic mucosa, there were significant differences in collagen density and collagen fiber direction, providing substantial potential to become quantitative intrinsic biomarkers for in vivo clinical diagnosis of colonic dysplasia.

  14. Second harmonic generation of template synthesized PbTiO 3 nanostructures

    NASA Astrophysics Data System (ADS)

    Chang, Ki-Seog; Park, Yong-Heon; Bu, Sang-Don; Hernandez, Bernadette A.; Fisher, Ellen R.; Dorhout, Peter K.

    2007-09-01

    The lead titanate (PbTiO3) nanotubes were prepared with a chelate sol-gel of titanium isopropoxide (Ti(OiPr)4) and lead acetate (Pb(OAc)2-3H2O) by using AlOx template. Whatman® anodisc membranes (with a 200 nm pore size) served as the template. The template was dipped into the precursor, PbTiO3 solution, allowed to air dry, and then calcined at 650 °C. Recently, we have characterized a signal of second harmonic generation (SHG); 532 nm on 1064 nm of Nd:YAG laser beam in the PbTiO3 nanotubes with AlOx template.

  15. Extracting diagnostic stromal organization features based on intrinsic two-photon excited fluorescence and second-harmonic generation signals

    NASA Astrophysics Data System (ADS)

    Zhuo, Shuangmu; Chen, Jianxin; Xie, Shusen; Hong, Zhibin; Jiang, Xingshan

    2009-03-01

    Intrinsic two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) signals are shown to differentiate between normal and neoplastic human esophageal stroma. It was found that TPEF and SHG signals from normal and neoplastic stroma exhibit different organization features, providing quantitative information about the biomorphology and biochemistry of tissue. By comparing normal with neoplastic stroma, there were significant differences in collagen-related changes, elastin-related changes, and alteration in proportions of matrix molecules, giving insight into the stromal changes associated with cancer progression and providing substantial potential to be applied in vivo to the clinical diagnosis of epithelial precancers and cancers.

  16. Polarization-resolved second-harmonic-generation imaging of photoaged dermal collagen fiber

    NASA Astrophysics Data System (ADS)

    Yasui, Takeshi; Takahashi, Yu; Araki, Tsutomu

    2009-02-01

    Polarization-resolved second-harmonic-generation (SHG) microscopy is useful for assessment of collagen fiber orientation in tissues. In this paper, we investigated the relation between wrinkle direction and collagen orientation in ultraviolet-B-exposed (UVB-exposed) skin using polarization-resolved SHG microscopy. A polarization anisotropic image of the SHG light indicated that wrinkle direction in UVB-exposed skin is predominantly parallel to the orientation of dermal collagen fibers whereas no-UVB-exposed skin was dominated by collagen orientation parallel to the meridian line of body. The method proposed has the potential to become a powerful non-invasive tool for assessment of cutaneous photoaging.

  17. 3D second harmonic generation imaging tomography by multi-view excitation

    PubMed Central

    Campbell, Kirby R.; Wen, Bruce; Shelton, Emily M.; Swader, Robert; Cox, Benjamin L.; Eliceiri, Kevin; Campagnola, Paul J.

    2018-01-01

    Biological tissues have complex 3D collagen fiber architecture that cannot be fully visualized by conventional second harmonic generation (SHG) microscopy due to electric dipole considerations. We have developed a multi-view SHG imaging platform that successfully visualizes all orientations of collagen fibers. This is achieved by rotating tissues relative to the excitation laser plane of incidence, where the complete fibrillar structure is then visualized following registration and reconstruction. We evaluated high frequency and Gaussian weighted fusion reconstruction algorithms, and found the former approach performs better in terms of the resulting resolution. The new approach is a first step toward SHG tomography. PMID:29541654

  18. Texture analysis applied to second harmonic generation image data for ovarian cancer classification

    NASA Astrophysics Data System (ADS)

    Wen, Bruce L.; Brewer, Molly A.; Nadiarnykh, Oleg; Hocker, James; Singh, Vikas; Mackie, Thomas R.; Campagnola, Paul J.

    2014-09-01

    Remodeling of the extracellular matrix has been implicated in ovarian cancer. To quantitate the remodeling, we implement a form of texture analysis to delineate the collagen fibrillar morphology observed in second harmonic generation microscopy images of human normal and high grade malignant ovarian tissues. In the learning stage, a dictionary of "textons"-frequently occurring texture features that are identified by measuring the image response to a filter bank of various shapes, sizes, and orientations-is created. By calculating a representative model based on the texton distribution for each tissue type using a training set of respective second harmonic generation images, we then perform classification between images of normal and high grade malignant ovarian tissues. By optimizing the number of textons and nearest neighbors, we achieved classification accuracy up to 97% based on the area under receiver operating characteristic curves (true positives versus false positives). The local analysis algorithm is a more general method to probe rapidly changing fibrillar morphologies than global analyses such as FFT. It is also more versatile than other texture approaches as the filter bank can be highly tailored to specific applications (e.g., different disease states) by creating customized libraries based on common image features.

  19. Electric field measurements in a near atmospheric pressure nanosecond pulse discharge with picosecond electric field induced second harmonic generation

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.; Chng, Tat Loon; Dogariu, Arthur; Miles, Richard B.

    2018-02-01

    We present an optical electric field measurement method for use in high pressure plasma discharges. The method is based upon the field induced second harmonic generation technique and can be used for localized electric field measurements with sub-nanosecond resolution in any gaseous species. When an external electric field is present, a dipole is induced in the typically centrosymmetric medium, allowing for second harmonic generation with signal intensities which scale by the square of the electric field. Calibrations have been carried out in 100 Torr room air, and a minimum sensitivity of 450 V/cm is demonstrated. Measurements were performed with nanosecond or faster temporal resolution in a 100 Torr room air environment both with and without a plasma present. It was shown that with no plasma present, the field follows the applied voltage to gap ratio, as measured using the back current shunt method. When the electric field is strong enough to exceed the breakdown threshold, the measured field was shown to exceed the anticipated voltage to gap ratio which is taken as an indication of the ionization wave front as it sweeps through the plasma volume.

  20. Ultrafast third-harmonic generation from textured aluminum nitride-sapphire interfaces

    NASA Astrophysics Data System (ADS)

    Stoker, D. S.; Baek, J.; Wang, W.; Kovar, D.; Becker, M. F.; Keto, J. W.

    2006-05-01

    We measured and modeled third-harmonic generation (THG) from an AlN thin film on sapphire using a time-domain approach appropriate for ultrafast lasers. Second-harmonic measurements indicated that polycrystalline AlN contains long-range crystal texture. An interface model for third-harmonic generation enabled an analytical representation of scanning THG ( z -scan) experiments. Using it and accounting for Fresnel reflections, we measured the AlN -sapphire susceptibility ratio and estimated the susceptibility for aluminum nitride, χxxxx(3)(3ω;ω,ω,ω)=1.52±0.25×10-13esu . The third-harmonic (TH) spectrum strongly depended on the laser focus position and sample thickness. The amplitude and phase of the frequency-domain interference were fit to the Fourier transform of the calculated time-domain field to improve the accuracy of several experimental parameters. We verified that the model works well for explaining TH signal amplitudes and spectral phase. Some anomalous features in the TH spectrum were observed, which we attributed to nonparaxial effects.

  1. Multimode Directional Coupler for Utilization of Harmonic Frequencies from TWTAs

    NASA Technical Reports Server (NTRS)

    Simmons, Rainee N.; Wintucky, Edwin G.

    2013-01-01

    A novel waveguide multimode directional coupler (MDC) intended for the measurement and potential utilization of the second and higher order harmonic frequencies from high-power traveling wave tube amplifiers (TWTAs) has been successfully designed, fabricated, and tested. The design is based on the characteristic multiple propagation modes of the electrical and magnetic field components of electromagnetic waves in a rectangular waveguide. The purpose was to create a rugged, easily constructed, more efficient waveguide- based MDC for extraction and exploitation of the second harmonic signal from the RF output of high-power TWTs used for space communications. The application would be a satellitebased beacon source needed for Qband and V/W-band atmospheric propagation studies. The MDC could function as a CW narrow-band source or as a wideband source for study of atmospheric group delay effects on highdata- rate links. The MDC is fabricated from two sections of waveguide - a primary one for the fundamental frequency and a secondary waveguide for the second harmonic - that are joined together such that the second harmonic higher order modes are selectively coupled via precision- machined slots for propagation in the secondary waveguide. In the TWTA output waveguide port, both the fundamental and the second harmonic signals are present. These signals propagate in the output waveguide as the dominant and higher order modes, respectively. By including an appropriate mode selective waveguide directional coupler, such as the MDC presented here at the output of the TWTA, the power at the second harmonic can be sampled and amplified to the power level needed for atmospheric propagation studies. The important conclusions from the preliminary test results for the multimode directional coupler are: (1) the second harmonic (Ka-band) can be measured and effectively separated from the fundamental (Ku-band) with no coupling of the latter, (2) power losses in the fundamental frequency are negligible, and (3) the power level of the extracted second harmonic is sufficient for further amplification to power levels needed for practical applications. It was also demonstrated that third order and potentially higher order harmonics are measurable with this device. The design is frequency agnostic, and with the appropriate choice of waveguides, is easily scaled to higher frequency TWTs. The MDC has the same function but with a number of important advantages over the conventional diplexer.

  2. Waveguide Harmonic Generator for the SIM

    NASA Technical Reports Server (NTRS)

    Chang, Daniel; Poberezhskiy, Ilya; Mulder, Jerry

    2008-01-01

    A second-harmonic generator (SHG) serves as the source of the visible laser beam in an onboard calibration scheme for NASA's planned Space Interferometry Mission (SIM), which requires an infrared laser beam and a visible laser beam coherent with the infrared laser beam. The SHG includes quasi-phase-matched waveguides made of MgO-doped, periodically poled lithium niobate, pigtailed with polarization- maintaining optical fibers. Frequency doubling by use of such waveguides affords the required combination of coherence and sufficient conversion efficiency for the intended application. The spatial period of the poling is designed to obtain quasi-phase- matching at a nominal middle excitation wavelength of 1,319.28 nm. The SHG is designed to operate at a warm bias (ambient temperature between 20 and 25 C) that would be maintained in its cooler environment by use of electric heaters; the heater power would be adjusted to regulate the temperature precisely and thereby maintain the required precision of the spatial period. At the state of development at the time of this reporting, the SHG had been packaged and subjected to most of its planned space-qualification tests.

  3. Synthesis, growth, structural, spectroscopic and optical studies of a new semiorganic nonlinear optical crystal: L-valine hydrochloride.

    PubMed

    Kirubavathi, K; Selvaraju, K; Valluvan, R; Vijayan, N; Kumararaman, S

    2008-04-01

    Single crystals of a new semiorganic nonlinear optical (NLO) material, L-valine hydrochloride (LVHCl), having dimensions up to 20 mm x 6 mm x 4 mm have been grown by slow evaporation solution growth technique. Single crystal X-ray diffraction studies confirm that the grown crystal belongs to the monoclinic system. The functional groups presented in the crystal were confirmed by Fourier transform infrared (FTIR) technique. Optical transmission spectrum shows very low absorption in the entire visible region. Differential thermal and thermogravimetric analyses confirmed that the crystal is stable up to 211 degrees C. The powder second harmonic generation (SHG) efficiency of LVHCl is 1.7 times efficient as potassium dihydrogen phosphate (KDP).

  4. High-order harmonic generation in a capillary discharge

    DOEpatents

    Rocca, Jorge J.; Kapteyn, Henry C.; Mumane, Margaret M.; Gaudiosi, David; Grisham, Michael E.; Popmintchev, Tenio V.; Reagan, Brendan A.

    2010-06-01

    A pre-ionized medium created by a capillary discharge results in more efficient use of laser energy in high-order harmonic generation (HHG) from ions. It extends the cutoff photon energy, and reduces the distortion of the laser pulse as it propagates down the waveguide. The observed enhancements result from a combination of reduced ionization energy loss and reduced ionization-induced defocusing of the driving laser as well as waveguiding of the driving laser pulse. The discharge plasma also provides a means to spectrally tune the harmonics by tailoring the initial level of ionization of the medium.

  5. Intrinsic exciton-state mixing and nonlinear optical properties in transition metal dichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Glazov, M. M.; Golub, L. E.; Wang, G.; Marie, X.; Amand, T.; Urbaszek, B.

    2017-01-01

    Optical properties of transition metal dichalcogenides monolayers are controlled by Wannier-Mott excitons forming a series of 1 s ,2 s ,2 p ,... hydrogen-like states. We develop the theory of the excited excitonic states energy spectrum fine structure. We predict that p - and s -shell excitons are mixed due to the specific D3 h point symmetry of the transition metal dichalcogenide monolayers. Hence, both s - and p -shell excitons are active in both single- and two-photon processes, providing an efficient mechanism of second harmonic generation. The corresponding contribution to the nonlinear susceptibility is calculated.

  6. Design considerations for multi component molecular-polymeric nonlinear optical materials

    NASA Astrophysics Data System (ADS)

    Singer, K. D.; Kuzyk, M. G.; Fang, T.; Holland, W. R.; Cahill, P. A.

    1990-08-01

    We review our work on multi component polymeric nonlinear optical materials. These materials consist of nonlinear optical molecules incorporated in a polymeric host. A cross-linked triazine polymer incorporating a dicyanovinyl terminated azo dye was found to be relatively stable at 85 deg and possess an electro-optic coefficient of 11pm/V. We have also observed the zero dispersion condition in a new anomalous dispersion dye for phase matched second harmonic generation, and expect efficient conversion to the blue. A squarylium dye, ISQ, has been found to possess a large third order nonlinearity, and may display two-level behavior.

  7. Hypericin-mediated selective photomodification of connective tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovhannisyan, V., E-mail: hovv@phys.ntu.edu.tw; Guo, H. W.; Chen, Y. F., E-mail: yfchen@phys.ntu.edu.tw

    2014-12-29

    Controllable modification of biological molecules and supramolecular components of connective tissue are important for biophysical and biomedical applications. Through the use of second harmonic generation imaging, two-photon fluorescence microscopy, and spectrofluorimetry, we found that hypericin, a natural pigment, induces photosensitized destruction of collagen fibers but does not affect elastic fibers and lipids in chicken tendon, skin, and blood vessels. We demonstrated the dynamics and efficiency of collagen photomodification and investigated mechanisms of this processes. Our results suggest that hypericin–mediated photoprocesses in biological tissues may be useful in biomedical applications that require selective modification of connective tissues.

  8. Growth and characterization of organic NLO material: Clobetasol propionate

    NASA Astrophysics Data System (ADS)

    Purusothaman, R.; Rajesh, P.; Ramasamy, P.

    2015-06-01

    Single crystals of clobetasol propionate (CP) have been grown by slow evaporation solution technique using mixed solvent of methanol-acetone. The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm their lattice parameter and space group. The powder X-ray diffraction pattern of the grown CP has been indexed. Thermal analysis was performed to study the thermal stability of the grown crystals. Photoluminescence spectrum shows broad emission peak observed at 421 nm. Nonlinear optical studies were carried out for the grown crystal and second harmonic generation (SHG) efficiency was found in the crystal.

  9. Bioinspired second harmonic generation

    NASA Astrophysics Data System (ADS)

    Sonay, Ali Y.; Pantazis, Periklis

    2017-07-01

    Second harmonic generation (SHG) is a microscopic technique applicable to a broad spectrum of biological and medical imaging due to its excellent photostability, high signal-to-noise ratio (SNR) and narrow emission profile. Current SHG microscopy techniques rely on two main contrast modalities. These are endogenous SHG generated by tissue structures, which is clinically relevant but cannot be targeted to another location, or SHG nanoprobes, inorganic nanocrystals that can be directed to proteins and cells of interest, but cannot be applied for clinical imaging due to their chemical composition. Here we analyzed SHG signal generated by large-scale peptide assemblies. Our results show the sequence of peptides play an important role on both the morphology and SHG signal of the peptide assemblies. Changing peptide sequence allows confinement of large number of peptides to smaller voxels, generating intense SHG signal. With miniaturization of these peptides and their proper functionalization strategies, such bioinspired nanoparticles would emerge as valuable tools for clinical imaging.

  10. Parallel transmit beamforming using orthogonal frequency division multiplexing applied to harmonic imaging--a feasibility study.

    PubMed

    Demi, Libertario; Verweij, Martin D; Van Dongen, Koen W A

    2012-11-01

    Real-time 2-D or 3-D ultrasound imaging systems are currently used for medical diagnosis. To achieve the required data acquisition rate, these systems rely on parallel beamforming, i.e., a single wide-angled beam is used for transmission and several narrow parallel beams are used for reception. When applied to harmonic imaging, the demand for high-amplitude pressure wave fields, necessary to generate the harmonic components, conflicts with the use of a wide-angled beam in transmission because this results in a large spatial decay of the acoustic pressure. To enhance the amplitude of the harmonics, it is preferable to do the reverse: transmit several narrow parallel beams and use a wide-angled beam in reception. Here, this concept is investigated to determine whether it can be used for harmonic imaging. The method proposed in this paper relies on orthogonal frequency division multiplexing (OFDM), which is used to create distinctive parallel beams in transmission. To test the proposed method, a numerical study has been performed, in which the transmit, receive, and combined beam profiles generated by a linear array have been simulated for the second-harmonic component. Compared with standard parallel beamforming, application of the proposed technique results in a gain of 12 dB for the main beam and in a reduction of the side lobes. Experimental verification in water has also been performed. Measurements obtained with a single-element emitting transducer and a hydrophone receiver confirm the possibility of exciting a practical ultrasound transducer with multiple Gaussian modulated pulses, each having a different center frequency, and the capability to generate distinguishable second-harmonic components.

  11. Theory, Design and Operation of a High-Power Second - Gyro-Twt Amplifier.

    NASA Astrophysics Data System (ADS)

    Wang, Qinsong

    1995-01-01

    Based on the cyclotron resonance maser (CRM) instability, the gyrotron traveling wave tube (gyro-TWT) amplifier is an efficient high power microwave and millimeter wave coherent radiation source. As evidenced in previous experiments, gyro-TWTs, however, can be very susceptible to spontaneous oscillations, and their output powers have thus been limited to relatively low levels. In this dissertation work, thorough theoretical and experimental studies have been conducted to demonstrate and confirm a novel "marginal stability design" (MSD) concept that a harmonic gyro-TWT amplifier is more stable to spontaneous oscillation than a fundamental harmonic gyro-TWT amplifier. Since their interactions are, in general, weaker and allow higher levels of electron beam current, harmonic gyro-TWTs can yield, in principle, a significantly higher RF output power than a fundamental gyro-TWT. The study results also show that a magnetron injection gun (MIG) type electron beam is applicable to harmonic gyro-TWTs. A complete analytic linear theory employing Laplace transforms and a three dimensional nonlinear theory using a slow time-scale formalism are developed in Chapt. 2 for the general CRM interaction to address the issue of stability. Two designs were developed to demonstrate the MSD procedure. The design and development of the proof -of-principle experiment are discussed in Chapt. 3. The accompanying cold test results indicate that all the components have met their respective design goals. The RF diagnostic circuit employed to characterize the gyro-TWT amplifier is also described. Chapter 4 presents the hot-test results of the second-harmonic TE_{21} gyro-TWT amplifier experiment in which an 80 kV, 20 A MIG beam with alpha(equivupsilon _|/upsilon_|) = 1 was used to generate a peak RF output power of 207 kW in Ku-band with an efficiency of 12.9%. In addition, the saturated gain is 16 dB, the small signal gain is 22 dB, the measured bandwidth is 2.1%, and the amplifier was zero-drive stable. As pointed out in Chapt. 5, the theoretical and experimental studies conducted in this work have successfully realized their objectives. Further improvements to the current proof-of-principle experiment and an increase in the operating frequency by operating at an even higher cyclotron harmonic are promising and worthy of future efforts.

  12. Frequency conversion of cw chemical HF laser radiation in nonlinear crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klement'ev, V.M.; Kolpakov, Y.G.; Pecherskii, Y.Y.

    1977-07-01

    A description is given of a cw chemical HF laser and its characteristics. The results are reported of investigations of the efficiency of conversion of the HF laser radiation into second harmonics and combination frequencies in LiNbO/sub 3/, LiIO/sub 3/, and Ag/sub 3/AsS/sub 3/ crystals. The most efficient conversion was achieved in proustite (Ag/sub 3/AsS/sub 3/) when the second-harmonic power was approx.3..mu..W and the fundamental-frequency power was approx.100 mW. Twenty-one emission lines were obtained in the 1.39--1.49 ..mu.. range. The HF laser radiation was converted to the visible range (0.522--0.516 ..mu..).

  13. Laterally azo-bridged h-shaped ferroelectric dimesogens for second-order nonlinear optics: ferroelectricity and second harmonic generation.

    PubMed

    Zhang, Yongqiang; Martinez-Perdiguero, Josu; Baumeister, Ute; Walker, Christopher; Etxebarria, Jesus; Prehm, Marko; Ortega, Josu; Tschierske, Carsten; O'Callaghan, Michael J; Harant, Adam; Handschy, Mark

    2009-12-30

    Two classes of laterally azo-bridged H-shaped ferroelectric liquid crystals (FLCs), incorporating azobenzene and disperse red 1 (DR-1) chromophores along the FLC polar axes, were synthesized and characterized by polarized light microscopy, differential scanning calorimetry, 2D X-ray diffraction analysis, and electro-optical investigations. They represent the first H-shaped FLC materials exhibiting the ground-state, thermodynamically stable enantiotropic SmC* phase, i.e., ground-state ferroelectricity. Second harmonic generation measurements of one compound incorporating a DR-1 chromophore at the incident wavelength of 1064 nm give a nonlinear coefficient of d(22) = 17 pm/V, the largest nonlinear optics coefficient reported to date for calamitic FLCs. This value enables viable applications of FLCs in nonlinear optics.

  14. Reducing Stator Current Harmonics for a Doubly-Fed Induction Generator Connected to a Distorted Grid

    DTIC Science & Technology

    2013-09-01

    electric grid voltage harmonics, which is a potential obstacle for implementing stable wind -energy systems. Two existing rotor voltage controllers...electric grid voltage harmonics, which is a potential obstacle for implementing stable wind -energy systems. Two existing rotor voltage controllers...speed of the DFIG can be adjusted to optimize turbine efficiency for given wind conditions. A common method for controlling the operating speed is

  15. High-harmonic spectroscopy of oriented OCS molecules: emission of even and odd harmonics.

    PubMed

    Kraus, P M; Rupenyan, A; Wörner, H J

    2012-12-07

    We study the emission of even and odd high-harmonic orders from oriented OCS molecules. We use an intense, nonresonant femtosecond laser pulse superimposed with its phase-controlled second harmonic field to impulsively align and orient a dense sample of molecules from which we subsequently generate high-order harmonics. The even harmonics appear around the full revivals of the rotational dynamics. We demonstrate perfect coherent control over their intensity through the subcycle delay of the two-color fields. The odd harmonics are insensitive to the degree of orientation, but modulate with the degree of axis alignment, in agreement with calculated photorecombination dipole moments. We further compare the shape of the even and odd harmonic spectra with our calculations and determine the degree of orientation.

  16. Electric dipole-quadrupole hybridization induced enhancement of second-harmonic generation in T-shaped plasmonic heterodimers.

    PubMed

    Guo, Kai; Zhang, Yong-Liang; Qian, Cheng; Fung, Kin-Hung

    2018-04-30

    In this work, we demonstrate computationally that electric dipole-quadrupole hybridization (EDQH) could be utilized to enhance plasmonic SHG efficiency. To this end, we construct T-shaped plasmonic heterodimers consisting of a short and a long gold nanorod with finite element method simulation. By controlling the strength of capacitive coupling between two gold nanorods, we explore the effect of EDQH evolution on the SHG process, including the SHG efficiency enhancement, corresponding near-field distribution, and far-field radiation pattern. Simulation results demonstrate that EDQH could enhance the SHG efficiency by a factor >100 in comparison with that achieved by an isolated gold nanorod. Additionally, the far-field pattern of the SHG could be adjusted beyond the well-known quadrupolar distribution and confirms that EDQH plays an important role in the SHG process.

  17. Origin of Second-Harmonic Generation Enhancement in Optical Split-Ring Resonators

    DTIC Science & Technology

    2012-05-15

    Scalora , David R. Smith Duke University 2200 West Main Street Suite 710 Durham, NC 27705 -4010 REPORT DOCUMENTATION PAGE b. ABSTRACT UU c. THIS PAGE...harmonic generation enhancement in optical split-ring resonators Cristian Ciracı̀,1,* Ekaterina Poutrina,1 Michael Scalora ,2 and David R. Smith1 1Center for...11098-0121/2012/85(20)/201403(5) ©2012 American Physical Society RAPID COMMUNICATIONS CIRACÌ, POUTRINA, SCALORA , AND SMITH PHYSICAL REVIEW B 85

  18. Characterizing Fibrosis in Mouse Kidney using Label Free Fluorescence Lifetime and Second Harmonic Generation Imaging Microscopy in Unilateral Ureteral Obstruction Model

    PubMed Central

    Ranjit, Suman; Dobrinskikh, Evgenia; Montford, John; Dvornikov, Alexander; Lehman, Allison; Orlicky, David J.; Nemenoff, Raphael; Gratton, Enrico; Levi, Moshe; Furgeson, Seth

    2017-01-01

    All forms of progressive renal diseases develop a final pathway of tubulointerstitial fibrosis and glomerulosclerosis. Renal fibrosis is usually quantified using histological staining, a process that is time-consuming and pathologist dependent. The work described here shows the development of a fast and operator-independent method to measure fibrosis. To study renal fibrosis, the unilateral ureteral obstruction (UUO) model was chosen. Mice develop a time-dependent increase in obstructed kidneys; contralateral kidneys are used as controls. After UUO, kidneys were analyzed at three time points: 7 days, 14 days, and 21 days. Fibrosis was investigated using FLIM (Fluorescence Lifetime Imaging) and SHG (Second Harmonic Generation) in the deep tissue imaging microscope called DIVER (Deep Imaging via Enhanced photon Recovery). This microscope was developed for deep tissue and SHG and THG (Third Harmonic Generation) imaging and has extraordinary sensitivity towards harmonic generation. SHG data suggests the presence of more fibrillar collagen in the diseased kidneys. The combinations of short wavelength FLIM and SHG analysis results in a robust analysis procedure independent of observer interpretation and let us create a criterion to quantify the extent of fibrosis directly from the image. The progression of fibrosis in UUO model has been studied using this new FLIM-SHG technique and it shows remarkable improvement in quantification of fibrosis compared to standard histological techniques. PMID:27555119

  19. Cusp-Gun Sixth-Harmonic Slotted Gyrotron

    NASA Astrophysics Data System (ADS)

    Stutzman, R. C.; McDermott, D. B.; Hirata Luhmann, Y., Jr.; Gallagher, D. A.; Spencer, T. A.

    2000-10-01

    A high-harmonic slotted gyrotron has been constructed at UC Davis to be driven by a 70 kV, 3.5 A, axis-encircling electron beam from a Northrop Grumman Cusp gun. The 94 GHz, slotted sixth-harmonic gyrotron is predicted to generate 50 kW with an efficiency of 20%. Using the profile of the adiabatic field reversal from the UC Davis superconducting test-magnet, EGUN simulations predict that an axis-encircling electron beam will be generated with an axial velocity spread of Δ v_z/v_z=10% for the desired velocity ratio of α =v_z/v_z=1.5. The design will also be presented for an 8th-harmonic W-band gyrotron whose magnetic field can be supplied by a lightweight permanent magnet.

  20. Wide-band doubler and sine wave quadrature generator

    NASA Technical Reports Server (NTRS)

    Crow, R. B.

    1969-01-01

    Phase-locked loop with photoresistive control, which provides both sine and cosine outputs for subcarrier demodulation, serves as a telemetry demodulator signal conditioner with a second harmonic signal for synchronization with the locally generated code.

  1. Analysis of higher order harmonics with holographic reflection gratings

    NASA Astrophysics Data System (ADS)

    Mas-Abellan, P.; Madrigal, R.; Fimia, A.

    2017-05-01

    Silver halide emulsions have been considered one of the most energetic sensitive materials for holographic applications. Nonlinear recording effects on holographic reflection gratings recorded on silver halide emulsions have been studied by different authors obtaining excellent experimental results. In this communication specifically we focused our investigation on the effects of refractive index modulation, trying to get high levels of overmodulation that will produce high order harmonics. We studied the influence of the overmodulation and its effects on the transmission spectra for a wide exposure range by use of 9 μm thickness films of ultrafine grain emulsion BB640, exposed to single collimated beams using a red He-Ne laser (wavelength 632.8 nm) with Denisyuk configuration obtaining a spatial frequency of 4990 l/mm recorded on the emulsion. The experimental results show that high overmodulation levels of refractive index produce second order harmonics with high diffraction efficiency (higher than 75%) and a narrow grating bandwidth (12.5 nm). Results also show that overmodulation produce diffraction spectra deformation of the second order harmonic, transforming the spectrum from sinusoidal to approximation of square shape due to very high overmodulation. Increasing the levels of overmodulation of refractive index, we have obtained higher order harmonics, obtaining third order harmonic with diffraction efficiency (up to 23%) and narrowing grating bandwidth (5 nm). This study is the first step to develop a new easy technique to obtain narrow spectral filters based on the use of high index modulation reflection gratings.

  2. Enhancement of high-order harmonic generation by a two-color field: Influence of propagation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiessl, K.; Persson, E.; Burgdoerfer, J.

    2006-11-15

    Recent calculations of the response of a single atom subjected to a two-color laser pulse with the higher frequency being resonant with an excitation of the target atom revealed a significant enhancement of photoionization as well as high-order harmonic generation [K. Ishikawa, Phy. Rev. Lett. 91, 043002 (2003)]. We investigate the problem in the framework a fully quantum-mechanical pulse propagation algorithm and perform calculations for rare gases in the single-active-electron approximation. The enhancement of harmonic output compared to the corresponding one-color pulse remains intact for short propagation lengths, promising the feasibility of experimental realization. We also study weak second colorsmore » resonant via a two-photon transition where significant enhancements in harmonic yields can be observed as well.« less

  3. Multi-Orbital contributions in High Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Guehr, Markus

    2009-05-01

    The high harmonic spectrum generated from atoms or molecules in a strong laser field contains information about the electronic structure of the generation medium. In the high harmonic generation (HHG) process, a free electron wave packet tunnel-ionizes from the molecular orbital in a strong laser field. After being accelerated by the laser electric field, the free electron wave packet coherently recombines to the orbital from which is was initially ionized, thereby emitting the harmonic spectrum. Interferences between the free electron wave packet and the molecular orbital will shape the spectrum in a characteristic way. These interferences have been used to tomographically image the highest occupied molecular orbital (HOMO) of N2 [1]. Molecular electronic states energetically below the HOMO should contribute to laser-driven high harmonic generation (HHG), but this behavior has not been observed previously. We have observed evidence of HHG from multiple orbitals in aligned N2 [2]. The tunneling ionization (and therefore the harmonic generation) is most efficient if the orbital has a large extension in the direction of the harmonic generation polarization. The HOMO with its σg symmetry therefore dominates the harmonic spectrum if the molecular axis is parallel to the harmonic generation polarization, the lower bound πu HOMO-1 dominates in the perpendicular case. The HOMO contributions appear as a regular plateau with a cutoff in the HHG spectrum. In contrast, the HOMO-1 signal is strongly peaked in the cutoff region. We explain this by semi-classical simulations of the recombination process that show constructive interferences between the HOMO-1 and the recombining wave packet in the cutoff region. The ability to monitor several orbitals opens the route to imaging coherent superpositions of electronic orbitals. [1] J. Itatani et al., Nature 432, 867 (2004)[2] B. K. McFarland, J. P. Farrell, P. H. Bucksbaum and M. Gühr, Science 322, 1232 (2008)

  4. Realization of a new concept for visible frequency division: phase locking of harmonic and sum frequencies.

    PubMed

    Telle, H R; Meschede, D; Hänsch, T W

    1990-05-15

    We explore and demonstrate the feasibility of an optical-frequency-to-radio-frequency division method that is based on visible or near-infrared laser oscillators only. Comparing harmonic and sum frequencies, we generate the arithmetic average of two visible frequencies. Cascading n stages provides difference-frequency division by 2(n). For a demonstration we have phase locked the second harmonic and the sum frequency of two independent diode lasers.

  5. Non-linear Min protein interactions generate harmonics that signal mid-cell division in Escherichia coli

    PubMed Central

    Walsh, James C.; Angstmann, Christopher N.; Duggin, Iain G.

    2017-01-01

    The Min protein system creates a dynamic spatial pattern in Escherichia coli cells where the proteins MinD and MinE oscillate from pole to pole. MinD positions MinC, an inhibitor of FtsZ ring formation, contributing to the mid-cell localization of cell division. In this paper, Fourier analysis is used to decompose experimental and model MinD spatial distributions into time-dependent harmonic components. In both experiment and model, the second harmonic component is responsible for producing a mid-cell minimum in MinD concentration. The features of this harmonic are robust in both experiment and model. Fourier analysis reveals a close correspondence between the time-dependent behaviour of the harmonic components in the experimental data and model. Given this, each molecular species in the model was analysed individually. This analysis revealed that membrane-bound MinD dimer shows the mid-cell minimum with the highest contrast when averaged over time, carrying the strongest signal for positioning the cell division ring. This concurs with previous data showing that the MinD dimer binds to MinC inhibiting FtsZ ring formation. These results show that non-linear interactions of Min proteins are essential for producing the mid-cell positioning signal via the generation of second-order harmonic components in the time-dependent spatial protein distribution. PMID:29040283

  6. Non-label bioimaging utilizing scattering lights

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomonobu M.; Ichimura, Taro; Fujita, Hideaki

    2017-04-01

    Optical microscopy is an indispensable tool for medical and life sciences. Especially, the microscopes utilized with scattering light offer a detailed internal observation of living specimens in real time because of their non-labeling and non-invasive capability. We here focus on two kinds of scattering lights, Raman scattering light and second harmonic generation light. Raman scattering light includes the information of all the molecular vibration modes of the molecules, and can be used to distinguish types and/or state of cell. Second harmonic generation light is derived from electric polarity of proteins in the specimen, and enables to detect their structural change. In this conference, we would like to introduce our challenges to extract biological information from those scattering lights.

  7. Magnetophotonic crystals based on yttrium-iron-garnet infiltrated opals: Magnetization-induced second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Murzina, T. V.; Kim, E. M.; Kapra, R. V.; Moshnina, I. V.; Aktsipetrov, O. A.; Kurdyukov, D. A.; Kaplan, S. F.; Golubev, V. G.; Bader, M. A.; Marowsky, G.

    2006-01-01

    Three-dimensional magnetophotonic crystals (MPCs) based on artificial opals infiltrated by yttrium iron garnet (YIG) are fabricated and their structural, optical, and nonlinear optical properties are studied. The formation of the crystalline YIG inside the opal matrix is checked by x-ray analysis. Two templates are used for the infiltration by YIG: bare opals and those covered by a thin platinum film. Optical second-harmonic generation (SHG) technique is used to study the magnetization-induced nonlinear-optical properties of the composed MPCs. A high nonlinear magneto-optical Kerr effect in the SHG intensity is observed at the edge of the photonic band gap of the MPCs.

  8. Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope

    NASA Astrophysics Data System (ADS)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten

    2016-03-01

    Five dimensional microscopy with a 12-fs laser scanning microscope based on spectrally resolved two-photon autofluorescence lifetime and second-harmonic generation (SHG) imaging was used to characterize all layers of the porcine cornea. This setup allowed the simultaneous excitation of both metabolic cofactors, NAD(P)H and flavins, and their discrimination based on their spectral emission properties and fluorescence decay characteristics. Furthermore, the architecture of the stromal collagen fibrils was assessed by SHG imaging in both forward and backward directions. Information on the metabolic state and the tissue architecture of the porcine cornea were obtained with subcellular resolution, and high temporal and spectral resolutions.

  9. Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope.

    PubMed

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten

    2016-03-01

    Five dimensional microscopy with a 12-fs laser scanning microscope based on spectrally resolved two-photon autofluorescence lifetime and second-harmonic generation (SHG) imaging was used to characterize all layers of the porcine cornea. This setup allowed the simultaneous excitation of both metabolic cofactors, NAD(P)H and flavins, and their discrimination based on their spectral emission properties and fluorescence decay characteristics. Furthermore, the architecture of the stromal collagen fibrils was assessed by SHG imaging in both forward and backward directions. Information on the metabolic state and the tissue architecture of the porcine cornea were obtained with subcellular resolution, and high temporal and spectral resolutions.

  10. Determination of three-dimensional molecular orientation of type-I collagen by circularly-polarized second harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Zhuo, Guan-Yu; Hung, Wei-Han; Kao, Fu-Jen

    2017-04-01

    The content of collagen is up to 30% existing in mammals. It supports the main component of connective tissues such as skin, ligament, and cartilage. Among various types of collagen, type-I collagen is of the most abundance and has been broadly studied due to the importance in bioscience. Second harmonic generation (SHG) microscopy is an effective tool used to study the collagen organization without labeling. In this study, we used circular polarization instead of linear polarization to retrieve three-dimensional (3D) molecular orientation of type-I collagen with only two cross polarized SHG images without acquiring an image stack of varying polarization.

  11. Transport limited interfacial carrier relaxation in a double-layer device investigated by time-resolved second harmonic generation and impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Taguchi, Dai; Li, Jun; Manaka, Takaaki; Iwamoto, Mitsumasa

    2011-02-01

    The interfacial carrier relaxation in an indium tin oxide/polyimide/pentacene/Au double-layer device was studied in both time and frequency domains by using time-resolved second harmonic generation (TR-SHG) and impedance spectroscopy (IS), respectively. Although both hole and electron injection into the pentacene layer and their accumulation at the pentacene/polyimide interface were revealed in TR-SHG, it was only observed in IS under the hole injection condition. The "contradiction" between the two methods for the same carrier relaxation process was explained on the basis of a model, transport limited interfacial carrier relaxation, in which the quasistatic state governs the one-directional carrier transport.

  12. Fabrication of optical element from unidirectional grown imidazole-imidazolium picrate monohydrate (IIP) organic crystals for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Vivek, P.; Murugakoothan, P.

    2014-12-01

    Nonlinear optical bulk single crystal of Imidazole-imidazolium picrate monohydrate (IIP) has been grown by Sankaranarayanan-Ramasamy (SR) method using acetonitrile as solvent. First time we report the bulk growth of IIP crystal by SR method. The transparent IIP single crystal of maximum diameter 21 mm and length 46 mm was obtained by employing SR method. The grown crystal was subjected to high resolution X-ray diffraction, UV-vis-NIR transmittance, refractive index, hardness, dielectric and laser damage threshold studies. The crystalline perfection of the grown crystal was analyzed using HRXRD. Cut off wavelength and optical transmission window of the crystal was assessed by UV-vis-NIR and the refractive index of the crystal was found. The mechanical property of the crystal was estimated by Vicker's hardness test. The dielectric property of the crystal was measured as a function of frequency. The laser damage threshold value was determined. The particle size dependent second harmonic generation efficiency for IIP was evaluated with standard reference material potassium dihydrogen phosphate (KDP) by Kurtz-Perry powder method using Nd:YAG laser, which established the existence of phase matching. The second harmonic generation (SHG) of IIP crystal was investigated by the SHG Maker fringes technique. The mechanism of growth is revealed by carrying out chemical etching using acetonitrile as etchant.

  13. Generation of Bright, Spatially Coherent Soft X-Ray High Harmonics in a Hollow Waveguide Using Two-Color Synthesized Laser Pulses.

    PubMed

    Jin, Cheng; Stein, Gregory J; Hong, Kyung-Han; Lin, C D

    2015-07-24

    We investigate the efficient generation of low-divergence high-order harmonics driven by waveform-optimized laser pulses in a gas-filled hollow waveguide. The drive waveform is obtained by synthesizing two-color laser pulses, optimized such that highest harmonic yields are emitted from each atom. Optimization of the gas pressure and waveguide configuration has enabled us to produce bright and spatially coherent harmonics extending from the extreme ultraviolet to soft x rays. Our study on the interplay among waveguide mode, atomic dispersion, and plasma effect uncovers how dynamic phase matching is accomplished and how an optimized waveform is maintained when optimal waveguide parameters (radius and length) and gas pressure are identified. Our analysis should help laboratory development in the generation of high-flux bright coherent soft x rays as tabletop light sources for applications.

  14. Analysis of adjusting effects of mounting force on frequency conversion of mounted nonlinear optics.

    PubMed

    Su, Ruifeng; Liu, Haitao; Liang, Yingchun; Lu, Lihua

    2014-01-10

    Motivated by the need to increase the second harmonic generation (SHG) efficiency of nonlinear optics with large apertures, a novel mounting configuration with active adjusting function on the SHG efficiency is proposed and mechanically and optically studied. The adjusting effects of the mounting force on the distortion and stress are analyzed by the finite element methods (FEM), as well as the contribution of the distortion and stress to the change in phase mismatch, and the SHG efficiency are theoretically stated. Further on, the SHG efficiency is calculated as a function of the mounting force. The changing trends of the distortion, stress, and the SHG efficiency with the varying mounting force are obtained, and the optimal ones are figured out. Moreover, the mechanism of the occurrence of the optimal values is studied and the adjusting strategy is put forward. Numerical results show the robust adjustment of the mounting force, as well as the effectiveness of the mounting configuration, in increasing the SHG efficiency.

  15. [Study on remote sensing of methane leakage using a tunable diode laser].

    PubMed

    Fan, Hong; Gao, Xiao-Ming; Bao, Jian; Wang, Xia; Huang, Teng; Huang, Wei; Cao, Zhen-Song; Zhang, Wei-Jun

    2006-08-01

    The leak of natural gas is not only an economic loss, but also the fountain of danger. Conventional detection techniques of natural gas pipe leak have low efficiency and slow respond time, therefore, it is difficult for them to suit practice application. Optical sensors based on NIR tunable diode laser absorption spectroscopy were widely used because of high sensitivity, small volume and less maintenance. In the present paper, a portable remote sensor of natural gas pipeline leak was reported. The sensor used a ratio of second to first harmonic signals as calibration method, and the results show a good consistency between the concentrations and the ratios of second to first harmonic signals. The effect of different topographic scattering targets on the ratio detection was measured and analyzed. The results show that the ratio of second to first harmonic signals can be used in practical application.

  16. High order harmonic generation in rare gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budil, Kimberly Susan

    1994-05-01

    The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I ~10 13-10 14 W/cm 2) is focused into a dense (~10 17 particles/cm 3) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as wellmore » as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic "source". A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.« less

  17. Modulating optical rectification, second and third harmonic generation of doped quantum dots: Interplay between hydrostatic pressure, temperature and noise

    NASA Astrophysics Data System (ADS)

    Ganguly, Jayanta; Saha, Surajit; Bera, Aindrila; Ghosh, Manas

    2016-10-01

    We examine the profiles of optical rectification (OR), second harmonic generation (SHG) and third harmonic generation (THG) of impurity doped QDs under the combined influence of hydrostatic pressure (HP) and temperature (T) in presence and absence of Gaussian white noise. Noise has been incorporated to the system additively and multiplicatively. In order to study the above nonlinear optical (NLO) properties the doped dot has been subjected to a polarized monochromatic electromagnetic field. Effect of application of noise is nicely reflected through alteration of peak shift (blue/red) and variation of peak height (increase/decrease) of above NLO properties as temperature and pressure are varied. All such changes again sensitively depends on mode of application (additive/multiplicative) of noise. The remarkable influence of interplay between noise strength and its mode of application on the said profiles has also been addressed. The findings illuminate fascinating role played by noise in tuning above NLO properties of doped QD system under the active presence of both hydrostatic pressure and temperature.

  18. The generation of a continuous-wave Nd:YVO4/LBO laser at 543 nm by direct in-band diode pumping at 888 nm

    NASA Astrophysics Data System (ADS)

    Fu, S. C.; Wang, X.; Chu, H.

    2013-02-01

    We report the generation of a green laser at 543 nm by intracavity frequency doubling of the continuous-wave (cw) laser operation of a 1086 nm Nd:YVO4 laser under 888 nm diode pumping into the emitting level 4F3/2. An LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature, is used for the laser second-harmonic generation. At an incident pump power of 17.8 W, as high as 4.53 W cw output power at 543 nm is achieved. The optical-to-optical conversion efficiency is up to 25.4%, and the fluctuation of the green output power is better than 2.3% in a 30 min period.

  19. Enhanced attosecond pulse generation in the vacuum ultraviolet using a two-colour driving field for high harmonic generation

    NASA Astrophysics Data System (ADS)

    Matía-Hernando, P.; Witting, T.; Walke, D. J.; Marangos, J. P.; Tisch, J. W. G.

    2018-03-01

    High-harmonic radiation in the extreme ultraviolet and soft X-ray spectral regions can be used to generate attosecond pulses and to obtain structural and dynamic information in atoms and molecules. However, these sources typically suffer from a limited photon flux. An additional issue at lower photon energies is the appearance of satellites in the time domain, stemming from insufficient temporal gating and the spectral filtering required for the isolation of attosecond pulses. Such satellites limit the temporal resolution. The use of multi-colour driving fields has been proven to enhance the harmonic yield and provide additional control, using the relative delays between the different spectral components for waveform shaping. We describe here a two-colour high-harmonic source that combines a few-cycle near-infrared pulse with a multi-cycle second harmonic pulse, with both relative phase and carrier-envelope phase stabilization. We observe strong modulations in the harmonic flux, and present simulations and experimental results supporting the suppression of satellites in sub-femtosecond pulses at 20 eV compared to the single colour field case, an important requirement for attosecond pump-probe measurements.

  20. Second Harmonic Imaging improves Echocardiograph Quality on board the International Space Station

    NASA Technical Reports Server (NTRS)

    Garcia, Kathleen; Sargsyan, Ashot; Hamilton, Douglas; Martin, David; Ebert, Douglas; Melton, Shannon; Dulchavsky, Scott

    2008-01-01

    Ultrasound (US) capabilities have been part of the Human Research Facility (HRF) on board the International Space Station (ISS) since 2001. The US equipment on board the ISS includes a first-generation Tissue Harmonic Imaging (THI) option. Harmonic imaging (HI) is the second harmonic response of the tissue to the ultrasound beam and produces robust tissue detail and signal. Since this is a first-generation THI, there are inherent limitations in tissue penetration. As a breakthrough technology, HI extensively advanced the field of ultrasound. In cardiac applications, it drastically improves endocardial border detection and has become a common imaging modality. U.S. images were captured and stored as JPEG stills from the ISS video downlink. US images with and without harmonic imaging option were randomized and provided to volunteers without medical education or US skills for identification of endocardial border. The results were processed and analyzed using applicable statistical calculations. The measurements in US images using HI improved measurement consistency and reproducibility among observers when compared to fundamental imaging. HI has been embraced by the imaging community at large as it improves the quality and data validity of US studies, especially in difficult-to-image cases. Even with the limitations of the first generation THI, HI improved the quality and measurability of many of the downlinked images from the ISS and should be an option utilized with cardiac imaging on board the ISS in all future space missions.

  1. Generation and manipulation of attosecond light pulses

    NASA Astrophysics Data System (ADS)

    Gaarde, Mette

    2006-05-01

    Attosecond pulses of light can be generated in the extremely non-linear interactions between an ultrashort, intense laser pulse and a gas of atoms, via the process of high harmonic generation [1,2]. In one approach, a number of odd harmonics of rougly equal strength are combined to form a train of sub-femtosecond pulses. If the harmonics are locked in phase to each other, the train will consist of the emission of one attosecond pulse every half cycle of the driving laser field [1,3]. It is in general not trivial to ensure that the harmonics are phase-locked as they are generated with intrinsically different phases. These phases originate in the strong field dynamics of the light-matter interaction [4].We will discuss different ways of generating and manipulating attosecond pulses via high harmonic generation. We will show how the harmonics can be phase-locked and better synchronized so as to form optimal pulse trains [3]. We will also show that it is possible to generate trains of pulses separated by a full laser cycle, by combining the driving laser field with its second harmonic [5]. The strong field continuum dynamics driven by the two-color field is very different from that of the one-color field and varies strongly with the delay between the two laser fields [6]. (1) P. M. Paul et al, Science 292, 1689 (2001).(2) M. Hentschel et al, Nature 414, 509 (2001).(3) R. Lopez-Martens et al, PRL 94, 033001 (2005).(4) P. Antoine, A. L'Huillier, and M. Lewenstein, PRL 77, 1234 (1996).(5) J. Mauritsson et al, in preparation (2006).(6) M. B. Gaarde et al, in preparation (2006).

  2. Measuring the molecular second hyperpolarizability in absorptive solutions by the third harmonic generation ratio technique.

    PubMed

    Tokarz, Danielle; Cisek, Richard; Prent, Nicole; Fekl, Ulrich; Barzda, Virginijus

    2012-11-28

    Measurement of the second hyperpolarizability (γ) values of compounds can provide insight into the molecular structural requirements for enhancement of third harmonic generation (THG) signal. A convenient method for measuring the γ of compounds in solutions was developed by implementing the THG ratio method which is based on measuring the THG intensity from two interfaces using a nonlinear optical microscope while accounting for the refractive index of solutions at the fundamental and third harmonic wavelengths. We demonstrated that the difference in refractive index at both wavelengths strongly influenced the calculation of γ values when compounds have absorption near the third harmonic or fundamental wavelength. To this end, a refractometer with the wavelength tuning range from UV to near IR was constructed, and the measured refractive indices were used to extract the γ values. The γ values of carotenoids and chlorophylls found in photosynthetic pigment-protein complexes were explored. Large differences in the refractive index at third harmonic and fundamental wavelengths for chlorophylls result in γ values that are more than two orders of magnitude larger than γ values for carotenoids as well as the sign of chlorophylls'γ values is negative while carotenoids have positive γ values. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Quantitative second-harmonic generation imaging to detect osteogenesis imperfecta in human skin samples

    NASA Astrophysics Data System (ADS)

    Adur, J.; Ferreira, A. E.; D'Souza-Li, L.; Pelegati, V. B.; de Thomaz, A. A.; Almeida, D. B.; Baratti, M. O.; Carvalho, H. F.; Cesar, C. L.

    2012-03-01

    Osteogenesis Imperfecta (OI) is a genetic disorder that leads to bone fractures due to mutations in the Col1A1 or Col1A2 genes that affect the primary structure of the collagen I chain with the ultimate outcome in collagen I fibrils that are either reduced in quantity or abnormally organized in the whole body. A quick test screening of the patients would largely reduce the sample number to be studied by the time consuming molecular genetics techniques. For this reason an assessment of the human skin collagen structure by Second Harmonic Generation (SHG) can be used as a screening technique to speed up the correlation of genetics/phenotype/OI types understanding. In the present work we have used quantitative second harmonic generation (SHG) imaging microscopy to investigate the collagen matrix organization of the OI human skin samples comparing with normal control patients. By comparing fibril collagen distribution and spatial organization, we calculated the anisotropy and texture patterns of this structural protein. The analysis of the anisotropy was performed by means of the two-dimensional Discrete Fourier Transform and image pattern analysis with Gray-Level Co-occurrence Matrix (GLCM). From these results, we show that statistically different results are obtained for the normal and disease states of OI.

  4. Investigation of superharmonic sound propagation and imaging in biological tissues in vitro.

    PubMed

    Ma, Qingyu; Zhang, Dong; Gong, Xiufen; Ma, Yong

    2006-04-01

    This article presents both theoretical and experimental studies on the superharmonic generation and its imaging in biological tissues. A superharmonic component is defined as a summation of the third-, fourth-, and fifth-order harmonics. A superharmonic signal is produced using an 8-mm-diam, 2.5-MHz planar piston source that is excited by eight-cycle, 2.5-MHz tone bursts. Axial and lateral field distributions of the superharmonic component and the second harmonic are first calculated based on the nonlinear KZK model and then compared with those experimentally determined at two different source pressures of 0.5 and 1 MPa. Results indicate that the amplitude of the superharmonic component can exceed that of the second harmonic, depending on the axial distance and the fundamental pressure amplitude. Also, the 3-dB beamwidth of the superharmonic component is about 23% narrower than that of the second harmonic. Additional experiments are performed in vitro using liver and fatty tissues in transmission mode and produced two-dimensional images using the fundamental, the second harmonic, and the superharmonic signals. Although the clinical applicability of this work still needs to be assessed, these results indicate that the superharmonic image quality is better than that of the other two images.

  5. Label-free imaging of atherosclerotic plaques using third-harmonic generation microscopy

    PubMed Central

    Small, David M.; Jones, Jason S.; Tendler, Irwin I.; Miller, Paul E.; Ghetti, Andre; Nishimura, Nozomi

    2017-01-01

    Multiphoton microscopy using laser sources in the mid-infrared range (MIR, 1,300 nm and 1,700 nm) was used to image atherosclerotic plaques from murine and human samples. Third harmonic generation (THG) from atherosclerotic plaques revealed morphological details of cellular and extracellular lipid deposits. Simultaneous nonlinear optical signals from the same laser source, including second harmonic generation and endogenous fluorescence, resulted in label-free images of various layers within the diseased vessel wall. The THG signal adds an endogenous contrast mechanism with a practical degree of specificity for atherosclerotic plaques that complements current nonlinear optical methods for the investigation of cardiovascular disease. Our use of whole-mount tissue and backward scattered epi-detection suggests THG could potentially be used in the future as a clinical tool. PMID:29359098

  6. Intercalating dyes for enhanced contrast in second-harmonic generation imaging of protein crystals

    PubMed Central

    Newman, Justin A.; Scarborough, Nicole M.; Pogranichniy, Nicholas R.; Shrestha, Rashmi K.; Closser, Richard G.; Das, Chittaranjan; Simpson, Garth J.

    2015-01-01

    The second-harmonic generation (SHG) activity of protein crystals was found to be enhanced by up to ∼1000-fold by the intercalation of SHG phores within the crystal lattice. Unlike the intercalation of fluorophores, the SHG phores produced no significant background SHG from solvated dye or from dye intercalated into amorphous aggregates. The polarization-dependent SHG is consistent with the chromophores adopting the symmetry of the crystal lattice. In addition, the degree of enhancement for different symmetries of dyes is consistent with theoretical predictions based on the molecular nonlinear optical response. Kinetics studies indicate that intercalation arises over a timeframe of several minutes in lysozyme, with detectable enhancements within seconds. These results provide a potential means to increase the overall diversity of protein crystals and crystal sizes amenable to characterization by SHG microscopy. PMID:26143918

  7. Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate.

    PubMed

    Meyn, J P; Fejer, M M

    1997-08-15

    We describe electric-field poling of fine-pitch ferroelectric domain gratings in lithium tantalate and characterization of nonlinear-optical properties by single-pass quasi-phase-matched second-harmonic generation (QPM SHG). With a 7.5-microm-period grating, the observed effective nonlinear coefficient for first-order QPM SHG of 532-nm radiation is 9 pm/V, whereas for a grating with a 2.625-microm period, 2.6 pm/V was observed for second-order QPM SHG of 325-nm radiation. These values are 100% and 55% of the theoretically expected values, respectively. We derive a temperature-dependent Sellmeier equation for lithium tantalate that is valid deeper into the UV than currently available results, based on temperature-tuning experiments at different QPM grating periods combined with refractive-index data in the literature.

  8. Pulse sequences for efficient multi-cycle terahertz generation in periodically poled lithium niobate.

    PubMed

    Ravi, Koustuban; Schimpf, Damian N; Kärtner, Franz X

    2016-10-31

    The use of laser pulse sequences to drive the cascaded difference frequency generation of high energy, high peak-power and multi-cycle terahertz pulses in cryogenically cooled (100 K) periodically poled Lithium Niobate is proposed and studied. Detailed simulations considering the coupled nonlinear interaction of terahertz and optical waves (or pump depletion), show that unprecedented optical-to-terahertz energy conversion efficiencies > 5%, peak electric fields of hundred(s) of mega volts/meter at terahertz pulse durations of hundred(s) of picoseconds can be achieved. The proposed methods are shown to circumvent laser induced damage limitations at Joule-level pumping by 1µm lasers to enable multi-cycle terahertz sources with pulse energies > 10 milli-joules. Various pulse sequence formats are proposed and analyzed. Numerical calculations for periodically poled structures accounting for cascaded difference frequency generation, self-phase-modulation, cascaded second harmonic generation and laser induced damage are introduced. The physics governing terahertz generation using pulse sequences in this high conversion efficiency regime, limitations and practical considerations are discussed. It is shown that varying the poling period along the crystal length and further reduction of absorption can lead to even higher energy conversion efficiencies >10%. In addition to numerical calculations, an analytic formulation valid for arbitrary pulse formats and closed-form expressions for important cases are presented. Parameters optimizing conversion efficiency in the 0.1-1 THz range, the corresponding peak electric fields, crystal lengths and terahertz pulse properties are furnished.

  9. Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging

    NASA Astrophysics Data System (ADS)

    Yang, Xinmai; Cleveland, Robin O.

    2005-01-01

    A time-domain numerical code (the so-called Texas code) that solves the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation has been extended from an axis-symmetric coordinate system to a three-dimensional (3D) Cartesian coordinate system. The code accounts for diffraction (in the parabolic approximation), nonlinearity and absorption and dispersion associated with thermoviscous and relaxation processes. The 3D time domain code was shown to be in agreement with benchmark solutions for circular and rectangular sources, focused and unfocused beams, and linear and nonlinear propagation. The 3D code was used to model the nonlinear propagation of diagnostic ultrasound pulses through tissue. The prediction of the second-harmonic field was sensitive to the choice of frequency-dependent absorption: a frequency squared f2 dependence produced a second-harmonic field which peaked closer to the transducer and had a lower amplitude than that computed for an f1.1 dependence. In comparing spatial maps of the harmonics we found that the second harmonic had dramatically reduced amplitude in the near field and also lower amplitude side lobes in the focal region than the fundamental. These findings were consistent for both uniform and apodized sources and could be contributing factors in the improved imaging reported with clinical scanners using tissue harmonic imaging. .

  10. Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging.

    PubMed

    Yang, Xinmai; Cleveland, Robin O

    2005-01-01

    A time-domain numerical code (the so-called Texas code) that solves the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation has been extended from an axis-symmetric coordinate system to a three-dimensional (3D) Cartesian coordinate system. The code accounts for diffraction (in the parabolic approximation), nonlinearity and absorption and dispersion associated with thermoviscous and relaxation processes. The 3D time domain code was shown to be in agreement with benchmark solutions for circular and rectangular sources, focused and unfocused beams, and linear and nonlinear propagation. The 3D code was used to model the nonlinear propagation of diagnostic ultrasound pulses through tissue. The prediction of the second-harmonic field was sensitive to the choice of frequency-dependent absorption: a frequency squared f2 dependence produced a second-harmonic field which peaked closer to the transducer and had a lower amplitude than that computed for an f1.1 dependence. In comparing spatial maps of the harmonics we found that the second harmonic had dramatically reduced amplitude in the near field and also lower amplitude side lobes in the focal region than the fundamental. These findings were consistent for both uniform and apodized sources and could be contributing factors in the improved imaging reported with clinical scanners using tissue harmonic imaging.

  11. High-efficency stable 213-nm generation for LASIK application

    NASA Astrophysics Data System (ADS)

    Wang, Zhenglin; Alameh, Kamal; Zheng, Rong

    2005-01-01

    213nm Solid-state laser technology provides an alternative method to replace toxic excimer laser in LASIK system. In this paper, we report a compact fifth harmonic generation system to generate high pulse energy 213nm laser from Q-switched Nd:YAG laser for LASIK application based on three stages harmonic generation procedures. A novel crystal housing was specifically designed to hold the three crystals with each crystal has independent, precise angular adjustment structure and automatic tuning control. The crystal temperature is well maintained at ~130°C to improve harmonic generation stability and crystal operation lifetime. An output pulse energy 35mJ is obtained at 213nm, corresponding to total conversion efficiency ~10% from 1064nm pump laser. In system verification tests, the 213nm output power drops less than 5% after 5 millions pulse shots and no significant damage appears in the crystals.

  12. Optimization of multi-color laser waveform for high-order harmonic generation

    NASA Astrophysics Data System (ADS)

    Jin, Cheng; Lin, C. D.

    2016-09-01

    With the development of laser technologies, multi-color light-field synthesis with complete amplitude and phase control would make it possible to generate arbitrary optical waveforms. A practical optimization algorithm is needed to generate such a waveform in order to control strong-field processes. We review some recent theoretical works of the optimization of amplitudes and phases of multi-color lasers to modify the single-atom high-order harmonic generation based on genetic algorithm. By choosing different fitness criteria, we demonstrate that: (i) harmonic yields can be enhanced by 10 to 100 times, (ii) harmonic cutoff energy can be substantially extended, (iii) specific harmonic orders can be selectively enhanced, and (iv) single attosecond pulses can be efficiently generated. The possibility of optimizing macroscopic conditions for the improved phase matching and low divergence of high harmonics is also discussed. The waveform control and optimization are expected to be new drivers for the next wave of breakthrough in the strong-field physics in the coming years. Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 30916011207), Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy (Grant No. DE-FG02-86ER13491), and Air Force Office of Scientific Research, USA (Grant No. FA9550-14-1-0255).

  13. Involvement of small carbon clusters in the enhancement of high-order harmonic generation of ultrashort pulses in the plasmas produced during ablation of carbon-contained nanoparticles

    NASA Astrophysics Data System (ADS)

    Ganeev, R. A.

    2017-09-01

    Various carbon-based nanoparticles ablated at the conditions suitable for efficient harmonic generation during propagation of ultrashort pulses through the laser-produced plasmas were studied. The transmission electron microscopy of ablated debris and the time-of-flight mass-spectroscopy studies of plasmas are presented. The conditions of laser ablation of the carbon-contained nanoparticles (fullerenes, graphene, carbon nanotubes, carbon nanofibers, and diamond nanoparticles) were varied to define the impeding processes restricting the harmonic yield from such laser-produced plasmas. These studies show that the enhancement of harmonics during ablation of nanoparticle targets was related with the appearance of small carbon clusters at the moment of propagation of the ultrashort laser pulses though such plasmas.

  14. Passively Q-switched Nd:YAG/Cr(4+):YAG bonded crystal microchip laser operating at 1112  nm and its application for second-harmonic generation.

    PubMed

    Fu, S G; Ouyang, X Y; Liu, X J

    2015-10-10

    A passively Q-switched Nd:YAG/Cr4+:YAG microchip laser operating at 1112 nm is demonstrated. Under a pump power of 5.5 W, a maximum average output power of 623 mW was obtained with T=6% output coupler, corresponding to an optical-to-optical conversion efficiency of 11.3% and a slope efficiency of 19.5%. The minimum pulse width was 2.8 ns, the pulse energy and peak power were 39.3 μJ and 14 kW, respectively. Additionally, based on the 1112 nm laser, a 230 mW 556 nm green-yellow laser was achieved within an LBO crystal.

  15. Growth and characterization of hexamethylenetetramine crystals grown from solution

    NASA Astrophysics Data System (ADS)

    Babu, B.; Chandrasekaran, J.; Balaprabhakaran, S.

    2014-06-01

    Organic nonlinear optical single crystals of hexamethylenetetramine (HMT; 10 × 10 × 5 mm3) were prepared by crystallization from methanol solution. The grown crystals were subjected to various characterization techniques such as single crystal XRD, powder XRD, UV-Vis and electrical studies. Single crystal XRD analysis confirmed the crystalline structure of the grown crystals. Their crystalline nature was also confirmed by powder XRD technique. The optical transmittance property was identified from UV-Vis spectrum. Dielectric measurements were performed as a function of frequency at different temperatures. DC conductivity and photoconductivity studies were also carried out for the crystal. The powder second harmonic generation efficiency (SHG) of the crystal was measured using Nd:YAG laser and the efficiency was found to be two times greater than that of potassium dihydrogen phosphate (KDP).

  16. Nonlinear Time Series Analysis in the Absence of Strong Harmonics

    NASA Astrophysics Data System (ADS)

    Stine, Peter; Jevtic, N.

    2010-05-01

    Nonlinear time series analysis has successfully been used for noise reduction and for identifying long term periodicities in variable star light curves. It was thought that good noise reduction could be obtained when a strong fundamental and second harmonic are present. We show that, quite unexpectedly, this methodology for noise reduction can be efficient for data with very noisy power spectra without a strong fundamental and second harmonic. Not only can one obtain almost two orders of magnitude noise reduction of the white noise tail, insight can also be gained into the short time scale of organized behavior. Thus, we are able to obtain an estimate of this short time scale, which is on the order of 1.5 hours in the case of a variable white dwarf.

  17. Diode end pumped laser and harmonic generator using same

    NASA Technical Reports Server (NTRS)

    Byer, Robert L. (Inventor); Dixon, George J. (Inventor); Kane, Thomas J. (Inventor)

    1988-01-01

    A second harmonic, optical generator is disclosed in which a laser diode produces an output pumping beam which is focused by means of a graded, refractive index rod lens into a rod of lasant material, such as Nd:YAG, disposed within an optical resonator to pump the lasant material and to excite the optical resonator at a fundamental wavelength. A non-linear electro-optic material such as MgO:LiNbO.sub.3 is coupled to the excited, fundamental mode of the optical resonator to produce a non-linear interaction with the fundamental wavelength producing a harmonic. In one embodiment, the gain medium and the non-linear material are disposed within an optical resonator defined by a pair of reflectors, one of which is formed on a face of the gain medium and the second of which is formed on a face of the non-linear medium. In another embodiment, the non-linear, electro-optic material is doped with the lasant ion such that the gain medium and the non-linear doubling material are co-extensive in volume. In another embodiment, a non-linear, doubling material is disposed in an optical resonator external of the laser gai medium for improved stability of the second harmonic generation process. In another embodiment, the laser gain medium andthe non-linear material are bonded together by means of an optically transparent cement to form a mechanically stable, monolithic structure. In another embodiment, the non-linear material has reflective faces formed thereon to define a ring resonator to decouple reflections from the non-linear medium back to the gain medium for improved stability.

  18. NONLINEAR AND FIBER OPTICS: Conversion of pulsed laser radiation from the 9.3-9.6 μm range to the second harmonic in ZnGeP2 crystals

    NASA Astrophysics Data System (ADS)

    Andreev, Yu M.; Bykanov, A. N.; Gribenyukov, A. I.; Zuev, V. V.; Karyshev, V. D.; Kisletsov, A. V.; Kovalev, I. O.; Konov, Vitalii I.; Kuz'min, G. P.; Nesterenko, A. A.; Osorgin, A. E.; Starodumov, Yu M.; Chapliev, N. I.

    1990-04-01

    A pulsed TEA CO2 laser was used in an investigation of the influence of the pump radiation parameters (mode composition, wavelength, pulse duration), of the focusing conditions, of the properties of the material (absorption coefficient), and of the operating conditions (temperature) on the efficiency of conversion to the second harmonic and on the angular dependences of phase matching in ZnGeP2 crystals. The calculated results were found to be in good agreement with the experimental data.

  19. Real-time and sub-wavelength ultrafast coherent diffraction imaging in the extreme ultraviolet.

    PubMed

    Zürch, M; Rothhardt, J; Hädrich, S; Demmler, S; Krebs, M; Limpert, J; Tünnermann, A; Guggenmos, A; Kleineberg, U; Spielmann, C

    2014-12-08

    Coherent Diffraction Imaging is a technique to study matter with nanometer-scale spatial resolution based on coherent illumination of the sample with hard X-ray, soft X-ray or extreme ultraviolet light delivered from synchrotrons or more recently X-ray Free-Electron Lasers. This robust technique simultaneously allows quantitative amplitude and phase contrast imaging. Laser-driven high harmonic generation XUV-sources allow table-top realizations. However, the low conversion efficiency of lab-based sources imposes either a large scale laser system or long exposure times, preventing many applications. Here we present a lensless imaging experiment combining a high numerical aperture (NA = 0.8) setup with a high average power fibre laser driven high harmonic source. The high flux and narrow-band harmonic line at 33.2 nm enables either sub-wavelength spatial resolution close to the Abbe limit (Δr = 0.8λ) for long exposure time, or sub-70 nm imaging in less than one second. The unprecedented high spatial resolution, compactness of the setup together with the real-time capability paves the way for a plethora of applications in fundamental and life sciences.

  20. Growth, properties, and applications of potassium niobate single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizell, G.; Fay, W.R.; Alekel, T. III

    1994-12-31

    Production refinements and pragmatic optical properties of the frequency converter crystal KNbO{sub 3} (KN) are highlighted regarding its commercialization. The growth, morphological orientation, and processing of KN crystals into devices are outlined. Passive absorption data are presented that define the effective window range for KN devices. An absorption band at 2.85 {mu}m is attributed to the presence of OH groups in the crystal, and its vibrational strength varies with crystal growth conditions and incident polarized light orientation. Although blue light induced infrared absorption (BLIRA) can reduce second harmonic generation (SHG) efficiency at high power, single-pass conversion efficiencies of 1%/W{center_dot}cm maymore » be achieved with incident fundamental powers of 10 W. The ability of KN to non-critically phasematch by temperature tuning provides blue-green wavelengths; together with critical angle-tuned phasematching, the entire visible spectrum may be accessed with efficient SHG conversion.« less

  1. Gyroharmonic conversion experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirshfield, J. L.; LaPointe, M. A.; Yale University, New Haven, Connecticut 06511

    1999-05-07

    Generation of high power microwaves has been observed in experiments where a 250-350 kV, 20-30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allowsmore » efficient 20 GHz co-generation within the CARA waveguide itself.« less

  2. Ultrafast Optical Modulation of Second- and Third-Harmonic Generation from Cut-Disk-Based Metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sartorello, Giovanni; Olivier, Nicolas; Zhang, Jingjing

    2016-08-17

    We design and fabricate a metasurface composed of gold cut-disk resonators that exhibits a strong coherent nonlinear response. We experimentally demonstrate all-optical modulation of both second- and third-harmonic signals on a subpicosecond time scale. Pump probe experiments and numerical models show that the observed effects are due to the ultrafast response of the electronic excitations in the metal under external illumination. These effects pave the way for the development of novel active nonlinear metasurfaces with controllable and switchable coherent nonlinear response.

  3. High-resolution frequency domain second harmonic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Su, Jianping; Tomov, I. V.; Jiang, Yi; Chen, Zhongping

    2007-02-01

    We used continuum generated in an 8.5 cm long fiber by a femtosecond Yb fiber laser to improve threefold the axial resolution of frequency domain SH-OCT to 12μm. The acquisition time was shortened by more than two orders of magnitude compared to time domain SH-OCT. The system was applied to image biological tissue of fish scales, pig leg tendon and rabbit eye sclera. Highly organized collagen fibrils can be visualized in the recorded images. Polarization dependence on second harmonic has been used to obtain polarization resolved images.

  4. Current studies and improvements on a single frequency blue source generated by second harmonic from IR

    NASA Astrophysics Data System (ADS)

    Khademian, Ali; Jampani, Sai Lakshman; Truscott, Matthew; Jayaraj, Anooja; Shiner, David

    2017-04-01

    We have reported 81.5% efficiency in generating 500 mW of blue at 486 nm by second harmonic generation (SHG) from the IR, using a periodically poled Lithium Tantalate (PPSLT) crystal. Initially a total cavity loss of 0.65% was observed. We developed techniques for careful measurement of individual losses such as scattering and absorption in the crystal and mirrors, polarization misalignment caused by the crystal and back reflection from the periodically poled boundaries of crystal. We have replaced the crystal with a tilted periodically poled crystal. This eliminated the reflection loss, but scattering in the crystal, we speculate from the MgO doping, is still causing enough feedback to destabilize the IR source. We are also replacing cavity mirrors with ultra-low loss sputtered mirrors to minimize their contribution to loss. Crystal lifetime at different blue power levels is being investigated. In our setup a mixed signal processer (MSP) is used for cavity locking and temperature stabilizing. Once MSP is programed by a computer interface, it can be installed inside the cavity housing, making the laser source standalone and self-sufficient. We have been able to stabilize and lock the laser cavity length, the temperature of the IR laser source, the temperature of fiber Bragg grating (FBG), and the temperature of the nonlinear crystal using the MSP, matching the performance of high end commercial temperature controllers and lock-in amplifiers. Our recent progress and improvements will be presented. This work is supported by NSF award 1404498.

  5. Dynamical centrosymmetry breaking — A novel mechanism for second harmonic generation in graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, David N.; Marini, Andrea; Biancalana, Fabio, E-mail: f.biancalana@hw.ac.uk

    2017-03-15

    We discover an unusual phenomenon that occurs when a graphene monolayer is illuminated by a short and intense pulse at normal incidence. Due to the pulse-induced oscillations of the Dirac cones, a dynamical breaking of the layer’s centrosymmetry takes place, leading to the generation of second harmonic waves. We prove that this result can only be found by using the full Dirac equation and show that the widely used semiconductor Bloch equations fail to reproduce this and some other important physics of graphene. Our results open new windows in the understanding of nonlinear light-matter interactions in a wide variety ofmore » new 2D materials with a gapped or ungapped Dirac-like dispersion.« less

  6. Quantitative analysis on collagen of dermatofibrosarcoma protuberans skin by second harmonic generation microscopy.

    PubMed

    Wu, Shulian; Huang, Yudian; Li, Hui; Wang, Yunxia; Zhang, Xiaoman

    2015-01-01

    Dermatofibrosarcoma protuberans (DFSP) is a skin cancer usually mistaken as other benign tumors. Abnormal DFSP resection results in tumor recurrence. Quantitative characterization of collagen alteration on the skin tumor is essential for developing a diagnostic technique. In this study, second harmonic generation (SHG) microscopy was performed to obtain images of the human DFSP skin and normal skin. Subsequently, structure and texture analysis methods were applied to determine the differences in skin texture characteristics between the two skin types, and the link between collagen alteration and tumor was established. Results suggest that combining SHG microscopy and texture analysis methods is a feasible and effective method to describe the characteristics of skin tumor like DFSP. © Wiley Periodicals, Inc.

  7. Second harmonic generation study of malachite green adsorption at the interface between air and an electrolyte solution: observing the effect of excess electrical charge density at the interface.

    PubMed

    Song, Jinsuk; Kim, Mahn Won

    2010-03-11

    Understanding the differential adsorption of ions at the interface of an electrolyte solution is very important because it is closely related, not only to the fundamental aspects of biological systems, but also to many industrial applications. We have measured the excess interfacial negative charge density at air-electrolyte solution interfaces by using resonant second harmonic generation of oppositely charged probe molecules. The excess charge density increased with the square root of the bulk electrolyte concentration. A new adsorption model that includes the electrostatic interaction between adsorbed molecules is proposed to explain the measured adsorption isotherm, and it is in good agreement with the experimental results.

  8. Ex-vivo multiphoton analysis of rabbit corneal wound healing following photorefractive keratectomy

    NASA Astrophysics Data System (ADS)

    Wang, Tsung-Jen; Lo, Wen; Dong, Chen-Yuan; Hu, Fung-Rong

    2008-02-01

    The aim of this study is to assess the application of multiphoton autofluorescence and second harmonic generation (SHG) microscopy for investigating corneal wound healing after high myopic (-10.0D) photorefractive keratectomy (PRK) procedures on the rabbit eyes. The effect of PRK on the morphology and distribution of keratocytes were investigated using multiphoton excited autofluorescence imaging, while the effect of PRK on the arrangement of collagen fibers was monitored by second-harmonic generation imaging. Without histological processing, multiphoton microscopy is able to characterize corneal damage and wound healing from PRK. Our results show that this technique has potential application in the clinical evaluation of corneal damage due to refractive surgery, and may be used to study the unwanted side effects of these procedures.

  9. Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy

    NASA Astrophysics Data System (ADS)

    Brown, R. Malcom; Millard, Andrew C.; Campagnola, Paul J.

    2003-11-01

    The macromolecular structure of purified cellulose samples is studied by second-harmonic generation (SHG) imaging microscopy. We show that the SHG contrast in both Valonia and Acetobacter cellulose strongly resembles that of collagen from animal tissues, both in terms of morphology and polarization anisotropy. Polarization analysis shows that microfibrils in each lamella are highly aligned and ordered and change directions by 90° in adjacent lamellae. The angular dependence of the SHG intensity fits well to a cos2 θ distribution, which is characteristic of the electric dipole interaction. Enzymatic degradation of Valonia fibers by cellulase is followed in real time by SHG imaging and results in exponential decay kinetics, showing that SHG imaging microscopy is ideal for monitoring dynamics in biological systems.

  10. Second harmonic generation imaging of the collagen in myocardium for atrial fibrillation diagnosis

    NASA Astrophysics Data System (ADS)

    Tsai, Ming-Rung; Chiou, Yu-We; Sun, Chi-Kuang

    2009-02-01

    Myocardial fibrosis, a common sequela of cardiac hypertrophy, has been shown to be associated with arrhythmias in experimental models. Some research has indicated that myocardial fibrosis plays an important role in predisposing patients to atrial fibrillation. Second harmonic generation (SHG) is an optically nonlinear coherent process to image the collagen network. In this presentation, we observe the SHG images of the collagen matrix in atrial myocardium and we analyzed of collagen fibers arrangement by using Fourier-transform analysis. Moreover, comparing the SHG images of the collagen fibers in atrial myocardium between normal sinus rhythm (NSR) and atrial fibrillation (AF), our result indicated that it is possible to realize the relation between myocardial fibrosis and AF.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, B. H.; Applied Science and Technology, University of California, Berkeley, California 94720; Tilborg, J. van

    Solid-based surface high-harmonic generation from a tape is experimentally studied. By operating at mildly relativistic normalized laser strengths a{sub 0}≲0.2, harmonics up to the 17th order are efficiently produced in the coherent wake emission (CWE) regime. CWE pulse properties, such as divergence, energy, conversion efficiency, and spectrum, are investigated for various tape materials and drive laser conditions. A clear correlation between surface roughness and harmonic beam divergence is found. At the measured pulse properties for the 15th harmonic (conversion efficiency ∼6.5×10{sup −7}, divergence ∼7−15 mrad), the 100-mJ-level drive laser produces several MWs of extreme ultra-violet pulses. The spooling tape configurationmore » enables multi-Hz operation over thousands of shots, making this source attractive as a seed to the few-Hz laser-plasma-accelerator-driven free-electron laser (FEL). Models indicate that these CWE pulses with MW level powers are sufficient for seed-induced bunching and FEL gain.« less

  12. Efficient blue emission of ytterbium-doped Sr5(PO4)3F under quasi-three-level intracavity pumping

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Cao, G. H.

    2012-02-01

    We report an Yb:Sr5(PO4)3F (Yb:S-FAP) laser emitting at 985 nm intracavity pumped by a 912 nm diode-pumped Nd:GdVO4 laser. A 808 nm diode laser is used to pump the Nd:GdVO4 crystal emitting at 912 nm, and the Yb:S-FAP laser emitting at 985 nm intracavity pumped at 912 nm. With incident pump power of 17.5 W, intracavity second harmonic generation has been demonstrated with a power of 131 mW at 492.5 nm by using a LBO nonlinear crystal.

  13. Coherent soft X-ray high-order harmonics using tight-focusing laser pulses in the gas mixture.

    PubMed

    Lu, Faming; Xia, Yuanqin; Zhang, Sheng; Chen, Deying; Zhao, Yang; Liu, Bin

    2014-01-01

    We experimentally study the harmonics from a Xe-He gas mixture using tight-focusing femtosecond laser pulses. The spectrum in the mixed gases exhibits an extended cutoff region from the harmonic H21 to H27. The potential explanation is that the harmonics photons from Xe contribute the electrons of He atoms to transmit into the excited-state. Therefore, the harmonics are emitted from He atoms easily. Furthermore, we show that there are the suppressed harmonics H15 and H17 in the mixed gases. The underlying mechanism is the destructive interference between harmonics generated from different atoms. Our results indicate that HHG from Xe-He gas mixture is an efficient method of obtaining the coherent soft X-ray source.

  14. Handling Nonlinearities in ELF/VLF Generation Using Modulated Heating at HAARP

    NASA Astrophysics Data System (ADS)

    Jin, G.; Spasojevic, M.; Cohen, M.; Inan, U. S.

    2011-12-01

    George Jin Maria Spasojevic Morris Cohen Umran Inan Stanford University Modulated HF heating of the D-region ionosphere near the auroral electrojet can generate extremely low frequency (ELF) waves in the kilohertz range. This process is nonlinear and generates harmonics at integer multiples of the ELF modulation frequency. The nonlinear distortion has implications for any communications applications since the harmonics contain a substantial fraction of the signal power and use up bandwidth. We examine two techniques for handling the nonlinearity. First we modulate the HF heating with a non-sinusoidal envelope designed to create a sinusoidal change in the Hall conductivity at a particular altitude in the ionosphere to minimize any generated harmonics. The modulation waveform is generated by inverting a numerical HF heating model, starting from the desired conductivity time series, and obtaining the HF power envelope that will result in that conductivity. The second technique attempts to use the energy in the harmonics to improve bit error rates when digital modulation is applied to the ELF carrier. In conventional quadrature phase-shift keying (QPSK), where a ELF carrier is phase-shifted by 0°, 90°, 180°, and 270° in order to transmit a pair of bits, the even harmonics cannot distinguish between the four possible shifts. By using different phase values, all the energy in the harmonics can contribute to determining the phase of the carrier and thus improve the bit error rate.

  15. Mid-IR femtosecond frequency conversion by soliton-probe collision in phase-mismatched quadratic nonlinear crystals.

    PubMed

    Liu, Xing; Zhou, Binbin; Guo, Hairun; Bache, Morten

    2015-08-15

    We show numerically that ultrashort self-defocusing temporal solitons colliding with a weak pulsed probe in the near-IR can convert the probe to the mid-IR. A near-perfect conversion efficiency is possible for a high effective soliton order. The near-IR self-defocusing soliton can form in a quadratic nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-mismatched) second-harmonic generation, and the mid-IR converted wave is formed in the anomalous dispersion regime between λ=2.2-2.4  μm as a resonant dispersive wave. This process relies on nondegenerate four-wave mixing mediated by an effective negative cross-phase modulation term caused by cascaded soliton-probe sum-frequency generation.

  16. Continuous-wave Nd:YVO4/KTiOPO4 green laser at 542 nm under diode pumping into the emitting level

    NASA Astrophysics Data System (ADS)

    Liu, J. H.

    2012-10-01

    We report a green laser at 542 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1086 nm Nd:YVO4 laser under 880 nm diode pumping into the emitting level 4 F 3/2. A KTiOPO4 (KTP) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 14.5 W, as high as 1.33 W of CW output power at 542 nm is achieved. The optical-to-optical conversion efficiency is up to 9.2%, and the fluctuation of the green output power was better than 3.8% in the given 30 min.

  17. From SHG to mid-infrared SPDC generation in strained silicon waveguides

    NASA Astrophysics Data System (ADS)

    Castellan, Claudio; Trenti, Alessandro; Mancinelli, Mattia; Marchesini, Alessandro; Ghulinyan, Mher; Pucker, Georg; Pavesi, Lorenzo

    2017-08-01

    The centrosymmetric crystalline structure of Silicon inhibits second order nonlinear optical processes in this material. We report here that, by breaking the silicon symmetry with a stressing silicon nitride over-layer, Second Harmonic Generation (SHG) is obtained in suitably designed waveguides where multi-modal phase-matching is achieved. The modeling of the generated signal provides an effective strain-induced second order nonlinear coefficient of χ(2) = (0.30 +/- 0.02) pm/V. Our work opens also interesting perspectives on the reverse process, the Spontaneous Parametric Down Conversion (SPDC), through which it is possible to generate mid-infrared entangled photon pairs.

  18. Noncollinear generation of optical spatiotemporal solitons and application to ultrafast digital logic

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Beckwitt, Kale; Wise, Frank

    2000-05-01

    We demonstrate theoretically and experimentally that spatiotemporal solitons can be generated through noncollinear second-harmonic generation. The resulting Y geometry could be used to implement an optical AND gate with ultrafast, high-contrast operation but without sensitivity to the phases of the input pulses.

  19. Development of ultrasound transducer diffractive field theory for nonlinear propagation-based imaging

    NASA Astrophysics Data System (ADS)

    Kharin, Nikolay A.

    2000-04-01

    In nonlinear ultrasound imaging the images are formed using the second harmonic energy generated due to the nonlinear nature of finite amplitude propagation. This propagation can be modeled using the KZK wave equation. This paper presents further development of nonlinear diffractive field theory based on the KZK equation and its solution by means of the slowly changing profile method for moderate nonlinearity. The analytical expression for amplitudes and phases of sum frequency wave are obtained in addition to the second harmonic wave. Also, the analytical expression for the relative curvature of the wave fronts of fundamental and second harmonic signals are derived. The media with different nonlinear properties and absorption coefficients were investigated to characterize the diffractive field of the transducer at medical frequencies. All expressions demonstrate good agreement with experimental results. The expressions are novel and provide an easy way for prediction of amplitude and phase structure of nonlinearly distorted field of a transducer. The sum frequency signal technique could be implemented as well as second harmonic technique to improve the quality of biomedical images. The results obtained are of importance for medical diagnostic ultrasound equipment design.

  20. Measuring the effect of a Western diet on liver tissue architecture by FLIM autofluorescence and harmonic generation microscopy

    PubMed Central

    Ranjit, Suman; Dvornikov, Alexander; Dobrinskikh, Evgenia; Wang, Xiaoxin; Luo, Yuhuan; Levi, Moshe; Gratton, Enrico

    2017-01-01

    The phasor approach to auto-fluorescence lifetime imaging was used to identify and characterize a long lifetime species (LLS) (~7.8 ns) in livers of mice fed with a Western diet. The size of the areas containing this LLS species depends on the type of diet and the size distribution shows Western diet has much larger LLS sizes. Combination of third harmonic generation images with FLIM identified the LLS species with fat droplets and the droplet size distribution was estimated. Second harmonic generation microscopy combined with phasor FLIM shows that there is an increase in fibrosis with a Western diet. A new decomposition in three components of the phasor plot shows that a Western diet is correlated with a higher fraction of free NADH, signifying more reducing condition and more glycolytic condition. Multiparametric analysis of phasor distribution shows that from the distribution of phasor points, a Western diet fed versus a low fat diet fed samples of mice livers can be separated. The phasor approach for the analysis of FLIM images of autofluorescence in liver specimens can result in discovery of new fluorescent species and then these new fluorescent species can help assess tissue architecture. Finally integrating FLIM and second and third harmonic analysis provides a measure of the advancement of fibrosis as an effect of diet. PMID:28717559

  1. Simultaneous Measurements of Harmonic Waves at Fatigue-Cracked Interfaces

    NASA Astrophysics Data System (ADS)

    Hyunjo, Jeong; Dan, Barnard

    2011-08-01

    Nonlinear harmonic waves generated at cracked interfaces are investigated theoretically and experimentally. A compact tension specimen is fabricated and the amplitude of the transmitted wave is analyzed as a function of position along the fatigued crack surface. In order to measure as many nonlinear harmonic components as possible, broadband lithium niobate (LiNbO3) transducers are employed together with a calibration technique for making absolute amplitude measurements with fluid-coupled receiving transducers. Cracked interfaces are shown to generate high acoustic nonlinearities, which are manifested as harmonics in the power spectrum of the received signal. The first subharmonic f/2 and the second harmonic 2f waves are found to be dominant nonlinear components for an incident toneburst signal of frequency f. To explain the observed nonlinear behavior, a partially closed crack is modeled by planar half interfaces that can account for crack parameters, such as crack opening displacement and crack surface conditions. The simulation results show reasonable agreement with the experimental results.

  2. Polarization-resolved second-harmonic generation imaging for liver fibrosis assessment without labeling

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Pan, Shiying; Zheng, Wei; Huang, Zhiwei

    2013-10-01

    We apply the polarization-resolved second-harmonic generation (PR-SHG) microscopy to investigate the changes of collagen typings (type I vs type III) and collagen fibril orientations of liver tissue in bile-duct-ligation (BDL) rat models. The PR-SHG results show that the second-order susceptibility tensor ratios (χ31/χ15 and χ33/χ15) of collagen fibers increase with liver fibrotic progression after BDL surgery, reflecting an increase of the type III collagen component with the severity of liver fibrosis; and the square root of the collagen type III to type I ratio linearly correlates (R2 = 0.98) with histopathological scores. Furthermore, the collagen fibril orientations become more random with liver fibrosis transformation as compared to normal liver tissue. This work demonstrates that PR-SHG microscopy has the potential for label-free diagnosis and characterization of liver fibrosis based on quantitative analysis of collagen typings and fibril orientations.

  3. Sensitivity of acoustic nonlinearity parameter to the microstructural changes in cement-based materials

    NASA Astrophysics Data System (ADS)

    Kim, Gun; Kim, Jin-Yeon; Kurtis, Kimberly E.; Jacobs, Laurence J.

    2015-03-01

    This research experimentally investigates the sensitivity of the acoustic nonlinearity parameter to microcracks in cement-based materials. Based on the second harmonic generation (SHG) technique, an experimental setup using non-contact, air-coupled detection is used to receive the consistent Rayleigh surface waves. To induce variations in the extent of microscale cracking in two types of specimens (concrete and mortar), shrinkage reducing admixture (SRA), is used in one set, while a companion specimen is prepared without SRA. A 50 kHz wedge transducer and a 100 kHz air-coupled transducer are implemented for the generation and detection of nonlinear Rayleigh waves. It is shown that the air-coupled detection method provides more repeatable fundamental and second harmonic amplitudes of the propagating Rayleigh waves. The obtained amplitudes are then used to calculate the relative nonlinearity parameter βre, the ratio of the second harmonic amplitude to the square of the fundamental amplitude. The experimental results clearly demonstrate that the nonlinearity parameter (βre) is highly sensitive to the microstructural changes in cement-based materials than the Rayleigh phase velocity and attenuation and that SRA has great potential to avoid shrinkage cracking in cement-based materials.

  4. Characterization of second and third order optical nonlinearities of ZnO sputtered films

    NASA Astrophysics Data System (ADS)

    Larciprete, M. C.; Haertle, D.; Belardini, A.; Bertolotti, M.; Sarto, F.; Günter, P.

    2006-03-01

    We measured the second and third order optical nonlinearity of zinc oxide, grown on glass substrates by the ion beam sputtering technique. Second and third harmonic generation measurements were performed by means of the rotational Maker fringes technique for different polarization configurations, thus allowing the determination of all non-zero components of the second order susceptibility at three different fundamental beam wavelengths, i.e., 1064 nm, 1542 nm and 1907 nm. The dispersion of the nonlinear optical coefficients has been evaluated, while the nonlinear optical coefficients were found to range between 0.9 pm/V and 0.16 pm/V for d33, 0.53 pm/V and 0.08 pm/V for |d15|, 0.31 and 0.08 pm/V for |d31|, with increasing wavelength. Finally, one third order susceptibility, χijkl (3), has been determined by third harmonic generation measurements at a fundamental wavelength λ=1907 nm and a value for χ3333 (3) of 185×10-20 m2/V2 has been found.

  5. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    NASA Astrophysics Data System (ADS)

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.

    2015-11-01

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  6. Broadband sum-frequency generation using d33 in periodically poled LiNbO3 thin film in the telecommunications band.

    PubMed

    Li, Guangzhen; Chen, Yuping; Jiang, Haowei; Chen, Xianfeng

    2017-03-01

    We demonstrate the first, to the best of our knowledge, type-0 broadband sum-frequency generation (SFG) based on single-crystal periodically poled LiNbO3 (PPLN) thin film. The broad bandwidth property was largely tuned from mid-infrared region to the telecommunications band by engineering the thickness of PPLN from bulk crystal to nanoscale. It provides SFG a solution with both broadband and high efficiency by using the highest nonlinear coefficient d33 instead of d31 in type-I broadband SFG or second-harmonic generation. The measured 3 dB upconversion bandwidth is about 15.5 nm for a 4 cm long single crystal at 1530 nm wavelength. It can find applications in chip-scale spectroscopy, quantum information processing, LiNbO3-thin-film-based microresonator and optical nonreciprocity devices, etc.

  7. Anisotropic high-harmonic generation in bulk crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yong Sing; Reis, David A.; Ghimire, Shambhu

    2016-11-21

    The microscopic valence electron density determines the optical, electronic, structural and thermal properties of materials. However, current techniques for measuring this electron charge density are limited: for example, scanning tunnelling microscopy is confined to investigations at the surface, and electron diffraction requires very thin samples to avoid multiple scattering. Therefore, an optical method is desirable for measuring the valence charge density of bulk materials. Since the discovery of high-harmonic generation (HHG) in solids, there has been growing interest in using HHG to probe the electronic structure of solids. Here, using single-crystal MgO, we demonstrate that high-harmonic generation in solids ismore » sensitive to interatomic bonding. We find that harmonic efficiency is enhanced (diminished) for semi-classical electron trajectories that connect (avoid) neighbouring atomic sites in the crystal. Finally, these results indicate the possibility of using materials’ own electrons for retrieving the interatomic potential and thus the valence electron density, and perhaps even wavefunctions, in an all-optical setting.« less

  8. Robust generation of Fourier-synthesized laser fields and their estimation of the optical phase by using quantum control of molecular tunneling ionization

    NASA Astrophysics Data System (ADS)

    Yoshida, Tsuyoshi; Saito, Naoaki; Ohmura, Hideki

    2018-03-01

    Intense (5.0 × 1012 W cm-2) nanosecond Fourier-synthesized laser fields consisting of fundamental, second-, third-, and fourth-harmonic light generated by an interferometer-free Fourier-synthesized laser field generator induce orientation-selective ionization based on directionally asymmetric molecular tunneling ionization (TI). The laser field generator ensures adjustment-free operation, high stability, and high reproducibility. Phase-sensitive, orientation-selective molecular TI provides a simple way to estimate the relative phase differences between the fundamental light and each harmonic by data-fitting analysis. This application of Fourier-synthesized laser fields will facilitate not only lightwave engineering but also the control of matter.

  9. Ultraviolet surprise: Efficient soft x-ray high-harmonic generation in multiply ionized plasmas.

    PubMed

    Popmintchev, Dimitar; Hernández-García, Carlos; Dollar, Franklin; Mancuso, Christopher; Pérez-Hernández, Jose A; Chen, Ming-Chang; Hankla, Amelia; Gao, Xiaohui; Shim, Bonggu; Gaeta, Alexander L; Tarazkar, Maryam; Romanov, Dmitri A; Levis, Robert J; Gaffney, Jim A; Foord, Mark; Libby, Stephen B; Jaron-Becker, Agnieszka; Becker, Andreas; Plaja, Luis; Murnane, Margaret M; Kapteyn, Henry C; Popmintchev, Tenio

    2015-12-04

    High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Because of reduced quantum diffusion of the radiating electron wave function, the emission from each species is highest when a short-wavelength ultraviolet driving laser is used. However, phase matching--the constructive addition of x-ray waves from a large number of atoms--favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams in the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidth-limited pulse trains of ~100 attoseconds. Copyright © 2015, American Association for the Advancement of Science.

  10. The Ultraviolet Surprise. Efficient Soft X-Ray High Harmonic Generation in Multiply-Ionized Plasmas

    DOE PAGES

    Popmintchev, Dimitar; Hernandez-Garcia, Carlos; Dollar, Franklin; ...

    2015-12-04

    High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Reduced quantum diffusion of the radiating electron wave function results in emission from each species which is highest when a short-wavelength ultraviolet driving laser is used. But, phase matching—the constructive addition of x-ray waves from a large number of atoms—favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams inmore » the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidth–limited pulse trains of ~100 attoseconds.« less

  11. High-harmonic spectroscopy of ultrafast many-body dynamics in strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Silva, R. E. F.; Blinov, Igor V.; Rubtsov, Alexey N.; Smirnova, O.; Ivanov, M.

    2018-05-01

    We bring together two topics that, until now, have been the focus of intense but non-overlapping research efforts. The first concerns high-harmonic generation in solids, which occurs when an intense light field excites a highly non-equilibrium electronic response in a semiconductor or a dielectric. The second concerns many-body dynamics in strongly correlated systems such as the Mott insulator. We show that high-harmonic generation can be used to time-resolve ultrafast many-body dynamics associated with an optically driven phase transition, with accuracy far exceeding one cycle of the driving light field. Our work paves the way for time-resolving highly non-equilibrium many-body dynamics in strongly correlated systems, with few femtosecond accuracy.

  12. On-target diagnosing of few-cycle pulses by high-order-harmonic generation

    NASA Astrophysics Data System (ADS)

    Brambila, Danilo S.; Husakou, Anton; Ivanov, Misha; Zhavoronkov, Nickolai

    2017-12-01

    We propose an approach to determine the residual phase distortion directly in the interaction region of few-cycle laser radiation with a gaseous target. We describe how the spectra of the generated high harmonics measured as a function of externally introduced dispersion into the driving few-cycle laser pulse can be used to decode small amounts of second- and third-order spectral phase, including the sign. The diagnosis is based on the analysis of several key features in the high-harmonic spectrum: the depth of spectral modulation, the position of the cutoff, and the symmetry of the spectrum with respect to the introduced dispersion. The approach is applicable to pulses without carrier-envelope phase (CEP) stabilization. Surprisingly, we find that for nearly-single-cycle pulses with nonstabilized CEP, deep spectral modulations in the harmonic spectra emerge for positively rather than negatively chirped pulses, in contrast to the case of CEP-stabilized pulses.

  13. Absolute and relative nonlinear optical coefficients of KDP, KD(asterisk)P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation

    NASA Technical Reports Server (NTRS)

    Eckardt, Robert C.; Byer, Robert L.; Masuda, Hisashi; Fan, Yuan Xuan

    1990-01-01

    Both absolute and relative nonlinear optical coefficients of six nonlinear materials measured by second-harmonic generation are discussed. A single-mode, injection-seeded, Q-switched Nd:YAG laser with spatially filtered output was used to generate the 1.064-micron fundamental radiation. The following results were obtained: d36(KDP) = 0.38 pm/V, d36(KD/asterisk/P) = 0.37 pm/V, (parallel)d22(BaB2O4)(parallel) = 2.2 pm/V, d31(LiIO3) = -4.1 pm/V, d31(5 percentMgO:MgO LiNbO3) = -4.7 pm/V, and d(eff)(KTP) = 3.2 pm/V. The accuracy of these measurements is estimated to be better than 10 percent.

  14. Monitoring the interfacial electric field in pure and doped SrTiO3 surfaces by means of phase-resolved optical second harmonic generation

    NASA Astrophysics Data System (ADS)

    Rubano, Andrea; Mou, Sen; Paparo, Domenico

    2018-05-01

    Oxides and new functional materials such as oxide-based hetero-structures are very good candidates to achieve the goal of the next generation electronics. One of the main features that rules the electronic behavior of these compounds is the interfacial electric field which confines the charge carriers to a quasi-two-dimensional space region. The sign of the confined charge clearly depends on the electric field direction, which is however a very elusive quantity, as most techniques can only detect its absolute value. Even more valuable would be to access the sign of the interfacial electric field directly during the sample growth, being thus able to optimize the growth conditions directly looking at the feature of interest. For this aim, solid and reliable sensors are needed for monitoring the thin films while grown. Recently optical second harmonic generation has been proposed by us as a tool for non-invasive, non-destructive, real-time, in-situ imaging of oxide epitaxial film growth. The spatial resolution of this technique has been exploited to obtain real-time images of the sample under investigation. Here we propose to exploit another very important physical property of the second harmonic wave: its phase, which is directly coupled with the electric field direction, as shown by our measurements.

  15. SPECIAL ISSUE DEVOTED TO THE 80TH BIRTHDAY OF S.A. AKHMANOV: Three-wave interactions of surface defect-deformation waves and their manifestations in the self-organisation of nano- and microstructures in solids exposed to laser radiation

    NASA Astrophysics Data System (ADS)

    Emel'yanov, Vladimir I.; Seval'nev, D. M.

    2009-07-01

    The self-organisation of the surface-relief nanostructures in solids under the action of energy and particle fluxes is interpreted as the instability of defect-deformation (DD) gratings produced by quasi-static Lamb and Rayleigh waves and defect-concentration waves. The allowance for the nonlocality in the defects—lattice atom interaction with a simultaneous account for both (normal and longitudinal) defect-induced forces bending the surface layer leads to the appearance of two maxima in the dependence of the instability growth rate of DD waves on the wave number. Three-wave interactions of quasi-static coupled DD waves (second harmonic generation and wave vector mixing) are considered for the first time, which are similar to three-wave interactions in nonlinear optics and acoustics and lead to the enrichment of the spectrum of surface-relief harmonics. Computer processing of experimental data on laser-induced generation of micro- and nanostructures of the surface relief reveals the presence of effects responsible for the second harmonic generation and wave vector mixing.

  16. Effect of the magnetic field on the nonlinear optical rectification and second and third harmonic generation in double δ-doped GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Martínez-Orozco, J. C.; Rojas-Briseño, J. G.; Rodríguez-Magdaleno, K. A.; Rodríguez-Vargas, I.; Mora-Ramos, M. E.; Restrepo, R. L.; Ungan, F.; Kasapoglu, E.; Duque, C. A.

    2017-11-01

    In this paper we are reporting the computation for the Nonlinear Optical Rectification (NOR) and the Second and Third Harmonic Generation (SHG and THG) related with electronic states of asymmetric double Si-δ-doped quantum well in a GaAs matrix when this is subjected to an in-plane (x-oriented) constant magnetic field effect. The work is performed in the effective mass and parabolic band approximations in order to compute the electronic structure for the system by a diagonalization procedure. The expressions for the nonlinear optical susceptibilities, χ0(2), χ2ω(2), and χ3ω(3), are those arising from the compact matrix density formulation and stand for the NOR, SHG, and THG, respectively. This asymmetric double δ-doped quantum well potential profile actually exhibits nonzero NOR, SHG, and THG responses which can be easily controlled by the in-plane (x-direction) externally applied magnetic field. In particular we find that for the chosen configuration the harmonic generation is in the far-infrared/THz region, thus and becoming suitable building blocks for photodetectors in this range of the electromagnetic spectra.

  17. Generation of cyclotron harmonic waves in the ionospheric modification experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janabi, A.H.A.; Kumar, A.; Sharma, R.P.

    1994-02-01

    In the present paper, the parametric decay instability of the pump X-mode into electron Bernstein wave (EBW) near second harmonics of electron cyclotron frequency and IBW at different harmonics ([omega] < n[omega][sub ci];n = 2, 3, 4) is examined. Expressions are derived for homogeneous threshold, growth rate and convective threshold for this instability. Applications and relevances of the present investigation to ionospheric modification experiment in the F-layer of the ionosphere as well as during intense electron cyclotron resonance heating in the upcoming MTX tokamak have been given.

  18. Polarization-Modulated Second Harmonic Generation Microscopy in Collagen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoller, P C

    Collagen is a key structural protein in the body; several pathological conditions lead to changes in collagen. Among imaging modalities that can be used in vivo, second harmonic generation (SHG) microscopy has a key advantage: it provides {approx}1 {micro}m resolution information about collagen structure as a function of depth. A new technique--polarization-modulated SHG--is presented: it permits simultaneous measurement of collagen orientation, of a lower bound on the magnitude of the second order nonlinear susceptibility tensor, and of the ratio of the two independent elements in this tensor. It is applied to characterizing SHG in collagen and to determining effects ofmore » biologically relevant changes in collagen structure. The magnitude of the second harmonic signal in two dimensional images varies with position even in structurally homogeneous tissue; this phenomenon is due to interference between second harmonic light generated by neighboring fibrils, which are randomly oriented parallel or anti-parallel to each other. Studies in which focal spot size was varied indicated that regions where fibrils are co-oriented are less than {approx}1.5 {micro}m in diameter. A quartz reference was used to determine the spot size as well as a lower limit (d{sub xxx} > 0.3 pm/V) for the magnitude of the second order nonlinear susceptibility. The ratio of the two independent tensor elements ranged between d{sub XYY}/d{sub XXX} = 0.60 and 0.75. SHG magnitude alone was not useful for identifying structural anomalies in collagenous tissue. Instead, changes in the polarization dependence of SHG were used to analyze biologically relevant perturbations in collagen structure. Changes in polarization dependence were observed in dehydrated samples, but not in highly crosslinked samples, despite significant alterations in packing structure. Complete thermal denaturation and collagenase digestion produced samples with no detectable SHG signal. Collagen orientation was measured in thin samples of several different tissues in transmission mode as well as at different depths (up to 200 {micro}m) in thick samples in reflection mode; birefringence had no effect on the measurement. These studies showed that SHG microscopy was capable of detecting pathophysiological changes in collagen structure, suggesting that this technique has potential clinical applications.« less

  19. CARS molecular fingerprinting using a sub-nanosecond supercontinuum light source

    NASA Astrophysics Data System (ADS)

    Kano, Hideaki; Akiyama, Toshihiro; Inoko, Akihito; Kobayashi, Tsubasa; Leproux, Philippe; Couderc, Vincent; Kaji, Yuichi; Oshika, Tetsuro

    2018-02-01

    We have visualized living cells and tissues using an ultrabroadband multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopic system by using a sub-nanosecond supercontinuum (SC) light source. Owing to the ultrabroadband spectral profile of the SC, we can generate multiplex CARS signals in the spectral range of 500-3800 cm-1, which covers the whole molecular fingerprint region, as well as the C-H and O-H stretching regions. Through the combination of the ultrabroadband multiplex CARS method with second harmonic generation (SHG) and third harmonic generation (THG) processes, we have successfully performed selective imaging of ciliary rootlet-composing Rootletin filaments in rat retina.

  20. Pulse compression of harmonic chirp signals using the fractional fourier transform.

    PubMed

    Arif, M; Cowell, D M J; Freear, S

    2010-06-01

    In ultrasound harmonic imaging with chirp-coded excitation, a harmonic matched filter (HMF) is typically used on the received signal to perform pulse compression of the second harmonic component (SHC) to recover signal axial resolution. Designing the HMF for the compression of the SHC is a problematic issue because it requires optimal window selection. In the compressed second harmonic signal, the sidelobe level may increase and the mainlobe width (MLW) widen under a mismatched condition, resulting in loss of axial resolution. We propose the use of the fractional Fourier transform (FrFT) as an alternative tool to perform compression of the chirp-coded SHC generated as a result of the nonlinear propagation of an ultrasound signal. Two methods are used to experimentally assess the performance benefits of the FrFT technique over the HMF techniques. The first method uses chirp excitation with central frequency of 2.25 MHz and bandwidth of 1 MHz. The second method uses chirp excitation with pulse inversion to increase the bandwidth to 2 MHz. In this study, experiments were performed in a water tank with a single-element transducer mounted coaxially with a hydrophone in a pitch-catch configuration. Results are presented that indicate that the FrFT can perform pulse compression of the second harmonic chirp component, with a 14% reduction in the MLW of the compressed signal when compared with the HMF. Also, the FrFT provides at least 23% reduction in the MLW of the compressed signal when compared with the harmonic mismatched filter (HMMF). The FrFT maintains comparable peak and integrated sidelobe levels when compared with the HMF and HMMF techniques. Copyright 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

Top